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Preface

With the rapid development of proteomic technologies in life sciences and in clinical appli-
cations, many bioinformatics methodologies, databases, and software tools have been 
developed to support comparative proteomics study. This volume aims to highlight the 
current status, challenges, open problems, and future trends in developing bioinformatics 
tools and resources for comparative proteomics research and to serve as a definitive source 
of reference providing both the breadth and depth needed on the subject of Bioinformatics 
for Comparative Proteomics.

The volume is structured to introduce three major areas of research methods: (1) 
basic bioinformatics frameworks related to comparative proteomics, (2) bioinformatics 
databases and tools for proteomics data analysis, and (3) integrated bioinformatics systems 
and approaches for studying comparative proteomics in the systems biology context.

Part I (Bioinformatics Framework for Comparative Proteomics) consists of seven 
chapters:

Chapter 1 presents a comprehensive review (with categorization and description) of 
major protein bioinformatics databases and resources that are relevant to comparative 
proteomics research.

Chapter 2 provides a practical guide to the comparative proteomics community for 
exploiting the knowledge captured from and the services provided in UniProt databases.

Chapter 3 introduces the InterPro protein classification system for automatic protein 
annotation and reviews the signature methods used in the InterPro database.

Chapter 4 introduces the Reactome Knowledgebase that provides an integrated view 
of the molecular details of human biological processes.

Chapter 5 introduces eFIP (extraction of Functional Impact of Phosphorylation), a 
Web-based text mining system that can aid scientists in quickly finding abstracts from lit-
erature related to the phosphorylation (including site and kinase), interactions, and func-
tional aspects of a given protein.

Chapter 6 presents a tutorial for the Protein Ontology (PRO) Web resources to help 
researchers in their proteomic studies by providing key information about protein diver-
sity in terms of evolutionary-related protein classes based on full-length sequence conser-
vation and the various protein forms that arise from a gene along with the specific functional 
annotation.

Chapter 7 describes a method for the annotation of functional residues within experi-
mentally uncharacterized proteins using position-specific site annotation rules derived 
from structural and experimental information.

Part II (Proteomic Bioinformatics) consists of ten chapters:
Chapter 8 describes how the detailed understanding of information value of mass 

spectrometry-based proteomics data can be elucidated by performing simulations using 
synthetic data.

Chapter 9 describes the concepts, prerequisites, and methods required to analyze a 
shotgun proteomics data set using a tandem mass spectrometry search engine.
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Chapter 10 presents computational methods for quantification and comparison of 
peptides by label-free LC–MS analysis, including data preprocessing, multivariate statisti-
cal methods, and detection of differential protein expression.

Chapter 11 proposes an alternative to MS/MS spectrum identification by combining 
the uninterpreted MS/MS spectra from overlapping peptides and then determining the 
consensus identifications for sets of aligned MS/MS spectra.

Chapter 12 describes the Trans-Proteomic Pipeline, a freely available open-source 
software suite that provides uniform analysis of LC–MS/MS data from raw data to quanti-
fied sample proteins.

Chapter 13 provides an overview of a set of open-source software tools and steps 
involved in ELISA microarray data analysis.

Chapter 14 presents the state of the art on the Proteomics Databases and Repositories.
Chapter 15 is a brief guide to preparing both large- and small-scale protein interaction 

data for publication.
Chapter 16 demonstrates a new graphical user interface tool called PRIDE Converter, 

which greatly simplifies the submission of MS data to PRIDE database for submitted pro-
teomics manuscripts.

Chapter 17 presents a method for describing a protein’s posttranslational modifications 
by integrating the top–down and bottom–up MS data using the Protein Inference Engine.

Chapter 18 describes an integrated top–down and bottom–up approach facilitated by 
concurrent liquid chromatography–mass spectrometry analysis and fraction collection for 
comprehensive high-throughput intact protein profiling.

Part III (Comparative Proteomics in Systems Biology) consists of four chapters:
Chapter 19 gives an overview of the content and usage of the PhosphoPep database, 

which supports systems biology signaling research by providing interactive interrogation 
of MS-derived phosphorylation data from four different organisms.

Chapter 20 describes “omics” data integration to map a list of identified proteins to a 
common representation of the protein and uses the related structural, functional, genetic, 
and disease information for functional categorization and pathway mapping.

Chapter 21 describes a knowledge-based approach relying on existing metabolic path-
way information and a direct data-driven approach for a metabolic pathway-centric inte-
gration of proteomics and metabolomics data.

Chapter 22 provides a detailed description of a method used to study temporal changes 
in the endoplasmic reticulum (ER) proteome of fibroblast cells exposed to ER stress agents 
(tunicamycin and thapsigargin).

This volume targets the readers who wish to learn about state-of-the-art bioinformat-
ics databases and tools, novel computational methods and future trends in proteomics 
data analysis, and comparative proteomics in systems biology. The audience may range 
from graduate students embarking upon a research project, to practicing biologists work-
ing on proteomics and systems biology research, and to bioinformaticians developing 
advanced databases, analysis tools, and integrative systems. With its interdisciplinary 
nature, this volume is expected to find a broad audience in biotechnology and pharmaceu-
tical companies and in various academic departments in biological and medical sciences 
(such as biochemistry, molecular biology, protein chemistry, and genomics) and compu-
tational sciences and engineering (such as bioinformatics and computational biology, 
computer science, and biomedical engineering).
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Chapter 1

Protein Bioinformatics Databases and Resources

Chuming Chen, Hongzhan Huang, and Cathy H. Wu 

Abstract

 In the past decades, a variety of publicly available data repositories and resources have been developed to 
support protein related information management, data-driven hypothesis generation and biological 
knowledge discovery. However, there is also an increasing confusion for the researchers who are trying 
to quickly find the appropriate resources to help them solve their problems. In this chapter, we present a 
comprehensive review (with categorization and description) of major protein bioinformatics databases 
and resources that are relevant to comparative proteomics research. We conclude the chapter by discuss-
ing the challenges and opportunities for developing new protein bioinformatics databases.

Key words: Bioinformatics, Database, Protein sequence, Protein family, Protein structure, Protein 
function, Proteomics, Data integration, Comparative analysis

Advances of high-throughput technologies in the study of molec-
ular biology systems in the past decades have marked the begin-
ning of a new era of research, in which biological researchers 
systematically study organisms on the levels of genomes (complete 
genetic sequences) (1), transcriptomes (gene expressions) (2) and 
proteomes (protein expressions) (3). Because proteins occupy a 
middle ground molecularly between gene and transcript informa-
tion and higher levels of molecular and cellular structure and orga-
nization, and most physiological and pathological processes are 
manifested at the protein level, biological scientists are growingly 
interested in applying proteomics techniques to foster a better 
understanding of basic molecular biology, disease processes and 
discovery of new diagnostic, prognostic and therapeutic targets 
for numerous diseases (4, 5).

1.  Introduction
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Recently, proteomics data analysis has moved toward infor-
mation integration of multiple studies including cross-species 
analyses (6–9). The richness of proteomics data allows research-
ers to ask complex biological questions and gain new scientific 
insights. To support comparative proteomics, data-driven 
hypothesis generation, and biological knowledge discovery, many 
protein-related bioinformatics databases, query facilities, and 
data analysis software tools have been developed. These organize 
and provide biological annotations for individual proteins to 
support sequence, structural, functional and evolutionary analy-
ses in the context of pathway, network and systems biology. 
However, it is not always easy for researchers to quickly find the 
pieces of related information. In this chapter, we present a com-
prehensive review (with categorization and description) of major 
protein bioinformatics databases and resources that are relevant 
to comparative proteomics research. We highlight some of these 
databases, and focus on the types of data stored and related data 
access and data analysis supports. We also discuss the challenges 
and opportunities for developing new protein bioinformatics 
databases in terms of supporting data integration and compara-
tive analysis, maintaining data provenance and managing 
biological knowledge.

Our coverage of protein bioinformatics databases in this chapter 
is by no means exhaustive. We refer the readers to ref. 10 for a 
more complete list. Our intention is to cover those that are recent, 
high quality, publicly available, and are expected to be of interest 
to more users in the comparative proteomics community. Based 
on the topics and data stored, protein bioinformatics databases 
can be primarily classified as sequence databases, family databases, 
structure databases, function databases and proteomics databases 
as shown in Table 1. It is worth noting that certain databases can 
be classified into more than one category. Please visit http://
www.proteininformationresource.org/staff/chenc/MiMB/
dbSummary.html to access the databases reviewed in this chapter 
through their corresponding web addresses (URLs).

Protein sequence databases serve as the archival repositories for col-
lections of protein sequences as well as their associated annotations. 
These databases are also the primary sources for developing other 

2.  Overview

3. Databases  
and Resources 
Highlights

3.1. Protein Sequence 
Databases

http://www.proteininformationresource.org/staff/chenc/MiMB/dbSummary.html
http://www.proteininformationresource.org/staff/chenc/MiMB/dbSummary.html
http://www.proteininformationresource.org/staff/chenc/MiMB/dbSummary.html
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resources such as protein family databases, and the foundation for 
medical and functional studies.

The National Center for Biotechnology Information Reference 
Sequence (NCBI RefSeq) database provides curated non-redundant 
sequences for genomic regions, transcripts and proteins (11). 
RefSeq collection is derived from the sequence data available in 
the redundant archival database GenBank (12). RefSeq sequences 
include coding regions, conserved domains, variations, refer-
ences, names, and database cross-references. The sequences are 
annotated using a combined approach of collaboration, auto-
mated prediction, and manual curation (11). The RefSeq release 
37 of September 11, 2009 includes 8,835,796 proteins and 9,005 
organisms. The RefSeq data can be accessed from NCBI web sites 
by Entrez query, BLAST, FTP download etc.

The UniProt Consortium consists of groups from the European 
Bioinformatics Institute (EBI), the Swiss Institute of Bioinformatics 
(SIB) and the Protein Information Resource (PIR). The UniProt 
Consortium provides a central resource for protein sequences and 
functional annotations with four database components to support 
protein bioinformatics research:

The UniProt Knowledgebase (UniProtKB) is the predomi-●●

nant data store for functional information on proteins (13). 
The UniProtKB consists of two sections: UniProtKB/Swiss-
Prot, which contains manually annotated records with infor-
mation extracted from literature and curator-evaluated 
computational analysis, and UniProtKB/TrEMBL, which 
contains computationally analyzed records with rule-based 
automatic annotation. Comparative analysis and query across 
databases are supported by the UniProtKB extensive cross-
references, functional and feature annotations, classification, 
and literature-based evidence attribution. The UniProtKB 
release 15.9 of October 13, 2009 includes 510,076 
UniProtKB/Swiss-Prot sequence entries, comprising 
179,409,349 amino acids abstracted from 183,725 references, 
and 9,501,907 UniProtKB/TrEMBL sequence entries com-
prising 3,068,281,486 amino acids.
The UniProt archive (UniParc) (●● 14) is an archival protein 
sequence database from all major publicly accessible resources. 
UniParc contains protein sequences and database cross-refer-
ences to the provenance of the sequences. Text- and sequence-
based searches are available from UniParc database web site.
The UniProt Reference Clusters (UniRef ) (●● 15) merge 
sequences and sub-sequences that are 100% (UniRef100), ³90% 

3.1.1. RefSeq

3.1.2. UniProt
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(UniRef90), or ³50% (UniRef50) identical, regardless of 
source organism to speed up searches.
The UniProt Metagenomic and Environmental Sequences ●●

(UniMES) database is a repository specifically developed for 
Metagenomic and environmental data. UniMES currently 
contains data from the Global Ocean Sampling Expedition 
(GOS) (16), which predicts nearly six million proteins, pri-
marily from oceanic microbes (13).

The UniProt web site (http://www.uniprot.org) is the pri-
mary access point to the data and documentation. The site also 
provides batch retrieval using UniProt identifiers, BLAST-based 
sequence similarity search, ClustalW-based sequence alignment, 
and Database identifier mapping. The UniProt FTP download 
site provides batch download of protein sequence data in various 
formats, including flat file text, XML, RDF, FASTA, and GFF. 
Programmatic access to the data and search results is supported 
via simple HTTP RESTful web services or UniProtJAPI (17) for 
Java-based applications.

The primary protein sequence databases can be used to develop 
new resources with value-added information by either classifying 
protein sequences into families or assigning certain properties to 
the sequences by detecting specific sequence features such as 
domains, motifs, and functional sites.

The PIRSF classification system provides comprehensive and 
non-overlapping clustering of UniProtKB (13) sequences into a 
hierarchical order to reflect their evolutionary relationships based 
on whole proteins rather than on the component domains. The 
PIRSF system classifies the protein sequences into families, whose 
members are both homologous (evolved from a common ances-
tor) and homeomorphic (sharing full-length sequence similarity 
and a common domain architecture) (18). The PIRSF family clas-
sification results are expert-curated based on literature review and 
integrative sequence and functional analysis. The classification 
report shows the information on PIRSF members and general 
statistics, family and function/structure relationships, database 
cross-references and graphical display of domain and motif archi-
tecture of seed members or all members. The web-based PIRSF 
system has been shown as a useful tool for studying the function 
and evolution of protein families (18). It provides batch retrieval 
of entries from the PIRSF database. The PIRSF scan allows 
searching a query sequence against the set of fully curated PIRSF 
families with benchmarked Hidden Markov Models. The PIRSF 
membership hierarchy data is also available for FTP download.

3.2. Protein Family 
Databases

3.2.1.  PIRSF

http://www.uniprot.org


12 Chen, Huang, and Wu

Pfam is a database of protein domains and families represented as 
multiple sequence alignments and Hidden Markov Models 
(HMMs) (19). Pfam is built based on the protein sequence data 
from UniProtKB (13), NCBI GenPept (20) and selected 
Metagenomics projects. The Pfam database contains two compo-
nents: Pfam-A and Pfam-B. Pfam-A entries are manually curated 
high-quality representative seed alignments, profile HMMs built 
from the seed alignments, and an automatically generated full 
alignment for all detectable family member protein sequences. 
Pfam-B entries are automatically generated from the ProDom 
database (21). The Pfam release 24.0 of October 2009 contains 
11,912 families. The Pfam database is further organized into 
higher-level hierarchical groupings of related families called clan 
(19), which are collections of related Pfam-A entries built manu-
ally based on the similarity of their sequences, known structures, 
profile-HMMs, and other databases such as SCOP (22). The 
Pfam database web site provides a set of query and browsing 
interfaces for analyzing protein sequences for Pfam matches, for 
viewing Pfam family annotations, alignments, groups of related 
families, and the domains of a protein sequence, as well as for 
finding the domains on a PDB (23) structure. The Pfam data can 
be downloaded from its FTP site or programmatically accessed 
through RESTful and SOAP based web services.

PROSITE (24) is a database of annotated motif descriptors (pat-
terns or profiles), which can be used for the identification of pro-
tein domains and families. The motif descriptors are derived from 
multiple alignments of homologous sequences and have the advan-
tage of identifying distant relationships among sequences (25). A 
set of ProRules providing additional information about the func-
tionally and/or structurally critical amino acids are used to increase 
the discriminatory power of the motif descriptors (24). The 
PROSITE web site provides keywords-based search and allows 
browsing of motif entries, ProRule description, taxonomic scope, 
and number of positive hits. The ScanProsite (26) tool allows one 
either to scan protein sequences for the occurrence of PROSITE 
motifs by entering UniProtKB AC and/or ID, PDB identifier(s) 
or protein sequence(s), or to scan the UniProtKB or PDB data-
bases for the occurrence of a pattern by entering the PROSITE 
AC and/or ID or user’s own pattern(s). The ScanProsite (26) tool 
can also be accessed programmatically through a simple HTTP 
web service. The PROSITE documentation entries and related 
tools can be downloaded from its FTP site.

InterPro (27) is an integrated resource of predictive models or 
“signatures” representing protein domains, families, regions, 
repeats and sites from major protein signature databases includ-
ing Gene3D (28), PANTHER (29), Pfam (19), PIRSF (18), 

3.2.2.  Pfam

3.2.3.  PROSITE

3.2.4.  InterPro



13Protein Bioinformatics Databases and Resources

PRINTS (30), ProDom (21), PROSITE (24), SMART (31), 
SUPERFAMILY (32) and TIGRFAMs (33). Each entry in the 
InterPro database is annotated with a descriptive abstract name 
and cross-references to the original data sources, as well as to 
specialized functional databases. The InterPro release 23.0 of 
September 23, 2009 includes 19,150 entries containing 434 new 
signatures. The database is available via a web interface and anon-
ymous FTP download. The software tool InterProScan (34) is 
provided as a protein sequence classification and comparison 
package that can be used via a web interface and SOAP-based 
Web Services or can be installed locally for bulk operations. The 
InterPro BioMart (35) allows users to retrieve InterPro data from 
a query-optimized data warehouse that is synchronized with the 
main InterPro database, and to build simple or complex queries 
and control the query results through a unified interface.

Many bioinformatics studies are based on the premise that pro-
teins of similar sequences carry out similar functions whereas 
those with different sequences carry out different functions. More 
and more experimental data support the notion that structure of 
a protein reflects the nature of the role it is playing, therefore, 
determining its function in the biological process. The protein 
structure databases organize and annotate various experimentally 
determined protein structures, providing the biological commu-
nity access to the experimental data in a useful way.

The worldwide PDB (wwPDB) was established in 2003 as an inter-
national collaboration to maintain a single and publicly available 
Protein Data Bank Archive (PDB Archive) of macro-molecular 
structural data (23). The wwPDB member includes RCSB PDB 
(USA), the Macromolecular Structure Database at the European 
Bioinformatics Institute (MSD-EBI) (UK), the Protein Data Bank 
Japan (PDBj) at Osaka University (Japan) and the BioMagRes-
Bank (BMRB) at the University of Wisconsin – Madison (USA). 
The “PDB Archive” is a collection of flat files in three different 
formats: the legacy PDB file format; the PDB exchange format that 
follows the mmCIF syntax (http://www.deposit.pdb.org/
mmcif/); and the PDBML/XML format (36). Each member site 
serves as a deposition, data processing and distribution site for the 
PDB Archive and each provides its own view of the primary data 
and a variety of tools and resources. As of October 27, 2009, there 
are 61,086 structures in the wwPDB database.

CATH (Class, Architecture, Topology, Homology) is a database 
of protein domain structures in the Protein Data Bank, where 
domains are hierarchically classified by the curators guided by 
prediction algorithms (such as structure comparison). CATH 
clusters proteins at four major levels (37):

3.3. Protein Structure 
Databases

3.3.1.  worldwide PDB

3.3.2.  CATH

http://www.deposit.pdb.org/mmcif/
http://www.deposit.pdb.org/mmcif/
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●● Class (C): secondary structure composition and packing 
within the structure.

●● Architecture (A): orientations of the secondary structures 
ignoring the connectivity among the secondary structures.

●● Topology (T): whether they share the same topology in the 
core of the domain.

●● Homologous superfamily (H): sequence and structural 
similarities.

The CATH release 3.2.0 of July 14, 2008 contains 114,215 
assigned domains. CATH provides the SSAP server, which allows 
users to compare the structures of two proteins and view the sub-
sequent structural alignment.

The SCOP (Structural Classification of Proteins) database provides 
a comprehensive and detailed description of the evolutionary and 
structural relationships of the proteins of known structures. The 
SCOP classification hierarchy is constructed based on a domain in 
the experimentally determined protein structure and includes the 
following levels (22):

●● Species: distinct protein sequence and its naturally occurring 
or artificially created variants.

●● Protein: similar sequences of essentially the same functions.
●● Family: proteins with related sequences but typically distinct 

functions.
●● Superfamily: protein families with common evolutionary 

ancestor.
●● Fold: superfamilies with structural similarity (same major sec-

ondary structures in the same arrangement and with the same 
topological connections, not necessarily with common evolu-
tionary origin).

●● Class: based on the secondary structure content and organi-
zation of folds.

The SCOP release 1.75 of June 2009 includes 38,221 PDB 
entries, 1,195 folds, 1,962 superfamilies and 3,902 families.

The Protein Folding Database (PFD) is a publicly searchable 
repository that collects experimental thermodynamic and kinetic 
data for the folding of proteins. Experimenters deposit data 
including Constructor, Mutations, Equilibrium Method, Kinetic 
Method, Equilibrium Data, Kinetic Data, and Publications (38). 
The PFD database uses the International Foldeomics Consortium 
standards (39) for data deposition, analysis and reporting to facil-
itate the comparison of folding rates, energies and structure across 
diverse sets of proteins (38). The PFD release 2.2 of June 8, 2009 
contains 296 entries, 70 proteins, 53 families, 30 species and 230 

3.3.3. SCOP

3.3.4. PFD
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(five proteins) j values. The web site provides advanced text 
searches of protein names, literature references, and experimental 
details with search results displayed in a tabular view. The graphi-
cal visualization tools have been built for raw equilibrium data, 
chevron data, contact order and folding rates with the hyperlinks 
on the graph directly link to the data in the text format.

Phospho3D (40) is a database of 3D structures of phosphoryla-
tion sites. Phospho3D is constructed by using the data collected 
from the phospho.ELM (41) database of experimentally verified 
phosphorylation sites in eukaryotic proteins, and is enriched with 
structural information and annotations at the residue level. The 
basic information unit in the Phospho3D database consists of the 
instance, its flanking sequence (ten residues) and its “zone,” a 3D 
neighborhood including any residue whose distance does not 
exceed 12 Å (40). For each zone, structural similarity and bio-
chemical similarity are used to collect the results of a large-scale 
local structural comparison versus a representative dataset of PDB 
(23) protein chains, which provide the clues for the identification 
of new putative phosphorylation sites. Users can browse the data 
in Phospho3D database or search the database using kinase name, 
PDB identification code or keywords.

The unique feature of proteins that allows their diverse functions 
is the ability to bind to other molecules specifically. For example, 
proteins can be enzymes to catalyze the chemical reactions in the 
cell or to manipulate the replication and transcription of DNA. 
Many proteins are also involved in the process of cell signaling 
and signal transduction. Protein function databases maintain 
information about metabolic pathways, enzymes, compounds, 
and the inter-molecular interactions and regulatory pathways 
mechanisms underlying many biological processes.

IntAct is an open source database and toolkit for the storage, pre-
sentation and analysis of protein interaction data (42). IntAct pro-
vides all relevant experimental details of protein interactions 
described in the originating publication. All the entries in the data-
base are fully compliant with the IMEx (43) guidelines and MIMIx 
(44) standard. The technical details of the experiment, binding 
sites, protein tags and mutations are annotated with the Molecular 
Interaction ontology of the Proteomics Standard Initiative 
(PSI-MI) (45). The latest database contains 202,419 binary inter-
actions, 60,310 proteins, 11,119 experiments and 1,509 con-
trolled vocabulary terms. The IntAct web site provides both textual 
and graphical views of protein interactions, and allows exploring 
interaction networks in the context of the Gene Ontology (46) 
controlled vocabulary and InterPro (27) domains of the inter-
acting proteins. IntAct data and source code are available for 

3.3.5.  Phospho3D

3.4. Protein Function 
Databases

3.4.1.  IntAct
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downloading from its web site. In addition, a set of tools have 
been developed by the IntAct project:

●● ProViz: visualization of protein–protein interaction graphs.
●● MiNe: compute the minimal connecting networks for a given 

set of proteins.
●● PSI-MI Semantic Validator: validate files in PSI-MI XML 2.5 

and PSI-PAR format.

Reactome is an open source, expert-curated and peer-reviewed 
database of biological reactions and pathways with cross-references 
to major molecular databases (47). The basic information in the 
Reactome database is provided by either publications or sequence 
similarity-based inference. The Reactome release 30 of September 
30, 2009 contains 3,916 proteins, 2,955 complexes, 3,541 reac-
tions, and 1,045 pathways for Homo sapiens. Reactome data can be 
exported in SBML (48), Protégé (49), Cytoscape (50) and BioPax 
(http://www.biopax.org) formats. Software tools like PathFinder, 
SkyPainter and Reactome BioMart (35) have been developed to 
support data mining and analysis of large-scale data sets.

MetaCyc is a database of non-redundant, experimentally elucidated 
metabolic pathways and enzymes curated from the scientific litera-
ture (51). MetaCyc stores pathways involved in Primary and 
Secondary metabolism. It also stores compounds, proteins, protein 
complexes and genes associated with these pathways with extensive 
links to other biological databases of protein sequences, nucleic 
acid sequences, protein structures and literature. BioCyc is a collec-
tion of Pathway/Genome Databases (PGDBs) (51). Each BioCyc 
PGDB contains the metabolic network of one organism predicted 
by the Pathway tool software using MetaCyc as a reference data-
base. Web-based query, browsing, visualization and comparative 
analysis tools are also provided on the MetaCyc and BioCyc web 
sites. A collection of data files is also available for downloading.

The advent of high-throughput 2D-gel and mass spectrometry 
based analytical techniques and the available protein sequence 
databases have created massive amount of proteomics data. To 
facilitate the sharing and further computational analysis of pub-
lished proteomics data, several repositories have been created.

The World-2DPAGE Constellation (52) is an effort of the Swiss 
Institute of Bioinformatics (SIB) to promote and publish two-
dimensional gel electrophoresis proteomics data online through 
the ExPASy proteomics server. The World-2DPAGE Constellation 
consists of three components:

●● WORLD-2DPAGE List (http://www.world-2dpage.expasy.
org/list/) contains references to known federated 2D PAGE 

3.4.2.  Reactome

3.4.3. MetaCyc and BioCyc

3.5. Proteomics 
Databases

3.5.1.  World-2DPAGE

http://www.biopax.org
http://www.world-2dpage.expasy.org/list/
http://www.world-2dpage.expasy.org/list/
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databases, as well as to 2D PAGE-related servers and 
services.

●● World-2DPAGE Portal (http://www.world-2dpage.expasy.
org/portal/) is a dynamic portal that serves as a single inter-
face to query simultaneously world-wide gel-based proteomics 
databases that are built using the Make2D-DB package (53).

●● World-2DPAGE Repository (http://www.world-2dpage.
expasy.org/repository/) is a public repository for gel-based 
proteomics data with protein identifications published in the 
literature. Mass-spectrometry based proteomics data from 
related studies can also be submitted to the PRIDE database 
(54) so that interested readers can explore the data in the 
views of 2D-gel and/or MS.

The PRoteomics IDEntifications database (PRIDE) is a reposi-
tory for mass-spectrometry based proteomics data including 
identifications of proteins, peptides and post-translational modifi-
cations that have been described in the scientific literature, 
together with supporting mass spectra (54). The PRIDE team 
has built an infrastructure and a set of software tools to facilitate 
the data submissions in PRIDE XML or mzData XML format 
from labs using different MS-based proteomics technologies. The 
PRIDE database can be queried by experiment accession number, 
protein accession number, literature reference, and sample param-
eters including species, tissue, sub-cellular location and disease 
state. The query results can be retrieved as PRIDE XML, mzData 
XML, or HTML. The PRIDE database includes a BioMart (35) 
interface that provides access to public PRIDE data from a query-
optimized data warehouse as well as programmatic web service 
access. The PRIDE project also provides the Protein Identifier 
Cross-Reference Service (PICR) (55), which maps protein 
sequence identifiers from over 60 different databases via the 
UniParc (14) database. The Database on Demand (DoD, http://
www.ebi.ac.uk/pride/dod) service provides custom FASTA for-
matted sequence databases according to a set of user-selectable 
criteria to optimize the search engine results. By November 19, 
2009, the PRIDE database contains 10,329 experiments, 
2,827,384 identified proteins, 12,542,472 identified peptides, 
1,891,670 unique peptides and 56,703,344 Spectra.

Although a variety of protein bioinformatics databases and 
resources have been developed to catalog and store different 
information about proteins, there are still opportunities to develop 

3.5.2. PRIDE

4.  Discussion

http://www.world-2dpage.expasy.org/portal/
http://www.world-2dpage.expasy.org/portal/
http://www.world-2dpage.expasy.org/repository/
http://www.world-2dpage.expasy.org/repository/
http://www.ebi.ac.uk/pride/dod
http://www.ebi.ac.uk/pride/dod
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new solutions to facilitate comparative analysis, data-driven 
hypothesis generation, and biological knowledge discovery.

As the volume and diversity of data and the desire to share those 
data increase, we inevitably encounter the problem of combining 
heterogeneous data generated from many different but related 
sources and providing the users with a unified view of this com-
bined data set. This problem emerges in the biological and bio-
medical  research community, where research data from different 
bioinformatics data repositories and laboratories need to be com-
bined and analyzed. There are urgent needs for developing com-
putational methods to integrate data from multiple studies and to 
answer more complex biological questions than traditional meth-
ods can tackle. Comparing experimental results across multiple 
laboratories and data types can also help forming new hypotheses 
for further experimentation (56–58). Different laboratories use 
different experimental protocols, instruments and analysis tech-
niques, which make direct comparisons of their experimental 
results difficult. However, having related data in one place can 
make queries and comparisons of combined protein and gene 
data sets and further analysis possible.

In general, there are two types of data integration approaches. 
The data warehouse approach puts data sources into a centralized 
location with a global data schema and an indexing system for fast 
data retrieval. An example of this approach is the NIAID (National 
Institute for Allergy and Infectious Diseases) Biodefense Resource 
Center (http://www.proteomicsresource.org), which uses a pro-
tein-centric data warehouse (Master Protein Directory) to integrate 
and support mining and comparative analysis of large and hetero-
geneous “omics” data across different experiments and organisms 
(59). Another approach to data integration involves the federation 
of data across multiple sources. An example of this approach is the 
BioMart (35), an open source database management system that 
uses integrated query interfaces to query different BioMarts and 
allows users to group and refine their query results. The BioMart 
can also be accessed programmatically through web services or 
software libraries written in programming languages Java or Perl.

In many cases, the most difficult tasks in protein bioinformatics 
data management and analysis are not mapping biological entities 
from different sources or managing and processing large set of 
experimental data, such as gel images and mass spectra. Rather, it 
is in recording the detailed provenance of data, i.e., what was 
done, why it was done, where it was done, which instrument was 
used, what settings were used, how it was done. The provenance 
of experimental data is an important aspect of scientific best prac-
tice and is central to scientific discovery (60).

4.1. Data Integration 
and Comparative 
Analysis

4.2. Data Provenance 
and Biological 
Knowledge

http://www.proteomicsresource.org
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In proteomics studies, although great efforts have been made 
to develop and maintain data format standards, such as mzXML 
(61) and HUPO PSI (HUPO Proteomics Standards Initiative) 
(62), and minimal information standards for describing such data, 
for example, MIAPE (Minimum Information About a Proteomics 
Experiment) (63), the ontologies and related tools that provide 
formal representation of a set of concepts and their relationships 
within the domain of “omics” experiments still lag behind the 
current development of experimental protocols and methods. 
The standardization of data provenance remains a somewhat 
manual process, which depends on the efforts of database main-
tainers and data submitters.

The general biological and biomedical scientists are more inter-
ested in finding and viewing the “knowledge” contained in an 
already analyzed data set. However, much of the protein data gener-
ated in high-throughput research is insignificant in the conclusions 
of an analysis. Unfortunately, this information seldom comes with 
the standard data files and formats and is usually not easily found in 
omics repositories unless a reanalysis is performed or the data is 
annotated by a curator. For example, tables of proteins present in a 
given proteomics experiment are routinely found as supplemental 
data in scientific publications, but are not available in a searchable or 
easily computable format. This is unfortunate as this supplemental 
information is the result of considerable analysis by the original 
authors of a study to minimize false positive and false negative 
results, thus often representing the “knowledge” that underlies 
additional analysis and conclusions reached in a publication.

The NIAID Biodefense Resource Center developed a simple 
set of defined fields called “structured assertion” that could be used 
across proteomics, microarray and possibly other data types (59). 
A “structured assertion” can represent the results in a simple form 
like “protein V (presented) in experimental condition W,” where V 
represents any valid identifier and W represents a value in a simple 
experimental ontology. A simple two-field assertion for the analyzed 
results of proteomics and microarray data and an “experimental 
condition” field containing simple keywords was implemented to 
describe the key experimental variables (growth conditions, sample 
fractionation, time, temperature, infection status and others) and 
“Expression Status,” which has three values: increase, decrease or 
present. Although seemingly simple, the approach provides unique 
analytical power in the form of enabling simple queries across results 
from different data types and laboratories.
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Chapter 2

A Guide to UniProt for Protein Scientists

Claire O’Donovan and Rolf Apweiler 

Abstract

One of the essential requirements of the proteomics community is a high quality annotated nonredundant 
protein sequence database with stable identifiers and an archival service to enable protein identification 
and characterization. The scope of this chapter is to illustrate how Universal Protein Resource (UniProt) 
(The UniProt Consortium, Nucleic Acids Res. 38:D142–D148, 2010) can be best utilized for proteomics 
purposes with a particular focus on exploiting the knowledge captured in the UniProt databases, the 
services provided and the availability of complete proteomes.

Key words: Protein sequence database, Annotation, Stable identifiers, Complete proteome, Archive, 
Nonredundant

The Proteomics community has evolved intensively over the last 
decade but one constant is the need to identify the resulting pro-
teins and their potential functions. This requires the availability of 
a nonredundant protein sequence database, with maximal cover-
age including splice isoforms, disease variant(s) and posttransla-
tional modifications. Sequence archiving is an essential feature in 
order to be able to interpret and maintain the proteomic set 
results. Stable identifiers, consistent nomenclature and controlled 
vocabularies are highly beneficial for protein identification. The 
last but by no means least requirement is the provision of detailed 
information on protein function, biological processes, and molec-
ular interactions and pathways cross-referenced to appropriate 
external sources. In this chapter, we will show how the Universal 
Protein Resource fulfils these criteria.

1. Introduction

Cathy H. Wu and Chuming Chen (eds.), Bioinformatics for Comparative Proteomics, Methods in Molecular Biology, vol. 694,
DOI 10.1007/978-1-60761-977-2_2, © Springer Science+Business Media, LLC 2011
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The mission of the Universal Protein Resource (UniProt) is to 
provide the scientific community with a comprehensive, high-quality 
and freely accessible resource of protein sequence and functional 
information, which is essential for modern biological research. 
UniProt is produced by the UniProt Consortium, which consists 
of groups from the European Bioinformatics Institute (EBI), the 
Protein Information Resource (PIR), and the Swiss Institute of 
Bioinformatics (SIB). Its activities are mainly supported by the 
National Institutes of Health (NIH) with additional funding from 
the European Commission and the Swiss Federal Government.

It has five components optimized for different uses. The 
UniProt Knowledgebase (UniProtKB) (1) is an expertly curated 
database, a central access point for integrated protein information 
with cross-references to multiple sources. The UniProt Archive 
(UniParc) (2) is a comprehensive sequence repository, reflecting 
the history of all protein sequences. UniProt Reference Clusters 
(UniRef) (3) merge closely related sequences based on sequence 
identity to speed up searches whereas the UniProt Metagenomic and 
Environmental Sequences database (UniMES) was created to 
respond to the expanding area of metagenomic data. UniProtKB 
Sequence/Annotation Version Archive (UniSave) is the UniProtKB 
protein entry archive, which contains all versions of each protein 
entry (Fig. 1).

2. Materials

Fig. 1. UniProt databases.
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UniParc is the main sequence storehouse and is a comprehensive 
repository that reflects the history of all protein sequences. 
UniParc contains all new and revised protein sequences from all 
publicly available sources (http://www.uniprot.org/help/uniparc) 
to ensure that complete coverage is available at a single site. To 
avoid redundancy, all sequences 100% identical over the entire 
length are merged, regardless of source organism. New and 
updated sequences are loaded on a daily basis, cross-referenced to 
the source database accession number, and provided with a 
sequence version that increments on changes to the underlying 
sequence. The basic information stored within each UniParc 
entry is the identifier, the sequence, cyclic redundancy check 
number, source database(s) with accession and version numbers, and 
a time stamp. If a UniParc entry lacks a cross-reference to a UniProtKB 
entry, the reason for its exclusion from UniProtKB is provided (e.g., 
pseudogene). In addition, each source database accession number is 
tagged with its status in that database, indicating if the sequence still 
exists or has been deleted in the source database and cross-references 
to NCBI GI and TaxId if appropriate.

UniProtKB consists of two sections, UniProtKB/Swiss-Prot and 
UniProtKB/TrEMBL. The former contains manually annotated 
records with information extracted from literature and curator-evaluated 
computational analysis. Annotation is done by biologists with specific 
expertise to achieve accuracy. In UniProtKB/Swiss-Prot, annotation 
consists of the description of the following: function(s), enzyme-
specific information, biologically relevant domains and sites, post-
translational modifications, subcellular location(s), tissue specificity, 
developmental specific expression, structure, interactions, splice 
isoform(s), associated diseases or deficiencies, or abnormalities etc. 
The UniProt Knowledgebase aims to describe, in a single record, all 
protein products derived from a certain gene from a certain species. 
After an inspection of the sequences, the curator selects the refer-
ence sequence, does the corresponding merging, and lists the splice 
and genetic variants along with disease information when available. 
This results in not only the whole record having an accession num-
ber but also unique identifiers for each protein form derived by 
alternative splicing, proteolytic cleavage, and posttranslational mod-
ification. The freely available tool VARSPLIC (4) enables the recre-
ation of all annotated splice variants from the feature table of a 
UniProt Knowledgebase entry, or for the complete database. 
A FASTA-formatted file containing all splice variants annotated in 
the UniProt Knowledgebase can be downloaded for use with 
similarity search programs.

UniProtKB/TrEMBL contains high quality computationally 
analyzed records enriched with automatic annotation and classifi-
cation. The computer-assisted annotation is created using both 
automatically generated rules as well as manually curated rules 

2.1. The UniProt 
Archive

2.2. The UniProt 
Knowledgebase 

http://www.uniprot.org/help/uniparc
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(UniRule) based on protein families (5–8). UniProtKB/TrEMBL 
contains the translations of all coding sequences (CDS) present in 
the EMBL/GenBank/DDBJ Nucleotide Sequence Databases 
and, with some defined exclusions, Arabidopsis thaliana sequences 
from The Arabidopsis Information Resource (TAIR) (9), yeast 
sequences from the Saccharomyces Genome Database (SGD) 
(10) and Homo sapiens sequences from the Ensembl database 
(11). It will soon be extended to include other Ensembl organism 
sets and RefSeq records. Records are selected for full manual 
annotation and integration into UniProtKB/Swiss-Prot accord-
ing to defined annotation priorities.

Integration between the three types of sequence-related data-
bases (nucleic acid sequences, protein sequences, and protein 
tertiary structures) as well as with specialized data collections is 
important for the UniProt users. UniProtKB is currently cross-
referenced with more than ten million links to 114 different data-
bases with regular update cycles. This extensive network of 
cross-references allows UniProt to act as a focal point of biomo-
lecular database interconnectivity. All cross-referenced databases 
are documented at http://www.uniprot.org/docs/dbxref and if 
appropriate are included in the UniProt ID mapping tool at 
http://www.uniprot.org/help/mapping with the file for down-
load at ftp://ftp.uniprot.org/pub/databases/uniprot/current_
release/knowledgebase/idmapping.

UniRef provides clustered sets of all sequences from the UniProt 
Knowledgebase (including splice forms as separate entries) and 
selected records from the UniProt Archive to achieve complete 
coverage of sequence space at identity levels of 100, 90, and 50% 
while hiding redundant sequences (3). The UniRef clusters are 
generated in a hierarchical manner; the UniRef100 database com-
bines identical sequences and sub-fragments into a single UniRef 
entry, UniRef90 is built from UniRef100 clusters and UniRef50 
is built from UniRef90 clusters. Each individual member sequence 
can exist in only one UniRef cluster at each identity level and have 
only one parent or child cluster at another identity level. 
UniRef100, UniRef90, and UniRef50 yield a database size reduc-
tion of ~10, 40, and 70%, respectively. Each cluster record con-
tains source database, protein name, and taxonomy information 
on each member sequence but is represented by a single selected 
representative protein sequence and name; the number of mem-
bers and lowest common taxonomy node for the membership is 
also included. The representative protein sequence or cluster rep-
resentative is automatically selected using an algorithm that 
accounts for (1) Quality of entry annotation: order of preference 
is a member from UniProtKB/Swiss-Prot, UniProtKB/TrEMBL, 
then UniParc; (2) Meaningful name: members with protein names 
that do not contain words such as “hypothetical” or “probable” 

2.3. The UniProt 
Reference Clusters

http://www.uniprot.org/docs/dbxref
http://www.uniprot.org/help/mapping
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are preferred; (3) Organism: members from model organisms are 
preferred; (4) Sequence length: longest sequence is preferred. 
UniRef100 is one of the most comprehensive and nonredundant 
protein sequence dataset available. The reduced size of the 
UniRef90 and UniRef50 datasets provide faster sequence similar-
ity searches and reduce the research bias in similarity searches by 
providing a more even sampling of sequence space.

The UniProt Knowledgebase contains entries with a known taxo-
nomic source. However, the expanding area of metagenomic data 
has necessitated the creation of a separate database, the UniProt 
Metagenomic and Environmental Sequences database (UniMES). 
UniMES currently contains data from the Global Ocean Sampling 
Expedition (GOS), which predicts nearly six million proteins, pri-
marily from oceanic microbes. By combining the predicted pro-
tein sequences with automatic classification by InterPro, the 
integrated resource for protein families, domains and functional 
sites, UniMES uniquely provides free access to the array of 
genomic information gathered.

UniSave is a repository of UniProtKB/Swiss-Prot and UniProtKB/
TrEMBL entry versions and provides the backend to the 
UniProtKB entry history service (Fig. 2) and is also provided as a 
standalone service at http://www.ebi.ac.uk/uniprot/unisave.

These descriptions of our databases should illustrate that 
UniProt does provide a high quality annotated nonredundant 
database with maximal coverage and sequence archiving.

This section will describe particular features of the UniProt activities, 
which fulfill the proteomics community requirements of detailed 
information on protein function, biological processes, molecular 

2.4. The UniProt 
Metagenomic  
and Environmental 
Sequences

2.5. The UniProtKB 
Sequence/Annotation 
Version Archive

3. Methods

Fig. 2. UniSave link.

http://www.ebi.ac.uk/uniprot/unisave
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interactions and pathways cross-referenced to appropriate external 
sources and stable identifiers, consistent nomenclature and con-
trolled vocabularies.

UniProtKB consists of two sections, Swiss-Prot and TrEMBL.
UniProtKB/Swiss-Prot contains manually annotated records 

with information extracted from literature and curator-evaluated 
computational analysis. Manual annotation consists of a critical 
review of experimentally proven or computer-predicted data 
about each protein. An essential aspect of the annotation protocol 
is the use of official nomenclatures and controlled vocabularies 
that facilitate consistent and accurate identification (Fig. 3).

Annotation consists of the description of the following: 
functions(s), enzyme-specific information, biologically relevant 
domains and sites, posttranslation modifications, subcellular 
location(s), tissue specificity, developmental specific expression, 
structure, interactions, splice isoforms(s), associated diseases or 
deficiencies, or abnormalities etc (Fig. 4).

Another important part of the annotation process involves 
merging of different reports for a single protein. After an inspec-
tion of the sequences the curator selects the reference sequence, 
does the corresponding merging and lists the splice and genetic 
variants along with disease information when available (Fig. 5). 
Data are continuously updated by an expert team of biologists.

3.1. Protein Annotation

Fig. 3. UniProt nomenclature.



31A Guide to UniProt for Protein Scientists

To promote database interoperability and provide consistent 
annotation, the UniProt Consortium is a key member of the 
Gene Ontology Consortium (12) and benefits from the presence 
of the GO editorial office at the EBI. UniProt curators will con-
tinue to assign Gene Ontology (GO terms) to the gene products 
in UniProtKB during the UniProt manual curation process. 
UniProtKB also profits from GO annotation carried out by other 
GO Consortium members. Currently we include manual GO 
annotations from 19 GO Consortium annotation groups, and we 
further supplement this with high-quality annotations from other 
manual annotation sources (including the Human Protein Atlas 
and LIFEdb). In addition to this manually curated GO annota-
tion, automatic GO annotation pipelines exist and will be further 
developed to ensure that the functional knowledge supplied by 
various UniProtKB ontologies, Ensembl orthology data, and 
InterPro matches are fully exploited to provide high-quality, com-
prehensive set of GO annotation predictions for all UniProtKB 
entries.

One challenge in life sciences research is the ability to integrate 
and exchange data coming from multiple research groups. The 
UniProt Consortium is committed to fostering interaction and 
exchange with the scientific community, ensuring wide access to 
UniProt resources, and promoting interoperability between 
resources. An essential component of this interoperability is the 
provision of cross-references to these resources in UniProt entries 
(Fig. 6).

3.2. The Gene Ontology 
Consortium  
and UniProt

3.3. Cross-references 
to External Sources

Fig. 4. Protein annotation.
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UniProt constructs complete nonredundant proteome sets. Each 
set and its analysis is made available shortly after the appearance of 
a new complete genome sequence in the nucleotide sequence 
databases. A standard procedure is used to create, from the 
UniProtKB, proteome sets for bacterial, archaeal and some eukary-
otic genomes. Proteome sets for certain metazoan genomes are 

3.4. Nonredundant 
Complete UniProt 
Proteome Sets

Fig. 5. Sequence annotation.
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produced by a separate procedure because a full and accurate set 
of coding sequence predictions are not yet available in the nucleotide 
sequence databases. Currently, the International Protein Index 
(IPI) (13) derived from the UniProt Knowledgebase, Ensembl, 

Fig. 6. UniProt cross-references.
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and the NCBI’s RefSeq project (and cross-referenced to from 
UniProtKB) provides this data but development is currently 
underway to extend the UniProtKB production pipeline to 
replace IPI’s functionality and for UniProt to provide these sets 
directly in collaboration with Ensembl and RefSeq. It is envisaged 
that this development should be complete by mid 2010. It is a 
core goal for UniProt to provide meaningful annotation for these 
complete proteomes with a combination of our manual and auto-
matic annotation protocols.

The UniProt consortium released its new improved unified web-
site in 2009: a new interface, a new search engine, and many new 
options to serve its user community better. User feedback and the 
analysis of the use of our previous sites have led us to put more 
emphasis on supporting the most frequently used functionalities: 
database searches with simple (and sometimes less simple) queries 
that often consist of only a few terms have been enhanced by a 
good scoring system and a suggestion mechanism. Searching with 
ontology terms is assisted by auto-completion, and we also provide 
the possibility of using ontologies to browse search results. The 
viewing of database entries is improved with configurable views, a 
simplified terminology and a better integration of documenta-
tion. Medium-to-large sized result sets can now be retrieved 
directly on the site, so people no longer need to be referred to 
commercial, third party services. Access to the following most 
common bioinformatics tools have been simplified: sequence 
similarity searches, multiple sequence alignments, batch retrieval, 
and a database identifier mapping tool can now be launched 
directly from any page, and the output of these tools can be com-
bined, filtered, and browsed like normal database searches. 
Programatic access to all data and results is possible via simple HTTP 
(REST) requests (http://www.uniprot.org/help/technical). In 
addition to the existing formats that support the different data 
sets (e.g., plain text, FASTA, and XML for UniProtKB), now it 
also provides (configurable) tab-delimited, RSS and GFF down-
loads where possible, and all data is available in RDF (http://
www.w3.org/RDF/), a W3C standard for publishing data on the 
Semantic Web. Extensive documentation on how to best use this 
resource is available at: http://www.uniprot.org/help/.
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Chapter 3

InterPro Protein Classification

Jennifer McDowall and Sarah Hunter 

Abstract

Improvements in nucleotide sequencing technology have resulted in an ever increasing number of nucleotide 
and protein sequences being deposited in databases. Unfortunately, the ability to manually classify and 
annotate these sequences cannot keep pace with their rapid generation, resulting in an increased bias 
toward unannotated sequence. Automatic annotation tools can help redress the balance. There are a num-
ber of different groups working to produce protein signatures that describe protein families, functional 
domains or conserved sites within related groups of proteins. Protein signature databases include CATH-
Gene3D, HAMAP, PANTHER, Pfam, PIRSF, PRINTS, ProDom, PROSITE, SMART, SUPERFAMILY, 
and TIGRFAMs. Their approaches range from characterising small conserved motifs that can identify 
members of a family or subfamily, to the use of hidden Markov models that describe the conservation of 
residues over entire domains or whole proteins. To increase their value as protein classification tools, pro-
tein signatures from these 11 databases have been combined into one, powerful annotation tool: the 
InterPro database (http://www.ebi.ac.uk/interpro/) (Hunter et al., Nucleic Acids Res 37:D211–D215, 
2009). InterPro is an open-source protein resource used for the automatic annotation of proteins, and is 
scalable to the analysis of entire new genomes through the use of a downloadable version of InterProScan, 
which can be incorporated into an existing local pipeline. InterPro provides structural information from 
PDB (Kouranov et al., Nucleic Acids Res 34:D302–D305, 2006), its classification in CATH (Cuff et al., 
Nucleic Acids Res 37:D310–D314, 2009) and SCOP (Andreeva et al., Nucleic Acids Res 36:D419–D425, 
2008), as well as homology models from ModBase (Pieper et al., Nucleic Acids Res 37:D347–D354, 
2009) and SwissModel (Kiefer et al., Nucleic Acids Res 37:D387–D392, 2009), allowing a direct com-
parison of the protein signatures with the available structural information. This chapter reviews the signa-
ture methods found in the InterPro database, and provides an overview of the InterPro resource itself.

Key words: Protein family, Domain, Signature, Functional classification, Homology, Hidden 
Markov model, Profile, Clustering, Regular expression

With the increasing number of unannotated protein and nucleotide 
sequences populating databases, there is a pressing need to eluci-
date functional information that goes beyond the capabilities of 

1. Introduction
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experimental work alone. The first step in characterizing unannotated 
proteins is to identify other proteins with which they share high 
sequence identity. In this way, well-characterized proteins are 
associated with uncharacterized ones, permitting the transfer of 
annotation. Even if there are no characterized members in a 
group, the identification of clusters of proteins bearing strong 
sequence similarity provides good targets for functional or struc-
tural studies, as the information can potentially be transferred 
among the group.

Sequence similarity searches, such as BLAST (7) or FASTA 
(8), have traditionally been used for the automatic classification of 
sequences, but their ability to detect homologues depends on the 
search algorithm used, as well as on the database searched. 
Furthermore, because they treat each position in the query 
sequence with equal importance, they have a limited ability to 
detect divergent homologues. By contrast, protein signatures use 
multiple sequence alignments as part of the model-building pro-
cess, which enable them to take into account the level of conser-
vation at different positions. Specific residues in a family of 
proteins will be highly conserved if they are important for struc-
ture or function, whereas less important regions may have fewer 
constraints. Through their ability to match proteins that retain 
conservation in important regions, even when the overall percent 
similarity is low, protein signatures can detect more divergent 
homologues than simple sequence searches can. As such, protein 
signatures provide a “description” of a protein family or domain 
that defines its characteristics.

InterPro integrates protein signatures from 11 major signa-
ture databases (CATH-Gene3D, HAMAP, PANTHER, Pfam, 
PIRSF, PRINTS, ProDom, PROSITE, SMART, SUPERFAMILY, 
and TIGRFAMs) into a single resource, taking advantage of the 
different areas of specialization of each to produce a resource that 
provides protein classification on multiple levels: protein families, 
structural superfamilies and functionally close subfamilies, as well 
as functional domains, repeats and important sites. By linking 
related signatures together, InterPro places them in a hierarchical 
classification scheme, reflecting their underlying evolutionary 
relationships. Consequently, one can address issues such as the 
co-evolution of domains, or the functional divergence of proteins 
based on domain composition. InterPro is used for automatic 
annotation of the UniProtKB/TrEMBL (9) database using rules 
and automatic annotation algorithms, thereby permitting new 
sequences to be automatically assigned to a protein family and 
receive predicted functional annotation.
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Protein signatures provide a means of protein classification, and 
are useful for comparing the evolutionary relatedness of groups of 
proteins. Several protein signature databases have emerged. These 
databases use different methods for creating signatures, including 
sequence clustering, regular expression, profiles and hidden 
Markov models (HMMs). A brief description of each follows.

Sequence clustering is an automated method that clusters together 
proteins sharing regions of high sequence similarity.

PRODOM (10) is a signature database of domain families 
constructed automatically by clustering homologous regions. 
ProDom starts with the smallest sequence (representing a single 
domain) in UniProt Knowledgebase (UniProtKB) and, after 
removing fragments, searches for significant matches using PSI-
Blast (11). These matches are removed from the database and 
used to create a domain family. The process is then repeated using 
the next smallest sequence. The ProDom database has a high 
coverage of protein space and is good at identifying new domain 
families in otherwise uncharacterised sequence.

A regular expression is a computer-readable formula for a pattern, 
which can be used to search for matching strings in a text. Regular 
expression can be used to describe short, conserved motifs of 
amino acids found within a protein sequence. These motifs can 
describe active sites, binding sites or other conserved sites.

PROSITE (12) is a signature database that includes regular 
expressions, or patterns. These signatures are built from multiple 
sequence alignments of known families, which are searched for 
conserved motifs important for the biological function of the 
family. The pattern of conservation within the motif is modelled 
as a regular expression. For example, the following hypothetical 
pattern, C-{P}-x(2)-[LI], can be translated as Cys-{any residue 
except Pro}-any residue-any residue-[Leu or Ile]. By focusing on 
small conserved regions, PROSITE patterns can detect divergent 
homologues, as long as their motifs are recognized by the regular 
expression. To reduce the number of false matches to these short 
motifs, PROSITE use mini-profiles to support pattern matches.

A profile is a matrix of position-specific amino acid weights and 
gap costs, in which each position in the matrix provides a score of 
the likelihood of finding a particular amino acid at a specific posi-
tion in the sequence (i.e., residue frequency distributions) (13). 
A similarity score is calculated between the profile and a matching 
sequence for a given alignment using the scores in the matrix.

2. Protein 
Classification 
Tools

2.1. Sequence 
Clustering

2.2. Regular 
Expressions

2.3. Profiles
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PROSITE produces profiles in addition to its regular expressions. 
These profiles generally model domains and repeats, although 
there are a few full-length protein family profiles as well. They use 
multiple sequence alignments of UniProtKB/SwissProt sequences 
to build their profiles.

HAMAP (14) is a signature database of profiles describing well-
characterized microbial protein families. Their models take the 
full length of the proteins into consideration when making a 
match, applying length and taxonomy filters. Their focus is the 
annotation of bacterial and archaeal genomes from sequencing 
projects, as well as plastid genomes.

PRINTS (15) is a database of protein fingerprints, which are sets 
of conserved motifs used to define protein families, subfamilies, 
domains, and repeats. The individual motifs are similar in length 
to PROSITE patterns, but they are modelled using profiles of 
small conserved regions within multiple sequence alignments, not 
using regular expressions. True hits should match all the motifs in 
a given PRINTS fingerprint. A match to part of a fingerprint rep-
resents a hit to a more divergent homologue. PRINTS use of dif-
ferent combinations of motifs to define family and sibling subfamily 
classifications that can be grouped into PRINTS hierarchies.

Hidden Markov models (HMMs) (16) are based on Bayesian sta-
tistical methods that make use of probabilities rather than the 
scores found in Profiles. However, like profiles, HMMs are able 
to model divergent as well as conserved regions within an align-
ment, and take into account both insertions and deletions. As a 
result, HMMs are good for detecting more divergent homo-
logues, and can be used to model either discrete domains or full-
length protein alignments. HMMs are based on multiple sequence 
alignments (seed alignments). The HMMER package was written 
by Sean Eddy (http://hmmer.janelia.org).

PFAM (17) is a signature database of domains, repeats, motifs 
and families based on HMMs. There are two components to 
Pfam: PfamA models are high quality and manually curated, 
whereas PfamB models are automatically generated using the 
ADDA database (18). Pfam also generates clans that group 
together PfamA models related by sequence or structure. The 
Pfam database has a very high coverage of sequence space and is 
used for the annotation of genomes.

SMART (Simple Modular Architecture Research Tool) (19) is a 
database of protein domains and repeats based on HMMs. SMART 
make use of manually curated multiple sequence alignments of 
well-characterized protein families, focusing on domains found in 
signaling, extracellular, and chromatin-associated proteins.

TIGRFAMs (20) is an HMM signature database of full-length 
proteins and domains at the superfamily, subfamily, and equivalog 

2.4. Hidden Markov 
Models
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levels, where equivalogs are groups of homologous proteins 
conserved with respect to their predicted function. These models 
are grouped into TIGFAMs hierarchies.

PIRSF (21) is an HMM signature database based on protein families. 
PIRSF focus on modeling full-length proteins that share the same 
domain composition (homeomorphs) to annotate the biological 
functions of these families. Matching proteins must satisfy a length 
restriction to be included as a family member.

PANTHER (22) is an HMM signature database of protein families 
and subfamilies that together form PANTHER hierarchies. The 
subfamilies model the divergence of specific functions within pro-
tein families. Where possible, these subfamilies are associated with 
biological pathways.

SUPERFAMILY (23) is an HMM signature database of structural 
domains. SUPERFAMILY uses the SCOP (Structural Classification 
Of Proteins) database domain definitions at both the family and 
superfamily levels to provide structural annotation. SUPERFAMILY 
models each sequence in a family or superfamily indepen dently, 
and then combine the results, which increases the sensitivity of 
homolog detection. SUPERFAMILY is useful for genome com-
parisons of the distribution of structural domains.

CATH-Gene3D (24) is an HMM signature database of structural 
domains. CATH-Gene3D uses the CATH database domain defini-
tions at both the family and homologous superfamily levels, modeling 
each sequence independently and then combing the results.

The InterPro database integrates protein signatures from CATH-
Gene3D, HAMAP, PANTHER, Pfam, PIRSF, PRINTS, ProDom, 
PROSITE, SMART, SUPERFAMILY, and TIGRFAMs into one 
integrated resource, thereby enabling researchers to use all the 
major protein signature databases at once in a single format, with 
the added benefit of manual quality checks (see Note 1). InterPro 
is a consortium produced by the members of the individual protein 
signature databases. By combining over 60,000 signatures from its 
member databases, InterPro achieves greater sequence and taxo-
nomic coverage than any one database could achieve on its own. In 
addition, InterPro capitalizes on the specialization of each database 
to produce a comprehensive resource that can classify and annotate 
proteins on multiple levels, including superfamily/family/subfam-
ily classifications, domain organization, and the identification of 
repeats and important functional and structural sites (see Note 2). 
InterPro adds in structural information, manual annotation and 
database links to provide a comprehensive classification database.

3. InterPro Protein 
Classification 
Resource
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The InterPro database is freely available to the public at: http://
www.ebi.ac.uk/interpro. InterPro can accommodate both single 
sequence queries and its incorporation into a local pipeline for 
multiple sequence annotation. There are three ways to query the 
InterPro database:

 1. Text Search. Searches can be made using straight text, InterPro 
entry accessions, signature accessions, Gene Ontology (GO) 
terms, and UniProtKB accessions or names. Searches return a 
list of relevant InterPro entries or, in the case of UniProtKB 
accessions, a detailed graphical view of all signature matches 
to the protein, as well as structural information when 
available.

 2. InterProScan Sequence Search. InterProScan (25) combines 
all the search engines from the member databases. There is a 
website version, as well as a standalone version that can be 
downloaded and installed locally (ftp://ftp.ebi.ac.uk/pub/
databases/interpro/iprscan/). The website version only 
accepts a single protein sequence at a time, whereas the stand-
alone version accepts multiple or bulk protein and nucleotide 
sequences, the later being translated into all six frames and 
ORF length filtered. The InterProScan results display signa-
ture matches but not structural information, as the latter 
relates to specific proteins, not to sequences.

 3. BioMart (26). This search engine allows a user to construct 
complex queries to quickly retrieve custom InterPro datasets 
without having to download the complete InterPro database. 
To build a query, choose the Dataset to query, select your 
Filters (input data), and then select your Attributes (output). 
Results are obtained in a variety of formats, and can be linked 
to related data in both PRIDE (Proteomics identification 
database) (27) and Reactome (Knowledgebase of biological 
pathways) (28).

InterPro groups together all the protein signatures that cover the 
same sequence in the same set of proteins into a single entry, 
thereby removing any redundancy between the member data-
bases. Each InterPro entry is manually curated and supplemented 
with additional information, including: entry type (family, domain, 
repeat or site), abstract and references, taxonomy of matching 
proteins, and GO term annotation (including biological process, 
molecular function and cellular component) (29) (see Note 3). 
Each entry provides a list of matching proteins, and users can 
view the complete signature matches for each of these proteins, 
which are listed under “Protein Matches” (see Note 4).

There are several links to external databases. Structural links 
are provided to the PDB (Protein Data Bank), and to CATH and 

3.1. Searching InterPro

3.2. InterPro Entry 
Content
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SCOP classification databases. Additional database links are 
provided to: IntAct database (30), IntEnz database (31), CAZy 
(Carbohydrate-Active enzymes) database (32), IUPHAR recep-
tor database (33), COMe database (34), MEROPS database (35), 
PANDIT database (36), PDBeMotif database (37), CluSTr data-
base (38), Pfam Clan database (17), and Genome Properties 
database (39).

The protein signatures in InterPro are run against the entire 
UniProtKB (SwissProt and TrEMBL) database. Protein matches 
can be viewed in graphical or tabular formats. The graphical view 
of a given protein displays all matching signatures, with the area 
of the sequence match shown as a colored bar. By combining all 
signatures for a given protein in a single view, users can cross-
compare annotation from all the different member databases. 
Links are provided to UniProtKB, Dasty (DAS display of protein 
annotated features) (40), SPICE (DAS display of PDB, UniProtKB 
sequence and Ensembl) (41), GO annotation, taxonomy, and 
BioMart. The link to BioMart provides a summary of the matches 
in tabular form, including the E-values for each signature, where 
appropriate (see Note 5).

The view also displays the structural features immediately 
below the signature matches to enable users to directly compare 
the signatures with known structural information. The structural 
features are displayed as striped bars, showing the region of 
sequence covered by structures in PDB, homology models in 
ModBase and SwissModel, as well as the division of the PDB 
structure into structural domains by CATH and SCOP. CATH 
and SCOP classify protein domains according to their structure, 
placing them within family and homologous superfamily hierar-
chies. Clicking on the Astex (42) icon in the protein graphical 
view will launch AstexViewer, which will display a 3-dimentional 
view of the PDB structure with the CATH or SCOP domain 
highlighted in yellow.

Splice variants are also displayed in the protein graphical view, 
which allows a user to easily visualize differences in domain orga-
nization. Splice variants are displayed below the master sequence 
and show variant accessions (e.g., O15151-2).

InterPro links related entries together when their protein signa-
tures overlap significantly in both sequence and protein matches. 
There are two types of relationships: Parent/Child and Contains/
Found In.

Parent/Child relationships occur between InterPro entries 
that describe the same sequence region in hierarchical protein 
sets. They resemble the biological definitions of superfamily, fam-
ily, and subfamily, but may contain many more variant subsets 
than can be described using these biological terms. Parent/Child 

3.3. InterPro Protein 
Matches

3.4. InterPro 
Relationships
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relationships apply to individual sites, repeats, domains or full-length 
protein models. The “Child” entry is a subset of its “Parent” 
entry. These important hierarchical relationships arise from the 
different specializations of the member databases, designing their 
signatures according to structural, sequence or functional conser-
vation, and are unique to InterPro.

Contains/Found In relationships describe the subdivision of 
a protein into domains, regions or sites. Contains/Found In rela-
tionships occur between entries in which one set of entry signa-
tures completely contains the sequence covered by the other set 
of entry signatures. The signature matching the longer sequence 
“Contains” the signature(s) matching the shorter sequence(s).

 1. Protein signatures have higher sensitivity (find more diver-
gent homologues) and specificity (make fewer false matches) 
than sequence similarity tools such as BLAST or FASTA. 
However, there still needs to be a balance, as pushing for 
greater sensitivity will increase the number of false positives, 
whereas pushing for greater specificity will increase the num-
ber of false negatives. High specificity is an important crite-
rion for incorporating a signature into InterPro, which 
provides manual quality checks on all signatures. However, it 
is inevitable that some false positives will be present in the 
databases.

 2. The transfer of annotation must be done with caution. 
Homologous proteins share a similar biology, but not neces-
sarily a common function, even when their % identity is high. 
Homologs found in different species (orthologs) may have 
the same function if all other components of the system are 
present. However, homologs found in the same organism 
(paralogs) are more likely to be functionally distinct because 
of genetic drift, even when % identity is very high.

 3. Although annotation is correct at the time of integration, 
annotation can change over time as new experimental evi-
dence is presented, and entries are only revisited periodically.

 4. Protein signatures are predictive methods, therefore all func-
tional annotation based on signature matches must be con-
firmed experimentally.

 5. An effective criterion for assessing the significance of a 
sequence match is the expectation value (E-value). Although 
simple % identity scores are useful, they become inaccurate 
measures of homology at lower values. By contrast, an E-value 
is the number of hits expected to have a score equal or better 

4. Notes
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by chance alone. The lower the E-value, the more significant 
the score. However, E-values depend on the length and com-
position of the model and the size of the database being 
searched. Therefore, it is not advisable to compare E-values 
between member databases as an estimate of which model is 
better, because the members use different model building 
processes and different search procedures. E-values are only 
relevant within a specific member database.
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Chapter 4

Reactome Knowledgebase of Human Biological 
Pathways and Processes

Peter D’Eustachio 

Abstract

The Reactome Knowledgebase is an online, manually curated resource that provides an integrated view 
of the molecular details of human biological processes that range from metabolism to DNA replication 
and repair to signaling cascades. Its data model allows these diverse processes to be represented in a con-
sistent way to facilitate usage as online text and as a resource for data mining, modeling, and analysis of 
large-scale expression data sets over the full range of human biological processes.

