

machine learning approaches
to bioinformatics

SCIENCE, ENGINEERING, AND BIOLOGY INFORMATICS

Series Editor:Jason T. L. Wang
(New Jersey Institute of Technology, USA)

Published:

Vol. 1: Advanced Analysis of Gene Expression Microarray Data
(Aidong Zhang)

Vol. 2: Life Science Data Mining
(Stephen T. C. Wong & Chung-Sheng Li)

Vol. 3: Analysis of Biological Data: A Soft Computing Approach
(Sanghamitra Bandyopadhyay, Ujjwal Maulik & Jason T. L. Wang)

Vol. 4: Machine Learning Approaches to Bioinformatics
(Zheng Rong Yang)

Forthcoming:

Vol. 5: Biodata Mining and Visualization: Novel Approaches
(Ilkka Havukkala)

XiaoLing - Machine Learning Approaches.pmd 4/5/2010, 6:52 PM2

N E W J E R S E Y • L O N D O N • S I N G A P O R E • B E I J I N G • S H A N G H A I • H O N G K O N G • TA I P E I • C H E N N A I

World Scientifi c

machine learning approaches
to bioinformatics

zheng rong yang
University of Exeter, UK

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN-13 978-981-4287-30-2
ISBN-10 981-4287-30-X

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

Copyright © 2010 by World Scientific Publishing Co. Pte. Ltd.

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Printed in Singapore.

Science, Engineering, and Biology Informatics — Vol. 4
MACHINE LEARNING APPROACHES TO BIOINFORMATICS

XiaoLing - Machine Learning Approaches.pmd 4/5/2010, 6:52 PM1

v

Preface

Bioinformatics has been one of the most important multidisciplinary

subjects in the last century. Initially, the major task of bioinformatics

research was to handle large genomic data for knowledge extraction and

for making predictions. More recently, the practices of bioinformatics

have extended from genomics to proteomics, metabolomics, and

most importantly systems biology. In addition to most traditional

bioinformatics exercises which focus on large database management

and sequence homology alignment for molecular structure prediction

and function annotation, modelling biological data using statistical/

machine learning has been an important trend. This part of the exercise

has gained great attention because it can help carry out efficient,

effective, and accurate knowledge extraction and prediction model

construction. However, the application of machine learning approaches

in bioinformatics researches and practices has a series of challenges

compared with other applications. The challenges include data size, data

quality, and the imbalance between different data resources. These

challenges are particularly obvious in systems biology research. For

instance, genomics data size has a scale of around 25K, but proteomics

data size can reach up to a scale of millions. Currently, it is hard to use

modern computers to handle such large scale data in one machine

learning model. Furthermore, due to experimental variation, tissue

corruption, and equipment resolution, most metabolite data suffer a

problem of data quality. This casts a challenge in machine learning

model construction in terms of data noise and missing data. In using next

generation sequencing equipment such as Illumina, we are faced with

tega-byte of fragments of sequences. The challenge is how to assembly

vi Machine Learning Approaches to Bioinformatics

these fragments accurately without any reference sequences. An urgent

requirement in systems biology proposes to use different sources of data

for analysing systems behaviour. This then casts a challenge about how

to efficiently incorporate these data with different resolutions, with

different data format, with different data quality, and with different data

dimensionalities in one machine learning model. This book therefore

tries to discuss some of these challenges.

This book is written based on my teaching and research notes in

bioinformatics in the past ten years. I thank Prof Jason Wang and the

publisher for inviting me to write this book. The book is written mainly

for postgraduates and researchers at the start of their bioinformatics

research and practice. The pre-requisite to using this book is some

basic linear algebra and statistics knowledge. The book can be used

for both advanced undergraduate and postgraduate teaching reference.

Readers are encouraged to be familiar with basic R programming

before using this book as most case studies presented in the book are

implemented in R.

The book is composed of three parts. The first part covers several

unsupervised learning approaches which can be used in bioinformatics.

For instance, multidimensional scaling is commonly used in

bioinformatics for biological data visualisation. Various cluster analysis

approaches as well as self-organising map have been used for biological

pattern recognition. After data partitioning, molecules can then be

clustered leading to prototype pattern discovery and new hypothesis

generation.

The second part mainly discusses supervised learning approaches. In

many bioinformatics projects, a typical question is how to accurately

predict unknowns based on experimental data. For instance, how can we

identify the most important genes for most efficient and accurate disease

diagnosis? Additionally, given a huge number of molecular sequence

data in which most functions are still unknown, how can we make

prediction models based on limited information of known functions in

sequence data? This part therefore introduces several commonly used

supervised learning algorithms as well as their applications to

bioinformatics.

 Preface vii

The third part of this book introduces the concepts relevant to

computational systems biology which is now the most important research

targets in bioinformatics. Computational systems biology research

mainly focuses on large biological systems aiming to reveal the complex

interplay between molecules and molecular entities. Gene network,

systems dynamics and pathway recognition have been of much interest in

recent years. The third part then demonstrates how machine learning

algorithms can be used for these issues.

As mentioned above, this book is based on the revision of my

teaching and research notes. It is therefore important to name several

research collaborators. My key research collaborators include T Charlie

Hodgman, Andrew Dalby, Murray Grant, Richard Titball, Nick

Smirnoff, and Tom Richards. The students who have contributed to

the improvement of my teaching of bioinformatics in University of

Exeter are Rebecca Hamer, Jon Dry, Emily Berry, Dave Trudgun,

Hanieh Yaghootkar and Susie Clark. I am very grateful to Susie Clark

for proof-reading the book.

Finally, I would like to thank my parents, wife and daughter for their

great support. During the writing of this book, I regret not being able to

spend more time with them. I hope the publication of this book will make

up for the sacrifice.

Zheng Rong Yang

29 November 2009

Exeter, England, UK

This page intentionally left blankThis page intentionally left blank

ix

Contents

Preface v

 1 Introduction 1

 1.1 Brief history of bioinformatics 3

 1.2 Database application in bioinformatics 6

 1.3 Web tools and services for sequence homology 8

 Alignment

 1.3.1 Web tools and services for protein functional 9

 site identification

 1.3.2 Web tools and services for other biological data 10

 1.4 Pattern analysis 10

 1.5 The contribution of information technology 11

 1.6 Chapters 12

 2 Introduction to Unsupervised Learning 15

 3 Probability Density Estimation Approaches 24

 3.1 Histogram approach 24

 3.2 Parametric approach 25

 3.3 Non-parametric approach 28

 3.3.1 K-nearest neighbour approach 28

 3.3.2 Kernel approach 29

 Summary 36

 4 Dimension Reduction 38

 4.1 General 38

x Machine Learning Approaches to Bioinformatics

 4.2 Principal component analysis 39

 4.3 An application of PCA 42

 4.4 Multi-dimensional scaling 46

 4.5 Application of the Sammon algorithm to gene data 48

 Summary 50

 5 Cluster Analysis 52

 5.1 Hierarchical clustering 52

 5.2 K-means 55

 5.3 Fuzzy C-means 58

 5.4 Gaussian mixture models 60

 5.5 Application of clustering algorithms to the Burkholderia 64

 pseudomallei gene expression data

 Summary 67

 6 Self-organising Map 69

 6.1 Vector quantization 69

 6.2 SOM structure 73

 6.3 SOM learning algorithm 75

 6.4 Using SOM for classification 79

 6.5 Bioinformatics applications of VQ and SOM 81

 6.5.1 Sequence analysis 81

 6.5.2 Gene expression data analysis 83

 6.5.3 Metabolite data analysis 86

 6.6 A case study of gene expression data analysis 86

 6.7 A case study of sequence data analysis 88

 Summary 90

 7 Introduction to Supervised Learning 92

 7.1 General concepts 92

 7.2 General definition 94

 7.3 Model evaluation 96

 7.4 Data organisation 101

 7.5 Bayes rule for classification 103

 Summary 103

 Contents xi

 8 Linear/Quadratic Discriminant Analysis and K-nearest 104

 Neighbour

 8.1 Linear discriminant analysis 104

 8.2 Generalised discriminant analysis 109

 8.3 K-nearest neighbour 111

 8.4 KNN for gene data analysis 118

 Summary 118

 9 Classification and Regression Trees, Random Forest 120

 Algorithm

 9.1 Introduction 120

 9.2 Basic principle for constructing a classification tree 121

 9.3 Classification and regression tree 125

 9.4 CART for compound pathway involvement prediction 126

 9.5 The random forest algorithm 128

 9.6 RF for analyzing Burkholderia pseudomallei gene 129

 expression profiles

 Summary 132

10 Multi-layer Perceptron 133

 10.1 Introduction 133

 10.2 Learning theory 137

 10.2.1 Parameterization of a neural network 137

 10.2.2 Learning rules 137

 10.3 Learning algorithms 145

 10.3.1 Regression 145

 10.3.2 Classification 146

 10.3.3 Procedure 147

 10.4 Applications to bioinformatics 148

 10.4.1 Bio-chemical data analysis 148

 10.4.2 Gene expression data analysis 149

 10.4.3 Protein structure data analysis 149

 10.4.4 Bio-marker identification 150

 10.5 A case study on Burkholderia pseudomallei 150

 gene expression data

 Summary 153

xii Machine Learning Approaches to Bioinformatics

11 Basis Function Approach and Vector Machines 154

 11.1 Introduction 154

 11.2 Radial-basis function neural network (RBFNN) 156

 11.3 Bio-basis function neural network 162

 11.4 Support vector machine 168

 11.5 Relevance vector machine 173

 Summary 176

12 Hidden Markov Model 177

 12.1 Markov model 177

 12.2 Hidden Markov model 179

 12.2.1 General definition 179

 12.2.2 Handling HMM 183

 12.2.3 Evaluation 184

 12.2.4 Decoding 188

 12.2.5 Learning 189

 12.3 HMM for sequence classification 191

 Summary 194

13 Feature Selection 195

 13.1 Built-in strategy 195

 13.1.1 Lasso regression 196

 13.1.2 Ridge regression 199

 13.1.3 Partial least square regression (PLS) algorithm 200

 13.2 Exhaustive strategy 204

 13.3 Heuristic strategy – orthogonal least square approach 204

 13.4 Criteria for feature selection 208

 13.4.1 Correlation measure 209

 13.4.2 Fisher ratio measure 210

 13.4.3 Mutual information approach 210

 Summary 212

14 Feature Extraction (Biological Data Coding) 213

 14.1 Molecular sequences 214

 14.2 Chemical compounds 215

 Contents xiii

 14.3 General definition 216

 14.4 Sequence analysis 216

 14.4.1 Peptide feature extraction 216

 14.4.2 Whole sequence feature extraction 222

 Summary 224

15 Sequence/Structural Bioinformatics Foundation – 225

 Peptide Classification

 15.1 Nitration site prediction 225

 15.2 Plant promoter region prediction 230

 Summary 237

16 Gene Network – Causal Network and Bayesian 238

 Networks

 16.1 Gene regulatory network 238

 16.2 Causal networks, networks, graphs 241

 16.3 A brief review of the probability 242

 16.4 Discrete Bayesian network 245

 16.5 Inference with discrete Bayesian network 246

 16.6 Learning discrete Bayesian network 247

 16.7 Bayesian networks for gene regulartory networks 247

 16.8 Bayesian networks for discovering peptide patterns 248

 16.9 Bayesian networks for analysing Burkholderia 249

 pseudomallei gene data

 Summary 252

17 S-Systems 253

 17.1 Michealis-Menten change law 253

 17.2 S-system 256

 17.3 Simplification of an S-system 259

 17.4 Approaches for structure identification and parameter 260

 estimation

 17.4.1 Neural network approach 260

 17.4.2 Simulated annealing approach 261

 17.4.3 Evolutionary computation approach 262

xiv Machine Learning Approaches to Bioinformatics

 17.5 Steady-state analysis of an S-system 262

 17.6 Sensitivity of an S-system 267

 Summary 268

18 Future Directions 269

 18.1 Multi-source data 270

 18.2 Gene regulatory network construction 272

 18.3 Building models using incomplete data 274

 18.4 Biomarker detection from gene expression data 275

 Summary 278

References 279

Index 319

1

Chapter 1

Introduction

Bioinformatics has been in action for at least three decades. However,

there is still a general confusion as to the function of bioinformatics.

Some biologists are still treating bioinformatics as tools. Some

informatists1 regard bioinformatics as a career of developing novel

algorithms and systems. Because of this, there is a slight difference in

definitions. In the literature, one fundamental concept is also missing:

that information is a natural, inherent, and dynamic component in all

biological systems.

We first examine how bioinformatics is defined in various textbooks.

In Attwood and Parry-Smith’s book [1] bioinformatics is defined as

“the application of computers in biology sciences and especially

analysis of biological sequence data”. In Baxevanis and Ouellette’s

book [2] bioinformatics is “a field integrating molecular biology

and computational methods”. In Higgs and Attwood’s book [3]

bioinformatics is defined as “the use of computational methods to study

biological data”. In Baldi and Brunak’s book [4] bioinformatics is

“the development and application of computer methods for analysis,

interpretation, and prediction, as well as the design of experiments”.

In Mount’s book [5] bioinformatics is defined as “the application of

computational methods to DNA and protein science”. In Augen’s book

[6] bioinformatics has been extended to include “in silico molecular

modelling, protein structure prediction, and biological systems

1 I use informatists to refer to a group of scientists who have the skills to apply the

fundamental concepts in computer sciences, applied statistics, applied mathematics, and

engineering to generate models.

2 Machine Learning Approaches to Bioinformatics

modelling”. Finally, one of the important concepts in biological research

(relationship) has been used in Eidhammer, Jonassen and Taylor’s

definition [7], that bioinformatics is “the study of biological information

and biological systems – such as the relationship between the sequence,

structure and function of genes and proteins”.

We then examine the definitions according to dictionaries and

organisations. The Oxford English Dictionary defines bioinformatics

as “the science of collecting and analysing complex biological data

such as genetic codes”. According to NIH, bioinformatics is defined as

“research, development, or application of computational tools and

approaches for expanding the use of biological, medical, behavioral or

health data, including those to acquire, store, organize, archive, analyze,

or visualize such data”. The National Center for Biotechnology

Information, defines bioinformatics as “the field of science in which

biology, computer science, and information technology merge into a

single discipline.” NCBI also notes three important sub-disciplines

within bioinformatics. The first is the development of new algorithms

and statistics for accessing relationships among molecules of large data

sets. The second is to analyse and interpret various data types. The

outcome of these two is the integration of molecules into systems. This is

also the basis of systems biology. The third is to develop and implement

tools for efficient access and management of different types of

information. This covers various web services and tools for public use.

Both NIH and NCBI definitions cover a wide range of activities in

bioinformatics.

I have no intention of giving a unique definition of bioinformatics.

First, this is unfair for a huge diversity of research interests and points of

views in bioinformatics. Second, the field of bioinformatics is still

progressing rapidly. Many new methodologies are being developed. This

book would like to treat current bioinformatics as a multi-discipline,

inter-discipline, and cross-discipline science for understanding biological

systems, exploring underlying mechanisms of biological complexes,

verifying biological hypotheses and providing evidence through in silico

simulation for further theoretical development. The requirements for

bioinformatists should not be passively taking part in biological research

 Introduction 3

projects. Instead, they should possess basic multi-disciplinary knowledge

to undertake biological research activities independently leading to

scientific findings. It is expected that wet laboratory and dry laboratory

(in silico simulation) will become inseparable in the future for

biosciences research.

1.1 Brief history of bioinformatics

Bioinformatics has generally gone through four major stages. In the

first stage some small-sized databases and fundamental concepts for

analysing sequences were established. The theoretical work of some

great bioinformaticians laid the foundations. In the second stage,

sequence analysis algorithms and programs as well as some moderate-

sized databases were established. Along with the development of the

internet, web services appeared. In the third stage, bioinformatics was

not solely a market for sequence analysis. The analysis of other

molecular data started, such as gene expression data and metabolite data

in many medical applications. If we treat the second stage as the stage for

natural finding (DNA discovery, protein structure/function annotation

and many other hypothesis-based projects), this stage is more

application-driven. Many bioinformatics projects have wide support from

industry and medical services. The fourth stage is for systems-level

examination of biological systems. This is a natural development from

the third stage where it is difficult to gain a complete picture by

analysing individual cases. Integrating molecules from the same data

type or different data types has been an urgent task for un-biased

understanding of cellular activities.

When looking at the history of bioinformatics, two important

pioneering works must be remembered. The first is Pauling and

Zuckerkandl’s molecular evolution theory developed in the early 1960’s

[8, 9]. The work illustrated that amino acid sequences of proteins can be

used to study evolutionary relationships among organisms. They showed

that two proteins with homologous amino acid sequences have similar

functions. The work therefore initiated a new field known as “molecular

evolutionary”. The theory provides theoretical basis for inferring protein

4 Machine Learning Approaches to Bioinformatics

functions based on sequence homology. The technique is call homology

alignment [10-15].

The second important work is the computerised protein and DNA

sequence databases of Margaret Oakley Dayhoff in the 1970’s based on

her knowledge of chemistry, mathematics, biology and computer

science. From this, she derived evolutionary histories using sequence

homology with Pauling and Zuckerkandl’s theory. She developed

phylogeny for the first time with Richard Eck [16, 17]. The first

probability model of protein evolution, referred to as point mutation

process, was also her contribution [18]. Her quantitative measure of

protein evolution, known as the mutation matrix [15], has been widely

used in today’s bioinformatics tools.

Based on the successes of Pauling and Dayhoff, rapid progress in

bioinformatics started in the 1970’s because of the rapid technology

development in computers. The progress mainly focused on DNA and

protein sequence analysis. Because of the time complexity, the main

focus was on improving algorithm speed especially for sequence

homology alignment. The comparison of genes within a species or

between different species can be used to indicate structural and

functional similarity. In 1970, the first sequence homology alignment

algorithm was developed and is referred to as the Needleman-Wunsch

algorithm [19]. The algorithm aligns two sequences globally using a

dynamic programming approach. In this algorithm the comparison

between two sequences is based on a binary scoring function. The score

is increased by one when the current aligned residues from two

sequences match, otherwise zero. In addition, linear gap penalty is used.

In the algorithm insertion and deletion is considered. Therefore two

sequences with different lengths will be aligned to the same length with

inserted gaps. As seen above, all the matching residues have the same

score as one and all the mismatching residues have the same score as

zero. The first computer program for DNA sequencing was developed in

1977 [20]. The program can be used for effectively assembling sequence

data. In 1981, an important concept called sequence motif for sequence

analysis was generated [21]. In the same year the Smith-Waterman

algorithm was developed [13]. The algorithm also aligns two sequences

using a dynamic programming approach to guarantee finding the optimal

 Introduction 5

local alignment with respect to the substitution matrix and the gap

penalty function used. The algorithm is a local alignment algorithm,

which is due to the difficulty of obtaining correct alignments in regions

of low similarity between distantly related biological sequences.

However, the Smith-Waterman algorithm is a slow algorithm requiring a

large memory. Because of this, it has been replaced by much more

efficient algorithms for instance the FASTP algorithm published in 1983

[14], the FASTP/FASTN algorithm published in 1985 [22] and the

BLAST algorithm implemented in 1990 [23].

Contributing to the third generation of bioinformatics are vast

activities in analysing gene expression data. A gene is the basic unit of

heredity in all living organisms; it is a segment of DNA sequence, a unit

coding genetic information which is inheritable [24-26]. In other words,

DNA is an organisation of information [27]. Genes are transcribed to

RNAs which in turn are translated to proteins. This is controlled by a

gene regulation process [24-26]. Gene expression is a process whereby a

relevant gene is transcribed and translated to RNAs and proteins

respectively according to a regulatory signal. These RNAs and proteins

are functional in certain pathways or networks. Gene expression can be

measured quantitatively using biotechnology. The measurements can

be at the RNA level or protein level depending on techniques used.

It is understood in molecular biology that a specific pattern of gene

expression in a number of biologically related samples represents the

activity of a specific signalling pathway or network. The bioinformatics

study of gene expression data was triggered by the generation of DNA

microarray data in the 1980’s. A DNA microarray is a technology

developed particularly for medicine. Each microarray is an array of

thousands of DNA oligonucleotides from biologically relevant samples.

The samples can be related to a specific disease diagnosis. One group of

samples can be disease-free and the other can be disease-related. By

analysing the pattern of expression of these DNA oligonucleotides, it is

possible to investigate the genetic reason of disease development.

Microarray technology evolved from Southern blotting [28] and the first

use of DNA microarray expression profiling was in 1987 for identifying

genes whose expression is modulated by interferon [29]. The earliest

report in analysing microarray expression data of the budding yeast

6 Machine Learning Approaches to Bioinformatics

Saccharomyces cerevisiae using cluster analysis approach was in 1998

by Eisen et. al., [30]. Recent studies in clustering microarray expression

data include those looking at renal cell carcinoma [31], inflammatory

immune signalling in chronic fatigue syndrome [32], inflammation

status in hepatitis C virus-related hepatocellular carcinoma [33], etc.

Classification models have also been built for predictive/diagnostic

purposes, such as the diagnosis of breast cancer [34], [35], colorectal

cancer [36], lung cancer [37], brain cancer [38], ovarian cancer [39], etc.

In the fourth generation of bioinformatics, many researchers turn their

eyes to systems biology, which is an inter-discipline and cross-discipline

subject in studying biological systems. The major objective of systems

biology is to discover new emergent properties of processes at the

cellular level and organism level in biological systems in a systematic

view. Following this, a number of systems biology institutes have

been established and some doctorial training centres have also been

created. Although the huge scale of systems biology studies started only

a decade ago, the earliest work using the systems biology approach

to study biological processes was published in the 1950’s [40]. A

foundation study of systems biology was completed in the 1960’s with

the publication of Mesarovic’s book [41]. The first systems biology

institute was established in 1999 [42] in the Department of Molecular

Biotechnology at the University of Washington, aiming to model

complex biological systems quantitatively and foster interdisciplinary

interactions in the life sciences.

1.2 Database application in bioinformatics

The introduction of database technology into bioinformatics in the early

days was brought about by the development of many gene/protein

sequencing projects which needed an efficient way for data handling. In

the 1930’s, electrophoresis was developed for separating proteins in

solution using moving boundary or zone electrophoresis [43]. The

structure of the alpha-helix and beta-sheet was proposed in the early

1950’s [44, 45] and the double helix model for DNA based on x-ray

experiment was proposed in 1953 [46]. The first sequenced protein

 Introduction 7

(bovine insulin) was analysed in1955 [47]. Herbert Boyer and Stanely

Cohen invented DNA cloning or recombinant DNA technology in 1973

[48]. The technology made it possible to manipulate DNA in different

species. For instance, some parts in DNA can be removed or replaced

and some altered segments can be inserted into DNA. Specific proteins

can be produced using gene splicing. In order to analyse the presence of

a DNA sequence in a DNA sample the Southern blot was developed in

1975 [28]. The first sequenced DNA was seen in 1977 [49, 50]. In 1980,

a multi-dimensional NMR method was developed for protein structure

determination [51]. In 1996, the first DNA chip was generated by

Affymetrix (NASDAQ: AFFX). The first gene Chip product was an HIV

genotyping GeneChip. The human genome with 3000 Mbp was produced

in 2004 [52]. Based on this simple description of molecular data

generation history it can be seen that, on the one hand, technologies are

fast developing and, on the other hand, data sizes are dramatically

increased, making a huge challenge for data handling, management,

mining, i.e. bioinformatics.

In order to fulfil the needs in acquiring data for research, various

databases continue to be established thereafter. In 1986, the largest curate

protein databank SWISS-PROT was created by the Department of

Medical Biochemistry of the University of Geneva and the European

Molecular Biology Laboratory (EMBL). In 1988 The National Center for

Biotechnology Information (NCBI) was established at the National

Cancer Institute. Many successful projects of building data warehouses

have well used and well developed database technology in computer

sciences for a huge amount of molecular data. Efficiently storing

sequence data is one important topic. A number of nucleotide sequence

databases and protein sequence databases have therefore been

implemented. The well-known nucleotide sequence databases include

GenBank [53, 54] referred to as the NIH genetic sequence database,

EMBL Nucleotide Sequence Database [55] referred to as the European

equivalent to the U.S.’s GenBank, DDBJ (DNA Data Bank of Japan),

Human Genome Sequencing Centre at Baylor College of Medicine,

IMGT (the International ImMunoGeneTics Database) [56]. The widely

used protein sequence databanks are UniProt (United Protein Databases)

and Swiss-Prot. The UniProt is a centralised database cooperating with

8 Machine Learning Approaches to Bioinformatics

EBI (European Bioinformatics Institute), PIR (Protein Information

Resource), GUMC (Georgetown University Medical Centre), NBRF

(National Biomedical Research Foundation), and SIB (Swiss Institute of

Bioinformatics). The Swiss-Prot is the major European protein sequence

database. In Swiss-Prot, various properties of proteins are stored such as

the description of the function of a protein, protein domains structure

data, and protein posttranslational modifications data.

1.3 Web tools and services for sequence homology alignment

Since DNA and protein sequencing technologies have been successfully

developed, many DNA and protein sequences have been well organised

and stored in various databases as mentioned above. One of the urgent

tasks is to have tools which can compare two sequences to indicate

how similar they are. Based on well-developed homology alignment

algorithms, web tools have been developed and are open to the public.

For instance, some BLAST tools are implemented in the National Center

for Biotechnology Information (NCBI): nucleotide blast, used for

searching a nucleotide database for a nucleotide query based on the

BLASTn algorithm, protein blast, used for searching the protein database

for a protein query based on BLASTp, Position-Specific Iterated –

BLAST or psi – BLAST [57, 58], Pattern Hit Iterated – BLAST or phi –

BLAST [59], BLASTx, tBLASTn, and tBLASTx. Most of these have

been implemented as web tools. All of them deal with predictions

indirectly. For instance, a query sequence may have been aligned with a

number of database sequences. These database sequences have known

structures and functions. If the query sequence has a high returned

similarity with these database sequences, the conserved segment

corresponding to protein structures or functions in these database

sequences can be used for the prediction of the query sequence. A web

tool will enable the user to enter a query on the internet while a server of

a web tool will conduct all the necessary computing. The computing

result will be returned to the user either on the web site or by an email.

The FAST/BLAST series tools are used for aligning a query sequence

against many database sequences to find the most similar ones. The

 Introduction 9

algorithms implemented in all tools consider insertions and deletions.

There are also two other classes of web tools implemented in

bioinformatics studies, one being prediction using whole protein

sequences and another being prediction using sub-sequences or peptides.

These two classes of web tools are used for direct protein function

prediction. For instance, the tools developed for the prediction of protein

localisation [60-62], gene structure prediction [63] and function

annotation [64] use whole protein sequences as input to predict protein

structures and functions directly.

1.3.1 Web tools and services for protein functional site identification

Protein functional site identification using peptides includes the

prediction of protein cleavage sites, protein posttranslational

modification sites, binding sites, and turn types. For instance,

bioinformatics algorithms and (web) tools have been used to predict

proteasomal cleavage sites [65], promiscuous MHC Class-I binding sites

[66], RNA binding sites [67, 68], lipoprotein signal sites [69],

transcription binding sites [70], active sites [71], ligand binding site [72],

miRNA target site [73], protein-protein interaction sites [68], convertase

sites [74], SH3 domain interaction sites [75], and signal peptides [76].

In predicting posttranslational modification sites, there are also many

web tools being developed, for instance, glycosylation site prediction

[77, 78], phosphorylation site prediction [74, 79-83], acetylation site

prediction [83], methylation site prediction [84], sumoylation site

prediction [85], palmitoylation site prediction [86] and GPI-modification

site prediction [87]. Web tools have also been implemented for protein

turn prediction [88-90]. Another class of web tools for protein structure

prediction uses variable peptide length for prediction. This class of web

tools include protein disorder prediction and secondary structure

prediction. For predicting secondary structures in proteins, the

implemented web tools are PreSSAPro [91], E-SSpred [92] and

MUPRED [93], PROTEUS [94], GOR V [95], Porter [96] and logic

alignment approach [97]. MeDor [98], DPROT [99], iPDA [100],

PrDOC [101], FoldUnfold [102], Spritz [103], IUPred [104], RONN

10 Machine Learning Approaches to Bioinformatics

[105], DisEmbl [106], TOP-IDP-scale [107], GlobPlot [108] and

PONDA [109] are the web tools for disordered protein prediction.

1.3.2 Web tools and services for other biological data

Web tools have also been implemented for other biological data analysis,

for instance for RNA data analysis [110], RNA deleterious mutation

analysis [111], microarray data interpretation [112], transcriptional

regulatory network construction [113] and for gene selection and

classification [114], [115]. Web services also cover metabolite data

analysis, such as correlating ligand metabolites with pathways [116] and

integrating transcripts and metabolites [117]. All these efforts aim to help

biologists to enhance their biological experiments and speed up scientific

findings.

1.4 Pattern analysis

The third important practice in bioinformatics is pattern analysis. It

covers a wide range of topics, methodologies and algorithms. This book

will mainly focus on this practice providing a broad introduction and

analysis. Compared with the other two subjects mentioned above, pattern

analysis deals with many fundamental issues in bioinformatics. If a web

tool is more or less computing technique-based, pattern analysis needs

some fundamental support from statistics and mathematics. From this,

models or web tools can be constructed.

Pattern analysis focuses on the exploration of the underlying

mechanism of biological data. It aims to find the rules which govern

data distribution. Only by knowing these rules, can proper models be

constructed. For instance, in any prediction system, the most important

part is a prediction model. Without fully understanding how data

are distributed, no accurate or efficient model can be constructed for

prediction. In order to build a proper predictor, a rigorous modelling

process based on statistical modelling principles must be followed.

Pattern analysis mainly involves two learning mechanisms, i.e.

unsupervised learning and supervised learning. The former is for

 Introduction 11

knowledge discovery, rule extraction and data visualisation, while the

latter is for predictive model construction. There are also many different

algorithms for each learning mechanism, some being simple leading to

coarse but easy-to-interpret models, some being complicated leading to

some accurate but difficult-to-interpret models.

In recent years, systems biology and computational systems biology

have been paid increasing attention because of their importance in

understanding biological systems. Conventionally, biological studies

often decompose a system into some very basic and small systems. The

study of these decomposed systems may miss important information of

complex interplay in cells or organisms. Two trends have emerged in

systems biology study. They are top-down compositional analysis,

aiming at predicting system dynamics, and bottom-up integrating

analysis, aiming at putting molecules into the right classes, pathways, or

networks.

1.5 The contribution of information technology

The development, progress, and advances of bioinformatics could never

have taken place without the support of IT successes. In 1946, came the

announcement of the Turing-complete, a digital computer [118]. It is

referred to as Electronic Numerical Integrator And Computer (ENIAC).

The main purpose of ENIAC was to calculate artillery firing tables for

the U.S. Army's Ballistic Research Laboratory although it can be used to

solve various computer programming problems. The advantage of

ENIAC is its speed: one thousand times faster than an electro-mechanical

machine. Meanwhile, its power in dealing with mathematics for general-

purpose programming promoted the spread of using computers in various

applications.

In 1958, another revolution occurred in electronics which is closely

related to the computer industry. The event was the development of the

integrated circuit (IC) which made the manufacture of electronic

equipments much faster and cheaper. Later, IC quickly progressed to

very large scale IC (VLSI) leading to almost all electronic equipments

including computers in use today being packed into a very small space.

12 Machine Learning Approaches to Bioinformatics

Particularly, VSLI has greatly improved the efficiency of the core parts

of a computer (CPU – central processing unit) in two ways. First, the size

of CPU can be much smaller. Second, the memory is dramatically

increased.

Because of the huge progress in electronics and computers (nowadays

referred to as hardware in contrast to programming codes as software),

using computers to store sequence data has become a convention.

However, the following events have also made bioinformatics research

feasible.

In 1969, Unix systems appeared in the Bell laboratory, which

provided a powerful platform for large scale computing. The next

important event was the emergence of the internet. The first internet (1
st

generation) was called Advanced Research Projects Agency Network

(ARPAnet) established by the United States Department of Defence.

ARPAnet was first established on November 21, 1969 linking the IMP

at UCLA and the IMP at SRI. The 2
nd

 generation was connecting desk

PCs through telephone lines. The 3
rd generation was using wireless

connections to laptop computers. The 4
th generation (the current one) is

using mobile phone internet through cellular networks [119].

Two important network applications are email and file transfer. Email

was invented in 1971. File transfer protocol (ftp) was invented in 1973.

These two applications have become the most important composition

parts of modern bioinformatics services. Almost all the web services and

tools mentioned above include these two applications.

The other important developments in computer sciences include

personal PC, window systems, Linux, Netscape, Perl programming

language, Java and Java Script Programming languages; all have played

important roles in promoting fast bioinformatics progress and

development.

1.6 Chapters

This book is composed of 18 chapters. Except for chapters 1 and 20, the

rest are divided into three parts. Chapters 2, 3, 4, 5, and 6 constitute part

1 and mainly discuss the issue of unsupervised learning. Chapter 2

 Introduction 13

introduces general concepts of unsupervised learning. Chapters 3, 4, 5,

and 6 separately discuss most commonly used approaches, namely

probability density estimation, principal component analysis, cluster

analysis, multi-dimensional scaling, and self-organising map. Although

they have some overlapped functions, each uses a distinct statistical

assumption about data. All these four approaches can be used for

different aspects of knowledge discovery. Chapters 7, 8, 9, 10, 11, 12,

and 13 constitute part 2 and are used to cover supervised learning

algorithms including linear/quadratic discriminant analysis, K-nearest

neighbours, decision trees, neural networks, vector machines, and hidden

Markov models. Specifically, chapter 13 focuses on an important issue in

handling biological data, i.e. feature or variable selection. Chapters 14

and 15 constitute additional components for part 2 and will focus on

peptide classification or functional site prediction problems. Chapters 16

and 17 constitute part 3 and will discuss computational systems biology

studies including causal networks and S-systems. Chapter 18 discusses

the future research directions.

Chapter 2 will focus on the general concepts of knowledge discovery

approaches in bioinformatics. The chapter will discuss the principle of

unsupervised learning approach and briefly introduce various

unsupervised learning algorithms. The chapter will also introduce some

applications of using unsupervised learning approaches to explore

knowledge from large-scale biological data. Chapter 3 will introduce a

useful approach in statistical learning, i.e. probability density estimation

for most data analysis projects. This approach is commonly used as

primary data analysis aiding proper selection of modelling algorithms.

Various algorithms and procedures will also be discussed. Chapter 4 will

introduce principal component analysis (PCA) and the Sammon mapping

algorithm for biological data dimension reduction. PCA can lead to two

outcomes, data reduction and data visualisation. In bioinformatics, PCA

is commonly used to visualise data using the first and second principal

components. Chapter 5 will discuss how to partition biological data

through the use of various clustering algorithms. Data partitioning is

commonly used in bioinformatics to visualise how data are clustered.

From this, typical biological functions can be extracted. Chapter 6 will

introduce the self-organising map as a neural learning algorithm which is

14 Machine Learning Approaches to Bioinformatics

capable of visualising, clustering data and reducing dimensionality of

data.

Chapter 7 will briefly discuss the use of supervised learning

approaches in bioinformatics. Some linear algorithms will be discussed

first followed by nonlinear algorithms. Chapter 8 discusses

linear/quadratic discriminant analysis and K-nearest neighbour algorithm

as simple learning algorithms. Chapter 9 will discuss decision trees

and the random forest algorithm as well as their applications to

bioinformatics for exploring human-like decision-making systems.

Chapter 10 will discuss neural networks which are one of the powerful

nonlinear algorithms. Because neural networks have been widely used in

bioinformatics applications, various cases will be discussed. Chapter 11

will discuss recent development in nonlinear classification approaches

including basis function neural networks, support vector machine and

relevance vector machine. Because they have the advantage of better

generalisation capability and interpretation using support/relevance

vectors, their applications to bioinformatics projects have gained an

increasing interest. Chapter 12 will discuss hidden Markov models which

have been intensively used in sequence analysis. Chapter 13 will

introduce various approaches of feature selection which are critical in

analysing biological data such as gene expression and metabolite data for

extracting the most informative biomarkers.

Chapter 14 will discuss the coding problem which is important to the

analysis of sequence data, where residues are commonly non-numerical

attributes. Several coding mechanisms will be discussed and compared.

Chapter 15 will focus on one specific subject in bioinformatics, i.e.

peptide classification where the main topics including data selection,

organisation, target definition, and modelling procedures.

Chapter 16 will discuss how to use causal network principle and

Bayesian network for constructing gene networks. Chapter 17 will

discuss the developments in computational systems biology. The focus

will be mainly on metabolite data analysis. Chapter 18 will outline the

future research directions in bioinformatics.

15

Chapter 2

Introduction to Unsupervised

Learning

In many real-world applications, available data may have little domain

knowledge (signature) associated, for instance, the data structure and the

inference rule of a data set may be missing or yet to be discovered. Such

a data set is categorised as incomplete data for which inference on novel

data becomes difficult. In order to make data, particularly experimental

data, useful for inference it is necessary to explore signatures for a data

set, which should fit well the inference purposes. For instance, a mass

spectrometry experiment on a set of plant samples can generate many

thousands metabolites. Each metabolite is represented by a mass and a

number of abundance values for replicates. Based on masses we can infer

a number of the chemical formulas of candidate compounds from

different pathways. In theory, one mass corresponds to one compound.

However one metabolite may be mapped to multiple compounds. A

selection process is commonly conducted manually in a laboratory to

identify the true compound of the metabolite. A manual verification is

prone to error and is also cost demanding. An automatic process can

therefore be helpful to cover these two issues. It is understood that

molecules in the same pathway should have similar responses to the

treatment induced in an experiment. It is possible to study the clusters of

metabolites according to abundance values. If some metabolites in a

cluster have definite compound/pathway annotations, a metabolite with

multiple mappings in the same cluster can then be identified. Another

example in studying metabolite data is the identification of a proportion

of important metabolites which can discriminate between experimental

and control groups of samples. To fulfil this purpose, we can model the

16 Machine Learning Approaches to Bioinformatics

density functions of the differential intensities of metabolites from the

experimental and control groups. By setting a threshold, say 1%, we can

identify a subset of the most important metabolites for discrimination.

The process of exploring knowledge from data in this study is

referred to as a learning process in machine learning. There are

mainly two learning processes used in analysing biological data, i.e.

unsupervised and supervised learning. Two learning processes adopt

two different learning mechanisms. A supervised learning process seeks

a mapping function from one data space to another data space. For

instance, if we have enough biological knowledge, we may map

chemical formulas of compounds to pathways directly, where chemical

formulas and pathways are certainly in two different data spaces. The

association between these two spaces is the goal to acquire in a

supervised learning process. With unsupervised learning process, it is

assumed that one data space is missing. For instance, a set of gene

expression profiles for a specific disease may be known, but the number

of inherent causative agents of that disease may be unknown. In other

words, the causative agents are not observable or not easily observed.

For mapping gene expression profiles to this missing space, an

unsupervised learning process can be taken. The learning process is to re-

organise the available data space to explore the missing space, or to map

the available data to the missing space.

Supervised learning process will be detailed in Chapters 7 to 13.

From this Chapter to Chapter 6, the focus is on unsupervised learning

approaches. Most machine learning approaches or algorithms including

unsupervised and supervised learning algorithms involve a parameter

space optimisation problem. It is assumed that knowledge in data or data

signatures can be quantitatively expressed by parameters. In other words,

parameters are the quantitative characterisation of knowledge by which

data are generated. For the gene expression data mentioned above, we

may say that it is the body of the causative agents which are not observed

that generate the gene expression profile data. If the causative agents

vary from disease to disease, the gene expression profile will vary as a

consequence. It must be noted that knowledge is an abstract object by

which exhausting data are infinite. For instance, if time and cost are

allowed, we may collect infinite gene expression profile data for one

 Introduction to Unsupervised Learning 17

disease. Limited by time and cost, the data obtained for acquiring

knowledge can only be one random sample of the true knowledge. For

instance, given a mean and a standard deviation of the Gaussian

distribution, many data sets can be randomly generated. Figure 2.1 shows

an example of this, where the mean and the standard deviation of the

Gaussian distribution are zero and one, respectively. Sampling the

distribution twice with 100 data points generates two random data sets

from which two histograms are drawn displaying two different data

distributions. One of these two data sets may be used for the inference of

mean and standard deviation of the Gaussian distribution.

Fig. 2.1. Two samples are generated by randomly sampling the Gaussian distribution

characterised by mean: zero, and standard deviation: one, with 100 data points. Two

histograms are generated using two data sets. In the histogram, the range of X (the

independent variable) is divided evenly into a number of intervals referred to as bins. The

data falling into each bin are counted as “Hits” placed as the vertical axes in the Figure.

In unsupervised learning, such a learning process normally deals with

one data set as mentioned above. In the above example, the inference of

the Gaussian characterisation parameters (mean and standard deviation)

will not have any other data to support. In other words, the source (a

Gaussian function) which generates the data is missing. What an

unsupervised learning process does is to find this information hidden in

data through learning. For instance, the estimation of the mean and

18 Machine Learning Approaches to Bioinformatics

standard deviation of the Gaussian distribution for data samples in

Fig. 2.1 can be done by

 ∑
=

=
n

i
ix

n 1

1
µ (2.1)

and

 ()∑
=

−=
n

i
ix

n 1

21
µσ (2.2)

where n is the number of data points, ix is the ith data point, µ is the

mean, and σ is the standard deviation. The estimated mean and standard

deviation for random sample 1 shown in Fig. 2.1 are −0.01468948 and

1.051885, respectively. The estimated mean and standard deviation

for random sample 2 shown in Fig. 2.1 are 0.07375137 and 1.008609,

respectively. The parameters are close to the true parameters (referred to

as truth) with small deviations. Bear in bind that we are handling random

samples with limited size. Having deviations is then a common outcome

and is expected. The question is how to minimise this deviation, which is

another issue in learning and will be discussed in the next few chapters

for different unsupervised learning approaches.

In the above example, the Gaussian distribution is regarded as a data

structure while the parameters are regarded as the inference rule. Unless

these two parameters are well-learnt, an inference process may not be

accurate and correct. The correctness means that an inference must find

the correct data structure while accuracy measures how close the

estimated parameters are to the true parameters. The assumed data

structure for two random samples in Fig. 2.1 is Gaussian. If the assumed

data structure is incorrect, the explored inference rule will be useless. For

instance, the data available (in solid line in Fig. 2.2) do not follow the

Gaussian distribution. If we assume that the data are generated from a

Gaussian distribution, the estimated inference rule will not generate any

useful prediction. The dotted line in Fig. 2.2 shows a significant

deviation from the solid line. This incorrect information will be useless

or misleading in future inference.

 Introduction to Unsupervised Learning 19

Fig. 2.2. An example that uses an incorrect data structure for inference. The solid line is

the density function (details of this will be discussed in Chapter 3) of a random sample

generated from a true data structure which is composed of multiple Gaussian

distributions. The dotted line is the density function of an estimated inference rule of the

assumed Gaussian data structure.

The above two examples are categories of density estimation in

machine learning. As stated above, it is necessary to explore the true data

structure as well as the true inference rule.

There are also two other important subjects of unsupervised learning

in machine learning. They are data visualisation and cluster analysis.

Data visualisation is a powerful tool in real data analysis where the main

objective is to investigate how data are distributed. From this, further

studies can follow that look at data structures and inference rules. If data

are located in a low-dimensional space, such an investigation will not be

very difficult. However, in most real bioinformatics applications, data are

sitting in high dimensional spaces in which it is impossible to visualise

how data are distributed. For instance, microarray gene expression data is

a typical example. Gene expression data for studying certain diseases

may be available in only a few samples but may have thousands or

hundreds of thousands of genes used as variables. Direct and intuitive

visualisation of the data is impossible unless a specific treatment is taken.

In order to visualise high-dimensional data we then need to use various

visualisation approaches. Some are simple while some are tailored for

handling nonlinear and complicated data.

20 Machine Learning Approaches to Bioinformatics

Fig. 2.3. Mapping the Iris data (in four dimensions) to a two-dimensional space. There

are three species of Iris flowers; each has four descriptions, hence four-dimensional data

space.

Figure 2.3 shows a visualisation map of Iris data in which three

species of Iris flowers (Setosa, Versicolor, Virginica) are quantified by

four variables (sepal.length, sepal.width, petal.length, and petal.width).

In using these four variables, a map is generated using a visualisation

algorithm, a multi-dimensional scaling algorithm which will be discussed

in Chapter 4. In the map, it can be seen that the species Setosa is well

separated from the other two species, which are difficult to separate.

A data set may not have one unique data structure, i.e. a data structure

can be viewed as a composition of disjointed sub-data structures. Each

sub-data structure is a collection of data points with similar physical

background. For instance Fig. 2.4 shows a data structure with four sub-

data structures. The four contours are four sub-data structures based on

which four clusters of data points are generated using random sampling.

In unsupervised learning, a key issue is how to find this data structure

from a random sample and quantitatively describe the data structure.

Therefore two important issues are whether the data structure and the

inference rule which are both acquired are estimated correctly and

accurately. Such a process in unsupervised learning is called cluster

analysis.

 Introduction to Unsupervised Learning 21

Fig. 2.4. Four sub-data structures of a data set. Four contours are for four sub-data

structures and dots comprise a random data set sampled from a data structure with four

sub-data structures.

These three typical unsupervised learning processes have been widely

used in various Bioinformatics problems. Some are used for data pre-

processing, some are used for data primary study and some are used for

building predictors. For the first two purposes, unsupervised learning

approaches are normally used for identifying data structures and

inference rules. A further progress from this is to build predictors based

on the found data structure and the estimated inference rules. For

instance, if a data structure is found to have two Gaussian distributions

for two classes of data, e.g. disease-related and disease-free, with an

estimated optimal inference rule, e.g. the Gaussian parameters,

classification or prediction can be made for novel data. Various density

function estimation algorithms [120] have been used in bioinformatics,

for example with the prediction of miRNA [121], the prediction of

secondary structures [122], the functional annotation of proteins using

gene ontology contents [123], the segmentation of cDNA microarray

spots [124], the prediction of protein crystallization propensity [125], and

the prediction of protein functional sites [126].

22 Machine Learning Approaches to Bioinformatics

Principal component analysis (PCA) [127, 128] is a powerful

unsupervised learning algorithm which converts a raw data space to an

orthogonal space in which the first one or two principal components can

be used for data visualisation if they contain the majority of the

information in the data. Details of the algorithm will be discussed in

Chapter 4. PCA has been used for detecting the aging evolution of the

volatile organic compounds obtained from various samples [129], for

characterising a broad range of structural and architectural alterations in

cell walls [129], and for analysing and detecting different qualities of

food and drug composition [130]. Principal component analysis has also

been used for analysing Glycoprotein microarrays [131], studying low-

dose radiation-associated changes in cytokine gene expression profiles

[132], and studying multi-dimensional gene expression data [133].

When studying biological data with little domain knowledge, an

important issue is if the data can be divided into a number of small, non-

overlapping groups. If so, how many groups can be made for a data set?

This is key to investigating whether a biological phenotype is composed

of several non-overlapping genotypes or for studying the causative

agents leading to a specific disease. The approach for this is called

cluster analysis. Cluster analysis has been used for representing and

analysing gene sequences [134], protein sequence analysis [135],

deriving sequence templates so as to analyse protein tertiary structures

[136], studying the genetic diversity of harpins from Xanthomonas

oryzae [137], testing the importance of myogenic gene expression during

myofiber hypertrophy in humans [138], analysing gene expression data

of human dental pulp stem cells [139], analysing SAS on real-time PCR

gene expression [140], subcategorising of tumour types through gene-

expression profiling [141], studying gene expression dynamics [142],

and optimising gene cluster structure using biological knowledge [143,

144].

As a neural network unsupervised learning algorithm, self-organising

map (SOM) [145] has been widely used in bioinformatics because of

its powerfulness in associative memory and pattern analysis. The

mechanism of SOM will be discussed in Chapter 6. SOM has been used

for protein structure localisation analysis [146], protein turn type

prediction [147], DNA fragment taxonomic visualization and

 Introduction to Unsupervised Learning 23

classification [148], clustering short time-course microarray data with

replicates [149], peptide identification [150], secondary structure

prediction [151], G-protein-coupled receptors classification without

alignment [152], searching for hidden sequence signatures of eukaryotic

genomes [153], and optimal HP configuration [154].

24

Chapter 3

Probability Density Estimation

Approaches

The importance of density estimation has been discussed in the last

Chapter. In this Chapter, the relevant algorithms and their applications

to bioinformatics are detailed. The simplest approach, called the

histogram approach, is introduced at the beginning. Further discussion

then follows towards three categories. First, a parametric approach is

introduced with which we assume that data follow a Gaussian

distribution as a hidden or missing data structure and two parameters (a

mean and a standard deviation) as the inference rule of it are estimated.

Second, two non-parametric approaches are discussed. In contrast

to parametric approaches, non-parametric approaches do not try to

explore the explicit form of a data structure for a data set. The inference

rule is therefore algorithm-oriented. Third, a semi-parametric approach

is also introduced. Unlike parametric and non-parametric approaches,

semi-parametric approaches explore a flexible data structure with

inference rules for future decision making. For each of these three

categories, a number of applications will be discussed. The data used

for learning is referred to as training data.

3.1 Histogram approach

The histogram approach is the simplest density estimation approach. In

estimating a density function for a data set, each coordinate is divided

into segments with fixed length. Such a segment is commonly called a

bin. For instance, the coordinate of a variable],[bax∈ is divided into K

non-overlapping bins each of which has the length

 Probability Density Estimation Approaches 25

K

ab −
 (3.1)

Each training data point is scanned to see which bin the data point falls

in. The frequency of each bin is equal to the number of training data

points falling into it over the total number of training data points. The

frequency is treated as the inference rule. In prediction, the frequency is

used as the probability to indicate how likely novel data is to fall in a

certain bin. Suppose a bin is characterised by the interval],[bin 21 uui =

(buua ≤<≤ 21) and a frequency if . If a novel data point falls in this

interval, i.e.],[21 uux ∈ , the frequency of the bin is then used to indicate

how likely 21 ,uxu ≤≤ . Note that “∈” reads as “belonging to”. From

this, a histogram can be generated to visualise the data distribution. The

left panel in Fig. 3.1 shows such an application. Details of data will be

discussed in the next section. The histogram approach is a simple method

for studying probability density functions, but it has a fatal limit in

computational cost when the number of variables gets larger. For D

variables, there will be DK bins. When K=10, the number of bins will

be 10
10 when a data set has 10 variables. A further note on the histogram

approach is its specificity. It is normally categorised as a non-parametric

approach because it does have a property of non-parametric approaches

in that no explicit data structure is used. However, it has some similarity

with parametric approaches in that training data will not be kept for an

inference process.

3.2 Parametric approach

Unlike the histogram approach, a parametric approach makes an

assumption of data structure before estimating the probability density

function of a data set. We acquire a unique data structure which is

Gaussian in most applications and a relevant inference rule. After the

probability density function of a data set is constructed, we discard the

training data. What is left is the inference rule characterised by two

parameters for a Gaussian data structure. A Gaussian data structure has

mean and standard deviation parameters. If a training data set with N

training data points is denoted by { }
1

 ,
N

n n=
Ω = x ()ndnnn xxx ,,, 21 ⋯=x

26 Machine Learning Approaches to Bioinformatics

(hence
d

n ℜ∈x) with njx as the jth element of the nth training datum in

Ω . Here we follow convention to denote a d-dimensional vector by a

bold-faced letter. { }N

nn 1

=
x is read as enumerating n for nx from 1 to N.

With the assumption of a Gaussian data structure, a likelihood function

(L) that N training data points are generated by the assumed Gaussian

data structure is defined as below

 ∏
=

=
N

n
np

1

)(xL (3.2)

Here the probability density function)(np x is a Gaussian

T 1

/2

() ()1
() exp

2(2)

n n
n d

p
π

− − Σ −
= −  

Σ  

x µ x µ
x (3.3)

with Σ as the covariance matrix and µ the mean vector. The likelihood

function is determined by the parameters, i.e. the mean vector and the

covariance matrix. Only when the likelihood function is maximised, the

two parameters are optimised or optimally determined so that the

estimated Gaussian data structure can fit the training data well. If training

data are orthogonal, we can assume that the covariance matrix is

diagonal





















=Σ

2

2
2

2
1

00

00

00

dσ

σ

σ

⋯

⋮⋮⋮⋮

⋯

⋯

 (3.4)

We can further assume that data are homogeneous. From this the

covariance matrix becomes I
2σ=Σ with I as an identity matrix.

Applying a logarithm to the likelihood function and using the maximum

likelihood approach leads to

 ∑
=

=
N

n
n

N 1

1
xµ (3.5)

 Probability Density Estimation Approaches 27

and

 () ()∑
=

−−=
N

n
nn

N 1

T2 1
µxµxσ (3.6)

Figure 3.1 shows an application of parametric density estimation for

the hydrogen distribution in compounds. The data are from the Kegg

library [155]. There are 2762 compounds. Each compound is expressed

by a formula. For instance, the chemical formula of ADP is

C10H15N5O10P2 with relative mass as 427.029297. In this compound,

there are 15 units of hydrogen. Among 2762 compounds, the quantity of

hydrogen varies and the estimation is based on the following data

conversion

)1Hlog(+=x (3.7)

where H means the quantity of hydrogen. Using the parametric approach

described above, we can estimate the probability density function for x.

Fig. 3.1. (a) The histogram; (b) The parametric approach for estimating probability

density function of hydrogen quantity in compounds.

Shown in the left panel in Fig. 3.1, a histogram demonstrates biased

Gaussian distribution for comparison. It can be seen that the parametric

28 Machine Learning Approaches to Bioinformatics

approach delivers a symmetrical density function while the histogram

shows a skewed density function. From this case, we can see that we

must be careful when using the parametric approach for probability

density estimation. If the difference between a real distribution and

the predicted one is too large, we need to think of an alternative. The

parametric approach has the advantage of being very simple and

straightforward.

3.3 Non-parametric approach

A non-parametric approach in machine learning means that a model is

built without a clearly defined data structure. A model will need to use

all the available data points for an inference. The prediction is based

on a specific inference rule replying on the relation between a novel

datum and whole training data. Two commonly used non-parametric

approaches for density function estimation are discussed here. They are

the nearest neighbour approach and the kernel approach. The latter has

been embedded in the R project.

3.3.1 K-nearest neighbour approach

With the K-nearest neighbour approach, the basic principle is similar to

the histogram approach. Both use a predefined field (named as bin in the

case of the histogram approach) into which we estimate the frequency

that the training data points fall. Afterwards, the frequency estimated is

used for inference. However, two approaches have very different effects.

With the histogram approach, frequencies of bins are estimated in

advance. When novel data arrive, the inference process is conducted

without seeing the training data again. With the nearest neighbour

approach, an inference process is made only when all the training data

points are present. Moreover, various distance metrics are used, for

instance the Euclidean distance, the binary distance and other

biologically relevant distance measures. Figure 3.2 shows five estimated

probability density functions based on five different bin sizes using the

nearest neighbour approach. In the Figure, it can be seen that when the

 Probability Density Estimation Approaches 29

number of bins is small, hence large bin size, the estimated density

function has a trend to smooth out the peaks. However, when the number

of bins is large, hence small bin size, the estimated function has many

unnecessary sparks. There is therefore a procedure for determining if the

bin size is optimal.

Fig. 3.2. Five estimated probability density functions for the hydrogen data based on five

bin sizes using the nearest neighbour approach. Five bin sizes are made by dividing the

data interval over the number of bins, e.g. 10, 20, 30, 40, and 50. These five density

functions are normalised together with the density function estimated using the kernel

approach.

3.3.2 Kernel approach

The kernel approach is a kernel learning method and is an extension to

the nearest neighbour approach. The kernel approach is also referred to

as the Parzen window approach [156]. With the nearest neighbour

approach, the frequency of training data points within an interval of a

testing data point with a predefined bin size is calculated. This means

that all the training data points within the interval play the same role for

density estimation. With the kernel approach, such equal weighting is

changed. Below is a brief description of the kernel approach for density

estimation.

30 Machine Learning Approaches to Bioinformatics

We still use { }N

nn 1

=
=Ω x to denote a training data set. A similarity

vector for a novel testing data point is defined as { }N

ii 1

=
ρ , where iρ is

defined as the similarity between the testing data point and a training

data point, namely x and ix . The similarity function is named as a

kernel function using the kernel method. The commonly used kernel

function is the radial-basis function defined as below

) exp(
2

ii xx −−= βρ (3.8)

The estimated density for a novel testing data point is

 ∑
=

=
N

i
i

N
f

1

)(
1

)(xx ρ (3.9)

The advantage of the kernel approach for density estimation is the

smoothness of the estimated function.

Fig. 3.3. Three estimated probability density functions for the hydrogen in compounds.

Figure 3.3 shows the estimated probability density function using the

kernel approach for the hydrogen distribution in compounds. Three

values corresponding to the bandwidth are used. In estimating 1-D

density function using R, the function is called “density” in which the

bandwidth is replaced by the number of standard deviations. Hence three

 Probability Density Estimation Approaches 31

values are one standard deviation (std = 1), two standard deviations

(std = 2) and three standard deviations (std = 3). When the bandwidth is

larger, the estimated density function is smoother.) For instance, the right

panel in Fig. 3.3 shows that some small peaks occurring in the left panel

in Fig. 3.3 have been smoothed out.

Shown in Fig. 3.4 are three estimated probability density functions

for hydrogen and carbon distributions in compounds. The estimation of

2-D probability density function using R is implemented by the bked2D

function. In this function, the bandwidth is explicitly specified. Three

values are used for the bandwidth in Fig. 3.4. They are 0.1, 0.5, and 1.

The graphs show again that when the bandwidth value is large, the

estimated density function smoothes out some peaks which occur in

density functions of a small bandwidth value.

Fig. 3.4. Three estimated probability density functions for the hydrogen and carbon in

compounds using the kernel approach.

The semi-parametric approach is an approach between parametric and

non-parametric approaches. The estimation process is based on an

assumption that data are generated from a model with a number of

Gaussians. The model is defined as below

 ∑
=

=
M

m
mmGwf

1

)()(xx (3.10)

32 Machine Learning Approaches to Bioinformatics

where mw is the contributing factor (a parameter under estimation) for

the mth component,)(xf is the estimated density function, and)(xmG

is the mth component (Gaussian) which is defined as













 −Σ−
−

Σ
=

−

2

)()(
exp

)2(

1
)(

1T

2/

mimmi

m
dmG

µxµx
x

π
 (3.11)

with a mean vector mµ and a covariance matrix mΣ . The contributing

factors satisfy two conditions. First, all are positive, 10 ≤≤ mw . Second,

the sum of them is one

 1
1

=∑
=

M

m
mw (3.12)

Such an approach is also referred to as mixture models. To fit such a

model to a given data set, a so-called the Expectation-Maximisation

(EM) algorithm [157-161] is used. The EM algorithm is an iterative

procedure in which the parameters are optimised. The parameters include

wm’s and the mean vectors and the covariance matrices of)(xmG ’s. In

the learning process, two steps are used in turn until the algorithm is

converged, i.e. until there is no change in parameters in consecutive

learning cycles. These two steps are the expectation and maximisation

steps by which the algorithm is named. In the expectation step, partial

membership ()(nmg x) of each data point is computed. The partial

membership measures how likely it is that a data point belongs to a

component. It is defined as below

∑ =

=
M
i nii

nmm
nm

Gw

Gw
g

1)(

)(
)(

x

x
x (3.13)

Based on these calculated partial memberships, model parameters are re-

computed. The contributing factors are calculated by the following

equation

 ∑
=

=
N

n
nmm g

N
w

1

)(
1

x (3.14)

 Probability Density Estimation Approaches 33

Fig. 3.5. The estimated density function for a data set with three clusters. The estimation

is done using the R package “mclust02”.

The new mean vectors are re-computed by

 ∑
∑= =

=
N

i
iN

n nm

im
m

g

g

1 1)(

)(
x

x

x
µ (3.15)

If a homogeneous model is the target, the variance is re-computed by

 ()()T

1 1)(

)(
mi

N

i
miN

n nm

im
m

g

g
µxµx

x

x
−−=Σ ∑

∑= =

 (3.16)

In using the semi-parametric approach, an important issue is to

determine the proper number of components, i.e. the value for M. The

Bayesian Information Criterion (BIC) [158-162] is one of the commonly

used measurements for determining the optimal model structure. By

maximising the BIC value, model structure can be optimised. Shown in

Fig. 3.5 is the estimated density function for three clusters. Figure 3.6

shows the BIC values for the above case where it shows that the BIC

value is maximised at the point with three components (M=3).

34 Machine Learning Approaches to Bioinformatics

Fig. 3.6. BIC values for the data set with three clusters.

Fig. 3.7. The estimated density function for the compound data using the semi-parametric

approach (implemented in the R package by mclust02). The data set is in

http://ecsb.ex.ac.uk/book/compoundData.

B
IC

 Probability Density Estimation Approaches 35

Figure 3.7 shows an application of the semi-parametric approach to

the estimation of density function of compound data in which each

compound is coded using nine chemical elements. In order to visualise

the density estimation result, data are first mapped to a two-dimensional

space using a multi-dimensional scaling approach. The estimation of the

density function is conducted in the mapped two-dimensional space. In

the estimated density function, it can be seen that there are two densely

distributed clusters in the middle while two small clusters are located far

away from centre with some loosely distributed compounds.

The second application of this density function estimation is for

analysing the impact of acetyllysine on disease development. 453

acetyllysine are collected from the NCBI database. Among them, 40

relate to disease development Ten flanking residues of each acetyllysine

are coded using the Kyte-Doolittle hydrophobicity scale [163]. Multi-

dimensional scaling is also used before applying the semi-parametric

approach for density estimation. Figure 3.8 shows the density estimation

where it can be seen that four clusters are formed. The one on the right-

hand side corresponds to the 40 acetyllysine involved in disease

development.

Fig. 3.8. The estimated density function for the acetyllysine data set. The data are in

http://ecsb.ex.ac.uk/book/acetyllysine.

36 Machine Learning Approaches to Bioinformatics

Summary

Three major density function estimation approaches have been discussed.

Density estimation approaches are able to provide a platform for

preliminarily studying data structure prior to implementing a machine

learning algorithm to model the data. Because of this, density estimation

approaches have been widely employed in various bioinformatics

projects. In predicting secondary structure, a novel kernel function was

proposed by extending the variance to include information about the

distance between a query sequence and the training sequences [122].

The same kernel function has also been used for constructing predictors

for species-specific microRNA precursors [164]. For identifying

differentially expressed genes between disease-free and disease-related

patients, density functions were estimated for making predictive models

for disease diagnosis [165]. In analysing the gene expression data of

1536 genes in 100 colorectal cancer and 11 normal tissues, a non-

parametric density estimation approach called the iterative local

Gaussian clustering (ILGC) was used to identify clusters of genes. The

results were similar to those of a semi-parametric approach with three

clusters separating tumours from normal tissues [166]. Non-parametric

kernel density estimation approach was also combined with entropy

approach for selecting highly differentially expressed genes [167].

