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Preface 

Bioinformatics has been one of the most important multidisciplinary 

subjects in the last century. Initially, the major task of bioinformatics 

research was to handle large genomic data for knowledge extraction and 

for making predictions. More recently, the practices of bioinformatics 

have extended from genomics to proteomics, metabolomics, and  

most importantly systems biology. In addition to most traditional 

bioinformatics exercises which focus on large database management  

and sequence homology alignment for molecular structure prediction  

and function annotation, modelling biological data using statistical/ 

machine learning has been an important trend. This part of the exercise 

has gained great attention because it can help carry out efficient, 

effective, and accurate knowledge extraction and prediction model 

construction. However, the application of machine learning approaches 

in bioinformatics researches and practices has a series of challenges 

compared with other applications. The challenges include data size, data 

quality, and the imbalance between different data resources. These 

challenges are particularly obvious in systems biology research. For 

instance, genomics data size has a scale of around 25K, but proteomics 

data size can reach up to a scale of millions. Currently, it is hard to use 

modern computers to handle such large scale data in one machine 

learning model. Furthermore, due to experimental variation, tissue 

corruption, and equipment resolution, most metabolite data suffer a 

problem of data quality. This casts a challenge in machine learning 

model construction in terms of data noise and missing data. In using next 

generation sequencing equipment such as Illumina, we are faced with 

tega-byte of fragments of sequences. The challenge is how to assembly 
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these fragments accurately without any reference sequences. An urgent 

requirement in systems biology proposes to use different sources of data 

for analysing systems behaviour. This then casts a challenge about how 

to efficiently incorporate these data with different resolutions, with 

different data format, with different data quality, and with different data 

dimensionalities in one machine learning model. This book therefore 

tries to discuss some of these challenges. 

This book is written based on my teaching and research notes in 

bioinformatics in the past ten years. I thank Prof Jason Wang and the 

publisher for inviting me to write this book. The book is written mainly 

for postgraduates and researchers at the start of their bioinformatics 

research and practice. The pre-requisite to using this book is some  

basic linear algebra and statistics knowledge. The book can be used  

for both advanced undergraduate and postgraduate teaching reference. 

Readers are encouraged to be familiar with basic R programming  

before using this book as most case studies presented in the book are 

implemented in R.   

The book is composed of three parts. The first part covers several 

unsupervised learning approaches which can be used in bioinformatics. 

For instance, multidimensional scaling is commonly used in 

bioinformatics for biological data visualisation. Various cluster analysis 

approaches as well as self-organising map have been used for biological 

pattern recognition. After data partitioning, molecules can then be 

clustered leading to prototype pattern discovery and new hypothesis 

generation. 

The second part mainly discusses supervised learning approaches. In 

many bioinformatics projects, a typical question is how to accurately 

predict unknowns based on experimental data. For instance, how can we 

identify the most important genes for most efficient and accurate disease 

diagnosis? Additionally, given a huge number of molecular sequence 

data in which most functions are still unknown, how can we make 

prediction models based on limited information of known functions in 

sequence data? This part therefore introduces several commonly used 

supervised learning algorithms as well as their applications to 

bioinformatics. 
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The third part of this book introduces the concepts relevant to 

computational systems biology which is now the most important research 

targets in bioinformatics. Computational systems biology research 

mainly focuses on large biological systems aiming to reveal the complex 

interplay between molecules and molecular entities. Gene network, 

systems dynamics and pathway recognition have been of much interest in 

recent years. The third part then demonstrates how machine learning 

algorithms can be used for these issues. 

As mentioned above, this book is based on the revision of my  

teaching and research notes. It is therefore important to name several 

research collaborators. My key research collaborators include T Charlie 

Hodgman, Andrew Dalby, Murray Grant, Richard Titball, Nick 

Smirnoff, and Tom Richards. The students who have contributed to  

the improvement of my teaching of bioinformatics in University of 

Exeter are Rebecca Hamer, Jon Dry, Emily Berry, Dave Trudgun, 

Hanieh Yaghootkar and Susie Clark. I am very grateful to Susie Clark 

for proof-reading the book. 

Finally, I would like to thank my parents, wife and daughter for their 

great support. During the writing of this book, I regret not being able to 

spend more time with them. I hope the publication of this book will make 

up for the sacrifice. 

Zheng Rong Yang 

29 November 2009 

Exeter, England, UK 
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Chapter 1 

Introduction 

Bioinformatics has been in action for at least three decades. However, 

there is still a general confusion as to the function of bioinformatics. 

Some biologists are still treating bioinformatics as tools. Some 

informatists1 regard bioinformatics as a career of developing novel 

algorithms and systems. Because of this, there is a slight difference in 

definitions. In the literature, one fundamental concept is also missing: 

that information is a natural, inherent, and dynamic component in all 

biological systems. 

We first examine how bioinformatics is defined in various textbooks. 

In Attwood and Parry-Smith’s book [1] bioinformatics is defined as  

“the application of computers in biology sciences and especially  

analysis of biological sequence data”. In Baxevanis and Ouellette’s  

book [2] bioinformatics is “a field integrating molecular biology  

and computational methods”. In Higgs and Attwood’s book [3] 

bioinformatics is defined as “the use of computational methods to study 

biological data”. In Baldi and Brunak’s book [4] bioinformatics is  

“the development and application of computer methods for analysis, 

interpretation, and prediction, as well as the design of experiments”.  

In Mount’s book [5] bioinformatics is defined as “the application of 

computational methods to DNA and protein science”. In Augen’s book 

[6] bioinformatics has been extended to include “in silico molecular 

modelling, protein structure prediction, and biological systems  

 

                                                      
1 I use informatists to refer to a group of scientists who have the skills to apply the 

fundamental concepts in computer sciences, applied statistics, applied mathematics, and 

engineering to generate models. 
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modelling”. Finally, one of the important concepts in biological research 

(relationship) has been used in Eidhammer, Jonassen and Taylor’s 

definition [7], that bioinformatics is “the study of biological information 

and biological systems – such as the relationship between the sequence, 

structure and function of genes and proteins”. 

We then examine the definitions according to dictionaries and 

organisations. The Oxford English Dictionary defines bioinformatics  

as “the science of collecting and analysing complex biological data  

such as genetic codes”. According to NIH, bioinformatics is defined as 

“research, development, or application of computational tools and 

approaches for expanding the use of biological, medical, behavioral or 

health data, including those to acquire, store, organize, archive, analyze, 

or visualize such data”. The National Center for Biotechnology 

Information, defines bioinformatics as “the field of science in which 

biology, computer science, and information technology merge into a 

single discipline.” NCBI also notes three important sub-disciplines 

within bioinformatics. The first is the development of new algorithms 

and statistics for accessing relationships among molecules of large data 

sets. The second is to analyse and interpret various data types. The 

outcome of these two is the integration of molecules into systems. This is 

also the basis of systems biology. The third is to develop and implement 

tools for efficient access and management of different types of 

information. This covers various web services and tools for public use. 

Both NIH and NCBI definitions cover a wide range of activities in 

bioinformatics. 

I have no intention of giving a unique definition of bioinformatics. 

First, this is unfair for a huge diversity of research interests and points of 

views in bioinformatics. Second, the field of bioinformatics is still 

progressing rapidly. Many new methodologies are being developed. This 

book would like to treat current bioinformatics as a multi-discipline, 

inter-discipline, and cross-discipline science for understanding biological 

systems, exploring underlying mechanisms of biological complexes, 

verifying biological hypotheses and providing evidence through in silico 

simulation for further theoretical development. The requirements for 

bioinformatists should not be passively taking part in biological research  
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projects. Instead, they should possess basic multi-disciplinary knowledge 

to undertake biological research activities independently leading to 

scientific findings. It is expected that wet laboratory and dry laboratory 

(in silico simulation) will become inseparable in the future for 

biosciences research. 

1.1 Brief history of bioinformatics 

Bioinformatics has generally gone through four major stages. In the  

first stage some small-sized databases and fundamental concepts for 

analysing sequences were established. The theoretical work of some 

great bioinformaticians laid the foundations. In the second stage, 

sequence analysis algorithms and programs as well as some moderate-

sized databases were established. Along with the development of the 

internet, web services appeared. In the third stage, bioinformatics was 

not solely a market for sequence analysis. The analysis of other 

molecular data started, such as gene expression data and metabolite data 

in many medical applications. If we treat the second stage as the stage for 

natural finding (DNA discovery, protein structure/function annotation 

and many other hypothesis-based projects), this stage is more 

application-driven. Many bioinformatics projects have wide support from 

industry and medical services. The fourth stage is for systems-level 

examination of biological systems. This is a natural development from 

the third stage where it is difficult to gain a complete picture by 

analysing individual cases. Integrating molecules from the same data 

type or different data types has been an urgent task for un-biased 

understanding of cellular activities. 

When looking at the history of bioinformatics, two important 

pioneering works must be remembered. The first is Pauling and 

Zuckerkandl’s molecular evolution theory developed in the early 1960’s 

[8, 9]. The work illustrated that amino acid sequences of proteins can be 

used to study evolutionary relationships among organisms. They showed 

that two proteins with homologous amino acid sequences have similar 

functions. The work therefore initiated a new field known as “molecular 

evolutionary”. The theory provides theoretical basis for inferring protein  
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functions based on sequence homology. The technique is call homology 

alignment [10-15]. 

The second important work is the computerised protein and DNA 

sequence databases of Margaret Oakley Dayhoff in the 1970’s based on 

her knowledge of chemistry, mathematics, biology and computer 

science. From this, she derived evolutionary histories using sequence 

homology with Pauling and Zuckerkandl’s theory. She developed 

phylogeny for the first time with Richard Eck [16, 17]. The first 

probability model of protein evolution, referred to as point mutation 

process, was also her contribution [18]. Her quantitative measure of 

protein evolution, known as the mutation matrix [15], has been widely 

used in today’s bioinformatics tools. 

Based on the successes of Pauling and Dayhoff, rapid progress in 

bioinformatics started in the 1970’s because of the rapid technology 

development in computers. The progress mainly focused on DNA and 

protein sequence analysis. Because of the time complexity, the main 

focus was on improving algorithm speed especially for sequence 

homology alignment. The comparison of genes within a species or 

between different species can be used to indicate structural and 

functional similarity. In 1970, the first sequence homology alignment 

algorithm was developed and is referred to as the Needleman-Wunsch 

algorithm [19]. The algorithm aligns two sequences globally using a 

dynamic programming approach. In this algorithm the comparison 

between two sequences is based on a binary scoring function. The score 

is increased by one when the current aligned residues from two 

sequences match, otherwise zero. In addition, linear gap penalty is used. 

In the algorithm insertion and deletion is considered. Therefore two 

sequences with different lengths will be aligned to the same length with 

inserted gaps. As seen above, all the matching residues have the same 

score as one and all the mismatching residues have the same score as 

zero. The first computer program for DNA sequencing was developed in 

1977 [20]. The program can be used for effectively assembling sequence 

data. In 1981, an important concept called sequence motif for sequence 

analysis was generated [21]. In the same year the Smith-Waterman 

algorithm was developed [13]. The algorithm also aligns two sequences 

using a dynamic programming approach to guarantee finding the optimal 
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local alignment with respect to the substitution matrix and the gap 

penalty function used. The algorithm is a local alignment algorithm, 

which is due to the difficulty of obtaining correct alignments in regions 

of low similarity between distantly related biological sequences. 

However, the Smith-Waterman algorithm is a slow algorithm requiring a 

large memory. Because of this, it has been replaced by much more 

efficient algorithms for instance the FASTP algorithm published in 1983 

[14], the FASTP/FASTN algorithm published in 1985 [22] and the 

BLAST algorithm implemented in 1990 [23]. 

Contributing to the third generation of bioinformatics are vast 

activities in analysing gene expression data. A gene is the basic unit of 

heredity in all living organisms; it is a segment of DNA sequence, a unit 

coding genetic information which is inheritable [24-26]. In other words, 

DNA is an organisation of information [27]. Genes are transcribed to 

RNAs which in turn are translated to proteins. This is controlled by a 

gene regulation process [24-26]. Gene expression is a process whereby a 

relevant gene is transcribed and translated to RNAs and proteins 

respectively according to a regulatory signal. These RNAs and proteins 

are functional in certain pathways or networks. Gene expression can be 

measured quantitatively using biotechnology. The measurements can  

be at the RNA level or protein level depending on techniques used.  

It is understood in molecular biology that a specific pattern of gene 

expression in a number of biologically related samples represents the 

activity of a specific signalling pathway or network. The bioinformatics 

study of gene expression data was triggered by the generation of DNA 

microarray data in the 1980’s. A DNA microarray is a technology 

developed particularly for medicine. Each microarray is an array of 

thousands of DNA oligonucleotides from biologically relevant samples. 

The samples can be related to a specific disease diagnosis. One group of 

samples can be disease-free and the other can be disease-related. By 

analysing the pattern of expression of these DNA oligonucleotides, it is 

possible to investigate the genetic reason of disease development. 

Microarray technology evolved from Southern blotting [28] and the first 

use of DNA microarray expression profiling was in 1987 for identifying 

genes whose expression is modulated by interferon [29]. The earliest 

report in analysing microarray expression data of the budding yeast 
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Saccharomyces cerevisiae using cluster analysis approach was in 1998 

by Eisen et. al., [30]. Recent studies in clustering microarray expression 

data include those looking at renal cell carcinoma [31], inflammatory 

immune signalling in chronic fatigue syndrome [32], inflammation  

status in hepatitis C virus-related hepatocellular carcinoma [33], etc. 

Classification models have also been built for predictive/diagnostic 

purposes, such as the diagnosis of breast cancer [34], [35], colorectal 

cancer [36], lung cancer [37], brain cancer [38], ovarian cancer [39], etc. 

In the fourth generation of bioinformatics, many researchers turn their 

eyes to systems biology, which is an inter-discipline and cross-discipline 

subject in studying biological systems. The major objective of systems 

biology is to discover new emergent properties of processes at the 

cellular level and organism level in biological systems in a systematic 

view. Following this, a number of systems biology institutes have  

been established and some doctorial training centres have also been 

created. Although the huge scale of systems biology studies started only 

a decade ago, the earliest work using the systems biology approach  

to study biological processes was published in the 1950’s [40]. A 

foundation study of systems biology was completed in the 1960’s with 

the publication of Mesarovic’s book [41]. The first systems biology  

institute was established in 1999 [42] in the Department of Molecular 

Biotechnology at the University of Washington, aiming to model 

complex biological systems quantitatively and foster interdisciplinary 

interactions in the life sciences.  

1.2 Database application in bioinformatics 

The introduction of database technology into bioinformatics in the early 

days was brought about by the development of many gene/protein 

sequencing projects which needed an efficient way for data handling. In 

the 1930’s, electrophoresis was developed for separating proteins in 

solution using moving boundary or zone electrophoresis [43]. The 

structure of the alpha-helix and beta-sheet was proposed in the early 

1950’s [44, 45] and the double helix model for DNA based on x-ray 

experiment was proposed in 1953 [46]. The first sequenced protein 
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(bovine insulin) was analysed in1955 [47]. Herbert Boyer and Stanely 

Cohen invented DNA cloning or recombinant DNA technology in 1973 

[48]. The technology made it possible to manipulate DNA in different 

species. For instance, some parts in DNA can be removed or replaced 

and some altered segments can be inserted into DNA. Specific proteins 

can be produced using gene splicing. In order to analyse the presence of 

a DNA sequence in a DNA sample the Southern blot was developed in 

1975 [28]. The first sequenced DNA was seen in 1977 [49, 50]. In 1980, 

a multi-dimensional NMR method was developed for protein structure 

determination [51]. In 1996, the first DNA chip was generated by 

Affymetrix (NASDAQ: AFFX). The first gene Chip product was an HIV 

genotyping GeneChip. The human genome with 3000 Mbp was produced 

in 2004 [52]. Based on this simple description of molecular data 

generation history it can be seen that, on the one hand, technologies are 

fast developing and, on the other hand, data sizes are dramatically 

increased, making a huge challenge for data handling, management, 

mining, i.e. bioinformatics. 

In order to fulfil the needs in acquiring data for research, various 

databases continue to be established thereafter. In 1986, the largest curate 

protein databank SWISS-PROT was created by the Department of 

Medical Biochemistry of the University of Geneva and the European 

Molecular Biology Laboratory (EMBL). In 1988 The National Center for 

Biotechnology Information (NCBI) was established at the National 

Cancer Institute. Many successful projects of building data warehouses 

have well used and well developed database technology in computer 

sciences for a huge amount of molecular data. Efficiently storing 

sequence data is one important topic. A number of nucleotide sequence 

databases and protein sequence databases have therefore been 

implemented. The well-known nucleotide sequence databases include 

GenBank [53, 54] referred to as the NIH genetic sequence database, 

EMBL Nucleotide Sequence Database [55] referred to as the European 

equivalent to the U.S.’s GenBank, DDBJ (DNA Data Bank of Japan), 

Human Genome Sequencing Centre at Baylor College of Medicine, 

IMGT (the International ImMunoGeneTics Database) [56]. The widely 

used protein sequence databanks are UniProt (United Protein Databases) 

and Swiss-Prot. The UniProt is a centralised database cooperating with 
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EBI (European Bioinformatics Institute), PIR (Protein Information 

Resource), GUMC (Georgetown University Medical Centre), NBRF 

(National Biomedical Research Foundation), and SIB (Swiss Institute of 

Bioinformatics). The Swiss-Prot is the major European protein sequence 

database. In Swiss-Prot, various properties of proteins are stored such as 

the description of the function of a protein, protein domains structure 

data, and protein posttranslational modifications data. 

1.3 Web tools and services for sequence homology alignment 

Since DNA and protein sequencing technologies have been successfully 

developed, many DNA and protein sequences have been well organised 

and stored in various databases as mentioned above. One of the urgent 

tasks is to have tools which can compare two sequences to indicate  

how similar they are. Based on well-developed homology alignment 

algorithms, web tools have been developed and are open to the public. 

For instance, some BLAST tools are implemented in the National Center 

for Biotechnology Information (NCBI): nucleotide blast, used for 

searching a nucleotide database for a nucleotide query based on the 

BLASTn algorithm, protein blast, used for searching the protein database 

for a protein query based on BLASTp, Position-Specific Iterated – 

BLAST or psi – BLAST [57, 58], Pattern Hit Iterated – BLAST or phi – 

BLAST [59], BLASTx, tBLASTn, and tBLASTx. Most of these have 

been implemented as web tools. All of them deal with predictions 

indirectly. For instance, a query sequence may have been aligned with a 

number of database sequences. These database sequences have known 

structures and functions. If the query sequence has a high returned 

similarity with these database sequences, the conserved segment 

corresponding to protein structures or functions in these database 

sequences can be used for the prediction of the query sequence. A web 

tool will enable the user to enter a query on the internet while a server of 

a web tool will conduct all the necessary computing. The computing 

result will be returned to the user either on the web site or by an email. 

The FAST/BLAST series tools are used for aligning a query sequence 

against many database sequences to find the most similar ones. The 
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algorithms implemented in all tools consider insertions and deletions. 

There are also two other classes of web tools implemented in 

bioinformatics studies, one being prediction using whole protein 

sequences and another being prediction using sub-sequences or peptides. 

These two classes of web tools are used for direct protein function 

prediction. For instance, the tools developed for the prediction of protein 

localisation [60-62], gene structure prediction [63] and function 

annotation [64] use whole protein sequences as input to predict protein 

structures and functions directly. 

1.3.1 Web tools and services for protein functional site identification 

Protein functional site identification using peptides includes the 

prediction of protein cleavage sites, protein posttranslational 

modification sites, binding sites, and turn types. For instance, 

bioinformatics algorithms and (web) tools have been used to predict 

proteasomal cleavage sites [65], promiscuous MHC Class-I binding sites 

[66], RNA binding sites [67, 68], lipoprotein signal sites [69], 

transcription binding sites [70], active sites [71], ligand binding site [72], 

miRNA target site [73], protein-protein interaction sites [68], convertase 

sites [74], SH3 domain interaction sites [75], and signal peptides [76].   

In predicting posttranslational modification sites, there are also many 

web tools being developed, for instance, glycosylation site prediction 

[77, 78], phosphorylation site prediction [74, 79-83], acetylation site 

prediction [83], methylation site prediction [84], sumoylation site 

prediction [85], palmitoylation site prediction [86] and GPI-modification 

site prediction [87]. Web tools have also been implemented for protein 

turn prediction [88-90]. Another class of web tools for protein structure 

prediction uses variable peptide length for prediction. This class of web 

tools include protein disorder prediction and secondary structure 

prediction. For predicting secondary structures in proteins, the 

implemented web tools are PreSSAPro [91], E-SSpred [92] and 

MUPRED [93], PROTEUS [94], GOR V [95], Porter [96] and logic 

alignment approach [97]. MeDor [98], DPROT [99], iPDA [100], 

PrDOC [101], FoldUnfold [102], Spritz [103], IUPred [104], RONN 
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[105], DisEmbl [106], TOP-IDP-scale [107], GlobPlot [108] and 

PONDA [109] are the web tools for disordered protein prediction.  

1.3.2 Web tools and services for other biological data 

Web tools have also been implemented for other biological data analysis, 

for instance for RNA data analysis [110], RNA deleterious mutation 

analysis [111], microarray data interpretation [112], transcriptional 

regulatory network construction [113] and for gene selection and 

classification [114], [115]. Web services also cover metabolite data 

analysis, such as correlating ligand metabolites with pathways [116] and 

integrating transcripts and metabolites [117]. All these efforts aim to help 

biologists to enhance their biological experiments and speed up scientific 

findings. 

1.4 Pattern analysis  

The third important practice in bioinformatics is pattern analysis. It 

covers a wide range of topics, methodologies and algorithms. This book 

will mainly focus on this practice providing a broad introduction and 

analysis. Compared with the other two subjects mentioned above, pattern 

analysis deals with many fundamental issues in bioinformatics. If a web 

tool is more or less computing technique-based, pattern analysis needs 

some fundamental support from statistics and mathematics. From this, 

models or web tools can be constructed. 

Pattern analysis focuses on the exploration of the underlying 

mechanism of biological data. It aims to find the rules which govern  

data distribution. Only by knowing these rules, can proper models be 

constructed. For instance, in any prediction system, the most important 

part is a prediction model. Without fully understanding how data  

are distributed, no accurate or efficient model can be constructed for 

prediction. In order to build a proper predictor, a rigorous modelling 

process based on statistical modelling principles must be followed. 

Pattern analysis mainly involves two learning mechanisms, i.e. 

unsupervised learning and supervised learning. The former is for 
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knowledge discovery, rule extraction and data visualisation, while the 

latter is for predictive model construction. There are also many different 

algorithms for each learning mechanism, some being simple leading to 

coarse but easy-to-interpret models, some being complicated leading to 

some accurate but difficult-to-interpret models. 

In recent years, systems biology and computational systems biology 

have been paid increasing attention because of their importance in 

understanding biological systems. Conventionally, biological studies 

often decompose a system into some very basic and small systems. The 

study of these decomposed systems may miss important information of 

complex interplay in cells or organisms. Two trends have emerged in 

systems biology study. They are top-down compositional analysis, 

aiming at predicting system dynamics, and bottom-up integrating 

analysis, aiming at putting molecules into the right classes, pathways, or 

networks. 

1.5 The contribution of information technology 

The development, progress, and advances of bioinformatics could never 

have taken place without the support of IT successes. In 1946, came the 

announcement of the Turing-complete, a digital computer [118]. It is 

referred to as Electronic Numerical Integrator And Computer (ENIAC). 

The main purpose of ENIAC was to calculate artillery firing tables for 

the U.S. Army's Ballistic Research Laboratory although it can be used to 

solve various computer programming problems. The advantage of 

ENIAC is its speed: one thousand times faster than an electro-mechanical 

machine. Meanwhile, its power in dealing with mathematics for general-

purpose programming promoted the spread of using computers in various 

applications. 

In 1958, another revolution occurred in electronics which is closely 

related to the computer industry. The event was the development of the 

integrated circuit (IC) which made the manufacture of electronic 

equipments much faster and cheaper. Later, IC quickly progressed to 

very large scale IC (VLSI) leading to almost all electronic equipments 

including computers in use today being packed into a very small space. 
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Particularly, VSLI has greatly improved the efficiency of the core parts 

of a computer (CPU – central processing unit) in two ways. First, the size 

of CPU can be much smaller. Second, the memory is dramatically 

increased. 

Because of the huge progress in electronics and computers (nowadays 

referred to as hardware in contrast to programming codes as software), 

using computers to store sequence data has become a convention. 

However, the following events have also made bioinformatics research 

feasible. 

In 1969, Unix systems appeared in the Bell laboratory, which 

provided a powerful platform for large scale computing. The next 

important event was the emergence of the internet. The first internet (1
st 

generation) was called Advanced Research Projects Agency Network 

(ARPAnet) established by the United States Department of Defence. 

ARPAnet was first established on November 21, 1969 linking the IMP  

at UCLA and the IMP at SRI. The 2
nd

 generation was connecting desk 

PCs through telephone lines. The 3
rd generation was using wireless 

connections to laptop computers. The 4
th generation (the current one) is 

using mobile phone internet through cellular networks [119]. 

Two important network applications are email and file transfer. Email 

was invented in 1971. File transfer protocol (ftp) was invented in 1973. 

These two applications have become the most important composition 

parts of modern bioinformatics services. Almost all the web services and 

tools mentioned above include these two applications. 

The other important developments in computer sciences include 

personal PC, window systems, Linux, Netscape, Perl programming 

language, Java and Java Script Programming languages; all have played 

important roles in promoting fast bioinformatics progress and 

development. 

1.6 Chapters 

This book is composed of 18 chapters. Except for chapters 1 and 20, the 

rest are divided into three parts. Chapters 2, 3, 4, 5, and 6 constitute part 

1 and mainly discuss the issue of unsupervised learning. Chapter 2 
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introduces general concepts of unsupervised learning. Chapters 3, 4, 5, 

and 6 separately discuss most commonly used approaches, namely 

probability density estimation, principal component analysis, cluster 

analysis, multi-dimensional scaling, and self-organising map. Although 

they have some overlapped functions, each uses a distinct statistical 

assumption about data. All these four approaches can be used for 

different aspects of knowledge discovery. Chapters 7, 8, 9, 10, 11, 12, 

and 13 constitute part 2 and are used to cover supervised learning 

algorithms including linear/quadratic discriminant analysis, K-nearest 

neighbours, decision trees, neural networks, vector machines, and hidden 

Markov models. Specifically, chapter 13 focuses on an important issue in 

handling biological data, i.e. feature or variable selection. Chapters 14 

and 15 constitute additional components for part 2 and will focus on 

peptide classification or functional site prediction problems. Chapters 16 

and 17 constitute part 3 and will discuss computational systems biology 

studies including causal networks and S-systems. Chapter 18 discusses 

the future research directions. 

Chapter 2 will focus on the general concepts of knowledge discovery 

approaches in bioinformatics. The chapter will discuss the principle of 

unsupervised learning approach and briefly introduce various 

unsupervised learning algorithms. The chapter will also introduce some 

applications of using unsupervised learning approaches to explore 

knowledge from large-scale biological data. Chapter 3 will introduce a 

useful approach in statistical learning, i.e. probability density estimation 

for most data analysis projects. This approach is commonly used as 

primary data analysis aiding proper selection of modelling algorithms. 

Various algorithms and procedures will also be discussed. Chapter 4 will 

introduce principal component analysis (PCA) and the Sammon mapping 

algorithm for biological data dimension reduction. PCA can lead to two 

outcomes, data reduction and data visualisation. In bioinformatics, PCA 

is commonly used to visualise data using the first and second principal 

components. Chapter 5 will discuss how to partition biological data 

through the use of various clustering algorithms. Data partitioning is 

commonly used in bioinformatics to visualise how data are clustered. 

From this, typical biological functions can be extracted. Chapter 6 will 

introduce the self-organising map as a neural learning algorithm which is 
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capable of visualising, clustering data and reducing dimensionality of 

data. 

Chapter 7 will briefly discuss the use of supervised learning 

approaches in bioinformatics. Some linear algorithms will be discussed 

first followed by nonlinear algorithms. Chapter 8 discusses 

linear/quadratic discriminant analysis and K-nearest neighbour algorithm 

as simple learning algorithms. Chapter 9 will discuss decision trees  

and the random forest algorithm as well as their applications to 

bioinformatics for exploring human-like decision-making systems. 

Chapter 10 will discuss neural networks which are one of the powerful 

nonlinear algorithms. Because neural networks have been widely used in 

bioinformatics applications, various cases will be discussed. Chapter 11 

will discuss recent development in nonlinear classification approaches 

including basis function neural networks, support vector machine and 

relevance vector machine. Because they have the advantage of better 

generalisation capability and interpretation using support/relevance 

vectors, their applications to bioinformatics projects have gained an 

increasing interest. Chapter 12 will discuss hidden Markov models which 

have been intensively used in sequence analysis. Chapter 13 will 

introduce various approaches of feature selection which are critical in 

analysing biological data such as gene expression and metabolite data for 

extracting the most informative biomarkers. 

Chapter 14 will discuss the coding problem which is important to the 

analysis of sequence data, where residues are commonly non-numerical 

attributes. Several coding mechanisms will be discussed and compared. 

Chapter 15 will focus on one specific subject in bioinformatics, i.e. 

peptide classification where the main topics including data selection, 

organisation, target definition, and modelling procedures. 

Chapter 16 will discuss how to use causal network principle and 

Bayesian network for constructing gene networks. Chapter 17 will 

discuss the developments in computational systems biology. The focus 

will be mainly on metabolite data analysis. Chapter 18 will outline the 

future research directions in bioinformatics. 
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Chapter 2 

Introduction to Unsupervised 

Learning 

In many real-world applications, available data may have little domain 

knowledge (signature) associated, for instance, the data structure and the 

inference rule of a data set may be missing or yet to be discovered. Such 

a data set is categorised as incomplete data for which inference on novel 

data becomes difficult. In order to make data, particularly experimental 

data, useful for inference it is necessary to explore signatures for a data 

set, which should fit well the inference purposes. For instance, a mass 

spectrometry experiment on a set of plant samples can generate many 

thousands metabolites. Each metabolite is represented by a mass and a 

number of abundance values for replicates. Based on masses we can infer 

a number of the chemical formulas of candidate compounds from 

different pathways. In theory, one mass corresponds to one compound. 

However one metabolite may be mapped to multiple compounds. A 

selection process is commonly conducted manually in a laboratory to 

identify the true compound of the metabolite. A manual verification is 

prone to error and is also cost demanding. An automatic process can 

therefore be helpful to cover these two issues. It is understood that 

molecules in the same pathway should have similar responses to the 

treatment induced in an experiment. It is possible to study the clusters of 

metabolites according to abundance values. If some metabolites in a 

cluster have definite compound/pathway annotations, a metabolite with 

multiple mappings in the same cluster can then be identified. Another 

example in studying metabolite data is the identification of a proportion 

of important metabolites which can discriminate between experimental 

and control groups of samples. To fulfil this purpose, we can model the 
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density functions of the differential intensities of metabolites from the 

experimental and control groups. By setting a threshold, say 1%, we can 

identify a subset of the most important metabolites for discrimination. 

The process of exploring knowledge from data in this study is 

referred to as a learning process in machine learning. There are  

mainly two learning processes used in analysing biological data, i.e. 

unsupervised and supervised learning. Two learning processes adopt  

two different learning mechanisms. A supervised learning process seeks  

a mapping function from one data space to another data space. For 

instance, if we have enough biological knowledge, we may map 

chemical formulas of compounds to pathways directly, where chemical 

formulas and pathways are certainly in two different data spaces. The 

association between these two spaces is the goal to acquire in a 

supervised learning process. With unsupervised learning process, it is 

assumed that one data space is missing. For instance, a set of gene 

expression profiles for a specific disease may be known, but the number 

of inherent causative agents of that disease may be unknown. In other 

words, the causative agents are not observable or not easily observed. 

For mapping gene expression profiles to this missing space, an 

unsupervised learning process can be taken. The learning process is to re-

organise the available data space to explore the missing space, or to map 

the available data to the missing space. 

Supervised learning process will be detailed in Chapters 7 to 13. 

From this Chapter to Chapter 6, the focus is on unsupervised learning 

approaches. Most machine learning approaches or algorithms including 

unsupervised and supervised learning algorithms involve a parameter 

space optimisation problem. It is assumed that knowledge in data or data 

signatures can be quantitatively expressed by parameters. In other words, 

parameters are the quantitative characterisation of knowledge by which 

data are generated. For the gene expression data mentioned above, we 

may say that it is the body of the causative agents which are not observed 

that generate the gene expression profile data. If the causative agents 

vary from disease to disease, the gene expression profile will vary as a 

consequence. It must be noted that knowledge is an abstract object by 

which exhausting data are infinite. For instance, if time and cost are 

allowed, we may collect infinite gene expression profile data for one 
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disease. Limited by time and cost, the data obtained for acquiring 

knowledge can only be one random sample of the true knowledge. For 

instance, given a mean and a standard deviation of the Gaussian 

distribution, many data sets can be randomly generated. Figure 2.1 shows 

an example of this, where the mean and the standard deviation of the 

Gaussian distribution are zero and one, respectively. Sampling the 

distribution twice with 100 data points generates two random data sets 

from which two histograms are drawn displaying two different data 

distributions. One of these two data sets may be used for the inference of 

mean and standard deviation of the Gaussian distribution.  

 

 

Fig. 2.1. Two samples are generated by randomly sampling the Gaussian distribution 

characterised by mean: zero, and standard deviation: one, with 100 data points. Two 

histograms are generated using two data sets. In the histogram, the range of X (the 

independent variable) is divided evenly into a number of intervals referred to as bins. The 

data falling into each bin are counted as “Hits” placed as the vertical axes in the Figure.  

 

In unsupervised learning, such a learning process normally deals with 

one data set as mentioned above. In the above example, the inference of 

the Gaussian characterisation parameters (mean and standard deviation) 

will not have any other data to support. In other words, the source (a 

Gaussian function) which generates the data is missing. What an 

unsupervised learning process does is to find this information hidden in 

data through learning. For instance, the estimation of the mean and 
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standard deviation of the Gaussian distribution for data samples in  

Fig. 2.1 can be done by 

 ∑
=
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where n  is the number of data points, ix  is the ith data point, µ  is the 

mean, and σ  is the standard deviation. The estimated mean and standard 

deviation for random sample 1 shown in Fig. 2.1 are −0.01468948 and 

1.051885, respectively. The estimated mean and standard deviation  

for random sample 2 shown in Fig. 2.1 are 0.07375137 and 1.008609, 

respectively. The parameters are close to the true parameters (referred to 

as truth) with small deviations. Bear in bind that we are handling random 

samples with limited size. Having deviations is then a common outcome 

and is expected. The question is how to minimise this deviation, which is 

another issue in learning and will be discussed in the next few chapters 

for different unsupervised learning approaches. 

In the above example, the Gaussian distribution is regarded as a data 

structure while the parameters are regarded as the inference rule. Unless 

these two parameters are well-learnt, an inference process may not be 

accurate and correct. The correctness means that an inference must find 

the correct data structure while accuracy measures how close the 

estimated parameters are to the true parameters. The assumed data 

structure for two random samples in Fig. 2.1 is Gaussian. If the assumed 

data structure is incorrect, the explored inference rule will be useless. For 

instance, the data available (in solid line in Fig. 2.2) do not follow the 

Gaussian distribution. If we assume that the data are generated from a 

Gaussian distribution, the estimated inference rule will not generate any 

useful prediction. The dotted line in Fig. 2.2 shows a significant 

deviation from the solid line. This incorrect information will be useless 

or misleading in future inference. 
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Fig. 2.2. An example that uses an incorrect data structure for inference. The solid line is 

the density function (details of this will be discussed in Chapter 3) of a random sample 

generated from a true data structure which is composed of multiple Gaussian 

distributions. The dotted line is the density function of an estimated inference rule of the 

assumed Gaussian data structure. 

 

The above two examples are categories of density estimation in 

machine learning. As stated above, it is necessary to explore the true data 

structure as well as the true inference rule. 

There are also two other important subjects of unsupervised learning 

in machine learning. They are data visualisation and cluster analysis. 

Data visualisation is a powerful tool in real data analysis where the main 

objective is to investigate how data are distributed. From this, further 

studies can follow that look at data structures and inference rules. If data 

are located in a low-dimensional space, such an investigation will not be 

very difficult. However, in most real bioinformatics applications, data are 

sitting in high dimensional spaces in which it is impossible to visualise 

how data are distributed. For instance, microarray gene expression data is 

a typical example. Gene expression data for studying certain diseases 

may be available in only a few samples but may have thousands or 

hundreds of thousands of genes used as variables. Direct and intuitive 

visualisation of the data is impossible unless a specific treatment is taken. 

In order to visualise high-dimensional data we then need to use various 

visualisation approaches. Some are simple while some are tailored for 

handling nonlinear and complicated data.  
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Fig. 2.3. Mapping the Iris data (in four dimensions) to a two-dimensional space. There 

are three species of Iris flowers; each has four descriptions, hence four-dimensional data 

space. 

 

Figure 2.3 shows a visualisation map of Iris data in which three 

species of Iris flowers (Setosa, Versicolor, Virginica) are quantified by 

four variables (sepal.length, sepal.width, petal.length, and petal.width). 

In using these four variables, a map is generated using a visualisation 

algorithm, a multi-dimensional scaling algorithm which will be discussed 

in Chapter 4. In the map, it can be seen that the species Setosa is well 

separated from the other two species, which are difficult to separate. 

A data set may not have one unique data structure, i.e. a data structure 

can be viewed as a composition of disjointed sub-data structures. Each 

sub-data structure is a collection of data points with similar physical 

background. For instance Fig. 2.4 shows a data structure with four sub-

data structures. The four contours are four sub-data structures based on 

which four clusters of data points are generated using random sampling. 

In unsupervised learning, a key issue is how to find this data structure 

from a random sample and quantitatively describe the data structure. 

Therefore two important issues are whether the data structure and the 

inference rule which are both acquired are estimated correctly and 

accurately. Such a process in unsupervised learning is called cluster 

analysis. 
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Fig. 2.4. Four sub-data structures of a data set. Four contours are for four sub-data 

structures and dots comprise a random data set sampled from a data structure with four 

sub-data structures. 

 

These three typical unsupervised learning processes have been widely 

used in various Bioinformatics problems. Some are used for data pre-

processing, some are used for data primary study and some are used for 

building predictors. For the first two purposes, unsupervised learning 

approaches are normally used for identifying data structures and 

inference rules. A further progress from this is to build predictors based 

on the found data structure and the estimated inference rules. For 

instance, if a data structure is found to have two Gaussian distributions 

for two classes of data, e.g. disease-related and disease-free, with an 

estimated optimal inference rule, e.g. the Gaussian parameters, 

classification or prediction can be made for novel data. Various density 

function estimation algorithms [120] have been used in bioinformatics, 

for example with the prediction of miRNA [121], the prediction of 

secondary structures [122], the functional annotation of proteins using 

gene ontology contents [123], the segmentation of cDNA microarray 

spots [124], the prediction of protein crystallization propensity [125], and 

the prediction of protein functional sites [126]. 
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Principal component analysis (PCA) [127, 128] is a powerful 

unsupervised learning algorithm which converts a raw data space to an 

orthogonal space in which the first one or two principal components can 

be used for data visualisation if they contain the majority of the 

information in the data. Details of the algorithm will be discussed in 

Chapter 4. PCA has been used for detecting the aging evolution of the 

volatile organic compounds obtained from various samples [129], for 

characterising a broad range of structural and architectural alterations in 

cell walls [129], and for analysing and detecting different qualities of 

food and drug composition [130]. Principal component analysis has also 

been used for analysing Glycoprotein microarrays [131], studying low-

dose radiation-associated changes in cytokine gene expression profiles 

[132], and studying multi-dimensional gene expression data [133]. 

When studying biological data with little domain knowledge, an 

important issue is if the data can be divided into a number of small, non-

overlapping groups. If so, how many groups can be made for a data set? 

This is key to investigating whether a biological phenotype is composed 

of several non-overlapping genotypes or for studying the causative 

agents leading to a specific disease. The approach for this is called 

cluster analysis. Cluster analysis has been used for representing and 

analysing gene sequences [134], protein sequence analysis [135], 

deriving sequence templates so as to analyse protein tertiary structures 

[136], studying the genetic diversity of harpins from Xanthomonas 

oryzae [137], testing the importance of myogenic gene expression during 

myofiber hypertrophy in humans [138], analysing gene expression data 

of human dental pulp stem cells [139], analysing SAS on real-time PCR 

gene expression [140], subcategorising of tumour types through gene-

expression profiling [141], studying gene expression dynamics [142], 

and optimising gene cluster structure using biological knowledge [143, 

144]. 

As a neural network unsupervised learning algorithm, self-organising 

map (SOM) [145] has been widely used in bioinformatics because of  

its powerfulness in associative memory and pattern analysis. The 

mechanism of SOM will be discussed in Chapter 6. SOM has been used 

for protein structure localisation analysis [146], protein turn type 

prediction [147], DNA fragment taxonomic visualization and 
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classification [148], clustering short time-course microarray data with 

replicates [149], peptide identification [150], secondary structure 

prediction [151], G-protein-coupled receptors classification without 

alignment [152], searching for hidden sequence signatures of eukaryotic 

genomes [153], and optimal HP configuration [154]. 
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Chapter 3 

Probability Density Estimation 

Approaches 

The importance of density estimation has been discussed in the last 

Chapter. In this Chapter, the relevant algorithms and their applications 

to bioinformatics are detailed. The simplest approach, called the 

histogram approach, is introduced at the beginning. Further discussion 

then follows towards three categories. First, a parametric approach is 

introduced with which we assume that data follow a Gaussian 

distribution as a hidden or missing data structure and two parameters (a 

mean and a standard deviation) as the inference rule of it are estimated.  

Second, two non-parametric approaches are discussed. In contrast 

to parametric approaches, non-parametric approaches do not try to 

explore the explicit form of a data structure for a data set. The inference 

rule is therefore algorithm-oriented. Third, a semi-parametric approach 

is also introduced. Unlike parametric and non-parametric approaches, 

semi-parametric approaches explore a flexible data structure with 

inference rules for future decision making. For each of these three 

categories, a number of applications will be discussed. The data used 

for learning is referred to as training data. 

3.1 Histogram approach 

The histogram approach is the simplest density estimation approach. In 

estimating a density function for a data set, each coordinate is divided 

into segments with fixed length. Such a segment is commonly called a 

bin. For instance, the coordinate of a variable ],[ bax∈  is divided into K 

non-overlapping bins each of which has the length 
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Each training data point is scanned to see which bin the data point falls 

in. The frequency of each bin is equal to the number of training data 

points falling into it over the total number of training data points. The 

frequency is treated as the inference rule. In prediction, the frequency is 

used as the probability to indicate how likely novel data is to fall in a 

certain bin. Suppose a bin is characterised by the interval ],[bin 21 uui =  

( buua ≤<≤ 21 ) and a frequency if . If a novel data point falls in this 

interval, i.e. ],[ 21 uux ∈ , the frequency of the bin is then used to indicate 

how likely 21 ,uxu ≤≤ . Note that “∈” reads as “belonging to”. From 

this, a histogram can be generated to visualise the data distribution. The 

left panel in Fig. 3.1 shows such an application. Details of data will be 

discussed in the next section. The histogram approach is a simple method 

for studying probability density functions, but it has a fatal limit in 

computational cost when the number of variables gets larger. For D 

variables, there will be DK  bins. When K=10, the number of bins will 

be 10
10  when a data set has 10 variables. A further note on the histogram 

approach is its specificity. It is normally categorised as a non-parametric 

approach because it does have a property of non-parametric approaches 

in that no explicit data structure is used. However, it has some similarity 

with parametric approaches in that training data will not be kept for an 

inference process.  