Key words: BioMart, Data aggregation, Gene ontology, High-throughput expression data, Pathway 
analysis

In a living cell, molecules are synthesized, covalently modified, 
degraded, transported from one location to another and bound 
to one another to form complexes. The Reactome Knowledgebase 
aims to systematically describe the functions of human proteins in 
these terms with manually curated data from the published litera-
ture, to generate a consistently annotated knowledgebase of 
human biological processes useful as an online reference for indi-
vidual processes and as a data mining and analysis resource for 
systems biology. The Reactome data model is reductionist: all of 
biology can be represented as events that convert input physical 
entities into output physical entities, located in subcellular com-
partments, mediated by the action of other physical entities act-
ing as catalysts and positive or negative regulators (Fig. 1). Data 
are organized to facilitate the superposition of user-generated tis-
sue- and state-specific expression data on the Reactome generic 

1. Introduction

Cathy H. Wu and Chuming Chen (eds.), Bioinformatics for Comparative Proteomics, Methods in Molecular Biology, vol. 694,
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parts list and to allow the export of the list in forms that enable 
model building and the integration of other data types. An intro-
duction to our data model will provide a basis for describing meth-
ods for browsing and mining the Reactome Knowledgebase.

Reactome captures physical entities and their interactions in a 
frame-based data model. Classes (frames) describe concepts such 
as reaction, physical entity, subcellular location, and catalysis. 
Class attributes hold specific identifying information about the 
instances.

Attributes of a reaction include its reactants (input), products 
(output), catalyst and subcellular location. Attributes of a catalyst 
instance are a physical entity and a Gene Ontology (GO) (1, 2) 
Molecular Function term that describes its activity. Instances of 
the regulation class link reactions to the factors that modulate 
them. The Reactome data model extends the concept of a bio-
chemical reaction to include events such as the association of 
molecules to form a complex, the transport of a molecule between 
two cell compartments and the transduction of a signal.

A group of reactions can be organized into a goal-directed 
pathway. Attributes of a pathway instance are the names of the 
reactions and the smaller pathways it contains, as well as a GO 
Biological Process term. A pathway has no molecular attributes – 
these are inferred from the attributes of its included reactions. 
A single reaction may belong to one or more pathways.

Physical entities include proteins, nucleic acids, small molecules, 
and complexes of two or more molecules. Molecules are 

1.1. Events

1.2. Entities

Fig. 1. Key elements of the Reactome data model. Physical entities (molecules and 
complexes) are transformed by single step reactions that can be ordered into multistep 
pathways.
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modified, moved from place to place, cleaved or take on different 
three-dimensional conformations. The Reactome data model 
captures this information in a computable format by treating each 
differently modified or located version of a molecule as a separate 
physical entity. The modification process itself is a reaction in 
which the input is the unmodified physical entity and the output 
is the modified one.

The functions of biological molecules depend on their subcellular 
locations, so chemically identical entities located in different com-
partments are represented as distinct physical entities. Transport 
events are therefore ordinary reactions. Subcellular locations of 
molecules are annotated with terms from the GO Cellular 
Component Ontology.

The annotation of alternative locations, posttranslational modifi-
cations and conformations of a molecule causes instances of a 
physical entity to proliferate. The basic chemical information that 
all forms share is stored in a separate class of reference physical 
entities, allowing information to be entered only once, reducing 
error, facilitating data maintenance and explicitly linking all the 
alternative forms of a single entity. The attributes of a reference 
entity include its name, reference chemical structure or sequence, 
and its accession numbers in reference databases: UniProt for 
proteins (3), ChEBI for small molecules (4) and EMBL for 
nucleic acids (5).

Many biological reactions involve macromolecular complexes. The 
Reactome knowledgebase annotates these entities as instances of 
the complex class, the attributes of which are subcellular location 
and the identities of the complex’s components (macromolecules, 
small molecules, and other complexes). Molecular assembly opera-
tions can then be described as reactions with complex components 
as input and the assembled complex as output. Complexes refer to 
all of the components they contain, so it is possible to fetch all 
complexes that involve a particular component or to dissect a com-
plex to find its constituents.

Often it is convenient to group physical entities based on com-
mon properties. For example, a transport protein at the plasma 
membrane may work equally well with any of an array of related 
small molecules. The Reactome data model allows the creation of 
entity sets, here one comprising the extracellular forms of the 
array of small molecules and another comprising their cytosolic 
forms. A single reaction is then annotated that converts the extra-
cellular set into the cytosolic set. Sets are also used to describe 
protein paralogs that are functionally interchangeable.

1.3. Subcellular 
Locations

1.4. Reference Entities

1.5. Complexes

1.6. Entity Sets
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Together, the entity, complex and set classes allow the detailed 
and flexible annotation and querying of physical entities and their 
interactions.

Every reaction in the Reactome Knowledgebase is backed by 
direct or indirect evidence from the biomedical literature. Direct 
evidence for a human reaction comes from an assay on human 
cells described in a research publication whose PubMed identifier 
is stored as an attribute of the reaction. Much biomedical knowl-
edge, however, derives from observations in experimentally trac-
table nonhuman systems that are thought to be good functional 
homologues of human ones. Such nonhuman data are used to 
document a human reaction in two steps. First, we annotate the 
reaction in the nonhuman species, using the physical entities of 
that organism – for example, the Drosophila melanogaster Notch 
protein –with appropriate literature reference attributes. Second, 
we annotate the human reaction, using human physical entities – 
for example, the four human Notch paralogs. The human reac-
tion has no literature reference but instead has an attribute 
indicating its inference from the Drosophila reaction, and the 
complete chain of evidence is preserved from the primary experi-
ment to the nonhuman reaction to the inferred human reaction.

The Reactome data set is dynamic. New material is regularly 
added as new aspects of human biology are manually curated and 
existing material is revised and updated. To facilitate tracking of 
events (reactions, pathways and regulatory events) and physical 
entities (molecules and complexes) as they are revised and possi-
bly merged or split, a stable identifier is assigned to each such 
instance so that it can be tracked between releases of the knowl-
edgebase. Stable identifiers have the format REACT_XXX.YYY, 
where XXX is the identifier number assigned to the entity or event 
and YYY is the version number. Stable identifiers are assigned to 
entities and events when they are first released in the Reactome 
Database. When the annotations of a data instance are revised, 
the version number of the object’s identifier is increased by one. 
The stable identifier of an event or entity is stored and displayed as 
one of its attributes, hyperlinked to a history page for the identifier.

Access to the Reactome Knowledgebase is provided via its web 
site, http://www.reactome.org (Fig. 2). This web page is the 
starting point both for browsing the database for information on 
a specific topic and for launching data mining and pathway analy-
sis operations.

1.7. Evidence

1.8. Stable Identifiers

2. Methods

2.1. Browsing  
the Reactome 
Knowledgebase

http://www.reactome.org
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A top menu bar (Fig. 2, label 1) provides access via its “Contents” 
tab to a detailed list of the pathways in Reactome and their digital 
object identifiers (DOIs), a specification of the data schema, and 
a calendar showing topics under development; via its 
“Documentation” tab to detailed descriptions of several aspects 
of the project and a users’ guide, and via its “Download” tab to 
the complete Reactome software and the complete Reactome 
dataset in MySQL, BioPAX level 2, and BioPAX level 3 formats. 
Data for individual reactions and pathways can also be down-
loaded as described below.

Simple and advanced search tools function as an index of 
Reactome data. A simple search tool on the left side of the 
home page (Fig. 2, label 2) allows the user to enter a word or 
phrase and retrieve a list of all matching instances in the database. 

Fig. 2. The Reactome web site (www.reactome.org) home page. A menu bar at the top (1) and buttons on the left side 
(3) provide access to tools for browsing and analyzing Reactome data and for superimposing user-generated expression 
data on Reactome pathways. A simple search function for querying the database is also available (2).

http://www.reactome.org
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For example, a search for a named protein will return lists of all 
modified and variously located forms of the protein, all complexes 
of which any form of the protein is a component, and all events 
(reactions and pathways) in which the protein participates as input, 
output, or catalyst.

An advanced search tool is accessible via the “Tools” tab in 
the top menu bar. This tool allows searches for database instances 
that match up to four attributes specified as text strings or Perl 
regular expressions. For example, a search for complexes whose 
location (compartment) is nucleoplasm and that have unmodified 
Cyclin A (“with the exact phrase only”) as a component and that 
also have any form of Cdc2 (“with the exact phrase”) as a compo-
nent returns a list of 48 complexes, each hyperlinked to a web 
page that provides attributes of the complex and links to all events 
in which the complex participates.

The “Pathway Browser” button on the left side of the home 
page (Fig. 2, label 3) provides access to an individual pathway. 
Clicking on the button opens a web page displaying all of the 
pathways and reactions in the database arranged in a hierarchy on 
the left (Fig. 3a). Clicking on the name of a pathway causes the 
pathway to open, revealing its component sub-pathways and reac-
tions. In the example shown, a reaction contained in a sub-
pathway of apoptosis, “TNF: TNF-R1 binds TRADD, TRAF2 
and RIP Complex,” has been chosen. The reaction and the steps 
in the event hierarchy leading back to apoptosis are highlighted. 
In the right pane of the web page, the physical entities and reac-
tions connecting them are displayed as nodes and edges with a 
standardized iconography. The center of the chosen reaction is 
highlighted by a red box. Placing the mouse over an entity node 
or a reaction edge causes its name to pop up. Standard map tools 
in the upper left hand corner of the pane enable panning and 
zooming. The pane can be expanded to fill the whole screen with 
the toggles on its edges (Fig. 3a, label 1). As most pathways are 
too big to be viewed in a single screen, a thumbnail view is pro-
vided in the lower left hand corner of the pane (Fig. 3a, label 2). 
Partly closing the bottom of the view pane reveals a panel in which 
the attributes of the chosen physical entity or event are shown 
(Fig. 3b). In the case of an event, these attributes include a brief 
free-text description of the reaction. External data sources are 

Fig. 3. A Reactome event page. The left-hand panel displays the entire dataset as a hierarchically organized set of 
pathways. Choosing a reaction causes it to be displayed as entities (nodes) connected via reaction edges to other entities 
in the pathway in the right panel (a). The chosen reaction is highlighted (red box). The display panel can be opened or 
closed using toggles (1) and a thumbnail view of the whole pathway is provided (2). Closing the bottom of the right panel 
reveals a text description of the pathway (b). Links are provided to external data sources (3) and to Reactome pages for 
physical entities (4). Clicking on the name of a physical entity (c) causes the pathway display to re-format, highlighting 
all instances of the chosen entity. The text panel changes to display attributes of the entity.
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hyperlinked to attribute values as appropriate: label 3 highlights a 
link to the PubMed entry for the literature reference on the basis 
of which the event was annotated, for example. Finally, the text 
panel for an event includes a menu not shown in Fig. 3b of down-
load options that enable a user to retrieve all of the attributes of a 
single event (pathway or reaction) in SBML, BioPAX level 2, 
BioPAX level 3, Cytoscape, or Protégé formats for additional data 
analysis and modeling, and to download a PDF file containing a 
narrative text description of the event.

A user can browse seamlessly from an event to a description 
of a physical entity that participates in the event. Clicking on the 
participating complex “TNF-alpha: TNF-R1 complex (plasma 
membrane)” (Fig. 3b, label 4) changes the web display (Fig. 3c) 
so that in the pathway diagram pane all occurrences of the com-
plex are highlighted with red boxes and the bottom text pane 
shows all of the attributes of the complex including its compo-
nents and the reactions in which it is involved as input, output, or 
catalyst.

The tools described so far enable a user to browse Reactome to 
retrieve information about a specific event or physical entity. Tools 
are also provided to allow the data set to be queried more system-
atically and to search for patterns in the query results.

Clicking on the “Pathway Analysis” button on the Reactome 
home page (Fig. 2, label 3) opens a form that allows entry of a 
user-specified list of proteins, which can then be analyzed in vari-
ous ways. A simple example is shown in Fig. 4. A user has entered 
the UniProt identifiers for six human proteins (the form also 
accepts EntrezGene, Ensembl, and Affymetrix protein identifiers; 
work is underway to expand this list) and has requested a list of 
the pathways in which each is involved (Fig. 4a). The results are 
returned as an HTML table that can be sorted on a user-specified 
column by selecting toggles in the column headers, and can be 
downloaded as a delimited text file for further analysis.

A more complex analysis is shown in Fig. 5. UniProt iden-
tifiers for all human proteins identified in OMIM as being 
associated with human genetic disease (ftp://ftp.ncbi.nih.gov/
repository/OMIM/morbidmap) are submitted. Pathways involv-
ing these proteins are identified as before, and such pathways are 
ranked to highlight ones in which a significantly larger proportion 
of proteins are known to OMIM than would be expected by 
chance if proteins known to OMIM were distributed randomly 
over pathways curated in Reactome. The output of this analysis is 
displayed as a list of over-represented pathways ranked by signifi-
cance of the protein – pathway association (Fig. 5a), as a HTML 
table that can also be downloaded as tab-delimited text listing the 
proteins associated with each pathway (Fig. 5b), and as an HTML 
list for each submitted protein of all of the reactions in which it is 

2.2. Pathway Analysis 
with the Reactome 
Knowledgebase

ftp://ftp.ncbi.nih.gov/repository/OMIM/morbidmap
ftp://ftp.ncbi.nih.gov/repository/OMIM/morbidmap
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involved (Fig. 5c). This approach provides a powerful means of 
searching for key perturbed biological processes in data sets such 
as those generated in high-throughput screens to identify pro-
teins differentially expressed in response to a stress, or whose 
expression is altered in comparisons of a malignant tumor and the 
normal tissue from which it derives.

Fig. 4. Pathway analysis: a simple query to retrieve all reactions in which a user-specified list of proteins participates. The 
query set-up is shown in (a) and the results in (b).
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The Reactome Knowledgebase includes computationally inferred 
pathways and reactions in 20 nonhuman species, including Mus 
musculus, Tetraodon nigroviridis, Drosophila melanogaster, 
Caenorhabditis elegans, Saccharomyces cerevisiae, Arabidopsis thal-
iana, Plasmodium falciparum, and Escherichia coli. These species 

2.3. Electronic 
Inference of 
Nonhuman Reactions 
and Pathways

Fig. 5. Pathway analysis: results of a query to identify specific pathways within the entire Reactome dataset that involves 
significantly more of the proteins on a user-specified list than would be expected if proteins were distributed randomly 
over reactions. (a) A ranked list of over-represented pathways; (b) data for over-represented pathways in tabular form; 
(c) a list of reactions for each user-specified protein.
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represent more than four billion years of evolution and span the 
main branches of life. We project the set of curated human reac-
tions onto the genome of another species using OrthoMCL 
(http://orthomcl.cbil.upenn.edu/cgi-bin/OrthoMclWeb.cgi) 
protein similarity clusters (6). For each species, each human reac-
tion is checked to determine whether all of its protein participants 
(inputs, outputs and catalysts) have at least one ortholog or recent 
paralog (OP) in the other species. In the case of protein com-
plexes, we relax this requirement so that a complex is considered 
to be present in the other species if at least 75% of its protein 
components are present as OPs. For each reaction that meets 
these criteria, we create an equivalent reaction for the other spe-
cies by replacing all human protein components with their cor-
responding OPs. For proteins with more than one OP in the 
other species, we create a “defined set” named “Homologues of ...” 
that contains these OPs, and use this set as the corresponding 
component of the equivalent reaction. To order the inferred reac-
tions, pathway instances are created corresponding to the ones 
that contain the human reactions from which the inferences were 
made. Inferred pathways may thus have large gaps in them rela-
tive to the homologous curated human ones.

The text panel of the web display for each human pathway 
and reaction includes a list of all such successfully inferred reac-
tions, allowing access to specific inferred nonhuman reactions. To 
obtain all of the inferences for a species, click the “Species 
Comparison” button on the Reactome home page (Fig. 2, label 3). 
The new page that opens allows the user to choose a species from 
a drop-down menu and to retrieve a list of all pathways success-
fully inferred in that species as an HTML table (Fig. 6). Toggle 
buttons in the headers for each column allow the rows to be 
sorted. In the example shown, pathways inferred for chicken 
(Gallus gallus) are ranked according to the fraction of the human 
reactions in each pathway that was successfully projected on 
chicken. Each row contains a hyperlink to a web page for that 
pathway in the species chosen. Data can also be exported as delim-
ited text.

The Reactome Knowledgebase can also be used for data mining 
and large-scale analysis of gene functions. Reactome Mart, 
accessed via the tools item on the top menu bar of the home page 
(Fig. 2, label 1) uses the BioMart query-oriented data-management 
system (7) to generate integrated queries across Reactome 
and other databases, including UniProt and Ensembl (http://
www.ensembl.org/index.html). Several preformatted (canned) 
queries are available in the menu bar of the Reactome Mart tool. 
Fig. 7 shows the results of a query to identify all complexes of 
which several proteins, identified by their UniProt identifiers, 
are components and all other components of those complexes. 

2.4. BioMart: Using  
the Reactome 
Knowledgebase  
for Data Aggregation

http://orthomcl.cbil.upenn.edu/cgi-bin/OrthoMclWeb.cgi
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http://www.ensembl.org/index.html
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Fig. 7. Results of a BioMart query to find all complexes that contain one or more of the proteins in a user-specified list.

Fig. 6. An electronically inferred pathway dataset for a model organism (the chicken, Gallus gallus) generated from the 
human curated dataset. For each human pathway, the number of proteins involved in its human version is shown, 
together with the number of orthologous chicken proteins that could be identified and placed in a reaction context.
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Users can also define their own queries with the menus that are 
accessible by means of the highlighted terms and the boxes on 
the mart page. For example, a coupled search across the Reactome 
and Ensembl databases will retrieve a list of orthologs of the 
human proteins that are involved in a pathway, or will identify 
the Affymetrix IDs that are associated with genes in the selected 
Reactome pathways.
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Chapter 5

eFIP: A Tool for Mining Functional Impact  
of Phosphorylation from Literature

Cecilia N. Arighi, Amy Y. Siu, Catalina O. Tudor, Jules A. Nchoutmboube, 
Cathy H. Wu, and Vijay K. Shanker 

Abstract

Technologies and experimental strategies have improved dramatically in the field of genomics and 
proteomics facilitating analysis of cellular and biochemical processes, as well as of proteins networks. 
Based on numerous such analyses, there has been a significant increase of publications in life sciences and 
biomedicine. In this respect, knowledge bases are struggling to cope with the literature volume and they 
may not be able to capture in detail certain aspects of proteins and genes. One important aspect of pro-
teins is their phosphorylated states and their implication in protein function and protein interacting 
networks. For this reason, we developed eFIP, a web-based tool, which aids scientists to find quickly 
abstracts mentioning phosphorylation of a given protein (including site and kinase), coupled with men-
tions of interactions and functional aspects of the protein. eFIP combines information provided by appli-
cations such as eGRAB, RLIMS-P, eGIFT and AIIAGMT, to rank abstracts mentioning phosphorylation, 
and to display the results in a highlighted and tabular format for a quick inspection. In this chapter, we 
present a case study of results returned by eFIP for the protein BAD, which is a key regulator of apoptosis 
that is posttranslationally modified by phosphorylation.

Key words: Text mining, BioNLP, Information extraction, Phosphorylation, Protein–protein  
interaction, PPI, Knowledge discovery

There has been a general shift in paradigm from dedicating a 
lifetime’s work to analyzing of a single protein to the analysis of 
cellular and biochemical processes and networks. This has been 
made possible by a dramatic improvement in technologies and 
experimental strategies in the fields of genomics and proteomics 
(1). Although bioinformatics tools have greatly assisted in data 
analysis, both protein identification and functional interpretation 

1. Introduction
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are still major bottlenecks (2). In this regard, public knowledge 
bases constitute a valuable source of such information, but the 
manual curation of experimentally determined biological events is 
slow compared to the rapid increase in the body of knowledge 
represented in the literature. Hence, literature still continues to 
be a primary source of biological data. Nevertheless, manually 
finding the relevant articles is not a trivial task, with issues ranging 
from the ambiguity of some names to the identification of those 
articles that contain the specific information of interest.

Fortunately, the text mining community has recognized in 
recent years the opportunities and challenges of natural language 
processing (NLP) in the biomedical field (3), and has developed 
a number of resources for providing access to information con-
tained in life sciences and biomedical literature. Table 1 lists a 
sampling of freely-available tools that address the various BioNLP 
applications. In addition, there are a large number of papers dis-
cussing research and techniques for these applications. For an in-
depth overview of these topics, please refer to review articles by 
Krallinger et al. (4) and Jensen et al. (5).

However, BioNLP tools are only useful if they are designed 
to meet real-life tasks (4). In fact, this has been one of the obsta-
cles for the general adoption of BioNLP tools by biologists, 
because many of these applications perform individual tasks (like 
gene/protein mention, phosphorylation, or protein–protein 
interaction), thus providing only one piece of information, which 
in itself might not be enough to describe the biology. To address 
this issue, we have designed eFIP (extraction of Functional Impact 
of Phosphorylation), a system that combines several publicly 
available tools to allow identification of abstracts that contain 
protein phosphorylation mentions (including the site and the 
kinase), coupled with mentions of functional implications (such 

Table 1 
Biological applications and a sampling of available resources

Biological applications Resources

Protein–protein interaction iHOP, Chilibot, KinasePathway, PPI Finder, Protein Corral

Gene name recognition/mention/
tagger

ABNER, AIIAGMT, ABGene, BANNER, BIGNER, 
GAPSCORE, KEX, LingPipe, SciMiner

Acronym expansion and 
disambiguation

Acromine, AcroTagger, ADAM, ALICE, ARGH, Biomedical 
Abbreviation

Protein sequence Mutation Finder, MeInfoText, mSTRAP, MutationFinder, 
PepBank, RLIMS-P

Text-mining search aids Anne O’Tate, e-LiSe, FABLE, GoPubMed, MedEvi, NextBio
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as protein–protein interaction, function, process, localization, 
and disease). In addition, eFIP ranks these abstracts and presents 
the information in a user-friendly format for a quick inspection.

The rationale for performing this particular task relies on at 
least three aspects:

 1. Phosphorylation is one of the most common protein post-
translational modifications (PTMs). Phosphorylation of spe-
cific intracellular proteins/enzymes by protein kinases and 
dephosphorylation by phosphatases provides information of 
both activation and deactivation of critical cellular pathways, 
including regulatory mechanisms of metabolism, cell division, 
cell growth and differentiation (6).

 2. Often protein phosphorylation has some functional impact. 
Proteins can be phosphorylated on different residues, leading 
to activation or down-regulation of their activity, alternative 
subcellular location, and binding partners. One such example 
is protein Smad2, whose phosphorylation state determines its 
interaction partners, its subcellular location, and its cofactor 
activity (7).

 3. Currently, protein–protein interaction (PPI) data involving 
phosphorylated proteins is not yet well represented in the 
public databases. Thus, extracting this information is critical 
to the interpretation of PPI and prediction of the functional 
outcomes.

As mentioned before, interesting and important real-life tasks 
would require the combination of multiple individual tasks. A major 
focus of this chapter is to highlight how the combination of existing 
BioNLP tools can reveal some interesting biology about a protein. 
The specific goal is to describe eFIP, a tool that can assist a 
researcher in finding information in the literature about protein 
phosphorylation mentions that have some biological implication, 
such as PPI, localization, function, and disease.

The BioNLP tasks behind eFIP include (1) document retrieval – 
selection of relevant scientific publications, and gene name disam-
biguation (eGRAB); (2) text mining – detection of functional 
terms (eGIFT); (3) information extraction – identification of sub-
strate, phosphorylation sites, and kinase (RLIMSP); (4) protein–
protein interaction identification (PPI module) and gene name 
recognition (AIIAGMT); and (5) document and sentence 
ranking – integration of text mining results with ranking and 
summarization (eFIP’s ranking module) (Fig. 1).

For details regarding each individual tool mentioned here, 
please refer to Subheading 2. In Subheading 3, we will provide 
the user with a protocol to find relevant articles using the protein 
BAD as an example.

1.1. Goal of This 
Chapter

1.2. The Approach
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In this section, we briefly describe the tools depicted in Fig. 1.

Extractor of Gene-Related ABstracts (eGRAB) is used to gather 
the literature for a given gene/protein. To retrieve all Medline 
abstracts relevant to a given gene/protein requires expanding the 
PubMed search query with all the synonyms of the gene/protein, 
as this is often mentioned in text by short names (acronyms and 
abbreviations) and gene symbols, with or without the accompa-
nying long names. Searching short names and abbreviations is 
challenging as these names tend to be highly ambiguous, resulting 
in the retrieval of many irrelevant documents. Although augmenting 
the query using NOT operators, to disallow irrelevant expansions 
of the short names, may help in some cases with document 

2.  Materials

2.1. Extractor  
of Gene-Related 
Abstracts 

Fig. 1. General pipeline of BioNLP tasks, including specific tools used in our approach. The protein–protein interaction 
module includes the gene name recognition tool (AIIAGMT).
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retrieval, it does not circumvent the problem altogether. Short 
forms can be mentioned in text without the accompanying long 
form, thus making it impossible to automatically detect the rele-
vance of the text based solely on the query.

For example, consider protein Carbamoyl-phosphate syn-
thetase 1, whose short names are CPS1 and CPSI. The latter 
could also be an abbreviation for “cancer prevention study I,” 
“chronic prostatis symptom index,” and “chronic pain sleep 
inventory”. Equally ambiguous are non abbreviated short names. 
The task of disambiguating words with multiple senses dates back 
to Bruce and Wiebe (8) and Yarowsky (9), who proposed a word 
sense disambiguation (WSD) technique for English words with 
multiple definitions (e.g., “bank” in the context of “river,” and 
“bank” in the context of “financial institution”).

eGRAB starts by gathering all possible names and synonyms 
of a gene/protein from knowledge bases of genes and proteins 
(such as Entrez Gene, Uniprot, or BioThesaurus), searches 
PubMed using these names, and returns a set of disambiguated 
Medline abstracts to serve as the gene’s literature. This technique 
filters potentially irrelevant documents that mention the gene 
names in some other context, by creating language models for all 
the senses and assigning the closest sense to an ambiguous name. 
Similar methods have been described for disambiguating biomed-
ical abbreviations by taking into consideration the context in 
which the abbreviations occur (10–13).

Extracting Genic Information from Text (eGIFT) (14, 15) is 
a new, freely available online tool (http://biotm.cis.udel.edu/
eGIFT/), which aims to link genes/proteins to key descriptors. 
The user can search for the gene/protein of interest and see its 
concepts grouped in categories: processes and functions, diseases, 
cellular components, motifs/domains, taxons, drugs, and genes. 
In eGIFT these concepts are extracted from the gene’s literature 
when they are statistically more frequent in this set of abstracts, as 
compared to abstracts about genes in general. For example, given 
the protein BAD and its literature identified by eGRAB, eGIFT 
focuses on the abstracts that are mainly about BAD, and identify 
concepts, such as “apoptosis,” “cell death,” and “dephosphoryla-
tion” as highly relevant to this gene. Although different in the 
overall approach, scoring formula, redundancy detection, multi-
word concept retrieval, and evaluation technique, eGIFT can be 
compared with methods described by Andrade and Valencia (16), 
XplorMed (17, 18), Liu et al. (19), and Shatkay and Wilbur (20).

Rule-based LIterature Mining System for Protein Phosphorylation 
(RLIMS-P) (21, 22) is a system designed for extracting protein 
phosphorylation information from MEDLINE abstracts. Its unique 
features, which distinguishes it from other BioNLP systems, include 

2.2. Extracting Genic 
Information from Text

2.3. Rule-Based 
Literature Mining 
System for Protein 
Phosphorylation

http://www.biotm.cis.udel.edu/eGIFT
http://www.biotm.cis.udel.edu/eGIFT
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the extraction of information about protein phosphorylation, 
along with the three objects involved in this process – the protein 
kinase, the phosphorylated protein (substrate), and the phospho-
rylation site (residue/position being phosphorylated). RLIMS-P 
employs techniques to combine information found in different 
sentences, because rarely are the three objects (kinase, substrate, 
and site) found in the same sentence. For this, RLIMS-P utilizes 
extraction rules that cover a wide range of patterns, including 
some specialized terms used only with phosphorylation. RLIMS-P 
was benchmarked using PIR annotated literature data from 
iProLINK (21). The online tool is available at http://www.
proteininformationresource.org/pirwww/iprolink/rlimsp.shtml.

The PPI module is an internal implementation designed to detect 
mentions of PPI in text. This tool extracts text fragments, or text 
evidence, that explicitly describe a type of PPI (such as binding 
and dissociation), as well as the interacting partners. The primary 
engine of this tool is an extensive set of rules specialized to detect 
patterns of PPI mentions (manuscript in preparation).

The interacting partners identified are further sent to 
AIIAGMT, a gene/protein mention tool (described in more 
detail in the next sub-section), to confirm whether they are genu-
ine protein mentions. Consider the sample phrase “several 
proapoptotic proteins commonly become associated with 14-3-3.” 
“14-3-3” is a protein, whereas “several proapoptotic proteins” 
prompts the need to further identify the actual proteins (Bad and 
FOXO3a) that interact with 14-3-3. Our PPI module can be 
compared to other systems that also extract text evidence of PPI 
from literature, such as PIE (23), BIOSMILE (24, 25), Chilibot 
(26) and iHOP (27).

As mentioned previously in this chapter, genes and proteins 
often have many synonyms that come in short and long forms. 
To aid the PPI module to confirm whether an interacting part-
ner in a PPI mention is indeed a protein, we employ AIIAGMT 
(28). AIIAGMT is a gene/protein mention tagger that detects 
all the proteins mentioned in some given text. The tool ranked 
second in the BioCreative II competition (29) for the gene 
mention task (F-score of 87.21) (30). Other systems that also 
extract gene and protein mentions from text are ABGene (31), 
BIGNER (32), GAPSCORE (33), T2K Gene Tagger (34), and 
LingPipe (35).

eFIP ranks abstracts mentioning a given protein based on three 
features: phosphorylation, functional terms, and proteins with 
which the given protein interacts. Because our main goal is to 
find information about a particular protein when it is in its 

2.4. PPI Module

2.5. AIIAGMT

2.6. eFIP’s Ranking 
Module

http://www.proteininformationresource.org/pirwww/iprolink/rlimsp.shtml
http://www.proteininformationresource.org/pirwww/iprolink/rlimsp.shtml
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phosphorylated state, we disregard abstracts that do not contain 
phosphorylation information. The next step is to distinguish the 
set of abstracts that mention a phosphorylation site for the given 
protein from the set of abstracts that mention only that the pro-
tein is phosphorylated. We rank the former set higher than the 
latter. Within these sets, a second ranking is performed, based on 
the following criteria (1) highly ranked are abstracts that include 
all three features, mentioned in one or two consecutive sentences; 
(2) following these are abstracts mentioning phosphorylation 
together with one other feature, in one or two consecutive sen-
tences. When the features are found in the same sentence these 
abstracts are ranked higher than when they are found in two con-
secutive ones. Intuitively, the closer the two pieces of informa-
tion, the higher the likelihood that they are related. We also 
consider the confidence level of rules or patterns matched for the 
PPI. For instance, “protein A binds to protein B” strongly indi-
cates a PPI, whereas “the colocalization of proteins C and D” 
may suggest, but does not imply, a physical interaction. Some 
examples of the types of sentences mentioned above are depicted 
in Fig. 2. Based on our ranking, PMID:15161349 (A) would 
rank higher than PMID:12049737 (B).

Fig. 2. Examples of sentences with different co-occurrence of ranked features. (a) Co-occurrence of the three features 
in one sentence (sentence 13); (b) Co-occurrence of phosphorylation and functional terms (sentences 4 and 5, 
respectively).
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We present a use case on abstracts for the protein BAD (Bcl2-
associated agonist of cell death). This protein is a key regulator of 
apoptosis that is posttranslationally modified by phosphorylation, 
which, in turn, defines BAD’s binding partners and localization, as 
well as its function as an antiapoptotic or proapoptotic molecule. 
Ideally, we want to find papers about BAD that describe, together, 
phosphorylation and its functional consequence. Typically, we 
would start by searching PubMed using the protein/gene names 
(including/excluding its synonyms), coupled with phosphory* fuzzy 
search to retrieve abstracts that mention the given protein and its 
phosphorylation. For example, we might search using the follow-
ing query (BAD AND phosphory*), which retrieves 1,050 papers. 
However, based on this search, some irrelevant abstracts may be 
retrieved (e.g., PMID: 8755886, where BAD is mentioned as an 
adjective). This example reflects the ambiguity problem mentioned 
before. From the list of abstracts obtained, we then need to check 
manually those for which phosphorylation has some implication on 
BAD biology. As an alternative to this approach, we present eFIP, 
a system that allows, in one step, document retrieval, disambiguation 
of names, and extraction of information.

eFIP combines information that is output by tools described 
in Subheading 2. Initially, eGRAB gathers abstracts specific to the 
gene/protein. These abstracts are input to (1) eGIFT, which 
mines, from this set of abstracts, terms that are highly related to 
the given gene/protein (e.g., “apoptosis” and “cell survival” for 
protein BAD); (2) RLIMS-P, which detects protein phosphoryla-
tion information from these abstracts; and (3) PPI module, which 
identifies interacting proteins. eFIP uses this information to rank 
abstracts mentioning a given protein of interest. However, these 
detailed steps are hidden from the user. eFIP combines these tools 
and requires only the following steps from its users:

The search for a gene/protein is initiated from the Search eFIP 
link. Here, the gene/protein name or part of the name can be 
entered in the search box, and results are displayed for the search. 
For example, word BAD can be entered in the search box, and 
only one result is obtained for gene BAD. However, if a partial 
name is entered, such as bcl2 (initial part of one of BAD’s name), 
many results are retrieved. In this case selecting the gene corre-
sponding to BAD is required (Fig. 3).

 1. The primary result page contains the following information 
(Fig. 4):
(a) Names, synonyms and statistics: The result page shows 

the names and synonyms used for retrieving the articles. 

3.  Methods

3.1. Accessing eFIP’s 
Website at http://
biotm.cis.udel.edu/
eFIP/

3.2. Inspecting  
the Result Page

http://www.biotm.cis.udel.edu/eFIP
http://www.biotm.cis.udel.edu/eFIP
http://www.biotm.cis.udel.edu/eFIP


71eFIP: A Tool for Mining Functional Impact of Phosphorylation from Literature

Fig. 3. eFIP search page. The screenshot shows the list of possible gene/protein names when using bcl2 as a query. 
The user needs to select BAD to inspect its specific literature.

Fig. 4. Result page for the protein BAD.
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It also shows the number of articles that contain 
phosphorylation mentions as evaluated by the RLIMS-P 
tool (791 in BAD’s case). Note that the number of total 
articles disambiguated by eGRAB is 1,331.

(b) Ranked PMIDs, along with the information content of the 
abstract, are listed. Because all the abstracts have phosphory-
lation mentions by default, only the PPI and/or functional 
feature labels are displayed. Note that based on our ranking 
criteria, the first set of abstracts displayed are those that men-
tion phosphorylation site information (206 abstracts).

 2. Selecting a PMID leads to the abstract page (Fig. 5).
  This page contains the summary table, with information 

extracted for phosphorylation and the predicted impact on 
function. We emphasize predicted here, because BioNLP tools 
are intended to assist the user by pointing to articles or sen-
tences that are more likely to have the information needed. 
However, there is always a need to check the correctness of the 
information. The summary table, displayed on this page, con-
sists of three main columns. The first column shows the num-
ber of the sentence that contains the evidence, thus facilitating 
its quick location within the abstract. The second column con-
tains the phosphorylation information, as provided by RLIMS-P 
tool. Three different types of information are listed here: the 
substrate, the site, and the kinase. The third column provides 
information about the impact on phosphorylation. Here, we list 
the functional terms and/or interaction information provided 
by eGIFT and the PPI module, respectively. In this column, 

Fig. 5. Summary table and highlighted information for PMID 10837486. The different features are color coded.
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we also include action words (e.g., regulates, promotes, blocks), 
present in the text, to point to the modification or to the influ-
ence on the meaning of the functional term. These action 
words, provided by the PPI module, provide a more accurate 
result. Listed below the table is the corresponding abstract, 
with highlighted information. Note that each type of informa-
tion has a distinct color, and for each color there is a dark and 
a light version, to give different confidence levels to the prediction 
(the dark color hints to a higher likelihood of the prediction). 
At the bottom of the abstract, you can select which information 
to include in the highlighting.

Using protein BAD and the information displayed in eFIP for this 
protein, we show in Fig. 6 the different phosphorylated forms of 
BAD, their functions, and their implication in PPI. The information 

4. Discussion

Fig. 6. Representation of different forms of phosphorylated BAD based on eFIP’s results (only a subset is shown). Note 
that from information listed by eFIP, we are able to represent the impact (cytosolic vs. mitochondria; apoptosis vs. cell 
survival) for the different forms of BAD. Moreover, the kinases, which accompany the phosphorylation arrows, help to link 
BAD to pathways. Whenever available, the phosphorylation state of the kinase is extracted and displayed here, as in the 
case of RAF1 p338/pS339.
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depicted here is extracted from a subset of the highest ranked 
abstracts, as provided by eFIP. The rich information from the 
eFIP text mining tool uncovers interesting facts about BAD 
(1) BAD is a common hub for several pathways to regulate apop-
tosis, as evidenced by the various kinases that are able to phos-
phorylate this protein; (2) BAD has specific partners for its distinct 
phosphorylated forms; and (3) phosphorylation on BAD may 
have two opposing effects: apoptosis (through phosphorylation 
at Ser128) and cell survival (phosphorylation on other residues), 
which is mainly dictated by the association/disassociation to 
14-3-3 proteins and BCL-2/BCL-XL proteins. This example 
highlights the importance of detecting more than just the phos-
phorylation mention. The phosphorylation site, as well as the 
kinase that links to the pathway, are important aspects in under-
standing the regulation of BAD. The majority of abstracts describing 
BAD focus on BAD’s interaction with apoptotic and antiapoptotic 
proteins. However, in this figure, we also point to an example in 
which phosphorylated BAD (Thr-201) leads to binding to 
phosphofructokinase (PFK-1), and the subsequent activation of 
glycolysis (a pathway that is key to cell survival).

Thus, we show that eFIP provides the means to find the most 
relevant papers about BAD phosphorylation, interaction part-
ners, and its functions. Based on the literature data collected 
from eFIP for BAD protein, it is possible to predict, for example, 
how the regulation or inhibition of a certain pathway may affect 
the cell fate.
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Chapter 6

A Tutorial on Protein Ontology Resources  
for Proteomic Studies

Cecilia N. Arighi 

Abstract

The protein ontology (PRO) is designed as a formal and well-principled open biomedical ontologies 
(OBO) foundry ontology for proteins. The components of PRO extend from the classification of 
proteins, on the basis of evolutionary relationships at the full-length level, to the representation of the 
multiple protein forms of a gene, such as those resulting from alternative splicing, cleavage and/or post-
translational modifications, and protein complexes. As an ontology, PRO differs from a database in that 
it provides description about the protein types and their relationships. In addition, the representation of 
specific protein types, such as a phosphorylated protein form, allows precise definition of objects in path-
ways, complexes, or in disease modeling. This is useful for proteomics studies where isoforms and modi-
fied forms must be differentiated, and for biological pathway/network representation where the cascade 
of events often depends on a specific protein modification. PRO is manually curated starting with content 
derived from scientific literature. Only annotation with experimental evidence is included, and is in the 
form of relationship to other ontologies. In this tutorial, you will learn how to use the PRO resources to 
gain information about proteins of interest, such as finding conserved isoforms (ortho-isoforms), and 
different modified forms and their attributes. In addition, it will provide some details on how you can 
contribute to the ontology via the rapid annotation interface RACE-PRO.

Key words: Biomedical ontology, Protein ontology, Community annotation, Protein

Biomedical ontologies have emerged as critical tools in genomic 
and proteomic research where complex data in disparate resources 
need to be integrated. In this context, gene ontology (GO) (1) 
has become the common language to describe biological pro-
cesses, protein function and localization. Protein or peptides 
detected in proteomic experiments are usually mapped to data-
base entries, followed by data mining for GO terms and other 
data with the aim of characterizing the proteomic products (2).

1. Introduction

Cathy H. Wu and Chuming Chen (eds.), Bioinformatics for Comparative Proteomics, Methods in Molecular Biology, vol. 694,
DOI 10.1007/978-1-60761-977-2_6, © Springer Science+Business Media, LLC 2011
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However, there are some issues in capturing scientific knowledge 
based on the current infrastructure in that most sequence and organ-
ism databases provide gene-centric organization: one entry for one 
gene or canonical gene product. But in reality, many protein forms 
may derive from a single gene as a result of alternative splicing and/
or subsequent posttranslational modifications. These various protein 
forms may have different properties. Therefore, the functional anno-
tation of a protein may represent composite annotation of several 
protein forms, which may lead to noisy data mining results, and 
eventually to misinterpretation of data mining results. This missing 
infrastructure may also affect interoperability since some of the data-
bases need to represent this level of granularity and create these 
objects independently, adding complexity to data integration.

The protein ontology (PRO) (3, 4) is an OBO Foundry 
ontology that describes the different protein forms and their rela-
tionships in order to provide the appropriate framework for tack-
ling the above-mentioned problems. PRO provides a means to 
refer to a specific protein object and append the corresponding 
annotations. This means that, for example, posttranslationally 
modified and unmodified forms of a given protein are two dis-
tinct objects in the ontology. Figure 1 shows a schematic repre-
sentation of the ontology, which is organized in different levels 
(see Note 1) that can be grouped into four main categories (in 
decreasing hierarchical order):

 1. Family: a PRO term at this level refers to proteins that can 
trace back to a common ancestor over the entire length of the 
protein. The leaf-most nodes at this level are usually families 
comprising paralogous sets of gene products (of a single or 
multiple organisms). In Fig. 2, PRO:000000676 is an example 
of this level. Note that the hierarchy in the ontology (Fig. 2a) 
reflects the evolutionary relationship of this group (Fig. 2b), 
HCN1-4 are paralogs that belong to the same homeomorphic 
family (full-length sequence similarity and have common 
domain architecture); therefore, in the ontology they are all 
under the same parent node (PRO:000000676).

Fig. 1. PRO hierarchical organization. The ontology is read from bottom-up. PTM post-
translational modification, x type of modification (such as acetylation, phosphorylation).
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 2. Gene: a PRO term at this level refers to the protein products 
of a distinct gene. A single term at the gene-level distinction 
collects the protein products of a subset of orthologs for that 
gene (the subset that is so closely related that its members are 
considered the same gene). From the example depicted in 
Fig. 2 the HCN1 gene product (PRO:000000705) would 
include the proteins of the rat, mouse, rabbit and human 
HCN1 genes.

 3. Sequence: a PRO term at this level refers to the protein prod-
ucts with a distinct sequence upon initial translation. The 
sequence differences can arise from different alleles of a given 
gene, from splice variants of a given RNA, or from alternative 
initiation and ribosomal frame shifting during translation. 
One can think of this as a mature mRNA-level distinction. 
Similarly to the gene product level, this level collects the pro-
tein products of a subset of orthologous splice variants for 
that gene, and we call them ortho-isoforms. Figure 3a shows 
an example of two nodes at the sequence level, PRO:000003420 
and PRO:000003423, corresponding to isoform 1 (p75) and 
isoform 2 (p52) derived from gene LEDG. In this case litera-
ture is the data source for these protein forms. Figure 3b 
depicts the experimentally determined LEDG gene products 
(protein known as PC4 and SFRS1-interacting protein) based 
on the PMID:18708362 (5). Note that, although the experi-
mental data displayed is from human, the article also describes 

Fig. 2. Family category reflects the evolution of full-length proteins. (a) PRO ontology terms for the potassium/sodium 
hyperpolarization-activated cyclic nucleotide-gated channel protein. The family and gene product levels are shown.  
(b) Left panel: neighbor-joining tree showing the evolutionary relation of some representative proteins of the HCN1-HCN4 
genes. The PRO IDs of each class is shown. Right panel: display of the corresponding database identifiers for: protein 
(UniProtKB), family (PIRSF (17)), and domain (Pfam).
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the existence of these isoforms in mouse, so the human and 
mouse p75 isoforms will be both described by the 
PRO:000003420 term.

 4. Modification: a PRO term at this level refers to the protein 
products derived from a single mRNA species that differ 
because of some change (or lack thereof) that occurs after 
the initiation of translation (co- and posttranslational). This 
includes sequence differences due to cleavage and chemical 
changes to one or more amino acid residues. Figure 3a shows 
an example of the cleaved version (p38) of isoform 2 (p52) of 
the LEDG gene. This level represents ortho-modified forms, 
the presence of posttranslational modifications on equivalent 
residues in ortho-isoforms.

We have previously described the various states of proteins 
involved in the TGF-beta signaling pathway (4), and also in the 
intrinsic apoptotic pathway (6). In the latter case, one key regula-
tor of apoptosis is Bcl2 antagonist of cell death (Bad, 
PRO:000002184), whose phosphorylation state determines 
whether the cell fate is apoptosis or survival. It is generally stated 
that the BAD unphosphorylated form activates apoptosis and that 
the phosphorylated form of BAD leads to cell survival. However, 
the ontology shows that there are at least six distinct phosphory-
lated forms, which can be phosphorylated via activation of various 
kinases, such as AKT1, MAPK8 (JNK1), PKA, and CDC2. 
Although phosphorylation by the first three leads to interaction 
with the 14-3-3 proteins and cell survival, the outcome of the 
phosphorylation by CDC2 is the opposite, leading to transloca-
tion to the mitochondria an activation of apoptosis. This knowl-
edge is key for the correct interpretation of proteomic results.

Therefore in this tutorial, you will learn how to use the PRO 
resources to gather this type of information about your protein(s) 
of interest.

1.1. Relevance

Fig. 3. Protein ontology to describe protein forms. (a) PRO ontology terms for the PC4 and SFRS1-interacting protein 
(derived from LEDG gene) depicting the isoforms, and modified forms. (b) Literature is the source for PRO forms; the 
scheme shows the different protein forms derived from the LEDG gene as described in a given article.
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The PRO website is accessible at http://pir.georgetown.edu/
pro/pro.shtml.

The ontology (pro.obo), the annotation (PAF.txt), and mappings 
to external databases can be downloaded from the ftp site at ftp://
ftp.pir.georgetown.edu/databases/ontology/pro_obo/. This 
chapter is based on Release 8.0 v1. The ontology is also available 
in OBO and OWL formats through the OBO Foundry (7) and 
Bioportal (8). For general documentation please see http://pir.
georgetown.edu/pro/pro_dcmtt.shtml.

The pro.obo file is in OBO 1.2 format and can be opened with 
OBO Edit 2.0 (9). This file displays a version information block, 
followed by a stanza of information about each term. Each stanza 
in the obo file is preceded by [Term] and it is composed of an ID, 
a name, synonyms (optional), a definition, comment (optional), 
cross-reference (optional) and relationship to other terms (see 
example below).

format-version: 1.2
date: 15:12:2009 13:48
saved-by: cecilia
auto-generated-by: OBO-Edit 2.0
default-namespace: pro
remark: release: 8.0, version 1

[Term]
id: PRO:000000003
name: HLH DNA-binding protein inhibitor
def: “A protein with a core domain composition consisting of 

a Helix-loop-helix DNA-binding domain (PF00010) (HLH), 
common to the basic HLH family of transcription factors, but 
lacking the DNA binding domain to the consensus E box response 
element (CANNTG). By binding to basic HLH transcription fac-
tors, proteins in this class regulate gene expression.” 
[PRO:CNA]

comment: Category=family.
synonym: “DNA-binding protein inhibitor ID” EXACT []
synonym: “ID protein” RELATED []
xref: PIRSF:PIRSF005808
is_a: PRO:000000001 ! protein

The annotations to PRO terms are distributed in the PAF.txt 
file. To facilitate interoperability to the best extent, this tab delim-
ited file follows the structure of the gene ontology association 

2. Materials

2.1. Download

2.2. PRO Files

http://www.proteininformationresource.org/pro/.
http://www.proteininformationresource.org/pro/.
ftp://ftp.pir.georgetown.edu/databases/ontology/pro_obo/
ftp://ftp.pir.georgetown.edu/databases/ontology/pro_obo/
http://pir.georgetown.edu/pro/pro_dcmtt.shtml
http://pir.georgetown.edu/pro/pro_dcmtt.shtml
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(GAF) file. Please read the README file and the PAF guidelines.
pdf in the ftp site to learn about the structure of this file. PRO 
terms are annotated with relation to other ontologies or data-
bases. Currently in use: Gene ontology (GO) to describe pro-
cesses, function and localization; Sequence ontology (SO) (10) 
to describe protein features; PSI-MOD (11) to describe protein 
modifications; MIM (12) to describe disease states; and Pfam 
(13) to describe domain composition.

Use the persistent URL: http://purl.obolibrary.org/obo/PRO_
xxxxxxxxx, where PRO_xxxxxxxxx is the corresponding PRO ID 
with an underscore (_) instead of semicolon (:). Example: link to 
PRO:000000447 would be http://purl.obolibrary.org/obo/
PRO_000000447

The PRO homepage (http://pir.georgetown.edu/pro/pro.shtml) 
(Fig. 4) is the starting point to navigate through the protein 
ontology resources. The menu on the left side links to several 
documents and information pages, as well as to the ftp download 
page. The functionalities in the homepage include the subhead-
ings: “PRO Browser,” “PRO Entry Retrieval,” “Text Search,” 
and “Annotation.”

The browser is used to explore the hierarchical structure of the 
ontology (Fig. 5). The icons with a plus and minus signs allow 
expanding and collapsing nodes, respectively. Next to these icons 
is a PRO ID, which links to the corresponding entry report, fol-
lowed by the term name. Unless otherwise stated the implicit 
relation between nodes is is_a.

2.3. Link to PRO

3. Methods

3.1. PRO Homepage

3.1.1.  PRO Browser

Fig. 4. PRO homepage (partial snapshot). The left menu links to documentation and downloads, whereas the right part 
displays the current functionalities.

http://purl.obolibrary.org/obo/PRO_xxxxxxxxx
http://purl.obolibrary.org/obo/PRO_xxxxxxxxx
http://purl.obolibrary.org/obo/PRO_000000447
http://purl.obolibrary.org/obo/PRO_000000447
http://www.proconsortium.org/
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The PRO entry provides an integrated report about the ontology 
and annotation available for a given PRO term. If you know the 
PRO ID you can use the “retrieve PRO entry” box in the homep-
age. Alternatively, you can open an entry by clicking on the PRO 
ID in any other page (search, browser, etc.). The entry report 
contains four sections (Fig. 6):

 (a) Ontology information: this section displays the information 
from the ontology about a term (source: the pro.obo file). 
You can link to the parent node, to the hierarchy, and find the 
definition and synonyms of the term, among other things.

 (b) Information about the entities that were use to create the PRO 
entry: this section lists the sequences, in the case where cate-
gory corresponds to gene, sequence or modification, for 
which some experimental information exists. Taxon infor-
mation as well as PSI-MOD ID and modification sites are 
indicated when applicable. In many cases, the modifications 
sites are unknown and therefore only the PSI-MOD ID is 
listed. For cleaved products, the protein region is indicated 
and is underlined in the displayed sequence (Fig. 6b). In 
the case of category corresponding to family, this section 
provides a cross-reference to the database that is the source 
of the class.

 (c) Synonymous mappings: this section contains mappings to 
external databases that link to protein forms as described in 
the given class (information source: mapping files). This is 
the case for Reactome (14) entry REACT_13251which  

3.1.2. PRO Entry

Fig. 5. The PRO browser shows the ontology hierarchy. Use icons to expand/collapse nodes, or select an ID to go to the 
PRO entry view.
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represents the human constitutive active form of ROCK-1 
(Fig. 6c).

 (d) Annotation: This section shows the annotation of the term 
with the different ontologies (source: PAF file). These anno-
tations were contributed by the PRO consortium group and 
by community annotators through submission of RACE-
PRO annotations (see Subheading 3.1.4).

The search can be performed by entering a keyword or ID in the 
text box provided in the homepage. For example, you could just 
type the name of the protein for which you want to find related 
terms. Alternatively, advanced text search is available by clicking 
on the Search PRO title above the search box on the home page. 
Advanced text search supports Boolean (AND, OR, NOT) 
searches, as well as null (not present)/null (present) searches with 
several field options (see Note 2). Figure 7 shows an example of 
advanced search, which should retrieve all PRO terms that are in 
the modification category and contain annotation for protein–
protein interaction.

3.1.3. Searching PRO

Fig. 6. Sample PRO entry report. The different sections are indicated and explained in detail in the text.
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Results are shown in a table format with the following default 
columns (Fig. 7): the PRO ID, PRO name, PRO term definition, 
the category, the parent term ID, and the matched field. Some of 
the functionality in this page includes:

 (a) Display Option: to customize result table by adding or remov-
ing columns. Use > to add or < to remove items from the list, 
but always select apply for the changes to take effect.

 (b) Link to PRO entry report: the link is available by selecting the 
PRO ID

 (c) Link to hierarchical view: the icon shows the term in the hier-
archy, i.e., opens the browser.

 (d) Save: the result table as a tab-delimited file.

The annotation section is for community interaction. The PRO 
tracker should be used to request new terms or to change/
comment on existing ones. The link is directed to an external 
page (sourceforge) where you will need to provide the details 
about the terms of interest. On the other hand, if you have the data 
and domain knowledge you can directly submit annotation via the 
rapid annotation interface RACE-PRO as described below.

Follow a few simple steps and become an author of annotations in 
PRO. As an example of the procedure, the annotation pertinent 
for the cleaved product p38 from Fig. 3 is shown in Fig. 8. First 
fill your personal information. This information will not be  

3.1.4. Annotation

3.1.4.1. Rapid Annotation 
Interface RACE-PRO

Fig. 7. Advance search and result table.
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distributed to any third party, but will only be used for saving 
your data and for communication purposes.

This block allows you to enter all the information about a protein 
form along with the source of evidence. It is mandatory to add all 
the information relevant to this section whenever applicable.

 1. Retrieve the sequence: if you use a UniProtKB identifier (15) 
and click “Retrieve,” the sequence retrieved is formatted to 
show the residue numbers, and the organism box is automati-
cally filled. You can use identifiers for isoforms (a UniProtKB 

3.1.4.1.1. Definition of the 
Protein Object

Fig. 8. RACE-PRO entry to describe the cleaved product (p38) shown in Fig. 3b.
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accession followed by a dash and a number) as in the example 
shown here. If you happen to have an identifier from a differ-
ent database, you can use the ID mapping or batch retrieval 
services either from the PIR (16) or UniProt (17) websites to 
obtain the corresponding UniProtKB accession and retrieve 
the sequence – just be aware of which isoform or variant that 
you want to describe. Alternatively, you can paste a sequence, 
but in this case you will need to add the organism name (the 
link to NCBI taxonomy browser by clicking on the Organism 
title is provided as help).

 2. Protein region: once the sequence is retrieved, you can select 
a subsequence in the cases where the protein form you are 
describing is not the full length, but a cleaved product or a 
fragment (as is the case of this example). After you do this, 
click on the circle arrow and the selected region will be 
underlined.

 3. Selecting the Modification: If you need to describe a modi-
fication (or modifications), enter the residue number and  
the type of modification. If the modification is not in the 
list, use the “Other” option to add it. These terms will  
be later mapped to the corresponding PSI-MOD terms. If 
the modification site is unknown, please enter “?” in the resi-
due number box. Use the [more] or the [less] to add or 
remove a modification line.

 4. Be aware that the amino acid number should always refer to 
the sequence displayed in the sequence box. When clicking 
on the circle arrow, you will see the residues highlighted. 
Check that these are the ones expected. If there is no infor-
mation about any posttranslational modification, then do not 
complete this line (as in the current example).

 5. Protein object name: add names by which this object is referred 
to in the paper or source of data (separated by;). In the cur-
rent example, both LEDG/p38 and DN85 are used to refer 
to the shorter cleaved form of LEDG isoform 2.

 6. Evidence source: add the database (DB) that is the source of 
the annotation, in this case it is PubMed so we select as 
PMID. If the DB is not listed use the “Other” option and 
provide it. In the ID box you can add many IDs for a given 
DB separated by comma. Use the [more] or [less] to add or 
remove DB lines.

Only annotation from experimental data that is pertinent for the 
protein form (and species) described in the previous section should 
be added. There are three types of annotation that are based on 
different databases/ontologies: domain (Pfam), GO, and disease 
(MIM). If the paper describes the existence of a protein form with 
no associated properties, then do not fill this section.

3.1.4.1.2. Annotation of the 
Protein Object
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All the information about the different columns in the table 
is described in the PAF guidelines. But below are some 
clarifications:

 1. Modifiers: used to modify a relation between a PRO term and 
another term. It includes the GO qualifiers NOT, contributes 
to plus increased, decreased, and altered (to be used with the 
relative to column) e.g., “NOT has part PF00085 PWWP 
domain” is used because LEDG/p85 lacks this domain as 
determined in the paper, although it is present in the full 
length form.

 2. Relation to the specific annotation. For some databases/
ontologies there is a single relation possible and therefore it is 
already displayed, for GO we use three depending on the 
ontology used. Example: located in is used for GO compo-
nent for subcellular locations, whereas participates in is used 
for GO biological processes.

 3. Add ID for the specific database/ontology. If you need to search 
use the “link to..” link. If you enter the ID, the name autofills. 
Example: The paper shows in Fig. 5 that the p38 interferes with 
the transactivation potential of the full-length protein. Also the 
same figure shows the nuclear subcellular localization of this 
protein form. Then we can search for both GO terms in AMIGO 
and add the IDs to the annotation table.

 4. The “Interaction with” column is used with the GO term 
“protein binding” to indicate to the binding partner. Please 
add the corresponding UniProtKB Acc and/or PRO ID. 
Examples with “Interaction with” column are found in any of 
the entry annotations from the PRO terms listed in Fig. 6.7.

 5. The “Relative to” column is used only in conjunction with 
modifiers of the type increased, decreased and altered. In this 
column add the reference protein to which the protein form 
is being compared to. Either provide its UniProtKB Acc, its 
PRO ID, or its name. The annotation for rho-associated pro-
tein kinase 1 isoform 1 cleaved 1 in Fig. 6.6 has one such 
example: increased has_function GO:0004674 Relative to 
PRO:000002529 (rho-associated protein kinase 1 isoform 1 
unmodified form).

Just add any comment that clarifies any of the content.

These options are found in the right upper corner of the RACE-
PRO form. The save option allows saving the data in case you have 
not finished and need to complete the annotation later. When you 
save you are given a REF number; you can insert this number in 
the UniProtKB identifier box to retrieve your entry. Submit is 
used when you are done with the entry. You will still have the same 
reference number. Please keep it for tracking purposes.

3.1.4.1.3. Comment 
Section
3.1.4.1.4. Saving/
Submitting the Annotation
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An editor from the PRO team will review the entry and send you 
back comments/suggestions. Then the corresponding PRO term 
is generated along with the annotations. These will have the cor-
responding source attribution.

The PRO website can be used to retrieve information about the 
various protein forms derived from a given gene and to learn about 
their relationships. The integrated information for each form can 
be viewed in the entry report that collects information about the 
ontology and annotation (whenever available), and also provides 
mappings to external databases. This website constitutes a highly 
valuable resource providing a landscape of protein diversity and 
associated properties that is relevant for proteomics analysis.

 1. Recently PRO has been funded to include protein complexes, 
so be aware that the structure of the framework may look 
slightly different in the future but the definition of each of the 
existing levels should not change. In addition, the PRO ID 
will soon change from PRO: to PR: to avoid confusion with 
other existing database identifiers.

 2. Some search tips:
(a) If you want to retrieve all the entries from a given cate-

gory, for example, all the nodes for gene product level, 
then search selecting the category field and type gene. 
Search for category has the following options: family, 
gene, sequence, and modification.

(b) Some of the search fields are of the type null/not null. 
This is the case for the ortho-isoform and ortho-modified 
form. So if you are interested in retrieving the ortho-iso-
form entries, please select as a search field ortho-isoform 
and type not null.

(c) The specifics about what are the options for the DB ID, 
Modifiers and relations fields are listed in the PAF guide-
lines (see Subheading 2).
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3.2. Conclusion

4. Notes
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Chapter 7

Structure-Guided Rule-Based Annotation of Protein 
Functional Sites in UniProt Knowledgebase

Sona Vasudevan, C.R. Vinayaka, Darren A. Natale, Hongzhan Huang, 
Robel Y. Kahsay, and Cathy H. Wu 

Abstract

The rapid growth of protein sequence databases has necessitated the development of methods to 
computationally derive annotation for uncharacterized entries. Most such methods focus on “global” 
annotation, such as molecular function or biological process. Methods to supply high-accuracy “local” 
annotation to functional sites based on structural information at the level of individual amino acids are 
relatively rare. In this chapter we will describe a method we have developed for annotation of functional 
residues within experimentally-uncharacterized proteins that relies on position-specific site annotation 
rules (PIR Site Rules) derived from structural and experimental information. These PIR Site Rules are 
manually defined to allow for conditional propagation of annotation. Each rule specifies a tripartite set of 
conditions whereby candidates for annotation must pass a whole-protein classification test (that is, have 
end-to-end match to a whole-protein-based HMM), match a site-specific profile HMM and, finally, 
match functionally and structurally characterized residues of a template. Positive matches trigger the 
appropriate annotation for active site residues, binding site residues, modified residues, or other functionally 
important amino acids. The strict criteria used in this process have rendered high-confidence annotation 
suitable for UniProtKB/Swiss-Prot features.

Key words: PIR Site-rules, Functional sites, Functional annotation, PIR, Features

Success in high-throughput genome sequencing projects and 
structural genomic initiatives has put tremendous pressure on 
development of computational approaches for large-scale func-
tional annotation. There are over ten million sequences deposited 
in public databases. However, experimental characterization of 
these proteins lags far behind, indicating a need for the development 
of systematic approaches for reliable error-free transfer of functional 

1. Introduction

Cathy H. Wu and Chuming Chen (eds.), Bioinformatics for Comparative Proteomics, Methods in Molecular Biology, vol. 694,
DOI 10.1007/978-1-60761-977-2_7, © Springer Science+Business Media, LLC 2011
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annotations from the characterized proteins to the remaining set 
that lack any functional information. This realization, not surpris-
ingly, has given rise to many tools, methodologies and servers 
that are aimed at function prediction and propagation of func-
tional information (1–4). Most attempt to annotate certain global 
properties based on conservation of sequence and/or gene order 
within defined protein families (5–9).

It is generally recognized that, with respect to family-based 
annotation, greater specificity yields greater accuracy and confi-
dence. Assuming that each family comprises proteins that share 
end-to-end similarity (homeomorphicity), specificity can be 
increased based on a number of different parameters. Simplest of 
these is classification (family vs. subfamily). For example, annota-
tion specificity is increased if a family of insulin-like growth factor 
binding proteins is subdivided into subfamilies one through six, 
each representing a different subtype that could be applied to a 
potential member. Another specificity discriminator is taxonomy. 
In some cases the activities of same-family proteins are known or 
suspected to differ in one branch of the taxonomic tree but, more 
typically, differing nomenclatures are used. An example of the lat-
ter is the Sec preprotein translocase, which in eukaryotes is known 
as Sec61, but in prokaryotes is known as SecY.

Yet another basis for discriminating between different possi-
ble annotations is the presence of specific amino acid residues at 
specific positions in the sequence. This could have important 
implications for binding specificity, or in determining the likeli-
hood that a given protein is competent to catalyze an enzymatic 
reaction. It is not always possible to distinguish between these 
possibilities based on the typical parameters used to create protein 
families; alternative methods are needed.

The UniProt Consortium aims to provide high quality anno-
tation to proteins based both on experiment and on confident 
prediction (10). Here we describe an approach that addresses the 
need for residue-specific discrimination as implemented in the 
PIR Site Rule system. The method described in this chapter 
requires that proteins be classified based on both evolutionary 
relatedness and homeomorphicity. As mentioned earlier we use 
the PIRSF protein classification system, a hierarchical classifica-
tion of whole proteins designed to accurately propagate biologi-
cal and biochemical information from proteins with known 
experimental characterization to those without (11). However, 
although the hierarchical classification allows for increased speci-
ficity in some cases, global sequence similarity does not afford the 
fine-tuning of annotation that, instead, can be provided using 
site-specific rules. We call the site-specific rules that make use 
of the PIRSF classification system “PIR Site Rules” (PIRSR). 
We take a three-step approach to determining whether or not 
annotation is appropriately given. Briefly, these are: (1) determine 
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if the protein belongs to a family that contains proteins related to 
one with the supposed activity; (2) determine if the protein contains 
the conserved regions found in proteins known to have the sup-
posed activity; and (3) determine if the protein contains the precise 
amino acids required for the supposed activity. Using condition-
based rules, the approach combines information from sequence, 
structure, domains, motifs, and common ancestry to both make 
predictions of global function and to provide annotation (herein 
called “features”) to individual amino acids.

 1. Curated homeomorphic protein families (PIRSFs).
 2. Three-dimensional structural representative from each family.
 3. Structure guided multiple sequence alignment for each PIRSF.
 4. Site-rule system (Site-HMM alignments and propagation).

Primary annotations (to individual residues) include the UniProt 
feature keys ACT_SITE (amino acid/s involved in the activity of 
an enzyme), BINDING (binding site for any chemical group 
such as coenzyme, prosthetic group, substrate etc.), DISULFID 
(disulfide bond), METAL (binding site for a metal ion), MOD_
RES (posttranslational modification of a residue), MOTIF (short 
sequence motif of biological interest), NP_BIND (extent of a nucle-
otide phosphate-binding region), REGION (extent of a region of 
interest in the sequence), SITE (any interesting single amino acid, 
that is not defined by another feature key), MUTAGEN (amino 
acid that has been experimentally altered by mutagenesis) and 
CARBOHYD (glycosylation site). These are annotated manually 
for the template and then the corresponding annotations are 
specified in the rule. The dependent UniProtKB fields – such as 
keywords (KW) and comments (CC), are also annotated in the 
template and specified in the rule. For example, an entry with 
protease active sites will get the keyword “Protease,” and the 
name given to the protein should reflect that activity (or at least 
not conflict with it). Full curation effort is given to every line 
within the scope of a rule, including references, keywords, com-
ments, and cross-references to PDB.