In summary, the parametric density estimation is commonly a weaker

approach for estimating biological data density because most biological

data are hardly following a Gaussian distribution. Abnormality is a very

common phenomenon. A non-parametric density estimator like the

K-nearest neighbour approach and the kernel approach are flexible in

constructing unknown density functions. However, such a method has a

problem in high computational cost. The semi-parametric approach is

based on the assumption that data are generated from a number of basic

parametric density functions. Compared with non-parametric approaches,

the semi-parametric approach enjoys the advantages of simplicity and the

capability of clustering data at the same time. However, it also brings

about a challenge when we need to determine an optimal model structure

for a data set. Although BIC can be used, data with noise may lead to a

 Probability Density Estimation Approaches 37

difficult situation for selecting an optimal model structure. A better

strategy is to use multiple density estimators to investigate the emerged

property or data structure.

38

Chapter 4

Dimension Reduction

Dimension reduction is a technique widely used in many applications.

The main objective is to reveal data structure which is hard to obtain

from a high-dimensional space through mapping the high-dimensional

space to a low-dimensional space. The mapping is commonly

conducted by a machine learning algorithm which uses various metrics

and various learning strategies. After learning, the new space is

commonly 2-dimensional (or 3-dimensional); working in this space we

can study how data are clustered and how clusters are mutually

correlated. This then provides a basis for further studies including

classification analysis, knowledge extraction and hypothesis generation.

In this chapter, we discuss two basic dimension reduction algorithms.

Importantly, their difference and strengths will be emphasised. The

applications to bioinformatics projects are demonstrated as well.

4.1 General

Dimension reduction is a popular topic in machine learning and

bioinformatics. It is to find a proper algorithm by which a multi-

dimensional data space can be mapped to a low-dimensional space with

as small deviation as possible for better visualisation. Denoted by
N
n

d
n 1} { =ℜ∈= xD where N is the total number of data points and,

2>d (or 3>d) is the dimensionality of D , a machine learning

algorithm is used to map D to N
n

d
n 1

~

}{
~

=ℜ∈= yD where 2
~

=d (or

3
~

=d) is the dimensionality of D
~

. The process is one-to-one mapping-

based, i.e.],1[, Nnnn ∈∀yx ֏:φ . This means that for any original data

point nx in D we can find its mapping ny in D
~

. Importantly, if we find

 Dimension Reduction 39

a nearest neighbour of nx (denoted by mx) in D , we are expected to

find my in D
~

 which satisfies

miNininm ≠∈∀−≤− &],1[, yyyy (4.1)

where ∀ reads as “for all” and nm yy − means the distance between

my and ny .

Having understood the general principle of dimension reduction,

the next important question is how to select a proper algorithm for a

specific application. This requires a clear understanding regarding the

strengths of different algorithms. In this chapter, two basic algorithms

which are commonly used in bioinformatics for dimension reduction are

introduced. They are multi-dimensional scaling and principle component

analysis.

There are two commonly used principles involved in various

applications. The first is to maintain the information (variance) in the

original data as much as possible. The second is to preserve the

topological structure of the original data space as unchanged as possible

during mapping. It must be emphasised that any mapping from a high-

dimensional space to a low-dimensional space will lose information. This

is because the complexity in a high-dimensional space is normally not

expected to be fully embedded into the low-dimensional space. The

larger the difference between the original and the new dimensionality,

the more information may be lost during mapping. The larger the

complexity in the original high-dimensional space, the more information

may be lost during mapping. The complexity in dimension reduction

algorithms is then the target of minimising the loss of the information in

the original data space.

4.2 Principal component analysis

Principal component analysis (PCA) searches for a set of mutually

orthogonal bases which form the new coordinates in the new space and

projects the original data space to the new data space through a learning

40 Machine Learning Approaches to Bioinformatics

transformation [1, 2]. In the new data space, the coordinates are ordered

in terms of projected information (variance). The first coordinate has the

largest variance while the following coordinates have decreasing

variances. A linear transformation of the matrix of the original data,

denoted by X, to the matrix in the new data space, denoted by Y, is

defined as

WXY TT = (4.2)

where W is the transformation matrix and X is normalised with zero

mean, i.e.

],1[,][NnE n ∈∀= 0x (4.3)

When only one transformation vector is used we reduce the

dimensionality to one,

wXy T= (4.4)

Shown in Fig. 4.1 is a data set in a two-dimensional space. With this

data distribution, we study how we can search for a new data space to

which this data set can be mapped with the first new coordinate having

the richest information or the largest variance (denoted by 1u). Suppose

the mapping is made by u

uxy
T
nn = (4.5)

The variance of ny can be measured by

2T2) (uxy nn = (4.6)

The expectation of the variance is expressed as

ΣuuXuXuuxy TTT2T2]) ([] [=== nn EE (4.7)

 Dimension Reduction 41

where Σ is the co-variance matrix in the original data space. By

maximising the variance] [2
nE y we obtain the optimal mapping

direction u .] [2
nE y is also called the eigen value (λ). When extending

the mapping dimensions to dd ≤
~

 with new mutually orthogonal

coordinates we have

 d
ii

~

1
T } {diag ==Λ= λΣUU (4.8)

Fig. 4.1. Illustration of PCA. The coordinates (x1, x2) represent the original data space

while the coordinates (u1, u2) represent the new data space. The dots are the data points.

In Bishop’s book [3], an analysis shows that the loss of the

information in the original data space during a dimension reduction

process is

 ∑
+=

d

di
i

1
~

 λ (4.9)

PCA has been widely used in bioinformatics applications, for

instance lactation gene network analysis [4], classification of normal,

chronic pancreatitis and pancreatic cancer sera [5], the analysis of

low-dose radiation-associated changes in cytokine gene expression

42 Machine Learning Approaches to Bioinformatics

profiles [6], the analysis of nucleoside electrophoretic profiles [7], the

analysis of chronic fatigue Syndrome through gene expression profile

study [8], the study of LC/MS/MS data [9], the analysis of human MHC

supertypes [10], the analysis of vitamin E deficiency and metabolic

deficits in neuronal ceroid lipofuscinosis using NMR spectroscopy data

[11], the analysis of DNA string motifs [12].

In classifying normal, chronic pancreatitis and pancreatic cancer sera,

the conventional clinical markers were less accurate and it was desirable

to detect the cancers as early as possible. The objective of using PCA

was to investigate whether biomarkers could be found for the early-stage

cancer detection [5]. In the study, glycoproteins enrichsed by lectin

affinity chromatography were the target and PCA was applied to the

microarray data of 8 chronic pancreatitis and 6 pancreatic cancer sera. It

was found that two groups of patients were well separated thus providing

better biomarkers for the diagnosis. In order to investigate the molecular

basis of chronic fatigue syndrome, gene expression profiles of 167

participants with two self-report questionnaires (multidimensional

fatigue inventory) were used and PCA was applied [8]. It was found that

PCA was able to well separate data according to their biological

classifications.

Two important aspects must be noted. First, PCA is a linear approach

as described in equation (4.2). The nonlinear data structure will not be

well-explored. Second, the loss of the information of the original data

space using PCA follows equation (4.9). It is very important to check

if such a loss is affordable.

4.3 An application of PCA

The data used here has been published in an earlier study [13] and can be

seen in the website: http://ecsb.ex.ac.uk/pseudomallei. It was obtained

using a proteome array chip to measure antibody responses to a panel of

214 immunoreactive antigens.

Sera from melioidosis positive or negative patients in Singapore were

generally taken on admission to hospital or obtained from walk-in

 Dimension Reduction 43

clinics. Positive samples (n=87) were taken from patients on admission

to hospital and who had a diagnosis of melioidosis confirmed by blood

culture. The negative sera (n=59) were taken from patients who were

either admitted to hospital or walk-in clinics but were negative for

melioidosis.

PCA is applied to this data set to investigate how genes are

distributed among the non-infected (negative) and infected (positive)

patients. Figure 4.2 shows the PCA for the negative data, where the left

panel shows the PCA visualisation using the first two principal

components while the right panel shows the distributions of eigen values

(variances) across the principal components. The loss of the information

in the original data space is 81% using equation (4.9). This means that

the knowledge displayed using PCA for this high-dimensional space is

less than 20%. In this two-dimensional space, it can be seen that a few

genes are distributed in low density areas.

Fig. 4.2. PCA of the negative Burkholderia pseudomallei data. The left panel shows

the visualisation using two top principal components. The right panel shows the

eigen value distribution. The contours represent the density estimated using a kernel

approach.

P
C

2

44 Machine Learning Approaches to Bioinformatics

Fig. 4.3. PCA of the positive Burkholderia pseudomallei data. The left panel shows

the visualisation using two top principal components. The right panel shows the

eigen value distribution. The contours represent the density estimated using a kernel

approach.

Shown in Fig. 4.3 is the PCA for the positive data. The left panel and

the right panel show the PCA visualisation using the first two principal

components and the distributions of eigen values (variances) across the

principal components, respectively. The loss of the information in the

original data space is 82% using equation (4.9).

In the estimated density functions for both negative and positive data,

each gene has a likelihood measurement. We denote the likelihood

measurements for the ith gene by +
ip and −

ip , resulting from positive

and negative density functions, respectively. The normalised likelihood

measurements are defined as

∑∑

−

−
−

+

+
+ ==

i i

i
i

i i

i
i

p

p
p

p

p
p ~~ (4.10)

A PCA differential score can be defined as

 ~~ −+ −= iii ppλ (4.11)

P
C

2

 Dimension Reduction 45

Fig. 4.4. The differential PCA scores for the top ten genes identified using PCA and

a kernel density estimation approach. The horizontal axis lists the top ten genes and the

vertical axis represents the differential PCA scores.

The larger the differential score, the larger the differential activity in

negative and positive PCA models. This means that the top gene which

can be regarded as a differential gene using differential PCA scores can

be defined as

{ }],1[, maxarg dim i ∈∀= λ (4.12)

with d as the number of genes (data dimensions). Figure 4.4 shows the

differential PCA scores for this data set, where the gene BPSL2522 has

been identified as the most differential gene using PCA. The gene has

been identified as one of the biomarkers in using genetic programming

approach to identify biomarkers for the disease [13].

Shown in Fig. 4.5 are the localisations of the top five genes

distributed in both negative (the right panel) and positive (the left panel)

PCA maps. It can be seen that these top five genes are located in high

density regions of the negative PCA map, but in low density regions of

the positive PCA map. Having understood that genes with a large

expression measurement normally have a low density measurement,

46 Machine Learning Approaches to Bioinformatics

Fig. 4.5. The localisation of the top five genes with high differential PCA scores.

this shows that these top five differential genes demonstrate positive

differentiation between positive and negative patients.

4.4 Multi-dimensional scaling

Multi-dimensional scaling aims to visualise high-dimensional data

through a learning process which can preserve as much original data

structure as possible. Among various multi-dimensional scaling

algorithms, the Sammon mapping is the most powerful one. The

Sammon mapping was proposed in 1969 by Sammon Jr [14]. The basic

principle of the algorithm is to maintain the relative topological structure

as unchanged as possible during mapping a high-dimension data space

to a low-dimension data space. The relative topological structure is

quantified by the pair-wise distance between data points. For N data

points, there are N (N – 1) / 2 pair-wise distances. Like most other

multi-dimensional scaling algorithms, the Sammon mapping also makes

one-to-one mapping, i.e. all the original data points can find their

locations in a mapping space. There are therefore another set of pair-wise

mapping distances between data points. Sammon’s idea was to minimise

the deviation between the original pair-wise distances and the mapping

P
C

2

 Dimension Reduction 47

pair-wise distances. In terms of this, an objective function considers

the distance of distances as below

 ∑ ∑
= +=

−
N

i

N

ij
ijij dd

1 1

2*)((4.13)

Because it is unavoidable to lose the information in the original data

space during mapping from a space with a higher dimensionality to a

space with a lower dimensionality, the distance of distances defined in

equation (4.13) is merely practical. Sammon proposed the concept of the

relative distance, i.e. the normalised distance of distances. The error

(objective) function proposed by Sammon was defined as below

 ∑ ∑
∑ = +=<

−
=

N

i

N

ij ij

ijij

ji ij d

dd

d 1 1
*

2*

*

)(1
E (4.14)

A learning process then minimises this error function.

The Sammon mapping algorithm has been used for visualising gene

expression data [15-18]. Most applications have indicated that it is better

than a linear approach for data visualisation. This results from the

nonlinearity property of the Sammon mapping algorithm.

Shown in Fig. 4.6 are examples of using PCA and the Sammon

algorithm. On the left panel of Fig. 4.6 (a), the original data is composed

of two rings in a two-dimensional space with an added noise of Gaussian

)1.0 ,0(N in the third dimension. The PCA map is shown on the middle

panel of Fig. 4.6 (a) and the Sammon map is shown on the right panel.

It can be seen that the Sammon map can preserve the original data

structure well while this data structure can hardly be seen in the PCA

map. Figure 4.6 (b) shows another case where PCA fails to preserve

the original data structure after mapping. The original data is a sin

function with an added noise of Gaussian)1.0 ,0(N . The data structure

disappears in the PCA map (the middle panel of Fig. 4.6 (b)) while it is

well preserved in the Sammon map (the right panel of Fig. 4.6 (b)).

These two examples are consistent with some research, for instance,

in analysing gene expression data, it has been argued that PCA may not

48 Machine Learning Approaches to Bioinformatics

be able to achieve a useful picture unless specific data pre-process is

conducted in advance. However, multi-dimensional scaling can deliver

better results [19].

(a)

 (b)

Fig. 4.6. Two comparisons between PCA and the Sammon algorithm. The discussion can

be seen in the main text.

4.5 Application of the Sammon algorithm to gene data

We now use the same data used in PCA in this chapter to see if a

different pattern is seen using the Sammon mapping algorithm. The data

description has been given in the section above. Figure 4.7 shows the

Sammon mapping results for both negative and positive Burkholderia

pseudomallei gene expression data. It can be seen that there is a large

 Dimension Reduction 49

difference between the negative and positive maps. Compared with

the PCA maps, the Sammon maps show an even larger difference. With

the Sammon algorithm, two dimensions are used for the mapping. The

positive map displays more genes with low density while the negative

map shows more dense distribution.

Fig. 4.7. The Sammon mapping results of the Burkholderia pseudomallei gene expression

data. The left panel shows the map of the positive data while the right panel shows the

map of the negative data. Note that unlike PCA, the coordinates have no physical

meanings.

We can then use the same approach mentioned in the PCA

model constructed for this data set to find top differential genes by

estimating density functions for positive and negative Sammon maps.

The density functions are estimated for the two coordinates in both

Sammon maps using the kernel approach. Differential Sammon scores

are derived in the same way as the differential PCA scores mentioned

above. Figure 4.8 shows the differential Sammon scores for the top ten

genes. The localisations of the top five differential genes are illustrated

in Fig. 4.7, where it can be seen that these five genes are positively

differentiated.

50 Machine Learning Approaches to Bioinformatics

Fig. 4.8. The distribution of differential Sammon scores for the Burkhoderia

pseudomallei gene expression data. The horizontal axis lists the top ten genes and the

vertical axis represents the differential Sammon scores.

Summary

This chapter has discussed two commonly used dimension reduction

and visualisation approaches, namely principal component analysis

and the Sammon mapping algorithm. They belong to two different

statistical machine learning mechanisms. The former is a linear approach

while the latter is a nonlinear approach. The former is for preserving

the largest variance in data during mapping while the latter is

for preserving the topological structure as much as possible during

mapping.

It must be noted that PCA is a parameterised system where data

structure is learned and maintained in model parameters. For instance,

the first principal component will gain the largest variance in data. If a

new datum is generated, it is easy to recall its relationship with all the

original data without any further learning. However, the Sammon

mapping algorithm is not designed for associative memory. Except for

the map used for visualisation, there is no way to recall the relationship

between a novel datum and the original data.

 Dimension Reduction 51

The new study of PCA has led to two powerful dimension reduction

and visualisation approaches. They are probabilistic PCA [20, 21] and

nonlinear PCA [22]. They are beyond the scope of this book. Readers

can refer to relevant articles for details.

52

Chapter 5

Cluster Analysis

This chapter focuses on one fundamental issue in analysing biological

data, i.e. how to find scientific laws which are hidden in data. Grouping

and partitioning data are two very powerful approaches for discovering

relevant biological regulations which can then be used in late

hypothesis verification. In machine learning, such an approach is

called cluster analysis, a type of unsupervised learning approach. The

grouping data approach puts the emphasis on data relationship re-

construction i.e. exploring how data are clustered through a learning

process. Partitioning data, on the other hand, is to discover hidden data

structure through a learning process. Compared with the grouping data

approach, the partitioning data approach puts the emphasis on a

comprehensive data structure and the predictive capability of the

discovered data structure. In this chapter, four fundamental clustering

algorithms are introduced and their applications to bioinformatics are

demonstrated. The four algorithms are the hierarchical clustering

approach, the K-means algorithm, the fuzzy C-means algorithm, and

the mixture models.

5.1 Hierarchical clustering

The hierarchical clustering approach is a grouping data approach, where

the aim is to build a relational and hierarchical structure to explore and

represent mutual relationships between data points. The basis is to find

related data points and then group them rationally for interpreting data or

making biological hypotheses. The basic technique for interpreting

mutual relationship between data points is correlation analysis (or

similarity calculation). If two d-dimensional vectors are denoted by

 Cluster Analysis 53

d
n ℜ∈x and d

m ℜ∈x , the dissimilarity (distance) between them is

defined as

 ∑
=

−=−=
d

i
minimnmn xxd

1

2
)(),(xxxx (5.1)

where nix and mix are the ith elements of nx and mx respectively. The

Euclidean distance is used in equation (5.1), but metrics can be used in

different applications.

During a simple hierarchical clustering, a pair of data points with

the highest similarity is grouped or merged. This process is progressive

until one cluster is formed, i.e. all data points are in one super cluster.

For { } ,,, 21 N
N

xxx ⋯=D , the first sub-cluster is formed for ix and

jx if

 N
mnmnji dd D∈∀= xxxxxx ,)},,(min{),((5.2)

A mean vector for ix and jx is calculated and is expressed as 1µ . This

mean vector is added into the data set while ix and jx are removed

from the data set

 ∪ } { }) , {(1
1

µxx ji
NN −=+
DD (5.3)

In the next step, an original data point ix may have the smallest distance

with an original data point 1~ +∈= N
jj Dxx or a mean vector of the sub-

cluster 1
1

~ +∈= N
j Dµx

 1~,)},~,(min{)~,(
+

∈∀=
N

mnmnji dd Dxxxxxx (5.4)

This merge generates the second sub-cluster as well as its mean vector

2µ . The data set is updated as below

 ∪ } { }) ~, {(2
12

µxx ji
NN

−=
++

DD (5.5)

54 Machine Learning Approaches to Bioinformatics

It can be seen that 1−++ < kNkN
DD . If 1>+kN

D , merging continues

 KN
mnmnji dd

+∈∀= Dxxxxxx ~,~)},~,~(min{)~,~((5.6)

The merging continues until 1=+KN
D .

Fig. 5.1. An illustration of the hierarchical clustering approach.

The hierarchical clustering approach has two distinct features which

may not be seen in other clustering algorithms. First, relationship

between data points can be well visualised. Second, the merging distance

can be well used for interpreting data. Figure 5.1 shows an example

where the cluster distance is u for data points A and B. The cluster

distance is increased to vu > to include data point C.

In bioinformatics, the hierarchical clustering approach has been

used for identifying protein relationships based on spectral properties

[186], diagnosing chronic fatigue Syndrome based on gene expression

profile [172], and detecting esophageal cancer using gene expression

profile [187].

 Cluster Analysis 55

5.2 K-means

Rather than aiming to explore the relationship between data points of a

data set, the K-means algorithm [158] is for learning how data are

structured or investigating the data structure from which data are

generated. Using the same notation of data vectors as mentioned above,

the K-means algorithm assumes that data are generated from K clusters,

hence it tries to partition data into these K clusters with the smallest

diversity

 kn
k

kn

n

ϑ∈∀












−∑∑ xµx
x

, min
2

 (5.7)

The centre of the kth cluster is defined as

 knn
k

k

n

ϑ
ϑ

∈∀= ∑ xxµ
x

,
1

 (5.8)

where kϑ is the number of data points in the kth cluster.

In order to find centres of K clusters, we need to start with K centres

which are random values. Based on the random centres, each data point

is assigned to a cluster by

],1[,,} { minarg
2

Kmkm mnkn ∈∀⇒−= ϑ֏xµx (5.9)

Here mn ϑ֏x means that nx has been mapped or assigned to mϑ

because nx has the smallest distance with the kth cluster. After this, K

centres are updated using equation (5.8) and a new assignment process is

carried out. The learning process will continue until K centres are stable,

i.e. the updated centres in two consecutive learning cycles have no or

little change.

Using the K-means algorithm, one difficult issue is how to determine

an accurate cluster structure, i.e. the number K. This is a common

problem of model selection in machine learning. For instance, for a

4-cluster data structure, different guesses of K will lead to different

cluster structure shown in Fig. 5.2.

56 Machine Learning Approaches to Bioinformatics

Fig. 5.2. Four cluster structures with four different guesses of K using the K-means

algorithm. The dots are the original data points and crosses are the estimated cluster

centres. The data are generated from four Gaussian distributions with the centres as

(-3, -3), (-3, 3), (3, -3), and (3, 3). The standard deviation is one.

In order to estimate the right cluster structure for a data set, we have

to introduce a parameter, such as the difference of the within-cluster

diversity. For the simple case mentioned above, the within-cluster

diversity can be informative. For instance, the within- cluster diversities

of the case mentioned in Fig. 5.2 using different guessed cluster numbers

are seen in Fig. 5.3. It can be seen that the difference of the within-

cluster diversity is minimised when the guessed cluster number is either

two or four. However, this measure is getting confused if the cluster

number should be two or four because both of these two structures have

the smallest deviations.

 Cluster Analysis 57

Fig. 5.3. Within-cluster diversity of the example mentioned in Fig. 5.2 using different

guessed cluster numbers from two to nine. The horizontal axes represent the number of

guessed clusters. The vertical axes represent the within-cluster diversity.

A number of statistical measures have been proposed for model

selection problems, for instance, the Akaike Information Criterion (AIC)

and Schwarz's Bayesian information criterion (BIC) [162].

 M- log2 λ+L (5.10)

where L is the model likelihood, M is the number of model parameters

and λ is a constant. 2=λ for AIC and Nlog=λ for BIC, where N is

the number of data points. Both criteria are minimised to select the best

model. To use these two criteria, model likelihood must be provided. In a

K-means cluster model, the likelihood can be calculated by assuming

data points in each cluster follow a multivariate Gaussain distribution.

Figure 5.4 shows AIC and BIC for the four-cluster K-means model

discussed above. It can be seen that both AIC and BIC have successfully

detected the cluster structure accurately, i.e. both criteria have been

minimised at the number four.

58 Machine Learning Approaches to Bioinformatics

Fig. 5.4. AIC and BIC for the four-cluster K-means model. The data are the same as

that used in Fig. 5.3. The horizontal axes represent the number of guessed cluster

numbers from two to nine. The vertical axes represent AIC and BIC.

5.3 Fuzzy C-means

The fuzzy c-means algorithm was proposed in 1981 [188, 189]. The

centre of a cluster defined in equation (5.8) is changed to

 knnnk

n

f ϑ∈∀= ∑ xxxµ
x

 ,)((5.11)

If

 ()
k

nkf
ϑ

1
=x (5.12)

Each data point in a cluster plays an equal role (membership) in

forming a cluster. However, the soft membership used in the fuzzy

c-means algorithm is more realistic, i.e.)(nkf x is not a constant within

a cluster in some applications. In the algorithm, the objective function is

defined as

 []],1[,)(
1 1

2
∞∈∀−= ∑∑

= =

mf
N

n

K

k
kn

m
nk µxxJ (5.13)

 Cluster Analysis 59

where kµ is the centre of the kth cluster and]1,0[)(∈nkf x is the

membership that nx belongs to the kth cluster. The m parameters are

used to weight the memberships. The centres are defined as below

[]

[]∑

∑

=

==
N
n

m
nk

N
n n

m
nk

k
f

f

1

1

)(

)(

x

xx
µ (5.14)

while the membership is defined as below

 () ∑
=

−
−















−

−
=

K

k

m

kn

jn

njf
1

1

2

µx

µx
x (5.15)

The algorithm starts from random guesses for the centres as the

K-means algorithm. Based on the guessed centres, memberships are

estimated. This is similar to the K-means algorithm where the distance

between a data point and the centre of a cluster is used to determine if the

data point belongs to the cluster. Based on the calculated membership

values, new centres are calculated using equation (5.14). These two

calculations are repeated until maximum cycles are reached or the

centres do not change much.

Compared with the K-means algorithm which uses a hard

membership function, the fuzzy c-means algorithm benefits from its

continuous hence soft membership function from which the centres of

clusters can be more accurately estimated. Figure 5.5 shows a case where

four clusters are more overlapping. In this case, the K-means algorithm

often wrongly estimates cluster centres (as shown in the left panel of

Fig. 5.5) while the fuzzy c-means algorithm is able to consistently

estimate correct centres of four clusters.

It must be noted that the fuzzy c-means algorithm is also unable to

determine the cluster structure automatically. For the same data used in

Fig. 5.3, AIC and BIC clearly indicate that four clusters are the best data

structure for the data. AIC and BIC are shown in Fig. 5.6 when using the

fuzzy c-means algorithm.

60 Machine Learning Approaches to Bioinformatics

Fig. 5.5. A comparison between the K-means and the fuzzy c-means algorithms. The data

are generated from four Gaussian distributions with the centres as (-1, -1), (-1, 1), (1, -1),

and (1, 1). The standard deviation is one. Small dots represent the original data and

crosses represent cluster centres.

Fig. 5.6. AIC and BIC for the four-cluster fuzzy c-means model. The data are the same as

that used in Fig. 5.3. The horizontal axes represent the number of guessed cluster

numbers from two to nine. The vertical axes represent the calculations of AIC and BIC.

5.4 Gaussian mixture models

Both the K-means algorithm and the fuzzy c-means algorithm are

designed to detect cluster structure with cluster densities distributed

homogenously in all dimensions, i.e. the volume of each cluster is

 Cluster Analysis 61

symmetrical with respect to the cluster centre. They therefore have
problems in detecting cluster structures with clusters in which different
dimensions are correlated. This problem can be well addressed in the
mixture model algorithm.

In a mixture model [158, 159, 190-192], the membership function is
defined as a probability while the objective function is defined as a
likelihood function

 
 


N

n
n

N

n

K

k
nk pkpw

11 1
)()|(xxJ (5.16)

where)|(kp nx is the probability that d
n x belongs to the kth

cluster,]1,0[kw is the mixing coefficient of the kth cluster and

 1
1




K

k
kw (5.17)

The Gaussian mixture model is a special case of a widely used
mixture model. The probability function used in the Gaussian mixture
model is defined as

  
  









 







2

)()(
exp

2

1
|

1T

2/
knkn

dn kp μxμxx


 (5.18)

where kμ is the centre of the kth cluster and  is the covariance matrix
of the kth cluster.

The parameters in a mixture model then include the cluster centres,
covariance matrix and mixing coefficients. To estimate these parameters,
the expectation-maximisation (EM) algorithm [157, 159] is used. The
EM algorithm is a two-step iterative procedure for parameter estimation
starting from random guesses of the parameters like the K-means and
fuzzy c-means algorithms. The two steps are called the E step and the M
step. In the E step, the probabilities are calculated based on the current
values assigned to the parameters. The calculated probabilities are then
used to update the parameters in the M step.

62 Machine Learning Approaches to Bioinformatics

To understand why we need to use the EM algorithm, we make a
simple case, i.e. data in a one-dimensional space. We also make the
following simplification

22

1

k
k 

  (5.19)

Equation (5.18) is then re-written as

  ))(exp(| 2
knk

k
n xkxp 




 (5.20)

Applying logarithm to the likelihood function and negating it leads to

  
2

111
1 |log 







 



K

k
k

K

k
nk

N

n
wkpw xO (5.21)

where 0 is the Lagrange constant. Letting the derivative of O with
respect to k being zero leads to

 

 









 N

n n

nk

kn
N

n n

nk

k
xp

kxpw

x
xp

kxpw

1

2

1

)(

|

)(
)(

|

1



 (5.22)

The equation is not analytically-solvable because the right-hand side of
the equation is a function of k . The same thing happens to other
parameters. Using the EM algorithm, we start with a random guess for

k , which is denoted by 0
k . Based on 0

k and initial guesses of the
other parameters, we can calculate

 

)(

|
0

00
0
,

n

nk
kn xp

kxpw
 (5.23)

From 0
,kn , k is updated from 0

k to 1
k using equation (5.22). These

two steps are used in turn until parameters are converged or the maximal
learning cycles are approached.

 Cluster Analysis 63

We then go back to the original multi-dimensional space. The

updated equation for the cluster centre is

 t
k

N

n
n

t
knN

n
t

kn

N
n n

t
knt

k φXx
x

µ
T

1

,

1 ,

1 ,1 === ∑
∑

∑

==

=+ φ
τ

τ
 (5.24)

where t is the iteration time and

),,,(
,

,2

,1

t
kN

t
k

t
k

t
k φφφ ⋯=φ (5.25)

The update equation for the mixing coefficient is

N

w

N
n

t
knt

k

∑ =+ =
1 ,1
τ

 or N
tt

/1
T 1)(iΓw =+ (5.26)

where 







=

NNN
N

111
,,,/1 ⋯i and }{ ,

 t
kn

t τ=Γ . The updated equation for

the covariance matrix is

 ∑
=

−−=Σ
N

n

t
kn

t
kn

t
kn

t
k

1

T
,))((µxµxφ (5.27)

Figure 5.7 shows a comparison of three clustering algorithms for a

data set with three clusters, all with heterogeneous distributions across

dimensions. If a data point is correctly classified, it is printed in gray

with a smaller fond size. If a data point is mis-classified, it is printed in

dark with a larger font size. For instance, two data points labelled by “3”

and printed by a larger font size are classified as members of the cluster

of data points labelled by “2” using the K-means algorithm. It can be

seen that the mixture models algorithm performs the best with no mis-

classified data point.
The mixture models algorithm is a probabilistic algorithm. Because

of this, the use of AIC and BIC is straightforward and the performance is

better than that of the other two algorithms.

64 Machine Learning Approaches to Bioinformatics

Fig. 5.7. Acomparison between three algorithms for a data set. “K”, “C” ands “M” mean

the cluster centres found by the K-means, fuzzy c-means mixture models algorithms. The

top-left panel shows the original data labels of three clusters.

5.5 Application of clustering algorithms to the Burkholderiai

pseudomallei gene expression data

We then apply the clustering algorithms to the same Burkholderia

pseudomallei gene expression data mentioned in the last chapter. The

models generated by the hierarchical clustering algorithm for negative

and positive data are shown in Fig. 5.8.

 Cluster Analysis 65

(a) the hierarchical clustering model for the negative data

(b) the hierarchical clustering model for the positive data

Fig. 5.8. Clustering models generated using the hierarchical clustering algorithm for the

Burkholderia pseudomallei gene expression data.

It can be seen from both clustering models that there is a very large

cluster and a few small clusters. This is consistent with biological

expectation that most genes will not show high differential activity in

responding to the external signals while a few will demonstrate

differential functions. The genes which do not respond to external signals

should have similar expression profiles across samples, hence being

clustered together. However, differential genes will have different levels

of expressions responding to the external signals, hence demonstrating

diversities.

The AIC and BIC calculations using the fuzzy c-means algorithm

for the Burkholderia pseudomallei gene expression data are shown in

Fig. 5.9, where it can be seen that the best cluster numbers are 10 and 12.

66 Machine Learning Approaches to Bioinformatics

After clustering, data are mapped to a two-dimensional space using

the Sammon mapping algorithm. On the map, genes are labelled by

differential colours according to the classification results of the fuzzy

c-means algorithm. The labelling results are shown in Fig. 5.10.

Fig. 5.9. AIC and BIC for the fuzzy c-means model of the Burkholderia pseudomallei

data. The horizontal axes represent the cluster numbers from two to 15.

Fig. 5.10. The labelled genes according to the classification results using the fuzzy c-

means algorithm for the Burkholderia pseudomallei gene expression data. The two maps

are generated using the Sammon mapping algorithm. The left panel is for the negative

samples and the right panel is for the positive samples.

 Cluster Analysis 67

The Gaussian mixture models algorithm has also been applied to

the same gene expression data. The classification results are shown in

Fig. 5.11. BIC is used to find the optimal cluster structure. The best

cluster numbers are nine and eight for the negative and positive samples

respectively.

Fig. 5.11. The classification results of the Gaussian mixture models algorithm applied to

the Burkholderia pseudomallei gene expression data. The two maps are produced using

the Sammon mapping algorithm. The negative sample map is in the left panel and the

positive sample map is in the right panel.

Summary

This chapter has discussed four basic clustering algorithms. They are the

hierarchical clustering algorithm, the K-means, the fuzzy c-means and

the mixture models algorithms. Some demonstrations are given to show

their differences. In general, the hierarchical clustering algorithm has one

typical advantage, i.e. it can visualise the similarity distance between

each pair of data points. This is particularly important for explanation

research. For instance it can be used to infer evolutionary information

from sequence data. However, it does not provide any facility for

associative memory. This means that a hierarchical clustering model only

supports the interpretation for the existence model. In order to use a built

68 Machine Learning Approaches to Bioinformatics

model to interpret unseen data, we have to consider other algorithms

such as the aforementioned clustering algorithms like the K-means, the

fuzzy c-means and the mixture models algorithms. These algorithms will

not provide direct data for visualising data structure. Instead, they can

partition data into groups. Within each group, centres are found as

typical patterns. The patterns can be used for future inference on unseen

data. There is still a challenging issue associated with these three

algorithms, i.e. how to determine a cluster structure or how to determine

the optimal number of clusters. Cluster diversity, AIC and BIC can be

used to give some information. However, none of them can be

universally powerful. Therefore this is still a hot research topic in

machine learning. In most applications, visualisation tools mentioned in

chapter 4 can be combined with the clustering algorithms mentioned

in this chapter for determining the best cluster structure. Moreover,

biological evidence can be used as the evidence to verify if a cluster

structure is valid.

69

Chapter 6

Self-Organising Map

In the previous two chapters, data reduction (visualisation) and data

partitioning algorithms were discussed. A data reduction algorithm may

not provide data for data partitioning while a data partitioning

algorithm may not visualise data. Self-organising map (SOM) is a

neural learning algorithm which is able to combine two categories of

algorithms into one system. In this chapter, we study the basic structure

and learning rules of SOM. Because SOM has a close relationship to

vector quantization, we first introduce vector quantization in this

chapter. Demonstrations and case study are also given in relevant

places.

6.1 Vector quantization

Vector quantization (VQ) was introduced in the late 1970s and early

1980s [193-196]. VQ is designed for data compression, i.e. representing

N data points (input numeric vectors) using M data points (code numeric

vectors or representative numeric vectors) where M<N. The compression

is constrained in a two-dimensional cell-based map. Each cell is

associated with a code vector. In this way, the approximate distribution

of the input numeric vectors can be visualised. Let’s denote d
n ℜ∈x

as the nth d-dimensional input vector and d
m ℜ∈y as the mth

d-dimensional code vector. The collection of all input vectors is denoted

by D and the collection of all code vectors (codebook) is denoted by C .

For each input vector, a closest code vector is formed by

],1[, } min{ Miinmn ∈∀−=− yxyx (6.1)

70 Machine Learning Approaches to Bioinformatics

This means that the mth code vector is picked from M code vectors to

represent the nth input vector through this minimisation process. We use

)(nxφ to denote the closest code vector of nx .

Fig. 6.1. An illustration of VQ. Each cell has a star representing a code vector. Each cell

has a number of input vectors with a certain density. The code vector space is composed

of 18 code vectors expressed by stars.

In order to find an optimal mapping or optimal distribution

visualisation of the input vectors, an objective function is defined as

)()(
1

n

N

n
nn f xxx∑

=

−= φO (6.2)

where)(nf x is the density of nx . A compression process of VQ is to

minimise the objective function, i.e. }min{arg*
OC = where *

C stands

for an optimal solution of all possible C s. Figure 6.1 shows the principle

of compressing numeric vectors using code vectors. The whole data set

of D is compressed into a smaller space of code vectors, i.e. C . Each

cell is denoted by mϑ .

In searching for a codebook C with a given number of code vectors,

there are two optimality criteria called the nearest neighbour condition

 Self-Organising map 71

(NC) and the centroid condition (CC). Both must be satisfied. NC

requires that each cell must be composed of input vectors satisfying

 }, : { miimm ≠∀−≤−= yxyxxϑ (6.3)

The condition im yxyx −≤− implies that if x is compressed to

my , my must be x ’s nearest neighbour. CC requires each code vector to

be the mean vector of all input vectors falling in the cell of the code

vector, i.e.

m

n

m
mn

ϑ

ϑ∑ ∈
=

x
x

y (6.4)

The LBG (Linde, Buzo and Gray) algorithm was proposed to tackle

the VQ problem by considering the density function)(nf x [194]. The

algorithm is an iterative learning procedure. The procedure is shown as

bellow

Step 1: initialisation: find the first code vector (M=1) which is the

mean vector of all input vectors

 ∑
=

=
N

n
n

N 1
1

1
xy (6.5)

The error is calculated as

 ∑
=

−=
N

n
n

Nd
E

1

2

1
1

yx (6.6)

Step 2: splitting: each code vector is split into two given M code

vectors. This doubles the number of code vectors as below

iiM

ii

yy

yy

)1(~
)1(~

ε

ε

−=

+=

+

 (6.7)

where 0>ε is a small value. A new code book with initialised code

vectors is formed with the size increased to 2M, i.e. ∩ }~{ }{ ii yy=C .

72 Machine Learning Approaches to Bioinformatics

Step 3: refining: we first find the nearest neighbour for each input

vector,)(nxφ . Each code vector in C is updated using equation (6.4).

A new error is calculated using equation (6.6). If the old error is denoted

by 0
E and the new error is denoted by

1
E , an error ratio (π) is

calculated by

0

10

E

EE −
=π (6.8)

If επ > , a new cycle is repeated to find the new nearest neighbour, to

update code vectors and to calculate the error.

Step 2 and step 3 are iterated until the predefined code vector number

is approached.

In fact, the core part of step 3 uses the K-means algorithm. A two-

dimensional example using two different numbers of code vectors is

shown in Fig. 6.2. It can be seen that the code vectors are uniformly

distributed in the data area. This is because no density function is used in

the LBG algorithm.

Fig. 6.2. 4000 input vectors are in two-dimensional space in a Gaussian distribution with

zero mean and one standard deviation in both dimensions. 0010.ε = . Two panels are

generated using the LBG algorithm. The left panel uses 16 code vectors while the right

panel uses 32 code vectors.

 Self-Organising map 73

6.2 SOM structure

SOM was introduced by von der Malsburg [197] and Kohonen [145,

198]. Unlike VQ, self-organising map (SOM) has introduced a number

of new features. First, it fixes the cell positions for code vectors in a two-

dimensional array. The cell array is shown in Fig. 6.3, where each circle

represents a cell which is also referred to as a neuron [145]. The code

vector of each neuron is fully connected to the input vectors as shown in

Fig. 6.4. The left panel shows a rectangular map while the right panel

shows a hexagonal map.

Fig. 6.3. Arrays of cells with ten rows and ten columns. Each cell has a code vector

connected to input vectors as shown in Fig. 6.4.

Figure 6.4 shows how data stored in input vectors are used by code

vectors of neurons. In this Figure, we consider four input variables, i.e.

each input vector has four dimensions. Each code vector also has four

dimensions. All neurons are connected to four input variables. An input

vector is mapped to a neuron according to the similarity. If an input

vector (nx) has the largest similarity with a code vector (mw), nx is

mapped to the neuron of mw . We use mw rather than my to follow the

convention of SOM.

74 Machine Learning Approaches to Bioinformatics

Fig. 6.4. The relationship between input vectors and code vectors. The small circles

represent the input vectors. Here there are four input variables meaning that the data are

in four-dimensional space. The filled large circles represent cells or neurons. The dots

within the large filled circles represent the code vectors (the middle one is omitted). The

solid arrows indicate the data flow direction, i.e. data stored in each input vector are fed

to the model towards the target neuron which is also referred to as the winner [145]. Here

the middle one is the target neuron. The dashed arrows indicate the update directions of

code vectors in all nearby cells. The update mechanism is seen in the main text.

The second feature introduced in SOM is the online learning strategy.

In VQ, the code vectors are updated using equation (6.4), where all input

vectors contribute to the formation of a code vector after they have been

confirmed as falling in the cell of the code vector. However, it is no

longer used in SOM. Instead, SOM updates code vectors whenever one

input vector is fed into the model. The third feature used in SOM is

neighbourhood. In VQ, only one code vector is updated using all the

input vectors falling into its cell. This means that each input vector only

contributes to the update of one code vector. However, this has been

changed in SOM. When one input vector is fed to a model, only one

neuron is selected as the target neuron whose code vector has the

smallest distance with the fed input vector. Centred by this target neuron,

a number of neighbouring neurons are determined. Only the code vectors

within a neighbourhood are updated. These two features make SOM very

different from VQ in that it can preserve the topological structure during

learning. In other words, similar input vectors, if they are not mapped to

the same neuron (cell), will be mapped to the nearby neurons (cells). The

 Self-Organising map 75

fourth feature implemented in SOM for efficient learning is dynamic

learning parameters. Here learning parameters are used to determine

learning efficiency, for instance the learning rate which is discussed in

the next section. Such an introduction of dynamic learning can avoid

possible unnecessary long learning time.

6.3 SOM learning algorithm

Let’s denote nx as the nth input vector and mw the mth code vector,

where],1[Nn ∈ and],1[Mm ∈ . The relationship (distance) between

them is defined as

2

2

1
mnnm wx −=O (6.9)

A target neuron is selected by minimising this distance

],1[},min{arg)(Mmnmn ∈∀= Oxφ (6.10)

where)(nxφ is the target neuron and its code vector is kw with

)(nk xφ= . Centred at)(nxφ , a neighbourhood is formed shown in

Fig. 6.5. From this, a set of neurons is formed and is denoted by)(nxΦ .

Fig. 6.5. An illustration of neighbourhood of a target neuron. The shaded circle represents

the target neuron while the white circles are the neurons within the neighbourhood.

76 Machine Learning Approaches to Bioinformatics

The code vectors in)(nxΦ are updated in magnitude negatively

proportional to the amount obtained from differentiation of equation

(6.9)

 () mnnmm wxw −=∇−∝∆ O (6.11)

In SOM, the update rule is defined by co-operating the competitive

learning mechanism mentioned above

)(mnm wxw −=∆ υ (6.12)

where υ is composed of two parts, one being associated with a decaying

learning rate and the other being associated with the relationship between

the target neuron and a neuron in the neighbourhood. The decaying

learning rate is a positive real number

 







−=

T

tt 10ηη (6.13)

where)1,0(0 ∈η is the initial learning rate, tη is the learning rate at time

t and T is the maximum learning cycle. The neighbourhood relationship

is defined as the distance between a neuron (not its code vector) and the

target neuron. The Hamming distance or Euclidean distance can be used

to quantify the relationship. The distance is converted to a rate as

)()),(,(exp(
 n

t
n

t
n kk xx Φ∈∀−= φϕλ (6.14)

where)(,(nk xφϕ is the distance between a neuron in the neighbourhood

)(nxΦ and the target neuron)(nxφ . The decaying neighbourhood is

defined as

























−= 1 , 1ω minω

0

T

tt (6.15)

where 0
ω is the initial neighbourhood size, which is commonly half of

the size in one dimension of the two-dimensional SOM map shown in

 Self-Organising map 77

Fig. 6.3, and t
ω is the neighbourhood size at time t. Finally, the code

vector update rule is defined as below

)(

1 t
mn

t
n

tt
m wxw −=∆ + λη (6.16)

or

 n
t
m

t
mn

t
n

tt
m

t
m xwwxww)1()(

1 υυλη +−=−+=+ (6.17)

Defining

)(
2

T

wx

xwx

−

−
=∗υ (6.18)

From Fig. 6.6 we can see that the update of t
mw is more on the

t
mw

side if ∗<υυ and more on the nx side if ∗>υυ . When 0=υ ,
t
m

t
m ww =+1 meaning no learning at all. When 1=υ , n

t
m xw 1 =+ meaning

that code vectors always take the positions of input vectors. A learning

process can never converge. From Fig. 6.6, we can see that a careful

selection of the learning parameter is important to an efficient learning

process. The learning rate is therefore normally smaller than 0.3.

Fig. 6.6. An illustration of the impact of learning rate on the update of code vector.

The procedure described below is used to make a SOM model for a

given data set.

78 Machine Learning Approaches to Bioinformatics

Step 1: Pre-process data. SOM only accepts numeric input vectors. If

data are non-numeric, some metric must be introduced before using

SOM. Some techniques for handling non-numeric biological data will be

discussed below. The next important subject in using SOM is data

normalisation. There are three alternatives for data normalisation. The

first is using linear scaling. The second is using normal distribution

conversion. The third is self-normalisation. With linear scaling, each

input vector is scaled by

)min()max(

)min(

XX

Xx
x

colcol

coln
n

−

−
= (6.19)

where X is a matrix of input vectors in which an input vector (d
n ℜ∈x)

is placed in a row,)min(Xcol is column-wise minimisation, and

)max(Xcol is column-wise maximisation. Using normal distribution

conversion, we need to calculate the mean and standard deviation of a

variable as below

)var()(iiii XXE == σµ (6.20)

where iX means the ith variable of the input vector data. From this, we

calculate

i

ini
ni

x
x

σ

µ−
= (6.21)

The last equation normalises each input vector individually by

n

n
n

x

x
x = (6.22)

Step 2: Set up model structure and learning parameters including the

learning rate and termination criteria. The model structure is

parameterised by the number of neurons (cells) and neuron layout

(rectangular or hexagonal map). There are three commonly used

termination criteria. The first is the maximum learning cycles, i.e. T. A

 Self-Organising map 79

learning process will be terminated if Tt ≥ . The second is the learning

error defined as below

 ∑
=

−=
N

n
nn

N
E

1

2
)(

1
xx φ (6.23)

A learning process will be stopped if ε≤E where 0>ε is a small

number defined by the user. The third is the model parameter stability

which measures if model parameters have been in the status of saturation

while the first two criteria are still not satisfied. It is defined as the

distance between model parameters in two consecutive iterations

 Ttt
M

S
M

m

t
m

t
m ≤>∀−= ∑

=

− & 1 ,
1

1

2
1ww (6.24)

When δ≤S where 0>δ is a small number defined by the user, we

complete a learning process. The third criterion is introduced in case T is

too large and ε is too small for an application.

Step 3: Initialise code vectors. All code vectors are assigned random

values.

Step 4: Update code vectors iteratively. Here equation (6.17) is used

repeatedly until one of three conditions is satisfied.

When using the self-normalisation technique, we need to take care of

data distribution. If data in different dimensions have large differences, it

will not produce useful data for SOM. Figure 6.7 shows such a case,

where the original two-dimensional data have large differences between

two dimensions. The first two normalisation techniques can maintain the

data structure, but the last one results in distorted distribution.

6.4 Using SOM for classification

Like other unsupervised learning approaches, one of the ultimate goals of

VQ and SOM is to develop a system with classification rules. This

means that a VQ or a SOM learning process assumes that the underlying

data structure or topological structure is related to data classification. For

80 Machine Learning Approaches to Bioinformatics

instance, a SOM model is well built using well-prepared data of both

disease-related and disease-free gene expression profiles. Although data

are not labelled, the model will generate a map on which two classes of

gene expression profiles should be well separated. Assuming that this is

the case, a post-analysis of the SOM output map makes sense for

exploring classification rules. The common procedure is to label each

neuron or a code vector onto which some input vectors have been

mapped. According to the statistical property of these input vectors, the

neuron or the code vector can be used as a prototype (classification rule).

If a novel input vector has the smallest distance with a code vector which

has been labelled, a prediction of the biological property of the novel

input vector can be made.

Fig. 6.7. An illustration of three normalisation techniques for data with four clusters.

 Self-Organising map 81

6.5 Bioinformatics applications of VQ and SOM

VQ has been used in bioinformatics, but not very often so far. In

analysing gene expression data, it has been found that combining fractal

dimension and discrete wavelet decomposition with VQ can improve the

clustering accuracy compared with the conventional clustering algorithm

[199]. In analysing microarray data of human lymphoma, VQ can be

extended to discriminant analysis for improving the quality of feature

clustering, hence leading to meaningful signatures [200]. Meanwhile,

SOM has been very intensively applied to bioinformatics. We are going

to classify these applications in terms of subjects. Three subjects are

discussed. They are sequence analysis, gene expression data analysis,

and metabolite data analysis.

6.5.1 Sequence analysis

Sequence homology alignment approaches are used to find which

experimentally annotated database sequences are significantly similar to

a novel sequence. From this, the prediction of protein structures or

functions can be made for the newly sequenced protein. It is understood

that proteins with similar structures or functions should have some

commonly reserved motifs within sequences. Therefore unsupervised

learning approaches can be used to discover the patterns constructed by

motifs. With the belief that they are normally short segments within

sequences, motifs as words are extracted from sequences. Features are

constructed based on the motif frequencies. The extracted features are

then used to construct a SOM model. Based on the trained SOM model,

predictions can be made for any newly sequenced protein [201]. Given a

set of experimentally annotated sequences { }],1[, Nnn ∈∀= sS , k-mer

(k ranges from 4 to 16 in Hanke et. al.’s work [201]) motifs are extracted

which are denoted by { }] ,1[, Nnn ∈∀= xD . D is then a set of input

vectors. Based on D , a SOM model is constructed, MD ֏ :SOM . M

is a set of optimal or near optimal code vectors. The output map shown

in Fig. 6.3 is then labelled based on the annotated information of

sequences which have mapped to each neuron (cell) of the map. This

82 Machine Learning Approaches to Bioinformatics

means that { }] 1[M,, m ∈=⇔ mFM α , where F is a collection of

annotated structural and functional information for each neuron (cell).

Using the same approach, the same number of features (input vector

1+Nx with N+1 meaning a sequence beyond the collections in S) of a

new sequence(s) is formed in the same way when generating D . By

inputting x to M , a winner is found for it and is denoted by M∈mς .

F∈mα is then the prediction for s. A similar technique has also been

used for classifying prokaryotic and eukaryotic proteins [202], and for

analysing DNA sequences [203]. One challenge in biology is species

diversity. Unsupervised learning approaches can be well armed for

exploring the unknown diversity hidden in data. For this reason, 60,000

gene sequences of 29 bacterial species have been coded using principal

component analysis and analysed using SOM leading to significant

findings of the species diversity [204]. Such a type of applications is also

referred to as alignment-free protein classification [152].

SOM can be used for short sequence segments (or peptides) data

analysis projects. For instance, characterising functional peptides is such

an application. Peptides are coded using a specific technique. The coded

peptides are treated as numeric input vectors which are used to train a

SOM model. Each neuron (cell) of a trained SOM model can be labelled

according to the status of functional peptides which are mapped to it. A

SOM learning process can be treated as a process of completing a

discrete mapping from input vectors to a two-dimensional space shown

in Fig. 6.3. The SOM output map is then treated as a feature map. A

labelled feature map can then be used for analysing novel peptides or for

prediction. This is exactly the same as what is mentioned above for

analysing protein sequences.

In using the second generation of DNA sequencing technology, we

will have many fragments of a DNA genome sequence. Except for the

species diversity, the other challenge is the assembly of fragments of

non-sequenced species. Self-organising map has been adapted to

hierarchically growing hyperbolic SOM to cluster variable-length DNA

fragments. From this, DNA fragments from different species are

classified and visualised [205]. In constructing such a hierarchical

growing hyperbolic SOM, k-mer motif frequencies are used as features.

Figure 6.8 shows the diagram of the model.

 Self-Organising map 83

Fig. 6.8. An illustration of hierarchically growing hyperbolic SOM. There are three layers

from the middle to the most outer. The neurons are expanded layer by layer [205].

6.5.2 Gene expression data analysis

One significant benefit of SOM in analysing gene expression data is

twofold. First, like other unsupervised learning algorithms, SOM is able

to reduce the dimensionality of a data set. From this, topological

structure can be visualised. Compared with other unsupervised learning

algorithms, SOM has the advantage of handling nonlinear data. Second,

unlike other unsupervised learning algorithms, SOM is able to partition

and visualise data at the same time. This is extremely welcome in

analysing gene expression data which normally have very high

dimensionality [203, 206, 207].

Because of the distinct property of gene expression data, the

application of SOM to gene expression data requires specific techniques.

First, the magnitudes of gene expression within one data set can be at

different scales, i.e. from a few hundred to a few hundred thousand.

Figure 6.9 shows four density functions of the Burkholderia pseudomallei

gene expression data. The top-left panel shows the density of the original

raw data where no data pre-process has been done. The bottom-left panel

shows the density function of the original raw data in which zeros are

84 Machine Learning Approaches to Bioinformatics

removed. It can be seen that both show typical power distributions.

Power distribution is a very common property in biological data.

Because of this, SOM may not deliver meaningful results if data are not

well pre-processed. After applying the logarithm function on the raw

data and the raw data with zeros removed, the density functions of these

data sets are shown in the top-right and bottom-right panels. It can be

seen that the data are much less skewed. There are two distinct separate

distributions in the top-right panel. The left distribution mainly

represents zeros. Logarithm is therefore a popular technique used in

analysing gene expression data.

Fig. 6.9. An illustration of data skew. The data set used in this illustration is the

Burkholderia pseudomallei gene expression data.

 Self-Organising map 85

The second commonly used technique is differentiating data. One of

the purposes of using SOM is to explore the hidden pattern in gene

expression data so as to explore the intrinsic qualities of a biological

system. To do this, it is necessary to determine which subset of genes are

significantly positively or negatively differentiated between experimental

samples and control samples. If the control group and the experimental

group are well paired, using subtraction with each pair, we can form a

secondary data set, i.e. differential data for analysis. Where de
n ℜ∈x and

dc
n ℜ∈x denote the nth gene which has been experimented on in both

experimental and control groups, the differential gene is defined by

 c
n

e
nn xxz −= or

c
n

e
n

c
n

e
n

n
xx

xx
z

+

−
= (6.25)

Fig. 6.10. An experiment of applying SOM to artificial gene expression data. The SOM

model is composed of 30 neurons with a hexagonal array. The left panel shows the

original data. The circles represent one group and the crosses represent the other group.

The right panel shows the differential patterns of all 30 neurons after training a SOM

model. Both control and experimental groups have four clusters of Gaussian distributions

each having 100 input vectors.

Note that d is the number of samples (for instance, disease-related

and disease-free patients) in the control and experimental groups. Rather

than working on the raw data, a differential SOM model can be

generated using { } nz . Based on differential data, a well-trained SOM

86 Machine Learning Approaches to Bioinformatics

model will visualise the clustering of differential genes in terms of

their differentiation magnitudes. Figure 6.10 shows an experiment of

applying SOM to artificial gene expression data. It can be seen that the

differential patterns are well grouped into different neurons. Meanwhile

neighbouring neurons show similar differential patterns.

6.5.3 Metabolite data analysis

Equipped by Liquid Chromatography Tandem Mass Spectrometry,

metabolites which play an important role in cellular functions can be

accurately identified with the resolution up to three or four

decimal points. Based on this resolution, an ion can be mapped to a

chemical formula, hence a compound which is stored in a database.

However, over 80~90% ions may not be mapped to any compound. In

order to explore more information about these ions, particularly

significantly differentiated ions, SOM can be used based on ions’

differential abundance values to identify how ions are clustered or

correlated.

6.6 A case study of gene expression data analysis

We now use the same Burkholderia pseudomallei gene expression data

for testing SOM here. First, we test how gene expression profiles are

different in non-infected patients (negative) and infected patients

(positive).

Negative and positive gene expression profiles are then separately

fed into SOM leading to two SOM output maps shown in Fig. 6.11. It

can be seen that the two maps show different gene expression profiles. In

the positive map (the right panel in Fig. 6.11), we find most neurons

show high profiles. However, in the negative map (the left panel), most

neurons display low profiles.

Next, we use all data to test if SOM can discover the gene expression

profile structure according to the classification of patients. A SOM

model with 100 neurons is constructed and the output map is used

to display the status of mapped patients. Figure 6.12 shows the result

 Self-Organising map 87

Fig. 6.11. An illustration of using SOM to analyse gene expression profiles of non-

infected patients (negative) and infected patients (positive). 25 neurons are used for the

test.

Fig. 6.12. An illustration of using SOM to study the general data structure of a gene

expression data set.

88 Machine Learning Approaches to Bioinformatics

where the circles represent non-infected patients while triangles represent

infected patients. The map shows a very interesting data structure where

gene expression profiles of non-infected patients display a large diversity

while those of infected patients demonstrate a small diversity.

As mentioned above, SOM can be used to explore classification rules

although it is an unsupervised learning algorithm. We randomly divide

the whole data set (input vectors) into two parts. Four fifths of input

vectors are used to build a SOM model. After a SOM model is built, each

neuron is labelled according to the mapped input vectors. For instance,

the bottom-left neuron of the SOM model in Fig. 6.12 is labelled as

negative while the top-right neuron of it is labelled as positive. We then

feed the remaining one fifth of input vectors (referred to as testing input

vectors) into the SOM model to see to which neurons they will be

mapped. If a negative testing input vector is mapped to the bottom-left

neuron, a correct classification is made. If a positive testing input vector

is mapped to the top-right neuron, a correct classification is also made.

However, if a positive testing input vector is mapped to the bottom-left

neuron, a misclassification is made.

6.7 A case study of sequence data analysis

In this section, we discuss how SOM can be used to handle peptide data

which are extracted from sequences. The data used in this discussion is

HIV-I protease cleavage data [208]. The data set is composed of 114

cleaved peptides and 248 non-cleaved peptides. Each peptide is of eight

residues. A few of them are shown as below:

TQIMFETF

GQVNYEEF

PFIFEEEP

SFNFPQIT

DTVLEEMS

Each of eight residues in a peptide is one of 20 amino acids. They are

therefore non-numeric. In order to make them usable to SOM, a coding

process is needed. The orthogonal sparse coding [209] is one of the most

 Self-Organising map 89

used. Based on this coding technique, each amino acid is coded by a

20-bit long binary string. In this string, one bit is assigned a value

one leaving all other bits as zeros. For instance, an Alanine is coded by

0000000000, 0000000001 and a Cystine is coded by 0000000000,

0000000010, etc. The coded data can then be fed into a SOM model for

both data visualisation and knowledge discovery. Figure 6.13 shows the

output map of a SOM model with 100 neurons for the data. Each neuron

has an associated code vector which can be decoded. The decoded code

vector can be treated as a motif (mean vector) for all the peptides (input

vectors) mapped onto it. Based on the fraction of cleaved peptides over

all peptides mapped onto a neuron, a contour is formed to visualise

which motifs are contributing to HIV-1 cleavage and which are not.

Fig. 6.13. An illustration of a SOM model with 100 neurons for the HIV data.

90 Machine Learning Approaches to Bioinformatics

Figure 6.14 shows how SOM is used to visualise the way in which

cleaved and non-cleaved peptides are distributed. It can be seen that most

neurons generally have a single class of peptides, either being non-

cleaved peptides or cleaved peptides. This demonstrates that the internal

topological structure hidden in peptides can be explored to form

significant classification rules. The rules can be well used in novel

cleavage site prediction and drug design.

Fig. 6.14. An illustration of how the distribution of peptides can be visualised using

SOM.

Summary

This chapter has focused on Self-organising map, a neural learning

algorithm developed on the basis of vector quantisation. The principles,

the structure, and the learning algorithm of SOM have been discussed.

Because most biology experiments are in nature exploring unknowns, the

 Self-Organising map 91

basic classification rules are normally lacking. Pattern analysis and

topological structure re-construction are then a particularly important

subject in bioinformatics. Having understood that biological data sets

are getting larger and larger, a challenge for SOM is how to handle data

efficiently. For instance, training a SOM model with 10,000 neurons

with 40,000 input vectors of 20 dimensions may take a couple of weeks

to complete. One issue is to improve the learning algorithm and the other

issue is to combine knowledge of machine learning and biology to

efficiently pre-process the data before using SOM. For instance, genes

which are completely silent may not make any difference in analysing

how genes are differentiated in a sample. Pre-filtering the data may save

much computing time.

92

Chapter 7

Introduction to Supervised Learning

Supervised learning is a subject in which a model is estimated from

data for mapping explanatory variables to predictive variables. The

explanatory variables in bioinformatics often refer to genotypic data

which are used to describe underlying properties of a set of molecules

within an organism. The predictive variables in bioinformatics are

often used to describe phenotypic data which are observed. One of the

most important targets in scientific research is to explain phenotypic

phenomenon using genotypic data. This is very similar to most of our

human intelligence activities, i.e. finding reasons that explain observed

events, for instance, interpreting what causes the climate to change,

understanding the genetic reasons leading to aging disease, deducing

the underlying regulation of the financial market, and studying species

diversity. Supervised learning is then searching for the most appropriate

explanatory variables for interpreting predictive variables using a

model. Such a model is often called a predictive model. Whenever such

a model is established, its predictive function can be used for inference.

This chapter focuses on the general concept of supervised learning. The

discussion covers general concepts, rules, data organisation, model

evaluation, and model feasibility.

7.1 General concepts

Various unsupervised learning approaches and algorithms have been

discussed in the previous chapters. The main objective of unsupervised

learning is to discover unknown knowledge of a data structure. The use

of unsupervised learning is based on the nature in many scientific

research projects that there is no definite classification law available

 Introduction to Supervised Learning 93

and we are required to find it. For instance, given a set of genome

sequences from different species, how can we determine the diversity

among them?

A supervised learning process represents a different concept where

we are interested in mapping one data point to the other data point,

specifically finding how explanatory variables can interpret predictive

variables. Here explanatory variables refer to the data which describe the

causes for interpreting observed phenomenon. Predictive variables are

directly associated with observed phenomenon. Having understood that

observed phenomenon often contain variations caused by many man-

made and natural causes, predictive variables are treated as the unbiased

phenomenon we are searching for. In bioinformatics, explanatory

variables often refer to genotypic data while predictive variables refer

to observed phenotypic data. The major task of bioscientists is to find

causes to interpret the observed phenotypic data. For instance, when we

find the diverse reactions to a drug among patients we may need to

investigate the genotypic reasons that can explain the diversity. When we

find diverse growth rates in plant mutants we may need to investigate

which metabolites and which metabolite pathways contribute to the

diversity. In science this is an induction process, i.e. from data to

knowledge. In machine learning it is called a learning process or a

supervised learning process.

Note that this mapping is not the final goal of a supervised

learning process. Ultimately we are interested in how classification rules

can be established for the prediction of unknowns. This is a deduction

process, i.e. from knowledge to data (new data). The prediction of

biological diversity [204, 210, 211], cellular function [212-215], protein

modifications [216-238], and the diagnosis of cancers using microarray

technology [239-242] are examples of this.

In predicting species diversity, some data are composed of genome

sequences (part or whole) and other data are diversity measurements.

The genome sequence data are regarded as genotypic data while the

diversity is treated as phenotypic data. A computer model built using a

machine learning approach can be used to predict diversity whenever

new genome sequences are obtained. In predicting cellular functions, the

94 Machine Learning Approaches to Bioinformatics

genotypic data can be gene expression profiles or genomic sequences

while the phenotypic data are the cellular functions including cellular

localisation, protein-protein interaction, and signal transduction. In

predicting protein modifications, the input data are the sequence

segments which normally have less then 20 residues and the output data

are the modification statuses, i.e. having a phosphorylation site or not.