3.2 Parametric approach 

Unlike the histogram approach, a parametric approach makes an 

assumption of data structure before estimating the probability density 

function of a data set. We acquire a unique data structure which is 

Gaussian in most applications and a relevant inference rule. After the 

probability density function of a data set is constructed, we discard the 

training data. What is left is the inference rule characterised by two 

parameters for a Gaussian data structure. A Gaussian data structure has 

mean and standard deviation parameters. If a training data set with N 

training data points is denoted by { }
1

  ,
N

n n=
Ω = x  ( )ndnnn xxx ,,, 21 ⋯=x  
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(hence 
d

n ℜ∈x ) with njx  as the jth element of the nth training datum in 

Ω . Here we follow convention to denote a d-dimensional vector by a 

bold-faced letter. { }N

nn 1
  

=
x  is read as enumerating n for nx  from 1 to N. 

With the assumption of a Gaussian data structure, a likelihood function 

(L ) that N training data points are generated by the assumed Gaussian 

data structure is defined as below 
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Here the probability density function )( np x  is a Gaussian 
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with Σ  as the covariance matrix and µ  the mean vector. The likelihood 

function is determined by the parameters, i.e. the mean vector and the 

covariance matrix. Only when the likelihood function is maximised, the 

two parameters are optimised or optimally determined so that the 

estimated Gaussian data structure can fit the training data well. If training 

data are orthogonal, we can assume that the covariance matrix is 

diagonal 
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We can further assume that data are homogeneous. From this the 

covariance matrix becomes I
2σ=Σ  with I as an identity matrix. 

Applying a logarithm to the likelihood function and using the maximum 

likelihood approach leads to 
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and 
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Figure 3.1 shows an application of parametric density estimation for 

the hydrogen distribution in compounds. The data are from the Kegg 

library [155]. There are 2762 compounds. Each compound is expressed 

by a formula. For instance, the chemical formula of ADP is 

C10H15N5O10P2 with relative mass as 427.029297. In this compound, 

there are 15 units of hydrogen. Among 2762 compounds, the quantity of 

hydrogen varies and the estimation is based on the following data 

conversion 

 )1Hlog( +=x  (3.7) 

where H means the quantity of hydrogen. Using the parametric approach 

described above, we can estimate the probability density function for x. 

 

 

Fig. 3.1. (a) The histogram; (b) The parametric approach for estimating probability 

density function of hydrogen quantity in compounds. 

 

Shown in the left panel in Fig. 3.1, a histogram demonstrates biased 

Gaussian distribution for comparison. It can be seen that the parametric  
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approach delivers a symmetrical density function while the histogram 

shows a skewed density function. From this case, we can see that we 

must be careful when using the parametric approach for probability 

density estimation. If the difference between a real distribution and  

the predicted one is too large, we need to think of an alternative. The 

parametric approach has the advantage of being very simple and 

straightforward. 

3.3 Non-parametric approach 

A non-parametric approach in machine learning means that a model is 

built without a clearly defined data structure. A model will need to use 

all the available data points for an inference. The prediction is based  

on a specific inference rule replying on the relation between a novel 

datum and whole training data. Two commonly used non-parametric 

approaches for density function estimation are discussed here. They are 

the nearest neighbour approach and the kernel approach. The latter has 

been embedded in the R project. 

3.3.1 K-nearest neighbour approach 

With the K-nearest neighbour approach, the basic principle is similar to 

the histogram approach. Both use a predefined field (named as bin in the 

case of the histogram approach) into which we estimate the frequency 

that the training data points fall. Afterwards, the frequency estimated is 

used for inference. However, two approaches have very different effects. 

With the histogram approach, frequencies of bins are estimated in 

advance. When novel data arrive, the inference process is conducted 

without seeing the training data again. With the nearest neighbour 

approach, an inference process is made only when all the training data 

points are present. Moreover, various distance metrics are used, for 

instance the Euclidean distance, the binary distance and other 

biologically relevant distance measures. Figure 3.2 shows five estimated 

probability density functions based on five different bin sizes using the 

nearest neighbour approach. In the Figure, it can be seen that when the 
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number of bins is small, hence large bin size, the estimated density 

function has a trend to smooth out the peaks. However, when the number 

of bins is large, hence small bin size, the estimated function has many 

unnecessary sparks. There is therefore a procedure for determining if the 

bin size is optimal. 

 

 

Fig. 3.2. Five estimated probability density functions for the hydrogen data based on five 

bin sizes using the nearest neighbour approach. Five bin sizes are made by dividing the 

data interval over the number of bins, e.g. 10, 20, 30, 40, and 50. These five density 

functions are normalised together with the density function estimated using the kernel 

approach. 

3.3.2 Kernel approach 

The kernel approach is a kernel learning method and is an extension to 

the nearest neighbour approach. The kernel approach is also referred to 

as the Parzen window approach [156]. With the nearest neighbour 

approach, the frequency of training data points within an interval of a 

testing data point with a predefined bin size is calculated. This means 

that all the training data points within the interval play the same role for 

density estimation. With the kernel approach, such equal weighting is 

changed. Below is a brief description of the kernel approach for density 

estimation. 
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We still use { }N

nn 1
  

=
=Ω x  to denote a training data set. A similarity 

vector for a novel testing data point is defined as { }N

ii 1
  

=
ρ , where iρ  is 

defined as the similarity between the testing data point and a training 

data point, namely x  and ix . The similarity function is named as a 

kernel function using the kernel method. The commonly used kernel 

function is the radial-basis function defined as below 

 )   exp(
2

ii xx −−= βρ  (3.8) 

The estimated density for a novel testing data point is 
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The advantage of the kernel approach for density estimation is the 

smoothness of the estimated function. 

 

 

Fig. 3.3. Three estimated probability density functions for the hydrogen in compounds. 

 

Figure 3.3 shows the estimated probability density function using the 

kernel approach for the hydrogen distribution in compounds. Three 

values corresponding to the bandwidth are used. In estimating 1-D 

density function using R, the function is called “density” in which the 

bandwidth is replaced by the number of standard deviations. Hence three 
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values are one standard deviation (std = 1), two standard deviations  

(std = 2) and three standard deviations (std = 3). When the bandwidth is 

larger, the estimated density function is smoother.) For instance, the right 

panel in Fig. 3.3 shows that some small peaks occurring in the left panel 

in Fig. 3.3 have been smoothed out. 

Shown in Fig. 3.4 are three estimated probability density functions 

for hydrogen and carbon distributions in compounds. The estimation of 

2-D probability density function using R is implemented by the bked2D 

function. In this function, the bandwidth is explicitly specified. Three 

values are used for the bandwidth in Fig. 3.4. They are 0.1, 0.5, and 1. 

The graphs show again that when the bandwidth value is large, the 

estimated density function smoothes out some peaks which occur in 

density functions of a small bandwidth value. 

 

 

Fig. 3.4. Three estimated probability density functions for the hydrogen and carbon in 

compounds using the kernel approach. 

 

The semi-parametric approach is an approach between parametric and 

non-parametric approaches. The estimation process is based on an 

assumption that data are generated from a model with a number of 

Gaussians. The model is defined as below 

 ∑
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)()( xx  (3.10) 
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where mw  is the contributing factor (a parameter under estimation) for 

the mth component, )(xf  is the estimated density function, and )(xmG  

is the mth component (Gaussian) which is defined as 
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with a mean vector mµ  and a covariance matrix mΣ . The contributing 

factors satisfy two conditions. First, all are positive, 10 ≤≤ mw . Second, 

the sum of them is one 

 1
1

=∑
=

M

m
mw  (3.12) 

Such an approach is also referred to as mixture models. To fit such a 

model to a given data set, a so-called the Expectation-Maximisation 

(EM) algorithm [157-161] is used. The EM algorithm is an iterative 

procedure in which the parameters are optimised. The parameters include 

wm’s and the mean vectors and the covariance matrices of )(xmG ’s. In 

the learning process, two steps are used in turn until the algorithm is 

converged, i.e. until there is no change in parameters in consecutive 

learning cycles. These two steps are the expectation and maximisation 

steps by which the algorithm is named. In the expectation step, partial 

membership ( )( nmg x ) of each data point is computed. The partial 

membership measures how likely it is that a data point belongs to a 

component. It is defined as below 
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Based on these calculated partial memberships, model parameters are re-

computed. The contributing factors are calculated by the following 

equation 
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Fig. 3.5. The estimated density function for a data set with three clusters. The estimation 

is done using the R package “mclust02”. 

 

The new mean vectors are re-computed by 
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If a homogeneous model is the target, the variance is re-computed by 
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In using the semi-parametric approach, an important issue is to 

determine the proper number of components, i.e. the value for M. The 

Bayesian Information Criterion (BIC) [158-162] is one of the commonly 

used measurements for determining the optimal model structure. By 

maximising the BIC value, model structure can be optimised. Shown in 

Fig. 3.5 is the estimated density function for three clusters. Figure 3.6 

shows the BIC values for the above case where it shows that the BIC 

value is maximised at the point with three components (M=3). 
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Fig. 3.6. BIC values for the data set with three clusters. 

 

 

 

 

Fig. 3.7. The estimated density function for the compound data using the semi-parametric 

approach (implemented in the R package by mclust02). The data set is in 

http://ecsb.ex.ac.uk/book/compoundData. 
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Figure 3.7 shows an application of the semi-parametric approach to 

the estimation of density function of compound data in which each 

compound is coded using nine chemical elements. In order to visualise 

the density estimation result, data are first mapped to a two-dimensional 

space using a multi-dimensional scaling approach. The estimation of the 

density function is conducted in the mapped two-dimensional space. In 

the estimated density function, it can be seen that there are two densely 

distributed clusters in the middle while two small clusters are located far 

away from centre with some loosely distributed compounds. 

The second application of this density function estimation is for 

analysing the impact of acetyllysine on disease development. 453 

acetyllysine are collected from the NCBI database. Among them, 40 

relate to disease development Ten flanking residues of each acetyllysine 

are coded using the Kyte-Doolittle hydrophobicity scale [163]. Multi-

dimensional scaling is also used before applying the semi-parametric 

approach for density estimation. Figure 3.8 shows the density estimation 

where it can be seen that four clusters are formed. The one on the right-

hand side corresponds to the 40 acetyllysine involved in disease 

development. 

 

 

Fig. 3.8. The estimated density function for the acetyllysine data set. The data are in 

http://ecsb.ex.ac.uk/book/acetyllysine. 
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Summary 

Three major density function estimation approaches have been discussed. 

Density estimation approaches are able to provide a platform for 

preliminarily studying data structure prior to implementing a machine 

learning algorithm to model the data. Because of this, density estimation 

approaches have been widely employed in various bioinformatics 

projects. In predicting secondary structure, a novel kernel function was 

proposed by extending the variance to include information about the 

distance between a query sequence and the training sequences [122].  

The same kernel function has also been used for constructing predictors 

for species-specific microRNA precursors [164]. For identifying 

differentially expressed genes between disease-free and disease-related 

patients, density functions were estimated for making predictive models 

for disease diagnosis [165]. In analysing the gene expression data of 

1536 genes in 100 colorectal cancer and 11 normal tissues, a non-

parametric density estimation approach called the iterative local 

Gaussian clustering (ILGC) was used to identify clusters of genes. The 

results were similar to those of a semi-parametric approach with three 

clusters separating tumours from normal tissues [166]. Non-parametric 

kernel density estimation approach was also combined with entropy 

approach for selecting highly differentially expressed genes [167]. 

In summary, the parametric density estimation is commonly a weaker 

approach for estimating biological data density because most biological 

data are hardly following a Gaussian distribution. Abnormality is a very 

common phenomenon. A non-parametric density estimator like the  

K-nearest neighbour approach and the kernel approach are flexible in 

constructing unknown density functions. However, such a method has a 

problem in high computational cost. The semi-parametric approach is 

based on the assumption that data are generated from a number of basic 

parametric density functions. Compared with non-parametric approaches, 

the semi-parametric approach enjoys the advantages of simplicity and the 

capability of clustering data at the same time. However, it also brings 

about a challenge when we need to determine an optimal model structure 

for a data set. Although BIC can be used, data with noise may lead to a  
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difficult situation for selecting an optimal model structure. A better 

strategy is to use multiple density estimators to investigate the emerged 

property or data structure. 
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Chapter 4 

Dimension Reduction 

Dimension reduction is a technique widely used in many applications. 

The main objective is to reveal data structure which is hard to obtain 

from a high-dimensional space through mapping the high-dimensional 

space to a low-dimensional space. The mapping is commonly 

conducted by a machine learning algorithm which uses various metrics 

and various learning strategies. After learning, the new space is 

commonly 2-dimensional (or 3-dimensional); working in this space we 

can study how data are clustered and how clusters are mutually 

correlated. This then provides a basis for further studies including 

classification analysis, knowledge extraction and hypothesis generation. 

In this chapter, we discuss two basic dimension reduction algorithms. 

Importantly, their difference and strengths will be emphasised. The 

applications to bioinformatics projects are demonstrated as well. 

4.1 General 

Dimension reduction is a popular topic in machine learning and 

bioinformatics. It is to find a proper algorithm by which a multi-

dimensional data space can be mapped to a low-dimensional space with 

as small deviation as possible for better visualisation. Denoted by 
N
n

d
n 1}  { =ℜ∈= xD  where N is the total number of data points and, 

2>d  (or 3>d ) is the dimensionality of D , a machine learning 

algorithm is used to map D  to N
n

d
n 1

~

}{
~

=ℜ∈= yD  where 2
~

=d  (or 

3
~

=d ) is the dimensionality of D
~

. The process is one-to-one mapping-

based, i.e. ],1[ , Nnnn ∈∀yx ֏:φ . This means that for any original data 

point nx  in D  we can find its mapping ny  in D
~

. Importantly, if we find 
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a nearest neighbour of nx  (denoted by mx ) in D , we are expected to 

find my  in D
~

 which satisfies 

miNininm ≠∈∀−≤−  & ],1[  ,    yyyy  (4.1) 

where ∀  reads as “for all” and   nm yy −  means the distance between 

my  and ny . 

Having understood the general principle of dimension reduction,  

the next important question is how to select a proper algorithm for a 

specific application. This requires a clear understanding regarding the 

strengths of different algorithms. In this chapter, two basic algorithms 

which are commonly used in bioinformatics for dimension reduction are 

introduced. They are multi-dimensional scaling and principle component 

analysis. 

There are two commonly used principles involved in various 

applications. The first is to maintain the information (variance) in the 

original data as much as possible. The second is to preserve the 

topological structure of the original data space as unchanged as possible 

during mapping. It must be emphasised that any mapping from a high-

dimensional space to a low-dimensional space will lose information. This 

is because the complexity in a high-dimensional space is normally not 

expected to be fully embedded into the low-dimensional space. The 

larger the difference between the original and the new dimensionality, 

the more information may be lost during mapping. The larger the 

complexity in the original high-dimensional space, the more information 

may be lost during mapping. The complexity in dimension reduction 

algorithms is then the target of minimising the loss of the information in 

the original data space. 

4.2 Principal component analysis 

Principal component analysis (PCA) searches for a set of mutually 

orthogonal bases which form the new coordinates in the new space and 

projects the original data space to the new data space through a learning  
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transformation [1, 2]. In the new data space, the coordinates are ordered 

in terms of projected information (variance). The first coordinate has the 

largest variance while the following coordinates have decreasing 

variances. A linear transformation of the matrix of the original data, 

denoted by X, to the matrix in the new data space, denoted by Y, is 

defined as 

WXY TT =  (4.2) 

where W is the transformation matrix and X is normalised with zero 

mean, i.e. 

],1[ ,][ NnE n ∈∀= 0x  (4.3) 

When only one transformation vector is used we reduce the 

dimensionality to one, 

wXy T=  (4.4) 

Shown in Fig. 4.1 is a data set in a two-dimensional space. With this 

data distribution, we study how we can search for a new data space to 

which this data set can be mapped with the first new coordinate having 

the richest information or the largest variance (denoted by 1u ). Suppose 

the mapping is made by u  

uxy
T
nn =  (4.5) 

The variance of ny  can be measured by 

2T2 )  ( uxy nn =  (4.6) 

The expectation of the variance is expressed as 

ΣuuXuXuuxy TTT2T2 ])  ([] [  === nn EE  (4.7) 
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where Σ  is the co-variance matrix in the original data space. By 

maximising the variance ] [ 2
nE y  we obtain the optimal mapping 

direction u . ] [ 2
nE y  is also called the eigen value ( λ ). When extending 

the mapping dimensions to dd ≤
~

 with new mutually orthogonal 

coordinates we have 

 d
ii

~

1
T } {diag ==Λ= λΣUU  (4.8) 

 

 
 

Fig. 4.1. Illustration of PCA. The coordinates (x1, x2) represent the original data space 

while the coordinates (u1, u2) represent the new data space. The dots are the data points. 

 

In Bishop’s book [3], an analysis shows that the loss of the 

information in the original data space during a dimension reduction 

process is 

 ∑
+=

d

di
i

1
~

 λ  (4.9) 

PCA has been widely used in bioinformatics applications, for 

instance lactation gene network analysis [4], classification of normal, 

chronic pancreatitis and pancreatic cancer sera [5], the analysis of  

low-dose radiation-associated changes in cytokine gene expression  
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profiles [6], the analysis of nucleoside electrophoretic profiles [7], the 

analysis of chronic fatigue Syndrome through gene expression profile 

study [8], the study of LC/MS/MS data [9], the analysis of human MHC 

supertypes [10], the analysis of vitamin E deficiency and metabolic 

deficits in neuronal ceroid lipofuscinosis using NMR spectroscopy data 

[11], the analysis of DNA string motifs [12]. 

In classifying normal, chronic pancreatitis and pancreatic cancer sera, 

the conventional clinical markers were less accurate and it was desirable 

to detect the cancers as early as possible. The objective of using PCA 

was to investigate whether biomarkers could be found for the early-stage 

cancer detection [5]. In the study, glycoproteins enrichsed by lectin 

affinity chromatography were the target and PCA was applied to the 

microarray data of 8 chronic pancreatitis and 6 pancreatic cancer sera. It 

was found that two groups of patients were well separated thus providing 

better biomarkers for the diagnosis. In order to investigate the molecular 

basis of chronic fatigue syndrome, gene expression profiles of 167 

participants with two self-report questionnaires (multidimensional 

fatigue inventory) were used and PCA was applied [8]. It was found that 

PCA was able to well separate data according to their biological 

classifications. 

Two important aspects must be noted. First, PCA is a linear approach 

as described in equation (4.2). The nonlinear data structure will not be 

well-explored. Second, the loss of the information of the original data 

space using PCA follows equation (4.9). It is very important to check  

if such a loss is affordable. 

4.3 An application of PCA 

The data used here has been published in an earlier study [13] and can be 

seen in the website: http://ecsb.ex.ac.uk/pseudomallei. It was obtained 

using a proteome array chip to measure antibody responses to a panel of 

214 immunoreactive antigens. 

Sera from melioidosis positive or negative patients in Singapore were 

generally taken on admission to hospital or obtained from walk-in  
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clinics. Positive samples (n=87) were taken from patients on admission 

to hospital and who had a diagnosis of melioidosis confirmed by blood 

culture. The negative sera (n=59) were taken from patients who were 

either admitted to hospital or walk-in clinics but were negative for 

melioidosis. 

PCA is applied to this data set to investigate how genes are 

distributed among the non-infected (negative) and infected (positive) 

patients. Figure 4.2 shows the PCA for the negative data, where the left 

panel shows the PCA visualisation using the first two principal 

components while the right panel shows the distributions of eigen values 

(variances) across the principal components. The loss of the information 

in the original data space is 81% using equation (4.9). This means that 

the knowledge displayed using PCA for this high-dimensional space is 

less than 20%. In this two-dimensional space, it can be seen that a few 

genes are distributed in low density areas. 

 

 

 
 

Fig. 4.2. PCA of the negative Burkholderia pseudomallei data. The left panel shows  

the visualisation using two top principal components. The right panel shows the  

eigen value distribution. The contours represent the density estimated using a kernel 

approach. 
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Fig. 4.3. PCA of the positive Burkholderia pseudomallei data. The left panel shows  

the visualisation using two top principal components. The right panel shows the  

eigen value distribution. The contours represent the density estimated using a kernel 

approach. 

 

 

Shown in Fig. 4.3 is the PCA for the positive data. The left panel and 

the right panel show the PCA visualisation using the first two principal 

components and the distributions of eigen values (variances) across the 

principal components, respectively. The loss of the information in the 

original data space is 82% using equation (4.9). 

In the estimated density functions for both negative and positive data, 

each gene has a likelihood measurement. We denote the likelihood 

measurements for the ith gene by +
ip  and −

ip , resulting from positive 

and negative density functions, respectively. The normalised likelihood 

measurements are defined as 
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A PCA differential score can be defined as 

  ~~ −+ −= iii ppλ  (4.11) 
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Fig. 4.4. The differential PCA scores for the top ten genes identified using PCA and  

a kernel density estimation approach. The horizontal axis lists the top ten genes and the 

vertical axis represents the differential PCA scores. 

 

The larger the differential score, the larger the differential activity in 

negative and positive PCA models. This means that the top gene which 

can be regarded as a differential gene using differential PCA scores can 

be defined as 

{ } ],1[ ,    maxarg dim i ∈∀= λ  (4.12) 

with d as the number of genes (data dimensions). Figure 4.4 shows the 

differential PCA scores for this data set, where the gene BPSL2522 has 

been identified as the most differential gene using PCA. The gene has 

been identified as one of the biomarkers in using genetic programming 

approach to identify biomarkers for the disease [13]. 

Shown in Fig. 4.5 are the localisations of the top five genes 

distributed in both negative (the right panel) and positive (the left panel) 

PCA maps. It can be seen that these top five genes are located in high 

density regions of the negative PCA map, but in low density regions of 

the positive PCA map. Having understood that genes with a large  

expression measurement normally have a low density measurement,  
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Fig. 4.5. The localisation of the top five genes with high differential PCA scores. 

this shows that these top five differential genes demonstrate positive 

differentiation between positive and negative patients. 

4.4 Multi-dimensional scaling 

Multi-dimensional scaling aims to visualise high-dimensional data 

through a learning process which can preserve as much original data 

structure as possible. Among various multi-dimensional scaling 

algorithms, the Sammon mapping is the most powerful one. The 

Sammon mapping was proposed in 1969 by Sammon Jr [14]. The basic 

principle of the algorithm is to maintain the relative topological structure 

as unchanged as possible during mapping a high-dimension data space  

to a low-dimension data space. The relative topological structure is 

quantified by the pair-wise distance between data points. For N data 

points, there are N (N – 1) / 2 pair-wise distances. Like most other  

multi-dimensional scaling algorithms, the Sammon mapping also makes 

one-to-one mapping, i.e. all the original data points can find their 

locations in a mapping space. There are therefore another set of pair-wise 

mapping distances between data points. Sammon’s idea was to minimise 

the deviation between the original pair-wise distances and the mapping 

P
C

2
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pair-wise distances. In terms of this, an objective function considers  

the distance of distances as below 

 ∑ ∑
= +=

−
N

i

N

ij
ijij dd

1 1

2* )(  (4.13) 

Because it is unavoidable to lose the information in the original data 

space during mapping from a space with a higher dimensionality to a 

space with a lower dimensionality, the distance of distances defined in 

equation (4.13) is merely practical. Sammon proposed the concept of the 

relative distance, i.e. the normalised distance of distances. The error 

(objective) function proposed by Sammon was defined as below 
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A learning process then minimises this error function.  

The Sammon mapping algorithm has been used for visualising gene 

expression data [15-18]. Most applications have indicated that it is better 

than a linear approach for data visualisation. This results from the 

nonlinearity property of the Sammon mapping algorithm. 

Shown in Fig. 4.6 are examples of using PCA and the Sammon 

algorithm. On the left panel of Fig. 4.6 (a), the original data is composed 

of two rings in a two-dimensional space with an added noise of Gaussian 

)1.0 ,0(N  in the third dimension. The PCA map is shown on the middle 

panel of Fig. 4.6 (a) and the Sammon map is shown on the right panel.  

It can be seen that the Sammon map can preserve the original data 

structure well while this data structure can hardly be seen in the PCA 

map. Figure 4.6 (b) shows another case where PCA fails to preserve  

the original data structure after mapping. The original data is a sin 

function with an added noise of Gaussian )1.0 ,0(N . The data structure 

disappears in the PCA map (the middle panel of Fig. 4.6 (b)) while it is 

well preserved in the Sammon map (the right panel of Fig. 4.6 (b)). 

These two examples are consistent with some research, for instance,  

in analysing gene expression data, it has been argued that PCA may not  
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be able to achieve a useful picture unless specific data pre-process is 

conducted in advance. However, multi-dimensional scaling can deliver 

better results [19]. 

 

(a) 

 

 (b) 

Fig. 4.6. Two comparisons between PCA and the Sammon algorithm. The discussion can 

be seen in the main text. 

4.5 Application of the Sammon algorithm to gene data 

We now use the same data used in PCA in this chapter to see if a 

different pattern is seen using the Sammon mapping algorithm. The data 

description has been given in the section above. Figure 4.7 shows the 

Sammon mapping results for both negative and positive Burkholderia 

pseudomallei gene expression data. It can be seen that there is a large  
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difference between the negative and positive maps. Compared with  

the PCA maps, the Sammon maps show an even larger difference. With 

the Sammon algorithm, two dimensions are used for the mapping. The 

positive map displays more genes with low density while the negative 

map shows more dense distribution. 

 

 
Fig. 4.7. The Sammon mapping results of the Burkholderia pseudomallei gene expression 

data. The left panel shows the map of the positive data while the right panel shows the 

map of the negative data. Note that unlike PCA, the coordinates have no physical 

meanings. 

 

 

We can then use the same approach mentioned in the PCA  

model constructed for this data set to find top differential genes by 

estimating density functions for positive and negative Sammon maps. 

The density functions are estimated for the two coordinates in both 

Sammon maps using the kernel approach. Differential Sammon scores 

are derived in the same way as the differential PCA scores mentioned 

above. Figure 4.8 shows the differential Sammon scores for the top ten 

genes. The localisations of the top five differential genes are illustrated  

in Fig. 4.7, where it can be seen that these five genes are positively 

differentiated. 
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Fig. 4.8. The distribution of differential Sammon scores for the Burkhoderia 

pseudomallei gene expression data. The horizontal axis lists the top ten genes and the 

vertical axis represents the differential Sammon scores. 

Summary 

This chapter has discussed two commonly used dimension reduction  

and visualisation approaches, namely principal component analysis  

and the Sammon mapping algorithm. They belong to two different 

statistical machine learning mechanisms. The former is a linear approach 

while the latter is a nonlinear approach. The former is for preserving  

the largest variance in data during mapping while the latter is  

for preserving the topological structure as much as possible during  

mapping. 

It must be noted that PCA is a parameterised system where data 

structure is learned and maintained in model parameters. For instance, 

the first principal component will gain the largest variance in data. If a 

new datum is generated, it is easy to recall its relationship with all the 

original data without any further learning. However, the Sammon 

mapping algorithm is not designed for associative memory. Except for 

the map used for visualisation, there is no way to recall the relationship 

between a novel datum and the original data. 
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The new study of PCA has led to two powerful dimension reduction 

and visualisation approaches. They are probabilistic PCA [20, 21] and 

nonlinear PCA [22]. They are beyond the scope of this book. Readers 

can refer to relevant articles for details. 
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Chapter 5 

Cluster Analysis 

This chapter focuses on one fundamental issue in analysing biological 

data, i.e. how to find scientific laws which are hidden in data. Grouping 

and partitioning data are two very powerful approaches for discovering 

relevant biological regulations which can then be used in late 

hypothesis verification. In machine learning, such an approach is  

called cluster analysis, a type of unsupervised learning approach. The 

grouping data approach puts the emphasis on data relationship re-

construction i.e. exploring how data are clustered through a learning 

process. Partitioning data, on the other hand, is to discover hidden data 

structure through a learning process. Compared with the grouping data 

approach, the partitioning data approach puts the emphasis on a 

comprehensive data structure and the predictive capability of the 

discovered data structure. In this chapter, four fundamental clustering 

algorithms are introduced and their applications to bioinformatics are 

demonstrated. The four algorithms are the hierarchical clustering 

approach, the K-means algorithm, the fuzzy C-means algorithm, and 

the mixture models.   

5.1 Hierarchical clustering 

The hierarchical clustering approach is a grouping data approach, where 

the aim is to build a relational and hierarchical structure to explore and 

represent mutual relationships between data points. The basis is to find 

related data points and then group them rationally for interpreting data or 

making biological hypotheses. The basic technique for interpreting 

mutual relationship between data points is correlation analysis (or 

similarity calculation). If two d-dimensional vectors are denoted by 



 Cluster Analysis 53 

d
n ℜ∈x  and d

m ℜ∈x , the dissimilarity (distance) between them is 

defined as 

 ∑
=

−=−=
d

i
minimnmn xxd

1

2
)(  ),( xxxx  (5.1) 

where nix and mix  are the ith elements of nx  and mx  respectively. The 

Euclidean distance is used in equation (5.1), but metrics can be used in 

different applications. 

During a simple hierarchical clustering, a pair of data points with  

the highest similarity is grouped or merged. This process is progressive 

until one cluster is formed, i.e. all data points are in one super cluster. 

For { } ,,, 21 N
N

xxx ⋯=D , the first sub-cluster is formed for ix  and  

jx  if 

 N
mnmnji dd D∈∀= xxxxxx ,)},,( min{),(  (5.2) 

A mean vector for ix  and jx  is calculated and is expressed as 1µ . This 

mean vector is added into the data set while ix  and jx  are removed 

from the data set 
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1

µxx ji
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DD  (5.3) 

In the next step, an original data point ix  may have the smallest distance 

with an original data point 1~ +∈= N
jj Dxx  or a mean vector of the sub-

cluster 1
1

~ +∈= N
j Dµx  
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This merge generates the second sub-cluster as well as its mean vector 

2µ . The data set is updated as below 
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It can be seen that 1−++ < kNkN
DD . If 1>+kN

D , merging continues 

 KN
mnmnji dd

+∈∀= Dxxxxxx ~,~)},~,~( min{)~,~(  (5.6) 

The merging continues until 1=+KN
D . 

 

 

 

Fig. 5.1. An illustration of the hierarchical clustering approach. 

 

 

The hierarchical clustering approach has two distinct features which 

may not be seen in other clustering algorithms. First, relationship 

between data points can be well visualised. Second, the merging distance 

can be well used for interpreting data. Figure 5.1 shows an example 

where the cluster distance is u  for data points A and B. The cluster 

distance is increased to vu >  to include data point C. 

In bioinformatics, the hierarchical clustering approach has been  

used for identifying protein relationships based on spectral properties 

[186], diagnosing chronic fatigue Syndrome based on gene expression 

profile [172], and detecting esophageal cancer using gene expression 

profile [187]. 
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5.2 K-means 

Rather than aiming to explore the relationship between data points of a 

data set, the K-means algorithm [158] is for learning how data are 

structured or investigating the data structure from which data are 

generated. Using the same notation of data vectors as mentioned above, 

the K-means algorithm assumes that data are generated from K clusters, 

hence it tries to partition data into these K clusters with the smallest 

diversity  

 kn
k

kn

n
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The centre of the kth cluster is defined as  

 knn
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1
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where kϑ  is the number of data points in the kth cluster. 

In order to find centres of K clusters, we need to start with K centres 

which are random values. Based on the random centres, each data point 

is assigned to a cluster by 

 ],1[,,}    { minarg
2

Kmkm mnkn ∈∀⇒−= ϑ֏xµx  (5.9) 

Here mn ϑ֏x  means that nx  has been mapped or assigned to mϑ  

because nx  has the smallest distance with the kth cluster. After this, K 

centres are updated using equation (5.8) and a new assignment process is 

carried out. The learning process will continue until K centres are stable, 

i.e. the updated centres in two consecutive learning cycles have no or 

little change. 

Using the K-means algorithm, one difficult issue is how to determine 

an accurate cluster structure, i.e. the number K. This is a common 

problem of model selection in machine learning. For instance, for a  

4-cluster data structure, different guesses of K will lead to different 

cluster structure shown in Fig. 5.2. 
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Fig. 5.2. Four cluster structures with four different guesses of K using the K-means 

algorithm. The dots are the original data points and crosses are the estimated cluster 

centres. The data are generated from four Gaussian distributions with the centres as  

(-3, -3), (-3, 3), (3, -3), and (3, 3). The standard deviation is one. 

 

 

In order to estimate the right cluster structure for a data set, we have 

to introduce a parameter, such as the difference of the within-cluster 

diversity. For the simple case mentioned above, the within-cluster 

diversity can be informative. For instance, the within- cluster diversities 

of the case mentioned in Fig. 5.2 using different guessed cluster numbers 

are seen in Fig. 5.3. It can be seen that the difference of the within-

cluster diversity is minimised when the guessed cluster number is either 

two or four. However, this measure is getting confused if the cluster 

number should be two or four because both of these two structures have 

the smallest deviations. 
 



 Cluster Analysis 57 

 
Fig. 5.3. Within-cluster diversity of the example mentioned in Fig. 5.2 using different 

guessed cluster numbers from two to nine. The horizontal axes represent the number of 

guessed clusters. The vertical axes represent the within-cluster diversity.  

 

A number of statistical measures have been proposed for model 

selection problems, for instance, the Akaike Information Criterion (AIC) 

and Schwarz's Bayesian information criterion (BIC) [162]. 

 M-   log2 λ+L  (5.10) 

where L  is the model likelihood, M is the number of model parameters 

and λ  is a constant. 2=λ  for AIC and Nlog=λ  for BIC, where N is 

the number of data points. Both criteria are minimised to select the best 

model. To use these two criteria, model likelihood must be provided. In a 

K-means cluster model, the likelihood can be calculated by assuming 

data points in each cluster follow a multivariate Gaussain distribution. 

Figure 5.4 shows AIC and BIC for the four-cluster K-means model 

discussed above. It can be seen that both AIC and BIC have successfully 

detected the cluster structure accurately, i.e. both criteria have been 

minimised at the number four. 
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Fig. 5.4. AIC and BIC for the four-cluster K-means model. The data are the same as  

that used in Fig. 5.3. The horizontal axes represent the number of guessed cluster 

numbers from two to nine. The vertical axes represent AIC and BIC.  

5.3 Fuzzy C-means 

The fuzzy c-means algorithm was proposed in 1981 [188, 189]. The 

centre of a cluster defined in equation (5.8) is changed to 

 knnnk

n
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Each data point in a cluster plays an equal role (membership) in 

forming a cluster. However, the soft membership used in the fuzzy  

c-means algorithm is more realistic, i.e. )( nkf x  is not a constant within 

a cluster in some applications. In the algorithm, the objective function is 

defined as 
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where kµ  is the centre of the kth cluster and ]1,0[)( ∈nkf x  is the 

membership that nx  belongs to the kth cluster. The m parameters are 

used to weight the memberships. The centres are defined as below 
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while the membership is defined as below 
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The algorithm starts from random guesses for the centres as the  

K-means algorithm. Based on the guessed centres, memberships are 

estimated. This is similar to the K-means algorithm where the distance 

between a data point and the centre of a cluster is used to determine if the 

data point belongs to the cluster. Based on the calculated membership 

values, new centres are calculated using equation (5.14). These two 

calculations are repeated until maximum cycles are reached or the 

centres do not change much. 

Compared with the K-means algorithm which uses a hard 

membership function, the fuzzy c-means algorithm benefits from its 

continuous hence soft membership function from which the centres of 

clusters can be more accurately estimated. Figure 5.5 shows a case where 

four clusters are more overlapping. In this case, the K-means algorithm 

often wrongly estimates cluster centres (as shown in the left panel of  

Fig. 5.5) while the fuzzy c-means algorithm is able to consistently 

estimate correct centres of four clusters. 

It must be noted that the fuzzy c-means algorithm is also unable to 

determine the cluster structure automatically. For the same data used in 

Fig. 5.3, AIC and BIC clearly indicate that four clusters are the best data 

structure for the data. AIC and BIC are shown in Fig. 5.6 when using the 

fuzzy c-means algorithm. 
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Fig. 5.5. A comparison between the K-means and the fuzzy c-means algorithms. The data 

are generated from four Gaussian distributions with the centres as (-1, -1), (-1, 1), (1, -1), 

and (1, 1). The standard deviation is one. Small dots represent the original data and 

crosses represent cluster centres. 

 

 
 

Fig. 5.6. AIC and BIC for the four-cluster fuzzy c-means model. The data are the same as 

that used in Fig. 5.3. The horizontal axes represent the number of guessed cluster 

numbers from two to nine. The vertical axes represent the calculations of AIC and BIC. 

5.4 Gaussian mixture models 

Both the K-means algorithm and the fuzzy c-means algorithm are 

designed to detect cluster structure with cluster densities distributed 

homogenously in all dimensions, i.e. the volume of each cluster is  
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symmetrical with respect to the cluster centre. They therefore have  
problems in detecting cluster structures with clusters in which different 
dimensions are correlated. This problem can be well addressed in the 
mixture model algorithm. 

In a mixture model [158, 159, 190-192], the membership function is 
defined as a probability while the objective function is defined as a 
likelihood function 
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where )|( kp nx  is the probability that d
n x  belongs to the kth 

cluster, ]1,0[kw  is the mixing coefficient of the kth cluster and 
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The Gaussian mixture model is a special case of a widely used 
mixture model. The probability function used in the Gaussian mixture 
model is defined as 
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where kμ  is the centre of the kth cluster and   is the covariance matrix 
of the kth cluster. 

The parameters in a mixture model then include the cluster centres, 
covariance matrix and mixing coefficients. To estimate these parameters, 
the expectation-maximisation (EM) algorithm [157, 159] is used. The 
EM algorithm is a two-step iterative procedure for parameter estimation 
starting from random guesses of the parameters like the K-means and 
fuzzy c-means algorithms. The two steps are called the E step and the M 
step. In the E step, the probabilities are calculated based on the current 
values assigned to the parameters. The calculated probabilities are then 
used to update the parameters in the M step. 
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To understand why we need to use the EM algorithm, we make a 
simple case, i.e. data in a one-dimensional space. We also make the 
following simplification  
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Equation (5.18) is then re-written as 
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Applying logarithm to the likelihood function and negating it leads to 
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where 0  is the Lagrange constant. Letting the derivative of O  with 
respect to k  being zero leads to 
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The equation is not analytically-solvable because the right-hand side of 
the equation is a function of k . The same thing happens to other 
parameters. Using the EM algorithm, we start with a random guess for 

k , which is denoted by 0
k . Based on 0

k  and initial guesses of the 
other parameters, we can calculate 
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From 0
,kn , k  is updated from 0

k  to 1
k  using equation (5.22). These 

two steps are used in turn until parameters are converged or the maximal 
learning cycles are approached. 
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We then go back to the original multi-dimensional space. The 

updated equation for the cluster centre is 
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where t is the iteration time and 
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The update equation for the mixing coefficient is 
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Figure 5.7 shows a comparison of three clustering algorithms for a 

data set with three clusters, all with heterogeneous distributions across 

dimensions. If a data point is correctly classified, it is printed in gray 

with a smaller fond size. If a data point is mis-classified, it is printed in 

dark with a larger font size. For instance, two data points labelled by “3” 

and printed by a larger font size are classified as members of the cluster 

of data points labelled by “2” using the K-means algorithm. It can be 

seen that the mixture models algorithm performs the best with no mis-

classified data point. 
The mixture models algorithm is a probabilistic algorithm. Because 

of this, the use of AIC and BIC is straightforward and the performance is 

better than that of the other two algorithms. 
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Fig. 5.7. Acomparison between three algorithms for a data set. “K”, “C” ands “M” mean 

the cluster centres found by the K-means, fuzzy c-means mixture models algorithms. The 

top-left panel shows the original data labels of three clusters. 

 

5.5 Application of clustering algorithms to the Burkholderiai 

pseudomallei gene expression data 

We then apply the clustering algorithms to the same Burkholderia 

pseudomallei gene expression data mentioned in the last chapter. The 

models generated by the hierarchical clustering algorithm for negative 

and positive data are shown in Fig. 5.8.  
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(a) the hierarchical clustering model for the negative data 

 

 
(b) the hierarchical clustering model for the positive data 

 

Fig. 5.8. Clustering models generated using the hierarchical clustering algorithm for the 

Burkholderia pseudomallei gene expression data. 

 

 

It can be seen from both clustering models that there is a very large 

cluster and a few small clusters. This is consistent with biological 

expectation that most genes will not show high differential activity in 

responding to the external signals while a few will demonstrate 

differential functions. The genes which do not respond to external signals 

should have similar expression profiles across samples, hence being 

clustered together. However, differential genes will have different levels 

of expressions responding to the external signals, hence demonstrating 

diversities. 

The AIC and BIC calculations using the fuzzy c-means algorithm  

for the Burkholderia pseudomallei gene expression data are shown in 

Fig. 5.9, where it can be seen that the best cluster numbers are 10 and 12. 
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After clustering, data are mapped to a two-dimensional space using 

the Sammon mapping algorithm. On the map, genes are labelled by 

differential colours according to the classification results of the fuzzy  

c-means algorithm. The labelling results are shown in Fig. 5.10. 

 

 
Fig. 5.9. AIC and BIC for the fuzzy c-means model of the Burkholderia pseudomallei 

data. The horizontal axes represent the cluster numbers from two to 15. 

 

 

 
Fig. 5.10. The labelled genes according to the classification results using the fuzzy c-

means algorithm for the Burkholderia pseudomallei gene expression data. The two maps 

are generated using the Sammon mapping algorithm. The left panel is for the negative 

samples and the right panel is for the positive samples. 
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The Gaussian mixture models algorithm has also been applied to  

the same gene expression data. The classification results are shown in 

Fig. 5.11. BIC is used to find the optimal cluster structure. The best 

cluster numbers are nine and eight for the negative and positive samples 

respectively. 
 

 

 
Fig. 5.11. The classification results of the Gaussian mixture models algorithm applied to 

the Burkholderia pseudomallei gene expression data. The two maps are produced using 

the Sammon mapping algorithm. The negative sample map is in the left panel and the 

positive sample map is in the right panel. 

Summary 

This chapter has discussed four basic clustering algorithms. They are the 

hierarchical clustering algorithm, the K-means, the fuzzy c-means and 

the mixture models algorithms. Some demonstrations are given to show 

their differences. In general, the hierarchical clustering algorithm has one 

typical advantage, i.e. it can visualise the similarity distance between 

each pair of data points. This is particularly important for explanation 

research. For instance it can be used to infer evolutionary information 

from sequence data. However, it does not provide any facility for 

associative memory. This means that a hierarchical clustering model only 

supports the interpretation for the existence model. In order to use a built 
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model to interpret unseen data, we have to consider other algorithms 

such as the aforementioned clustering algorithms like the K-means, the 

fuzzy c-means and the mixture models algorithms. These algorithms will 

not provide direct data for visualising data structure. Instead, they can 

partition data into groups. Within each group, centres are found as 

typical patterns. The patterns can be used for future inference on unseen 

data. There is still a challenging issue associated with these three 

algorithms, i.e. how to determine a cluster structure or how to determine 

the optimal number of clusters. Cluster diversity, AIC and BIC can be 

used to give some information. However, none of them can be 

universally powerful. Therefore this is still a hot research topic in 

machine learning. In most applications, visualisation tools mentioned in 

chapter 4 can be combined with the clustering algorithms mentioned  

in this chapter for determining the best cluster structure. Moreover, 

biological evidence can be used as the evidence to verify if a cluster 

structure is valid.  
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Chapter 6 

Self-Organising Map 

In the previous two chapters, data reduction (visualisation) and data 

partitioning algorithms were discussed. A data reduction algorithm may 

not provide data for data partitioning while a data partitioning 

algorithm may not visualise data. Self-organising map (SOM) is a 

neural learning algorithm which is able to combine two categories of 

algorithms into one system. In this chapter, we study the basic structure 

and learning rules of SOM. Because SOM has a close relationship to 

vector quantization, we first introduce vector quantization in this 

chapter. Demonstrations and case study are also given in relevant 

places. 