2. Materials

3. Methods

3.1. Site-Types  
for Annotation
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PIR site rules are defined starting with PIRSF families that contain 
at least one known 3D structure with experimentally verified site 
information in published scientific literature. As references for site 
selection, a few protein structure resources are used, including 
the binding site information from PDB (12), LIGPLOT interac-
tions in PDBSum (13), and enzyme active sites (catalytic residues) 
documented in Catalytic Residue Dataset (14) and Catalytic Site 
Atlas (15). The rules are manually defined following extensive 
scientific literature review to determine site residues (confirmed 
by site-directed mutagenesis or other experimental data) and 
mechanism of action. Each PIR site rule consists of the rule ID, 
template sequence (a representative sequence with known 3D 
structure), rule condition and feature for propagation (denoting 
site feature to be propagated if the entire rule condition is tested 
true). The rules are PIRSF-specific and there may be more than 
one site rule for a PIRSF family. Each family can have as many site 
rules as there are site types (ACT_SITE, BINDING, etc.). That 
is, every site type has a single rule dedicated to it for each family, 
and this rule will be used to annotate every appropriate residue 
of that type. A residue can be annotated by more than one rule. 
For example, an active-site cysteine can be also involved in disul-
fide bonding (see thioredoxin example below). However, if a 
residue is involved in both binding to a ligand and mediates 
catalysis, and if supporting experimental literature data are avail-
able for its role in catalysis, this residue is annotated under the 
rule defining ACT_SITE and not BINDING. Under some cir-
cumstances multiple residues are permissible at a given position. 
For example, if a particular position is found to be an Asp in 50% 
of the cases and a Glu in the remaining half, this flexibility is 
noted in the rule.

PIR Site Rules are created for a given PIRSF homeomorphic 
protein family using a dedicated editing system. The editor enables 
the curator to input the various feature information (derived from the 
chosen structural template) that is desired to propagate to a typical 
UniProtKB/Swiss-Prot entry; specifically, the annotation fields 
FT (feature), CC (comment), and KW (keyword). Appropriate 
syntax and controlled vocabulary are used for site description and 
evidence attribution. The controlled vocabulary for annotating 
UniProtKB sequence feature lines include terms for feature type 
(such as “ACT_SITE” for catalytic residues, BINDING for binding 
site residues and METAL for binding of metal ions) and corre-
sponding terms for feature descriptions (such as “nucleophile” or 
“proton acceptor”). The interface allows for an edited structure-
guided alignment to be imported as the basis for the Site HMM 
(see below). Criteria used to curate a Site Rule are described in 
later sections.

3.2. Site Rule 
Definition

3.3. Site Rule Curation
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Rule construction begins with a curated PIRSF, the process of 
which is described elsewhere (6, 11). The important steps for Site 
Rule purposes include membership verification – which includes 
a size-based filter – and selection of sequences for family HMM 
construction (used for future recruitment). For each family, a set 
of seed sequences is chosen for multiple alignment based on evo-
lutionary distance, with more-distant members preferred. The 
alignments are not edited. The family HMM is generated based 
on the seed-sequences alignment using hmmbuild and hmmcali-
brate – both part of the HMMER package (16) – using default 
parameters. Protein sequences that score better than the HMM 
cut-off (set to that of the lowest-scoring true member) and whose 
length does not deviate beyond what is normal for the family are 
recruited automatically.

The family HMM described in the previous section, optimized 
for a different purpose, may not be suitable as a discriminator for 
a particular site of interest. Therefore a second “site HMM” is 
created for this purpose. The “seeds” for the site HMM always 
include a template that serves as a source of information for rule-
based annotation. Structure-guided manual editing of the align-
ment is done after visual inspection using an alignment editor, 
and score thresholds are manually set if necessary to verify that 
the residues of interest in the template are conserved among the 
aligned sequences. Conservation in this context means that any 
difference between the template and aligned sequence at critical 
positions is either known to be allowed, or that such difference is 
a plausible chemical and structural replacement. Any sequence 
containing a nonconserved residue in important positions is 
removed from the alignment. In certain cases, some regions from 
the alignment are removed. The removed regions usually include 
largely nonconserved residues, or partially conserved residues 
that are not important to define the site. The remaining con-
served regions of the alignment covering the propagatable resi-
dues are concatenated to form the site specific alignment. The site 
HMM is then generated based on this site specific alignment 
using HMMER. The site-specific HMM is thus much more 
focused on the propagatable residues than the original full-length 
family HMM. Using the site-specific HMM also increases the 
signal to noise ratio compared to the original family HMM (data 
not shown).

The final match condition that must be defined is an enumeration 
of the amino acids of interest. Included are those amino acids that 
are directly involved in catalysis, binding, bonding, or modifica-
tion and those that contribute to activity. The sequence of each 
member of the appropriate family that passes the previous two 
filters will be checked by aligning both the template and target 

3.4. Site Rule Match 
Conditions

3.4.1. Family HMM

3.4.2. Site HMM

3.4.3. Site Match
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sequences to the profile HMM using hmmalign. Target residues 
that match those defined in the rule are eligible for propagation 
of information, if so specified. Conservative substitutions are allowed 
after manual inspection. The substitutions that are generally 
allowed are Asp/Glu, Lys/Arg, Tyr/Phe, and Ser/Thr. Additional 
substitutions may be allowed if supported by experimental evidence 
or acceptable by curator judgment.

In order to apply the rules to UniProtKB, each rule must specify 
both the feature annotation (given to the appropriate amino 
acids) and any annotation that is logically dependent on features 
in a typical UniProtKB/Swiss-Prot entry. Feature information on 
specific residues is propagated only to those proteins that pass all 
the conditions described in the previous sections (see flowchart in 
Fig. 1). Those that do not pass the conditions are deemed suspect 
and are subjected to manual scrutiny. Failures prompt a review of 
the rule itself to determine if revision is warranted.

3.5. Rule Propagation

PIRSF 
member?

Site HMM
(e−4 or better)?

Has specified
residues?

Propagate
information

Yes 

Yes 

Yes 

No 

Yes 

Protein sequence

Manual check 
okay?

Revise rule

Fig. 1. PIR Site rule propagation pipeline.
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A PIR Site Rule is only applied to sequences from the corresponding 
PIRSF family. Sequences must therefore pass the family HMM by 
computational means, or be assigned to the family manually. The 
sequences that match the site specific HMM with an e-value better 
than the 10−4 cutoff are then automatically checked for functional 
residues by aligning the potential target sequence with the rule-
specified template sequence and verifying the presence of the 
rule-specified residues (Fig. 1). To avoid false positives, site fea-
tures are only propagated automatically if all site residues match 
perfectly in the conserved region. When propagation is warranted, 
the position (within the target sequence) and identity of the 
appropriate residues are noted, along with the propagatable infor-
mation specified for those residues.

Potential functional sites missing one or more residues or 
containing conservative substitutions not already noted by the 
rule are only annotated after careful manual analysis on a case by 
case basis. For example, if a rule specifies an Asp at a given posi-
tion and a particular sequence contains a Glu at that position, the 
sequence fails the automatic propagation, but annotation might 
be allowed after considering the available structural or mutational 
evidence. Manual review is also triggered when a sequence fails to 
reach the cutoff e-value.

Associated with the rule-based automated annotation is evi-
dence tagging that distinguishes experimentally-verified from 

3.6. Strict Site Rule 
Propagation Criteria

3.7. Rule Evidence 
Attribution

           10        20        30        40     
            |         |         |         |      
P0AA25  IHLTDDSFDTDVLKADGAILVDFWAEWCGPCKMIAPILDE 
Q9X2T1  VNVTDASFEQDVLKADGPVLVDYWAEWCGPCKMIAPVLDE 
Q9K8A8  VNVTDQTFAQETSEG--LVLADFWAPWCGPCKMIAPVLEE 
Q9S386  KEITDATFEQETSEG--LVLTDFWATWCGPCRMVAPVLEE 
P09857  VHVTDDSFEEEVXKSPDPVLVDYWADWCGPCKMXAPVXDE 
Q97IU3  QEINDKSFVNVISNSKKVVVVDFWATWCEPCKMIAPILEE 
P56430  IELTEENFESTIKKG--VALVDFWAPWCGPCKMLSPVIDE 
P57653  IELTDQNFEEQVLNSKSFFLVDFWAQWCNPCKILAPILEE 
Q9CF37  YNITDATFDEETKEG--LVLIDFWATWCGPCRMQAPILEQ 
Q97EM7  KEINESIFDEEIKTSGEPVIVDFWAPWCGPCKMLGPIIDE 
Q9ZEH4  VKVTDADFDSKVESG--VQLVDFWATWCGPCKMIAPVLEE 
P51225  SQVTDASFKQEVINNDLPVLVDFWAPWCGPCRMVSPVVDA 
Q8ZAD9  IHLSDDSFDTDVLKASGLVLVDFWAEWCGPCKMIAPILDE 
Q7M0Y9  KDINDSNFQEEVKAG--TVVVDFWAAWCGPCKMLGPVIDE 
P14949  VKATDQSFSAETSEG--VVLADFWAPWCGPCKMIAPVLEE 
Q9KV51  LQLTDDGFENDVIKAAGPVLVDFWAEWCGPCKMIAPILDE 
P43785  LHINDADFESVVVNSDIPILLDFWAPWCGPCKMIAPVLDE 
            .  :           . :.:: :: ::..  :. .  
PIRSR000077-1                ^     !  !          
PIRSR000077-2                ^     ^!!^          
PIRSR000077-3                !     ^  ^          
PIRSR000077-4                      !  !          

Fig. 2. Partial alignment of seed sequences for PIRSF000077 Site HMM. Single dots 
indicate highly conserved residues, whereas double dots indicate perfectly conserved 
residues. For each rule, residues subject to propagation are indicated by exclamation 
points, whereas additional checked residues are indicated by carets.
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computationally-predicted annotation (17). In the new 
UniProtKB evidence attribution system, all protein annotation will 
be attributed for the data source, the types of evidence and meth-
ods for annotation.

To facilitate Site Rule curation and propagation, a specialized 
system has been developed. This system includes three components: 
the backend Oracle database, the underlying application procedures 
and the curator interface. The underlying procedures connect the 
alignment and HMM programs for rule curation and propagation. 
The curator web interface is built using Perl/Javascript.

Not every family is amenable to Site Rule creation. Members of 
families containing at least one member with residue-specific 
experimental characterization can be annotated with both local 
and global information. Suitable experimental data include 
kinetic, mutation, spectroscopic and structural data. Furthermore, 
the data should define active, binding, metal, or some other func-
tional site. Lacking this, local annotation can still be provided if a 
member has a solved structure with a bound ligand, or has a 
solved structure that can be aligned to other structures with resi-
due-specific annotation.

The thioredoxin family (PIRSF000077) has over 1,000 members 
found in archaea, prokaryotes, eukaryotes, and viruses. There are 
four Site Rules covering this family: PIRSR000077-1, 
PIRSR000077-2, PIRSR000077-3, and PIRSR000077-4. Each 
uses the Escherichia coli strain K12 thioredoxin (UniProtKB 
accession P0AA25) as a template.

Thioredoxins regulate other enzymes by reducing their disulfide 
bonds. Two vicinal cysteines are involved in this process. Cys33 of 
reduced thioredoxin (lacking a Cys33-Cys36 disulfide bridge) is 
exposed to the solvent and loses the proton to act as a nucleo-
phile. Cys36 is buried and hence cannot initially act as nucleophile. 
Nucleophilic attack of Cys33 on the substrate disulfide bond 
results in the formation of a mixed disulfide intermediate. A con-
formational change then exposes Cys36, allowing Asp27 to 
deprotonate it (18). The nucleophilic Cys36 attacks the mixed 
disulfide intermediate to produce reduced enzyme and an oxi-
dized thioredoxin (with a Cys33-Cys36 disulfide bridge) (19). 
Gly34 and Pro35 modulate the redox potential of the active site 
disulfide bond (20). By varying either of these two residues, opti-
mal redox potential can be obtained.

3.8. System 
Implementation

3.9. Site Rule Creation 
Criteria

4. Case Studies

4.1. Case Study 1: 
Thioredoxin

4.1.1. Underlying Biology
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The underlying biology of thioredoxin activity indicates four 
types of functions (features) attributable to specific residues. 
Accordingly, four rules were constructed (Table 1). The feature 
key for site rule 1 (PIRSR000077-1) is ACT_SITE, indicating 
that the residues specified under “propagated features” are directly 
involved in catalytic function, specifically, as nucleophiles (18). 
Site rule 2 (PIRSR000077-2) and site rule 3 (PIRSR000077-3) 
uses the feature key SITE, used for residues with critical functions 
that do not fit any of the other specific UniProt feature keys. The 
variation corresponding to Gly34 and Pro35 of the template in 
various organisms is allowed as this is the mechanism to modulate 
the redox potential. PIRSR000077-2 indicates the contribution 
of these two residues to the redox potential of the disulfide bond, 
whereas PIRSR000077-3 indicates the deprotonating function of 
Asp27. The feature key DISULFID is used for PIRSR0000077-4, 
specifying the disulfide bonds between Cys33 and Cys36 and 
indicating that they are redox active. Note that, for rules one 
through three, other residues are checked in addition to those 
eligible for propagation. This reflects the underlying biology. For 
example, Cys36 specified in rule PIRSR000077-1 will fail to act 
as nucleophile if Asp27 is substituted by Asn. Note also that not 
every highly-conserved residue is checked – only those pertinent 
to the annotation (Fig. 2).

There are 152 members of PIRSF000077 in the reviewed 
(Swiss-Prot) section of UniProtKB, (currently, Site Rules are 
being applied only to this section). All 152 members passed 
the Site HMM test with an e-value of 10−4 or better. They then 
were tested for the presence of the two cysteines (Cys33 and 

4.1.2. Rule Construction

4.1.3. Propagation

Table 1 
Site Rules for PIRSF000077 (thioredoxin)a

Rule ID Feature key Checked residues
Propagated features/annotated 
residues PubMed ID

1 ACT_SITE D27, C33, C36 C33
C36

Nucleophile 2181145

2 SITE D27, C33, G34, P35, 
C36

G34
P35

Contributes to redox 
potential value

9099998
10489448

3 SITE D27, C33, C36 D27 Deprotonates active site 
C-terminal Cys

9374473
11563970

4 DISULFID C33, C36 C33-C36 Redox-active 2181145
a All rules use the E. coli thioredoxin (UniProtKB accession P0AA25, PDB accession 2TRX:A) as a template, and 
include the Catalytic Site Atlas (15) entry 2TRX as a reference. Rule IDs are prepended by PIRSR000077 and a 
dash
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Cys36) and the aspartic acid (Asp27) by hmmalign. One-hundred 
forty-two members passed this test. The remaining ten had 
both the cysteines, but not the aspartic acid, where instead they 
had either a His, Glu, or Tyr in the corresponding position. 
The function of Asp27 in the template is to deprotonate the 
active site Cys36 by accepting a proton. This aspartic acid can 
be conservatively substituted by Glu, but not by residues such 
as His or Tyr; the higher pKa values of the latter two mean 
they are likely to be already protonated and therefore cannot 
act as proton acceptors. Six of the ten mismatches have the 
conservative Glu substitution, and are therefore eligible for the 
annotation, bringing the total to 148. To indicate that these 
annotations are based on sequence similarity to the template, a 
“By similarity” tag is added to each of the annotations. However, 
proteins that have experimental data on the individual sites will 
not have this tag.

The so-called “radical SAM enzymes,” which generate radical 
species by reductive cleavage of S-adenosyl-l-methionine (SAM), 
catalyze a diverse set of reaction types, including methylation, 
isomerization, sulfur transfer, and anaerobic oxidation (21). 
One such enzyme is the oxygen-independent coproporphyrino-
gen III oxidase (PIRSF000167). The family contains a total of 
1,400 members. There are four Site Rules covering this family: 
PIRSR000167-1, PIRSR000167-2, PIRSR000167-3, and 
PIRSR000167-4. Each uses the E. coli enzyme (UniProtKB acces-
sion P32131) as a template.

During the biosynthesis of heme and chlorophyll, copropor-
phyrinogen III oxidase converts coproporphyrinogen III to 
protoporphyrinogen IX by oxidatively decarboxylating the 
propionate side chains of rings A and B to their corresponding 
vinyl groups. Two unrelated enzymes – oxygen-dependent 
coproporphyrinogen III oxidase (encoded by the HemF gene), 
and the oxygen-independent coproporphyrinogen III oxidase 
(encoded by the HemN gene)–catalyze these reactions. The 
HemN family members contain a conserved iron–sulfur cluster 
(4Fe-4S) binding motif (CxxxCxxC). In its reduced state, the 
cluster transfers a single electron to SAM, resulting in its reduc-
tive cleavage to methionine and a 5¢-deoxyadenosyl radical. 
This highly reactive oxidizing radical abstracts a hydrogen 
atom from the b-C atom of the propionate side chain of 
coproporphyrinogen III. These steps occur twice – once for 
each bound SAM (22). Between each round, the oxidized 
cluster (created during the reduction of SAM), is once again 
reduced.

4.2. Case Study 2: 
Oxygen-Independent 
Coproporphyrinogen III 
Oxidase

4.2.1. Underlying Biology
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The template structure (1OLT) presents the oxygen-independent 
coproporphyrinogen III oxidase bound to two SAM molecules. 
There is also available experimental mutagenesis data for this protein. 
Based on the data, four site rules covering three different feature 
keys have been created (Table 2). Site-Rules 1 and 3, with feature 
key BINDING, are used to annotate the residues involved in 
binding to the two SAM molecules (SAM1 and SAM2). Site Rule 2, 
with feature key METAL, is used to annotate the cysteine resi-
dues involved in coordinating the iron–sulfur cluster. The struc-
ture-guided alignment used for creating the rules is given in 
Fig. 3.

Of the 29 members of PIRSF000167 that are in the Swiss-Prot 
section of UniProtKB, all passed the Site HMM test with an 
e-value of 10−8 or better. They were then tested for the presence 
of the binding site residues for the two SAM molecules (SAM1: 
Tyr56, Gly112, and Glu/Asp145; SAM2: Phe/Tyr68, Gly113, 
Thr/Ser114, Gln172, Arg184, Asp209) and for the iron–sulfur 
cluster residues (Cys62, Cys66, and Cys69) by hmmalign. 
Twenty-eight passed the criteria defined by the three Site Rules. 
The one failure is a sequence fragment.

4.2.2. Rule Construction

4.2.3. Propagation

Table 2 
Site Rules for PIRSF000167 (oxygen-independent coproporphyrinogen III oxidase)a

Rule ID Feature key Checked residues
Propagated features/annotated 
residues PubMed ID

1 BINDING Y56, G112, E/D145 Y56
G112
E/D145

S-adenosyl-l-methionine 1 14633981

2 METAL C62, C66, C69 C62
C66
C69

Iron–sulfur (4Fe-4S-S-
AdoMet)

14633981

3 BINDING F/ Y68, G113,  
T/S114,Q172,  
R184, D209 

F/ Y68 
G113 
T/S114 
Q172 
R184 
D209

S-adenosyl-l-methionine 2 14633981

a All rules use the E. coli oxygen-independent coproporphyrinogen III oxidase (UniProtKB accession P32131, PDB 
accession 1OLT) as a template, and include the Catalytic Site Atlas entry 1OLT as a reference. Slashes indicate allowed 
conservative substitutions
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   Homology-based annotation transfer – rooted on the idea 
that proteins that evolved from a common ancestor will have 
similar function – is by far the most common and widely 
accepted method for annotation transfer. Although this method 
generally works for close homologs with sequence similarities 
greater than 50–60%, an error-rate as high as 30% has been 
reported (23, 24). One contributor to this error is the reliance 
on global similarities without accounting for local differences 
in sequence and without accounting for structural or physico-
chemical constraints when such local differences occur. That is, 
not all substitutions are permissible in all contexts.

   The main purpose of PIR Site Rules therefore is to afford a 
mechanism that allows for high-confidence annotation of 
both global and local properties of a protein that is supported 
by three-dimensional structure information. Accordingly, our 
three-step approach is designed to rigorously determine 
whether or not predicted annotation is appropriate. Each step 
performs a different type of certainty check. The importance 
of all three steps is illustrated by thioredoxin, which requires 
a CxxC motif. Such a motif occurs in a multitude of proteins, 
including some zinc-finger transcription factors. It would 
therefore be ill-advised to annotate every protein with this 
motif as “thioredoxin.” However, if this motif is found in a 
member of a family related to thioredoxins (first criterion) 
and furthermore, contains the conserved regions found in 
known thioredoxins (second criterion), there is some confi-
dence that the member is a real, functional thioredoxin. 
Conversely, a member of this family that lacks this motif (third 
criterion) would not actually function as a thioredoxin.

  On average, each protein family that serves as a basis for Site 
Rules has two-to-three rules that potentially apply a total of 
three-to-four feature lines to each of about 80 reviewed mem-
bers, and the system has currently added over 18,000 features 
to over 5,000 entries (data not shown). The propagated 
information is expected to facilitate experiments by providing 
potential targets for mutation studies. Indeed, there are sev-
eral documented examples where mutation in a ligand bind-
ing site has led to disease states (25–27). To further extend 
the reach of Site Rules, we are integrating them into the 
UniProtKB rule-based annotation propagation system 
(UniRule) and will apply them to the non-reviewed (TrEMBL) 
section of the UniProt Knowledgebase in the future, thereby 
meeting the demand for a confident method for automated 
annotation of protein sequence features.

5. Discussion
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Chapter 8

Modeling Mass Spectrometry-Based Protein Analysis

Jan Eriksson and David Fenyö 

Abstract

The success of mass spectrometry based proteomics depends on efficient methods for data analysis. These 
methods require a detailed understanding of the information value of the data. Here, we describe how 
the information value can be elucidated by performing simulations using synthetic data.

Key words: Protein identification, Simulations, Synthetic mass spectra, Significance testing, Value 
of information, Peptide mass fingerprinting, Tandem mass spectrometry

Mass spectrometry based proteomics is a method of choice for 
identifying, characterizing, and quantifying proteins. Proteomics 
samples are often complex and the range of protein amounts is 
typically large (>106), whereas the dynamic range of mass spec-
trometers is limited (<103) (1). Because of this mismatch, it is 
necessary to process the protein samples so that the protein mix-
ture that reaches the mass spectrometer at any given time is much 
less complex. This is often achieved by first separating the pro-
teins, followed by digestion, and separation of the peptides. The 
peptides are subsequently analyzed in the mass spectrometer.

With mass spectrometry, it is possible to measure the mass 
and the intensity of peptide ions and their fragments. To identify 
proteins and to characterize their posttranslational modifica-
tions, the mass measurements are used (2–4) and sometimes to 
lesser degree the intensity measurements can also be used (5, 6). 
For quantification, the intensity measurements can be used, but 
only if the intensity scale is calibrated for each peptide, because 
the intensity of a peptide ion signal depends strongly on its 
sequence.

1.  Introduction

Cathy H. Wu and Chuming Chen (eds.), Bioinformatics for Comparative Proteomics, Methods in Molecular Biology, vol. 694,
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The two most common types of analysis are peptide mass 
fingerprinting and tandem mass spectrometry. In both these 
approaches, the proteins are digested with an enzyme having high 
digestion specificity (usually trypsin) prior to the mass spectro-
metric analysis. The digestion results in mixtures of proteolytic 
peptides. In peptide mass fingerprinting the mass spectrometer 
detects ions of the proteolytic peptides and measures their respec-
tive mass. The mass of a proteolytic peptide is typically not unique 
(7) and therefore observation of several proteolytic peptides from 
a single protein is needed to generate a peptide mass fingerprint 
that is useful for protein identification. The peptide mass finger-
printing approach is usually used for samples where the protein of 
interest can be purified quite well, because peptide ion signals 
from different proteins can interfere with each other in an indi-
vidual mass spectrum and the inclusion of mass values of peptides 
from more than one protein reduces the specificity of the peptide 
mass fingerprint. In tandem mass spectrometry, individual prote-
olytic peptide ion species are isolated in the mass spectrometer 
and are subjected to fragmentation. The masses of the proteolytic 
peptides and their fragments are measured, making it more appli-
cable to complex mixtures, because a large amount of informa-
tion is obtained for each peptide and the interference from 
peptides originating from other proteins is reduced.

Here we describe a few methods for generating synthetic 
mass spectra, including peptide mass fingerprints and tandem mass 
spectra. We also give a few examples of how these synthetic 
mass spectra can be used to better understand the dependence of 
the value of information in mass spectra on the nature and accu-
racy of the measurements.

In peptide mass fingerprinting, protein identification is achieved 
by comparing the experimentally obtained peptide mass finger-
print to masses calculated from theoretical proteolytic digests of 
protein sequences from a sequence collection. Each sequence in 
the collection that has some extent of matching with the experi-
mental peptide mass fingerprint is given a score, the statistical 
significance of the high scoring matches is tested, and the statisti-
cally significant proteins are reported. The statistical significance 
is tested by generating a distribution of scores for false and ran-
dom matches. The score of the high-scoring proteins are then 
compared to the distribution of scores for false and random 
matches, and the significance level of the match is calculated. The 
distribution of scores for false and random matches can be 
obtained by direct calculations (8), by collecting statistics during 

2. Methods

2.1. Peptide Mass 
Fingerprinting
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the search (9, 10), or by simulations using random synthetic 
 peptide mass fingerprints (11). Here we describe a method for 
generation of synthetic random peptide mass fingerprints to 
obtain a distribution of scores for false and random identification 
that can be used to test the significance of protein identification 
results (11) (Fig. 1):

 1. Analyze the experimental data to obtain information about 
the parameter space that the synthetic random peptide mass 
fingerprints should cover, including number of peaks, inten-
sity distribution, mass distribution, and mass accuracy.

 2. Select a protein sequence collection, digest it with the enzyme 
used in the experiment, and calculate the masses of the prote-
olytic peptides.

 3. Randomly pick a set of masses from the proteolytic peptide 
masses of the sequence collection according to the distribu-
tions obtained from the analysis of experimental data, and 
making sure that no more than one peptide is picked from 
each protein (see Note 1).

 4. Add a mass error sampled from the expected error 
distribution.

 5. Assign intensities to each mass (see Note 2).
 6. Search the protein sequence collection and record the highest 

score.
 7. Repeat steps 3–6 until sufficient statistics are obtained, and 

construct a distribution of scores for false and random 
identifications.
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Fig. 1. Left panel : The principle of significance testing utilizing the distribution of scores for random and false identifications. 
Right panel : Detailed view of a simulated score distribution for random and false identifications (adapted from (11)).
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 8. Use the score distribution generated in step 7 to convert the 
scores from the search with the experimental data to a signifi-
cance level.

For investigating other aspects of protein identification, it is 
useful to construct nonrandom peptide mass fingerprints. This 
can be achieved by modifying step 3:

 3a. Select one or more proteins.
 3b. For each of the selected proteins, pick a few peptides (see 

Note 3).
 3c. Add background peaks by randomly picking a set of masses 

from the entire set of proteolytic peptide masses of the 
sequence collection according to the distributions obtained 
from the analysis of experimental data, and making sure that 
no more than one peptide is picked from each protein.

These nonrandom synthetic peptide mass fingerprints can be 
used to for example improve or compare algorithms, and investi-
gate the effect of search parameters including mass accuracy, enzyme 
specificity, number missed cleavage sites, and size of sequence col-
lection searched (8, 12). Nonrandom synthetic peptide mass finger-
prints have also been used to investigate the potential of identifying 
complex mixtures of proteins by peptide mass fingerprinting (13). 
It was concluded that mass fingerprinting could be applied to 
 complex mixtures of a few hundred proteins, if the mass accuracy 
and the dynamic range of the measurement are sufficient (Fig. 2). 
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Fig. 2. The statistical significance of proteins identified by peptide mass fingerprinting in 
a mixture of 300 proteins using an iterative method. The inset displays a magnified por-
tion of the graph for the 280–300th protein identified (Source: ref. 13).
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In most practical cases, however, the dynamic range of the measure-
ment is severely limiting and only a few proteins can be identified by 
peptide mass fingerprinting (14).

The method of choice for complex protein mixtures is to 
search sequence collections using the observed mass of an 
intact individual peptide ion species together with the masses 
of the  fragment ions observed upon inducing fragmentation of 
the peptide in the mass spectrometer. This method requires 
much lower sequence coverage, and in some cases, even one 
peptide can be sufficient to identify a protein. Synthetic pep-
tide tandem mass spectra can be generated by the following 
method:

 1. Analyze the experimental data to obtain information about 
the parameter space of interest (see Note 4 and Fig. 3).

 2. Select a protein sequence collection and digest it with the 
enzyme used in the experiment.

 3. Randomly pick a peptide and calculate the peptide mass.
 4. Add to the peptide mass an error sampled from the expected 

error distribution.
 5. Calculate the mass of all expected fragment ions.
 6. Randomly pick a set of fragment ion masses (Fig. 3a, b).
 7. Add to the fragment ion masses an error sampled from the 

expected error distribution.
 8. Assign intensities to each fragment ion mass sampled from 

the expected error distribution (Fig. 3e).
 9. Add background ions by randomly picking peptides that have 

similar mass as the peptide in step 3, and randomly picking 
one fragment ion mass from each (Fig. 3c, d).

 10. Add to the background masses an error sampled from the 
expected error distribution.

 11. Assign intensities to background fragment ions sampled from 
the expected intensity distribution (Fig. 3f).

 12. Search the protein sequence collection and record the highest 
score.

 13. Repeat steps 6–12 until sufficient statistics are obtained.
 14. Repeat steps 3–13 to cover the desired parameter space.

Random synthetic tandem mass spectra can be constructed 
by skipping steps 3–8 above. These random synthetic tandem 
mass spectra can be used for significance testing in a similar way 
as for peptide mass fingerprinting (15).

Nonrandom synthetic tandem mass spectra can, for example, 
be used to answer the question: How many fragment ions are 
needed for identification? By generating nonrandom synthetic 

2.2. Tandem Mass 
Spectrometry
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tandem mass spectra containing varying amounts of sequence 
information the number of matching fragments needed for iden-
tification can be determined (see Note 5 and Fig. 4). In this way 
it is possible to investigate how many fragment ions are needed 
for identification depending on the precursor mass, precursor 
and fragment mass errors, background levels, and modification 
states (16).
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Fig. 3. Properties of tandem mass spectra with significant matches to a dataset acquired with an LTQ-Orbitrap (Thermo Fisher, 
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 1. The distribution of peptide masses is far from uniform, 
because peptides contain only a few different types of atoms, 
and it is, therefore, important to use actual peptide masses in 
simulations. The distribution of peptide masses consists of 
peaks with centroids approximately 1 Da apart, and regions in 
between the peaks that are devoid of peptide masses. Using a 
uniform mass distribution would therefore result in unrealis-
tic synthetic peptide mass fingerprints.

 2. The intensities are often set to the same value for all masses. 
Alternatively, an intensity distribution derived from experi-
mental data can be used.

 3. The number of peptides to pick can for example be deter-
mined by selecting a target coverage for the proteins, and 
then randomly picking peptides until that coverage is 
reached.

 4. An example of the kind of information that can be extracted 
from experiments is shown in Fig. 3. First the data acquired 

3.  Notes

Fig. 4. The chance of success of identification, i.e., the fraction of the spectra that yield 
a true result and an e-value below a desired threshold, as a function of the number of 
fragment masses in the spectra. Each data point represents the mean value with stan-
dard error of the results for 50 randomly selected peptides and with 20 different ran-
domly generated spectra from each peptide. The chance of success is low for few 
matching fragment and high for many matching fragments. The critical number of frag-
ment masses is defined as the number of fragment masses that yield a 50% chance of 
success.
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on an LTQ-Orbitrap was searched using X! Tandem and all 
peptides with expectation value <10−3 were used to character-
ize the data set. The average and the standard deviation of the 
number of ions that match the peptide sequence first increases 
with mass, and at masses above 1,500 Da the average satu-
rates (Fig. 3a, b). The average number of background peaks 
increases with the number of matching peaks up to about 15 
matching peaks, and then saturates (Fig. 3c). The standard 
deviation of the number of background peaks is constant 
within the uncertainty of the measurement (Fig. 3d). The 
matching peaks dominate at high intensity, but even though 
the majority of peaks with low relative intensity are back-
ground (<20% of the base peak), there are still a considerable 
number of low-intensity peaks that match the sequence 
(Fig. 3e, f).

 5. Tryptic peptides were randomly selected from a proteome, 
and a set of fragment mass spectra was generated for each 
selected peptide assuming that they were unmodified or phos-
phorylated. These fragment mass spectra were constructed by 
randomly selecting fragment ions, and the number of frag-
ments selected was varied over a wide range. The fragment 
mass spectra were searched against the proteome using X! 
Tandem and the probability of successful peptide identifica-
tion was obtained as a function of the number of fragment 
ions in the spectra. From these curves, the critical number of 
fragment masses was derived for a given experimental condi-
tion, i.e., the number of fragment masses needed for success-
fully identifying half of the peptides.
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Chapter 9

Protein Identification from Tandem Mass  
Spectra by Database Searching

Nathan J. Edwards 

Abstract

Protein identification from tandem mass spectra is one of the most versatile and widely used proteomics 
workflows, able to identify proteins, characterize post-translational modifications, and provide semi-
quantitative measurements of relative protein abundance. This manuscript describes the concepts, pre-
requisites, and methods required to analyze a tandem mass spectrometry dataset in order to identify its 
proteins, by using a tandem mass spectrometry search engine to search protein sequence databases. The 
discussion includes instructions for extraction, preparation, and formatting of spectral datafiles; selection 
of appropriate search parameter settings; and basic interpretation of the results.

Key words: Protein identification, MS/MS spectra, Protein sequence databases, Peptide identifica-
tion, Search engine

The identification of proteins by tandem mass spectrometry is one 
of the most widely used techniques in mass-spectrometry based 
proteomics. It can be applied to purified protein samples contain-
ing just a few protein components, or to complex samples con-
taining many proteins, such as those resulting from the analysis of 
a cell-line or clinical sample. Tandem mass spectrometry can be 
applied without prior knowledge of the proteins to be analyzed 
and can readily identify proteins, characterize post-translational 
modifications, and provide semi-quantitative measurements of 
relative abundance. Furthermore, the collection of tandem mass-
spectra using modern mass-spectrometers, in  conjunction with 
specific protein chemistry techniques, can be highly automated. 
This automation makes it possible to  conduct  high-throughput, 

1.  Introduction



120 Edwards

comprehensive analyses of complex protein mixtures, generating 
thousands of tandem mass-spectra per sample.

The most common application of tandem mass spectrometry 
in proteomics workflows seeks to identify the proteins in a sample. 
Known as shotgun proteomics, by analogy with whole genome 
shotgun sequencing, the sample’s proteins are solubulized and 
digested into short peptides of 10–20 amino acids using a prote-
olytic enzyme. The resulting peptide mixture is separated in time 
according to the peptides’ physical and chemical properties using 
liquid chromatography and analyzed in real-time by the mass-
spectrometer. As the peptides with similar physicochemical prop-
erties elute from the column, the mass spectrometer acquires 
survey scans to identify and select the most abundant peptide ions 
for analysis by tandem mass-spectrometry. Each selected peptide 
ion, also called the precursor ion, is fragmented in turn to acquire 
the product ion scan, also known as the MS/MS spectrum or the 
tandem mass-spectrum. Mass-spectrometers are typically config-
ured to collect three to five tandem mass spectra for each survey 
scan, with each cycle, consisting of one survey scan and multiple 
tandem mass spectra, taking a few seconds. Over the course of a 
2–4 h chromatography run, this shotgun proteomics workflow 
can collect thousands of MS/MS spectra representing the frag-
mented peptides of a sample’s proteins. The automated acquisi-
tion of tandem mass spectra in conjunction with liquid 
chromatography is often shortened to LC-MS/MS.

Computer software called tandem mass-spectrometry search 
engines analyze these shotgun proteomics datasets to identify the 
sample’s proteins. These search engines match the tandem mass 
spectra with peptide sequences from a protein sequence database 
and use the identified peptides to infer the protein content of the 
sample. This manuscript describes the concepts, prerequisites, 
and methods required to analyze a shotgun proteomics dataset 
using a tandem mass-spectrometry search engine. The discussion 
includes instructions for extraction, preparation, and formatting 
of spectral datafiles; selection of appropriate search parameter set-
tings; and interpretation of the results.

For more background on these various techniques, we refer 
the reader to one of many excellent reviews (1–7).

This manuscript will focus on the analysis of a typical shotgun 
proteomics dataset acquired from a complex protein sample for 
the purposes of protein identification. The various experimental 
technologies of mass-spectrometry based proteomics are 
 constantly changing, with improved instrument resolution, frag-
mentation analysis of larger peptides and proteins, new ionization 
and fragmentation technologies, and novel separation techniques 
and digest reagents. We will not attempt to cover these newer 
 technologies, though we expect that this manuscript will provide 
a foundation for understanding how the software tools should be 
used for these datasets, too.
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This manuscript will not directly address the analysis of 
datasets from proteomics quantitation workflows, except where 
these impact the settings used for protein identification from 
tandem mass spectra. This manuscript will also not attempt to 
describe, in explicit terms, instructions for any specific search 
engine, but will document the concepts and principles behind 
each of the common parameter settings so that the appropriate 
options can be selected for any search engine. Finally, we note 
that we do not address a variety of other techniques and soft-
ware tools for protein identification from tandem mass spectra, 
notably the de novo (8–11) and hybrid sequence tag (12–14) 
approaches.

In order to streamline the description of the methods to follow, 
we introduce some important mass spectrometry concepts and 
terminology that will be used throughout the manuscript.

Mass spectrometry is an analytical technique that measures the 
mass of molecules and atoms (15). The molecules to be analyzed 
are transformed into charged, gas-phase ions which can be manip-
ulated and detected by the mass spectrometer. The ionization of 
peptides for mass spectrometry is typically carried out using one 
of two technologies: electrospray ionization (ESI) or matrix 
assisted laser desorbsion ionization (MALDI). Peptides are given 
charge during ionization by protonation, the addition of one or 
more protons, with the peptides observed in shotgun proteomics 
experiments typically acquiring one proton when subject to 
MALDI ionization, and between one and four protons when 
subject to ESI ionization.

The mass-spectrometer’s mass analyzer uses electrical, magnetic, 
and RF fields to separate the gas-phase ions in time or space 
before they are counted and detected. These fields manipulate 
the ions based on their mass-to-charge ratio (m/z value), rather 
than their mass; therefore the number of attached protons must 
be determined before the mass of an ion can be inferred. The 
number of protons acquired by a peptide or fragment ion is 
called its charge state. The X-axis of a mass spectrum, such as the 
example in Fig. 1, records observed ions’ m/z values in atomic 
mass units, the approximate mass of a hydrogen atom, or equiva-
lently, that of a proton or a neutron. The mass spectrometry 
community generally refers to atomic mass units as Daltons (Da). 
We point out that the protonation of a peptide affects not only 
its m/z value but also its mass, increasing the mass by 1 Da 
(approximately).

2.  Concepts

2.1.  Ionization

2.2. Mass-to-Charge 
Ratio
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Mass-spectra are essentially histograms of ion-counts, with the 
Y-axis of a mass-spectrum representing a (relative) measure of the 
number of ions at a particular m/z value in arbitrary units, as 
shown in Fig. 1. The ion-counts of individual molecular ions are 
generally observed in a number of adjacent m/z bins, revealing a 
characteristic peak shape. A spectrum that samples each ions’ 
peaks at many adjacent m/z values is called a profile spectrum. The 
ability of a mass spectrometer to distinguish two ions’ m/z 
values, called resolution, depends on their true m/z value differ-
ence and the width of the peak shape observed in the mass spec-
trum. Figure 2 shows a schematic representation of the peak 
shapes of some peptide ions, demonstrating how the peaks of 
individual ions may overlap, or convolve, as they get close together. 
Low-resolution instruments may ultimately be unable to measure 
the m/z values of individual ions if they get too close, an effect 
which has important consequences for determining peptide ion 
charge states (see Subheading 2.5) and therefore mass.

During or after acquisition, profile spectra are analyzed using peak 
detection algorithms, to obtain centroided spectra or peak lists, in 
which each peak shape is integrated and summarized by m/z 
value and intensity. After centroiding, the peaks of Fig. 2 become 
impulses, without shape, and depending on the peak detection 
algorithm and instrument resolution, may represent the underly-
ing, convolved peptide ions poorly. Figure 3 shows the centroi-
ded spectrum result of a simple apex-based peak detection 

2.3.  Ion-Counts 
and Resolution

2.4.  Peak-Detection

Fig. 1. Survey scan (#984) of spectra file raftflow37 from Peptide Atlas dataset raftflow.
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algorithm applied to each of the schematic profile spectra of 
Fig. 2. While the low-resolution peak shapes for charge state +2 
and +3 in this figure represent the convoluted shapes of four dis-
tinct peptide ions, most peak detection algorithms will output 
just two or three peaks in this region. Unsurprisingly, the results 
of peak detection on the high-resolution schematic profile spectra 
capture the peptide ions well.

Peptides, as naturally occurring organic molecules, contain 
elements such as carbon, that sometimes incorporate one or more 
extra neutrons in the nucleus. Approximately 1% of naturally 
occurring carbon is observed as the 13C isotope rather than the 
more common 12C isotope, and when a 13C isotope is present in a 
peptide its molecular mass increases by 1 Da (approximately). 
In any proteomics sample, the masses observed for the many cop-
ies of a particular peptide are probabilistically distributed amongst 
those with no 13C isotopes, one 13C isotope, two 13C isotopes, and 

2.5. Isotope Clusters 
and Charge State

Fig. 2. Schematic isotope clusters for peptide AACLLPKLDELRDEGK (molecular weight 1769.93 Da), in charge state +1, 
+2, and +3, as might be observed in profile spectra from high (top row) and low (bottom row) resolution instruments.
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so on. As the mass of the peptide increases, the probability of 
incorporating 13C isotopes increases too, so the relative likelihood 
of each of the peptide’s isotope peaks changes with mass. Figure 2 
shows a schematic isotope cluster for the peptide 
AACLLPKLDELRDEGK (molecular weight 1769.93 Da) in 
charge states +1, +2, and +3, as might be observed in a low- 
resolution and high-resolution mass spectrometer. Notice that the 
peaks of the +1, +2, and +3 charge state isotope clusters are 

separated by 1, 
1
2

, and 
1
3

 Da, making it possible to infer the 

charge state of the ion. Depending on the instrument’s resolution, 
however, we may not be able to reliably determine the m/z value 
spacing of the isotope cluster peaks, before or after peak detection, 
in order to establish the charge state of the peptide ion.

Depending on the resolution of the instrument and the mass of the 
molecules being analyzed, the result of peak detection may reflect 
the weighted average of the m/z value of the individual isotope 

2.6. Average  
and Monoisotopic 
Mass

Fig. 3. Schematic isotope clusters for peptide AACLLPKLDELRDEGK (molecular weight 1769.93 Da) after peak detection, 
in charge state +1, +2, and +3, as might be observed in centroided spectra from high (top row) and low (bottom row) 
resolution instruments.
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cluster peaks and the integration of the entire cluster. In this case, 
the observed m/z value represents the average mass of the peptide 
ion. With sufficient resolution or for small enough masses, a peak 
representing the monoisotopic mass of the peptide ion will be out-
put. The monoisotopic mass is the mass of the peptide ion calculated 
using only the most abundant isotopic form of each element, which 
is the left-most peak of the isotope cluster for peptides in typical 
shotgun proteomics experiments. The calculated monoisotopic 
mass of peptide AACLLPKLDELRDEGK of Fig. 2 in charge state 
+1 is 1770.94, while the average mass is 1771.93.

Peptide tandem mass spectra measure the m/z values of fragment 
ions formed by collisionally induced dissociation (CID), in which 
precursor ions break apart due to collisions with inert gas molecules 
under pressure. The precursor ions, selected by their m/z value, 
typically represent many copies of a particular peptide. When pep-
tides break apart in CID, their protons are retained by one or more 
of the fragments, and the charged fragment ions measured by the 
mass-analyzer and detector, forming the tandem mass spectrum. 
Peptides tend to fragment along the peptide amino-backbone, 
revealing the peptide’s primary structure, its amino-acid sequence. 
When the N terminus (left end) fragment retains a proton, the 
fragment ions are named using the initial letters of the alphabet and 
the number of amino acids in the fragment. Similarly, when the C 
terminus (right end) fragment retains a proton, its fragment ions 
are named using the last letters of the alphabet. The most common 
fragment ions formed by CID are the b-ions and y-ions, though 
a-ions can also be observed. Figure 4 shows a  peptide  fragmentation 
spectrum of the precursor ion at m/z value 898.84 from Fig. 1 

2.7. Peptide 
Fragmentation Spectra

Fig. 4. Tandem mass spectrum (scan #985) of peptide LQGSATAAEAQVGHQTAR, from the charge state +2 precursor ion 
with m/z value 898.84 in scan #984 (Fig. 1), from spectra file raftflow37 of the Peptide Atlas dataset raftflow.
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representing the peptide LQGSATAAEAQVGHQTAR in charge 
state +2. Observed b- and y-ions are marked in the spectrum and 
on the peptide sequence.

There are many open-source and commercial tandem mass-spec-
trometry search engines available, although only a few have 
become widely used. Commercial search engines Mascot (16), 
from Matrix Science, and SEQUEST (17), from Thermo Fisher 
are very popular. More recently, a number of free, open-source 
search engines have found significant adoption, particularly 
X!Tandem (18) and OMSSA (19).

For small scale or ad hoc analyses, Mascot, X!Tandem, and 
OMSSA are available for free on the web, at the websites shown 
in Table 1. Each of these web-based tools allow the user to upload 
a spectral datafile, select search parameters, execute the search, 
and browse and interpret the results. Where greater configuration 
flexibility or search throughput is required, each of these search 
engines can be installed on users’ computers. Each of the avail-
able search engines has strengths and weaknesses in terms of its 
scoring, configuration, file formats, and performance.

The protein sequence database provides peptide sequences to be 
matched against the tandem mass spectra by the search engine. 
As such, the selected protein sequence database will have a signifi-
cant impact on the sensitivity, specificity, and speed of the search. 
Since peptides whose sequence is missing from the protein 
sequence database will not be matched to spectra, poorly chosen 
sequence databases will result in spectra going unidentified and 
their peptides being unobserved. However, larger, more inclusive 
protein sequence databases take longer to search, and may result 
in more false-positive identifications and reduced statistical 
significance.

3.  Materials

3.1. Tandem  
Mass-Spectrometry 
Search Engine

3.2. Protein Sequence 
Database

Table 1 
Free web-interfaces to popular tandem mass spectrometry 
search engines, suitable for small-scale or ad hoc analyses

Search engine URL

Mascot http://matrixscience.com

X!Tandem http://thegpm.org

OMSSA http://pubchem.ncbi.nlm.nih.gov/omssa

http://matrixscience.com
http://thegpm.org
http://pubchem.ncbi.nlm.nih.gov/omssa
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Locally installed search engines generally expect FASTA 
 format protein sequence databases, which can be readily down-
loaded from the appropriate websites. Installation of protein 
sequence databases for locally installed search engines may require 
special configuration and preprocessing of the protein sequence 
database file, but the analysis flexibility gained is significant. The 
local installation of specific protein sequence databases is one of 
the primary reasons to install and run a search engine in-house, as 
the sequence databases provided by the free web-based search 
engines are often quite limited.

When available, organism specific sequence databases elimi-
nate false-positives from closely related species, but can leave pep-
tides from common contaminants unidentified. For this reason, 
keratins, trypsin, and other artifactual protein sequences are 
sometimes added to organism specific sequence databases, even 
though they do not inform the biology of the sample.

Where the source of the proteins is a single, well-characterized  
model-organism, the International Protein Index (IPI) protein 
sequence databases (20) are a good choice. If the origin of the 
sample is unknown, or known to be a mixture of organisms, then 
the Swiss-Prot section of UniProtKB (21) is a good choice. 
UniProt also provides complete proteome sets for sequenced 
organisms and tools for selecting and downloading sub-proteomes 
constrained by protein feature or annotation. NCBI’s RefSeq is 
another good source of protein sequences, and is available in vari-
ous taxonomic divisions. Organism specific RefSeq sequences can 
be found in the genomes section of the NCBI FTP site. Web-
addresses for these protein sequence databases are provided in 
Table 2.

The use of NCBI’s nr and similar computationally merged 
protein sequence databases, or protein sequences from poorly 
annotated genomes is not recommended as redundant peptide 
sequences and poor protein naming can significantly complicate 
the interpretation of the results. In some cases, searching ESTs 
and genome sequences may be appropriate (22), but considerable 

Table 2 
Sources of protein sequences databases suitable for use 
with tandem mass spectrometry search engines

Sequence database URL

IPI http://www.ebi.ac.uk/IPI

UniProt http://www.uniprot.org

RefSeq http://www.ncbi.nlm.nih.gov/RefSeq

RefSeq Genomes ftp://ftp.ncbi.nih.gov/genomes

http://www.ebi.ac.uk/IPI
http://www.uniprot.org
http://www.ncbi.nlm.nih.gov/RefSeq
ftp://ftp.ncbi.nih.gov/genomes
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post-search analysis must be carried out to make up for the lack of 
good meta-data and quality control associated with each entry.

The technical characteristics of the mass-spectrometer and its 
configuration for a particular experiment have a huge impact on 
the tandem mass spectra acquired. As such, these details inform 
the selection of appropriate search parameters. Some parameters 
do not change on an experiment to experiment basis, but others 
do – in each case, the informatics analyst may need to consult 
with the mass spectrometrist to determine appropriate settings.

It is crucial to establish whether the ionization (see 
Subheading 2.1) technology used is MALDI or ESI, as MALDI 
ionization primarily generates charge state +1 peptide ions. 
Electrospray (ESI) instruments commonly generate peptide ions 
in charge states +1, +2, and +3, although +4 and +5 charge states 
are sometimes observed for larger, more basic peptides. In this 
context, MALDI tandem mass spectra can be assumed to repre-
sent charge state +1 precursors, significantly simplifying the 
analysis.

Appropriate mass-accuracy parameters for precursor and frag-
ment ion m/z values must reflect realistic performance character-
istics of the mass spectrometer. These parameters determine when 
an experimental m/z value is considered to match the peptide or 
fragment mass computed in silico. Fragment ion matches are the 
foundation of the scoring and evaluation of the quality of a pep-
tide identification assignment. If the fragment mass-accuracy 
parameter is set too tightly, many valid fragment matches will be 
missed, reducing peptides’ scores. If the fragment mass-accuracy 
parameter is set too loosely, spurious fragment matches will be 
observed, inflating all peptides’ scores and increasing the number 
of false-positive identifications.

Precursor mass-accuracy parameters are chosen similarly, 
depending on the resolution properties of the survey scan. The 
precursor mass-accuracy parameter is the primary criteria used by 
the search engines to determine whether or not a peptide sequence 
will even be scored against a particular spectrum. If set too tight, 
many valid peptide identifications will be missed. If set too loose, 
many incorrect peptide sequences will be scored, resulting in 
slower search times and increased potential for false-positive iden-
tifications. Sometimes, an instrument’s real-time algorithm for 
picking precursor ions from the survey scan will select isotope 
cluster peaks (see Subheading 2.5) other than the monoisotopic 
peak – in this case, the search engine will require precursor match 
tolerance of at least 1 Da to match the experimental m/z value 
with the monoisotopic mass computed from the peptide sequence. 
As the detrimental effects of loose precursor mass-accuracy param-
eters are generally pretty mild, a precursor mass tolerance of 2 Da 
is often used to ensure these peptides are identified.

3.3. Instrument 
Characteristics
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Note that for some instruments, particularly the  LTQ-Orbitrap 
(Thermo Fisher), the mass-analyzer and its resolution used for 
survey scans and tandem mass-spectra in any particular experiment 
is a configuration option set by the mass-spectrometrist – the 
identity of the instrument is not sufficient to establish mass-accu-
racy parameters for a particular search.

For older instruments, it is important to understand whether 
the reported m/z values represent average masses or not (see 
Subheading 2.6). Current instruments generally have the resolu-
tion to measure individual isotope cluster peaks for ions with the 
relatively low charge states represented here, so experimental m/z 
values should be matched against monoisotopic masses.

The handling and processing of tandem mass spectra datafiles 
can, unsurprisingly, significantly impact the quality of the peptide 
identification results. Mass-spectrometers generally store spectral 
data in binary, vendor (and instrument) specific file formats that 
can only be read by software provided by the instrument vendor. 
The mass-spectrometer’s “raw” spectra files must be processed 
and exported to some non-proprietary format for analysis by tan-
dem mass spectrometry search engines. Typically, the vendor 
software will provide some facility for tandem mass spectrum 
export, and a number of open-source tools that use the vendor 
libraries are available as part of the Trans Proteomic Pipeline 
(TPP) (23) project (see http://tools.proteomecenter.org/wiki/
index.php?title=Formats:mzXML) or the ProteoWizard (24) 
project (see http://proteowizard.sourceforge.net).

Peak-detection or centroiding (see Subheading 2.4) must be 
carried out if the raw spectra files contain profile spectra, as the 
tandem mass spectrometry search engines require spectra data-
files of peak lists or centroided spectra. Some tools provide addi-
tional spectral processing facilities, which in many cases can 
improve the quality of the spectra to the analyzed. Common 
spectral processing options include intensity thresholding, deiso-
toping, precursor charge state determination or enumeration, 
and spectrum merging or averaging.

Intensity thresholding removes peaks less than a specific rela-
tive intensity, which can reduce spectrum size and eliminate spuri-
ous fragment matches. Deisotoping finds isotope clusters and 
eliminates the non-monoisotopic peaks, reducing spurious frag-
ment matches. Both of these options have the potential to remove 
valid fragment ions from tandem mass-spectra. The precursor 
charge states may be determined by examining isotope clusters 
(see Subheading 2.5) in the survey scans, which are often not 
exported for the tandem mass-spectrometry search engine. 
Alternatively, multiple copies of each tandem mass spectrum may 
be enumerated, each with a different declared charge state, if the 
software cannot determine the correct charge state. Spectral 

3.4. Tandem Mass 
Spectra Datafile

http://tools.proteomecenter.org/wiki/index.php?title=Formats:mzXML
http://tools.proteomecenter.org/wiki/index.php?title=Formats:mzXML
http://proteowizard.sourceforge.net
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merging and averaging can be carried out when the same  precursor 
m/z value is selected for fragmentation at multiple nearby time-
points in an LC-MS/MS experiment. Merging or averaging these 
tandem mass-spectra boosts the intensity of common peaks and 
reduces the intensity of noise, and can make a significant impact 
in the quality of the peptide identification results.

The open-source tools tend not to provide deisotoping, pre-
cursor charge state determination, or spectral averaging facilities, 
and where the vendor libraries do not provide peak detection rou-
tines, they implement crude centroiding algorithms. Nevertheless, 
until very recently, the vendors did not provide tools for export in 
convenient open formats and the open-source options were the 
only option. Due to the dependence on vendor software and 
libraries, raw spectra conversion must be carried out on the 
Windows platform.

Commonly used open file formats for tandem mass spectra 
are indicated by their file extension: .dta which represents a sin-
gle tandem mass spectrum, with the filename encoding scan 
number and charge state information; .mgf (Mascot generic 
format) which represents many tandem mass spectra in a simple, 
text-based format; and .mzXML, .mzData, and .mzML which 
represent many tandem mass spectra and their meta-data using 
XML. Of the XML formats mzXML appeared first, and has 
been widely adopted; mzData came out of the HUPO 
Proteomics Standards Initiative; and mzML, which represents 
an attempt to merge these XML formats, has yet to be widely 
adopted.

A significant issue with some of these formats is the difficulty 
in retaining important meta-data associated with each tandem 
mass-spectrum, particularly the original raw datafile scan numbers 
and LC retention-time in LC-MS/MS experiments.

Information about the manipulation and handling of the protein 
sample prior to analysis by tandem mass-spectrometry is the final 
prerequisite for a successful peptide identification analysis.

First, the proteolytic enzyme used to cleave proteins into 
peptides must be established. Trypsin, which cuts at Arg (R) and 
Lys (K) unless followed by Pro (P) is most commonly used for 
cleaving proteins into peptides in the context of proteomics 
experiments. Second, Cys (C) residues are typically chemically 
modified, deliberately, to ensure they have a known, predictable 
mass. Iodoacetamide is the most commonly used reagent for 
this purpose, subjecting the Cys residues to carbamidomethyla-
tion and increasing their mass by 57 Da. Other deliberate 
 chemical labeling of specific residues or peptide or protein ter-
mini should also be noted, since these change the expected 
masses of peptides, too. In particular, many proteomics quanti-
tation  workflows use stable-isotope labels, differential chemical 

3.5. Sample 
Preparation
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 modifications on specific amino acids or termini, and these must 
be considered in setting appropriate peptide identification search 
parameters.

Where the sample represents a single protein (extracted from 
a gel band or spot) or is from a specific organism this should also 
be noted, as this may be useful in selecting appropriate protein 
sequence databases and ultimately interpreting the results. In 
addition, specific sample preparation techniques, such as protein 
separation by 2D gel electrophoresis, can result in an increased 
likelihood of observing contaminants, such as keratins, in the final 
result.

The vendor and open-source tools available for processing and 
exporting the tandem mass spectra may not output the spectra in 
a format supported by your choice of search engine. Once in 
some open format, however, any number of tools are available for 
reformatting the data, and if necessary, a custom program can be 
written for the task. The TPP and ProteoWizard projects (see 
Subheading 3.4) provide a number of programs for converting 
between a variety of XML formats and the more basic formats, 
such as dta, and mgf. The web-based search engines generally 
permit one spectra file upload per search.

Many of the search parameters required by tandem mass spec-
trometry search engines capture the classic balance between 
search-time and the potential to miss valid peptide identifications. 
The informatics analyst must ensure that the parameters selected 
do not exclude a large number of potential peptide identifications 
while also keeping running time reasonable. For these parameters, 
there is always the question of whether or not a more thorough 
search will yield sufficient additional identifications (spectra, pep-
tides, or proteins) to warrant the additional search-time. While 
the search-time consequences must always be paid, the benefit is 
generally impossible to quantify before searching, unless some 
kind of additional information is available. We make these issues 
explicit, where they are relevant, in the following steps.

The selection of the protein sequence database to search repre-
sents the classic modeling trade-off between search-time and sen-
sitivity. Larger, more inclusive protein sequence databases will 
take longer to search, but may identify more peptides. Smaller, 
more selective protein sequence databases will take less time to 
search, but important or unexpected peptides may be missed. 
Where the source of the proteins is a single, well-characterized 

4.  Methods

4.1. Prepare Spectra 
Datafile

4.2. Specify Search 
Parameters

4.2.1. Protein Sequence 
Database
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model-organism, the International Protein Index (IPI) protein 
sequence databases are a good choice. If the origin of the sample 
is unknown, or known to be a mixture of organisms, then the 
Swiss-Prot section of UniProtKB is a good choice. For web-based 
search engines, some interesting options may be available, depend-
ing on the site, but specific exotic options, such as proteins from 
a specific bacterial genome, may not. See Subheading 3.2 for a 
discussion of the sequence database options for locally installed 
search engines.

Having established the instrument characteristics as a prerequisite 
to the search in Subheading 3.3, all that remains is to map these 
characteristics to the parameters required by the search engine. 
Average or monoisotopic masses should be specified as appropri-
ate (see Subheadings 2.6 and 3.3). Mass tolerance parameters are 
generally specified in Da (Daltons) or ppm (parts per million). 
The ppm units are used when the mass tolerance is proportional 
to the measured mass, while Da are used when the mass tolerance 
is invariant with the measured mass. Low-resolution tandem 
mass-spectra may require a fragment mass match tolerance setting 
as large as 0.6 Da, while for higher-resolution fragmentation 
spectra a setting of 0.1 Da may be appropriate.

Some search engines will require the name of the instrument 
or a vendor neutral abbreviation of its ionization and mass-ana-
lyzer technologies, since these can affect the peptide fragmenta-
tion significantly. In a pinch, it is largely sufficient to get the 
ionization technology (ESI or MALDI, see Subheading 2.1) 
correct.

While the residual, unmodified, mass of amino acids is well estab-
lished, there is no guarantee that the particular peptide ion 
observed in the mass spectrometer contains only unmodified 
amino acids. Some residues, particularly Cys, are chemically 
modified deliberately (see Subheading 3.5) as part of the sample 
preparation. In this case, the mass modification is called fixed and 
is applied to every Cys residue in every peptide, before scoring. 
There is no running-time cost for fixed mass modifications. 
Incorrectly setting the Cys fixed modification, however, will ren-
der Cys containing peptides unidentifiable. The carbamidom-
ethylation of Cys is the most common such modification, and if 
in doubt, a +57 fixed mass modification on Cys should generally 
be applied.

So called variable modifications specify additional masses to 
apply to particular residues. If the oxidized Met variable modifi-
cation is selected, then every Met residue in the sequence data-
base will be considered first using its residual mass of 131 Da 
(approximately), and then with mass of about 16 Da more, 
147 Da (approximately). Variable modifications can be specified 

4.2.2. Instrument 
Parameters

4.2.3. Mass Modification 
Parameters
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for biological mass modifications, such as for phosphorylation, or 
common artifactual mass modifications, such as oxidation, on 
particular residues. The search time will generally increase expo-
nentially in the number of variable modifications so they should 
only be selected when the variable modifications are expected or 
are significant for the desired biological conclusion.

The proteolytic enzyme setting should match the sample prepara-
tion conditions established in Subheading 3.5.

Even when the specific proteolysis enzyme and its cleavage 
motif is known, there is no guarantee that it will cleave at every 
motif position, or that it will leave non-motif positions alone. As 
such, the samples’ peptides may ultimately have zero, one, or two 
termini consistent with the enzyme, and the may contain internal 
motif sites representing a missed cleavage opportunity. By default, 
search engines will consider only those peptide sequences with 
both N and C termini consistent with the selected proteolytic 
enzyme. A semi-specific (or semi-tryptic) search will consider 
peptide sequence with at least one of the N or C termini consis-
tent with the proteolytic enzyme (trypsin). A non-specific search 
will consider all peptide sequences, regardless of their N or C 
termini sequence. The selection of semi-specific proteolysis will 
typically increase search times by a factor of 20–30, but will often 
increase the number of identified peptides substantially. A non-
specific search is usually only applied in special cases.

The number of internal motif sites a peptide may contain is 
controlled by a parameter called missed cleavages, which is typi-
cally set to a small number, such as 1 or 2, for trypsin.

As outlined in Subheading 3.3, appropriate settings for the pre-
cursor mass tolerance parameters should be set to ensure that 
peptide sequences match the precursor mass of their spectra. Due 
to the selection of non-monoisotopic isotope cluster peaks as pre-
cursor ions, the necessary tolerance is often set at 2 Da, regardless 
of the mass-accuracy characteristics of the precursor measure-
ments. Some search engines will model this behavior explicitly, 
making it possible to specify a tight precursor mass tolerance and 
a small number of non-monoisotopic isotope cluster peaks to test, 
in addition to the monoisotopic mass of the peptide sequence. 
This second parameter is called #13C by Mascot, for example, and 
is generally set to a small number like 1 or 2.

It should be noted that peptide sequences may fail to match 
the mass of their experimental precursors for a variety of reasons. 
An incorrect charge state determination for an experimental pre-
cursor ion will make it impossible to match against its peptide 
sequences, while incorrect fixed or missing variable modifications 
will make it impossible for the in silico computation of a peptide 
mass to match the experimental value.

4.2.4. Proteolytic Enzyme 
Parameters

4.2.5. Precursor Mass 
Tolerance Parameters
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Once the spectra are prepared and uploaded and the search 
parameters are set, the execution of the search is generally straight-
forward. The informatics analyst should check that the search 
does not run too quickly or too slowly as a sanity check on the 
selection of appropriate search parameters.

We provide some general guidelines for results interpretation, 
which are based on the following basic principles. First, peptide-
spectrum match scores merely assess the strength of the fragment 
evidence and cannot establish the correctness of a match; and 
second, explicit information about proteins is destroyed by the 
shotgun proteomics workflow, and must be inferred from the 
available peptide evidence.

Each search engine computes a single overall score for each pep-
tide-spectrum match to rank the peptides matched to each spec-
trum. The score is used to limit the number of retained peptide 
sequences, per spectrum, to the best few. The range of good and 
poor values for the peptide-spectrum match scores will vary, per 
tandem mass spectrum, depending on the precursor ion’s charge 
state, the quality of the spectrum, and the fragmentation charac-
teristics of the (unknown) peptide represented by the precursor. 
As such, it is impossible to say, for a given spectrum, what the 
score of the correct peptide should be. However, we can be con-
fident that a peptide-spectrum match score will rank the correct 
peptide very highly, usually as the best identification, if it is 
matched with its high-quality fragmentation spectrum by the 
search engine. However, the inverse is not true – the rank 1 pep-
tide identification associated with each spectrum is not necessarily 
correct. If the score is sufficiently good, we may conclude the 
evidence for the peptide-spectrum match is strong. If the score is 
too weak, we may have to conclude that the correct peptide-spec-
trum match is unknown, even if the (unknown) correct peptide is 
ranked 1. Various rule-of-thumb thresholds have been published 
for selecting the likely correct peptide-spectrum matches in the 
results from specific search engines, but these have proven con-
siderably less powerful than more formal techniques, such as the 
statistical significance methods described below.

A peptide identification may also have a variety of qualitative 
statistics associated with the match between its spectrum and 
peptide. Commonly derived information include experimental 
precursor m/z, experimental precursor mass, theoretical pre-
cursor mass, presumed charge state, missed cleavages, N- and 
C-terminal enzyme specificity, and number of matching b- and 
y- ions, and the peptide rank. All of these match characteristics 
can be used to assess the quality of the match, though the 
search engines themselves do not generally factor these 

4.3.  Execute Search

4.4. Results 
Interpretation

4.4.1. Peptide-Spectrum 
Match Scores

4.4.2. Peptide-Spectrum 
Match Characteristics
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 characteristics into their scores. These values may also be used 
to check, or derive, the characteristics of the instrument and 
sample preparation.