When we build a model for cancer diagnosis using microarray data the

genotypic data are genes with differential profiles from normal and

abnormal tissues. The phenotypic data or model outputs are the cancer

statuses, i.e. having cancer or not.

All aim to construct a mapping (predictive) function from explanatory

variables to predictive variables. The mapping function is normally

unknown. In some cases, function parameters are unknown and in other

cases both function parameters and functional structure are unknown.

7.2 General definition

A data set which is used for a supervised learning process is denoted by

{ }N

nnn t
1

 ,
=

= xD , where d
n ℜ∈x is called an input vector representing

explanatory variables and Θ∈nt (Θ is a set of phenotypic status) is

called a target variable for a predictive variable. The number of

predictive variables can be easily extended to multiple ones. It is

assumed that D is randomly sampled from a space (Θ×ℜd) satisfying

an unknown function

 tf ֏)(: xD (7.1)

Note that the number of data points in Θ×ℜd is in general infinite and

the number of data points satisfying)(xf is infinite while the size of D

is finite, ∞<< D . What this means is that there are infinite data points

of a data space spanned by a function. However, we can only collect a

finite number of data points used as input vectors. The job required is to

estimate)(xf (the estimated version of)(xf is denoted by)(
~

nf x)

using D

 { } D∈∀ , ,)(
~

nnnn ttf xx ֏ (7.2)

 Introduction to Supervised Learning 95

Because the size of D is limited the true function)(xf may not be

exactly estimated. We then have to define a criterion by which we can

find the best estimated function for)(xf

)(,)()(minarg)(
~

xxxx gfgf ∀−= (7.3)

where)(xg represents a possible candidate function.

Before discussing detailed supervised learning algorithms, we need

to classify supervised learning algorithms based on two important

criteria.

The first depends on the status of t. If it is continuous (ℜ∈t), we are

dealing with a regression analysis problem. For instance, a regression

model can be used to link gene expression polymorphisms of interleukins

to oral squamous cell carcinoma [243], to link metabolism to growth-

related properties based on metabolite profiles [244], or to infer gene

expression dynamics [245]. If the target variable t is discrete, i.e. Ι∈t

or }inhibition no ,inhibitive low ,inhibitive {complete ∈nt we then deal

with a classification analysis problem. Many bioinformatics subjects fall

into this classification analysis category. They include diversity

prediction, cellular function prediction, protein modification prediction

and cancer diagnosis using gene expression profiles.

The next issue is to do with linear supervised models versus nonlinear

supervised models. A linear model has the benefit of intuitiveness, i.e. a

model is easy to interpret. For instance, a linear model relating cancer

status and two gene expression profiles can be defined as

 22110 xwxwwy ++= (7.4)

where { } ℜ×ℜ∈ , 21 xx are the expression profiles of two genes,

} yes no, {∈y indicates whether a patient has cancer or not and

{ } ℜ×ℜ×ℜ∈ ,, 210 www represent the model parameters. Here y is used

to indicate how likely a patient has cancer. If a model has been built and

21 ww >> , the first gene then has higher contribution to cancer

development compared with the second gene. However, all linear models

have a fatal limitation that they are unable to handle nonlinear data.

Nonlinear mapping functions are then sought for analysing nonlinear

96 Machine Learning Approaches to Bioinformatics

data. As mentioned above that in most bioinformatics projects no definite

classification law is available before a study starts, a challenging subject

is to determine a nonlinear model function which is generally difficult to

estimate. An alternative is to construct a mapping function working as a

“black-box”. In a black-box mapping function, interpreting which genes

are more important than others may not be easy. For instance, in a

mapping function

),,(21 wxxfy = (7.5)

The major objective is to find how inputs (2x and 2x) are accyurately

mapped to the outputs (y). Note that w is a set of model parameters. Most

machine learning algorithms are basically nonlinear.

7.3 Model evaluation

As mentioned above, it is difficult to find the true model in practice.

Among many candidate models, model evaluation is then an important

issue related to model selection, i.e. evaluating which model is the best.
Figure 7.1 shows an example.

Fig. 7.1. An illustration of fitting a data set using different models which vary in terms of

how well they fit the data.

 Introduction to Supervised Learning 97

The univariate function is defined as

)3.0,0(03.025.02.0)(
32
N+−+= xxxxf (7.6)

where)3.0,0(N is a noise added with a zero mean and a standard

deviation of 0.3. 500 data points are randomly generated. For this limited

data size, different models fit the data differently, i.e. some fitting the

data better than others. In order to evaluate these models, a quantitative

criterion must be used.

Because a supervised learning model can be a regression one or a

classification one, the evaluation strategy then varies. For most

regression models, an error function can be defined as the mean-square

error as below

 () ()∑∑
==

−=−
N

n
nn

N

n
nn ft

N
yt

N 1

2

1

2
)(

1

1
x (7.7)

In order to make models of different data comparable, the normalised

mean-square error can be used. It is defined as below

()

2

1
2

t

N
n nn yt

σ

∑ =
−

 (7.8)

where 2
tσ is the data variance. Correlation between the targets and

model outputs can also be used. It is defined as

yt

N
n yntn yt

YT
σσ

µµ
ρ

∑ = −−
=

1))((
),((7.9)

where 2
yσ is the variance of model output, tµ and yµ are the mean

values of targets and model outputs.

For classification, there are two approaches, one is called single point

estimation and the other is called robustness estimation or probability

analysis of data separation. Using the single point estimation, the

accuracy of each class is estimated by using one pre-defined threshold

98 Machine Learning Approaches to Bioinformatics

for classification. For instance, in a two-class classification problem we

may make decisions as below



 <

=
otherwise

Tyif
yd

1

 0
)((7.10)

where T is the threshold, y is the model prediction and)(yd is the

decision made based on the comparison of y against the threshold. The

estimation is completed using a confusion matrix in which equation

(7.10) is repeatedly used for all data points and a summarisation is made.

For instance a model for a two-class classification problem is able to

accurately predict 90 of 100 positive input vectors and 80 of 100

negative input vectors. A confusion matrix is formed as below

 Negative Positive Percent

Negative 80 20 80%

Positive 10 90 90%

 89% 82% 85%

The accurately predicted positive and misclassified positive are called

true positive (TP) and false negative (FN). The accurately predicted

negative and misclassified negative are called true negative (TN) and

false positive (FP). In the above table, TN and FP are 80 and 20,

respectively. TP and FN are 90 and 10, respectively. The prediction

accuracy of the negative class is known as the specificity and the

prediction accuracy of the positive class is known as the sensitivity. The

specificity is defined as

FPTN

TN
Spe

+
= (7.11)

and the sensitivity is defined as

FNTP

TP
Sen

+
= (7.12)

 Introduction to Supervised Learning 99

The total prediction accuracy is defined as

FNTPFPTN

TPTN
Tot

+++

+
= (7.13)

Prediction powers [246-249] can be used to evaluate the confidence

of trusting a prediction. The prediction powers are different from

prediction accuracies. The negative predictive power (NPP) measures

how likely a negative prediction is true. It is calculated by the fraction of

correctly identified negative input vectors over the total predicted

negative input vectors. The positive predictive power (PPP) then

measures the probability that a positive prediction is true. This is

calculated by the fraction of correctly identified true positive input

vectors over the total predicted positive input vectors. They are defined

as

FPTP

TP
PPP

FNTN

TN
NPP

+
=

+
= (7.14)

The receiver operating characteristics (ROC) analysis [250] can only

be used in a two-class classification problem for system robustness

evaluation. It is used to analyse how likely the predictions of two classes

are to be well-separated. In particular, the areas under ROC curves

(AUR) are normally used as a quantitative indicator of model robustness.

Because ROC is used for analysing the separation quality between

predictions of two classes, AUR is also named as the probability of

separation. When conducting ROC analysis, we need to vary the

threshold (see equation (7.10)) by which classification is made. Because

of the change of the threshold, the sensitivity and specificity change. For

each threshold there is a pair of values for specificity and sensitivity. For

many thresholds, there are many pairs of them. We then map these two

points into a two-dimensional space using the false alarm rates (1 -

specificity) as the horizontal axis and the sensitivity as the vertical axis.

The points are connected to form an ROC curve. Figure 7.2 shows the

ROC analysis for two data sets of one dimension. One shows a

reasonable separation between two classes of data and the other shows a

100 Machine Learning Approaches to Bioinformatics

larger overlap between two classes of data. It can be seen that the ROC

of data set 1 is closer to the top-left corner compared with that of data

set 2. This shows that data set 1 is better than data set 2 in terms of

separation capability between two classes of data. The AUR of data set 1

is then larger than that of data set 2.

Fig. 7.2. An illustration of ROC analysis. The solid lines and the dashed lines in the top

panels represent two classes of data. The bottom panels show the ROC curves for them.

The R ROCR package [251] is used to build ROC curves. In the ROC curves, the

horizontal axes represent 1 – specificity and the vertical axes represent sensitivity.

 Introduction to Supervised Learning 101

7.4 Data organisation

In order to deliver a model with a proper and unbiased estimation of

prediction accuracy, proper data organisation must be considered before

starting computer simulation and model construction using any machine

learning algorithm.

Because data collection is a random process the data collected one

time will not be identical to data collected the next time. Model

construction must consider such a variation. As mentioned above, the

observed phenotypic data are likely noise-contaminated data. There is

then a critical learning problem. How can we distinguish between true

data and noise data?

Fig. 7.3. A diagram showing the danger when a function (model) fits data too well. The

input variable is denoted by x, the output variable is denoted by y. A new data point is

denoted by 0x . The dots are the collected data for estimating a function. The true

function by which data are collected (randomly sampled) is denoted by a thick smooth

line. The estimated too-good function is denoted by the dashed line which connects each

collected data point, perfectly fitting the data. The estimated not-too-bad function is

denoted by a thick dotted line.

If we treat all the collected data as true data a model may fit the

collected data very well but has little capability to generalise. Figure 7.3

shows such a situation where a function (model) is built to fit the

collected data (x, y) pairs very well without any error. When we have a

102 Machine Learning Approaches to Bioinformatics

new datum denoted by 0x , a large prediction error bε occurs when using

the too-good function whose prediction is by . The prediction is 0y and

the prediction error is smaller (0ε) using a not-too-bad function.

However, the not-too-bad function has a large error compared with the

too-good function, in fitting the collected data. The prediction capability

for new data is often referred to as the generalisation capability. A model

which has less prediction error for the new data (the not-too-bad function

illustrated by the dotted line in Fig. 7.3) is called a model with a good

generalisation capability.

However, how can we estimate a model’s generalisation capability

before seeing new data? A common methodology we adopt is to use the

current collected data. We know that data collection is a random process.

If we divide our currently collected data randomly we are actually

mimicking the random sampling process. The next question is then how

to divide the collected data. Because of randomness, it is nearly

impossible to have the same prediction performance using the same

model on different randomly generated test data subsets. It is then

strategically important to ensure every piece of collected data has been

used for testing. The best strategy of a proper model performance

evaluation is Jackknife [252]. With the Jackknife test, one input vector is

reserved for testing using the model constructed based on the rest of the

input vectors. This is repeated until all the input vectors have been used

once for testing. The final model performance is then estimated based on

all testing results. For instance, we may construct seven models for seven

collected data points.

When data size gets very large, Jackknife becomes computationally

infeasible. In this situation, k-fold cross-validation is used. Data are

randomly divided into k-folds. K models are constructed. Each of them

uses one fold of input vectors as test data while the rest are used for

model construction. The final model performance is estimated based on

these k sets of testing results.

However, it must be noted that even using k-fold cross-validation two

separate runs may still generate different performance estimations. If

computational time is feasible, N k-fold cross-validations can be carried

out and the final performance is a mean of each of these N runs.

 Introduction to Supervised Learning 103

7.5 Bayes rule for classification

A practical issue related to classification analysis is the confidence of
a prediction. If a model provides probabilities of different classes, the
Bayes rule can be used for decision-making. Suppose there are K classes,
the probability (or conditional probability) that an input vector belongs
to the kth class is denoted by)|(kp x and the a prior probability of the
kth class is)(kp . The post-probability (given K classes) is defined as

],1[,
)|()|(

)|()|(
)|(

1

Km
kpkp

mpmpmp K
k


  xx

xxx (7.15)

A decision is made through maximising the post-probability denoted
by)|(xmp

Summary

In this chapter, general concepts and rules of supervised learning have
been discussed. Model evaluation and data organisation strategies have
also been discussed. All these are fundamental to the following chapters
where several commonly used machine learning algorithms for
bioinformatics will be discussed. It must be noted here that these
practices are important for generating unbiased, accurate and precise
models and should not be ignored in experimental design.

104

Chapter 8

Linear/Quadratic Discriminant

Analysis and K-Nearest Neighbour

In this chapter, two important machine learning approaches which can

be used for supervised learning are introduced. One is called

discriminant analysis including linear discriminant analysis and

quadratic discriminant analysis and the other is called the K-nearest

neighbour algorithm. Linear or quadratic discriminant analysis is a

simple learning algorithm which has the advantages of simplicity and

intuitiveness. The K-nearest neighbour algorithm has the advantage of

low learning cost. This chapter will discuss the principles of these

algorithms and the procedures of their applications to bioinformatics.

8.1 Linear discriminant analysis

Linear discriminant analysis, also referred to as Fisher discriminant

analysis (FDA), is a simple algorithm which has been widely used in

many areas [158, 160, 253]. FDA aims to find a linear function which

linearly combines independent variables using a set of weights (model

parameters) to determine the property of a dependent variable. The linear

function is also called a hyper-plane which separates two classes of input

vectors. The hyper-plane is called the decision boundary or surface while

the linear function is called a linear classifier.

The basic requirement of FDA is that we assume that we know the

function form in advance for a data set. The linear function used in FDA

is defined as

 Linear/Quadratic Discriminant Analysis and K-Nearest Neighbour 105

 ∑
=

+=⋅+=
d

i
ii xwwwf

1
00)(xwx (8.1)

where
d

ℜ∈x is an input vector,
d

ℜ∈w is a weight vector (model

parameters), and 0w is a bias.

Fig. 8.1. An illustration of FDA for a data set of two-dimensional input vectors. The

horizontal axis and the vertical axis represent the two dimensions, i.e. X and Y. The

triangles and crosses represent two classes of input vectors. For this data set, ten FDA

models are built by randomly sampling four fifths of the data. The lines which separate

these two data swarms are the hyper-planes generated by FDA. The large circles

represent the centres of two classes of input vectors.

A simple explanation of FDA is to find a hyper-plane on which

0)(≡xf . This hyper-plane is also called the decision boundary, i.e. x

belongs to one class if 0)(>xf while it belongs to the other class if

0)(<xf . All the points on the hyper-plane satisfy 0)(=xf [158, 160,

253]. Figure 8.1 shows a simple example of FDA for two classes of input

vectors in two-dimensional space.

106 Machine Learning Approaches to Bioinformatics

There are two different approaches for estimating FDA model
parameters. We can assume that data follow two Gaussian distributions
for two classes of input vectors. The density functions of two classes are
defined as

 








 







2

)()(
exp

||)2(

1
)|(

1T

2/
AAA

A

A
μxμx

x dp


 (8.2)

and

 








 







2

)()(
exp

||)2(

1
)|(

1T

2/
BBB

B

B
μxμxx dp


 (8.3)

where Aμ and Bμ are the mean vectors of two classes (A and B) of
input vectors. A and B are the covariance matrices of these two
classes. In order to find a hyper-plane to separate the two classes of input
vectors, we assume)|()|(BA xx pp  if the prior probabilities of the
two classes are the same. This leads to

||ln)()(||ln)()(1T1T
BBBBAAAA   μxμxμxμx (8.4)

In FDA, it is assumed that  BA . This means that both
classes of input vectors have the same spreading volume. Solving
equation (8.4) under this assumption leads to the hyper-plane defined as

)(1
AB μμw   (8.5)

In Fisher’s original work, it is assumed that the hyper-plane made by
weighting independent variables (xw ) is able to separate two classes of
input vectors if the ratio of between-class diversity over the within-class
diversity can be maximised. The between-class diversity can be regarded
as signal in data while within-class diversity can be treated as noise in
data. This ratio is defined as

 Linear/Quadratic Discriminant Analysis and K-Nearest Neighbour 107

wwww

µwµw

AB

AB
S

Σ+Σ

⋅−⋅
==

TT

2

2

2)(

within

between

σ

σ
 (8.6)

Maximising the above equation leads to

)()(1
ABAB
µµw −Σ+Σ= − (8.7)

It can be seen that both approach the same result. FDA can be

extended to multiple classes where multiple hyper-planes will be formed

[158, 160, 253].

In bioinformatics, FDA has been widely used. For instance, FDA has

been used for predicting DNA methylation sites [254], for predicting

phosphopeptides [255], for brain tumour diagnosis based on metabolite

data analysis [256], and for identifying protein coding regions [257].

Fig. 8.2. Box plot of the prediction performances (specificity, sensitivity, total accuracy,

and AUR) from 100 randomised data sets.

108 Machine Learning Approaches to Bioinformatics

Here we study how FDA can be used for analysing Burkholderia

pseudomallei gene expression data. Data size is reduced using the

random forest algorithm which is discussed in the next chapter, i.e.

among 214 genes, only top ten genes selected by the random forest

algorithm are used for modelling using FDA. The data are randomised

100 times. Each time, five-fold cross-validation is used. The model

performances (specificity, sensitivity, total prediction accuracy, and

AUR) are shown in Fig. 8.2. The specificity is 86%, the sensitivity is

86%, the total prediction accuracy is 86% and AUR is 0.92.

The weights (w) for the top ten genes from 100 models are shown in

Fig. 8.3. In these 100 random models, the gene BPSL3398 has the

highest positive weight, but the gene BPSS9477 has the largest negative

weight. Because the infected patients are labelled using value one and the

non-infected patients are labelled using value zero, infected patients will

have high expression of the gene BPSL3398 but low expression of the

gene BPSS9477.

Fig. 8.3. Box plot of the weights of ten genes. The horizontal axis represents ten genes

while the vertical axis represents the weights.

 Linear/Quadratic Discriminant Analysis and K-Nearest Neighbour 109

8.2 Generalised discriminant function

FDA is a linear machine learning algorithm. The linearity implies two

learning issues. First, it is assumed that the data for modelling is linearly

separable such as the case shown in Fig. 8.1. This linearity does not

mean data are completely separable. Data are often not separable even

when generated from two linearly separable sources. Rather they are not

separable because of large overlap. For the data shown in the left panel

of Fig. 8.4 FDA is unable to separate two classes of input vectors

successfully because of the noise in the data. FDA is also unable to find

a suitable decision surface for nonlinear data. On the right panel of

Fig. 8.4, data are generated from two classes, one being points below the

function 2
y and the other being points above the function. It can be seen

from the right panel of Fig. 8.4 that the decision boundary made by FDA

fails to separate two classes of input vectors.

Generalised discriminant analysis is also called quadratic

discriminant analysis (QDA). In QDA, rather than explore the linear

variables described in equation (8.1), we aim to explore non-

linear variables. Here a linear variable is quantified by one independent

variable while a nonlinear variable is quantified by a product of two or

more independent variables. Based on this, we then have the form of

QDA defined as below [158, 160]

 ∑ ∑∑
= ==

++=++=
d

i

d

j
jiij

d

i
ii xxaxwwwy

1 11
0

TT
0 Axxxw (8.8)

The model can be re-written as below

 zw T
0

~+= wy (8.9)

where ∪ } {} { iji xx=z and ∪ } {}{~
iji aw=w . This is in the same format

of FDA described in equation (8.1). The same procedure of FDA can be

applied to QDA to estimate model parameters.

110 Machine Learning Approaches to Bioinformatics

Fig. 8.4. Two examples where FDA is unable to find a suitable decision boundary. The

left panel shows a case where data are generated from two linearly separable sources but

highly overlapped. The right panel shows a case where data are generated from two

nonlinear separable sources without overlap. The large circles represent the centres.

Fig. 8.5. A comparison of FDA and QDA applied to the data shown in the right panel of

Fig. 8.5. The left panel shows the ROC curves of the FDA models and the right panel

shows the ROC curves of the QDA models. The horizontal axes represent 1 – specificity

and the vertical axes represent sensitivity.

 Linear/Quadratic Discriminant Analysis and K-Nearest Neighbour 111

Figure 8.5 shows a comparison of cross-validation FDA and QDA

models for the data shown in the right panel of Fig. 8.5. The specificity,

sensitivity, total prediction accuracy and AUR are printed in the ROC

curves in Fig. 8.5 where it can be seen that QDA much outperforms FDA

because of the introduction of the nonlinear variables.

In applying QDA to the Burkholderia pseudomallei gene expression

data, we find that the performance is similar to that demonstrated

when applying FDA. Although QDA introduces nonlinear variables, the

capability of handling nonlinear data is still limited. This is because only

the positive correlation between variables is considered, i.e. ji xx

describing positive correlation between ix and jx . If the classification

between two classes of data depends on the negative correlation between

ix and jx , we add more noise rather than more information.

QDA has also been used in several bioinformatics projects. For

instance, it has been used for predicting protein coding regions [258], for

predicting splice sites [259] and for predicting antimicrobial peptides

[260].

8.3 K-nearest neighbour

K-nearest neighbour (KNN) [158] has been known as a fast learner

because there is nearly no learning process at all. The principle of KNN

is simple with a theoretical background. Imagine that there are K training

input vectors around a query input vector within a specified volume

shown in Fig. 8.6. In the Figure, the query input vector denoted by the

triangle is surrounded by two classes of training input vectors. Here we

use training input vectors to mean that they have already been classified.

We now need to label the query input vector. An intuitive approach is to

count the number of open circles and the number of filled circles. If the

number of open circles is larger than that of filled circles, we can label

the query input vector by the class of open circles. However, what is the

theoretical background of this simple and intuitive approach?

112 Machine Learning Approaches to Bioinformatics

Fig. 8.6. An illustration of KNN. The open circles and the filled circles represent two
classes of data while the triangle represents a query data point. The dashed circle
indicates the volume centred by the query data point.

We first denote an input vector by x and the number of training input
vectors in one class as kN , where } 2 ,1 {k representing the open and
filled circles in Fig. 8.6 respectively. We then use two simple
probabilities to quantify how likely one class of input vectors is to occur
in the volume which is denoted by the dashed open circle in Fig. 8.6. The
simple probability estimation is defined as below

N
Nkp k)|(x (8.10)

where 21 NNN  . The posterior probability is calculated by the
following equation

)2()2|()1()1|(

)()|(
)|(

pppp
kpkpkp

xx
xx


 (8.11)

where)(kp is the a prior probability of the kth class. If)2()1(pp  we
have

N
Nkp k)|(x (8.12)

 Linear/Quadratic Discriminant Analysis and K-Nearest Neighbour 113

If 21 NN  the query vector is labelled as class 1. If the prior knowledge
is updated to)2()1(pp  we then have

21)2()1(

)(
)|(

NpNp
Nkpkp k


x (8.13)

There is also another analysis that leads to the same result. Given a
volume V, the probability of the kth class within it is defined as

V
Nkp k)|(x (8.14)

The posterior probability of the kth class is defined as

)2()1(

)(
)|(

21 p
V
Np

V
N

kp
V
N

kp
k


x (8.15)

It can be seen that the Bayes rule is the basis for deriving a K-nearest
neighbour classification system.

Because of its simplicity, KNN has been applied to many
bioinformatics projects. In the sequence domain, KNN has been used to
predict transmembrane beta-barrel proteins [261] and for food protein
allergenicity prediction [262]. In analysing gene expression data, KNN
has been used for cancer diagnosis [263-265], toxicity analysis [266],
and for identifying pathogens [267].

Like other machine learning algorithms, KNN also has a problem of
model selection. For instance, Fig. 8.7 shows this dilemma. When using
the inner dashed open circle as the volume in which we seek K nearest
neighbours, we have found the triangle should be labelled as the filled
circles. When we use the middle dashed open circle, we find that the
triangle is labelled as the class of the open circles. If the outer dashed
open circle is used as the volume in which to search for K nearest
neighbours, the triangle is labelled as the class of the filled circles. There
is therefore certainly a model selection process. For a specific model, an
appropriate K number must be carefully selected.

114 Machine Learning Approaches to Bioinformatics

Fig. 8.7. An illustration of selecting right number of K when using KNN for a specific

data set. Open and filled circles represent two classes of input vectors while the triangle

represents a query input vector. Three dashed open circles show the volumes in which K

nearest neighbours are sought.

The second issue is related to the distance used when searching for K

nearest neighbours. Using the Euclidean distance or Manhattan distance

may lead to different classification outcomes. Using the Euclidean

distance from the query input vector indicated by the large open circle,

the triangle is labelled as the class of filled circles. When using the

Manhattan distance, the triangle is labelled as a different class. The

difference can be seen in Fig. 8.8.

Fig. 8.8. An illustration of using different distance calculation methods leading to

different labelling processes for a query data point. Open and filled circles represent two

classes of input vectors while the triangle represents a query input vector. The dashed

open circle and the dashed ellipse show the volumes that apply when using the Euclidean

distance and Manhattan distance respectively for searching for K nearest neighbours.

 Linear/Quadratic Discriminant Analysis and K-Nearest Neighbour 115

The third issue related to KNN is its complexity in use. If a training
data base is large, both space complexity and time complexity will be a
huge burden. For a database with N training input vectors, using K
nearest neighbours, KNN will need to use)1()1( KNNN 
calculations to find the nearest neighbours.

A typical application of KNN in bioinformatics is various multiple
sequence homology alignment tools such as FASTA [22] and BLAST
[10]. After inputting a query sequence, the tool returns a number of
database (training) sequences with ranked similarity measurements.
For instance, searching BLAST for a protein P0C0R2.1 (HTH-type
transcriptional regulator sarS) leads to a table shown in Table 8.1 in
which the similar database sequences are listed in the first column,
the significant alignment bits data are listed in the second column
and the significance of similarities (e-values) are listed in the last
column. The sequences are ordered from most similar ones to most
dissimilar ones.

Table 8.1. The result of searching BLAST for a protein P0C0R2.1. This
is a reduced table where “producing” information is removed for
simiplicity.

Sequences alignment bits e-values
ref|YP_001331091.1| 502 1.00E-140
ref|NP_370636.1| 502 1.00E-140
ref|YP_415567.1| 500 5.00E-140
ref|YP_039579.1| 499 1.00E-139
ref|ZP_04016209.1| 498 1.00E-139
ref|ZP_03563936.1| 419 1.00E-115
ref|ZP_03986419.1| 245 3.00E-63
ref|ZP_03986418.1| 177 7.00E-43
ref|NP_373023.1| 177 7.00E-43
ref|YP_495072.1| 176 1.00E-42
ref|ZP_04827531.1| 176 2.00E-42
ref|YP_187302.1| 176 3.00E-42
ref|ZP_04864336.1| 160 1.00E-37
ref|ZP_04839552.1| 98.2 7.00E-19
ref|ZP_03561897.1| 83.6 2.00E-14
ref|ZP_04796428.1| 75.9 3.00E-12
ref|YP_002633364.1| 75.9 4.00E-12
ref|ZP_04824520.1| 75.5 4.00E-12

116 Machine Learning Approaches to Bioinformatics

ref|NP_763945.1| 75.5 4.00E-12
ref|YP_254196.1| 75.1 5.00E-12
ref|ZP_04818422.1| 73.9 1.00E-11
ref|ZP_03613101.1| 73.9 1.00E-11
ref|ZP_04677773.1| 73.2 2.00E-11
ref|ZP_04059846.1| 72.8 3.00E-11
ref|YP_302193.1| 72.8 3.00E-11
ref|NP_371140.1| 71.2 9.00E-11
pdb|1FZP|D 71.2 9.00E-11
pdb|2FRH|A 70.9 1.00E-10
pdb|2FNP|A 69.7 2.00E-10
gb|AAB05396.1| 68.9 4.00E-10
gb|ABD73658.1| 65.5 5.00E-09
ref|ZP_03932304.1| 46.6 0.002
ref|ZP_03936223.1| 46.2 0.003
ref|ZP_04864335.1| 45.8 0.004
ref|ZP_04676978.1| 45.8 0.004
ref|ZP_05366829.1| 45.4 0.005
ref|ZP_03920664.1| 45.4 0.005
ref|ZP_05086994.1| 45.1 0.007
ref|YP_301092.1| 45.1 0.007
ref|ZP_03612535.1| 44.7 0.008
ref|YP_300706.1| 44.3 0.011
ref|ZP_04817518.1| 43.5 0.016
ref|YP_501258.1| 42.4 0.047
ref|YP_001576352.1| 42 0.053
ref|YP_187301.1| 42 0.053
ref|ZP_03957600.1| 41.6 0.074
ref|YP_002634059.1| 41.6 0.075
ref|YP_001231285.1| 41.6 0.076
ref|YP_188894.1| 41.6 0.079
ref|ZP_04797467.1| 41.2 0.082
ref|ZP_03931708.1| 41.2 0.083
ref|NP_764990.1| 41.2 0.085
ref|ZP_02431579.1| 41.2 0.087
ref|NP_373022.1| 41.2 0.097
ref|YP_001247875.1| 41.2 0.097
ref|ZP_04060580.1| 40.8 0.12
ref|YP_186645.1| 40.8 0.13
ref|YP_001353624.1| 40.4 0.15
ref|ZP_01304027.1| 40.4 0.16
ref|YP_147717.1| 40.4 0.16
ref|ZP_04819627.1| 40.4 0.16

 Linear/Quadratic Discriminant Analysis and K-Nearest Neighbour 117

ref|ZP_03752400.1| 40.4 0.17
ref|YP_001559761.1| 40.4 0.17
ref|NP_378388.1| 40 0.19
ref|YP_002634877.1| 40 0.21
ref|YP_002786464.1| 40 0.22
ref|NP_372288.1| 39.7 0.26
ref|ZP_01719933.1| 39.7 0.26
ref|YP_001332689.1| 39.7 0.29
ref|YP_043808.1| 39.7 0.29
ref|YP_494402.1| 39.7 0.3
ref|YP_041233.1| 39.7 0.31
ref|NP_391635.1| 39.3 0.33
ref|NP_694380.1| 38.9 0.41
ref|ZP_04370381.1| 38.9 0.43
ref|ZP_05367617.1| 38.9 0.43
ref|ZP_03613556.1| 38.9 0.46
ref|YP_002829202.1| 38.9 0.47
ref|YP_500382.1| 38.9 0.49
ref|ZP_05372472.1| 38.9 0.51
ref|YP_253074.1| 38.1 0.69
ref|YP_002831895.1| 38.1 0.72
ref|YP_002837327.1| 38.1 0.76
ref|ZP_04676980.1| 38.1 0.82
ref|ZP_04351651.1| 37.7 1
ref|YP_002561209.1| 37.7 1
ref|ZP_04767758.1| 37.7 1.1
ref|YP_083773.1| 37.7 1.1
ref|NP_342553.1| 37.7 1.1
ref|ZP_04798349.1| 37.4 1.3
ref|ZP_04826476.1| 37.4 1.3
ref|ZP_02171452.1| 37.4 1.3
ref|ZP_04803802.1| 37.4 1.3
ref|ZP_04059377.1| 37.4 1.3
ref|YP_189437.1| 37.4 1.5
ref|NP_765423.1| 37 1.6
ref|ZP_04798347.1| 37 1.6
ref|NP_765425.1| 37 1.7
pdb|3HRM|A 37 1.8
ref|ZP_03981559.1| 37 1.8

118 Machine Learning Approaches to Bioinformatics

8.4 KNN for gene data analysis

Here we apply KNN to the Burkholderia pseudomallei gene expression

data. The performance of the KNN model using the Manhattan distance

is shown in the left panel of Fig. 8.9 and the performance of the KNN

model using the Euclidean distance is shown in the right panel of

Fig. 8.9. It can be seen that the best Manhattan model uses 3 nearest

neighbours while the best Euclidean model uses 5 nearest neighbours.

Fig. 8.9. The performance of KNN models for the Burkholderia pseudomallei gene

expression data using the Euclidean distance (right panel) and the Manhattan distance

(left panel). The horizontal axes indicate the number of nearest neighbours. The vertical

axes indicate the total prediction accuracy.

Summary

This chapter has discussed two types of machine learning algorithms

which are either simple in learning or simple in prediction. The

discriminant analysis using Fisher algorithm (FDA) and the algorithm

using nonlinear variables (QDA) are easy learning algorithms. The cost

of learning only involves simple linear algebraic operations. The learned

models can be easily interpreted, i.e. explaining which variables are

important. KNN on the other hand has a very low learning cost but has

the problem of prediction cost when the training data size is large. This

T
o
ta

l
a
c
c
u
ra

c
y

T
o
ta

l
a
c
c
u
ra

c
y

 Linear/Quadratic Discriminant Analysis and K-Nearest Neighbour 119

chapter has also discussed the applications of these two types of

algorithms in bioinformatics.

It must be noted that both FDA and QDA employ a linear learning

procedure although QDA uses nonlinear variables. When the number of

variables increases, the number of quadratic variables can increase

dramatically. KNN, strictly speaking, is not a linear learning algorithm.

When K is decreased it tends to be more nonlinear. When K is large the

decision boundary is more smoothed out leading to a more linear

classification property.

120

Chapter 9

Classification and Regression Trees,

Random Forest Algorithm

This chapter discusses one typical supervised learning approach. This

type of algorithms aims to mimic human-like decision-making systems

for specific applications. The popularity of this type of algorithms

results from its simplicity and intuitiveness. A model built this way

enjoys some distinct features in interpreting predictions and displays

data structures which are very welcome in many applications.

9.1 Introduction

The main objective of every prediction is for indicating what will happen

in the future. The prediction that species diversification is positively

related to species diversity [268] can warn us about how to maintain

species diversity to reduce the risk of the extinction of many species

which will finally affect human living. The prediction of protein

modifications can narrow down the experiment targets. The prediction of

cancer in its early stage may save or prolong life.

Many machine learning algorithms are able to deliver good prediction

models through training. Compared with other machine learning

algorithms, the inductive programming approach, including the decision

tree algorithm [269, 270] and the classification and regression tree

algorithm [271], has some distinct features suitable for bioinformatics

projects. First, each prediction can be well interpreted. For instance, a

cellular function prediction model can indicate which genotypic variable

is the factor initiating a specific cellular function. Second, both numerical

data and categorical data can be modelled. This is particularly important

 Classification and Regression Trees, Random Forest Algorithm 121

in analysing biological data where categorical data often occurs. Third,

these algorithms need much shorter model construction time compared

with other machine learning algorithms. Fourth, they are capable of

handling data with very large dimensionality. Many other machine

learning algorithms need the number of input vectors to be larger

than the number of model parameters to ensure statistical learning

significance. Finally the outcome of each learning process will deliver a

clear data structure demonstrating the hidden knowledge underlying data.

9.2 Basic principle for constructing a classification tree

The basic principle of the algorithms discussed in this chapter is “divide

and conquer”. Using this principle, a data space with mixed classes of

input vectors is divided into two sub-spaces using classification rule.

Fig. 9.1. An illustration of dividing a data space. Triangles and crosses represent two

different classes of data. The long broken lines are used for partitioning the spaces. X and

Y are two variables. The thin dotted line in the left panel is an alternative decision

boundary for dividing the space.

For instance, in the left panel of Fig. 9.1, one decision boundary

(y = 0) can be used to partition the space into two sub-spaces in which

input vectors can be easily classified. However, the partitioning using the

122 Machine Learning Approaches to Bioinformatics

decision boundary (y = 2) cannot make two sub-spaces in which input

vectors can be well-separated. On the right panel of Fig. 9.1, a further

decision boundary (x = 0) is added to make four sub-spaces for

classification of input vectors. After a data space is well-divided into

small sub-spaces in which input vectors can be well classified, the

divided sub-spaces can be used to develop classification rules. For

instance, if a novel input vector is found in the upper sub-space in the left

panel, this novel input vector is then labelled by the input vectors in this

upper sub-space.

Fig. 9.2. A tree representation of the decision-making process involved in the left panel

of Fig. 9.1. The square represents data input. Each node denoted by a diamond represents

a partitioning process or a decision-making step. The circles are the end nodes of a

decision tree where predictions can be made.

Given a partitioning strategy for a data space, how can we represent

this partitioning space as a decision-making process? In order to explore

human intelligence of a model, a tree-like decision-making structure has

been adopted in the decision tree algorithm [269, 270] and the

classification regression tree algorithm [271]. For instance, the decision

making process in the left panel of Fig. 9.1 can be expressed as a tree

shown in Fig. 9.2 while the decision-making process in the right panel of

Fig. 9.1 can be demonstrated in Fig. 9.3.

 Classification and Regression Trees, Random Forest Algorithm 123

Fig. 9.3. A tree representation of the decision-making process involved in the right panel

of Fig. 9.1. For the explanation of the representation refer to Fig. 9.2.

To make a best data space partitioning and deliver the best decision-

making system or model, we need to consider how to find the best

decision boundary to partition a space, i.e. how to make a root and

branch node shown in Fig. 9.2 and Fig. 9.3. For instance, the thin dotted

line in the left panel of Fig. 9.1 is certainly not a good choice although

the majority of input vectors can be separated. Intuitively, we can say

that the decision boundary (y = 0) represented by the long broken line in

the left panel of Fig. 9.1 is a good one while the decision boundary (y =

2) marked by the dotted line is not a good candidate. This is because both

sub-spaces generated by the decision boundary (y = 0) are pure for one

class of input vectors. However, the upper sub-space generated by the

decision boundary (y = 2) is pure while the lower sub-space is impure.

To automate the selection of the best decision boundary, a quantitative

measure for purity or impurity is required. Two ways to measure the

impurity of a node in a tree have been proposed. One is called Gini

impurity and the other is called information gain.

Gini impurity has been used for selecting the decision boundary in

various algorithms such as ID3, C4.5, C5, classification and regression

tree (CART) and the random forest algorithm [269-272]. The Gini

impurity is calculated by summing the products of the probability of

124 Machine Learning Approaches to Bioinformatics

correct classification and the probability of mis-classification of a class

of input vectors for K classes. It is defined as

 ∑
=

−==
K

k
kkG ppx

1

)](1)[()(I τττ (9.1)

where x is one variable, τ is a decision boundary,)(τkp is the

probability of correct classification of the kth class of input vectors using

the decision boundary (τ=x) while K is the number of classes. It can be

seen that, if a sub-space is pure using τ=x for one class,

0)}(min{I == τxG . The maximum Gini impurity is

K

K

K

K

K
x

K

k
G

111
)}(max{I

1

−
=

−
== ∑

=

τ (9.2)

The other measure is called information gain based on entropy which is

defined as

 ∑
=

−==
K

k
kkE ppx

1
2)(log)()(I τττ (9.3)

When a sub-space is pure for one class, 0)}(min{I ==τxE . The

more the classes of input vectors are in a sub-space, the larger the

entropy is. The largest information gain is

 K
KK

x
K

k
E 2

1
2 log

1
log

1
)}(max{I =−== ∑

=

τ (9.4)

The construction of a decision tree or classification and regression

tree model is based on repeated optimisation of one of the impurity

mentioned above.

In the sections below, we discuss two typical algorithms. One is

called the classification and regression tree algorithm (CART) and the

other is called the random forest algorithm (RF).

 Classification and Regression Trees, Random Forest Algorithm 125

9.3 Classification and regression tree

CART can be used for both classification analysis and regression

analysis and makes a prediction model in three steps described as below.

Step 1: tree growing. For a given data set, a tree is grown based on

recursive partitioning of the data space using decision boundaries. For

every partition using a decision boundary, a node is formed. The node is

composed of two parts. One is the variable selected (such as x) and the

other is the threshold (such as T). The given data space or a sub-space is

divided into two sub-spaces according to the relationship between the x

value and T value for all input vectors. The impurity is calculated for this

new node. If the impurity is zero, no further partition is taken beyond this

node. In this situation the nodes below this node are labelled according to

the class property of the input vectors in the sub-spaces.

Step 2: tree pruning. A tree is pruned if it fails to generate better

prediction performance compared to a tree with a simpler structure.

Note that when pruning is completed, a leaf node may not be pure for

one class of input vectors. In this case, a probability of belonging to

one class is calculated according to the fraction of one class of data

points over total data points.

Step 3: tree selection. An optimal tree is selected if it outperforms

the other candidates in predicting novel data.

After construction, a CART model can be used for predictions. As

indicated in Figures 9.2 and 9.3, a novel input vector is fed into the

model. The root node examines the relevant variable’s value against

the threshold to determine if the action moves to the left sub-tree or

the right sub-tree. The same examination applies to all the following

branch nodes in the tree. When a leaf node is reached, the prediction

is made according to the maximum posterior probability. The

posterior probability is defined in chapter 7. In a CART model, the

conditional probability of the kth class (given K classes) is defined as

the fraction of input vectors belonging to the kth class in a sub-space

associated with a leaf node.

CART has been used for classifying substrates, inhibitors, and

inducers of p-glycoprotein [273], for identifying head and neck

squamous cell carcinoma [274], for detecting SNP-SNP interaction

126 Machine Learning Approaches to Bioinformatics

[275], for HIV-I drug (CCL3L1-CCR5) evaluation [276], for studying

the relation between genetic polymorphisms in double-strand break DNA

repair genes and oral premalignant lesions [277], for studying how

genetic variants in cell cycle can control pathways related to

susceptibility of bladder cancer [278], for detecting breast cancer using

genomic data [279], and for studying mRNA expression data variance

[280].

9.4 CART for compound pathway involvement prediction

In this section we study the prediction of pathway involvement of a

compound. Compounds are downloaded from the KEGG library [155].

In this data set, 14423 compounds are found among which 2961

compounds have metabolic pathway annotations. Among them, 1050 are

in biosynthesis pathways, 501 are in degradation pathways, and 1491 are

in metabolism pathways comprising both biosynthesis and degradation.

Each compound is represented by a formula in KEGG and is

composed of chemical elements and their quantities. For instance, the

compounds Cyanate, Carbamate, and Urea are represented by C1H1N1O1,

C1H2N1O2, and C1H4N2O1, respectively. H means Hydrogen, N means

Nitrogen and O means Oxygen. The numbers represent the quantities of

the chemical elements. In both databases, one formula can be shared by

multiple compounds. This is because a formula reflects how chemical

elements are contained in a compound, but does not fully illustrate

compound structure.

In order to have an unbiased evaluation of model performance, all the

duplicated formulae are carefully examined. If duplicated formulae have

different compound names in the same pathway category, only one of

them is kept for the study. If duplicated formulae have different

compound names in different pathways, all are removed. By this

examination, 382 compounds in biosyntheses pathways, 155 compounds

in degradation pathways and 501 compounds in metabolism pathways

are retained for the study. We then build a model to map compounds into

these three pathway categories made by KEGG using information stored

in compounds’ formulae. The mass values of chemical elements

 Classification and Regression Trees, Random Forest Algorithm 127

(http://www.wsearch.com.au/) [281] are used for encoding compounds

(formulae). The formula of each compound is encoded according to the

presence of chemical elements as well as the quantities of them. For

instance, the Hydrogen in three compounds mentioned above can be

encoded by 1.0078250321, 2*1.0078250321 and 4*1.0078250321,

respectively, whilst the Oxygen can be encoded by 15.9949146221,

2*15.9949146221, and 15.9949146221, respectively. The use of

chemical element weights for encoding compounds can represent

compounds’ chemical element property well.

In machine learning, an attribute (a chemical element in this context)

with a small occurrence rate normally will not make a significant

contribution to model performance. Because of this, chemical elements

with <1% occurrence rates in our data are dropped. This filtering process

leads to seven most contributing chemical elements. They are Hydrogen

(gas), Carbon (solid), Nitrogen (gas), Oxygen (gas), Phosphorus (solid),

Sulphur (solid), and Chlorine (gas). Each compound is then encoded

using these seven chemical elements. Figure 9.4 shows the classification

tree for this data. In the Figure, “0” means biosynthesis, “1” means

Fig. 9.4. A classification tree generated for the prediction of metabolic pathway

involvement of compounds.

128 Machine Learning Approaches to Bioinformatics

degradation, and “2” means metabolism. In the tree, it has been found

that biosynthesis pathway is classified by the following factors at the

terminal nodes: 1) Oxygen weight > 7.997462; 2) Oxygen weight >

55.9822; 3) Hydrogen weight > 21.6682; 4) Nitrogen weight > 63.0138;

5) Carbon>318. However, metabolism is not classified using Hydrogen.

Instead it uses: 1) Carbon weight < 66; 2) Carbon weight > 78;

3) Oxygen weight < 55.9822; 4) Nitrogen weight < 63.0138; and

5) Phosphorus weight > 77.4344. The classification of degradation

pathway involvement is based on: 1) Chlorine weight > 17.4844;

2) Carbon < 78, and 3) Oxygen weight < 7.997462.

9.5 The random forest algorithm

The random forest (RF) algorithm is an extension to CART. RF is a

newly developed machine learning algorithm [272]. The basic idea is to

construct many trees using random vectors sampled from a data set. For

the kth tree, a random vector is generated independently from the random

vectors generated for the past k-1 trees. The remaining data are used for

prediction. The approach of sampling random vectors is similar to

bootstrap, i.e. the replacement sampling approach, which has also been

applied to analysing biological data [282]. For each node in a tree, a

small fraction of variables is randomly selected. The best split for the

node is based on the prediction error. Each tree is fully grown without

pruning. RF is able to provide a number of excellent features, for

instance, the capability of handling a large number of variables, ranking

the variables, and detecting the interaction among the variables. The

algorithm has been recently applied to various biological data mining

projects, for example, the prediction of the interactions between HIV-1

and human proteins using gene expression data [283], the analysis of

differential gene expression [284], the diagnosis of ulcerative colitis

based on gene expression data [285], the detection of cancers [286], the

prediction of childhood leukaemia using gene expression data [287], and

the prediction of protein-protein interactions [288]. All these applications

show that the random forest algorithm outperforms some other

algorithms.

 Classification and Regression Trees, Random Forest Algorithm 129

9.6 RF for analysing Burkholderia pseudomallei gene

expression profiles

The following case is an application of RF to the Burkholderia

pseudomallei gene expression profile data. Refer to previous chapters for

a description of this data. We first analyse the feature provided by RF in

ranking variables (genes in this study). RF can provide two measures for

ranking variables, one being the mean decrease in Gini gain and the other

being the mean decrease in accuracy. The mean decrease in Gini gain is

used to measure the quality of a split for each variable in a tree.

Whenever the Gini gain of a node’s descent nodes is less than the node’s

Gini gain, a split is carried out. The decrease of the Gini gain of this node

is recorded. A variable such as a residue code or a residue correlation

code may be used by different nodes for splitting or tree growing. It may

therefore have different decreases of Gini gain at different nodes. A

mean decrease in Gini gain across all nodes using a variable is calculated

to measure the importance of the variable. The mean decrease in

accuracy is calculated in a similar way by examining all nodes using the

same variable. The mean decrease in Gini is shown in Fig. 9.5 and the

mean decrease in accuracy is shown in Fig. 9.6. The top ten genes

selected by two ranking criteria are shown in Table 9.1. The top ten are

identical but have different orders.

Table 9.1. The top ten genes selected by mean decrease in

Gini and mean decrease in accuracy for the Burkholderia

pseudomallei gene data using RF.

 Mean decrease Gini Mean decrease accuracy

1 BPSL2697 BPSL2697

2 BPSL2522 BPSS1512

3 BPSS1512 BPSL2522

4 BPSS0477 BPSL2096

5 BPSL2096 BPSS0477

6 BPSS1525 BPSS1532.1

7 BPSL2520 BPSS0476

8 BPSS0476 BPSS1532

9 BPSS1532 BPSL2520

10 BPSS1532.1 BPSS1525

130 Machine Learning Approaches to Bioinformatics

Fig. 9.5. The mean decrease in Gini of the top 20 genes selected by the RF model built

for the Burkholderia pseudomallei gene expression data.

Fig. 9.6. The mean decrease in accuracy of the top 20 genes selected by the RF model

built for the Burkholderia pseudomallei gene expression data.

Five-fold cross-validation is used for model evaluation. The

predictions are analysed using both density analysis and ROC analysis.

Figure 9.7 shows the density analysis and the ROC analysis. The

prediction specificity is 95%. The sensitivity is 93%. The total accuracy

is 95% and the area under ROC curve (AUR) is 0.96. The density shows

clearly two separated clusters of the predictions.

 Classification and Regression Trees, Random Forest Algorithm 131

Fig. 9.7. The density analysis (left panel) and the ROC analysis (right panel) of

predictions from five 5-fold cross-validation RF models for the Burkholderia

pseudomallei gene data. In the ROC curve, the horizontal axes represent 1 – specificity

and the vertical axes represent sensitivity.

We then use the top five genes selected by the mean decrease in Gini

gain and mean decrease in accuracy ranking criteria. Figure 9.8 shows

the density analysis and the ROC analysis of the reduced model using the

top five genes generated by the mean decrease in Gini gain.

Fig. 9.8. Density (left panel) and ROC (right panel) analyses of the reduced model using

the top five genes generated by mean decrease in Gini gain. In the ROC curve, the

horizontal axes represent 1 – specificity and the vertical axes represent sensitivity.

132 Machine Learning Approaches to Bioinformatics

Figure 9.9 shows the reduced model using the top five genes selected

by mean decrease in accuracy.

Fig. 9.9. Density (left panel) and ROC (right panel) analyses of the reduced model using

the top five genes generated by mean decrease in accuracy. In the ROC curve, the

horizontal axes represent 1 – specificity and the vertical axes represent sensitivity.

Summary

This chapter has discussed an inductive programming approach in

machine learning. The basic learning principle and general concepts of

the classification and regression tree algorithm as well as the random

forest algorithm have been discussed. How to use these two algorithms

for data mining biological data has been demonstrated. Inductive

programming approach can provide a platform for analysing the direct

relationship between input genotypic variables (for instance, genes) and

an output phenotypic variable (for instance, disease infection).

133

Chapter 10

Multi-layer Perceptron

This chapter mainly discusses multi-layer perceptron (MLP) for

supervised learning. Compared with many other nonlinear artificial

neural learning algorithms, it has the advantages of modelling arbitrary

nonlinear data. MLP has been widely used in many applications

including bioinformatics. This chapter will focus on the history of

MLP, the structure of MLP, the learning algorithm of MLP and its

applications to bioinformatics.

10.1 Introduction

Neural networks are a class of computational algorithms mimicking the

human brain with the support of modern, fast and sometimes parallel

computational facility. In terms of this, neural networks are regarded as a

class of information processing systems as well. The interpretation of

this is that neural networks can re-construct an unknown function using

the available data without any prior knowledge about function structures

and parameters. Information processing has two meanings. The first is

that neural networks can help to estimate function structures and

parameters without domain experts involved. This is perhaps the most

important reason for neural networks being so popular in many areas.

The second is that neural networks are a class of intelligent learning

machines which can store knowledge through learning as the human

brain does for pattern recognition, decision making, novelty detection

and prediction. Combining these two important factors, neural networks

then become a powerful computational approach for handling data for

various learning problems.

134 Machine Learning Approaches to Bioinformatics

Neural network studies and applications have experienced several

important stages. In the early days, neural network studies only focused

on theoretical subjects, i.e. investigating if a machine can replace a

human for decision-making and pattern recognition. The pioneer

researchers were Warren McCulloch and Walter Pitts; [289] they

showed the possibility of constructing a net of neurons which can

interact with each other. The net was based on symbolic logic

relationships. Table 10.1 shows one of McCulloch and Pitts OR logic,

where the output is a logic OR function of two inputs.

Table 10.1. McCulloch and Pitts OR logic.

Input 1 Input 2 Output

0 0 0

0 1 1

1 0 1

1 1 1

This earlier idea of McCulloch and Pitts was not based on rigorous

development as indicated by Fitch [290] that “in any case there is no

rigorous construction of a logical calculus”. However, the study on

neural networks was continuing. For instance, Hebb in his book

published in 1949 gave the evidence that McCulloch-Pitts model

certainly works [291]. He showed how neural pathways can be

strengthened whenever they are activated. In his book, he indicated that

“when an axon of cell A is near enough to excite a cell B and repeatedly

or persistently takes part in firing it, some growth process or metabolite

change takes place in one or both cells such that A’s efficiency, as one of

the cells firing B, is increased”. In 1954, Marvin Minsky completed his

doctorial study on neural networks. His dissertation was entitled “Theory

of Neural-Analog Reinforcement Systems and its Application to Brain-

Model Problem”. Later he published a paper about this work in a book

[292]. This triggered a wide scale of neural network research. In 1958,

Frank Rosenblatt built a computer at Cornell University called the

Perceptron (later being called single-layer perceptron) which can learn

new skills by trial and error through mimicking the human thought

 Multi-layer Perceptron 135

process. However, this work was evaluated by Minsky in 1969 [293]

showing its incapability in dealing with complicated data. Minsky’s book

then blocked the further study of neural networks for many years.

In the period of the 1970’s and 1980’s, neural network research was

in fact not completely ceased. For instance, the self-organizing map

[198] and the Hopfiled net were intensively studied [294]. In 1974, Paul

Werbos conducted his doctorial study at Harvard University and studied

the training process called back propagation of errors. The work was

published later in his book [295]. This important contribution led to the

work of David Rumelhart and his colleagues in the 1980’s. In 1986, the

back propagation algorithm was introduced by Rumelhart and his

colleagues with the implementation called the delta rule for supervised

learning problems [296]. The neural net structure is called multi-layer

perceptron (MLP). Since development, MLP became very popular for

data mining or machine learning in both theoretical studies and practical

exercises.

The most important contribution of Rumelhart and his colleagues’

work is that a simple training or learning algorithm based on trial-and-

error principle has been implemented and has demonstrated its

powerfulness in dealing with problems which were declared impossible

by Minsky in 1969. In contrast to Rosenblatt’s single-layer perceptron

(SLP), the most important difference in MLP is the introduction of

hidden neurons.

Shown in Fig. 10.1 (a) is a structure of SLP, where there are three

input neurons named as x1, x2, and x3 with a single output neuron

named as y. In contrast, a structure of MLP is shown on the right panel in

Fig. 10.1, where in addition to three input neurons and an output neuron,

three hidden neurons named as z1, z2, and z3 are inserted between the

input and output neurons. Generally, x1, x2, and x3 represent observed

values for three independent variables (or the input variables) while y

corresponds to observed values for a dependent variable (or the output

variable). The hidden neurons represent variables which are not

observed.

Practically, there are three related subjects in using neural networks

for any applications. They are model construction, model selection, and

136 Machine Learning Approaches to Bioinformatics

model evaluation. In addition to these three practical issues, we need to

be aware of three theoretical issues: parameter estimate, learning rule,

and learning algorithms. Parameter estimate is a learning process by

which knowledge in data is extracted and expressed quantitatively in a

neural network model. The extracted knowledge is ultimately used for

making predictions about unseen data. In most cases, we have no idea

what values should be assigned to model parameters when we have data

only. The data obtained are the only source for us to estimate model

parameters. Besides we need to determine an optimized model structure

to represent true knowledge hidden in data. For different supervised

learning projects, different learning algorithms are needed. Moreover,

there might be many variants in one type of supervised learning. There

are various learning rules available. Some are based on numerical

methods and some are based on statistical approaches. Some are fast for

some types of data and some are accurate for some types of data. We will

focus on numerical approaches for deriving neural network learning

rules.

 (a) SLP (b) MLP

Fig. 10.1 SLP and MLP structure.

 Multi-layer Perceptron 137

10.2 Learning theory

10.2.1 Parameterization of a neural network

A neural network without parameters will have no capability of

associative memory. In particular, a neural network whenever its

structure has been determined must possess the power for prediction in

a supervised learning project. In order to make a neural network capable

of prediction, it must have parameters which represent processed

information. This can be explained by a simple example. Suppose we are

interested in studying whether a metabolite in a specific pathway is

related to its upstream metabolite. We first denote this metabolite as y .

Meanwhile, we denote three upstream metabolites for the downstream

metabolite y as 1x , 2x , and 3x . Suppose we have had some

observations for 1x , 2x , 3x , and y . Our objective is to construct a

model which can establish the relationship between 1x , 2x , 3x , and y

as a predictive function),,(321 xxxfy = . If),,(321 xxxf is properly

parameterized, say)(3322110 xwxwxwwfy +++= , where 0w is a

bias term, and 1w , 2w , and 3w are parameters for the three upstream

metabolites, we can make a prediction whenever we have new values for

1x , 2x , and 3x .

It is normally believed that parameters in a neural network model

represent the knowledge in data. For instance, if a neural network model

is expressed as)002.01.503.01.0(321 xxxy +++= σ , all three input

variables have the same magnitude and)(zσ is a monotonic linear

function of z , i.e. zz ∝)(σ , we can believe that 2x plays a key role for

y . In other words, 2x is the dominant factor for y . Ignoring the other

two input variables will not lose much precision in prediction.

10.2.2 Learning rules

Before discussing learning rules, we need to establish a proper objective

function. There are normally two types of objective functions for

supervised neural learning. They are the square error function and the

cross-entropy function. The former is used for regression analysis which

addresses a type of problems of continuous function approximation. The

138 Machine Learning Approaches to Bioinformatics

latter is used for classification analysis which addresses a class of

applications of data partitioning.

We normally denote a regression function as

),(wx nn fy = (10.1)

Here
H

ℜ∈w is a numerical parameter vector of H dimensions and
D

n ℜ∈x is a numerical input vector of D dimensions describing the
th

n

object in a data set, where ℜ is the real number set. H > D.

Correspondingly, ℜ∈ny is the model output for nx . H is heavily

dependent on a model’s structure. For nx , we normally have its

observed phenotypic property called target ℜ∈nt . Note that nt does

not represent a true value in most cases. Normally, it is called a corrupted

function value. For instance, a true function is a sin function)sin(5 x .

We may have observed corrupted values from a noise-added sin function

)1,0()sin(5 Gx + , where)1,0(G is called a white noise. The existence

of noise is normally unavoidable in many experiments. Many factors can

result in noise. In order to estimate the parameter vector w , we need to

make the distance between ny and nt (nn yt −) as small as possible

during learning. Based on this, we have a commonly used square error

function (mean square error function) for regression analysis as below

 ∑
=

−=
N

n
nn yt

N 1

2
)(

1
ε (10.2)

Here N is the number of observed pairs (nx , nt). A learning rule must

ensure that the model parameter vector satisfies

H

N

n
nn ft

N
ℜ∈∀









−= ∑
=

wwxw ˆ))ˆ,((
1

min~

1

2

arg
 (10.3)

Here ŵ is a vector (a point) in an H -dimensional space (called a

parameter space) and w~ is the optimal vector among many (normally

infinite) ŵ ’s.

In classification, a different objective function is used if the model

output ny is constrained in the interval]1,0[. Neural networks

 Multi-layer Perceptron 139

employing the sigmoid function can easily fulfil this requirement. The

cross-entropy function is normally employed for discriminant analysis,

where }1,0{∈nt

 ∏
=

−
−=

N

n

t
n

t
n

nn yyO
1

1
)1((10.4)

In most cases, negative logarithm is applied to this objective function

leading to

 ∑
=

−−+−=
N

n
nnnn ytytO

1

)1log()1(log (10.5)

A learning process aims to minimize this objective function so that

H

N

n
nnnn ftft

ℜ∈∀









−−+−= ∑
=

w

wxwxw

ˆ

))ˆ,(1log()1()ˆ,(logmin~

1arg (10.6)

It is then obvious that we have to analyse the function),(wxf

before discussing the learning rule. In neural networks, the sigmoid

function is normally used for),(wxf because it has two advantages,

i.e. being derivable and parallelism. The former makes it possible to

apply conventional numerical approximation approaches which heavily

depend on derivatives to parameter estimation and the latter makes it

possible to use parallel computing techniques because the calculation of

each neuron output is completely independent from the calculations of

other neuron’s outputs in the same layer. The sigmoid function is defined

as below

)exp(1

1
)(

z
zf

−+
= (10.7)

It is not very difficult to see that the sigmoid function squashes the value

of z in to the interval)1,0(as

140 Machine Learning Approaches to Bioinformatics

 0
)exp(1

1
lim =

−+−∞→ zz
 (10.8)

and

 1
)exp(1

1
lim =

−++∞→ zz
 (10.9)

In addition, the other advantage of the sigmoid function is that its

derivative is easily calculated as the entropy as below

))(1)((
)(

zfzf
dz

zdf
−= (10.10)

We now use regression analysis as an example for the analysis of the

learning rule. In most cases, we will have no knowledge of what values

should be assigned to model parameters. Like statistical learning, neural

learning also starts from a random guess, i.e. assigning random values to

model parameters (called initialization) and based on these random

parameters, we start to search for the way by which an objective function

can be decreased, hence bringing the current model parameters (ŵ)

closer to the optimal solution (w~). As we know, regression analysis

adopts a quadratic-like objective (error) function. In a quadratic function,

there will always be some relationship between the derivatives and the

optimal solution. Figure 10.2 shows such a relationship for a case where

there is only one model parameter. Two filled dots are the possible

random guesses. It can be seen that the optimal model parameter must

correspond to the bottom of the valley of the quadratic objective

function. The slope (first derivative) denoted by a straight line of the

random guess on the left side of the optimal solution shows a negative

sign while the slope denoted by another straight line of the random guess

on the right side of the optimal solution shows a positive sign. The

negative sign means that when the value of w increases, the error O

decreases. The positive sign means that when the value of w increases,

the error O increases. From this, it can be seen that we must increase the

model parameter when the slope of the model output based on the current

 Multi-layer Perceptron 141

model parameter shows a negative sign. We must decrease the model

parameter when the slope of the model output based on the current model

parameter shows a positive sign. The slope of model output is

mathematically defined as the first derivative of the objective function

with respect to the model parameter as below

dw

dO
O =∇ (10.11)

Fig. 10.2. The relationship between a model output using the current model parameter

and the direction of the optimal model parameter.

Before defining the quantitative learning rule which will be used to

update model parameters stochastically, we need to analyze the

qualitative relationship between parameter change and the slope. The

next thing is to determine the learning rule quantitatively.

If the change (increase or decrease) of w is denoted by w∆ , we then

have a qualitative relationship from Fig. 10.3 that if the absolute value of

the slope is larger, the current position is more departed from the optimal

solution and if the absolute value of the slope is smaller, the current

position is closer to the optimal solution. When w is closer to the

optimal solution, we must make a smaller change to w so that we will

not miss the optimal solution. When w is more departed from the

142 Machine Learning Approaches to Bioinformatics

optimal solution, we can have a larger change of w . From this, we then
have a qualitative learning rule defined as below

 |||| Ow  (10.12)

Fig. 10.3. The quantitative relationship between slope and the magnitude of model
parameter change.