6.1 Vector quantization 

Vector quantization (VQ) was introduced in the late 1970s and early 

1980s [193-196]. VQ is designed for data compression, i.e. representing 

N data points (input numeric vectors) using M data points (code numeric 

vectors or representative numeric vectors) where M<N. The compression 

is constrained in a two-dimensional cell-based map. Each cell is 

associated with a code vector. In this way, the approximate distribution 

of the input numeric vectors can be visualised. Let’s denote d
n ℜ∈x   

as the nth d-dimensional input vector and d
m ℜ∈y  as the mth  

d-dimensional code vector. The collection of all input vectors is denoted 

by D  and the collection of all code vectors (codebook) is denoted by C . 

For each input vector, a closest code vector is formed by 

 ],1[ , }    min{  Miinmn ∈∀−=− yxyx  (6.1) 
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This means that the mth code vector is picked from M code vectors to 

represent the nth input vector through this minimisation process. We use 

)( nxφ  to denote the closest code vector of nx . 

 

 

 

Fig. 6.1. An illustration of VQ. Each cell has a star representing a code vector. Each cell 

has a number of input vectors with a certain density. The code vector space is composed 

of 18 code vectors expressed by stars. 

 

In order to find an optimal mapping or optimal distribution 

visualisation of the input vectors, an objective function is defined as 
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where )( nf x  is the density of nx . A compression process of VQ is to 

minimise the objective function, i.e. }min{arg*
OC =  where *

C  stands 

for an optimal solution of all possible C s. Figure 6.1 shows the principle 

of compressing numeric vectors using code vectors. The whole data set 

of D  is compressed into a smaller space of code vectors, i.e. C . Each 

cell is denoted by mϑ . 

In searching for a codebook C  with a given number of code vectors, 

there are two optimality criteria called the nearest neighbour condition  
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(NC) and the centroid condition (CC). Both must be satisfied. NC 

requires that each cell must be composed of input vectors satisfying 

 },     : { miimm ≠∀−≤−= yxyxxϑ  (6.3) 

The condition     im yxyx −≤−  implies that if x is compressed to 

my , my  must be x ’s nearest neighbour. CC requires each code vector to 

be the mean vector of all input vectors falling in the cell of the code 

vector, i.e. 
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The LBG (Linde, Buzo and Gray) algorithm was proposed to tackle 

the VQ problem by considering the density function )( nf x [194]. The 

algorithm is an iterative learning procedure. The procedure is shown as 

bellow 

Step 1: initialisation: find the first code vector (M=1) which is the 

mean vector of all input vectors 
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The error is calculated as 
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Step 2: splitting: each code vector is split into two given M code 

vectors. This doubles the number of code vectors as below 
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where 0>ε  is a small value. A new code book with initialised code 

vectors is formed with the size increased to 2M, i.e. ∩ }~{  }{ ii yy=C . 
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Step 3: refining: we first find the nearest neighbour for each input 

vector, )( nxφ . Each code vector in C  is updated using equation (6.4).  

A new error is calculated using equation (6.6). If the old error is denoted 

by 0
E  and the new error is denoted by 

1
E , an error ratio (π ) is 

calculated by  
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If επ > , a new cycle is repeated to find the new nearest neighbour, to 

update code vectors and to calculate the error. 

Step 2 and step 3 are iterated until the predefined code vector number 

is approached. 

In fact, the core part of step 3 uses the K-means algorithm. A two-

dimensional example using two different numbers of code vectors is 

shown in Fig. 6.2. It can be seen that the code vectors are uniformly 

distributed in the data area. This is because no density function is used in 

the LBG algorithm. 

 

 

 
Fig. 6.2. 4000 input vectors are in two-dimensional space in a Gaussian distribution with 

zero mean and one standard deviation in both dimensions. 0010.ε = . Two panels are 

generated using the LBG algorithm. The left panel uses 16 code vectors while the right 

panel uses 32 code vectors. 
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6.2 SOM structure 

SOM was introduced by von der Malsburg [197] and Kohonen [145, 

198]. Unlike VQ, self-organising map (SOM) has introduced a number 

of new features. First, it fixes the cell positions for code vectors in a two-

dimensional array. The cell array is shown in Fig. 6.3, where each circle 

represents a cell which is also referred to as a neuron [145]. The code 

vector of each neuron is fully connected to the input vectors as shown in 

Fig. 6.4. The left panel shows a rectangular map while the right panel 

shows a hexagonal map. 

 

 

  

Fig. 6.3. Arrays of cells with ten rows and ten columns. Each cell has a code vector 

connected to input vectors as shown in Fig. 6.4. 

 

 

Figure 6.4 shows how data stored in input vectors are used by code 

vectors of neurons. In this Figure, we consider four input variables, i.e. 

each input vector has four dimensions. Each code vector also has four 

dimensions. All neurons are connected to four input variables. An input 

vector is mapped to a neuron according to the similarity. If an input 

vector ( nx ) has the largest similarity with a code vector ( mw ), nx  is 

mapped to the neuron of mw . We use mw  rather than my  to follow the 

convention of SOM. 
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Fig. 6.4. The relationship between input vectors and code vectors. The small circles 

represent the input vectors. Here there are four input variables meaning that the data are 

in four-dimensional space. The filled large circles represent cells or neurons. The dots 

within the large filled circles represent the code vectors (the middle one is omitted). The 

solid arrows indicate the data flow direction, i.e. data stored in each input vector are fed 

to the model towards the target neuron which is also referred to as the winner [145]. Here 

the middle one is the target neuron. The dashed arrows indicate the update directions of 

code vectors in all nearby cells. The update mechanism is seen in the main text. 

 

The second feature introduced in SOM is the online learning strategy. 

In VQ, the code vectors are updated using equation (6.4), where all input 

vectors contribute to the formation of a code vector after they have been 

confirmed as falling in the cell of the code vector. However, it is no 

longer used in SOM. Instead, SOM updates code vectors whenever one 

input vector is fed into the model. The third feature used in SOM is 

neighbourhood. In VQ, only one code vector is updated using all the 

input vectors falling into its cell. This means that each input vector only 

contributes to the update of one code vector. However, this has been 

changed in SOM. When one input vector is fed to a model, only one 

neuron is selected as the target neuron whose code vector has the 

smallest distance with the fed input vector. Centred by this target neuron, 

a number of neighbouring neurons are determined. Only the code vectors 

within a neighbourhood are updated. These two features make SOM very 

different from VQ in that it can preserve the topological structure during 

learning. In other words, similar input vectors, if they are not mapped to 

the same neuron (cell), will be mapped to the nearby neurons (cells). The 
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fourth feature implemented in SOM for efficient learning is dynamic 

learning parameters. Here learning parameters are used to determine 

learning efficiency, for instance the learning rate which is discussed in 

the next section. Such an introduction of dynamic learning can avoid 

possible unnecessary long learning time. 

6.3 SOM learning algorithm 

Let’s denote nx  as the nth input vector and mw the mth code vector, 

where ],1[ Nn ∈  and ],1[ Mm ∈ . The relationship (distance) between 

them is defined as 

 
2

 
2

1
mnnm wx −=O  (6.9) 

A target neuron is selected by minimising this distance 

 ],1[ },min{arg)( Mmnmn ∈∀= Oxφ  (6.10) 

where )( nxφ  is the target neuron and its code vector is kw  with 

)( nk xφ= . Centred at )( nxφ , a neighbourhood is formed shown in  

Fig. 6.5. From this, a set of neurons is formed and is denoted by )( nxΦ .  

 

 

 

Fig. 6.5. An illustration of neighbourhood of a target neuron. The shaded circle represents 

the target neuron while the white circles are the neurons within the neighbourhood. 
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The code vectors in )( nxΦ  are updated in magnitude negatively 

proportional to the amount obtained from differentiation of equation 

(6.9) 

 ( ) mnnmm wxw −=∇−∝∆ O  (6.11) 

In SOM, the update rule is defined by co-operating the competitive 

learning mechanism mentioned above 

 )(  mnm wxw −=∆ υ  (6.12) 

where υ  is composed of two parts, one being associated with a decaying 

learning rate and the other being associated with the relationship between 

the target neuron and a neuron in the neighbourhood. The decaying 

learning rate is a positive real number 
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where )1,0(0 ∈η  is the initial learning rate, tη is the learning rate at time 

t and T is the maximum learning cycle. The neighbourhood relationship 

is defined as the distance between a neuron (not its code vector) and the 

target neuron. The Hamming distance or Euclidean distance can be used 

to quantify the relationship. The distance is converted to a rate as  
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t
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where )( ,( nk xφϕ  is the distance between a neuron in the neighbourhood 

)( nxΦ  and the target neuron )( nxφ . The decaying neighbourhood is 

defined as 
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where 0
ω  is the initial neighbourhood size, which is commonly half of 

the size in one dimension of the two-dimensional SOM map shown in  
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Fig. 6.3, and t
ω  is the neighbourhood size at time t. Finally, the code 

vector update rule is defined as below 

 )(   
 

1 t
mn

t
n

tt
m wxw −=∆ + λη  (6.16) 
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Defining  
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From Fig. 6.6 we can see that the update of t
mw  is more on the 

t
mw  

side if  ∗<υυ and more on the nx  side if  ∗>υυ . When 0=υ , 
t
m

t
m ww =+1  meaning no learning at all. When 1=υ , n

t
m xw  1 =+  meaning 

that code vectors always take the positions of input vectors. A learning 

process can never converge. From Fig. 6.6, we can see that a careful 

selection of the learning parameter is important to an efficient learning 

process. The learning rate is therefore normally smaller than 0.3. 

 

 

Fig. 6.6. An illustration of the impact of learning rate on the update of code vector. 

 

The procedure described below is used to make a SOM model for a 

given data set. 
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Step 1: Pre-process data. SOM only accepts numeric input vectors. If 

data are non-numeric, some metric must be introduced before using 

SOM. Some techniques for handling non-numeric biological data will be 

discussed below. The next important subject in using SOM is data 

normalisation. There are three alternatives for data normalisation. The 

first is using linear scaling. The second is using normal distribution 

conversion. The third is self-normalisation. With linear scaling, each 

input vector is scaled by 
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where X is a matrix of input vectors in which an input vector ( d
n ℜ∈x ) 

is placed in a row, )min(Xcol  is column-wise minimisation, and 

)max(Xcol  is column-wise maximisation. Using normal distribution 

conversion, we need to calculate the mean and standard deviation of a 

variable as below 

 )var()( iiii XXE == σµ  (6.20) 

where iX  means the ith variable of the input vector data. From this, we 

calculate 
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The last equation normalises each input vector individually by 
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Step 2: Set up model structure and learning parameters including the 

learning rate and termination criteria. The model structure is 

parameterised by the number of neurons (cells) and neuron layout 

(rectangular or hexagonal map). There are three commonly used 

termination criteria. The first is the maximum learning cycles, i.e. T. A 
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learning process will be terminated if Tt ≥ . The second is the learning 

error defined as below 

 ∑
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xx φ  (6.23) 

A learning process will be stopped if ε≤E  where 0>ε  is a small 

number defined by the user. The third is the model parameter stability 

which measures if model parameters have been in the status of saturation 

while the first two criteria are still not satisfied. It is defined as the 

distance between model parameters in two consecutive iterations 
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When δ≤S  where 0>δ  is a small number defined by the user, we 

complete a learning process. The third criterion is introduced in case T is 

too large and ε  is too small for an application. 

Step 3: Initialise code vectors. All code vectors are assigned random 

values. 

Step 4: Update code vectors iteratively. Here equation (6.17) is used 

repeatedly until one of three conditions is satisfied. 

When using the self-normalisation technique, we need to take care of 

data distribution. If data in different dimensions have large differences, it 

will not produce useful data for SOM. Figure 6.7 shows such a case, 

where the original two-dimensional data have large differences between 

two dimensions. The first two normalisation techniques can maintain the 

data structure, but the last one results in distorted distribution. 

6.4 Using SOM for classification 

Like other unsupervised learning approaches, one of the ultimate goals of 

VQ and SOM is to develop a system with classification rules. This 

means that a VQ or a SOM learning process assumes that the underlying 

data structure or topological structure is related to data classification. For  
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instance, a SOM model is well built using well-prepared data of both 

disease-related and disease-free gene expression profiles. Although data 

are not labelled, the model will generate a map on which two classes of 

gene expression profiles should be well separated. Assuming that this is 

the case, a post-analysis of the SOM output map makes sense for 

exploring classification rules. The common procedure is to label each 

neuron or a code vector onto which some input vectors have been 

mapped. According to the statistical property of these input vectors, the 

neuron or the code vector can be used as a prototype (classification rule). 

If a novel input vector has the smallest distance with a code vector which 

has been labelled, a prediction of the biological property of the novel 

input vector can be made. 

 

 

 

 

Fig. 6.7. An illustration of three normalisation techniques for data with four clusters. 
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6.5 Bioinformatics applications of VQ and SOM 

VQ has been used in bioinformatics, but not very often so far. In 

analysing gene expression data, it has been found that combining fractal 

dimension and discrete wavelet decomposition with VQ can improve the 

clustering accuracy compared with the conventional clustering algorithm 

[199]. In analysing microarray data of human lymphoma, VQ can be 

extended to discriminant analysis for improving the quality of feature 

clustering, hence leading to meaningful signatures [200]. Meanwhile, 

SOM has been very intensively applied to bioinformatics. We are going 

to classify these applications in terms of subjects. Three subjects are 

discussed. They are sequence analysis, gene expression data analysis, 

and metabolite data analysis. 

6.5.1 Sequence analysis 

Sequence homology alignment approaches are used to find which 

experimentally annotated database sequences are significantly similar to 

a novel sequence. From this, the prediction of protein structures or 

functions can be made for the newly sequenced protein. It is understood 

that proteins with similar structures or functions should have some 

commonly reserved motifs within sequences. Therefore unsupervised 

learning approaches can be used to discover the patterns constructed by 

motifs. With the belief that they are normally short segments within 

sequences, motifs as words are extracted from sequences. Features are 

constructed based on the motif frequencies. The extracted features are 

then used to construct a SOM model. Based on the trained SOM model, 

predictions can be made for any newly sequenced protein [201]. Given a 

set of experimentally annotated sequences { } ],1[  ,  Nnn ∈∀= sS , k-mer 

(k ranges from 4 to 16 in Hanke et. al.’s work [201]) motifs are extracted 

which are denoted by { } ] ,1[  ,  Nnn ∈∀= xD . D  is then a set of input 

vectors. Based on D , a SOM model is constructed, MD ֏ :SOM . M  

is a set of optimal or near optimal code vectors. The output map shown 

in Fig. 6.3 is then labelled based on the annotated information of 

sequences which have mapped to each neuron (cell) of the map. This 
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means that { } ] 1[  M,, m ∈=⇔ mFM α , where F  is a collection of 

annotated structural and functional information for each neuron (cell).  

Using the same approach, the same number of features (input vector 

1+Nx  with N+1 meaning a sequence beyond the collections in S ) of a 

new sequence(s) is formed in the same way when generating D . By 

inputting x to M , a winner is found for it and is denoted by M∈mς . 

F∈mα  is then the prediction for s. A similar technique has also been 

used for classifying prokaryotic and eukaryotic proteins [202], and for 

analysing DNA sequences [203]. One challenge in biology is species 

diversity. Unsupervised learning approaches can be well armed for 

exploring the unknown diversity hidden in data. For this reason, 60,000 

gene sequences of 29 bacterial species have been coded using principal 

component analysis and analysed using SOM leading to significant 

findings of the species diversity [204]. Such a type of applications is also 

referred to as alignment-free protein classification [152]. 

SOM can be used for short sequence segments (or peptides) data 

analysis projects. For instance, characterising functional peptides is such 

an application. Peptides are coded using a specific technique. The coded 

peptides are treated as numeric input vectors which are used to train a 

SOM model. Each neuron (cell) of a trained SOM model can be labelled 

according to the status of functional peptides which are mapped to it. A 

SOM learning process can be treated as a process of completing a 

discrete mapping from input vectors to a two-dimensional space shown 

in Fig. 6.3. The SOM output map is then treated as a feature map. A 

labelled feature map can then be used for analysing novel peptides or for 

prediction. This is exactly the same as what is mentioned above for 

analysing protein sequences. 

In using the second generation of DNA sequencing technology, we 

will have many fragments of a DNA genome sequence. Except for the 

species diversity, the other challenge is the assembly of fragments of 

non-sequenced species. Self-organising map has been adapted to 

hierarchically growing hyperbolic SOM to cluster variable-length DNA 

fragments. From this, DNA fragments from different species are 

classified and visualised [205]. In constructing such a hierarchical  

growing hyperbolic SOM, k-mer motif frequencies are used as features. 

Figure 6.8 shows the diagram of the model. 
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Fig. 6.8. An illustration of hierarchically growing hyperbolic SOM. There are three layers 

from the middle to the most outer. The neurons are expanded layer by layer [205]. 

6.5.2 Gene expression data analysis   

One significant benefit of SOM in analysing gene expression data is 

twofold. First, like other unsupervised learning algorithms, SOM is able 

to reduce the dimensionality of a data set. From this, topological 

structure can be visualised. Compared with other unsupervised learning 

algorithms, SOM has the advantage of handling nonlinear data. Second, 

unlike other unsupervised learning algorithms, SOM is able to partition 

and visualise data at the same time. This is extremely welcome in 

analysing gene expression data which normally have very high 

dimensionality [203, 206, 207]. 

Because of the distinct property of gene expression data, the 

application of SOM to gene expression data requires specific techniques. 

First, the magnitudes of gene expression within one data set can be at 

different scales, i.e. from a few hundred to a few hundred thousand. 

Figure 6.9 shows four density functions of the Burkholderia pseudomallei 

gene expression data. The top-left panel shows the density of the original 

raw data where no data pre-process has been done. The bottom-left panel 

shows the density function of the original raw data in which zeros are 
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removed. It can be seen that both show typical power distributions. 

Power distribution is a very common property in biological data. 

Because of this, SOM may not deliver meaningful results if data are not 

well pre-processed. After applying the logarithm function on the raw 

data and the raw data with zeros removed, the density functions of these 

data sets are shown in the top-right and bottom-right panels. It can be 

seen that the data are much less skewed. There are two distinct separate 

distributions in the top-right panel. The left distribution mainly 

represents zeros. Logarithm is therefore a popular technique used in 

analysing gene expression data. 

 

 

 

Fig. 6.9. An illustration of data skew. The data set used in this illustration is the 

Burkholderia pseudomallei gene expression data. 
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The second commonly used technique is differentiating data. One of 

the purposes of using SOM is to explore the hidden pattern in gene 

expression data so as to explore the intrinsic qualities of a biological 

system. To do this, it is necessary to determine which subset of genes are 

significantly positively or negatively differentiated between experimental 

samples and control samples. If the control group and the experimental 

group are well paired, using subtraction with each pair, we can form a 

secondary data set, i.e. differential data for analysis. Where de
n ℜ∈x  and 

dc
n ℜ∈x denote the nth gene which has been experimented on in both 

experimental and control groups, the differential gene is defined by 
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Fig. 6.10. An experiment of applying SOM to artificial gene expression data. The SOM 

model is composed of 30 neurons with a hexagonal array. The left panel shows the 

original data. The circles represent one group and the crosses represent the other group. 

The right panel shows the differential patterns of all 30 neurons after training a SOM 

model. Both control and experimental groups have four clusters of Gaussian distributions 

each having 100 input vectors. 

 

 

Note that d is the number of samples (for instance, disease-related 

and disease-free patients) in the control and experimental groups. Rather 

than working on the raw data, a differential SOM model can be  

generated using { }  nz . Based on differential data, a well-trained SOM 
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model will visualise the clustering of differential genes in terms of  

their differentiation magnitudes. Figure 6.10 shows an experiment of 

applying SOM to artificial gene expression data. It can be seen that the 

differential patterns are well grouped into different neurons. Meanwhile 

neighbouring neurons show similar differential patterns. 

6.5.3 Metabolite data analysis 

Equipped by Liquid Chromatography Tandem Mass Spectrometry, 

metabolites which play an important role in cellular functions can be 

accurately identified with the resolution up to three or four  

decimal points. Based on this resolution, an ion can be mapped to a 

chemical formula, hence a compound which is stored in a database. 

However, over 80~90% ions may not be mapped to any compound. In 

order to explore more information about these ions, particularly 

significantly differentiated ions, SOM can be used based on ions’ 

differential abundance values to identify how ions are clustered or 

correlated. 

6.6 A case study of gene expression data analysis 

We now use the same Burkholderia pseudomallei gene expression data 

for testing SOM here. First, we test how gene expression profiles are 

different in non-infected patients (negative) and infected patients 

(positive). 

Negative and positive gene expression profiles are then separately  

fed into SOM leading to two SOM output maps shown in Fig. 6.11. It 

can be seen that the two maps show different gene expression profiles. In 

the positive map (the right panel in Fig. 6.11), we find most neurons 

show high profiles. However, in the negative map (the left panel), most 

neurons display low profiles. 

Next, we use all data to test if SOM can discover the gene expression 

profile structure according to the classification of patients. A SOM 

model with 100 neurons is constructed and the output map is used  

to display the status of mapped patients. Figure 6.12 shows the result 
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Fig. 6.11. An illustration of using SOM to analyse gene expression profiles of non-

infected patients (negative) and infected patients (positive). 25 neurons are used for the 

test. 

 

 

 

Fig. 6.12. An illustration of using SOM to study the general data structure of a gene 

expression data set. 
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where the circles represent non-infected patients while triangles represent 

infected patients. The map shows a very interesting data structure where 

gene expression profiles of non-infected patients display a large diversity 

while those of infected patients demonstrate a small diversity. 

As mentioned above, SOM can be used to explore classification rules 

although it is an unsupervised learning algorithm. We randomly divide 

the whole data set (input vectors) into two parts. Four fifths of input 

vectors are used to build a SOM model. After a SOM model is built, each 

neuron is labelled according to the mapped input vectors. For instance, 

the bottom-left neuron of the SOM model in Fig. 6.12 is labelled as 

negative while the top-right neuron of it is labelled as positive. We then 

feed the remaining one fifth of input vectors (referred to as testing input 

vectors) into the SOM model to see to which neurons they will be 

mapped. If a negative testing input vector is mapped to the bottom-left 

neuron, a correct classification is made. If a positive testing input vector 

is mapped to the top-right neuron, a correct classification is also made. 

However, if a positive testing input vector is mapped to the bottom-left 

neuron, a misclassification is made. 

6.7 A case study of sequence data analysis 

In this section, we discuss how SOM can be used to handle peptide data 

which are extracted from sequences. The data used in this discussion is 

HIV-I protease cleavage data [208]. The data set is composed of 114 

cleaved peptides and 248 non-cleaved peptides. Each peptide is of eight 

residues. A few of them are shown as below: 

TQIMFETF 

GQVNYEEF 

PFIFEEEP 

SFNFPQIT 

DTVLEEMS 

Each of eight residues in a peptide is one of 20 amino acids. They are 

therefore non-numeric. In order to make them usable to SOM, a coding 

process is needed. The orthogonal sparse coding [209] is one of the most 
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used. Based on this coding technique, each amino acid is coded by a  

20-bit long binary string. In this string, one bit is assigned a value  

one leaving all other bits as zeros. For instance, an Alanine is coded by 

0000000000, 0000000001 and a Cystine is coded by 0000000000, 

0000000010, etc. The coded data can then be fed into a SOM model for 

both data visualisation and knowledge discovery. Figure 6.13 shows the 

output map of a SOM model with 100 neurons for the data. Each neuron 

has an associated code vector which can be decoded. The decoded code 

vector can be treated as a motif (mean vector) for all the peptides (input 

vectors) mapped onto it. Based on the fraction of cleaved peptides over 

all peptides mapped onto a neuron, a contour is formed to visualise 

which motifs are contributing to HIV-1 cleavage and which are not. 

 

 

 

Fig. 6.13. An illustration of a SOM model with 100 neurons for the HIV data. 
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Figure 6.14 shows how SOM is used to visualise the way in which 

cleaved and non-cleaved peptides are distributed. It can be seen that most 

neurons generally have a single class of peptides, either being non-

cleaved peptides or cleaved peptides. This demonstrates that the internal 

topological structure hidden in peptides can be explored to form 

significant classification rules. The rules can be well used in novel 

cleavage site prediction and drug design. 

 

 

Fig. 6.14. An illustration of how the distribution of peptides can be visualised using 

SOM. 

Summary 

This chapter has focused on Self-organising map, a neural learning 

algorithm developed on the basis of vector quantisation. The principles, 

the structure, and the learning algorithm of SOM have been discussed. 

Because most biology experiments are in nature exploring unknowns, the 
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basic classification rules are normally lacking. Pattern analysis and 

topological structure re-construction are then a particularly important 

subject in bioinformatics. Having understood that biological data sets 

are getting larger and larger, a challenge for SOM is how to handle data 

efficiently. For instance, training a SOM model with 10,000 neurons 

with 40,000 input vectors of 20 dimensions may take a couple of weeks 

to complete. One issue is to improve the learning algorithm and the other 

issue is to combine knowledge of machine learning and biology to 

efficiently pre-process the data before using SOM. For instance, genes 

which are completely silent may not make any difference in analysing 

how genes are differentiated in a sample. Pre-filtering the data may save 

much computing time.   
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Chapter 7 

Introduction to Supervised Learning 

Supervised learning is a subject in which a model is estimated from 

data for mapping explanatory variables to predictive variables. The 

explanatory variables in bioinformatics often refer to genotypic data 

which are used to describe underlying properties of a set of molecules 

within an organism. The predictive variables in bioinformatics are  

often used to describe phenotypic data which are observed. One of the 

most important targets in scientific research is to explain phenotypic 

phenomenon using genotypic data. This is very similar to most of our 

human intelligence activities, i.e. finding reasons that explain observed 

events, for instance, interpreting what causes the climate to change, 

understanding the genetic reasons leading to aging disease, deducing 

the underlying regulation of the financial market, and studying species 

diversity. Supervised learning is then searching for the most appropriate 

explanatory variables for interpreting predictive variables using a 

model. Such a model is often called a predictive model. Whenever such 

a model is established, its predictive function can be used for inference. 

This chapter focuses on the general concept of supervised learning. The 

discussion covers general concepts, rules, data organisation, model 

evaluation, and model feasibility. 

7.1 General concepts 

Various unsupervised learning approaches and algorithms have been 

discussed in the previous chapters. The main objective of unsupervised 

learning is to discover unknown knowledge of a data structure. The use 

of unsupervised learning is based on the nature in many scientific 

research projects that there is no definite classification law available  
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and we are required to find it. For instance, given a set of genome 

sequences from different species, how can we determine the diversity 

among them? 

A supervised learning process represents a different concept where 

we are interested in mapping one data point to the other data point, 

specifically finding how explanatory variables can interpret predictive 

variables. Here explanatory variables refer to the data which describe the 

causes for interpreting observed phenomenon. Predictive variables are 

directly associated with observed phenomenon. Having understood that 

observed phenomenon often contain variations caused by many man-

made and natural causes, predictive variables are treated as the unbiased 

phenomenon we are searching for. In bioinformatics, explanatory 

variables often refer to genotypic data while predictive variables refer  

to observed phenotypic data. The major task of bioscientists is to find 

causes to interpret the observed phenotypic data. For instance, when we 

find the diverse reactions to a drug among patients we may need to 

investigate the genotypic reasons that can explain the diversity. When we 

find diverse growth rates in plant mutants we may need to investigate 

which metabolites and which metabolite pathways contribute to the 

diversity. In science this is an induction process, i.e. from data to 

knowledge. In machine learning it is called a learning process or a 

supervised learning process. 

Note that this mapping is not the final goal of a supervised  

learning process. Ultimately we are interested in how classification rules 

can be established for the prediction of unknowns. This is a deduction 

process, i.e. from knowledge to data (new data). The prediction of 

biological diversity [204, 210, 211], cellular function [212-215], protein 

modifications [216-238], and the diagnosis of cancers using microarray 

technology [239-242] are examples of this. 

In predicting species diversity, some data are composed of genome 

sequences (part or whole) and other data are diversity measurements. 

The genome sequence data are regarded as genotypic data while the 

diversity is treated as phenotypic data. A computer model built using a 

machine learning approach can be used to predict diversity whenever 

new genome sequences are obtained. In predicting cellular functions, the  
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genotypic data can be gene expression profiles or genomic sequences  

while the phenotypic data are the cellular functions including cellular 

localisation, protein-protein interaction, and signal transduction. In 

predicting protein modifications, the input data are the sequence 

segments which normally have less then 20 residues and the output data 

are the modification statuses, i.e. having a phosphorylation site or not. 

When we build a model for cancer diagnosis using microarray data the 

genotypic data are genes with differential profiles from normal and 

abnormal tissues. The phenotypic data or model outputs are the cancer 

statuses, i.e. having cancer or not. 

All aim to construct a mapping (predictive) function from explanatory 

variables to predictive variables. The mapping function is normally 

unknown. In some cases, function parameters are unknown and in other 

cases both function parameters and functional structure are unknown. 

7.2 General definition 

A data set which is used for a supervised learning process is denoted by 

{ }N

nnn t
1

 , 
=

= xD , where d
n ℜ∈x  is called an input vector representing 

explanatory variables and Θ∈nt  ( Θ  is a set of phenotypic status) is 

called a target variable for a predictive variable. The number of 

predictive variables can be easily extended to multiple ones. It is 

assumed that D  is randomly sampled from a space ( Θ×ℜd ) satisfying 

an unknown function 

 tf ֏)(: xD  (7.1) 

Note that the number of data points in Θ×ℜd  is in general infinite and 

the number of data points satisfying )(xf  is infinite while the size of D  

is finite, ∞<<  D . What this means is that there are infinite data points 

of a data space spanned by a function. However, we can only collect a 

finite number of data points used as input vectors. The job required is to 

estimate )(xf  (the estimated version of )(xf  is denoted by )(
~

nf x ) 

using D  

 { } D∈∀  ,  ,)(
~

nnnn ttf xx ֏  (7.2) 
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Because the size of D  is limited the true function )(xf  may not be 

exactly estimated. We then have to define a criterion by which we can 

find the best estimated function for )(xf  

 )( , )()( minarg)(
~

xxxx gfgf ∀−=  (7.3) 

where )(xg  represents a possible candidate function. 

Before discussing detailed supervised learning algorithms, we need  

to classify supervised learning algorithms based on two important 

criteria. 

The first depends on the status of t. If it is continuous ( ℜ∈t ), we are 

dealing with a regression analysis problem. For instance, a regression 

model can be used to link gene expression polymorphisms of interleukins 

to oral squamous cell carcinoma [243], to link metabolism to growth-

related properties based on metabolite profiles [244], or to infer gene 

expression dynamics [245]. If the target variable t is discrete, i.e. Ι∈t   

or  }inhibition no ,inhibitive low ,inhibitive  {complete ∈nt  we then deal 

with a classification analysis problem. Many bioinformatics subjects fall 

into this classification analysis category. They include diversity 

prediction, cellular function prediction, protein modification prediction 

and cancer diagnosis using gene expression profiles. 

The next issue is to do with linear supervised models versus nonlinear 

supervised models. A linear model has the benefit of intuitiveness, i.e. a 

model is easy to interpret. For instance, a linear model relating cancer 

status and two gene expression profiles can be defined as 

 22110 xwxwwy ++=  (7.4) 

where { } ℜ×ℜ∈  , 21 xx  are the expression profiles of two genes, 

} yes no, {∈y  indicates whether a patient has cancer or not and 

{ } ℜ×ℜ×ℜ∈ ,, 210 www  represent the model parameters. Here y  is used 

to indicate how likely a patient has cancer. If a model has been built and 

21 ww >> , the first gene then has higher contribution to cancer 

development compared with the second gene. However, all linear models  

have a fatal limitation that they are unable to handle nonlinear data. 

Nonlinear mapping functions are then sought for analysing nonlinear 
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data. As mentioned above that in most bioinformatics projects no definite 

classification law is available before a study starts, a challenging subject 

is to determine a nonlinear model function which is generally difficult to 

estimate. An alternative is to construct a mapping function working as a 

“black-box”. In a black-box mapping function, interpreting which genes 

are more important than others may not be easy. For instance, in a 

mapping function 

 ),,( 21 wxxfy =  (7.5) 

The major objective is to find how inputs ( 2x and 2x ) are accyurately 

mapped to the outputs (y). Note that w is a set of model parameters. Most 

machine learning algorithms are basically nonlinear. 

7.3 Model evaluation 

As mentioned above, it is difficult to find the true model in practice. 

Among many candidate models, model evaluation is then an important 

issue related to model selection, i.e. evaluating which model is the best. 
Figure 7.1 shows an example. 

 

 

 

Fig. 7.1. An illustration of fitting a data set using different models which vary in terms of 

how well they fit the data.  
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The univariate function is defined as 

 )3.0,0(03.025.02.0)(
32
N+−+= xxxxf  (7.6) 

where )3.0,0(N  is a noise added with a zero mean and a standard 

deviation of 0.3. 500 data points are randomly generated. For this limited 

data size, different models fit the data differently, i.e. some fitting the 

data better than others. In order to evaluate these models, a quantitative 

criterion must be used. 

Because a supervised learning model can be a regression one or a 

classification one, the evaluation strategy then varies. For most 

regression models, an error function can be defined as the mean-square 

error as below 
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In order to make models of different data comparable, the normalised 

mean-square error can be used. It is defined as below 
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where 2
tσ  is the data variance. Correlation between the targets and 

model outputs can also be used. It is defined as 
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where 2
yσ  is the variance of model output, tµ  and yµ  are the mean 

values of targets and model outputs. 

For classification, there are two approaches, one is called single point 

estimation and the other is called robustness estimation or probability 

analysis of data separation. Using the single point estimation, the 

accuracy of each class is estimated by using one pre-defined threshold 
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for classification. For instance, in a two-class classification problem we 

may make decisions as below 

 


 <

=
otherwise

Tyif
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1

 0
)(  (7.10) 

where T is the threshold, y is the model prediction and )(yd  is the 

decision made based on the comparison of y against the threshold. The 

estimation is completed using a confusion matrix in which equation 

(7.10) is repeatedly used for all data points and a summarisation is made. 

For instance a model for a two-class classification problem is able to 

accurately predict 90 of 100 positive input vectors and 80 of 100 

negative input vectors. A confusion matrix is formed as below 

 

 Negative Positive Percent 

Negative 80 20 80% 

Positive 10 90 90% 

 89% 82% 85% 

 

The accurately predicted positive and misclassified positive are called 

true positive (TP) and false negative (FN). The accurately predicted 

negative and misclassified negative are called true negative (TN) and 

false positive (FP). In the above table, TN and FP are 80 and 20, 

respectively. TP and FN are 90 and 10, respectively. The prediction 

accuracy of the negative class is known as the specificity and the 

prediction accuracy of the positive class is known as the sensitivity. The 

specificity is defined as 

 
FPTN
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Spe
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=  (7.11) 

and the sensitivity is defined as 
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The total prediction accuracy is defined as 

 
FNTPFPTN

TPTN
Tot

+++

+
=  (7.13) 

Prediction powers [246-249] can be used to evaluate the confidence 

of trusting a prediction. The prediction powers are different from 

prediction accuracies. The negative predictive power (NPP) measures 

how likely a negative prediction is true. It is calculated by the fraction of 

correctly identified negative input vectors over the total predicted 

negative input vectors. The positive predictive power (PPP) then 

measures the probability that a positive prediction is true. This is 

calculated by the fraction of correctly identified true positive input 

vectors over the total predicted positive input vectors. They are defined 

as 

 
FPTP
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=  (7.14) 

The receiver operating characteristics (ROC) analysis [250] can only 

be used in a two-class classification problem for system robustness 

evaluation. It is used to analyse how likely the predictions of two classes 

are to be well-separated. In particular, the areas under ROC curves 

(AUR) are normally used as a quantitative indicator of model robustness. 

Because ROC is used for analysing the separation quality between 

predictions of two classes, AUR is also named as the probability of 

separation. When conducting ROC analysis, we need to vary the 

threshold (see equation (7.10)) by which classification is made. Because 

of the change of the threshold, the sensitivity and specificity change. For 

each threshold there is a pair of values for specificity and sensitivity. For 

many thresholds, there are many pairs of them. We then map these two 

points into a two-dimensional space using the false alarm rates (1 - 

specificity) as the horizontal axis and the sensitivity as the vertical axis. 

The points are connected to form an ROC curve. Figure 7.2 shows the 

ROC analysis for two data sets of one dimension. One shows a 

reasonable separation between two classes of data and the other shows a  
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larger overlap between two classes of data. It can be seen that the ROC 

of data set 1 is closer to the top-left corner compared with that of data  

set 2. This shows that data set 1 is better than data set 2 in terms of 

separation capability between two classes of data. The AUR of data set 1 

is then larger than that of data set 2. 

 

 

 
Fig. 7.2. An illustration of ROC analysis. The solid lines and the dashed lines in the top 

panels represent two classes of data. The bottom panels show the ROC curves for them. 

The R ROCR package [251] is used to build ROC curves. In the ROC curves, the 

horizontal axes represent 1 – specificity and the vertical axes represent sensitivity. 
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7.4 Data organisation 

In order to deliver a model with a proper and unbiased estimation of 

prediction accuracy, proper data organisation must be considered before 

starting computer simulation and model construction using any machine 

learning algorithm. 

Because data collection is a random process the data collected one 

time will not be identical to data collected the next time. Model 

construction must consider such a variation. As mentioned above, the 

observed phenotypic data are likely noise-contaminated data. There is 

then a critical learning problem. How can we distinguish between true 

data and noise data?  

 

 

Fig. 7.3. A diagram showing the danger when a function (model) fits data too well. The 

input variable is denoted by x, the output variable is denoted by y. A new data point is 

denoted by 0x . The dots are the collected data for estimating a function. The true 

function by which data are collected (randomly sampled) is denoted by a thick smooth 

line. The estimated too-good function is denoted by the dashed line which connects each 

collected data point, perfectly fitting the data. The estimated not-too-bad function is 

denoted by a thick dotted line. 

  

If we treat all the collected data as true data a model may fit the 

collected data very well but has little capability to generalise. Figure 7.3 

shows such a situation where a function (model) is built to fit the 

collected data (x, y) pairs very well without any error. When we have a 
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new datum denoted by 0x , a large prediction error bε occurs when using 

the too-good function whose prediction is by . The prediction is 0y  and 

the prediction error is smaller ( 0ε ) using a not-too-bad function. 

However, the not-too-bad function has a large error compared with the 

too-good function, in fitting the collected data. The prediction capability 

for new data is often referred to as the generalisation capability. A model 

which has less prediction error for the new data (the not-too-bad function 

illustrated by the dotted line in Fig. 7.3) is called a model with a good 

generalisation capability. 

However, how can we estimate a model’s generalisation capability 

before seeing new data? A common methodology we adopt is to use the 

current collected data. We know that data collection is a random process. 

If we divide our currently collected data randomly we are actually 

mimicking the random sampling process. The next question is then how 

to divide the collected data. Because of randomness, it is nearly 

impossible to have the same prediction performance using the same 

model on different randomly generated test data subsets. It is then 

strategically important to ensure every piece of collected data has been 

used for testing. The best strategy of a proper model performance 

evaluation is Jackknife [252]. With the Jackknife test, one input vector is 

reserved for testing using the model constructed based on the rest of the 

input vectors. This is repeated until all the input vectors have been used 

once for testing. The final model performance is then estimated based on 

all testing results. For instance, we may construct seven models for seven 

collected data points. 

When data size gets very large, Jackknife becomes computationally 

infeasible. In this situation, k-fold cross-validation is used. Data are 

randomly divided into k-folds. K models are constructed. Each of them 

uses one fold of input vectors as test data while the rest are used for 

model construction. The final model performance is estimated based on 

these k sets of testing results. 

However, it must be noted that even using k-fold cross-validation two 

separate runs may still generate different performance estimations. If 

computational time is feasible, N k-fold cross-validations can be carried 

out and the final performance is a mean of each of these N runs. 
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7.5 Bayes rule for classification 

A practical issue related to classification analysis is the confidence of  
a prediction. If a model provides probabilities of different classes, the 
Bayes rule can be used for decision-making. Suppose there are K classes, 
the probability (or conditional probability) that an input vector belongs  
to the kth class is denoted by )|( kp x  and the a prior probability of the 
kth class is )(kp . The post-probability (given K classes) is defined as 

 ],1[,
)|()|(

)|()|(
)|(

1

Km
kpkp

mpmpmp K
k


  xx

xxx  (7.15) 

A decision is made through maximising the post-probability denoted  
by )|( xmp  

Summary 

In this chapter, general concepts and rules of supervised learning have 
been discussed. Model evaluation and data organisation strategies have 
also been discussed. All these are fundamental to the following chapters 
where several commonly used machine learning algorithms for 
bioinformatics will be discussed. It must be noted here that these 
practices are important for generating unbiased, accurate and precise 
models and should not be ignored in experimental design.  
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Chapter 8 

Linear/Quadratic Discriminant 

Analysis and K-Nearest Neighbour 

In this chapter, two important machine learning approaches which can 

be used for supervised learning are introduced. One is called 

discriminant analysis including linear discriminant analysis and 

quadratic discriminant analysis and the other is called the K-nearest 

neighbour algorithm. Linear or quadratic discriminant analysis is a 

simple learning algorithm which has the advantages of simplicity and 

intuitiveness. The K-nearest neighbour algorithm has the advantage of 

low learning cost. This chapter will discuss the principles of these 

algorithms and the procedures of their applications to bioinformatics. 

8.1 Linear discriminant analysis 

Linear discriminant analysis, also referred to as Fisher discriminant 

analysis (FDA), is a simple algorithm which has been widely used in 

many areas [158, 160, 253]. FDA aims to find a linear function which 

linearly combines independent variables using a set of weights (model 

parameters) to determine the property of a dependent variable. The linear 

function is also called a hyper-plane which separates two classes of input 

vectors. The hyper-plane is called the decision boundary or surface while 

the linear function is called a linear classifier. 

The basic requirement of FDA is that we assume that we know the 

function form in advance for a data set. The linear function used in FDA 

is defined as 
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where 
d

ℜ∈x  is an input vector, 
d

ℜ∈w  is a weight vector (model 

parameters), and 0w  is a bias. 

 

 

Fig. 8.1. An illustration of FDA for a data set of two-dimensional input vectors. The 

horizontal axis and the vertical axis represent the two dimensions, i.e. X and Y. The 

triangles and crosses represent two classes of input vectors. For this data set, ten FDA 

models are built by randomly sampling four fifths of the data. The lines which separate 

these two data swarms are the hyper-planes generated by FDA. The large circles 

represent the centres of two classes of input vectors. 