In the absence of a way to easily decide whether a specific rank 1 
peptide identification should be accepted, various statistical sig-
nificance techniques have been employed to provide search 
engines with calibrated primary or derived scores. For a peptide-
spectrum match of peptide P with spectrum S, the per-spectrum 
p-value statistic assesses the probability that a single “random” 
peptide would score as well as, or better than, peptide P when 
matched against spectrum S. The E-value statistic assesses the 
expected number of “random” peptides that would score as well 
as, or better than, peptide P in a search of a “random” sequence 
database of the same size as the one actually searched. The E-value 
corrects for the increased number of false-positive identifications 
at a given p-value when searching a large sequence database. The 
scores of random peptides matched with spectrum S are used to 
calibrate the expected range of good scores for spectrum S, which 
hopefully includes that of peptide P. Crudely, if the peptide P  ’s 
score is no better than that of random peptides, the evidence for 
it being correct is very weak.

E-values make it possible to choose any number significantly 
less than 1 as a threshold for accepting peptide identifications 
across the entire dataset. The commonly used threshold of 0.05 
indicates that accepted peptide identifications would beat all ran-
dom peptides in each of 20 researches against a similarly sized 
database of independently generated “random” sequences.

In practice, each search engine uses a different model of “ran-
dom” peptides, which may result in an aggressive or conservative 
estimation of the true E-value for a given peptide-spectrum 
match, and makes the E-values essentially non-comparable 
between search engines. However, well-estimated E-values do 
provide a normalized score for comparisons of peptide-spectrum 
matches between spectra and peptides, even those of different 
lengths and spectral properties. E-values are always monotonic 
with the peptide-spectrum match scores for peptides matched to 
a particular spectrum, and so preserve rank. E-values are com-
puted internally by the search engine and output, with the pep-
tide-spectrum match score, in the search engine output, as part of 
the search results.

Recently, estimates of the false discovery rate (FDR) statistic 
has become a popular additional or alternative measure of the 
statistical significance of peptide identification results. The FDR is 
an estimate of the number of incorrect peptide identifications in 
any set of selected peptide identifications. Usually, only the rank 1 
peptides that pass some score or E-value threshold are selected – 
the FDR statistic estimates the number of incorrect peptide 

4.4.3. Peptide-Spectrum 
Match Statistical 
Significance
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identifications in this set. The FDR statistic can be  computed 
from any score valid for comparing peptide identifications between 
spectra, so E-values should be preferred if available. The FDR 
statistic can be readily computed using the search engine as a 
black-box, by applying the search engine both to the sequence 
database of choice and a decoy sequence database of similar size 
containing shuffled or reversed protein sequences. Some search 
engines do this internally too, automatically scoring the intended 
protein sequences and decoy sequences in one search.

To achieve the best of both worlds, we recommend applying 
FDR based filtering to E-values, filtering at 10% FDR.

With the statistically significant peptide spectrum matches identi-
fied, it is now possible to characterize the protein content of the 
sample. Broadly, we look for proteins with multiple independent 
peptide identifications, as we expect that independent peptide 
identification errors will not to confirm the same protein.

While a single statistically significant peptide identification 
with a sufficiently small E-value can provide sufficient evidence 
for a protein, there are also a variety of ways in which a false-
positive peptide identification may be statistically significant, but 
still never the less be incorrect. Sequence homology is one source 
of such errors. The possibility that two such false-positive identi-
fications occur, and point to the same protein, is unlikely. 
Furthermore, the desire to boost the number of identified pro-
teins often leads to rather relaxed statistical significance thresh-
olds, increasing the chance that any particular peptide identification 
is incorrect.

Statistically significant peptide identifications to the same 
peptide should not increase our confidence that identifications 
are correct. These repeated identifications are an artifact of the 
instrument algorithms for determining the precursors to sample 
in LC-MS/MS workflows. MS/MS spectra of the same precursor 
ion are often acquired multiple times during its elution envelope, 
resulting in repeated, related spectra, which tend to have corre-
lated errors. Correlated errors are also likely when multiple pep-
tide ion charge states are seen.

Furthermore, while we usually assume that distinct peptides 
represent independent peptide identifications, there are occasions 
when this is not sufficient. Peptides with common N or C termi-
nus are sometimes identified due to precursor charge state enu-
meration (see Subheading 4.1) or non-specific proteolytic cleavage 
(see Subheading 4.2.4). These dependent identifications are an 
extremely common artifact of some spectral processing software, 
which enumerates identical MS/MS spectra with charges states 
+2 and +3. In the case of these dependent spectra too, only one 
should be counted for the purposes of determining matched 
proteins.

4.4.4. Protein Identification 
and Independence  
of Peptide Identifications
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A conservative approach to protein identification is to required 
the multiple non-overlapping statistically significant peptide 
identifications.

Having established the proteins with a sufficient level of peptide 
identification support, the next step in protein identification is 
the elimination of proteins identified solely due to peptide 
sequences shared with the true proteins of the sample. This is 
quite common when searching a general sequence database 
 containing protein sequences from related organisms due to 
sequence homology, but is also becoming more prevalent as pro-
tein sequence databases containing sequence variants and protein 
isoforms become more widely available. Thus, while peptide iden-
tification support is necessary to conclude the presence of a pro-
tein, it is not sufficient. We can conclude that one of the proteins 
supported by shared peptide identification evidence is present, 
and the difficulty is in determining which one.

When proteins with shared peptide sequences have multiple 
additional significant peptide identifications to peptide sequences 
which are not shared, the choice is clear and these should be 
retained. Proteins whose peptide identifications are a strict subset 
of some other protein’s identifications should be eliminated, as 
the evidence for their presence in the output can be completely 
explained by the other protein. Proteins whose peptide identifica-
tions are exactly equivalent cannot be distinguished by the evi-
dence in the results and must be treated as equally valid conclusions. 
The remaining cases require the careful examination of the distin-
guishing peptide identifications to determine if the evidence is 
strong enough to support the existence of both protein sequences. 
Usually this is not the case, and one or the other, or neither should 
be chosen.

Acknowledgments

The preparation of this manuscript was supported, in part, by 
CPTI Grant R01 CA126189.

References

4.4.5. Protein Identification 
and Peptide Sequence 
Redundancy

 1. Aebersold, R. and Mann, M. (2003) Mass 
spectrometry-based proteomics. Nature 422, 
198–207.

 2. Deutsch, E. W., Lam, H., and Aebersold, R. 
(2008) Data analysis and bioinformatics tools 
for tandem mass spectrometry in proteomics. 
Physiological Genomics 33, 18–25.

 3. Johnson, R., Davis, M., Taylor, J., and 
Patterson, S. (2005) Informatics for protein 
identification by mass spectrometry. Methods 
35, 223–236.

 4. Maccoss, M. (2005) Computational analysis 
of shotgun proteomics data. Current Opinion 
in Chemical Biology 9, 88–94.



138 Edwards

 5. McDonald, W. H. and Yates, J. R. (2003) 
Shotgun proteomics: integrating technologies 
to answer biological questions. Current Opinion 
in Molecular Therapeutics 5, 302–309.

 6. Nesvizhskii, A. I. (2007) Mass Spectrometry 
Data Analysis in Proteomics, volume 367 of 
Methods in Molecular Biology, chapter Protein 
Identification by Tandem Mass Spectrometry 
and Sequence Database Searching, 87–119. 
Humana Press, Totowa, NJ.

 7. Sadygov, R. G., Cociorva, D., and Yates, J. R. 
(2004) Large-scale database searching using 
tandem mass spectra: looking up the answer 
in the back of the book. Nature Methods 1, 
195–202.

 8. Bafna, V. and Edwards, N. (2003) On de novo 
interpretation of tandem mass spectra for 
 peptide identification. In RECOMB ’03: 
Proceedings of the Seventh Annual International 
Conference on Research in Computational 
Molecular Biology, 9–18. ACM Press, 
New York.

 9. Chen, T., Kao, M. Y., Tepel, M., Rush, J., and 
Church, G. M. (2001) A dynamic program-
ming approach to de novo peptide sequenc-
ing via tandem mass spectrometry. Journal of 
Computational Biology 8, 325–337.

 10. Frank, A. and Pevzner, P. (2005) Pepnovo: 
de novo peptide sequencing via probabilistic 
network modeling. Analytical Chemistry 77, 
964–973.

 11. Taylor, A. and Johnson, R. S. (1997) Sequence 
database searches via de novo peptide sequenc-
ing by tandem mass spectrometry. Rapid 
Communications in Mass Spectrometry 11, 
1067–1075.

 12. Mann, M. and Wilm, M. (1994) Error-
tolerant identification of peptides in sequence 
databases by peptide sequence tags. Analytical 
Chemistry 66, 4390–4399.

 13. Tabb, D. L., Ma, Z.-Q., Martin, D. B., Ham, 
A.-J. L., and Chambers, M. C. (2008) 
DirecTag: accurate sequence tags from pep-
tide MS/MS through statistical scoring. 
Journal of Proteome Research 7, 3838–3846.

 14. Tanner, S., Shu, H., Frank, A., Wang, L. C., 
Zandi, E., Mumby, M., Pevzner, P. A., and 

Bafna, V. (2005) Inspect: identification of 
post-translationally modified peptides from 
tandem mass spectra. Analytical Chemistry 
77, 4626–4639.

 15. Dass, C. (2001) Principles and Practice of 
Biological Mass Spectrometry. John Wiley & 
Sons, Inc., New York.

 16. Perkins, D. N., Pappin, D. J., Creasy, D. M., 
and Cottrell, J. S. (1999) Probability-based 
protein identification by searching sequence 
databases using mass spectrometry data. 
Electrophoresis 20, 3551–3567.

 17. Eng, J. K., McCormack, A. L., and Yates, J. 
R. (1994) An approach to correlate tandem 
mass spectral data of peptides with amino acid 
sequences in a protein database. Journal of the 
American Society of Mass Spectrometry 5, 
976–989.

 18. Craig, R. and Beavis, R. C. (2004) Tandem: 
matching proteins with tandem mass spectra. 
Bioinformatics 20, 1466–1467.

 19. Geer, L. Y., Markey, S. P., Kowalak, J. A., 
Wagner, L., Xu, M., Maynard, D. M., Yang, 
X., Shi, W., and Bryant, S. H. (2004) Open 
mass spectrometry search algorithm. Journal 
of Proteome Research 3, 958–964.

 20. Kersey, P. J., Duarte, J., Williams, A., 
Karavidopoulou, Y., Birney, E., and Apweiler, 
R. (2004) The International Protein Index: 
an integrated database for proteomics experi-
ments. Proteomics 4, 1985–1988.

 21. The Uniprot Consortium (2010) The 
Universal Protein Resource (UniProt) in 2010. 
Nucleic Acids Research 38, D142–D148.

 22. Edwards, N. J. (2007) Novel peptide identifi-
cation from tandem mass spectra using ESTs 
and sequence database compression. Molecular 
Systems Biology 3, 102.

 23. Keller, A., Eng, J., Zhang, N., Li, X.-J. J., and 
Aebersold, R. (2005) A uniform proteomics MS/
MS analysis platform utilizing open XML file for-
mats. Molecular Systems Biology 1, 2005.0017.

 24. Kessner, D., Chambers, M., Burke, R., Agus, 
D., and Mallick, P. (2008) ProteoWizard: 
open source software for rapid proteomics 
tools development. Bioinformatics 24, 
2534–2536.



139

Cathy H. Wu and Chuming Chen (eds.), Bioinformatics for Comparative Proteomics, Methods in Molecular Biology, vol. 694,
DOI 10.1007/978-1-60761-977-2_10, © Springer Science+Business Media, LLC 2011

Chapter 10

LC-MS Data Analysis for Differential Protein Expression 
Detection

Rency S. Varghese and Habtom W. Ressom 

Abstract

In proteomic studies, liquid chromatography coupled with mass spectrometry (LC-MS) is a common 
platform to compare the abundance of various peptides that characterize particular proteins in biological 
samples. Each LC-MS run generates data consisting of thousands of peak intensities for peptides repre-
sented by retention time (RT) and mass-to-charge ratio (m/z) values. In label-free differential protein 
expression studies, multiple LC-MS runs are compared to identify differentially abundant peptides 
between distinct biological groups. This approach presents a computational challenge because of the fol-
lowing reasons (i) substantial variation in RT across multiple runs due to the LC instrument conditions 
and the variable complexity of peptide mixtures, (ii) variation in m/z values due to occasional drift in the 
calibration of the mass spectrometry instrument, and (iii) variation in peak intensities caused by various 
factors including noise and variability in sample handling and processing. In this chapter, we present 
computational methods for quantification and comparison of peptides by label-free LC-MS analysis. We 
discuss data preprocessing methods for alignment and normalization of LC-MS data. Also, we present 
multivariate statistical methods and pattern recognition methods for detection of differential protein 
expression from preprocessed LC-MS data.

Key words: Mass spectrometry, LC-MS, Alignment, Normalization, Difference detection

The introduction of mass spectrometry (MS) as a robust and sen-
sitive technology for protein analysis had a major impact on the 
analysis of complex proteome samples. In particular, the measure-
ment of peptides obtained from protein digestion by liquid chro-
matography coupled with mass spectrometry (LC-MS) has paved 
the road to study a large number of peptides of biological samples 
in an automated and high-throughput mode.

Although labeling protocols (e.g., ICAT, iTRAQ, 18O-, 
or 15N-labeling, etc.) remain the core technologies used in 

1.  Introduction
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LC-MS-based proteomic quantification, increasing efforts have 
been directed to the label-free approaches. Label-free method 
is attractive because of cost effectiveness, simpler experimental 
protocols, fewer measurement artifacts, and limited availability 
of isotope labeled references (1, 2). The most common label-
free method is the spectral count method, where the total 
number of MS/MS spectra taken on peptides from a given pro-
tein in a given LC-MS/MS analysis is used to compare differ-
ential abundance between groups of samples (3). This method 
simply counts the number of spectra identified for a given pep-
tide in different samples and integrates results of all measured 
peptides for the protein quantified. One of the alternatives to 
this approach is the comparison of ion intensities, where LC-MS 
runs are compared to identify differentially abundant ions at 
specific mass to charge (m/z) and retention time points. This 
approach is based on precursor signal intensity (MS), applica-
ble to data derived from high mass precision spectrometers. 
The high resolution facilitates extraction of precursor ion sig-
nal intensity and thus uncouples quantification from the iden-
tification process. It is based on the observation that peak 
intensity is linearly proportional to the concentration of the 
ions being detected. A critical challenge in using label-free 
LC-MS analysis for detection of differential protein expression 
lies in normalizing and aligning the LC-MS data from various 
runs to ensure bias-free comparison of the same biological enti-
ties across multiple runs. Once the LC-MS data are prepro-
cessed, difference detection can be carried out using multivariate 
statistical methods and pattern recognition algorithms. Because 
the number of peaks is typically larger than the number of sam-
ples, difference detection raises a problem of multiplicity, where 
the probability of erroneously declaring significance increases 
rapidly with the number of tests being performed.

In this chapter, we present computational methods for quanti-
fication and comparison of LC-MS runs from multiple samples. 
We begin with an overview of LC-MS data. We then discuss LC-MS 
data alignment and normalization methods. This is followed by a 
description of multivariate statistical methods and pattern recogni-
tion algorithms for difference detection from preprocessed LC-MS 
data. Finally, we provide an overview of existing challenges in label-
free LC-MS analysis and future outlook.

LC-MS experiments generate data that consist of three dimen-
sions (1) the elution time, also called retention (RT) point, (2) 
the m/z value, and (3) the intensity (ion abundance). Figure 1a 
presents three-dimensional data derived from a typical LC-MS 

2. LC-MS Data
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experiment for a single run. As shown in the figure, each LC-MS 
run generates spectra comprised of thousands of peak intensities 
for peptides with specific RT and m/z values. Figure 1b shows a 
mass spectrum (ion abundance vs. m/z) at a particular RT point 

Fig. 1. Data derived from a typical LC-MS experiment. (a) Three-dimensional LC-MS 
data of a sample for RT points between 10 and 12 min and m/z values between 400 and 
1,000 Da. (b) Mass spectrum in the range between 400 and 1,600 Da at RT = 10 min. 
(c) TIC plot of the LC-MS data between 10 and 55 min of RT.
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(RT in the figure is 10 min). Figure 1c depicts the total ion 
chromatogram (TIC) obtained by calculating the sum of the ion 
abundances across the m/z dimension for each RT point. 
Although RT is a continuous variable, the LC-MS system pro-
duces mass spectra at a discrete set of RT points, usually a few 
seconds apart. It is typical to represent RT points by scan indices, 
since there is a one-to-one correspondence between RT points 
and total MS scan numbers.

Various data preprocessing steps are conducted before LC-MS 
runs can be compared for differential protein expression. These 
include deconvolution of multiple charged peaks and isotope 
clusters (4), outlier screening, binning, baseline correction, 
smoothing, alignment, and normalization. In the following, we 
briefly discuss alignment and normalization methods.

Alignment is necessary to correct for chromatographic and mass 
spectrometric drifts that do not reflect real sample variation. 
Alignment methods find a common set of features across LC-MS 
runs to allow quantitative comparison of the same biological enti-
ties. Without alignment, the same ion can have different m/z or 
retention time point across multiple runs. Thus, alignment with 
respect to both m/z and retention time is a prerequisite for quan-
titative comparison of proteins/peptides by LC-MS. Alignment 
algorithms have traditionally been used on data points and/or 
feature vectors of fixed dimension (5). Applications of these algo-
rithms for LC-MS data alignment have been reported in the lit-
erature (6–16). The most common approaches for aligning 
LC-MS data are based on the identification of landmarks or struc-
tural points (referring to the unique charge species in data) and 
the use of internal standards, respectively. The landmarks are usu-
ally associated with critical or inflection points. Multiple LC-MS 
runs are then aligned so that the landmarks are synchronized. In 
this framework, the most widely used algorithm is dynamic time 
warping (DTW) that performs the alignment in time axis by 
stretching or shrinking the time series data. Another common 
method is correlation optimized warping (COW), which com-
putes a piecewise linear transformation by dividing the time series 
into segments and then performing a linear warp within each seg-
ment to optimize overlap while constraining segment boundaries. 
The parameters for the best linear transformation are determined 
by maximizing the sum of correlation coefficients or covariance 
between data segments in pairs of samples. Most of the existing 
algorithms including DTW and COW are either limited to a 

3. LC-MS Data 
Preprocessing

3.1.  Alignment
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 consensus combination of pair-wise alignment or use a reference 
(template) for alignment. This limitation leads to suboptimal 
results compared to global alignment techniques.

Alignment methods that rely on optimization of global fitting 
function provide an alternative solution to address the above chal-
lenges without requiring landmarks or internal standards. For 
example, a recently introduced method called continuous profile 
model (CPM) has been applied for alignment and normalization 
of continuous time-series data and for detection of differences in 
multiple LC-MS data (6, 17). Similarly, we developed a probabi-
listic mixture regression model (PMRM) for global alignment of 
LC-MS data (18, 19). We approach the problem of LC-MS data 
alignment with an ultimate goal of detecting differences among 
groups of LC-MS runs. This is accomplished by estimating a 
model that has the following two functions (1) modeling and 
correcting the variation within each class and (2) identifying sys-
tematic changes across classes. Specifically, we use a mixture model 
that incorporates LC-MS runs clustered into K components. For 
each of these groups, a prototypical LC-MS intensity profile is 
estimated by nonlinear regression with spline basis functions.

A particular advantage of PMRM is its ability to model non-
Gaussian multimodal density functions using simpler component 
density functions that can be defined on nonvector data such as 
LC-MS data. Moreover, the framework lends itself to an expecta-
tion-maximization (EM) algorithm with the following features 
(i) the explicit use of transformation priors for modeling the ion 
abundance (peak intensity) variability in both RT and m/z dimen-
sions of the data, (ii) the use of a probabilistic metric that allows 
estimation of the distance among multiple LC-MS data instead of 
computing pair-wise distances, and (iii) the ability to extend the 
method for alignment and normalization of LC-MS data involv-
ing multiple groups. We demonstrated that analysis of LC-MS 
data via PMRM has the potential to address critical concerns such 
as unequal intervals across multiple runs and misalignment both 
in time and measurement space (18, 19). We assume that the 
observed dataset D representing multiple groups is generated 
with the following three features (i) an individual is randomly 
drawn from a population of M objects (i.e., the dataset D);  
(ii) the individual is assigned to the kth group with probability 

ka , where 
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Thus, we estimate the most likely values for the parameters kq  and 
ka  using the assumed functional densities (·)kp  on the observed 

data s'iy . This is accomplished by using the EM algorithm, which is 
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a general procedure for finding the maximum-likelihood estimators 
of the parameters from the mixture models (20–22). Thus, this 
probabilistic-based framework allows us to find the best group align-
ment in time and measurement spaces from the observed dataset D.

The goal is to pull out the mixture of components from the 
full joint density, using the observed dataset D as a guide, so that 
the underlying group behavior can be inferred. A standard 
approach to deal with the hidden data is to utilize the EM algo-
rithm for consistent estimation. The estimation algorithm is 
implemented by taking advantage of the connection between 
smoothing B-splines (at the design points) and mixed regression 
models. Splines are recommended for data fitting whenever there 
is no particular reason for using a single polynomial or other ele-
mentary functions. Spline functions have the following useful 
properties: smooth and flexible, easy to evaluate along with their 
derivatives and integrals, and easy to generalize to higher 
dimensions.

Normalization is one of the important preprocessing tasks in 
LC-MS-based studies. Because of lack of reliable methods, inter-
nal standards spiked in biological samples are typically used for 
normalization. For example, the mzMine toolbox uses multiple 
internal standard compounds injected to samples to calculate a set 
of normalization factors, one for each standard compound based 
on either searching for a standard compound peak closest to the 
peak or using weighted contribution of each standard compound 
(23). However, as the authors themselves noted that this method 
suffers from the ad hoc assignments of internal standards for each 
component based on a subset of relevant chemical properties 
(24). Also, in the context of the need for universally applicable 
analytical tools and that internal standards vary depending on the 
instrument used and samples under study, it is desired to develop 
normalization methods that do not rely on internal standards.

As summarized by Karpievitch et al. (25), several normaliza-
tion methods that do not use internal standards have been used, 
including global scaling, lowess (26), quantile normalization 
(27), and ANOVA models (28). A global scaling method shifts 
all ion intensities of a sample by a constant amount, so that all 
samples have the same mean, median, or total ion current. 
However, this approach cannot capture complex bias trends like 
those commonly seen in LC-MS data. When the sources of bias 
are known exactly, ANOVA models can effectively estimate and 
remove systematic biases (29). Nevertheless, it is generally not 
possible to identify all of the relevant sources of bias to suffi-
ciently address them with ANOVA models. To address this, 
Karpievitch et al. recommend EigenMS that uses singular value 
decomposition to capture and remove biases from LC-MS peak 
intensity measurements.

3.2. Normalization
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Difference detection deals with the identification of peaks that 
represent differentially abundant ions with specific RT and m/z 
values. Various unsupervised and supervised methods have been 
proposed for peak selection from LC-MS data. For example, prin-
cipal component analysis (PCA) transforms the data to a new 
coordinate system such that the variables in the new data space 
(known as scores or principal components) are orthogonal and 
are sorted in the decreasing order of their variances. The peaks 
that contribute to the top factors are identified by using the eigen-
value plot (30). A similar approach can used in a supervised way 
[e.g., partial least squares (PLS)], where the training samples with 
known phenotypes are used to calculate the factors. The weight 
plot obtained from this PLS analysis provides as a tool to select 
useful peaks (30, 31).

Another commonly used supervised approach applies statisti-
cal analyses such as t-test, which recognizes differentially abun-
dant peaks between biological groups involving multiple subjects. 
However, thousands of peaks need to be tested against the null 
hypothesis of no difference. This raises a problem of multiplicity, 
where the probability of erroneously declaring significance 
increases rapidly with the number of tests being performed. To 
address this, false discovery rate (FDR) procedures are typically 
used. For example, FDR procedure by Benjamini and Hochberg 
(32) controls the proportion of errors among rejected tests and 
provides a less conservative approach than traditional approaches 
that control the family-wise error rate.

Another concern is the use of an appropriate test statistic 
when performing the required hypothesis tests. Various statistical 
methods are proposed to address this concern. For example, the 
shrinkage t-statistics of Opgen-Rhein and Strimmer (33) derives 
t-statistics on the basis of a model-free shrinkage estimator of the 
variances. In order to compute the p-values without making para-
metric assumptions, the null distribution of the test statistics can 
be simulated by permutation of the sample labels. For example, 
when comparing two groups, the class labels are randomly re-
assigned and the shrinkage t-statistics are recomputed. This pro-
cedure is repeated many times to obtain an approximation to the 
null distribution for data with structure similar to the one on 
hand. The corresponding p-value is obtained by evaluating the 
probability of observing a test score at least as extreme as the 
observed one in this simulated null distribution. The permutation 
test is repeated for each peak one at a time resulting in thousands 
of p-values, to which the false discovery rate control procedure is 
applied.

4. Difference 
Detection
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The selected peaks are typically used as inputs to a pattern 
classification algorithm such as random forest (RF) and support 
vector machine (SVM). The RF method can be utilized for sam-
ple classification and identification of peaks that contribute 
strongly to classification. It is an ensemble of unpruned classifica-
tion or regression trees, induced from bootstrap samples of the 
training data, using random feature selection in the tree induction 
process. It is a classification method based on “growing” an 
ensemble of decision tree classifiers. In order to classify a new 
sample, the input is analyzed using each of the classification trees 
in the forest. Each tree gives a classification, “voting” for that 
class. The forest chooses the classification having the most votes 
(over all the trees in the forest). A measure of the importance of 
classification variables is also calculated by considering the differ-
ence between the results from original and randomly permuted 
versions of the data set. Prediction is made by aggregating (major-
ity vote for classification or averaging for regression) the predic-
tions of the ensemble. RF generally exhibits a substantial 
performance improvement over the single tree classifier such as 
classification and regression tree. It has been successfully applied 
in proteomics profiling studies to construct a classifier and dis-
cover peak intensities most likely responsible for the separation 
between classes (34, 35).

The SVM recursive feature elimination (SVM-RFE) algo-
rithm recursively classifies samples with SVM and selects peaks 
according to their SVM weights (36). Benefiting from the good 
performance of SVMs in high-dimensional gene expression data, 
SVM-RFE is often considered as one of the best feature selec-
tion algorithms in the literature. Also, stochastic global optimi-
zation methods such as genetic algorithms, simulated annealing, 
and swarm intelligence methods have been used to systemati-
cally select features from a high-dimensional search space with-
out the need for an exhaustive search. A hybrid of SVM and ant 
colony optimization (ACO) was also developed to select a panel 
of peaks (37).

To evaluate the generalization capability of the peaks and the 
SVM classifier determined by the training data set, the SVM clas-
sifier should be tested using a blind validation set, i.e., a test set 
that is set aside during the process of data preprocessing, peak 
selection, and building the SVM classifier. An important weak-
ness of many pattern recognition algorithms is that they are not 
based on a probabilistic model. There is no probability level or 
confidence interval associated with predictions derived from 
using them to classify a new set of data. The confidence that an 
analyst can have in the accuracy of the results produced by a 
given classifier is based purely on its historical accuracy—how 
well it has predicted the desired response in other similar 
 circumstances. Thus, after learning is completed, a pattern 
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 recognition paradigm is evaluated for its performance through 
previously unseen testing data set (also known as a blind valida-
tion set). The purpose of this testing is to prove the adequacy or 
to detect the inadequacy of the selected peaks or the classifier 
built. Inadequate performance could be attributed to insufficient 
or redundant features, inappropriate selection of model structure 
for the classifier, too few or too many model parameters, insuf-
ficient training, overtraining, error in the program code, or com-
plexity of the underlying system such as presence of highly 
nonlinear relationships, noise, and systematic bias. The aim of 
evaluating a classifier is to ensure that it serves as a general model. 
A general model is one whose input-output relationships (derived 
from the training data set) apply equally well to new sets of data 
(previously unseen test data) from the same problem not included 
in the training set. Thus, the goal of a pattern recognition algo-
rithm is the generalization to new data of the relationships 
learned on the training set (38).

Various methods have been used to test the generalization 
capability of a classifier. These include the k-fold cross-validation, 
bootstrapping, and hold-out methods. In k-fold cross-validation, 
the data is divided into k subsets of (approximately) equal size. 
The model is then trained several times, each time leaving out one 
of the subsets from training, but using only the omitted subset to 
compute the classification error. If k equals the sample size, this is 
called “leave-one-out” cross-validation. In the leave-one-out 
method, one sample is selected as a validation sample and feature 
selection and classifier building are performed using the remain-
ing data set. The resulting model is tested on the validation sam-
ple. The process is repeated until all samples appear in the 
validation set. In the hold-out method, only a single subset (also 
known as validation set) is used to estimate the generalization 
error. Thus, the hold-out method does not involve crossing. In 
bootstrapping, a subsample is randomly selected from the full 
training data set with replacement.

Common bootstrapping methods include bagging and 
boosting. Bagging can be used with many classification meth-
ods and regression methods to reduce the variance associated 
with prediction, and thereby improve the prediction process. In 
bagging, many bootstrap samples are drawn from the available 
data, some prediction method is applied to each bootstrap sam-
ple, and then the results are combined by voting. Boosting can 
be used to improve the accuracy of classification. Unlike bag-
ging, the samples used at each step are not all drawn in the same 
way from the same population, but rather the incorrectly pre-
dicted cases from a given step are given increased weight during 
the next step. Hence, boosting uses a weighted average of 
results obtained from applying a prediction method to various 
samples.
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As large volume and high dimensional data are being generated 
by the rapidly expanding use of LC-MS technologies, the number 
of reported applications of proteomic pattern recognition algo-
rithms is expected to increase. To reduce false-positive discover-
ies, significant development on bioinformatics and robust 
validation methods will be required. However, with increasing 
demand comes the need for further improvements that can make 
implementation of these algorithms for high dimensional LC-MS 
data analysis more efficient. Key improvements include (i) careful 
study design to minimize the effect of factors that may introduce 
bias to the data; (ii) enhanced computational power to handle the 
high dimensionality and large volume data; (iii) improved high-
throughput technologies with less background noise and techni-
cal variability; (iv) enhanced quality control and protocol 
development/implementation; (v) improved data preprocessing 
methods to minimize the impact of background noise, sample 
degradation, and variability in sample preparation and instrument 
settings; (vi) improved visualization tools to assess data quality 
and interpret results; (vii) adequate data storage and retrieval 
systems; and (viii) advances in multivariate statistical methods and 
patter recognition algorithms to enhance their speed and make 
them more accessible to the user.

Careful study design is needed to make sure that a protocol is 
in place that enables appropriate randomization and replication 
to avoid bias in sample collection and sample preparation (39). As 
the future of mass spectrometry and proteomics unfolds, it will 
produce improved understanding of the data and the underlying 
biology. Additional developments in label-free protein quantifica-
tion technologies will help to meet the demands of both pro-
teomics and clinical applications.
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Chapter 11

Protein Identification by Spectral Networks Analysis

Nuno Bandeira 

Abstract

While advances in tandem mass spectrometry (MS/MS) steadily increase the rate of generation of MS/
MS spectra, standard algorithmic approaches for peptide identification recently seemed to be reaching 
the limit on the amount of information that could be extracted from MS/MS spectra. However, a closer 
look reveals that a common limiting procedure is to analyze each spectrum in isolation, even though high 
throughput mass spectrometry regularly generates many spectra from related peptides. By capitalizing on 
this redundancy we show that, similarly to the alignment of protein sequences, unidentified MS/MS 
spectra can also be aligned for the identification of modified and unmodified variants of the same peptide. 
Moreover, this alignment procedure can be iterated for the accurate grouping of multiple modification 
variants of the same peptides. Furthermore, the combination of shotgun proteomics with the alignment 
of spectra from overlapping peptides led to the development of Shotgun Protein Sequencing – similarly 
to the assembly of DNA reads into whole genomic sequences, we show that assembly of MS/MS spectra 
enables the highest ever de novo sequencing accuracy, while recovering nearly complete protein sequences. 
We further show that shotgun protein sequencing has the potential to overcome the limitations of  current 
protein sequencing approaches and thus catalyze the otherwise impractical applications of proteomics 
methodologies in studies of unknown proteins.

Key words: Tandem mass spectrometry, MS/MS, Alignment, Assembly, Spectral networks, Shotgun 
protein sequencing, Algorithms

1. Introduction

Tandem mass spectrometry (MS/MS) is nowadays the technology 
of choice for the identification of proteins and posttranslational 
modifications (1). Fast-paced technological developments have 
delivered high-throughput analysis of thousands of proteins in a 
mere couple of hours at unprecedented levels of mass resolution 
and accuracy (2). However, the major computational approaches 
to the automated identification of the millions of MS/MS spectra 
generated on a daily basis still interpret every single MS/MS 
spectrum in isolation like the original techniques for de novo 
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sequencing introduced by Klaus Biemann’s group in the 1960s 
(3) and database searching first proposed in the early 1990s (4, 5). 
In database searching, each MS/MS spectrum is compared against 
a given database of known peptides and significant matches are 
selected for protein identification. Elaborate scoring functions 
have been derived to provide statistical significance to observed 
identifications and help make this the approach of choice for the 
analysis of model organisms (6, 7). However, database search is 
only applicable when the proteins sequences are obtained in 
advance through other experimental procedures such as DNA 
sequencing or Edman degradation. Conversely, de novo sequenc-
ing becomes the mass spectrometric approach of choice for stud-
ies of unknown proteins. Nevertheless, fully automated de novo 
analysis has remained an elusive goal because of difficulties in 
sequencing accuracy – the best algorithms for individual ion trap 
MS/MS spectra still predict one incorrect amino acid out of every 
five predictions (8). In this chapter, we propose to approach the 
MS/MS identification problem from a different perspective – first 
combine uninterpreted MS/MS spectra from overlapping pep-
tides and only then determine the consensus identifications (of 
sequences and modifications) for sets of aligned MS/MS spectra.

Most experimental protocols use enzymatic digestion to generate 
smaller peptides that are then analyzed by mass spectrometry to 
identify proteins in the sample. Trypsin digestion is often used 
because its strong cleavage specificity tends to be reproducible 
and facilitates the analysis of complex samples by generating only 
a few different peptides per protein. Alternatively, less specific 
enzymes or combinations of enzymes may be used to generate 
extensive protein coverage (9, 10). As illustrated in Fig. 1a, b, 
these procedures tend to generate many overlapping peptides 
covering the same protein regions. Although the specificity of 
trypsin digestion leads to many spectra covering the same protein 
regions, nonspecific digestion tends to generate spectra covering 
large portions of the protein sequences.

From a computer science perspective, a protein or peptide 
sequence can be thought of as a string over a weighted alphabet 
of 20 amino acids, with the mass of each amino acid given by 
m(a); the parent mass of a peptide r = a1,…, an is defined as 

r
=

= ∑ 1
( ) ( )

n

ii
m m a . Additionally, the i-th prefix (suffix) mass of a 
peptide, referred to as bi(yi), is simply the summed mass of its 
prefix (suffix) string with i amino acids. Mass spectrometry instru-
ments measure mass

charge
 ratios of ionized molecules, or simply 

2. Data Acquisition 
Protocols
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 measure mass if we make the simplifying assumption that all frag-
ments have charge one.1 Conceptually, when applied to the analy-
sis of peptides, these instruments proceed through the following 
three stages (1, 12):

 1. The first MS stage snapshots the parent masses of the pep-
tides passing through the instrument (MS).

 2. A parent mass is selected and the many copies of (usually) the 
same peptide are dissociated into fragments by a collision-
induced random process. Peptides tend to break only once 
and between consecutive amino acids, often generating com-
plementary pairs of detectable fragment masses: one corre-
sponding to a prefix mass (b-ion) and another corresponding 
to a suffix mass (y-ion).

 3. The second MS stage determines the masses of the peptide 
fragments (MS/MS).

a c

d

b

Fig. 1. Spectral coverage of overlapping peptides resulting from enzymatic digestion of a target protein; horizontal axes 
represent peptide location on the protein and vertical axes separate different MS/MS spectra: (a) Spectral coverage 
resulting from trypsin digestion; (b) Spectral coverage resulting from non-specific enzymatic digestion or digestion with 
multiple enzymes of different specificities. (c) MS/MS spectrum for peptide NQCISFFGALATVAK; b-ions (prefix masses) 
are shown in blue, y-ions (suffix masses) are shown in red. Note that the b/y peak assignments are not known in advance 
but can only be determined for identified spectra. (d) Spectral network formed by a set of 117 IKKb spectra (11); each 
node corresponds to a different spectrum and nodes are connected by an edge if the corresponding spectra were paired 
by spectral alignment. A subcomponent of the spectral network is shown in red along with the corresponding peptides. 
For example, the edge between nodes 1 and 3 indicates that the spectrum for peptide 1 was significantly aligned to the 
spectrum from peptide 3.

1 We remark that the term precursor mass is commonly used to denote the term 
+ +18M Z

Z
, where M is a peptide’s parent mass and Z its parent charge.
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Because many copies of the same peptide are initially present 
in the sample the same masses are detected several times with 
 different masses having different relative abundances. As such, a 
tandem mass spectrum or MS/MS spectrum S of an unspecified 
peptide r with parent mass m(S) = m(r) is a list of fragment masses, 
each with an assigned intensity proportional to the relative 
 abundance of the corresponding fragment mass. Figure 1c 
shows an experimental MS/MS spectrum for the peptide 
NQCISFFGALATVAK (acquired on a Thermo LTQ ion trap 
mass spectrometer).

Samples of digested proteins often contain multiple overlapping 
peptides, i.e., different peptides covering the same region of a 
protein sequence. The simplest example is the acquisition of mul-
tiple spectra from the same peptide (sometimes detected and 
merged using spectral clustering techniques (13–15)). However, 
these samples also commonly contain spectra from similar but dif-
ferent peptides such as prefix peptides (e.g., PEPTI/PEPTIDES), 
suffix peptides (e.g., TIDES/PEPTIDES) or partially-overlap-
ping peptides (e.g., PEPTIDES/TIDESHIGH). MacCoss et al. 
(9) were the first to realize the potential of overlapping peptides 
for the identification of posttranslationally modified proteins and 
have recently demonstrated the increased throughput of modified 
digestion schemes on the identification of proteins from complex 
mixtures (16). Rich peptide ladders, such as illustrated in Fig. 1b, 
are also routinely generated for hydrogen-exchange DXMS stud-
ies (10). Also, even samples digested with trypsin typically have 
many peptides that differ from each other by a deletion of termi-
nal amino acids (semi-tryptic peptides). In addition, the existing 
experimental protocols already unintentionally generate many 
chemical modifications (sodium, potassium, Fe(III), etc.) and it 
has been shown that existing MS/MS datasets often contain 
modified versions for many peptides (17–20).

If the peptide sequences were known in advance, determining 
their overlap would be a straightforward application of the stan-
dard sequence alignment algorithms (21). Conversely, spectral 
alignment is defined as the alignment of matching peaks between 
spectra from overlapping peptides (22, 23). This concept is illus-
trated in Fig. 2a with the matching b-ions highlighted in blue. 
The surprising outcome of spectral alignment is that even though 
one does not know the peptide sequences in advance, it turns out 
that the sequence information encoded in the masses of the b/y-
ions suffices to detect pairs of MS/MS spectra from overlapping 
peptides.

3. Spectral 
Networks
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In principle, the score of the spectral alignment between two 
given spectra could simply be defined as the maximum number of 
matched ions over all possible offsets of one spectrum in relation 
to the other. Although this would work to a limited extent, we 
have found that taking into account ion intensities and correlated 
occurrences of multiple ion types leads to a much more accurate 
separation between true spectral pairs (spectra from overlapping 
peptides) and false spectral pairs (spurious matches between spec-
tra from unrelated peptides). In fact, it turns out that the reliabil-
ity of spectral alignment allows one to discern the high-scoring 
true spectral pairs from the many millions of possible spectral 
pairs in high-throughput proteomics experiments (11, 23). 
Moreover, because each spectrum may align to several other spec-
tra, the set of detected spectral pairs defines a spectral network 
where each node corresponds to a different spectrum and nodes 
are connected by an edge if the corresponding spectra were found 
to be significantly aligned. This concept is illustrated in Fig. 1d 
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Fig. 2. Shotgun Protein Sequencing (SPS) via assembly of tandem mass spectra; (a) Spectral alignment between spec-
trum S1 (from peptide NMQVQWSYL) and spectrum S2 (from peptide NMQVQW-SYLK) reveals the common sequence 
information in both spectra. Next to each spectrum is a graph representation of the corresponding peptide sequence with 
consecutive b-ions represented as nodes connected by arrow edges. (b) Matching peaks in spectral alignments become 
pairwise gluing instructions between every pair of aligned spectra. Additional spectra S

3 (from PQNMQVQWSYL) and S4 
(from NM+16QVQWSYL) respectively illustrate assembly of additional types of spectral alignment: partially overlapping 
peptides and modified/unmodified variants of the same peptide; (c) repeated edges are replaced by single edges with 
weight proportional to their multiplicity and the consensus sequence for all assembled spectra is found by the heaviest 
path in this graph; (d) Recovered portions of a target protein in the sample. Correct amino acid predictions are shown in 
green (93%) and incorrect in orange (7%).
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with a particular network found on a set of IKKb spectra (11). 
Note that because most spectra usually come from noncontigu-
ous protein regions, the consequent outcome of this approach is 
not a single spectral network but rather multiple spectral net-
works, one for each set of spectra from overlapping peptides.

The limited availability of sequenced genomes and multiple 
mechanisms of protein variation often refute the common assump-
tion that all proteins of interest are known and present in a data-
base. Well-known mechanisms of protein diversity include variable 
recombination and somatic hyper-mutation of immunoglobulin 
genes (24). The vital importance of some of these novel proteins 
is directly reflected in the success of monoclonal antibody drugs 
such as Rituxan™, Herceptin™, and Avastin™ (25, 26), all derived 
from proteins that are not directly inscribed in any genome. 
Similarly, multiple commercial drugs have been developed from 
proteins obtained from species whose genomes are not known. In 
particular, peptides and proteins isolated from venom have pro-
vided essential clues for drug design (27, 28) – examples include 
drugs for controlling blood coagulation (29–31) and drugs for 
breast (32, 33) and ovarian (34) cancer treatment. Even so, the 
genomes of the venomous snakes, scorpions, and snails are 
unlikely to become available anytime soon.

Despite this vital importance of novel proteins, the main-
stream method for protein sequencing is still initiated by restric-
tive and low-throughput Edman degradation (35, 36) – a task 
made difficult by protein purification procedures, posttransla-
tional modifications and blocked protein N-termini. In the mid-
1980s, Klaus Biemann’s group (37) had already recognized the 
potential of tandem mass spectrometry for protein sequencing 
and manually sequenced a complete protein from rabbit bone 
marrow. In 2006, this approach was resurrected by Genentech 
researchers who were able to sequence antibodies by a combina-
tion of MS/MS and Edman degradation (38). But while these 
approaches relied on the separate interpretation of each MS/MS 
spectrum, the pattern of overlapping peptides illustrated in 
Fig. 11.1b leads to particularly exciting possibilities for computa-
tional analysis – as in the assembly of genomic sequences from 
DNA reads, it now becomes feasible to assemble uninterpreted 
MS/MS spectra into protein sequences (15, 39).

The assembly of spectra from overlapping peptides can be 
likened to a simple allegory – imagine you have a jewelry box 
containing many copies of a particular model of bead necklaces. 
In this allegory, all necklaces are made from the same type of 

4. Shotgun Protein 
Sequencing
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bead and thread but different necklace models are characterized 
by designer-specified varying thread distances between consecu-
tive beads. Thus, any given necklace model is completely defined 
by a sequence of consecutive inter-bead distances. But what if, 
after collecting many copies of your favorite necklace model, you 
1 day find that someone cut each necklace multiple times at ran-
domly chosen bead positions? In this context, the necklace-model 
recovery problem is that of rediscovering the original necklace 
model given only the leftover pieces in the jewelry box. Although 
mass spectrometry adds a fair amount of complexity to this prob-
lem, this allegory captures the essence of the spectral assembly 
problem where amino acid masses correspond to inter-bead dis-
tances and beads represent the amide bonds between consecutive 
amino acids.

The shotgun protein sequencing (SPS) approach to de novo 
sequencing is a three-stage approach to the assembly of MS/MS 
spectra into amino acid sequences: (a) find pairs of spectra from 
overlapping peptides using spectral alignment, (b) assemble the 
aligned spectra, and (c) determine a consensus amino acid 
sequence for each set of assembled spectra. As illustrated in Fig. 2, 
this approach is not unlike (a) finding necklace pieces with match-
ing interbead distances, (b) gluing the matching beads, and 
(c) determining the necklace model from the recovered distances 
between glued beads.

By capitalizing on the correlated ion occurrences in all assem-
bled spectra, shotgun protein sequencing leads to significant 
improvements in de novo sequencing accuracy and, on average, 
only makes one mistake out of every ten amino acid predictions, 
even on low-accuracy ion trap MS/MS spectra. Using this 
approach, we were able to resequence large portions of multiple 
proteins in pure venom extract from western diamondback rattle-
snake (39). In addition, compelling evidence was found for novel 
Crotalus atrox peptides featuring strong homology to venom 
peptides from other species (Table 1).

In traditional DNA sequence alignment, it often happens that 
query sequences differ from the reference sequences by the inser-
tion or deletion of one or more nucleotides (21). Although the 
insertion/deletion of amino acids is also usually allowed when 
aligning protein sequences, an additional factor needs to be con-
sidered when aligning peptides from experimental samples – the 
occurrence of posttranslational modifications. Recently, Tsur 
et al. (19) and Savitski et al. (41) argued that the phenomenon of 
modifications is much more widespread than previously thought 

5. Spectral 
Networks from 
Spectra of 
Modified Peptides
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and advocated blind database search for the identification of these 
modifications. Alignment-based blind database search was first 
described in detail by Pevzner et al. (42) and essentially allows for 
efficient database search while allowing for one modification of 
any mass. The application of this approach recently resulted in the 
most comprehensive set of posttranslational modifications ever 
identified in aged human lenses (20).

From a sequence alignment perspective, a modification could 
be modeled by following the modified residue with a special char-
acter for each type of modification. Thus, the alignment of a 
modified peptide PEPT*IDE with its unmodified counterpart 
PEPTIDE would result in a single difference caused by the inser-
tion of the modification “*.” Although MS/MS spectra represent 
peptides as a sequence of peaks, computing the spectral alignment 
between spectra from modified and unmodified variants of the 

Table 1
Homologous contig sequences obtained with shotgun protein sequencing on venom 
proteins extracted from Western Diamondback Rattlesnakes (39) (Crotalus atrox). 
On the de novo sequences, parentheses indicate sequences where the order of the 
amino acids was not determined; square brackets indicate indistinguishable amino 
acid masses (on ion trap spectra). On the homologous sequences (identified using 
blastp (NCBI) and SPIDER (40)), the segments identical to the de novo reconstruc-
tions are shown underlined. It turned out that all homologies were either matched 
to a different snake species or can be explained by single nucleotide polymor-
phisms of the previously known Crotalus atrox sequences, which were also detected 
in the same sample

De novo sequence Homologous sequences Species

L(TP)GSQCAD(GV)
CCDQCRF[Q,K]

LTPGSQCADGVCCDQCRFT Agkistrodon contortrix 
laticinctus

LRPGSQCAEGMCCDQCRFM Crotalus durissus 
durissus

LRPGAQCADGLCCDQCRFI Crotalus atrox

KVLNEDEQTRD(PK) KVLNEDEQTRDPK Trimeresurus jerdonii

KVPNEDEQTRNPK Crotalus atrox

(LTNCSPK)(TD)IYSYSWKR LTNCSPKTDIYSYSWKR Crotalus viridis viridis

Y(MF)(YL)DFLCTDPSEKC YMFYLDFLCTDPSEK Crotalus viridis viridis

(IVS)WGGDI(CA)Q(PH)
EPGVY(TK)

IVSWGGDICAQPHEPGHYTK Agkistrodon acutus

IVSWGGDPCAQPREPGVYTK Trimeresurus stejnegeri

IVSWGGDICAQPREPEPYTK Crotalus durissus 
durissus
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same peptide is substantially similar to the sequence alignment 
problem. This correspondence can be illustrated by representing 
each spectrum as sequence of 1/0 symbols respectively corre-
sponding to “peak”/”no-peak” events at each mass value. Thus, 
for any integer mass m, let s(m) be a sequence of m − 1 zeros fol-
lowed by a single one. For example, if an imaginary peptide of 
mass 12 was composed by amino acids XYZ (with masses 3, 4, 5, 
respectively) then its theoretical spectrum would contain peaks at 
masses 3, 7, 12 and the corresponding 0/1-sequence representa-
tion would be s(3)s(4)s(5) = 001000100001. In this framework, 
any sequence of masses (such as a peptide or a modified peptide) 
can be expressed as a sequence of 0/1 symbols and pairs of 
sequences can then be aligned using standard sequence alignment 
algorithms (21). As such, a modification of mass m′ corresponds 
to the insertion of m′ additional zeros right before the sequence 
for the modified residue (i.e., the mass of the residue becomes 
larger). Conversely, if the modification causes a loss of m″ Daltons 
(mass units) from the modified residue then the corresponding 
effect is the deletion of m″ zeros from the sequence for the modi-
fied residue. Although spectral alignment algorithms (11, 15, 42) 
do not explicitly convert spectra to sequences of zeros and ones, 
this model illustrates the essential concepts behind the approach. 
Figure 3a illustrates the spectral alignment between MS/MS 
spectra from the peptides TETMA and TET+80MA.

When first analyzing a sample possibly containing modified 
peptides one does not know a priori that residues or peptides will 
be modified. Thus, spectral alignment considers every possible 
spectral pair and every possible location for the mass difference 
(e.g., modification mass) between the aligned spectra. By  requiring 
a significant match between the aligned spectrum peaks (11) but 
placing no restrictions on which modifications to consider, this 
approach can be used to discover novel or unexpected modifica-
tions. In fact, when applied to a set of spectra from cataractous 
lenses proteins from a 93-year-old patient, spectral networks were 
able to rediscover the modifications identified by database search 
methods and additionally discovered several novel modification 
events (11, 19).

The identification of peptides containing multiple modifica-
tions via database search is a challenging problem because of the 
combinatorial explosion in the number of possible modification 
variants for all the peptides in a database (19). Not only can the 
large number of possible peptide variants make this approach 
much slower, but the increased number of peptide candidates for 
any given spectrum significantly increases the risk of incorrect 
identifications. However, samples containing peptides with two 
or more modifications often also contain variants of the same 
peptide with only one or no modification. In these cases, we have 
found that spectral alignment is able to group these related  spectra 



160 Bandeira

from multiple modification variants of the same peptide into 
small spectral networks. Figure 3b illustrates the spectral net-
work for a particular peptide in a sample of cataractous lenses 
proteins.

By grouping together spectra from multiple variants of the 
same peptide, spectral networks additionally contribute to the 
reliable identification of highly modified peptides. Although data-
base searching is restricted to matching ion masses between theo-
retical and observed spectra, spectral networks further capitalize 
on the correlated cooccurrences of ions at corresponding masses 
and with similar peak intensities (Fig. 3c). In general terms, it 
becomes easier to identify a highly modified peptide if one addi-
tionally observes highly-similar spectra from the intermediate 
modification states. Thus, spectral alignment not only allows one 
to discover unexpected modifications (instead of only identifying 
expected modifications) but additionally defines an alternative 
way to reliably identify highly modified peptides.

Monoclonal antibodies have been exploited as indispensable 
reagents for biomedical research and as diagnostic and therapeu-
tic agents (43, 44); Fig. 4 illustrates the recombinant nature of 
immunoglobulins. The specificity and effector functions of anti-
bodies are highly dependent on the amino acid sequence and the 
presence (or absence) of specific modifications (24). Although 
DNA sequencing is routinely used in the initial characterization 

6. Comparative 
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Fig. 3. Identification of posttranslational modifications through spectral networks; (a) spectral alignment between modified 
and unmodified variants of the peptide TETMA (b-ions shown in blue, y-ions in red, blue/red lines track consecutively 
matched b/y-ions); (b) grouped modification states of the peptide MDVTIQHPWFK from a sample of cataractous lenses; (c) 
Highly correlated MS/MS spectra from the indicated peptide variants.
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of monoclonal antibodies, subsequent mutations and modifica-
tions are typically recognized by analysis at the protein level. It is 
therefore critical to sequence the antibodies in order to monitor 
the integrity of the molecule, to troubleshoot performance in 

Fig. 4. Center: Structure of a typical immunoglobulin (antibody) protein. Two identical heavy chains and two identical light 
chains are connected by disulfide linkages. The antigen-binding site is composed of the variable regions of the heavy and 
light chains, whereas the effector site of the antibody is determined by the amino acid sequence of the heavy chain 
constant region. Bottom: Rearrangement of the light chain genes during B lymphocyte differentiation. While the develop-
ing B cell is still maturing in the bone marrow, one of the 300 or more V gene segments combines with one of the 5 J 
gene segments and moves closer to the constant (C) gene segment. Top: Rearrangement of the heavy chain genes. A 
heavy chain gene contains three segments (V, D, and J) that come together to form the variable region, as well as a 
constant region.
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preclinical assays, to regenerate cDNA by reverse engineering, 
and to perform quality control. In addition, protein-level rear-
rangements (such as observed on IG4 antibodies) can only be 
revealed by protein level analysis.

Comparative SPS (CSPS) complements SPS by using homol-
ogous sequences from known proteins (e.g., known antibodies) 
as templates to assemble unknown proteins. The key computa-
tional challenge is not unlike “comparative fragment assembly” in 
classical DNA sequencing when a known genome (e.g., human) 
is used as a template for assembling another genome (e.g., 
macaque). CSPS first constructs a set of homologous proteins by 
matching SPS contigs against the protein database and further 
scores each protein by the overall alignment score of all contigs 
matched to this protein. All proteins with scores above the thresh-
old are selected and the theoretical spectra of these proteins are 
constructed. For our purposes, the theoretical spectrum of a pro-
tein is the set of all possible b-ions representing an “idealized” 
top-down spectrum of the protein. The resulting “long” theo-
retical spectra of the selected proteins are further assembled with 
real spectra/contigs using Shotgun Protein Sequencing. The the-
oretical protein spectra serve as the “glue” connecting SPS con-
tigs that map to at least one common mass on the same theoretical 
spectrum (Clustal W alignments are used to map multiple homol-
ogous proteins to the same reference protein). Sets of contigs 
matched to the same protein but without common masses on the 
protein spectrum are still ordered but not glued into the same 
CSPS contig. After application of SPS, a consensus sequence is 
again derived using only the mass differences determined from 
the overlapped spectra (i.e., homology glues contigs but does not 
directly influence the resulting protein sequence).

CSPS was first demonstrated on two monoclonal antibodies 
(45) that had been raised against the B- and T-cell Lymphocyte 
Attenuator molecule (BTLA): a first-generation antibody (aBTLA) 
and a mutated version of the original species (mt-aBTLA). 
Antibodies were raised in mice against human BTLA and were 
selected for their ability to attenuate T cell responses in vitro to 
protect against graft versus host disease. The antibodies were sep-
arately digested with Lys-C, Glu-C, Asp-N, chymotrypsin, pepsin 
and trypsin and the resulting peptide mixtures were analyzed with 
LTQ-FTMS and LTQ-Orbitrap instruments.

The CSPS assembly of aBTLA heavy chain contigs is illus-
trated in Fig. 5. To validate our approach, all resulting CSPS con-
tigs were compared with the aBTLA sequence obtained by manual 
Edman degradation sequencing (and MS/MS database search in 
the constant regions).

SPS resulted in 63 contigs covering 95% of the aBTLA heavy 
chain (not counting contigs from proteases and contaminants); 
grouped by CSPS into three long contiguous regions (CSPS 
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 contigs) of lengths 288, 40, and 92 aa using two homologous 
proteins. Comparison of the CSPS contigs with the Edman deg-
radation data revealed that the three sequence gaps not covered 
by CSPS contigs had no coverage by MS/MS spectra. Thus, these 
gaps were caused by particularities of the sequence that hinder 
MS/MS analysis rather than by shortcomings of CSPS algorithm. 
For example, the [(N)STFRSV(S)] gap contains the NXT motif 
indicative of glycosylation. Indeed Asn297 is typically glycosy-
lated and this impedes the identification of these fragments. In 
addition to this area the first three N-terminal amino are missing 
because the N-terminal peptides were either too short (<6 aa) or 
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Fig. 5. Comparative protein sequencing. The heavy chain contigs matched to two different proteins (gi|148540420 and 
gi|148686583) homologous to different regions of the aBTLA heavy chain – 9 SPS-contigs matched gi|148540420, 47 
SPS-contigs matched gi|148686583 and 8 contigs matched both (see Fig. 2). The protein regions matched by the latter 
were confirmed by a corroborating CLUSTALW alignment of gi|148540420/gi|148686583. (a) Homology-derived order of 
36 aBTLA heavy chain protein contigs. Each protein contig is represented as a colored dash on the circumference; the 
color gradient and black arrow at the top indicate the arbitrary contig order (because the contig order is unknown before-
hand). Colored arrows reveal the contiguous contig order induced by the homologous proteins and the dashed colored 
arrows indicate protein contigs in the correct order but separated by sequence gaps. The recovered contig order is indi-
cated by indices next to each contig; negative indices −j indicate that the j-th contig resulted in a reversed sequence (i.e., 
inferred from a sequence of y-ions rather than b-ions). One can derive the contig order by starting at contig 1 (blue), that 
is connected to contig 2 (red), that is connected to contig 3 (yellow), etc. resulting in the reconstructed aBTLA heavy 
chain. (b) Linear rendering of the homology-induced contig order illustrated in (a). (c) The complete aBTLA heavy chain 
sequence recovered by our approach; highlighted sections were covered by protein contigs (95% coverage) and the 
missing amino acids were obtained from the homologous protein sequences.
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too long (>18 aa) for MS/MS identifications. CSPS results on 
the mutant BTLA antibody (mt-aBTLA) were similar with 97% 
sequence coverage with three contigs of lengths 292, 40, and 97. 
In addition, this sequence clearly illustrates the ability of CSPS to 
predict multiple mutations and modifications – 25 out of 28 
(89%) mass offsets from the closest homologous protein correctly 
matched the target sequence. It turned out that the sequence 
gaps were identical to the corresponding regions in the homolo-
gous proteins. When combined with the resulting match to the 
mass of the intact protein, these identical homologies could be 
used to connect the long contigs into a contiguous sequence (this 
step should be taken with caution because multiple mutations 
may result in compensatory offsets of total mass zero). Even with-
out this final step, sequencing the aBTLA light chain resulted in 
two contigs (34 and 179 aa) covering 97% of the sequence. 
Similarly, the mt-aBTLA light chain resulted in a single contig of 
length 217 covering 99% of the target sequence.

Spectra from overlapping peptides or modification-variants of the 
same peptide deliver a wealth of correlated sequence information 
that can be explored with a new generation of algorithms based 
on spectral networks. In a departure from standard procedures, 
having spectra from modified/unmodified variants of the same 
peptide allows one to directly discover the modifications in the 
sample rather than having to guess in advance the list of modifica-
tions to search for. Spectra from multiple modification-variants 
can be combined into spectral networks and correlated ion masses 
and intensities used to increase the confidence in the identifica-
tion of highly modified peptides.

Tandem mass spectra are inherently noisy and mass-spec-
trometrists have long been trying to reduce the noise and achieve 
reliable de novo interpretations by advancing both instrumenta-
tion and experimental protocols. In particular, Zubarev and col-
leagues (46, 47) have demonstrated the power of combining CID 
and ECD spectra. However, this technique as well as the approach 
described in Frank et al. (48) require either special instrumenta-
tion or highly accurate Fourier transform mass-spectrometry. 
While one can also reduce the complexity of spectrum identifica-
tion by using stable isotope labeling (49), the impact of this 
approach (for peptide identification) has been restricted, in part, 
by the cost of the isotope and the high mass resolution required. 
Alternative end-labeling chemical modification approaches have 
disadvantages such as low yield, complicated reaction conditions, 
and unpredictable changes in ionization and fragmentation. As a 

7. Discussion
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result, the impact of these important techniques is mainly in  protein 
quantification rather than identification (49). The key difference 
between spectral networks analysis and labeling techniques is that, 
instead of trying to introduce a specific modification in a controlled 
fashion, spectral networks take advantage of the multiple modifica-
tions naturally present in the sample. This approach allows one to 
decode modifications (without knowing in advance what they are) 
and thus provides a computational (rather than instrumentation-
based) solution to the problem of MS/MS spectra identification.

From a protein sequencing perspective, the extensive sequence 
coverage achievable with nonspecific proteolytic digestion enables 
the assembly of spectra from overlapping peptides into long pro-
tein contigs. Moreover, by capitalizing on the correlated sequence 
information in sets of assembled spectra, the shotgun protein 
sequencing approach is able to significantly increase the de novo 
sequencing accuracy even on low mass-accuracy ion trap MS/MS 
spectra. In general, using mass spectrometry for shotgun protein 
sequencing results in certain limitations that are without counter-
part in the DNA sequencing realm. In particular, the sampling 
frequency of the amino acids across a protein sequence is not uni-
form and is dictated by local sequence context and thus the cover-
age of a protein by its peptides is biased by the specificity and 
distribution of cleavage sites of the proteases employed. Also, cer-
tain combinations of amino acids have identical elemental compo-
sitions that are indistinguishable by mass and may leave ambiguity 
in the draft (or even finished) sequences depending on the com-
pleteness of fragmentation in the MS/MS spectra (I = L = 113, 
GG = N = 114, GA = Q = 128). Others have the same nominal 
mass, but not elemental composition, and are distinguishable only 
in MS/MS from high resolution instruments (Q = K = 128 and 
W = DA = VS = 186). High-resolution mass spectrometers, such as 
Thermo’s LTQ-Orbitrap, may seamlessly elevate Shotgun Protein 
Sequencing to a whole new level of productivity. In principle, 
higher mass accuracy should be directly translatable into higher 
sequencing accuracy and much more sensitive detection of over-
laps between spectra with poor b/y-ion ladders.

Nonetheless, even with a standard experimental setup and 
using only a relatively small MS/MS dataset from a modest 
 resolution mass spectrometer, shotgun protein sequencing very 
rapidly generated much more information about western 
 diamondback rattlesnake venom proteins than some of the most 
laborious Edman degradation/cloning studies (50). Moreover, 
these contigs can be easily produced with minimal experimental 
and computational effort while Edman degradation projects often 
take months to complete. Furthermore, the recovered protein 
contigs may be readily aligned and ordered by comparative  protein 
sequencing that, akin to comparative DNA sequencing,  utilizes 
previously determined protein sequences from  evolutionarily 
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close species. CSPS opens up many possibilities for sequence 
 discovery in the biotechnology industry compared to traditional 
methods. Replacing Edman degradation with CSPS significantly 
increases the resulting coverage from the same amounts of mate-
rial (95–99% sequence coverage vs. ≅10% for Edman sequenc-
ing), greatly speeds up the analytical protocol and allows one to 
automatically discover posttranslational modifications. Thus CSPS 
opens a possibility to correlate unexpected modifications with 
changes in antibody efficiency while simultaneously tracking 
mutations. Also, CSPS is already faster than the cDNA sequenc-
ing route commonly used in many laboratories.
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Chapter 12

Software Pipeline and Data Analysis for MS/MS Proteomics: 
The Trans-Proteomic Pipeline

Andrew Keller and David Shteynberg 

Abstract

The LC-MS/MS shotgun proteomics workflow is widely used to identify and quantify sample peptides 
and proteins. The technique, however, presents a number of challenges for large-scale use, including 
the diverse raw data file formats output by mass spectrometers, the large false positive rate among peptide 
assignments to MS/MS spectra, and the loss of connectivity between identified peptides and the sample 
proteins that gave rise to them. Here we describe the Trans-Proteomic Pipeline, a freely available open 
source software suite that provides uniform analysis of LC-MS/MS data from raw data to quantified 
sample proteins. In a straightforward manner, users can extract MS/MS information from raw data of 
many instrument formats, submit them to search engines for peptide identification, validate the results to 
remove false hits, combine together results of multiple search engines, infer sample proteins that gave rise 
to the identified peptides, and perform quantitation at the peptide and protein levels.

Key words: Shotgun proteomics, Freeware, Machine learning, Protein inference

The LC-MS/MS shotgun proteomics workflow is widely used to 
identify and quantify sample peptides and proteins (1). The tech-
nique, however, presents a number of challenges for large-scale 
use, including the diverse raw data file formats output by mass 
spectrometers, the large false positive rate among peptide assign-
ments to MS/MS spectra, and the loss of connectivity between 
identified peptides and the sample proteins that gave rise to them. 
Many tools addressing these challenges are available from different 
groups, but must be assembled together in ways that are usually 
not convenient. There are only a few suites of tools that aim to 
provide a single environment for performing all or most steps in 

1.  Introduction

Cathy H. Wu and Chuming Chen (eds.), Bioinformatics for Comparative Proteomics, Methods in Molecular Biology, vol. 694,
DOI 10.1007/978-1-60761-977-2_12, © Springer Science+Business Media, LLC 2011



170 Keller and Shteynberg

the shotgun workflow. These include the OpenMS Proteomics 
Pipeline (2), MaxQuant (3), and the oldest and most comprehen-
sive, Trans-Proteomic Pipeline (4).