Quantitatively, the learning rule (also called the delta rule) is defined
as below

 Ow   (10.13)

Here)1,0( is called the learning rate. The delta rule may not always
work properly. It is quite often that a new solution of w may miss the
optimal solution. For instance, the new solution 1w generated using
the delta rule from 0w misses the optimal solution, i.e. the valley of the
quadratic curve as seen in Fig. 10.4. From 1w the delta rule will lead to

Aw2 which again misses the optimal solution. However, we have noticed
that the first derivatives at 0w and 1w have different signs meaning that
they have a complementary function. If the first derivative at 1tw has a

 Multi-layer Perceptron 143

different sign to the one at tw , it means that tw and 1+tw are sitting on

opposite sides of the optimal solution, see Fig. 10.2. The move from

1+tw to 2+tw may miss the optimal solution again. If we can correct the

move from 1+tw to 2+tw using a momentum factor which has a different

first derivative sign to the one at 1+tw , the risk can possibly be reduced.

Remember that the first derivative at tw is different to the one at 1+tw .

We can design a revised delta rule for this purpose

ttt wOw ∆+∇−=∆ + αη1
 (10.14)

Fig. 10.4. The illustration of the use of the momentum factor for fast learning.

Here
1+

∆
t

w is the update of w at time 1+t ,
t

w∆ is the update of

w at time t ,
t

O∇ is the first derivative of O with respect to w at time

t and)1,0(∈α is a positive number called the momentum factor. In

Fig. 10.4, we can see that this revised delta rule can reduce this risk. This

time, the move from 1w is to
Bw2 rather than

Aw2 . According to equation

(10.14), we can see that

 1211)(−−+ ∆+∇+∇−=∆ tttt
wOOw ααη (10.15)

144 Machine Learning Approaches to Bioinformatics

From the above equation, we can conclude two aspects. First, if tO
and 1 tO have the same sign, the previous update instruction (1 tO)
will enhance the new update instruction (tO), otherwise 1 tO will
reduce the impact of tO . Second, if 1 tw and 1 tw have the same
sign, 1 tw will enhance 1 tw . Otherwise, 1 tw will reduce the
impact of 1 tw .

In using the delta rule or the revised delta rule, the user needs to tune
the learning rate and the momentum factor to proper values. This is not
an easy job. There is another numerical method which uses second
derivative information for weight update, where we normally don’t need
the learning rate and the momentum factor. Shown in Fig. 10.5, we can
see that the weight update amount for the case in the left panel should be
smaller than that for the case in the right panel. If we use the same
amount of weight update for both cases, the left panel may have missed
the optimal solution while the right panel may not. This is because the
right panel shows a small curvature while the left panel demonstrates a
large curvature. A point located in a large curvature area means that it is
close to the optimal solution. A point located in a small curvature area
means that it may be far away from the optimal solution. As we know,
the second derivative can be used to quantify function curvatures. This
means that

||

1
||||||

O
wOw


 (10.16)

Fig. 10.5. The illustration of using second derivative information for weight update.

 Multi-layer Perceptron 145

Here O∇ and O∇∇ are the first and second derivatives with

respect to w . The update rule using the second derivative information is

called the Newton-Raphson method. In application to neural network

parameters, it is illustrated as below

O

O
w

∇∇

∇
−=∆ (10.17)

or

 O∇−=∆
−1

Hw (10.18)

Here w is a weight vector and H is called a Hessian matrix of second

derivatives as below



























∂∂

∂

∂∂

∂

∂∂

∂

∂∂

∂

∂∂

∂

∂∂

∂

∂∂

∂

∂∂

∂

∂∂

∂

=

mmmm

m

m

ww

O

ww

O

ww

O

ww

O

ww

O

ww

O

ww

O

ww

O

ww

O

2

2

2

1

2

2

2

22

2

12

2
1

2

21

2

11

2

⋯

⋮⋮⋮⋮

⋯

⋯

H (10.19)

where
ji ww

O

∂∂

∂ 2

 is the second derivative of O with respect to iw and jw .

10.3 Learning algorithms

In this sub-section, we discuss two learning algorithms for regression and

classification analyses respectively, where different objective functions

are used.

10.3.1 Regression

In regression analysis, the target variable is commonly a numerical

variable ℜ∈nt (or]1,0[∈nt). In this case, the least mean square error

146 Machine Learning Approaches to Bioinformatics

function is used as the objective function as seen in equation (10.2).

Using the revised delta rule (equation 10.14), we then have two

update rules as below. First, the update rule for the weights between

hidden neurons and an output neuron (for instance, between hidden

neurons 1z , 2z , 3z and output neuron y in Fig. 10.1) is

tTt

0

1

0 wBeZw ∆+=∆
+ αη (10.20)

Here
T

Hwww),,,(002010 ⋯=w is the hidden weight vector with

hw0 connecting the
th

h hidden neuron to the output neuron,

T
eee),,,(21 ℓ

⋯=e is the error vector with nnn yte −= ,

)}1({ nn yydiag −=B is the diagonal entropy matrix of outputs with N

rows and N columns, and Z is the matrix recording the outputs from all

the hidden neurons with N rows and H columns (H hidden neurons).

Second, the update rule for the weights between input neurons and the
th

h hidden neuron (for instance, between the input neurons and the

hidden neuron 1z in Fig. 10.1) is shown as below

t

hh

T

h

t

h w weBQXw ∆+=∆
+ αη0

1
 (10.21)

Here
T

hDhhh www),,,(21 ⋯=w is the input weight vector with

hdw connecting the
th

h hidden neuron to the
th

d input neuron,

)}1({ nhnhh zzdiag −=Q is the diagonal entropy matrix for the
th

h

hidden neuron with N rows and N columns, and X is the matrix

recording all the input vectors, i.e. having N rows and D columns (N

input vectors and D input variables).

10.3.2 Classification

For a classification problem, the target variable is commonly a discrete

variable Itn ∈ with I meaning integers. We study discrimination

problems where }1,0{∈nt in this chapter. The cross-entropy function is

commonly used as the objective function for classification projects as

 Multi-layer Perceptron 147

seen in equation (10.4). Applying the revised delta rule to equation

(10.5), we will also have two update rules. First, the update rule for the

weights between hidden neurons and the output neuron if we have one

output neuron (for instance, between hidden neurons 1z , 2z , 3z and the

output neuron y in Fig. 10.1) is

tTt

0

1

0 weZw ∆+=∆
+ αη (10.22)

Second, the update rule for the weights between input neurons and the
th

h hidden neuron (for instance, between input neurons and hidden

neuron 1z in Fig. 10.1) is

t

hh

T

h

t

h w weQXw ∆+=∆
+ αη0

1
 (10.23)

10.3.3 Procedure
During learning, the above equations will be used iteratively until some

criteria are satisfied. The learning procedure will be

♦ Step 1, Initialization: assigning random values to all network

parameters;

♦ Step 2, Estimation: estimate model outputs and errors by feeding

input vectors;

♦ Step 3, Update: update all the model parameters using the above

update rules;

♦ Step 4, Check: check if the desired criteria are satisfied, if so stop,

otherwise go to Step 2.

There are commonly three stop criteria for use. They are the

maximum learning cycle, the error threshold and the stability. A learning

process will be terminated if the learning cycle has exceeded the

maximum learning cycle. In some situations, if the training error has

already been below the desired error threshold, a learning process will

also be halted. For some complicated learning problems, we may not be

interested in reaching the maximum learning cycle and may not be able

to set a proper error threshold. In this case, we can check if the change of

148 Machine Learning Approaches to Bioinformatics

weights is small enough. There are two possible reasons for there being

nearly no change in weights. First, a model has been well-trained whilst

the desired error threshold is too small and the maximum learning cycle

is too long. Second, an inappropriate setting of the learning parameters

(the learning rate, the momentum factor, and the number of hidden

neurons) leads to bad learning. If this happens, a learning process must

be stopped manually to reset the learning parameters. In most cases, a

large learning rate may end up with a pre-matured learning process

where the change of weights will diminish much earlier than it should.

10.4 Applications to bioinformatics

We discuss some applications of neural networks to bioinformatics

projects in this section.

10.4.1 Bio-chemical data analysis

Quantitative structure-activity relationship (QSAR) models are a class of

bio-chemical models and are normally involved with binary input

variables for chemical properties with a very large dimensionality. The

use of neural networks is normally for relational study or dimensionality

reduction. Each input vector in these applications therefore represents

a binary vector, i.e.
D}1,0{∈x . Each input vector is associated with

a target value. In order to find the mapping function relating the

chemical properties with the compound property, classification analysis

approaches can be used. Neural networks can be used in these tasks for

nonlinear modelling. For instance, a recent study using neural networks

looked at the inhibition function of mutant PfDHFR [297]. In

microbiological research, Bacillus species identification is not an easy

task. The application of neural networks on 1071 fatty acid profiles has

proved to be a powerful tool for this identification [298]. The neural

networks have also been applied to the study of the relationship between

compound chemical structures and human estrogen receptor (α and β)

binding affinity, where the inputs are the molecular descriptors

 Multi-layer Perceptron 149

calculated from docking methods [299]. Heparanase inhibitors’ activity

was also predicted using neural networks based on QSAR data [300].

10.4.2 Gene expression data analysis

Gene expression data have been widely studied for understanding how

genes respond to external environmental cues. Gene expression data are

normally numerical inputs, also of a large dimensionality, but consisting

of a few number of samples. In this case, data significance is a very

serious problem in applying neural networks for data analysis. In recent

studies, gene expression data have been used for disease diagnosis. In

these applications, the expressions of genes are commonly sitting in a

high dimensional space (
D

ℜ∈x , where D is the number of genes and

x is a vector of the expression values for D genes). Each expression

vector (x) has an associated target value, declaring the corresponding

sample disease-free or not. It can be seen that this is then a classification

problem. If the relationship between expression vector and target is

nonlinear, neural network is one of the candidates for model construction

and prediction. For instance, neural networks were used for the

investigation of the distinguishing power of childhood acute

lymphoblastic leukaemia (ALL) diagnostic bone marrow [301], and for

influenza identification based on microarray data [302]. Neural networks

have also been used for gene network re-construction [303] and for

cancer-related regulatory modelling [304].

10.4.3 Protein structure data analysis

Protein structures are always an important subject for studying how

proteins are interacting with each other, forming complexes for cellular

signalling in response to environmental cues. Wagner et. al. applied

neural networks to the function prediction of inhibitory activity of

serotonin and NF-kappaB [305]. It was found that the relationship

between structure and activity is essential to cellular signalling for the

inhibitory function of serotonin and NF-kappaB. In a study involving the

detection of drug-induced idiosyncratic liver toxicity using QSAR data, it

150 Machine Learning Approaches to Bioinformatics

was reported that a neural network model was able to achieve 84%

accuracy [306].

10.4.4 Bio-marker identification

In bioinformatics research, the identification of bio-markers has a great

importance in bio-medical applications. The major purpose in these

applications is to identify the most important identities which can be

genes, compounds, chemicals, proteins or metabolites for predictive

usages. This means that we need to combine classification analysis

approaches with feature selection approaches to identify a minimum

subset of input variables which can achieve maximum discrimination

capability between disease and disease-free samples. For instance,

surface-enhanced laser desorption/ionization time-of-flight mass

spectrometry was used to detect proteomic patterns in the serum of

women with endometriosis [307]. Neural networks have been used for

detecting early stage epithelial ovarian cancer using multiple serum

markers from four institutes [308].

10.5 A case study on Burkholderia pseudomallei gene

expression data

We use the reduced data set with ten top genes discovered in Chapter 8

for this demonstration. The ten top genes are BPSL2697, BPSL2522,

BPSS1512, BPSS0477, BPSL2096, BPSS1525, BPSL2520, BPSS0476,

BPSS1532, and BPSS1532.1. Hidden neurons are varied from two to 20.

Five-fold cross-validation is used. First, the AUR and total prediction

accuracy are used to select the best model (the highest performance

measurements being either AUR or total accuracy). The left panel of

Fig. 10.6 shows the ranking result using AUR. It shows that the model

employing 17 hidden neurons demonstrates the best model robustness.

However, when we treat the total prediction accuracy as the priority we

find that the model employing two hidden neurons is the best one, as

shown in the right panel of Fig. 10.6.

 Multi-layer Perceptron 151

Fig. 10.6. Ordered AUR (left panel) and total accuracy (right panel) of the MLP models

constructed for the Burkholderia pseudomallei gene data. The horizontal axes represent

the number of hidden neurons. The vertical axes represent two performance

measurements.

The detailed performance measurements of the model employing 17

hidden neurons is shown in Fig. 10.7, where we can see that some model

predictions fall in the area between two clusters (left cluster of non-

infected patients and the right cluster for the infected patients) shown in

the left panel of Fig. 10.7 using density analysis. Checking the

performance measurements, we find that although the specificity is 90%,

the sensitivity is 93% as shown in the right panel of Fig. 10.7. This

implies that the model predictions falling in the middle in the left panel

are largely misclassification of the infected patients.

We then examine the model with two hidden neurons. The result is

shown in Fig. 10.8. It can be seen that there are very few model

predictions falling in the middle area between two clusters using density

analysis (the left panel of Fig. 10.8). Compared with the density analysis

in Fig. 10.7, we can see that the left cluster in the left panel of Fig. 10.8

has a very small variation. The specificity and the sensitivity are 93%

and 88% shown in the right panel of Fig. 10.8.

A
U

R

152 Machine Learning Approaches to Bioinformatics

Fig. 10.7. The histogram of model outputs (left panel) and ROC curves (right panel) for

the model using 17 hidden neurons.

Fig. 10.8. The histogram of model outputs (left panel) and ROC curves (right panel) for

the model using two hidden neurons. In the ROC curve, the horizontal axes represent 1 –

specificity and the vertical axes represent sensitivity.

Figure 10.9 shows a further analysis of model selection using AIC

and BIC. They are all consistent with the model selection result using the

total prediction accuracy. We can then be confident in saying that the

model employing two hidden neurons is the best model for this data.

 Multi-layer Perceptron 153

Fig. 10.9. The demonstration of model selection using AIC and BIC for the MLP models

built for the Burkholderia Pseudomallei gene expression data.

Summary

This chapter has discussed the theory of multi-layer perceptron (MLP)

and its application to bioinformatics. Through this discussion, we can see

that 1) MLP is a nonlinear algorithm; 2) MLP can handle any function

approximation problems; 3) MLP is an easy tool for modelling biological

data with good performance. However, MLP has been criticised as being

a black-box algorithm because it is difficult to know what the model

parameters mean. To overcome this limitation, various researchers have

been working on analysing the MLP weights. For details of this the

reader may refer to Bishop’s book [159].

A
IC

154

Chapter 11

Basis Function Approach and
Vector Machines

This chapter will discuss two popular machine learning approaches.
They are basis function neural networks and vector machine
algorithms. These two approaches have a similar background in
machine learning, i.e. being non-parametric approaches for model
construction. However, they have a fundamental difference in that the
former will keep all the training data but the latter will use part of the
training data for the inference process. This fundamental difference has
given vector machine models better generalisation capability for unseen
data. Their applications to bioinformatics are discussed as well in this
chapter.

11.1 Introduction

In Chapter 3, the non-parametric kernel approach has been discussed
where the density of a data set is estimated by

 



N

n
np

N
p

1
),|(

1
)(xxx (11.1)

where dx is an input vector, d
n x is the nth training data,  is

a smooth parameter,),|(np xx is a kernel function measuring the
similarity between x and nx using a pre-defined normal density
function which has a smooth parameter  , and N is the number of
training data points. We can generalise equation (11.1) to the following
format

 Basis Function Approach and Vector Machines 155

],1[,),|()|(
1

Kkpwkp
kN

n

k
n

k
n

k
n  


xxx (11.2)

where k is the kth class, kN is the number of training vectors in the
kth class, K is the total number of classes in a data set, k

nx is an input
vector with a label of class k, k

n is the smoothing parameter of the nth
kernel function of the kth class, and k

nw is the coefficient of the nth
kernel of the kth class.)|(kp x is used to measure how likely x is to
be generated by the kth class. An illustration is shown in Fig. 11.1
where a univariate data set with two classes is modelled. At a point
where x = 2, there are two probabilities (densities), being)1|2(xp
and)2|2(xp . Each of these two probabilities can be calculated in
various ways. Using MLP mentioned in Chapter 10 is one method.
Basis function neural network and vector machines which are the
implementation of kernel approach are another two ways we discuss in
this chapter.

The basic principle of basis function neural networks and vector
machines is to estimate k

nw s to construct a predictive model for a given
data set. Because they are based on different statistical assumptions
and use different learning mechanisms, the estimated k

nw s will not be
identical for the same data, hence leading to different performances for
the two types of algorithm/approach. One important difference between
the former and latter is that a basis function neural network does not
generate a parsimonious model directly while vector machines aim to
obtain a parsimonious model directly during a learning process. When a
large data set is encountered, basis function neural networks need to
employ a post-analysis or embed a procedure such as feature selection
(which will be discussed in detail in Chapter 13) to simplify a model
structure.

In this chapter, we discuss two basis function neural networks - the
radial basis function neural network and the bio-basis function neural
network - and two vector machines - the support vector machine and the
relevant vector machine.

156 Machine Learning Approaches to Bioinformatics

Fig. 11.1. An illustration of the density functions of two classes in a univariate data set.
The horizontal axis represents the univariate X and the vertical axis represents the
densities of two classes, one being marked by a solid line and the other being a broken
line. The vertical line at X=2 indicates a prediction.

11.2 Radial-basis function neural network (RBFNN)

Let’s denote a data set as N
nn 1

d } {  xD . Based on the same
assumption used in the kernel density estimation approach that each
input vector is randomly sampled from an infinite number of input
vectors surrounding it with a Gaussian distribution, radial-basis function
uses a Gaussian-like kernel function as below

) exp(),|(
2

nnnn xxxx   (11.3)

Figure 11.2 shows the radial-basis function with different  values.
As the smoothing parameter increases, the radial-basis function becomes
more sharply peaked.

The RBFNN model output is defined as

 



N

n
nnwwy

1
0),|( xx (11.4)

P
ro

ba
bi

lit
y

 Basis Function Approach and Vector Machines 157

Fig. 11.2. An illustration of radial-basis functions with differential smoothing parameter
values. The horizontal axis represents the variable X, the centre is zero. The vertical axis
represents the output of the radial-basis functions.

Here a uniform smoothing parameter is used. There are two treatments to
consider in using the model, one is for the regression mode and the other
is for the classification mode. In regression mode, it is assumed that the
target t is sampled with added noise of Gaussian distribution distributed
in Gaussian

 iii eyt  (11.5)

where ie is the error (added noise), it is the ith target and iy is its
corresponding model output. The objective function using the least
square error function with a regularisation term is defined as below

 







 



N

i
i

N

i
i w

1

2

1

2
2

1 O (11.6)

where  is a Lagrange constant. Letting the derivative of the objective
function with respect to w be zero leads to

 tΦIΦΦw T1T) (  (11.7)

158 Machine Learning Approaches to Bioinformatics

where),,,(21 Neee e and

























NNNN

N

N













21

22221

11211

111

Φ (11.8)

With a pre-defined  and  , equation (11.7) can directly lead to the
estimation of model parameters, i.e. w.

In order to increase the nonlinearity, the model output can also be
defined as below using a sigmoid function conversion

 







 



N

n
nnwwy

1
0),|( xx (11.9)

where)(x is a sigmoid function defined as

)exp(1

1
)(

x
x


 (11.10)

The derivative function of the objective function with respect to nw is

 n
M

m
nmmmmn wyyew),|()1()(

1
  


xxL (11.11)

The vector-matrix format of the derivative is shown as below

 wΛeΦw)(T L (11.12)

where  )1(diag mm yy Λ is called an entropy matrix. Letting this
derivative be zero leads to

)(
1

1 TT ytΛΦeΛΦw 


 (11.13)

 Basis Function Approach and Vector Machines 159

Note that y is a function of w. The above equation cannot be used for
estimating model parameters directly. Two procedures can be used for
estimating model parameters. One is called the expectation-maximisation
(EM) algorithm [157-159] and the other is called the stochastic
algorithm. With the EM algorithm, we assign random values to w at first.
Based on the current value for w, y values can be calculated using
equation (11.9). This then leads to the update of w using equation
(11.13). After a few iterations, w can be estimated. With the stochastic
algorithm, we use the gradient descent approach which is defined as

)(wx,w f  (11.14)

where)1,0( is called a learning rate. The update of w is also iterative.
In each iteration the update of w is defined as

 eΛΦww)1(T1   tt (11.15)

For both the EM and stochastic algorithms, the update continues until the
maximum learning cycle is approached or the error is less than the pre-
defined error threshold. Stopping a learning process when model
parameters are in the stable status, i.e. no change in subsequent
iterations, is also a commonly used approach.

In the classification mode, a different objective function is commonly
used. For instance, the cross-entropy function is used for two-class
classification problems. It is defined as

   



N

i
i

N

i
iiii wytyt

1

2

1

2

1
)1log()1(log O (11.16)

The derivative of this objective function with respect to w is

 weΦw)(T L (11.17)

Because e = t – y, where y is a function of w, this model cannot be
solved explicitly. Both the EM algorithm and the stochastic algorithm
can be used to estimate model parameters based on the above equation.

160 Machine Learning Approaches to Bioinformatics

RBFNN has been intensively used in analysing biological data. For

instance, it has been used to estimate the kinetic parameters of a dynamic

biological system [309], and for gene data analysis [310-314].

However, there is a pitfall in using RBFNN for modelling molecular

sequence data. As mentioned above, it is assumed that there is an infinite

number of input vectors surrounding each training input vector. This

means that if a biological data set is represented using a discrete

approach, RBFNN is not applicable. For instance, if four nucleic acids in

a DNA sequence are represented by 1, 2, 3, and 4 [315], there is certainly

no other data surrounding each training input vector. For a data set of

2-mer nucleic acids, the data is sparsely distributed in a two-dimensional

space where the variance of each circle is zero. This means that the

smoothing parameter for each kernel is an infinite value. Any finite

smoothing parameter cannot appropriately model the real data

distribution.

Fig. 11.3. An illustration of the discrete representation of biological data. Each circle

represents a possible 2-mer peptide. Two axes represent the first and the second residue

in a 2-mer peptide.

We now apply RBFNN to the Burkholderia pseudomallei gene

expression data. Data are pre-processed as usual, i.e. logarithm is applied

to remove the skew of the data. The data are then divided into five folds

for cross-validation modelling. The smoothing parameter varies from

 Basis Function Approach and Vector Machines 161

0.0005 to 0.01 with a step of 0.0005. Model performance is measured
using the testing data set. Figure 11.4 shows the ranking of the models in
terms of AUR (left panel) and the total prediction accuracy (right panel).
Using AUR to rank models, the model with the smoothing parameter as
0.01 outperforms the others. Using the total prediction accuracy to rank
the models, the model with the smoothing parameter as 0.01 is also the
best.

Fig. 11.4. The ranked RBFNN models built for the Burkholderia pseudomallei gene
expression data using AUR (left panel) and the total prediction accuracy (right panel).
The horizontal axes indicate the varying smoothing parameter while the vertical axes
represent the performance measurements.

Details of the model using the smoothing parameter as 0.01 are
shown in Fig. 11.5, where the left panel demonstrates the density of
model outputs and the right panel shows the ROC curve as well as four
measurements. The density of the model outputs clearly groups two
classes of data (patients) together. This is why this model has the highest
AUR, i.e. being the most robust model among all.

A
U

R

162 Machine Learning Approaches to Bioinformatics

Fig. 11.5. The density function of the model output (left panel) and the ROC curve (right
panel) of the model using the smoothing parameter as 0.007. The horizontal axis of the
left panel represents predictions. The vertical axis of the left panel represents the density.
The horizontal axis of the right panel represents the false positive rate and the vertical
axis of the right panel represents the true positive rate.

11.3 Bio-basis function neural network

In analysing peptides which are normally composed of nucleic acids or
amino acids, we can design a novel basis function neural network called
the bio-basis function neural network. In the bio-basis function neural
network, rather than using any encoding approach to encode each residue
in a peptide, the similarity measure is conducted using the same principle
as in sequence homology alignment.

When aligning two whole protein sequences, insertions and deletions
are considered [10-14]. However, in handling short sequences or peptides
which are normally less than 20 residues, insertions and deletions are
normally not used. Using the homology alignment approach, two metrics
can be used to score the similarity or distance between two peptides.
They are the binary score such as the one used the Needleman-Wunsch
algorithm [11] and the one used the Dayhoff algorithm as well as its
variants [10, 15]. The Dayhoff score is also called a mutation matrix
which is a 20 by 20 matrix for protein sequences, where each entry
measures, for a particular pair of amino acids, the possibility that one
amino acid is mutated to the other. It is therefore measuring the
similarity between two amino acids and hence two sequences.

 Basis Function Approach and Vector Machines 163

Before discussing the bio-basis function, we first discuss how to use
binary score to handle the similarity between two peptides. For instance
two nucleic peptides (AAC and AGC) can be expressed as
000100010010 and 000101000010. A binary similarity matrix is
expressed as in Table 11.1. To quantify the similarity between two
peptides, we can count the number of “1”s on the diagonal (expressed by
italic number). This is similar to using dot product in some
bioinformatics works [85, 86, 316]. Table 11.1 can actually be expressed
by another simpler matrix shown in Table 11.2 where the similarity
between two peptides is again the summation of the numbers on the
diagonal.

Table 11.1. An illustration of a binary similarity matrix between two nucleic peptides.
The first column represents AAC and the top row represents AGC. In the matrix, cells
with empty entries indicate that the cells have zero entries.

 0 0 0 1 0 1 0 0 0 0 1 0

0

0

0

1 1 1 1

0

0

0

1 1 1 1

0

0

1 1 1 1

0

Table 11.2. An illustration of a simpler
expression of binary similarity matrix between
two nucleic peptides. The off-diagonal elements
are ignored.

 A G C

A 1

A 0

C 1

164 Machine Learning Approaches to Bioinformatics

Table 11.2 can be re-written as a new similarity matrix using a

mutation matrix (PAM1 [5]) shown in Table 11.3. It can be seen that the

summation of diagonal entries is slightly different from the result shown

in Table 11.2.

Table 11.3. An illustration of a simpler

expression of binary similarity matrix between

two nucleic peptides. The off-diagonal elements

are ignored.

 A G C

A 0.99

A 0.00333

C 0.99

Suppose two peptides are denoted by d
i Θ∈s and d

j Θ∈s , where

Θ is a set of nucleic acids or amino acids while d is the length of

peptides. The bio-basis function is defined as below [317, 318]

)), ((),(jijiijz ssss βσρφ −== (11.18)

where ρ is a sigmoid function, β is a parameter measuring the

sensitivity of a support peptide (js) and

 ∑
=

=
d

r
jrirji ssM

1

),(),(ssσ (11.19)

Here irs and jrs are the
thr residues of is and js , respectively. From

equation (11.14), we can see that if two peptides are identical, i.e.

ji ss ≡ ,

 0,1),(lim >∀=
→

βφ ji
ji

ss
ss

 (11.20)

However

 0,0),(lim
||

>∀=
∞→−

βφ ji
ji

ss
ss

 (11.21)

 Basis Function Approach and Vector Machines 165

Note that we use the notation  || ji ss to mean the distance
between is and js is getting large. The model output also uses the
sigmoid function as in equation (11.9). The negative log-likelihood
function with added regularisation terms ( 

N
n nw w1

2 and  
N
n n1

2)
is

 1

2 2

1 1

[log (1) log(1)]

1 1

2 2

M

m m m m
m

N N

w n n
n n

t y t y

w   



 

    

 



 

L

 (11.22)

The derivative of the negative log-likelihood function with respect to n
is

 nmn
M

m
mnmnnmn zzwe   

1
)1()(L (11.23)

Using the stochastic learning algorithm we have the update rule for n
as defined below

 







 


nmn

M

m
mnmnnmnn zzwe  

1
)1()(L (11.24)

or

 ΛΦwZββ T1)1( t (11.25)

The weight update rule is defined as

 eZww T1)1(  t
w

t (11.26)

There are two modes in BBFNN, one being homogeneous and the other
being heterogeneous. Using the homogeneous mode,

   N21 (11.27)

Using the same procedure discussed above for RBFNN, we can
estimate the model parameters to build predictive models. The model

166 Machine Learning Approaches to Bioinformatics

built this way is called the bio-basis function neural network (BBFNN)
which has been applied to various peptide classification tasks, for
instance, the prediction of Trypsin cleavage sites [318], the prediction of
HIV cleavage sites [317], the prediction of Hepatitis C virus protease
cleavage sites [319], the prediction of the disorder segments in proteins
[105, 320], the prediction of protein phosphorylation sites [319, 321], the
prediction of the O-linkage sites in glycoproteins [322], the prediction of
signal peptides [323], the prediction of factor Xa protease cleavage sites
[324], the analysis of mutation patterns of HIV-1 drug resistance [325],
the prediction of Caspase cleavage sites [326], the prediction of SARS-
CoV protease cleavage sites [327] and T-cell epitope prediction [328].

Here we apply BBFNN to a peptide classification problem. The task
is to predict HIV-I protease cleavage sites in a protein. HIV (human
immuno-deficiency virus) is a retrovirus which causes AIDS (aquired
immune deficiency syndrome) [329, 330]. HIV-I protease is an aspartic
protease. an enzyme It plays an important role in the viral life-cycle.
Each new infectious HIV viron is composed of mature protein
components generated through cleaving a newly synthesised polyprotein
at some specific sites in it using an HIV protease. These specific sites are
called cleavage sites. Each cleavage site is a bond between two residues.
The cleavage breaks down a polyprotein into functional components. If
HIV proteases have been inhibited by a drug (the enzymes becoming
ineffective), the HIV virons remain uninfectious [331, 332]. The
inhibition through using drugs is then the major research focal point in
fighting against the disease. In order to achieve this goal, it is important
to design inhibitors to prevent the cleavage activities that produce new
protease and reverse transcriptase. Studying how substrate specificity is
related to cleavage activity is then critically important to the effect
design of inhibitors. The HIV-1 protease data was published by Cai et al.
[208]. The data contained 248 non-cleaved peptides and 114 cleaved
peptides, each having eight residues. In using the homogeneous BBFNN
we vary the sensitivity parameter from 0.1 to 10 with a gap of 0.1. Figure
11.6 shows the top 20 ordered performances. The left panel shows the
ordered AUR which is maximised when the sensitivity parameter is 0.4.
The right panel shows the ordered total prediction accuracy which is
maximised when the sensitivity parameter is 0.5. The two are very close.

 Basis Function Approach and Vector Machines 167

Fig. 11.6. The ordered top 20 performances using AUR (the left panel) and the total

prediction accuracy (the right panel). The horizontal axes represent the 20 sensitivity

parameters. The vertical axes represent the measured performances. 20-fold cross-

validation is used for model evaluation.

Fig. 11.7. The most positively and negatively sensitive peptides to the classification of

cleaved and non-cleaved HIV substrates using the heterogeneous BBFNN model.

Using heterogeneous BBFNN for the same data can lead to similar

performance with the specificity as 94%, the sensitivity as 80%, the total

prediction accuracy as 90% and AUR as 0.94.

A
U

R

N
o

rm
a

li
s
e

d
 b

e
ta

N
o

rm
a

li
s
e

d
 b

e
ta

168 Machine Learning Approaches to Bioinformatics

The heterogeneous model can provide the sensitivity measurements
for each substrate. These measurements can indicate which substrates are
most sensitive to the classification between two classes of peptides.
Figure 11.7 shows two categories of most sensitive peptides, one being
the most positively sensitive peptides (the left panel) and one being the
most negatively sensitive peptides (the right panel). Note all sensitivity
values are normalised into the interval between -1 and 1.

11.4 Support vector machine

A classification algorithm aims to find a mapping function between input
features x and a class membership }1 ,1{t ,

),(wxfy  (11.28)

where w is the parameter vector,),(wxf is the mapping function and y
is the model output. With other classification algorithms, the distance
(error) between y and t is minimised to optimise w. This can lead to a
biased hyper-plane for discrimination. In Fig. 11.8, four open circles of
class A and four filled circles of class B are distributed evenly,
symmetrically. With this data set, the true hyper-plane separating two
classes of circles can be found as in Fig. 11.8 (a). With this hyper-plane,
four novel points denoted as the triangles can be correctly identified.
Note that two open triangles belong to the class of the open circles and
two filled triangles belong to the class of the filled circles. Suppose a
shaded circle belonging to class B is included as seen in Fig. 11.8 (b), the
hyper-plane (the broken thick line) will be biased because the error
(distance) between the nine circles and the hyper-plane has to be
minimised. Suppose a shaded circle belonging to class A is included as
seen in Fig. 11.8 (c), the hyper-plane (the broken thick line) will also be
biased. With these biased hyper-planes, the novel data denoted by the
triangles could be misclassified.

In searching for the best hyper-plane, SVMs find a set of data points
which are most difficult to classify. These data points are referred to as
support vectors [333]. They are closest to the hyper-plane and are located
on the boundaries of the margin between two classes. The advantage of

 Basis Function Approach and Vector Machines 169

(a) (b)

(c) (d)

Fig. 11.8. (a) Hyper-plane formed using a conventional classification algorithm for the
data with a balanced distribution. (b) and (c) Hyper-planes formed using a conventional
classification algorithm for data without a balanced distribution. (d) Hyper-plane formed
using SVMs for data without a balanced distribution. The open circles represent class A,
the filled circles class B, and the shaded circle class A or B. The thick lines represent the
correct hyper-plane for the discrimination and the broken thick lines the biased hyper-
planes. The thin lines represent the margin boundaries. Gamma () means the distance
between hyper-plane and the boundary formed by the support vectors. The margin is 2.

using SVMs is that the hyper-plane is found through maximising this
margin. Because of this, the SVM classifier is the most robust. Therefore
it has the best generalisation ability. In Fig. 11.8 (d), two open circles on
the upper boundary and two filled circles on the lower boundary are
selected as support vectors. The use of these four circles can form the
boundaries of the maximum margin between two classes. The trained
SVM classifier is a linear combination of the similarity between an input
and the support vectors. The similarity between an input and the support
vectors is quantified by a kernel function defined as

170 Machine Learning Approaches to Bioinformatics

),(ixx (11.29)

where ix is the ith support vector. The decision is made using the
following equation

  ) , (sign iiity xx (11.30)

where it is the class label of the ith support vector and  i the positive
parameter of the ith support vector determined by an SVM algorithm. In
SVMs,)(ix is referred to as a feature and)()(),(ii xxxx   . The
most difficult part in SVMs is the design of a proper kernel function that
corresponds to the selection of a proper number of hidden neurons in
neural networks. There have been many kernel functions designed for
dealing with numerical attributes. For instance, the polynomial function

p
ii)1(),( xxxx (p is the order of this polynomial function) or the

radial basis function)||exp(),(2
ii xxxx   ( is a constant).

One of the important features of SVM is that it can generate a sparse
classifier. As discussed above, a basis function neural network will
employ all the training data for a model. However, SVM will finally
employ a few training input vectors as the support vectors for prediction.
This first improves the generalisation capability as mentioned above.
Second it can reduce model redundancy by removing unnecessary bases
(kernels).

In application to whole protein sequences, the composition method
has been the most popular method of analysis for many years. For
instance, the composition method was used for the prediction of
membrane protein types [334]. Dipeptides, gapped transitions (up to two
gaps) and the occurrence of some motifs as additive numerical attributes
were used to enhance the prediction of subcellular locations [335]. In the
simulation it was shown that the inclusion of these additive numerical
attributes did enhance the prediction accuracy. The same method has also
been used in gene identification for functional RNAs in genomic
sequences [336]. Instead of using transition composition to enhance the
prediction performance, descriptors were also used, for instance, to
predict multi-class protein folds [337]. SVMs also accurately
discriminated cytoplasmic ribosomal protein genes from all other genes
of a known function in Saccharomyces cerevisiae, Escherichia coli and

 Basis Function Approach and Vector Machines 171

Mycobacterium tuberculosis using codon composition, a fusion of codon
usage bias and amino acid composition sign [338].

There are two ways to generate profiles. First, a profile of a sequence
can be generated by subjecting it to a homology alignment method like
BLAST (Basic Local Alignment Search Tool) against a family of
sequences in a database [10]. Second, a profile of a sequence can be
generated using Hidden Markov Models (HMMs) [339]. For instance,
HMMs were used to generate profiles based on positive sequences only
and a Fisher kernel was designed for using SVMs to detect remote
protein homologies [339]. The Fisher kernel was derived from the Fisher
ratio, where the gradient vector of a sequence is computed with respect
to the trained model. Each element of the gradient vector corresponds to
a parameter of the HMMs. SVMs were trained on both positive and
negative gradient vectors. Two methods (generating profiles using
HMMs and homology alignment methods) have been compared for
classifying G-protein coupled receptors [340]. The simulation showed
that SVMs with HMMs profiles performed the best. The profile method
was also used for the prediction of secondary structures [341].

Liao et al. used pair-wise homology alignment scores as features for
training SVMs in protein homology detection [342]. An SVM classifier
was then trained on these features. The work proved that this pair-wise-
SVM performed better than Fisher-SVM [339]. SVMs were also used to
classify proteins with remote homology into functional and structural
families based on sequence homology using a newly designed string
kernel function [343]. In that work, each feature is the occurrence of a
specific K-mer (sub-sequence with K residues) in a sequence. Recently,
SVMs were used to predict disordered regions in proteins, where a
profile was formulated using PSI-BLAST (Protein Specific Iterated-
BLAST) for each sequence against a non-redundant sequence database
[344]. Moreover, SVMs were used to detect remote homology between
protein sequences, which cannot be done sufficiently when using
conventional methods like BLAST or FASTA (based on the idea of
identifying short ‘words’ or k-tuples common to both sequences under
comparison) [345].

In dealing with peptides, the orthogonal encoding method has been
used for the analysis of molecular sequences using SVMs.

172 Machine Learning Approaches to Bioinformatics

For instance, it was used for the prediction of translation initiation

sites [346]. Interestingly, the work designed a novel kernel function

which simply counted the number of nucleotides that coincide between

two sequences. The kernel function was further improved based on the

biological knowledge that local correlation information is important for

translation initiation sites. It was also used for the classification of

proteins with a selective kernel scaling method [347], for the

classification of T-cell receptors [348], and for the prediction of protein-

protein interactions [349].

Here we show how to apply SVM to the Burkholderia pseudomallei

gene expression data in this section. Data pre-process is as usual. What

we need to see here is how SVM can explore a few support genes

(vectors) from all genes. The smoothing parameter varies from 0.001 to

0.1 with a gap of 0.001. The cost function is set at 1000. Figure 11.9

shows the ordered performance of models. The left panel shows the

ranking result using AUR while the right panel shows the ranking result

using the total prediction accuracy. Both show that model performance is

optimised when the smoothing parameter is 0.002.

Fig. 11.9. The performance ranked SVM models for the Burkholderia pseudomallei gene

expression data according to AUR (left panel) and the total prediction accuracy (right

panel). In the ROC curve, the horizontal axes represent 1 – specificity and the vertical

axes represent sensitivity.

A
U

R

 Basis Function Approach and Vector Machines 173

Figure 11.10 shows how the support vectors are distributed. It can be

seen that the closest neighbour of each support vector belongs to the

class opposite to the class of the support vector. From this, it can be seen

that SVM provides an excellent platform for data-mining biological data

when exploring how individual biological components are contributing

to the formation of a biological phenomenon.

Fig. 11.10. Illustration of support vectors of the model using the smoothing parameter as

0.002. The triangle and the crosses represent two classes of patients. Those covered by

circles indicate that they have been used as support vectors.

11.5 Relevance vector machine

In the above section, we can see that SVM estimates model parameters

(w) through minimising the classification error and maximising the

classification margin. The data distribution is not used in learning. RVM,

which has the same kernel learning mechanism, instead, directly models

174 Machine Learning Approaches to Bioinformatics

the data distribution within the Bayesian framework [350]. Because of
this, RVM can directly estimate the confidence of a prediction. The other
important feature of RVM is that it is also a sparse classifier.

We denote by 
1}{  nnxD an input set and by 

1}{ nnt a target
set, where d

n x (d is the dimension) is an input vector and Nnt a
target value. Note that  is the set of real numbers and N is the set of
integers. We use the sigmoid function to denote the relationship between
an input vector and its prediction given a weight vector w [350]

)exp(1

1

wφ 


n
ny (11.31)

where T
21)),(,),,(),,(( xxxxxxφ nnnn  is a vector defining the

similarity between nx and all the training vectors using a pre-defined
kernel function. The kernel function),(mn xx is commonly
implemented using a radial basis function in many vector machines and
can be adapted to other kernel functions. Using the cross-entropy
function, the likelihood function of a classifier is defined as

 





1

1)1()|(
n

t
n

t
n

nn yyp wt (11.32)

An Automatic Relevance Determination (ARD) prior [351] is placed to
prevent over-fitting [350]

 





1

1),0()|(
n

np Gαw (11.33)

where T
210),,,,( α . The posterior of the coefficients is

defined as below







  )()(

2

1
exp||),|(1T2/1 uwΣuwΣαtwp (11.34)

The mean vector and the covariance matrix of the posterior are

 BtΣΦu T (11.35)

 Basis Function Approach and Vector Machines 175

and

 1T)( ABΦΦΣ (11.36)

where Φ is a squared input matrix  jiji ,1)},({ xxΦ  ,
T

21),,,( tttt ,)}1({diag nn yy B , and },,,{diag 21  A .
The marginal likelihood can be obtained through integrating out the
coefficients [350]







 







tΦΦABt

ΦΦABαt

1T11T

2/1T11

)(
2

1
exp

||)|(p
 (11.37)

In learning, α can be estimated as follows

)(

)()(1
)1(

2 




n

nnn
n

u


 (11.38)

where  is the iteration time and nn is the nth diagonal element in Σ .
The weights can be updated using

 MP
1)|,(log wαwtHw p  (11.39)

where T
222111),,,( yteyteyte e , H is the Hessian

matrix

)()|,(log T
MP ABΦΦwαwtH  p (11.40)

and

)()|,(log T
MP eΦAwwαwt  p (11.41)

The above equation is a closed form where we have to use an inner loop
for weight update.

Recently, RVM has drawn a lot of attention for analysing biological
data. For instance, it has been used for predicting MHC-II binding
affinity [352], for diagnosing cancers using gene expression profiles

176 Machine Learning Approaches to Bioinformatics

[353], for inducing regulation transcription networks in Arabidopsis
using gene expression data [354], and for detecting non-coding regions
in genomes [355].

Summary

In this chapter we have discussed two classes of similar machine learning
approaches, both employing the basic kernel approach. They are the
basis function neural networks and vector machine algorithms. A basis
function neural network model uses all the training input vectors for
building a predictive model while a vector machine aims to find a sparse
representation of all training input vectors by maintaining similar or
improved prediction performance. The introduced radial-basis function
neural network is used for handling numerical data. A note has been
made in this chapter that the data used for building a radial-basis function
neural network model must not be binary or sparsely distributed discrete
data. The introduced bio-basis function neural network is used for
handling sequence, particularly peptide data. The benefit of the bio-basis
function neural network is that it avoids any tedious encoding process of
amino acids or nucleic acids. Two vector machines are discussed in this
chapter as well. They are the support vector machine and the relevance
vector machine. A support vector machine model is generated by
maximising the classification margin between two classes so that the
generalisation capability of such a model can be maximised. The sparse
model is therefore based on a subset of training input vectors. They are
called support vectors. These support vectors are normally located on the
decision boundaries of a classification margin and include some training
vectors which are difficult to classify. The relevance vector machine, on
the other hand, aims to find representative input vectors to avoid using
all training input vectors in a model for prediction. The found relevance
vectors are therefore those located in the centres of some clusters. The
advantage of the relevance vector machine is that it is developed under
the Bayesian framework, hence providing information of probabilistic
interpretation of the predictions. Applications of these four algorithms to
bioinformatics have also been discussed.

177

Chapter 12

Hidden Markov Model

This chapter discusses the hidden Markov model (HMM) which can be
used to explore hidden series states for a sequence of observations. The
basic principle and learning algorithm are discussed. The Markov
model is discussed first as it provides the basis for understanding
the hidden Markov model. Three basic tasks of HMM are discussed.
They are the likelihood evaluation, decoding or prediction, and model
parameter learning. Applications to bioinformatics are discussed as
well.

12.1 Markov Model

An HMM is a statistical model where the statistical property of the
transition probabilities between different observations and hidden state in
a data set is modelled. The basis of HMM is the Markov process.

A Markov process describes a type of dynamic evolution systems
where the relationship between random variables is mathematically
defined. The model is named after the Russian mathematician Andrey
Markov. In a Markov system, the likelihood of every possible random
evolution process is evaluated using probability theory. A random
evolution process is described for all possible random observations in a
chain. The likelihood of each observation depends only on its previous
observation in the same chain. Suppose we define a chain of T random
variables as),,,,,(12 XXXX tT  and have a chain of T observations
denoted by),,,,,(12 xxxx tT  . The likelihood of observing tx is
defined as a conditional probability

178 Machine Learning Approaches to Bioinformatics

)|()|(1111   tttttttt xXxXPxXP xX (12.1)

where),,,,(12211 xxxx ttt  x and),,,,(12211 XXXXX   ttt .
Based on the above equation, the likelihood of observing),,,(12 xxxt 
is a product of all observation likelihood measurements using the product
probability theory

1 1 2 2 1 1

2

1 1
0

() (|) (|) (|) ()

() (|)

X xt t t t t t
t

t i t i
i

P P x x P x x P x x p x

P x P x x

  


  


 

 


 (12.2)

where)|(11   tttt xXxXP simplified as)|(1tt xxP and)(1xP is
the probability of the first observation. This model is also called a first-
order Markov model. Using the above equation the likelihood of
observing a chain of five nucleic acids (TCGAA) shown in Fig. 12.1 is
calculated as

)()|()|()|()|(TPTCPCGPGAPAAP (12.3)

Fig. 12.1. A chain of five nucleic acids for demonstrating the Markov model. The
numerical numbers represent the order of observing the nucleic acids. Five nucleic acids
are represented by five letters.

If the transition probabilities are as specified in Fig. 12.2,
the likelihood of the chain shown in Fig. 12.1 is

0001.025.0*2.0*2.0*1.0*1.0  .

 Hidden Markov Model 179

Fig. 12.2. The assumed transition probabilities between four nucleic acids. The
summation of the transition probabilities from one nucleic acid to itself and to each of the
other three nucleic acids is one. For instance, the transition probabilities from A to A, C,
G, and T are 0.1, 0.3, 0.4, and 0.2 respectively.

12.2 Hidden Markov model

12.2.1 General definition

The Markov model described above only considers the probabilities of
the transitions between observations. It is understood that various
observations can result from some unknown hidden state. The observed
events can be the phenomenon of some hidden genotypic information.
For instance, we can consider the relationship between protein secondary
structure and protein sequence. A sequence with corresponding
secondary structures is shown in Fig. 12.3. The question is how we
model the relationship between sequence residues and secondary
structures leading to a model to identifying secondary structure based on
the observed amino acid chain of a protein sequence.

180 Machine Learning Approaches to Bioinformatics

Fig. 12.3. A sequence with its secondary structure.  and  are two hidden states. A
sequence is composed of observed amino acids.

Fig. 12.4. A visualisation of three probabilities. The first row represents the Markov
model. The second row represents the transition of hidden states. The last row represents
the emission probabilities.

 Hidden Markov Model 181

We can consider three sets of correlations. The correlation between
each pair of residues measures how likely two residues are to become
neighbours

 ),,(),,(MHHG  (12.4)

The correlation between each pair of states measures how likely two
states are to be connected as neighbours

),(),,(),,(),,( (12.5)

The correlation between a residue and a state (secondary structure)
measures how likely a residue and a state are to be aligned to the same
position, for instance, the first residue G is aligned with the state E,

 ),,(),,(),,(MHG  (12.6)

Figure 12.4 visualises these three correlations.
In HMM, the probability or the likelihood of the current observation

not only depends on the previous observation, but also on the associated
hidden state. The probability of one observation in a chain of
observations is then defined as

),|(11 tttttt sSxXxXP   (12.7)

where tS is the ith random variable of the hidden state in a chain of
observations and ts is one of the hidden states associated with the
ith observation.  is a finite set of hidden states. For instance, the third
observation of the chain shown in Fig. 12.3 can be described as below

),|(223  SHXMXP (12.8)

In HMM, such a probability is described as an emission model and
the emission of the first three observations in the chain is shown in Fig.
12.5. In an emission model, each observation is emitted based on the
transition probability from the previous observation to the current
observation. It also depends on the transition probability from the
previous hidden state to the current hidden state and the probability of
emitting the current observation from the current state. For instance, the

182 Machine Learning Approaches to Bioinformatics

probability of emitting H in Fig. 12.3 is determined by the previous G,
the transition from  to  , and the emission rate from  to H.

Based on the emission model shown in Fig. 12.5, a full HMM model
for studying secondary structures of protein sequences is depicted in Fig.
12.6. In the diagram, we have three sets of probabilities to estimate. They
are the emission probabilities, transition probabilities including self-
transition probabilities, and terminal probabilities including start and end
transition probabilities [158, 356].

The emission probabilities are defined by

)|()(SXPXS  (12.9)

where S indicates a state from a set of finite hidden states such as  and
 shown in Fig. 12.3 and)|(SXP is the probability of observing a
phenomenon under a hidden state such as an amino acid in a sequence in
an  secondary structure. The transition probabilities are defined as

)|(1,1 
 ttSS SSP

tt
 (12.10)

where 1tS is the (t-1)th state and tS is the tth state. We use SS , to
denote self transition probabilities. The start transition probability is
denoted by S, , where  means a terminal. The end transition
probability is denoted by  ,S .

Fig. 12.5. An illustration of emitting the first three observations in a chain of observations
shown in Fig. 12.3.

 Hidden Markov Model 183

Fig. 12.6. An illustration of a diagram used in studying the relation between protein
sequences and secondary structures.

12.2.2 Handling HMM

Having these probability definitions, we then discuss three tasks of
HMM. These three tasks cover two theoretical and practical issues of
HMM, parameter estimation and model interpretation. The three tasks
are likelihood computing, decoding, and learning.

The first task is called evaluation and is to use the current model to
interpret a sequence of observations, i.e. evaluating the likelihood that a
sequence of observations is to be generated from a given HMM model. If
we have a number of constructed HMM models each representing a
specific biological function, we can evaluate from any of them the
likelihood of a new sequence of observations being generated (emitted).
For instance, we may have two HMM models constructed using gene
expression data, one corresponding to disease-related patients, the other
being related to disease-free patients. If the likelihood of the gene

184 Machine Learning Approaches to Bioinformatics

expression of the new patient being observed is larger using the disease-
related HMM model than it is when using the disease-free HMM model
it is predicted that the patient is likely to have developed a disease.

The second task of HMM is called decoding and is to decode a
sequence of observations if an HMM model has the highest likelihood
for that sequence being generated. This means that given a new sequence
of observations without observed hidden states and an HMM model, we
predict what hidden states the sequence is associated with. For instance,
suppose we have constructed an HMM model to relate protein sequences
to secondary structures. If a new sequence of amino acids fit the HMM
model well with a large likelihood, we can predict what secondary
structures this sequence may have and where they are. Taking Fig. 12.3
as an example, the question is if we can predict the secondary structures
of the sequence GHMESSAGEQLLKQCYTINSIDEWHLNT.

The third task is called learning and is related to the estimation
of model parameters. In the previous tasks, we assume that all three
sets of probabilities are available. If these probabilities are not available,
we need to estimate them to build an HMM model. In this situation,
we are normally given a data set in which a number of sequences of
observations and their hidden states are given. For instance, we may
have collected a number of protein sequences each of which have
experimentally verified secondary structures. Based on this data set,
our job is to build an HMM model, i.e. to estimate three sets of
probabilities. After this HMM model has been built, it can be used for
the above two tasks.

12.2.3 Evaluation

If an HMM model has been built, i.e. its three sets of probabilities have
been estimated, we can evaluate whether a new sequence is generated
by this HMM model and the probability (likelihood) of this event.
The evaluation is completed by a forward propagation of likelihood
calculation using dynamic programming technique. The detail of
dynamic programming is beyond the scope of this book, readers can
refer to White DJ’s textbook [357] and Bellman RE’s textbook [358].

 Hidden Markov Model 185

The use of dynamic programming for the evaluation is based on the
Markov principle, i.e. each observation depends on its previous
observation and hidden states as shown in equation (12.6). Suppose we
have three possible observations A, B, and C and two hidden states 
and  . The likelihood of the nth observation can be visualised in Fig.
12.7. The left panel shows the transition and emission probability
calculations. However, having understood that we have already
determined the nth observation and that the observations are controlled
by hidden states, HMM involves simplifying the calculation as shown in
the right panel of Fig. 12.7, where we only consider the state transition
probabilities and the emission probabilities. The evaluation of the
likelihood of the nth observation is then written as

 1 1 1 1

1 1 1 1

(, | ,)

(|) (|)
t t t t t t t t

t t t t t t t t

P X x S s X x S s
P S s S s P X x X x

   

   

   
    

 (12.11)

Fig. 12.7. An illustration of HMM for evaluating the likelihood of an observations fitting
to an HMM model.

According to the product probability theory, the likelihood of two
independent random events is the product of the likelihoods of these two
events. We assume that the likelihood evaluated at the (n-1)th
observation is independent from the likelihood evaluated at the nth

186 Machine Learning Approaches to Bioinformatics

observation. We can define the evaluation of the partial likelihood of the
chain till the nth observation through a specific hidden state transition
using the product of two likelihoods. One is the partial likelihood of the
chain till the (t-1)th observation),(11  tt sxL and the other is the
calculation of the likelihood of the nth observation as defined in equation
(12.11). The calculation of this single-path likelihood is then described as
below

)|()|(),(),(111 tttttttt sxPssPsxsx  LL (12.12)

For instance, there are four such calculations for the right panel in Fig.
12.7. They are

)|()|(),()|,(1  APPxA n LL

)|()|(),()|,(1  APPxA n LL

)|()|(),()|,(1  APPxA n LL

)|()|(),()|,(1  APPxA n LL

where)|,(AL means the conditional likelihood for A to occur when
the current hidden state is  and the previous hidden state is also  .

)|,(AL means the conditional likelihood for A to occur when the
current hidden state is  and the previous hidden state is  . From both
transitions, the current hidden state  then emits the current observation
A. This also applies to)|,(AL and)|,(AL . The likelihood at the
current state of  is a summation of two likelihoods

 1

1

(,) (,) (|) (|)

(,) (|) (|)
n

n

A x P P A
x P P A

    
   








L L

L
 (12.14)

This also applies to the current state 

 1

1

(,) (,) (|) (|)

(,) (|) (|)
n

n

A x P P A
x P P A

    
   








L L

L
 (12.15)

(12.13)

 Hidden Markov Model 187

We then have a likelihood calculation defined as below

)|()|(),(),(1
1

11 ttktt
k

ktttt sxPsSsPsSxsx === −
=

−−∑
K

LL (12.16)

where K is the number of states. When this evaluation for a sequence

reaches the end terminal, the likelihood that an HMM model generates

the sequence is calculated.

Suppose we have three probability matrices for the case shown in

Fig. 12.3. The state transition matrix is shown in Table 12.1. The

emission probability matrix for the first three residues in the sequence

chain shown in Fig. 12.3 is shown in Table 12.2. The terminal transition

probability matrix is shown in Table 12.3.

E E E

H H H

start end

P
(H

|
sta

rt)*P
(M

|
H

)

=
0
.2

*0
.1

=
0
.0

2

P
(E

|
st

a
rt

)*
P

(M
|
E

)

=
0
.8

*0
.4

=
0
.3

2

P(E|E)*P(G|E)

=0.7*0.2=0.14

P(E|E)*P(M|E)

=0.7*0.4=0.28

P(H|H)*P(G|H)

=0.6*0.5=0.3

P(H|H)*P(M|H)

=0.6*0.1=0.06

P
(E

|
H

)*
P

(G
|
E

)

=
0
.4

*
0
.2

=
0
.0

8

P
(H

|
E

)*
P

(G
|
H

)

=
0
.3

*
0
.5

=
0
.1

5

P
(H

|
E

)*
P

(M
|
H

)

=
0
.3

*
0
.1

=
0
.0

3

P
(E

|
H

)*
P

(M
|
E

)

=
0
.4

*
0
.4

=
0
.1

6

P
(e

n
d
|
E

)=
0
.8

P
(e

n
d
|
H

)=
0
.2

L(1,E)=0.32

L(1,H)=0.02

L(2,E)=0.32*0.14+0.02*0.08=0.0464

L(2,H)=0.32*0.15+0.02*0.3=0.054

L(3,E)=0.0464*0.28+0.054*0.16=0.021632

L(3,H)=0.0464*0.03+0.054*0.06=0.004632

L(end)=0.021632*0.8+

0.004632*0.2=0.018232

M G M

Fig. 12.8. An illustration of the likelihood evaluation of the first three residues in the

chain shown in Fig. 12.3 with three probability matrices defined in Tables 12.1, 12.2, and

12.3.

Table 12.1. The state transition matrix for the

case shown in Fig. 12.3.

 α β

α 0.6 0.4

β 0.3 0.7

188 Machine Learning Approaches to Bioinformatics

Table 12.2. The emission probability matrix for the first
three residues for the case shown in Fig. 12.3.

 G H M
 0.5 0.4 0.1
 0.2 0.4 0.4

Table 12.3. The terminal transition probability matrix for
the case shown in Fig. 12.3.

  
Start 0.9 0.1
End 0.1 0.9

Based on these three matrices, Fig. 12.8 shows the likelihood of the
first residue in the sequence chain used in Fig. 12.3. The evaluated
likelihood is 0.036348.

12.2.4 Decoding

Given an HMM model and a new sequence of observations, the
requirement is to predict the hidden states associated with the sequence,
for instance, to predict the secondary structures associated with a protein
sequence. The decoding process is a maximum likelihood process. After
a likelihood evaluation process has been completed, a backward scanning
process can be done to search for the path which generates the maximum
path-specific likelihood. For instance, if we have reached the nth
observation of A shown in the right panel of Fig. 12.7, we can determine
which state ( or ) is most likely to occur by maximising the
likelihood calculated at these two states. The most basic algorithm
for decoding is the Viterbi algorithm [359]. Using the algorithm, we
can decode the network shown in Fig. 12.8. The predicted secondary
structures for the first three residues are seen in Fig. 12.9. The predicted
secondary structures are  for the first three residues in the sequence.

HMM has also been well applied to analysing biological data. For
instance it has been used to identify orthologs in ESTs [360], for
predicting the occupancy of transcription factors in sequences [361],
for nucleic localisation signal prediction [362], for disease biomarker

 Hidden Markov Model 189

identification [363], for predicting yeast gene functions [364] and for
predicting cell wall sorting signals in gram-positive bacteria [365].

Fig. 12.9. An illustration of decoding an HMM for predicting the secondary structures of
a protein sequence with observed amino acids.

12.2.5 Learning

Training an HMM means estimating the model parameters, i.e. the
probabilities. The algorithm for solving this problem is called the Baum-
Welch (BW) algorithm [366] which is a generalised EM algorithm [157].
With the BW algorithm, there are two parts of probabilities, one being
the forward probability and the other being the backward probability.
The forward probability is a probability of seeing the observations from
the beginning to a node (marked as a filled circle in Fig. 12.10). The
backward probability is calculated as below

),|,,,()(21 isxxxPi tTtt
B
t   L (12.17)

190 Machine Learning Approaches to Bioinformatics

Fig. 12.10. An illustration of calculating forward and backward probabilities.

This is similar to the calculation of the forward probability with three
steps. First, B

TL is initialised as

],1[,, Nii
B
T  L (12.18)

Second,)(iB
tL is calculated recursively as below

)()()(11
1

jxi B
tt

N

j
jij

B
t 


 LL  (12.19)

Finally, the calculation is terminated as

)()()0()|(11
1

,1 jxP BN

j
jj

B LL 


  x (12.20)

After the calculation of both forward probabilities and backward
probabilities, we can proceed to calculate the transition probabilities. The
transition probability from the ith state to the jth state is defined as

expected number of transitions from to

expected number of transitions from ij
i j

i
  (12.21)

The emission probabilities are calculated using

expected number of imes in and observing symbol
()

expected number of times in
k

j k
t j vv

j
  (12/22)

 Hidden Markov Model 191

where kv is one of the observed symbols. In the E-step, the partial
forward and backward probabilities are calculated. In the M-step, the
transition and emission probabilities are calculated.

12.3 HMM for sequence classification

HMM can be used for constructing predictive models for molecular
sequences like other supervised machine learning algorithms. Details can
be seen in Baldi’s book [4] and Durbin’s book [367]. HMMER [368,
369] is one of the most successful products and is composed of nine
programs. Two main programs used for sequence classification are

A) “hmmbuild”: builds a new profile HMM based on a data set in
which sequences are aligned. The alignment of sequences can be
done using various alignment algorithms.

B) “hmmpfam”: aligns a set of sequences to the profile HMM
generated by “hmmbuild” and outputs alignment scores and
e-values.

In using HMMER for sequence (peptide) classification, an HMM
profile is built using “hmmbuild” based on positive (functional) peptides
[370]. After such an HMM profile has been generated, both positive and
negative peptides are fed to the HMM profile using “hmmpfam” to
obtain alignment scores. These e-values are then used to build two
density functions for classification. Figure 12.11 shows the procedure of
using HMM for sequence (peptide) classification, where steps 1, 2, 3,
and 4 comprise a training process while step 5 is for testing.

We now use the HIV-1 protease cleavage data described in chapter 11
for demonstrating this process. The cleaved peptides (8-mers) are fed to
the program called “hmmbuild” which generates an HMM profile. After
the HMM profile has been generated, both negative (non-cleaved) and
positive (cleaved) peptides are fed to the program called “hmmpfam” to
generate two sets of alignment scores. Two Gaussian density functions
are built. The Bayes rule is used to decide whether a novel peptide whose
cleavage status is unknown is cleaved or non-cleaved. Five-fold cross-
validation is used leading to the prediction performance as shown in
Table 12.4.

192 Machine Learning Approaches to Bioinformatics

Fig. 12.11. A procedure of using HMM for sequence (peptide) classification. The dashed
blocks represent five steps. The numbers (1, 2, 3, 4, and 5) represent the steps.

Table 12.4. The confusion matrix of applying HMMER to the HIV-1
protease cleavage data.

 Prediction
 Negative Positive Percent
Actual Negative 233 15 93.95%

Positive 16 98 85.96%
 91.44%

The “hmmalign” program of HMMER is used to align peptides
against an HMM profile that has been generated. Figure 12.12 shows the
alignment of one of five positive alignments. The alignment for the
positive peptides (left panel) against the built HMM profile shows a good
convergence, i.e. nearly no insertion happens. However the alignment for
the negative peptides (right panel) shows a large diversity with many
insertions. This is why the alignment scores of the negative peptides are
small by which we can see how HMM profiles can be used for
classification. The basic principle is to learn the patterns hidden in the
positive data with the belief that negative data serve as background,
hence no pattern can emerge.