 

A simple explanation of FDA is to find a hyper-plane on which 

0)( ≡xf . This hyper-plane is also called the decision boundary, i.e. x  

belongs to one class if 0)( >xf  while it belongs to the other class if 

0)( <xf . All the points on the hyper-plane satisfy 0)( =xf  [158, 160, 

253]. Figure 8.1 shows a simple example of FDA for two classes of input 

vectors in two-dimensional space. 
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There are two different approaches for estimating FDA model 
parameters. We can assume that data follow two Gaussian distributions 
for two classes of input vectors. The density functions of two classes are 
defined as 
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where Aμ  and Bμ  are the mean vectors of two classes ( A  and B ) of 
input vectors. A  and B  are the covariance matrices of these two 
classes. In order to find a hyper-plane to separate the two classes of input 
vectors, we assume )|()|( BA xx pp   if the prior probabilities of the 
two classes are the same. This leads to 

||ln)()(||ln)()( 1T1T
BBBBAAAA   μxμxμxμx  (8.4) 

In FDA, it is assumed that  BA . This means that both 
classes of input vectors have the same spreading volume. Solving 
equation (8.4) under this assumption leads to the hyper-plane defined as 

 )(1
AB μμw    (8.5) 

In Fisher’s original work, it is assumed that the hyper-plane made by 
weighting independent variables ( xw  ) is able to separate two classes of 
input vectors if the ratio of between-class diversity over the within-class 
diversity can be maximised. The between-class diversity can be regarded 
as signal in data while within-class diversity can be treated as noise in 
data. This ratio is defined as 
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Maximising the above equation leads to 

 )()( 1
ABAB
µµw −Σ+Σ= −  (8.7) 

It can be seen that both approach the same result. FDA can be 

extended to multiple classes where multiple hyper-planes will be formed 

[158, 160, 253]. 

In bioinformatics, FDA has been widely used. For instance, FDA has 

been used for predicting DNA methylation sites [254], for predicting 

phosphopeptides [255], for brain tumour diagnosis based on metabolite 

data analysis [256], and for identifying protein coding regions [257]. 

 

 

Fig. 8.2. Box plot of the prediction performances (specificity, sensitivity, total accuracy, 

and AUR) from 100 randomised data sets. 
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Here we study how FDA can be used for analysing Burkholderia 

pseudomallei gene expression data. Data size is reduced using the 

random forest algorithm which is discussed in the next chapter, i.e. 

among 214 genes, only top ten genes selected by the random forest 

algorithm are used for modelling using FDA. The data are randomised 

100 times. Each time, five-fold cross-validation is used. The model 

performances (specificity, sensitivity, total prediction accuracy, and 

AUR) are shown in Fig. 8.2. The specificity is 86%, the sensitivity is 

86%, the total prediction accuracy is 86% and AUR is 0.92. 

The weights (w) for the top ten genes from 100 models are shown in 

Fig. 8.3. In these 100 random models, the gene BPSL3398 has the 

highest positive weight, but the gene BPSS9477 has the largest negative 

weight. Because the infected patients are labelled using value one and the 

non-infected patients are labelled using value zero, infected patients will 

have high expression of the gene BPSL3398 but low expression of the 

gene BPSS9477. 

 

 

Fig. 8.3. Box plot of the weights of ten genes. The horizontal axis represents ten genes 

while the vertical axis represents the weights. 
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8.2 Generalised discriminant function 

FDA is a linear machine learning algorithm. The linearity implies two 

learning issues. First, it is assumed that the data for modelling is linearly 

separable such as the case shown in Fig. 8.1. This linearity does not 

mean data are completely separable. Data are often not separable even 

when generated from two linearly separable sources. Rather they are not 

separable because of large overlap. For the data shown in the left panel 

of Fig. 8.4 FDA is unable to separate two classes of input vectors 

successfully because of the noise in the data. FDA is also unable to find 

a suitable decision surface for nonlinear data. On the right panel of  

Fig. 8.4, data are generated from two classes, one being points below the 

function 2
y  and the other being points above the function. It can be seen 

from the right panel of Fig. 8.4 that the decision boundary made by FDA 

fails to separate two classes of input vectors. 

Generalised discriminant analysis is also called quadratic 

discriminant analysis (QDA). In QDA, rather than explore the linear 

variables described in equation (8.1), we aim to explore non- 

linear variables. Here a linear variable is quantified by one independent 

variable while a nonlinear variable is quantified by a product of two or 

more independent variables. Based on this, we then have the form of 

QDA defined as below [158, 160] 
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The model can be re-written as below 

 zw T
0

~+= wy  (8.9) 

where ∪ }  {}  { iji xx=z  and ∪ }  {}{~
iji aw=w . This is in the same format 

of FDA described in equation (8.1). The same procedure of FDA can be 

applied to QDA to estimate model parameters. 
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Fig. 8.4. Two examples where FDA is unable to find a suitable decision boundary. The 

left panel shows a case where data are generated from two linearly separable sources but 

highly overlapped. The right panel shows a case where data are generated from two 

nonlinear separable sources without overlap. The large circles represent the centres. 

 

 

Fig. 8.5. A comparison of FDA and QDA applied to the data shown in the right panel of 

Fig. 8.5. The left panel shows the ROC curves of the FDA models and the right panel 

shows the ROC curves of the QDA models. The horizontal axes represent 1 – specificity 

and the vertical axes represent sensitivity. 
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Figure 8.5 shows a comparison of cross-validation FDA and QDA 

models for the data shown in the right panel of Fig. 8.5. The specificity, 

sensitivity, total prediction accuracy and AUR are printed in the ROC 

curves in Fig. 8.5 where it can be seen that QDA much outperforms FDA 

because of the introduction of the nonlinear variables. 

In applying QDA to the Burkholderia pseudomallei gene expression 

data, we find that the performance is similar to that demonstrated  

when applying FDA. Although QDA introduces nonlinear variables, the 

capability of handling nonlinear data is still limited. This is because only 

the positive correlation between variables is considered, i.e. ji xx  

describing positive correlation between ix  and jx . If the classification 

between two classes of data depends on the negative correlation between 

ix  and jx , we add more noise rather than more information. 

QDA has also been used in several bioinformatics projects. For 

instance, it has been used for predicting protein coding regions [258], for 

predicting splice sites [259] and for predicting antimicrobial peptides 

[260]. 

8.3 K-nearest neighbour 

K-nearest neighbour (KNN) [158] has been known as a fast learner 

because there is nearly no learning process at all. The principle of KNN 

is simple with a theoretical background. Imagine that there are K training 

input vectors around a query input vector within a specified volume 

shown in Fig. 8.6. In the Figure, the query input vector denoted by the 

triangle is surrounded by two classes of training input vectors. Here we 

use training input vectors to mean that they have already been classified. 

We now need to label the query input vector. An intuitive approach is to 

count the number of open circles and the number of filled circles. If the 

number of open circles is larger than that of filled circles, we can label 

the query input vector by the class of open circles. However, what is the 

theoretical background of this simple and intuitive approach? 
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Fig. 8.6. An illustration of KNN. The open circles and the filled circles represent two 
classes of data while the triangle represents a query data point. The dashed circle 
indicates the volume centred by the query data point. 
 

We first denote an input vector by x and the number of training input 
vectors in one class as kN , where } 2 ,1 {k  representing the open and 
filled circles in Fig. 8.6 respectively. We then use two simple 
probabilities to quantify how likely one class of input vectors is to occur 
in the volume which is denoted by the dashed open circle in Fig. 8.6. The 
simple probability estimation is defined as below 

 
N
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where 21 NNN  . The posterior probability is calculated by the 
following equation 
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where )(kp  is the a prior probability of the kth class. If )2()1( pp   we 
have 
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If 21 NN   the query vector is labelled as class 1. If the prior knowledge 
is updated to )2()1( pp   we then have 
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There is also another analysis that leads to the same result. Given a 
volume V, the probability of the kth class within it is defined as 
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The posterior probability of the kth class is defined as 
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It can be seen that the Bayes rule is the basis for deriving a K-nearest 
neighbour classification system. 

Because of its simplicity, KNN has been applied to many 
bioinformatics projects. In the sequence domain, KNN has been used to 
predict transmembrane beta-barrel proteins [261] and for food protein 
allergenicity prediction [262]. In analysing gene expression data, KNN 
has been used for cancer diagnosis [263-265], toxicity analysis [266], 
and for identifying pathogens [267]. 

Like other machine learning algorithms, KNN also has a problem of 
model selection. For instance, Fig. 8.7 shows this dilemma. When using 
the inner dashed open circle as the volume in which we seek K nearest 
neighbours, we have found the triangle should be labelled as the filled 
circles. When we use the middle dashed open circle, we find that the 
triangle is labelled as the class of the open circles. If the outer dashed 
open circle is used as the volume in which to search for K nearest 
neighbours, the triangle is labelled as the class of the filled circles. There 
is therefore certainly a model selection process. For a specific model, an 
appropriate K number must be carefully selected. 
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Fig. 8.7. An illustration of selecting right number of K when using KNN for a specific 

data set. Open and filled circles represent two classes of input vectors while the triangle 

represents a query input vector. Three dashed open circles show the volumes in which K 

nearest neighbours are sought. 

 

The second issue is related to the distance used when searching for K 

nearest neighbours. Using the Euclidean distance or Manhattan distance 

may lead to different classification outcomes. Using the Euclidean 

distance from the query input vector indicated by the large open circle, 

the triangle is labelled as the class of filled circles. When using the 

Manhattan distance, the triangle is labelled as a different class. The 

difference can be seen in Fig. 8.8. 

 

 

Fig. 8.8. An illustration of using different distance calculation methods leading to 

different labelling processes for a query data point. Open and filled circles represent two 

classes of input vectors while the triangle represents a query input vector. The dashed 

open circle and the dashed ellipse show the volumes that apply when using the Euclidean 

distance and Manhattan distance respectively for searching for K nearest neighbours. 
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The third issue related to KNN is its complexity in use. If a training 
data base is large, both space complexity and time complexity will be a 
huge burden. For a database with N training input vectors, using K 
nearest neighbours, KNN will need to use )1()1(  KNNN   
calculations to find the nearest neighbours. 

A typical application of KNN in bioinformatics is various multiple 
sequence homology alignment tools such as FASTA [22] and BLAST 
[10]. After inputting a query sequence, the tool returns a number of 
database (training) sequences with ranked similarity measurements.  
For instance, searching BLAST for a protein P0C0R2.1 (HTH-type 
transcriptional regulator sarS) leads to a table shown in Table 8.1 in 
which the similar database sequences are listed in the first column,  
the significant alignment bits data are listed in the second column  
and the significance of similarities (e-values) are listed in the last 
column. The sequences are ordered from most similar ones to most 
dissimilar ones. 

Table 8.1. The result of searching BLAST for a protein P0C0R2.1. This 
is a reduced table where “producing” information is removed for 
simiplicity. 

Sequences alignment bits e-values 
ref|YP_001331091.1| 502 1.00E-140 
ref|NP_370636.1| 502 1.00E-140 
ref|YP_415567.1| 500 5.00E-140 
ref|YP_039579.1| 499 1.00E-139 
ref|ZP_04016209.1| 498 1.00E-139 
ref|ZP_03563936.1| 419 1.00E-115 
ref|ZP_03986419.1| 245 3.00E-63 
ref|ZP_03986418.1| 177 7.00E-43 
ref|NP_373023.1| 177 7.00E-43 
ref|YP_495072.1| 176 1.00E-42 
ref|ZP_04827531.1| 176 2.00E-42 
ref|YP_187302.1| 176 3.00E-42 
ref|ZP_04864336.1| 160 1.00E-37 
ref|ZP_04839552.1| 98.2 7.00E-19 
ref|ZP_03561897.1| 83.6 2.00E-14 
ref|ZP_04796428.1| 75.9 3.00E-12 
ref|YP_002633364.1| 75.9 4.00E-12 
ref|ZP_04824520.1| 75.5 4.00E-12 
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ref|NP_763945.1| 75.5 4.00E-12 
ref|YP_254196.1| 75.1 5.00E-12 
ref|ZP_04818422.1| 73.9 1.00E-11 
ref|ZP_03613101.1| 73.9 1.00E-11 
ref|ZP_04677773.1| 73.2 2.00E-11 
ref|ZP_04059846.1| 72.8 3.00E-11 
ref|YP_302193.1| 72.8 3.00E-11 
ref|NP_371140.1| 71.2 9.00E-11 
pdb|1FZP|D 71.2 9.00E-11 
pdb|2FRH|A 70.9 1.00E-10 
pdb|2FNP|A 69.7 2.00E-10 
gb|AAB05396.1| 68.9 4.00E-10 
gb|ABD73658.1| 65.5 5.00E-09 
ref|ZP_03932304.1| 46.6 0.002 
ref|ZP_03936223.1| 46.2 0.003 
ref|ZP_04864335.1| 45.8 0.004 
ref|ZP_04676978.1| 45.8 0.004 
ref|ZP_05366829.1| 45.4 0.005 
ref|ZP_03920664.1| 45.4 0.005 
ref|ZP_05086994.1| 45.1 0.007 
ref|YP_301092.1| 45.1 0.007 
ref|ZP_03612535.1| 44.7 0.008 
ref|YP_300706.1| 44.3 0.011 
ref|ZP_04817518.1| 43.5 0.016 
ref|YP_501258.1| 42.4 0.047 
ref|YP_001576352.1| 42 0.053 
ref|YP_187301.1| 42 0.053 
ref|ZP_03957600.1| 41.6 0.074 
ref|YP_002634059.1| 41.6 0.075 
ref|YP_001231285.1| 41.6 0.076 
ref|YP_188894.1| 41.6 0.079 
ref|ZP_04797467.1| 41.2 0.082 
ref|ZP_03931708.1| 41.2 0.083 
ref|NP_764990.1| 41.2 0.085 
ref|ZP_02431579.1| 41.2 0.087 
ref|NP_373022.1| 41.2 0.097 
ref|YP_001247875.1| 41.2 0.097 
ref|ZP_04060580.1| 40.8 0.12 
ref|YP_186645.1| 40.8 0.13 
ref|YP_001353624.1| 40.4 0.15 
ref|ZP_01304027.1| 40.4 0.16 
ref|YP_147717.1| 40.4 0.16 
ref|ZP_04819627.1| 40.4 0.16 
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ref|ZP_03752400.1| 40.4 0.17 
ref|YP_001559761.1| 40.4 0.17 
ref|NP_378388.1| 40 0.19 
ref|YP_002634877.1| 40 0.21 
ref|YP_002786464.1| 40 0.22 
ref|NP_372288.1| 39.7 0.26 
ref|ZP_01719933.1| 39.7 0.26 
ref|YP_001332689.1| 39.7 0.29 
ref|YP_043808.1| 39.7 0.29 
ref|YP_494402.1| 39.7 0.3 
ref|YP_041233.1| 39.7 0.31 
ref|NP_391635.1| 39.3 0.33 
ref|NP_694380.1| 38.9 0.41 
ref|ZP_04370381.1| 38.9 0.43 
ref|ZP_05367617.1| 38.9 0.43 
ref|ZP_03613556.1| 38.9 0.46 
ref|YP_002829202.1| 38.9 0.47 
ref|YP_500382.1| 38.9 0.49 
ref|ZP_05372472.1| 38.9 0.51 
ref|YP_253074.1| 38.1 0.69 
ref|YP_002831895.1| 38.1 0.72 
ref|YP_002837327.1| 38.1 0.76 
ref|ZP_04676980.1| 38.1 0.82 
ref|ZP_04351651.1| 37.7 1 
ref|YP_002561209.1| 37.7 1 
ref|ZP_04767758.1| 37.7 1.1 
ref|YP_083773.1| 37.7 1.1 
ref|NP_342553.1| 37.7 1.1 
ref|ZP_04798349.1| 37.4 1.3 
ref|ZP_04826476.1| 37.4 1.3 
ref|ZP_02171452.1| 37.4 1.3 
ref|ZP_04803802.1| 37.4 1.3 
ref|ZP_04059377.1| 37.4 1.3 
ref|YP_189437.1| 37.4 1.5 
ref|NP_765423.1| 37 1.6 
ref|ZP_04798347.1| 37 1.6 
ref|NP_765425.1| 37 1.7 
pdb|3HRM|A 37 1.8 
ref|ZP_03981559.1| 37 1.8 
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8.4 KNN for gene data analysis 

Here we apply KNN to the Burkholderia pseudomallei gene expression 

data. The performance of the KNN model using the Manhattan distance 

is shown in the left panel of Fig. 8.9 and the performance of the KNN 

model using the Euclidean distance is shown in the right panel of  

Fig. 8.9. It can be seen that the best Manhattan model uses 3 nearest 

neighbours while the best Euclidean model uses 5 nearest neighbours. 

 

 

Fig. 8.9. The performance of KNN models for the Burkholderia pseudomallei gene 

expression data using the Euclidean distance (right panel) and the Manhattan distance 

(left panel). The horizontal axes indicate the number of nearest neighbours. The vertical 

axes indicate the total prediction accuracy. 

Summary 

This chapter has discussed two types of machine learning algorithms 

which are either simple in learning or simple in prediction. The 

discriminant analysis using Fisher algorithm (FDA) and the algorithm 

using nonlinear variables (QDA) are easy learning algorithms. The cost 

of learning only involves simple linear algebraic operations. The learned 

models can be easily interpreted, i.e. explaining which variables are 

important. KNN on the other hand has a very low learning cost but has 

the problem of prediction cost when the training data size is large. This 
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chapter has also discussed the applications of these two types of 

algorithms in bioinformatics. 

It must be noted that both FDA and QDA employ a linear learning 

procedure although QDA uses nonlinear variables. When the number of 

variables increases, the number of quadratic variables can increase 

dramatically. KNN, strictly speaking, is not a linear learning algorithm. 

When K is decreased it tends to be more nonlinear. When K is large the 

decision boundary is more smoothed out leading to a more linear 

classification property.  
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Chapter 9 

Classification and Regression Trees, 

Random Forest Algorithm 

This chapter discusses one typical supervised learning approach. This 

type of algorithms aims to mimic human-like decision-making systems 

for specific applications. The popularity of this type of algorithms 

results from its simplicity and intuitiveness. A model built this way 

enjoys some distinct features in interpreting predictions and displays 

data structures which are very welcome in many applications. 

9.1 Introduction 

The main objective of every prediction is for indicating what will happen 

in the future. The prediction that species diversification is positively 

related to species diversity [268] can warn us about how to maintain 

species diversity to reduce the risk of the extinction of many species 

which will finally affect human living. The prediction of protein 

modifications can narrow down the experiment targets. The prediction of 

cancer in its early stage may save or prolong life. 

Many machine learning algorithms are able to deliver good prediction 

models through training. Compared with other machine learning 

algorithms, the inductive programming approach, including the decision 

tree algorithm [269, 270] and the classification and regression tree 

algorithm [271], has some distinct features suitable for bioinformatics 

projects. First, each prediction can be well interpreted. For instance, a 

cellular function prediction model can indicate which genotypic variable 

is the factor initiating a specific cellular function. Second, both numerical 

data and categorical data can be modelled. This is particularly important 
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in analysing biological data where categorical data often occurs. Third, 

these algorithms need much shorter model construction time compared 

with other machine learning algorithms. Fourth, they are capable of 

handling data with very large dimensionality. Many other machine 

learning algorithms need the number of input vectors to be larger  

than the number of model parameters to ensure statistical learning 

significance. Finally the outcome of each learning process will deliver a 

clear data structure demonstrating the hidden knowledge underlying data. 

9.2 Basic principle for constructing a classification tree 

The basic principle of the algorithms discussed in this chapter is “divide 

and conquer”. Using this principle, a data space with mixed classes of 

input vectors is divided into two sub-spaces using classification rule. 

 

 

Fig. 9.1. An illustration of dividing a data space. Triangles and crosses represent two 

different classes of data. The long broken lines are used for partitioning the spaces. X and 

Y are two variables. The thin dotted line in the left panel is an alternative decision 

boundary for dividing the space. 

 

For instance, in the left panel of Fig. 9.1, one decision boundary  

(y = 0) can be used to partition the space into two sub-spaces in which 

input vectors can be easily classified. However, the partitioning using the  
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decision boundary (y = 2) cannot make two sub-spaces in which input 

vectors can be well-separated. On the right panel of Fig. 9.1, a further 

decision boundary (x = 0) is added to make four sub-spaces for 

classification of input vectors. After a data space is well-divided into 

small sub-spaces in which input vectors can be well classified, the 

divided sub-spaces can be used to develop classification rules. For 

instance, if a novel input vector is found in the upper sub-space in the left 

panel, this novel input vector is then labelled by the input vectors in this 

upper sub-space. 

 

 

 

Fig. 9.2. A tree representation of the decision-making process involved in the left panel 

of Fig. 9.1. The square represents data input. Each node denoted by a diamond represents 

a partitioning process or a decision-making step. The circles are the end nodes of a 

decision tree where predictions can be made. 

 

Given a partitioning strategy for a data space, how can we represent 

this partitioning space as a decision-making process? In order to explore 

human intelligence of a model, a tree-like decision-making structure has 

been adopted in the decision tree algorithm [269, 270] and the 

classification regression tree algorithm [271]. For instance, the decision 

making process in the left panel of Fig. 9.1 can be expressed as a tree 

shown in Fig. 9.2 while the decision-making process in the right panel of 

Fig. 9.1 can be demonstrated in Fig. 9.3. 
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Fig. 9.3. A tree representation of the decision-making process involved in the right panel 

of Fig. 9.1. For the explanation of the representation refer to Fig. 9.2. 

 

To make a best data space partitioning and deliver the best decision-

making system or model, we need to consider how to find the best 

decision boundary to partition a space, i.e. how to make a root and 

branch node shown in Fig. 9.2 and Fig. 9.3. For instance, the thin dotted 

line in the left panel of Fig. 9.1 is certainly not a good choice although 

the majority of input vectors can be separated. Intuitively, we can say 

that the decision boundary (y = 0) represented by the long broken line in 

the left panel of Fig. 9.1 is a good one while the decision boundary (y = 

2) marked by the dotted line is not a good candidate. This is because both 

sub-spaces generated by the decision boundary (y = 0) are pure for one 

class of input vectors. However, the upper sub-space generated by the 

decision boundary (y = 2) is pure while the lower sub-space is impure. 

To automate the selection of the best decision boundary, a quantitative 

measure for purity or impurity is required. Two ways to measure the 

impurity of a node in a tree have been proposed. One is called Gini 

impurity and the other is called information gain. 

Gini impurity has been used for selecting the decision boundary in 

various algorithms such as ID3, C4.5, C5, classification and regression 

tree (CART) and the random forest algorithm [269-272]. The Gini 

impurity is calculated by summing the products of the probability of 
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correct classification and the probability of mis-classification of a class 

of input vectors for K classes. It is defined as 
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where x is one variable, τ is a decision boundary, )(τkp  is the 

probability of correct classification of the kth class of input vectors using 

the decision boundary ( τ=x ) while K is the number of classes. It can be 

seen that, if a sub-space is pure using τ=x  for one class, 
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The other measure is called information gain based on entropy which is 

defined as 
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When a sub-space is pure for one class, 0)}(min{I ==τxE . The 

more the classes of input vectors are in a sub-space, the larger the 

entropy is. The largest information gain is  
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The construction of a decision tree or classification and regression 

tree model is based on repeated optimisation of one of the impurity 

mentioned above. 

In the sections below, we discuss two typical algorithms. One is 

called the classification and regression tree algorithm (CART) and the 

other is called the random forest algorithm (RF). 
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9.3 Classification and regression tree 

CART can be used for both classification analysis and regression 

analysis and makes a prediction model in three steps described as below. 

Step 1: tree growing. For a given data set, a tree is grown based on 

recursive partitioning of the data space using decision boundaries. For 

every partition using a decision boundary, a node is formed. The node is 

composed of two parts. One is the variable selected (such as x) and the 

other is the threshold (such as T ). The given data space or a sub-space is 

divided into two sub-spaces according to the relationship between the x 

value and T value for all input vectors. The impurity is calculated for this 

new node. If the impurity is zero, no further partition is taken beyond this 

node. In this situation the nodes below this node are labelled according to 

the class property of the input vectors in the sub-spaces. 

Step 2: tree pruning. A tree is pruned if it fails to generate better 

prediction performance compared to a tree with a simpler structure. 

Note that when pruning is completed, a leaf node may not be pure for 

one class of input vectors. In this case, a probability of belonging to 

one class is calculated according to the fraction of one class of data 

points over total data points. 

Step 3: tree selection. An optimal tree is selected if it outperforms 

the other candidates in predicting novel data. 

After construction, a CART model can be used for predictions. As 

indicated in Figures 9.2 and 9.3, a novel input vector is fed into the 

model. The root node examines the relevant variable’s value against 

the threshold to determine if the action moves to the left sub-tree or 

the right sub-tree. The same examination applies to all the following 

branch nodes in the tree. When a leaf node is reached, the prediction 

is made according to the maximum posterior probability. The 

posterior probability is defined in chapter 7. In a CART model, the 

conditional probability of the kth class (given K classes) is defined as 

the fraction of input vectors belonging to the kth class in a sub-space 

associated with a leaf node. 

CART has been used for classifying substrates, inhibitors, and 

inducers of p-glycoprotein [273], for identifying head and neck  

squamous cell carcinoma [274], for detecting SNP-SNP interaction 
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[275], for HIV-I drug (CCL3L1-CCR5) evaluation [276], for studying 

the relation between genetic polymorphisms in double-strand break DNA 

repair genes and oral premalignant lesions [277], for studying how 

genetic variants in cell cycle can control pathways related to 

susceptibility of bladder cancer [278], for detecting breast cancer using 

genomic data [279], and for studying mRNA expression data variance 

[280]. 

9.4 CART for compound pathway involvement prediction 

In this section we study the prediction of pathway involvement of a 

compound. Compounds are downloaded from the KEGG library [155]. 

In this data set, 14423 compounds are found among which 2961 

compounds have metabolic pathway annotations. Among them, 1050 are 

in biosynthesis pathways, 501 are in degradation pathways, and 1491 are 

in metabolism pathways comprising both biosynthesis and degradation. 

Each compound is represented by a formula in KEGG and is 

composed of chemical elements and their quantities. For instance, the 

compounds Cyanate, Carbamate, and Urea are represented by C1H1N1O1, 

C1H2N1O2, and C1H4N2O1, respectively. H means Hydrogen, N means 

Nitrogen and O means Oxygen. The numbers represent the quantities of 

the chemical elements. In both databases, one formula can be shared by 

multiple compounds. This is because a formula reflects how chemical 

elements are contained in a compound, but does not fully illustrate 

compound structure. 

In order to have an unbiased evaluation of model performance, all the 

duplicated formulae are carefully examined. If duplicated formulae have 

different compound names in the same pathway category, only one of 

them is kept for the study. If duplicated formulae have different 

compound names in different pathways, all are removed. By this 

examination, 382 compounds in biosyntheses pathways, 155 compounds 

in degradation pathways and 501 compounds in metabolism pathways 

are retained for the study. We then build a model to map compounds into  

these three pathway categories made by KEGG using information stored 

in compounds’ formulae. The mass values of chemical elements 
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(http://www.wsearch.com.au/) [281] are used for encoding compounds 

(formulae). The formula of each compound is encoded according to the 

presence of chemical elements as well as the quantities of them. For 

instance, the Hydrogen in three compounds mentioned above can be 

encoded by 1.0078250321, 2*1.0078250321 and 4*1.0078250321, 

respectively, whilst the Oxygen can be encoded by 15.9949146221, 

2*15.9949146221, and 15.9949146221, respectively. The use of 

chemical element weights for encoding compounds can represent 

compounds’ chemical element property well. 

In machine learning, an attribute (a chemical element in this context) 

with a small occurrence rate normally will not make a significant 

contribution to model performance. Because of this, chemical elements 

with <1% occurrence rates in our data are dropped. This filtering process 

leads to seven most contributing chemical elements. They are Hydrogen 

(gas), Carbon (solid), Nitrogen (gas), Oxygen (gas), Phosphorus (solid), 

Sulphur (solid), and Chlorine (gas). Each compound is then encoded 

using these seven chemical elements. Figure 9.4 shows the classification 

tree for this data. In the Figure, “0” means biosynthesis, “1” means 

  

 

Fig. 9.4. A classification tree generated for the prediction of metabolic pathway 

involvement of compounds. 
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degradation, and “2” means metabolism. In the tree, it has been found 

that biosynthesis pathway is classified by the following factors at the 

terminal nodes: 1) Oxygen weight > 7.997462; 2) Oxygen weight > 

55.9822; 3) Hydrogen weight > 21.6682; 4) Nitrogen weight > 63.0138; 

5) Carbon>318. However, metabolism is not classified using Hydrogen. 

Instead it uses: 1) Carbon weight < 66; 2) Carbon weight > 78;  

3) Oxygen weight < 55.9822; 4) Nitrogen weight < 63.0138; and  

5) Phosphorus weight > 77.4344. The classification of degradation 

pathway involvement is based on: 1) Chlorine weight > 17.4844;  

2) Carbon < 78, and 3) Oxygen weight < 7.997462. 

9.5 The random forest algorithm 

The random forest (RF) algorithm is an extension to CART. RF is a 

newly developed machine learning algorithm [272]. The basic idea is to 

construct many trees using random vectors sampled from a data set. For 

the kth tree, a random vector is generated independently from the random 

vectors generated for the past k-1 trees. The remaining data are used for 

prediction. The approach of sampling random vectors is similar to 

bootstrap, i.e. the replacement sampling approach, which has also been 

applied to analysing biological data [282]. For each node in a tree, a 

small fraction of variables is randomly selected. The best split for the 

node is based on the prediction error. Each tree is fully grown without 

pruning. RF is able to provide a number of excellent features, for 

instance, the capability of handling a large number of variables, ranking 

the variables, and detecting the interaction among the variables. The 

algorithm has been recently applied to various biological data mining 

projects, for example, the prediction of the interactions between HIV-1 

and human proteins using gene expression data [283], the analysis of 

differential gene expression [284], the diagnosis of ulcerative colitis 

based on gene expression data [285], the detection of cancers [286], the 

prediction of childhood leukaemia using gene expression data [287], and 

the prediction of protein-protein interactions [288]. All these applications 

show that the random forest algorithm outperforms some other 

algorithms. 
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9.6 RF for analysing Burkholderia pseudomallei gene  

expression profiles 

The following case is an application of RF to the Burkholderia 

pseudomallei gene expression profile data. Refer to previous chapters for 

a description of this data. We first analyse the feature provided by RF in 

ranking variables (genes in this study). RF can provide two measures for 

ranking variables, one being the mean decrease in Gini gain and the other 

being the mean decrease in accuracy. The mean decrease in Gini gain is 

used to measure the quality of a split for each variable in a tree. 

Whenever the Gini gain of a node’s descent nodes is less than the node’s 

Gini gain, a split is carried out. The decrease of the Gini gain of this node 

is recorded. A variable such as a residue code or a residue correlation 

code may be used by different nodes for splitting or tree growing. It may 

therefore have different decreases of Gini gain at different nodes. A 

mean decrease in Gini gain across all nodes using a variable is calculated 

to measure the importance of the variable. The mean decrease in 

accuracy is calculated in a similar way by examining all nodes using the 

same variable. The mean decrease in Gini is shown in Fig. 9.5 and the 

mean decrease in accuracy is shown in Fig. 9.6. The top ten genes 

selected by two ranking criteria are shown in Table 9.1. The top ten are 

identical but have different orders. 

 
Table 9.1. The top ten genes selected by mean decrease in  

Gini and mean decrease in accuracy for the Burkholderia 

pseudomallei gene data using RF. 

 Mean decrease Gini Mean decrease accuracy 

1 BPSL2697 BPSL2697 

2 BPSL2522 BPSS1512 

3 BPSS1512 BPSL2522 

4 BPSS0477 BPSL2096 

5 BPSL2096 BPSS0477 

6 BPSS1525 BPSS1532.1 

7 BPSL2520 BPSS0476 

8 BPSS0476 BPSS1532 

9 BPSS1532 BPSL2520 

10 BPSS1532.1 BPSS1525 
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Fig. 9.5. The mean decrease in Gini of the top 20 genes selected by the RF model built 

for the Burkholderia pseudomallei gene expression data.  

 

 

 

Fig. 9.6. The mean decrease in accuracy of the top 20 genes selected by the RF model 

built for the Burkholderia pseudomallei gene expression data. 

 

Five-fold cross-validation is used for model evaluation. The 

predictions are analysed using both density analysis and ROC analysis. 

Figure 9.7 shows the density analysis and the ROC analysis. The 

prediction specificity is 95%. The sensitivity is 93%. The total accuracy 

is 95% and the area under ROC curve (AUR) is 0.96. The density shows 

clearly two separated clusters of the predictions. 
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Fig. 9.7. The density analysis (left panel) and the ROC analysis (right panel) of 

predictions from five 5-fold cross-validation RF models for the Burkholderia 

pseudomallei gene data. In the ROC curve, the horizontal axes represent 1 – specificity 

and the vertical axes represent sensitivity. 

 

We then use the top five genes selected by the mean decrease in Gini 

gain and mean decrease in accuracy ranking criteria. Figure 9.8 shows 

the density analysis and the ROC analysis of the reduced model using the 

top five genes generated by the mean decrease in Gini gain. 
 

 

Fig. 9.8. Density (left panel) and ROC (right panel) analyses of the reduced model using 

the top five genes generated by mean decrease in Gini gain. In the ROC curve, the 

horizontal axes represent 1 – specificity and the vertical axes represent sensitivity. 
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Figure 9.9 shows the reduced model using the top five genes selected 

by mean decrease in accuracy. 
 

 

Fig. 9.9. Density (left panel) and ROC (right panel) analyses of the reduced model using 

the top five genes generated by mean decrease in accuracy. In the ROC curve, the 

horizontal axes represent 1 – specificity and the vertical axes represent sensitivity. 

Summary 

This chapter has discussed an inductive programming approach in 

machine learning. The basic learning principle and general concepts of 

the classification and regression tree algorithm as well as the random 

forest algorithm have been discussed. How to use these two algorithms 

for data mining biological data has been demonstrated. Inductive 

programming approach can provide a platform for analysing the direct 

relationship between input genotypic variables (for instance, genes) and 

an output phenotypic variable (for instance, disease infection).  
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Chapter 10 

Multi-layer Perceptron 

This chapter mainly discusses multi-layer perceptron (MLP) for 

supervised learning. Compared with many other nonlinear artificial 

neural learning algorithms, it has the advantages of modelling arbitrary 

nonlinear data. MLP has been widely used in many applications 

including bioinformatics. This chapter will focus on the history of 

MLP, the structure of MLP, the learning algorithm of MLP and its 

applications to bioinformatics. 

10.1 Introduction 

Neural networks are a class of computational algorithms mimicking the 

human brain with the support of modern, fast and sometimes parallel 

computational facility. In terms of this, neural networks are regarded as a 

class of information processing systems as well. The interpretation of 

this is that neural networks can re-construct an unknown function using 

the available data without any prior knowledge about function structures 

and parameters. Information processing has two meanings. The first is 

that neural networks can help to estimate function structures and 

parameters without domain experts involved. This is perhaps the most 

important reason for neural networks being so popular in many areas. 

The second is that neural networks are a class of intelligent learning 

machines which can store knowledge through learning as the human 

brain does for pattern recognition, decision making, novelty detection 

and prediction. Combining these two important factors, neural networks 

then become a powerful computational approach for handling data for 

various learning problems. 



134 Machine Learning Approaches to Bioinformatics 

Neural network studies and applications have experienced several 

important stages. In the early days, neural network studies only focused 

on theoretical subjects, i.e. investigating if a machine can replace a 

human for decision-making and pattern recognition. The pioneer 

researchers were Warren McCulloch and Walter Pitts; [289] they  

showed the possibility of constructing a net of neurons which can 

interact with each other. The net was based on symbolic logic 

relationships. Table 10.1 shows one of McCulloch and Pitts OR logic, 

where the output is a logic OR function of two inputs. 

Table 10.1. McCulloch and Pitts OR logic. 

Input 1 Input 2 Output 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 

This earlier idea of McCulloch and Pitts was not based on rigorous 

development as indicated by Fitch [290] that “in any case there is no 

rigorous construction of a logical calculus”. However, the study on 

neural networks was continuing. For instance, Hebb in his book 

published in 1949 gave the evidence that McCulloch-Pitts model 

certainly works [291]. He showed how neural pathways can be 

strengthened whenever they are activated. In his book, he indicated that 

“when an axon of cell A is near enough to excite a cell B and repeatedly 

or persistently takes part in firing it, some growth process or metabolite 

change takes place in one or both cells such that A’s efficiency, as one of 

the cells firing B, is increased”. In 1954, Marvin Minsky completed his 

doctorial study on neural networks. His dissertation was entitled “Theory 

of Neural-Analog Reinforcement Systems and its Application to Brain-

Model Problem”. Later he published a paper about this work in a book 

[292]. This triggered a wide scale of neural network research. In 1958, 

Frank Rosenblatt built a computer at Cornell University called the 

Perceptron (later being called single-layer perceptron) which can learn 

new skills by trial and error through mimicking the human thought  
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process. However, this work was evaluated by Minsky in 1969 [293] 

showing its incapability in dealing with complicated data. Minsky’s book 

then blocked the further study of neural networks for many years. 

In the period of the 1970’s and 1980’s, neural network research was 

in fact not completely ceased. For instance, the self-organizing map 

[198] and the Hopfiled net were intensively studied [294]. In 1974, Paul 

Werbos conducted his doctorial study at Harvard University and studied 

the training process called back propagation of errors. The work was 

published later in his book [295]. This important contribution led to the 

work of David Rumelhart and his colleagues in the 1980’s. In 1986, the 

back propagation algorithm was introduced by Rumelhart and his 

colleagues with the implementation called the delta rule for supervised 

learning problems [296]. The neural net structure is called multi-layer 

perceptron (MLP). Since development, MLP became very popular for 

data mining or machine learning in both theoretical studies and practical 

exercises. 

The most important contribution of Rumelhart and his colleagues’ 

work is that a simple training or learning algorithm based on trial-and-

error principle has been implemented and has demonstrated its 

powerfulness in dealing with problems which were declared impossible 

by Minsky in 1969. In contrast to Rosenblatt’s single-layer perceptron 

(SLP), the most important difference in MLP is the introduction of 

hidden neurons. 

Shown in Fig. 10.1 (a) is a structure of SLP, where there are three 

input neurons named as x1, x2, and x3 with a single output neuron 

named as y. In contrast, a structure of MLP is shown on the right panel in 

Fig. 10.1, where in addition to three input neurons and an output neuron, 

three hidden neurons named as z1, z2, and z3 are inserted between the 

input and output neurons. Generally, x1, x2, and x3 represent observed 

values for three independent variables (or the input variables) while y 

corresponds to observed values for a dependent variable (or the output 

variable). The hidden neurons represent variables which are not 

observed. 

Practically, there are three related subjects in using neural networks 

for any applications. They are model construction, model selection, and  
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model evaluation. In addition to these three practical issues, we need to 

be aware of three theoretical issues: parameter estimate, learning rule, 

and learning algorithms. Parameter estimate is a learning process by 

which knowledge in data is extracted and expressed quantitatively in a 

neural network model. The extracted knowledge is ultimately used for 

making predictions about unseen data. In most cases, we have no idea 

what values should be assigned to model parameters when we have data 

only. The data obtained are the only source for us to estimate model 

parameters. Besides we need to determine an optimized model structure 

to represent true knowledge hidden in data. For different supervised 

learning projects, different learning algorithms are needed. Moreover, 

there might be many variants in one type of supervised learning. There 

are various learning rules available. Some are based on numerical 

methods and some are based on statistical approaches. Some are fast for 

some types of data and some are accurate for some types of data. We will 

focus on numerical approaches for deriving neural network learning 

rules. 

 

               

                                  (a) SLP                                                    (b) MLP 

 

Fig. 10.1 SLP and MLP structure. 
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10.2 Learning theory 

10.2.1 Parameterization of a neural network 

A neural network without parameters will have no capability of 

associative memory. In particular, a neural network whenever its 

structure has been determined must possess the power for prediction in  

a supervised learning project. In order to make a neural network capable 

of prediction, it must have parameters which represent processed 

information. This can be explained by a simple example. Suppose we are 

interested in studying whether a metabolite in a specific pathway is 

related to its upstream metabolite. We first denote this metabolite as y . 

Meanwhile, we denote three upstream metabolites for the downstream 

metabolite y  as 1x , 2x , and 3x . Suppose we have had some 

observations for 1x , 2x , 3x , and y . Our objective is to construct a 

model which can establish the relationship between 1x , 2x , 3x  , and y  

as a predictive function ),,( 321 xxxfy = . If ),,( 321 xxxf  is properly 

parameterized, say )( 3322110 xwxwxwwfy +++= , where 0w  is a 

bias term, and 1w , 2w , and 3w  are parameters for the three upstream 

metabolites, we can make a prediction whenever we have new values for 

1x , 2x , and 3x . 

It is normally believed that parameters in a neural network model 

represent the knowledge in data. For instance, if a neural network model 

is expressed as )002.01.503.01.0( 321 xxxy +++= σ , all three input 

variables have the same magnitude and )(zσ  is a monotonic linear 

function of z , i.e. zz ∝)(σ , we can believe that 2x  plays a key role for 

y . In other words, 2x  is the dominant factor for y . Ignoring the other 

two input variables will not lose much precision in prediction. 

10.2.2 Learning rules 

Before discussing learning rules, we need to establish a proper objective 

function. There are normally two types of objective functions for 

supervised neural learning. They are the square error function and the 

cross-entropy function. The former is used for regression analysis which 

addresses a type of problems of continuous function approximation. The 
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latter is used for classification analysis which addresses a class of 

applications of data partitioning. 

We normally denote a regression function as 

 ),( wx nn fy =  (10.1) 

Here 
H

ℜ∈w  is a numerical parameter vector of H  dimensions and 
D

n ℜ∈x  is a numerical input vector of D dimensions describing the 
th

n  

object in a data set, where ℜ  is the real number set. H > D. 

Correspondingly, ℜ∈ny  is the model output for nx . H  is heavily 

dependent on a model’s structure. For nx , we normally have its 

observed phenotypic property called target ℜ∈nt . Note that nt  does 

not represent a true value in most cases. Normally, it is called a corrupted 

function value. For instance, a true function is a sin function )sin(5 x . 

We may have observed corrupted values from a noise-added sin function 

)1,0()sin(5 Gx + , where )1,0(G  is called a white noise. The existence 

of noise is normally unavoidable in many experiments. Many factors can 

result in noise. In order to estimate the parameter vector w , we need to 

make the distance between ny  and nt  ( nn yt − ) as small as possible 

during learning. Based on this, we have a commonly used square error 

function (mean square error function) for regression analysis as below 
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Here N is the number of observed pairs ( nx , nt ). A learning rule must 

ensure that the model parameter vector satisfies 
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Here ŵ  is a vector (a point) in an H -dimensional space (called a 

parameter space) and w~  is the optimal vector among many (normally 

infinite) ŵ ’s. 