The Trans-Proteomic Pipeline (TPP) is a fully open-source suite 
of software tools that facilitates and standardizes the analysis of 
LC-MS/MS data. It includes components for MS data representa-
tion, MS data visualization, peptide identification and validation, 
protein inference, and quantitation. The pipeline is integrated 
together behind a web-based GUI interface and is compatible with 
Windows, Linux, and MacOS platforms. In a straightforward uni-
form manner, users can extract MS/MS information from raw data 
of many instrument formats, submit them to search engines for 
peptide identification, validate the results to remove false hits, infer 
sample proteins that gave rise to the identified peptides, and per-
form quantitation at the peptide and protein levels. Importantly, 
statistical methods are used to provide predicted errors associated 
with peptide and protein identifications, and quantitation abun-
dance ratios. Visualization tools enable users to explore both MS1 
and MS2 data to evaluate analysis results. Both CAD (collision- 
activated dissociation) and ETD (electron transfer dissociation) types 
of MS/MS data are supported by the TPP.

The TPP is freely available for multiple platforms. Downloading 
and installation instructions for Windows are found at (5), and 
for Linux and MacOS, at (6). A demo describing how to use the 
software is available at (7). Support for the software is provided 
via the spctools-discuss email discussion list at Google Groups. 
Users can browse the list archive, or join the list (currently with 
over 960 members) to pose questions to members of the TPP 
community. In addition, twice each year the Institute for Systems 
Biology offers a 5-day course on proteomics data analysis and use 
of the TPP (8). All programs of the TPP are open source and 
available at (9) for use consistent with their licenses. Users famil-
iar with C++ can modify the source code to customize the analysis 
to their specific needs.

The TPP web powered user interface, Petunia, facilitates use of 
the software from processing of raw LC-MS/MS files all the way 
to protein level quantitation. In addition, it accesses several utili-
ties for creating search databases and viewing data. All tools in the 

2. Materials

3. Methods



171Software Pipeline and Data Analysis for MS/MS Proteomics

TPP can also be run on a command line terminal. Learning the 
command line interface for the tools will empower the user to 
activate newly introduced features and fixes before they become 
integrated into Petunia (see Note 1).

At the home page of Petunia, users must first select the search 
engine for the current analysis. The Analysis Pipeline then displays 
a series of steps that can be run in order, as shown in Fig. 1. Users 
commence analysis by converting the raw LC-MS/MS data files to 
either mzXML (10) or mzML (11) using the converter utilities in 
Petunia. The TPP transparently supports both formats.

The first major algorithmic step in moving from raw MS/MS 
data to identified peptides and proteins is the database search, 
whereby peptides are assigned to spectra. Some search engines 
use a sequence database of known protein or nucleotide sequences 

3.1. Peptide 
Identifications: 
Searching Sequence 
and Spectral Libraries

Fig. 1. Petunia web-based GUI Interface for use of the TPP tools.
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to extract peptides and generate theoretical spectra for scoring 
against observed spectra. Users must specify search conditions 
including parent mass tolerance, peptide enzymatic termini, 
amino acid modifications, and database. Careful attention must 
be devoted to the selection of the database. It should include the 
sequence of the proteins that are expected to be in the sample, 
and may also include a set of decoy sequences known to be absent 
in the sample, distinguished by a name with fixed prefix. Their 
identifications are expected to be a representation of true nega-
tives (12). Decoy sequences provide both a set of known incor-
rect results that can aid in distinguishing correct from incorrect 
results, and a measure of error (false discovery rate based on 
decoys). These aspects are discussed further in Subheading 3.2 
below.

X! Tandem is an open-source sequence search engine distrib-
uted in the TPP with the K-score module optimized for use with 
other TPP components (13). Additional open-source search 
engines such as OMSSA (14) and MyriMatch (15) will also be 
included in future releases. In the Database Search tab of Petunia, 
users can set search parameters in the built-in text editor and exe-
cute the X! Tandem search (see Note 2). Other search engines 
must be run independently and their results imported. All search 
results must be converted to pepXML format (4) prior to subse-
quent analysis in the TPP. SEQUEST (16) and Mascot (17) 
results can be converted to pepXML and analyzed in the TPP 
using Petunia, whereas those of Inspect (18), MyriMatch, 
OMSSA, ProbID (19), and Phenyx (20) are currently supported 
only on the command line.

An alternative to searching a sequence database is to search a 
database of previously identified MS/MS spectra collected into a 
spectral library. This method has become more common because 
of the speed and accuracy of spectral library searches which com-
pare observed spectra directly against those in a library with 
known peptide assignments; its weakness is its ability to identify 
only spectra included in the library. SpectraST (21) is a spectral 
library software component of the TPP used for searching and 
generating spectral libraries. Users can specify search parameters 
such as parent mass tolerance and peptide enzymatic termini 
directly on the Petunia search page, and then execute the search. 
Results are automatically written in pepXML format.

Numerous spectral libraries are available and can be down-
loaded freely at (22), thanks mainly to the efforts of PeptideAtlas 
and NIST. For samples or methods where a spectral library is 
unavailable, it can be generated using tools available in the 
SpectraST software (see Note 3). Perhaps the most powerful way 
to utilize SpectraST in the TPP (assuming one starts without a 
preexisting spectral library) would include doing multiple pass 
searches where sequence searches are followed by iterative rebuilding 
of the spectral library. Each subsequent search would start with a 
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spectral library search to quickly identify previously seen spectra 
(effectively constituting a data-reduction step), followed by 
searching of the high-quality unidentified data against a sequence 
database with one or more search engines and conditions. Each 
new round of sequence searching would be followed by a com-
prehensive expansion of the spectral library with newly identified 
spectra, as shown in Fig. 2. In theory, this process could continue 
until all peptide ion fragment spectra are identified.

PeptideProphet (23) is a critical component of the TPP, used to 
automatically identify the often small fraction of peptide assign-
ments to MS/MS spectra in a data set that are correct. It employs 
the Expectation-Maximization (24) algorithm to compute prob-
abilities that each top-ranking result is correct based on search 
engine scores and peptide properties, such as the number of ter-
mini consistent with enzymatic cleavage. It does so by partition-
ing the observed distributions of those features into inferred 
correct and incorrect distributions, which then contribute to the 
computed probability that any result is correct. Because it learns 
from each data set how to distinguish correct from incorrect 
results, it is able to derive in a robust manner accurate probabilities 
truly reflective of the confidence that each result is correct. This 
means that 90 and 50% of all results in a data set assigned proba-
bilities of 0.9 and 0.5, respectively, are expected to be correct.

3.2. Validation  
of Search Results: 
PeptideProphet

Fig. 2. Workflow utilizing sequence and spectral library searches. After each new sequence database search, results are 
combined together, validated, and used to expand the spectral library which in turn is searched to identify duplicate 
spectra. Protein inference and validation is performed using the ProteinProphet tool, and can be done either on the single 
standard search engine analysis, the combined analysis of  several search engines, or on the results of a spectrum library 
search done with SpectraST.
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In general, analyzing together as many results as possible is 
advised because this helps the program better learn distributions 
of search scores and peptide properties among the correct and 
incorrect results. However, it is important to include only search 
results with similar expected distributions: Results generated from 
similar samples and mass spectrometers, and searched with similar 
search conditions. In addition, the software requires the presence 
of some incorrect results in the data set in order to learn how to 
distinguish them from correct results. It is therefore advisable to 
include in the analysis search results for all MS/MS spectra sub-
mitted to the search engine, without any filtering of low scoring 
data. Finally, searches employing databases with decoy sequences 
are generally recommended because they provide PeptideProphet 
with a set of known incorrect results thereby facilitating its analysis.

PeptideProphet models the results of each parent charge 
independently. Some parent charges may have too few results to 
enable an analysis. In this case, PeptideProphet roughly estimates 
whether a result is likely correct or incorrect based on learned 
distributions of results of an adjacent parent charge. In addition, 
when a single MS/MS spectrum is searched both as a doubly and 
triply charged parent ion, the probabilities of both results are 
adjusted to ensure that the sum of their probabilities does not 
exceed unity.

PeptideProphet can be run from the Analyze Peptides tab of 
Petunia (see Note 4). Most user options specify peptide proper-
ties to be used, in addition to search scores, to compute the prob-
abilities that results are correct. By default, NTT (number of 
tolerable termini consistent with enzymatic cleavage) and NMC 
(number of missed enzymatic cleavages) are used. Low resolution 
mass difference information (between parent and assigned pep-
tide) is used unless the “Use accurate mass binning” option, 
appropriate when the MS/MS parent mass is determined on a 
high resolution instrument, is selected. Select the “Use 
Hydrophobicity/RT information” option to compare the 
observed parent retention times with those predicted based on 
their assigned peptide sequences. Additional options such as “Use 
pI information” and “Use N-glyc motif information” should be 
selected when relevant, such as Free Flow Electrophoresis (FFE) 
(25) and N-glycocapture (26) sample data, respectively.

When search results were generated using a database with 
decoy protein sequences (distinguishable from non-decoy entries 
by an identifying name prefix), the user can specify that the pro-
gram take advantage of decoy hits as known incorrect results by 
selecting the “Use decoy hits to pin down…” option and enter-
ing the decoy protein name prefix. With this selection, the decoy 
hits will contribute only to the distributions of search score and 
peptide properties among incorrect results. It requires that 

3.2.1. Running 
PeptideProphet
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 sufficient numbers of decoy hits of each parent charge are present, 
and is most useful for improving the model when there are few 
correct results in the sample and the standard unsupervised 
method is unable to identify those from the bulk of incorrect 
results. Additionally, the “Use Non-parametric…” option can be 
selected to employ a smoothed bar graph modeling of discrimi-
nant score distributions. This has the advantage of not requiring 
the learned distributions of search score among correct and incor-
rect results to adhere to pre-designated parameterized distribu-
tions. For search engines where the parametric model is not very 
robust or does not exist (e.g., SpectraST, Inspect, MyriMatch, 
OMSSA, Phenyx) PeptideProphet must be run in this mode.

After running PeptideProphet, a probability is assigned to each 
search result in the data set indicating its likelihood of being cor-
rect. These can be viewed in the pepXML viewer in the probabil-
ity column. Note that by default, all results with a probability less 
than 0.05 are discarded after analysis to make the pepXML file 
sizes more manageable. If you would like to retain all results, you 
can set the minimum probability value to 0 before running 
PeptideProphet.

It is important to view the distributions of search score and 
peptide properties learned by the program among correct and 
incorrect results of each parent charge. This model summary infor-
mation, visible on clicking on any probability link, can be used to 
be sure the program did an adequate job and as a diagnostic. For 
example for results generated from a tryptic sample searched with 
a semi-tryptic or unconstrained database, an easy validation test of 
the analysis is the expected large fraction of inferred correct results 
that are fully tryptic, and the expected majority of inferred incor-
rect results that are not fully tryptic. In a similar manner, for 
searches with a parent mass tolerance wider than the measurement 
precision of the mass spectrometer, the inferred correct results are 
expected to have a smaller range of mass differences than the 
inferred incorrect results. When PeptideProphet was run with the 
accurate mass binning option for high resolution data, users can 
view a graphic display of the learned mass difference model distri-
butions, as shown in Fig. 3.

The distributions learned by PeptideProphet among correct 
results can also be used diagnostically to gain insight into proper-
ties of the sample and MS/MS spectra. For example, the learned 
NTT and NMC distributions can be used to assess trypsinization 
quality, the learned mass difference information, to assess the 
accuracy and precision of the mass spectrometer, and the learned 
retention time information, to assess the reverse phase chroma-
tography. When relevant, the learned pI information can be used 
to assess the FFE characteristics, and the learned N-glyc motif 
information, the efficiency of N-glycocapture.

3.2.2. Viewing  
and Assessing Results
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When the database search was made with a forward/decoy 
database and the decoy sequences were not revealed to 
PeptideProphet (to be used as known incorrect results), the decoy 
hits can be used to independently assess the accuracy of computed 
probabilities. To generate a plot of decoy versus PeptideProphet 
based false discovery rates, go to the Utilities “Decoy Peptide 
Validation” tab, select the pepXML file to analyze, and enter the 
decoy protein name prefix. A series of minimum PeptideProphet 
probability thresholds is then applied to the data and the result-
ing PeptideProphet (based on the computed probabilities) and 
decoy (based on the fraction of decoy results) error rates are 
plotted, as shown in Fig. 4. The accuracy of computed probabili-
ties can be assessed by the correspondence of PeptideProphet 
and decoy false discovery rates, particularly in the important 
range close to 0.

The predicted error rate is an objective measure that can be 
used to compare two analyses, for example search results using 
different search conditions or different search engines. A table of 
minimum probability thresholds and corresponding predicted 
error rates is displayed in the model summary of each analysis. To 
compare two analyses, select and apply the minimum probability 
thresholds in each analysis that correspond to a fixed desired pre-
dicted error rate. This is a useful means to determine the search 
conditions and search engine that confer the greatest number of 
obtainable correct results.

Fig. 3. Mass difference distributions among correct (positive) and incorrect (negative) X! Tandem LTQ-FT search results 
learned by PeptideProphet.
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If learned distributions are not consistent with expectations, the 
data should be re-analyzed using different user options. For example, 
one can change the optional peptide properties (de-selecting one 
that was not consistent with expectations in the previous analysis). 
If decoys are present, one can switch between using parameterized 
and non-parameterized discriminant score distributions. If results of 
specific charge states in particular gave a poor analysis, one can spec-
ify to exclude them from analysis. If results assigned short peptides 
are a problem, one can increase the specified minimum peptide 
length.

From the pepXML viewer, select the columns to display in the Pick 
Columns tab, then in the Other Actions tab, select the “Export 
Spreadsheet” button. This creates a tab-delimited XLS file.

PeptideProphet can generally be adapted to any additional search 
engine with the help of a training data set of search results of 
known validity, such as those generated using publicly available 
MS/MS data sets (27). The training data set is first used to derive 
a discriminant score that combines together in a linear combina-
tion multiple search scores, when available, into a single score 
that has a high power to distinguish correct from incorrect results. 

3.2.3. Export to Tab-
Delimited File

3.2.4. Adapting Analysis  
to New Search Engines

Fig. 4. Comparison of model-estimated vs. decoy-estimated false discovery rates for 
PeptideProphet and iProphet probabilities computed for a Yeast SILAC Orbitrap data set 
searched with X! Tandem.
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The data set is further used to identify parameterized distributions 
(e.g. Gaussian, Gamma, etc.) that accurately model the observed 
discriminant score distributions among correct and incorrect 
training data set results. This information can then be easily added 
to the PeptideProphet source code for inclusion in the TPP run 
on the command line.

The iProphet (28) tool of the TPP provides additional validation 
beyond PeptideProphet, employing statistical models that can 
apply to multiple searches and experiments. This analysis can 
increases the discriminating power of PeptideProphet probabilities, 
and allows for the integration of results of multiple search engines 
on the same data. For example, whether the same peptide was 
assigned to a spectrum with multiple search engines can be used to 
increase confidence in the validity of that assignment. Currently, 
iProphet implements five statistical models not considered in 
PeptideProphet. For each, it computes a new score whose distribu-
tions among correct and incorrect results are learned from the data 
and used to recalculate the probabilities that results are correct.

Number of sibling searches (NSS) is a statistic that is based on the 
output of multiple search engines for the same set of spectra, pro-
cessed through PeptideProphet. For each search result, an NSS 
value is computed by summing the probabilities of other search 
engine results of the same spectrum that agree on the peptide 
sequence and subtracting the probabilities of search engine results 
of the same spectrum that disagree on the peptide sequence. This 
model should be used only for searches with similar search 
parameters.

Number of replicate spectra (NRS) is a statistic that represents 
multiple identifications of the same peptide ion in one experi-
ment. This statistic attempts to model the fact that in a typical 
dataset multiple observations (of high probability) should increase 
confidence of an identification, whereas high-signal-to-noise 
spectra that are misidentified will often be misidentified with 
the same incorrect peptide ion each time, but with marginal or 
low probability. It is computed as the sum of probabilities of all 
other spectra of the same charge assigned to the same peptide 
minus the number of such spectra. This method of computing 
NRS attempts to preserve the probabilities of “lucky” peptide 
ions identified only once with a high probability, but nonetheless 
may favor the identification of abundant peptides that give rise to 
multiple MS/MS spectra.

Number of sibling experiments (NSE) is a statistic that represents 
multiple identifications of the same peptide ion across different 
experiments. It is up to the user to define the boundaries between 

3.3. Additional 
Peptide-Level 
Validation: iProphet

3.3.1. Number of Sibling 
Searches

3.3.2. Number of Replicate 
Spectra

3.3.3. Number of Sibling 
Experiments
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experiments. This statistic is used to model the fact that correct 
identifications are likely to be observed in multiple experiments.

Number of sibling ions (NSI) is a statistic used to count occur-
rences of the same peptide sequence and corresponding modifica-
tions that are identified in different charge states. This NSI model 
is based on the notion that identifications of correct peptide 
sequences are often seen in multiple charge states, whereas iden-
tifications of the same incorrect peptide sequence are unlikely to 
be observed by multiple charge states.

Number of sibling modifications (NSM) is a statistic used to count 
occurrences of the same peptide sequence in different modified 
states. The NSM model is based on the fact that correct identifica-
tion of peptide sequences are often seen in two or more modified 
states when a search with variable modifications is performed, 
whereas identifications to the same incorrect peptide sequence 
with different modifications are unlikely to be observed.

iProphet is a powerful tool that is very simple to run. Unless one 
is testing the performance of the various models iProphet applies, 
there is no need to set any iProphet parameters. The easiest way 
to run the tool is on a single analysis (one experiment, one search 
engine), which can be done in the Analyze Peptides tab of Petunia 
(as of TPP version 4.3.). In this mode only three of the five mod-
els will get used: NRS, NSI, and NSM. To utilize all of the models 
a more complex analysis can be setup for combining multiple 
searches and experiments in the Combine Analysis tab of Petunia 
(see Note 5).

In the shotgun workflow, the connectivity between peptides and 
proteins is lost during sample processing, so must be computa-
tionally restored. The ProteinProphet (29) program of the TPP 
infers the most likely proteins in the sample based on the observed 
peptides assigned to MS/MS spectra and their computed proba-
bilities of being correct. Users have the option to run the analysis 
immediately following PeptideProphet or iProphet, or indepen-
dently as a second step anytime afterward. Running ProteinProphet 
independently enables users to include validated results of multi-
ple search engines and search conditions of the same data set. The 
program combines together peptide evidence corresponding to 
each protein to compute a probability that the protein was pres-
ent in the sample. Importantly, it addresses two critical issues for 
protein inference based on MS/MS spectra: Peptides correspond-
ing to “single-hit” proteins are less likely to be correct than those 
corresponding to “multi-hit” proteins, and many peptides are 
present in more than a single database protein entry (isoforms, 
homologous proteins, etc.).

3.3.4. Number of Sibling 
Ions

3.3.5. Number of Sibling 
Modifications

3.3.6. Running iProphet

3.4. Inference  
of Sample Proteins: 
ProteinProphet
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The non-random grouping of correct and incorrect peptide 
identifications among corresponding proteins leads to an amplifi-
cation of the error rate from peptide to protein level. For exam-
ple, among 100 peptides with a computed probability of 0.5, the 
50 that are correct assignments likely correspond to a small subset 
of correct proteins, whereas the 50 that are incorrect likely all 
correspond to single-hit proteins, those to which no other pep-
tides correspond. As a result, the error rate at the protein level 
would likely be much higher than 0.5. To counteract this ampli-
fication and ensure that computed protein probabilities are accu-
rate, peptide probabilities are first adjusted to take into account 
whether or not their corresponding protein is single-hit or multi-
hit. This information is incorporated into an NSP (number of 
sibling peptides) score computed for each search result, reflecting 
the estimated number of other correct peptides in the data set 
corresponding to the same protein. Distributions of NSP among 
correct and incorrect results are learned from the data and used 
to adjust the probabilities that the results are correct. Probabilities 
of peptides corresponding to single-hit proteins are penalized, 
and those of peptides corresponding to multi-hit proteins, 
boosted. Because the distributions are learned from each data set, 
NSP adjustments for low coverage data sets (those with few MS/
MS spectra corresponding to each sample protein) will be negli-
gible, and those for high coverage data sets, significant. The NSP 
adjustments to PeptideProphet probabilities are made as an initial 
step before peptide evidence is combined together into probabili-
ties that proteins are present in the sample. This ensures accurate 
peptide probabilities following protein grouping, and thus accu-
rate computed protein probabilities.

A large fraction of peptides are present in more than a single 
database protein entry. This is particularly true in the case of 
higher eukaryotes which have related protein family members, 
alternative splice forms, and partial sequences. ProteinProphet 
apportions shared peptides among all their corresponding pro-
teins in proportion to the estimated likelihood that the proteins 
were present in the sample. The apportionment weights in turn 
are incorporated into each peptide’s contribution when calculat-
ing the likelihood of a protein being present in the sample. Peptide 
apportionment weights and protein probabilities are updated 
iteratively until convergence is achieved. The result is the minimal 
list of proteins that are sufficient to explain the observed peptides. 
It is important to keep in mind that the list may not be fully inclu-
sive because it cannot be ruled out that some additional proteins 
with common peptides are present in the sample.

ProteinProphet can be run in the Analyze Peptides tab for a single 
LC-MS/MS run, or from the Analyze Proteins tab for one or more 
runs (see Note 6). Results are stored in protXML format (4). Learned 
NSP distributions are used to penalize peptides corresponding to 

3.4.1. Running 
ProteinProphet
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single-hit proteins an appropriate amount. However, short proteins 
are likely to be single-hit whether or not they are correct identifi-
cations. Correct peptides corresponding to short proteins are 
likely to be penalized as a result. This can be avoided with the 
“Normalize NSP using protein length” option, where the NSP 
score is computed as the number of siblings divided by protein 
length. Peptides corresponding to short proteins would thus be 
assigned higher NSP values and penalized to a lesser degree. The 
tradeoff is that incorrect peptides corresponding to short proteins 
will be similarly treated.

The “Check peptide’s total weight…” option affects whether 
or not probabilities for proteins that belong to a protein group 
(with many shared peptides) are computed using each peptide’s 
weight contribution to the protein alone or to all members of the 
protein group. This feature allows protein probabilities for pro-
teins to be computed under the assumption that the given protein 
is the only protein in the protein group present, and allows com-
paring which proteins in a large protein group (where at least one 
is correct) are more likely.

The iProphet option (see Note 6) has two effects. First, it tells 
ProteinProphet to read the iProphet probabilities in the pepXML 
file, and second it forces ProteinProphet to use only the top prob-
ability for each unique unmodified peptide sequence rather than 
for each unique parent charge and peptide sequence combination. 
This is recommended because the iProphet probabilities already 
account for repeated observations of the same unique peptide 
sequence in the different charges and modified states. This option 
helps to reduce the ProteinProphet false positive rate when analyz-
ing very large data sets consisting of many LC-MS/MS runs. Use 
the “Import XPRESS protein ratios” and “Import ASAPRatio pro-
tein ratios and pvalues” options to compute and display XPRESS 
and ASAPRatio protein ratios, respectively. Libra protein ratios are 
automatically computed when available at the peptide level.

Results of ProteinProphet can be viewed as HTML to show 
identified proteins with their assigned probabilities of being pres-
ent in the sample, along with all of their corresponding peptides. 
Each peptide has a weight, the fraction ranging from 0 to 1 of its 
apportionment to the protein. Clicking on the link to any weight 
retrieves all protein entries that contain the peptide. This is useful 
when exploring whether proteins attributed to shared peptides 
are valid identifications. Unambiguous peptides found in no other 
protein are indicated with an asterisked weight of 1. Each peptide 
also has a computed NSP value reflecting whether or not the pro-
tein is single-hit or multi-hit. Clicking on the link to any NSP 
value displays the learned NSP distributions among correct and 
incorrect results, and the probability adjustment factor derived for 
ranges of NSP values. This is useful for assessing the learned frac-
tion of correct peptides corresponding to single-hit proteins. 

3.4.2. Viewing Results
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When quantitation was performed at the protein level, protein 
ratios are displayed with links to their contributing peptide 
quantitation information.

When the search was made with a forward/decoy database 
and the decoy sequences were not announced to PeptideProphet 
(to be used as known incorrect results), the decoy proteins can 
be used to independently assess the accuracy of computed prob-
abilities. To generate a plot of decoy vs. ProteinProphet based 
false discovery rates, go to the Utilities “Decoy Protein Validation” 
tab, select the protXML file to analyze, and enter the decoy pro-
tein name prefix. A series of minimum ProteinProphet probability 
thresholds is then applied to the data and the resulting 
ProteinProphet (based on the computed probabilities) and decoy 
(based on the fraction of decoy results) error rates are plotted. 
The accuracy of computed probabilities can be assessed by the 
correspondence of ProteinProphet and decoy false discovery 
rates, particularly in the important range close to 0.

When using the Firefox browser for viewing ProteinProphet 
results, it is possible to make use of the Firegoose plugin (30) for 
automatically exporting filtered protein lists available in the 
ProteinProphet viewer to various sources of additional informa-
tion. Perhaps the most useful is the TPP’s own Protein Information 
and Property Explorer (PIPE) (31) which can look up all of the 
different names of the proteins/genes identified in the sample 
and examine these in the context of different databases, as shown 
in Fig. 5. For instance, using the PIPE it is possible to identify 
the KEGG pathways that include identified proteins or look for 
enrichment of specific GO terms in the set. More information on 
the PIPE and direct access to the tool are available at (32). 
ProteinProphet results can also be exported to tab delimited XLS 
format for subsequent analysis, and imported to SBEAMS-
Proteomics database (33).

The TPP supports both isotopic and isobaric labeling strategies 
for determining relative quantitation levels of peptides and pro-
teins. Programs XPRESS (34) and ASAPRatio (35) compute 
abundance ratios based on the extracted ion currents of heavy 
and light labeled peptide pairs generated with techniques 
such as ICAT (36) and SILAC (37). The program Libra (38) 
performs peptide quantitation based on relative peak intensities 
of MS/MS reporter peaks used in isobaric techniques such as 
iTRAQ and TMT. Programs are executed at the peptide level 
in the Analyze Peptides tab of Petunia, and at the protein level, in 
the Analyze Proteins tab.

In the isotopic labeling strategy, two samples are labeled with 
heavy and light adducts differing from one another only by their 
isotopic composition. In the ICAT technique, protein samples are 
harvested and reacted with light or heavy labels, then combined 

3.5. Quantitation: 
XPRESS, ASAPRatio, 
Libra

3.5.1. Isotopic Labeling 
Quantitation Analysis
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together, trypsinized, and selected for ICAT containing peptides 
for injection into a mass spectrometer. In the SILAC technique, 
tissue culture cell samples are grown with either isotopically heavy 
or light amino acids (often arginine or lysine), combined together, 
purified, trypsinized, and injected into a mass spectrometer. In 
both cases, relative quantitation of the two samples can be deter-
mined from the LC-MS/MS data as the ratio of the light and 
heavy parent ion extracted ion currents. This requires correctly 
assigning a peptide to an MS/MS spectrum associated with the 
light and/or heavy parent ion, properly pairing together the heavy 
and light parent ion partners, and integrating the parent ion peak 
volumes. Pairing parent ions must take into account whether or 
not the heavy and light parents co-elute, and if not, what time 
difference offset and order to expect them.

The TPP has two programs to compute abundance ratios from 
isotopically labeled heavy and light samples, XPRESS and 
ASAPRatio. Users are free to use one of both depending on prefer-
ence. XPRESS was originally developed for ICAT labeling. 
However, the program now also supports up to three user-specified 
labeled amino acids, as well as metabolic 15N labeling which 
involves all 20 amino acids. Users can also select the peak time 
width (in number of scans) to account for differences in chroma-
tography, and the mass tolerance for finding parent ion partners.

Fig. 5. Steps to enable export of ProteinProphet results to the PIPE and other resources. (1) Check “Enable Gaggle 
Broadcast” on the ProteinProphet page; (2) click the “Filter/Sort/...” button. When the page is finished loading, the 
“Gaggle Data” drop-down list will be populated in the Firegoose toolbar; (3) Select “Protein Names: NameList” on the 
“Gaggle Data” dropdown list; (4) select “PIPE” (or other broadcast destination) from the Target dropdown list; (5) click 
“Broadcast” to open the PIPE tab with display options.
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ASAPRatio allows for much user input over the quantitation 
results for each ion pair. It supports up to five user-specified 
labeled amino acids in the Petunia GUI, and any number of user-
specified labeled amino acids on the command line (including 15N 
labeling). It determines the peak areas using noise reduction 
methods such as Savitzky–Golay smoothing (39) and baseline 
subtraction. It furthermore combines together abundance ratios 
of ions of different parent charge states assigned to identical pep-
tide sequences, each weighted by its chromatogram area, and 
computes error values indicating the variability in the ratio value 
among different measurements for the peptide. It does so, how-
ever, only after removing outliers, those ratios deviating signifi-
cantly from the majority. It can also handle cases where the light 
and heavy labeled samples are not combined prior to mass spec-
trometry, but are represented in the data set as separate runs.

ASAPRatio computes the monoisotopic masses of identified 
peptides independently from the search engine and uses these to 
identify isotopic envelopes corresponding to identified peptides 
in the data. It opens a user selected mass range around each iso-
topic offset and integrates the MS1 signal over m/z and retention 
time range. The user can specify different mass ranges depending 
on the instrument type (see Note 7).

Users specify the labels and whether heavy and light parent 
ions co-elute. They also must specify the mass tolerance for match-
ing parent ion partners. Once run, hands-on functionality allows 
users to look at the ion chromatographs to verify proper quantita-
tion. Importantly, users can modify the quantitation by specifying 
peak start and stop times, modes of background signal removal, 
and contributing parent ion charges, as shown in Fig. 6.

Abundance ratios of peptides can be used to compute ratios at 
the protein level. For example, ProteinProphet groups together all 
peptides attributed to a particular protein. In general, the log ratios 
of corresponding peptides are combined together, each weighted 
by the inverse of its error. The result is a computed protein ratio 
and accompanying error indicating the variability in the log ratio 
value of different corresponding peptides. It does so, however, only 
after removing outliers, those peptide ratios deviating significantly 
from the majority. This handles cases in which individual peptides 
have distinct ratio values because of differential post-translational 
modification of the peptide in the two  samples. p-values of protein 
abundance ratios are computed by modeling the null hypothesis of 
unchanged peptide ratios as a Gaussian distribution from the 
observed log ratio data. Protein ratios are then normalized to the 
mean peptide ratio, and p-values are computed for each individual 
ratio based on the z-score of its log ratio value and its error, using 
the null hypothesis. These p-values reflect the likelihood of observ-
ing a protein abundance ratio because of chance alone. This assumes 
that the majority of peptides in the data set will not be expressed at 
significantly different levels in the two samples.
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In the isobaric labeling strategy using iTRAQ or TMT, up to 
eight samples are reacted with labels that have identical mass, yet 
on fragmentation of the parent ion, give rise to distinct signature 
peaks near 100 m/z. Samples are combined together, purified, 
trypsinized, and injected into a mass spectrometer. Relative quan-
titation information is extracted from each MS/MS spectrum 
based on the integrated areas of its signature peaks attributed to 
the various samples.

Libra software computes relative abundances given specified 
signature fragments for the various labeled samples. Users specify 
options in a Libra condition file prior to running the software. This 
includes description of the signature ions for each sample, and for 
each the fraction of peak intensity encountered as −2, −1, +1, and 
+2 Da offset peaks (including overflow into adjacent signature 
peaks). This enables the software to properly deconvolute the 
signature peaks into the contributions of the various samples.  
A dropdown enables automatic specification of values for iTRAQ 

3.5.2. Isobaric Tag 
Quantitation Analysis

Fig. 6. Interface for exploring ASAPRatio peptide quantitation.
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4 and 8 channel, and TMT 6 channel labeling. In addition, users 
specify mass tolerance, centroiding method (intensity weighted 
mean vs. average), normalization method (one channel intensity 
or the sum of all), and minimum peak intensity threshold.

The TPP contains a set of additional tools for visualizing and ana-
lyzing LC-MS/MS data. For example, the Pep3D viewer (40) 
generates from all MS1 spectra a visual 2-D image which can be 
overlaid with MS/MS information. Other viewers facilitate the 
assessment of search engine results and isotopic quantitation. 
Additional programs in the TPP include QualScore (41), which 
identifies high quality MS/MS spectra without confident peptide 
assignments so they can be targeted for future searches with modi-
fications, and MaRiMba (42), a tool for selecting multiple reaction 
monitoring transitions for targeted proteomics. The Utilities tab 
of Petunia hosts programs to create decoy databases from existing 
Fasta databases, and perform peptide level decoy validation of 
computed PeptideProphet and iProphet probabilities, and protein 
level decoy validation of computed ProteinProphet probabilities.

 1. The main command line tool in the TPP is xinteract, it drives 
the standard set of pipeline tools and has a myriad of options 
that can be set to enable/disable different user parameters and 
features. Running xinteract on the command line without any 
options produces a long and detailed usage statement. This 
tool executes an analysis using a single search engine/single 
experiment analysis. Programs InterProphetParser and 
ProteinProphetParser can be run to combine multiple search 
engine/experiment analyses together.

 2. To perform a database search, go to the Database Search tab and 
specify the desired mzXML file to analyze and the database to 
search. Search parameters are specified differently for each search 
engine. Most search engines including X! Tandem require a 
separate parameter file. A fresh TPP installation includes sug-
gested parameter files for X! Tandem (ISB_input_kscore.xml 
and tandem_params.xml). When executing a new search, the 
provided tandem_params.xml file should be copied to the search 
directory and edited to reflect the parameters to be used.

 3. SpectraST can build a spectral library using identifications 
from a sequence database search, given a pepXML file that 
has been processed with PeptideProphet or iProphet, with 
the following command:

 spectrast –cNlibname –cP0.9 interact.pep.xml.

3.6. Additional Pipeline 
Components

4. Notes
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This will import all identifications with a minimum probability 
of 0.9 from the pepXML file interact.pep.xml, and produce 
a library named libname.splib (with the corresponding 
libname.sptxt, libname.spidx, and libname.pepidx files).

 4. The general workflow is to validate search results 
(PeptideProphet), perform quantitation (XPRESS, 
ASAPRatio, Libra) if specified, combine multiple validated 
search results together for additional peptide-level validation 
(iProphet), and finally perform protein inference 
(ProteinProphet) and protein level quantitation if specified. 
In the Analyze Peptides tab users can specify all these steps at 
once, or merely the first validation step. Subsequent steps can 
be performed independently from the Combine Analyses and 
Analyze Proteins tabs.

 5. In the Combine Analyses tab of Petunia, one or more pep-
XML files containing PeptideProphet probabilities can be 
processed. If multiple experiments are being combined, each 
should be labeled with a different Experiment Label option 
on the Analyze Peptides tab in Petunia (TPP version 4.3 and 
above). No options have to be selected unless there is a spe-
cific need to disable any of the iProphet models.

 6. In the Analyze Proteins tab of Petunia, select all pepXML files 
(validated search results) to use as input for the inference step. 
The iProphet option (as of TPP version 4.3.0) must be selected 
to use iProphet peptide probabilities and to use the top prob-
ability for each unique unmodified peptide sequence identi-
fied. This can also be achieved on the command line as:

 ProteinProphet interact.iproph.pep.xml inter-
act.iproph.prot.xml IPROPHET.

 7. It is especially important to note that for high-mass-accuracy 
instruments, when modifications are specified in the search as 
average masses, they must be redefined for ASAPRatio as 
monoisotopic masses for all modifications (even those that 
are not part of the label such as Oxidized Methionine, 
Iodoacetamide, etc.). For high mass accuracy instruments a 
value of 0.05 Da for the mass tolerance in ASAPRatio should 
work nicely, for an LTQ instrument the default setting will 
suffice.
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Chapter 13

Analysis of High-Throughput ELISA Microarray Data

Amanda M. White, Don S. Daly, and Richard C. Zangar 

Abstract

Our research group develops analytical methods and software for the high-throughput analysis of 
quantitative enzyme-linked immunosorbent assay (ELISA) microarrays. ELISA microarrays differ from 
DNA microarrays in several fundamental aspects and most algorithms for analysis of DNA microarray 
data are not applicable to ELISA microarrays. In this review, we provide an overview of the steps involved 
in ELISA microarray data analysis and how the statistically sound algorithms we have developed provide 
an integrated software suite to address the needs of each data-processing step. The algorithms discussed 
are available in a set of open-source software tools (http://www.pnl.gov/statistics/ProMAT).

Key words: ELISA, Microarray, Standard curve, Bioinformatics, Calibration, ProMAT, ELISA-BASE

Our research is focused on the early detection of breast cancer 
based on changes in circulating proteins. It is widely recognized 
that breast cancer is a heterogeneous disease, and that it is unlikely 
that a single protein biomarker will be able to detect all forms of 
this disease. Although early detection of this disease is likely to 
decrease mortality and morbidity, it is unlikely that a small (i.e., 
early) tumor will significantly alter levels of abundant proteins in 
the blood. Therefore, early detection of breast cancer based on 
proteins in blood will likely require the analysis of a panel of low-
abundance proteins. For this reason, we have been developing 
sandwich enzyme-linked immunosorbent assay (ELISA) microar-
rays for biomarker analysis. ELISAs are an exceptionally sensitive 
and specific method for measuring the concentrations of trace 
proteins in complex biological fluids, such as blood serum or 
plasma. Indeed, the ELISA appears to be the only established 
analytical approach that is routinely used to measure low-abundance 

1. Introduction

Cathy H. Wu and Chuming Chen (eds.), Bioinformatics for Comparative Proteomics, Methods in Molecular Biology, vol. 694,
DOI 10.1007/978-1-60761-977-2_13, © Springer Science+Business Media, LLC 2011
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proteins in complex biological solutions. ELISA microarrays have 
other advantages: they consume only trace amounts of each sam-
ple, and they are suited for high-throughput (e.g., hundreds or 
thousands of samples) analysis. As such, ELISA microarrays are 
an ideal tool for the evaluation of panels of biomarkers in large 
numbers of samples. This capability is important, as it seems likely 
that these types of large-scale studies are needed to determine if a 
biomarker panel is truly useful for the detection of a rare disease 
such as cancer.

Critical to the ELISA microarray technology platform to 
reach its high-throughput potential is the ability to effectively 
manage and process the extensive amounts of data generated in a 
large study. We have developed an integrated suite of software 
specifically for this purpose. This software addresses three impor-
tant needs of a large-scale ELISA microarray study: calibration, 
standard curve estimation and sample concentration prediction. 
A key feature of this software is the diagnostic images generated 
to aid the user in the evaluation of both the data quality and the 
original analysis of the data. In this article, we review the features 
and use of each program in this software suite.

Data from an ELISA microarray experiment consists of a set of 
spot intensity values, along with the corresponding spot and sam-
ple information such as spot position, chip, slide, sample type, 
etc. These data are a combination of researcher input and the 
output from a microarray image analysis tool. The necessary data 
support calibration, standard curve estimation and sample con-
centration prediction. Calibration data is obtained from specific 
calibration assays (i.e., calibration spots). To generate data for the 
standard curves, a set of chips are processed with a serial dilution 
of a standard mixture of purified proteins (i.e., antigens) at known 
concentrations. Other chips are treated with samples to predict 
the concentrations of target proteins from the standard curves.

Generating suitable data for the analyses described below 
requires good experimental design (i.e., replication, randomiza-
tion and blocking) before the experiment is performed, including

Replicates of each assay (i.e., “spots”) per chip (we typically ●●

use four replicate spots).
Replicate chips for each sample and standard dilution (we ●●

typically use at least three replicates).
Chip calibration spots, if normalization is to be performed.●●

Randomized assignment of standards and samples to chips.●●

2. Materials

2.1. Data
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 1. ProMAT and ProMAT Calibrator: (http://www.pnl.gov/
statistics/ProMAT) ProMAT (1) and ProMAT Calibrator 
(2) tools are free and open-source ELISA microarray tools we 
have developed in Java (http://java.sun.com) and R (http://
www.r-project.org), which is an open-source statistical pro-
gramming language.

 2. ELISA-BASE: (http://www.pnl.gov/statistics/ProMAT/
ELISA-BASE.stm) ELISA-BASE (3) is an ELISA microarray 
database tool which extends the BioArray Software 
Environment (BASE) (4) system, and includes ProMAT in 
addition to the ability to track metadata associated with study 
design, reagents and data processing. ELISA-BASE is also 
free and open-source.

There are three steps in analyzing ELISA microarray data. First, 
the data typically are calibrated for analytical biases between chips 
introduced by processing. Second, standard curves are estimated 
with the calibrated data, and finally the protein concentrations are 
predicted using the standard curves. Our tools are specifically 
designed to address these steps (Fig. 1). ProMAT Calibrator 
adjusts the data using one or more calibration assays chosen by 
the user. ProMAT estimates standard curves and can predict 
protein concentrations if sample data are provided. These two 
programs are written in Java and R (http://www.r-project.org) 
and can be installed on the user’s computer for routine use.

The third tool, ELISA-BASE, is an extension of the BioArray 
Software Environment (BASE) (4), which is a web-enabled data-
base tool for tracking and analysis of DNA microarray data. 
ELISA-BASE allows the user to track ELISA microarray reagents, 
experiment protocols and data processing steps, and also includes 
ProMAT (and will soon include ProMAT Calibrator).

2.2. Software

3. Methods

3.1. Data Analysis 
Overview

Fig. 1. Overview of the data analysis process for ELISA microarrays.

http://www.pnl.gov/statistics/ProMAT
http://www.pnl.gov/statistics/ProMAT
http://java.sun.com
http://www.r-project.org
http://www.r-project.org
http://www.pnl.gov/statistics/ProMAT/ELISA-BASE.stm
http://www.pnl.gov/statistics/ProMAT/ELISA-BASE.stm
http://www.r-project.org
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ProMAT, ProMAT Calibrator and ELISA-BASE all import data 
from comma-delimited (.csv) text files containing spot intensity 
data, which are created by most microarray image analysis tools. See 
Note 1 for instructions on creating a CSV file, if needed. Along with 
spot intensity measurements, the tools require information about 
the array design (i.e., spot characteristics and positioning), the 
experiment design and array incubation and processing procedures. 
This information should be assembled in the following files:

 1. Slide layout file: defines assay pattern on individual chip and 
the maximum concentration of each antigen standard.

 2. Experiment information file: defines which standards or samples 
are printed on each slide (and the positions of subarrays, if 
applicable) and what the dilution of each standard or sample.

Make sure that none of the following characters:

, \ / : * ? “ < > |

are used in file names or in any user-defined fields such as antigen 
name or slide identifier in the slide layout and experiment infor-
mation files, as this will cause an error.

ProMAT and ProMAT Calibrator need information about the slide 
layout to associate an antigen with each spot intensity. This slide 
layout file contains several columns of data, where each column has 
a column name on the first line. (This file is not needed for ELISA-
BASE, see Subheading 3.5.2.) The essential columns are:

 1. Antigen name or spot name. This column can be given any 
name and the user will enter the column name in the ProMAT 
or ProMAT Calibrator window in the Spot ID Column field.

 2. The maximum concentration for the standard data for this 
antigen (no units). This column must be called max.concen-
tration. The maximum concentration column lists the anti-
gen concentration in the standard mixture before dilution.

 3. Spot position columns for matching the slide layout metadata 
to the file containing the signal intensity data for the indi-
vidual spots. For example, if the data files have columns Spot 
Row and Spot Column, and these are the columns that 
uniquely determine the position within a chip of a specific 
capture antibody, then these column names should appear in 
your slide layout file and with the exact same name as in the 
intensity data files. You may have as few or as many columns 
as are necessary to specify the antigen to data mapping.

Any spot intensity data that are not matched to a line in the 
slide layout file will be ignored. This characteristic can be advanta-
geous, because the slide layout file may also be used to filter the data, 
such that ProMAT only extracts data from a subset of the ELISA 
tests. An example slide layout file is provided with ProMAT and 
ProMAT Calibrator.

3.2. Preparing Data  
for Analysis

3.2.1. Slide Layout
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The three tools also need information about the incubation and 
processing of each array, which is stored in a comma-delimited 
text file. Separate experiment information files must be prepared 
for the samples and the standards. The sample experiment 
information file contains information about the chip location 
(i.e., slide and array) and the dilution of each sample. The stan-
dards experiment information file contains information on the 
chip locations and relative concentrations of the antigen mix. 
For ELISA-BASE, both the standards and samples information 
may be in one file. The experiment information file(s) must con-
tain the following columns:

 1. Name of the intensity data file name. This column must be 
named file.name.

 2. A slide identifier, which may be numbers and/or characters. 
This column must be named slide.number.

 3. A sample identifier, which may be either numbers and/or 
characters. This column must be called sample.id.

 4. The dilution factor of the standard or sample prior to incuba-
tion. This must be less than or equal to 1 (i.e., 0.25 is a four-
fold dilution). This column must be called dilution.

 5. If one intensity data file contains multiple samples, then the 
experiment information file must include columns sufficient 
to uniquely specify each sample. For example, if each array 
was treated with a different sample and the intensity data files 
contain columns called Array Row and Array Column, then 
the experiment information file should contain columns with 
the same names. In this case, each array would correspond to 
a single row in the experiment information file. These columns 
must be labeled exactly as they appear in the data files.

 6. If multiple scans were taken of each slide (e.g., image repli-
cates, or images under different scanner settings) additional 
columns may be added for that information. These columns 
may be given any name, and in the analysis tools the user 
should enter those column names in the “Imager settings col-
umn names” parameter.

 7. If using ELISA-BASE, a column called detection should be 
included, with the ID of the detection antibody mixture.

The experiment information files determine which data are 
used in the analysis, so any data files and/or any arrays not listed 
in either the standards or the samples experiment information will 
not be used. An example experiment information file is provided 
with ProMAT and ProMAT Calibrator.

In DNA microarray data analysis, data normalization algorithms 
are well defined. ELISA microarray assaying differs in crucial 
ways that make DNA normalization algorithms inappropriate. 

3.2.2. Experiment 
Information

3.3.  Data Calibration

3.3.1.  Overview
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Most importantly, DNA microarrays typically assay thousands of 
genes, most of which are not expected to be differentially 
expressed between samples, whereas ELISA microarrays use a 
small number of targeted assays, many of which may vary across 
study groups. To address this problem we have developed a statis-
tically sound calibration protocol and algorithm using calibrant 
assays (2 and unpublished results). Using this approach requires 
an appropriate calibrant sandwich ELISA in each chip (see Note 2 
for choosing an appropriate calibrant assay).

The first step is to determine if calibration is likely to be use-
ful, which means determining whether there are inherent biases 
in the data because of experimental processing steps that calibration 
may reduce. Every step of the experiment, from sample prepara-
tion to slide printing to slide imaging and spot intensity estima-
tion, may introduce variance or biases into the intensity 
measurements. Assuming the dataset contains calibrant spots for 
each chip (i.e., spots whose intensities are expected to be nomi-
nally constant across all chips) the next step is to evaluate whether 
there are chip-level biases for which calibration may be effective. 
A helpful action at this point is to plot the calibrant spot intensi-
ties against the processing step(s) for which bias is a concern. For 
example, Fig. 2 shows simulated data with an induced spot print 
order effect, as well as a difference between the two columns of 
chips on a slide. Overall, there is a downward trend in spot inten-
sity versus print order, and the intensities in the left slide columns 
(in blue) show less variance than those in the right columns (in 
red). A diagnostic plot like this, generated for the calibration spots 

Fig. 2. Simulated data of mean calibrant intensity for each chip in print order for ten slides each with two columns and 
eight rows of chips. Blue and red spots denote eight chips in the left and right columns of a slide, respectively. The blue 
and red lines mark the fits of linear models to the affected data. The plot shows an overall downward trend with print 
order, and the chips in the left columns have smaller variances than those in the right column.
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versus any suspected processing variable, can quickly show if 
data biases are present and if data calibration may be beneficial.

When ProMAT Calibrator is started, the window in Fig. 3 is 
displayed. The parameters are:

●● Analysis name: (optional) whatever information is entered 
here will be used as the first part of the name for all output 
files. If left blank, output files will be assigned common names 
that do not differentiate between studies.

●● Standards directory: directory containing the data files for the 
standard assays.

●● Standards slide layout: the slide layout file for the standards 
data described in Subheading 3.2.

●● Standards experiment info: the experiment information file 
for the standards data described in Subheading 3.2.

●● Samples directory: directory containing the data files for the 
sample assays.

●● Samples slide layout: the slide layout file for the sample data 
described in Subheading 3.2.

●● Samples experiment info: the experiment information file for 
the sample data described in Subheading 3.2.

3.3.2. Using ProMAT 
Calibrator

Fig. 3. ProMAT Calibrator window.
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●● Output directory: the directory in which the output files will 
be created.

●● Spot intensity column: the name of the column in the spot 
intensity data files listing spot intensities (see Note 3).

●● Spot ID column: the name of the column in the slide layout 
file providing the spot assay name.

●● Transform to apply to spot values: option to log transform the 
data prior to calibration. See Note 4 for an explanation of 
why and when you might want to log transform.

Natural Log  – f(x) = ln(1 + x)
Identity  – f(x) = x

●● Imager settings column names: if the experiment information 
file includes imager settings (e.g. multiple laser or PMT set-
tings) or image replicate IDs, then put those column names 
here, separated by commas (e.g., Laser, PMT, Image 
Replicate). Data from different imager settings will be ana-
lyzed separately, such that sample data will only be compared 
to standard data analyzed in the same manner. Also, if the 
same slides are repeatedly scanned, perhaps using different 
scanner settings, this function allows all of the data to be pro-
cessed in a single run.

Click Run to start the analysis. ProMAT Calibrator will load 
the data and then present the user with the assay names so the 
user can identify the calibrant(s) (Fig. 4). Choose one or more 
(use the Ctrl key to select multiple values) then click Okay to 
perform the data calibration based on the selected assays.

When ProMAT Calibrator is finished, a message will appear 
asking if the user would like to view the results. If Yes is selected, 

Fig. 4. ProMAT Calibrator select calibrants screen.
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a browser window will appear with diagnostic images and tables. 
Those images and the HTML file are saved in the output 
directory regardless of which option is chosen so the results may 
be viewed later.

When ProMAT Calibrator is complete, the output directory 
will contain a few CSV files that contain data and JPG files that 
contain diagnostic images.

●● adjusted_values.csv: this file contains a table of the calibrated 
values for all input data along with the original spot intensi-
ties and the metadata to identify each spot. In this table, the 
spot intensities are adjusted according to two models: a diag-
nostic model (Adjusted.Intensity.Diagnostic.Model) and a 
calibration model (Adjusted.Intensity.Calibration.Model). 
The diagnostic model is used to identify systematic patterns 
in the data, whereas the calibration model adjusts the data for 
chip-level effects using the selected calibrant spots.

●● variances.csv: this file contains a table of the within-array and 
between-array variances (on the log scale, if the option to log 
transform the data was selected) for each antigen/imager set-
ting pair.
ProMAT Calibrator also creates new versions of the experi-●●

ment information and array layout files in the output direc-
tory. This allows the user to immediately run ProMAT using 
the output from ProMAT Calibrator.

●● array_means_*.jpg: this file provides graphs of the array 
means for the original values and adjusted values (versus spot 
print order) so that the effects of the data calibration can be 
seen for each assay.

●● calibrant_*.jpg: plots of spot intensity versus print order of 
the measured values and adjusted values for each of the cali-
bration spots.

After data calibration, standard curves may be estimated and used 
to predict sample protein concentrations. In order to generate a 
standard curve for every assay, we incubate a subset of chips with 
a serial dilution of a mixture of purified antigens of known concen-
trations. These chips are processed in the same manner as those 
treated with the biological samples; ideally they are randomized 
throughout the experiment with the samples, so that there is no 
systematic difference in the chips used for the samples and those 
used for the standards in the chip printing, incubation or image 
analysis. Once a standard curve is calculated from the spot intensi-
ties and protein concentrations of the standards, the protein con-
centrations of the samples can be estimated by referencing their 
spot intensities to their corresponding standard curve.

3.4. Standard Curves 
and Concentration 
Estimates

3.4.1. Overview
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Several standard curve models are used to represent the rela-
tionship between concentration and spot intensity. In general, 
we expect the standard data to have a lower bound corresponding 
to background noise at zero concentration and then to rise mono-
tonically with concentration until reaching an upper bound 
because of either instrument or assay saturation.

A four-parameter logistic is one of the most commonly used 
standard curve models because it follows the expected S-shape 
of the curve with lower and upper bounds. In cases where the 
upper or lower bound is not observed in the standard data, 
power or linear models may also be used. We also commonly 
model standard curves using monotonic splines because of their 
flexibility and accuracy (5). Spline models are a set of piecewise 
polynomial curves that are smoothly joined at specified x-values 
called knots.

When multiple curve types are selected, ProMAT fits all the 
selected models to the data and then uses a PRESS statistic to 
determine which curve best fits the data (see Note 5). The advan-
tage of this approach is that it provides an objective criterion for 
choosing one standard curve estimate over another, but it takes 
longer to compute and there may be benefits to using the same 
model for all assays or for the same assay on different days of 
analysis.

ProMAT also calculates a statistical confidence interval for 
each standard curve estimate. The confidence interval is a useful 
diagnostic of the quality of the assay. This interval also plays a role 
in the estimation of corresponding concentration prediction 
intervals. ProMAT provides two ways to calculate confidence and 
prediction intervals: analytic bounds and Monte Carlo simula-
tion. See Note 6 for a comparison of the two methods.

When predicting protein concentrations, ProMAT aggregates 
replicate spot values within a chip and then references the aggre-
gate value to the standard curve. The aggregation reduces the 
effects of sampling variability, and thus reduces the concentration 
prediction error. The uncertainty in a concentration prediction 
has two sources: the uncertainty in the estimated standard curve 
and uncertainty in the sample intensity measurement. Replicate 
spot intensity measurements will decrease the effects of both 
sources.

When ProMAT is started, the main screen for data and parameter 
entry appears (Fig. 5). In this screen, the locations of all data files 
are specified as well as other parameters that control the analysis. 
To prepare for analysis in ProMAT, first create the slide layout 
and experiment information files as described in Subheading 3.2. 
Alternatively, if ProMAT Calibrator is used first, the output 
includes the required data, slide layout and experiment informa-
tion files.

3.4.2. Using ProMAT
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●● Analysis name: (optional) this will be used to name all output 
files.

●● Standards directory: directory containing the data for the 
standard chips.

●● Standards slide layout: the slide layout file for the standards 
data described in Subheading 3.2.

●● Standards experiment info: the experiment information file 
for the standards data described in Subheading 3.2.

●● Samples directory: directory containing the data for the sam-
ple chips. This is optional and if left blank, ProMAT will gen-
erate standard curves and create figures, then exit.

●● Samples slide layout: the slide layout file for the sample data 
described in Subheading 3.2. Only used if samples directory 
is filled in.

●● Samples experiment info: the experiment information file for 
the sample data described in Subheading 3.2. Only used if 
samples directory is filled in.

●● Output directory: the directory in which the output will be 
created.

●● Spot intensity column: the name of the column to use for spot 
intensity (see Note 3).

3.4.2.1. ProMAT 
Parameters

Data

Fig. 5. ProMAT Screen.
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●● Spot ID column: the name of the column in the slide layout 
file which provides the spot assay name.

●● Transform to apply to spot values: gives the option to log 
transform the spot intensities prior to calibration. See Note 4 
for an explanation of why and when you might want to log 
transform spot intensities.

Natural Log  – f(x) = ln(1 + x)
Identity  – f(x) = x

●● Transform to apply to concentration values: gives the option to 
log transform the concentrations prior to calibration. See 
Note 7 for an explanation of why and when you might want 
to log transform concentrations.

Natural Log  – f(x) = ln(1 + x)
Identity  – f(x) = x

●● Imager settings column names: if the experiment information 
file includes imager settings (e.g. multiple laser or PMT set-
tings) then put those column names here, separated by commas 
(e.g., Laser, PMT). Data from different imager settings will 
be analyzed separately (i.e., separate standard curves for each 
imager setting) and then replicate protein concentrations at 
different imager settings will be combined in the last step 
using a weighted average.

●● Create standard curves? If this box is unchecked, ProMAT 
will read and plot the data, as usual, but will not create stan-
dard curves or estimate protein concentrations. In this case, 
ProMAT will still extract and organize the raw intensity data 
from multiple microarray data files, but will not convert these 
values into antigen concentrations.

●● Identify sample outliers? If this box is checked, ProMAT will 
identify outliers in the sample data and exclude them from 
analysis.

●● Choose one or more curve models to fit to the data. For each 
assay, the model that best fits the data will be chosen from 
those selected.

●● Logistic with Spline backup (attempts to fit a logistic curve 
and, in cases where the algorithm does not converge and fit-
ting this curve is not possible, provides a spline model 
instead)

●● Logistic curve
●● Power curve
●● Linear curve
●● Spline curve

Options

Curve types
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Choose one option to determine how confidence and prediction 
intervals are calculated.

●● Analytic bounds: these are the fastest to compute but cannot 
be used with spline curves and have greater uncertainty near 
curve asymptotes.

●● Monte Carlo bounds: these take longer to calculate than ana-
lytic bounds but are more accurate. See Note 6 for further 
explanation and comparison of analytic and Monte Carlo 
bounds.

●● No bounds: when bounds are not needed or a quick, prelimi-
nary analysis of the data is desired, selecting this option will 
reduce ProMAT run time.

These options affect how the standard curve data are graphed by 
ProMAT. These graphs are useful for a rapid evaluation of data 
quality, but these options do not alter the curve fitting or sample 
concentration estimates in any way.

●● x-axis label for plotting: the label on the x-axis (concentration 
parameter, such as pg/ml or molarity)

●● y-axis label for plotting: the label on the y-axis (spot 
intensity)

●● Keep y-axis range constant in plots? Checking this box means 
that the y-axis will have the same minimum and maximum in 
all plots – useful for comparing different standard curves to 
each other.

●● Show standard data on plots? When this box is checked, the 
individual data points used to fit the standard curve will be 
plotted as black points on the plots.

●● Show replicate means on plots? When this box is checked, mean 
values for each set of replicate concentration points are shown 
on the plots as light blue points.

●● Show replicate standard deviations on plots? When this box is 
checked, the standard deviation for each set of data points 
(i.e., for one concentration value) is plotted above and below 
the mean.

●● Show standard curves on plots? When this box is checked, the 
standard curve is plotted as a black line.

●● Show upper and lower bounds in plots? When this is checked 
the bounds are shown in blue. No bounds are graphed if the 
“No bounds” option (see previous section) is selected. In this 
case, selecting this option has no effect on the data analysis or 
the graphs.

After selecting the desired options, click Run to start the 
analysis. When ProMAT is finished, a message is displayed 

Method for calculating 
bounds

Plotting options
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showing the directory in which the output is stored (that is, the 
output directory specified by the user). For a full analysis (that 
includes standard curves estimation and concentration predic-
tion), two types of diagnostic plots will be created in the output 
directory. The first plot is a standard curve with confidence 
bounds on the fitted curves, which is discussed in more detail in 
the next paragraph.

The second plot type is shown in Fig. 6. The lower right 
graph shows the standard curve (black line) and the standard data 
from which the curve was estimated. The blue lines are the upper 
and lower confidence bounds. On the left side is a histogram of 
sample spot intensities for this assay. This allows the user to easily 
determine if the range of sample spot values falls within the usable 
range of the standard curve (estimated by red dashed lines). The 
upper graph shows the percent coefficient of variation for the 
curve (the x-axes of the standard curve and coefficient of variation 
are matched). A single HTML file (created in the output direc-
tory) allows the user to easily browse through the second type of 

Fig. 6. Diagnostic figure produced by ProMAT. The lower right panel shows the estimated standard curve (black line), 
prediction bounds (blue lines) and standard data (black points). The lower left panel shows how the spot intensity values 
align with the standard curve and the upper panel shows the prediction coefficient of variation.



205Analysis of High-Throughput ELISA Microarray Data

diagnostic plots for all assays, thus providing a convenient way to 
review all of the standard curves and corresponding sample intensity 
values for a single study.

In addition to the diagnostic plots, four data tables are cre-
ated in the output directory: predicted_concentrations.csv, 
standard_data.csv, and standard_curve_statistics.csv.

●● predicted_concentrations.csv: contains predicted concentra-
tions and prediction bounds for each sample observation, 
where the replicates have been pooled prior to prediction. 
This file includes the spot and sample IDs and dilution plus 
the number of spots determined to be outliers which were 
excluded from the concentration prediction.

●● standard_data.csv: contains the data used to fit the standard 
curves, and is provided for user reference. This file includes all 
the columns found in the array layout and experiment infor-
mation files (e.g., sample.id, dilution, max.concentration) plus 
the data file names, spot intensities and the calculated actual 
concentration which is max.concentration*dilution.

●● standard_curve_statistics.csv: contains information about each 
standard curve including equation and goodness-of-fit statis-
tics such as R2 and mean-squared error. (The ProMAT docu-
mentation includes a full list of the data in this file.) This file 
also provides data on the sensitivity (i.e., the lower limit of 
detection), calculated by two different methods which are 
described in the ProMAT documentation.

●● spot_intensity_variances.csv: contains estimates of the variance 
of spot replicates for both the standards and samples data for 
each curve. If you choose to log transform your data prior to 
curve fitting, then these variances are on the log scale.

We have found that ProMAT reduces our data analysis time by 
about a factor of 10, and provides a variety of quality metrics that 
go far beyond what would be obtained with standard analyses 
using spreadsheets. However, it does not provide the capability to 
organize data and metadata in a way that will facilitate the com-
parison of results over extended time periods or multiple experi-
ments, which is crucial when conducting studies using thousands 
of samples that cannot be analyzed in a single day’s experiment. 
This capability is important, because large-scale validation studies 
with thousands of samples will likely be required to truly define 
the utility of a biomarker panel for the detecting rare diseases 
such as cancer (6). Ideally, tracking of these data would be done 
in a manner similar to the “minimum information about a 
microarray experiment” (MIAME)-criteria developed for the 
DNA microarrays (7).

For this purpose, we integrated ProMAT with BioArray Software 
Environment (BASE) (4) to create the ELISA-BASE (3) system. 

3.5. Tracking of 
Metadata and Data 
Processing Steps

3.5.1.  Overview
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BASE is a MIAME-compliant data management tool developed 
for DNA gene expression microarrays. We have extended BASE for 
use with ELISA microarrays and incorporated ProMAT as a plugin 
(a plugin for ProMAT Calibrator is currently being developed).

When using ELISA-BASE, the researcher imports experi-
mental data in a format very similar to that which is used to run 
ProMAT (i.e., image analysis files plus a file of metadata such as 
samples, antigen and detection mixtures and dilution informa-
tion). The ELISA experiment importer creates all database objects 
needed to organize the data, including adding any sample IDs 
that do not already exist in the database. There is also an antigen 
and detection mixture importer, which helps the user to specify 
the concentrations used to make these mixtures (which, in the 
case of the antigen mixture, is needed to generate standard curves 
and to estimate sample protein concentrations).

The ProMAT plugin to ELISA-BASE is very similar to the 
standalone ProMAT version and produces identical output and 
diagnostic images. However, the database implementation allows 
the user to combine and/or filter datasets before analysis, and 
also tracks the data provenance (e.g. all previous data processing 
steps as well as the parameters to those steps), which can be useful 
for future analyses.

Information on individual antigens, detection antibodies, and 
mixtures of these reagents, are stored in the Samples table in 
ELISA-BASE. Mixtures are stored as pooled “samples” of their 
constituent parts (e.g., a standard antigen mix references the indi-
vidual antigens from which it was pooled), thus providing a link 
to all of the metadata associated with each reagent used in a par-
ticular study. Antigen mixes and detection antibody mixes must 
also provide antigen or antibody concentration data for generat-
ing the standard curves. Thus, ELISA-BASE provides the 
Antigen/Detection Mix Concentration Importer to create these 
pooled samples with all the necessary concentration data.

Note that each antigen mix or detection mix only needs to be 
entered into BASE once. Thereafter, it can be used in as many 
experiments as necessary. This is a useful feature, because we com-
monly make up these reagents in bulk, aliquot and freeze them, 
and use the same mix for an extended period of time. Thus, this 
feature allows us to track changes in individual reagents and mix-
tures over time. If any changes in standard curves are observed 
between studies, we are able to determine if these problems are 
associated with changes in reagents. Importing these data on the 
reagents needs to be done before importing the experimental 
data, which is discussed below.

 1. Create a CSV file (see Note 1) where the first column is the 
external ID (in ELISA-BASE) of the antigen or detection 

3.5.2. Using ELISA-BASE

3.5.2.1. Antigen/Detection 
Mix Concentration Importer
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antibody, and the second column is the concentration 
(do not include units) in the mixture. The first row may con-
tain column names but it is not necessary.

 2. In ELISA-BASE, go to View → Samples and find your antigen 
mix or detection mix sample (or click New to create a new 
sample). Click on the sample name to open that sample.

 3. Click the Import button.
 4. Choose the Antigen/Detection Mix Concentration Importer 

from the drop-down list then click Next.
 5. Parameters:

●● Type: Antigen or Detection Antibody Mix: choose one 
depending on the type of mixture you are creating.

●● File containing concentrations: click Browse..., then click 
on the Upload file... button and upload the file created in 
step 1.

●● Header: choose true if the file has column names and false 
otherwise.

 6. Click the Next button then the Finish button.

If the plugin was successful, the sample now shows that it was 
pooled from multiple samples, corresponding to the IDs pro-
vided. Also there will be data in either the AntigenConcentration 
or DetectionConcentration annotation.

You may now refer to the antigen or detection mix in an 
experiment information file when importing a new set of data. 
The sample.id column of the experiment information file should 
contain the external ID (not the name) of the antigen mix for the 
appropriate arrays. The detection column should contain the 
external ID of the appropriate detection antibody mix.

The next step is to import the experimental data into ELISA-BASE, 
which is done using the ELISA Experiment Importer plugin. See 
Note 8 on how to configure the data importer for the data format.

 1. Zip the image analysis data files into a single file. This may be 
done using WinZip or WinRAR on Windows or with the zip 
command on the Windows or Linux command line.