 Hidden Markov Model 193

STOCKHOLM 1.0
#=GF AU HMMER 2.3.2

pep3 SFNFPQIT
pep5 ARVLAEAM
pep12 YEEFVQMM
pep16 AETFYVDK
pep25 GDALLERN
pep29 AEAMSQVT
pep48 ELELAENR
pep49 SKDLIAEI
pep53 PFAAAQQR
pep57 AETFYTDG
pep317 SQNYPIVE
pep325 SFNYPQIT
pep332 SFNFPQII
pep334 SQNYPNVQ
pep337 SQNYPILQ
pep340 SQCYPIVQ
pep346 ARVLFIAL
pep351 ARVLFTAL
pep352 ARNLFEAL
pep353 ARNLFQAL
pep356 ARVYPEAL
pep361 RQNYPIAL
#=GC RF xxxxxxxx
//

STOCKHOLM 1.0
#=GF AU HMMER 2.3.2

pep60 -KVFGRCEl...
pep61 --VFGRCEla..
pep65 CELAAAMK....
pep71 ----MKRHgldn
pep73 .rhgLDNYR---....
pep79 YRGYSLGN....
pep91 ..ak----FESNfn..
pep100 QATNRNTD....
pep101 ATNRNTDG....
pep113 -GILQINSr...
pep116 QINSRWWC....
pep120 RWWCNDGR....
pep127 rtpgSRNL----....
pep135 --CNIPCSal..
pep146 DITASVNC....
pep149 ASVNCAKK....
pep150 SVNCAKKI....
pep155 ..kk----IVSDgn..
pep159 SDGNGMNA....
pep165 --NAWVAWrn..
pep167 -WVAWRNRc...
pep177 TDVQAWIR....
pep184 -TAAAKFEr...
pep189 ----FERQhmds
pep192 QHMDSSTS....
pep207 .cnq---MMKSR....
pep218 ...kDRCKPVN-....
pep220 -RCKPVNTf...
pep223 PVNTFVHE....
pep225 --NTFVHEsl..
pep226 TFVHESLA....
pep236 QAVCSQKN....
pep246 ..ck---NGQTNc...
pep249 GQTNCYQS....
pep250 QTNCYQSY....
pep253 ---CYQSYstm.
pep255 -QSYSTMSi...
pep256 SYSTMSIT....
pep261 SITDCRET....
pep270 SSKYPNCA....
pep275 NCAYKTTQ....
pep281 TQANKHII....
pep284 NKHIIVAC....
pep294 NPYVPVHF....
pep295 PYVPVHFD....
pep299 RQNYPIVQ....
pep300 SQKYPIVQ....
pep306 SQNYDIVQ....
#=GC RF xxxxxxxx....
//

Fig. 12.12. Alignments of peptides against the built HMM profile. The left panel shows
the alignment for the positive peptides and the right panel shows the alignment for the
negative peptides.

194 Machine Learning Approaches to Bioinformatics

HMM has been widely used in sequence analysis, for instance it has
been used for phosphorylation site prediction [370, 371], for predicting
protein family [372], for modelling paramyxovirus hemagglutinin-
neuraminidase proteins [373], for predicting the occupancy of
transcriptional factors [361], for detecting recombination in 4-taxa DNA
sequences [374], and for predicting genetic structure in eukaryotic DNAs
[375].

Summary

This chapter has introduced the basic principle and the learning
mechanism of hidden Markov models. Generally speaking, it learns the
hidden states by which it is believed that observations are generated.
HMM is a type of generative models which assumes that the
observations are unorganised information of phenotypic and genotypic
data while the relationship between them is hidden or unknown. Through
learning, the relationship can be explored which can be used for pattern
recognition. An example of HIV-1 protease cleavage peptide
classification clearly shows the features of HMM.

195

Chapter 13

Feature Selection

Feature selection has long been studied in machine learning [376-379].

When analysing gene expression data and metabolite data it is common

that a data set has a few samples with many genes or metabolites as

variables. In order to focus on some highly differentially expressed

genes or active metabolites for investigating biological insight, a

feature selection process must be considered. The main task of feature

selection is to reduce the number of features while maintaining or

improving model predictive capability. This chapter discusses three

types of feature selection strategy. The first is the built-in strategy. The

second is the exhaustive strategy. The third is the heuristic strategy.

The built-in strategy embeds a feature selection process in model

construction. The typical algorithms include principal component

analysis, the classification and regression tree as well as the random

forest algorithm plus three other algorithms discussed in this chapter.

The exhaustive strategy is to exhaust all possible models with different

features and then select a model with the smallest number of features

and best model performance. The evaluation is commonly based on

AIC or BIC discussed in chapter 5. The heuristic strategy selects

features step by step using an additive performance measure. This

strategy includes forward and backward selection.

13.1 Built-in strategy

In the previous chapters, we have seen three relevant machine learning

algorithms which can be used as well for feature selection. They are

principal component analysis, the classification and regression tree

196 Machine Learning Approaches to Bioinformatics

algorithm as well as the random forest algorithm. They have a built-in

process to remove irrelevant or unimportant variables (features) while

maintaining features which are important for predictions. We are not

going to discuss them in detail again in this chapter. Instead we introduce

three other algorithms, i.e. the Lasso, the ridge regression, and the partial

least square regression algorithms.

13.1.1 Lasso regression

The algorithm’s full name is L1 constrained estimation ‘Lasso’. It is a

shrinkage and selection approach for linear regression. During learning,

it minimises the sum of squared errors using a limit on the sum of the

absolute values of the coefficients [380-382].

Given a set of independent variables { } ,,, 21 RXXX ⋯ and a

dependent variable Y, the Lasso model is defined as usual in a linear

regression format

 ∑
=

+=+=
R

i
ii xwwwy

1
0

T
0 wx (13.1)

where ix is the value of the ith variable iX , 0w is a bias, and iw is the

coefficient or weight for the ith variable. The error function which is

minimised by Lasso is also similar to most regression models and is

defined as below

 ()∑
=

−=
N

n
nn yt

1

2
ε (13.2)

where N is the total number of input vectors, nt is the nth target value,

and ny is the nth model output. However Lasso introduces a constraint

as below

 τ≤∑
=

R

i
iw

1

 (13.3)

 Feature Selection 197

where 0>τ is the constraint constant. If τ is small, more coefficients

are shrunk to zero. This means that unimportant variables are penalised

while important variables are maintained in a model. This model is

generally not analytically solvable and the quadratic programming

approach [383] is employed. The algorithm called least angle regression

[384] can also solve this problem.

In bioinformatics, Lasso is used to derive parsimonious or sparse

regression models. For instance, it is used for building Cox proportional

hazards models [385], for constructing gene networks through exploring

mutual relationships between genes [386, 387], and for detecting

causative genes of diseases [388].

Fig. 13.1. The Lasso model applied to the Burkholderia pseudomallei gene expression

data. The left panel shows the evolution of coefficients through learning iterations. The

horizontal axis shows the learning iterations and the vertical axis shows the magnitudes

of the coefficients. The right panel shows the ROC curves as well as the performance

measures.

In applying Lasso to the Burkholderia pseudomallei gene expression

data, the coefficients of most genes are penalised (reduced to zero). The

left panel of Fig. 13.1 shows how coefficients are updated through

learning iterations. It can be seen that for only a few genes the

coefficients gradually evolve away from small values, getting larger and

198 Machine Learning Approaches to Bioinformatics

larger to reach a stable status. It is not surprising that the performance is

not as good as some other machine learning models discussed in the

previous chapters. This is due to the fact that Lasso is a purely linear

regression model. It will not perform as well as nonlinear machine

learning algorithms.

Figure 13.2 shows the density function of the coefficients of the

Lasso model for the data. It can be seen that many coefficients are

around the centre with a value of zero. On the left side, only two

coefficients have values of less than -0.1. On the right side, only one

coefficient has a value close to 0.1. Among ten top genes selected by the

Lasso model, only one gene is consistent with the results obtained using

the random forest algorithm discussed in Chapter 9. The gene is

BPSL2697 which has been selected as an important biomarker in a

recent study [177].

If we use the top ten genes selected by the random forest algorithm,

the performance is much improved. Figure 13.3 shows the performance

of the Lasso model built on these top ten genes. The left panel shows the

evolutionary history of the coefficients of the genes. The right panel

Fig. 13.2. The density function of the coefficients of the Lasso model built for the

Burkholderia pseudomallei gene expression data. The horizontal axis represents the

magnitudes of the coefficients while the vertical axis represents the density.

 Feature Selection 199

Fig. 13.3. The Lasso model built based on ten top genes selected by the random

forest algorithm. The left panel shows the evolutionary history of coefficients update.

The right panel shows the ROC curves as well as the performances. In the ROC

curve, the horizontal axes represent 1 – specificity and the vertical axes represent

sensitivity.

shows the ROC curves and the performance measurements. It can be

seen that using the random forest algorithm to filter out noise variables

can lead to better Lasso performance. This demonstrates a fundamental

limitation of Lasso that the noise in data limits the selection of good

variables.

13.1.2 Ridge regression

The ridge regression model was proposed in the 1970s for handling ill-

posed linear algebraic equations [389, 390]. The weight decay [159, 391]

used in neural learning since the 1980’s is rooted from this. Rather than

using 1L , the ridge regression approach uses 2L constraint as below

 () ∑∑
==

+−=
R

i
i

N

n
nn wyt

1

2

1

2
 λε (13.4)

Figure 13.4 shows the coefficients evolutionary history (left panel) and

the ROC curves as well as prediction performances (right panel) based

C
o
e
ff

ic
ie

n
t

200 Machine Learning Approaches to Bioinformatics

on whole Burkholderia pseudomallei gene expression data. As with the

Lasso model, the ridge regression model does not perform as well as the

other nonlinear machine learning models mentioned in previous chapters.

Meanwhile it is as expected that the coefficients shrink consistently to

zero as shown in the left panel of Fig. 13.4.

Fig. 13.4. The ridge regression model for the Burkholderia pseudomallei gene expression

data. The left panel shows the coefficient evolutionary history, where the horizontal axis

represents the learning iterations while the vertical axis represents the magnitudes of the

coefficients. The right panel shows the ROC curve and the performance measurements.

In the ROC curve, the horizontal axes represent 1 – specificity and the vertical axes

represent sensitivity.

13.1.3 Partial least square regression (PLS) algorithm

PLS algorithm is different from Lasso and ridge regression in that it

combines with principal component analysis (PCA) for selecting

features. In chapter 4, we have discussed PCA which only maps the

input matrix into an orthogonal space in which the variance in

coordinates are ordered. If the first few (<3) principal components

contain the majority of the information (variance) in data, they can be

used for visualisation or can be used as features for further supervised

learning. However, these principal components may not be very

 Feature Selection 201

informative. For instance, if we run two different PCA simulations on the

same data, one being based on the input data only and the other being

based on both input data and the output data, we will see the difference.

Two data sets are composed of two clusters in two dimensions, hence

being two classes. We use X to denote the independent variable matrix

and use t to denote the dependent variable vector. The first data set (the

upper left panels in Figs. 13.5 and 13.6) has two clusters distributed in

parallel to the X-axis. This means that the variable corresponding to the

vertical axis is the only one contributing to perfect classification of two

classes of data points. The second data set (lower left panels in Figs. 13.5

and 13.6) is generated by rotating the first data set. This means that both

independent variables are contributing to the classification of two

classes.

In the first simulation, we run PCA on X. Figure 13.5 shows the

results of both data sets. It can be seen from the right panels of the Fig.

that for both sets of data, PCA gives similar eigen values (variances) to

two independent variables. For the second, it makes sense because both

independent variables are contributing to the classification. However,

this is not true for the first data set.

Fig. 13.5. An illustration of PCA on independent variables only for selecting features.

Two rows are for two data sets. The left panels display the raw data distribution. The

middle panels show the PCA maps. The right panels show the eigen values.

202 Machine Learning Approaches to Bioinformatics

Fig. 13.6. An illustration of PCA on both independent and dependent variables for

selecting features. Two rows are for two data sets. The left panels display the raw data

distribution. The middle panels show the PCA maps. The right panels show the eigen

values.

In the second simulation, we run PCA on (X, t). Figure 13.6 shows

the results for both data sets. It can be seen from the right panels of the

Fig. that there is a larger difference between the first and the second

eigen values.

In PLS, principal components, relevant to the dependent variable, are

found. This is why a PLS model is also referred to as a bilinear factor

model. In this way, PLS is able to model and explain the maximum

multi-dimensional variance direction in the dependent variable space.

PLS was first introduced by Herman Word in 1966 in an edited book

[392]. Since published, it became very popular in computational

chemistry in the 1980s [393]. Afterwards, it drew great attention in

statistics [394-396]. Later, it has also been introduced into the area of

bioinformatics [397-401].

PLS regression aims to find a set of latent variables which explain

how both independent variables and dependent variables are generated.

Denote by X a matrix of N rows of the vectors for d independent

variables and y a vector of N rows of the values for a dependent variable

(it can also include more than one dependent variable). Both X and y are

normalised with zero mean and one standard deviation. The latent

variables or components are found step by step. The kth PLS component

 Feature Selection 203

is obtained by estimating the corresponding weight vector w so that

[402]

 yXwyXw,w
wwww

TT1

11

)1 (maxarg)cov(maxarg
TT

-
k -N

==

== (13.5)

with the orthogonal constraints kjjk ≤≤∀= 1,0
T

wSw , where

XXS T = .

Applying PLS to the Burkholderia pseudomallei gene expression data

leads to the specificity as 87%, sensitivity as 93%, total prediction

accuracy as 90%, and as AUR 0.94.

The density function of the coefficients is illustrated in Fig. 13.7,

where we can see that only a few coefficients have large absolute

magnitudes. The PLS has selected 5 genes with largest positive

coefficients. They are BPSL0280, BPSS1993, BPSL0919, BPSL2298,

and BPSL0665. The genes with most negative coefficients from the PLS

model are BPSL2504, BPSL1631, BPSS2185, BPSS0796.1, BPSL3228,

and BPSS1850.

Fig. 13.7. A density function estimated for the coefficients in the PLS model for the

Burkholderia pseudomallei gene expression data. The horizontal axis represents the

magnitudes of the coefficients and the vertical axis indicates the density.

204 Machine Learning Approaches to Bioinformatics

13.2 Exhaustive strategy

With the exhaustive strategy, all possible feature combinations must be

exhausted. Each model with a specific combination of features is

examined using AIC or BIC as discussed in the previous chapter [158,

159, 162]. The procedure is very straightforward, by preparing all the

feature sets and constructing models based on these sets. After using AIC

or BIC to evaluate them, the best model is selected for prediction. In this

section, we evaluate this strategy by using the reduced Burkholderia

pseudomallei gene expression data generated by the random forest

algorithm in chapter 9. We exhaust all possible sets of three genes. MLP

discussed in chapter 10 is used to model these data sets. The selected

three genes which can yield the best performance are BPSL2697, BPSL

2522, and BPSL3398. The specificity is 91%, the sensitivity is 86%, the

total prediction accuracy is 89% and AUR is 0.96. The ROC curve can

be seen from the Figure.

It must be noted that the exhaustive strategy has limited usage in

applications where the number of variables is large.

13.3 Heuristic strategy – orthogonal least square approach

There are mainly two feature selection approaches. One is called forward

selection and the other is called wrapper selection. A forward feature

selection starts from a seed which is one among d features performing

the best according to a pre-defined measurement. The selection proceeds

by selecting more features one by one based on two selection criteria.

First, the new feature should improve total model prediction accuracy.

Second, the new feature should have minimum correlation with features

which have already been selected. The selection proceeds until some pre-

defined threshold is satisfied. A wrapper algorithm works recursively to

remove features [403, 404]. For a model with d features (independent

variables), the algorithm removes features sequentially one by one. In

each step, a feature is targeted if removing it can maximise the prediction

accuracy.

 Feature Selection 205

The orthogonal least square (OLS) algorithm [405] is a forward

selection procedure. At each step the incremental information content

of a system is maximised. The feature matrix is denoted by

),...,,(21 dzzzX = . The OLS transforms the original variables (kz) to

the orthogonal variables (kp) to reduce possible information

redundancy. The feature matrix X is decomposed as

 PTX = (13.6)

where the triangular matrix T has 1’s on the diagonal.



























=

−

−

−

−

10000

1000

100

10

1

,1

31,3

21,223

11,11312

⋯

⋯

⋮⋮⋮⋮⋮⋮

⋯

⋯

⋯

dd

dd

dd

dd

t

tt

ttt

tttt

T (13.7)

and the orthogonal matrix P is

),...,,(21

21

22221

11211

d

NdNN

d

d

ppp

ppp

ppp

pppP =





















=

⋯

⋮⋮⋮⋮

⋯

⋯

 (13.8)

The orthogonal matrix satisfies

 HPP =T (13.9)

where H is diagonal whose elements kkh :

 ∑
=

==
N

n
nkkkkk ph

1

2T
pp (13.10)

The space spanned by the set of orthogonal variables is the same space

spanned by the set of original variables, and equation (13.6) can be

rewritten as

206 Machine Learning Approaches to Bioinformatics

 ePgePTweXwy +=+=+= (13.11)

Suppose)(~ 0,1e N , the pseudo inverse method can be used to estimate

g as below

 yPHyPPPg T1T1T)(−− == (13.12)

Because H is diagonal, its inverse matrix is shown as below

























=























=−

dd

ddh

h

h

pp

pp

pp

H

T

2
T
2

1
T
1

22

11

1

100

010

001

100

010

001

⋯

⋮⋮⋮⋮

⋯

⋯

⋯

⋮⋮⋮⋮

⋯

⋯

 (13.13)

The element in g is then

kk

k
kg

pp

yp

T

T

= (13.14)

The quantities g and w satisfy the triangular system

 gTw = (13.15)

The Gram-Schmidt or the modified Gram-Schmidt methods [406-

408] can be used for the selection, where the first variable is selected as

the first orthogonal one 11 zp = . In the selection of the kth orthogonal

variable, the elements in the kth column in T are estimated using the

following equation

 Feature Selection 207

ii

ki
ikt

pp

zp

T

T

= , ki <≤1 ,],2[dk ∈ (13.16)

The kth orthogonal variable is then estimated as follows

 ∑
−

=

−=
1

1

k

i
iikkk t pzp ,],2[dk ∈ (13.17)

According to equation (13.15) we can estimate w as below

 gTTTw T1T)(−= (13.18)

The elements in w exactly indicate which original variables are important

in constructing the orthogonal variable space for modelling. OLS has

recently been used for analysing gene expression data [409-411].

In using the OLS algorithm, we can terminate the iteration based on a

pre-defined threshold. From equation (13.11), we can see that [405]

 eePgPgyy TTTT += (13.19)

From equation (13.9), we then have

 eeppyy
T

1

2T
+= ∑

=

d

i
i

T
iig (13.20)

To terminate a learning process, we can measure the error reduction

rate defined as

],2[,1
T

1
2

dk
g

err

k
i i

T
ii

∈∀−=
∑ =

yy

pp
 (13.21)

If ε≤err , where 0>ε is a small number, a learning process can be

terminated with k selected independent variables. Equation (13.21) is

similar to the definition of a normalised error defined in Chapter 7 if y is

normalised with a zero mean and one standard deviation.

OLS can only be applied to regression problems. Here we use OLS to

detect the relationships among ten top genes selected by the random

208 Machine Learning Approaches to Bioinformatics

forest algorithm in chapter 9. These top ten genes are BPSL2697,

BPSS1512, BPSS0477, BPSL2522, BPSL2520, BPSL2096, BPSS1492,

BPSL0326, BPSS2141, and BPSL3398. Ten OLS models are built. In

each model, one of the genes is selected as the dependent variable while

the rest are used as the independent variables. In each OLS model, we

can analyse the weight vector w to see if any gene as independent

variable dominantly contributes to other gene. It is found that only the

genes BPSL2697 and BPSS0477 dominantly contribute to each other
Fig. 13.8 shows the weight distributions of the two OLS models built

using BPSL2697 (left panel) and BPSS0477 (right panel) as the

dependent variable, respectively.

Fig. 13.8. Two OLS models built using BPSL2697 (left panel) and BPSS0477 (right

panel) as the dependent variable. The horizontal axes represent the remaining nine genes

as the independent variables in two models and the vertical axes represent the weights

magnitudes.

13.4 Criteria for feature selection

There are two types of criteria in a feature selection process. One is to

measure how good a sparse model is. When we add a new feature to a

model, we need to measure how good the model is. For a regression

application, the correlation between predictions and targets is one of the

commonly used criteria. The errors between predictions and targets are

 Feature Selection 209

also commonly used. In discussing the OLS algorithm, equation (13.21)

is similar to the normalised error. In classification, classification

accuracy or AUR can be used.

The second type is to determine which feature should be added into a

model. Using an independent validation data set is an approach. For

instance, when we have added a new feature to a model, we can re-

estimate model parameters based on increased feature set. This newly

estimated model is tested on the validation data set to see if the model

performance is improved. Instead of using this empirical approach which

introduces extra computational cost, the other approach is to measure

how good a new feature is without using the validation data set.

To measure how good a feature is two factors need to be considered.

First, can this new feature improve prediction power? Second, does this

new feature bring unique contribution to the model compared with the

selected features? To address these two questions quantitatively we

introduce three metrics.

13.4.1 Correlation measure

In a regression application, correlation can be well used for measuring

how one variable correlates with the other. When we add a new feature

denoted by X , we can measure its correlation with the target variable

denoted by Y ,),(YXρ . If we have a candidate set denoted by Θ , we

need to maximise the correlation through

 }),({ maxarg YXX i
X

g

i

ρ
Θ∈

= (13.22)

However, this new feature may not bring a unique contribution if it is

highly correlated with the selected ones. This requires us to consider the

second correlation measure. If the set of selected features is denoted by

Ω , we need to consider

 }),({minarg
,

ji
XX

XX

ji

ρ
Ω∈Θ∈

 (13.23)

210 Machine Learning Approaches to Bioinformatics

In order to consider both measures for selecting a good new feature, we

need to introduce a trade-off parameter] 1 ,0 [∈α . Using this parameter

we have

 }))],([1()1(}),({ maxarg Ω−×−+×=
Θ∈

ii
X

g XEYXX

i

ραρα (13.24)

where)],([ΩiXE ρ is the expected correlation of iX with all selected

features in Ω . It can be seen that the correlation between a newly

selected feature and the dependent variable must be maximised while the

correlation between the newly selected feature and the other selected

features is penalised. If 0=α , we select completely non-correlated

features. If 1=α , we select features no matter if they are correlated.

13.4.2 Fisher ratio measure

When conducting a classification project, correlation between an

independent variable and a dependent variable which is discrete or binary

may not be appropriate. In this case, the Fisher ratio which measures how

separately two classes are using a feature can be used. If the Fisher ratio

measure between X and Y is denoted by),(YXF , equation (13.24) can

be re-written as below for a classification project

 }))],([1()1(}),({ maxarg Ω−×−+×=
Θ∈

ii
X

g XEYXX

i

ραα F (13.25)

Note that the relationship between a newly selected feature and the

selected feature is still measured using the correlation measure as both

are normally numeric variables.

13.4.3 Mutual information approach

Correlation analysis is a linear approach. It is unable to measure

nonlinear correlation between two variables. Here we introduce the

mutual information approach which can be used to measure nonlinear

correlation between two variables.

 Feature Selection 211

Mutual information is the difference between the initial uncertainty
and the conditional uncertainty. kX is a variable and)(kXP is the

a prior probability. The initial uncertainty of kX is measured when kX
is isolated (not selected) and is defined as

)(ln)()H(kkk XPXPX  (13.26)

Let)|(KkXP be the conditional probability of kX given a class

domain },,,{ 21 Cggg K . The conditional uncertainty measures the

information of kX given the class domain and is defined as

 



K

K
cg

ckckck gXPgXPgPX)|(ln)|()()|H((13.27)

The mutual information of kX with the given class domain is then

I(,) H() H(|)

(,)
(,) log

() ()
c

k k k

k c
k c

g k c

X X X
P X gP X g

P X P g

 

 
K

K K

 (13.28)

A new variable whose),(I KkX value should be maximised for selection
of features.

)},{I(maxarg Kk
X

XX
k 

 (13.29)

Replacing K with  we have the other mutual information
measurement for detecting the independence of a sequence under
selection,

I(,) H() H(|)

(,)
(,) log

() ()
l

k k k

k l
k l

X k l

X X X
P X XP X X

P X P X

   

 
 (13.30)

where),(lk XXP is the joint probability between the selected variable,
lX , and a new variable for selection, kX . A newly selected

variable should satisfy

212 Machine Learning Approaches to Bioinformatics

)},({Iminarg Ω=
Θ∈

k
X

XX
k

� (13.31)

In order to trade off between two measurements we have a selection

criterion as below

 ()),(I 1),(I)(Ω−−= kkkM XXXJ αα K (13.32)

where α is a constant. The constant is set at 0.7 favouring discriminant

ability. We refer to MJ as the information gain. A newly selected

variable therefore satisfies

 }max{arg MJX =� (13.33)

As a powerful feature selection approach, the mutual information

approach has been widely used in bioinformatics projects [412-414].

Summary

This chapter has discussed three strategies for feature selection, i.e. the

built-in strategy, the exhaustive strategy, and the heuristic strategy. Using

the built-in strategy, the CART and the random forest algorithm are able

to extract features for nonlinear models. Other algorithms can only be

applied to model linear data. However, compared with CART and the

random forest algorithms, these linear algorithms provide a simple

interpretation for prediction purposes. The exhaustive strategy has the

limitation of time complexity although it can be applied to data sets with

small dimensionality. The heuristic strategy is the most widely used in

the literature and has also been widely used in bioinformatics. In using

the heuristic strategy, we need to carefully select an appropriate

algorithm and a feature selection criterion.

213

Chapter 14

Feature Extraction

(Biological Data Coding)

To present a biological data set to a machine learning model, we are

required to make sure that the data are representative, quantitative, and

informative. This requires four focal points. First, the process must be

as consistent as possible, i.e. providing invariant format and required

resolution at any time. Second, the process must be as accurate as

possible, i.e. if a new process is able to explore more information from

biological data, it should replace the old one. Third, the process must be

as effective as possible, i.e. taking into account the machine learning

time cost. Fourth, the process should use as much biological knowledge

as possible for the presentation of biological data. This process is

similar to most applications in other disciplines and is called feature

extraction. Note that feature extraction is often confused with feature

selection. Feature selection is mainly to reduce noise in data by

removing irrelevant variables in learning. However, feature extraction

is to find a better way to present data to machine learning algorithms.

Feature extraction is commonly a process done prior to feature

selection. Unlike feature selection which is closely related to machine

learning, feature extraction is closely related to subjects. Different

disciplines will need different feature extraction approaches. This is

why feature extraction is hardly a hot subject in machine learning.

Rather, it is an important subject in some areas, such as image analysis,

ECG signal processing, and sensor data analysis. We use a separate

chapter for biological feature extraction to emphasise the importance of

this topic in bioinformatics. In this chapter, the targets are molecular

sequences and chemical compounds which are generally a chain of

non-numerical components.

214 Machine Learning Approaches to Bioinformatics

14.1 Molecular sequences

A DNA (Deoxyribonucleic acid) sequence is a chain of four nucleic

acids, i.e. adenine, guanine, cytosine, and thymine. They are expressed

by four letters, A, G, C, and T. A protein sequence is a chain of 20 amino

acids shown in Table 14.1 where the full names, short names, and

abbreviations are listed.

Table 14.1. Twenty amino acids.

Full name Short name Abb Full name Short name Abb

Alanine ala A Leucine leu L

Arginine arg R Lysine lys K

Asparagine asn N Methionine met M

Aspartic acid asp D Phenylalanine phe F

Cysteine cys C Proline pro P

Glutamine gln Q Serine ser S

Glutamic acid glu E Threonine thr T

Glycine gly G Tryptophan trp W

Histidine his H Tyrosine tyr Y

Isoleucine ile I Valine val V

In proteomics, it is known that sequences determine structures and

structures determine functions. Based on this, many structure and

function prediction projects are studying sequence structures or sequence

specificities for exploring the hidden relation between sequence

specificities and protein structures and functions. In studying DNA

sequences, it has also been found that the sequence specificity is closely

related to genomic functions and organism speciation.

There are two different types of tasks in using sequence components

for predictions. One is using whole sequences while the other is using

short segments or peptides which are extracted from whole sequences.

Studying whole sequences is a major focus in comparative genomics and

comparative proteomics where the aim is to predict the structure and

function of a whole molecule. For instance, we may need to investigate

how splicing sites, translation start sites, methylation sites, and

promotion regions are distributed in a new DNA sequence. We may also

need to study how posttranslational modification sites, enzyme cleavage

 Feature Extraction (Biological Data Coding) 215

sites, or (or and) metal binding sites are distributed in a new protein

sequence. To have a precise study, a wet laboratory experiment can be

done. However, without a prior knowledge, a blind laboratory

experiment can be very expensive and time consuming. In order to

narrow down to the focal points, comparing a new sequence against

some database sequences that have annotated structure and function

information is a common approach used in bioinformatics. Various

sequence homology alignment algorithms and tools are developed and

implemented for this purpose. Discussing these algorithms and tools are

beyond the scope of this book and the readers are recommended to read

relevant textbooks [1-3, 5, 415]. However, we understand that sequence

homology alignment algorithms and tools are mainly based on a database

of annotated sequences. When this database is large, the computational

cost is huge. For this reason, parametric models can be considered and

feature extraction is needed.

Studying peptides is for investigating a single molecular function. For

instance, we may need to study if a DNA segment has a methylation site,

a splicing site, a translation start site, or a promoter region. For a protein,

we may need to study whether a protein segment has a phosphorylation

site, a hydroxylation site, a nitration site, or an enzyme cleavage site. In

this case, most sequence homology alignment algorithms and tools are

not appropriate. A proper feature extraction is then needed.

14.2 Chemical compounds

A chemical compound is defined as a chemical substance composed of

two or more chemical elements such as oxygen, hydrogen, etc [416-418].

Each chemical compound has a unique structure, but can be decomposed

through a chemical reaction. Chemical compounds are basic units in

metabolism and most cellular functions. In viral and pathogenic studies,

chemical compounds are important targets for drug design and testing.

A chemical compound can be expressed by a chemical formula which

shows what chemical elements the compound is composed of and how

many units of each chemical element are present. For instance, H2O is a

216 Machine Learning Approaches to Bioinformatics

water compound, where two units of hydrogen and one unit of oxygen

are used. NaCl represents a salt compound, containing one unit of

sodium (Na) and one unit of chlorine. The expression of the chemical

elements and units is called the Hill notation [419]. With the Hill

notation, chemical elements have their order listed from left to right in a

formula. In the periodic table, there are currently 117 chemical elements

[420].

In order to study the relationships between chemical compounds and

cellular functions, it is necessary to consider a proper approach to encode

the chemical elements in chemical compounds.

14.3 General definition

If a whole sequence or a peptide is denoted by Θ∈s (Θ is a set of

discrete states of values), a feature extraction process is expressed by

 d
ℜ∈xs֏:P (14.1)

where P means a process and x is a coded vector. For instance,

in handling DNA sequences or peptides, } T C, G, A, {=Θ . The set

of a protein sequence or peptide chain is expressed as

} Y W,V, T, S, R, Q, P, N, M, L, K, I, H, G, F, E, D, C, A, {=Θ . For a

chemical compound, Θ is then a set of 117 chemical elements such as

Oxygen, Hydrogen, Carbon, etc.

14.4 Sequence analysis

14.4.1 Peptide feature extraction

A peptide is commonly an extracted segment from a whole sequence.

The length of peptides in a data set for analysis is commonly fixed. The

study of peptides commonly focuses on the classification of peptides into

different categories. Therefore, peptide data analysis is also called

peptide classification. Meanwhile, the study of peptide data is for

determining whether a certain function is involved. Peptide classification

 Feature Extraction (Biological Data Coding) 217

is therefore also known as functional site prediction. Given a set of N

peptides as well as the labels of the peptides N
nnn t 1} , { ==Ω s , the task is

to build a classifier to map ns to nt

 tf ֏)(: sF (14.2)

where F is a family of functions while f is a specific function which can

map ns to nt accurately. Using a machine-learning approach, we can

try to find f in F . In fact, a few machine-learning algorithms can handle

non-numeric input data such as peptides. There is a need to convert

peptides to numeric vectors before using machine learning algorithms as

defined in equation (14.1).

The easiest way to code peptides or extract features from peptides is

to use a sparse orthogonal coding approach [209] which has been widely

used in bioinformatics. The approach uses a binary vector to represent

each molecular basis, i.e. nucleic acid or amino acid. For four nucleic

acids, the basic codes are 0001, 0010, 0100, and 1000. For 20 amino

acids, the basic codes are 0000000000 000000001 for Alanine,

000000000 0000000010 for Cystein, etc. Based on these basic codes, a

set of numeric features of a peptide can be extracted. For instance, the

feature vector of a 4-mer protein peptide ACGT is 80 bits long. Within it

there are four non-zero bits only.

This means that such a feature extraction approach generates very

sparse feature vectors for peptide data. The advantages of this feature

extraction approach are the simplicity and high resolution. It is easy to

understand how simple this approach is. In terms of high resolution, we

can imagine how data are sparsely distributed in a very high-dimensional

space, where each data point is sitting in a corner of a hyper-cube if all

the possibilities have been exhausted. Figure 14.1 demonstrates this

distribution. If data points on the corners belong to different categories, a

hyper-plane can be found to separate peptides as shown in Fig. 14.1 as a

vertical plane.

However, the data space has been expanded so that it is unnecessarily

large. A 4-mer protein peptide needs 80 independent variables and an

8-mer protein peptide needs 160 independent variables. A serious

problem of this kind of data is that a feature selection may lead to a

218 Machine Learning Approaches to Bioinformatics

Fig. 14.1. A demonstration of sparse orthogonal coding as a feature extraction approach

for peptide classification. Filled circles belong to one class while the open circle belongs

to the other class. The vertical plane is an illustration of decision hyper-plane.

model hard to interpret because only a collection of every 20 consecutive

bits (independent variables) makes sense for the interpretation. If part

of these 20 bits is left after feature selection, it is not useful for

interpretation.

The second approach is to use frequency estimation of molecular

bases. The work of using frequency estimate in a computer program is

done by the h function [421]. With the h function, the frequency of 20

amino acids at each residue is calculated from a set of functional training

peptides. Each functional training peptide contains a functional site. The

frequency estimate as a matrix with 20 rows for 20 amino acids and k

columns for k residues in a peptide is then stored in a computer program.

Such a matrix is referred to as a recognition rule. If the amino acids in a

query peptide can hit a high frequency, the peptide will be considered as

functional, otherwise non-functional. This approach is very simple and

straightforward. However, the major shortcoming of this method is that

is has a high sensitivity and a low specificity.

The third approach is to use various hydrophobicity scales for feature

extraction for protein peptides. Seven hydrophobicity scales available in

the literature have been used. They are the Kyte-Doolittle scale [163], the

Hopp-Woods scale [422], the Cornette scale [423], the Eisenberg scale

 Feature Extraction (Biological Data Coding) 219

[424, 425], the Engelman scale [426], the Janin scale [427], and the Rose

scale [428]. The use of a hydrophobicity scale is due to its traditional role

in analysing the impact of amino acid hydrophobicity on protein

structure and potential for interaction and binding with other molecules

[429]. Hydrophobic amino acids are generally located in the protein

interior whereas hydrophilic amino acids are generally located on the

protein surface as targets for binding with other molecules. A protein

whose surface is composed of mainly negatively charged amino acids

such as glutamate and aspartate will bind to a protein with mainly

positively-charged residues such as lysine and arginine [430-434]. This

means that the hydrophobicity scale is a candidate for encoding amino

acids for constructing a predictive model. In using the hydrophobicity

scales, there are two techniques for feature extraction. The first is to

extract features for each peptide using a single value. The second is to

use dual scales for feature extraction. This is because different

hydrophobicity scales are developed based on different data in different

laboratories. Difference is therefore seen among the seven scales. Some

difference is large, i.e. a hydrophobic value in one scale can be a

hydrophilic value in another scale.

An even more complicated feature extraction process can

embed correlation between residues. Denote by)(iRωφ the code of the

residue iR using one hydrophobicity scale ω . We define

)()(gii RR +ωω φφ as the correlation between two residues iR and

giR + with a gap λ≤< g0 , where m<λ is the maximum gap length

which is pre-defined. For a peptide with length gm > , there will

be 1+− gm residue correlation measures. A mean value

)]()([gii RRE +ωω φφ can be taken. If 4=λ , there are four extra codes

for a single-scale hydrophobicity pattern, namely)]()([1+ii RRE ωω φφ ,

)]()([2+ii RRE ωω φφ ,)]()([3+ii RRE ωω φφ , and)]()([4+ii RRE ωω φφ .

For a dual-scale hydrophobicity pattern, there will be eight

extra codes expressed as)]()([1+ii RRE ωω φφ ,)]()([2+ii RRE ωω φφ ,

)]()([3+ii RRE ωω φφ ,)]()([4+ii RRE ωω φφ ,)]()([1+ii RRE ττ φφ ,

)]()([2+ii RRE ττ φφ ,)]()([3+ii RRE ττ φφ , and)]()([4+ii RRE ττ φφ , where

τ ω≠ is another hydrophobicity scale. Figure 14.2 shows the

mechanism in this correlation feature extraction. When λ is increased,

more correlation features will be introduced.

220 Machine Learning Approaches to Bioinformatics

Fig. 14.2. An illustration of correlation feature extraction. The circles are the residues.

The solid curves represent the correlation between two neighbouring residues without a

gap. The broken curves represent the correlation between two neighbouring residues with

a one-residue gap. The dashed curves represent the correlation between two neighbouring

residues with a two-residue gap. The long dashed curves represent the correlation

between two neighbouring residues with a three-residue gap.

The fourth method is based on a special learning mechanism we have

studied in chapter 11, a basis neural network or a kernel machine. In such

a machine learning algorithm, the original independent variables are not

used as the direct input variables for a machine learning model. Instead, a

kernel function is used to measure the similarity between data points. A

model weights the contributions of various kernels, hence weighting the

contributions of each training data point. These important training data

points are called bases in basis function neural networks. In support

vector machine, they are called support vectors while in relevance vector

machine, they are called relevance vectors (in fact prototype vectors).

Because the independent variables are not used as direct input variables

to these models, feature extraction becomes an implicit process, i.e. a

feature space is not the space of the original independent variables. A

feature space is a space of kernels in this case.

Based on different kernel functions, the original data (peptide) space

is mapped to a kernel space in which a machine learning algorithm works

out how they contribute to a regression or a classification model. Here

we discuss two interesting kernel functions.

 Feature Extraction (Biological Data Coding) 221

Looking at the sparse orthogonal coding approach, we can recall the

Needleman-Wunsch homology alignment algorithm [11], where we use a

binary scoring system. In using a kernel function for the sparse

orthogonal coding approach we end up with this simple homology

alignment scoring system. Two peptides are denoted by is and js . If

two peptides are coded by two binary vectors (
||20

}1,0{ i
i

s
x

×
∈ and

||20
}1,0{ j

j

s
x

×
∈) using the sparse orthogonal coding approach, one way

to quantify their similarity is the dot product. The dot product between

two vectors is defined as

 ∑
=

=⋅
i

k
jkikji xx

x

xx
1

 (14.3)

where ikx and jkx are the kth elements of ix and jx respectively.

Because of the specificity of the sparse orthogonal coding approach for

amino acids (or nucleic acids), equation (14.3) can be re-written as





=

≠
=

jrir

jrir
jrir ssif

ssif
ss

 1

 0
),(δ (14.4)

Here irs and jrs are the rth residues of two peptides (is and js). This

dot product actually is a special case of the Needleman-Wunsch scoring

system. In support vector machine, it is called a linear kernel function

 jiji xxss ⋅=), (σ (14.5)

This kernel function can be further extended to a polynomial kernel

function shown as below

 d
jiji

P]), ([),(βασφ += ssss (14.6)

where α , β , and d are the parameters of the polynomial function.

For instance, the similarity between PRGLGPPG and LPGPGAPG

is 4)LPGPGAPG PRGLGPPG,(=σ and

 dP)4()LPGPGAPG PRGLGPPG,(βαφ += (14.7)

222 Machine Learning Approaches to Bioinformatics

In fact, this identity matrix is an extreme case of many mutation

matrices. The Needleman-Wunsch algorithm, which was originally

developed for molecular sequence homology alignment, has been

replaced by many advanced algorithms like the Smith-Waterman

algorithm [13] as well as some database sequence homology alignment

tools like FASTA [14] and BLAST [10]. All of these new algorithms or

tools use mutation matrices (the Dayhoff [15] score and its variants)

rather than the identity matrix for scoring sequence similarity. The

relationship between any pair of amino acids using the Dayhoff score is

not hard. Instead, it becomes softer. The residue identity using a

mutation matrix is then defined as

),(),(jrirjrir ssMss =σ (14.8)

Here),(jrir ssM is a value from a mutation matrix. A relevant bio-basis

function for using various mutation matrices to measure the similarity

between two peptides has been introduced in chapter 11. Suppose two

peptides are denoted by d
i Θ∈s and d

j Θ∈s , where Θ is a set of

nucleic acids or amino acids while d is the length of the peptides. The

bio-basis function is defined as below [317, 318]

)), ((),(jiji
B

ssss βσρφ −= (14.9)

where ρ is a sigmoid function.

14.4.2 Whole sequence feature extraction

When modelling whole sequence data, some feature extraction

techniques mentioned in the last section are not applicable. The most

widely used are the frequency features of k-mer motifs, where 1≥k .

A k-mer motif is a chain of k nucleic/amino acids. For instance, the

features extracted using up to 2-mer motifs from a segment

GCTCATTGCACTGCATTAAA can be shown in Table 14.2.

 Feature Extraction (Biological Data Coding) 223

Table 14.2. The frequency features extracted from a DNA segment shown in the

main text.

Motif Frequency Key Frequency

A 6 CG 0

C 5 CT 2

G 3 GA 0

T 6 GC 2

AA 2 GG 0

AC 1 GT 0

AG 0 TA 1

AT 1 TC 1

CA 3 TG 2

CC 0 TT 2

The second feature approach for whole sequences is to count the

frequency of certain types of nucleic/amino acids. For instance, amino

acids can be classified in terms of physio-chemical properties [435-439]

or Taylor classification [440], which is shown in Fig. 14.3. Eight features

can be extracted using the Taylor classification of amino acids.

Fig. 14.3. The Taylor classification of 20 amino acids.

224 Machine Learning Approaches to Bioinformatics

Summary

This chapter has discussed approaches for extracting features from

molecular entities including DNA sequences, protein sequences, and

chemical compounds. Feature extraction is an extremely important step

in bioinformatics in three aspects. First, a proper feature extraction

approach can explore as much hidden biological information as possible

compared with an inappropriate approach which will not. The principle

in machine learning is “garbage in, garbage out”. If we present

inaccurately extracted features for a machine learning algorithm, it will

refuse to do us a favour. Second, an efficient feature extraction approach

can save much computational time. There is a very general rule in

machine learning, “the simplest is the beauty”. This means that a simple

machine learning model can generalise well compared to a complicated

model. This is because a complicated model learns too much details (or

noise) from data. Such an over-complicated model is often an over-fitted

one. Third, a biologically-sound feature extraction approach can provide

a good platform for interpreting a model. For instance, a model built

using the mass values of chemical elements for compound pathway

analysis can help give insight into how compound weight is a contributor

in metabolism.

225

Chapter 15

Sequence/Structural Bioinformatics

Foundation – Peptide Classification

In this chapter we discuss the foundation of sequence/structural

bioinformatics through peptide classification. The discussion is

conducted by covering two different applications. They are

posttranslational modification site prediction and promoter region

identification. Although they are very different in nature, the basic

concept is to look at local regions (or segments or peptides) to study

functionality of a molecule. The aim of the chapter is to demonstrate

how to conduct independent bioinformatics research using machine

learning algorithms through feature extraction, feature selection, model

construction, model evaluation, and model selection.

15.1 Nitration site prediction

Tyrosine nitration is a newly discovered posttranslational modification

(PTM) [441-446]. New studies have found that tyrosine nitration

significantly affects signalling pathways for cellular signal transduction

[447-451]. For instance, tyrosine nitration plays a key role in altering

signal transduction during proinflammatory stress [452]. Other studies

confirm that tyrosine nitration is the outcome of triggering signalling

pathways by nitric oxide during NGF-induced neuronal differentiation in

PC12 cells [453, 454]. As an important signal transduction activity, the

mitogen-activated protein kinase (MAPK) signalling pathways can be

manipulated by asbestos-induced tyrosine nitration [455]. Meanwhile the

contribution of protein tyrosine nitration to signalling pathways triggered

by nitric oxide has also been paid increasing attention [456-459]. For

226 Machine Learning Approaches to Bioinformatics

instance, tyrosine nitration has been identified as a contributing

biomarker of oxidative stress and the nitration of some tyrosine sites can

modify protein functions. In medicine, identifying nitration pathways and

nitrated proteins in disease states is highly related to and significantly

contributes to human pathology studies [458]. Because of this, tyrosine

nitration has been the target of a potential predictor of acute and chronic

disease states [458]. In pharmaceutical research, tyrosine nitration has

also been intensively studied. For instance, it has been found that

tyrosine nitration is inhibited when using an anti-tubercular drug [460]. It

is also shown that tyrosine nitration is linked with drug resistance in

neuronal-like PC12 cells [453]. The drug called aminotetrahydrofuran

derivative tetrahydro -N,N- dimethyl -5,5- diphenyl -3-

furanmethanamine hydrochloride (ANAVEX1-41) has been found as a

neuroprotective agent in Alzheimer's disease. The drug has been found to

be able to prevent tyrosine nitration [461]. An experiment has found the

relation between tyrosine nitration and the resistance of Doxorubicin

while the drug has been used in cancer treatment [462].

There are 77 protein sequences with tyrosine nitration sites in the

Swiss-Prot and 89 protein sequences in the NCBI database. Two data

sets contain partially overlapped sequences. The extraction of tyrosine

peptides follows a common practice in posttranslational modification site

prediction model construction, i.e. forming a tyrosine peptide using

symmetrically consecutive residues which flank every tyrosine in a

protein sequence within a given window size. The evaluated peptide

lengths (window sizes) are 10, 20, and 30. A tyrosine peptide is denoted

by Nm – X – N1 – C1 – X – Cm and C1, where X means any residues, and

N and C are used to denote the N-terminal and C-terminal residues,

respectively. R=2*m is used to denote the number of flanking residues

(peptide length). A tyrosine peptide with an experimentally verified

tyrosine nitration site in the middle (between N1 and C1) is labelled as

positive (functional) while a tyrosine peptide which has not yet been

confirmed as having a tyrosine nitration site in experiments is labelled as

negative (non-functional). All the inferred tyrosine nitration sites are not

used.

 Sequence/Structure Bioinformatics Foundation – Peptide Classification 227

A duplication check is carried out separately for both data sets.

Whenever a duplicated pair is found for two peptides belonging to the

same category, i.e. being negative or positive, one is removed. It must be

noted that there is a large possibility that a negative peptide is identical

to a positive peptide. A tyrosine site which is not labelled as an

experimentally verified tyrosine nitration site could be potentially a true

tyrosine nitration site. If two tyrosine peptides of a duplicated pair belong

to two different categories, the positive peptide is kept while the negative

one is discarded. After this, two sets of tyrosine peptides are combined.

During the combination process, one more duplication check process is

conducted to ensure there are no identical peptides in the data. In order to

have roughly balanced peptides from two categories for modelling, a

random selection is used for negative peptides at this stage. Table 15.1

shows all the peptide information. For instance, in the 10-mer data set,

686 non-duplicated negative peptides and 42 non-duplicated positive

peptides are extracted from 77 Swiss-Prot protein sequences. Meanwhile

718 non-duplicated negative peptides and 55 non-duplicated positive

peptides are extracted from 89 NCBI protein sequences. After the

combination, 73 negative and 56 positive 10-mer tyrosine peptides

are maintained for hydrophobicity encoding. Two coding strategies are

used. They are single-scale hydrophobicity patterns and dual-scale

hydrophobicity patterns. A single-scale hydrophobicity pattern is

generated using a single hydrophobicity scale for a tyrosine peptide

while a dual-scale hydrophobicity pattern is generated using two

different hydrophobicity scales, for instance the Kyte-Doolittle scale plus

the Hopp-Woods scale. In total, there are 28 sets of hydrophobicity

Table 15.1. Peptide distribution for three peptide lengths and

two peptide formation stages.

Peptide

length

Swiss-Prot

Protein

Swiss-Prot

peptide

NCBI

protein

NCBI

peptide

Final

peptide

10 77 686/42 89 718/55 73/56

20 77 699/42 89 722/56 71/57

30 77 703/42 89 725/56 68/57

228 Machine Learning Approaches to Bioinformatics

patterns including seven single-scale ones and 21 dual-scale ones

for each peptide. Residue correlations described in chapter 14 are

used.

Four machine learning algorithms are used. They are classification

tree, artificial neural network (ANN) [463], the support vector machine

[333] and the random forest algorithm [272]. All are available in R. In

using ANN, four model structures with four different numbers of hidden

neurons (5, 10, 15, and 20) are constructed. The radial basis function is

used for the kernel function in the SVM models. The cost function is 100

and the smoothing parameter of the radial-basis kernel function is one.

The default parameters of the random forest model are used. The five-

fold cross-validation approach [252] is adopted.

All classification tree models demonstrate much lower prediction

accuracy than others (around 60%). ANN fails to model the following

situations, 20-mer data with 20 hidden neurons, 30-mer data with 15

hidden neurons, and the 30-mer data with 20 hidden neurons because the

ratio of the number of parameters over the number of data points in these

models exceeded the limit set by the package. For each of three

algorithms one top model is selected. Because there are different

numbers of hidden neurons, there are more top ANN models compared

with the other two algorithms. Through computer simulation, it is found

that there is positive correlation between the specificity of tyrosine

peptides and nitration status. Such positive correlation is then

implemented as a predictive tool for tyrosine nitration site prediction.

Figure 15.1 shows the prediction performance of the top models

ordered by the total accuracy. The ANN model with 10 hidden neurons

built on the 30-mer data encoded by the Kyte and the Hopp scales is the

best one. Its total prediction accuracy is 74%, sensitivity is 74%,

specificity is 75%, negative prediction power is 73%, positive prediction

power is 75%, and AUR is 0.75. The next best model is the RF model

built on the 20-mer data encoded by the Kyte and the Hopp scales as

well. Its total prediction accuracy is 73%, specificity is 75%, sensitivity

is 72%, negative prediction power is 72%, positive prediction power is

75%, and AUR is 0.72.

 Sequence/Structure Bioinformatics Foundation – Peptide Classification 229

Fig. 15.1. The prediction performance ordered by the total prediction accuracy for the top

models. The labels in the horizontal axis represent models. “ANN”, “RF”, and “SVM”

are three machine learning algorithms. The numbers besides them indicate the peptide

length. In each of nine top ANN models, the second number after the first number (for

instance, 5, 10, 15, and 20) means the number of hidden neurons. “K” means the Kyte

scale, “H” means the Hopp scale, “C” means the Cornette scale, “J” means the Janin

scale, “R” means the Rose scale, “E” means the Eisenberg scale, and “N” means the

Engelman scale. Dual scales are represented by two letters with “+” in between, for

instance, “K+H” means the use of the Kyte scale and the Hopp scale. The vertical axis

represents the percentage.

Figure 15.2 shows the ranking result (box plot) using the mean

decrease in Gini gain based on five-fold cross-validation random forest

models. It can be seen from the Figure that the eighth N-terminal

flanking residue of a tyrosine encoded by the Kyte scale is the most

important one for the prediction. Meanwhile all eight residue correlation

codes are within the top half region. Among them, the residue correlation

encoded by the Hopp scale with a gap of 3 is ranked the third and the

residue correlation encoded by the Kyte scale with a gap of 4 is ranked

the fifth. Two of the top five variables are residue correlation codes. This

does illustrate the importance of residue correlation in predicting tyrosine

nitration sites. Because there is little experimentally verified mechanism

of tyrosine nitration so far, this ranking can give some clue for biological

investigation.

Ordered by total accuracy

0

10

20

30

40

50

60

70
80

90

A
N

N
.3

0
.1

0
.K

+
H

R
F

.2
0

.K
+
H

A
N

N
.1

0
.1

0
.R

S
V

M
.1

0
.E

+
J

A
N

N
.2

0
.1

0
.C

+
J

A
N

N
.2

0
.5

.R

A
N

N
.2

0
.1

5
.R

A
N

N
.3

0
.5

.K
+

H

R
F

.3
0

.K
+
H

A
N

N
.1

0
.1

5
.C

+
E

A
N

N
.1

0
.2

0
.E

+
J

A
N

N
.1

0
.5

.E
+
J

R
F

.1
0

.H
+

R

S
V

M
.3

0
.R

+
J

S
V

M
.2

0
.K

+
N

Spe

Sen

NPP

PPP

Tot

AUR

230 Machine Learning Approaches to Bioinformatics

Fig. 15.2. Mean decrease in Gini gain for the RF model built on the 20-mer tyrosine

peptides encoded by the Kyte scale and the Hopp scales. The variables are 40 residue

codes (dual-scale codes for each of 20 residues) plus 8 residue correlation codes (4 for

each of two scales). The data are ordered. The horizontal axis represents the encoded

residues. “N” means an N-terminal residue and “C” means a C-terminal residue. The

number following “N” or “C” means the residue number away from the tyrosine (the

target for the prediction). The last letter represents the scale, K for Kyte scale and H for

Hopp scale. “Z” means residue correlation codes. “Z4.K” means a residue correlation

code with a gap length 4 (maximum gap length) and using the Kyte scale. A variable with

a higher Gini gain is more important than a variable with a lower Gini gain. The vertical

axis represents the Gini gain.

15.2 Plant promoter region prediction

A promoter is a segment with a few hundreds of nucleic acids of a DNA

sequence. The function of a promoter is for facilitating gene

transcription. Because of this, a promoter is located upstream of a DNA

sequence near a gene. A promoter covers about 200 base pairs upstream

and 51 base pairs downstream of a transcriptional start site. The close

relation between promoters and gene transcription has made promoters

an important contributor to various cellular functions including disease

development. The prognostic importance of promoters has therefore

already been discovered for various diseases [464-467].

 Sequence/Structure Bioinformatics Foundation – Peptide Classification 231

In prokaryotic organisms, it is believed that there is a conserved

motif in the region of -35 base pairs upstream of a transcriptional start

site [367, 468-470]. Predictors have been developed for prokaryotic

promoter region prediction [471-473]. There is a large diversity when

characterising promoters in eukaryotic proteins. A few kilo-base pairs

upstream of a transcriptional start site may need to be examined [474].

Although it is accepted that eukaryotic promoter region prediction is

difficult [475-478], a number of predictors have been developed. For

instance, self-organising map [145] is used for analysing nucleic acid

profile in promoters [479]. Artificial neural network is used for promoter

prediction [477]. AdaBoost is used for the prediction of promoters as

well [478].

Plant promoters, which are the focus of this work, have a close

relation to pathogens. For instance, it has been found that an avirulence

protein (for instance, AvrBs3 or AvrBs3Deltarep16) binds and activates

a promoter of disease resistance genes to fight against pathogen invasion

[480]. Xanthomonas campestris pv. Campestris is known as a causal

agent of black-rot disease of cruciferous plants. It is related to the

Escherichia coli lac promoter [481]. In studying Rab/GTPases which can

regulate vesicular trafficking during exocytosis, endocytosis and cellular

differentiation, it is found that a pectinase gene promoter allows foreign

genes on pectin medium [482]. WRKY factors, known as a family of

plant-related transcriptional regulators, are related to plant stress control.

In an experiment, it is found that WRKY can suppress its own promoter

activity and is positively correlated with pathogen defense-associated

PR1 promoter activity [483]. Some synthetic promoters have been

produced to study how signalling and transcriptional activation function

when plant-pathogens are injected [484].

In terms of the importance of plant promoters, a database called

PlantProm has been recently established [485]. In the database, all plant

promoters for polymerase II are annotated without redundancy. All

promoters have experimentally verified transcriptional start sites. There

have been 175 TATA-rich plant promoters and 130 TATA-less plant

promoters annotated so far. All the promoter segments are composed

of -200 upstream base pairs of the transcriptional start sites and +51

downstream base pairs of the transcriptional start sites. All segments are

232 Machine Learning Approaches to Bioinformatics

stored in the FASTA format. Based on this database, two predictors have

recently been constructed. One employed the transductive confidence

machine [486] and the other employed the support vector machine

algorithm [487]. In the former work, the sequence content and signal

features are used as features. In the latter paper, the 4-mer motifs are

used as features. Both have achieved very good prediction performance.

However, motif correlation in relation to plant promoter has not drawn

much attention.

175 TATA-rich plant promoters (sequence segments) and 130

TATA-less plant promoters are downloaded from PlantProm [485].

These data are treated as positive data. Each segment has 251 base pairs

(bps) with -200 upstream and +51 downstream of transcriptional start

sites. In order to generate negative data for model construction, 23211

nucleic acid sequences containing CDS are downloaded from NCBI

[488]. This is a method used in the previous studies [486, 489]. For each

of 23211 sequences, there is often more than one CDS segment. Among

a number of CDS segments, one CDS is randomly selected. One segment

of 251 bps is randomly selected from the selected CDS. Because not

every sequence contains a CDS segment, only 20925 segments of 251

bps are extracted from these 23211 sequences. For each segment (both

positive and negative), motif frequencies and motif correlations are used

as features. The data composed of motif features are then used for

building predictors.

Three sets of motifs are investigated. The first set targets sequence

content, i.e. 1-mer, 2-mer, 3-mer and 4-mer motifs are used. This is to

test how motif frequency is related to the recognition of a promoter

region. The second set is called first-order or low-order motif correlation.

It targets base pair correlation, for instance one adenine finds another

adenine with a gap g. This is to evaluate how correlated single base pair

motifs are related to promoter binding. The maximum value of g is set at

20. The third set is an extension of the second set aiming to investigate

high-order motif correlations in relation to promoter status. Three

machine learning algorithms: artificial neural networks, the support

vector machine algorithm and the random forest algorithm, are used.

Three types of motifs are designed. Type I are k-mer motifs. With

this motif pattern, a sliding window with a target k-mer motif is used to

 Sequence/Structure Bioinformatics Foundation – Peptide Classification 233

scan each segment. The frequency of a k-mer motif in a segment is used

as a feature. When k is 1, this is single nucleic acid frequency, i.e. the

frequencies of cytosine, guanine, adenine and thymine in a segment.

Here maximum k is set to 4. In total, there are 340 type I motifs, hence

340 features.

Type II motifs are called first-order or low-order motif correlation,

i.e. gapped single-nucleic correlations. This measures how likely an

adenine is to meet another adenine with a gap g within the same segment

or how likely an adenine is to meet a thymine with a gap g within the

same segment. The frequency of each gapped single-nucleic correlation

is treated as a feature. Suppose we denote two of all the gapped single-

nucleic correlations as A-1-A and A-1-T; the frequency of A-1-A and

A-1-T is 1 and 2 in a segment GCTCATTGAACTGAATAAA. The

maximum value of gap g is set to 20. The number of extracted features

using Type II (or low-order) motifs is then 320=16*20.

Type III is an extension to Type II, i.e. being high-order motif

correlations. The correlations of 2-mer and 3-mer motifs are evaluated in

this study. Higher order motifs made model construction infeasible

because of huge dimensionality. For instance, in a segment

GCTCATTGCACTGCATTAA, the GC pair has one hit by a gap 3 and

one hit by a gap 6. The TT pair has one hit by a gap 8. The CA pair has

two hits by a gap 3. The triple ATT has one hit by a gap 7. The

maximum gap is set to 20 in this study. There are 1600 high-order motif

correlation features, i.e. (16+64)*20. The separate consideration of motif

correlation is for investigating if low-order or high-order motif

correlations are important in plant promoter recognition.

Three simulations are designed, i.e. alpha simulation, beta

simulation and gamma simulation. In alpha simulation, TATA-rich and

TATA-less segments are treated separately, i.e. two separate sets of

models are constructed. One uses the TATA-rich segments as the

positive data and the other uses TATA-less segments as the positive data.

Both use the segments extracted from CDS in NCBI sequences as the

negative data. In beta simulation, both TATA-rich and TATA-less

segments are combined together to form the positive data while the

segments extracted from CDS in NCBI sequences are used as the

negative data, as previous works have done [486, 489]. The segments

234 Machine Learning Approaches to Bioinformatics

being organised this way is referred to as dual segments. Both alpha and

beta simulations employ the 20-fold cross-validation approach for model

evaluation [252]. In 20-fold cross-validation, data are randomly divided

into 20 folds. One fold of data is reserved for testing using a model

constructed on the rest of the data (19 folds). The 20 folds are in turn

used as testing data. 20 models are therefore constructed. The mean and

standard deviation of testing performance of the 20 models are calculated

for the evaluation. In gamma simulation, three data sets are formed.

Their positive data are TATA-rich segments, TATA-less segments and

dual segments. Their negative data are the segments extracted from CDS

in NCBI sequences as above. A bootstrapping approach is adopted to test

the probabilistic blind sensitivity (PBS), i.e. estimating the probabilistic

property when using constructed models to predict true promoters on

novel segments. In order to test this, a certain proportion of positive

segments (TATA-rich, TATA-less or dual segments) are randomly

selected from whole positive segments as the blind segments. This

simulation is designed for comparing with Shahmuradov’s work using

the transductive confidence machine [485] where only one set of blind

segments is used for the evaluation. The rest of the data including

positive and negative segments are treated as training data used for

constructing a predictor. The numbers of reserved blind segments are 40

for TATA-rich (as in Shahmuradov’s work [485]), 25 for TATA-less (as

in Shahmuradov’s work [485]) and 40 for the dual data. The process is

repeated 100 times, i.e., 100 sets of blind segments are randomly

generated from whole positive data. A predictor is constructed for each

randomly generated set of training data by the 20-fold cross-validation

approach. Each built predictor is then tested on its corresponding blind

segments. A probabilistic estimation (mean and standard deviation) of

blind sensitivity is obtained from the 100 random models.

In Shahmuradov’s paper [486], two models are constructed for

predicting TATA-rich promoters and TATA-less promoters in plants,

separately. In prediction, 40 TATA-rich promoter segments and 25

TATA-less promoter segments are reserved as test segments and the rest

are used for model construction. No negative data are used for testing the

predictor. The prediction accuracies are 87.5% and 84% for TATA-rich

and TATA-less, respectively. In Anwar’s study [489], both TATA-rich

 Sequence/Structure Bioinformatics Foundation – Peptide Classification 235

and TATA-less promoters are combined into one model. The prediction

specificity is 90% and the prediction sensitivity is 86%.

In comparison, the ANN models are the best. In all simulations, motif

correlation (high-order motif) ANN models outperform others. This

means that motif correlation plays an important role in promoter

recognition. The performances of ANN models for the beta simulation

are discussed here.

Fig. 15.3. The performance of ANN-dual model in alpha simulation. The notation of the

horizontal axis follows TATA-coding type-hidden neurons. For instance, D-III-20 means

dual data using Type III coding and an ANN model with 20 hidden neurons. The vertical

axis represents the performance.

Figure 15.3 shows the performance of the alpha simulation for the

dual group. The specificity of 12 models varies from 90% to 94%. The

sensitivity of 12 models varies from 83% to 92%. All ANN models have

their specificity greater than that of Anwar’s work. 15 out of 18 ANN

models have their sensitivity greater than that of Anwar’s work. NPP

varies from 89% to 95%. PPP varies from 85% to 91%. The total

accuracy varies from 87% to 93%. The top model uses Type I coding

with an ANN model employing 10 hidden neurons.

236 Machine Learning Approaches to Bioinformatics

One of the important functions that the random forest algorithm has is

to rank variables. Here we use the mean decrease in accuracy (MDA) for

the analysis.