In classification, a different objective function is used if the model 

output ny  is constrained in the interval ]1,0[ . Neural networks 
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employing the sigmoid function can easily fulfil this requirement. The 

cross-entropy function is normally employed for discriminant analysis, 

where }1,0{∈nt  

 ∏
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n

t
n
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In most cases, negative logarithm is applied to this objective function 

leading to 
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A learning process aims to minimize this objective function so that 

 

H

N

n
nnnn ftft

ℜ∈∀









−−+−= ∑
=

w

wxwxw

ˆ

))ˆ,(1log()1()ˆ,(logmin~

1arg  (10.6) 

It is then obvious that we have to analyse the function ),( wxf  

before discussing the learning rule. In neural networks, the sigmoid 

function is normally used for ),( wxf  because it has two advantages, 

i.e. being derivable and parallelism. The former makes it possible to 

apply conventional numerical approximation approaches which heavily 

depend on derivatives to parameter estimation and the latter makes it 

possible to use parallel computing techniques because the calculation of 

each neuron output is completely independent from the calculations of 

other neuron’s outputs in the same layer. The sigmoid function is defined 

as below 

 
)exp(1

1
)(

z
zf

−+
=  (10.7) 

It is not very difficult to see that the sigmoid function squashes the value 

of z  in to the interval )1,0(  as 
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 0
)exp(1

1
lim =

−+−∞→ zz
 (10.8) 

and 

 1
)exp(1

1
lim =

−++∞→ zz
 (10.9) 

In addition, the other advantage of the sigmoid function is that its 

derivative is easily calculated as the entropy as below 

 ))(1)((
)(

zfzf
dz

zdf
−=  (10.10) 

We now use regression analysis as an example for the analysis of the 

learning rule. In most cases, we will have no knowledge of what values 

should be assigned to model parameters. Like statistical learning, neural 

learning also starts from a random guess, i.e. assigning random values to 

model parameters (called initialization) and based on these random 

parameters, we start to search for the way by which an objective function 

can be decreased, hence bringing the current model parameters ( ŵ ) 

closer to the optimal solution ( w~ ). As we know, regression analysis 

adopts a quadratic-like objective (error) function. In a quadratic function, 

there will always be some relationship between the derivatives and the 

optimal solution. Figure 10.2 shows such a relationship for a case where 

there is only one model parameter. Two filled dots are the possible 

random guesses. It can be seen that the optimal model parameter must 

correspond to the bottom of the valley of the quadratic objective 

function. The slope (first derivative) denoted by a straight line of the 

random guess on the left side of the optimal solution shows a negative 

sign while the slope denoted by another straight line of the random guess 

on the right side of the optimal solution shows a positive sign. The 

negative sign means that when the value of w  increases, the error O  

decreases. The positive sign means that when the value of w  increases, 

the error O  increases. From this, it can be seen that we must increase the 

model parameter when the slope of the model output based on the current 
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model parameter shows a negative sign. We must decrease the model 

parameter when the slope of the model output based on the current model 

parameter shows a positive sign. The slope of model output is 

mathematically defined as the first derivative of the objective function 

with respect to the model parameter as below 

 
dw

dO
O =∇  (10.11) 

 

 

Fig. 10.2. The relationship between a model output using the current model parameter 

and the direction of the optimal model parameter. 

 

Before defining the quantitative learning rule which will be used to 

update model parameters stochastically, we need to analyze the 

qualitative relationship between parameter change and the slope. The 

next thing is to determine the learning rule quantitatively. 

If the change (increase or decrease) of w  is denoted by w∆ , we then 

have a qualitative relationship from Fig. 10.3 that if the absolute value of 

the slope is larger, the current position is more departed from the optimal 

solution and if the absolute value of the slope is smaller, the current 

position is closer to the optimal solution. When w  is closer to the 

optimal solution, we must make a smaller change to w  so that we will 

not miss the optimal solution. When w  is more departed from the 



142 Machine Learning Approaches to Bioinformatics 

optimal solution, we can have a larger change of w . From this, we then 
have a qualitative learning rule defined as below 

 |||| Ow   (10.12) 

 

 

Fig. 10.3. The quantitative relationship between slope and the magnitude of model 
parameter change. 

 

Quantitatively, the learning rule (also called the delta rule) is defined 
as below 

 Ow    (10.13) 

Here )1,0(  is called the learning rate. The delta rule may not always 
work properly. It is quite often that a new solution of w  may miss the 
optimal solution. For instance, the new solution 1w  generated using  
the delta rule from 0w  misses the optimal solution, i.e. the valley of the 
quadratic curve as seen in Fig. 10.4. From 1w  the delta rule will lead to 

Aw2  which again misses the optimal solution. However, we have noticed 
that the first derivatives at 0w  and 1w  have different signs meaning that 
they have a complementary function. If the first derivative at 1tw  has a 
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different sign to the one at tw , it means that tw  and 1+tw  are sitting on 

opposite sides of the optimal solution, see Fig. 10.2. The move from 

1+tw  to 2+tw  may miss the optimal solution again. If we can correct the 

move from 1+tw  to 2+tw  using a momentum factor which has a different 

first derivative sign to the one at 1+tw , the risk can possibly be reduced. 

Remember that the first derivative at tw  is different to the one at 1+tw . 

We can design a revised delta rule for this purpose  

 
ttt wOw ∆+∇−=∆ + αη1
 (10.14) 

 

 

Fig. 10.4. The illustration of the use of the momentum factor for fast learning. 

 

Here 
1+

∆
t

w  is the update of w  at time 1+t , 
t

w∆  is the update of 

w  at time t , 
t

O∇  is the first derivative of O  with respect to w  at time 

t  and )1,0(∈α  is a positive number called the momentum factor. In 

Fig. 10.4, we can see that this revised delta rule can reduce this risk. This 

time, the move from 1w  is to 
Bw2  rather than 

Aw2 . According to equation 

(10.14), we can see that  

 1211 )( −−+ ∆+∇+∇−=∆ tttt
wOOw ααη  (10.15) 
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From the above equation, we can conclude two aspects. First, if tO  
and 1 tO  have the same sign, the previous update instruction ( 1 tO ) 
will enhance the new update instruction ( tO ), otherwise 1 tO  will 
reduce the impact of tO . Second, if 1 tw  and 1 tw  have the same 
sign, 1 tw  will enhance 1 tw . Otherwise, 1 tw  will reduce the 
impact of 1 tw . 

In using the delta rule or the revised delta rule, the user needs to tune 
the learning rate and the momentum factor to proper values. This is not 
an easy job. There is another numerical method which uses second 
derivative information for weight update, where we normally don’t need 
the learning rate and the momentum factor. Shown in Fig. 10.5, we can 
see that the weight update amount for the case in the left panel should be 
smaller than that for the case in the right panel. If we use the same 
amount of weight update for both cases, the left panel may have missed 
the optimal solution while the right panel may not. This is because the 
right panel shows a small curvature while the left panel demonstrates a 
large curvature. A point located in a large curvature area means that it is 
close to the optimal solution. A point located in a small curvature area 
means that it may be far away from the optimal solution. As we know, 
the second derivative can be used to quantify function curvatures. This 
means that 
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Fig. 10.5. The illustration of using second derivative information for weight update. 
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Here O∇  and O∇∇  are the first and second derivatives with  

respect to w . The update rule using the second derivative information is 

called the Newton-Raphson method. In application to neural network 

parameters, it is illustrated as below 

 
O

O
w

∇∇

∇
−=∆  (10.17) 

or 

 O∇−=∆
−1

Hw  (10.18) 

Here w  is a weight vector and H  is called a Hessian matrix of second 

derivatives as below 
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where 
ji ww

O

∂∂

∂ 2

 is the second derivative of O  with respect to iw  and jw . 

10.3 Learning algorithms 

In this sub-section, we discuss two learning algorithms for regression and 

classification analyses respectively, where different objective functions 

are used. 

10.3.1 Regression 

In regression analysis, the target variable is commonly a numerical 

variable ℜ∈nt  (or ]1,0[∈nt ). In this case, the least mean square error 
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function is used as the objective function as seen in equation (10.2). 

Using the revised delta rule (equation 10.14), we then have two  

update rules as below. First, the update rule for the weights between 

hidden neurons and an output neuron (for instance, between hidden 

neurons 1z , 2z , 3z  and output neuron y  in Fig. 10.1) is 

 
tTt

0

1

0 wBeZw ∆+=∆
+ αη  (10.20) 

Here 
T

Hwww ),,,( 002010 ⋯=w  is the hidden weight vector with 

hw0 connecting the 
th

h  hidden neuron to the output neuron, 

T
eee ),,,( 21 ℓ

⋯=e is the error vector with nnn yte −= , 

)}1({ nn yydiag −=B is the diagonal entropy matrix of outputs with N 

rows and N columns, and Z  is the matrix recording the outputs from all 

the hidden neurons with N rows and H  columns ( H  hidden neurons). 

Second, the update rule for the weights between input neurons and the 
th

h  hidden neuron (for instance, between the input neurons and the 

hidden neuron 1z  in Fig. 10.1) is shown as below 
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Here 
T

hDhhh www ),,,( 21 ⋯=w  is the input weight vector with 

hdw connecting the 
th

h  hidden neuron to the 
th

d  input neuron, 

)}1({ nhnhh zzdiag −=Q  is the diagonal entropy matrix for the 
th

h  

hidden neuron with N rows and N columns, and X  is the matrix 

recording all the input vectors, i.e. having N rows and D  columns (N 

input vectors and D  input variables). 

10.3.2 Classification 

For a classification problem, the target variable is commonly a discrete 

variable Itn ∈  with I  meaning integers. We study discrimination 

problems where }1,0{∈nt  in this chapter. The cross-entropy function is 

commonly used as the objective function for classification projects as  
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seen in equation (10.4). Applying the revised delta rule to equation 

(10.5), we will also have two update rules. First, the update rule for the 

weights between hidden neurons and the output neuron if we have one 

output neuron (for instance, between hidden neurons 1z , 2z , 3z and the 

output neuron y  in Fig. 10.1) is 
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Second, the update rule for the weights between input neurons and the 
th

h  hidden neuron (for instance, between input neurons and hidden 

neuron 1z  in Fig. 10.1) is 
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10.3.3 Procedure  
During learning, the above equations will be used iteratively until some 

criteria are satisfied. The learning procedure will be 

 

♦ Step 1, Initialization: assigning random values to all network 

parameters; 

♦ Step 2, Estimation: estimate model outputs and errors by feeding 

input vectors; 

♦ Step 3, Update: update all the model parameters using the above 

update rules; 

♦ Step 4, Check: check if the desired criteria are satisfied, if so stop, 

otherwise go to Step 2. 

 

There are commonly three stop criteria for use. They are the 

maximum learning cycle, the error threshold and the stability. A learning 

process will be terminated if the learning cycle has exceeded the 

maximum learning cycle. In some situations, if the training error has 

already been below the desired error threshold, a learning process will 

also be halted. For some complicated learning problems, we may not be 

interested in reaching the maximum learning cycle and may not be able 

to set a proper error threshold. In this case, we can check if the change of 
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weights is small enough. There are two possible reasons for there being 

nearly no change in weights. First, a model has been well-trained whilst 

the desired error threshold is too small and the maximum learning cycle 

is too long. Second, an inappropriate setting of the learning parameters 

(the learning rate, the momentum factor, and the number of hidden 

neurons) leads to bad learning. If this happens, a learning process must 

be stopped manually to reset the learning parameters. In most cases, a 

large learning rate may end up with a pre-matured learning process 

where the change of weights will diminish much earlier than it should. 

10.4 Applications to bioinformatics 

We discuss some applications of neural networks to bioinformatics 

projects in this section. 

10.4.1 Bio-chemical data analysis 

Quantitative structure-activity relationship (QSAR) models are a class of 

bio-chemical models and are normally involved with binary input 

variables for chemical properties with a very large dimensionality. The 

use of neural networks is normally for relational study or dimensionality 

reduction. Each input vector in these applications therefore represents  

a binary vector, i.e. 
D}1,0{∈x . Each input vector is associated with  

a target value. In order to find the mapping function relating the  

chemical properties with the compound property, classification analysis 

approaches can be used. Neural networks can be used in these tasks for 

nonlinear modelling. For instance, a recent study using neural networks 

looked at the inhibition function of mutant PfDHFR [297]. In 

microbiological research, Bacillus species identification is not an easy 

task. The application of neural networks on 1071 fatty acid profiles has 

proved to be a powerful tool for this identification [298]. The neural 

networks have also been applied to the study of the relationship between 

compound chemical structures and human estrogen receptor (α  and β ) 

binding affinity, where the inputs are the molecular descriptors 
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calculated from docking methods [299]. Heparanase inhibitors’ activity 

was also predicted using neural networks based on QSAR data [300]. 

10.4.2 Gene expression data analysis 

Gene expression data have been widely studied for understanding how 

genes respond to external environmental cues. Gene expression data are 

normally numerical inputs, also of a large dimensionality, but consisting 

of a few number of samples. In this case, data significance is a very 

serious problem in applying neural networks for data analysis. In recent 

studies, gene expression data have been used for disease diagnosis. In 

these applications, the expressions of genes are commonly sitting in a 

high dimensional space (
D

ℜ∈x , where D  is the number of genes and 

x  is a vector of the expression values for D  genes). Each expression 

vector ( x ) has an associated target value, declaring the corresponding 

sample disease-free or not. It can be seen that this is then a classification 

problem. If the relationship between expression vector and target is 

nonlinear, neural network is one of the candidates for model construction 

and prediction. For instance, neural networks were used for the 

investigation of the distinguishing power of childhood acute 

lymphoblastic leukaemia (ALL) diagnostic bone marrow [301], and for 

influenza identification based on microarray data [302]. Neural networks 

have also been used for gene network re-construction [303] and for 

cancer-related regulatory modelling [304]. 

10.4.3 Protein structure data analysis 

Protein structures are always an important subject for studying how 

proteins are interacting with each other, forming complexes for cellular 

signalling in response to environmental cues. Wagner et. al. applied 

neural networks to the function prediction of inhibitory activity of 

serotonin and NF-kappaB [305]. It was found that the relationship 

between structure and activity is essential to cellular signalling for the 

inhibitory function of serotonin and NF-kappaB. In a study involving the 

detection of drug-induced idiosyncratic liver toxicity using QSAR data, it 
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was reported that a neural network model was able to achieve 84% 

accuracy [306].  

10.4.4 Bio-marker identification 

In bioinformatics research, the identification of bio-markers has a great 

importance in bio-medical applications. The major purpose in these 

applications is to identify the most important identities which can be 

genes, compounds, chemicals, proteins or metabolites for predictive 

usages. This means that we need to combine classification analysis 

approaches with feature selection approaches to identify a minimum 

subset of input variables which can achieve maximum discrimination 

capability between disease and disease-free samples. For instance, 

surface-enhanced laser desorption/ionization time-of-flight mass 

spectrometry was used to detect proteomic patterns in the serum of 

women with endometriosis [307]. Neural networks have been used for 

detecting early stage epithelial ovarian cancer using multiple serum 

markers from four institutes [308].  

10.5 A case study on Burkholderia pseudomallei gene  

expression data 

We use the reduced data set with ten top genes discovered in Chapter 8 

for this demonstration. The ten top genes are BPSL2697, BPSL2522, 

BPSS1512, BPSS0477, BPSL2096, BPSS1525, BPSL2520, BPSS0476, 

BPSS1532, and BPSS1532.1. Hidden neurons are varied from two to 20. 

Five-fold cross-validation is used. First, the AUR and total prediction 

accuracy are used to select the best model (the highest performance 

measurements being either AUR or total accuracy). The left panel of 

Fig. 10.6 shows the ranking result using AUR. It shows that the model 

employing 17 hidden neurons demonstrates the best model robustness. 

However, when we treat the total prediction accuracy as the priority we 

find that the model employing two hidden neurons is the best one, as 

shown in the right panel of Fig. 10.6. 
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Fig. 10.6. Ordered AUR (left panel) and total accuracy (right panel) of the MLP models 

constructed for the Burkholderia pseudomallei gene data. The horizontal axes represent 

the number of hidden neurons. The vertical axes represent two performance 

measurements. 

 

 

The detailed performance measurements of the model employing 17 

hidden neurons is shown in Fig. 10.7, where we can see that some model 

predictions fall in the area between two clusters (left cluster of non-

infected patients and the right cluster for the infected patients) shown in 

the left panel of Fig. 10.7 using density analysis. Checking the 

performance measurements, we find that although the specificity is 90%, 

the sensitivity is 93% as shown in the right panel of Fig. 10.7. This 

implies that the model predictions falling in the middle in the left panel 

are largely misclassification of the infected patients. 

We then examine the model with two hidden neurons. The result is 

shown in Fig. 10.8. It can be seen that there are very few model 

predictions falling in the middle area between two clusters using density 

analysis (the left panel of Fig. 10.8). Compared with the density analysis 

in Fig. 10.7, we can see that the left cluster in the left panel of Fig. 10.8 

has a very small variation. The specificity and the sensitivity are 93% 

and 88% shown in the right panel of Fig. 10.8. 

A
U

R
 



152 Machine Learning Approaches to Bioinformatics 

 

Fig. 10.7. The histogram of model outputs (left panel) and ROC curves (right panel) for 

the model using 17 hidden neurons. 

 

 
Fig. 10.8. The histogram of model outputs (left panel) and ROC curves (right panel) for 

the model using two hidden neurons. In the ROC curve, the horizontal axes represent 1 – 

specificity and the vertical axes represent sensitivity. 

 

 

Figure 10.9 shows a further analysis of model selection using AIC 

and BIC. They are all consistent with the model selection result using the 

total prediction accuracy. We can then be confident in saying that the 

model employing two hidden neurons is the best model for this data. 
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Fig. 10.9. The demonstration of model selection using AIC and BIC for the MLP models 

built for the Burkholderia Pseudomallei gene expression data. 

Summary 

This chapter has discussed the theory of multi-layer perceptron (MLP) 

and its application to bioinformatics. Through this discussion, we can see 

that 1) MLP is a nonlinear algorithm; 2) MLP can handle any function 

approximation problems; 3) MLP is an easy tool for modelling biological 

data with good performance. However, MLP has been criticised as being 

a black-box algorithm because it is difficult to know what the model 

parameters mean. To overcome this limitation, various researchers have 

been working on analysing the MLP weights. For details of this the 

reader may refer to Bishop’s book [159].  
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Chapter 11 

Basis Function Approach and 
Vector Machines 

This chapter will discuss two popular machine learning approaches. 
They are basis function neural networks and vector machine 
algorithms. These two approaches have a similar background in 
machine learning, i.e. being non-parametric approaches for model 
construction. However, they have a fundamental difference in that the 
former will keep all the training data but the latter will use part of the 
training data for the inference process. This fundamental difference has 
given vector machine models better generalisation capability for unseen 
data. Their applications to bioinformatics are discussed as well in this 
chapter. 

11.1 Introduction 

In Chapter 3, the non-parametric kernel approach has been discussed 
where the density of a data set is estimated by 

 



N

n
np

N
p

1
),|(

1
)( xxx  (11.1) 

where dx  is an input vector, d
n x  is the nth training data,   is 

a smooth parameter, ),|( np xx  is a kernel function measuring the 
similarity between x  and nx  using a pre-defined normal density 
function which has a smooth parameter  , and N is the number of 
training data points. We can generalise equation (11.1) to the following 
format 
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where k is the kth class, kN  is the number of training vectors in the  
kth class, K is the total number of classes in a data set, k

nx  is an input 
vector with a label of class k, k

n  is the smoothing parameter of the nth 
kernel function of the kth class, and k

nw  is the coefficient of the nth 
kernel of the kth class. )|( kp x  is used to measure how likely x is to  
be generated by the kth class. An illustration is shown in Fig. 11.1  
where a univariate data set with two classes is modelled. At a point 
where x = 2, there are two probabilities (densities), being )1|2( xp   
and )2|2( xp . Each of these two probabilities can be calculated in 
various ways. Using MLP mentioned in Chapter 10 is one method.  
Basis function neural network and vector machines which are the 
implementation of kernel approach are another two ways we discuss in 
this chapter. 

The basic principle of basis function neural networks and vector 
machines is to estimate k

nw s to construct a predictive model for a given 
data set. Because they are based on different statistical assumptions  
and use different learning mechanisms, the estimated k

nw s will not be 
identical for the same data, hence leading to different performances for 
the two types of algorithm/approach. One important difference between 
the former and latter is that a basis function neural network does not 
generate a parsimonious model directly while vector machines aim to 
obtain a parsimonious model directly during a learning process. When a 
large data set is encountered, basis function neural networks need to 
employ a post-analysis or embed a procedure such as feature selection 
(which will be discussed in detail in Chapter 13) to simplify a model 
structure. 

In this chapter, we discuss two basis function neural networks - the 
radial basis function neural network and the bio-basis function neural 
network - and two vector machines - the support vector machine and the 
relevant vector machine. 
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Fig. 11.1. An illustration of the density functions of two classes in a univariate data set. 
The horizontal axis represents the univariate X and the vertical axis represents the 
densities of two classes, one being marked by a solid line and the other being a broken 
line. The vertical line at X=2 indicates a prediction. 

11.2 Radial-basis function neural network (RBFNN) 

Let’s denote a data set as N
nn 1

d }  {  xD . Based on the same 
assumption used in the kernel density estimation approach that each 
input vector is randomly sampled from an infinite number of input 
vectors surrounding it with a Gaussian distribution, radial-basis function 
uses a Gaussian-like kernel function as below 

 )  exp(),|(
2

nnnn xxxx    (11.3) 

Figure 11.2 shows the radial-basis function with different   values. 
As the smoothing parameter increases, the radial-basis function becomes 
more sharply peaked. 

The RBFNN model output is defined as 

 
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n
nnwwy

1
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Fig. 11.2. An illustration of radial-basis functions with differential smoothing parameter 
values. The horizontal axis represents the variable X, the centre is zero. The vertical axis 
represents the output of the radial-basis functions. 
 

Here a uniform smoothing parameter is used. There are two treatments to 
consider in using the model, one is for the regression mode and the other 
is for the classification mode. In regression mode, it is assumed that the 
target t is sampled with added noise of Gaussian distribution distributed 
in Gaussian 

 iii eyt   (11.5) 

where ie  is the error (added noise), it  is the ith target and iy  is its 
corresponding model output. The objective function using the least 
square error function with a regularisation term is defined as below 
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where   is a Lagrange constant. Letting the derivative of the objective 
function with respect to w be zero leads to 

 tΦIΦΦw T1T ) (    (11.7) 
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With a pre-defined   and  , equation (11.7) can directly lead to the 
estimation of model parameters, i.e. w. 

In order to increase the nonlinearity, the model output can also be 
defined as below using a sigmoid function conversion 
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where )(x  is a sigmoid function defined as 
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The derivative function of the objective function with respect to nw  is 
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The vector-matrix format of the derivative is shown as below 

 wΛeΦw  )( T L  (11.12) 

where   )1( diag mm yy Λ  is called an entropy matrix. Letting this 
derivative be zero leads to 
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Note that y is a function of w. The above equation cannot be used for 
estimating model parameters directly. Two procedures can be used for 
estimating model parameters. One is called the expectation-maximisation 
(EM) algorithm [157-159] and the other is called the stochastic 
algorithm. With the EM algorithm, we assign random values to w at first. 
Based on the current value for w, y values can be calculated using 
equation (11.9). This then leads to the update of w using equation 
(11.13). After a few iterations, w can be estimated. With the stochastic 
algorithm, we use the gradient descent approach which is defined as 

 )(  wx,w f   (11.14) 

where )1,0(  is called a learning rate. The update of w is also iterative. 
In each iteration the update of w is defined as 

 eΛΦww    )1( T1   tt  (11.15) 

For both the EM and stochastic algorithms, the update continues until the 
maximum learning cycle is approached or the error is less than the pre-
defined error threshold. Stopping a learning process when model 
parameters are in the stable status, i.e. no change in subsequent 
iterations, is also a commonly used approach. 

In the classification mode, a different objective function is commonly 
used. For instance, the cross-entropy function is used for two-class 
classification problems. It is defined as 
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The derivative of this objective function with respect to w is 

 weΦw  )( T L  (11.17) 

Because e = t – y, where y is a function of w, this model cannot be 
solved explicitly. Both the EM algorithm and the stochastic algorithm 
can be used to estimate model parameters based on the above equation. 
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RBFNN has been intensively used in analysing biological data. For 

instance, it has been used to estimate the kinetic parameters of a dynamic 

biological system [309], and for gene data analysis [310-314]. 

However, there is a pitfall in using RBFNN for modelling molecular 

sequence data. As mentioned above, it is assumed that there is an infinite 

number of input vectors surrounding each training input vector. This 

means that if a biological data set is represented using a discrete 

approach, RBFNN is not applicable. For instance, if four nucleic acids in 

a DNA sequence are represented by 1, 2, 3, and 4 [315], there is certainly 

no other data surrounding each training input vector. For a data set of  

2-mer nucleic acids, the data is sparsely distributed in a two-dimensional 

space where the variance of each circle is zero. This means that the 

smoothing parameter for each kernel is an infinite value. Any finite 

smoothing parameter cannot appropriately model the real data 

distribution. 
 

 

Fig. 11.3. An illustration of the discrete representation of biological data. Each circle 

represents a possible 2-mer peptide. Two axes represent the first and the second residue 

in a 2-mer peptide. 

 

We now apply RBFNN to the Burkholderia pseudomallei gene 

expression data. Data are pre-processed as usual, i.e. logarithm is applied 

to remove the skew of the data. The data are then divided into five folds 

for cross-validation modelling. The smoothing parameter varies from 
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0.0005 to 0.01 with a step of 0.0005. Model performance is measured 
using the testing data set. Figure 11.4 shows the ranking of the models in 
terms of AUR (left panel) and the total prediction accuracy (right panel). 
Using AUR to rank models, the model with the smoothing parameter as 
0.01 outperforms the others. Using the total prediction accuracy to rank 
the models, the model with the smoothing parameter as 0.01 is also the 
best. 
 

 

Fig. 11.4. The ranked RBFNN models built for the Burkholderia pseudomallei gene 
expression data using AUR (left panel) and the total prediction accuracy (right panel). 
The horizontal axes indicate the varying smoothing parameter while the vertical axes 
represent the performance measurements. 
 
 

Details of the model using the smoothing parameter as 0.01 are 
shown in Fig. 11.5, where the left panel demonstrates the density of 
model outputs and the right panel shows the ROC curve as well as four 
measurements. The density of the model outputs clearly groups two 
classes of data (patients) together. This is why this model has the highest 
AUR, i.e. being the most robust model among all. 
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Fig. 11.5. The density function of the model output (left panel) and the ROC curve (right 
panel) of the model using the smoothing parameter as 0.007. The horizontal axis of the 
left panel represents predictions. The vertical axis of the left panel represents the density. 
The horizontal axis of the right panel represents the false positive rate and the vertical 
axis of the right panel represents the true positive rate. 

11.3 Bio-basis function neural network 

In analysing peptides which are normally composed of nucleic acids or 
amino acids, we can design a novel basis function neural network called 
the bio-basis function neural network. In the bio-basis function neural 
network, rather than using any encoding approach to encode each residue 
in a peptide, the similarity measure is conducted using the same principle 
as in sequence homology alignment. 

When aligning two whole protein sequences, insertions and deletions 
are considered [10-14]. However, in handling short sequences or peptides 
which are normally less than 20 residues, insertions and deletions are 
normally not used. Using the homology alignment approach, two metrics 
can be used to score the similarity or distance between two peptides. 
They are the binary score such as the one used the Needleman-Wunsch 
algorithm [11] and the one used the Dayhoff algorithm as well as its 
variants [10, 15]. The Dayhoff score is also called a mutation matrix 
which is a 20 by 20 matrix for protein sequences, where each entry 
measures, for a particular pair of amino acids, the possibility that one 
amino acid is mutated to the other. It is therefore measuring the 
similarity between two amino acids and hence two sequences. 
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Before discussing the bio-basis function, we first discuss how to use 
binary score to handle the similarity between two peptides. For instance 
two nucleic peptides (AAC and AGC) can be expressed as 
000100010010 and 000101000010. A binary similarity matrix is 
expressed as in Table 11.1. To quantify the similarity between two 
peptides, we can count the number of “1”s on the diagonal (expressed by 
italic number). This is similar to using dot product in some 
bioinformatics works [85, 86, 316]. Table 11.1 can actually be expressed 
by another simpler matrix shown in Table 11.2 where the similarity 
between two peptides is again the summation of the numbers on the 
diagonal. 

Table 11.1. An illustration of a binary similarity matrix between two nucleic peptides. 
The first column represents AAC and the top row represents AGC. In the matrix, cells 
with empty entries indicate that the cells have zero entries. 

 0 0 0 1 0 1 0 0 0 0 1 0 

0             

0             

0             

1    1  1     1  

0             

0             

0             

1    1  1     1  

0             

0             

1    1  1     1  

0             
 

Table 11.2. An illustration of a simpler 
expression of binary similarity matrix between 
two nucleic peptides. The off-diagonal elements 
are ignored. 

 A G C 

A 1   

A  0  

C   1 
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Table 11.2 can be re-written as a new similarity matrix using a 

mutation matrix (PAM1 [5]) shown in Table 11.3. It can be seen that the 

summation of diagonal entries is slightly different from the result shown 

in Table 11.2. 

Table 11.3. An illustration of a simpler 

expression of binary similarity matrix between 

two nucleic peptides. The off-diagonal elements 

are ignored. 

 A G C 

A 0.99   

A  0.00333  

C   0.99 

 

Suppose two peptides are denoted by d
i Θ∈s  and d

j Θ∈s , where 

Θ  is a set of nucleic acids or amino acids while d is the length of 

peptides. The bio-basis function is defined as below [317, 318] 

 )), ((),( jijiijz ssss βσρφ −==  (11.18) 

where ρ  is a sigmoid function, β  is a parameter measuring the 

sensitivity of a support peptide ( js ) and 
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Here irs  and jrs  are the 
thr  residues of is  and js , respectively. From 

equation (11.14), we can see that if two peptides are identical, i.e. 

ji ss ≡ ,  
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Note that we use the notation  || ji ss  to mean the distance 
between is  and js  is getting large. The model output also uses the 
sigmoid function as in equation (11.9). The negative log-likelihood 
function with added regularisation terms (  

N
n nw w1

2  and  
N
n n1

2 ) 
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The derivative of the negative log-likelihood function with respect to n  
is 
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Using the stochastic learning algorithm we have the update rule for n  
as defined below 
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or 

 ΛΦwZββ T1   )1(  t  (11.25) 

The weight update rule is defined as 

 eZww T1   )1(   t
w

t  (11.26) 

There are two modes in BBFNN, one being homogeneous and the other 
being heterogeneous. Using the homogeneous mode, 

   N21  (11.27) 

Using the same procedure discussed above for RBFNN, we can 
estimate the model parameters to build predictive models. The model 
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built this way is called the bio-basis function neural network (BBFNN) 
which has been applied to various peptide classification tasks, for 
instance, the prediction of Trypsin cleavage sites [318], the prediction of 
HIV cleavage sites [317], the prediction of Hepatitis C virus protease 
cleavage sites [319], the prediction of the disorder segments in proteins 
[105, 320], the prediction of protein phosphorylation sites [319, 321], the 
prediction of the O-linkage sites in glycoproteins [322], the prediction of 
signal peptides [323], the prediction of factor Xa protease cleavage sites 
[324], the analysis of mutation patterns of HIV-1 drug resistance [325], 
the prediction of Caspase cleavage sites [326], the prediction of SARS-
CoV protease cleavage sites [327] and T-cell epitope prediction [328]. 

Here we apply BBFNN to a peptide classification problem. The task 
is to predict HIV-I protease cleavage sites in a protein. HIV (human 
immuno-deficiency virus) is a retrovirus which causes AIDS (aquired 
immune deficiency syndrome) [329, 330]. HIV-I protease is an aspartic 
protease. an enzyme It plays an important role in the viral life-cycle. 
Each new infectious HIV viron is composed of mature protein 
components generated through cleaving a newly synthesised polyprotein 
at some specific sites in it using an HIV protease. These specific sites are 
called cleavage sites. Each cleavage site is a bond between two residues. 
The cleavage breaks down a polyprotein into functional components. If 
HIV proteases have been inhibited by a drug (the enzymes becoming 
ineffective), the HIV virons remain uninfectious [331, 332]. The 
inhibition through using drugs is then the major research focal point in 
fighting against the disease. In order to achieve this goal, it is important 
to design inhibitors to prevent the cleavage activities that produce new 
protease and reverse transcriptase. Studying how substrate specificity is 
related to cleavage activity is then critically important to the effect 
design of inhibitors. The HIV-1 protease data was published by Cai et al. 
[208]. The data contained 248 non-cleaved peptides and 114 cleaved 
peptides, each having eight residues. In using the homogeneous BBFNN 
we vary the sensitivity parameter from 0.1 to 10 with a gap of 0.1. Figure 
11.6 shows the top 20 ordered performances. The left panel shows the 
ordered AUR which is maximised when the sensitivity parameter is 0.4. 
The right panel shows the ordered total prediction accuracy which is 
maximised when the sensitivity parameter is 0.5. The two are very close. 
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Fig. 11.6. The ordered top 20 performances using AUR (the left panel) and the total 

prediction accuracy (the right panel). The horizontal axes represent the 20 sensitivity 

parameters. The vertical axes represent the measured performances. 20-fold cross-

validation is used for model evaluation. 

 

 

 

Fig. 11.7. The most positively and negatively sensitive peptides to the classification of 

cleaved and non-cleaved HIV substrates using the heterogeneous BBFNN model. 

 

Using heterogeneous BBFNN for the same data can lead to similar 

performance with the specificity as 94%, the sensitivity as 80%, the total 

prediction accuracy as 90% and AUR as 0.94. 
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The heterogeneous model can provide the sensitivity measurements 
for each substrate. These measurements can indicate which substrates are 
most sensitive to the classification between two classes of peptides. 
Figure 11.7 shows two categories of most sensitive peptides, one being 
the most positively sensitive peptides (the left panel) and one being the 
most negatively sensitive peptides (the right panel). Note all sensitivity 
values are normalised into the interval between -1 and 1. 

11.4 Support vector machine 

A classification algorithm aims to find a mapping function between input 
features x and a class membership }1 ,1{t , 

 ),( wxfy   (11.28) 

where w is the parameter vector, ),( wxf  is the mapping function and y 
is the model output. With other classification algorithms, the distance 
(error) between y and t is minimised to optimise w. This can lead to a 
biased hyper-plane for discrimination. In Fig. 11.8, four open circles of 
class A and four filled circles of class B are distributed evenly, 
symmetrically. With this data set, the true hyper-plane separating two 
classes of circles can be found as in Fig. 11.8 (a). With this hyper-plane, 
four novel points denoted as the triangles can be correctly identified. 
Note that two open triangles belong to the class of the open circles and 
two filled triangles belong to the class of the filled circles. Suppose a 
shaded circle belonging to class B is included as seen in Fig. 11.8 (b), the 
hyper-plane (the broken thick line) will be biased because the error 
(distance) between the nine circles and the hyper-plane has to be 
minimised. Suppose a shaded circle belonging to class A is included as 
seen in Fig. 11.8 (c), the hyper-plane (the broken thick line) will also be 
biased. With these biased hyper-planes, the novel data denoted by the 
triangles could be misclassified. 

In searching for the best hyper-plane, SVMs find a set of data points 
which are most difficult to classify. These data points are referred to as 
support vectors [333]. They are closest to the hyper-plane and are located 
on the boundaries of the margin between two classes. The advantage of 



 Basis Function Approach and Vector Machines 169 

 

 

(a)  (b) 

 

(c)  (d) 

Fig. 11.8. (a) Hyper-plane formed using a conventional classification algorithm for the 
data with a balanced distribution. (b) and (c) Hyper-planes formed using a conventional 
classification algorithm for data without a balanced distribution. (d) Hyper-plane formed 
using SVMs for data without a balanced distribution. The open circles represent class A, 
the filled circles class B, and the shaded circle class A or B. The thick lines represent the 
correct hyper-plane for the discrimination and the broken thick lines the biased hyper-
planes. The thin lines represent the margin boundaries. Gamma ( ) means the distance 
between hyper-plane and the boundary formed by the support vectors. The margin is 2. 
 

using SVMs is that the hyper-plane is found through maximising this 
margin. Because of this, the SVM classifier is the most robust. Therefore 
it has the best generalisation ability. In Fig. 11.8 (d), two open circles on 
the upper boundary and two filled circles on the lower boundary are 
selected as support vectors. The use of these four circles can form the 
boundaries of the maximum margin between two classes. The trained 
SVM classifier is a linear combination of the similarity between an input 
and the support vectors. The similarity between an input and the support 
vectors is quantified by a kernel function defined as 
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 ),( ixx  (11.29) 

where ix  is the ith support vector. The decision is made using the 
following equation 

   )  , ( sign iiity xx  (11.30) 

where it  is the class label of the ith support vector and  i  the positive 
parameter of the ith support vector determined by an SVM algorithm. In 
SVMs, )( ix  is referred to as a feature and )()(),( ii xxxx   . The 
most difficult part in SVMs is the design of a proper kernel function that 
corresponds to the selection of a proper number of hidden neurons in 
neural networks. There have been many kernel functions designed for 
dealing with numerical attributes. For instance, the polynomial function 

p
ii )1(),(  xxxx  (p is the order of this polynomial function) or the 

radial basis function )||exp(),( 2
ii xxxx    (  is a constant).  

One of the important features of SVM is that it can generate a sparse 
classifier. As discussed above, a basis function neural network will 
employ all the training data for a model. However, SVM will finally 
employ a few training input vectors as the support vectors for prediction. 
This first improves the generalisation capability as mentioned above. 
Second it can reduce model redundancy by removing unnecessary bases 
(kernels). 

In application to whole protein sequences, the composition method 
has been the most popular method of analysis for many years. For 
instance, the composition method was used for the prediction of 
membrane protein types [334]. Dipeptides, gapped transitions (up to two 
gaps) and the occurrence of some motifs as additive numerical attributes 
were used to enhance the prediction of subcellular locations [335]. In the 
simulation it was shown that the inclusion of these additive numerical 
attributes did enhance the prediction accuracy. The same method has also 
been used in gene identification for functional RNAs in genomic 
sequences [336]. Instead of using transition composition to enhance the 
prediction performance, descriptors were also used, for instance, to 
predict multi-class protein folds [337]. SVMs also accurately 
discriminated cytoplasmic ribosomal protein genes from all other genes 
of a known function in Saccharomyces cerevisiae, Escherichia coli and 
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Mycobacterium tuberculosis using codon composition, a fusion of codon 
usage bias and amino acid composition sign [338]. 

There are two ways to generate profiles. First, a profile of a sequence 
can be generated by subjecting it to a homology alignment method like 
BLAST (Basic Local Alignment Search Tool) against a family of 
sequences in a database [10]. Second, a profile of a sequence can be 
generated using Hidden Markov Models (HMMs) [339]. For instance, 
HMMs were used to generate profiles based on positive sequences only 
and a Fisher kernel was designed for using SVMs to detect remote 
protein homologies [339]. The Fisher kernel was derived from the Fisher 
ratio, where the gradient vector of a sequence is computed with respect 
to the trained model. Each element of the gradient vector corresponds to 
a parameter of the HMMs. SVMs were trained on both positive and 
negative gradient vectors. Two methods (generating profiles using 
HMMs and homology alignment methods) have been compared for 
classifying G-protein coupled receptors [340]. The simulation showed 
that SVMs with HMMs profiles performed the best. The profile method 
was also used for the prediction of secondary structures [341]. 

Liao et al. used pair-wise homology alignment scores as features for 
training SVMs in protein homology detection [342]. An SVM classifier 
was then trained on these features. The work proved that this pair-wise-
SVM performed better than Fisher-SVM [339]. SVMs were also used to 
classify proteins with remote homology into functional and structural 
families based on sequence homology using a newly designed string 
kernel function [343]. In that work, each feature is the occurrence of a 
specific K-mer (sub-sequence with K residues) in a sequence. Recently, 
SVMs were used to predict disordered regions in proteins, where a 
profile was formulated using PSI-BLAST (Protein Specific Iterated-
BLAST) for each sequence against a non-redundant sequence database 
[344]. Moreover, SVMs were used to detect remote homology between 
protein sequences, which cannot be done sufficiently when using 
conventional methods like BLAST or FASTA (based on the idea of 
identifying short ‘words’ or k-tuples common to both sequences under 
comparison) [345]. 

In dealing with peptides, the orthogonal encoding method has been 
used for the analysis of molecular sequences using SVMs. 
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For instance, it was used for the prediction of translation initiation 

sites [346]. Interestingly, the work designed a novel kernel function 

which simply counted the number of nucleotides that coincide between 

two sequences. The kernel function was further improved based on the 

biological knowledge that local correlation information is important for 

translation initiation sites. It was also used for the classification of 

proteins with a selective kernel scaling method [347], for the 

classification of T-cell receptors [348], and for the prediction of protein-

protein interactions [349].  

Here we show how to apply SVM to the Burkholderia pseudomallei 

gene expression data in this section. Data pre-process is as usual. What 

we need to see here is how SVM can explore a few support genes 

(vectors) from all genes. The smoothing parameter varies from 0.001 to 

0.1 with a gap of 0.001. The cost function is set at 1000. Figure 11.9 

shows the ordered performance of models. The left panel shows the 

ranking result using AUR while the right panel shows the ranking result 

using the total prediction accuracy. Both show that model performance is 

optimised when the smoothing parameter is 0.002. 
 

 

Fig. 11.9. The performance ranked SVM models for the Burkholderia pseudomallei gene 

expression data according to AUR (left panel) and the total prediction accuracy (right 

panel). In the ROC curve, the horizontal axes represent 1 – specificity and the vertical 

axes represent sensitivity. 
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Figure 11.10 shows how the support vectors are distributed. It can be 

seen that the closest neighbour of each support vector belongs to the 

class opposite to the class of the support vector. From this, it can be seen 

that SVM provides an excellent platform for data-mining biological data 

when exploring how individual biological components are contributing 

to the formation of a biological phenomenon. 
 

 
Fig. 11.10. Illustration of support vectors of the model using the smoothing parameter as 

0.002. The triangle and the crosses represent two classes of patients. Those covered by 

circles indicate that they have been used as support vectors. 

11.5 Relevance vector machine 

In the above section, we can see that SVM estimates model parameters 

(w) through minimising the classification error and maximising the 

classification margin. The data distribution is not used in learning. RVM, 

which has the same kernel learning mechanism, instead, directly models 
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the data distribution within the Bayesian framework [350]. Because of 
this, RVM can directly estimate the confidence of a prediction. The other 
important feature of RVM is that it is also a sparse classifier. 

We denote by 
1}{  nnxD  an input set and by 

1}{ nnt  a target  
set, where d

n x  (d is the dimension) is an input vector and Nnt  a 
target value. Note that   is the set of real numbers and N  is the set of 
integers. We use the sigmoid function to denote the relationship between 
an input vector and its prediction given a weight vector w  [350] 

 
)exp(1

1

wφ 


n
ny  (11.31) 

where T
21 )),(,),,(),,((  xxxxxxφ nnnn   is a vector defining the 

similarity between nx  and all the training vectors using a pre-defined 
kernel function. The kernel function ),( mn xx  is commonly 
implemented using a radial basis function in many vector machines and 
can be adapted to other kernel functions. Using the cross-entropy 
function, the likelihood function of a classifier is defined as 
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An Automatic Relevance Determination (ARD) prior [351] is placed to 
prevent over-fitting [350] 

 

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n

np Gαw  (11.33) 

where T
210 ),,,,(  α . The posterior of the coefficients is 

defined as below 

 






   )()(

2

1
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The mean vector and the covariance matrix of the posterior are  

 BtΣΦu T  (11.35) 
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and 

 1T )(  ABΦΦΣ  (11.36) 

where Φ  is a squared input matrix  jiji ,1)},({ xxΦ  , 
T

21 ),,,(  tttt , )}1({diag nn yy B , and },,,{diag 21  A . 
The marginal likelihood can be obtained through integrating out the 
coefficients [350] 
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In learning, α  can be estimated as follows 
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where   is the iteration time and nn  is the nth diagonal element in Σ . 
The weights can be updated using 

 MP
1 )|,(log wαwtHw p   (11.39) 

where T
222111 ),,,(  yteyteyte e , H is the Hessian 

matrix 

 )()|,(log T
MP ABΦΦwαwtH  p  (11.40) 

and 

 )()|,(log T
MP eΦAwwαwt  p  (11.41) 

The above equation is a closed form where we have to use an inner loop 
for weight update. 

Recently, RVM has drawn a lot of attention for analysing biological 
data. For instance, it has been used for predicting MHC-II binding 
affinity [352], for diagnosing cancers using gene expression profiles 
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[353], for inducing regulation transcription networks in Arabidopsis 
using gene expression data [354], and for detecting non-coding regions 
in genomes [355]. 