 2. Create an experiment information file as described in 
Subheading 3.2. If using GPR or ScanArray files, you do not 
need to specify Laser and PMT because these can be read 
automatically from the data files, by checking the option Use 
Laser and PMT values from data file headers when running 
the ELISA Experiment Importer.

 1. Choose the experiment into which you want to import data 
by clicking on its name in the Experiments list. Then click 
Import ELISA Experiment Importer and then Next.

3.5.2.2. ELISA Experiment 
Importer

Data Setup

Running the Plugin 
in ELISA-BASE
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 2. The plugin parameters are displayed:
●● Zip archive of data files: Select (or upload) the zip archive 

created in the Data Setup step.
●● Experiment info file: Select (or upload) the experiment 

information file.
●● Slide number column name: The name of the column in 

the experiment information file that gives the slide identi-
fier (e.g., Slide or slide.number).

●● Use Laser and PMT values from data file headers? If true is 
selected and the data files are GPR or ScanArray format, 
then the Laser and PMT values will be read from the data 
file headers rather than the experiment information file.

●● Spot intensity value: Choose a formula to define your spot 
intensity values.

●● Label: Choose the fluorescent label used (e.g. Cy3, Cy5).
●● Scan name prefix: Used to prefix the name of all scan 

items in the database created by the plugin.
●● Hybridization name prefix: Used to prefix the name of all 

hybridization items in the database created by the plugin.
●● Create samples? If true is selected then new Sample items 

will be created for samples listed in the experiment infor-
mation file if those items are not found in the database.

 3. Click Next and then Finish to run the program.

On completion, the experiment will have a Raw Bioassay for 
each array in the dataset and a new root Bioassay Set with the spot 
intensity value chosen by the user. The data are organized to be 
able to run the ProMAT plugin immediately although the user 
may choose to filter or transform the data prior to further 
analysis.

The ProMAT Plugin to ELISA-BASE creates standard curves and 
estimates protein concentrations. The analysis it performs is the 
same as that in the standalone ProMAT tool (described above), 
and the parameters are largely the same.

 1. From the bioassay set that you wish to analyze with ProMAT, 
go to the Run Analysis tab and select the ProMAT Plugin. 
Note that the bioassay set chosen must have been created by 
the ELISA Experiment Importer (or be a child of such a bio-
assay set).

 2. If there is more than one configuration in the drop-down list, 
choose the one corresponding to your spot intensity data 
files, and then click Next.

 3. The next screen allows you to enter the ProMAT parame-
ters, which are the same as those described for the ProMAT 

3.5.2.3. ProMAT Plugin
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tool in Subheading 3.4.2, with the exception of one added 
parameter:

●● Standard curve data: choose one or more antigen mixtures 
found in this experiment to create the standard curves.

 4. Click Next and then Finish to begin ProMAT analysis.

On completion, a dialog box will give a file location of a zip 
archive, which contains the ProMAT results. This zip file may be 
located by selecting View → Files after closing the dialog. The zip 
file of ProMAT results contains all of the output files described in 
Subheading 3.4.2, which have been zipped together for conve-
nient downloading.

 1. In Excel, to save a spreadsheet as a CSV file, choose File → 
Save As and choose CSV in the Save As Type box.

 2. We deal with chip-level calibrants in ProMAT Calibrator, 
although in theory a calibrant may be used at different levels, 
from the experiment or slide level down to the spot level. 
A calibrant has two important qualities that must be considered 
when choosing or developing an assay to perform this func-
tion. The calibrant assay must not interfere with the other 
assays used, and the calibrant and target assays must be simi-
larly affected by the processing factors to be tracked. The 
experimental process used to choose our chip-level calibrant 
is documented in (2).

 3. Most microarray image analysis tools have multiple ways of 
calculating spot fluorescence and thus provide multiple mea-
sures for each spot. We prefer to use the median of the spot 
pixels as it is most resistant to bias because of sampling pixels 
outside the spot.

 4. In microarray spot fluorescence data (as in many types of sen-
sor readings) the variance between replicates increases as val-
ues increase. This is undesirable when fitting a statistical model 
to the data, as most models assume the variance is constant. 
We typically log-transform the spot intensities to make the 
variances approximately the same at all concentration levels.

 5. The PRESS statistic assesses the predictive capabilities of a 
model by re-fitting the model while leaving out each value 
once, then predicting the left-out value (8). Thus if there are 
n data points {(x1, y1), ..., (xn, yn)} then the algorithm has n 
iterations, where model M−i is the model produced using all 
the data except the ith value, and ei is the difference between 
yi and the predicted value for xi:

4. Notes
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 The model with the smallest PRESS statistic has the best fit 
according to this criterion.

 6. ProMAT provides two methods for estimating concentration 
uncertainties: propagation of error (PE) and Monte Carlo 
(MC) simulation. PE allows us to derive a closed form equa-
tion for the variance of a concentration estimate from the 
standard curve equation and an estimate of spot replicate 
variability. PE uncertainties are fast and efficient to calculate. 
MC uncertainties bounds are calculated by simulating con-
centration as a function of spot intensity, and include the esti-
mated replicate spot variability in the simulation. We have 
found MC uncertainty bounds to be much more accurate 
than PE bounds (5), although they require more computa-
tion time. One reason is demonstrated in Fig. 7. Both parts 
show the same four-parameter logistic standard curve. On the 
left are PE bounds and on the right MC bounds. As the 
bounds approach the asymptotes of the logistic curve, the PE 
bounds diverge because the standard deviation approaches 
infinity more quickly than the curve does.

 7. Using serial dilutions of the standard mixture results in con-
centration values that are very close together on the lower 
end of the scale and very far apart on the higher end when 

Fig. 7. Four-parameter logistic curve with uncertainty bounds (dotted lines). The left 
graph shows bounds calculating using propagation of error, the right graph shows 
bounds calculated using Monte Carlo.
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using a linear scale. If we were to fit the standard curve to the 
data as-is, the data at the higher concentrations would have 
much more weight when calculating the fitted curve than 
those at the lower concentration levels, which is undesirable. 
We prefer the data to be evenly spaced so that all dilutions 
have equal impact on the standard curve that is calculated, 
and this can be accomplished by applying a log transform to 
the concentration values.

 8. The ELISA Experiment Importer uses BASE’s built in Raw 
Data Importer plugin, which relies on the user to create a 
configuration for their data file format. Before using the 
ELISA Experiment Importer for the first time, go to 
Administrate → Plugins → Plugin definitions and choose 
Raw data importer, then click New configuration.... The con-
figuration tool will walk you through specifying the file for-
mat and allow you to test the configuration against a data file 
to verify that it works.
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Chapter 14

Proteomics Databases and Repositories

Lennart Martens 

Abstract

With the advent of more powerful and sensitive analytical techniques and instruments, the field of mass 
spectrometry based proteomics has seen a considerable increase in the amount of generated data. 
Correspondingly, the need to make these data publicly available in centralized online databases has also 
become more pressing. As a result, several such databases have been created, and steps are currently being 
taken to integrate these different systems under a single worldwide data-sharing umbrella. This chapter 
will discuss the importance of such databases and the necessary infrastructure that these databases require 
for efficient operation. Furthermore, the various kinds of information that proteomics databases can store 
will be described, along with the different types of databases that are available today. Finally, a selection 
of prominent repositories will be described in more detail, together with the international ProteomExchange 
consortium that is aimed at uniting all the different databases in a global data sharing collaboration.

Key words: Proteomics, Mass spectrometry, Identifications, Database, Repository, ProteomExchange

The advent of high-throughput analytical methodologies (1), the 
development of improved instrumentation (2), and the availabil-
ity of extensive protein sequence databases (3, 4) have all contrib-
uted to the maturation of mass spectrometry based proteomics 
into a robust platform that can generate vast amounts of data (5). 
As the capacity to produce data increased by several orders of 
magnitude, the importance of sharing published data with the 
larger community became apparent (6–8). In response to this 
overall requirement, several such databases have been created (9) 
since. Interestingly, the primary focus of these databases varies 
somewhat, leading to unique characteristics in each case. This 
variety, and the current lack of an efficient means of data exchange 

1. Introduction

Cathy H. Wu and Chuming Chen (eds.), Bioinformatics for Comparative Proteomics, Methods in Molecular Biology, vol. 694,
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between the existing databases, can lead to substantial confusion 
for both data submitters and data users alike.

To provide a comprehensive guide to the interested user (as 
either submitter or consumer), this review chapter will begin by 
outlining the underlying need for these databases, as well as the 
key infrastructure they require. The various kinds of information 
that proteomics databases can store will be described next, fol-
lowed by the different types of databases that are available today. 
Finally, a description of the most prominent databases will be 
given, concluding with the current plans for the worldwide 
exchange of data across the different resources in existence today.

The life sciences have a long-standing tradition in terms of 
the public availability of data, which is remarkable in light of the 
closed-access culture that continues to pervade many of the 
neighbouring fields (e.g. chemistry). One of the first data types to 
enjoy widespread public release in the life sciences concerned the 
three-dimensional protein structures deposited in the Protein 
Data Bank (PDB) (10). Part of the motivation for public access 
to the structures was provided by the effort and cost involved in 
obtaining a single structure, thus making public dissemination of 
any structure very cost effective (11). Over the years, many other 
data types in the life sciences have followed this example, with the 
human genome sequence as one of the most highly publicized 
examples (12). Thanks to this pervasive spirit of data sharing, 
researches today can freely access genomes (3), RNA microarray 
data (13), protein sequences and their annotations (4), protein 
structures (14), protein interactions with proteins, nucleotides 
and small molecules (15, 16), and even chemical compounds of 
biological interest (17). For the interested reader, a thorough 
review of all the publicly accessible resources in the life sciences 
can be found in a review by Vizcaíno et al. (18).

Interestingly, as outlined in the introduction, the field of mass 
spectrometry based proteomics owes its existence as a high 
throughput analytical platform to this free availability of genome 
sequencing data. Indeed, the identification of peptides and pro-
teins is most commonly based on spectrum matching to known 
protein or peptide sequences (6). Additionally, although mass 
spectrometry data can in principle be generated quickly and at a 
reasonable cost, publicly sharing proteomics data remains inter-
esting from a cost-benefit point of view because of the heteroge-
neity in approaches (1), instruments (2) and identification 
algorithms (19) applied across the field, and the largely comple-
mentary analysis perspectives obtained by each of the possible 

2. Why Do We 
Need Proteomics 
Databases?
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combinations (20–22). Finally, current analysis techniques are 
typically applied on a single tissue or cell-type, resulting in tissue-
specific findings that often also yield complementary findings 
(23). Taken together, the exploration of the proteome of a com-
plex organism can be seen as a compound task, in which a variety 
of different analyses can resolve a complete picture, whereas an 
individual analysis is likely to fail to present a comprehensive 
result. For these reasons, the aggregation of data produced across 
different groups worldwide provides a cost efficient means to ulti-
mately derive complete (tissue) proteomes.

Yet even for simpler organisms or highly specialized datasets, 
public availability of data can be very useful. One possible use case 
is the overall reuse, reanalysis, and validation of data (6), along 
with data interpretation and algorithm development (8).

Overall, the necessity for public data sharing is perhaps most 
eloquently justified in the words of Thomas Jefferson, who 
remarked that ”Information, no matter how expensive to create, 
can be replicated and shared at little or no cost”.

The first and foremost requirement for any centralized database is 
the availability of a means for efficient data dissemination. It is no 
coincidence that the invention of the printing press coincided 
with the advent of The Enlightenment, when the basis for mod-
ern science was laid. Obviously, the internet has provided an 
extremely powerful and convenient infrastructure for data dis-
semination, and most of the resources in the life sciences can 
therefore be found on the web (18).

Once the means of dissemination is thus established, a data-
base must ensure that it can accept incoming data from submit-
ters, and that it can deliver its contents to prospective users in a 
readable and comprehensive format. In the ideal situation, both 
submission and dissemination of data occur in the same format, 
which is standardized across all submitters and consumers. In the 
case of proteomics databases however, each resource has devel-
oped a unique set of formats for this task, resulting in a confusing 
situation for submitters and consumers. Submitters often find 
that the data format they use internally in the lab does not cor-
respond to the desired input format for the database they wish to 
submit to, necessitating data format conversions that may be dif-
ficult to perform in the absence of trained informatics staff, or 
that may result in a loss of information (7). Data consumers on 
the other hand, encounter data format conversion issues as soon 
as they try to integrate information from multiple databases, espe-
cially when these individual databases do not yet exchange their 

3. Key 
Infrastructure  
for Proteomics 
Databases
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data holdings automatically. For proteomics data, standards 
development has been in active progress over the last years, and 
relevant standard formats have recently emerged for the transfer 
of data to and from central databases (24). Additionally, the 
necessity to contact different databases to obtain a comprehensive 
coverage of the available public data will soon be a thing of the past. 
The ProteomExchange consortium (see Subheading 7 below) is 
currently actively working toward automated data exchange 
between key databases in the field.

Finally, shared data always needs to be placed in context – a 
set of mass spectra and derived peptide or protein identifications 
by themselves are largely meaningless. Minimal information on 
the origins and processing of the data needs to be available along 
with the actual experimental findings. To this end, it is important 
that data submitters are aware of, and adhere to, minimal report-
ing requirements that have been created by the wider community. 
Such guidelines have already been created in the field of proteom-
ics, initially based on the efforts by individual journals (25), but 
increasingly complemented by requirements defined by broad 
community consultation (26).

Mass spectrometry based proteomics databases can store a variety 
of data types. This section describes these various types of informa-
tion, and briefly discusses the different forms these data may take.

In general, two main types of information are combined in a 
proteomics experiment: the experimental data recorded by the 
instrument, and the results inferred from this data. A third data type 
discussed here concerns the experimental metadata, that captures 
any and all relevant information about sample, experimental proto-
col, data processing and interpretation, and author contact details.

The primary data obtained in mass spectrometry based proteom-
ics consists of mass spectra. In its simplest incarnation, a mass 
spectrum is a combination of mass-over-charge (m/z) values, and 
their respective intensities. Additional information can include 
information about a precursor peak (for fragmentation spectra) 
and spectrum elution time (for liquid-chromatography based on-
line separations). The mass spectra recorded by the instrument 
are typically stored in a vendor- or even instrument-specific for-
matted file, which typically employs some form of binary data 
encoding and/or compression (7). As a result, these files are not 
readily accessible to users, as detailed knowledge about the encod-
ing scheme is required to decode the data. Access to these files 
can be obtained programmatically through so-called vendor 
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libraries, or graphically through the proprietary instrument software. 
In both cases, the required libraries or software is typically shipped 
with the instrument for free, but will have to be purchased by 
prospective data consumers that do not own an instrument; in 
some cases, a separate purchasing option may not even be avail-
able at all. Despite the accessibility problems, these binary for-
mats do present certain advantages: they contain the most 
complete source of information available after analysis, and they 
tend to support fast reading.

Although “power users” tend to favour these binary files, 
most end users will struggle to interact with these files, resulting 
in the common practise to derive text-based peak lists from the 
binary files prior to processing and identification (7). Because of 
spectral processing, these peak lists typically contain far less infor-
mation than their counterpart spectra in the original binary file. 
Three steps are frequently applied in this conversion step: denois-
ing, charge deconvolution, and deisotoping (6). Despite the 
reduction in detail of the data, these peak lists remain the most 
commonly used data format for submission of mass spectrometer 
data to search engines. From a data sharing point of view, the 
peak lists are quite convenient as well, because they tend to be 
relatively small compared to the full binary data files they origi-
nate from (7), and because their text format makes them easily 
human- and computer-readable. However, the lack of meta-
information in these files does greatly limit their actual usefulness 
as a data transport format.

To find the middle way between the verbose, encoded binary 
files, and the minimalist and highly accessible peak lists, the 
recently released mzML standard format (27) combines the abil-
ity to store detailed data and metadata, at any level of processing, 
in an easily accessible and readable format. The base format for 
mzML is text-based XML, and although the spectra are still 
encoded inside mzML, internet-standard base-64 encoding is 
used for this purpose. Base-64 encoding and decoding routines 
are ubiquitously supported in contemporary programming lan-
guages and this encoding therefore does not affect the accessibil-
ity of the format.

Mass spectra are typically used to infer peptide or protein sequences 
by aligning the experimental spectra to theoretical spectra com-
puted from protein and peptide sequences from sequence data-
bases (6, 28). These peptides or proteins are assigned scores, which 
may or may not be matched against cut-offs (29), and which 
can be further manually or automatically validated (6, 30, 31). 
If peptides are identified from spectra (which is the typical case 
in modern high-throughput methodologies) an extra step is 
required, in which the peptides need to be matched to proteins. 
This so-called protein inference step is in fact one of the most 
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difficult operations in the interpretation of mass spectrometry 
data (6, 32). Taken together, the identified peptides and the 
inferred proteins constitute the results output from a typical pro-
teomics experiment. Depending on the search engine used to 
obtain these data, these results can take a variety of formats, many 
of which are text based.

In essence, the minimal information obtained is a set of 
protein accession numbers, each of which is backed by a list of pep-
tide sequences that were identified for that protein. Yet although 
the peptide sequences are universal, employing the single-letter 
notation amino acid alphabet, the protein accession numbers are 
linked to a particular database of origin. Concretely, this means 
that the same protein (say, human beta actin) has a different acces-
sion number in each different database (e.g. P60709 in 
UniProtKB/Swiss-Prot, ENSP00000349960 in Ensembl, 
IPI00021439 in IPI, and NP_001092 in RefSeq). This diversity 
of formal identifiers for a single protein creates a considerable 
problem for comparative proteomics studies, and databases some-
how have to cope with this strategy. As outlined in Subheading 5 
below, different types of databases come up with different solu-
tions for this problem, but briefly, the approaches fall apart in two 
broad categories: (a) use a single protein database for protein 
identification or inference, thus unifying all accession numbers in 
the same namespace; and (b) translating all protein accession 
numbers across all namespaces, to ensure that all known identifi-
ers for the protein are mapped to this protein. The latter task is far 
from trivial, and as a result several independent systems have been 
devised and set up for this specific purpose (4, 33, 34). The mzI-
dentML format has been created as an XML-based data standard 
to communicate peptide and protein identification data, along 
with metadata describing the processing of the results.

In addition to the identification of peptides and proteins, 
proteomics experiments are increasingly geared toward quantify-
ing the observed proteins (35). A large variety of experimental 
methods and software applications are correspondingly becoming 
available (36). From the proteomics databases point of view how-
ever, quantitative procedures are not yet well established enough 
to allow consensus data capture. Rather, specific solutions for spe-
cific data types have been proposed by independent research 
groups (37). The incorporation of quantitative data into pro-
teomics databases is currently being actively pursued, and it is 
highly likely that this type of data will be standardized across the 
field over the coming years, much like mass spectral and identifi-
cation data formats have been.

Experimental data and its inferred results by themselves do not 
provide a lot of useful information to an end user. Indeed, for a 
researcher interrogating the data, it is important to know the 
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origin of the sample and the experimental context used to obtain 
the results. If this information is captured as free text, formatted 
and written according to the specific style and habits of the indi-
vidual author (as is the case for a Materials and Methods section 
in a journal article, for instance), this information is both avail-
able and interpretable for humans. However, computers struggle 
quite with such so-called free text, to the point that it is an active 
field of research to create algorithms that provide incremental 
improvements in computer “reading” of such text. If it is there-
fore sufficient to make sample, protocol, instrument, and pro-
cessing information available, free text annotation will suffice. 
However, if it is also deemed necessary to have computers to 
read and process this information, a better system for annotating 
metadata is required. One important justification for making 
annotations computer-readable is the ability to quickly and effi-
ciently search the annotations for data of interest, say all data 
derived from human hepatocytes using electrospray ionization 
(ESI) instruments. To support such queries, the vocabulary used 
for annotating the various aspects of the experiment must be 
fixed. This can be achieved by agreeing on a common vocabu-
lary, but in practise, this turns out to be quite difficult. As an 
example, consider the various ways in which people might report 
a “time-of-flight” analyzer: “time of flight”, “TOF”, “tof”, 
“T.O.F”, “t.o.f.”, etc. To computers these are all very different 
things, whereas humans tend to think of them as one and the 
same thing. The final solution therefore adapts to the way humans 
think about concepts – a concept (such as “time-of-flight”) is 
assigned a unique name (or accession number) (say “MS: 
100041”) and this number is equally assigned to all the syn-
onyms. Now, we can have submitters annotate their data as 
derived from an “MS: 100041” analyzer, which is an unambigu-
ous description that reflects the abstract, concept-based thinking 
of humans. Whether that accession number is accompanied by 
the name “TOF” or “t.o.f.” is no longer relevant to the com-
puter – it knows what “MS: 100041” is. A commonly used 
example of this fixed vocabulary is the NCBI taxonomy, where the 
number “9606” stands for “human” (or “Homo sapiens”, or 
“homo sapiens”, or any of the other common synonyms).

A further innovation can be added to such a list of defined 
and numbered terms: they can be linked up in complex hierar-
chies. Again, taxonomy provides a ready example; “9606” 
(human) is linked to the parent genus “Homo” (9605), which is 
in turn further linked (over several steps) to “Eukaryota” (2759). 
This linking of concepts results in a controlled vocabulary (CV) 
or an ontology. The main difference between these two lies in 
their depth of coverage in a field – an ontology is considered a 
comprehensive representation of an entire domain, whereas a CV 
is often much more constricted and specialized.



220 Martens

By using CV or ontology terms to annotate data, we gain 
several key advantages over free text: (a) the annotation is readily 
computer readable, and can be queried automatically; (b) the 
links between concepts allows for very powerful queries, for 
instance by searching for an exact match for a term, as well as for 
matches to any of the terms children (e.g. searching for data 
from “brain” retrieves data from “cerebellum” as well); and (c) 
because of the links between concepts, the task for a submitter is 
greatly simplified as well – annotating data as “cerebellum” will 
implicitly provide the far-reaching context that this is a part of 
the brain, for instance. This system thus provides clear benefits 
for data consumers and data submitters alike, a and this is an 
important reason for the importance of such CVs and ontologies 
in the abovementioned standard formats for mass spectral data 
(mzML) and identification results (mzIdentML). Apart from 
annotating the data and the inferred results, this same approach 
is used to annotate the overall experimental context by some 
repositories as well.

As described in Subheading 6 below, there are various different 
proteomics databases available today. Interestingly, these data-
bases typically have dissimilar objectives, which are reflected in 
the accepted and disseminated data in each case. This section pro-
vides an overall framework of database types that allows current 
and future databases to be classified easily. It is worth noting 
however that certain databases can be classified as more than one 
of the types outlined below.

These databases are primarily built to serve as a storehouse for 
data dedicated to a particular research goal. A typical example is 
research into peptide fragmentation characteristics (38), or into 
peptide detection biases (39). The main purpose of the database 
is thus to provide a starting point for further work, which is often 
reflected in the data stored. Research databases aimed at under-
standing peptide fragmentation might for instance forgo detailed 
sample annotation or protein identifications, as the focus lies spe-
cifically on the mass spectra and their inferred peptides. Similarly, 
a database aimed at peptide detection biases might not store mass 
spectra (which typically contribute the bulk of the data volume) 
but rather only peptide identifications and inferred proteins.

As outlined above, the identification of proteins from mass spec-
tra is a relatively complex process, involving several steps of data 
processing and inference. Software pipelines have therefore been 
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set up to automate such analyses, and developers can relatively 
easily append a database at the end of their pipeline. The main 
benefit of this approach is the uniform origin of the data, but at 
the same time, this can also be perceived as the greatest drawback 
of such databases. This because processing and identification 
algorithms often introduce biases in the output (19–21), which 
can either confound downstream analysis, or can lead to over 
fitting.

These databases capture proteomics results to refine or extend the 
annotation of existing sequence databases. Typical examples 
include the annotation of biologically relevant post-translational 
modifications (PTMs), the verification and correction of pre-
dicted open reading frames (ORFs), and the delineation of splice 
sites. As mentioned, these databases tend to focus on the results 
rather than on the mass spectral data, unless they implicitly employ 
quality control criteria that involve careful evaluation of the match 
between a peptide sequence and its mass spectrum of origin.

This category of highly specialized databases is aimed specifically 
at solving the data dissemination issue that is particularly acute for 
the raw, binary output files of the mass spectrometer. A single 
liquid chromatography (LC) run on a modern electrospray mass 
spectrometer for instance, can generate a file that is several hun-
dred gigabytes in size. Communicating the results of a single 
study (often comprising tens of such runs) to the scientific com-
munity thus quickly becomes challenging. Transmission-oriented 
databases therefore employ sophisticated internet-oriented data 
sharing architectures that involve distributed protocols such as 
the well-known peer-to-peer architecture. These databases often 
resemble file systems more than they do databases, and the infor-
mation contained in them tends to be highly heterogeneous. This 
makes the data difficult to query, especially when searching for 
details (e.g. all data pertaining to a particular protein). Data is 
therefore typically retrieved from these repositories on the level of 
an entire study.

Data repositories are the entities that most people (somewhat 
erroneously) associate with the term “database”. They exist as 
central databases that verbatim capture data that is submitted to 
them. Aimed at simply collating all publicly available information, 
they often lack clear research or annotation goals or associated 
pipelines, but because of their generic structure interested data 
consumers can easily use them for these purposes. Data in reposi-
tories tends to be stored in a highly structured and well-annotated 
way, allowing detailed queries to be run with ease. Most of the 
data submitted to repositories will be related to published papers, 
as direct requests from, or requirements by, scientific journals in 
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the field are the primary motivators for authors to submit their 
data (40–42).

A number of proteomics databases and repositories have sprung 
up over the past few years, but the most prominent efforts are 
listed specifically here, along with a brief description. The inter-
ested reader can find additional information in dedicated review 
articles, specifically aimed at enumerating and positioning a com-
prehensive list of databases (9, 43).

The first mass spectrometry based proteomics database to be 
published, the Global Proteome Machine Database (GPMD) 
(44) (http://gpmdb.thegpm.org) is a typical example of a pipe-
line-oriented database. Originally intended as an add-on data 
store for the online version of the open source X!Tandem search 
engine (45), the GPMDB has accumulated a wealth of data since 
its inception. As a result, its classification can now be made as a 
research database, as well as an annotation-oriented database. 
Indeed, the data accumulated in GPMDB is used to create spec-
tral libraries, and inspire the development of a spectral library-
searching tool, whereas the identified peptides are matched to the 
Ensembl genome database. GPMDB contains data from a variety 
of organisms, but is somewhat biased toward ion trap data on the 
instrument front.

The PeptideAtlas project (http://www.peptideatlas.org), originally 
published in 2005 (46) was originally set up as an annotation-
oriented database, although it simultaneously served as the end-
point for the Trans-Proteomic Pipeline (TPP) processing pipeline. 
Similar to GPMDB, the remit of PeptideAtlas has grown over 
time, and it has served as a research database for the development 
of spectral libraries and corresponding search tools as well (47). 
Furthermore, PeptideAtlas also now provides information about 
the detectability of peptides (48). One noteworthy aspect of 
PeptideAtlas is the occurrence of several “builds” of the system; a 
new such PeptideAtlas build is typically created on the basis of an 
individual organism (49, 50), although tissue-specific (51) Atlas 
builds have been created as well.

The Proteomics Identifications Database (PRIDE; http://www.
ebi.ac.uk/pride), developed at the European Bioinformatics 
Institute (EBI), was the first fully structured proteomics data 
repository (52). The main purpose of PRIDE is to capture and 
disseminate proteomics data from across the field, without biases 
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or editorial control in data origins, data processing approaches, 
and annotation. Having undergone dramatic growth, PRIDE is 
now one of the largest and certainly the most varied collection 
of proteomics data in the field. Based entirely on direct data 
submissions, PRIDE relies heavily on freely available and plat-
form-independent, user friendly data submission tool called 
PRIDE Converter (53). PRIDE contains details ranging from 
mass spectra to identified proteins, as well as extensive metadata 
at all levels of detail. A BioMart for data retrieval is available as 
well (54).

The Human Proteinpedia project (http://www.humanproteinpe-
dia.org) falls neatly in the annotation-oriented database category 
(55). Intended to complement the curated Human Protein 
Reference Database (HPRD) (56) with community-provided 
annotation, this database collects submitted proteomics data and 
uses the findings to directly annotate the protein entries in HPRD 
with observed post-translational modifications and (subcellular) 
localization. In contrast to the previously described resources, 
Proteinpedia is specifically dedicated to data derived from human 
samples.

A recent addition to the field, the NCBI’s Peptidome database 
(57) (http://www.ncbi.nlm.nih.gov/peptidome) can be consid-
ered as a sibling of the abovementioned PRIDE database. A true 
repository, Peptidome accepts submitted data without assuming 
editorial control and stores and disseminates this data in a well-
defined and structured way. Similar to the PRIDE database, this 
generic repository can be used for a large variety of downstream 
activities, including research and annotation. The current volume 
of data at Peptidome remains somewhat restricted, but this is cer-
tain to change substantially over time. It is worth noting that the 
PRIDE and Peptidome teams have already committed themselves 
to a full exchange of publicly available data, which will ensure that 
data submitted to one repository can be found in the other as 
well. This collaboration forms the keystone of the ProteomExchange 
collaboration outlined in Subheading 7.

The Tranche databases (58) (https://proteomecommons.org/
tranche) occupies a special place in this list, as it is the only example 
of a transmission-oriented database. Built around a sophisticated 
peer-to-peer protocol and a robust distributed server architec-
ture, the Tranche project currently provides the best available 
means to share the large data volumes associated with raw, binary 
data files. It is used in this capacity by databases such as PRIDE 
and PeptideAtlas that deposit submitted raw data into Tranche 
and link out to the files. Recent developments in Tranche have 
allowed the annotation of a data set with metadata, although 
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the actual data files can take many forms and in general do not 
support detailed searching.

The existence of a variety of proteomics databases has led to a 
fragmentation of the available data, and causes unnecessary con-
fusion for eager submitters willing to share their data. The data 
fragmentation further complicates matters for data consumers, as 
they have to browse several databases, each fitted with a custom 
interface and output format, to collate a full picture of the pub-
licly available data for their topic of interest. To alleviate this situ-
ation, the ProteomExchange consortium was set up (59) to 
guide the data flow through the databases in a clear and compre-
hensive way. Currently in the final phases of development, 
ProteomExchange will rely on the PRIDE and Peptidome reposi-
tories as entry points for submitted data, with automatic replica-
tion for public between these databases. All submitted data will 
also be automatically sent to Tranche, and will be picked up form 
there by core members such as PeptideAtlas. A common 
ProteomExchange accession number will ensure that the data can 
be found easily, regardless of the database queried. 
ProteomExchange also comes with an automated notification 
system that will send structured messages via mail and RSS to 
announce the availability of new datasets to any interested party 
in the general public. As a result, the submission and consumption 
of proteomics data will become a much simpler and straightfor-
ward procedure, while allowing the consumer to choose the par-
ticular view on the data offered by the database of preference.

Once operational, ProteomExchange will provide a data dis-
semination infrastructure for proteomics similar to the 
International Nucleotide Sequence Database Collaboration 
(INSDC) that has turned genome-sequencing efforts into a sta-
ble and rich foundation for the growth of proteomics. It is to be 
hoped that the efforts now undertaken at the proteomics level 
will in turn enable and nurture future research fields to contribute 
to our understanding of life.
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Chapter 15

Preparing Molecular Interaction Data for Publication

Sandra Orchard and Henning Hermjakob 

Abstract

It is now becoming more usual for journals to request the submission of the data accompanying an article 
to an appropriate public repository. Such users may access the data in a format appropriate for display and 
reanalysis. It is commonly accepted that molecular interaction databases will hold all the large-scale inter-
action datasets and enrich this with lower throughput data. Previously this small-scale interaction data has 
been archively curated from the literature but, increasingly, deposition of such information is also being 
seen as an integral part of the publication process. This chapter acts as a brief guide to preparing both 
large- and small-scale data for publication and gives a range of different submission options.

Key words: Human proteome organisation, Proteomics standards initiative, International molecular 
exchange consortium, Data standardization

The systematic mapping of molecular interaction data, in particu-
lar protein-protein interactions, has proven a rich source of infor-
mation for many groups, providing valuable insights into the 
understanding played by a protein in processes, pathways, and in 
particular cell types. Protein-protein interaction databases play a 
necessary role in capturing, collating, and redistributing the 
wealth of interaction data that is published in the literature each 
year. The scope of these databases has increased over time, with 
the degree of annotation captured becoming richer and some 
repositories, such as the IntAct molecular interaction database 
(1), are beginning to capture all possible interactions within a cell 
or organism, including those made by protein-small molecules 
and protein-nucleic acids. To increase both data coverage and 
data quality in these resources, it is essential that direct deposition 

1. Introduction
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by data producers as part of the publication process is encouraged 
and made as simple a process as possible.

Before 2004 the user was served by an ever-increasing number of 
data resources, all of which collected interaction information from 
the literature, and in some cases, from direct submissions from 
research workers but an individual wishing to download the infor-
mation from a number of sources was faced with parsing multiple, 
separately constructed databases, each with its own individual 
structure and data format. Merging the data into a single reposi-
tory then required further effort, as did identifying those papers 
that had been redundantly curated by more than one database. It 
was at this point that several of these resources were brought 
together by the Human Proteome Organisation to tackle these 
problems and provide an improved service for the user.

The Human Proteome Organisation (HUPO) was formed in 
2001 to consolidate national and regional proteome organiza-
tions into a single worldwide body (2). The Proteome Standards 
Initiative (PSI) was established by HUPO with the remit of stan-
dardizing data representation within the field of proteomics to 
the end that public domain databases can be established where all 
such data can be deposited, exchanged between such databases, 
or downloaded and used by laboratory workers (3). Each work-
group within the HUPO-PSI has produced a series of documents 
and resources to aid in the process of data standardization and 
exchange.

In 2004, the Molecular Interaction workgroup published 
Level 1.0 of the PSI-MI XML interchange schema, with accom-
panying controlled vocabularies, jointly developed by both major 
producers of protein interaction data and by a number of data-
base resources (4). Version 1.0 of the format focused exclusively 
on protein interactions, and was widely implemented and sup-
ported by both software tool development and data providers. As 
a direct result of requests from users, database groups and data 
providers the original PSI-MI format was considerably extended 
to increase the interactor types that could be described within the 
format to encompass all biomolecules. The description of both 
experimental conditions and experimental features on participat-
ing molecules, such as the description of purification tags or dele-
tion or point mutations, was considerably enhanced and made 
more flexible. The abilities to describe kinetic as well as modeled 
interaction parameters were also added. PSI-MI XML2.5 was 
published in 2007 and has remained stable since then (5).

The PSI-MI XML2.5 format allows a detailed representation 
of fully annotated interaction records both for interdatabase and 
database-end user data communication. However, to support 
many use cases, such as fast Perl parsing or loading into Microsoft 
Excel, that only require a simple, tabular format of interaction 

1.1. HUPO  
and the Proteomics 
Standards Initiative
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records, the MITAB2.5 format was defined as part of PSI-MI 
2.5. The MITAB2.5 format only describes binary interactions, 
one pair of interactors per row in a simple tab-delimitated 
format.

Controlled vocabularies (CVs) are used throughout the 
PSI-MI schema to standardize the meaning of data objects. Their 
use ensures that the same term used throughout a description by 
a data producer, instead of a synonym or alternative spelling, and 
also that the interpretation of the meaning of that term remains 
consistent between multiple data producers and users. To achieve 
this, all terms have definitions and, where appropriate, are sup-
ported by one or more literature references. The controlled 
vocabularies have a hierarchical structure, in the form of a direct 
acyclic graph (DAG), higher-level terms being more general than 
lower-level descriptors, allowing annotation to be performed to 
an appropriate level of granularity while also enabling search tools 
to return all mapped objects to both parent and child terms, if 
required. The Molecular Interaction CV (MI) (4, 5) may be 
accessed either on the Open Biomedical Ontologies website 
(http://www.obofoundry.org) or via the Ontology-Lookup 
Service at the European Bioinformatics Institute (http://www.
ebi.ac.uk/ols). It is produced and maintained by the HUPO-PSI 
and is used for the annotation of molecular interaction data.

Almost all major interaction data producers now make data 
available in PSI-XML2.5 format and many also in MITAB2.5. 
Any data submitted to an IMEx database, will be available in both 
formats and can then be accessed by the increasing number of 
visualization and analysis tools using these formats.

The minimum information about a molecular interaction experi-
ment (MIMIx) guidelines provide a checklist for anyone prepar-
ing interaction data, be it as little as a single interaction within a 
paper describing the characterisation of a protein, for either pub-
lication in a peer-reviewed article, deposition in an interaction 
database or displaying a large dataset on a website (6). MIMIx 
represents a compromise between the depth of information nec-
essary to describe all relevant aspects of an interaction experiment 
and the reporting burden placed on scientists who generate the 
data. It is of increasing importance that databases, and the data-
sets they contain, are maintained to, at least, MIMIx compatibil-
ity, as increasingly tools and services are being written on the 
assumption that this minimum level of information be supplied. 
For example, the R statistics package (7) is compromised if data-
bases have not included information on interaction directionality 
(e.g., bait–prey relationships), which is a MIMIx requirement. 
Any submission to an interaction database should be prepared to 
MIMIx specifications.

1.2. The Minimum 
Information about  
a Molecular 
Interaction Experiment

http://www.obofoundry.org
http://www.ebi.ac.uk/ols
http://www.ebi.ac.uk/ols
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The International Molecular Exchange Consortium (IMEx) 
currently consists of four full members (IntAct (1), MINT (8), 
DIP (9), MatrixDB (10), and MPIDB (11)) with a number of 
other databases either maintaining observer status or applying to 
join. All data submitted to any one of these databases will be 
shared with the consortium members, such that users need 
only access one site to find all the requisite information fulfill-
ing their query.

Increasingly journals are looking to encourage the deposition of 
datasets in the public domain, where it is possible for network 
biologists to access and download in an appropriate format. IMEx 
member databases handle such submissions, providing accession 
numbers to be cited in the accompanying article, which will allow 
access to the data in all participating resources.

All IMEx member databases will accept protein-protein interac-
tion data, and some, such as IntAct will accept all forms of inter-
action data and MatrixDB also protein-small molecule information. 
While data resources such as IntAct and DIP will accept all data, 
other data resources have areas of specialist, for example MPIDB is a 
microbial protein interaction database and MatrixDB gathers extra-
cellular matrix interaction data. Potential submitters may access a full 
list of databases and their submission details on the IMEx website 
(www.imexconsortium.org) or go directly to the individual resource.

Small-scale datasets are of enormous value to interaction data-
bases, as the interactions they contain tend to be confirmed by 
multiple methodologies and often provide details missing in larger 
datasets such as binding sites or kinetic data. The simplest method 
of depositing interaction data is to provide a copy of the manu-
script, either before or during the journal review process, to the 
database where the interaction can be loaded by an experienced 
curator. The information will be held in confidence until the pub-
lication of article when it will be released into the public domain. 
Before submission, however, authors are encouraged to read the 
MIMIx guidelines and ensure that the data in the paper reaches 
these minimum requirements. In particular, authors should 
ensure that all molecules participating in interactions are fully and 
unambiguously described, for example, should cDNAs be tran-
scribed into host cell system it should be made very clear the 
organism from which it originated. Use of an accession number 
from a public domain database will give both source organism and 
sequence length (see Note 1).

1.3. The International 
Molecular Exchange 
Consortium

1.4. Data Publication

2. Methods

2.1. Choice  
of Database

2.2. Deposition  
of Small-Scale Data

http://imex.sf.net
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Medium-scale datasets, generally consisting to tens to several 
hundreds of interactions (be these two-hybrid bait-prey pairs, or 
several one-bait multiple-prey combinations) are routinely 
described in a single publication and would constitute a single 
deposition. Most biologists prefer to store such data in an Excel™ 
spreadsheet and this is an appropriate method for submission to 
an interaction database. Again, submitters should refer to the 
MIMIx guidelines and ensure that unambiguous interactor iden-
tifiers should be used, such as public database accession numbers 
(see Note 1). If the author has used their own internal identifier 
system this may be included on the spreadsheet, and will be 
retained in the entry, but the sequence should also be mapped to 
an external database resource. Details of expression constructs 
should also be given, such as tags or mutations, which may well 
be described most simply in free text or diagram in an accompa-
nying document such as the paper itself (see Note 2). In all cases, 
it is recommended that the submission be accompanied by a copy 
of the manuscript so that any small-scale experiments can also be 
included in a deposition.

Alternatively, the submitter may wish to make use of a pre-
formatted Excel sheet provided by the IMEx consortium, 
which is available from http://imex.sourceforge.net/MIMIx/
index.html. The workbook should be opened using Microsoft 
Excel 2000 or later on a computer running a Windows operat-
ing system. Unfortunately, the workbook will not work cor-
rectly on a non-Windows operating system or on an Office 
clone such as OpenOffice.org. This is because of the extensive 
use of Visual Basic for Applications (VBA) code in the spread-
sheet that relies heavily on code libraries that are only available 
under Windows.

The first time the workbook is opened, a Security Warning 
dialogue box will be shown. The workbook includes macros writ-
ten in VBA. These have been signed using a Digital Signature 
signed by Thawte (http://www.thawte.com/digital-certificates) 
on behalf of the EBI. The purpose of this certificate is to guaran-
tee that the code embedded in the workbook has not been modi-
fied outside the EBI and is virus free. The exact appearance and 
wording of these dialogues may differ depending on the specific 
Microsoft operating system and the version of Microsoft Excel 
that is being used. Once the user clicks on the Details link on the 
Security Warning dialogue box a new dialogue will open, indicat-
ing that the digital signature originates from the EBI. Once the 
certificate has been viewed, and the digital signature has been 
issued by Thawte Code Signing CA and has been issued to the 
European Bioinformatics Institute the user can then proceed. 
If the certificated is accepted permanently by checking the “Always 
trust macros from this publisher” box and clicking on the Enable 
macros button, this dialogue box does not reappear.

2.3. Deposition  
of Medium-Scale Data

http://imex.sourceforge.net/MIMIx/index.html
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Each page in the workbook should then be filled in. The filling 
of the Database, Experimental role, Biological role, Interaction 
detection, and Participant detection fields are facilitated by drop-
down menus, which contain suggestions for the most appropriate 
terms (see Note 3). These fields will update, if necessary, when-
ever the workbook accesses the internet. The workbook should 
then be submitted to the database of choice.

High-throughput data producers, those experimenters working 
in a continual pipeline with bioinformatic support, may wish to 
use the XML format (5) which may be continually sent to an 
IMEx-member database throughout the period of data genera-
tion and made public when appropriate.

Potential users should download and install the Java 
Development Kit (JDK) version 5.0 or 6.0 from http://java.sun.
com/. There are several download packages available for the 
JDK. Choose the one that is labeled as JDK 5.0/6.0 Update X 
rather than the (much larger) packages including the NetBeans 
IDE and/or Java EE as these components are not necessary for 
the protocol. Detailed installation instructions for a particular 
system can be found on this Website as well.

Downloading and installing Subversion from http://subversion.
tigris.org/ will allow the user to check out the examples source 
code (if using Windows or Mac OS you may want to download 
the binaries). For the example, the command line client is used, 
so there is no need to download a third-party client. Maven 
(http://maven.apache.org/download.html) may be used to run 
the examples.

A command line terminal should be opened, allowing the user to 
navigate to the folder of choice and execute the following code:

svn checkout – http://psidev.svn.sourceforge.net/svnroot/
psidev/psi/mi/xml/psimixml-examples

This will create a folder called psimixml-examples, which con-
tains the example project. The layout of the sources follows the 
Maven standards (http://maven.apache.org/guides/introduc-
tion/introduction-to-the-standard-directory-layout.html). The 
example we are going to work with is located at:

 psimixml-examples/src/main/java/org/hupo/psi/mi/
xml/example/SimpleExample.java

The class already contains some code to generate an XML 
file. The first part of the example creates some example data. This 
is the section that can be modified to create your own data. The 
second part contains the actual writing of the created data to an 
XML file. The example contains comments about the steps in 
more detail.

All the code of the class is inside a main method, which makes 
this class executable. This is not recommended for production 

2.4. Submission  
of Large-Scale 
Amounts of Data

2.5. Obtaining  
the Examples

http://java.sun.com/
http://java.sun.com/
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code, but for example purposes we want to execute from the 
command line.

Maven is used to execute the class from the command line. 
To do so, run the following command:

mvn -P exec-simple

Once run, an XML file should appear in the psimixml-exam-
ples/target folder, containing the data created in the example. A 
semantic validator for PSI-MI files (http://www.ebi.ac.uk/intact/
validator/start.xhtml) (Kerrien et al., in preparation) is also avail-
able. The validator checks the correct use of PSI-MI ontologies in 
a data file, plus applies additional semantic consistency rules writ-
ten to conform to IMEx curation standards. The code should be 
modified to generate individual PSI-MI XML2.5 files. The schema 
will require the use of PSI-MI controlled vocabulary terms. Once 
the file validates, it may be submitted to a database of choice.

 1. The most common cause of data loss when published interac-
tion data is archively curated is the use by authors of ambigu-
ous molecule identifiers or the lack of originating organism 
when clones are described. Interactors should always be refer-
enced to an external public domain resource, even if an 
author-derived identifier is the main descriptor within the 
paper. For proteins this should be a protein sequence data-
base such as UniProtKB, and when appropriate, identifica-
tion can be as detailed as specifying a particular isoform by a 
database accession number. For genes, Ensembl (http://www.
ensembl.org), Ensembl Genomes (http://www.ensemblge-
nomes.org/), or Entrez Gene (http://www.ncbi.nlm.nih.
gov/sites/entrez) identifiers are appropriate resources; 
nucleic acids may be identified by a DDBJ/EMBL/GenBank 
identifier and small molecules by a ChEBI accession number 
(http://www.ebi.ac.uk/chebi) (12). If a molecule is missing 
from the source database, you should include the sequence/
structure in your submission, and if possible the database will 
arrange for its inclusion in the reference resource.

 2. If features, such as mutations, are to be mapped to a sequence, 
the numbering should reflect the current version of the 
sequence given in any resource unless the author is publishing 
an alternative sequence in the manuscript.

 3. New techniques, or derivations of existing techniques, may 
not yet be adequately described by the current version of 
the HUPO-PSI CV. New terms may be requested on the 
SourceForge tracker at https://sourceforge.net/tracker/ 
?group_id=65472&atid=612426.

3. Notes

http://www.ebi.ac.uk/intact/validator/start.xhtml
http://www.ebi.ac.uk/intact/validator/start.xhtml
http://www.ensembl.org
http://www.ensembl.org
http://www.ensemblgenomes.org/
http://www.ensemblgenomes.org/
http://www.ncbi.nlm.nih.gov/sites/entrez
http://www.ncbi.nlm.nih.gov/sites/entrez
http://www.ebi.ac.uk/chebi
https://sourceforge.net/tracker/?group_id=65472&atid=612426
https://sourceforge.net/tracker/?group_id=65472&atid=612426
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Chapter 16

Submitting Proteomics Data to PRIDE Using PRIDE 
Converter

Harald Barsnes, Juan Antonio Vizcaíno, Florian Reisinger,  
Ingvar Eidhammer, and Lennart Martens 

Abstract

With the continuously growing amount of proteomics data being produced, it has become increasingly 
important to make these data publicly available so that they can be audited, reanalyzed, and reused. More 
and more journals are also starting to request the deposition of MS data in publicly available repositories 
for submitted proteomics manuscripts. In this chapter we focus on one of the most commonly used pro-
teomics data repositories, PRIDE (the PRoteomics IDEntifications database, http://www.ebi.ac.uk/
pride), and demonstrate how a new graphical user interface tool called PRIDE Converter (http://pride-
converter.googlecode.com) greatly simplifies the submission of data to PRIDE.

Key words: Mass spectrometry, Proteomics, Data repository, Data conversion

Public availability of source data and results is the standard for 
most areas of proteomics, e.g., protein sequences in UniProt (1) 
(http://www.uniprot.org), protein structures in the Protein 
Databank (2) and protein modifications in UniMod (3) (http://
www.unimod.org), and RESID (4) (www.ebi.ac.uk/RESID). 
Correspondingly, journals are increasingly requesting that mass 
spectrometry based proteomics data, accompanying submitted 
manuscripts, is also made publicly available (5, 6). However, 
before such data deposition can be made strictly mandatory, 
the submission process first has to become straightforward. 
Peptide and protein identifications using mass spectrometry (MS) 
face some additional challenges compared to the other data types 
in this respect: The data sets can be both very complex and very 

1. Introduction

1.1. Background

Cathy H. Wu and Chuming Chen (eds.), Bioinformatics for Comparative Proteomics, Methods in Molecular Biology, vol. 694,
DOI 10.1007/978-1-60761-977-2_16, © Springer Science+Business Media, LLC 2011
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http://pride-converter.googlecode.com
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http://www.unimod.org
http://www.unimod.org
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large. Additionally, the lack of standard formats for data exchange 
and storage further confounds matters, although recent standard-
ization efforts by the Human Proteome Organization’s Proteomics 
Standards Initiative (HUPO PSI) for MS driven proteomics, mainly 
centered on mzIdentML (previously known as analysisXML) and 
mzML (http://www.psidev.info) are likely to improve this situa-
tion in the near future.

Several repositories for proteomics MS data have been estab-
lished, with PRIDE, GPMDB, PeptideAtlas, NCBI Peptidome 
and Proteinpedia (7) being the most prominent. Among these 
the PRIDE data repository (8–10) at the European Bioinformatics 
Institute (http://www.ebi.ac.uk/pride) stands out by combining 
several important properties. First of all, it represents an actual 
data repository, as it assumes no editorial control over and data is 
kept exactly as submitted. Secondly, it includes a convenient but 
powerful system that supports anonymous peer review of submit-
ted data, while maintaining the submission as private. PRIDE 
stores three different types of information: peptide and protein 
identifications derived from MS or MS/MS experiments, MS and 
MS/MS mass spectra as peak lists, and any and all associated 
metadata. Both in terms of the amount of metadata that can be 
stored, and in the way that this information is structured, PRIDE 
exceeds the capabilities of other repositories. Because of these 
various strengths, discussed in more detail elsewhere (8–10), 
PRIDE has become one of the recommended locations for mak-
ing MS proteomics data publicly available, e.g., (5, 6) and http://
www3.interscience.wiley.com/homepages/76510741/2120_
instruc.pdf. The remainder of this chapter focuses on how 
submitting data to PRIDE has been greatly simplified by the 
development of a graphical user interface data conversion  
tool called PRIDE Converter (11) (http://pride-converter. 
googlecode.com).

In the past submitting data to PRIDE could be challenging, espe-
cially for wet-lab scientists without a background in bioinformat-
ics or local informatics support. Apart from the inherent complexity 
of MS proteomics data, the main reason for these difficulties can 
be attributed to the long list of different data formats being used 
in the proteomics community, which somehow has to be dealt 
with when submitting the data to a repository.

When PRIDE was created an XML-based data format, 
referred to as PRIDE XML, was chosen as the default format for 
submissions. PRIDE XML is built around the HUPO PSI’s 
mzData standard for mass spectrometry (http://www.ebi.ac.uk/
pride/schemaXmlspyDocumentation.do) (9). However, convert-
ing proteomics data to PRIDE XML can be quite complex, and 
as a result, several tools for converting data into PRIDE XML 
have been developed over the past few years. The first of these 

1.2. Tools  
for Submitting Data  
to PRIDE

http://www.psidev.info
http://www.ebi.ac.uk/pride
http://www3.interscience.wiley.com/homepages/76510741/2120_instruc.pdf
http://www3.interscience.wiley.com/homepages/76510741/2120_instruc.pdf
http://www3.interscience.wiley.com/homepages/76510741/2120_instruc.pdf
http://pride-converter.googlecode.com
http://pride-converter.googlecode.com
http://www.ebi.ac.uk/pride/schemaXmlspyDocumentation.do
http://www.ebi.ac.uk/pride/schemaXmlspyDocumentation.do
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were the ProteomeHarvest PRIDE Submission Spreadsheet 
(http://www.ebi.ac.uk/pride/proteomeharvest), which is a 
Microsoft Excel-based tool only suitable for small-scale submis-
sions, and PRIDE Wizard (12) (http://www.mcisb.org/
resources/PrideWizard), supporting Mascot search result files. 
A tool called ProCon (http://www.medizinisches-proteom-center.
de/software) was developed more recently for converting data 
from the ProteinScape LIMS system to PRIDE XML.

Unfortunately, all have limited support for different proteom-
ics data formats and the inability of some of the tools to handle 
larger data sets further reduces their usability. A new tool called 
PRIDE Converter (11) (http://pride-converter.googlecode.
com) was therefore developed. It improves on the existing tools 
in three essential ways (1) it supports a large variety of input for-
mats (see Table 1), (2) it is suitable for both small and large data 
submissions, and (3) having a wizard-like graphical user interface 
it is very intuitive and easy to use.

Table 1 
The currently supported data formats in PRIDE Converter

Data format name More information

Mascot DAT Files http://www.matrixscience.com

Mascot Generic Files http://www.matrixscience.com

X!Tandem http://www.thegpm.org/TANDEM

Spectrum Mill http://www.chem.agilent.com

Micromass PKL Files http://www.matrixscience.com/help/ 
data_file_help.html#QTOF

SEQUEST Result Files http://fields.scripps.edu

SEQUEST DTA Files http://fields.scripps.edu

OMSSA http://pubchem.ncbi.nlm.nih.gov/omssa

Peptide- and  
ProteinProphet

http://peptideprophet.sourceforge.net
http://proteinprophet.sourceforge.net

ms_lims 7 http://genesis.ugent.be/ms_lims

VEMS PKX Files http://personal.cicbiogune.es/rmatthiesen

MS2 http://doi.wiley.com/10.1002/rcm.1603

mzData http://www.psidev.info/index.
php?q=node/80#mzdata

mzXML http://tools.proteomecenter.org/wiki/index.
php?title=Formats:mzXML

DTASelect http://fields.scripps.edu

http://www.ebi.ac.uk/pride/proteomeharvest
http://www.mcisb.org/resources/PrideWizard
http://www.mcisb.org/resources/PrideWizard
http://www.medizinisches-proteom-center.de/software
http://www.medizinisches-proteom-center.de/software
http://pride-converter.googlecode.com
http://pride-converter.googlecode.com
http://www.matrixscience.com
http://www.matrixscience.com
http://www.thegpm.org/TANDEM
http://www.chem.agilent.com
http://www.matrixscience.com/help/data_file_help.html#QTOF
http://www.matrixscience.com/help/data_file_help.html#QTOF
http://fields.scripps.edu
http://fields.scripps.edu
http://pubchem.ncbi.nlm.nih.gov/omssa
http://peptideprophet.sourceforge.net
http://proteinprophet.sourceforge.net
http://genesis.ugent.be/ms_lims
http://personal.cicbiogune.es/rmatthiesen
http://doi.wiley.com/10.1002/rcm.1603
http://www.psidev.info/index.php?q=node/80#mzdata
http://www.psidev.info/index.php?q=node/80#mzdata
http://tools.proteomecenter.org/wiki/index.php?title=Formats:mzXML
http://tools.proteomecenter.org/wiki/index.php?title=Formats:mzXML
http://fields.scripps.edu
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PRIDE Converter is built using Java 1.5, is platform independent 
and currently supports the conversion of 15 different input for-
mats into PRIDE XML (see Table 1). It has a wizard-like graphi-
cal user interface divided into eight steps guiding the user from 
the specification of the input files to the final conversion result. In 
each step, the user is requested to provide appropriate metadata 
using controlled vocabulary terms that are retrieved using the 
Ontology Lookup Service (OLS) (13) (see Fig. 6). PRIDE 
Converter is open source, freely available, and support is available 
via the PRIDE support team at pride-support@ebi.ac.uk. For 
more details see the PRIDE Converter home page at http://
pride-converter.googlecode.com.

The remainder of this chapter contains a step-by-step tutorial on 
how to use PRIDE Converter to convert proteomics data into 
valid PRIDE XML. Additional help can be found by clicking the 
help icons in the lower left corner of each frame of the running 
user interface or by visiting the PRIDE Converter home page, 
where example data and the tool itself can be downloaded. No 
further installation is required; simply download and unzip 
the file.

After unzipping the downloaded archive, double click on the 
PRIDEConverter-X.Y.Z.jar file (where X.Y.Z represents the ver-
sion number) to start PRIDE Converter (see Note 1). If prob-
lems should occur, the PRIDE Converter home page contains 
tips and hints on how to handle the most common issues and this 
information will therefore not be repeated here. At each start up 
PRIDE Converter checks if a newer version of the converter has 
become available. It is always recommended to use the latest ver-
sion, and one can easily import user settings, etc. from previous 
versions when upgrading. For more information about upgrading 
see the PRIDE Converter home page.

After PRIDE Converter has started the data source selection 
screen is shown, see Fig. 1. Here all the currently supported for-
mats are shown, see Table 1 for the complete list, and additional 
information about each format is displayed when selecting a given 
data format. In this tutorial we use “SEQUEST Result Files” as 
example data, but the main procedure is identical for all formats. 

2. Materials

3. Methods

3.1. Starting PRIDE 
Converter

3.2. Data Source 
Selection

http://pride-converter.googlecode.com
http://pride-converter.googlecode.com
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(Example data files can be found on the PRIDE Converter home 
page.) Select “SEQUEST Result Files” in the list at the top and 
click on “Next >” to continue.

The wizard is divided into eight simple steps where the user pro-
vides different types of information at each step. The first step is 
the “File Selection” step, see Fig. 2, where the proteomics data 
files to be converted are selected. This step varies somewhat 
between the different formats, because of the various ways of 
storing the data. For SEQUEST result files the data is divided 
into two types: the spectrum files (dta files) and the identification 
files (out files). Other formats store all the information in one file, 
e.g., Mascot dat files, or in a database, e.g., ms_lims, but the 
selection process is fairly similar (see Note 2).

The spectra to be included are selected in this step. In most cases 
it is best to include all spectra, but sometimes it makes more sense 
to only include a subset. This option is provided at the “Spectra 

3.3. Step 1 of 8: Data 
File Selection

3.4. Step 2 of 8: 
Spectra Selection

Fig. 1. Opening screen of PRIDE Converter, Data Source Selection, showing the supported data formats. Additional 
information about each format is displayed when selecting a given format.
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Selection” step, see Fig. 3, where several alternatives for spectra 
selection are presented. The simplest alternatives are “Select All 
Spectra” or “Select Identified Spectra”, i.e., include all spectra or 
just the identified ones. For more advanced selection, use, 
“Advanced Spectra Selection” or “Manual Spectra Selection”. 
“Advanced Spectra Selection” enables the selection of subsets of 
spectra based on either filenames or identification IDs, whereas 
“Manual Spectra Selection” enables manual selection of spectra 
based on individual information about each spectrum. For 
manual selection first load the spectra by clicking the “Load 
Spectra” button. When using the more advanced spectra selec-
tion options it is always recommended to verify the selection 
before continuing.

For some data formats it is also possible to set boundaries for 
the identifications, either by a minimum peptide score level, a 
minimum Mascot confidence level or by adding a protein identi-
fication filter. The protein identification filter is mainly provided 

Fig. 2. First wizard step: Data File Selection. Here the files to be converted are selected. Note that this step differs 
somewhat for the different data formats, depending on how the data is stored, i.e., all the data in one file, the data sepa-
rated into two files, the data stored in a database etc. In this case the two data file types option is shown, using SEQUEST 
data as the example.
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to be able to remove protein hits from decoy databases, but other 
uses might also be imagined (see Note 3).

One last point to mention is the possibility to include indi-
vidual spectrum annotations. Particular information about a 
given spectrum can be included either as plain text user param-
eters or, as recommended, by using controlled vocabulary terms 
(for more details about controlled vocabulary terms, see Step 4). 
Both types of terms are added by right-clicking on the given row 
in the spectrum table and selecting the “View/Change Spectrum 
Annotations.”

Note that the options available at this step are dependent on 
the data format selected, and that spectra selection might not be 
available for all formats.

At this step the main properties of the experiment are 
described, including title, description, experiment label, and an 
optional project name, see Fig. 4. The project name is used as a 
way of organizing related experiments in a hierarchical structure. 

3.5. Step 3 of 8: 
Experiment Properties

Fig. 3. Second wizard step: Spectra Selection. Here the spectra to be used are selected. Note that this step differs some-
what depending on the data format used. Also note that spectra selection is not available for all data formats. Here 
SEQUEST result files are used as the example data. See text for more details.
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It is not mandatory to provide a project name when submitting 
related experiments but it is highly recommended as it will allow 
efficient retrieval of data across the related experiments. The 
information provided at this step is used throughout PRIDE to 
describe the experiment, and in some of the searching features. 
Contact information is important, and makes it easy for people to 
contact the owners of the data set. A minimum of one contact has 
to be provided. If the submitted data set is published as part of a 
scientific paper, references to this paper should also be included. 
The added references will be highly visible for people viewing the 
data via the PRIDE web page and most likely result in more peo-
ple referencing the papers when using the data.

Information about the sample being used for the analysis is 
inserted in the “Sample Properties” step, see Fig. 5. There are 
two main options: single sample and multiple samples. Adding 
multiple samples makes it possible to include quantification data, 
where iTRAQ (14) is the currently supported format (see Note 4). 
Because most users will have a single sample the following will 

3.6. Step 4 of 8: 
Sample Properties

Fig. 4. Third wizard step: Experiment Properties. In this step information about the experiment is inserted, including con-
tact information and references if any. See text for more details.
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focus on how to annotate single samples. However, the process is 
very similar for multiple samples (see Note 4). At the top of the 
frame one can choose from a set of already created sample sets. 
Simply select the appropriate sample set in the drop down menu. 
If none of the available sample sets are satisfactory, new ones are 
easily created either from scratch, by selecting “Create a new sam-
ple set…” at the bottom of the drop down menu, or by extending 
one of the existing sample sets.

A sample is described using so-called controlled vocabulary 
(CV) terms, enabling all users to describe the data using the same 
terms. Using CV terms has many advantages, which are explained 
in more detail elsewhere (15), the most important advantage in 
this context is that it simplifies data mining across different data 
sets. The use of CV terms provides annotation of metadata in a 
structured way, because CV terms are organized in a hierarchical 
structure and all terms have definitions. For finding CV terms 
PRIDE Converter uses an online connection to the OLS (13) 
(http://ols-dialog.googlecode.com and http://www.ebi.ac.uk/
ontology-lookup), see Fig. 6. To find a CV term click on the 

Fig. 5. Fourth wizard step: Sample Properties. Here the properties of the sample used in the experiment are described. 
See text for details.

http://ols-dialog.googlecode.com
http://www.ebi.ac.uk/ontology-lookup
http://www.ebi.ac.uk/ontology-lookup


246 Barsnes et al.

“Add Sample CV Term” button, and the OLS dialog will appear. 
After selecting the relevant ontology, the correct CV term can 
easily be found by typing in the first few letters of the term into 
the autocompleting search field. A list of matching terms will 
appear, and additional information is displayed when selecting a 
term in the list. When the correct term has been identified, add it 
to the sample annotation by clicking the “Use Selected Term” 
button (see Note 5). Added terms can easily be altered, either by 
right-clicking on the term and selecting “Edit” from the popup 
menu, or by double clicking on the term. A minimum of one 
sample CV term must be provided.

“Protocol Properties,” see Fig. 7, are annotated in much the same 
way as “Sample Properties.” Again one can select an already exist-
ing protocol, or create a new protocol, and as before the proper-
ties are annotated using CV terms, but in this case each protocol 
step can contain more than one CV term. To add a protocol step, 

3.7. Step 5 of 8: 
Protocol Properties

Fig. 6. Ontology Lookup Service (OLS) dialog. Finding and using the correct CV 
(controlled vocabulary) terms is made easier using the Ontology Lookup Service. See 
text for details.
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click on the “Add Protocol Step” button. A new dialog then 
appears where multiple CV terms describing the given step can be 
added. Click the “Ontology Lookup Service” button to find a 
CV term in the same way as previously described. Note that it is 
also possible to attach values to these CV terms, e.g., the name 
of the enzyme used. After selecting all the terms for a given pro-
tocol step, click the “OK” button to add the step to the protocol 
description. Multiple steps are added by repeating the procedure, 
and similar to the CV terms used for sample description, added 
terms can be altered either by right clicking on the term and 
selecting “Edit” from the popup menu, or by double clicking on 
the term itself. A minimum of one protocol step has to be 
provided.

At the bottom of the Protocol Properties frame there is an 
option of selecting the identification type. The current options 
are “2D Gel” and “Other,” where the latter will be the preferred 
option for most users. “2D Gel” can be used if at a later stage 2D 
gel images should be added to the PRIDE XML file, see Note 6.

Fig. 7. Fifth wizard step: Protocol Properties. Describing the protocol steps used for the experiment. See text for details.
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This frame has two main parts, the instrument details at the top 
and the processing details at the bottom, see Fig. 8. Both are 
described using CV terms, and the process is very similar to the 
overall annotation procedure already explained. The choice of 
selecting an already created instrument or creating a new one is 
available using the drop down menu at the top. All fields are man-
datory, including the addition of at least one analyzer and at least 
one processing method.

For some data formats, instrument information is included in 
the data files, and if included, the information is extracted and 
inserted into the respective fields and tables. When this is the case 
it is important to verify that the acquired information is correct and 
complete. Please provide any missing information if necessary.

Additional information about the data set can be annotated by 
user parameters, see Fig. 9. User parameters store plain text infor-
mation provided by the submitter in a nonstructured way. By 
clicking the “Add User Parameter” button, name and value pairs 
(using plain text) can be added to further annotate the data set. 
There is no limit on the number of parameters, and including 
user parameters is not mandatory.

3.8. Step 6 of 8: 
Instrument Properties

3.9. Step 7 of 8: 
User Parameters

Fig. 8. Sixth wizard step: Instrument and Processing Properties. Details about the instrument and the processing methods 
used are inserted at this step. See text for details.
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The final wizard step concerns the setting of the “Output Properties,” 
see Fig. 10. The frame consists of four parts. At the top the output 
folder is provided. This is the location where the resulting PRIDE 
XML file will be saved. To change the location, click the folder icon 
to the right of the text field. Next is the resubmission section. When 
resubmitting a data set, check the resubmission box and provide 
the accession number of the original submission. Otherwise leave the 
box unchecked.