Table 15.2. The ranking results using MDA for two groups with three types of motifs.

For Type II motifs, the features are expressed by X-n-Y, where X and Y are two nucleic

acids and n is the number of gaps between them. For Type III motifs, the features

are expressed by [X]-n-[X], where X is a motif and n is the gaps between two positions of

the motif.

MDA TATA-rich -

A

TATA-rich -

B

TATA-rich -

C

TATA-less -

A

TATA-less -

B

TATA-less -

C

1 G G-12-G ATA-4-ATA G G-3-G TA-17-TA

2 TATA G-15-G TA-2-TA GG G-15-G CTC-2-CTC

3 GGA T-1-A TA-4-TA GGA G-12-G TT-2-TT

4 GG G-18-G AT-4-AT TTTT C-2-G TT-1-TT

5 TA G-1-G TA-8-TA TTT G-6-G TTT-1-TTT

6 GA G-17-G TA-6-TA GA G-18-G TCT-2-TCT

7 TGG G-9-G ATA-2-ATA TA C-5-G TT-5-TT

8 TAAA C-15-A AA-1-AA TGG G-14-C TTT-2-TTT

9 ATAA C-2-G AA-5-AA GC C-5-C CT-2-CT

10 TAA G-6-G CA-4-CA CCTC C-4-G TT-4-TT

Shown in Table 15.2 are the ranking results for the TATA-rich and

TATA-less groups using three types of motifs. For Type I motifs, we

show that the following common motifs are shared by both TATA-rich

and TATA-less groups, G, GG, TA, GA, and TGG. As expected, TATA-

rich is highly ranked in the TATA-rich group, but not in the TATA-less

group. Instead, the motif TTTT is highly ranked in the TATA-less group.

The binuclear GC has been ranked at 9
th in the TATA-less group, but not

in the top ten of the TATA-rich group. When using Type II motifs, it is

found that G-12-G, G-15-G, G-18-G, C-2-G, and G-6-G are common to

the two groups. T-1-A, G-1-G, G-17-G, G-9-G, and C-15-A are distinct

for the TATA-rich group while G-3-G, C-5-G, G-14-G, C-5-C, and

C-4-G are distinct for the TATA-less group. When using Type III motifs,

we show that the TATA-less group prefers rich thymine-based motif

correlation. All top ten motif correlation features involve thymine.

Moreover, four 2-mer motifs involve only thymine (TT-1-TT, TT-2-TT,

TT-4-TT, and TT-5-TT) and two 3-mer motifs involve only thymine

 Sequence/Structure Bioinformatics Foundation – Peptide Classification 237

(TTT-1-TTT and TTT-2-TTT). In the TATA-rich group, more motifs

involve thymine and adenine.

Summary

This chapter has presented two case studies for understanding the

foundation of sequence/structural bioinformatics. The core of these

studies is peptide classification although they have different biological

backgrounds. In peptide classification, we need to carefully collect

sequence data and extract peptides. The duplicated ones must be

removed. Care should also be taken for the inferred ones because they

cannot be treated as annotated data or non-annotated data. These data

must be excluded from the study in case they bring in some false

information. In model construction, we need to be careful about model

selection and evaluation. Different criteria may lead to the selection of

different models. In most cases, a more robust model is preferred. Model

selection should also be based on the evidence collected in a study. It is

very common that one machine-learning algorithm outperforms the

others in one application, but may show a completely different story in

other applications. Making a web tool for public use is also a

recommended research approach.

238

Chapter 16

Gene Network – Causal Network

and Bayesian Networks

A traditional point of view of structure-function relation is

Sequence → Structure → Function

It is argued that this simple flow is too reductionistic [490]. This is

because any biological function is completed by a network of

molecules in a cell. A network is always composed of complicated

interactions among molecules in a cell. Even more complicated are the

dynamics of the interactions, some being more transient and some

taking more time to complete. The complexity can increase when

crosstalk happens unexpectedly. The post-genomic approach towards

studying biological functions has a new flow expression as below [490]

Interaction → Network → Function

A gene network is a typical one among various molecular networks.

This chapter focuses on the topic of causal network construction and

the concept of Bayesian network.

16.1 Gene regulatory network

A gene regulatory network (GRN) is a graphical or visual representation

of the interactions of DNA segments in a cell. Such a network has three

properties. First, input and output; no GRN is an isolated entity in a cell.

A GRN is activated by signals sent by other GRNs or external stimuli

and sends signals to other GRNs. For instance, a plant-pathogen GRN is

shown in Fig. 16.1, where the inputs to the network are rhizobacteria,

fungus, bacteria including AvrPto, elicitor, and AvrRPM1. The output is

the phytoalexins. A simple input-output function between them can be

expressed as

 Gene Network – Causal Network and Bayesian Networks 239

 phytoalexins (rhizobacteria,AvrPto,elicitor,AvrRPM1)f= (16.1)

Fig. 16.1. Plant-pathogen gene regulatory network http://wwwmgs.bionet.nsc.ru/mgs/gnw/

genenet/viewer/Plant-pathogen.

Second, the molecules in a GRN can have complicated interactions.

Figure 16.2 is a sub-network of Fig. 16.1, where it can be seen that Pto (a

kinase conferring resistance to tomato bacterial speck disease and

interacting with proteins that bind a cis-element of pathogenesis-related

genes [491]) receives both external signals (AvrPto) and signals from the

nucleus (PRF). In return, it sends signals to the nucleus again through

Pti5.

240 Machine Learning Approaches to Bioinformatics

Fig. 16.2. A sub-network of plant-pathogen GRN.

Third, all activities within a network are transient or dynamic

depending on many complex factors. Many works have employed

differential equations to study these dynamics.

The importance of studying network results from the fact that the

activities of molecules in a network reflect what initial conditions a GRN

has, what the environmental factors are, and importantly how molecules

in a GRN interact [490]. Taking gene expression as an example, the

proportion of differentially expressed genes is commonly small [492-

494]. Rather than focusing on the genomes to study a blueprint of life,

studying how these differential genes appear is a way to discover the

chemical blueprint of life through network analysis.
As mentioned above, a GRN is a graphical or visual representation of

a true biological network. A GRN resembles most ordered networks for

which there are two types of tasks for research. One is how to analyse

network property and the other is how to construct a network based on

observations. For the former, the focal points include network

complexity analysis [495-497], shortest/longest path identification [498-

500], and network robustness [501-503]. Machine-learning algorithms

have been largely used for the latter. Among various algorithms, the

Bayesian network shows many advantages in applications.

 Gene Network – Causal Network and Bayesian Networks 241

16.2 Causal networks, networks, graphs

A causal network is a network with connected nodes and arcs

demonstrating causality. Each node represents a variable and each arc

represents the causality between two variables. Variables with a direct

connection are said to have a direct causality. Variables with an indirect

connection are said to have an indirect causality. Variables having no

connections are said to be independent. For instance, variables A and B

have a direct causality in Fig. 16.3. Variables A and E have an indirect

causality. Variables F and G are independent.

Fig. 16.3. An illustration of a causal network with six variables and causalities.

Because a causal network is a visual representation of a physical or

biological system, a graph is commonly used to denote a network. A

graph is a two-fold set),(EVG = with V to represent a set of variables

(or nodes) and VVE ×⊆ to represent a set of arcs. Ev, j ∈)(iv

represents a directed arc from V∈iv to Vv j ∈ . In this book, only

directed networks are used for the discussion. The notation

>< ''2'1 ,,, nvvv ⋯ is used to denote a path from '1v to 'nv through

variables },,{ '1'2 −nvv ⋯ . The notation v̂ is used to represent the parent

node(s) of a node v and the notation v~ is used to represent the child

node(s) of a node v .

242 Machine Learning Approaches to Bioinformatics

16.3 A brief review of the probability

Informally, a probability is defined as a chance that an event happens

among a discrete set of events. Suppose we have an experiment with N

trials for testing oxidative stress in plants. The chance that the oxidative

stress is observed in N experiments is expressed as

N

P
observed isoxidation that timesthe

)oxidative(= (16.2)

It is treated as a probability. In Fig. 16.1 we have seen that the oxidative

stress can be caused by GST (glutathione S-transferase) or ROS (reactive

oxygen species). Suppose we have observed NN <GST times that GST

is over-expressed when oxidative stress is observed and NN <ROS

times that ROS is over-expressed when oxidative stress is observed. The

chance of observing two random events occurring at the same time in

probability is called a joint probability. The joint probability for

observing over-expressed GST and oxidative stress is defined as

N

N
P GST)GST&oxidative(= (16.3)

The joint probability for observing over-expressed ROS and oxidative

stress is defined as

N

N
P ROS)ROS&oxidative(= (16.4)

Having these joint probabilities on hand, we may need to answer a

question. What is the probability that GST will cause oxidative stress and

what is the probability that ROS will cause oxidative stress? This is a

question of conditional probability, i.e. the probability of one random

event happening after another random event has happened. To answer

this question, we need to know two more quantities: the probability that

GST is over-expressed and the probability that ROS is over-expressed.

Suppose they are also observed in this experiment and are denoted by

GSTP and ROSP . They are called marginal probabilities. Having these

 Gene Network – Causal Network and Bayesian Networks 243

two more quantities, we can answer the above question using the concept
of conditional probability. The conditional probability is defined as

yprobabilit marginal

yprobabilitjoint
yprobabilit lconditiona  (16.5)

Going back to the question, we can see that the conditional probability
that oxidative stress occurs with over-expression of GST is

GST

GST)GST|oxidative(
PN

NP


 (16.6)

and the conditional probability that oxidative stress occurs with over-
expression of ROS is

ROS

ROS)ROS|oxidative(
PN

NP


 (16.7)

Figure 16.4 shows a diagram of the relationship between the three parts.

Fig. 16.4. The logical relationship between the oxidative stress, GST and ROS.

Remember that all the probabilities calculated above are based on
the current experiment. Equations (16.6) and (16.7) are also called
likelihood. They are objective measures. Before the experiment we may
have some subjective knowledge about how likely GST and ROS are to
be over-expressed, let’s use another two probabilities to quantify this,
i.e. GST and ROS . They are called a prior probabilities. Based on these

244 Machine Learning Approaches to Bioinformatics

probabilities, we can update our belief about which causes the oxidative
stress using the Bayes rule. It is used here to deliver posterior probability
for decision making

evidence

prior a lconditiona
posterior


 (16.8)

The evidence is calculated as the sum of all the products between
conditional probabilities and a prior probabilities. Going back to our
question, we can see that the posterior probability that GST causes the
oxidative stress is

ROS
ROS

ROS
GST

GST

GST

GST
GST

GST

)oxidative|GST(















PN
N

PN
N

PN
N

P (16.9)

The posterior probability that ROS causes the oxidative stress is

ROS
ROS

ROS
GST

GST

GST

ROS
ROS

ROS

)oxidative|R(















PN
N

PN
N

PN
N

OSP (16.10)

In probability, other rules are also relevant to the analysis of the
Bayesian networks. For N mutually independent random events (ix), the
probability that either one occurs is defined as

 









 N

i
i

N

i
i xPxP

11
)( (16.11)

The probability that all N mutually independent random events (ix)
occur at the same time is defined as

 









 N

i
i

N

i
i xPxP

11
)( (16.12)

 Gene Network – Causal Network and Bayesian Networks 245

If two mutually independent random variables X and Y have N
implementations (values), the total probability is defined as

 



N

j
jii yxPxP

1
),()((16.13)

or

 



N

j
jii xyPyP

1
),()((16.14)

16.4 Discrete Bayesian network

In this book, we provide only an introduction to discrete Bayesian
network. For a variety of Bayesian networks, readers can refer to
Neapolitan’s book [504] and Jensen’s book [505]. A Discrete Bayesian
network (DBN) is denoted by)(PG,X,N  , where X represents a set of
discrete variables, G represents a graph, and P represents a set of
conditional probabilities. For each variable in XiX , its probability
distribution is denoted by P)ˆ|(ii XXP . Let’s discuss the case shown
in Fig. 16.4. In DBN, we assume that all three variables are taking
binary values } yes no, { . The conditional probabilities P are shown in
Table 16.1.

Table 16.1. The conditional probability
set for the case shown in Fig. 16.4.

 Oxidative
GST ROS no yes

no no 0.7 0.3
no yes 0.2 0.8
yes no 0.1 0.9
yes yes 0.4 0.6

We also have the a prior probability set shown in Table 16.2. These

probabilities quantitatively measure the subjective knowledge.

246 Machine Learning Approaches to Bioinformatics

Table 16.2. The prior probability
set for the case shown in Fig. 16.4.

 GST ROS
no 0.7 0.8
yes 0.3 0.2

The calculated posterior probabilities are

)474.0 ,526.0()oxidative|GST(P (16.15)

and

)278.0 ,722.0()oxidative|R(OSP (16.16)

We can label the DBN by these numbers shown in Fig. 16.5, where the
broken lines represent “no” state and the solid lines represent “yes” state.

Fig. 16.5. The labelled DBN.

16.5 Inference with discrete Bayesian network

Building a machine-learning model is ultimately for prediction or
inference. Given a Bayesian network, the aim is to predict the future with
uncertainty. In a given DBN, we are required to calculate the marginal
probability of a target variable using

 Gene Network – Causal Network and Bayesian Networks 247

  
 


YX X

ii
YX i

XXPPYP
\\

)ˆ|()()(
X XX

X (16.17)

In the oxidative stress case, if the target variable is oxidative, its parent
variables are GST and ROS. We then have

GST ROS

(oxidative)

(oxidative|GST,ROS) (GST) (ROS)

P
P P P   (16.18)

Using the above equation, the marginal probabilities of oxidative stress
are 47% and 53%. The probabilities indicate that it is very likely that
oxidative stress is observable in this case.

16.6 Learning discrete Bayesian network

To estimate the parameters of DBN, the Bayes rule is used. Equation
(16.8) can be re-written as

   ,
)(

)()(
)|(

D

|D
D

P
PPP (16.19)

where  is a parameter space and  is the parameter learnt for fitting
the data D . In general, we assume that all model parameters are
independent. Based on the probability rule discussed above, we have

  
 


X Xi i

iiX X
XXPP

ˆ
ˆ|

)()( (16.20)

where)(ˆ| ii XXP  is called a local parameter prior for variable iX which

can use the Dirichlet distribution [506].

16.7 Bayesian networks for gene regulatory networks

Bayesian networks have been widely used in gene regulatory network
analysis [507-513]. However, learning a Bayesian network model has
been known to be an NP-hard problem, i.e. it is only applicable to small

248 Machine Learning Approaches to Bioinformatics

size networks. Searching and scoring approaches as well as a number of

heuristic algorithms are implemented [514] [515] [516]. Meanwhile,

conditional independency has to be well calculated. In a modified

Bayesian network, mutual information is proposed to measure the

dependency. Because of this, the exponential time complexity spent in

calculating conditional independency can be reduced for large-scale gene

regulatory network analysis [517]. In order to improve inference

confidence, the idea of consensus and meta-analysis is used in analysing

regulatory gene network [518]. Bayesian networks can also be used to

reveal dynamics in gene expression data using time series gene

expression data [519].

16.8 Bayesian networks for discovering peptide patterns

Here we demonstrate an application of discrete Bayesian networks for

discovering patterns in peptide data. First, we apply DBN to the HIV

data which was described in chapter 11. In applying DBN, the cleaved

(positive) and non-cleaved (negative) peptides are separately used for

building DBN models. After the modes have been constructed, we then

visualise and compare two network structures. Figure 16.6 shows two

network structures. The two structures have some differences. In the

negative structure, it can be seen that eight residues are divided into four

coupling groups regularly. The coupling effect is a common phenomenon

in peptide structure analysis, i.e. neighbouring residues can possess

certain structures for preserving biological pattern for certain biological

functions. In the positive structure (the right panel), such a regular

structure does not exist. Instead, residue C4 and C1 become parent

variables for the other four residues.

Figure 16.7 shows a case of Hepatitis C-virus 10-mer protease

peptides. The data is from an early study [520]. The data set is composed

of 752 non-cleaved HCV peptides and 168 cleaved peptides. The same

approach used in analysing the HIV data applies to the HCV data. The

left panel is for the negative structure where the regular pattern is shown

again. However, in the positive DBN structure (the right panel), such

regularity is broken. The C3 residue is not coupling with C4. Instead, it

correlates with N1. Residue C2 is the parent variable for C1 and N2.

 Gene Network – Causal Network and Bayesian Networks 249

Fig. 16.6. Two DBN structures made for the HIV data. The left panel shows the negative

structure and the right panel shows the positive structure. Each 8-mer peptide is denoted

by N4-N3-N2-N1-C1-C2-C3-C4 with N meaning the N-terminal residues and C meaning the

C-terminal residues.

Fig. 16.7. Two DBN structures made for the HCV data. The left panel shows the negative

structure and the right panel shows the positive structure. Each 10-mer peptide is denoted

by N6-N5-N4-N3-N2-N1-C1-C2-C3-C4 with N representing N-terminal residues and C

representing C-terminal residues.

16.9 Bayesian networks for analysing Burkholderia pseudomallei

gene data

The positive and negative data sets (for infected and non-infected

patients respectively) are used separately. The networks derived are

250 Machine Learning Approaches to Bioinformatics

shown in Fig. 16.8. The data are the reduced data set generated by the

random forest algorithm discussed in chapter 9. Only the top ten genes

are used for the study. After the construction of two DBN structures,

differences were found between the two. First, the complexity in the

negative structure is higher than that in the positive structure. This means

that randomness is less in the positive data or that the diagnostic pattern

is hidden in the positive structure.

Fig. 16.8. Two DBN structures made for the reduced Burkholderia pseudomallei gene

expression data. “Reduced” means that only ten top genes selected by the random forest

algorithm discussed in chapter 9 are used. The left panel shows the negative structure and

the right panel shows the positive structure.

Second, some direction has been changed from the negative structure

to the positive structure. For instance, the gene BPSS1492 is a parent

variable for the gene BPSS1512 in the negative structure. However, their

relation in the positive structure is reversed. Third, one important mutual

relation discovered in chapter 13 is retained for both negative and

positive structures. It is the correlation between the gene BPSL2697 and

the gene BPSS0477. Fourth, the gene BPSL2096 is always the root

variable or the most causative gene in both negative and positive

structures. The paths led by the gene BPSL2096 are shown in Fig. 16.9.

In two paths, one “downstream” gene is identical, i.e. the gene

BPSS2141.

 Gene Network – Causal Network and Bayesian Networks 251

Fig. 16.9. Two paths led from the same gene (BPSL2096) from both negative (the right

panel) and positive (the left panel) DBN structures.

We then extend the network size to a larger scale. 214 genes are

selected based on the distance between two gene vectors. If the distance

is smaller than a threshold, one is removed. Based on the threshold 0.17

for the negative data set and 0.135 for the positive data set we have 24

and 23 genes in the negative and positive data sets, respectively. Figure

16.10 shows the DBN structures.

Fig. 16.10. Two DBN structures derived from 24 genes in the negative data set and 23

genes in the positive data set. The genes are selected based on a distance threshold.

252 Machine Learning Approaches to Bioinformatics

Summary

This chapter has discussed the discrete Bayesian network and its

applications to bioinformatics. In constructing a Bayesian network, we

are required to undertake three different tasks. First, we need to learn

model parameters, i.e. the posterior probabilities from each parent

variable to a child variable. Second, we need to use a built network to

make inferences. This involves the prediction of a certain event with a

confidence. Third, we can use the network to infer how likely one

“downstream” (child) variable is to be the outcome of its causative

variable “upstream”. Bayesian networks are a class of powerful machine-

learning algorithms which can help discover the underlying gene

regulatory network for understanding how a gene network responds to

environmental factors and generating new hypotheses. However,

Bayesian networks are known to have a vital limit in computational cost

as well as network size. Currently, building a Bayesian network for data

with over 1000 variables is a non-trivial task, i.e. the computational cost

is not affordable. More and more new algorithms which aim to improve

the efficiency and accuracy of Bayesian networks learning have been

proposed. The evaluation and validation of them for general purpose

Bayesian network learning is still a vital and tough task we face.

253

Chapter 17

S-Systems

Biochemical System Theory (BST) defines a mathematical model to

study the dynamics of a biochemical system. The theory was

introduced by Mike Savageau in the 1960s. Using BST to study a

biochemical system does not need equations defining the exact

mechanism of reactions. In a BST model, the relation between reactants

and regulatory interactions is modelled by the power-law theory. The

approach is referred to as S-systems or generalised mass action (GMA).

There are two subjects closely related to S-system research. The first is

how to learn the structure of an S-system given data. The second is how

to learn system parameters given an S-system structure.

17.1 Michealis-Menten change law

Biochemical System Theory (BST) or S-system refers to a type of

biochemical systems study that uses a mathematical biology approach.

The model was introduced by Mike Savageau in the late 1960s [521-

523]. The equations involved in BST are commonly ordinary differential

equations. Each equation describes a biochemical process based on the

power-law theory.

The dynamics of a biochemical system with a single component (X)

can be described by a function)(tX which is a function of time. An

experiment often aims to find how the component changes through time.

Observations are taken at several time intervals. From this, the change

rate can be drawn and analysed. In mathematics, such a change rate can

be defined by an ordinary differential equation as below

254 Machine Learning Approaches to Bioinformatics

 βα += X
dt

dX
 (17.1)

To solve this equation, an integral can be taken to generate the following

equation

)1(−= +CteX α

α

β
 (17.2)

If the initial state is (0, 0), the system may be plotted as in Fig. 17.1.

Fig. 17.1. An illustration of change rate for a single component biochemical system. The

horizontal axis represents time and the vertical axis represents the quantity of the

component (X).

A well-known rate change example in biochemistry is the Michealis-

Menten rate law [524]. The reaction between an enzyme (E) and a

substrate (S) leads to a product (P). The diagram of a simple biochemical

reaction is shown in Fig. 17.2, where k1, k-1 and k2 are three reaction

constants.

 S-Systems 255

Fig. 17.2. An illustration of a simple biochemical reaction.

The system is described as

SK

SV
S

dt

dS

M +
−== max

.

 (17.3)

where maxV is the maximum change rate of the substrate and MK is

called the Michealis constant. The product is described by another

differential equation as below

SK

SV
P

dt

dP

M +
== max

.

 (17.4)

The relation between them is shown in Fig. 17.3.

Fig. 17.3. The relation between maxV and MK .

Solving the ordinary differential equations defined in equations (17.3)

and (17.4) leads to the system dynamics shown in Fig. 17.4.

256 Machine Learning Approaches to Bioinformatics

Fig. 17.4. An illustration of the system dynamics of a simple biochemical system using

the Michaelis-Menten rate law. In this simulation, 2max =V and 4=MK .

17.2 S-system

A general mathematical description of a biochemical system of N

substrates can be shown as below

 −+
−= iii VVX

.

 (17.5)

where iX is the ith substrate in a biochemical system., +
iV and −

iV are

called the product formation and substrate depletion of the ith substrate.

They are also called influx [525] and outflow (or degradation [525]).

Both production formation and substrate depletion are functions of

substrates

),,,(21 Nii XXXVV ⋯

++ = and),,,(21 Nii XXXVV ⋯

−− = (17.6)

A three-component and one-reaction system is shown in Fig. 17.5 [525].

The function of the enzyme 3X is to convert the substrate 1X to the

 S-Systems 257

product 2X . 1X has no influx but has a degradation term. Its influx is

then replaced by a constant C. 2X has one influx term and a degradation

term. The system is defined below by two ordinary differential equations

)(),(

),(

223122

3111

XVXXVX

XXVCX

−+

−

−=

−=

.

.

 (17.7)

Note that),(),(312311 XXVXXV
+−

= .

Fig. 17.5. A three-component and one-reaction biochemical system., 1X and 2X are

substrates while 3X is an enzyme.

The next critical question is how to represent),(311 XXV
− and

)(22 XV
− as functions of the substrates and enzyme. Based on the

pioneering work of Savageau [521-523], both outflows of equation

(17.7) are represented as the products of molecules, which is referred to

as the power law as shown below

e

cb

dXXV

XaXXXV

222

31311

)(

),(

=

=

−

−

 (17.8)

where a, b, c, d, and e are five constants. A generalised form of a

biochemical system with N substrates and N enzymes is shown below,

called an S-system where “S” refers to synergism and saturation of an

investigated system [525].

258 Machine Learning Approaches to Bioinformatics

],1[,
11

MiXXX
MN

j
jj

MN

j
jii

ijij ∈∀−= ∏∏
+

=

+

=

νµ
βα

.

 (17.9)

where iα is a constant of the production formation rate, jβ is a constant

of the substrate depletion rate, ijµ is the production formation kinetic

rate, and ijν is the substrate depletion kinetic rate.

Here we show an example [525]

5.0

2

001.0)0(,

3

2

1
1

3
5.0

11211

=

=

=−= −

X

X

XXXXX βα
.

 (17.10)

Figure 17.6 shows the result of solving this differential equation.

Fig. 17.6. The dynamics of the S-system described by equation (17.10), where

111 == βα .

In Voit’s book [525], three properties of an S-system are discussed. In

brief, they are validity, theoretic justification, and analytic convenience.

For the first one, it is shown that S-system models are consistent with

real biochemical systems. In many experiments, the power-law property

of an S-system is confirmed. For the second, Voit presented three

arguments. One is that concentration is very close to the steady-state.

 S-Systems 259

The next is the fact that the relative change of metabolite concentration is

generally linear. The final one is that virtually any phenomenon can be

formulated using an S-system. For the third, Voit argued that an S-

system can easily be modelled numerically.

However, an S-system still has a certain distance from real

applications because of the difficulty in structure identification and

parameter estimation. In a real application, it is normally rare to have

prior knowledge of a model structure as well as model parameters. This

means that it is hard to define an exact influx function and a degradation

function for each substrate. Even if the model structure can be

approximately determined, a proper approach is needed to estimate all

the parameters. The difficulty is even more severe when we have limited

data, i.e. the time points are limited.

Various machine learning algorithms are therefore employed in

various studies to address these two problems.

17.3 Simplification of an S-system

Because structure identification and parameter estimation are the most

important things to do, a simplification process of an S-system is

required. This will lead to several algebraic equations which can be

solved by machine learning algorithms. The simplification is to make a

discrete version of an S-system. Suppose we have collected a data set

comprising T sets of observations for N substrates and M enzymes. This

process is also called decoupling [526, 527]. The process is to replace the

left-hand side of the differential equations of an S-system by gradients

which are estimated in several ways described in the next section. If

gradients at T time points are calculated, (NT ×) nonlinear equations

can be defined as below

)()()()(
11

ttXtXtS i

MN

j
jj

MN

j
jii

ijij εβα
νµ

+−= ∏∏
+

=

+

=

 (17.11)

260 Machine Learning Approaches to Bioinformatics

where)(tiε is the error term meaning that the gradients calculated may

have some deviations from the outputs of the true models ()(tyi)

)()()(
11

tXtXty
MN

j
jj

MN

j
jii

ijij
∏∏
+

=

+

=

−=
νµ

βα (17.12)

An error function is defined as below

 ∑∑∑∑
= == =

−=
T

t

M

i
ii

T

t

M

i
i tytSt

1 1

2

1 1

2))()(())((ε (17.13)

Through minimising this error function, model parameters can be

estimated.

17.4 Approaches for structure identification and parameter

estimation

In order to identify a proper S-system structure and estimate its

parameters, we are required to use a specific approach if we have a

specific assumption. Three approaches have been used for structure

identification and parameter estimation. They are neural network

approach, evolutionary computation approach, and steady-state

approach.

17.4.1 Neural network approach

With the neural network approach, the gradients are estimated using

neural network algorithms [526-528]. A neural network model is built

for estimating gradients. Its inputs are the times and its outputs are the

gradients. The observed gradients at jt for iX is estimated from

experimental data by

1

1

)(
−−

−
=

−

jj

t

i

t

i
ji

tt

XX
tX

jj.

 (17.14)

 S-Systems 261

Figure 17.7 shows an example of using neural network to estimate

gradients. The raw data are the same as in the simple change rate

example shown in Fig. 17.1 where 3−=α and 2=β . Two hidden

neurons are used. It can be seen that neural network can well estimate the

gradients with a small error.

After gradients have been estimated, the ordinary differential

equations become nonlinear algebraic equations for which Newton-

Raphson numerical approximation algorithm [529] can be used to

estimate model parameters [525].

Fig. 17.7. An illustration of estimating gradients using neural network. The circles are the

estimated gradients from raw data. The solid line represents the concentration. The

dashed line represents the predicted gradients using neural network.

17.4.2 Simulated annealing approach

With simulated annealing approach, the main objective is to determine

the model parameters [530]. The same optimisation principle is applied

as when using neural network algorithm, i.e. minimising the error

between model outputs and experimental data. However, unlike neural

262 Machine Learning Approaches to Bioinformatics

network approach mentioned above, gradients are not estimated. Instead,

the first order approximation is used as below

 jjijiji ttXtXtX ∆+≈ −)()()(1

.

 (17.15)

where)(1−ji tX
.

 is evaluated at time 1−jt and jt∆ is the time interval

from time 1−jt to time jt . Simulated annealing (SA) is an global

optimisation approach used in machine learning [531].

17.4.3 Evolutionary computation approach

Similar to simulated annealing, evolutionary computation is also a global

optimisation approach in machine learning [532, 533]. In using the

genetic algorithm, one of the evolutionary computation algorithms,

Kikuchi et. al. code the model parameters using real codes and search for

the best solution through evolving candidates [534]. In Edwards’s work,

model parameters are coded using binary codes [535]. In Kimura’s work,

gene time-course data are estimated using spline interpolation or a

local linear regression technique. The estimated gene time-course data

are then used in an optimisation process employing the cooperative

coevolutionary algorithm [536]. In order to make an evolutionary process

suitable for optimising multiple criteria in parallel, a multi-objective

optimisation strategy has also been used [537].

17.5 Steady-state analysis of an S-system

Rather than analysing dynamical properties and functions, many

experiments focus on steady-state analysis as it contains important

biochemical patterns [525]. In this situation, we assume 0≡
.

iX . From

this, equation (17.9) is re-written as

],1[,
11

MiXX
M

j
jj

M

j
ji

ijij ∈∀= ∏∏
==

νµ
βα (17.16)

 S-Systems 263

Applying logarithm to the above equation leads to

],1[,lnlnlnln
11

MiXX
M

j
jijj

M

j
jiji ∈∀+=+ ∑∑

==

νβµα (17.17)

Given all the model parameters, we can analyse the relation between

substrates and enzymes at the steady-state. Equation (17.17) can be re-

written as

],1[,lnln)(
1

MiX
i

j
M

j
jijij ∈∀=−∑

= α

β
νµ (17.18)

For instance, suppose we have a biochemical system defined as below

2
1 2 1

0.5
2 1 2

0.5 0.2

0.2 0.5

X X X

X X X

−= −

= −

.

.

 (17.19)

Its dynamics are shown in Fig. 17.8, where we assume the initial states is

at (1, 1).

The steady-state analysis is shown as below

1 2

1 2

5
ln 2ln ln

2

1 5
ln ln ln

2 2

X X

X X

+ =

− =

 (17.20)

The equations give

1

2

2.5

1

X

X

=

=
 (17.21)

From Fig. 17.8, it can be seen that the steady-state calculation is correct.

Figure 17.9 shows the trace of the system which approaches the steady-

state at the point (2.5, 1) through time. It can be seen that the curve

reaches the final point at (2, 5) from the initial sates at (1, 1).

264 Machine Learning Approaches to Bioinformatics

Fig. 17.8. A biochemical system to show steady-state study.

Fig. 17.9. The trace of the system. The horizontal axis represents 1X while the vertical

axis represents 2X .

Feedback is a common phenomenon in biochemical systems. Here we

consider the application of the S-system to a biochemical system with

four molecules. The system is shown in Fig. 17.10 and is quantified as

below

X
2

X1

 S-Systems 265

1.8 5 1.2
1 3 2 1

1.2 0.8 5
2 1 2 4

3

3

X X X X

X X X X

−

−

= −

= −

.

.

 (17.22)

The initial state is

1

2

3

4

1

1

10

10

X

X

X

X

=

=

=

=

 (17.23)

Fig. 17.10. A biochemical system with a feedback. 3X and 4X are the inputs to this

system while 2X has a feedback on 1X . The solid lines represent the reactions while the

broken lines represent enzymatic activities.

Figure 17.11 shows the system dynamics (the left panel) and the trace

through time (the right panel).

Another even more complicated feedback system can be considered

as below. Suppose the feedback is made through a non-linear function,

say a sigmoid function described as below

)exp(1

1
)(

X
X

−+
=ρ (17.24)

We can formulate a complicated feedback system with the same

initial state defined in equation (17.23) as below

2

4
1
212

1
2

2
1
31

3)(

)(3

−

−

−=

−=

XXXX

XXXX

ρ

ρ

.

.

 (17.25)

The simulation result is shown in Fig. 17.12.

266 Machine Learning Approaches to Bioinformatics

Fig. 17.11. The system dynamics and trace through time for the biochemical system with

a feedback shown in equation (17.22) and Fig. 17.10. The horizontal axis in the left graph

represents the time and the vertical axis represents the concentration. The horizontal and

vertical axes represent two variables.

Fig. 17.12. The simulation of a system with sigmoid feedback defined in equation

(17.25). The horizontal axis in the left graph represents the time and the vertical axis

represents the concentration. The horizontal and vertical axes represent two variables.

The above two cases show that the S-system can be well used for

analysing complicated biochemical systems with feedbacks.

 S-Systems 267

17.6 Sensitivity of an S-system

In the steady-state, it is also required to analyse how a variable varies

with changes in other variables. This is called a sensitivity analysis

which is an analysis of how a biochemical system is sensitive to a small

perturbation at the steady-state [525]. The sensitivity analysis is done

through the calculation of gains. In Voit’s book [525], five types of

gains are introduced. Only the log gain of the steady-state concentration

between dependent variables and independent variables is discussed

here. For more details, chapter 7 of Voit’s book is recommended.

A log gain between two variables is defined as

j

i
ij

X

X
S

log

log
= (17.26)

where iX and jX are the two variables. In most situations, we are

interested in analysing the relation between a dependent variable and an

independent variable. Therefore, iX and jX should be a dependent and

an independent variable, respectively. ijS measures how sensitive

iXlog is to a small perturbation in jXlog .

We use the system defined in equation (17.22) for the following

discussion. The steady-state of the system is defined as below

421

123

58.03log2.1

2.158.13log

yyy

yyy

−+=

=−+
 (17.27)

where ii Xy log= . Here 3y and 4y are independent variables while 1y

and 2y are dependent variables. From the above equations, we can see

that

432

431

3104.455172.18789.0

592.32069.091551.0

yyy

yyy

++−=

−+=
 (17.28)

The log gain between 1X and 3X is 0.2069 while the log gain

between 1X and 4X is -3.592. The other two log gains can be seen in

the above equation. Figure 17.13 shows the sensitivity maps (log gain

maps) of two dependent variables on the two independent variables.

268 Machine Learning Approaches to Bioinformatics

Fig. 17.13. The sensitivity maps of two dependent variables on two independent

variables. The left panel is the log gain map for 1X while the right panel is the log gain

map for 2X .

Summary

This chapter has discussed the S-system approach which studies the

dynamics of a biochemical system. Because of the complexity and

nonlinearity, two issues (structure identification and model parameter

estimation) are still challenging. In most experiments, it is difficult to

know most structures, pathways or network structures in advance. This

makes the modelling process difficult because there are too many

different structures for selection. Researchers have done tremendous

work for various applications. However, we still have a long way to go

for the S-system to be applicable for large systems with required

accuracy and efficiency. Nevertheless, the S-system approach is a vital

contribution to modern systems biology research. Its advantages are

obvious in exploring underlying biochemical patterns and generating

new hypotheses for further experiments. In addition to structure

identification and parameter estimation, steady-state analysis and log

gain sensitivity analysis between variables have also been discussed.

269

Chapter 18

Future Directions

Although bioinformatics has been well-developed for a few decades

with the enhancement of machine learning approaches, there are still

some challenges. Many of these result from the gap between fast

technology development and slow software development. For instance,

the next-generation sequencing technology can speed up sequencing,

but leaves a problem of fragment errors and sequence assembly. This is

because fragment assembly algorithms have to be adapted to handle

very short fragments. This kind of issue is related to computing

skills and parallel computing concept and will not be discussed in this

book. However, in using machine learning algorithms for modelling

biological data, we also have many challenges. The most typical ones

are the multi-source data and data size. Most machine learning

algorithms deal with single-source data. Systems biology research,

which is one of the major research themes this century, aims to analyse

a biological system systematically. Multiple data sources certainly

need consideration. The data size is always a huge challenge in

bioinformatics. Handling hundreds of thousands or millions of DNA

fragments for species diversity study is an example. Even modern

computers still face challenges in modelling entire data and some

specific data treatment has to be introduced. One such treatment is to

lose possible resolution, for instance reducing 64 bits to 32 bits for

representing numerical data. Gene expression data analysis for cancer

diagnosis and drug development is also a challenge in using machine

learning approaches for bioinformatics. One of the challenges in this

area is to deal with heterogeneity in data. Most existing algorithms

assume homogeneity in data and have missed one important issue in

cancer diagnosis that each patient may develop a distinct biochemical

system to develop cancer disease. Ignoring such heterogeneity may lead

270 Machine Learning Approaches to Bioinformatics

to the developed drug being hardly applicable to a large variety of

patients. How to handle this challenge has been one of the most

important subjects of the century. In this chapter we discuss these

typical challenges in bioinformatics.

18.1 Multi-source data

Compared with genomics and other omics, metabolite data contain much

more information for biological discovery [538]. This is related to the

fact that the metabolome is called life indicator across most living

organisms. It is known that there are about 3 billion base pairs in the

human genome, but there are only about 3,000 to 100,000 metabolites.

The difficulty is that most metabolites are unknown and the discovery of

new metabolites is still increasing rapidly. This means that the

knowledge of existing metabolite pathways and networks is constantly

being updated. It then lays a difficulty in using the existing databases for

inference.

Although metabolite separation can be completed by existing

chromatography technologies such as NMR, GC-MS, LC-MS, and LC-

MS/MS, identification of each metabolite is a difficult task. There is still

no technology capable of separating ions perfectly. Multi-dimensional

technique has been used for better separation [539-544]. This then casts a

problem with most existing machine learning approaches which are

aimed at analysing one-dimensional metabolite data.

In comparing NMR and MS data, it is found that there is a small

overlap of the metabolites found and it is concluded that both techniques

only cover a part of the whole metabolome and neither of them is able to

provide the whole picture [545].

Both NMR and MS have a problem of sensitivity when producing

metabolite profiles. This means that analysing metabolite profile data

with variable sensitivity using machine learning approaches is still a

typical and difficult problem.

Even some software, such as one provided by Agilent Technologies,

can predict metabolite formulae for experimental metabolites. However,

each formula may be mapped to multiple compounds. Inferring

 Future Directions 271

differential metabolite pathways activated by experiments is then a

difficult task. Although daughter ions information can be used, paring

parent/daughter ions needs some carefully prepared learning processes

and the relationship between daughter ion spectrums and log P values

which are unique to compounds is another difficult regression problem

where the issue of equipment variation must be well-measured. This is

largely related to equipment settings. There are also many other issues

such as solute and environmental factors which can contribute to possible

variations making spectral separation a difficult task at present, needing

sophisticated bioinformatics techniques.

The second issue in multi-source data is very common in systems

biology, i.e. how to combine expression data and metabolite data for

pathway and network analysis. It is known that mapping a gene to a

pathway has a higher accuracy compared to mapping a metabolite to a

compound, then a pathway. This is because of two reasons. Compared

with genomics, metabolomics still has a short history and it lacks well-

developed databases of annotated compound information. However,

compared to gene chip data, metabolites can be used to explore

phenotypic patterns more extensively. In systems biology research, a

challenge is how to combine both gene expression data and metabolite

data together for analysis. For instance, a system called springScape has

been developed for combining several relevant data sources (protein-

protein interaction information and Gene Ontology (GO) annotations) for

clustering gene expression data [546]. MetaLook software was

developed for visualising and analysing marine ecological genomic and

metagenomic data (i.e. of environmental relevance) with respect to

habitat parameters. The software is able to map relevant genomic

information onto a world map [547]. In conjunction with a phylogenetic

tree model, a visualisation tool was implemented to analyse the helix-

loop-helix transcription factor interaction network. From this, the tool

allows the user to clarify the context of network hubs and interaction

clusters [548]. A 3-D visualisation tool was designed for the analysis of

functional linkage between genes in large data sets [549]. A web-based

visualisation tool was implemented for delivering an intuitive, interactive

environment for constructing ontology-based queries against the GO

272 Machine Learning Approaches to Bioinformatics

Database [550]. A web-based visualisation toolkit called VariVis was

built for the analyses of mutation data related to diseases, where multiple

databases can be combined [551]. Recently, with democratisation of

mass spectrometry and the realisation that small molecules were central

to determining phenotypes, visualisation of metabolite data has emerged

as an important objective. Metabolite data has, for instance, first

been partitioned; regression analysis has then been used to analyse

and visualise the relationships between metabolite and gene data [552].

Like gene expression data, metabolite data also have the problem that

the number of samples is much smaller than the number of variables

(metabolites). Because of this, PCA and independent component

analysis are used for data dimension reduction and visualisation [553].

The visualisation is based on the first two (principal/independent)

components.

18.2 Gene regulatory network construction

Constructing gene regulatory networks is one of the most important in

silico exercises in systems biology and bioinformatics for exploring

complexity in data and generating hypotheses for further scientific

verification which then generates new evidence and new data for further

in silico study. The challenge for bioinformatics and machine learning

approaches is to be able to model given data with the desired accuracy

and efficiency, and importantly consistency with biology. Inferring gene

regulatory networks uses two different approaches:, bottom-up and top-

down approaches [554]. As mentioned in chapter 16, gene regulatory

network construction has two tasks to do. One is structure identification

and the other is model parameter estimation. The bottom-up approach

and top-down approach actually deal with these two concepts separately.

The bottom-up approach starts from a detailed mathematical description

of a biochemical process for model parameter estimation. The basic

technique used for this is called the S-system described in chapter 17.

With the S-system technique, differential equations are defined according

to molecular interactions as an a priori leaving model parameters

 Future Directions 273

estimated from observations. The top-down approach constructs gene

regulatory networks based on data, which is also called the data-driven

approach. Bayesian networks described in chapter 15 are one of such

techniques. Compared with bottom-up approach, the top-down approach

is more appropriate because it does not need a prior knowledge of

biochemical process in a system which is to be modelled. However, as

with most structure identification in machine learning, the top-down

approach has its own limitation, i.e. uncertainty. The uncertainty mainly

results from the quality of single source data. It is then recommended to

use multiple sources for gene regulatory network construction [554].

Combining gene expression, genomic sequences and protein-DNA

interaction data is such a practice [555]. The sources which can be

considered for gene regulatory network construction are gene expression,

transcription factor binding sites, genomic sequences, and chromatin

immunoprecipitation (ChIP) [554]. With multiple data sources, typical

issues are the quality, dimensions, and format of heterogeneous data. All

these three issues are very practical. Heterogonous data quality means

that we have to consider heterogonous models; each has a different

technique to handle the uncertainty in data. Heterogonous data dimension

means that some specific data treatment must be considered to avoid any

possible extra introduction of uncertainty. For instance, increasing the

dimensionality of one data source may introduce noise so that we have to

consider random sampling which certainly increases data size. Reducing

data dimensionality may lose some important information contained in a

data set. Heterogonous data format needs a careful consideration of data

integration. For instance, gene expression is numeric while genomic

sequence is non-numeric. Integrating them into one system for gene

regulatory network construction needs specific design of machine

learning algorithms so as to handle possible uncertainty. For a detailed

review about this challenge, readers can refer to review papers [554, 555]

[556].

Differential equation parameters of an S-system can be estimated

using artificial neural networks, evolutionary computation, and simulated

annealing as described in Chapter 17. The network size is still mediate in

most recent applications. First, fully simulating a large differential

274 Machine Learning Approaches to Bioinformatics

equations system is time consuming. Second, setting up a large S-system

for a biochemical system is still challenging. Third, most biochemical

systems have limited time points of observations. This means that

converting differential equations to difference equations and then using

machine learning approaches to estimate differential equation parameters

can generate imprecise models.

Bayesian networks technique described in chapter 16 also has a

limitation in computing cost. It is difficult to make a Bayesian network

with over 100 nodes. This is because the searching space of network

structures is increased significantly when the number of nodes is

increased [557, 558]. Yet another problem of Bayesian networks

approach is that it is extremely difficult to learn Bayesian network

parameters if training data is incomplete or sparse [559]. However,

incompleteness and sparseness often occur in biological experiments.

Developing novel techniques is extremely desirable when the

biochemical network size is constantly increasing.

18.3 Building models using incomplete data

Described in chapter 15, peptide classification is based on the

assumption that the data collected is complete. In fact, this is hardly true.

New functional sites are continually being discovered. For other

applications that use machine learning algorithms, incompleteness only

means that a small proportion of the data is missing or wrongly labelled.

This may not be true in peptide classification. In most biological

experiments, only functional sites are of interest. This means that nearly

all the “sites” collected in databases are only functional sites. For

instance, they can be phosphorylation sites, acetylation sites, methylation

sites, protease cleavage sites, binding sites, active sites, etc. In a

machine-learning or classification process, they are treated as positive

data. In order to make a model capable of predicting novel data, it

must be trained to discriminate between positive and negative data.

For instance, enabling a predictive model capable of predicting

phosphorylation sites, we must teach the model how to recognise what a

 Future Directions 275

phosphorylation site looks like and what a non-phosphorylation site

looks like. However, there may never be any experimentally annotated or

verified negative data (sites). A practical or popular approach is to use

non-annotated sites as negative data. For instance, methylation happens

to lysine or proline amino acids. A residue occupied by an amino acid

other than these two amino acids will not have any possibility of being

methylated; the possibility is only there for lysine and proline. Whenever

we find a lysine or a proline, we need to predict if it is involved

in methylation. Not all lysines or prolines are involved in methylation.

This is because the substrate pattern or specificity determines whether

methylation occurs. We normally assume all non-annotated lysine

and proline residues to be negative data. A problem arises! Without

experimental verification, by what justification can we definitely say a

non-annotated lysine or proline will never involve methylation? The

answer is none. This means that a model built this way will not be able to

predict a methylation site whose pattern has been included as negative

data in a training data set. The diversity of experimentally annotated

functional sites is an important causative agent of many current

predictors which do not have high prediction accuracy for novel data.

The challenge for machine learning is how to enlarge its error-tolerance

rate or how to evaluate the possibility that such a model will miss some

novel functional sites.

18.4 Biomarker detection from gene expression data

Identifying or ranking differentially expressed genes is closely related to

medicine and drug development for human health and other related

issues in fighting plant disease and improving animal health. A highly

ranked gene is often called a biomarker. It can be used for disease

diagnosis and drug development [560-563]. Conventional approaches

still largely rely on T test or some simple approach. Although feature

selection approach and machine learning approaches [564, 565] have

been used in some stages, their usability is still in question.

276 Machine Learning Approaches to Bioinformatics

(a)

(b)

Fig. 18.1. (a) Mock expression pattern from a gene which is detected by t-test as a perfect

marker when it is differentially expressed in one class compared to another class. In this

model, the expression level of all sensitive samples is higher than for all resistant

samples. (b) Mock expression pattern from a gene likely to be involved in a

heterogeneous characteristic of a cancer phenotype; in one group, resistant, samples do

not show uniform down-expression for a gene. Blue and red circles illustrate the

expression level of sensitive and resistant samples, respectively.

Conventional methods commonly make an inappropriate assumption

that a good biomarker shows a perfect shift in expression value of all

samples, such as the significance analysis of microarrays which is a

derivation of the T test, (SAM) [566] and CyberT [567], correlation

analysis or fold change analysis. Such a naïve assumption can hardly be

true. Taking human disease as an example it is known that each person is

a system, a biochemical system in which the biochemical process can be

very different from that of other people who have caught the same

disease [568]. Multiple unrelated mechanisms, which are unknown to the

 Future Directions 277

experimenter, might independently result in resistance to a drug such as

absence of signalling from the target, presence of compensatory signals

reducing dependency on the target or presence of mechanisms preventing

drug activity. It is likely that any one gene involved in only one such

mechanism will only show differential expression in the subset of

resistant cell lines driven by that particular mechanism. Figure 18.1

shows such a possibility.

A good example is ERBB2 (HER2) which is hyper-expressed in only

15–20% of breast tumours compared with normal breast tissues [569].

Such a gene may, therefore, be ranked low by t-test P-value; however,

the gene is highly relevant and valuable as a resistance marker.

A number of approaches have been proposed for addressing this in

different settings. Outlier detection methods, such as Cancer Outlier

Profile Analysis (COPA) [570] “outlier-sum” [571], outlier robust

t-statistics (ORT) (Liu and Wu, 2007) and maximum ordered subset

T-statistics (MOST) [572] aim to identify subsets of samples that show

marked differential expression from the majority of samples. More

recently, van Wieringen et al. [573] designed a statistical test, named

PDGEtest, to detect partial shifts in expression values of sub-samples.

These methods have been demonstrated to outperform typical univariate

statistical methods in specific settings, for example identification of

expression from amplified genes in prostate cancer [570]. These recently

created methods demonstrate the potential to enhance comprehensive

analysis results and power over traditional methods of differential gene-

expression detection in heterogeneous samples, suggesting application of

these methods for gene selection could result in better overlap between

different gene lists. The poor reproducibility in results from the different

algorithms, however, suggests none may offer a complete solution. They

are mainly reliant on detection of outliers and as such only select for

genes displaying clear bimodal expression patterns. However, genes may

also show non-normal distribution patterns. Furthermore, gene scoring

and ranking by such methods typically reflects the size of the outlying

groups without considering exclusiveness of this group to a particular

phenotype of interest; clarity and size of differential expression from the

sub-group, and the proportion of samples of that phenotype that the

outlying sub-group represents.

278 Machine Learning Approaches to Bioinformatics

A promising technique for coping with these challenges is to consider

heterogeneous characteristics of samples and rank genes based on the

expression pattern of sub-samples rather than on the average expression

levels of phenotypic groups. To optimize reproducibility, genes ranked

high should exhibit high or low expression in only a subset of samples

which are treated as outliers to cover some new criteria such as

exclusiveness, clearness, fold change, and proportion of differentially

expressed samples.

Summary

This chapter has discussed a few typical challenges in using machine

learning approaches for modelling biological data. They are mainly

multi-source data, data size, and biomarker identification. It must be

noted that aside from these three typical challenges, many others can be

even more important such as metagenomics, mass spectrometry-based

proteomics, compound identification, protein identification, etc.

However, this book is mainly tailored for using machine learning

approaches for bioinformatics, where we need to focus on how to

improve the existing machine learning algorithms to solve the problems

we currently have.

279

References

 [1] T.K. Attwood, Parry-Smith, D.J., Introduction to bioinformatics. Essex: Addison

Wesley Longman Ltd, 1999.

 [2] A.D. Baxevanis, Ouellette, B.F.F., Bioinformatics, A Practical Guide to the

Analysis of Genes and Proteins vol. 39. New York: John Wiley & Sons, Inc,

1998.

 [3] P.G. Higgs, Attwood, T.K., Bioinformatics and Molecular Evolution. MA, USA:

Blackwell Science Ltd, 2005.

 [4] P. Baldi, Brunak, S., Bioinformatics, The Machine Learning Approach. London:

The MIT Press, 2000.

 [5] D.W. Mount, Bioinformatics, Sequence and Genome Analysis. New York: Cold

Spring Harbor Laboratory Press, 2001.

 [6] J. Augen, Bioinformatics in the Post-Genomic Era, Genome, Transcriptome,

Proteome, and Information-Based Medicine. Boston: Addison-Wesley, 2005.

 [7] I. Eidhammer, Jonassen, I., Taylor, W.R., Protein Bioinformatics, An Algorithm

Approach to Sequence and Structure Analysis. West Sussex: John Wiley & Sons,

Ltd, 2004.

 [8] G.J. Morgan, “Emile Zuckerkandl, Linus Pauling, and the Molecular Evolutionary

Clock, 1959-1965,” Journal of the History of Biology, vol. 31, pp. 155-178, 1998.

 [9] E. Zuckerkandl, “On the Molecular Evolutionary Clock,” Journal of Molecular

Evolution, vol. 26, pp. 34-46, 1987.

 [10] S.F. Altschul, Gish, W., Miller, W., Myers, E.W., Lipman, D.J., “Basic local

alignment search tool,” J Mol Biol, vol. 215, pp. 403-410, 1990.

 [11] S. Needleman, Wunsch, C., “A general method applicable to the search for

similarities in the amino acid sequence of two proteins,” J Mol Biol, vol. 48, pp.

443-53, 1970.

 [12] P.H. Sellers, “On the theory and computation of evolutionary distances,” SIAM J

Appl Math, vol. 26, pp. 787-93, 1974.

 [13] T.F. Smith, Waterman, M.S., “Identification of Common Molecular

Subsequences,” Journal of Molecular Biology, vol. 147, pp. 195-197, 1981.

 [14] W.J. Wilbur, Lipman, D.J., “Rapid similarity searches of nucleic acid and protein

data banks,” Proc. Natl. Acad. Sci, vol. 80, pp. 726-730, 1983.

280 Machine Learning Approaches to Bioinformatics

 [15] M.O.S. Dayhoff, R.M., “Atlas of Protein Sequence and Structure,” Nat. Biomed.

Res. Found, vol. 3, pp. 353-358, 1978.

 [16] R.M. Schwartz, Dayhoff, M.O., “Protein and Nucleic Acid Sequence Data and

Phylogeny,” Science, vol. 205, pp. 1036-1039, 1979.

 [17] R.V. Eck, Dayhoff, M.O., “Evolution of the structure of ferredoxin based on

living relics of primitive amino acid sequences,” Science, vol. 152, pp. 363-366,

1966.

 [18] R.M. Schwartz, Dayhoff, M.O., “The Point Mutation Process in Proteins,” in

Proc. 2nd ISSOL and 5th ICOL Meeting, Japan, 1977, pp. 457-469.

 [19] S.B. Needleman, Wunsch, C.D., “A general method applicable to the search for

similarities in the amino acid sequence of two proteins,” J Mol Biol, vol. 48, pp.

443-53, 1970.

 [20] R. Staden, “Sequence data handling by computer,” Nucleic Acids Res, vol. 4, pp.

4037-51, 1977.

 [21] R.F. Doolittle, “Similar amino acid sequences: chance or common ancestry?,”

Science, vol. 214, pp. 149-59, 1981.

 [22] D.J. Lipman, Pearson, W.R., “Rapid and sensitive protein similarity searches,”

Science. 1985 Mar 22;(4693):, vol. 227, pp. 1435-41, 1985.

 [23] S.F. Altschul, Gish, W., Miller, W., Myers, E.W., Lipman, D.J., “Basic local

alignment search tool,” J. Mol. Biol, vol. 215, pp. 403-410, 1990.

 [24] H. Pearson, “Genetics: what is a gene?,” Nature vol. 441, pp. 398-401, 2006.

 [25] E. Pennisi, “DNA study forces rethink of what it means to be a gene,” Science

vol. 316, pp. 1556-1557, 2007.

 [26] M.B. Gerstein, Bruce, C., Rozowsky, J.S., Zheng, D., Du, J., Korbel, J.O.,

Emanuelsson, O., Zhang, Z.D., Weissman, S., Snyder, M., “What is a gene, post-

ENCODE? History and updated definition,” Genome Research, vol. 17, pp. 669-

681, 2007.

 [27] R.M. Steinman, Moberg, C.L., “A triple tribute to the experiment that transformed

biology,” J. Exp. Med, vol. 179, pp. 379-84, 1994.

 [28] E.M. Southern, “Detection of specific sequences among DNA fragments

separated by gel electrophoresis,” J Mol Biol, vol. 98, pp. 503-517, 1975.

 [29] D.A. Kulesh, Clive, D.R., Zarlenga, D.S., Greene, J.J., “Identification of

interferon-modulated proliferation-related cDNA sequences,” Proc Natl Acad Sci

USA, vol. 84, pp. 8453-8457, 1987.

 [30] M.B. Eisen, Spellman, P.T., Brown, P.O., Botstein, D., “Cluster analysis and

display of genome-wide expression patterns,” Proc Natl Acad Sci USA, vol. 95,

pp. 14863-8, 1998.

 [31] C. Nakada, Matsuura, K., Tsukamoto, Y., Tanigawa, M., Yoshimoto, T.,

Narimatsu, T., and L.T. Nguyen, Hijiya, N., Uchida, T., Sato, F., Mimata, H.,

Seto, M., Moriyama, M., “Genome-wide microRNA expression profiling in renal

cell carcinoma: significant down-regulation of miR-141 and miR-200c,” J Pathol,

vol. 216, pp. 418-27, 2008.

 References 281

 [32] A.L. Aspler, Bolshin, C., Vernon, S.D., Broderick, G., “Evidence of inflammatory

immune signaling in chronic fatigue syndrome: A pilot study of gene expression

in peripheral blood,” Behav Brain Funct, vol. 4, p. 44, 2008.

 [33] M. Iida, Iizuka, N., Sakaida, I., Moribe, T., Fujita, N., Miura, T., Tamatsukuri, S.,

H. Ishitsuka, Uchida, K., Terai, S., Tokuhisa, Y., Sakamoto, K., Tamesa, T.,

Miyamoto, T., and Y. Hamamoto, Oka, M., “Relation between serum levels of

cell-free DNA and inflammation status in hepatitis C virus-related hepatocellular

carcinoma,” Oncol Rep, vol. 20, pp. 761-5, 2008.

 [34] B. Gur-Dedeoglu, Konu, O., Kir, S., Ozturk, A.R., Bozkurt, B., Ergul, G., Yulug,

I.G., “A resampling-based meta-analysis for detection of differential gene

expression in breast cancer,” BMC Cancer, vol. 396, p. 396, 2008.

 [35] M. Thomassen, Tan, Q., Kruse, T.A., “Gene expression meta-analysis identifies

metastatic pathways and transcription factors in breast cancer,” BMC Cancer, vol.

8, p. 394, 2008.

 [36] R.N. Jorissen, Lipton, L., Gibbs, P., Chapman, M., Desai, J., Jones, I.T., Yeatman,

T.J., East, P, Tomlinson, I.P., Verspaget, H.W., Aaltonen, L.A., Kruhaffer, M.,

Orntoft, T.F., Andersen, C.L., Sieber, O.M., “DNA copy-number alterations

underlie gene expression differences between microsatellite stable and unstable

colorectal cancers,” vol. 14, pp. 8061-9, 2008.

 [37] G.J. Weiss, Kingsley, C., “Pathway targets to explore in the treatment of non-

small cell lung cancer,” J Thorac Oncol, vol. 3, pp. 1342-52, 2008.

 [38] R.M. Shai, Reichardt, J.K., Chen, T.C., “Pharmacogenomics of brain cancer and

personalized medicine in malignant gliomas,” Future Oncol, vol. 4, pp. 525-34,

2008.

 [39] T. Bonome, Levine, D.A., Shih, J., Randonovich, M., Pise-Masison, C.A.,

Bogomolniy, F., and L. Ozbun, Brady, J., Barrett, J.C., Boyd, J., Birrer, M.J., “A

gene signature predicting for survival in suboptimally debulked patients with

ovarian cancer,” Cancer Res, vol. 68, pp. 5478-86, 2008.

 [40] L. Von Bertalanffy, Problems of Life, An Evaluation of Modern Biological and

Scientific Thought: Harper & Brothers, 1960.

 [41] M.D. Mesarovic, Systems Theory and Biology: Springer-Verlag, 1968.

 [42] A. Agrawal, “New institute to study systems biology,” Nat Biotechnol. 1999

Aug;17(8):, vol. 17, pp. 743-4, 1999.

 [43] A. Tiselius, “A new apparatus for electrophoretic analysis of colloidal mixtures,”

Trans. Faraday Soc, vol. 33, pp. 524-531, 1937.

 [44] L. Pauling, Corey, R.B., and Branson, H.R., “Two Hydrogen-Bonded Helical

Configurations of the Polypeptide Chain,” Proc. Natl. Acad. Sci. USA, vol. 37, pp.

205-211, 1951.

 [45] L. Pauling, Corey, R.B., “Configurations of polypeptide chains with favored

orientations around single bonds: Two new pleated sheets,” Proc. Natl. Acad. Sci.

USA, vol. 37, pp. 729-740, 1951.

282 Machine Learning Approaches to Bioinformatics

 [46] J.D. Watson, Crick, F.H.C., “A Structure for Deoxyribose Nucleic Acid,” Nature,

vol. 171, pp. 737-738, 1953.

 [47] F. Sanger, Thompson, E.O. and Kitai, R., “The amide groups of insulin,” Biochem

J, vol. 59, pp. 509-518, 1955.

 [48] S.N. Cohen, Boyer, H.W., “Process for producing biologically functional

molecular chimeras. 1979.,” Biotechnology, vol. 24, pp. 546-555, 1992.

 [49] F. Sanger, Coulson, A.R., “A rapid method for determining sequences in DNA by

primed synthesis with DNA polymerase,” J Mol Biol, vol. 94, pp. 441-448, 1975.

 [50] F. Sanger, Nicklen, S. and Coulson, A.R., “DNA sequencing with chain-

terminating inhibitors,” Proc Natl Acad Sci U S A., vol. 74, pp. 5463-5467, 1977.

 [51] K.H. Weisgraber, Troxler, R.F., Rall, S.C., Mahley, R.W., “Comparison of the

human, canine and swine E apoproteins,” Biochem Biophys Res Commun, vol. 95,

pp. 374-377, 1980.

 [52] J. Aerssens, Armstrong, M., Gilissen, R., Cohen, N., “The human genome: an

introduction,” Oncologist, vol. 6, pp. 100-109, 2001.

 [53] D.A. Benson, Boguski, M.S., Lipman, D.J., Ostell, J., and Ouellette, B.F.,

“GenBank,” Nucl. Acids Res, vol. 26, pp. 1-8, 1998.

 [54] D.A. Benson, Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Wheeler, D.L.,

“GenBank,” Nucleic Acids Res, vol. 36, pp. D25-D30, 2008.

 [55] A. Cochrane G., R., Bonfield, J., Bower, L., Demiralp, F., Faruque, N., Gibson,

R., Hoad, G., Hubbard, T., Hunter, C., Jang, M., Juhos, S., Leinonen, R., Leonard,

S., Lin, Q., Lopez, R., Lorenc, D., McWilliam, H., Mukherjee, G., Plaister, S.,

Radhakrishnan, R., Robinson, S., Sobhany, S., Hoopen, P.T., Vaughan, R.,

Zalunin, V., Birney, E., “Petabyte-scale innovations at the European Nucleotide

Archive.,” Nucleic Acids Res, vol. 37, p. D19, 2009.

 [56] M.P. Lefranc, Giudicelli, V., Kaas, Q., Duprat, E., Jabado-Michaloud, J.,

Scaviner, D., Ginestoux, C., Clément, O., Chaume, D., Lefranc, G., “IMGT, the

international ImMunoGeneTics information system.,” Nucleic Acids Res, vol. 33,

pp. D593-D597, 2005.