Summary  

In this chapter we have discussed two classes of similar machine learning 
approaches, both employing the basic kernel approach. They are the 
basis function neural networks and vector machine algorithms. A basis 
function neural network model uses all the training input vectors for 
building a predictive model while a vector machine aims to find a sparse 
representation of all training input vectors by maintaining similar or 
improved prediction performance. The introduced radial-basis function 
neural network is used for handling numerical data. A note has been 
made in this chapter that the data used for building a radial-basis function 
neural network model must not be binary or sparsely distributed discrete 
data. The introduced bio-basis function neural network is used for 
handling sequence, particularly peptide data. The benefit of the bio-basis 
function neural network is that it avoids any tedious encoding process of 
amino acids or nucleic acids. Two vector machines are discussed in this 
chapter as well. They are the support vector machine and the relevance 
vector machine. A support vector machine model is generated by 
maximising the classification margin between two classes so that the 
generalisation capability of such a model can be maximised. The sparse 
model is therefore based on a subset of training input vectors. They are 
called support vectors. These support vectors are normally located on the 
decision boundaries of a classification margin and include some training 
vectors which are difficult to classify. The relevance vector machine, on 
the other hand, aims to find representative input vectors to avoid using 
all training input vectors in a model for prediction. The found relevance 
vectors are therefore those located in the centres of some clusters. The 
advantage of the relevance vector machine is that it is developed under 
the Bayesian framework, hence providing information of probabilistic 
interpretation of the predictions. Applications of these four algorithms to 
bioinformatics have also been discussed.   
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Chapter 12 

Hidden Markov Model 

This chapter discusses the hidden Markov model (HMM) which can be 
used to explore hidden series states for a sequence of observations. The 
basic principle and learning algorithm are discussed. The Markov 
model is discussed first as it provides the basis for understanding  
the hidden Markov model. Three basic tasks of HMM are discussed. 
They are the likelihood evaluation, decoding or prediction, and model 
parameter learning. Applications to bioinformatics are discussed as 
well. 

12.1 Markov Model 

An HMM is a statistical model where the statistical property of the 
transition probabilities between different observations and hidden state in 
a data set is modelled. The basis of HMM is the Markov process. 

A Markov process describes a type of dynamic evolution systems 
where the relationship between random variables is mathematically 
defined. The model is named after the Russian mathematician Andrey 
Markov. In a Markov system, the likelihood of every possible random 
evolution process is evaluated using probability theory. A random 
evolution process is described for all possible random observations in a 
chain. The likelihood of each observation depends only on its previous 
observation in the same chain. Suppose we define a chain of T random 
variables as ),,,,,( 12 XXXX tT   and have a chain of T observations 
denoted by ),,,,,( 12 xxxx tT  . The likelihood of observing tx  is 
defined as a conditional probability 
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 )|()|( 1111   tttttttt xXxXPxXP xX  (12.1) 

where ),,,,( 12211 xxxx ttt  x  and ),,,,( 12211 XXXXX   ttt . 
Based on the above equation, the likelihood of observing ),,,( 12 xxxt   
is a product of all observation likelihood measurements using the product 
probability theory 
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where )|( 11   tttt xXxXP  simplified as )|( 1tt xxP  and )( 1xP  is 
the probability of the first observation. This model is also called a first-
order Markov model. Using the above equation the likelihood of 
observing a chain of five nucleic acids (TCGAA) shown in Fig. 12.1 is 
calculated as 

 )()|()|()|()|( TPTCPCGPGAPAAP  (12.3) 

 
 

 

Fig. 12.1. A chain of five nucleic acids for demonstrating the Markov model. The 
numerical numbers represent the order of observing the nucleic acids. Five nucleic acids 
are represented by five letters. 
 
 

If the transition probabilities are as specified in Fig. 12.2,  
the likelihood of the chain shown in Fig. 12.1 is 

0001.025.0*2.0*2.0*1.0*1.0  . 
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Fig. 12.2. The assumed transition probabilities between four nucleic acids. The 
summation of the transition probabilities from one nucleic acid to itself and to each of the 
other three nucleic acids is one. For instance, the transition probabilities from A to A, C, 
G, and T are 0.1, 0.3, 0.4, and 0.2 respectively. 

12.2 Hidden Markov model 

12.2.1 General definition 

The Markov model described above only considers the probabilities of 
the transitions between observations. It is understood that various 
observations can result from some unknown hidden state. The observed 
events can be the phenomenon of some hidden genotypic information. 
For instance, we can consider the relationship between protein secondary 
structure and protein sequence. A sequence with corresponding 
secondary structures is shown in Fig. 12.3. The question is how we 
model the relationship between sequence residues and secondary 
structures leading to a model to identifying secondary structure based on 
the observed amino acid chain of a protein sequence. 
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Fig. 12.3. A sequence with its secondary structure.  and  are two hidden states. A 
sequence is composed of observed amino acids. 
 

 

 

 

Fig. 12.4. A visualisation of three probabilities. The first row represents the Markov 
model. The second row represents the transition of hidden states. The last row represents 
the emission probabilities. 
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We can consider three sets of correlations. The correlation between 
each pair of residues measures how likely two residues are to become 
neighbours 

 ),,(),,( MHHG   (12.4) 

The correlation between each pair of states measures how likely two 
states are to be connected as neighbours 

 ),(),,(),,(),,(   (12.5) 

The correlation between a residue and a state (secondary structure) 
measures how likely a residue and a state are to be aligned to the same 
position, for instance, the first residue G is aligned with the state E, 

 ),,(),,(),,( MHG   (12.6) 

Figure 12.4 visualises these three correlations. 
In HMM, the probability or the likelihood of the current observation 

not only depends on the previous observation, but also on the associated 
hidden state. The probability of one observation in a chain of 
observations is then defined as 

 ),|( 11 tttttt sSxXxXP    (12.7) 

where tS  is the ith random variable of the hidden state in a chain of 
observations and ts  is one of the hidden states associated with the 
ith observation.   is a finite set of hidden states. For instance, the third 
observation of the chain shown in Fig. 12.3 can be described as below 

 ),|( 223  SHXMXP  (12.8) 

In HMM, such a probability is described as an emission model and 
the emission of the first three observations in the chain is shown in Fig. 
12.5. In an emission model, each observation is emitted based on the 
transition probability from the previous observation to the current 
observation. It also depends on the transition probability from the 
previous hidden state to the current hidden state and the probability of 
emitting the current observation from the current state. For instance, the 
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probability of emitting H in Fig. 12.3 is determined by the previous G, 
the transition from   to  , and the emission rate from   to H. 

Based on the emission model shown in Fig. 12.5, a full HMM model 
for studying secondary structures of protein sequences is depicted in Fig. 
12.6. In the diagram, we have three sets of probabilities to estimate. They 
are the emission probabilities, transition probabilities including self-
transition probabilities, and terminal probabilities including start and end 
transition probabilities [158, 356]. 

The emission probabilities are defined by  

 )|()( SXPXS   (12.9) 

where S  indicates a state from a set of finite hidden states such as   and 
  shown in Fig. 12.3 and )|( SXP  is the probability of observing a 
phenomenon under a hidden state such as an amino acid in a sequence in 
an   secondary structure. The transition probabilities are defined as 

 )|( 1,1 
 ttSS SSP

tt
  (12.10) 

where 1tS  is the (t-1)th state and tS  is the tth state. We use SS ,  to 
denote self transition probabilities. The start transition probability is 
denoted by S, , where   means a terminal. The end transition 
probability is denoted by  ,S . 
 

 

Fig. 12.5. An illustration of emitting the first three observations in a chain of observations 
shown in Fig. 12.3. 
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Fig. 12.6. An illustration of a diagram used in studying the relation between protein 
sequences and secondary structures. 

12.2.2 Handling HMM 

Having these probability definitions, we then discuss three tasks of 
HMM. These three tasks cover two theoretical and practical issues of 
HMM, parameter estimation and model interpretation. The three tasks 
are likelihood computing, decoding, and learning. 

The first task is called evaluation and is to use the current model to 
interpret a sequence of observations, i.e. evaluating the likelihood that a 
sequence of observations is to be generated from a given HMM model. If 
we have a number of constructed HMM models each representing a 
specific biological function, we can evaluate from any of them the 
likelihood of a new sequence of observations being generated (emitted). 
For instance, we may have two HMM models constructed using gene 
expression data, one corresponding to disease-related patients, the other 
being related to disease-free patients. If the likelihood of the gene  
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expression of the new patient being observed is larger using the disease-
related HMM model than it is when using the disease-free HMM model 
it is predicted that the patient is likely to have developed a disease. 

The second task of HMM is called decoding and is to decode a 
sequence of observations if an HMM model has the highest likelihood 
for that sequence being generated. This means that given a new sequence 
of observations without observed hidden states and an HMM model, we 
predict what hidden states the sequence is associated with. For instance, 
suppose we have constructed an HMM model to relate protein sequences 
to secondary structures. If a new sequence of amino acids fit the HMM 
model well with a large likelihood, we can predict what secondary 
structures this sequence may have and where they are. Taking Fig. 12.3 
as an example, the question is if we can predict the secondary structures 
of the sequence GHMESSAGEQLLKQCYTINSIDEWHLNT. 

The third task is called learning and is related to the estimation  
of model parameters. In the previous tasks, we assume that all three  
sets of probabilities are available. If these probabilities are not available, 
we need to estimate them to build an HMM model. In this situation,  
we are normally given a data set in which a number of sequences of 
observations and their hidden states are given. For instance, we may  
have collected a number of protein sequences each of which have 
experimentally verified secondary structures. Based on this data set,  
our job is to build an HMM model, i.e. to estimate three sets of 
probabilities. After this HMM model has been built, it can be used for 
the above two tasks. 

12.2.3 Evaluation 

If an HMM model has been built, i.e. its three sets of probabilities have 
been estimated, we can evaluate whether a new sequence is generated  
by this HMM model and the probability (likelihood) of this event.  
The evaluation is completed by a forward propagation of likelihood 
calculation using dynamic programming technique. The detail of 
dynamic programming is beyond the scope of this book, readers can  
refer to White DJ’s textbook [357] and Bellman RE’s textbook [358]. 
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The use of dynamic programming for the evaluation is based on the 
Markov principle, i.e. each observation depends on its previous 
observation and hidden states as shown in equation (12.6). Suppose we 
have three possible observations A, B, and C and two hidden states   
and  . The likelihood of the nth observation can be visualised in Fig. 
12.7. The left panel shows the transition and emission probability 
calculations. However, having understood that we have already 
determined the nth observation and that the observations are controlled 
by hidden states, HMM involves simplifying the calculation as shown in 
the right panel of Fig. 12.7, where we only consider the state transition 
probabilities and the emission probabilities. The evaluation of the 
likelihood of the nth observation is then written as 

 1 1 1 1

1 1 1 1
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 (12.11) 

 

      

Fig. 12.7. An illustration of HMM for evaluating the likelihood of an observations fitting 
to an HMM model. 

 

According to the product probability theory, the likelihood of two 
independent random events is the product of the likelihoods of these two 
events. We assume that the likelihood evaluated at the (n-1)th 
observation is independent from the likelihood evaluated at the nth 
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observation. We can define the evaluation of the partial likelihood of the 
chain till the nth observation through a specific hidden state transition 
using the product of two likelihoods. One is the partial likelihood of the 
chain till the (t-1)th observation ),( 11  tt sxL  and the other is the 
calculation of the likelihood of the nth observation as defined in equation 
(12.11). The calculation of this single-path likelihood is then described as 
below 

 )|()|(),(),( 111 tttttttt sxPssPsxsx  LL  (12.12) 

For instance, there are four such calculations for the right panel in Fig. 
12.7. They are  

 )|()|(),()|,( 1  APPxA n LL  

 )|()|(),()|,( 1  APPxA n LL   

 )|()|(),()|,( 1  APPxA n LL  

 )|()|(),()|,( 1  APPxA n LL  

where )|,( AL  means the conditional likelihood for A to occur when 
the current hidden state is   and the previous hidden state is also  . 

)|,( AL  means the conditional likelihood for A to occur when the 
current hidden state is   and the previous hidden state is  . From both 
transitions, the current hidden state   then emits the current observation 
A. This also applies to )|,( AL  and )|,( AL . The likelihood at the 
current state of   is a summation of two likelihoods 
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This also applies to the current state   

 1

1

( , ) ( , ) ( | ) ( | )

( , ) ( | ) ( | )
n

n

A x P P A
x P P A

    
   








L L

L
 (12.15) 

 

(12.13)



 Hidden Markov Model 187 

We then have a likelihood calculation defined as below 

 )|()|(),(),( 1
1

11 ttktt
k

ktttt sxPsSsPsSxsx === −
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−−∑
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LL  (12.16) 

where K  is the number of states. When this evaluation for a sequence 

reaches the end terminal, the likelihood that an HMM model generates 

the sequence is calculated. 

Suppose we have three probability matrices for the case shown in  

Fig. 12.3. The state transition matrix is shown in Table 12.1. The 

emission probability matrix for the first three residues in the sequence 

chain shown in Fig. 12.3 is shown in Table 12.2. The terminal transition 

probability matrix is shown in Table 12.3. 
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Fig. 12.8. An illustration of the likelihood evaluation of the first three residues in the 

chain shown in Fig. 12.3 with three probability matrices defined in Tables 12.1, 12.2, and 

12.3. 

Table 12.1. The state transition matrix for the 

case shown in Fig. 12.3. 

 α  β  

α  0.6 0.4 

β  0.3 0.7 
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Table 12.2. The emission probability matrix for the first 
three residues for the case shown in Fig. 12.3. 

 G H M 
  0.5 0.4 0.1 
  0.2 0.4 0.4 

Table 12.3. The terminal transition probability matrix for 
the case shown in Fig. 12.3. 

     
Start 0.9 0.1 
End 0.1 0.9 

 

Based on these three matrices, Fig. 12.8 shows the likelihood of the 
first residue in the sequence chain used in Fig. 12.3. The evaluated 
likelihood is 0.036348. 

12.2.4 Decoding 

Given an HMM model and a new sequence of observations, the 
requirement is to predict the hidden states associated with the sequence, 
for instance, to predict the secondary structures associated with a protein 
sequence. The decoding process is a maximum likelihood process. After 
a likelihood evaluation process has been completed, a backward scanning 
process can be done to search for the path which generates the maximum 
path-specific likelihood. For instance, if we have reached the nth 
observation of A shown in the right panel of Fig. 12.7, we can determine 
which state (  or  ) is most likely to occur by maximising the 
likelihood calculated at these two states. The most basic algorithm  
for decoding is the Viterbi algorithm [359]. Using the algorithm, we  
can decode the network shown in Fig. 12.8. The predicted secondary 
structures for the first three residues are seen in Fig. 12.9. The predicted 
secondary structures are   for the first three residues in the sequence. 

HMM has also been well applied to analysing biological data. For 
instance it has been used to identify orthologs in ESTs [360], for 
predicting the occupancy of transcription factors in sequences [361],  
for nucleic localisation signal prediction [362], for disease biomarker 
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identification [363], for predicting yeast gene functions [364] and for 
predicting cell wall sorting signals in gram-positive bacteria [365]. 
 
 

 

Fig. 12.9. An illustration of decoding an HMM for predicting the secondary structures of 
a protein sequence with observed amino acids. 

12.2.5 Learning 

Training an HMM means estimating the model parameters, i.e. the 
probabilities. The algorithm for solving this problem is called the Baum-
Welch (BW) algorithm [366] which is a generalised EM algorithm [157]. 
With the BW algorithm, there are two parts of probabilities, one being 
the forward probability and the other being the backward probability. 
The forward probability is a probability of seeing the observations from 
the beginning to a node (marked as a filled circle in Fig. 12.10). The 
backward probability is calculated as below 

 ),|,,,()( 21 isxxxPi tTtt
B
t   L  (12.17) 
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Fig. 12.10. An illustration of calculating forward and backward probabilities. 

 
This is similar to the calculation of the forward probability with three 
steps. First, B

TL  is initialised as 

 ],1[ ,, Nii
B
T  L  (12.18) 

Second, )(iB
tL  is calculated recursively as below 
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Finally, the calculation is terminated as 
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After the calculation of both forward probabilities and backward 
probabilities, we can proceed to calculate the transition probabilities. The 
transition probability from the ith state to the jth state is defined as 

 
expected number of transitions from  to 

expected number of transitions from ij
i j

i
   (12.21) 

The emission probabilities are calculated using 

expected number of imes in  and observing symbol 
( )

expected number of times in 
k

j k
t j vv

j
   (12/22) 
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where kv  is one of the observed symbols. In the E-step, the partial 
forward and backward probabilities are calculated. In the M-step, the 
transition and emission probabilities are calculated. 

12.3 HMM for sequence classification 

HMM can be used for constructing predictive models for molecular 
sequences like other supervised machine learning algorithms. Details can 
be seen in Baldi’s book [4] and Durbin’s book [367]. HMMER [368, 
369] is one of the most successful products and is composed of nine 
programs. Two main programs used for sequence classification are 

A)  “hmmbuild”: builds a new profile HMM based on a data set in 
which sequences are aligned. The alignment of sequences can be 
done using various alignment algorithms.  

B) “hmmpfam”: aligns a set of sequences to the profile HMM 
generated by “hmmbuild” and outputs alignment scores and  
e-values. 

In using HMMER for sequence (peptide) classification, an HMM 
profile is built using “hmmbuild” based on positive (functional) peptides 
[370]. After such an HMM profile has been generated, both positive and 
negative peptides are fed to the HMM profile using “hmmpfam” to 
obtain alignment scores. These e-values are then used to build two 
density functions for classification. Figure 12.11 shows the procedure of 
using HMM for sequence (peptide) classification, where steps 1, 2, 3, 
and 4 comprise a training process while step 5 is for testing. 

We now use the HIV-1 protease cleavage data described in chapter 11 
for demonstrating this process. The cleaved peptides (8-mers) are fed to 
the program called “hmmbuild” which generates an HMM profile. After 
the HMM profile has been generated, both negative (non-cleaved) and 
positive (cleaved) peptides are fed to the program called “hmmpfam” to 
generate two sets of alignment scores. Two Gaussian density functions 
are built. The Bayes rule is used to decide whether a novel peptide whose 
cleavage status is unknown is cleaved or non-cleaved. Five-fold cross-
validation is used leading to the prediction performance as shown in 
Table 12.4. 
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Fig. 12.11. A procedure of using HMM for sequence (peptide) classification. The dashed 
blocks represent five steps. The numbers (1, 2, 3, 4, and 5) represent the steps. 

Table 12.4. The confusion matrix of applying HMMER to the HIV-1 
protease cleavage data. 

  Prediction 
  Negative Positive Percent 
Actual Negative 233 15 93.95% 

Positive 16 98 85.96% 
   91.44% 

 

The “hmmalign” program of HMMER is used to align peptides 
against an HMM profile that has been generated. Figure 12.12 shows the 
alignment of one of five positive alignments. The alignment for the 
positive peptides (left panel) against the built HMM profile shows a good 
convergence, i.e. nearly no insertion happens. However the alignment for 
the negative peptides (right panel) shows a large diversity with many 
insertions. This is why the alignment scores of the negative peptides are 
small by which we can see how HMM profiles can be used for 
classification. The basic principle is to learn the patterns hidden in the 
positive data with the belief that negative data serve as background, 
hence no pattern can emerge. 
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# STOCKHOLM 1.0
#=GF AU    HMMER 2.3.2

pep3          SFNFPQIT
pep5          ARVLAEAM
pep12         YEEFVQMM
pep16         AETFYVDK
pep25         GDALLERN
pep29         AEAMSQVT
pep48         ELELAENR
pep49         SKDLIAEI
pep53         PFAAAQQR
pep57         AETFYTDG
pep317        SQNYPIVE
pep325        SFNYPQIT
pep332        SFNFPQII
pep334        SQNYPNVQ
pep337        SQNYPILQ
pep340        SQCYPIVQ
pep346        ARVLFIAL
pep351        ARVLFTAL
pep352        ARNLFEAL
pep353        ARNLFQAL
pep356        ARVYPEAL
pep361        RQNYPIAL
#=GC RF       xxxxxxxx
//

# STOCKHOLM 1.0
#=GF AU    HMMER 2.3.2

pep60         ....-KVFGRCEl...
pep61         ....--VFGRCEla..
pep65         ....CELAAAMK....
pep71         ....----MKRHgldn
pep73         .rhgLDNYR---....
pep79         ....YRGYSLGN....
pep91         ..ak----FESNfn..
pep100        ....QATNRNTD....
pep101        ....ATNRNTDG....
pep113        ....-GILQINSr...
pep116        ....QINSRWWC....
pep120        ....RWWCNDGR....
pep127        rtpgSRNL----....
pep135        ....--CNIPCSal..
pep146        ....DITASVNC....
pep149        ....ASVNCAKK....
pep150        ....SVNCAKKI....
pep155        ..kk----IVSDgn..
pep159        ....SDGNGMNA....
pep165        ....--NAWVAWrn..
pep167        ....-WVAWRNRc...
pep177        ....TDVQAWIR....
pep184        ....-TAAAKFEr...
pep189        ....----FERQhmds
pep192        ....QHMDSSTS....
pep207        .cnq---MMKSR....
pep218        ...kDRCKPVN-....
pep220        ....-RCKPVNTf...
pep223        ....PVNTFVHE....
pep225        ....--NTFVHEsl..
pep226        ....TFVHESLA....
pep236        ....QAVCSQKN....
pep246        ..ck---NGQTNc...
pep249        ....GQTNCYQS....
pep250        ....QTNCYQSY....
pep253        ....---CYQSYstm.
pep255        ....-QSYSTMSi...
pep256        ....SYSTMSIT....
pep261        ....SITDCRET....
pep270        ....SSKYPNCA....
pep275        ....NCAYKTTQ....
pep281        ....TQANKHII....
pep284        ....NKHIIVAC....
pep294        ....NPYVPVHF....
pep295        ....PYVPVHFD....
pep299        ....RQNYPIVQ....
pep300        ....SQKYPIVQ....
pep306        ....SQNYDIVQ....
#=GC RF       ....xxxxxxxx....
//  

Fig. 12.12. Alignments of peptides against the built HMM profile. The left panel shows 
the alignment for the positive peptides and the right panel shows the alignment for the 
negative peptides. 
 



194 Machine Learning Approaches to Bioinformatics 

HMM has been widely used in sequence analysis, for instance it has 
been used for phosphorylation site prediction [370, 371], for predicting 
protein family [372], for modelling paramyxovirus hemagglutinin-
neuraminidase proteins [373], for predicting the occupancy of 
transcriptional factors [361], for detecting recombination in 4-taxa DNA 
sequences [374], and for predicting genetic structure in eukaryotic DNAs 
[375]. 

Summary 

This chapter has introduced the basic principle and the learning 
mechanism of hidden Markov models. Generally speaking, it learns the 
hidden states by which it is believed that observations are generated. 
HMM is a type of generative models which assumes that the 
observations are unorganised information of phenotypic and genotypic 
data while the relationship between them is hidden or unknown. Through 
learning, the relationship can be explored which can be used for pattern 
recognition. An example of HIV-1 protease cleavage peptide 
classification clearly shows the features of HMM.  
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Chapter 13 

Feature Selection 

Feature selection has long been studied in machine learning [376-379]. 

When analysing gene expression data and metabolite data it is common 

that a data set has a few samples with many genes or metabolites as 

variables. In order to focus on some highly differentially expressed 

genes or active metabolites for investigating biological insight, a 

feature selection process must be considered. The main task of feature 

selection is to reduce the number of features while maintaining or 

improving model predictive capability. This chapter discusses three 

types of feature selection strategy. The first is the built-in strategy. The 

second is the exhaustive strategy. The third is the heuristic strategy. 

The built-in strategy embeds a feature selection process in model 

construction. The typical algorithms include principal component 

analysis, the classification and regression tree as well as the random 

forest algorithm plus three other algorithms discussed in this chapter. 

The exhaustive strategy is to exhaust all possible models with different 

features and then select a model with the smallest number of features 

and best model performance. The evaluation is commonly based on 

AIC or BIC discussed in chapter 5. The heuristic strategy selects 

features step by step using an additive performance measure. This 

strategy includes forward and backward selection. 

 

13.1 Built-in strategy 

In the previous chapters, we have seen three relevant machine learning 

algorithms which can be used as well for feature selection. They are 

principal component analysis, the classification and regression tree 
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algorithm as well as the random forest algorithm. They have a built-in 

process to remove irrelevant or unimportant variables (features) while 

maintaining features which are important for predictions. We are not 

going to discuss them in detail again in this chapter. Instead we introduce 

three other algorithms, i.e. the Lasso, the ridge regression, and the partial 

least square regression algorithms. 

13.1.1 Lasso regression 

The algorithm’s full name is L1 constrained estimation ‘Lasso’. It is a 

shrinkage and selection approach for linear regression. During learning, 

it minimises the sum of squared errors using a limit on the sum of the 

absolute values of the coefficients [380-382]. 

Given a set of independent variables { } ,,, 21 RXXX ⋯  and a 

dependent variable Y, the Lasso model is defined as usual in a linear 

regression format 

 ∑
=

+=+=
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i
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0 wx  (13.1) 

where ix  is the value of the ith variable iX , 0w  is a bias, and iw  is the 

coefficient or weight for the ith variable. The error function which is 

minimised by Lasso is also similar to most regression models and is 

defined as below 
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where N is the total number of input vectors, nt  is the nth target value, 

and ny  is the nth model output. However Lasso introduces a constraint 

as below 
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 (13.3) 
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where 0>τ  is the constraint constant. If τ  is small, more coefficients 

are shrunk to zero. This means that unimportant variables are penalised 

while important variables are maintained in a model. This model is 

generally not analytically solvable and the quadratic programming 

approach [383] is employed. The algorithm called least angle regression 

[384] can also solve this problem. 

In bioinformatics, Lasso is used to derive parsimonious or sparse 

regression models. For instance, it is used for building Cox proportional 

hazards models [385], for constructing gene networks through exploring 

mutual relationships between genes [386, 387], and for detecting 

causative genes of diseases [388]. 
 

 

Fig. 13.1. The Lasso model applied to the Burkholderia pseudomallei gene expression 

data. The left panel shows the evolution of coefficients through learning iterations. The 

horizontal axis shows the learning iterations and the vertical axis shows the magnitudes 

of the coefficients. The right panel shows the ROC curves as well as the performance 

measures. 

 

In applying Lasso to the Burkholderia pseudomallei gene expression 

data, the coefficients of most genes are penalised (reduced to zero). The 

left panel of Fig. 13.1 shows how coefficients are updated through 

learning iterations. It can be seen that for only a few genes the 

coefficients gradually evolve away from small values, getting larger and  
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larger to reach a stable status. It is not surprising that the performance is 

not as good as some other machine learning models discussed in the 

previous chapters. This is due to the fact that Lasso is a purely linear 

regression model. It will not perform as well as nonlinear machine 

learning algorithms. 

Figure 13.2 shows the density function of the coefficients of the 

Lasso model for the data. It can be seen that many coefficients are 

around the centre with a value of zero. On the left side, only two 

coefficients have values of less than -0.1. On the right side, only one 

coefficient has a value close to 0.1. Among ten top genes selected by the 

Lasso model, only one gene is consistent with the results obtained using 

the random forest algorithm discussed in Chapter 9. The gene is 

BPSL2697 which has been selected as an important biomarker in a 

recent study [177]. 

If we use the top ten genes selected by the random forest algorithm, 

the performance is much improved. Figure 13.3 shows the performance 

of the Lasso model built on these top ten genes. The left panel shows the 

evolutionary history of the coefficients of the genes. The right panel  

 

 

 

Fig. 13.2. The density function of the coefficients of the Lasso model built for the 

Burkholderia pseudomallei gene expression data. The horizontal axis represents the 

magnitudes of the coefficients while the vertical axis represents the density. 
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Fig. 13.3. The Lasso model built based on ten top genes selected by the random  

forest algorithm. The left panel shows the evolutionary history of coefficients update.  

The right panel shows the ROC curves as well as the performances. In the ROC  

curve, the horizontal axes represent 1 – specificity and the vertical axes represent 

sensitivity. 

 

shows the ROC curves and the performance measurements. It can be 

seen that using the random forest algorithm to filter out noise variables 

can lead to better Lasso performance. This demonstrates a fundamental 

limitation of Lasso that the noise in data limits the selection of good 

variables. 

13.1.2 Ridge regression 

The ridge regression model was proposed in the 1970s for handling ill-

posed linear algebraic equations [389, 390]. The weight decay [159, 391] 

used in neural learning since the 1980’s is rooted from this. Rather than 

using 1L , the ridge regression approach uses 2L  constraint as below 
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Figure 13.4 shows the coefficients evolutionary history (left panel) and 

the ROC curves as well as prediction performances (right panel) based  
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on whole Burkholderia pseudomallei gene expression data. As with the 

Lasso model, the ridge regression model does not perform as well as the 

other nonlinear machine learning models mentioned in previous chapters. 

Meanwhile it is as expected that the coefficients shrink consistently to 

zero as shown in the left panel of Fig. 13.4. 

 

  
Fig. 13.4. The ridge regression model for the Burkholderia pseudomallei gene expression 

data. The left panel shows the coefficient evolutionary history, where the horizontal axis 

represents the learning iterations while the vertical axis represents the magnitudes of the 

coefficients. The right panel shows the ROC curve and the performance measurements. 

In the ROC curve, the horizontal axes represent 1 – specificity and the vertical axes 

represent sensitivity. 

13.1.3 Partial least square regression (PLS) algorithm 

PLS algorithm is different from Lasso and ridge regression in that it 

combines with principal component analysis (PCA) for selecting 

features. In chapter 4, we have discussed PCA which only maps the 

input matrix into an orthogonal space in which the variance in 

coordinates are ordered. If the first few (<3) principal components 

contain the majority of the information (variance) in data, they can be 

used for visualisation or can be used as features for further supervised 

learning. However, these principal components may not be very 
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informative. For instance, if we run two different PCA simulations on the 

same data, one being based on the input data only and the other being 

based on both input data and the output data, we will see the difference. 

Two data sets are composed of two clusters in two dimensions, hence 

being two classes. We use X to denote the independent variable matrix 

and use t to denote the dependent variable vector. The first data set (the 

upper left panels in Figs. 13.5 and 13.6) has two clusters distributed in 

parallel to the X-axis. This means that the variable corresponding to the 

vertical axis is the only one contributing to perfect classification of two 

classes of data points. The second data set (lower left panels in Figs. 13.5 

and 13.6) is generated by rotating the first data set. This means that both 

independent variables are contributing to the classification of two 

classes.  

In the first simulation, we run PCA on X. Figure 13.5 shows the 

results of both data sets. It can be seen from the right panels of the Fig. 

that for both sets of data, PCA gives similar eigen values (variances) to 

two independent variables. For the second, it makes sense because both 

independent variables are contributing to the classification. However, 

this is not true for the first data set. 

 
 

 
Fig. 13.5. An illustration of PCA on independent variables only for selecting features. 

Two rows are for two data sets. The left panels display the raw data distribution. The 

middle panels show the PCA maps. The right panels show the eigen values. 

 



202 Machine Learning Approaches to Bioinformatics 

 

 
Fig. 13.6. An illustration of PCA on both independent and dependent variables for 

selecting features. Two rows are for two data sets. The left panels display the raw data 

distribution. The middle panels show the PCA maps. The right panels show the eigen 

values. 

 

 

In the second simulation, we run PCA on (X, t). Figure 13.6 shows 

the results for both data sets. It can be seen from the right panels of the 

Fig. that there is a larger difference between the first and the second 

eigen values. 

In PLS, principal components, relevant to the dependent variable, are 

found. This is why a PLS model is also referred to as a bilinear factor 

model. In this way, PLS is able to model and explain the maximum 

multi-dimensional variance direction in the dependent variable space. 

PLS was first introduced by Herman Word in 1966 in an edited book 

[392]. Since published, it became very popular in computational 

chemistry in the 1980s [393]. Afterwards, it drew great attention in 

statistics [394-396]. Later, it has also been introduced into the area of 

bioinformatics [397-401]. 

PLS regression aims to find a set of latent variables which explain 

how both independent variables and dependent variables are generated. 

Denote by X a matrix of N rows of the vectors for d independent 

variables and y a vector of N rows of the values for a dependent variable 

(it can also include more than one dependent variable). Both X and y are 

normalised with zero mean and one standard deviation. The latent 

variables or components are found step by step. The kth PLS component 
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is obtained by estimating the corresponding weight vector w so that 

[402] 
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with the orthogonal constraints kjjk ≤≤∀= 1,0  
T

wSw , where 

XXS T = . 

Applying PLS to the Burkholderia pseudomallei gene expression data 

leads to the specificity as 87%, sensitivity as 93%, total prediction 

accuracy as 90%, and as AUR 0.94. 

The density function of the coefficients is illustrated in Fig. 13.7, 

where we can see that only a few coefficients have large absolute 

magnitudes. The PLS has selected 5 genes with largest positive  

coefficients. They are BPSL0280, BPSS1993, BPSL0919, BPSL2298,  

and BPSL0665. The genes with most negative coefficients from the PLS 

model are BPSL2504, BPSL1631, BPSS2185, BPSS0796.1, BPSL3228, 

and BPSS1850. 

 

 

Fig. 13.7. A density function estimated for the coefficients in the PLS model for the 

Burkholderia pseudomallei gene expression data. The horizontal axis represents the 

magnitudes of the coefficients and the vertical axis indicates the density. 
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13.2 Exhaustive strategy 

With the exhaustive strategy, all possible feature combinations must be 

exhausted. Each model with a specific combination of features is 

examined using AIC or BIC as discussed in the previous chapter [158, 

159, 162]. The procedure is very straightforward, by preparing all the 

feature sets and constructing models based on these sets. After using AIC 

or BIC to evaluate them, the best model is selected for prediction. In this 

section, we evaluate this strategy by using the reduced Burkholderia 

pseudomallei gene expression data generated by the random forest  

algorithm in chapter 9. We exhaust all possible sets of three genes. MLP 

discussed in chapter 10 is used to model these data sets. The selected 

three genes which can yield the best performance are BPSL2697, BPSL 

2522, and BPSL3398. The specificity is 91%, the sensitivity is 86%, the 

total prediction accuracy is 89% and AUR is 0.96. The ROC curve can 

be seen from the Figure. 

It must be noted that the exhaustive strategy has limited usage in 

applications where the number of variables is large. 

13.3 Heuristic strategy – orthogonal least square approach 

There are mainly two feature selection approaches. One is called forward 

selection and the other is called wrapper selection. A forward feature 

selection starts from a seed which is one among d features performing 

the best according to a pre-defined measurement. The selection proceeds 

by selecting more features one by one based on two selection criteria. 

First, the new feature should improve total model prediction accuracy. 

Second, the new feature should have minimum correlation with features 

which have already been selected. The selection proceeds until some pre-

defined threshold is satisfied. A wrapper algorithm works recursively to 

remove features [403, 404]. For a model with d features (independent 

variables), the algorithm removes features sequentially one by one. In 

each step, a feature is targeted if removing it can maximise the prediction 

accuracy. 
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The orthogonal least square (OLS) algorithm [405] is a forward 

selection procedure. At each step the incremental information content  

of a system is maximised. The feature matrix is denoted by 

),...,,( 21 dzzzX = . The OLS transforms the original variables ( kz ) to 

the orthogonal variables ( kp ) to reduce possible information 

redundancy. The feature matrix X is decomposed as 

 PTX =  (13.6) 

where the triangular matrix T has 1’s on the diagonal. 
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and the orthogonal matrix P is 
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The orthogonal matrix satisfies 

 HPP =T  (13.9) 

where H is diagonal whose elements kkh  : 
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The space spanned by the set of orthogonal variables is the same space 

spanned by the set of original variables, and equation (13.6) can be 

rewritten as 
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 ePgePTweXwy +=+=+=  (13.11) 

Suppose )(~ 0,1e N , the pseudo inverse method can be used to estimate 

g as below 

 yPHyPPPg T1T1T )( −− ==  (13.12) 

Because H is diagonal, its inverse matrix is shown as below 
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The element in g is then 
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The quantities g and w satisfy the triangular system 

 gTw =  (13.15) 

The Gram-Schmidt or the modified Gram-Schmidt methods [406-

408] can be used for the selection, where the first variable is selected as 

the first orthogonal one 11 zp = . In the selection of the kth orthogonal 

variable, the elements in the kth column in T are estimated using the 

following equation 
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The kth orthogonal variable is then estimated as follows 
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According to equation (13.15) we can estimate w as below 

 gTTTw T1T )( −=  (13.18) 

The elements in w exactly indicate which original variables are important 

in constructing the orthogonal variable space for modelling. OLS has 

recently been used for analysing gene expression data [409-411]. 

In using the OLS algorithm, we can terminate the iteration based on a 

pre-defined threshold. From equation (13.11), we can see that [405] 

 eePgPgyy TTTT +=  (13.19) 

From equation (13.9), we then have 
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To terminate a learning process, we can measure the error reduction 

rate defined as 
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If ε≤err , where 0>ε  is a small number, a learning process can be 

terminated with k selected independent variables. Equation (13.21) is 

similar to the definition of a normalised error defined in Chapter 7 if y is 

normalised with a zero mean and one standard deviation. 

OLS can only be applied to regression problems. Here we use OLS to 

detect the relationships among ten top genes selected by the random 
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forest algorithm in chapter 9. These top ten genes are BPSL2697, 

BPSS1512, BPSS0477, BPSL2522, BPSL2520, BPSL2096, BPSS1492, 

BPSL0326, BPSS2141, and BPSL3398. Ten OLS models are built. In 

each model, one of the genes is selected as the dependent variable while 

the rest are used as the independent variables. In each OLS model, we 

can analyse the weight vector w to see if any gene as independent 

variable dominantly contributes to other gene. It is found that only the 

genes BPSL2697 and BPSS0477 dominantly contribute to each other 
Fig. 13.8 shows the weight distributions of the two OLS models built 

using BPSL2697 (left panel) and BPSS0477 (right panel) as the 

dependent variable, respectively. 

 

 

Fig. 13.8. Two OLS models built using BPSL2697 (left panel) and BPSS0477 (right 

panel) as the dependent variable. The horizontal axes represent the remaining nine genes 

as the independent variables in two models and the vertical axes represent the weights 

magnitudes. 

13.4 Criteria for feature selection 

There are two types of criteria in a feature selection process. One is to 

measure how good a sparse model is. When we add a new feature to a 

model, we need to measure how good the model is. For a regression 

application, the correlation between predictions and targets is one of the 

commonly used criteria. The errors between predictions and targets are 
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also commonly used. In discussing the OLS algorithm, equation (13.21) 

is similar to the normalised error. In classification, classification 

accuracy or AUR can be used. 

The second type is to determine which feature should be added into a 

model. Using an independent validation data set is an approach. For 

instance, when we have added a new feature to a model, we can re-

estimate model parameters based on increased feature set. This newly 

estimated model is tested on the validation data set to see if the model 

performance is improved. Instead of using this empirical approach which 

introduces extra computational cost, the other approach is to measure 

how good a new feature is without using the validation data set. 

To measure how good a feature is two factors need to be considered. 

First, can this new feature improve prediction power? Second, does this 

new feature bring unique contribution to the model compared with the 

selected features? To address these two questions quantitatively we 

introduce three metrics. 

13.4.1 Correlation measure 

In a regression application, correlation can be well used for measuring 

how one variable correlates with the other. When we add a new feature 

denoted by X , we can measure its correlation with the target variable 

denoted by Y , ),( YXρ . If we have a candidate set denoted by Θ , we 

need to maximise the correlation through 

 } ),(  { maxarg YXX i
X

g

i

ρ
Θ∈

=  (13.22) 

However, this new feature may not bring a unique contribution if it is 

highly correlated with the selected ones. This requires us to consider the 

second correlation measure. If the set of selected features is denoted by 

Ω , we need to consider 

 } ),(  {minarg
,

ji
XX

XX

ji

ρ
Ω∈Θ∈

 (13.23) 
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In order to consider both measures for selecting a good new feature, we 

need to introduce a trade-off parameter ] 1 ,0 [∈α . Using this parameter 

we have 

 } ) )],( [ 1()1( } ),(  { maxarg Ω−×−+×=
Θ∈

ii
X

g XEYXX

i

ραρα  (13.24) 

where )],( [ ΩiXE ρ  is the expected correlation of iX  with all selected 

features in Ω . It can be seen that the correlation between a newly 

selected feature and the dependent variable must be maximised while the 

correlation between the newly selected feature and the other selected 

features is penalised. If 0=α , we select completely non-correlated 

features. If 1=α , we select features no matter if they are correlated. 

13.4.2 Fisher ratio measure 

When conducting a classification project, correlation between an 

independent variable and a dependent variable which is discrete or binary 

may not be appropriate. In this case, the Fisher ratio which measures how 

separately two classes are using a feature can be used. If the Fisher ratio 

measure between X and Y is denoted by ),( YXF , equation (13.24) can 

be re-written as below for a classification project 

 } ) )],( [ 1()1( } ),(  { maxarg Ω−×−+×=
Θ∈

ii
X

g XEYXX

i

ραα F  (13.25) 

Note that the relationship between a newly selected feature and the 

selected feature is still measured using the correlation measure as both 

are normally numeric variables. 

13.4.3 Mutual information approach 

Correlation analysis is a linear approach. It is unable to measure 

nonlinear correlation between two variables. Here we introduce the 

mutual information approach which can be used to measure nonlinear 

correlation between two variables. 
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Mutual information is the difference between the initial uncertainty 
and the conditional uncertainty. kX  is a variable and )( kXP  is the 

a prior probability. The initial uncertainty of kX  is measured when kX  
is isolated (not selected) and is defined as 

 )(ln)()H( kkk XPXPX   (13.26) 

Let )|( KkXP  be the conditional probability of kX  given a class 

domain },,,{ 21 Cggg K . The conditional uncertainty measures the 

information of kX  given the class domain and is defined as 
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The mutual information of kX  with the given class domain is then 
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A new variable whose ),(I KkX  value should be maximised for selection 
of features. 

 )},{I(maxarg Kk
X

XX
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  (13.29) 

Replacing K  with   we have the other mutual information 
measurement for detecting the independence of a sequence under 
selection, 
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where ),( lk XXP  is the joint probability between the selected variable, 
lX , and a new variable for selection, kX . A newly selected 

variable should satisfy 
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k
X

XX
k

�  (13.31) 

In order to trade off between two measurements we have a selection 

criterion as below 

 ( ) ),( I 1),( I)( Ω−−= kkkM XXXJ αα K  (13.32) 

where α  is a constant. The constant is set at 0.7 favouring discriminant 

ability. We refer to MJ  as the information gain. A newly selected 

variable therefore satisfies 

 

 }max{arg MJX =�  (13.33) 

As a powerful feature selection approach, the mutual information 

approach has been widely used in bioinformatics projects [412-414]. 

Summary 

This chapter has discussed three strategies for feature selection, i.e. the 

built-in strategy, the exhaustive strategy, and the heuristic strategy. Using 

the built-in strategy, the CART and the random forest algorithm are able 

to extract features for nonlinear models. Other algorithms can only be 

applied to model linear data. However, compared with CART and the 

random forest algorithms, these linear algorithms provide a simple 

interpretation for prediction purposes. The exhaustive strategy has the 

limitation of time complexity although it can be applied to data sets with 

small dimensionality. The heuristic strategy is the most widely used in 

the literature and has also been widely used in bioinformatics. In using 

the heuristic strategy, we need to carefully select an appropriate 

algorithm and a feature selection criterion.  
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Chapter 14 

Feature Extraction 

(Biological Data Coding) 

To present a biological data set to a machine learning model, we are 

required to make sure that the data are representative, quantitative, and 

informative. This requires four focal points. First, the process must be 

as consistent as possible, i.e. providing invariant format and required 

resolution at any time. Second, the process must be as accurate as 

possible, i.e. if a new process is able to explore more information from 

biological data, it should replace the old one. Third, the process must be 

as effective as possible, i.e. taking into account the machine learning 

time cost. Fourth, the process should use as much biological knowledge 

as possible for the presentation of biological data. This process is 

similar to most applications in other disciplines and is called feature 

extraction. Note that feature extraction is often confused with feature 

selection. Feature selection is mainly to reduce noise in data by 

removing irrelevant variables in learning. However, feature extraction 

is to find a better way to present data to machine learning algorithms. 