A section containing a set of format specific parameters 
follows. The first one can be used to mimic the Mascot web 
result by rounding the score and the threshold before compari-
son. The second option, if selected, causes PRIDE Converter to 
expect a comma instead of a period as the decimal symbol. If not 
checked, a period is assumed to be the decimal symbol used in 
the data files, and this is the standard for all data formats. Finally, 
the location of the OMSSA installation folder can be set. 
Because it contains required information about the peptide 
modifications, setting this field is mandatory when converting 
OMSSA omx files.

3.10. Step 8 of 8: 
Output Properties

Fig. 9. Seventh wizard step: User Parameters. Additional description of the experiment can be added as plain text user 
parameters. See text for details.
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The last section contains information about the converted file, 
including the complete file name and the file properties, i.e., the 
file size and the number of peptide and protein identifications. To 
start the conversion process, simply click the “Convert!” button.

When the “Convert!” button has been clicked PRIDE Converter 
starts converting all the selected files into one valid PRIDE XML 
file. However, depending on the data format used the converter 
may need additional input. One typical example of this concerns 
the details about detected peptide modifications. When a modifi-
cation is detected PRIDE Converter tries to map it to a set of 
default PSI-MOD (16) CV terms. These default mappings cover 
all the most common modifications, but if a given modification is 
not automatically mapped, the user is prompted to do so manu-
ally using the OLS. Selected mappings will be added to PRIDE 
Converter’s default mappings and proposed the next time the 
given modification is detected. Given that a modification map-
ping might not be unique, e.g., C* can correspond to different 
modifications for different data formats, the user will have to 

3.11. Conversion 
Process

Fig. 10. Eighth (and final) wizard step: Output Properties. The final details before converting are set at this step. Note that 
the screenshot shows the step after the creation of a PRIDE XML file. See text for more details.
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verify the modification each time the file is converted. However, 
only the first occurrence of the modification has to be confirmed.

For some data formats, mainly Mascot dat files, one also gets 
the choice of how to map detected protein isoforms. Three differ-
ent options are given (1) always select the first isoform found, 
(2) do a manual selection for each peptide-protein mapping, or 
(3) provide a list of peptide to protein mappings. Selecting the 
first option requires the least amount of additional effort, but in 
some cases the more advanced options are needed.

After verifying the modification mappings (and handling the 
protein isoforms if required), the conversion process continues 
and a progress bar with detailed information about the progress 
is shown. The conversion process can be cancelled at any time, 
but please note that the actual cancellation might take some time 
depending on the underlying processes being run. If the conver-
sion is not cancelled, and no errors occur (see Notes 7 and 8), an 
automatically validated PRIDE XML file will be created and a 
dialog containing information about the created file will be dis-
played, including the name and size of the file, and an overview 
of the contents of the file, i.e., the number of spectra and the 
number of identified peptides and proteins. It is advisable to ver-
ify that this information makes sense before continuing.

The created PRIDE XML file is now ready for submission. 
There are basically two ways of submitting your file to PRIDE: 
either by using the direct submission system on the PRIDE web 
page (http://www.ebi.ac.uk/pride) or by uploading the file to 
the PRIDE FTP server. The first option is only available for very 
small files (up to 15 MB unzipped), and accessing the submission 
site can be done by clicking the “PRIDE Login” button at the 
bottom of the frame. New users will have to register as users of 
PRIDE first by clicking the “PRIDE Registration” button and 
filling in the required information. If the created PRIDE XML 
file exceeds the limit for using the direct submission system, a 
message will be displayed urging the user to contact the PRIDE 
support team to get access details to the PRIDE FTP server.

For additional information or help please see http://
pride-converter.googlecode.com or feel free to contact the 
PRIDE support team at pride-support@ebi.ac.uk.

 1. PRIDE Converter can also be started from the command 
line: “java-jar PRIDEConverter-X.Y.Z.jar”. Most failures to 
start PRIDE Converter will result in a “pride_converter.log” 
file located in the user home directory. For more information 
see the PRIDE Converter home page.

4. Notes

http://www.ebi.ac.uk/pride
http://pride-converter.googlecode.com
http://pride-converter.googlecode.com
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 2. For most formats, several files can be combined into one 
PRIDE XML file. In this way the submitter can then choose 
how to organize their experiments. One PRIDE XML file 
corresponds to one experiment in the system after 
submission.

 3. To use the protein identification filter to remove decoy data-
base hits, simply insert the tag used to distinguish the decoy 
hits, e.g., “decoy_”, into the protein identification filter text 
field. During conversion all proteins having an accession 
number containing this tag will then be excluded from the 
resulting PRIDE XML file. Note that only one filter can be 
used per conversion.

 4. Multiple samples are supported by selecting the “Multiple 
Samples” tab, and the samples are annotated using CV terms 
in much the same way as for single samples. The main differ-
ence is the ability to have more than one sample. Click on 
“Add Sample,” and click the “Ontology Lookup Service” 
button to add CV terms to this particular sample. Each sam-
ple must also be given a unique name. To add iTRAQ labels 
to the samples, select the iTRAQ reagent type in the 
“Quantification” column. When at least one sample has been 
annotated with an iTRAQ reagent type the “Quantification 
Parameters” section becomes enabled, where the iTRAQ 
parameters can be set. At present, only 4-plex iTRAQ is 
supported.

 5. If unsure about which ontology to use, go to the OLS web 
page (http://www.ebi.ac.uk/ontology-lookup) and search 
for the desired term using the “Search in all ontologies” 
option.

 6. Adding 2D gel images can currently not be done using 
PRIDE Converter directly. Contact the PRIDE support team 
after submitting the file in order to submit your gel images.

 7. If an error occurs when using PRIDE Converter, an error 
message describing the problem will be written to the 
“ErrorLog.txt” file located in the “PRIDE Converter”/
Properties folder. For most errors a dialog containing details 
about the problem will also be displayed. For more informa-
tion about the most common issues see the PRIDE Converter 
home page.

 8. In some cases the default memory size is not big enough to 
perform the conversion and an “Out of Memory” error will 
be shown when trying to convert the file or files. If this occurs 
the memory size can be increased by editing the “JavaOptions.
txt” file in the “PRIDE Converter”/Properties folder. For 
more details see the PRIDE Converter home page.

http://www.ebi.ac.uk/ontology-lookup
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Chapter 17

Automated Data Integration and Determination  
of Posttranslational Modifications with the Protein 
Inference Engine

Stuart R. Jefferys and Morgan C. Giddings 

Abstract

This chapter describes using the Protein Inference Engine (PIE) to integrate various types of data – 
especially top down and bottom up mass spectrometer (MS) data – to describe a protein’s posttransla-
tional modifications (PTMs). PTMs include cleavage events such as the n-terminal loss of methionine 
and residue modifications like phosphorylation. Modifications are key elements in many biological pro-
cesses, but are difficult to study as no single, general method adequately characterizes a protein’s PTMs; 
manually integrating data from several MS experiments is usually required. The PIE is designed to auto-
mate this process using a guess and refine process similar to how an expert manually integrates data. The 
PIE repeatedly “imagines” a possible modification set, evaluates it using available data, and then tries to 
improve on it. After many rounds of refinement, the resulting modification set is proposed as a candidate 
answer. Multiple candidate answers are generated to obtain both best and near-best answers. Near-best 
answers are crucial in allowing for proteins with more than one supported modification pattern (isoforms) 
and obtaining robust results given incomplete and inconsistent data.

The goal of this chapter is to walk the reader through installing and using the downloadable version 
of PIE, both in general and by means of a specific, detailed example. The example integrates several types 
of experimental and background (prior) data. It is not a “perfect-world” scenario, but has been designed 
to illustrate several real-world difficulties that may be encountered when trying to analyze imperfect data.

Key words: PTM, MCMC, Simulated annealing, Proteomics, Top-down, Bottom-up, Data 
 integration, PIE

Proteins underlie many of the processes that sustain life. They 
function as catalysts in cellular reactions, as signaling network 
components coordinating cellular processes, or simply as scaffolds 
that provide necessary cellular structure. The closer we study 

1.  Introduction

1.1. PTMs in Biology
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proteins, the more complex their function, structure, and regulation 
seem. One key aspect of that complexity is the modulation of 
protein behavior by chemical changes made co- or posttransla-
tionally (1, 2). Some of these chemical changes alter the sequence 
of a protein after its translation at the ribosome, removing a num-
ber of amino acids from one or both ends. Others involve chemical 
groups that are added to or subtracted from proteins – often by 
specialized enzymes that are themselves modified proteins. 
Although modification occurs both during and after translation, 
we refer to all modifications hereafter as posttranslational modifi-
cations, or PTMs.

One reason PTMs are important in cellular systems is they 
allow for rapid responses to changing environmental conditions. 
For example, in bacteria like E. coli, a chemotactic circuit that 
senses nutrients in the environment. This circuit uses 
 methylation/demethylation of receptor proteins to change their 
sensitivity to ligands in the environment, and uses phosphoryla-
tion of soluble proteins like CheY and CheA to signal changing 
nutrient conditions. The downstream results of these modifica-
tions are changes in the behavior of flagellar motors, affecting 
swimming (3, 4). Without PTMs, an organism would be dra-
matically  limited in its ability to respond quickly to changing 
environmental conditions.

PTMs also play critical roles in human health and disease. 
On histone proteins, around which DNA is wound, control 
which genes are expressed and when. Misregulation of histone 
modification can be extremely deleterious (5). Cancer is modu-
lated by p53 and other proteins, involving regulation through 
phosphorylation (6). Immune responses are also frequently 
modulated by PTMs through toll-like receptor pathways (7). 
The details of if, when and how proteins are modified is central 
to uncovering how disease processes work and determining 
potential therapeutic actions.

Given the important role of PTMs, a key goal of proteomics 
research has been to develop approaches and methods that can 
maintain fragile PTMs during handling, and then tease apart the 
subtle signals that indicate the location and type of PTMs on pro-
teins (8). Although considerable progress has been made, there 
remain substantial hurdles to realization of a fully automated 
approach to identifying PTMs.

Proteins exhibit diverse chemical properties and PTMs further 
increase that diversity. This is useful biologically, but it makes the 
development of techniques to analyze modified proteins chal-
lenging. Mass spectrometry (MS) is the only widely successful 
method that can analyze most proteins and identify their chemi-
cal composition in their in vivo form (9).

1.2. Challenge  
of Identifying PTMs
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MS measures molecular masses with such accuracy that it is 
possible to distinguish the difference in mass between a protein 
containing the amino acid Asparagine (N), weighing in at 
114.1038 atomic mass units (Daltons or Da), versus one contain-
ing aspartic acid (D), weighing 115.0886 Da. With many mass 
spectrometers capable of accuracy of ppm, that means a 50 kDa 
protein can be measured within ±0.25 Da, to resolve the 0.9 Da 
difference between N and D residues. Similarly, when a protein is 
modified by the addition of chemical groups such as methyl (add-
ing 14.0269 Da) or phosphoryl (adding 79.9799 Da), the engen-
dered change in protein mass can clearly be detected (Fig. 1).

An accurate intact protein mass contains a great deal of infor-
mation about a protein, but it cannot be easily interpreted and 
does not tell us everything we want to know:

It doesn’t tell us which residues have which chemical adducts.●●

Intact masses are not unique. Different modifications or ●●

modifications sets with the same mass are said to be isobaric. 
For example, three methyl adducts are isobaric with a single 
acetyl adduct (within 0.05 Da).
Intact proteins are hard to manipulate prior to and during ●●

mass spectrometry. They often dislike staying in solution and 
may not ionize or “fly” well in the mass spectrometer (10).

To address the difficulties with top down analysis of proteins, 
a number of approaches have been devised. The most common 
method is termed “bottom-up” proteomics. In this approach, the 

33,304
Unmodified

CDK5
intact mass

CDK5: 33,304

33,384
Phosphorylated

CDK5
intact mass

Phosphorylation
+ 80

mass = 80

Fig. 1. Intact mass change caused by phosphorylation. Modification of a protein will influence its measured mass value. 
Here the mass of an unmodified (CDK5) protein sequence is 33,304 Da. The mass of the modified protein is 33,384 Da. The 
difference, +80 Da, is easily discernible by many mass spec approaches as the difference expected because of a phospho-
rylation modification. However, it could be because of some other combination of modifications that add up to 80 Da.
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intact proteins are digested into much smaller pieces, “peptides,” 
each of which can be individually analyzed by mass spectrometry. 
Not only can we measure the masses of these peptides, but also 
fragment them within the mass spectrometer, and measure the 
masses of the fragmentation products. This process is termed tan-
dem mass spectrometry (MS/MS) (Fig. 2). With  commonly 
available MS/MS search software, we can then use the peptide 
mass and/or its MS/MS spectrum to determine what kind of 
PTM was present and even which specific residue it was present 
on (e.g., (11–13)).
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Fig. 2. MS/MS can reveal specific modifications and their position. A representative MS/MS spectra for a peptide is 
shown. Ideally, a single randomly placed peptide bond is broken in each peptide molecule, resulting in two collections of 
fragments, one of pieces from the N terminus side of the break, the other from the C terminus side. Fragments of all 
possible substring lengths are generated. The N terminus fragments for this peptide would be V-, VK-, VKD*-, VKD*L-, … 
and the C terminus fragments would be R-, RV-, RVG-, RVGP-, etc. Each fragment has a (different) mass, and results in a 
sequence of peaks on the MS/MS spectra. The resulting ladders of mass peaks (one from each end of the peptide) can 
be assigned to increasingly long fragments: 175.12 = R, 274.19 = R + V, 331.21 = R + V + G, etc. As with intact masses, 
shifts caused by a modification will be detected. Here a beta-methylthiolation modification has occurred on the aspartic 
acid residue third from the N-terminal end. Instead of the expected mass of V + K + D at 343, a peak at mass 389 was 
found. This represents VKD + 46, a mass shift that is attributed to the presence of modification. Unfortunately, the inter-
pretation of MS/MS spectra can get complicated. Peptides may be broken in more than one place, and/or at bonds 
besides those between amino acids, producing distinct ion types. This, along with contaminants or heterogeneous spec-
tra, often results in extra peaks – those not labeled in the diagram. Additionally, some expected fragmentation sites might 
not be seen at all, resulting in a single step of the sequence ladder including two or more amino acids, such as occurs 
for VK in this example. If there are many modifications and/or the specific sequence of the peptide is not known before 
hand, it can be difficult to interpret this spectra, especially because modifications can add to the variability in fragmentation 
patterns seen.
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Another approach is to start with an intact mass measurement, 
and then take it a few steps further by fragmenting the intact pro-
tein within the mass spectrometer by one of a variety of methods, 
then measuring the pieces. In some cases, pieces may be isolated 
and further fragmented, leading to a process of MSn, where n 
reflects the number of successive fragmentation steps. This is 
termed the “top-down” approach (14–16).

The challenge with these approaches is that they each have 
inherent limitations for detecting PTMs. In the bottom-up 
approach, coverage of a protein by a complete set of overlapping 
or abutting peptides is almost never achieved, and so there are 
gaps. Further, if there are distinct PTM variants of a protein, sort-
ing out the combinatorics becomes very challenging once the 
protein is digested, because observations on distinct parts of the 
protein are unlinked from one another. In addition, it is often 
difficult to definitively identify the site and type of PTM within an 
MS/MS fragmentation spectrum.

The top-down approach faces its own challenges, such as the 
difficulty of isolating and analyzing intact proteins, and the diffi-
culty of interpreting the complex top-down spectra (17). The 
top-down method is typically performed using electrospray ion-
ization as the ion source, which produces ion species in multiple 
charge states. The process of “deconvoluting” the multiple spe-
cies and their multiple charge states produced by top-down frag-
mentation is not fully solved.

These impediments have led many groups to adopt hybrid 
approaches, using a combination of strategies that complement 
each other, such as “top-down/bottom-up” (TDBU) proteomics 
(18–20). In TDBU, bottom-up data usually provide definitive 
protein identities, along with a partial map of specific modifica-
tion sites and types, whereas the top-down data usually provide 
insight on the overall state of the protein (e.g., is there one meth-
ylation or two at any given time on the protein?). This combina-
tion has proved powerful to more completely elucidate the 
modification state of proteins.

However, hybrids like TDBU have a major challenge: inte-
grating the data from disparate mass spectrometry experiments 
and approaches into a cohesive picture of the protein’s original 
in vivo state. It is not a trivial problem. Each measurement holds 
a piece of information about the protein’s state, but it is usually 
incomplete. Worse, sometimes the data are conflicting. For exam-
ple, if two isoforms of a protein are present, one with a methy-
lated residue and one without, we may get some bottom up 
peptides covering that site from each – some with and some with-
out the presence of a methylation. Usually a combination of ad 
hoc search methods and manual analyses must be applied to distill 
these data sets into a final picture of the protein’s modification 
state. This is a significant limitation to the more widespread adoption 
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of such hybrid approaches. Tools to aid in the automation of this 
process are just now starting to emerge (21), and it is this task we 
have addressed through the development of the Protein Inference 
Engine (PIE) (Manuscript in preparation, Jefferys and Giddings).

The PIE is designed to rapidly and automatically integrate 
disparate types of proteomic measurements into a conclusive pic-
ture of the modification state of the protein. It is highly modular, 
with each module allowing it to incorporate a distinct type of 
information. Presently there are modules that use intact mass 
measurements, peptide MS/MS measurements, residue-specific 
probabilities of various modification types, expert knowledge, 
and specialized PTM site predictions, such as those from 
programs like (22–26). The program can readily accommodate 
conflicting information, and if there are multiple PTM solutions 
(e.g., multiple isoforms), the program will output multiple high-
scoring solutions.

PIE uses a guess refine methodology based on Markov Chain 
Monte Carlo (MCMC) (27) simulated annealing (28) to explore 
possible answers to the question “Given the data I have, what 
PTMs do I have and where are they located on my protein?” 
Guesses are candidate answers, each a specific modification set 
such as (“1 AA truncated from the n-terminal end of the pro-
tein,” “a methylation on A #2 – the new N terminus,” and “a 
methylation on AA #36.”)

Given that an average protein has around 300 residues (29), 
and allowing for a minimal set of just ten different adduct modifica-
tions, there is an impossibly large search space of 10300 candidate 
guesses. This cannot be searched exhaustively in our lifetimes – or 
for that matter, within the expected lifetime of the universe. 
However, MCMC allows for exploring such huge combinatoric 
spaces. MCMC based approaches have long history in the physical 
sciences (27, 30) and although not as widespread in biological con-
texts, they have been successful used to explore very difficult search 
spaces. One well-known software package is Mr Bayes (31).

Each data module Di in the PIE models a data type i and can 
evaluate guesses for a particular PTM state. Using the data it 
understands, each module returns a score SD for its own data type. 
The scores from all data modules are combined into a total score 
S = SD1 × SD2 × ... This total score represents how well a given guess 
is supported by all available data, but the individual module scores 
are retained to allow comparison of the relative value of different 
data sets.

PIE makes a guess, looks at nearby guesses, and chooses 
one as a potential new best guess. By analogy to a physical sur-
face, each such new guess is referred to as a step. The scores of 
the old guess, Sold, and the new guess Snew are compared, and the 
ratio Sold/Snew is used to determine whether to refine the guess 
and keep the new one, or to keep looking for a better new guess. 
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After many guesses (100,000 steps or so), the PIE reports the 
highest scoring candidate it found during the search. 
Determining the needed run length (number of steps) is neces-
sary (see Note 1) but once determined each run of this length 
ends with at least a good candidate for the highest possible scor-
ing modification set. This candidate is a prediction for the 
 modification set or sets most supported by the integrated data 
as represented by the scoring modules, which are the answers 
we seek.

Running multiple searches allows interpreting the collection 
of best candidates and comparing the optimal and near optimal 
answers. Finding near-optimal answers is required to identify the 
single highest supported modification set, but these answers also 
inform us about potential multiple protein isoforms and help 
interpret incomplete or inconsistent data.

This section describes the components needed to run the PIE for 
your own data or with the example described in Subheading 3. 
This includes a brief description of installing the PIE, a tour of 
the data modules used in the example and explicit listings of the 
sample data and analysis parameters needed. All data analysis was 
carried out with version 0.3 of the PIE using the data modules 
and example data distributed with this version. PIE is available from 
http://bioinfo.med.unc.edu/Downloads/. Some of the details 
described in this chapter may change as interfaces are improved 
and data models are extended or added, so the documentation 
distributed with the PIE should be considered the authoritative 
reference.

The PIE 0.3 should run on any system that supports Java 5, 
although we have only tested extensively on Mac OS X (10.5). 
This version operates from the command line and has the follow-
ing prerequisites:

Java 1.5 or greater (●● http://www.java.com/en/download/
manual.jsp).
A user familiar with the basic concepts of mass spectrometry-●●

based proteomics.
A text editor to format input information.●●

Some way to view and manipulate the results (e.g., R or ●●

Excel).
That you agree to the noncommercial license pie is offered ●●

under.

2. Materials

2.1. Installing the PIE

http://bioinfo.med.unc.edu/Downloads/
http://www.java.com/en/download/manual.jsp
http://www.java.com/en/download/manual.jsp
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Note that a graphical user interface is under development and 
should be available by the time this is published. Check our web-
site at http://bioinfo.med.unc.edu for more information.

PIE is distributed from http://bioinfo.med.unc.edu/Downloads/ 
as a compressed file. Download the latest version (highest num-
bered) file and unpack it. The resulting directory will be named 
PIE-version, but will be referred to here simply as PIE.

PIE/bin/ – The pie application files, including pie.jar.
PIE/data – Template data files.
PIE/demo – Example runs including input data and results.
PIE/doc – Documentation.
PIE/R – Sample scripts for plotting graphs using the R statis-

tics package (see Note 2).

PIE can be run directly from the distribution directory, or installed 
to run like an application. We briefly describe here how to run 
PIE directly. Instructions for installing and running PIE as an 
application are included with the distribution in the INSTALL.
html document.

The PIE is written in Java and packaged in PIE/bin/pie.
jar. As an executable jar-packaged program, this can be run on 
any system supporting java by using the java -jar command. 
Two arguments are required: the pie.jar application file and a 
run.properties based parameter file:

 > java -jar "/path/to/PIE/pie.jar" "/path/
to/myRun.properties”

A template run.properties file will be copied and modi-
fied for use as the second parameter, as discussed in Subheading 3. 
This will provide all the information needed to run PIE, includ-
ing the names of the data files to be read and integrated.

The PIE has a modular design, allowing it to integrate multiple 
data types by specifying a scoring module for each data type. 
None of the data types are required for PIE to run, because it is 
expected that data will be incomplete and contain errors and 
inconsistencies. However, there must be sufficient information 
content in the input data to produce useful output.

High-quality data likely to produce a reliable, single high 
scoring result has the following features:

The target is a single protein or protein fragment with at most ●●

a few dominant patterns (isoforms).
The target protein sequence is known, excepting N-, ●●

C-terminal truncations, and/or pre-specified individual amino 
acid substitutions.

2.2. The PIE 
Distribution

2.3. Installing  
and Running PIE

2.4. Input Data

http://bioinfo.med.unc.edu%20
http://bioinfo.med.unc.edu/Downloads/
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A list of all modifications to be considered is provided to ●●

the PIE.
A high-resolution intact mass is available for the target iso-●●

form. This can be partially replaced by a constraint on the 
total number of modifications.
Available peptide or MS/MS data with significant coverage of ●●

the target protein.

See Note 3 for some approaches that can be used when these 
conditions are not met (see also Note 4).

The data needed for the operation of the PIE fall into four 
categories:

●● Molecule data: basic mass information amino acids, modifica-
tions, etc.

●● Experimental data: evidence-based, specific to an analyzed 
protein or isoform.

●● Prior data: average expectations, beliefs and background the-
oretical distributions.

●● Runtime data: Parameters describing how to run the PIE.

Most molecular, experimental, and prior data are provided to 
the PIE through separate text files formatted as tables with pre-
defined columns. In general, the first row gives column names 
and each following row represents one independent data element, 
such as a detected fragment. The row order is unimportant. Each 
column is a property of a row, such as the protein a fragment 
(row) is associated with or it’s mass. Additionally, rows may be 
blank or start with a “#” symbol to indicate they are comments, 
not data.

Additional data is provided through the run.properties file 
(Listings 7 and 8). This file provides both general application 
 settings – such as default input and output directories – as well as 
parameterizing each data-scoring module. All settings in the file 
are specified by key = value parameters. It is divided into three 
main sections: Section 1 is Data and Data Models (Listing 7). 
Within this section, each scoring module is identified by a 
“ModuleName” and has its own subsection, including an 
 isModuleNameScoring = parameter turning it on or off 
and a moduleNameDataFile = parameter giving the file name it 
reads, if needed. Section 2 provides parameters to the underlying 
MCMC statistical engine. These do not generally need modifying 
and will not be discussed the third and final section, Run and 
Reporting Parameters, (Listing 8) is concerned with results: what 
to do during a run and how to report answers.

To make it convenient to specify the locations of files as sim-
ple file names without the entire path, the input parameters allow 
specifying up to three default input directories. Files are loaded 
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first from the defaultDataDir = parameter, then from 
experimentSetDataDir = parameter, then from the 
experimentDataDir = parameter, and finally from the local 
directory. A file found in more than one directory will be loaded 
only from the last directory it is found in. The default configura-
tion is to read all data from the defaultDataDir, leaving the 
other directories unspecified. However, hierarchically organized 
data is convenient when analyzing multiple proteins from large 
common data sets.

The PIE needs to know the masses for amino acids, adduct modi-
fications, and water. Each is provided in a separate table-based file, 
respectively aminoacid.txt, modifications.txt and 
 molecules.txt. Each row in these files represents a different 
molecule, and each column describes some basic property of that 
molecule such as a (globally) unique name, aliases, and various mea-
sures for atomic masses. Only the average mass column is currently 
used. The monoisotopic and most abundant isotopic mass (MAIM) 
columns are present to allow for a planned extension, see Note 5.

The adduct modification file modifications.txt (Listing 1) 
is special in that besides mass data for the adduct modifications; it 
defines the modifications the PIE will search for. Data in this file 
was taken from Proclame (32), but is also available from sites 
like http://www.unimod.org/ (33). Adduct modifications are 
defined in terms of functional groups that may bond with a protein 
creating PTMs, so their masses must account for molecular gains 
or losses during binding. For example, a methyl group is 16.04 Da, 
but both the protein and the methyl must loose a hydrogen 
(2 × 1.01 Da) to form a covalent bond, making the net mass change 
of a methylation equal to 14.02 Da. Adducts with multiple modes 
of binding (different net mass changes) need to be listed multiple 
times. Only modifications described in this file will be searched 
for! Changes to the modifications list require changing the modi-
fication-based prior data as discussed later in Subheading 2.7, and 

2.5. Molecule Data

Listing 1. Default modification list.

http://www.unimod.org/
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the number of modifications selected has consequences for the 
accuracy and running time for the PIE (see Note 6).

Experimental data is the main source of information used by the 
PIE to select and localize modifications. It can presently use three 
types of experimental data: an accurate intact mass, a set of frag-
ments matched to the target protein via a program like GFS (34) 
or MASCOT (12), and a set of MS/MS (sequenced) fragments 
with exact modification positioning information (35). Each data 
type requires a separate data module with accompanying text file 
(for the provided L16-A example they are in the distribution under 
pie/demo/L16/experimental/). Each experimental data 
can describe multiple protein targets, but only one protein at a 
time can be integrated with the current version of the PIE. A brief 
description of these modules and data files are described here; 
more complete documentation is available in the user manual.

The PIE reads protein sequence information from the 
targets.fasta file. This file is in standard FASTA file format 
(http://www.ncbi.nlm.nih.gov/blast/fasta). The protein name is 
read from the definition line text up to the first space, and which pro-
tein to use is specified by the targetProteinName = parameter.

Intact mass data from high-resolution mass spectrometry, 
e.g., from an FTICR or orbitrap instrument, is read from the 
intact.txt file (Listing 2). This data is evaluated using the 
IntactMassScoring data module. For each different protein 
Name, this file provides the total experimental mass, MassAvg, 
and the approximate mass Error (in ppm or absolute mass units). 
More accuracy means more resolving power when deciding 
between nearly equivalent answers. A mass accuracy of better than 
10 ppm is ideal, though the PIE may give reasonable answers at 
20 or even 50 ppm, depending on the situation. As previously 
mentioned, this and all other mass measurements must be of the 
same type, in this example they represent average isotope mass 
measurements (see Note 5).

Fragment data, such as that produced by matching 
 peptide masses (e.g., peptide mass fingerprints) to proteins via a 
program like GFS (34) or MASCOT (12), is read from the frag-
ments.txt (Listing 3). This data is evaluated using the 
FragmentScoring data module. To represent fragments, each 
line in the fragments.txt file is a separately matched peptide 
with an experimental mass (FragMass), the Protein it is 
matched to, the Start and End of that match, and the implied 
sequence (AminoSequence). If the peptide-matching program 

2.6. Experimental Data

Listing 2. Intact modification.

http://www.ncbi.nlm.nih.gov/blast/fasta
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predicts any modifications, these are included as ModList. 
A (logarithmic) match Score indicating the quality of the match 
(e.g., a Mascot score) makes it easier to results from multiple 
peptides that overlap, repeat, or conflict. Where matched pep-
tides are available, the PIE will use them to guide choice and 
placement of modifications implied in top-down data, including 
using peptides without modifications to guide where modifica-
tions are probably not found (see Note 7).

Data from sequenced MS/MS spectra, such as from peptides or 
middle-down fragments, is read from the localizedFragments.
txt data file (Listing 4). The LocalizedFragmentScoring 
data module reads this file, including any modified amino acids iden-
tified by the sequencing, and evaluates it using an exponential model 
based on discrete differences. Each line in the file represents a sepa-
rate sequenced spectra. Columns specify the Protein name that a 
sequence is matched to, the InitAlignPos (Start) positions for 
that sequence relative to the matched protein, the determined 
AminoSequence of the peptide/fragment, and the list (ModList) 
of modifications along with their location. A (logarithmic) Score of 
the peptide match allows the integration of conflicting information, 
such as when multiple PTM isoforms are present.

Experimentation is the only real way to determine and localize 
modifications, but real-world data are often incomplete and 
sometimes contradictory. When evaluating and interpreting less 

2.7. Prior Data

Listing 4. Localized (bottom-up MS/MS sequence based) fragment information.

Listing 3. Unlocalized (matching precursor mass based) peptide information.
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than perfect data, an expert relies on prior knowledge and experi-
ence. For example, an expert might know that phosphorylation 
adducts are common whereas b-methylthiolation adducts are 
very rare, and use that to guide the assignments. The PIE uses a 
set of prior data models to accomplish a similar feat. Background 
expectation data can be obtained from resources like Uniprot 
(http://www.uniprot.org/). Five separate prior data models are 
used: three models supply background information on the 
expected distribution and locations of adduct modifications, one 
model describes cleavages, and one allows specific rule-based 
biases to be applied.

The cleavage model is implemented by the cleavage-
Scoring module, based on a simple open and continue model 
similar to affine gap scoring in sequence alignment (36). 
Evaluation based on four parameters from the run. properties 
file: the nLoss = parameter is the likelihood of the first AA being 
 truncated from the n-terminal end, the nLossMore = parameter 
is the  likelihood of each additional n-terminal AA cleaved beyond 
the first, cLoss and cLossMore are the same, but reference 
cleavage from the other end of the protein. Values near 1 lead to 
many cleavages, smaller values (0.5 and less) lead to few  cleavages. 
This is a relatively primitive model, which easily handles 
the  common “loss of N-terminal methionine” modification. This 
simple approach is a possible extension point, with models 
based on database scanning and on signal peptide prediction 
envisioned.

The three modification distribution models consist of a 
 modCountScoring module that applies a distribution of the 
expected number of modifications based only on run. 
properties parameters, as well as the modTypeScoring and 
the modLocationScoring modules that use text files based on 
database scanning to predict and localize modifications. The 
modTypeScoring module uses the modCount.txt file that 
contains a row for each possible modification and a Count 
 column, giving the (unnormalized) weight of how often a modi-
fication is expected (see Listing 5). The modLocationScoring 
module uses the modLocation.txt file, which is a table of 
weights giving, for each possible modification (row) and amino 
acid (column) combination, an (unnormalized) weight of how 
often that specific modified amino acid is expected (Listing 6). 
The default values are taken from dbPTM (37), but may often 
need to be modified. By default the program adds a +1 (a pseudo-
count) to all weights, to allow for novel modifications. To prevent 
any chance that a given AA/modification pairing will be sug-
gested, a weight of “−1” be specified.

The ModCountScoring data module uses a center and 
spread model using modRate = as the expected number of adduct 
modifications and modDelta = as the average absolute value this 

http://www.uniprot.org/
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Listing 6. ModLocation.txt: relative weights for modifications by AA.

amount this may be wrong by (Listing 7). If modDelta small, 
then only about modRate modifications will be predicted. If the 
error is large, then modRate is used as a guide, but easily ignored 
(see also Note 8).

The rule based module, ruleScoring will be expanded in 
future to allow for more convenient configuration, but currently 
allows setting value parameters for two specific conditions: How 
likely we think n-terminal acetylation is and how likely we think it 
is for both amidation and deamidation modification to occur in 
the same candidate. Values less than 1 are less likely than average, 
values greater than 1 are more likely than average. The purpose of 
this data module is to include odd bits of prior belief that might 
apply in a given situation.

Listing 5. ModType.txt: relative weights for modifications.
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Listing 7. Data and data models parameter file section.
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Listing 8. Run and reporting parameter file section.

Parameters in the run.properties file tell the PIE how to run 
and how to output results, (Listing 8). A single run of the PIE 
usually consists of multiple searches, controlled by setting 
 runCount = value. During each search, the number of steps 
taken to search for the best answer is controlled by 
 maxSteps = value. As PIE runs, it will periodically output 
results to the console, after every consoleUpdate = steps. The 
startSeed parameter can be used to make the PIE behave 
deterministically by producing identical output for any given 
input data. If not specified, the PIE uses a random starting seed.

The PIE generates three files, a summary, a run detail, and a 
log file. By default these are generated into a subdirectory created 
at runtime in the directory specified though the output-
Dir = parameter. This directory is created if isAutoOutput-
Dir = true (otherwise only the specified output directory is 
used). The subdirectory will be named using the date and time 
the PIE was run, such as 2009_10_12__21_55_00_032. This 
prevents accidentally writing over previous data. Both the sum-
mary and detailed result files are tab-delimited text files, with a 
header line identifying the contents of each column. The log file 
is simply a narrative of what the PIE does as it happens. The 
names of these files are controlled by parameters, but can be left 

2.8. Results
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at their “pieSummary.txt,” “pieDetails.txt,” and “pie.
log” defaults.

The level of detail in the pie.log file can be controlled by 
changing the logFilterLevel. The default setting is generally 
adequate, recording an outline of what the PIE does including 
copies of all nondata messages. Changing the level from “INFO” 
to “DEBUG” or “DEBUG_LOW” will provide additional detail in 
the log file.

As pie runs, it will also output results to a detail file, after 
every everyN = steps. The detail file, pieSummary.txt is mainly 
useful when tuning MCMC parameters and is not discussed fur-
ther. More detail can be found in the user documentation.

The summary file (Listing 9) is the main result file. It  contains 
one entry for each search, runCount = data rows. Each line is 
one probable answer, a high scoring modification set candidate 
consistent with the data. Information reported includes 
BestStep, the step on which the highest scoring answer was 
found, BestScore, its total score, and the modifications pre-
dicted (ModPos, AA, and ModName). It also contains a separate 
Best…Score column for the score generated by each of the 

Listing 9. Sample results summary file.
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individual component scores, allowing for detailed interpretation 
of results. Interpretation is covered in Subheading 3.4.

To illustrate the use of the PIE, we will follow a step-by-step 
analysis, using a synthetic example derived from real data per-
taining to an isoform of the L16 ribosomal protein, shown in 
Fig. 17.3.

The experimental data consist of an accurate intact mass, 
about 50% coverage by matching peptide precursor masses (none 
showing modifications), and several matching ms/ms peptides, 
including one which has an oxidation localized to a specific 
residue.

The analysis takes place in four stages: Setup, convergence, pro-
filing, and interpretation. During setup, the data and control 
parameters used by the PIE are collected and configured. During 
convergence, several small runs of the PIE are performed to deter-
mine an approximate convergence length. This length controls 
how much the PIE focuses on finding only the one best answer 
vs. finding more of the near-best answers. During profiling, the 
convergence length is used to generate an answer profile of can-
didate answers. Our example was chosen to include several com-
mon complications in obtaining this profile. The final stage, 
interpretation of the distribution, has the goal of examining the 
best and nearly best answers in the profile to provide both the sets 
of predicted modifications, and also information such as whether 
one or multiple isoforms may be present, how good the data is 
overall, and how valuable each of the integrated data sets are 
individually.

Each stage requires a number of steps to be performed 
sequentially, requiring various command line interactions with 
PIE and with the computer system on which PIE is running. For 
the example that follows, we provide both a general description 
of each step and explicit commands to perform it. However, 
even though PIE can be run on any system supporting Java, the 
details of the required interactions with that system will vary. In 
the interest of space, the explicit example commands are tar-
geted only at a Un*x-based system such as Mac OS X or Linux. 
If you are using another system, it should be simple to extrapo-
late the needed command. For additional information, see the 
user manual.

Setting up a PIE run involves collecting and editing data files 
needed as input, and then setting key = value  parameters in the 

3. Methods

3.1. Setup
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configuration file used to control how PIE runs. For the most 
part, our example will use prepared files provided with the PIE 
distribution that are already formatted correctly. We will discuss 
only aspects of the files that are relevant to our examples. General 
information, such as the purpose and meaning of parameters not 
discussed here, is contained in Subheading 2 above and in the 
user’s manual that accompanies the distribution. To do the exam-
ple, you can follow these steps:

 1. Download the PIE distribution as described in Subheading 2.
 2. Create an experiment directory to work in and make it the 

current directory.
  > mkdir /Users/jefferys/ribosomeProject/L16/

A-15222
  > cd /Users/jefferys/ribosomeProject/L16/ 

A-15222

  Note: We use L16/A-15222 as our working directory, based on 
the target protein and the intact mass of an imaginary primary 
isoform. The path /Users/jefferys/ribosomeProject/ 
should be replaced with the one used on your system. From here 
on this working directory is assumed.

 3. Prepare experimental data for use by the PIE.
  Experimental data collected by the user must be correctly for-

matted to be read by PIE. For simplicity, we use the prefor-
matted data files from PIE/demo/L16/experimental/:

  targets.fasta – Our target protein sequence, L16-A, is 
an entry in the provided file.

  intact.txt – Our (average) intact mass is 15222.19 Da, 
with error ~10 ppm.

  fragments.txt – A set of trypsin digest peptide masses 
that each matched one of the masses in a putative digestion of 
the sequence (see Fig. 3).

  localizedFragments.txt – Matched MS/MS peptides 
that can provide localization information on any modifica-
tions, such as the oxidation adduct in the example.

 4. Copy the correctly formatted experimental data files to the 
working directory.

  >cp/path/to/PIE/demo/targets.fasta.
  > cp/path/to/PIE/demo/L16/experimental/intact.

txt.
  >cp/path/to/PIE/demo/L16/experimental/ 

fragments.txt.
  >cp/path/to/PIE/demo/L16/experimental/

localizedFragments.txt.
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  For this example, we are using preformatted example data 
files. Generating the necessary files from experimental data is 
generally a straightforward task. Note the “.” is not a period, 
but represents the working directory, and is required.

 5. Copy the molecular mass data files to the working directory; 
Modify as necessary.

  >cp/path/to/PIE/data/molecule/aa.txt.
  >cp/path/to/PIE/data/molecule/molecule.txt.
  >cp/path/to/PIE/data/molecule/modification.

txt.

  No modifications to these files are necessary for our example 
as it uses the default set of modifications, and is designed for 
average isotopic mass measurements.

 6. Copy the prior data template files; Modify as necessary.
  >cp/path/to/PIE/data/molecule/modType.txt.
  >cp/path/to/PIE/data/molecule/modLocation.

txt.

  We are using the default set of modifications to look for, so 
we do not need to add or subtract any rows from these files. 
However, because L16 is a ribosomal protein, we suspect that 
phosphorylations are less common than average, so we 
reduced the weighting for this adduct ten-fold (see Note 9). 
Edit the modType.txt file to the values shown in boldface

Phosphorylation   2250

 7. Copy the run.properties template file.

  >cp/path/to/PIE/data/run.properties.

Acetylation Methylation Oxidation

Sequenced Fragment Data
Fragment Data

Hypothetical L16-A

Fig. 3. The target L16 isoform and experimental data an artificial L16-A protein isoform is shown in green, with three 
adduct modifications represented by triangles: acetylation at 2-L (blue), methylation at 49-R (purple), and oxidation at 
107-P (red). There is also one AA truncation at the N terminus. This mock target is the answer that the PIE is seeking from 
the data. The two sets of bars above the target represent synthetic fragment (grey) and MS/MS (black) data. The MS/MS 
data identifies AA 107-P as having an oxidation modification (red line), and many others that are unmodified. The peptide 
data shows no modifications, but does identify additional unmodified regions of the protein. Multiple overlapping peptides 
with different match scores are represented; the darker the grey, the better the match. Confidence increases (darker 
grey) when peptides overlap. Although providing moderate coverage, the bottom-up data is significantly incomplete. It 
lacks any indication of the acetylation or methylation modifications, and allows for cleavage of up to six N-terminals AA 
before contradicting any peptide data. Using such incomplete data how PIE infers adduct modifications and terminal 
cleavages from an intact mass, and how incomplete data sets can support multiple answers.
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  This is the file that will control details of how the PIE runs.

 8. Edit the following parameters in the “Data and Data Models” 
section of the run.properties file. Edit the run.prop-
erties file to the values shown in boldface:

  defaultDataDir =
  "/Users/jefferys/ribosomeProject/L16/ 

A-15222"
  targetProteinName = "L7/L12-A"
  modRate = 2.0
  modDelta = 7.0

  The first edit tells the PIE which default directory to read 
from. The second identifies the protein name, and hence PIE 
will know which lines to read from the experimental data files. 
The last two edits adjust the data parameters for the mod-
Count data-scoring module to match expectations for our 
project – see Note 8. We are otherwise using default file 
names and  settings, including the cleavage and rule scoring 
modules.

 9. Edit the following parameters in the “Run and Reporting” 
section of the run.properties file.

  outputDir = “/Users/jefferys/ribosomeProject/
L16/A-15222”

  This just defines the output directory to be the same as the 
input directory. As we are leaving autoOutputDir true, 
each PIE run will generate its own subdirectory. We are also 
not changing the default run parameters: everyN = 1,000, 
consoleUpdate = 2,500, maxSteps = 10,000 and 
runCount = 2. These are set for the test run we execute 
next.

 10. Execute a test run of the PIE.
  > java -jar "/path/to/PIE/bin/pie.jar" "./run.

properties"

 11. Verify that everything went well.
Should have run for a few seconds, writing to the screen ●●

as it went.
Should have exited without reporting an error. (Low ●●

memory errors are discussed in Note 10.)
●● 2009_12_17––18_23_35_951 should have been cre-

ated, containing three files: pieSummary.txt, pieDe-
tails.txt, and pie.log.
The ●● pieSummary.txt file should contain two lines, 
with separate “best...” scoring columns for the total score 
and for each data model used. In our case, this is 1 total + 5 
prior + 3 experimental = 9 columns.
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The ●● pieDetails.txt file should contain two sets of 
10 lines each.
The ●● pie.log file is useful if errors occur and the expected 
results are not generated.

 12. Give the run.properties file and the timestamp directory bet-
ter names.

  This is just to assure that when we refer to them later that we 
will know what the run was.

  > mv 2009_12_17––18_23_35_951 test-2atE4
  > mv run.properties test-2atE4.properties

After setting up all the data, we need to experimentally determine 
one parameter, the convergence length. The goal is to adjust the 
number of steps taken by the MCMC walk to not just in find one 
best answer, but to obtain a useful profile of answers that contains 
the near-best answers as well. Efficiently generating a useful 
answer profile involves a trade-off between the number of candi-
dates reported and the time spent searching for each candidate. 
Short runs will probe deeper into the lower scoring answers. 
Longer runs will focus coverage around just the top answers. 
Although exactly how run count and run length interact when 
generating answer profiles differs for every data set, the PIE’s run 
time always increases proportionally with both. Because running 
time is significant (15 min or so with computers circa 2009) we 
want the smallest parameter values we can get away with. 
Empirically determining an initial value for the run length param-
eter is done by fixing the run count at 10, and then generating 
and comparing several small profiles with different run lengths 
(see Fig. 4 and Note 1). This results in overall time savings when 
trying to generating a useful answer profile.

It is important to keep separate the two different ways we will 
use the PIE: First to determine convergence, and secondly to 
generate a profile of candidate answers. We plan to automate the 
determination of the convergence values in the future, but for 
now, this must be performed manually as described below:

 1. Make a new copy of the properties file for the convergence 
test:

  >cp test-2atE4.properties   conv-10at1e5.
properties

 2. Modify this new properties file to do ten replicates of 100,000 
steps:

  Edit the conv-10at1e5.properties file to the values 
shown in boldface:
everyN = 10,000
consoleUpdate = 25,000

3.2.  Convergence
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runCount = 10
maxSteps = 100,000

 3. Run the PIE, renaming the output directory when done
  > java -jar /path/to/PIE/bin/pie.jar ./conv-

10at1e5.properties
  > mv 2009_12_17––18_25_14_391 conv-10at1e5

 4. Examine the pie.summary output file. Determine the high-
est “bestScore” value and the number of times it is repeated.

  When done, the pieSummary.txt file (Listing 9) will con-
tain the best scoring answers from each of ten runs. The 
bestScore column gives each run’s total score. A spread-
sheet program can be used to import, view, and manipulate 
this file (see Note 2). If the highest score is repeated in more 
than one of the runs, we are on our way to determining the 
convergence length to use in our full analysis (Fig. 4).

 5. Execute a longer convergence run and check for repeated 
scores.

  We just repeat steps 1–4 but increasing the maximum number 
of steps by a factor of 5×.

  >cp conv-10at1e5.properties conv-10at1e6.
properties

  Edit conv-10at1e6.properties:
everyN = 50,000
maxSteps = 500,000

  >java-jar/path/to/PIE/bin/pie.jar./conv-
10at1e6.properties

  >mv2009_12_17––19_02_42_844 conv-10at1e6

 6. Keep repeating with larger max steps until convergence has 
been obtained.

Until we obtain two successive profiles where the same 
maximum score is repeated, we keep increasing the maximum 
number of steps and generating new profiles. The amount to 
increase the step size by matters only in the sense that we are 
trying to find the convergence length in a small number of 
guesses without wasting too much time on large guesses 
(Fig. 4).

 7. Interpolate to find a max steps value giving approximately 
two runs with the same best score.

Because our smallest run gave 4/10, we already obtained 
convergence. We therefore reduce the number of steps to 
check for the point at which we get closer to two runs with 
the same scoring best result. We try 50,000 steps (copying 
the parameters file, renaming it, and adjusting the same four 
run parameters as appropriate). This seems to be exactly the 
correct number of steps, resulting in two of the ten searches 
having the maximum value (Fig. 4).
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Now that we have an estimate for the convergence length, 50,000 
steps, we can move on to generating and interpreting the full 
answer profile, by generating many more replicate runs:

 1. Repeat the steps used to generate the 50k convergence run, 
except use more replicates.

  >cp conv-10at5e4.properties profile-100at5e4.
properties

  Edit profile-100at5e4.properties file:
runCount = 100

  >java -jar /path/to/PIE/bin/pie.jar./profile-
100at5e4.properties

  >mv 2009_12_17––20_43_03_709  profile-100at5e4

3.3. Obtaining  
a Complete PTM 
Answer Profile
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Fig. 4. Convergence. Three separate runs were performed for the L16 protein, each 
consisting of ten searches but using different search lengths: 50,000 steps (solid), 
100,000 steps (dashed), and 500,000 steps (dotted). For each run, the ten search 
results are ordered from lowest scoring to highest scoring and plotted on the graph 
from left to right. The score axis has been normalized to the largest value found across 
all runs. The initial 100k step run appears to show convergence, with four of the ten 
runs having the same high score. As with any other stochastic process (such as mea-
surement!), the results from the PIE will differ in specifics even for identical input, but 
on average are consistent. The second run at 500k steps, presents only the top scoring 
candidate, ten out of ten times. Together these provide strong evidence that this top 
scoring candidate really is the best candidate that can be found. A third run of 50k 
steps gets two out of ten values converging to the same high scoring value, making 50k 
our approximate optimal convergence length (see Note 1).
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  Although our goal is different, the process of generating a 
profile of answers is the same. Figure 5 is an example of the 
kind of result produced.

 2. Examine the pieResults.txt and determine if it is good 
enough.

 (a) If the top candidate is represented too many or too few 
times, increase or decrease the run length and try again.

  Using a spreadsheet program or the provided R scripts, 
examine the number of identical best scoring results. 
There should be several replicates of the top scoring 
result. If the profile does not provide enough replicates, 
refine the convergence length estimate, and try again. 
Ideally, we would like a quantitative connection between 
the number of replicates of a given score and our confi-
dence in the adequacy of coverage. Lacking that we 
choose five as a rule of thumb. For our example, 50k steps 
turns out to be an underestimate, providing only two 
replicates of the top-scoring answer. The larger number 
of runs provides a higher resolution result, indicating a 
larger number of steps are needed to increase separation 
between very nearly identical best-scoring answers.

  We refine our convergence length estimate using this 
additional data, and repeat step 1 using 100k steps, with 
results named profile-100at1e5. Figure 5 shows our 
results.

  We now have about ten of the answers in the top scoring 
set, and the following nearly best answers are well repre-
sented, each presented in its own five or more score wide, 
equally-scoring block.

 (b) If the top candidate is well represented, but there are 
other candidates in this high scoring group that have only 
one or two replicates, increase the number of searches 
(runCount) and try again.

  Creating a larger profile, say with 500 runs, increases the 
“resolution.” Providing more searches is like adding 
pixels to a screen, by widening every scoring band. It 
may be possible to decrease the number of steps if run-
ning many extra searches (see Note 1). As discussed next 
in the interpretation section, we have one interesting 
candidate that occurs just once at a score 85% of the best 
result. If desired, we could increase the run count to 
look for other suboptimal solutions that could have been 
missed because of random chance. However, we have 
plenty of candidates to work with, so we will not do that 
here.
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It has taken several steps to get to this answer profile, so it is prob-
ably a good idea to step back and check out what we have done.

We have collected several different kinds of experimental mass 
spectrometer data derived from a (theoretical) variant of L16 
ribosomal protein. To this collection of experimental results, we 
have added some general prior knowledge about modified pro-
teins, such as which modifications are more common. We also 
included information that applies to our specific domain, by spec-
ifying a lower likelihood of phosphorylation than average because 
of the protein being a ribosome component. We then dumped all 
that information into a directory and used the PIE to put it all 
together and tell us about the modified protein variant or variants 
described by this data.

This process of integration and interpretation took place in 
two phases, first finding a convergence length and then simply 
running pie with the correct length to find not only the best 
answer – the modification pattern that is most consistent with the 
PIE-evaluated data – but also the runner-up choices. Estimating 
the correct convergence length was not completely successful 
using our quick and short runs of ten searches each, but after one 
extra higher-resolution round of 100 searches, we obtained a use-
ful value. By using longer searches in the second round an answer 
profile with enough resolution to be interpretable was generated 
(Fig. 5) How to interpret the answer profile is the subject for the 
rest of this section.

 1. What modification is present in the highest scoring 
candidate?

In our example, the highest scoring candidates presents a 
set of four modifications – one methylation, one oxidation, 
one acetylation and a single n-terminal amino acid loss (meth-
ionine). This accurately reflects the set of modifications 
expected.

 2. Is there a consensus set of modifications present in the runner 
up (suboptimal scoring) candidates?

In our example, almost all the highest scoring candidates 
present the same consensus set of four modifications – one 
methylation, one oxidation, one acetylation and a single 
n-terminal amino acid loss (methionine).

The presence of these modifications are thus a highly 
supported predictions for our protein variant and have been 
identified despite there being no specific evidence for meth-
ylation or acetylation or the n-terminal methionine trunca-
tion anywhere in the experimental data. Essentially PIE 
extracts this information from the intact mass, solving the 
combinatorics puzzle of what pieces can be assembled to get 
this mass.

3.4.  Interpretation
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 3. If there are other high-scoring modification sets, compare the 
data-specific scoring columns from the pieSummary.txt file to 
determine the scoring cutoff.

The first alternate candidate set, found only once, has 
two oxidations, two amidations, one acetylation, and a one 
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Sequenced Fragment Data
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Fig. 5. Answer profile. This answer profile represents the combined results from 100 searches, each 100k steps long, for 
the L16-A target described in Fig. 3. The 100 candidate results are stacked vertically, ordered from the lowest scoring 
(bottom) to highest scoring (top). The horizontal axis represents the amino acid sequence of the protein from N terminus 
(left) to C terminus (right), with only the adduct modifications shown (colored dots positioned where predicted). Consensus 
modification positions are easily seen as overlapping vertical columns of dots. The left side of the graph shows a grey bar 
indicating the N-terminal truncation, predicted for every candidate. The relative score of each candidate is indicated by 
where it crosses the dark-grey score line. This line begins vertically on the right (at 100% relative score), transitions to a 
jagged horizontal line across the middle, and then ends at the bottom left (about 5% relative score). The horizontal light-
grey lines delineate answer sets within which all answers have identical scores. Most of the high-scoring sets have 
correctly identified the three adducts and the N-terminal truncation, although there is one high scoring answer (about 
85%) that suggests we have two amidations and an extra oxidation instead of the methylation, a surprising answer that 
cannot be ruled out given the available data. The position of the oxidation modification has also been correctly identified 
throughout most high scoring candidates, aligning with the oxidation modification presented in the sequenced fragment 
data. The positions for the methylation and acetylation modification are not correctly aligned with the target, but are 
generally placed where they do not conflict with the “unmodified position” data from the MS/MS and peptide data. More 
data is needed to pin down the exact location of these modifications.
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AA n-terminal truncation. It scores about 80% as the con-
sensus modification set. To determine the “reason” for the 
lower candidate score, we compare each of the individual 
data module component scores to the component scores of 
the best candidate. The biggest drop is in the mod location 
prior score, indicating at least one of the modifications in this 
lower scoring answer is placed on an uncommon site.

The next suboptimal set of modifications is one formyla-
tion, one acetylation, and one N-terminal cleavage. It is only 
about 7% as good as the best one. Its main failing is that it 
does not contain any oxidation site, which conflicts with the 
explicit MS/MS information. This or worse problems present 
in every other lower scoring candidate, so we ignore those 
poor scoring results.

Multiple (2) high scoring candidate sets are present in 
our case. Because both sets are consistent with all experimen-
tal data, the data is not complete enough to pinpoint a single 
best answer.

One of the design goals for the PIE is to use it as a tool 
to determine what additional experiments or additional data 
may be needed to resolve cases such as this. New data can be 
acquired and PIE rerun. Data indicating a methylation 
would rule out the alternate candidate, giving only one 
high-scoring set. Likewise, data indicating a second oxida-
tion or an  amidation would raise the score of the alternate 
candidate, replacing and probably eliminating the top scor-
ing candidate.

Although not the case in this example, the answer profile 
can be interpreted to detect multiple isoforms. If more than 
one high scoring candidate exists, but each conflicts with dif-
ferent parts of the bottom up data, this means the data that 
cannot be simultaneously satisfied by just one answer. Each of 
the conflicting answers are required, meaning multiple modi-
fication isoforms are present.

 4. Given the set of modifications, do any have consensus positions?
In our example, all searches have the PIE placing the N 

terminus of the protein after the initial methionine, predict-
ing one AA truncation, and the C terminus of the protein 
after the last AA, predicting no C-terminal truncation. These 
are both correct given the known L16 target. All top scoring 
answers also correctly localize the oxidation to 107-P by using 
the MS/MS data.

We only have one result including any amidations. If we 
believe this to be a viable candidate, we need to run more PIE 
searches (larger profiles) to add resolution to the bands in the 
middle of the graph. To keep this example simple, we will 
focus only on the best scoring modification profiles.
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 5. For modifications that aren’t localized, is this because of 
 conflicting information from MS/MS data, or missing 
information?

There is no clear consensus in the output on where the 
methylation or acetylation modifications belong. Several 
 different positions are suggested for each amongst the very 
high scoring candidates. If this lack of consensus had been 
caused by conflicting fragment information, that would be 
evidence for multiple position isoforms. This is not the case 
here, as the bottom up data contains information only on the 
oxidation site.

In this case, we know that the acetylation should be on 
the N terminus (after truncation of the methionine), and that 
the methylation should be on 49-R. However, there is noth-
ing in the input data to tell the PIE this. Intact mass data was 
no help here, as it only identifies what modifications there 
are, not where they go. The MS/MS data help PIE to localize 
the oxidation and, along with the matching precursor mass 
peptide data, also provide constraints to the PIE for where not 
to put modifications. However, after considering all this there 
are still many places were modifications could go, with no 
experimental evidence to choose any position preferentially.

The PIE will try to fall back on prior data in this case. For 
example, if a selenocystine modification was present, and 
there was only one cystine, then prior data alone would pick 
the correct location. For acetylation and methylation, prior 
data is not as useful as there are many different amino acids 
that might be modified present throughout the protein. For 
methylation, our prior data gives highest priority to lysines 
(K), and only when it cannot place modifications there will it 
target arginines (R). For the acetylation, a similar background 
AA-based prior is supplemented with a prior rule that raises 
the score if it is placed on the N terminus However, after 
methionine loss, the N terminus of this protein presents leu-
cine (L). Based on the background AA prior location data, 
this is nearly the last place the PIE will put an acetylation, first 
selecting K, then A then S, etc. One can see this background 
prior at work in Fig. 17.5 with different amino acids picked 
for methylation and acetylation. Free positions (not covered 
by bottom up data) with the same amino acid will score the 
same, and hence modification positions will vary within a 
same-scoring band.Enhancing the performance of priors by 
collecting more specific data on N- or C-terminal modifica-
tions is one possible way to improve the performance of the 
PIE in this kind of situation, and PIE’s data scoring is modu-
lar to make this easy. However, priors will only help fill small 
gaps in knowledge. It is the necessary role of the experimental 
data to do the heavy lifting.
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 6. You are done!
We now have a characterization of the posttranslational 

modification pattern for the L16-A protein. Extending this 
example to analyzing other data is easy if those data are 
clean and complete. If there are insufficient data, the PIE 
will suggest the most likely candidates, allowing determina-
tion of what experiments to run that will select efficiently 
between possible candidates. After collecting more data, 
you can add it to the PIE, and a reduced set of candidates 
will be generated. If data is really poor or complicated, a 
straightforward and simple interpretation is not possible in 
any event, but analyzing it with the PIE may provide addi-
tional insight that would not otherwise be possible. We dis-
cuss a variety of ways PIE might be used in more complex 
situations in Note 3.

 1. Determining the run length parameter.
We first find an upper bound on the number of steps 

parameter, the search length L that (probably) allows us to 
find the best scoring modification set. Because we do not 
know a priori what the best score is, we will not recognize it 
when we first see it. Only repeatedly finding the same best 
scoring answer several times and at several run lengths gives 
us confidence that there is no better answer left unreported. 
Specifically, in one profile reporting ten searches of length L, 
we find the same best scoring result at least two times, and, in 
a second profile of ten searches each at least 1.5 × L or longer, 
we also find at least as many of the same best scoring result. 
This leads us to believe that the best scoring answer is likely 
to be contained in any profiles with ten or more runs of length 
L or longer.

We next find the minimum search length L that will work. 
We know the best scoring answer has score B, and can be 
generated by a search length of L or smaller, we generate 
profiles using successively shorter search lengths (say by 
halves), until only one to two out of ten results of score B are 
found. This value for L is then a coarse estimate to use in 
generating a full answer profile, with about 100 runs.

It is reasonably likely that the estimate for run length, L, 
will not be perfect. Larger convergence profiles would allow 
better estimates, but also require more time. There is really 
no need for better than a coarse estimate as the full answer 
profile itself can be used to “fine” tune the parameters,  

4.  Notes
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re-running with different run length and/or run count 
parameters. This is exactly what happens with the L16-A 
example (Subheading 3).

 2. R scripts.
Some “R”-based analysis scripts are available in the PIE 

distribution in the pie/R directory. These can be used with 
the R statistical analysis software – available from The R 
Foundation for Statistical Computing (http://
www.R-project.org) – to generate convergence profile graphs 
similar to those in this chapter. See the user manual for more 
information.

 3. Using the PIE to solve more complex problems.
The example presented is a relatively straightforward 

application of PIE. Proteomic analysis not look like our exam-
ple. We will continue to extend the example set distributed as 
the PIE grows, but a few quick tips are provided here.

If the sample analyzed consists of a mixture of different pro-
teins, not just different isoforms: A separate run for each pos-
sible protein can be done. Although scores are not comparable 
between runs with different data or protein targets, the num-
ber of replicates of the highest scoring value and the ease with 
which convergence is obtained can be used as a rough guide 
to the best targets, and bad choices for proteins will likely 
result in the uninformative prior.

If there are many isoforms or a large number of identical 
modifications varying only by modification position: Nothing 
will help distinguish positions other than position-specific 
data. This could be top-down MS fragmentation data or bot-
tom-up peptide MS/MS data indicating amino acid specific 
modification information, or a more accurate prior distribu-
tion, such as the variable weighting of phosphorylation sites 
generated by Netphos (23).

If the protein has long truncations caused by signal peptide 
removal: Using a data module that scores cleavages based on 
information from a program like SignalP (25) would 
improve results. Such a module will be part of an upcoming 
release. You can always run such a program yourself and use 
the predicted truncated protein as a target.

If the protein contains amino acid substitutions: these can 
be considered “modifications”, although care must be used 
when cyclical modifications that result in a net zero mass are 
possible, i.e., if. K → T, T → S, and S → K are all allowed, many 
isobaric modification sets are possible (with 1, 2, 3, … N sets 
of these three modifications). If net-0 mass modifications are 
possible, only a narrow range for the number of modifications 
(less than the length of the cycle) will be efficient, and longer 
runs will likely be necessary.

http://www.R-project.org
http://www.R-project.org
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A list of adduct modification names for the mass deltas is 
required. If bottom up MS/MS data contains an identified 
peptide, but with a mass shift caused by an unidentified PTM, 
this might be entered in the modifications.txt file as an 
“unknown adduct…” with appropriate mass data. However, 
it is hard to provide the requisite prior information for this 
modification relative to other modifications or target AAs.

Adduct modifications are variable, such as polysaccharides 
or lipids. If you cannot easily list each individual specific mass 
for all the possible modifications, the PIE cannot currently 
predict these modifications. We believe the PIE could be 
extended to allow for variable modifications, such as by add-
ing or subtracting pieces of a modification instead of an entire 
modification at once, but that will have to wait for later 
versions.

The intact mass is an important piece of information.
Without this, the regions of the protein not covered by 

fragment data have only the prior distribution to describe 
where to put modification. Without an intact mass, it may be 
possible to run the PIE multiple times varying the numbers 
of expected modifications parameter of the modCount data 
module (see also Note 8).

With neither useful top down nor bottom up data: There is 
no experimental evidence, and the PIE has nothing to work 
with. The PIE can only integrate the data you give it. Without 
experimental evidence, only an uninformative prior result is 
obtained.

 4. Uninformative prior-only results.
If good data are available – data that provide a complete 

and consistent picture of a protein and its modifications – the 
PIE will be able to find unique high scoring answers for the 
modification state of the protein. If data significantly incom-
plete, convoluted, or contain contradictory information, the 
PIE will likely still provide useful knowledge by characteriz-
ing the modification scenarios that are supported, to what 
degree they are supported, and how each data type individu-
ally contributes to that support.

However, if the experimental data are particularly unin-
formative, a “prior only” result will be obtained. For compari-
son, a true prior only result can be generated from the PIE by 
running with all experimental data modules turned “off.”

 5. Isotopic type of mass measurements.
In the current implementation, all mass measurements 

across all data files are taken from the average isotope mass 
columns. To use a different mass measurement, such as the 
monoisotopic masses, you can simply specify those in place of 
the average mass column. Although the column label will not 
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match the data in it, the calculations will be performed using 
the correct mass. It is important that the same mass type be 
used across all experimental data as well – there is yet no sup-
port for using more than one mass measurement type, or for 
converting between them. Picking the mass measurement 
type using a parameter.

 6. Specifying a modification set to search for.
The modification set considered by the PIE for a given 

run is provided in the file modifications.txt. Not includ-
ing a modification in the modification set in the modifica-
tions.txt file is one of the few actions that can cause correct 
answers to be excluded from the search space considered by the 
PIE. To allow for novel solutions it is best to leave the list as 
long as possible, although if the list gets too long, run-times 
will be extended and the PIE will eventually have trouble 
finding the best answers. Even though the PIE does not suf-
fer from exponential explosion in computing time, every 
modification specified will increases the time needed. Adding 
a reasonable number of modifications should not adversely 
affect performance; adding all the modifications listed in 
dbPTM (37) likely would. Currently, adding a modification 
to the modifications.txt file also requires adding associ-
ated data to the files used by the ModType and ModLocation 
prior data modules as described in Subheading 2.

 7. Evaluating peptide data sets.
For evaluating fragment data, several scoring models are 

implemented, each with their own effects on the outcome. 
These will be separated into different modules, but must cur-
rently be selected using the fragmentScoringAlgo-
rithm = parameter. The default “deltaMass” algorithm 
used in the example is a center and spread model based on 
theoretical vs. actual peptide masses. This can be used when 
only precursor masses or “peptide mass fingerprint” style data 
are present. The “errorCounting” algorithm provides instead 
an inverse exponential model. This does not use the mass of 
the fragment, only its “interpreted” sequence and modifica-
tion components from a program that can localize the PTM 
(e.g., Findmod, (22)).