 [57] S. Karlin, Altschul, S.F., “Methods for assessing the statistical significance of

molecular sequence features by using general scoring schemes,” Proc. Natl. Acad.

Sci. USA, vol. 87, pp. 2264-2268, 1990.

 [58] S.F. Altschul, “Amino acid substitution matrices from an information theoretic

perspective,” J. Mol. Biol, vol. 219, pp. 555-565, 1991.

 [59] Z. Zhang, Schäffer, A.A., Miller, W., Madden, T.L., Lipman, D.J., Koonin, E.V.,

Altschul, S.F., “Protein sequence similarity searches using patterns as seeds,”

Nucleic Acids Res, vol. 26, pp. 3986-3990, 1998.

 [60] O. Emanuelsson, Nielsen, H., Brunak, S., von Heijne, G., “Predicting subcellular

localization of proteins based on their N-terminal amino acid sequence,” J Mol

Biol, vol. 300, pp. 1005-1016, 2000.

 [61] J.L. Gardy, Spencer, C., Wang, K., Ester, M., Tusnády, G.E., Simon, I., Hua, S.,

deFays, K., Lambert, C., Nakai, K., Brinkman, F.S., “PSORT-B: Improving

 References 283

protein subcellular localization prediction for Gram-negative bacteria,” Nucleic

Acids Res, vol. 31, pp. 3613-3617, 2003.

 [62] D. Szafron, Lu, P., Greiner, R., Wishart, D.S., Poulin, B., Eisner, R., Lu, Z.,

Anvik, J., Macdonell, C., Fyshe, A., Meeuwis, D., “Proteome Analyst: custom

predictions with explanations in a web-based tool for high-throughput proteome

annotations,” Nucleic Acids Res, vol. 32, pp. W365-71, 2004.

 [63] F. Odronitz, Pillmann, H., Keller, O., Waack, S., Kollmar, M., “WebScipio: An

online tool for the determination of gene structures using protein sequences,”

BMC Genomics, vol. 9, p. 422, 2008.

 [64] C.R. Bradshaw, Surendranath, V., Habermann, B., “ProFAT: a web-based tool for

the functional annotation of protein sequences,” BMC Bioinformatics, vol. 7, p.

466, 2006.

 [65] A.K. Nussbaum, Kuttler, C., Hadeler, K.P., Rammensee, H.G., Schild, H.,

“PAProC: a prediction algorithm for proteasomal cleavages available on the

WWW,” Immunogenetics, vol. 53, pp. 87-94, 2001.

 [66] H. Singh, Raghava, G.P., “ProPred1: prediction of promiscuous MHC Class-I

binding sites,” Bioinformatics, vol. 19, pp. 1009-14, 2003.

 [67] J. Tong, Jiang, P., Lu, Z.H., “RISP: a web-based server for prediction of RNA-

binding sites in proteins,” Comput Methods Programs Biomed, vol. 90, pp. 148-

53, 2008.

 [68] Y. Wang, Xue, Z., Shen, G., Xu, J., “PRINTR: prediction of RNA binding sites in

proteins using SVM and profiles,” Amino Acids, vol. 35, pp. 295-302, 2008.

 [69] P.D. Taylor, Toseland, C.P., Attwood, T.K., Flower, D.R., “LIPPRED: A web

server for accurate prediction of lipoprotein signal sequences and cleavage sites,”

Bioinformation, vol. 1, pp. 176-9, 2006.

 [70] G. Su, Mao, B., Wang, J., “A web server for transcription factor binding site

prediction,” Bioinformation, vol. 1, pp. 156-7, 2006.

 [71] K. Goyal, Mohanty, D., Mande, S.C., “PAR-3D: a server to predict protein active

site residues,” Nucleic Acids Res, vol. 35, pp. W503-5, 2007.

 [72] D.T. Chang, Oyang, Y.J., Lin, J.H., “MEDock: a web server for efficient

prediction of ligand binding sites based on a novel optimization algorithm,”

Nucleic Acids Res, vol. 33, pp. W233-8, 2005.

 [73] Y. Zhang, “miRU: an automated plant miRNA target prediction server,” Nucleic

Acids Res, vol. 33, pp. W701-4, 2005.

 [74] P. Duckert, Brunak, S. and Blom, N., “Prediction of proprotein convertase

cleavage sites,” Protein Eng. Des. Sel, vol. 17, pp. 107-113, 2004.

 [75] E. Ferraro, Peluso, D., Via, A., Ausiello, G., Helmer-Citterich, M., “SH3-Hunter:

discovery of SH3 domain interaction sites in proteins,” Nucleic Acids Res, vol. 35,

pp. W451-4, 2007.

 [76] H.B. Shen, Chou, K.C., “Signal-3L: A 3-layer approach for predicting signal

peptides,” Biochem Biophys Res Commun, vol. 363, pp. 297-303, 2007.

284 Machine Learning Approaches to Bioinformatics

 [77] J.E. Hansen, Lund, O., Tolstrup, N., Gooley, A.A., Williams, K.L., Brunak, S.,

“NetOglyc: prediction of mucin type O-glycosylation sites based on sequence

context and surface accessibility,” Glycoconj J, vol. 15, pp. 115-120, 1998.

 [78] C. Caragea, Sinapov, J., Silvescu, A., Dobbs, D., Honavar, V., “Glycosylation site

prediction using ensembles of Support Vector Machine classifiers,” BMC

Bioinformatics, vol. 8, p. 438, 2007.

 [79] N. Blom, Gammeltoft, S. and Brunak, S., “Sequence- and structure-based

prediction of eukaryotic protein phosphorylation sites,” J Mol Biol, vol. 294, pp.

1351-1362, 1999.

 [80] F. Diella, Cameron, S., Gemund, C., Linding, R., Via, A., Kuster, B., Sicheritz-

Ponten, T., Blom, N., Gibson, T.J., “Phospho.ELM: a database of experimentally

verified phosphorylation sites in eukaryotic proteins,” BMC Bioinformatics, vol.

22, p. 79, 2004.

 [81] M. Hjerrild, Stensballe, A., Rasmussen, T.E., Kofoed, C.B., Blom, N., Sicheritz-

Ponten, T., Larsen, M.R., Brunak, S., Jensen, O.N., Gammeltoft, S.,

“Identification of phosphorylation sites in protein kinase A substrates using

artificial neural networks and mass spectrometry,” J Proteome Res, vol. 3, pp.

426-433, 2004.

 [82] C.R. Ingrell, Miller, M.L., Jensen, O.N., Blom, N., “NetPhosYeast: prediction of

protein phosphorylation sites in yeast,” Bioinformatics, vol. 23, pp. 895-7, 2007.

 [83] L. Kiemer, Bendtsen, J.D. and Blom, N., “NetAcet: prediction of N-terminal

acetylation sites,” Bioinformatics, vol. 21, pp. 1269-1270, 2005.

 [84] H. Chen, Xue, Y., Huang, N., Yao, X. and Sun, Z., “MeMo: a web tool for

prediction of protein methylation modifications,” Nucleic Acids Res, vol. 34, pp.

W249-W253, 2006.

 [85] Y. Xue, Zhou, F., Fu, C., Xu, Y. and Yao, X., “SUMOsp: a web server for

sumoylation site prediction,” Nucleic Acids Res, vol. 34, pp. W254-W257, 2006.

 [86] Y. Xue, Chen, H., Jin, C., Sun, Z. and Yao, X., “NBA-Palm: prediction of

palmitoylation site implemented in Naïve Bayes algorithm,” BMC Bioinformatics,

vol. 7, pp. 458-462, 2006.

 [87] B. Eisenhaber, Bork, P., Eisenhaber, F., “Prediction of potential GPI-modification

sites in proprotein sequences,” J Mol Biol, vol. 292, pp. 741-58, 1999.

 [88] Y. Wang, Xue, Z., Xu, J., “Better prediction of the location of alpha-turns in

proteins with support vector machine,” Proteins, vol. 65, pp. 49-54, 2006.

 [89] A. Kirschner, Frishman, D., “Prediction of beta-turns and beta-turn types by a

novel bidirectional Elman-type recurrent neural network with multiple output

layers (MOLEBRNN),” Gene, vol. 422, pp. 22-9, 2008.

 [90] Y. Wang, Xue, Z.D., Shi, X.H., Xu, J., “Prediction of pi-turns in proteins using

PSI-BLAST profiles and secondary structure information,” Biochem Biophys Res

Commun, vol. 347, pp. 574-80, 2006.

 References 285

 [91] S. Costantini, Colonna, G., Facchiano, A.M., “PreSSAPro: a software for the

prediction of secondary structure by amino acid properties,” Comput Biol Chem,

vol. 31, pp. 389-92, 2007.

 [92] M. Duan, Huang, M., Ma, C., Li, L., Zhou, Y., “Position-specific residue

preference features around the ends of helices and strands and a novel strategy for

the prediction of secondary structures,” Protein Sci, vol. 17, pp. 1505-12.

 [93] R. Bondugula, Xu, D., “MUPRED: a tool for bridging the gap between template

based methods and sequence profile based methods for protein secondary

structure prediction,” Proteins, vol. 66, pp. 664-70.

 [94] S. Montgomerie, Sundararaj, S., Gallin, W.J., Wishart, D.S., “Improving the

accuracy of protein secondary structure prediction using structural alignment,”

BMC Bioinformatics, vol. 7, p. 301, 2006.

 [95] T.Z. Sen, Jernigan, R.L., Garnier, J., Kloczkowski, A., “GOR V server for protein

secondary structure prediction,” Bioinformatics, vol. 21, pp. 2787-8, 2005.

 [96] G. Pollastri, McLysaght, A., “Porter: a new, accurate server for protein secondary

structure prediction,” Bioinformatics, vol. 21, pp. 1719-20, 2005.

 [97] A.A. Salamov, Solovyev, V.V., “Protein secondary structure prediction using

local alignments,” J Mol Biol, vol. 268, pp. 31-6, 1997.

 [98] P.Lieutaud, Canard, B., Longhi, S., “MeDor: a metaserver for predicting protein

disorder,” BMC Genomics, vol. 9, p. S25.

 [99] D. Sethi, Garg, A., Raghava, G.P., “DPROT: prediction of disordered proteins

using evolutionary information,” Amino Acids, vol. 35, pp. 599-605, 2008.

[100] C.T. Su, Chen, C.Y., Hsu, C.M., “iPDA: integrated protein disorder analyzer,”

Nucleic Acids Res, vol. 35, pp. W465-72, 2007.

[101] T. Ishida, Kinoshita, K., “PrDOS: prediction of disordered protein regions from

amino acid sequence,” Nucleic Acids Res, vol. 35, pp. W460-4, 2007.

[102] O.V. Galzitskaya, Garbuzynskiy, S.O., Lobanov, M.Y., “FoldUnfold: web server

for the prediction of disordered regions in protein chain,” Bioinformatics, vol. 22,

pp. 2948-0, 2006.

[103] A. Vullo, Bortolami, O., Pollastri, G., Tosatto, S.C., “Spritz: a server for the

prediction of intrinsically disordered regions in protein sequences using kernel

machines,” Nucleic Acids Res, vol. 34, pp. W164-8, 2006.

[104] Z. Dosztányi, Csizmok, V., Tompa, P., Simon, I., “IUPred: web server for the

prediction of intrinsically unstructured regions of proteins based on estimated

energy content,” Bioinformatics, vol. 21, pp. 3433-4, 2005.

[105] Z.R. Yang, Thomson, R., McNeil, P., Esnouf, R.M., “RONN: the bio-basis

function neural network technique applied to the detection of natively disordered

regions in proteins,” Bioinformatics, vol. 21, pp. 3369-76, 2005.

[106] R. Linding, Jensen, L.J., Diella, F., Bork, P., Gibson, T.J., Russell, R.B., “Protein

disorder prediction: implications for structural proteomics,” Structure, vol. 11, pp.

1453-9, 2003.

286 Machine Learning Approaches to Bioinformatics

[107] A. Campen, Williams, R.M., Brown, C.J., Meng, J., Uversky, V.N., Dunker,

A.K., “TOP-IDP-scale: a new amino acid scale measuring propensity for intrinsic

disorder,” Protein Pept Lett., vol. 15, pp. 956-63, 2008.

[108] R. Linding, Russell, R.B., Neduva, V., Gibson, T.J., “GlobPlot: Exploring protein

sequences for globularity and disorder,” Nucleic Acids Res, vol. 31, pp. 3701-8,

2003.

[109] P. Romero, Kissinger, C., Villafranca,J.E., Dunker, A.K., “Identifying disordered

regions in proteins from amino acid sequence,” in Proc. IEEE Int. Conf. Neural

Networks, 1997, pp. 90-95.

[110] M. Khaladkar, Bellofatto, V., Wang, J.T., Tian, B., Shapiro, B.A., “RADAR: a

web server for RNA data analysis and research,” Nucleic Acids Res, vol. 35, pp.

W300-4, 2007.

[111] W. Shu, Bo, X., Liu, R., Zhao, D., Zheng, Z., Wang, S., “RDMAS: a web server

for RNA deleterious mutation analysis,” BMC Bioinformatics, vol. 7, p. 404,

2006.

[112] J. Tárraga, Medina, I., Carbonell, J., Huerta-Cepas, J., Minguez, P., Alloza, E.,

Al-Shahrour, F., Vegas-Azcárate, S., Goetz, S., Escobar, P., Garcia-Garcia, F.,

Conesa, A., Montaner, D., Dopazo, J., “GEPAS, a web-based tool for microarray

data analysis and interpretation,” Nucleic Acids Res, vol. 36, pp. W308-14, 2008.

[113] G.E. Gonye, Chakravarthula, P., Schwaber, J.S., Vadigepalli, R., “From promoter

analysis to transcriptional regulatory network prediction using PAINT,” Methods

Mol Biol, vol. 408, pp. 49-68, 2007.

[114] R. Diaz-Uriarte, “GeneSrF and varSelRF: a web-based tool and R package for

gene selection and classification using random forest,” BMC Bioinformatics, vol.

8, p. 328, 2007.

[115] I. Medina, Montaner, D., Tárraga, J., Dopazo, J., “Prophet, a web-based tool for

class prediction using microarray data,” Bioinformatics, vol. 23, pp. 390-1, 2007.

[116] M.A. Ott, Vriend, G., “Correcting ligands, metabolites, and pathways,” BMC

Bioinformatics, vol. 7, p. 517, 2006.

[117] T. Tokimatsu, Sakurai, N., Suzuki, H., Ohta, H., Nishitani, K., Koyama, T.,

Umezawa, T., Misawa, N., Saito, K., Shibata, D., “KaPPA-view: a web-based

analysis tool for integration of transcript and metabolite data on plant metabolic

pathway maps,” Plant Physiol, vol. 138, pp. 1289-300, 2005.

[118] H. Goldstine, The Computer: from Pascal to von Neumann. Princeton, New

Jersey: Princeton University Press, 1972.

[119] A. Michael, B., On the Way to the Web: The Secret History of the Internet and Its

Founders. USA: Apress, 2008.

[120] T. Hastie, Tibshirani, R., Friedman, J., The Elements of Statistical Learning. New

York: Springer, 2001.

[121] D.T. Chang, Wang, C.C., Chen, J.W., “Using a kernel density estimation based

classifier to predict species-specific microRNA precursors,” BMC Bioinformatics,

vol. 12 p. S2, 2008.

 References 287

[122] D.T. Chang, Ou, Y.Y., Hung, H.G., Yang, M.H., Chen, C.Y., Oyang, Y.J.,

“Prediction of protein secondary structures with a novel kernel density estimation

based classifier,” BMC Res Notes, vol. 1, p. 51, 2008.

[123] J. Gobeill, Tbahriti, I., Ehrler, F., Mottaz, A., Veuthey, A.L., Ruch, P., “Gene

Ontology density estimation and discourse analysis for automatic GeneRiF

extraction,” BMC Bioinformatics, vol. 9, p. S9.

[124] T.B. Chen, Lu, H.H., Lee, Y.S., Lan, H.J., “Segmentation of cDNA microarray

images by kernel density estimation,” J Biomed Inform, vol. 41, pp. 1021-7, 2008.

[125] I.M. Overton, Padovani, G., Girolami, M.A., Barton, G.J., “ParCrys: a Parzen

window density estimation approach to protein crystallization propensity

prediction,” Bioinformatics, vol. 24, pp. 901-7, 2008.

[126] J.D. Fischer, Mayer, C.E., Sading, J., “Prediction of protein functional residues

from sequence by probability density estimation,” Bioinformatics, vol. 24, pp.

613-20, 2008.

[127] K. Pearson, “On Lines and Planes of Closest Fit to Systems of Points in Space,”

Philosophical Magazine, vol. 2, pp. 559-572, 1901.

[128] F. Keinosuke, Introduction to Statistical Pattern Recognition: Elsevier, 1990.

[129] M. Cocchi, Durante, C., Grandi, M., Manzini, D., Marchetti, A., “Three-way

principal component analysis of the volatile fraction by HS-SPME/GC of aceto

balsamico tradizionale of modena,” Talanta, vol. 74, pp. 547-54, 2008.

[130] W. Wu, Guo, Q., de Aguiar, P.F., Massart, D.L., “The star plot: an alternative

display method for multivariate data in the analysis of food and drugs,” J Pharm

Biomed Anal, vol. 17, pp. 1001-13, 1998.

[131] J. Zhao, Patwa, T.H., Qiu, W., Shedden, K., Hinderer, R., Misek, D.E., Anderson,

M.A., Simeone, D.M., Lubman, D.M., “Glycoprotein microarrays with multi-

lectin detection: unique lectin binding patterns as a tool for classifying normal,

chronic pancreatitis and pancreatic cancer sera.,” I Proteome Res, vol. 6, pp.

1864-74, 2007.

[132] J. Albanese, Martens, K., Karanitsa, L.V., Schreyer, S.K., Dainiak, N.,

“Multivariate analysis of low-dose radiation-associated changes in cytokine gene

expression profiles using microarray technology,” Exp Hematol, vol. 35, pp. 47-

54, 2007.

[133] Y.H. Taguchi, Oono, Y., “Relational patterns of gene expression via non-metric

multidimensional scaling analysis,” Bioinformatics, vol. 21, pp. 730-40, 2005.

[134] S.S. Yau, Yu, C., He, R., “A protein map and its application,” DNA Cell Biol, vol.

27, pp. 241-50, 2008.

[135] A. Biegert, Mayer, C., Remmert, M., Söding, J., Lupas, A.N., “The MPI

Bioinformatics Toolkit for protein sequence analysis,” Nucleic Acids Res, vol. 34,

pp. W335-9, 2006.

[136] S. Mayewski, “A multibody, whole-residue potential for protein structures, with

testing by Monte Carlo simulated annealing,” Proteins, vol. 59, pp. 152-69, 2005.

288 Machine Learning Approaches to Bioinformatics

[137] P. Li, Lu, X., Shao, M., Long, J., Wang, J., “Genetic diversity of harpins from

Xanthomonas oryzae and their activity to induce hypersensitive response and

disease resistance in tobacco,” Sci China C Life Sci, vol. 47, pp. 461-9, 2004.

[138] M. M. Bamman, Petrella, J.K., Kim, J.S., Mayhew, D.L., Cross, J.M., “Cluster

analysis tests the importance of myogenic gene expression during myofiber

hypertrophy in humans,” J Appl Physiol, vol. 102, pp. 2232-9, 2007.

[139] Y. Yamada, Fujimoto, A., Ito, A., Yoshimi, R., Ueda, M., “Cluster analysis and

gene expression profiles: a cDNA microarray system-based comparison between

human dental pulp stem cells (hDPSCs) and human mesenchymal stem cells

(hMSCs) for tissue engineering cell therapy,” Biomaterials, vol. 27, pp. 3766-81,

2006.

[140] A. Tichopád, Pecen, L., Pfaffl, M.W., “Distribution-insensitive cluster analysis in

SAS on real-time PCR gene expression data of steadily expressed genes,” Comput

Methods Programs Biomed, vol. 82, pp. 44-50, 2006.

[141] A.E. Teschendorff, Wang, Y., Barbosa-Morais, N.L., Brenton, J.D., Caldas, C.,

“A variational Bayesian mixture modelling framework for cluster analysis of

gene-expression data,” Bioinformatics, vol. 21, pp. 3025-33, 2005.

[142] X. Wu, Dewey, T.G., “Cluster analysis of dynamic parameters of gene

expression,” J Bioinform Comput Biol, vol. 1, pp. 447-58, 2003.

[143] D.R. Bickel, “Robust cluster analysis of microarray gene expression data with the

number of clusters determined biologically,” Bioinformatics, vol. 19, pp. 818-24,

2003.

[144] M.F. Ramoni, Sebastiani, P., Kohane, I.S., “Cluster analysis of gene expression

dynamics,” Proc Natl Acad Sci U S A., vol. 99, pp. 9121-6, 2002.

[145] T. Kohonen, Self-Organizing Maps. Berlin: Springer, 2001.

[146] S.Y. Ku, Hu, Y.J., “Protein structure search and local structure characterization,”

BMC Bioinformatics, vol. 9, p. 349, 2008.

[147] M. Meissner, Koch, O., Klebe, G., Schneider, G., “Prediction of turn types in

protein structure by machine-learning classifiers,” Proteins, vol. 74, pp. 344-52,

2009.

[148] C. Martin, Diaz, N.N., Ontrup, J., Nattkemper, T.W., “Hyperbolic SOM-based

clustering of DNA fragment features for taxonomic visualization and

classification,” Bioinformatics, vol. 24, pp. 1568-74, 2008.

[149] J. Kim, Kim, J.H., “Difference-based clustering of short time-course microarray

data with replicates,” BMC Bioinformatics, vol. 8, p. 253, 2007.

[150] K. Ning, Ng, H.K., Leong, H.W., “PepSOM: an algorithm for peptide

identification by tandem mass spectrometry based on SOM,” Genome Inform,

vol. 17, pp. 194-205, 2006.

[151] T. Ohlson, Aggarwal, V., Elofsson, A., MacCallum, R.M., “Improved alignment

quality by combining evolutionary information, predicted secondary structure and

self-organizing maps,” BMC Bioinformatics, vol. 7, p. 357, 2006.

 References 289

[152] J.M. Otaki, Mori, A., Itoh, Y., Nakayama, T., Yamamoto, H., “Alignment-free

classification of G-protein-coupled receptors using self-organizing maps,” J Chem

Inf Model, vol. 46, pp. 1479-90, 2006.

[153] T. Abe, Sugawara, H., Kanaya, S., Kinouchi, M., Ikemura, T., “Self-Organizing

Map (SOM) unveils and visualizes hidden sequence characteristics of a wide

range of eukaryote genomes,” Gene, vol. 365, pp. 27-34, 2006.

[154] X.S. Zhang, Wang, Y., Zhan, Z.W., Wu, L.Y., Chen, L., “Exploring protein's

optimal HP configurations by self-organizing mapping,” J Bioinform Comput

Biol, vol. 3, pp. 385-400, 2005.

[155] M. Kanehisa, Goto, S., “KEGG: Kyoto Encyclopedia of Genes and Genomes,”

Nucleic Acids Res, vol. 28, pp. 27-30, 2000.

[156] E. Parzen, “On estimation of a probability density function and mode,” Ann.

Math. Stat, vol. 33, pp. 1065-76, 1962.

[157] A.P.L. Dempster, N.M.; Rubin, D.B., “Maximum Likelihood from Incomplete

Data via the EM Algorithm,” Journal of the Royal Statistical Society. Series B

(Methodological), vol. 39, pp. 1-38, 1977.

[158] R.O. Duda, Hart, P.E., Stork, D.G., Pattern Classification, 2nd ed.: Wiley-

Interscience, 2000.

[159] C.M. Bishop, Neural Networks for Pattern Recognition. Bath, UK: Oxford

University Press, USA, 1995.

[160] G.J. McLachlan, Discriminant Analysis and Statistical Pattern Recognition: Wiley

Interscience, 2004.

[161] B.D. Ripley, Pattern Recognition and Neural Networks. Cambridge: Cambridge

University Press, 1996.

[162] Y. Sakamoto, Ishiguro, M., and Kitagawa G., Akaike Information Criterion

Statistics: D. Reidel Publishing Company, 1986.

[163] J. Kyte, Doolittle, R.F., “A simple method for displaying the hydropathic

character of a protien,” J Mol Biol, vol. 157, pp. 105-108, 1982.

[164] D.T. Chang, Wang, C.C., Chen, J.W., “Using a kernel density estimation based

classifier to predict species-specific microRNA precursors,” BMC Bioinformatics,

vol. 12, p. S2, 2008.

[165] P. Mahata, Mahata, K., “Selecting differentially expressed genes using minimum

probability of classification error,” J Biomed Inform, vol. 40, pp. 775-86, 2007.

[166] I. Wasito, Hashim, S.Z., Sukmaningrum, S., “Iterative local Gaussian clustering

for expressed genes identification linked to malignancy of human colorectal

carcinoma,” Bioinformation, vol. 2, pp. 175-81, 2007.

[167] X. Yan, Deng, M., Fung, W.K., Qian, M., “Detecting differentially expressed

genes by relative entropy,” J Theor Biol, vol. 234, pp. 395-402, 2005.

[168] I.T. Jolliffe, Principal Component Analysis. NY: Springer, 2002.

[169] D.G. Lemay, Neville, M.C., Rudolph, M.C., Pollard, K.S., German, J.B., “Gene

regulatory networks in lactation: identification of global principles using

bioinformatics,” BMC Syst Biol, vol. 1, p. 56, 2007.

290 Machine Learning Approaches to Bioinformatics

[170] J. Zhao, Patwa, T.H., Qiu, W., Shedden, K., Hinderer, R., Misek, D.E., Anderson,

M.A., Simeone, D.M., Lubman, D.M., “Glycoprotein microarrays with multi-

lectin detection: unique lectin binding patterns as a tool for classifying normal,

chronic pancreatitis and pancreatic cancer sera.,” J Proteome Res, vol. 6, pp.

1864-74, 2007.

[171] M. Szyma. A.E., M.J., Capron, X., van Nederkassel, A.M., Heyden, Y.V.,

Markuszewski, M., Krajka, K., Kaliszan, R., “Increasing conclusiveness of

metabonomic studies by chem-informatic preprocessing of capillary

electrophoretic data on urinary nucleoside profiles,” J Pharm Biomed Anal, vol.

43, pp. 413-20, 2007.

[172] H. Fang, Xie, Q., Boneva, R., Fostel, J., Perkins, R., Tong, W., “Gene expression

profile exploration of a large dataset on chronic fatigue syndrome,”

Pharmacogenomics J, vol. 7, pp. 429-40, 2006.

[173] J. Gao, Friedrichs, M.S., Dongre, A.R., Opiteck, G.J., “Guidelines for the routine

application of the peptide hits technique,” J Am Soc Mass Spectrom, vol. 16, pp.

1231-8, 2005.

[174] I.A. Doytchinova, Guan, P., Flower, D.R., “Identifiying human MHC supertypes

using bioinformatic methods,” J Immunol, vol. 172, pp. 4314-23, 2004.

[175] J.L. Griffin, Muller, D., Woograsingh, R., Jowatt, V., Hindmarsh, A., Nicholson,

J.K., Martin, J.E., “Vitamin E deficiency and metabolic deficits in neuronal ceroid

lipofuscinosis described by bioinformatics,” Physiol Genomics, vol. 11, pp. 195-

203, 2002.

[176] S.V. Edwards, Fertil, B., Giron, A., Deschavanne, P.J., “A genomic schism in

birds revealed by phylogenetic analysis of DNA strings,” Syst Biol, vol. 51, pp.

599-613, 2002.

[177] Z.R. Yang, Lertmemongkolchai, G., Tan, G., Felgner, P.L., Titball, R., “A

Genetic Programming Approach for Burkholderia Pseudomallei Diagnostic

Pattern Discovery,” Bioinformatics, vol. in press, 2009.

[178] J.W. Sammon Jr, “A nonlinear mapping for data structure analysis,” IEEE

Transactions on Computers, vol. 18, pp. 401-9, 1969.

[179] P. Törönena, Kolehmainenb, M., Wonga, G., Castrén, E., “Analysis of gene

expression data using self-organizing maps,” FEBS Lett, vol. 451, pp. 142-6,

1999.

[180] R.M. Ewing, Cherry, J.M., “Visualization of expression clusters using Sammon’s

non-linear mapping,” Bioinformatics, vol. 17, pp. 658-9, 2001.

[181] E. Niméus-Malmström, Krogh, M., Malmström,P., Strand, C., Fredriksson, I.,

Karlsson, P., Nordenskjöld, B., Stål, O., Östberg, G., Peterson, C., Fernö, M.,

“Gene expression profiling in primary breast cancer distinguishes patients

developing local recurrence after breast-conservation surgery, with or without

postoperative radiotherapy,” Breast Cancer Res, vol. 10, p. R34, 2008.

[182] F. Azuaje, Wang, H., Chesneau, A., “Non-linear mapping for exploratory data

analysis in functional genomics,” BMC Bioinformatics, vol. 6, p. 13, 2005.

 References 291

[183] T. Chen, Martin, E., Montague, G., “Robust probabilistic PCA with missing data

and contribution analysis for outlier detection,” Computational Stat. & Data

analysis, vol. 53, pp. 3706-16, 2009.

[184] M.E. Tipping, Bishop, C.M., “Probabilistic principal component analysis,”

Journal of the Royal Statistical Society. Series B (Statistical Methodology), vol.

61, pp. 611-22, 2002.

[185] M. Scholz, Kaplan, F., Guy, C.L., Kopka, K., Selbig, J., “Non-linear PCA: a

missing data approach,” Bioinformatics, vol. 21, pp. 3887-95, 2005.

[186] J.G. Lees, Miles, A.J., Wien, F., Wallace, B.A., “A reference database for circular

dichroism spectroscopy covering fold and secondary structure space,”

Bioinformatics, vol. 22, pp. 1955-62, 2006.

[187] F.M. Selaru, Zou, T., Xu, Y., Shustova, V., Yin, J., Mori, Y., Sato, F., Wang, S.,

Olaru, A., and D. Shibata, Greenwald, B.D., Krasna, M.J., Abraham, J.M.,

Meltzer, S.J., “Global gene expression profiling in Barrett's esophagus and

esophageal cancer: a comparative analysis using cDNA microarrays,” Oncogene,

vol. 21, pp. 475-8, 2002.

[188] J.C. Dunn, “A Fuzzy Relative of the ISODATA Process and Its Use in Detecting

Compact Well-Separated Clusters,” Journal of Cybernetics, vol. 3, pp. 32-57,

1973.

[189] J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms. NY:

Plenum, 1981.

[190] T.D.A. Smith, Makov, U., Statistical Analysis of Finite Mixture Distributions:

John Wiley & Sons, 1985.

[191] B.S. Everitt, Hand D.J., Finite mixture distributions: Chapman & Hall, 1981.

[192] G.J. McLachlan, Peel, D., Finite Mixture Models: Wiley 2000.

[193] A. Gersho, “Asymptotically optimal block quantization,” IEEE Trans. Inform.

Theory, vol. IT-25, pp. 373-80, 1979.

[194] Y. Linde, Buzo, A., Gray, R.M., “An algorithm for vector quantizer design,”

IEEE Transactions on Communications, vol. 28, pp. 84-95, 1980.

[195] J. Makhoul, Roucos, S., Gish, H., “Vector Quantization in Speech Coding,” Proc.

IEEE, vol. 73, pp. 1551-88, 1985.

[196] P. Zador, “Asymptotic Quantization Error of Continuous Signals and the

Quantization Dimension,” IEEE Trans. Inform. Theory, vol. IT-28, pp. 139-49,

1982.

[197] C. von der Malsburg, “Self-organization of orientation sensitive cells in the striate

cortex,” Kybernetik, vol. 14, pp. 85-100, 1973.

[198] T. Kohonen, “Analysis of a simple self-organizing process,” Biological

Cybernetics, vol. 44, pp. 135-40, 1982.

[199] R.S. Istepanian, Sungoor, A., Nebel, J.C., “Fractal dimension and wavelet

decomposition for robust microarray data clustering,” Conf Proc IEEE Eng Med

Biol Soc, pp. 4106-9, 2008.

292 Machine Learning Approaches to Bioinformatics

[200] J. Li, Zha, H., “Simultaneous classification and feature clustering using

discriminant vector quantization with applications to microarray data analysis,”

Proc IEEE Comput Soc Bioinform Conf, vol. 1, pp. 246-55, 2002.

[201] J. Hanke, Beckmann, G., Bork, P., Reich, J.G., “Self-organizing hierarchic

networks for pattern recognition in protein sequence,” Protein Sci, vol. 5, pp. 72-

82, 1996.

[202] T. Abe, Kanaya, S., Kinouchi, M., Ichiba, Y., Kozuki, T., Ikemura, T.,

“Informatics for unveiling hidden genome signatures,” Genome Research, vol. 13,

pp. 693-702, 2003.

[203] P. Törönen, Kolehmainen, M., Wong, G., Castrén, E., “Analysis of gene

expression data using self-organizing maps,” FEBS Lett, vol. 451, pp. 142-6,

1999.

[204] S. Kanaya, Kinouchi, M., Abe, T., Kudo, Y., Yamada, Y., Nishi, T., Mori, H.,

Ikemura, T., “Analysis of codon usage diversity of bacterial genes with a self-

organizing map (SOM): characterization of horizontally transferred genes with

emphasis on the E. coli O157 genome,” Gene, vol. 276, pp. 89-99, 2001.

[205] C. Martin, Diaz, N.N., Ontrup, J., Nattkemper, T.W., “Hyperbolic SOM-based

clustering of DNA fragment features for taxonomic visualization and

classification,” Bioinformatics, vol. 24, pp. 1568-74, 2008.

[206] J. Wang, Delabie, J., Aasheim, H., Smeland, E., Myklebost, O., “Clustering of the

SOM easily reveals distinct gene expression patterns: results of a reanalysis of

lymphoma study,” BMC Bioinformatics, vol. 3, p. 36, 2002.

[207] T.K. Baker, Carfagna, M.A., Gao, H., Dow, E.R., Li, Q., Searfoss, G.H., Ryan,

T.P., “Temporal gene expression analysis of monolayer cultured rat hepatocytes,”

Chem Res Toxicol, vol. 14, pp. 1218-31, 2001.

[208] Y.D. Cai, Yu, H., Chou, K.C., “Artificial neural network method for predicting

HIV protease cleavage sites in protein,” J Protein Chem, vol. 17, pp. 607-15,

1998.

[209] N. Qian, Sejnowski, T., “Predicting the secondary structure of globu-lar proteins

using neural network models,” J Mol Biol. Aug 20;(4):, vol. 202, pp. 865-84,

1988.

[210] S. Tümpel, Maconochie, M., Wiedemann, L.M., Krumlauf, R., “Conservation and

Diversity in the cis-Regulatory Networks That Integrate Information Controlling

Expression of Hoxa2 in Hindbrain and Cranial Neural Crest Cells in Vertebrates,”

Developmental Biology, vol. 246, pp. 45-56, 2002.

[211] P.F. Kemp, Aller, J.Y., “Bacterial diversity in aquatic and other environments:

what 16S rDNA libraries can tell us,” FEMS Microbiology Ecology, vol. 47, pp.

161-77, 2004.

[212] A.C. Lorena, de Carvalho, A.C.P.L.F., “Protein cellular localization prediction

with Support Vector Machines and Decision Trees,” Computers in Biology and

Medicine, vol. 37, pp. 115-25, 2007.

 References 293

[213] A. Ruepp, Mewes, H.W., “Prediction and classification of protein functions,”

Drug Discovery Today: Technologies, vol. 3, pp. 145-51, 2006.

[214] B.H. Dessailly, Redfern, O.C., Cuff, A., Orengo, C.A., “Exploiting structural

classifications for function prediction: towards a domain grammar for protein

function,” Current Opinion in Structural Biology, vol. 19, pp. 349-56, 2009.

[215] Y. Gusev, “Computational methods for analysis of cellular functions and

pathways collectively targeted by differentially expressed microRNA,” Methods,

vol. 44, pp. 61-72, 2008.

[216] O. Emanuelsson, Nielsen, H., von Heijne, G., “ChloroP, a neural network-based

method for predicting chloroplast transit peptides and their cleavage sites,”

Protein Science, vol. 8, pp. 978-984, 1999.

[217] A.S. Juncker, Willenbrock, H., von Heijne, G., Nielsen, H., Brunak, S., Krogh,

A., “Prediction of lipoprotein signal peptides in Gram-negative bacteria,” Protein

Sci, vol. 12, pp. 1652-62, 2003.

[218] M.G. Claros, Vincens, P., “Computational method to predict mitochondrially

imported proteins and their targeting sequences,” Eur. J. Biochem, vol. 241, pp.

779-786, 1996.

[219] J. Zuegge, Ralph, S., Schmuker, M., McFadden, G.I., Schneider, G., “Deciphering

apicoplast targeting signals - feature extraction from nuclear-encoded precursors

of Plasmodium falciparum apicoplast proteins,” Gene vol. 280, pp. 19-26, 2001.

[220] A. Bender, van Dooren, G.G., Ralph, S.A., McFadden, G.I., Schneider, G.,

“Properties and prediction of mitochondrial transit peptides from Plasmodium

falciparum,” Mol. Biochem. Parasitol, vol. 132, pp. 59-66, 2003.

[221] I. Small, Peeters, N., Legeai, F., Lurin, C., “Predotar: A tool for rapidly screening

proteomes for N-terminal targeting sequences,” Proteomics, vol. 4, pp. 1581-

1590, 2004.

[222] G. Neuberger, Maurer-Stroh, S., Eisenhaber, B., Hartig, A., Eisenhaber, F.,

“Motif refinement of the peroxisomal targeting signal 1 and evaluation of taxon-

specific differences,” J Mol Biol, vol. 328, pp. 567-79, 2003.

[223] J.D. Bendtsen, Nielsen, H., von Heijne, G., Brunak, S., “Improved prediction of

signal peptides: SignalP 3.0.,” J. Mol. Biol, vol. 340, pp. 783-795, 2004.

[224] R. Gupta, Jung, E., Gooley, A.A., Williams, K.L., Brunak, S., Hansen, J.,

“Scanning the available Dictyostelium discoideum proteome for O-linked

GlcNAc glycosylation sites using neural networks,” Glycobiology, vol. 9, pp.

1009-22, 1999.

[225] K. Julenius, “NetCGlyc 1.0: Prediction of mammalian C-mannosylation sites,”

Glycobiology, vol. 17, pp. 868-876, 2007.

[226] K. Julenius, Mølgaard, A., Gupta, R., Brunak, S., “Prediction, conservation

analysis and structural characterization of mammalian mucin-type O-

glycosylation sites,” Glycobiology, vol. 15, pp. 153-164, 2005.

[227] M.B. Johansen, Kiemer, L., Brunak, S., “Analysis and prediction of mammalian

protein glycation,” Glycobiology, vol. 16, pp. 844-853, 2006.

294 Machine Learning Approaches to Bioinformatics

[228] R. Gupta, Brunak, S., “Prediction of glycosylation across the human proteome

and the correlation to protein function,” Pacific Symposium on Biocomputing,

vol. 7, pp. 310-322, 2002.

[229] B. Eisenhaber, Bork, P., Eisenhaber, F., “Sequence properties of GPI-anchored

proteins near the omega-site: constraints for the polypeptide binding site of the

putative transamidase,” Protein Engineering, vol. 11, pp. 1155-1161, 1998.

[230] G. Bologna, Yvon, C., Duvaud, S., Veuthey, A.L., “N-terminal Myristoylation

Predictions by Ensembles of Neural Networks,” Proteomics, vol. in press, 2009.

[231] J. Ren, Wen, L., Gao, X., Jin, C., Xue, Y., Yao, X., “CSS-Palm 2.0: an updated

software for palmitoylation sites prediction,” Protein Engineering, Design and

Selection, vol. 21, pp. 639-644, 2008.

[232] L. Kiemer, Bendtsen, J.D., Blom, N., “NetAcet: Prediction of N-terminal

acetylation sites,” Bioinformatics, vol. 21, pp. 1269-1270, 2005.

[233] N. Blom, Gammeltoft, S., and Brunak, S., “Sequence- and structure-based

prediction of eukaryotic protein phosphorylation sites,” J Mol Biol, vol. 294, pp.

1351-1362, 1999.

[234] N. Blom, Sicheritz-Ponten, T., Gupta, R., Gammeltoft, S., Brunak, S., “Prediction

of post-translational glycosylation and phosphorylation of proteins from the

amino acid sequence,” Proteomics, vol. 4, pp. 1633-49.

[235] C.R. Ingrell, Miller, M.L., Jensen, O.N., Blom, N., “NetPhosYeast: Prediction of

protein phosphorylation sites in yeast,” Bioinformatics, vol. in press, 2009.

[236] N. Blom, Hansen,J., Blaas, D., Brunak, S., “Cleavage site analysis in picornaviral

polyproteins: Discovering cellular targets by neural networks,” Protein Science,

vol. 5, pp. 2203-2216, 1996.

[237] L. Kiemer, Lund, O., Brunak, S., Blom, N., “Coronavirus 3CL-pro proteinase

cleavage sites: Possible relevance to SARS virus pathology,” BMC

Bioinformatics, vol. 7, p. 72, 2004.

[238] P. Duckert, Brunak, S., Blom, S., “Prediction of proprotein convertase cleavage

sites,” Protein Engineering, Design and Selection, vol. 17, pp. 107-112, 2004.

[239] K. Krause, Eszlinger, M., Gimm, O., Karger, S., Engelhardt, C., Dralle, H.,

Fuhrer, D., “TFF3-based candidate gene discrimination of benign and malignant

thyroid tumors in a region with borderline iodine deficiency,” J Clin Endocrinol

Metab, vol. 93, pp. 1390-3, 2008.

[240] J.A. Cruz, Wishart, D.S., “Applications of machine learning in cancer prediction

and prognosis,” Cancer Inform, vol. 2, pp. 59-77, 2007.

[241] T. Bellotti, Luo, Z., Gammerman, A., Van Delft, F.W., Saha, V., “Qualified

predictions for microarray and proteomics pattern diagnostics with confidence

machines,” Int J Neural Syst, vol. 15, pp. 247-58, 2005.

[242] F. Li, Yang, Y., “Analysis of recursive gene selection approaches from

microarray data,” Bioinformatics, vol. 21, pp. 3714-7, 2005.

[243] E. Vairaktaris, Yapijakis, C., Serefoglou, Z., Avgoustidis, D., Critselis, E.,

Spyridonidou, S., Vylliotis, A., Derka, S., Vassiliou, S., Nkenke, E., Patsouris, E.,

 References 295

“Gene expression polymorphisms of interleukins-1 beta, -4, -6, -8, -10, and tumor

necrosis factors-alpha, -beta: regression analysis of their effect upon oral

squamous cell carcinoma,” J Cancer Res Clin Oncol, vol. 134, pp. 821-32, 2008.

[244] M. Steinfath, Groth, D., Lisec, J., Selbig, J., “Metabolite profile analysis: from

raw data to regression and classification,” Physiol Plant, vol. 132, pp. 150-61,

2008.

[245] H.G. Müller, Chiou, J.M., Leng, X., “Inferring gene expression dynamics via

functional regression analysis,” BMC Bioinformatics, vol. 9, p. 60, 2008.

[246] R.A. Barkley, Grodzinksi, G.M., “Are tests of frontal lobe functions useful in the

diagnosis of Attention Deficit Disorders?,” The Clinical Neurologist, vol. 8, pp.

121-39, 1994.

[247] R.W. Ellwood, “Clinical discriminations and neuropsychological tests: An appeal

to Bayes' theorem,” The Clinical Neuropsychologist, vol. 7, pp. 224-33, 1993.

[248] K. Matier-Sharma, Perachio, N., Newcorn, J.H., Sharma, V., Halperin, J.M.,

“Differential diagnosis of ADHD: Are objective measures of attention,

impulsivity, and activity level helpful?,” Child Neuropsychology, vol. 1, pp. 118-

127, 1995.

[249] J.N. Wherry, Paal, N., Jolly, J.B., Balkozar, A., Holloway, C., Everett, B.,

Vaught, L., “Concurrent and discriminant validity of the Gordon Diagnostic

System: A preliminary study,” Psychology in the Schools, vol. 1, pp. 29-36, 1993.

[250] C.E. Metz, “Basic principles of ROC analysis,” Seminars in Nuclear Medicine,

vol. 8, pp. 283-288, 1978.

[251] T. Sing, Sander, O., Beerenwinkel, N., Lengauer, T., “ROCR: visualizing

classifier performance in R,” Bioinformatics, vol. 21, pp. 3940-1, 2005.

[252] B. Efron, “Nonparametric estimates of standard error: The jackknife, the

bootstrap and other methods,” Biometrika, vol. 68, pp. 589-599, 1981.

[253] R.A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals

of Eugenics, vol. 7, pp. 179-88, 1936.

[254] W. Dai, Teodoridis, J.M., Graham, J., Zeller, C., Huang, T.H., Yan, P., Vass, J.K.,

Brown, R., Paul, J., “Methylation Linear Discriminant Analysis (MLDA) for

identifying differentially methylated CpG islands,” BMC Bioinformatics, vol. 9,

p. 337, 2008.

[255] X. Du, Yang, F., Manes, N.P., Stenoien, D.L., Monroe, M.E., Adkins, J.N., States,

D.J., Purvine, S.O., Camp, D.G., Smith, R.D., “Linear discriminant analysis-based

estimation of the false discovery rate for phosphopeptide identifications,” J

Proteome Res, vol. 7, pp. 2195-203, 2008.

[256] K.S. Opstad, Ladroue, C., Bell, B.A., Griffiths, J.R., Howe, F.A., “Linear

discriminant analysis of brain tumour (1)H MR spectra: a comparison of

classification using whole spectra versus metabolite quantification,” NMR

Biomed, vol. 20, pp. 763-70.

296 Machine Learning Approaches to Bioinformatics

[257] J. Jin, “Identification of protein coding regions of rice genes using alternative

spectral rotation measure and linear discriminant analysis,” Genomics Proteomics

Bioinformatics, vol. 2, pp. 167-73, 2004.

[258] M.Q. Zhang, “Identification of protein coding regions in the human genome by

quadratic discriminant analysis,” PNAS, vol. 94, pp. 565-8, 1997.

[259] L. Zhang, Luo, L., “Splice site prediction with quadratic discriminant analysis

using diversity measure,” NAR, vol. 31, pp. 6214-20, 2003.

[260] W. Chen, Luo, L., “Classification of antimicrobial peptide using diversity

measure with quadratic discriminant analysis,” J Microbiol Methods, vol. 78, pp.

94-6, 2009.

[261] A.G. Garrow, Agnew, A., Westhead, D.R., “TMB-Hunt: a web server to screen

sequence sets for transmembrane beta-barrel proteins,” NAR, vol. 33, pp. W188-

92, 2005.

[262] A. Zorzet, Gustafsson, M., Hammerling, U., “Prediction of food protein

allergenicity: a bioinformatic learning systems approach,” In Silico Biology, vol.

2, pp. 525-34, 2002.

[263] A.C. Tan, Naiman, D.Q., Xu, L., Winslow, R.L., Geman, D., “Simple decision

rules for classifying human cancers from gene expression profiles,”

Bioinformatics, vol. 21, pp. 3896-904, 2005.

[264] A. Barrier, Lemoine, A., Boelle, P.Y., Tse, C., Brault, D., Chiappini, F.,

Breittschneider, J., Lacaine, F., Houry, S., Huguier, M., Van der Laan, M.J.,

Speed, T., Debuire, B., Flahault, A, Dudoit, S., “Colon cancer prognosis

prediction by gene expression profiling,” Oncogene, vol. 24, pp. 6155-64, 2005.

[265] J. Li, Liu, H., Downing, J.R., Yeoh, A.E., Wong, L., “Simple rules underlying

gene expression profiles of more than six subtypes of acute lymphoblastic

leukemia (ALL) patients,” Bioinformatics, vol. 19, pp. 71-8, 2003.

[266] J.H. van Delft, van Agen, E., van Breda, S.G., Herwijnen, M.H., Staal, Y.C.,

Kleinjans, J.C., “Comparison of supervised clustering methods to discriminate

genotoxic from non-genotoxic carcinogens by gene expression profiling,” Mutat

Res, vol. 575, pp. 17-33, 2005.

[267] H. Wiesinger-Mayr, Vierlinger, K., Pichler, R., Kriegner, A., Hirschl, A.M.,

Presterl, E., Bodrossy, L., Noehammer, C., “Identification of human pathogens

isolated from blood using microarray hybridisation and signal pattern

recognition,” BMC Microbiol, vol. 7, p. 78, 2007.

[268] B.C. Emerson, Kolm, N., “Species diversity can drive speciation,” Nature, vol.

434, pp. 1015-1017, 2005.

[269] J.R. Quinlan, C4.5: Programs for Machine Learning: Morgan Kaufmann

Publishers, 1993.

[270] J.R. Quinlan, “Improved use of continuous attributes in c4.5,” Journal of

Artificial Intelligence Research, vol. 4, pp. 77-100, 1996.

[271] L. Breiman, Friedman, J.H., Olshen, R.A., Stone, C.J., Classification and

Regression Trees: Wadsworth, 1984.

 References 297

[272] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5-32, 2001.

[273] F. Hammann, Gutmann, H., Jecklin, U., Maunz, A., Helma, C., Drewe, J.,

“Development of decision tree models for substrates, inhibitors, and inducers of

p-glycoprotein,” Curr Drug Metab, vol. 10, pp. 339-46, 2009.

[274] S. Sethi, Benninger, M.S., Lu, M., Havard, S., Worsham, M.J., “Noninvasive

molecular detection of head and neck squamous cell carcinoma: an exploratory

analysis,” Diagn Mol Pathol, vol. 18, pp. 81-7, 2009.

[275] M. García-Magariños, López-de-Ullibarri, I., Cao, R., Salas, A., “Evaluating the

ability of tree-based methods and logistic regression for the detection of SNP-

SNP interaction,” Ann Hum Genet, vol. 73, pp. 360-9, 2009.

[276] H. Kulkarni, Agan, B.K., Marconi, V.C., O'Connell, R.J., Camargo, J.F., He, W.,

Delmar, J., Phelps, K.R., Crawford, G., Clark, R.A., Dolan, M.J., Ahuja, S.K.,

“CCL3L1-CCR5 genotype improves the assessment of AIDS Risk in HIV-1-

infected individuals,” PLoS One, vol. 3, p. e3165, 2008.

[277] H. Yang, Lippman, S.M., Huang, M., Lee. J., Wang, W., Spitz, M.R., Wu, X.,

“Genetic polymorphisms in double-strand break DNA repair genes associated

with risk of oral premalignant lesions,” Eur J Cancer, vol. 44, pp. 1603-11, 2008.

[278] Y. Ye, Yang, H., Grossman, H.B., Dinney, C., Wu, X., Gu, J., “Genetic variants

in cell cycle control pathway confer susceptibility to bladder cancer,” Cancer, vol.

112, pp. 2467-74, 2008.

[279] U. Raju, Mei, L., Seema, S., Hina, Q., Wolman, S.R., Worsham, M.J., “Molecular

classification of breast carcinoma in situ,” Cuur Genomics, vol. 7, pp. 523-32,

2006.

[280] A. Papana, Ishwaran, H., “CART variance stabilization and regularization for

high-throughput genomic data,” Bioinformatics, vol. 22, pp. 2254-61, 2006.

[281] R.D. Loss, “Atomic weights of the elements 2001,” Pure Appl. Chem., vol. 75,

pp. 1107-22, 2003.

[282] B. Efron, Halloran‡, E., Holmes, S., “Bootstrap confidence levels for

phylogenetic trees,” PNAS vol. 93, p. 23, 1996.

[283] O. Tastan, Qi, Y., Carbonell, J.G., Klein-Seetharaman, J., “Prediction of

interactions between HIV-1 and human proteins by information integration,” Pac

Symp Biocomput, pp. 516-27, 2009.

[284] X.Y. Wu, Wu, Z.Y., Li, K., “Identification of differential gene expression for

microarray data using recursive random forest,” Chin Med J, vol. 121, pp. 2492-6,

2008.

[285] J. Olsen, Gerds, T.A., Seidelin, J.B., Csillag, C., Bjerrum, J.T., Troelsen, J.T.,

Nielsen, O.H., “Diagnosis of ulcerative colitis before onset of inflammation by

multivariate modeling of genome-wide gene expression data,” Inflamm Bowel

Dis, vol. in press, 2009.

[286] M.C. Abba, Sun, H., Hawkins, K.A., Drake, J.A., Hu, Y., Nunez, M.I., Gaddis, S.,

Shi, T., Horvath, S., Sahin, A., Aldaz, C.M., “Breast cancer molecular signatures

298 Machine Learning Approaches to Bioinformatics

as determined by SAGE: correlation with lymph node status,” Mol Cancer Res,

vol. 5, pp. 881-90, 2007.

[287] K. Hoffmann, Firth, M.J., Beesley, A.H., de Klerk, N.H., Kees, U.R., “Translating

microarray data for diagnostic testing in childhood leukaemia,” BMC Cancer, vol.

6, p. 229, 2006.

[288] Y. Qi, Bar-Joseph, Z., Klein-Seetharaman, J., “Evaluation of different biological

data and computational classification methods for use in protein interaction

prediction,” Proteins, vol. 63, pp. 490-500, 2006.

[289] W. McCulloch, Pitts, W., “A logical calculus the ideas immanent in nervous

activity,” Bulletin Mathematical Biophysics, vol. 5, pp. 115-33, 1943.

[290] F.B. Fitch, McCulloch, W.S., Pitts, W., “A logic calculus of the ideas immanent

in nervous activity,” Journal Symbolic Logic, vol. 9, pp. 49-50, 1944.

[291] D.O. Hebb, The organization of behaviour: John Wiley and Sons Inc, 1949.

[292] E. A. Feigenbaum, Feldman, J., “Computers & Thought,” Cambridge, MA, USA:

MIT Press, 1954.

[293] M. Minksy, Perceptron. Cambridge, MA, USA: MIT Press, 1969.

[294] J.J. Hopfield, “Neural networks and physical systems with emergent collective

computational abilities,” PNSA, vol. 79, pp. 2554-8, 1982.

[295] P.J. Werbos, The Roots of Backpropagation: From Ordered Derivatives to Neural

Networks and Political Forecasting: Willey-Interscience, 1994.

[296] D.E. Rumelhart, McClelland, J.L, Parallel Dsitributed Processing: MIT press,

1986.

[297] D. Hecht, Cheung, M., Fogel, G.B., “QSAR using evolved neural networks for

the inhibition of mutant PfDHFR by pyrimethamine derivatives,” Biosystems, vol.

92, pp. 10-5, 2008.

[298] B. Slabbinck, De Baets, B., Dawyndt, P., De Vos, P., “Genus-wide Bacillus

species identification through proper artificial neural network experiments on

fatty acid profiles,” Antonie Van Leeuwenhoek, vol. 94, pp. 187-98, 2008.

[299] M. Spreafico, Boriani, E., Benfenati, E., Novic, M., “Structural features of diverse

ligands influencing binding affinities to estrogen alpha and estrogen beta

receptors. Part II. Molecular descriptors calculated from conformation of the

ligands in the complex resulting from previous docking study,” Mol Divers, vol.

13, pp. 171-81, 2008.

[300] M. Jalali-Heravi, Asadollahi-Baboli, M., Shahbazikhah, P., “QSAR study of

heparanase inhibitors activity using artificial neural networks and Levenberg-

Marquardt algorithm,” Eur J Med Chem, vol. 43, pp. 548-56, 2008.

[301] D. Catchpoole, Lail, A., Guo, D., Chen, Q.R., Khan, J., “Gene expression profiles

that segregate patients with childhood acute lymphoblastic leukaemia: an

independent validation study identifies that endoglin associates with patient

outcome,” Leuk Res, vol. 31, pp. 1741-7, 2007.

[302] C.L. Moore, Smagala, J.A., Smith, C.B., Dawson, E.D., Cox, N.J., Kuchta, R.D.,

Rowlen, K.L., “Evaluation of MChip with historic subtype H1N1 influenza A

 References 299

viruses, including the 1918 “Spanish Flu” strain,” Journal Clinic Microbiology,

vol. 45, pp. 3807-10, 2007.

[303] R. Xu, Venayagamoorthy, G.K., Wunsch, D.C., “Modeling of gene regulatory

networks with hybrid differential evolution and particle swarm optimization,”

Neural Networks, vol. 20, pp. 917-27, 2007.

[304] J.H. Chiang, Chao, S.Y., “Modeling human cancer-related regulatory modules by

GA-RNN hybrid algorithms,” BMC Bioinformatics, vol. 8, p. 91, 2007.

[305] S. Wagner, Arce, R., Murillo, R., Terfloth, L., Gasteiger, J., Merfort, I., “Neural

networks as valuable tools to differentiate between sesquiterpene lactones'

inhibitory activity on serotonin release and on NF-kappaB,” J Med Chem, vol. 51,

pp. 1324-32, 2008.

[306] M. Cruz-Monteagudo, Cordeiro, M.N., Borges, F., “Computational chemistry

approach for the early detection of drug-induced idiosyncratic liver toxicity,”

Journal Computer Chemistry, vol. 29, pp. 533-49, 2008.

[307] L. Wang, Zheng, W., Mu, L., Zhang, S.Z., “Identifying biomarkers of

endometriosis using serum protein fingerprinting and artificial neural networks,”

International Journal Gynaecol Obstet, vol. 101, pp. 253-8, 2008.

[308] Z. Zhang, Yu, Y., Xu, F., Berchuck, A., van Haaften-Day, C., Havrilesky, L.J., de

Bruijn, H.W., van der Zee, A.G., Woolas, R.P., Jacobs, I.J., Skates, S., Chan,

D.W., Bast, R.C., “Combining multiple serum tumor markers improves detection

of stage I epithelial ovarian cancer,” Gynecol Oncol, vol. 107, pp. 526-31., 2007.

[309] Y. Matsubara, Kikuchi, S., Sugimoto, M., Tomita, M., “Parameter estimation for

stiff equations of biosystems using radial basis function networks,” BMC

Bioinformatics, vol. 7, p. 230, 2006.

[310] J.H. Chiang, Ho, S.H., “A combination of rough-based feature selection and RBF

neural network for classification using gene expression data,” IEEE Trans

Nanobioscience, vol. 7, pp. 91-9, 2008.

[311] C.S. Möller-Levet, Yin, H., “Modeling and analysis of gene expression time-

series based on co-expression,” Int J Neural Syst, vol. 15, pp. 311-22, 2005.

[312] H.Q. Wang, Huang, D.S., “Non-linear cancer classification using a modified

radial basis function classification algorithm,” J Biomed Sci, vol. 12, pp. 819-26,

2005.

[313] L.E. Peterson, Coleman, M.A., “Machine learning-based receiver operating

characteristic (ROC) curves for crisp and fuzzy classification of DNA microarrays

in cancer research,” Int J Approx Reason, vol. 47, pp. 17-36, 2008.

[314] N. Pochet, De Smet, F., Suykens, J.A., De Moor, B.L., “Systematic benchmarking

of microarray data classification: assessing the role of non-linearity and

dimensionality reduction,” Bioinformatics, vol. 20, pp. 3185-95, 2004.

[315] S. Takasaki, Kawamura, Y., Konagaya, A., “Selecting effective siRNA sequences

by using radial basis function network and decision tree learning,” BMC

Bioinformatics, vol. Suppl 5, p. S22, 2006.

300 Machine Learning Approaches to Bioinformatics

[316] Y. Xue, Li, A., Wang, L., Feng, H., Yao, X., “PPSP: prediction of PK-specific

phosphorylation site with Bayesian decision theory,” BMC Bioinformatics, vol. 7,

p. 163, 2006.

[317] Z.R. Yang, Thomson, R., “Bio-basis function neural network for prediction of

protease cleavage sites in proteins,” IEEE Trans. on Neural Networks, vol. 15, pp.

263-274, 2005.

[318] R. Thomson, Hodgman, T., Yang, Z.R. and Doyle, A., “Characterising proteolytic

cleavage site activity using bio-basis function neural networks,” Bioinformatics,

vol. 19, pp. 1741-1447, 2003.

[319] E. Berry, Dalby, A. and Yang, Z.R., “Reduced bio basis function neural network

for identification of protein phosphorylation sites: Comparison with pattern

recognition algorithms,” Computational Biology and Chemistry vol. 28, pp. 75-

85, 2004.

[320] R. Thomson, Esnouf, R., “Predict disordered proteins using bio-basis function

neural networks,” Lecture Notes in Computer Science, vol. 3177, pp. 19-27, 2004.

[321] P. Senawongse, Dalby, A., Yang, Z.R., “Predicting the phosphorylation sites

using hidden Markov models and Machine Learning methods,” Journal of

Chemical Information and Computer Science, vol. 45, pp. 1147-52, 2005.

[322] Z.R. Yang, Chou, K.C., “Predicting the linkage sites in glycoproteins using bio-

basis function neural netwoek,” Bioinformatics, vol. 20, pp. 903-8, 2004.

[323] A. Sidhu, Yang, Z.R., “Predict signal peptides using bio-basis function neural

networks,” Applied Bioinformatics, vol. 5, pp. 13-9, 2006.

[324] Z.R. Yang, Dry, J., Thomson, R. Hodgman, T.C., “A bio-basis function neural

network for protein peptide cleavage activity characterisation,” Neural Networks,

vol. 19, pp. 401-407, 2006.

[325] Z.R. Yang, Young, N., “Bio-kernel Self-organizing map for HIV drug resistance

classification,” Lecture Notes in Computer Science, vol. 3610, pp. 179-84, 2005.

[326] Z.R. Yang, “Prediction of caspase cleavage sites using Bayesian bio-basis

function neural networks,” Bioinformatics, vol. 21, pp. 1831-7, 2005

[327] Z.R. Yang, “Mining SARS-CoV protease cleavage data using decision trees, a

novel method for decisive template searching,” Bioinformatics, vol. 21, pp. 2644-

50, 2005.

[328] Z.R. Yang, Johnathan, F., “Predict T-cell epitopes using bio-support vector

machines,” Journal of Chemical Informatics and Computer Science, vol. 45, pp.

1142-8, 2005.

[329] K.A. Sepkowitz, “AIDS--the first 20 years,” N Engl J Med, vol. 344, pp. 1764-72,

2001.

[330] R.A. Weiss, “How does HIV cause AIDS?,” Science, vol. 260, pp. 1273-9, 1993.

[331] H.G. Kräusslich, Ingraham, R.H., Skoog, M.T., Wimmer, E., Pallai, P.V., Carter,

C.A., “Activity of purified biosynthetic proteinase of human immunodeficiency

virus on natural substrates and synthetic peptides,” PNAS, vol. 86, pp. 807-11,

1989.

 References 301

[332] N.E. Kohl, Emini, E.A., Schleif, W.A., Davis, L.J., Heimbach, J.C., Dixon, R.A.,

Scolnick, E.M., Sigal, I.S., “Active human immunodeficiency virus protease is

required for viral infectivity,” PNAS, vol. 85, pp. 4686-90, 1988.

[333] V. Vapnik, The Nature of Statistical Learning Theory. New York: Springer-

Verlag, 1995.

[334] Y.D. Cai, Ricardo, P.W., Jen, C.H., Chou, K.C., “Application of SVMs to predict

membrane protein types,” Journal of Theoretical Biology, vol. 226, pp. 373-6,

2004.