Feature extraction is commonly a process done prior to feature 

selection. Unlike feature selection which is closely related to machine 

learning, feature extraction is closely related to subjects. Different 

disciplines will need different feature extraction approaches. This is 

why feature extraction is hardly a hot subject in machine learning. 

Rather, it is an important subject in some areas, such as image analysis, 

ECG signal processing, and sensor data analysis. We use a separate 

chapter for biological feature extraction to emphasise the importance of 

this topic in bioinformatics. In this chapter, the targets are molecular 

sequences and chemical compounds which are generally a chain of 

non-numerical components. 
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14.1 Molecular sequences 

A DNA (Deoxyribonucleic acid) sequence is a chain of four nucleic 

acids, i.e. adenine, guanine, cytosine, and thymine. They are expressed 

by four letters, A, G, C, and T. A protein sequence is a chain of 20 amino 

acids shown in Table 14.1 where the full names, short names, and 

abbreviations are listed.  

Table 14.1. Twenty amino acids. 

Full name Short name Abb Full name Short name Abb 

Alanine ala A Leucine leu L 

Arginine arg R Lysine lys K 

Asparagine asn N Methionine met M 

Aspartic acid asp D Phenylalanine phe F 

Cysteine cys C Proline pro P 

Glutamine gln Q Serine ser S 

Glutamic acid glu E Threonine thr T 

Glycine gly G Tryptophan trp W 

Histidine his H Tyrosine tyr Y 

Isoleucine ile I Valine val V 

 

In proteomics, it is known that sequences determine structures and 

structures determine functions. Based on this, many structure and 

function prediction projects are studying sequence structures or sequence 

specificities for exploring the hidden relation between sequence 

specificities and protein structures and functions. In studying DNA 

sequences, it has also been found that the sequence specificity is closely 

related to genomic functions and organism speciation. 

There are two different types of tasks in using sequence components 

for predictions. One is using whole sequences while the other is using 

short segments or peptides which are extracted from whole sequences. 

Studying whole sequences is a major focus in comparative genomics and 

comparative proteomics where the aim is to predict the structure and 

function of a whole molecule. For instance, we may need to investigate 

how splicing sites, translation start sites, methylation sites, and 

promotion regions are distributed in a new DNA sequence. We may also 

need to study how posttranslational modification sites, enzyme cleavage  

 



 Feature Extraction (Biological Data Coding) 215 

sites, or (or and) metal binding sites are distributed in a new protein 

sequence. To have a precise study, a wet laboratory experiment can be 

done. However, without a prior knowledge, a blind laboratory 

experiment can be very expensive and time consuming. In order to 

narrow down to the focal points, comparing a new sequence against 

some database sequences that have annotated structure and function 

information is a common approach used in bioinformatics. Various 

sequence homology alignment algorithms and tools are developed and 

implemented for this purpose. Discussing these algorithms and tools are 

beyond the scope of this book and the readers are recommended to read 

relevant textbooks [1-3, 5, 415]. However, we understand that sequence 

homology alignment algorithms and tools are mainly based on a database 

of annotated sequences. When this database is large, the computational 

cost is huge. For this reason, parametric models can be considered and 

feature extraction is needed. 

Studying peptides is for investigating a single molecular function. For 

instance, we may need to study if a DNA segment has a methylation site, 

a splicing site, a translation start site, or a promoter region. For a protein, 

we may need to study whether a protein segment has a phosphorylation 

site, a hydroxylation site, a nitration site, or an enzyme cleavage site. In 

this case, most sequence homology alignment algorithms and tools are 

not appropriate. A proper feature extraction is then needed. 

14.2 Chemical compounds  

A chemical compound is defined as a chemical substance composed of 

two or more chemical elements such as oxygen, hydrogen, etc [416-418]. 

Each chemical compound has a unique structure, but can be decomposed 

through a chemical reaction. Chemical compounds are basic units in 

metabolism and most cellular functions. In viral and pathogenic studies, 

chemical compounds are important targets for drug design and testing. 

A chemical compound can be expressed by a chemical formula which 

shows what chemical elements the compound is composed of and how 

many units of each chemical element are present. For instance, H2O is a  
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water compound, where two units of hydrogen and one unit of oxygen 

are used. NaCl represents a salt compound, containing one unit of 

sodium (Na) and one unit of chlorine. The expression of the chemical 

elements and units is called the Hill notation [419]. With the Hill 

notation, chemical elements have their order listed from left to right in a 

formula. In the periodic table, there are currently 117 chemical elements 

[420]. 

In order to study the relationships between chemical compounds and 

cellular functions, it is necessary to consider a proper approach to encode 

the chemical elements in chemical compounds. 

14.3 General definition 

If a whole sequence or a peptide is denoted by Θ∈s  ( Θ  is a set of 

discrete states of values), a feature extraction process is expressed by 

 d
ℜ∈xs֏:P  (14.1) 

where P  means a process and x is a coded vector. For instance,  

in handling DNA sequences or peptides, } T C, G, A, {=Θ . The set  

of a protein sequence or peptide chain is expressed as 

} Y  W,V, T, S, R, Q, P, N, M, L, K, I, H, G, F, E, D, C, A, {=Θ . For a 

chemical compound, Θ  is then a set of 117 chemical elements such as 

Oxygen, Hydrogen, Carbon, etc. 

14.4 Sequence analysis 

14.4.1 Peptide feature extraction 

A peptide is commonly an extracted segment from a whole sequence. 

The length of peptides in a data set for analysis is commonly fixed. The 

study of peptides commonly focuses on the classification of peptides into 

different categories. Therefore, peptide data analysis is also called 

peptide classification. Meanwhile, the study of peptide data is for 

determining whether a certain function is involved. Peptide classification  
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is therefore also known as functional site prediction. Given a set of N 

peptides as well as the labels of the peptides N
nnn t 1}  , { ==Ω s , the task is 

to build a classifier to map ns  to nt  

 tf ֏)(: sF  (14.2) 

where F  is a family of functions while f is a specific function which can 

map ns  to nt  accurately. Using a machine-learning approach, we can 

try to find f  in F . In fact, a few machine-learning algorithms can handle 

non-numeric input data such as peptides. There is a need to convert 

peptides to numeric vectors before using machine learning algorithms as 

defined in equation (14.1). 

The easiest way to code peptides or extract features from peptides is 

to use a sparse orthogonal coding approach [209] which has been widely 

used in bioinformatics. The approach uses a binary vector to represent 

each molecular basis, i.e. nucleic acid or amino acid. For four nucleic 

acids, the basic codes are 0001, 0010, 0100, and 1000. For 20 amino 

acids, the basic codes are 0000000000 000000001 for Alanine, 

000000000 0000000010 for Cystein, etc. Based on these basic codes, a 

set of numeric features of a peptide can be extracted. For instance, the 

feature vector of a 4-mer protein peptide ACGT is 80 bits long. Within it 

there are four non-zero bits only.  

This means that such a feature extraction approach generates very 

sparse feature vectors for peptide data. The advantages of this feature 

extraction approach are the simplicity and high resolution. It is easy to 

understand how simple this approach is. In terms of high resolution, we 

can imagine how data are sparsely distributed in a very high-dimensional 

space, where each data point is sitting in a corner of a hyper-cube if all 

the possibilities have been exhausted. Figure 14.1 demonstrates this 

distribution. If data points on the corners belong to different categories, a 

hyper-plane can be found to separate peptides as shown in Fig. 14.1 as a 

vertical plane. 

However, the data space has been expanded so that it is unnecessarily 

large. A 4-mer protein peptide needs 80 independent variables and an  

8-mer protein peptide needs 160 independent variables. A serious 

problem of this kind of data is that a feature selection may lead to a 
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Fig. 14.1. A demonstration of sparse orthogonal coding as a feature extraction approach 

for peptide classification. Filled circles belong to one class while the open circle belongs 

to the other class. The vertical plane is an illustration of decision hyper-plane. 

 

model hard to interpret because only a collection of every 20 consecutive 

bits (independent variables) makes sense for the interpretation. If part  

of these 20 bits is left after feature selection, it is not useful for 

interpretation. 

The second approach is to use frequency estimation of molecular 

bases. The work of using frequency estimate in a computer program is 

done by the h function [421]. With the h function, the frequency of 20 

amino acids at each residue is calculated from a set of functional training 

peptides. Each functional training peptide contains a functional site. The 

frequency estimate as a matrix with 20 rows for 20 amino acids and k 

columns for k residues in a peptide is then stored in a computer program. 

Such a matrix is referred to as a recognition rule. If the amino acids in a 

query peptide can hit a high frequency, the peptide will be considered as 

functional, otherwise non-functional. This approach is very simple and 

straightforward. However, the major shortcoming of this method is that 

is has a high sensitivity and a low specificity. 

The third approach is to use various hydrophobicity scales for feature 

extraction for protein peptides. Seven hydrophobicity scales available in 

the literature have been used. They are the Kyte-Doolittle scale [163], the 

Hopp-Woods scale [422], the Cornette scale [423], the Eisenberg scale 
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[424, 425], the Engelman scale [426], the Janin scale [427], and the Rose 

scale [428]. The use of a hydrophobicity scale is due to its traditional role 

in analysing the impact of amino acid hydrophobicity on protein 

structure and potential for interaction and binding with other molecules 

[429]. Hydrophobic amino acids are generally located in the protein 

interior whereas hydrophilic amino acids are generally located on the 

protein surface as targets for binding with other molecules. A protein 

whose surface is composed of mainly negatively charged amino acids 

such as glutamate and aspartate will bind to a protein with mainly 

positively-charged residues such as lysine and arginine [430-434]. This 

means that the hydrophobicity scale is a candidate for encoding amino 

acids for constructing a predictive model. In using the hydrophobicity 

scales, there are two techniques for feature extraction. The first is to 

extract features for each peptide using a single value. The second is to 

use dual scales for feature extraction. This is because different 

hydrophobicity scales are developed based on different data in different 

laboratories. Difference is therefore seen among the seven scales. Some 

difference is large, i.e. a hydrophobic value in one scale can be a 

hydrophilic value in another scale. 

An even more complicated feature extraction process can  

embed correlation between residues. Denote by )( iRωφ  the code of the 

residue iR  using one hydrophobicity scale ω . We define 

)()( gii RR +ωω φφ  as the correlation between two residues iR  and  

giR +  with a gap λ≤< g0 , where m<λ  is the maximum gap length 

which is pre-defined. For a peptide with length gm > , there will  

be 1+− gm  residue correlation measures. A mean value 

)]()([ gii RRE +ωω φφ  can be taken. If 4=λ , there are four extra codes  

for a single-scale hydrophobicity pattern, namely )]()([ 1+ii RRE ωω φφ , 

)]()([ 2+ii RRE ωω φφ , )]()([ 3+ii RRE ωω φφ , and )]()([ 4+ii RRE ωω φφ .  

For a dual-scale hydrophobicity pattern, there will be eight  

extra codes expressed as )]()([ 1+ii RRE ωω φφ , )]()([ 2+ii RRE ωω φφ , 

)]()([ 3+ii RRE ωω φφ , )]()([ 4+ii RRE ωω φφ , )]()([ 1+ii RRE ττ φφ , 

)]()([ 2+ii RRE ττ φφ , )]()([ 3+ii RRE ττ φφ , and )]()([ 4+ii RRE ττ φφ , where 

τ ω≠  is another hydrophobicity scale. Figure 14.2 shows the 

mechanism in this correlation feature extraction. When λ  is increased, 

more correlation features will be introduced. 
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Fig. 14.2. An illustration of correlation feature extraction. The circles are the residues. 

The solid curves represent the correlation between two neighbouring residues without a 

gap. The broken curves represent the correlation between two neighbouring residues with 

a one-residue gap. The dashed curves represent the correlation between two neighbouring 

residues with a two-residue gap. The long dashed curves represent the correlation 

between two neighbouring residues with a three-residue gap. 

 

The fourth method is based on a special learning mechanism we have 

studied in chapter 11, a basis neural network or a kernel machine. In such 

a machine learning algorithm, the original independent variables are not 

used as the direct input variables for a machine learning model. Instead, a 

kernel function is used to measure the similarity between data points. A 

model weights the contributions of various kernels, hence weighting the 

contributions of each training data point. These important training data 

points are called bases in basis function neural networks. In support 

vector machine, they are called support vectors while in relevance vector 

machine, they are called relevance vectors (in fact prototype vectors). 

Because the independent variables are not used as direct input variables 

to these models, feature extraction becomes an implicit process, i.e. a 

feature space is not the space of the original independent variables. A 

feature space is a space of kernels in this case. 

Based on different kernel functions, the original data (peptide) space 

is mapped to a kernel space in which a machine learning algorithm works 

out how they contribute to a regression or a classification model. Here 

we discuss two interesting kernel functions. 
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Looking at the sparse orthogonal coding approach, we can recall the 

Needleman-Wunsch homology alignment algorithm [11], where we use a 

binary scoring system. In using a kernel function for the sparse 

orthogonal coding approach we end up with this simple homology 

alignment scoring system. Two peptides are denoted by is  and js . If 

two peptides are coded by two binary vectors (
||20

}1,0{ i
i

s
x

×
∈  and 

||20
}1,0{ j

j

s
x

×
∈ ) using the sparse orthogonal coding approach, one way 

to quantify their similarity is the dot product. The dot product between 

two vectors is defined as 
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where ikx  and jkx  are the kth elements of ix  and jx  respectively. 

Because of the specificity of the sparse orthogonal coding approach for 

amino acids (or nucleic acids), equation (14.3) can be re-written as 
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Here irs  and jrs  are the rth residues of two peptides ( is  and js ). This 

dot product actually is a special case of the Needleman-Wunsch scoring 

system. In support vector machine, it is called a linear kernel function  

 jiji xxss ⋅=), (σ  (14.5) 

This kernel function can be further extended to a polynomial kernel 

function shown as below 

 d
jiji

P ]), ([),( βασφ += ssss  (14.6) 

where α , β , and d  are the parameters of the polynomial function.  

For instance, the similarity between PRGLGPPG and LPGPGAPG  

is 4)LPGPGAPG   PRGLGPPG,( =σ  and  

 dP )4()LPGPGAPG PRGLGPPG,( βαφ +=  (14.7) 



222 Machine Learning Approaches to Bioinformatics 

In fact, this identity matrix is an extreme case of many mutation 

matrices. The Needleman-Wunsch algorithm, which was originally 

developed for molecular sequence homology alignment, has been 

replaced by many advanced algorithms like the Smith-Waterman 

algorithm [13] as well as some database sequence homology alignment 

tools like FASTA [14] and BLAST [10]. All of these new algorithms or 

tools use mutation matrices (the Dayhoff [15] score and its variants) 

rather than the identity matrix for scoring sequence similarity. The 

relationship between any pair of amino acids using the Dayhoff score is 

not hard. Instead, it becomes softer. The residue identity using a 

mutation matrix is then defined as 

 ),(),( jrirjrir ssMss =σ  (14.8) 

Here ),( jrir ssM  is a value from a mutation matrix. A relevant bio-basis 

function for using various mutation matrices to measure the similarity 

between two peptides has been introduced in chapter 11. Suppose two 

peptides are denoted by d
i Θ∈s  and d

j Θ∈s , where Θ  is a set of 

nucleic acids or amino acids while d is the length of the peptides. The 

bio-basis function is defined as below [317, 318] 

 )), ((),( jiji
B

ssss βσρφ −=  (14.9) 

where ρ  is a sigmoid function. 

14.4.2 Whole sequence feature extraction 

When modelling whole sequence data, some feature extraction 

techniques mentioned in the last section are not applicable. The most 

widely used are the frequency features of k-mer motifs, where 1≥k .  

A k-mer motif is a chain of k nucleic/amino acids. For instance, the 

features extracted using up to 2-mer motifs from a segment 

GCTCATTGCACTGCATTAAA can be shown in Table 14.2. 
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Table 14.2. The frequency features extracted from a DNA segment shown in the  

main text. 

Motif Frequency Key Frequency 

A 6 CG 0 

C 5 CT 2 

G 3 GA 0 

T 6 GC 2 

AA 2 GG 0 

AC 1 GT 0 

AG 0 TA 1 

AT 1 TC 1 

CA 3 TG 2 

CC 0 TT 2 

 

 

The second feature approach for whole sequences is to count the 

frequency of certain types of nucleic/amino acids. For instance, amino 

acids can be classified in terms of physio-chemical properties [435-439] 

or Taylor classification [440], which is shown in Fig. 14.3. Eight features 

can be extracted using the Taylor classification of amino acids. 

 

 

Fig. 14.3. The Taylor classification of 20 amino acids. 
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Summary 

This chapter has discussed approaches for extracting features from 

molecular entities including DNA sequences, protein sequences, and 

chemical compounds. Feature extraction is an extremely important step 

in bioinformatics in three aspects. First, a proper feature extraction 

approach can explore as much hidden biological information as possible 

compared with an inappropriate approach which will not. The principle 

in machine learning is “garbage in, garbage out”. If we present 

inaccurately extracted features for a machine learning algorithm, it will 

refuse to do us a favour. Second, an efficient feature extraction approach 

can save much computational time. There is a very general rule in 

machine learning, “the simplest is the beauty”. This means that a simple 

machine learning model can generalise well compared to a complicated 

model. This is because a complicated model learns too much details (or 

noise) from data. Such an over-complicated model is often an over-fitted 

one. Third, a biologically-sound feature extraction approach can provide 

a good platform for interpreting a model. For instance, a model built 

using the mass values of chemical elements for compound pathway 

analysis can help give insight into how compound weight is a contributor 

in metabolism. 
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Chapter 15 

Sequence/Structural Bioinformatics 

Foundation – Peptide Classification 

In this chapter we discuss the foundation of sequence/structural 

bioinformatics through peptide classification. The discussion is 

conducted by covering two different applications. They are 

posttranslational modification site prediction and promoter region 

identification. Although they are very different in nature, the basic 

concept is to look at local regions (or segments or peptides) to study 

functionality of a molecule. The aim of the chapter is to demonstrate 

how to conduct independent bioinformatics research using machine 

learning algorithms through feature extraction, feature selection, model 

construction, model evaluation, and model selection. 

15.1 Nitration site prediction 

Tyrosine nitration is a newly discovered posttranslational modification 

(PTM) [441-446]. New studies have found that tyrosine nitration 

significantly affects signalling pathways for cellular signal transduction 

[447-451]. For instance, tyrosine nitration plays a key role in altering 

signal transduction during proinflammatory stress [452]. Other studies 

confirm that tyrosine nitration is the outcome of triggering signalling 

pathways by nitric oxide during NGF-induced neuronal differentiation in 

PC12 cells [453, 454]. As an important signal transduction activity, the 

mitogen-activated protein kinase (MAPK) signalling pathways can be 

manipulated by asbestos-induced tyrosine nitration [455]. Meanwhile the 

contribution of protein tyrosine nitration to signalling pathways triggered 

by nitric oxide has also been paid increasing attention [456-459]. For 
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instance, tyrosine nitration has been identified as a contributing 

biomarker of oxidative stress and the nitration of some tyrosine sites can 

modify protein functions. In medicine, identifying nitration pathways and 

nitrated proteins in disease states is highly related to and significantly 

contributes to human pathology studies [458]. Because of this, tyrosine 

nitration has been the target of a potential predictor of acute and chronic 

disease states [458]. In pharmaceutical research, tyrosine nitration has 

also been intensively studied. For instance, it has been found that 

tyrosine nitration is inhibited when using an anti-tubercular drug [460]. It 

is also shown that tyrosine nitration is linked with drug resistance in 

neuronal-like PC12 cells [453]. The drug called aminotetrahydrofuran 

derivative tetrahydro -N,N- dimethyl -5,5- diphenyl -3- 

furanmethanamine hydrochloride (ANAVEX1-41) has been found as a 

neuroprotective agent in Alzheimer's disease. The drug has been found to 

be able to prevent tyrosine nitration [461]. An experiment has found the 

relation between tyrosine nitration and the resistance of Doxorubicin 

while the drug has been used in cancer treatment [462]. 

There are 77 protein sequences with tyrosine nitration sites in the 

Swiss-Prot and 89 protein sequences in the NCBI database. Two data 

sets contain partially overlapped sequences. The extraction of tyrosine 

peptides follows a common practice in posttranslational modification site 

prediction model construction, i.e. forming a tyrosine peptide using 

symmetrically consecutive residues which flank every tyrosine in a 

protein sequence within a given window size. The evaluated peptide 

lengths (window sizes) are 10, 20, and 30. A tyrosine peptide is denoted 

by Nm – X – N1 – C1 – X – Cm and C1, where X means any residues, and 

N and C are used to denote the N-terminal and C-terminal residues, 

respectively. R=2*m is used to denote the number of flanking residues 

(peptide length). A tyrosine peptide with an experimentally verified 

tyrosine nitration site in the middle (between N1 and C1) is labelled as 

positive (functional) while a tyrosine peptide which has not yet been 

confirmed as having a tyrosine nitration site in experiments is labelled as 

negative (non-functional). All the inferred tyrosine nitration sites are not 

used. 
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A duplication check is carried out separately for both data sets. 

Whenever a duplicated pair is found for two peptides belonging to the 

same category, i.e. being negative or positive, one is removed. It must be 

noted that there is a large possibility that a negative peptide is identical  

to a positive peptide. A tyrosine site which is not labelled as an 

experimentally verified tyrosine nitration site could be potentially a true 

tyrosine nitration site. If two tyrosine peptides of a duplicated pair belong 

to two different categories, the positive peptide is kept while the negative 

one is discarded. After this, two sets of tyrosine peptides are combined. 

During the combination process, one more duplication check process is 

conducted to ensure there are no identical peptides in the data. In order to 

have roughly balanced peptides from two categories for modelling, a 

random selection is used for negative peptides at this stage. Table 15.1 

shows all the peptide information. For instance, in the 10-mer data set, 

686 non-duplicated negative peptides and 42 non-duplicated positive 

peptides are extracted from 77 Swiss-Prot protein sequences. Meanwhile 

718 non-duplicated negative peptides and 55 non-duplicated positive 

peptides are extracted from 89 NCBI protein sequences. After the 

combination, 73 negative and 56 positive 10-mer tyrosine peptides  

are maintained for hydrophobicity encoding. Two coding strategies are 

used. They are single-scale hydrophobicity patterns and dual-scale 

hydrophobicity patterns. A single-scale hydrophobicity pattern is 

generated using a single hydrophobicity scale for a tyrosine peptide 

while a dual-scale hydrophobicity pattern is generated using two 

different hydrophobicity scales, for instance the Kyte-Doolittle scale plus 

the Hopp-Woods scale. In total, there are 28 sets of hydrophobicity 

  

Table 15.1. Peptide distribution for three peptide lengths and 

two peptide formation stages. 

Peptide 

length 

Swiss-Prot 

Protein 

Swiss-Prot 

peptide 

NCBI 

protein 

NCBI 

peptide 

Final 

peptide 

10 77 686/42 89 718/55 73/56 

20 77 699/42 89 722/56 71/57 

30 77 703/42 89 725/56 68/57 
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patterns including seven single-scale ones and 21 dual-scale ones  

for each peptide. Residue correlations described in chapter 14 are  

used. 

Four machine learning algorithms are used. They are classification 

tree, artificial neural network (ANN) [463], the support vector machine 

[333] and the random forest algorithm [272]. All are available in R. In 

using ANN, four model structures with four different numbers of hidden 

neurons (5, 10, 15, and 20) are constructed. The radial basis function is 

used for the kernel function in the SVM models. The cost function is 100 

and the smoothing parameter of the radial-basis kernel function is one. 

The default parameters of the random forest model are used. The five-

fold cross-validation approach [252] is adopted. 

All classification tree models demonstrate much lower prediction 

accuracy than others (around 60%). ANN fails to model the following 

situations, 20-mer data with 20 hidden neurons, 30-mer data with 15 

hidden neurons, and the 30-mer data with 20 hidden neurons because the 

ratio of the number of parameters over the number of data points in these 

models exceeded the limit set by the package. For each of three 

algorithms one top model is selected. Because there are different 

numbers of hidden neurons, there are more top ANN models compared 

with the other two algorithms. Through computer simulation, it is found 

that there is positive correlation between the specificity of tyrosine 

peptides and nitration status. Such positive correlation is then 

implemented as a predictive tool for tyrosine nitration site prediction. 

Figure 15.1 shows the prediction performance of the top models 

ordered by the total accuracy. The ANN model with 10 hidden neurons 

built on the 30-mer data encoded by the Kyte and the Hopp scales is the 

best one. Its total prediction accuracy is 74%, sensitivity is 74%, 

specificity is 75%, negative prediction power is 73%, positive prediction 

power is 75%, and AUR is 0.75. The next best model is the RF model 

built on the 20-mer data encoded by the Kyte and the Hopp scales as 

well. Its total prediction accuracy is 73%, specificity is 75%, sensitivity 

is 72%, negative prediction power is 72%, positive prediction power is 

75%, and AUR is 0.72. 
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Fig. 15.1. The prediction performance ordered by the total prediction accuracy for the top 

models. The labels in the horizontal axis represent models. “ANN”, “RF”, and “SVM” 

are three machine learning algorithms. The numbers besides them indicate the peptide 

length. In each of nine top ANN models, the second number after the first number (for 

instance, 5, 10, 15, and 20) means the number of hidden neurons. “K” means the Kyte 

scale, “H” means the Hopp scale, “C” means the Cornette scale, “J” means the Janin 

scale, “R” means the Rose scale, “E” means the Eisenberg scale, and “N” means the 

Engelman scale. Dual scales are represented by two letters with “+” in between, for 

instance, “K+H” means the use of the Kyte scale and the Hopp scale. The vertical axis 

represents the percentage. 

 

Figure 15.2 shows the ranking result (box plot) using the mean 

decrease in Gini gain based on five-fold cross-validation random forest 

models. It can be seen from the Figure that the eighth N-terminal 

flanking residue of a tyrosine encoded by the Kyte scale is the most 

important one for the prediction. Meanwhile all eight residue correlation 

codes are within the top half region. Among them, the residue correlation 

encoded by the Hopp scale with a gap of 3 is ranked the third and the 

residue correlation encoded by the Kyte scale with a gap of 4 is ranked 

the fifth. Two of the top five variables are residue correlation codes. This 

does illustrate the importance of residue correlation in predicting tyrosine 

nitration sites. Because there is little experimentally verified mechanism 

of tyrosine nitration so far, this ranking can give some clue for biological 

investigation. 
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Fig. 15.2. Mean decrease in Gini gain for the RF model built on the 20-mer tyrosine 

peptides encoded by the Kyte scale and the Hopp scales. The variables are 40 residue 

codes (dual-scale codes for each of 20 residues) plus 8 residue correlation codes (4 for 

each of two scales). The data are ordered. The horizontal axis represents the encoded 

residues. “N” means an N-terminal residue and “C” means a C-terminal residue. The 

number following “N” or “C” means the residue number away from the tyrosine (the 

target for the prediction). The last letter represents the scale, K for Kyte scale and H for 

Hopp scale. “Z” means residue correlation codes. “Z4.K” means a residue correlation 

code with a gap length 4 (maximum gap length) and using the Kyte scale. A variable with 

a higher Gini gain is more important than a variable with a lower Gini gain. The vertical 

axis represents the Gini gain. 

15.2 Plant promoter region prediction 

A promoter is a segment with a few hundreds of nucleic acids of a DNA 

sequence. The function of a promoter is for facilitating gene 

transcription. Because of this, a promoter is located upstream of a DNA 

sequence near a gene. A promoter covers about 200 base pairs upstream 

and 51 base pairs downstream of a transcriptional start site. The close 

relation between promoters and gene transcription has made promoters 

an important contributor to various cellular functions including disease 

development. The prognostic importance of promoters has therefore 

already been discovered for various diseases [464-467]. 
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In prokaryotic organisms, it is believed that there is a conserved  

motif in the region of -35 base pairs upstream of a transcriptional start 

site [367, 468-470]. Predictors have been developed for prokaryotic 

promoter region prediction [471-473]. There is a large diversity when 

characterising promoters in eukaryotic proteins. A few kilo-base pairs 

upstream of a transcriptional start site may need to be examined [474]. 

Although it is accepted that eukaryotic promoter region prediction is 

difficult [475-478], a number of predictors have been developed. For 

instance, self-organising map [145] is used for analysing nucleic acid 

profile in promoters [479]. Artificial neural network is used for promoter 

prediction [477]. AdaBoost is used for the prediction of promoters as 

well [478]. 

Plant promoters, which are the focus of this work, have a close 

relation to pathogens. For instance, it has been found that an avirulence 

protein (for instance, AvrBs3 or AvrBs3Deltarep16) binds and activates 

a promoter of disease resistance genes to fight against pathogen invasion 

[480]. Xanthomonas campestris pv. Campestris is known as a causal 

agent of black-rot disease of cruciferous plants. It is related to the 

Escherichia coli lac promoter [481]. In studying Rab/GTPases which can 

regulate vesicular trafficking during exocytosis, endocytosis and cellular 

differentiation, it is found that a pectinase gene promoter allows foreign 

genes on pectin medium [482]. WRKY factors, known as a family of 

plant-related transcriptional regulators, are related to plant stress control. 

In an experiment, it is found that WRKY can suppress its own promoter 

activity and is positively correlated with pathogen defense-associated 

PR1 promoter activity [483]. Some synthetic promoters have been 

produced to study how signalling and transcriptional activation function 

when plant-pathogens are injected [484]. 

In terms of the importance of plant promoters, a database called 

PlantProm has been recently established [485]. In the database, all plant 

promoters for polymerase II are annotated without redundancy. All 

promoters have experimentally verified transcriptional start sites. There 

have been 175 TATA-rich plant promoters and 130 TATA-less plant 

promoters annotated so far. All the promoter segments are composed  

of -200 upstream base pairs of the transcriptional start sites and +51 

downstream base pairs of the transcriptional start sites. All segments are 
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stored in the FASTA format. Based on this database, two predictors have 

recently been constructed. One employed the transductive confidence 

machine [486] and the other employed the support vector machine 

algorithm [487]. In the former work, the sequence content and signal 

features are used as features. In the latter paper, the 4-mer motifs are 

used as features. Both have achieved very good prediction performance. 

However, motif correlation in relation to plant promoter has not drawn 

much attention. 

175 TATA-rich plant promoters (sequence segments) and 130 

TATA-less plant promoters are downloaded from PlantProm [485]. 

These data are treated as positive data. Each segment has 251 base pairs 

(bps) with -200 upstream and +51 downstream of transcriptional start 

sites. In order to generate negative data for model construction, 23211 

nucleic acid sequences containing CDS are downloaded from NCBI 

[488]. This is a method used in the previous studies [486, 489]. For each 

of 23211 sequences, there is often more than one CDS segment. Among 

a number of CDS segments, one CDS is randomly selected. One segment 

of 251 bps is randomly selected from the selected CDS. Because not 

every sequence contains a CDS segment, only 20925 segments of 251 

bps are extracted from these 23211 sequences. For each segment (both 

positive and negative), motif frequencies and motif correlations are used 

as features. The data composed of motif features are then used for 

building predictors.  

Three sets of motifs are investigated. The first set targets sequence 

content, i.e. 1-mer, 2-mer, 3-mer and 4-mer motifs are used. This is to 

test how motif frequency is related to the recognition of a promoter 

region. The second set is called first-order or low-order motif correlation. 

It targets base pair correlation, for instance one adenine finds another 

adenine with a gap g. This is to evaluate how correlated single base pair 

motifs are related to promoter binding. The maximum value of g is set at 

20. The third set is an extension of the second set aiming to investigate 

high-order motif correlations in relation to promoter status. Three 

machine learning algorithms: artificial neural networks, the support 

vector machine algorithm and the random forest algorithm, are used. 

Three types of motifs are designed. Type I are k-mer motifs. With 

this motif pattern, a sliding window with a target k-mer motif is used to 
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scan each segment. The frequency of a k-mer motif in a segment is used 

as a feature. When k is 1, this is single nucleic acid frequency, i.e. the 

frequencies of cytosine, guanine, adenine and thymine in a segment. 

Here maximum k is set to 4. In total, there are 340 type I motifs, hence 

340 features.  

Type II motifs are called first-order or low-order motif correlation, 

i.e. gapped single-nucleic correlations. This measures how likely an 

adenine is to meet another adenine with a gap g within the same segment 

or how likely an adenine is to meet a thymine with a gap g within the 

same segment. The frequency of each gapped single-nucleic correlation 

is treated as a feature. Suppose we denote two of all the gapped single-

nucleic correlations as A-1-A and A-1-T; the frequency of A-1-A and  

A-1-T is 1 and 2 in a segment GCTCATTGAACTGAATAAA. The 

maximum value of gap g is set to 20. The number of extracted features 

using Type II (or low-order) motifs is then 320=16*20. 

Type III is an extension to Type II, i.e. being high-order motif 

correlations. The correlations of 2-mer and 3-mer motifs are evaluated in 

this study. Higher order motifs made model construction infeasible 

because of huge dimensionality. For instance, in a segment 

GCTCATTGCACTGCATTAA, the GC pair has one hit by a gap 3 and 

one hit by a gap 6. The TT pair has one hit by a gap 8. The CA pair has 

two hits by a gap 3. The triple ATT has one hit by a gap 7. The 

maximum gap is set to 20 in this study. There are 1600 high-order motif 

correlation features, i.e. (16+64)*20. The separate consideration of motif 

correlation is for investigating if low-order or high-order motif 

correlations are important in plant promoter recognition. 

Three simulations are designed, i.e. alpha simulation, beta 

simulation and gamma simulation. In alpha simulation, TATA-rich and 

TATA-less segments are treated separately, i.e. two separate sets of 

models are constructed. One uses the TATA-rich segments as the 

positive data and the other uses TATA-less segments as the positive data. 

Both use the segments extracted from CDS in NCBI sequences as the 

negative data. In beta simulation, both TATA-rich and TATA-less 

segments are combined together to form the positive data while the 

segments extracted from CDS in NCBI sequences are used as the 

negative data, as previous works have done [486, 489]. The segments 
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being organised this way is referred to as dual segments. Both alpha and 

beta simulations employ the 20-fold cross-validation approach for model 

evaluation [252]. In 20-fold cross-validation, data are randomly divided 

into 20 folds. One fold of data is reserved for testing using a model 

constructed on the rest of the data (19 folds). The 20 folds are in turn 

used as testing data. 20 models are therefore constructed. The mean and 

standard deviation of testing performance of the 20 models are calculated 

for the evaluation. In gamma simulation, three data sets are formed. 

Their positive data are TATA-rich segments, TATA-less segments and 

dual segments. Their negative data are the segments extracted from CDS 

in NCBI sequences as above. A bootstrapping approach is adopted to test 

the probabilistic blind sensitivity (PBS), i.e. estimating the probabilistic 

property when using constructed models to predict true promoters on 

novel segments. In order to test this, a certain proportion of positive 

segments (TATA-rich, TATA-less or dual segments) are randomly 

selected from whole positive segments as the blind segments. This 

simulation is designed for comparing with Shahmuradov’s work using 

the transductive confidence machine [485] where only one set of blind 

segments is used for the evaluation. The rest of the data including 

positive and negative segments are treated as training data used for 

constructing a predictor. The numbers of reserved blind segments are 40 

for TATA-rich (as in Shahmuradov’s work [485]), 25 for TATA-less (as 

in Shahmuradov’s work [485]) and 40 for the dual data. The process is 

repeated 100 times, i.e., 100 sets of blind segments are randomly 

generated from whole positive data. A predictor is constructed for each 

randomly generated set of training data by the 20-fold cross-validation 

approach. Each built predictor is then tested on its corresponding blind 

segments. A probabilistic estimation (mean and standard deviation) of 

blind sensitivity is obtained from the 100 random models. 

In Shahmuradov’s paper [486], two models are constructed for 

predicting TATA-rich promoters and TATA-less promoters in plants, 

separately. In prediction, 40 TATA-rich promoter segments and 25 

TATA-less promoter segments are reserved as test segments and the rest 

are used for model construction. No negative data are used for testing the 

predictor. The prediction accuracies are 87.5% and 84% for TATA-rich 

and TATA-less, respectively. In Anwar’s study [489], both TATA-rich 



 Sequence/Structure Bioinformatics Foundation – Peptide Classification 235 

and TATA-less promoters are combined into one model. The prediction 

specificity is 90% and the prediction sensitivity is 86%.  

In comparison, the ANN models are the best. In all simulations, motif 

correlation (high-order motif) ANN models outperform others. This 

means that motif correlation plays an important role in promoter 

recognition. The performances of ANN models for the beta simulation 

are discussed here. 

 

 

Fig. 15.3. The performance of ANN-dual model in alpha simulation. The notation of the 

horizontal axis follows TATA-coding type-hidden neurons. For instance, D-III-20 means 

dual data using Type III coding and an ANN model with 20 hidden neurons. The vertical 

axis represents the performance. 

 

Figure 15.3 shows the performance of the alpha simulation for the 

dual group. The specificity of 12 models varies from 90% to 94%. The 

sensitivity of 12 models varies from 83% to 92%. All ANN models have 

their specificity greater than that of Anwar’s work. 15 out of 18 ANN 

models have their sensitivity greater than that of Anwar’s work. NPP 

varies from 89% to 95%. PPP varies from 85% to 91%. The total 

accuracy varies from 87% to 93%. The top model uses Type I coding 

with an ANN model employing 10 hidden neurons. 
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One of the important functions that the random forest algorithm has is 

to rank variables. Here we use the mean decrease in accuracy (MDA) for 

the analysis. 

Table 15.2. The ranking results using MDA for two groups with three types of motifs. 

For Type II motifs, the features are expressed by X-n-Y, where X and Y are two nucleic 

acids and n is the number of gaps between them. For Type III motifs, the features  

are expressed by [X]-n-[X], where X is a motif and n is the gaps between two positions of 

the motif. 

MDA TATA-rich - 

A 

TATA-rich - 

B 

TATA-rich -

C 

TATA-less - 

A 

TATA-less - 

B 

TATA-less - 

C 

1 G G-12-G ATA-4-ATA G G-3-G TA-17-TA 

2 TATA G-15-G TA-2-TA GG G-15-G CTC-2-CTC 

3 GGA T-1-A TA-4-TA GGA G-12-G TT-2-TT 

4 GG G-18-G AT-4-AT TTTT C-2-G TT-1-TT 

5 TA G-1-G TA-8-TA TTT G-6-G TTT-1-TTT 

6 GA G-17-G TA-6-TA GA G-18-G TCT-2-TCT 

7 TGG G-9-G ATA-2-ATA TA C-5-G TT-5-TT 

8 TAAA C-15-A AA-1-AA TGG G-14-C TTT-2-TTT 

9 ATAA C-2-G AA-5-AA GC C-5-C CT-2-CT 

10 TAA G-6-G CA-4-CA CCTC C-4-G TT-4-TT 

 

Shown in Table 15.2 are the ranking results for the TATA-rich and 

TATA-less groups using three types of motifs. For Type I motifs, we 

show that the following common motifs are shared by both TATA-rich 

and TATA-less groups, G, GG, TA, GA, and TGG. As expected, TATA-

rich is highly ranked in the TATA-rich group, but not in the TATA-less 

group. Instead, the motif TTTT is highly ranked in the TATA-less group. 

The binuclear GC has been ranked at 9
th in the TATA-less group, but not 

in the top ten of the TATA-rich group. When using Type II motifs, it is 

found that G-12-G, G-15-G, G-18-G, C-2-G, and G-6-G are common to 

the two groups. T-1-A, G-1-G, G-17-G, G-9-G, and C-15-A are distinct 

for the TATA-rich group while G-3-G, C-5-G, G-14-G, C-5-C, and  

C-4-G are distinct for the TATA-less group. When using Type III motifs, 

we show that the TATA-less group prefers rich thymine-based motif 

correlation. All top ten motif correlation features involve thymine. 

Moreover, four 2-mer motifs involve only thymine (TT-1-TT, TT-2-TT, 

TT-4-TT, and TT-5-TT) and two 3-mer motifs involve only thymine 
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(TTT-1-TTT and TTT-2-TTT). In the TATA-rich group, more motifs 

involve thymine and adenine.  

Summary 

This chapter has presented two case studies for understanding the 

foundation of sequence/structural bioinformatics. The core of these 

studies is peptide classification although they have different biological 

backgrounds. In peptide classification, we need to carefully collect 

sequence data and extract peptides. The duplicated ones must be 

removed. Care should also be taken for the inferred ones because they 

cannot be treated as annotated data or non-annotated data. These data 

must be excluded from the study in case they bring in some false 

information. In model construction, we need to be careful about model 

selection and evaluation. Different criteria may lead to the selection of 

different models. In most cases, a more robust model is preferred. Model 

selection should also be based on the evidence collected in a study. It is 

very common that one machine-learning algorithm outperforms the 

others in one application, but may show a completely different story in 

other applications. Making a web tool for public use is also a 

recommended research approach.  
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Chapter 16 

Gene Network – Causal Network 

and Bayesian Networks 

A traditional point of view of structure-function relation is 

Sequence →  Structure →  Function 

It is argued that this simple flow is too reductionistic [490]. This is 

because any biological function is completed by a network of 

molecules in a cell. A network is always composed of complicated 

interactions among molecules in a cell. Even more complicated are the 

dynamics of the interactions, some being more transient and some 

taking more time to complete. The complexity can increase when 

crosstalk happens unexpectedly. The post-genomic approach towards 

studying biological functions has a new flow expression as below [490] 

Interaction →  Network →  Function 

A gene network is a typical one among various molecular networks. 

This chapter focuses on the topic of causal network construction and 

the concept of Bayesian network. 

16.1 Gene regulatory network 

A gene regulatory network (GRN) is a graphical or visual representation 

of the interactions of DNA segments in a cell. Such a network has three 

properties. First, input and output; no GRN is an isolated entity in a cell. 

A GRN is activated by signals sent by other GRNs or external stimuli 

and sends signals to other GRNs. For instance, a plant-pathogen GRN is 

shown in Fig. 16.1, where the inputs to the network are rhizobacteria, 

fungus, bacteria including AvrPto, elicitor, and AvrRPM1. The output is 

the phytoalexins. A simple input-output function between them can be 

expressed as 
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 phytoalexins (rhizobacteria,AvrPto,elicitor,AvrRPM1)f=  (16.1) 

 

 

Fig. 16.1. Plant-pathogen gene regulatory network http://wwwmgs.bionet.nsc.ru/mgs/gnw/ 

genenet/viewer/Plant-pathogen. 

 

Second, the molecules in a GRN can have complicated interactions. 

Figure 16.2 is a sub-network of Fig. 16.1, where it can be seen that Pto (a 

kinase conferring resistance to tomato bacterial speck disease and 

interacting with proteins that bind a cis-element of pathogenesis-related 

genes [491]) receives both external signals (AvrPto) and signals from the 

nucleus (PRF). In return, it sends signals to the nucleus again through 

Pti5. 
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Fig. 16.2. A sub-network of plant-pathogen GRN. 

 

Third, all activities within a network are transient or dynamic 

depending on many complex factors. Many works have employed 

differential equations to study these dynamics. 