[335] K. Park, Kanehisa, M., “Prediction of protein subcellular locations by support

vector machines using compositions of amino acids and amino acid pairs,”

Bioinformatics, vol. 19, pp. 1656-63, 2003.

[336] R.J. Carter, Dubchak, I., Holbrook, S.R., “A computational approach to identify

genes for functional RNAs in genomic sequences,” Nucleic Acids Res, vol. 29, pp.

3928-38, 2001.

[337] C.H. Q. Ding, Dubchak, I., “Multi-class protein fold recognition using support

vector machines and neural networks,” Bioinformatics, vol. 17, pp. 349-58, 2001.

[338] K. Lin, Kuang, Y., Joseph, J.S., Kolatkar, P.R., “Conserved codon composition of

ribosomal protein coding genes in Escherichia coli, Mycobacterium tuberculosis

and Saccharomyces cerevisiae: lessons from supervised machine learning in

functional genomics,” NAR, vol. 30, pp. 2599-2607, 2002.

[339] T. Jaakkola, Diekhans, M., Haussler, D., “A Discriminative Framework for

Detecting Remote Protein Homologies,” Journal of Computational Biology, vol.

7, pp. 95-114, 2000.

[340] R. Karchin, Karplus, K., Haussler, D., “Classifying G-protein coupled receptors

with support vector machines,” Bioinformatics, vol. 18, pp. 147-59, 2002.

[341] Y. Guermeur, Pollastri, G., Elisseeff, A., Zelus, D., Paugam-Moisy, H., Baldi, P.,

“Combining protein secondary structure prediction models with ensemble

methods of optimal complexity,” Neurocomputing, vol. 56, pp. 305-27, 2004.

[342] L. Liao, Noble, W.S., “Combining pairwise sequence similarity and support

vector machines for detecting remote protein evolutionary and structural

relationships,” J Comp Biol, vol. 10, pp. 857-68, 2003.

[343] C.S. Leslie, Eskin, E., Cohen, A., Weston, J., Noble, W.S., “Mismatch string

kernels for discriminative protein classification,” Bioinformatics, vol. 20, pp. 467-

76, 2004.

[344] J.J. Ward, Sodhi, J.S., McGuffin, L.J., Buxton, B.F., Jones, D.T., “Prediction and

functional analysis of native disorder in proteins from the three kingdoms of life,”

J Mol Biol, vol. 337, pp. 635-45, 2004.

[345] H. Saigo, Vert, J.P., Ueda, N., Akutsu, T., “Protein homology detection using

string alignment kernels,” Bioinformatics, vol. 20, pp. 1682-9, 2004.

[346] A. Zien, Ratsch, G., Mika, S., Scholkopf, B., Lengauer, T. and Muller, K.R.,

“Engineering support vector machine kernels that recognize translation initiation

sites,” Bioinformatics, vol. 16, pp. 799-807, 2000.

302 Machine Learning Approaches to Bioinformatics

[347] N. Zavaljevski, Stevens, F.J., Reifman, J., “Support vector machines with

selective kernel scaling for protein classification and identification of key amino

acid positions,” Bioinformatics, vol. 18, pp. 689-96, 2002.

[348] Y. Zhao, Pinilla, C., Valmori, D., Martin, R., Simon, R., “Application of support

vector machines for T-cell epitopes prediction,” Bioinformatics, vol. 19, pp. 1978-

84, 2003.

[349] A. Koike, Takagi, T., “Prediction of protein-protein interaction sites using support

vector machines,” Protein Eng Des Sel, vol. 17, pp. 165-73, 2004.

[350] M.E. Tipping, “Sparse Bayesian learning and the relevance vector machine,” J

Mach Learn Res, vol. 1, pp. 211-44, 2001.

[351] D.J. MaCkay, “A practical Bayesian framework for backpropagation networks,”

Neural Computation, vol. 4, pp. 448-72, 1992.

[352] W. Zhang, Liu, J., Niu, Y.Q., Wang, L., Hu, X., “A Bayesian regression approach

to the prediction of MHC-II binding affinity,” Comput Methods Programs

Biomed, vol. 92, pp. 1-7, 2008.

[353] G.C. Cawley, Talbot, N.L., “Gene selection in cancer classification using sparse

logistic regression with Bayesian regularization,” Bioinformatics, vol. 22, pp.

2348-55, 2006.

[354] Y. Li, Lee, K.K., Walsh, S., Smith, C., Hadingham, S., Sorefan, K., Cawley, G.,

Bevan, M.W., “Establishing glucose- and ABA-regulated transcription networks

in Arabidopsis by microarray analysis and promoter classification using a

Relevance Vector Machine.,” Genome Research, vol. 16, pp. 414-27, 2006.

[355] T.A. Down, Hubbard, T.J., “What can we learn from noncoding regions of

similarity between genomes?,” BMC Bioinformatics, vol. 4, p. 131, 2004.

[356] L.R. Rabiner, “A tutorial on hidden Markov models and selected applications in

speech recognition,” Proc. IEEE, vol. 77, pp. 257-86, 1989.

[357] D.J. White, Dynamic Programming. Edinburgh: Oliver & Boyd, 1969.

[358] R.E. Bellman, Dynamic Programming: Dover Publications, 1962.

[359] A.J. Viterbi, “Error bounds for convolutional codes and an asymptotically

optimum decoding algorithm,” IEEE Transactions on Information Theory,

vol. 13, pp. 260-9, 1967.

[360] I. Ebersberger, Strauss, S., von Haeseler, A., “HaMStR: profile hidden markov

model based search for orthologs in ESTs,” BMC Evol Biol, vol. 9, p. 157, 2009.

[361] A. Drawid, Gupta, N., Nagaraj, V.H., Gélinas, C., Sengupta, A.M., “OHMM: a

Hidden Markov Model accurately predicting the occupancy of a transcription

factor with a self-overlapping binding motif,” BMC Bioinformatics, vol. 10, p.

208, 2009.

[362] A.N. Nguyen Ba, Pogoutse, A., Provart, N., Moses, A.M., “NLStradamus: a

simple Hidden Markov Model for nuclear localization signal prediction,” BMC

Bioinformatics, vol. 10, p. 202, 2009.

[363] J.C. Detilleux, “The analysis of disease biomarker data using a mixed hidden

Markov model,” Genet Sel Evol, vol. 40, pp. 491-509, 2008.

 References 303

[364] X. Deng, Geng, H., Ali, H.H., “A Hidden Markov Model approach to predicting

yeast gene function from sequential gene expression data,” Int J Bioinform Res

Appl, vol. 4, pp. 263-73, 2008.

[365] Z.I. Litou, Bagos, P.G., Tsirigos, K.D., Liakopoulos, T.D., Hamodrakas, S.J.,

“Prediction of cell wall sorting signals in gram-positive bacteria with a hidden

markov model: application to complete genomes,” J Bioinform Comput Biol, vol.

6, pp. 387-401, 2008.

[366] L.E. Baum, Petrie, T., Soules, G., Weiss, N., “A maximization technique

occurring in the statistical analysis of probabilistic functions of Markov chains,”

Ann. Math. Statist, vol. 41, pp. 164-71, 1970.

[367] R. Durbin, Eddy, S.R., Krogh, A., Mitchison, G., Biological Sequence Analysis:

Probalistic Models of Proteins and Nucleic Acids. Cambridge, UK: Cambridge

University Press, 1998.

[368] A. Krogh, Brown, M., Mian, I.S., Sjölander, K., Haussler, D., “Hidden Markov

models in computational biology. Applications to protein modeling,” J Mol Biol,

vol. 235, pp. 1501-31, 1994.

[369] S.R. Eddy, “A probabilistic model of local sequence alignment that simplifies

statistical significance estimation,” PLoS Computational Biology, vol. 4, p.

e1000069, 2008.

[370] H.D. Huang, Lee, T.Y., Tzeng, S.W., Horng, J.T., “KinasePhos: a web tool for

identifying protein kinase-specific phosphorylation sites,” NAR, vol. 33, pp.

W226-9, 2005.

[371] Y.H. Wong, Lee, T.Y., Liang, H.K., Huang, C.M., Wang, T.Y., Yang, Y.H., Chu,

C.H., Huang, H.D., Ko, M.T., Hwang, J.K., “KinasePhos 2.0: a web server for

identifying protein kinase-specific phosphorylation sites based on sequences and

coupling patterns,” NAR, vol. 35, pp. W588-94, 2007.

[372] G. Bejerano, Yona, G., “Variations on probabilistic suffix trees: statistical

modeling and prediction of protein families,” Bioinformatics, vol. 17, pp. 23-43,

2001.

[373] V.C. Epa, “Modeling the paramyxovirus hemagglutinin-neuraminidase protein,”

Proteins, vol. 29, pp. 264-81, 1997.

[374] D. Husmeier, McGuire, G., “Detecting recombination in 4-taxa DNA sequence

alignments with Bayesian hidden Markov models and Markov chain Monte

Carlo,” Mol Biol Evol, vol. 20, pp. 315-37, 2003.

[375] P.M. Hooper, Zhang, H., Wishart, D.S., “Prediction of genetic structure in

eukaryotic DNA using reference point logistic regression and sequence

alignment,” Bioinformatics, vol. 16, pp. 425-38, 2000.

[376] D.J. Hand, Discriminant Analysis and Classification. New York: John Wiley,

1981.

[377] P.A. Devijver, Kittler, J., Pattern Recognition: A Statistical Approach.

Englewood Cliffs: NJ: Prentice-Hall, 1982.

304 Machine Learning Approaches to Bioinformatics

[378] K. Fuk90aga, Introduction to Statistical Pattern Recognition. San Diego:

Academic Press, 1982.

[379] A. Webb, Statistical Pattern Recognition. Chichester: John Wiley & Sons Ltd,

2002.

[380] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. Royal. Statist.

Soc B, vol. 58, pp. 267-88, 1996.

[381] T. Hastie, Tibshirani, R., Friedman, J., The Elements of Statistical Learning:

Springer-Verlag, 2009.

[382] A. Miller, Subset Selection in Regression: Chapman & Hall/CRC, 1990.

[383] M.R. Garey, Johnson, D.S., Computers and Intractability: A Guide to the Theory

of NP-Completeness: W.H. Freeman, 1979.

[384] T.H. Bradley; E., Iain, J., Robert, T., “Least Angle Regression,” Annals of

Statistics, vol. 32, pp. 407-99, 2004.

[385] I. Sohn, Kim, J., Jung, S.H., Park, C., “Gradient lasso for Cox proportional

hazards model,” Bioinformatics, vol. 25, pp. 1775-81, 2009.

[386] M. Gustafsson, Hörnquist, M., Lundström, J., Björkegren, J., Tegnér, J., “Reverse

engineering of gene networks with LASSO and nonlinear basis functions,” Ann N

Y Acad Sci, vol. 1158, pp. 265-75, 2009.

[387] T. Shimamura, Imoto, S., Yamaguchi, R., Miyano, S., “Weighted lasso in

graphical Gaussian modeling for large gene network estimation based on

microarray data,” Genome Inform, vol. 19, pp. 142-53, 2007.

[388] W. Shi, Lee, K.E., Wahba, G., “Detecting disease-causing genes by LASSO-

Patternsearch algorithm,” BMC Proc, vol. Suppl 1, p. S60, 2007.

[389] A.N. Tikhonov, Arsenin, V.Y., Solutions of Ill-Posed Problems. Washington:

Winston, 1977.

[390] A.E. Hoerl, Kennard, R.W., “Ridge regression: Biased estimation for

nonorthogonal problems,” Technometrics, vol. 12, pp. 55-67, 1970.

[391] S. Geman, Bienenstock, E. and Doursat, R., “Neural Networks and the

Bias/Variance Dilemma,” Neural Computation, vol. 4, pp. 1-58, 1992.

[392] P.R. Krishnaiaah, “Multivariate Analysis,” New York: Academic Press, 1966.

[393] P. Geladi, Kowlaski B., “Partial least square regression: A tutorial,” Analytica

Chemica Acta, vol. 35, pp. 1-17, 1986.

[394] I. E. Frank, Friedman, J.H., “A statistical view of chemometrics regression tools,”

Technometrics, vol. 35, pp. 109-48, 1993.

[395] I.S. Helland, “Pls regression and statistical models,” Scandivian Journal of

Statistics, vol. 17, pp. 97-114, 1990.

[396] A. Höskuldson, “Pls regression methods,” Journal of Chemometrics, vol. 2, pp.

211-28, 1988.

[397] A.S. Carpentier, Riva, A., Tisseur, P., Didier, G., Hénaut, A., “The operons, a

criterion to compare the reliability of transcriptome analysis tools: ICA is more

reliable than ANOVA, PLS and PCA,” Comput Biol Chem, vol. 28, pp. 3-10,

2004.

 References 305

[398] A.A. Alaiya, Franzén, B., Hagman, A., Silfverswärd, C., Moberger, B., Linder, S.,

Auer, G., “Classification of human ovarian tumors using multivariate data

analysis of polypeptide expression patterns,” Int J Cancer, vol. 86, pp. 731-6,

2000.

[399] N.A. Kratochwil, Huber, W., Müller, F., Kansy, M., Gerber, P.R., “Predicting

plasma protein binding of drugs: a new approach,” Biochem Pharmacol, vol. 64,

pp. 1355-74, 2002.

[400] Z. Li, Chan, C., “Integrating gene expression and metabolic profiles,” J Biol

Chem, vol. 279, pp. 27124-37, 2004.

[401] U. Rüetschi, Zetterberg, H., Podust, V.N., Gottfries, J., Li, S., Simonsen, A.,

McGuire, J., Karlsson, M., Rymo, L., Davies, H., Minthon, L., Blennow, K.,

“Identification of CSF biomarkers for frontotemporal dementia using SELDI-

TOF,” Exp Neurol, vol. 196, pp. 273-81, 2005.

[402] D.V. Nguyen, Rocke, D.M., “On partial least squares dimension reduction for

microarray-based classification: a simulation study,” Computational Statistics &

Data Analysis, vol. 46, pp. 407-25, 2004.

[403] I. Guyon, Weston, J., Barnhill, S., Vapnik, V., “Gene selection for cancer

classification using support vector machines,” Machine Learning, vol. 46, pp.

389-422, 2002.

[404] S. Maldonado, Weber, R., “A wrapper method for feature selection using Support

Vector Machines,” Information Sciences, vol. 179, pp. 2208-2217, 2009.

[405] S. Chen, Cowan, C.F.N., Grant, P.M., “Orthogonal least squares learning for

radial basis function networks,” IEEE Trans on Neural Networks, vol. 2, pp. 302-

9, 1991.

[406] G.H. Golub, Van Loan, C.F., Matrix Computations: Johns Hopkins, 1996.

[407] L.N. Trefethen, Bau, D., Numerical linear algebra: Philadelphia: Society for

Industrial and Applied Mathematics, 1997.

[408] R.A. Horn, Johnson, C.R., Matrix Analysis. Cambridge, UK: Cambridge

University Press 1985.

[409] J. Yoo, Patterson, B., Datta, S., “An OLS-based predictor test for a single-index

model for predicting transcription rate from histone acetylation level,” Statistics

& Probability Letters, vol. in press.

[410] M.K. Kerr, Martin, M., Churchill, G.A., “Analysis of Variance for Gene

Expression Microarray Data,” Journal of Computational Biology, vol. 7, pp. 819-

37, 2000.

[411] C.S. Kim, “Bayesian Orthogonal Least Squares (BOLS) algorithm for reverse

engineering of gene regulatory networks,” BMC Bioinformatics, vol. 8, p. 251,

2007.

[412] T. Suzuki, Sugiyama, M., Kanamori, T., Sese, J., “Mutual information estimation

reveals global associations between stimuli and biological processes,” BMC

Bioinformatics, vol. 10, p. S52, 2009.

306 Machine Learning Approaches to Bioinformatics

[413] S. Szymczak, Nuzzo, A., Fuchsberger, C., Schwarz, D.F., Ziegler, A., Bellazzi,

R., Igl, B.W., “Genetic association studies for gene expressions: permutation-

based mutual information in a comparison with standard ANOVA and as a novel

approach for feature selection,” BMC Proc, vol. Suppl 1, p. S9, 2007.

[414] V. Venkatraman, Dalby, A.R., Yang, Z.R., “Evaluation of mutual information and

genetic programming for feature selection in QSAR,” J Chem Inf Comput Sci,

vol. 44, pp. 1686-92, 2004.

[415] A.M. Lesk, Introduction to Bioinformatics. Oxford: Oxford University Press,

2008.

[416] B.L. Theodore, Eugene, L.H., Murphy, B.E., Catherine, M.J., Patrick, W.,

Chemistry: The Central Science. Upper Saddle River, NJ: Pearson/Prentice Hall,

2009.

[417] H.W. John, Ralph, P.H., Terry, M.W., Scott, P.S., General Chemistry. Upper

Saddle River, NJ: Pearson/Prentice Hall, 2005.

[418] W.W. Kenneth, Raymond, D.E., Larry, P.M., General Chemistry. Fort Worth,

TX: Saunders College Publishing/Harcourt College Publishers, 2000.

[419] E.A. Hill, “On A System Of Indexing Chemical Literature; Adopted By The

Classification Division Of The U. S. Patent Office,” J Am Chem Soc, vol. 22, pp.

478-94, 1900.

[420] P.W. Atkins, The Periodic Kingdom: HarperCollins Publishers, Inc, 1995.

[421] R.A. Poorman, Tomasselli, A.G., Heinrikson, R.L., Kezdy, F.J., “A cumulative

specificity model for protease from human immunodeficiency virus types 1 and 2,

inferred from statistical analysis of an extended substrate data base,” J. Biol.

Chem, vol. 22, pp. 14554-61, 1991.

[422] T.P. Hopp, Woods, K.R, “A computer program for predicting protein antigenic

determinants,” Mol Immunol, vol. 20, pp. 483-489, 1983.

[423] J.L. Cornette, Cease, K.B., Margalit, H., Spouge, J.L., Berzofsky, J.A., DeLisi, C.,

“Hydrophobicity scales and computational techniques for detecting amphipathic

structures in proteins,” J Mol Biol, vol. 195, pp. 687-693, 1987.

[424] D. Eisenberg, Schwarz, E. Komaromy, M., Wall, R, “Analysis of membrane and

surface protein sequences with the hydrophobic moment plot,” J Mol Biol, vol.

179, pp. 125-133, 1984.

[425] D. Eisenberg, Weiss, R.M., Terwilliger, T.C, “The hydrophobic moment detects

periodicity in protein hydrophobicity,” Proc Natl Acad Sci U S A, vol. 81, pp.

140-144, 1984.

[426] D.M. Engelman, Steitz, T.A., Goldman, A, “Identifying nonpolar transbilayer

helices in amino acid sequences of membrane proteins,” Annu Rev Biophys

Biophys Chem, vol. 15, pp. 321-323, 1986.

[427] J. Janin, “Surface and inside volumes in globular proteins,” Nature, vol. 277, pp.

491-492, 1979.

[428] G.D.G. Rose, A.R., Lesser, G.J., Lee, R.H., Zehfus, M.H., “Hydrophobicity of

amino acid residues in globular proteins,” Science, vol. 229, pp. 834-838, 1985.

 References 307

[429] T.E. Creighton, Proteins: structures and molecular properties. San Francisco:

W.H. Freeman, 1993.

[430] D.W. Urry, “The change in Gibbs free energy for hydrophobic association -

Derivation and evaluation by means of inverse temperature transitions,” Chem

Phy Lett, vol. 399, pp. 177-181, 2004.

[431] E. Georges, “The P-glycoprotein (ABCB1) linker domain encodes high-affinity

binding sequences to alpha- and beta-tubulins,” Biochemistry, vol. 46, pp. 7337-

7342, 2007.

[432] M. Neuwirth, Flicker, K., Strohmeier, M., Tews, I. and Macheroux, P.,

“Thermodynamic characterization of the protein-protein interaction in the

heteromeric Bacillus subtilis pyridoxalphosphate synthase,” Biochemistry vol. 46,

pp. 5131-5139, 2007.

[433] T. Nomura, Sokabe, M. and Yoshimura, K., “Lipid-Protein Interaction of the

MscS Mechanosensitive Channel Examined by Scanning Mutagenesis,” Biophys

J, vol. 91, pp. 2874-2881, 2006.

[434] J. Sohn, Rudolph, J., “Temperature dependence of binding and catalysis for the

Cdc25B phosphatase,” Biophys Chem, vol. 125, pp. 549-555, 2006.

[435] P.H.A. Sneath, “Relations between chemical structure and biological activity in

peptides,” J. Theor. Biol, vol. 12, pp. 157-95, 1966.

[436] R. Grantham, “Amino acid difference formula to help explain protein vvolution,”

Science, vol. 185, pp. 862-64, 1974.

[437] C.D. Livingstone, Barton, G.J., “Protein sequence alignments: a strategy for the

hierarchical analysis of residue conservation,” CABIOS, vol. 9, pp. 745-56, 1993.

[438] G. Mocz, “Fuzzy cluster-analysis of simple physicochemical properties of amino-

acids for recognizing secondary structure in proteins,” Protein Sci, vol. 4, pp.

1178-87, 1995.

[439] L.E. Stanfel, 183, 195-205, “A new approach to clustering the amino acids,” J.

Theor. Biol, vol. 183, pp. 195-205, 1996.

[440] W.R. Taylor, “The classification of amino-acid conservation,” J. Theor. Biol, vol.

119, pp. 205-18, 1986.

[441] G. Tedeschi, Cappelletti, G., Nonnis, S., Taverna, F., Negri, A., Ronchi, C.,

Ronchi, S., “Tyrosine nitration is a novel post-translational modification

occurring on the neural intermediate filament protein peripherin,” Neurochem

Res, vol. 32, pp. 433-41, 2007.

[442] J.S. Beckman, Ischiropoulos, H., Zhu, L., van der Woerd, M., Smith, C., Chen, J.,

Harrison, J., Martin, J.C., Tsai, M., “Kinetics of superoxide dismutase- and iron-

catalyzed nitration of phenolics by peroxynitrite,” Arch Biochem Biophys, vol.

298, pp. 438-45, 1992.

[443] H. Ischiropoulos, Zhu, L., Chen, J., Tsai, M., Martin, J.C., Smith, C.D., Beckman,

J.S., “Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide

dismutase,” Arch Biochem Biophys, vol. 298, pp. 431-7, 1992.

308 Machine Learning Approaches to Bioinformatics

[444] H. Ischiropoulos, Zhu, L., Beckman, J.S., “Peroxynitrite formation from

macrophage-derived nitric oxide,” Arch Biochem Biophys, vol. 298, pp. 446-51,

1992.

[445] J.S. Beckmann, Ye, Y.Z., Anderson, P.G., Chen, J., Accavitti, M.A., Tarpey,

M.M., White, C.R., “Extensive nitration of protein tyrosines in human

atherosclerosis detected by immunohistochemistry,” Biol Chem Hoppe Seyler,

vol. 375, pp. 81-8, 1994.

[446] H. Ohshima, Friesen, M., Brouet, I., Bartsch, H., “Nitrotyrosine as a new marker

for endogenous nitrosation and nitration of proteins,” Food Chem Toxicol, vol.

28, pp. 647-52, 1990.

[447] S. PfeifferDagger, Schmidt, K., Mayer, B., “Dityrosine Formation Outcompetes

Tyrosine Nitration at Low Steady-state Concentrations of Peroxynitrite -

IMPLICATIONS FOR TYROSINE MODIFICATION BY NITRIC

OXIDE/SUPEROXIDE IN VIVO,” J Biol Chem, vol. 275, pp. 6346-6352, 2000.

[448] D.D. Thomas, Espey, M.G., Vitekm, M.P., Miranda, K.M., Wink, D.A., “Protein

nitration is mediated by heme and free metals through Fenton-type chemistry: An

alternative to the NO/OFormula reaction,” PNAS, vol. 99, pp. 12691-12696, 2002.

[449] J.P. Eiserich, Hristova, M., Cross, C.E., Jones, A.D., Freeman, B.A., Halliwell,

B., van der Vliet, A., “Formation of nitric oxide-derived inflammatory oxidants

by myeloperoxidase in neutrophils,” Nature, vol. 391, pp. 393-7, 1998.

[450] K. Bian, Gao, Z., Weisbrodt, N., Murad, F., “The nature of heme/iron-induced

protein tyrosine nitration,” PNAS, vol. 100, pp. 5712-5717, 2003.

[451] M.L. Brennan, Wu, W., Fu, X., Shen, Z., Song, W., Frost, H., Vadseth, C.,

Narine, L., Lenkiewicz, E., Borchers, M.T., Lusis, A.J., Lee, J.J., Lee, N.A., Abu-

SoudDagger, H.M., Ischiropoulos, H., Hazen, S.L., “A Tale of Two

Controversies, defining both the role of peroxidases in nitrotyrosine formation in

vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the

nature of peroxidase-generated reactive nitrogen species,” J. Biol. Chem, vol. 277,

pp. 17415-17427, 2002.

[452] T. Elsasser, Kahl, S., Sartin, J., Li, C., “Protein tyrosine nitration: a membrane-

organized mechanism for altered signal transduction during proinflammatory

stress,” American Society of Animal Science, vol. 82, p. 445, 2004.

[453] G. Cappelletti, Maggioni, M.G., Ronchi, C., Maci, R., Tedeschi, G., “Protein

tyrosine nitration is associated with cold- and drug-resistant microtubules in

neuronal-like PC12 cells,” Neurosci Lett, vol. 401, pp. 159-64, 2006.

[454] G. Cappelletti, Maggioni, M.G., Tedeschi, G., Maci, R., “Protein tyrosine

nitration is triggered by nerve growth factor during neuronal differentiation of

PC12 cells,” Exp Cell Res, vol. 288, pp. 9-20, 2003.

[455] A. Iwagaki, Choe, N., Li, Y., Hemenway, D.R., Kagan, E., “Asbestos inhalation

induces tyrosine nitration associated with extracellular signal-regulated kinase 1/2

activation in the rat lung,” Am J Respir Cell Mol Biol, vol. 28, pp. 51-60, 2003.

 References 309

[456] K. Camphausen, Tofilon, P.J., “Inhibition of histone deacetylation: a strategy for

tumor radiosensitization,” J Clin Oncol, vol. 25, pp. 4051-4056, 2007.

[457] L.M. Iakoucheva, Radivojac, P., Brown, C.J., O’Connor, T.R., Sikes, J.G.,

Obradovic, Z., Dunker, A.K., “ Intrinsic disorder and protein phosphorylation,”

Nucleic Acids Research, vol. 32, pp. 1037-1049, 2004.

[458] R. Radi, “Nitric oxide, oxidants, and protein tyrosine nitration,” PNAS, vol. 101,

pp. 4003-4008, 2004.

[459] J.M. Souza, Peluffo, G., Radi, R., “Protein tyrosine nitration-Functional alteration

or just a biomarker?,” Free Radic Biol Med, vol. in press, 2009.

[460] J.M. Van Zyl, Van der Walt, B.J., “Apparent hydroxyl radical generation without

transition metal catalysis and tyrosine nitration during oxidation of the anti-

tubercular drug, isonicotinic acid hydrazide,” Biochem Pharmacol, vol. 48, pp.

2033-42, 1994.

[461] V. Villard, Espallergues, J., Keller, E., Alkam, T., Nitta, A., Yamada, K.,

Nabeshima, T., Vamvakides, A., Maurice, T., “Antiamnesic and neuroprotective

effects of the aminotetrahydrofuran derivative ANAVEX1-41 against amyloid

beta(25-35)-induced toxicity in mice,” Neuropsychopharmacology, vol. 34, pp.

1552-66, 2009.

[462] S. Doublier, Riganti, C., Voena, C., Costamagna, C., Aldieri, E., Pescarmona, G.,

Ghigo, D., Bosia, A., “RhoA silencing reverts the resistance to doxorubicin in

human colon cancer cells “Mol Cancer Res, vol. 6, pp. 1607-20, 2008.

[463] D.E. Rumelhart, McClelland, J.L., Parallel Distributed Processing - Vol. 1:

Foundations: The MIT Press, 1987.

[464] M.V. Brock, Gou, M., Akiyama,Y., Muller, A., Wu, T., Montgomery, E., Deasel,

M., Germonpré, P., Rubinson, L., Heitmiller, R.F., Yang, S.C., Forastiere, A.A.,

Baylin, S.B., Herman, J.G., “Prognostic importance of promoter hypermethylation

of multiple genes in esophageal adenocarcinoma,” Clinical Cancer Research, vol.

9, pp. 2912-9, 2003.

[465] D.L. Mandelker, Yamashita, K., Tokumaru, Y., Mimori, K., Howard, D.L.,

Tanaka, Y., Carvalho, A.L., Jiang, W., Park, H., Kim, M., Osada,M., Mori, M.,

Sidransky, D., “PGP9.5 Promoter Methylation Is an Independent Prognostic

Factor for Esophageal Squamous Cell Carcinoma “ Cancer Res, vol. 65, pp. 4963-

8, 2005.

[466] M.Q. Hoque, Rosenbaum, E., Westra, W.H., Xing, M., Ladenson, P., Zeiger,

M.A., Sidransky, D., Umbricht, C.B., “Quantitative Assessment of Promoter

Methylation Profiles in Thyroid Neoplasms,” J. Clin. Endocrinol. Metab, vol. 90,

pp. 4011-8, 2005.

[467] R. Martinez, Setien, F., Voelter, C., Casado, S., Quesada, M.P., Schackert, G.,

Esteller, M., “CpG island promoter hypermethylation of the pro-apoptotic gene

caspase-8 is a common hallmark of relapsed glioblastoma multiforme,”

Carcinogenesis, vol. 28, pp. 1264-8, 2007.

310 Machine Learning Approaches to Bioinformatics

[468] D.K. Hawley, McClure, W.R., “Compilation and analysis of Escherichia coli

promoter DNA sequences,” NAR, vol. 11, pp. 2237-55, 1983.

[469] M. Rosenberg, Court, D., “Regulatory sequences involved in the promotion and

termination of RNA transcription,” Annu Rev Genet, vol. 13, pp. 319-53, 1979.

[470] J.D. Helmann, deHaseth, P.L., “Protein-nucleic acid interactions during open

complex formation investigated by systematic alteration of the protein and DNA

binding partners,” Biochemistry, vol. 38, pp. 5959-67, 1999.

[471] A. Kanhere, Bansal, M., “A novel method for prokaryotic promoter prediction

based on DNA stability,” BMC Bioinformatics, vol. 6, p. 1, 2005.

[472] V. Cotik, Zaliz, R.R., Zwir, I., “A hybrid promoter analysis methodology for

prokaryotic genomes,” Fuzzy Sets and Systems, vol. 152, pp. 83-102, 2004.

[473] H.B. Wang, C.J., “Promoter prediction and annotation of microbial genomes

based on DNA sequence and structural responses to superhelical stress,” BMC

Bioinformatics, vol. 7, p. 248, 2006.

[474] I. Gershenzon. N.I., I.P., “Synergy of human Pol II core promoter elements

revealed by statistical sequence analysis,” Bioinformatics, vol. 21, pp. 1295-300,

2005.

[475] V.B. Bajic, Brent, M.R., Brown, R.H., Frankish, A., Harrow, J., Ohler, U.,

Solovyev, V.V., Tan, S.L., “Performance assessment of promoter predictions on

ENCODE regions in the EGASP experiment,” Genome Biol, vol. 7, pp. S3.1-

S3.13, 2006.

[476] S. Sonnenburg, Zien, A., Rätsch, G., “ARTS: accurate recognition of transcription

starts in human “Bioinformatics, vol. 22, pp. e472-e480, 2006.

[477] J. Wang, Ungar, L.H., Tseng, H., Hannenhalli, S., “MetaProm: a neural network

based meta-predictor for alternative human promoter prediction,” BMC

Bioinformatics, vol. 8, p. 374, 2007.

[478] X. Xie, Wu, S., Lam, K., Yan, H., “PromoterExplorer: an effective promoter

identification method based on the AdaBoost algorithm,” Bioinformatics, vol. 22,

pp. 2722-8, 2006.

[479] T. Abeel, Saeys, Y., Rouzé, P., de Peer, Y.V., “ProSOM: core promoter

prediction based on unsupervised clustering of DNA physical profiles,”

Bioinformatics, vol. 24, pp. i24-i31, 2008.

[480] P. Römer, Hahn, S., Jordan, T., Strauss, T., Bonas, U., Lahaye, T., “Plant

pathogen recognition mediated by promoter activation of the pepper Bs3

resistance gene,” Science, vol. 318, pp. 645-8, 2007.

[481] S.D. Soby, Daniels, M.J., “Catabolite-repressor-like protein regulates the

expression of a gene under the control of the Escherichia coli lac promoter in the

plant pathogen Xanthomonas campestris pv. campestris,” Appl Microbiol

Biotechnol, vol. 46, pp. 559-61, 1996.

[482] P. Siriputthaiwan, Jauneau, A., Herbert, C., Garcin, D., Dumas, B., “Functional

analysis of CLPT1, a Rab/GTPase required for protein secretion and pathogenesis

 References 311

in the plant fungal pathogen Colletotrichum lindemuthianum,” J Cell Sci, vol.

118, pp. 323-9, 2005.

[483] S. Robatzek, Somssich, I.E., “Targets of AtWRKY6 regulation during plant

senescence and pathogen defense,” Genes Dev, vol. 16, pp. 1139-49, 2002.

[484] P.J. Rushton, Reinstädler, A., Lipka, V., Lippok, B., Somssich, I.E., “Synthetic

plant promoters containing defined regulatory elements provide novel insights

into pathogen- and wound-induced signaling,” Plant Cell, vol. 14, pp. 749-62,

2002.

[485] I.A. Shahmuradov, Gammerman, A.J., Hancock, J.M., Bramley, P.M., Solovyev,

V.V., “PlantProm: a database of plant promoter sequences,” NAR, vol. 31, pp.

114-7, 2003.

[486] I.A. Shahmuradov, Solovyev, V.V., Gammerman, A.J., “Plant promoter

prediction with confidence estimation,” NAR, vol. 33, pp. 1069-76, 2005.

[487] F. Anwar, Baker, S.M., Jabid, T., Mehedi Hasan, M., Shoyaib, M., Khan, H.,

Walshe, R., “Pol II promoter prediction using characteristic 4-mer motifs: a

machine learning approach,” BMC Bioinformatics, vol. 9, p. 414, 2008.

[488] J.M. Ostell, Kans, J.A., “The NCBI data model,” Methods Biochem Anal, vol. 39,

pp. 121-44, 1998.

[489] F. Anwar, Baker, S., Jabid, T., Hasan, M.M., Shoyaib, M., Khan, H., Walshe, R.,

“Pol II promoter prediction using characteristic 4-mer motifs: a machine learning

approach,” BMC Bioinformatics, vol. 9, pp. 1-8, 2008.

[490] M. Kanehisa, Post-genome Informatics. Oxford: Oxford University Press, 2000.

[491] J. Zhou, Tang, X., Martin, G.B., “The Pto kinase conferring resistance to tomato

bacterial speck disease interacts with proteins that bind a cis-element of

pathogenesis-related genes,” The EMBO Journal, vol. 16, pp. 3207-18, 1997.

[492] G.W. Hatfield, Hung, S.P., Baldi, P., “Differential analysis of DNA microarray

gene expression data,” Mol Microbiol, vol. 47, pp. 871-7, 2003.

[493] N. Pavelka, Pelizzola, M., Vizzardelli, C., Capozzoli, M., Splendiani, A.,

Granucci, F., Ricciardi-Castagnoli, P., “A power law global error model for the

identification of differentially expressed genes in microarray data,” BMC

Bioinformatics, vol. 5, p. 203, 2004.

[494] N.M. Luscombe, Qian, J., Zhang, Z., Johnson, T., Gerstein, M., “The dominance

of the population by a selected few: power-law behaviour applies to a wide

variety of genomic properties,” Genome Biol, vol. 3, p. 8, 2002.

[495] C. Christensen, Gupta, A., Maranas, C.D., Albert, R., “Large-scale inference and

graph-theoretical analysis of gene-regulatory networks in B. Subtilis,” Physica A:

Statistical and Theoretical Physics, vol. 373, pp. 796-810.

[496] T. Akutsu, Kuhara, S., Maruyama, O., Miyano, S., “Identification of genetic

networks by strategic gene disruptions and gene overexpressions under a boolean

model,” Theoretical Computer Science, vol. 298, pp. 235-51.

312 Machine Learning Approaches to Bioinformatics

[497] T. Yang, Zhang, L., Zhang, T., Zhang, H., Xu, S., An, L., “Transcriptional

regulation network of cold-responsive genes in higher plants,” Plant Science, vol.

169, pp. 987-95, 2005.

[498] D. Croes, Couche, F., Wodak, S.J., van Helden, J., “Inferring Meaningful

Pathways in Weighted Metabolic Networks,” Journal of Molecular Biology, vol.

356, pp. 222-36, 2006.

[499] O. Resendis-Antonio, Freyre-González, J.A., Menchaca-Méndez, R., Gutiérrez-

Ríos, R.M., Martínez-Antonio, A., Ávila-Sánchez, C., Collado-Vides, J.,

“Modular analysis of the transcriptional regulatory network of E. coli,” Trends in

Genetics, vol. 21, pp. 16-20, 2005.

[500] L. de Campos, Gomes, T., Von Zuben, F.J., Moscato, P., “A proposal for direct-

ordering gene expression data by self-organising maps,” Applied Soft Computing,

vol. 5, pp. 11-21, 2004.

[501] J. Gómez-Gardeñes, Moreno, Y., Floría, L.M., “On the robustness of complex

heterogeneous gene expression networks,” Biophysical Chemistry, vol. 115, pp.

225-8, 2005.

[502] M. Aldana, Balleza, E., Kauffman, S., Resendiz, O., “Robustness and evolvability

in genetic regulatory networks,” Journal of Theoretical Biology, vol. 245, pp.

433-48, 2007.

[503] J. Aracena, Goles, E., Moreira, A., Salinas, L., “On the robustness of update

schedules in Boolean networks,” Biosystems, vol. 97, pp. 1-8, 2009.

[504] R.E. Neapolitan, Learning Bayesian Networks. Upper Saddle River, NJ: Prentice

Hall, 2004.

[505] F. Jensen, Bayesian Networks and Decision Graphs: Springer-Verlag, 2001.

[506] C.J. Robert, “Concepts of Independence for Proportions with a Generalization of

the Dirichlet Distribution,” Journal of the American Statistical Association, vol.

64, pp. 194-206, 1969.

[507] E. Steele, Tucker, A., ’t Hoen, P.A., Schuemie, M.J., “Literature-based priors for

gene regulatory networks,” Bioinformatics, vol. 25, pp. 1768-74, 2009.

[508] P. Li, Zhang, C., Perkins, E.J., Gong, P., Deng, Y., “Comparison of probabilistic

Boolean network and dynamic Bayesian network approaches for inferring gene

regulatory networks,” BMC Bioinformatics, vol. Suppl 7, p. S13, 2007.

[509] X. W. Chen, Anantha, G., Wang, X., “An effective structure learning method for

constructing gene networks,” Bioinformatics, vol. 22, pp. 1367-74, 2006.

[510] Y. Ko, Zhai, C., Rodriguez-Zas, S., “Inference of gene pathways using mixture

Bayesian networks,” BMC Syst Biol, vol. 3, p. 54, 2009.

[511] S.L. Rodriguez-Zas, Ko, Y., Adams, H.A., Southey, B.R., “Advancing the

understanding of the embryo transcriptome co-regulation using meta-, functional,

and gene network analysis tools,” Reproduction, vol. 135, pp. 213-24, 2008.

[512] J.M. Peña, Björkegren, J., Tegnér, J., “Growing Bayesian network models of gene

networks from seed genes,” Bioinformatics, vol. Suppl 2, pp. ii224-9, 2005.

 References 313

[513] S. Kim, Imoto, S., Miyano, S., “Dynamic Bayesian network and nonparametric

regression for nonlinear modeling of gene networks from time series gene

expression data,” Biosystems, vol. 75, pp. 57-65, 2004.

[514] J. Cheng, Greiner, R., Kelly, J., Bell, D.A., Liu, W., “Learning Bayesian networks

from data: an information-theory based approach,” The Artificial Intelligence

Journal, vol. 137, pp. 43-90, 2002.

[515] M.L. Wong, Lee, S.Y., Leung, K.S., “Data mining of Bayesian networks using

cooperative coevolution,” Decision Support Systems, vol. 38, p. 3, 2004.

[516] N. Friedman, Linial, M., Nachman, I., Pe’er, D., “Using Bayesian network to

analyze expression data,” Journal of Computational Biology, vol. 7, pp. 601-20,

2000.

[517] Z. Huang, Li, J., Su, H., Watts, G.S., Chen, H., “Large-scale regulatory network

analysis from microarray data: modified Bayesian network learning and

association rule mining,” Decision Support Systems, vol. 43, pp. 1207-25, 2007.

[518] E. Steele, Tucker, A., “Consensus and Meta-analysis regulatory networks for

combining multiple microarray gene expression datasets,” Journal of Biomedical

Informatics, vol. 41, pp. 914-26, 2008.

[519] S.P. Li, Tseng, J.J., Wang, S.C., “Reconstructing gene regulatory networks from

time-series microarray data,” Physica A: Statistical Mechanics and its

Applications, vol. 350, pp. 63-9, 2005.

[520] A. Narayanan, Wu, X., Yang, Z.R., “Mining viral protease data to extract

cleavage knowledge,” Bioinformatics vol. 18, pp. S5-13, 2002.

[521] M.A. Savageau, “Biochemical systems analysis. I. Some mathematical properties

of the rate law for the component enzymatic reactions,” J. Theor. Biol, vol. 25,

pp. 365-9, 1969.

[522] M.A. Savageau, “Biochemical systems analysis. II. The steady-state solutions for

an n-pool system using a power-law approximation,” J Theor Biol, vol. 25, pp.

370-9, 1969.

[523] M.A. Savageau, “Biochemical systems analysis. III. Dynamic solutions using a

power-law approximation,” J Theor Biol, vol. 26, pp. 215-26, 1970.

[524] L. Michaelis, Menten, M.L., “Die kinetik der invertinwirkung,” Biochem,

Zeitschrift, vol. 49, pp. 333-69, 1913.

[525] E.O. Voit, Computational Analysis of Biochemical Systems, A Practical Guide

for Biochemists and Molecular Biologist. Cambridge: Cambridge University

Press, 2000.

[526] J.S. Almeida, Voit, E.O., “Neural-network-based parameter estimation in S-

system models of biological networks,” Genome Informatics, vol. 14, pp. 114-23,

2003.

[527] E.O. Voit, Almeida, J., “Decoupling dynamical systems for pathway

identification from metabolic profiles,” Bioinformatics, vol. 20, pp. 1670-81,

2004.

314 Machine Learning Approaches to Bioinformatics

[528] P. Mendes, Kell, D.B., “On the analysis of the inverse problem of metabolic

pathways using artificial neural networks,” Biosystems, vol. 38, pp. 15-28, 1996.

[529] W.H. Press, Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., Numerical Recipes

in C: The Art of Scientific Computing. Cambridge: Cambridge University Press,

1992.

[530] O.R. Gonzalez, Kuper, C., Jung, K., Naval, P.C., Mendoza, E., “Parameter

estimation using simulated annealing for S-system models of biochemical

networks,” Bioinformatics, vol. 23, pp. 480-6, 2007.

[531] S. Kirkpatrick, Gelatt, C.D., Jr Vecchi, M.P., “Optimization by simulated

annealing,” Science, vol. 220, p. 4598, 1983.

[532] J.H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor:

University of Michigan Press, 1975.

[533] D.E. Goldberg, Genetic algorithms in search, optimization and machine learning:

Addison Wesley, 1989.

[534] S. Kikuchi, Tominaga, D., Arita, M., Takahashi, K., Tomita, M., “Dynamic

modelling of genetic networks using genetic algorithm and S-system,”

Bioinformatics, vol. 19, pp. 643-50, 2003.

[535] K. Edwards, Edgar, T.F., Manousiouthankis, V.I., “Kinetic model reduction using

genetic algorithms,” Comput Chem Engng, vol. 22, pp. 239-46, 1998.

[536] S. Kimura, Ide, K., Kashihara, A., Kano, M., Hatakeyama, M., Masui, R.,

Nakagawa, N., Yokoyama, S., Kuramitsu, S., Konagaya, A., “Inference of S-

system models of genetic networks using a cooperative coevolutionary

algorithm,” Bioinformatics, vol. 21, pp. 1154-63, 2005.

[537] P. Liu, Wang, F., “Inference of biochemical network models in S-systems using

multiobjective optimisation approach,” Bioinformatics, vol. 24, pp. 1085-92,

2008.

[538] N. Blow, “Metabolomics: Biochemistry's new look,” Nature, vol. 455, pp. 697-

700, 2008.

[539] M. Herrero, Ibáñez, E., Cifuentes, A., Bernal, J., “Multidimensional

chromatography in food analysis,” J Chromatogr A, vol. in press, 2009.

[540] S. Rochat, Egger, J., Chaintreau, A., “Strategy for the identification of key

odorants: application to shrimp aroma,” J Chromatogr A, vol. 1216, pp. 6424-32,

2009.

[541] Z. Luo, Heffner, C., Solouki, T., “Multidimensional GC-fourier transform ion

cyclotron resonance MS analyses: utilizing gas-phase basicities to characterize

multicomponent gasoline samples,” J Chromatogr Sci, vol. 47, pp. 75-82, 2009.

[542] L. Cai, Koziel, J.A., Dharmadhikari, M., van Leeuwen, H.J., “Rapid

determination of trans-resveratrol in red wine by solid-phase microextraction with

on-fiber derivatization and multidimensional gas chromatography-mass

spectrometry,” J Chromatogr A, vol. 1216, pp. 281-7, 2009.

 References 315

[543] H. Hühnerfuss, Shah, M.R., “Enantioselective chromatography-a powerful tool

for the discrimination of biotic and abiotic transformation processes of chiral

environmental pollutants,” J Chromatogr A, vol. 1216, pp. 481-502, 2009.

[544] P.Q. Tranchida, Costa, R., Donato, P., Sciarrone, D., Ragonese, C., Dugo, P.,

Dugo, G., Mondello, L., “Acquisition of deeper knowledge on the human plasma

fatty acid profile exploiting comprehensive 2-D GC,” J Sep Sci, vol. 31, pp. 3347-

51, 2008.

[545] D.S. Wishart, Lewis, M.J., Morrissey, J.A., Flegel, M.D., Jeroncic, K., Xiong, Y.,

Cheng, D., Eisner, R., Gautam, B., Tzur, D., Sawhney, S., Bamforth, F., Greiner,

R., Li, L:, “The human cerebrospinal fluid metabolome,” J Chromatogr B Analyt

Technol Biomed Life Sci, vol. 87, pp. 164-73, 2008.

[546] T.M. Ebbels, Buxton, B.F., Jones, D.T., “springScape: visualisation of microarray

and contextual bioinformatic data using spring embedding and an ‘information

landscape’,” Bioinformatics, vol. 22, pp. e99-107, 2006.

[547] T. Lombardot, Kottmann, R., Giuliani, G., de Bono, A., Addor, N., Glackner,

F.O., “MetaLook: a 3D visualisation software for marine ecological genomics,”

BMC Bioinformatics, vol. 8, p. 406, 2007.

[548] B.J. Holden, Pinney, J.W., Lovell, S.C., Amoutzias, G.D., Robertson, D.L., “An

exploration of alternative visualisations of the basic helix-loop-helix protein

interaction network,” BMC Bioinformatics, vol. 8, p. 289, 2007.

[549] T.C. Freeman, Goldovsky, L., Brosch, M., van Dongen, S., Maziare, P., Grocock,

R.J., Freilich, S., Thornton, J., Enright, A.J., “Construction, visualisation, and

clustering of transcription networks from microarray expression data,” PLoS

Computational Biology, vol. 10, pp. 2032-42, 2007.

[550] K. O’Neill, Garcia, A., Schwegmann, A., Jimenez, R.C., Jacobson, D.,

Hermjakob, H., “OntoDas - a tool for facilitating the construction of complex

queries to the Gene Ontology,” BMC Bioinformatics, vol. 9, p. 437, 2008.

[551] T.D. Smith, Cotton, R.G., “VariVis: a visualisation toolkit for variation

databases,” BMC Bioinformatics, vol. 9, p. 206, 2008.

[552] M. Steinfatha, Grotha, D., Lisecb, J., Selbig, J., “Metabolite profile analysis: from

raw data to regression and classification,” Physiologia Plantarum, vol. 132, pp.

150-61, 2008.

[553] W. Weckwerth, “Integration of metabolomics and protepmics in molecular plant

physiology – coping with the complexity by data-dimensionality reduction,”

Physiology Plantarum, vol. 132, pp. 176-89, 2008.

[554] E.J. Cooke, Savage, R.S., Wild, D.L., “Computational approaches to the

integration of gene expression, ChIP-chip and sequence data in the inference of

gene regulatory networks,” Seminars in Cell & Developmental Biology, vol. in

press, 2009.

[555] M. Hecker, Lambeck, S., Toepfer, S., van Someren, E., Guthke, R., “Gene

regulatory network inference: Data integration in dynamic models—A review,”

Biosystems, vol. 96, pp. 86-103, 2009.

316 Machine Learning Approaches to Bioinformatics

[556] D. Cavalieri, De Filippo, C., “Bioinformatic methods for integrating whole-

genome expression results into cellular networks,” Drug Discovery Today, vol.

10, pp. 727-34, 2005.

[557] S. Jung, Lee, K.H., Lee, D., “H-CORE: Enabling genome-scale Bayesian analysis

of biological systems without prior knowledge,” Biosystems, vol. 90, pp. 197-210,

2007.

[558] D. Allen, Darwiche, A., “RC_Link: Genetic linkage analysis using Bayesian

networks,” International Journal of Approximate Reasoning, vol. 48, pp. 499-

525, 2008.

[559] W. Liao, Ji, Q., “Learning Bayesian network parameters under incomplete data

with domain knowledge,” Pattern Recognition, vol. 42, pp. 3046-56, 2009.

[560] A.A. Alizadeh, Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., et al., “Distinct

types of diffuse large B-cell lymphoma identified by gene expression profiling,”

Nature, vol. 403, pp. 503-11, 2000.

[561] S.D. Golub TR, Tamayo P, Huard C, Gaasenbeek M, et al., “Molecular

classification of cancer: class discovery and class prediction by gene expression

monitoring,” Science, vol. 286, pp. 531-7, 1999.

[562] S. Ramaswamy, Ross, K.N., Lander, E.S., Golub, T.R., “A molecular signature of

metastasis in primary solid tumors,” Nat Genet, vol. 33, pp. 49-54, 2003.

[563] D.H. van ’t Veer L.J., van de Vijver M.J., He Y.D., Hart A.A., et al., “Gene

expression profiling predicts clinical outcome of breast cancer,” Nature, vol. 415,

pp. 530-6, 2002.

[564] K. Kadota, Nakai, Y., Shimizu, K. (2009). Algorithms Mol Biol. 22; 4:7,

“Ranking differentially expressed genes from Affymetrix gene expression data:

methods with reproducibility, sensitivity, and specificity,” Algorithms Mol Biol,

vol. 4, p. 7, 2009.

[565] Y. Saeys, Inza, I. and Larrañaga, P., “A review of feature selection techniques in

bioinformatics,” Bioinformatics, vol. 23, pp. 2507-17, 2007.

[566] V.G. Tusher, Tibshirani, R., Chu, G., “Significance analysis of microarrays

applied to the ionizing radiation response,” PNAS, vol. 98, pp. 5116-21, 2001.

[567] L.A.D. Baldi P., “A Bayesian framework for the analysis of microarray

expression data: regularized t-test and statistical inferences of gene changes,”

Bioinformatics, vol. 17, pp. 509-19, 2001.

[568] J. Zhang, Finney, R.P., Rowe, W., Edmonson, M., Yang, S.H., et al., “Systematic

analysis of genetic alterations in tumors using Cancer Genome WorkBench

(CGWB),” Genome Research, vol. 17, pp. 1111-7, 2007.

[569] D.J. Slamon, Clark, G.M., Wong, S.G., Levin, W.J., Ullrich, A., McGuire, W.L.,

“Human breast cancer: correlation of relapse and survival with amplification of

the HER-2/neu oncogene,” Science, vol. 235, pp. 177-182, 1987.

[570] S.A. e. a. Tomlins, “Chinnaiyan, Recurrent fusion of TMPRSS2 and ETS

transcription factor genes in prostate cancer,” Science, vol. 310, pp. 644-8, 2005.

 References 317

[571] R. Tibshirani, Hastie, T., “Outlier sums for differential gene expression analysis,”

Biostatistics, vol. 8, pp. 2-8, 2007.

[572] H. Lian, “MOST: detecting cancer differential gene expression,” Biostatistics,

vol. 9, pp. 411-8, 2008.

[573] W.N. van Wieringen, van de Wiel, M.A., van der vaart, A.W., “A test for partial

differential expression,” Journal of the American Statistical Association, vol. 103,

pp. 1039-49, 2008.

This page intentionally left blankThis page intentionally left blank

319

Index

a prior probability, 103

Akaike Information Criterion

(AIC), 57

amino acid, 3

arcs, 241

areas under ROC curves (AUR), 99

basis function, 154

basis function neural networks, 155

Bayes rule, 103

Bayesian framework, 174

Bayesian Information Criterion

(BIC), 33

Bayesian networks, 247

between-class diversity, 106

bio-basis function, 164

bio-basis function neural network,

162

Biochemical System Theory, 253

biological data coding, 213

biological network, 240

black-box, 96

BLAST, 5

C4.5, 123

C5, 123

causal networks, 241

centroid condition, 71

classification and regression tree

algorithm, 120

cluster analysis, 52

code vector, 69

codebook, 70

confusion matrix, 98

correlation measure, 209

covariance matrix, 26

cross-entropy function, 139

cross-validation, 102

data compression, 69

decision tree algorithm, 120

decoding, 188

density estimation, 24

dimension reduction, 38

discrete Bayesian network, 245

discriminant analysis, 104

diversity, 55

divide and conquer, 121

dynamic programming, 4

eigen value, 41

EMBL, 7

emission model, 181

emission probabilities, 182

emission rate, 182

entropy, 124

320 Machine Learning Approaches to Bioinformatics

evolutionary computation, 262

Expectation-Maximisation (EM)

algorithm, 32

explanatory variables, 94

false negative, 98

false positive, 98

feature extraction, 213

feature selection, 195

Fisher discriminant analysis, 104

Fisher ratio measure, 210

forward selection, 204

fuzzy c-means algorithm, 58

Gaussian distribution, 24

Gaussian mixture model, 61

gene expression, 5

Gene Ontology, 271

gene regulatory network, 238

generalisation, 102

generalised discriminant function,

109

generalised mass action, 253

Gini impurity, 123

Gram-Schmidt, 206

graphs, 241

growing hyperbolic SOM, 82

h function, 218

hard membership, 59

Hessian matrix, 145

hexagonal map, 73

hidden Markov model, 177

hidden neurons, 135

hierarchical clustering, 52

histogram approach, 24

hmmbuild, 191

HMMER, 191

hmmpfam, 191

homology alignment, 4

Hopfiled net, 135

hydrophobicity scales, 218

ID3, 123

impurity, 123

incomplete data, 274

information gain, 123

Jackknife, 102

kernel approach, 29

K-means algorithm, 55

k-mer motifs, 222

K-nearest neighbour algorithm, 104

K-nearest neighbour approach, 28

L1 constrained estimation, 196

L2 constraint, 199

Lasso regression, 196

learning rate, 76

likelihood function, 26

linear classifier, 104

linear discriminant analysis, 104

linear supervised models, 95

loss of the information, 41

Markov Model, 177

maximum likelihood approach, 26

mean-square error, 97

membership, 58

metabolite data, 270

metabolome, 270

Michealis-Menten change law, 253

mixing coefficient, 61

mixture model, 61

modified Gram-Schmidt, 206

 Index 321

momentum factor, 143

multi-dimensional scaling, 46

multi-layer perceptron, 133

multi-source data, 270

mutual information approach, 210

NCBI, 7

nearest neighbour condition, 70

negative predictive power, 99

neighbourhood, 74

neural networks, 133

Newton-Raphson method, 145

NIH, 7

nonlinear supervised models, 95

non-parametric approaches, 24

normal distribution conversion, 78

normalised mean-square error, 97

ordinary differential equation, 257

orthogonal least square, 204

parametric approach, 24

partial least square regression, 200

pattern analysis, 10

pattern recognition, 134

positive predictive power, 99

post-probability, 103

power-law theory, 253

predictive variables, 94

principal component analysis

(PCA), 39

quadratic discriminant analysis,

104

radial-basis function, 30

radial-basis function neural

network, 156

random forest (RF) algorithm, 128

random observations, 177

receiver operating characteristics

(ROC), 99

rectangular map, 73

relative topological structure, 46

relevance vector machine, 173

ridge regression, 199

Sammon mapping, 46

self-normalisation, 78

self-organising map (SOM), 69

self-transition probabilities, 182

semi-parametric approach, 24

sensitivity, 98

sensitivity analysis, 267

sigmoid function, 139

simulated annealing, 261

single-layer perceptron, 135

smoothing parameter, 156

soft membership, 58

sparse classifier, 170

sparse orthogonal coding, 217

specificity, 98

S-system, 253

steady-state analysis, 262

structure identification, 260

supervised learning, 16

support vector machine, 168

SWISS-PROT, 7

target variable, 94

Taylor classification, 223

terminal probabilities, 182

total prediction accuracy, 99

transition probability, 181

tree growing, 125

tree pruning, 125

322 Machine Learning Approaches to Bioinformatics

tree selection, 125

true negative, 98

true positive, 98

unsupervised learning, 16

update rule, 76

vector machines, 154

vector quantization, 69

web tool, 8

weight vector, 105

winner, 74

within-class diversity, 106

within-cluster diversity, 56

wrapper selection, 204

	Preface
	Contents
	1 Introduction
	1.1 Brief history of bioinformatics
	1.2 Database application in bioinformatics
	1.3 Web tools and services for sequence homology Alignment
	1.3.1 Web tools and services for protein functional site identification
	1.3.2 Web tools and services for other biological data

	1.4 Pattern analysis
	1.5 The contribution of information technology
	1.6 Chapters

	2 Introduction to Unsupervised Learning
	3 Probability Density Estimation Approaches
	3.1 Histogram approach
	3.2 Parametric approach
	3.3 Non-parametric approach
	3.3.1 K-nearest neighbour approach
	3.3.2 Kernel approach

	Summary

	4 Dimension Reduction
	4.1 General
	4.2 Principal component analysis
	4.3 An application of PCA
	4.4 Multi-dimensional scaling
	4.5 Application of the Sammon algorithm to gene data
	Summary

	5 Cluster Analysis
	5.1 Hierarchical clustering
	5.2 K-means
	5.3 Fuzzy C-means
	5.4 Gaussian mixture models
	5.5 Application of clustering algorithms to the Burkholderia pseudomallei gene expression data
	Summary

	6 Self-organising Map
	6.1 Vector quantization
	6.2 SOM structure
	6.3 SOM learning algorithm
	6.4 Using SOM for classification
	6.5 Bioinformatics applications of VQ and SOM
	6.5.1 Sequence analysis
	6.5.2 Gene expression data analysis
	6.5.3 Metabolite data analysis

	6.6 A case study of gene expression data analysis
	6.7 A case study of sequence data analysis
	Summary

	7 Introduction to Supervised Learning
	7.1 General concepts
	7.2 General definition
	7.3 Model evaluation
	7.4 Data organisation
	7.5 Bayes rule for classification
	Summary

	8 Linear/Quadratic Discriminant Analysis and K-nearest Neighbour
	8.1 Linear discriminant analysis
	8.2 Generalised discriminant analysis
	8.3 K-nearest neighbour
	8.4 KNN for gene data analysis
	Summary

	9 Classification and Regression Trees, Random Forest Algorithm
	9.1 Introduction
	9.2 Basic principle for constructing a classification tree
	9.3 Classification and regression tree
	9.4 CART for compound pathway involvement prediction
	9.5 The random forest algorithm
	9.6 RF for analyzing Burkholderia pseudomallei gene expression profiles
	Summary

	10 Multi-layer Perceptron
	10.1 Introduction
	10.2 Learning theory
	10.2.1 Parameterization of a neural network
	10.2.2 Learning rules

	10.3 Learning algorithms
	10.3.1 Regression
	10.3.2 Classification
	10.3.3 Procedure

	10.4 Applications to bioinformatics
	10.4.1 Bio-chemical data analysis
	10.4.2 Gene expression data analysis
	10.4.3 Protein structure data analysis
	10.4.4 Bio-marker identification

	10.5 A case study on Burkholderia pseudomallei gene expression data
	Summary

	11 Basis Function Approach and Vector Machines
	11.1 Introduction
	11.2 Radial-basis function neural network (RBFNN)
	11.3 Bio-basis function neural network
	11.4 Support vector machine
	11.5 Relevance vector machine
	Summary

	12 Hidden Markov Model
	12.1 Markov model
	12.2 Hidden Markov model
	12.2.1 General definition
	12.2.2 Handling HMM
	12.2.3 Evaluation
	12.2.4 Decoding
	12.2.5 Learning

	12.3 HMM for sequence classification
	Summary

	13 Feature Selection
	13.1 Built-in strategy
	13.1.1 Lasso regression
	13.1.2 Ridge regression
	13.1.3 Partial least square regression (PLS) algorithm

	13.2 Exhaustive strategy
	13.3 Heuristic strategy – orthogonal least square approach
	13.4 Criteria for feature selection
	13.4.1 Correlation measure
	13.4.2 Fisher ratio measure
	13.4.3 Mutual information approach

	Summary

	14 Feature Extraction (Biological Data Coding)
	14.1 Molecular sequences
	14.2 Chemical compounds
	14.3 General definition
	14.4 Sequence analysis
	14.4.1 Peptide feature extraction
	14.4.2 Whole sequence feature extraction

	Summary

	15 Sequence/Structural Bioinformatics Foundation – Peptide Classification
	15.1 Nitration site prediction
	15.2 Plant promoter region prediction
	Summary

	16 Gene Network – Causal Network and Bayesian Networks
	16.1 Gene regulatory network
	16.2 Causal networks, networks, graphs
	16.3 A brief review of the probability
	16.4 Discrete Bayesian network
	16.5 Inference with discrete Bayesian network
	16.6 Learning discrete Bayesian network
	16.7 Bayesian networks for gene regulartory networks
	16.8 Bayesian networks for discovering peptide patterns
	16.9 Bayesian networks for analysing Burkholderia pseudomallei gene data
	Summary

	17 S-Systems
	17.1 Michealis-Menten change law
	17.2 S-system
	17.3 Simplification of an S-system
	17.4 Approaches for structure identification and parameter estimation
	17.4.1 Neural network approach
	17.4.2 Simulated annealing approach
	17.4.3 Evolutionary computation approach

	17.5 Steady-state analysis of an S-system
	17.6 Sensitivity of an S-system
	Summary

	18 Future Directions
	18.1 Multi-source data
	18.2 Gene regulatory network construction
	18.3 Building models using incomplete data
	18.4 Biomarker detection from gene expression data
	Summary

	References
	Index