The importance of studying network results from the fact that the 

activities of molecules in a network reflect what initial conditions a GRN 

has, what the environmental factors are, and importantly how molecules 

in a GRN interact [490]. Taking gene expression as an example, the 

proportion of differentially expressed genes is commonly small [492-

494]. Rather than focusing on the genomes to study a blueprint of life, 

studying how these differential genes appear is a way to discover the 

chemical blueprint of life through network analysis.   
As mentioned above, a GRN is a graphical or visual representation of 

a true biological network. A GRN resembles most ordered networks for 

which there are two types of tasks for research. One is how to analyse 

network property and the other is how to construct a network based on 

observations. For the former, the focal points include network 

complexity analysis [495-497], shortest/longest path identification [498-

500], and network robustness [501-503]. Machine-learning algorithms 

have been largely used for the latter. Among various algorithms, the 

Bayesian network shows many advantages in applications. 
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16.2 Causal networks, networks, graphs 

A causal network is a network with connected nodes and arcs 

demonstrating causality. Each node represents a variable and each arc 

represents the causality between two variables. Variables with a direct 

connection are said to have a direct causality. Variables with an indirect 

connection are said to have an indirect causality. Variables having no 

connections are said to be independent. For instance, variables A and B 

have a direct causality in Fig. 16.3. Variables A and E have an indirect 

causality. Variables F and G are independent. 

 
 

 

Fig. 16.3. An illustration of a causal network with six variables and causalities. 

 

Because a causal network is a visual representation of a physical or 

biological system, a graph is commonly used to denote a network. A 

graph is a two-fold set ),( EVG =  with V  to represent a set of variables 

(or nodes) and VVE ×⊆  to represent a set of arcs. Ev, j ∈)( iv  

represents a directed arc from V∈iv  to Vv j ∈ . In this book, only 

directed networks are used for the discussion. The notation 

>< ''2'1 ,,, nvvv ⋯  is used to denote a path from '1v  to 'nv  through 

variables },,{ '1'2 −nvv ⋯ . The notation v̂  is used to represent the parent 

node(s) of a node v  and the notation v~  is used to represent the child 

node(s) of a node v . 
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16.3 A brief review of the probability 

Informally, a probability is defined as a chance that an event happens 

among a discrete set of events. Suppose we have an experiment with N 

trials for testing oxidative stress in plants. The chance that the oxidative 

stress is observed in N experiments is expressed as 

 
N

P
observed isoxidation  that  timesthe

)oxidative( =  (16.2) 

It is treated as a probability. In Fig. 16.1 we have seen that the oxidative 

stress can be caused by GST (glutathione S-transferase) or ROS (reactive 

oxygen species). Suppose we have observed NN <GST  times that GST 

is over-expressed when oxidative stress is observed and NN <ROS  

times that ROS is over-expressed when oxidative stress is observed. The 

chance of observing two random events occurring at the same time in 

probability is called a joint probability. The joint probability for 

observing over-expressed GST and oxidative stress is defined as 

 
N

N
P GST)GST&oxidative( =  (16.3) 

The joint probability for observing over-expressed ROS and oxidative 

stress is defined as 

 
N

N
P ROS)ROS&oxidative( =  (16.4) 

Having these joint probabilities on hand, we may need to answer a 

question. What is the probability that GST will cause oxidative stress and 

what is the probability that ROS will cause oxidative stress? This is a 

question of conditional probability, i.e. the probability of one random 

event happening after another random event has happened. To answer 

this question, we need to know two more quantities: the probability that 

GST is over-expressed and the probability that ROS is over-expressed. 

Suppose they are also observed in this experiment and are denoted by 

GSTP  and ROSP . They are called marginal probabilities. Having these 
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two more quantities, we can answer the above question using the concept 
of conditional probability. The conditional probability is defined as 

 
yprobabilit marginal

yprobabilitjoint 
yprobabilit lconditiona   (16.5) 

Going back to the question, we can see that the conditional probability 
that oxidative stress occurs with over-expression of GST is 

 
GST

GST)GST|oxidative(
PN

NP


  (16.6) 

and the conditional probability that oxidative stress occurs with over-
expression of ROS is 

 
ROS

ROS)ROS|oxidative(
PN

NP


  (16.7) 

Figure 16.4 shows a diagram of the relationship between the three parts. 
 
 

 

Fig. 16.4. The logical relationship between the oxidative stress, GST and ROS. 
 

Remember that all the probabilities calculated above are based on  
the current experiment. Equations (16.6) and (16.7) are also called 
likelihood. They are objective measures. Before the experiment we may 
have some subjective knowledge about how likely GST and ROS are to 
be over-expressed, let’s use another two probabilities to quantify this,  
i.e. GST and ROS . They are called a prior probabilities. Based on these 
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probabilities, we can update our belief about which causes the oxidative 
stress using the Bayes rule. It is used here to deliver posterior probability 
for decision making 

 
evidence

prior a  lconditiona
posterior


  (16.8) 

The evidence is calculated as the sum of all the products between 
conditional probabilities and a prior probabilities. Going back to our 
question, we can see that the posterior probability that GST causes the 
oxidative stress is 
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GST
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


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
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
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N
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N

P  (16.9) 

The posterior probability that ROS causes the oxidative stress is 
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
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In probability, other rules are also relevant to the analysis of the 
Bayesian networks. For N mutually independent random events ( ix ), the 
probability that either one occurs is defined as 

 






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

 N
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N

i
i xPxP

11
)(  (16.11) 

The probability that all N mutually independent random events ( ix ) 
occur at the same time is defined as 

 



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If two mutually independent random variables X and Y have N 
implementations (values), the total probability is defined as  

 



N

j
jii yxPxP

1
),()(  (16.13) 

or 

 



N

j
jii xyPyP

1
),()(  (16.14) 

16.4 Discrete Bayesian network 

In this book, we provide only an introduction to discrete Bayesian 
network. For a variety of Bayesian networks, readers can refer to 
Neapolitan’s book [504] and Jensen’s book [505]. A Discrete Bayesian 
network (DBN) is denoted by )( PG,X,N  , where X  represents a set of 
discrete variables, G  represents a graph, and P  represents a set of 
conditional probabilities. For each variable in XiX , its probability 
distribution is denoted by P)ˆ|( ii XXP . Let’s discuss the case shown 
in Fig. 16.4. In DBN, we assume that all three variables are taking  
binary values } yes no, { . The conditional probabilities P  are shown in 
Table 16.1. 

Table 16.1. The conditional probability 
set for the case shown in Fig. 16.4. 

  Oxidative 
GST ROS no yes 

no no 0.7 0.3 
no yes 0.2 0.8 
yes no 0.1 0.9 
yes yes 0.4 0.6 

 
We also have the a prior probability set shown in Table 16.2. These 

probabilities quantitatively measure the subjective knowledge. 
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Table 16.2. The prior probability 
set for the case shown in Fig. 16.4. 

 GST  ROS
no 0.7 0.8 
yes 0.3 0.2 

 
The calculated posterior probabilities are 

 )474.0 ,526.0()oxidative|GST( P  (16.15) 

and 

 )278.0 ,722.0()oxidative|R( OSP  (16.16) 

We can label the DBN by these numbers shown in Fig. 16.5, where the 
broken lines represent “no” state and the solid lines represent “yes” state. 
 
 

 

Fig. 16.5. The labelled DBN. 

16.5 Inference with discrete Bayesian network 

Building a machine-learning model is ultimately for prediction or 
inference. Given a Bayesian network, the aim is to predict the future with 
uncertainty. In a given DBN, we are required to calculate the marginal 
probability of a target variable using 
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  
 


YX X

ii
YX i

XXPPYP
\\

)ˆ|()()(
X XX

X  (16.17) 

In the oxidative stress case, if the target variable is oxidative, its parent 
variables are GST and ROS. We then have 

 
GST ROS

(oxidative)

(oxidative|GST,ROS) (GST) (ROS)

P
P P P    (16.18) 

Using the above equation, the marginal probabilities of oxidative stress 
are 47% and 53%. The probabilities indicate that it is very likely that 
oxidative stress is observable in this case. 

16.6 Learning discrete Bayesian network 

To estimate the parameters of DBN, the Bayes rule is used. Equation 
(16.8) can be re-written as 

   ,
)(

)()(
)|(

D

|D
D

P
PPP  (16.19) 

where   is a parameter space and   is the parameter learnt for fitting 
the data D . In general, we assume that all model parameters are 
independent. Based on the probability rule discussed above, we have 

  
 


X Xi i

iiX X
XXPP

ˆ
ˆ|

)()(   (16.20) 

where )( ˆ| ii XXP   is called a local parameter prior for variable iX  which 

can use the Dirichlet distribution [506]. 

16.7 Bayesian networks for gene regulatory networks 

Bayesian networks have been widely used in gene regulatory network 
analysis [507-513]. However, learning a Bayesian network model has 
been known to be an NP-hard problem, i.e. it is only applicable to small 
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size networks. Searching and scoring approaches as well as a number of 

heuristic algorithms are implemented [514] [515] [516]. Meanwhile, 

conditional independency has to be well calculated. In a modified 

Bayesian network, mutual information is proposed to measure the 

dependency. Because of this, the exponential time complexity spent in 

calculating conditional independency can be reduced for large-scale gene 

regulatory network analysis [517]. In order to improve inference 

confidence, the idea of consensus and meta-analysis is used in analysing 

regulatory gene network [518]. Bayesian networks can also be used to 

reveal dynamics in gene expression data using time series gene 

expression data [519].  

16.8 Bayesian networks for discovering peptide patterns 

Here we demonstrate an application of discrete Bayesian networks for 

discovering patterns in peptide data. First, we apply DBN to the HIV 

data which was described in chapter 11. In applying DBN, the cleaved 

(positive) and non-cleaved (negative) peptides are separately used for 

building DBN models. After the modes have been constructed, we then 

visualise and compare two network structures. Figure 16.6 shows two 

network structures. The two structures have some differences. In the 

negative structure, it can be seen that eight residues are divided into four 

coupling groups regularly. The coupling effect is a common phenomenon 

in peptide structure analysis, i.e. neighbouring residues can possess 

certain structures for preserving biological pattern for certain biological 

functions. In the positive structure (the right panel), such a regular 

structure does not exist. Instead, residue C4 and C1 become parent 

variables for the other four residues. 

Figure 16.7 shows a case of Hepatitis C-virus 10-mer protease 

peptides. The data is from an early study [520]. The data set is composed 

of 752 non-cleaved HCV peptides and 168 cleaved peptides. The same 

approach used in analysing the HIV data applies to the HCV data. The 

left panel is for the negative structure where the regular pattern is shown 

again. However, in the positive DBN structure (the right panel), such 

regularity is broken. The C3 residue is not coupling with C4. Instead, it 

correlates with N1. Residue C2 is the parent variable for C1 and N2. 
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Fig. 16.6. Two DBN structures made for the HIV data. The left panel shows the negative 

structure and the right panel shows the positive structure. Each 8-mer peptide is denoted 

by N4-N3-N2-N1-C1-C2-C3-C4 with N meaning the N-terminal residues and C meaning the 

C-terminal residues. 

 

 
Fig. 16.7. Two DBN structures made for the HCV data. The left panel shows the negative 

structure and the right panel shows the positive structure. Each 10-mer peptide is denoted 

by N6-N5-N4-N3-N2-N1-C1-C2-C3-C4 with N representing N-terminal residues and C 

representing C-terminal residues. 

16.9 Bayesian networks for analysing Burkholderia pseudomallei 

gene data 

The positive and negative data sets (for infected and non-infected 

patients respectively) are used separately. The networks derived are 
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shown in Fig. 16.8. The data are the reduced data set generated by the 

random forest algorithm discussed in chapter 9. Only the top ten genes 

are used for the study. After the construction of two DBN structures, 

differences were found between the two. First, the complexity in the 

negative structure is higher than that in the positive structure. This means 

that randomness is less in the positive data or that the diagnostic pattern 

is hidden in the positive structure. 

 

 

Fig. 16.8. Two DBN structures made for the reduced Burkholderia pseudomallei gene 

expression data. “Reduced” means that only ten top genes selected by the random forest 

algorithm discussed in chapter 9 are used. The left panel shows the negative structure and 

the right panel shows the positive structure. 

 

Second, some direction has been changed from the negative structure 

to the positive structure. For instance, the gene BPSS1492 is a parent 

variable for the gene BPSS1512 in the negative structure. However, their 

relation in the positive structure is reversed. Third, one important mutual 

relation discovered in chapter 13 is retained for both negative and 

positive structures. It is the correlation between the gene BPSL2697 and 

the gene BPSS0477. Fourth, the gene BPSL2096 is always the root 

variable or the most causative gene in both negative and positive 

structures. The paths led by the gene BPSL2096 are shown in Fig. 16.9. 

In two paths, one “downstream” gene is identical, i.e. the gene 

BPSS2141. 
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Fig. 16.9. Two paths led from the same gene (BPSL2096) from both negative (the right 

panel) and positive (the left panel) DBN structures. 

 

We then extend the network size to a larger scale. 214 genes are 

selected based on the distance between two gene vectors. If the distance 

is smaller than a threshold, one is removed. Based on the threshold 0.17 

for the negative data set and 0.135 for the positive data set we have 24 

and 23 genes in the negative and positive data sets, respectively. Figure 

16.10 shows the DBN structures. 
 

 
Fig. 16.10. Two DBN structures derived from 24 genes in the negative data set and 23 

genes in the positive data set. The genes are selected based on a distance threshold. 
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Summary 

This chapter has discussed the discrete Bayesian network and its 

applications to bioinformatics. In constructing a Bayesian network, we 

are required to undertake three different tasks. First, we need to learn 

model parameters, i.e. the posterior probabilities from each parent 

variable to a child variable. Second, we need to use a built network to 

make inferences. This involves the prediction of a certain event with a 

confidence. Third, we can use the network to infer how likely one 

“downstream” (child) variable is to be the outcome of its causative 

variable “upstream”. Bayesian networks are a class of powerful machine-

learning algorithms which can help discover the underlying gene 

regulatory network for understanding how a gene network responds to 

environmental factors and generating new hypotheses. However, 

Bayesian networks are known to have a vital limit in computational cost 

as well as network size. Currently, building a Bayesian network for data 

with over 1000 variables is a non-trivial task, i.e. the computational cost 

is not affordable. More and more new algorithms which aim to improve 

the efficiency and accuracy of Bayesian networks learning have been 

proposed. The evaluation and validation of them for general purpose 

Bayesian network learning is still a vital and tough task we face.  
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Chapter 17 

S-Systems 

Biochemical System Theory (BST) defines a mathematical model to 

study the dynamics of a biochemical system. The theory was 

introduced by Mike Savageau in the 1960s. Using BST to study a 

biochemical system does not need equations defining the exact 

mechanism of reactions. In a BST model, the relation between reactants 

and regulatory interactions is modelled by the power-law theory. The 

approach is referred to as S-systems or generalised mass action (GMA). 

There are two subjects closely related to S-system research. The first is 

how to learn the structure of an S-system given data. The second is how 

to learn system parameters given an S-system structure. 

17.1 Michealis-Menten change law 

Biochemical System Theory (BST) or S-system refers to a type of 

biochemical systems study that uses a mathematical biology approach. 

The model was introduced by Mike Savageau in the late 1960s [521-

523]. The equations involved in BST are commonly ordinary differential 

equations. Each equation describes a biochemical process based on the 

power-law theory.  

The dynamics of a biochemical system with a single component (X) 

can be described by a function )(tX  which is a function of time. An 

experiment often aims to find how the component changes through time. 

Observations are taken at several time intervals. From this, the change 

rate can be drawn and analysed. In mathematics, such a change rate can 

be defined by an ordinary differential equation as below 
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 βα += X
dt

dX
 (17.1) 

To solve this equation, an integral can be taken to generate the following 

equation 

 )1(  −= +CteX α

α

β
 (17.2) 

If the initial state is (0, 0), the system may be plotted as in Fig. 17.1. 

 
 

 

Fig. 17.1. An illustration of change rate for a single component biochemical system. The 

horizontal axis represents time and the vertical axis represents the quantity of the 

component (X). 

 

 

A well-known rate change example in biochemistry is the Michealis-

Menten rate law [524]. The reaction between an enzyme (E) and a 

substrate (S) leads to a product (P). The diagram of a simple biochemical 

reaction is shown in Fig. 17.2, where k1, k-1 and k2 are three reaction 

constants. 
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Fig. 17.2. An illustration of a simple biochemical reaction. 

 

The system is described as 

 
SK

SV
S

dt

dS

M +
−== max

.

 (17.3) 

where maxV  is the maximum change rate of the substrate and MK  is 

called the Michealis constant. The product is described by another 

differential equation as below 

 
SK

SV
P

dt

dP

M +
== max

.

 (17.4) 

The relation between them is shown in Fig. 17.3. 

 
 

 

Fig. 17.3. The relation between maxV  and MK . 

 

Solving the ordinary differential equations defined in equations (17.3) 

and (17.4) leads to the system dynamics shown in Fig. 17.4. 
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Fig. 17.4. An illustration of the system dynamics of a simple biochemical system using 

the Michaelis-Menten rate law. In this simulation, 2max =V  and 4=MK . 

17.2 S-system 

A general mathematical description of a biochemical system of N 

substrates can be shown as below 

 −+
−= iii VVX   

.

 (17.5) 

where iX  is the ith substrate in a biochemical system., +
iV  and −

iV  are 

called the product formation and substrate depletion of the ith substrate. 

They are also called influx [525] and outflow (or degradation [525]). 

Both production formation and substrate depletion are functions of 

substrates 

 ),,,( 21  Nii XXXVV ⋯

++ =  and ),,,( 21  Nii XXXVV ⋯

−− =  (17.6) 

A three-component and one-reaction system is shown in Fig. 17.5 [525]. 

The function of the enzyme 3X  is to convert the substrate 1X  to the  
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product 2X . 1X  has no influx but has a degradation term. Its influx is 

then replaced by a constant C. 2X  has one influx term and a degradation 

term. The system is defined below by two ordinary differential equations 
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−

−=
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Note that ),(),( 312311 XXVXXV
+−

= . 

 
 

 

Fig. 17.5. A three-component and one-reaction biochemical system., 1X  and 2X  are 

substrates while 3X  is an enzyme. 

 

The next critical question is how to represent ),( 311 XXV
−  and 

)( 22 XV
−  as functions of the substrates and enzyme. Based on the 

pioneering work of Savageau [521-523], both outflows of equation 

(17.7) are represented as the products of molecules, which is referred to 

as the power law as shown below 
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where a, b, c, d, and e are five constants. A generalised form of a 

biochemical system with N substrates and N enzymes is shown below, 

called an S-system where “S” refers to synergism and saturation of an 

investigated system [525]. 
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where iα  is a constant of the production formation rate, jβ  is a constant 

of the substrate depletion rate, ijµ  is the production formation kinetic 

rate, and ijν  is the substrate depletion kinetic rate. 

Here we show an example [525] 
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 (17.10) 

Figure 17.6 shows the result of solving this differential equation. 

 

 

Fig. 17.6. The dynamics of the S-system described by equation (17.10), where 

111 == βα . 

 

In Voit’s book [525], three properties of an S-system are discussed. In 

brief, they are validity, theoretic justification, and analytic convenience. 

For the first one, it is shown that S-system models are consistent with 

real biochemical systems. In many experiments, the power-law property 

of an S-system is confirmed. For the second, Voit presented three 

arguments. One is that concentration is very close to the steady-state.  
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The next is the fact that the relative change of metabolite concentration is 

generally linear. The final one is that virtually any phenomenon can be 

formulated using an S-system. For the third, Voit argued that an S-

system can easily be modelled numerically. 

However, an S-system still has a certain distance from real 

applications because of the difficulty in structure identification and 

parameter estimation. In a real application, it is normally rare to have 

prior knowledge of a model structure as well as model parameters. This 

means that it is hard to define an exact influx function and a degradation 

function for each substrate. Even if the model structure can be 

approximately determined, a proper approach is needed to estimate all 

the parameters. The difficulty is even more severe when we have limited 

data, i.e. the time points are limited. 

Various machine learning algorithms are therefore employed in 

various studies to address these two problems. 

17.3 Simplification of an S-system 

Because structure identification and parameter estimation are the most 

important things to do, a simplification process of an S-system is 

required. This will lead to several algebraic equations which can be 

solved by machine learning algorithms. The simplification is to make a 

discrete version of an S-system. Suppose we have collected a data set 

comprising T sets of observations for N substrates and M enzymes. This 

process is also called decoupling [526, 527]. The process is to replace the 

left-hand side of the differential equations of an S-system by gradients 

which are estimated in several ways described in the next section. If 

gradients at T time points are calculated, ( NT × ) nonlinear equations 

can be defined as below 
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where )(tiε  is the error term meaning that the gradients calculated may 

have some deviations from the outputs of the true models ( )(tyi ) 
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An error function is defined as below 
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Through minimising this error function, model parameters can be 

estimated. 

17.4 Approaches for structure identification and parameter 

estimation 

In order to identify a proper S-system structure and estimate its 

parameters, we are required to use a specific approach if we have a 

specific assumption. Three approaches have been used for structure 

identification and parameter estimation. They are neural network 

approach, evolutionary computation approach, and steady-state 

approach. 

17.4.1 Neural network approach 

With the neural network approach, the gradients are estimated using 

neural network algorithms [526-528]. A neural network model is built 

for estimating gradients. Its inputs are the times and its outputs are the 

gradients. The observed gradients at jt  for iX  is estimated from 

experimental data by 
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Figure 17.7 shows an example of using neural network to estimate 

gradients. The raw data are the same as in the simple change rate 

example shown in Fig. 17.1 where 3−=α  and 2=β . Two hidden 

neurons are used. It can be seen that neural network can well estimate the 

gradients with a small error. 

After gradients have been estimated, the ordinary differential 

equations become nonlinear algebraic equations for which Newton-

Raphson numerical approximation algorithm [529] can be used to 

estimate model parameters [525]. 
 

 

Fig. 17.7. An illustration of estimating gradients using neural network. The circles are the 

estimated gradients from raw data. The solid line represents the concentration. The 

dashed line represents the predicted gradients using neural network. 

17.4.2 Simulated annealing approach 

With simulated annealing approach, the main objective is to determine 

the model parameters [530]. The same optimisation principle is applied 

as when using neural network algorithm, i.e. minimising the error 

between model outputs and experimental data. However, unlike neural  
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network approach mentioned above, gradients are not estimated. Instead, 

the first order approximation is used as below 

 jjijiji ttXtXtX ∆+≈ − )()()( 1

.

 (17.15) 

where )( 1−ji tX
.

 is evaluated at time 1−jt  and jt∆  is the time interval 

from time 1−jt  to time jt . Simulated annealing (SA) is an global 

optimisation approach used in machine learning [531]. 

17.4.3 Evolutionary computation approach 

Similar to simulated annealing, evolutionary computation is also a global 

optimisation approach in machine learning [532, 533]. In using the 

genetic algorithm, one of the evolutionary computation algorithms, 

Kikuchi et. al. code the model parameters using real codes and search for 

the best solution through evolving candidates [534]. In Edwards’s work, 

model parameters are coded using binary codes [535]. In Kimura’s work, 

gene time-course data are estimated using spline interpolation or a  

local linear regression technique. The estimated gene time-course data 

are then used in an optimisation process employing the cooperative 

coevolutionary algorithm [536]. In order to make an evolutionary process 

suitable for optimising multiple criteria in parallel, a multi-objective 

optimisation strategy has also been used [537].  

17.5 Steady-state analysis of an S-system 

Rather than analysing dynamical properties and functions, many 

experiments focus on steady-state analysis as it contains important 

biochemical patterns [525]. In this situation, we assume 0≡
.

iX . From 

this, equation (17.9) is re-written as 
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Applying logarithm to the above equation leads to 
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Given all the model parameters, we can analyse the relation between 

substrates and enzymes at the steady-state. Equation (17.17) can be re-

written as 
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For instance, suppose we have a biochemical system defined as below 
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Its dynamics are shown in Fig. 17.8, where we assume the initial states is 

at (1, 1). 

The steady-state analysis is shown as below 
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The equations give 
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From Fig. 17.8, it can be seen that the steady-state calculation is correct. 

Figure 17.9 shows the trace of the system which approaches the steady-

state at the point (2.5, 1) through time. It can be seen that the curve 

reaches the final point at (2, 5) from the initial sates at (1, 1). 
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Fig. 17.8. A biochemical system to show steady-state study. 

 

 

Fig. 17.9. The trace of the system. The horizontal axis represents 1X  while the vertical 

axis represents 2X . 

 

Feedback is a common phenomenon in biochemical systems. Here we 

consider the application of the S-system to a biochemical system with 

four molecules. The system is shown in Fig. 17.10 and is quantified as 

below 

 

X
2

 

X1 
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The initial state is 
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Fig. 17.10. A biochemical system with a feedback. 3X  and 4X  are the inputs to this 

system while 2X  has a feedback on 1X . The solid lines represent the reactions while the 

broken lines represent enzymatic activities. 

 

Figure 17.11 shows the system dynamics (the left panel) and the trace 

through time (the right panel). 

Another even more complicated feedback system can be considered 

as below. Suppose the feedback is made through a non-linear function, 

say a sigmoid function described as below 

 
)exp(1

1
)(

X
X

−+
=ρ  (17.24) 

We can formulate a complicated feedback system with the same 

initial state defined in equation (17.23) as below 
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The simulation result is shown in Fig. 17.12. 
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Fig. 17.11. The system dynamics and trace through time for the biochemical system with 

a feedback shown in equation (17.22) and Fig. 17.10. The horizontal axis in the left graph 

represents the time and the vertical axis represents the concentration. The horizontal and 

vertical axes represent two variables. 

 

 

 

Fig. 17.12. The simulation of a system with sigmoid feedback defined in equation 

(17.25). The horizontal axis in the left graph represents the time and the vertical axis 

represents the concentration. The horizontal and vertical axes represent two variables. 

 

The above two cases show that the S-system can be well used for 

analysing complicated biochemical systems with feedbacks. 
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17.6 Sensitivity of an S-system 

In the steady-state, it is also required to analyse how a variable varies 

with changes in other variables. This is called a sensitivity analysis 

which is an analysis of how a biochemical system is sensitive to a small 

perturbation at the steady-state [525]. The sensitivity analysis is done 

through the calculation of gains. In Voit’s book [525], five types of  

gains are introduced. Only the log gain of the steady-state concentration 

between dependent variables and independent variables is discussed 

here. For more details, chapter 7 of Voit’s book is recommended. 

A log gain between two variables is defined as 
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where iX  and jX  are the two variables. In most situations, we are 

interested in analysing the relation between a dependent variable and an 

independent variable. Therefore, iX  and jX  should be a dependent and 

an independent variable, respectively. ijS  measures how sensitive 

iXlog  is to a small perturbation in jXlog . 

We use the system defined in equation (17.22) for the following 

discussion. The steady-state of the system is defined as below 
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where ii Xy log= . Here 3y  and 4y  are independent variables while 1y  

and 2y  are dependent variables. From the above equations, we can see 

that 
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The log gain between 1X  and 3X  is 0.2069 while the log gain 

between 1X  and 4X  is -3.592. The other two log gains can be seen in 

the above equation. Figure 17.13 shows the sensitivity maps (log gain 

maps) of two dependent variables on the two independent variables. 
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Fig. 17.13. The sensitivity maps of two dependent variables on two independent 

variables. The left panel is the log gain map for 1X  while the right panel is the log gain 

map for 2X . 

Summary 

This chapter has discussed the S-system approach which studies the 

dynamics of a biochemical system. Because of the complexity and 

nonlinearity, two issues (structure identification and model parameter 

estimation) are still challenging. In most experiments, it is difficult to 

know most structures, pathways or network structures in advance. This 

makes the modelling process difficult because there are too many 

different structures for selection. Researchers have done tremendous 

work for various applications. However, we still have a long way to go 

for the S-system to be applicable for large systems with required 

accuracy and efficiency. Nevertheless, the S-system approach is a vital 

contribution to modern systems biology research. Its advantages are 

obvious in exploring underlying biochemical patterns and generating 

new hypotheses for further experiments. In addition to structure 

identification and parameter estimation, steady-state analysis and log 

gain sensitivity analysis between variables have also been discussed.  
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Chapter 18 

Future Directions 

Although bioinformatics has been well-developed for a few decades 

with the enhancement of machine learning approaches, there are still 

some challenges. Many of these result from the gap between fast 

technology development and slow software development. For instance, 

the next-generation sequencing technology can speed up sequencing, 

but leaves a problem of fragment errors and sequence assembly. This is 

because fragment assembly algorithms have to be adapted to handle 

very short fragments. This kind of issue is related to computing  

skills and parallel computing concept and will not be discussed in this 

book. However, in using machine learning algorithms for modelling 

biological data, we also have many challenges. The most typical ones 

are the multi-source data and data size. Most machine learning 

algorithms deal with single-source data. Systems biology research, 

which is one of the major research themes this century, aims to analyse 

a biological system systematically. Multiple data sources certainly  

need consideration. The data size is always a huge challenge in 

bioinformatics. Handling hundreds of thousands or millions of DNA 

fragments for species diversity study is an example. Even modern 

computers still face challenges in modelling entire data and some 

specific data treatment has to be introduced. One such treatment is to 

lose possible resolution, for instance reducing 64 bits to 32 bits for 

representing numerical data. Gene expression data analysis for cancer 

diagnosis and drug development is also a challenge in using machine 

learning approaches for bioinformatics. One of the challenges in this 

area is to deal with heterogeneity in data. Most existing algorithms 

assume homogeneity in data and have missed one important issue in 

cancer diagnosis that each patient may develop a distinct biochemical 

system to develop cancer disease. Ignoring such heterogeneity may lead 
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to the developed drug being hardly applicable to a large variety of 

patients. How to handle this challenge has been one of the most 

important subjects of the century. In this chapter we discuss these 

typical challenges in bioinformatics. 

18.1 Multi-source data 

Compared with genomics and other omics, metabolite data contain much 

more information for biological discovery [538]. This is related to the 

fact that the metabolome is called life indicator across most living 

organisms. It is known that there are about 3 billion base pairs in the 

human genome, but there are only about 3,000 to 100,000 metabolites. 

The difficulty is that most metabolites are unknown and the discovery of 

new metabolites is still increasing rapidly. This means that the 

knowledge of existing metabolite pathways and networks is constantly 

being updated. It then lays a difficulty in using the existing databases for 

inference.  

Although metabolite separation can be completed by existing 

chromatography technologies such as NMR, GC-MS, LC-MS, and LC-

MS/MS, identification of each metabolite is a difficult task. There is still 

no technology capable of separating ions perfectly. Multi-dimensional 

technique has been used for better separation [539-544]. This then casts a 

problem with most existing machine learning approaches which are 

aimed at analysing one-dimensional metabolite data. 

In comparing NMR and MS data, it is found that there is a small 

overlap of the metabolites found and it is concluded that both techniques 

only cover a part of the whole metabolome and neither of them is able to 

provide the whole picture [545]. 

Both NMR and MS have a problem of sensitivity when producing 

metabolite profiles. This means that analysing metabolite profile data 

with variable sensitivity using machine learning approaches is still a 

typical and difficult problem. 

Even some software, such as one provided by Agilent Technologies, 

can predict metabolite formulae for experimental metabolites. However, 

each formula may be mapped to multiple compounds. Inferring 
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differential metabolite pathways activated by experiments is then a 

difficult task. Although daughter ions information can be used, paring 

parent/daughter ions needs some carefully prepared learning processes 

and the relationship between daughter ion spectrums and log P values 

which are unique to compounds is another difficult regression problem 

where the issue of equipment variation must be well-measured. This is 

largely related to equipment settings. There are also many other issues 

such as solute and environmental factors which can contribute to possible 

variations making spectral separation a difficult task at present, needing 

sophisticated bioinformatics techniques. 

The second issue in multi-source data is very common in systems 

biology, i.e. how to combine expression data and metabolite data for 

pathway and network analysis. It is known that mapping a gene to a 

pathway has a higher accuracy compared to mapping a metabolite to a 

compound, then a pathway. This is because of two reasons. Compared 

with genomics, metabolomics still has a short history and it lacks well-

developed databases of annotated compound information. However, 

compared to gene chip data, metabolites can be used to explore 

phenotypic patterns more extensively. In systems biology research, a 

challenge is how to combine both gene expression data and metabolite 

data together for analysis. For instance, a system called springScape has 

been developed for combining several relevant data sources (protein-

protein interaction information and Gene Ontology (GO) annotations) for 

clustering gene expression data [546]. MetaLook software was 

developed for visualising and analysing marine ecological genomic and 

metagenomic data (i.e. of environmental relevance) with respect to 

habitat parameters. The software is able to map relevant genomic 

information onto a world map [547]. In conjunction with a phylogenetic 

tree model, a visualisation tool was implemented to analyse the helix-

loop-helix transcription factor interaction network. From this, the tool 

allows the user to clarify the context of network hubs and interaction 

clusters [548]. A 3-D visualisation tool was designed for the analysis of 

functional linkage between genes in large data sets [549]. A web-based 

visualisation tool was implemented for delivering an intuitive, interactive 

environment for constructing ontology-based queries against the GO  

 



272 Machine Learning Approaches to Bioinformatics 

Database [550]. A web-based visualisation toolkit called VariVis was 

built for the analyses of mutation data related to diseases, where multiple 

databases can be combined [551]. Recently, with democratisation of 

mass spectrometry and the realisation that small molecules were central 

to determining phenotypes, visualisation of metabolite data has emerged 

as an important objective. Metabolite data has, for instance, first  

been partitioned; regression analysis has then been used to analyse  

and visualise the relationships between metabolite and gene data [552]. 

Like gene expression data, metabolite data also have the problem that  

the number of samples is much smaller than the number of variables 

(metabolites). Because of this, PCA and independent component  

analysis are used for data dimension reduction and visualisation [553]. 

The visualisation is based on the first two (principal/independent) 

components. 

18.2 Gene regulatory network construction 

Constructing gene regulatory networks is one of the most important in 

silico exercises in systems biology and bioinformatics for exploring 

complexity in data and generating hypotheses for further scientific 

verification which then generates new evidence and new data for further 

in silico study. The challenge for bioinformatics and machine learning 

approaches is to be able to model given data with the desired accuracy 

and efficiency, and importantly consistency with biology. Inferring gene 

regulatory networks uses two different approaches:, bottom-up and top-

down approaches [554]. As mentioned in chapter 16, gene regulatory 

network construction has two tasks to do. One is structure identification 

and the other is model parameter estimation. The bottom-up approach 

and top-down approach actually deal with these two concepts separately. 

The bottom-up approach starts from a detailed mathematical description 

of a biochemical process for model parameter estimation. The basic 

technique used for this is called the S-system described in chapter 17. 

With the S-system technique, differential equations are defined according 

to molecular interactions as an a priori leaving model parameters  
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estimated from observations. The top-down approach constructs gene 

regulatory networks based on data, which is also called the data-driven 

approach. Bayesian networks described in chapter 15 are one of such 

techniques. Compared with bottom-up approach, the top-down approach 

is more appropriate because it does not need a prior knowledge of 

biochemical process in a system which is to be modelled. However, as 

with most structure identification in machine learning, the top-down 

approach has its own limitation, i.e. uncertainty. The uncertainty mainly 

results from the quality of single source data. It is then recommended to 

use multiple sources for gene regulatory network construction [554]. 

Combining gene expression, genomic sequences and protein-DNA 

interaction data is such a practice [555]. The sources which can be 

considered for gene regulatory network construction are gene expression, 

transcription factor binding sites, genomic sequences, and chromatin 

immunoprecipitation (ChIP) [554]. With multiple data sources, typical 

issues are the quality, dimensions, and format of heterogeneous data. All 

these three issues are very practical. Heterogonous data quality means 

that we have to consider heterogonous models; each has a different 

technique to handle the uncertainty in data. Heterogonous data dimension 

means that some specific data treatment must be considered to avoid any 

possible extra introduction of uncertainty. For instance, increasing the 

dimensionality of one data source may introduce noise so that we have to 

consider random sampling which certainly increases data size. Reducing 

data dimensionality may lose some important information contained in a 

data set. Heterogonous data format needs a careful consideration of data 

integration. For instance, gene expression is numeric while genomic 

sequence is non-numeric. Integrating them into one system for gene 

regulatory network construction needs specific design of machine 

learning algorithms so as to handle possible uncertainty. For a detailed 

review about this challenge, readers can refer to review papers [554, 555] 

[556]. 

Differential equation parameters of an S-system can be estimated 

using artificial neural networks, evolutionary computation, and simulated 

annealing as described in Chapter 17. The network size is still mediate in 

most recent applications. First, fully simulating a large differential  
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equations system is time consuming. Second, setting up a large S-system 

for a biochemical system is still challenging. Third, most biochemical 

systems have limited time points of observations. This means that 

converting differential equations to difference equations and then using 

machine learning approaches to estimate differential equation parameters 

can generate imprecise models. 

Bayesian networks technique described in chapter 16 also has a 

limitation in computing cost. It is difficult to make a Bayesian network 

with over 100 nodes. This is because the searching space of network 

structures is increased significantly when the number of nodes is 

increased [557, 558]. Yet another problem of Bayesian networks 

approach is that it is extremely difficult to learn Bayesian network 

parameters if training data is incomplete or sparse [559]. However, 

incompleteness and sparseness often occur in biological experiments. 

Developing novel techniques is extremely desirable when the 

biochemical network size is constantly increasing. 

18.3 Building models using incomplete data 

Described in chapter 15, peptide classification is based on the 

assumption that the data collected is complete. In fact, this is hardly true. 

New functional sites are continually being discovered. For other 

applications that use machine learning algorithms, incompleteness only 

means that a small proportion of the data is missing or wrongly labelled. 

This may not be true in peptide classification. In most biological 

experiments, only functional sites are of interest. This means that nearly 

all the “sites” collected in databases are only functional sites. For 

instance, they can be phosphorylation sites, acetylation sites, methylation 

sites, protease cleavage sites, binding sites, active sites, etc. In a 

machine-learning or classification process, they are treated as positive 

data. In order to make a model capable of predicting novel data, it  

must be trained to discriminate between positive and negative data.  

For instance, enabling a predictive model capable of predicting 

phosphorylation sites, we must teach the model how to recognise what a  
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phosphorylation site looks like and what a non-phosphorylation site 

looks like. However, there may never be any experimentally annotated or 

verified negative data (sites). A practical or popular approach is to use 

non-annotated sites as negative data. For instance, methylation happens 

to lysine or proline amino acids. A residue occupied by an amino acid 

other than these two amino acids will not have any possibility of being 

methylated; the possibility is only there for lysine and proline. Whenever 

we find a lysine or a proline, we need to predict if it is involved  

in methylation. Not all lysines or prolines are involved in methylation. 

This is because the substrate pattern or specificity determines whether 

methylation occurs. We normally assume all non-annotated lysine  

and proline residues to be negative data. A problem arises! Without 

experimental verification, by what justification can we definitely say a 

non-annotated lysine or proline will never involve methylation? The 

answer is none. This means that a model built this way will not be able to 

predict a methylation site whose pattern has been included as negative 

data in a training data set. The diversity of experimentally annotated 

functional sites is an important causative agent of many current 

predictors which do not have high prediction accuracy for novel data. 

The challenge for machine learning is how to enlarge its error-tolerance 

rate or how to evaluate the possibility that such a model will miss some 

novel functional sites. 

18.4 Biomarker detection from gene expression data 

Identifying or ranking differentially expressed genes is closely related to 

medicine and drug development for human health and other related 

issues in fighting plant disease and improving animal health. A highly 

ranked gene is often called a biomarker. It can be used for disease 

diagnosis and drug development [560-563]. Conventional approaches 

still largely rely on T test or some simple approach. Although feature 

selection approach and machine learning approaches [564, 565] have 

been used in some stages, their usability is still in question. 
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(a) 

 
(b) 

Fig. 18.1. (a) Mock expression pattern from a gene which is detected by t-test as a perfect 

marker when it is differentially expressed in one class compared to another class. In this 

model, the expression level of all sensitive samples is higher than for all resistant 

samples. (b) Mock expression pattern from a gene likely to be involved in a 

heterogeneous characteristic of a cancer phenotype; in one group, resistant, samples do 

not show uniform down-expression for a gene. Blue and red circles illustrate the 

expression level of sensitive and resistant samples, respectively. 

 

Conventional methods commonly make an inappropriate assumption 

that a good biomarker shows a perfect shift in expression value of all 

samples, such as the significance analysis of microarrays which is a 

derivation of the T test, (SAM) [566] and CyberT [567], correlation 

analysis or fold change analysis. Such a naïve assumption can hardly be 

true. Taking human disease as an example it is known that each person is 

a system, a biochemical system in which the biochemical process can be 

very different from that of other people who have caught the same 

disease [568]. Multiple unrelated mechanisms, which are unknown to the 
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experimenter, might independently result in resistance to a drug such as 

absence of signalling from the target, presence of compensatory signals 

reducing dependency on the target or presence of mechanisms preventing 

drug activity. It is likely that any one gene involved in only one such 

mechanism will only show differential expression in the subset of 

resistant cell lines driven by that particular mechanism. Figure 18.1 

shows such a possibility. 

A good example is ERBB2 (HER2) which is hyper-expressed in only 

15–20% of breast tumours compared with normal breast tissues [569]. 

Such a gene may, therefore, be ranked low by t-test P-value; however, 

the gene is highly relevant and valuable as a resistance marker. 

A number of approaches have been proposed for addressing this in 

different settings. Outlier detection methods, such as Cancer Outlier 

Profile Analysis (COPA) [570] “outlier-sum” [571], outlier robust  

t-statistics (ORT) (Liu and Wu, 2007) and maximum ordered subset  

T-statistics (MOST) [572] aim to identify subsets of samples that show 

marked differential expression from the majority of samples. More 

recently, van Wieringen et al. [573] designed a statistical test, named 

PDGEtest, to detect partial shifts in expression values of sub-samples. 

These methods have been demonstrated to outperform typical univariate 

statistical methods in specific settings, for example identification of 

expression from amplified genes in prostate cancer [570]. These recently 

created methods demonstrate the potential to enhance comprehensive 

analysis results and power over traditional methods of differential gene-

expression detection in heterogeneous samples, suggesting application of 

these methods for gene selection could result in better overlap between 

different gene lists. The poor reproducibility in results from the different 

algorithms, however, suggests none may offer a complete solution. They 

are mainly reliant on detection of outliers and as such only select for 

genes displaying clear bimodal expression patterns. However, genes may 

also show non-normal distribution patterns. Furthermore, gene scoring 

and ranking by such methods typically reflects the size of the outlying 

groups without considering exclusiveness of this group to a particular 

phenotype of interest; clarity and size of differential expression from the 

sub-group, and the proportion of samples of that phenotype that the 

outlying sub-group represents.  
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A promising technique for coping with these challenges is to consider 

heterogeneous characteristics of samples and rank genes based on the 

expression pattern of sub-samples rather than on the average expression 

levels of phenotypic groups. To optimize reproducibility, genes ranked 

high should exhibit high or low expression in only a subset of samples 

which are treated as outliers to cover some new criteria such as 

exclusiveness, clearness, fold change, and proportion of differentially 

expressed samples. 

Summary 

This chapter has discussed a few typical challenges in using machine 

learning approaches for modelling biological data. They are mainly 

multi-source data, data size, and biomarker identification. It must be 

noted that aside from these three typical challenges, many others can be 

even more important such as metagenomics, mass spectrometry-based 

proteomics, compound identification, protein identification, etc. 

However, this book is mainly tailored for using machine learning 

approaches for bioinformatics, where we need to focus on how to 

improve the existing machine learning algorithms to solve the problems 

we currently have. 
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