 8. Setting the number of modifications.
One reasonable prior for the number of modifications is 

to set the expected number of modifications to zero, and the 
allowed range of modifications to the length of the protein. 
This guides selection of the fewest modifications that are con-
sistent with remaining data.

For the example, we only know of one possible modifi-
cation, an oxidation. However, our intact mass does not 
reflect such a simple answer, so we set the expected number 
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of modifications to 2. There is no need to be exact when 
setting this parameter as we have good intact data. Setting it 
to zero or one would still work, but as with any modeling 
process, the more accurate and consistent the data, the bet-
ter. We have no reason to suspect a large number of modifi-
cations, so we set the spread about the expected number of 
modifications to 7. This allows zero to modifications with 
reasonable probability when supported by other data. The 
choice for seven as a range is a guess, based on the moderate 
coverage of the peptide without other modifications, the 
small number of modifications already seen, and a bias 
toward believing that if the protein has a large number of 
modifications, we would know.

Without experimental intact mass data, integration of 
results becomes harder, and the PIE is forced to rely on this 
prior as the guide for predicting modifications in regions of 
the protein not covered by peptide or fragment data. However, 
it is still possible to explore the space of candidates consistent 
with the peptide or fragment data by using a sequence of 
values (0, 1, 2, …) for the number of expected modifications 
and setting the allowed range of modifications very low (like 
0.25). The results then summarize the supported isoforms 
assuming one modification, then assuming two modifica-
tions, etc.

 9. Using background knowledge as prior information.
One of the design goals for the PIE is to allow easy incor-

poration of various types of knowledge about a problem. 
Sometimes this knowledge is in the form of experience about 
what the answers should and should not look for a protein 
given its context. The PIE makes use of such information 
through explicitly stated prior distributions of expected 
results. For example, the distributions of expected modifica-
tion types and locations is likely different between ribosomal 
proteins and signal transduction proteins. Existing scoring 
module parameters can be edited or new scoring modules 
can be written to reflect different prior expectations within 
different contexts. One module will apply a prior for phos-
phorylation based on the predictions of the program 
Netphos (23). Although not a substitute for good experi-
mental data, prior data helps make better guesses where MS 
data is missing.

 10. PIE needs memory.
Java assumes only a small amount of memory will be 

needed by any program by default, and the PIE may fail with 
an error message if it needs more. The quantity of raw data 
and properties such as the number of iterations increase the 
amount of memory needed.
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To adjust the PIE to run with more memory, use the 
standard java memory setting parameter with the java-jar 
command

  >java-Xmx256M-jar"/path/to/pie.jar""/path/
to/run.properties”

This tells java it can use up to 256 MB of memory. If that 
is not enough, it may crash, and you can go larger.
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Chapter 18

An Integrated Top-Down and Bottom-Up Strategy for 
Characterization of Protein Isoforms and Modifications

Si Wu, Nikola Tolic¢, Zhixin Tian, Errol W. Robinson,  
and Ljiljana Paša-Tolic¢ 

Abstract

Bottom-up and top-down strategies are two commonly used methods for mass spectrometry (MS) based 
protein identification; each method has its own advantages and disadvantages. In this chapter, we describe 
an integrated top-down and bottom-up approach facilitated by concurrent liquid chromatography-mass 
spectrometry (LC-MS) analysis and fraction collection for comprehensive high-throughput intact pro-
tein profiling. The approach employs a high resolution reversed phase (RP) LC separation coupled with LC 
eluent fraction collection and concurrent on-line MS with a high field (12 T) Fourier-transform ion cyclo-
tron resonance (FTICR) mass spectrometer. Protein elusion profiles and tentative modified protein identi-
fication are made using detected intact protein mass in conjunction with bottom-up protein identifications 
from the enzymatic digestion and analysis of corresponding LC fractions. Specific proteins of biological 
interest are incorporated into a target ion list for subsequent off-line gas-phase fragmentation that uses an 
aliquot of the original collected LC fraction, an aliquot of which was also used for bottom-up analysis.

Key words: Protein, Peptide, Proteomics, Mass spectrometry, LC-MS, Top-down, Bottom-up, 
FT-ICR MS, FTMS, Post-translational modification, PTM

Bottom-up and top-down strategies for mass spectrometry (MS) 
based protein characterization are complementary; each has its 
own strengths and weaknesses. In the bottom-up strategy, pro-
teomic measurements at the peptide level offer a basis for com-
prehensive protein identification (1). However, important 
information, such as posttranslational modifications (PTMs), may 
be ultimately unobtainable as only a portion of the entire protein 
is generally detected. Also, information regarding proteolytic 
processing, an important biological process, is generally lost in 

1. Introduction

Cathy H. Wu and Chuming Chen (eds.), Bioinformatics for Comparative Proteomics, Methods in Molecular Biology, vol. 694,
DOI 10.1007/978-1-60761-977-2_18, © Springer Science+Business Media, LLC 2011
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peptide centric analysis. Similarly, even if a peptide with a PTM is 
detected and successfully identified, information regarding the 
coordination of PTMs is generally lacking and the same enzy-
matic peptide sequence can occur in multiple proteins (e.g., families 
of highly related genes) confounding the determination of which 
protein was actually modified.

In top-down proteomics, intact proteins (2, 3) instead of 
peptides are dissociated in the gas phase. A 100% protein sequence 
coverage has been demonstrated, which allows identification of 
protein isoforms, proteolytic processing events, and PTMs. 
However, this strategy presently suffers from limited sensitivity 
and throughput (4, 5). The most recent significant advancements 
in top-down proteomics are electron capture dissociation (ECD) 
(6, 7) and electron transfer dissociation (ETD) (8). These tech-
niques typically provide more efficient dissociation than conven-
tional collisionally induced dissociation (CID), while preserving 
the labile modifications. However, ECD/ETD based approaches 
have been demonstrated only occasionally for intact protein char-
acterization and have not yet been effectively incorporated into a 
high-throughput comprehensive top-down proteomic analysis.

Here, we describe a method that combines intact protein 
separations with on-line mass spectral acquisition and fraction 
collection (Fig. 1). A key advantage offered by this approach in 

Mixture of proteins

Prefractionation/Enrichment

LC-FTICRMS

Fractions
Intact mass &
elution time 

Bottom-up:
Digest &
LC/MSMS

Top-down:
intact protein 

MS/MS

CID ECDIntact protein 
(w/ PTMs) IDs

Naked
protein IDs

ID PTMs, 
SNPs, etc.

Abundance
ratios

MS/MS
targets

Fig. 1. Schematic diagram of the integrated top-down bottom-up proteomics strategy. Protein mixtures are fractionated 
to a level at which the reduced analyte complexity per fraction allows the inference of proteins from a peptide-level 
characterization of the same fraction. Accurate intact protein mass and time measurements facilitate protein abundance 
profiling that incorporates protein modifications, as well as high-throughput selection of biologically relevant targets for 
subsequent off-line gas-phase fragmentation using only an aliquot of the original collect RPLC fraction.
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comparison to conventional top-down proteomics is that it 
minimizes the need for MS/MS analysis of the intact proteins 
that often cannot be effectively performed on the separation time 
scale, while still providing a protein fingerprint for more confi-
dent protein identification in the form of its corresponding pep-
tides. More importantly, unlike the earlier strategy where complex 
intact protein mixtures (e.g., weak anion exchange fractions) were 
independently analyzed at the peptide and protein level (9, 10) 
this current approach preserves a direct link between the protein 
(mass) and its corresponding tryptic peptides (MS/MS data) 
because all tryptic peptides are confined to the chromatographic 
peak (i.e., on-line collected RPLC fraction) of the protein. Protein 
identification greatly benefits from this preserved linkage and 
time-consuming off-line intact protein MS/MS can be performed 
in a targeted fashion.

 1. Standard proteins were purchased from Sigma (St. Louis, MO): 
ubiquitin (U6253), cytochrome C (C2037), b-lactoglobulin A 
(L7880), b-lactoglobulin B (L8005), b-casein (C6905), car-
bonic anhydrase II (C3934), and myoglobin (M1882).

 2. Calmodulin [accession number MCCH (PIR database) or 
P02593 (SWISS-PROT database)] was cloned, expressed, 
and purified under standard conditions, with polyhistidine 
tag (i.e., GHHHHHHGGGGGIL) on the C terminus for 
nickel affinity purification.

 1. RPLC was used for on-line intact protein separation based on 
a custom in-house HPLC platform which was similar in prin-
ciple to that developed by Shen et al. (11) (see Note 1).

 2. Simultaneous nano-ESI and on-line fractionation was accom-
plished using the Triversa NanoMate 100 (Advion BioSciences, 
Ithaca, NY), on which both an auto-sampler and chip-based 
nanoESI device with 400 nozzles were available. Fractions 
were collected on a 96-well Eppendorf (Westbury, NY) twin-
tec plate.

 3. The composition of mobile phase A1 V/V was: 0.05% trifluo-
roacetic acid (TFA), 0.2% acetic acid, 5% isopropanol, 25% 
acetonitrile (ACN), and 69.75% water.

 4. The composition of mobile phase B1 V/V was: 0.1% TFA, 
9.9% water, 45% isopropanol, and 45% ACN.

 5. The RPLC column (70 cm × 200 mm i.d.) was packed in-
house with Phenomenex (Torrance, CA) Jupiter particles (C5 
stationary phase, 5 mm particle diameter, 300 Å pore size).

2. Materials

2.1. Standard Protein 
Mixture

2.2. Top-Down: 
RPLC-FTICR Intact 
Protein MS Analysis 
and Fraction 
Collection
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 6. Mass spectra of intact proteins were acquired using a 
modified Bruker 12 T APEX-Q Fourier-transform ion 
cyclotron resonance (FTICR) mass spectrometer (9) incor-
porating an electrodynamic ion funnel, quadrupoles for col-
lisional focusing and ion pre-selection, a hexapole for 
external ion accumulation, and a quadrupole ion guide 
for transferring the ions to a novel compensated trapped-
ion cell with improved DC potential harmonicity (12). 
A three-way pulsed leak valve was used to introduce N2 gas 
during the external accumulation event to increase ion accu-
mulation efficiency.

 1. Enzymatic digestion of an aliquot of the fraction collected 
RPLC eluent was performed using sequencing grade modi-
fied trypsin purchased from Promega (Madison, WI).

 2. Digestion was performed in a buffer solution consisting of 
50 mM ammonium bicarbonate in 30% (v/v) ACN and 70% 
water (pH 8.2).

 3. A liquid chromatography separation of the digested peptide ali-
quot was performed using a custom in-house RPLC similar in 
principle to that developed by Shen et al. (11) (see Note 1).

 4. The mobile phase A2 composition for peptide chromatogra-
phy was: 0.05% TFA, 0.2% acetic acid, and 99.75% water.

 5. The mobile phase B2 composition for peptide chromatogra-
phy was: 0.1% TFA, 9.9% water, and 90% ACN.

 6. The RPLC column (60 cm × 150 mm i.d.) was packed in-
house with Phenomenex (Torrance, CA) Jupiter particles 
(C18 stationary phase, 5 mm particles, 300 Å pore size).

 7. Mass spectra and MS/MS spectra of the peptide ions were 
acquired using an LTQ mass spectrometer (ThermoFisher 
Scientific, San Jose, CA).

 1. The standard protein mixture was prepared in mobile phase 
A1, with protein concentrations as listed in Table 1. The total 
sample injection volume for the standard protein mixture was 
20 ml (~20 mg total protein).

 2. The RPLC system was equilibrated at 10,000 psi with 100% 
mobile phase A1. Next, a mobile phase selection valve was 
switched to create a near-exponential gradient as mobile 
phase B1 displaces A1 in a 2.5-ml mixer. A split was used to 
provide an initial flow rate through the column of ~5.5 ml/
min and most proteins elute in less than 2 h.

2.3. Bottom-Up: 
Trypsin Digestion and 
RPLC-Ion Trap Peptide 
MS/MS Analysis

3. Methods

3.1. Intact Protein 
LC-FTICR MS with 
On-Line Fractionation
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 3. The column eluent was split with ~300 nl/min of the flow 
directed to a modified Bruker 12 T APEX-Q FTICR mass 
spectrometer (9), and ~5.2 ml/min was collected into a 96-well 
Eppendorf Twin-tec plate using the NanoMate 100 system.

 4. During the liquid chromatography-mass spectrometry (LC-
MS) analysis, a single mass spectrum was recorded using 
512 K data points, and the average of two mass spectra was 
used for data analysis.

 1. One-third of the collected fraction volume (~5 ml) was trans-
ferred to a new 96-well plate for off-line MS/MS analysis.

 2. CID-MS/MS analyses was accomplished by reducing the DC 
offset on the accumulation hexapole from 0 to −25 V. 10–50 
mass spectra were averaged to obtain fragment ion informa-
tion of desired quality (the S/N ratio was larger than three 
for more than 80% fragment peaks).

 3. ECD-MS/MS analyses was performed using a heated hallow 
cathode located outside the ICR cell (i.e., the standard Bruker 
ECD arrangement). The cathode was heated with a current of 
1.6–1.8 A. A 1–3-ms electron injection time was used with the 
potential on the solid cathode dispenser set at −7.5 to −15 V. 
Up to 50 mass spectra were averaged to obtain fragment ion 
information of sufficient quality.

 1. The remaining sample (~10 ml) was digested on-plate over-
night at 37ºC by adding 100 ng of trypsin and 10 ml of diges-
tion buffer.

 2. Samples were evaporated on the plate to remove organic 
solvent (to ~5 ml remaining volume) using a Savant SpeedVac 

3.2. Off-Line Protein 
MS/MS Analysis

3.3. On-Plate Fraction 
Digestion and RPLC-
Ion Trap Peptide 
MS/MS Analysis

Table 1 
Standard protein mixture

Protein Mr (Da) Concentration (pmol/ml)

Ubiquitin 8564.6302 1.27

Carbonic anhydrase II 29024.7312 4.51

b-lactoglobulin A 18363.4538 7.92

b-lactoglobulin B 18277.4169 7.96

Calmodulin 18097.4710 9.04

b-casein 23983.1910 7.58

Cytochrome C 12229.2193 11.89

Myoglobin 16950.9920 5.36
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(ThermoFisher Scientific, San Jose, CA). The final volume 
was adjusted to 15 ml with mobile phase A2 for bottom-up 
analysis.

 1. Peptide RPLC MS/MS data were processed using SEQUEST 
(13) and a database that contained both genome derived pos-
sible S. oneidensis protein sequences and the standard protein 
sequences listed in Table 1.

 2. No enzyme rules were applied, and identified peptides were 
filtered according to the criteria suggested by Washburn et al. 
(14) (see Note 2). Provisional databases that contained pro-
teins supported by at least two distinct peptide identifications 
and in the protein mass range of 5–40 kDa were created for 
each fraction.

 3. The elution profiles (Fig. 2a) for individual proteins were 
generated using relative protein abundances derived from the 
bottom-up data (see Note 3).

Intact protein RPLC-FTICR mass spectra were processed using 
in-house developed software (ICR-2LS and Viper) (15), available 
at http://ncrr.pnl.gov/software/) as previously described (9, 10) 
(see Note 4). Time-domain signals were Hanning apodized and 
twice zero-filled prior to FT. All spectra were externally calibrated, 
using myoglobin and ubiquitin spectra acquired in a separate 
LC-MS analysis.

 1. The resulting mono-isotopic masses were clustered into 
features based on neutral mass, charge state, abundance, iso-
topic fit, and spectrum number (relating to RPLC retention 
time). Spectra that corresponded to a particular feature were 
summed, and the resulting spectra reprocessed as described 
above.

 2. All charge states were collapsed into a zero charge state spec-
trum (i.e., neutral mass), which was then searched against the 
appropriate provisional protein database (assembled from bot-
tom-up data) for tentative intact protein identifications. The 
procedure of collapsing to a zero charge state (sometimes 
referred as hyper-transform) and aligning different charge 
state conformers of the same molecular species was accom-
plished with in-house developed software (see Note 5).

 3. Tentative identifications of proteins and modified proteins 
were accomplished by matching bottom-up data with the 
measured intact protein masses. Protein assignments were 
subsequently confirmed by protein MS/MS analyses using 
collected fractions (discussed in following section).

 4. Mass measurements were manually inspected by matching 
the observed most abundant peak to the theoretical most 

3.4. Data Analysis

3.4.1. Peptide 
Identification: Bottom-Up

3.4.2. Intact Protein 
RPLC-FTICR Mass Spectra 
Processing

3.4.3. Tentative Intact 
Protein Identification 
(Table 2)

http://ncrr.pnl.gov/software/
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abundant peak (generated using ICR-2LS). Discrepancies 
between the measured protein masses and the predicted 
masses for proteins in the provisional databases were used to 
search for a limited set of protein PTMs.

 1. Target protein MS/MS spectra were analyzed using ICR-2LS 
and/or the online version of ProSight PTM 2.0 from the 
Kelleher group at Northwestern (16) (http://prosightptm2.
northwestern.edu/).

3.4.4. Intact Protein MS/
MS Spectra Analysis

M
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Fig. 2. Intact LC-MS analysis of a standard protein mixture: (a) A 2D display reconstructed from the LC-MS data. (b) A heat 
map representation of protein elution patterns generated for the later portion of the LC-MS analysis using tryptic peptides 
identified in each fraction.
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 2. The THRASH algorithm was applied to deisotope the raw 
MS and MS/MS data.

 3. Neutral monoisotopic masses were assigned for both precursor 
and fragment ions with a minimum S/N ratio of 3.

 4. By allowing dynamic modifications (such as acetylation, oxi-
dation and phosphorylation), ICR-2LS was used to identify b 
and y ion fragments within a 25-ppm mass tolerance.

 5. ProSight software was used to further confirm the ICR-2LS 
findings and PTM localization (P-score less than 1E-2).

 6. Figure 3 illustrates the MS/MS analysis of a protein with m/z 
of 1,161.95 (charge state of 25+), which was reconstituted 
from RPLC fraction 35. This protein was confirmed as car-
bonic anhydrase II acetylated at the N terminus.

 7. For high throughput analysis of intact protein LC-MS/MS data 
can be processed using commercial version of ProSight soft-
ware. The online version ProSight PTM 2.0 from the Kelleher 
group at Northwestern University was licensed by ThermoFisher 
Scientific as ProSightPC 2.0 (16, 17) (see Note 6).

b134
b135
Acetyl

y61y61

y67Acetyl

y4
7

b133
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y137 b40
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y42
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Fig. 3. Identification of carbonic anhydrase II in fraction 35 using CID MS/MS data acquired for m/z = 1,161.
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 1. The described integrated top-down bottom-up method has 
been applied to characterize the yeast proteasome.

 2. A small sample, ~15 mg, was analyzed by RPLC-MS analysis 
with concurrent fraction collection revealing the presence of 
several putative proteins with mass >10 kDa.

 3. A subset of these proteins has been tentatively identified 
(Table 3) by matching bottom-up derived protein identifica-
tions and elution profiles with the intact protein accurate 
masses and elution profiles, as illustrated in Fig. 4.

3.5. Yeast Proteasome 
Results
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Fig. 4. Top: A heat map representation of protein elution patterns generated for the LC-MS analysis of the yeast protea-
some using tryptic peptides identified in each fraction. Bottom: A 2D display (mass vs. spectrum number or RPLC elution 
time) reconstructed from the intact protein LC-MS data.
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 4. This hybrid analysis identified various classes of PTMs including 
oxidation, phosphorylation, methylation, as well as prote-
olytic processing events.

 1. The home-built system used ISCO LC pumps (model 
100DM, Isco, Lincoln, NE) to run LC separation at constant 
pressure of 10,000 psi. The mobile phases were delivered at a 
constant pressure of 10,000 psi by two ISCO pumps and 
were combined in a steel mixer (2.5 ml) containing a mag-
netic stirrer before entering the separation capillary. Fused-
silica capillary flow restrictors (30-mm i.d. with various 
lengths) were used to control the concentration gradient of 
mobile phase B1 in the mixer.

 2. The filtering criteria described by Washburn et al. were inter-
preted as follows: Xcorr ³1.9 for the charge state 1+ and fully 
tryptic peptides, Xcorr ³2.2 for the charge state 2+ fully and 
partially tryptic peptides, and Xcorr ³3.75 for the charge state 
3+ fully and partially tryptic peptides, all with a DCn value 
of ³0.1.

 3. The heat map representation of protein elution patterns was 
generated for the later portion of the RPLC-MS analysis 
using tryptic peptides identified in each fraction. Observed 
counts of the peptides for each protein were used to derive 
relative protein abundances. The observation counts were 
normalized by dividing the value obtained for each protein 
with the sum of the values for the protein (row), with the 
scale ranging from 0 (i.e., least abundant, green) to 1 (i.e., 
most abundant, red). The columns in the heat map represent 
the RPLC fraction number.

 4. After peak picking, an autocorrelation calculation was applied 
to predict the charge state by looking at the frequency of the 
peaks surrounding the most intensive peak. This calculated 
charge state value as well as m/z value for the most abundant 
peak was then used to calculate an approximate molecular 
mass. This molecular formula was then used to calculate a 
theoretical isotopic distribution using the Mercury algorithm. 
Theoretical and experimental isotopic distributions were then 
compared to determine an isotopic fit value (i.e., the least-
squares error between the theoretical and the experimental 
data). The charge state, monoisotopic, average, and most 
abundant molecular masses for the lowest (i.e., best) isotopic 
fit value were assumed to be correct and were reported. This 
process was repeated until every isotopic distribution in a 

4. Notes
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spectrum (above a given noise threshold) was processed and 
reduced to neutral mass.

 5. Neutral mass spectra as well as charge state determination can 
also be achieved using some commercial available software, 
such as DataAnalysis from Bruker and Xtract from Thermo.

 6. The stand-alone version ProSightPC represents the first tool 
on the market to address needs of high-throughput high-
resolution top-down MS/MS analyses, although it is possible 
other vendors have similar proprietary software packages 
which we do not have access to evaluate. The ProSightPC 
tool could be utilized with the UStags platform (18) in com-
bination with an in-house developed suite of functions. 
ProSightPC supports native Thermo “raw” files and XML 
based “puf” files of deisotoped neutral masses which together 
with a MySQL based repository and build-in THRASH algo-
rithm presents an attractive all-in-one solution for both data-
base and sequence tag based searches.
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Chapter 19

Phosphoproteome Resource for Systems Biology Research

Bernd Bodenmiller and Ruedi Aebersold 

Abstract

PhospoPep version 2.0 is a project to support systems biology signaling research by providing interactive 
interrogation of MS-derived phosphorylation data from four different organisms. Currently the database 
hosts phosphorylation data from the fly (Drosophila melanogaster), human (Homo sapiens), worm 
(Caenorhabditis elegans), and yeast (Saccharomyces cerevisiae). The following will give an overview of the 
content and usage of the PhosphoPep database.

Key words: Systems biology, Protein phosphorylation, Database, Data integration, Signaling 
network

In this chapter, we give an introduction to PhosphoPep, a 
database for phosphopeptides and phosphoproteins from model 
organisms and a suite of associated software tools as a resource for 
systems biology research. PhosphoPep currently contains FOR 
WORM over 5,444 unique high confidence phosphopeptides 
that could be assigned to 2,959 gene products, comprising 3,545 
assigned unique phosphorylation sites. For Saccharomyces cerevi-
siae the database stores 9,554 high confidence phosphopeptides 
that could be assigned to 2,071 gene products, comprising 5,890 
assigned unique phosphorylation sites. The contents of the 
Drosophila melanogaster data set include 16,875 phosphopeptides 
that could be assigned to 5,347 gene products, comprising 12,756 
assigned phosphorylation sites. Finally, for human studies, 3,784 
high confidence unique phosphopeptides that could be assigned 
to 5,160 gene products, comprising 2,810 assigned phosphoryla-
tion sites are included (see Table 1).

1. Introduction

Cathy H. Wu and Chuming Chen (eds.), Bioinformatics for Comparative Proteomics, Methods in Molecular Biology, vol. 694,
DOI 10.1007/978-1-60761-977-2_19, © Springer Science+Business Media, LLC 2011
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To support further experimentation and analysis of the 
phosphorylation data, different software tools were added to 
the PhosphoPep database. First, we implemented a search function 
to detect the sites of phosphorylation on individual proteins 
and to place phosphoproteins within cellular pathways as defined 
by the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway database (2). Such pathways, along with the identified 
phosphoproteins can be interrogated by a pathway viewer and 
exported to Cytoscape (3) a software tool, which supports the 
integration of the data from PhosphoPep and other databases. 
Second, we added utilities for the use of the phosphopeptide data 
for targeted proteomics experiments. In a typical experiment of 
this type, the known phosphorylation sites of a protein or set of 
proteins are detected and quantified in extracts representing dif-
ferent cellular conditions via targeted mass spectrometry experi-
ments such as MRM (4–6). Third, we made the data in PhosphoPep 
searchable by spectral matching through SpectraST (7, 8). 
Specifically, for each distinct phosphopeptide ion identified in this 
study, all corresponding MS2 spectra were collapsed into a single 
consensus spectrum. Unknown query spectra can then be identi-
fied by spectral searching against the library of phosphopeptide 
consensus spectra. Collectively, PhosphoPep and the associated 
software tools and data mining utilities support the use of the 
data for diverse types of studies, from the analysis of the state of 
phosphorylation of a single protein to the detection of quantita-
tive changes in the state of phosphorylation of whole signaling 
pathways at different cellular states and has been designed to 
enable the iterative cycles of experimentation and analysis that are 
typical for systems biology research (1, 9, 10).

Table 1 
Data lodged in PhosphoPep v2.0 database (taken from (1))

Organism
Phosphopeptides 
with P > 0.8a

Total phosphorylation 
sitesb

Phosphopeptides with 
assigned phosphorylation 
site(s)b

D. melanogaster 16,875 16,608 12,756

S. cerevisiae 9,554 8,901 5,890

C. elegans 5,444 4,986 3,545

H. sapiens 3,784 3,980 2,810
aPeptideProphet Score as computed by PeptideProphet (16)
bA phosphopeptide was considered to have an unassigned/assigned site if a dCn threshold was not reached and/or 
exceeded (see Supplementary Material and Methods in (1))
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PhosphoPep web interface is accessible at http://www.phosphopep.
org/. After choosing the organism of interest on the starting 
page, the data can be queried and used in the following ways.

First, by using the “Search Peptides” the user can search for 
the protein of interest by using the gene/protein name, protein 
ID, or by pasting part of the protein sequence into the dedicated 
search interface.

Second, by using the “Identified Proteins” button, all pro-
teins of a given organism with identified phosphoproteins will be 
shown and each of them can be selected.

Third, by using the “Bulk Search” function, a list of proteins 
can be queried by the identifiers as indicated under “Search 
Peptides.”

All of the first three quries will direct the user to the protein 
information page. Besides showing general information about 
each of the proteins, additional information can be retrieved and 
functions useful for analyzing the phosphoprotein can be exe-
cuted by using the tabs shown below.

  “View available KEGG pathways for this protein (http://
www.genome.jp/kegg/) (2)”. As shown later in this chapter, 
this button allows to place the protein within its (signaling) 
pathway(s).

  “Start cytoscape network with this protein (http://www.
cytoscape.org/) (3)”. Either the single phosphoprotein or 
the complete pathway (including all observed phoshopro-
teins) is exported into the Cytoscape environment. This 
software tool allows one to visualize networks and to inte-
grate different data types and to perform network specific 
analyses. A similar analysis can also be performed using the 
next button.

  “Search for protein interaction information in String (http://
string.embl.de/) (11)”. In the String database protein–
protein interactions of various kinds are stored and again can 
be used to built networks.

  “View orthologs/homolog information (http://www.
orthomcl.org/) (12)”.

  “Look up protein information in PeptideAtlas (http://www.
peptideatlas.org/) (13)”.

  “Search protein sequence at Scansite (http://scansite.mit.
edu/) (14)”.

Furthermore, for the phosphopeptides identified using mass 
spectrometry, different information is given. These include

2. Materials

http://www.phosphopep.org/
http://www.phosphopep.org/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
http://www.cytoscape.org/
http://www.cytoscape.org/
http://string.embl.de/
http://string.embl.de/
http://www.orthomcl.org/
http://www.orthomcl.org/
http://www.peptideatlas.org/
http://www.peptideatlas.org/
http://scansite.mit.edu/
http://scansite.mit.edu/
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PeptideProphet:●●   When interpreting tandem mass spectrome-
try data, it is crucial to determine if an identification is cor-
rect. The PeptideProphet computes a probability of a given 
fragment ion spectrum to be correctly assigned to a peptide 
sequence by a given database search algorithm and assigns a 
score accordingly (15, 16). The range of the score is from 0 
(worst) to 1 (best). Depending on the dataset or database the 
probabilities can slightly vary at a given threshold/score.
Tryptic ends:●●   As we analyze peptides in our tandem mass 
spectrometry experiments we have to digest the proteins 
using a protease. This is often done by using trypsin. Trypsin 
cleaves after arginine and lysine but exhibits also some non-
specific cleavage (5). Two tryptic ends means that both ends 
were specifically cut by trypsin.
Peptide mass:●●   Molecular mass of the (phospho) peptide.
deltaCn: The deltaCn score (dCn) is a score computed by the ●●

Sequest (17) algorithm, which we use to interpret tandem 
mass spectra. The dCn is the difference between the (normal-
ized) cross-correlation parameter of the first- and second-
ranked amino acid sequence assigned to a tandem mass 
spectrum. Simplified, the dCn tells you how much better the 
first (best) database search hit fits to a tandem mass spectrum 
than the second hit. In the case of phosphopeptides, the dCn 
also correlates to the correctness of the phosphorylation site 
assignment within the phosphopeptide sequence (18).
# Obs:●●   Number of times the phosphopeptide was identified 
in our experiments.
# Mappings:●●   Maps # of gene models/maps to # of 
transcripts.

Besides the functions to retrive information from singe pro-
teins, several specialized functions are also provided by the 
PhosphoPep database. These include: first, “Pathway Search”, 
which allows retrieval of complete signaling pathways as given by 
the KEGG database (2) in a graphical representation. Importantly, 
from each of the shown phosphoproteins the protein information 
page can be opened.

Second, “Spectral Search”, underyling this web interface is 
SpectraST (7, 8), which annotates tandem mass spectra using a 
spectral library consensus search algorithm. By pasting the list of 
measured masses (as represented in a .dta file) a phosphopeptide 
tandem mass spectrum can be searched against the consenus 
phosphopeptide library of PhosphoPep. In case a high number 
of spectra should be searched, ideaLLy, SpectraST and the 
PhosphoPep libraries are downloaded (http://www.peptideatlas.
org/speclib/) and used for that puropose.

http://www.peptideatlas.org/speclib/
http://www.peptideatlas.org/speclib/
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Third, the last function “MRM Transitions” allows retrieval 
of the coordinates to perform targeted proteomics experiments 
using a triple quadrupole mass spectrometer (for more informa-
tion see (6, 8)).

As for most users it is crucial to know whether the identified 
phoshopeptide and the site of phosphorylation are correct, two 
sections detailing these topics are given.

To understand the basic methods of peptide identification using 
tandem mass spectrometry, we strongly recommend studying the 
presentation that you can find under the link http://www.
proteomesoftware.com/Proteome_software_pro_interpreting.
html (Proteome software Inc.). The presentation is easy to under-
stand and represents a nice introduction to proteomics.

Of note, as the following text was written for users without 
any experience in mass spectrometry, we attempted to describe 
each topic in a simplified manner, sometimes at the expense of 
accuracy. For users who wish to learn more about each topic we 
suggest reading the literature given at the end of this tutorial.

When phosphopeptides are analyzed using liquid chromatog-
raphy – tandem mass spectrometry and phosphopeptide sequences 
are assigned to the resulting spectra using database search algo-
rithms – primarily two types of error can occur. The first type of 
error is the misassignment of the fragment ion spectrum to a pep-
tide sequence (15, 16). The second type of error is the misassign-
ment of the site of phosphorylation in an otherwise correctly 
identified phosphopeptide (18).

Here we explain how each of the errors was assessed and how 
the users of PhosphoPep can use the computed scores and some 
rules to judge if a phosphopeptide was correctly identified and the 
site correctly assigned.

As mentioned above, one type of error in the automatic inter-
pretation of tandem mass spectra is the misassignment of the frag-
ment ion spectrum to a peptide sequence. This type of error can be 
estimated by applying statistical models such as the PeptideProphet 
(16) and/or by using decoy sequence databases (19).

All data loaded into PhosphoPep were assessed using both 
methods and we already applied a stringent cut off on all data. 
Therefore the false positive content in the case of the fly data is 
about 2.6% (for yeast, worm, and human this number is similar). 
This means that if you do not apply any further filter criteria about 
1 out of 38 phosphopeptide entries are wrong. For bioinformatic 
large scale analyses of this false positive rate is in most cases very 

3. Methods

3.1. Is the 
Phosphopeptide 
Correctly Identified?

http://www.proteomesoftware.com/Proteome_software_pro_interpreting.html
http://www.proteomesoftware.com/Proteome_software_pro_interpreting.html
http://www.proteomesoftware.com/Proteome_software_pro_interpreting.html
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acceptable, but for a biologist who wants to perform follow-up 
experiments this can already be too high and therefore it is desir-
able to choose your own false positive rate. So how do you choose 
your own false positive rate?

One of the statistical tools to compute the false positive rate, 
the PeptideProphet (16), computes a score (ranging from 0 
(worst) to 1 (best)). This score is displayed for every peptide in 
PhosphoPep (9) (see Fig. 1). As mentioned above, we have 
already pre-filtered the data, therefore the lowest PeptideProphet 
score you will find is 0.8. The closer the score is to 1.0 the lower 
is the chance that you pick a wrongly identified phosphopeptide. 
For example, at a Peptide Prophet cut off of 0.99 approximately 
0.2% of all entries (equal or above this score) are estimated to be 
false positive assignments (1 out of 500 phosphopeptide entries) 
for the fly dataset.

With the button to the left you can choose the Prophet Score 
cut off on your own (Fig. 2).

Fig. 1. The arrow points to the PeptideProphet score.

Fig. 2. The arrow points to the menu that allows users to choose a PeptideProphet score.
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One further criterion that increases the certainty that a 
phosphopeptide was correctly identified is the “# Obs” which 
tells you how often a phosphopeptide was identified in our exper-
iments (Fig. 3).

The chance that a phosphopeptide, which was identified mul-
tiple times, is wrong is lower than that of a phosphopeptide that 
was just identified once (but keep in mind that this is only a rule 
of thumb and exceptions exist) (20).

So taken together, if you choose a phosphopeptide for follow 
up experiments make sure that it has a high PeptideProphet score 
and was observed multiple times.

Often phosphopeptides are rich in serine and threonine resi-
dues, which can sometimes puzzle the algorithm for the auto-
matic interpretation of tandem mass spectra in regards to which 
serine/threonine(/tyrosine) was phosphorylated (18). Therefore 
another type of error connected to phosphopeptides identified 
using tandem mass spectrometry is the misassignment of the site 
of phosphorylation in an otherwise correctly identified phospho-
peptide (18).

This error was estimated by comparing the search engine out-
put scores for the potential phosphorylated forms of a peptide, 
assuming that any hydroxy-amino acid in a phosphopeptide could 
be phosphorylated. Based on this estimation we highlighted the 
phosphopeptides either red (high probability of correct assignment) 
or yellow (low probability of correct assignment) (9, 17, 18).

As one typical approach to study protein phosphorylation is 
to mutate the site of phosphorylation to another amino acid resi-
due, it is advisable to ascertain that you choose the correct amino 
acid. There are several steps you can take to ensure that the site of 
phosphorylation was correctly assigned.

3.2. Is the Site 
of Phosphorylation 
Correctly Assigned?

Fig. 3. The arrow points to column that indicates how often a phosphopeptide was identified in different samples.
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The first step to determine the certainty in the phosphorylation 
site assignment is to look at the dCn score. Simplified, the dCn 
tells you how much better the first (best) database search hit fits 
to a tandem mass spectrum than the second hit (Fig. 4). Now if the 
first and second hits are the same phosphopeptide but the Sequest 
algorithm has problems unequivocally assigning the phosphoryla-
tion site, the score will be very low, often close to zero.

Again as a rule of thumb: The higher the dCn score the more 
certain is the phosphorylation site assignment. Normally, a score 
of dCn > 0.125 corresponds to a high certainty that the site is cor-
rectly assigned (18).

In Fig. 5 a phosphopeptide is shown that was identified sev-
eral times but the site of phosphorylation could never be assigned 
with high certainty. As a result the same phosphopeptide exists in 
several versions in PhosphoPep. Such agglomerations of the same 
peptide with many different phosphorylation sites are a hint that 

3.2.1. Take a Look at the 
dCn Value

Fig. 4. The arrow points towards the dCn value column.

Fig. 5. The arrow points towards the dCn value column.
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the site is not well assigned (but keep in mind, some proteins are 
heavily phosphorylated and therefore the same peptide can exist 
in different phosphorylation forms).

An additional step to take to confirm a site of phosphorylation is 
to look at the possible kinase motifs surrounding the phosphory-
lation site (21). In the example below (Fig. 6) phosphorylation 
sites on the protein FUS3, a MAPK, are shown. Here it is not 
clear whether

R.IIDESAADNSEPTGQQS*GMTEY*VATR.W
or
R.IIDESAADNSEPTGQQSGMT*EY*VATR.W
is correct. Knowing that the MAP kinases are activated by 

the phosphorylation in the TXY motif, we can assume that the 
R.IIDESAADNSEPTGQQSGMT*EY*VATR.W is correct.

In case you do not have all the kinase motifs memorized you can 
use the Scansite algorithm (14) to search the protein sequence for 
possible kinase motifs. For this simply click on the button.

  “Search protein sequence at Scansite” in the “Protein Info” 
section (Fig. 7).

3.2.2. Take a Look at the 
Kinase Phosphorylation 
Motif

3.2.3. Predict the Motif 
Using Scansite

Fig. 6. Two phosphopeptides with unassigned phosphorylation sites are highlighted. However, knowing the activation loop 
motif of MAP kinases the sites can be assigned.

Fig. 7. The button that executes the Scansite algorithm is highlighted.
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You can also check whether your phosphorylation site of interest 
is evolutionary conserved, which can be an additional indication 
for the correct assignment of a phosphorylation site. For this click 
on the button  “View orthologs/homolog information” 
(Fig. 8) and a new window will be opened, showing the align-
ment of the amino acid sequences with the identified phosphory-
lation sites between yeast, worm, fly, and human (Fig. 9).

Based on this alignment, we can conclude that the unassigned 
phosphothreonine is correctly assigned and that in the top amino 
acid sequence either the tyrosine or threonine in the TXY motif 
should be phosphorylated.

To assess whether the phosphorylation site was correctly assigned, 
it is always advisable to take a look at the tandem mass spectrum 
of the phosphopeptide. You can open it by clicking on the symbol  

 (Fig. 10).

3.2.4. Check the 
Evolutionary Conservation 
of the Site

3.2.5. Take a Look at the 
Tandem Mass Spectrum

Fig. 8. The button that allows to show the orthologous proteins is indicated.

Fig. 9. Detailes are shown in the text.
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The manual interpretation of tandem mass spectra can be, 
especially in the case of phosphopeptides, difficult. Therefore we rec-
ommend studying the following slides, which are a nice introduction 
to this topic. You can find them under the URL http://www.
proteomesoftware.com/Proteome_software_pro_protein_id.html 
(Proteome Software Inc.)

This will open a new window in which the tandem mass spec-
trum is displayed (Fig. 11). In the upper window you see the 
tandem mass spectrum in which the fragment ion peaks are 
assigned with y-ion or b-ion together with a number (ion assign-
ment nomenclature) as well as below the spectrum the amino 
acid sequence of the phosphopeptide is shown (a phosphoserine 
is indicated as “S[167],” a phosphothreonine as “T[181]” and a 
phosphotyrosine as “Y[243]”). Here you have to look for the 
following: left and right of the amino acid sequence the frag-
ment ion signals that were found and could be assigned in the 
tandem mass spectrum are highlighted. In our example the 
question is, if the serine (at position 6) is phosphory lated 
LSLTDS167TETIENNATVK or the adjacent threonine 
LSLTDST167ETIENNATVK at position 7. Of note, most spectra 
loaded into the PhosphoPep database are consensus spectra (7), 
which means that only repeatedly observed peptide fragment ions 
are shown. Noise signals were removed.

The inspection of the highlighted ions shows that indeed all 
peptide fragment ions, including the one corresponding to the 
phosphorylated serine as well as the non-phosphorylated threonine, 
were identified and assigned, strengthening that the assigned serine 
phosphorylation is correct. In addition, take a look at the tandem 
mass spectrum in Fig. 11. Here you can see that both assigned 
fragment ions are rather intense. In addition, the y11+ fragment ion 

Fig. 10. The arrow indicates how to open the corresponding tandem mass spectrum of a given phosphopeptide entry.

http://www.proteomesoftware.com/Proteome_software_pro_protein_id.html
http://www.proteomesoftware.com/Proteome_software_pro_protein_id.html
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at m/z 1,300.3 (1220.3 + 80) or the y11++ fragment ion at m/z 
650.7, which would indicate that threonine 7 phosphorylated, are 
missing. The same is true for the b6+ ion at m/z 617.7, which 
would indicate that serine 6 is not phosphorylated. Both findings 
suggest the correct assignment of the phosphorylation site.

b1+ b2+ # AA # y1+ y2+

114.1668 57.5871 1 L 17

201.2450 101.1262 2 S 16 1803.8088 902.4081

314.4044 157.7059 3 L 15 1716.7306 858.8690

415.5095 208.2584 4 T 14 1603.5712 802.2893

530.5961 265.8017 5 D 13 1502.4661 751.7368

697.6542 349.3308 6 S[167] 12 1387.3795 694.1935

798.7593 399.8833 7 T 11 1220.3214 610.6644

927.8748 464.4411 8 E 10 1119.2163 560.1119

1028.9799 514.9936 9 T 9 990.1008 495.5541

1142.1393 571.5733 10 I 8 888.9957 445.0016

1271.2548 636.1311 11 E 7 775.8363 388.4219

1385.3586 693.1830 12 N 6 646.7208 323.8641

1499.4624 750.2349 13 N 5 532.6170 266.8122

1570.5412 785.7743 14 A 4 418.5132 209.7603

1671.6463 836.3268 15 T 3 347.4344 174.2209

1770.7789 885.8931 16 V 2 246.3293 123.6684

17 K 1 147.1967 74.1021

Phosphorylation
site

Fragment ion 
confirming the 

phosphorylation site 
(S167)

Fragment ion
confirming the

threonine residue 
without phosphorylation

Fig. 11. On top the tandem mass spectrum and on bottom the assigned ions of the phosphopeptide “LSLTDS167TETIENNATVK” 
are displayed.
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In Fig. 12a, b, an example is shown in which the assignment 
of the correct site of phosphorylation is difficult. It is not clear if 
the highlighted serine TS*VSEAQNTQPQVANADAK or the 
highlighted threonine T*SVSEAQNTQPQVANADAK is 
phosphorylated.

Fig. 12. Two tandem mass spectra that fail to correctly assign the phosphorylation site in the peptide 
“TSVSEAQNTQPQVANADAK”.

b1+ b2+ # A A # y1+ y2+

102.1125 51.5599 1 T 19

269.1706 135.0890 2 S[167] 18 1938.9370 969.9722

368.3032 184.6553 3 V 17 1771.8789 886.4432

455.3814 228.1944 4 S 16 1672.7463 836.8769

584.4969 292.7521 5 E 15 1585.6681 793.3378

655.5757 328.2915 6 A 14 1456.5526 728.7800

783.7064 392.3569 7 Q 13 1385.4738 693.2406

897.8102 449.4088 8 N 12 1257.3431 629.1753

998.9153 499.9613 9 T 11 1143.2393 572.1234

1127.0460 564.0267 10 Q 10 1042.1342 521.5708

1224.1627 612.5850 11 P 9 914.0035 457.5055

1352.2934 676.6504 12 Q 8 816.8868 408.9471

1451.4260 726.2167 13 V 7 688.7561 344.8818

1522.5048 761.7561 14 A 6 589.6235 295.3155

1636.6086 818.8080 15 N 5 518.5447 259.7761

1707.6874 854.3474 16 A 4 404.4409 202.7242

1822.7740 911.8907 17 D 3 333.3621 167.1848

1893.8528 947.4301 18 A 2 218.2755 109.6415

19 K 1 147.1967 74.1021

a
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b1+ b2+ # AA # y1+ y2+

182.0924 91.5499 1 T[181] 19

269.1706 135.0890 2 S 18 1858.9571 929.9823

368.3032 184.6553 3 V 17 1771.8789 886.4432

455.3814 228.1944 4 S 16 1672.7463 836.8769

584.4969 292.7521 5 E 15 1585.6681 793.3378

655.5757 328.2915 6 A 14 1456.5526 728.7800

783.7064 392.3569 7 Q 13 1385.4738 693.2406

897.8102 449.4088 8 N 12 1257.3431 629.1753

998.9153 499.9613 9 T 11 1143.2393 572.1234

1127.0460 564.0267 10 Q 10 1042.1342 521.5708

1224.1627 612.5850 11 P 9 914.0035 457.5055

1352.2934 676.6504 12 Q 8 816.8868 408.9471

1451.4260 726.2167 13 V 7 688.7561 344.8818

1522.5048 761.7561 14 A 6 589.6235 295.3155

1636.6086 818.8080 15 N 5 518.5447 259.7761

1707.6874 854.3474 16 A 4 404.4409 202.7242

1822.7740 911.8907 17 D 3 333.3621 167.1848

No fragment ion(s)
pointing towards 

phosphorylation of 
threonine 1 or serine 2

b

1893.8528 947.4301 18 A 2 218.2755 109.6415

19 K 1 147.1967 74.1021

Fragment ions 
pointing to the 

phosphorylation of 
serine 6 

Fig. 12. (continued).
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First, most peptide fragment ions that could unequivocally 
distinguish the two phosphorylation sites are outside the recorded 
m/z range. Second, the y18++ fragment ion at m/z 969.97 that 
could indicate that the serine 2 is phosphorylated, but not threo-
nine 1, is present at low relative intensity in a m/z region crowded 
with signals, therefore it is not sure whether this is a real fragment 
ion or noise.
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Chapter 20

Protein-Centric Data Integration for Functional Analysis 
of Comparative Proteomics Data

Peter B. McGarvey, Jian Zhang, Darren A. Natale, Cathy H. Wu,  
and Hongzhan Huang 

Abstract

High-throughput proteomic, microarray, protein interaction and other experimental methods all generate 
long lists of proteins and/or genes that have been identified or have varied in accumulation under the 
experimental conditions studied. These lists can be difficult to sort through for Biologists to make sense of. 
Here we describe a next step in data analysis – a bottom-up approach at data integration – starting with 
protein sequence identifications, mapping them to a common representation of the protein and then 
bringing in a wide variety of structural, functional, genetic, and disease information related to proteins 
derived from annotated knowledge bases and then using this information to categorize the lists using 
Gene Ontology (GO) terms and mappings to biological pathway databases. We illustrate with examples 
how this can aid in identifying important processes from large complex lists.

Key words: Gene Ontology, Biological pathways, Protein database, UniProtKB, Proteomics, 
Bioinformatics

High-throughput transcriptome and proteome projects have 
resulted in the rapid accumulation of large amounts of data com-
paring the expression of genes and proteins under many condi-
tions. Proteomic, microarray, protein interaction, and other 
experimental methods all generate long lists of proteins and/or 
genes that have been identified or have varied in accumulation 
under the experimental conditions studied. Depending on the 
platform used, a variety of filtering tools and clustering algorithms 
are available to help identify and sort the significant results from 
the noise. The appropriate sorting and filtering methods are 

1. Introduction

Cathy H. Wu and Chuming Chen (eds.), Bioinformatics for Comparative Proteomics, Methods in Molecular Biology, vol. 694,
DOI 10.1007/978-1-60761-977-2_20, © Springer Science+Business Media, LLC 2011
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dependent on the platform and experimental design. Many books, 
papers and software packages are available describing their appli-
cation. However even the filtered and clustered lists often do not 
provide biological answers as to what genetic and cellular pro-
cesses are significantly affected in a particular experiment. The 
long lists that result are difficult for biologists to sort through for 
insights. Further functional interpretation and knowledge discov-
ery can be derived from the integration of protein sequence data 
with additional biomedical data. Here we describe the next step 
in data analysis – a bottom-up approach at data integration – 
starting with protein sequence information and then bringing in 
a wide variety of structural, functional, genetic, and disease infor-
mation related to proteins and then using this information with 
various tools to assist biologists to functionally compare pro-
teomic results and make inferences from complex lists. Figure 1 
illustrates this functional approach using data integration. Here 
we illustrate, using tools available on the Protein Information 
Resource website and some real data use cases, how one can use 
Gene Ontology terms and pathway databases to assist in making 
sense out of large-scale proteomic data.

Fig. 1. Illustration of a bottom-up approach at omics data integration – starting with 
protein sequence information and then bringing in a variety of structural, functional, 
genetic, and disease information related to proteins and then using this information with 
tools to assist biologists to functionally compare proteomic results and make inferences 
from complex lists.
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 1. Lists of protein or gene identifiers from a proteomic or 
genomic experiment. Currently the PIR system supports 
retrieval of entries based on any 1 of 15 protein or DNA 
sequence identifiers, three gene identifiers (Entrez Gene, 
OMIM and UniProt gene names), and PDB ID as a protein 
structure identifier. Mixed groups of identifiers such as “Any 
Unique ID” or “Any Sequence ID” are also supported 
though this might retrieve more than you wish, as it is possi-
ble for one sequence ID such as a GI number to also match a 
taxonomy ID and an Entrez Gene ID or more and retrieve 
unrelated proteins. If you have a choice UniProt (1) accessions 
followed by GenBank/EMBL/DDBJ protein accessions are 
preferred as most all other identifiers are mapped to these 
databases.

 2. Internet access to http://proteininformationresource.org/
pirwww/search/batch.shtml.
The example identifier lists used in this chapter can be found 

here: ID mapping: ftp://ftp.pir.georgetown.edu/pub/
MiMB/Comparative_Proteomics/ID_gi_list.txt

GO Analysis: ftp://ftp.pir.georgetown.edu/pub/MiMB/
Comparative_Proteomics/Ba_infect_0hr.txt

ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_
Proteomics/Ba_infect_3+6hr.txt 

ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_
Proteomics/Ba_infect_3+6hr_no-0hr.txt

Pathways Analysis: ftp://ftp.pir.georgetown.edu/pub/MiMB/
Comparative_Proteomics/typhi_mgm_cluster_96.txt

The first step in this approach is to combine all available functional, 
genetic, structural, pathway, ontology, literature and disease 
information related to the genes or proteins on your list. This is 
done by mapping the lists of genes/proteins to a comprehensive 
data warehouse where this information is stored. Here we use the 
iProClass (2) warehouse that is composed of UniProtKB (1) pro-
teins supplemented with selected UniParc (3) proteins and addi-
tional annotation, information and cross-references from over a 
100 molecular databases. All iProClass accessions are UniProtKB 
or UniParc accessions.

2. Materials

3. Methods

3.1. Batch Retrieval, ID 
(Identifier) Mapping 
and Data Integration

http://proteininformationresource.org/pirwww/search/batch.shtml.
http://proteininformationresource.org/pirwww/search/batch.shtml.
ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_Proteomics/ID_gi_list.txt
ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_Proteomics/ID_gi_list.txt
ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_Proteomics/Ba_infect_0hr.txt
ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_Proteomics/Ba_infect_0hr.txt
ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_Proteomics/Ba_infect_3+6hr.txt
ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_Proteomics/Ba_infect_3+6hr.txt
ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_Proteomics/Ba_infect_3+6hr_no-0hr.txt
ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_Proteomics/Ba_infect_3+6hr_no-0hr.txt
ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_Proteomics/typhi_mgm_cluster_96.txt
ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_Proteomics/typhi_mgm_cluster_96.txt
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 1. Using the ID mapping example list, or your own list, open a 
browser window to http://proteininformationresource.org/
pirwww/search/batch.shtml (see Fig. 2).

 2. Copy/Paste the list into the window and set the appropriate input 
identifier. See Fig. 2 where we use a list of NCBI gi numbers.

 3. Click “+” and give the list a reference name such as 
“Condition_1_strain_abc” so that you can use it to identify 
and retrieve the protein set later.

 4. Click “retrieve” and wait for the result table. See Fig. 3 for 
following steps.

 5. The resulting table contains all the iProClass protein entries 
that map to the identifiers you submitted. You can customize 
the result table altering the columns displayed and you can 
download the table. You can view detailed information about 
each protein in either the iProClass or UniProt website. For 
details on these and other analysis options, please see the 
PIR help pages at: http://proteininformationresource.org /
pirwww/support/help.shtml#7

 6. The reference name you entered is now a JOB identifier dis-
played next to the “retrieve” button. Click on the JOB iden-
tifier to bookmark your table to return to later and to 
distinguish this result from other results you may load for 
comparison. The JOB identifier will be displayed in some of 
the analysis windows we describe below (see Note 1).

Fig. 2. Initiating batch retrieval with ID mapping. This example uses gi numbers to map to UniProtKB. The first step the 
analysis shown in Fig. 1.

http://proteininformationresource.org/pirwww/search/batch.shtml (see Fig.�20.2).
http://proteininformationresource.org/pirwww/search/batch.shtml (see Fig.�20.2).
http://proteininformationresource.org /pirwww/support/help.shtml#7
http://proteininformationresource.org /pirwww/support/help.shtml#7
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 7. Next review the ID mapping by clicking on the “matched ID 
List” link above the table. The resulting window shows the 
mapping from the ID submitted to iProClass/UniProt acces-
sions. All matches are shown on one line, if multiple identifiers 
are seen in the UniProtKB AC column it means your identifier 
matched more than one sequence in the database. There are a 
number of reasons this may occur including multiple 
isoforms of the same gene/protein, redundancy in one of the 
mapped databases and others. You will observe “no match” if 
nothing is found. The results table will contain all protein 
accessions found.

Checking this matched list is a critical step before pro-
ceeding with your analysis. If there are missing matches, you 
need to decide if you need to find them by other means now. 
If there are multiple (redundant) matches, you need to decide 
if you want to remove the extras to have a smaller and 
“cleaner” list before proceeding with the analysis. Keeping 
them is not necessarily a problem but the redundancy (com-
mon in high throughput experiments) is something you need 
to be aware of. Please refer to the Notes 5 and 6 for details 
on ID mapping and suggestions on the steps you can take to 
minimize redundancy and find missing protein matches.

Fig. 3. The results of a batch retrieval using gi numbers. (a) Link to display the results of the ID mapping. (b) Link to initiate 
the GO and Pathway analysis options used in the methods.
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 8. When the batch retrieval is complete (i.e. you have found 
matches for all IDs and decided to keep or remove redundant 
matches), initiate the Pathway or GO analysis by clicking on 
the GO/Pathway icon (Fig. 3) which will modify the GO/
Pathway options. You can now perform either a GO or 
Pathway analysis on all the retrieved proteins or select a sub-
set of proteins first.

 1. For this first exercise download the example list at ftp://ftp.pir.
georgetown.edu/pub/MiMB/Comparative_Proteomics/
Ba_infect_0hr.txt.

This list is derived from an unpublished data set of proteins 
identified by mass spectrometry from experiments where 
mouse macrophage cells were infected with Bacillus anthracis. 
The data was retrieved using the Master Protein Directory in 
the NIAID Biodefense Proteomics Resource (4, 5). This first 
list is a control set containing all Bacillus proteins identified at 
zero time after inoculation.

 2. Do batch retrieval at http://proteininformationresource.
org/pirwww/search/batch.shtml using the UniProtKB 
accession option. After your batch retrieval, you should have 
a list of 831 proteins, at which point you should initiate the 
GO/Pathway analysis options (see step 8 in Subheading 3 
and Fig. 3).

 3. Click on the GO Slim “Proc.” link to use GO Slims based on 
the Gene Ontology’s (6) biological process ontology. This is a 
good place to start a characterization as it provides a high-level 
grouping of biological processes. A new analysis window will 
appear to display the results if your list of proteins is large (like 
this one) it may take a few minutes to display the results. See 
Fig. 4 for an example of the GO biological process display using 
this list of proteins. See Notes 2 & 3 for information on other 
GO ontology options and use of the GO analysis window.

 4. The default GO display shown in Fig. 4 has four columns: 
(1) a check box where you can select to remove items from 
the display; (2) the GO ID which identifies the database and 
a unique ID that links to the Amigo database (http://amigo.
geneontology.org) for additional information on the GO 
terms; (3) the GO Term or name; and (4) the frequency or 
number of proteins in the list that map to that Term. Some 
functions of the display are:
(a) The GO ID, Term and Frequency columns can be sorted 

to help group similar IDs or Terms.
(b) The frequency column has two sub-columns. (1) A number, 

which is the number of proteins that map to this Term. 
Clicking on this number opens a new window and does 
batch retrieval on these proteins only, allowing the user 

3.2. Gene Ontology 
Analysis

ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_Proteomics/Ba_infect_0hr.txt
ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_Proteomics/Ba_infect_0hr.txt
ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_Proteomics/Ba_infect_0hr.txt
http://proteininformationresource.org/pirwww/search/batch.shtml
http://proteininformationresource.org/pirwww/search/batch.shtml
http://amigo.geneontology.org
http://amigo.geneontology.org
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to do an additional investigation and analysis on the 
selected set of proteins. Next to the number of proteins 
is a p-value whose calculation is based on the frequency 
of a particular term in the database. See Note 7 for more 
information on the use of this value. (2) A histogram bar, 
clicking on this bar opens a window with the GO term 
and iProClass accession numbers in plain text.

  (c) The initial display shows only the PIR GO slim terms 
(http://www.geneontology.org/GO.slims.shtml). These 
terms are a subset of the complete GO ontology that 
groups the proteins into larger branches of the ontology 
tree but does not display all GO terms. To navigate to 
smaller branches and the leaves click on the “>>” icon. 
The first click opens a GO slim + 1 display that shows the 
original GO slim terms but includes the next terms in the 
ontology. Repeating the process shows ALL GO terms. 
Not all proteins have GO terms and not all proteins have 
additional terms at the more detailed levels.

Fig. 4. Example of a GO process analysis discussed in the text. Shows the 11 “protein modification process” proteins that 
appeared in macrophages infected with Bacillus anthracis. These proteins are used for a GO function analysis shown in 
Fig. 5. See Note 5 for information on p-value.

http://www.geneontology.org/GO.slims.shtml
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 5. After examining the GO display on the control set open a 
second browser window or tab and repeat the process of down-
loading, batch retrieval, and GO process analysis with the file 
ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_
Proteomics/Ba_infect_3+6hr.txt.

This list is a test set containing all Bacillus proteins identi-
fied at 3 and 6 h after inoculation. It should return 1,525 
proteins. Again, initiate the GO/Pathway analysis options 
and click on the GO Slim “Proc.” link.

 6. Compare the control and test lists on the screen (for such 
large lists it is often best to print out). Can you see differences 
between the control and test set? Probably not, though there 
are some differences.

Even by categorizing a large list into a smaller list of 
biological processes, the result is still a relatively large list of 
overlapping categories and significant increases and decreases in 
composition are not apparent here as the test set is almost twice 
the size of the control set. This is not an uncommon situation 
with proteomic and genomic data. However, look down the list 
for “protein modification process” where the smaller “control” 
set has only two proteins and the larger test set has 13 (almost 
four times as large). This might be a significant change, but let 
us leave further investigation until later and refine our data.

 7. Again, open another browser window or tab and repeat the 
download and batch retrieval process with the file ftp://ftp.pir.
georgetown.edu/pub/MiMB/Comparative_Proteomics/
Ba_infect_3+6hr_no-0hr.txt. This second list is a set of all 
Bacillus proteins identified at 3 and 6 h after inoculation but 
excludes all proteins also found in the control 0-time set. It 
should return 694 proteins. Again, initiate the GO/Pathway 
analysis options and click on the GO Slim “Proc.” link.

 8. Now compare the new list of GO biological process terms (see 
Fig. 4) to the previous two. All the proteins in this list appeared 
3–6 h after infection and were not present at the time of infec-
tion, indicating they are likely to be important for the bacteria’s 
adaptation to the macrophage environment and the process of 
infection. The list now gives a better indication of the biological 
processes affected, though it does not contain all the proteins in 
the processes as those also present at zero time were filtered out. 
We can now drill down further using other options.

 9. Now let us investigate the “protein modification process” 
which moved up the list and showed significant changes in 
both test samples. Click on the number “11” in the frequency 
column next to the term (see Fig. 4). This pops up a new 
window and performs batch retrieval on only the proteins in 
this category. Initiate the GO/Pathway analysis options and 
click on the GO Slim “Func.” link to view the GO molecular 
function ontology terms.

ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_Proteomics/Ba_infect_3+6hr.txt
ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_Proteomics/Ba_infect_3+6hr.txt
ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_Proteomics/Ba_infect_3+6hr_no-0hr.txt
ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_Proteomics/Ba_infect_3+6hr_no-0hr.txt
ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_Proteomics/Ba_infect_3+6hr_no-0hr.txt
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 10. After the window opens click on “>>” to expand the GO Slim 
display to GO Slim + 1 and then click “>>” again to see all 
GO ontology terms. See figure z for the display. GO is an 
ontology where terms have parent-child relationships, the ini-
tial display shows a “GO slim” which represents early branches 
of the ontology tree, this can be expanded to smaller branches 
using “GO slim + 1” and to all available GO terms, the leaves, 
by showing all GO.

The GO molecular function frequency display shown in 
Fig. 5 shows all the functional terms associated with the “pro-
tein modification process” proteins. A number of activities are 
shown and proteins can have multiple activities. Looking at 
the largest category “transferase activity,” we have seven pro-
teins mostly involved in some sort of phosphate transfer char-
acteristic of cellular signaling mechanisms (not shown). By 
examining each protein’s annotation individually in iProClass 
or UniProtKB or by using the pathway tool described in the 
next section, we can learn more about the role these proteins 
are known to play in the cell and possibly make some hypoth-
esis to their roles related to infection here. Five of the seven 
proteins are sensor proteins involved in two-component sen-
sory systems. Three of the five sensor proteins have pathways 
associated with them in the KEGG database as systems that a) 
sense oxygen levels for switching between aerobic and anaero-
bic respiration, b) sense environmental conditions that might 
induce sporulation, and c) signals to induce chemotaxis. The 
pathways for the other two sensor proteins are unknown.

 1. For this exercise, use the Pathway example list at ftp://ftp.pir.
georgetown.edu/pub/MiMB/Comparative_Proteomics/
typhi_mgm_cluster_96.txt. This list of accessions is derived 
from a published data set of proteins identified by mass 
spectrometry from experiments where Salmonella typhi was 

3.3. Biological 
Pathways Analysis

Fig. 5. Example of a GO function analysis on the 11 GO process proteins identified in Fig. 4.

ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_Proteomics/typhi_mgm_cluster_96.txt
ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_Proteomics/typhi_mgm_cluster_96.txt
ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_Proteomics/typhi_mgm_cluster_96.txt
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grown in different media (7) and compared with Salmonella 
typhimurium grown under the same conditions (8). This par-
ticular set represents a cluster of highly expressed proteins in 
S. typhi grown in magnesium-depleted minimal medium 
thought to mimic some of the intracellular conditions seen by 
the pathogen during infection.

 2. Do batch retrieval at http://proteininformationresource.org/
pirwww/search/batch.shtml using the UniProtKB accession 
option. After your batch retrieval, you should have a list of 96 
proteins; initiate the GO/Pathway analysis options (see step 
8 in Subheading 3 and Fig. 3).

 3. Click on the Pathway link, a new analysis window will appear 
to display the result. See Fig. 6 for an example of the Pathway 
display and Fig. 7 for further detail. The Pathway analysis tool 
displays pathways from KEGG (9), Reactome (10) and PID 
(11). All proteins in the list that are members of a pathway are 
displayed by default. A protein may be a member in multiple 
pathways from multiple databases. Proteins that do not map 
to KEGG, Reactome or PID are displayed in an unclassified 
category at the bottom of the display. See Note 3 for addi-
tional information on using the pathway window. See Note 4 
for an additional pathway analysis example.

 4. The Pathway display has four columns similar to the GO 
display: (1) a check box where you can select to remove cat-
egories from the display; (2) the Pathway ID which identifies 
the database and a unique ID that links to the database for 
additional information on the pathway; (3) the pathway Term 

Fig. 6. Example of a pathway analysis on S. typhi proteins induced in Mg+2 depleted minimal media.

http://proteininformationresource.org/pirwww/search/batch.shtml
http://proteininformationresource.org/pirwww/search/batch.shtml
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(similar to name or description); and (4) the frequency or 
number of protein in the list that map to that pathway. Some 
functions of the display are:
(a) The Pathway ID, Name and Frequency columns can be 

sorted. For example, to group the displays by pathway 
database sort on ID that will put all KEGG, Reactome and 
PID data together. If you sort on Term pathways with sim-
ilar descriptions are grouped. The frequency column has 
two sub-columns. (1) A number, which is the number of 
proteins that map to this pathway. Clicking on this number 
opens a new window and does batch retrieval on these pro-
teins only, allowing the user to do additional analysis on the 
selected proteins. Next to the number of proteins is a 
p-value whose calculation is based on the frequency of a 
particular term in the database. See Note 7 for more infor-
mation on the interpretation of this value. (2) A histogram 
bar. Clicking on this bar opens a window with the pathway 
term and iProClass accession numbers in plain text.

 5. Examine the list of pathways on the display or in Fig. 6. In 
this example using bacterial proteins all the pathways are from 
KEGG as Reactome and PID pathways are mostly for Human 

Fig. 7. Further examination of one of the eight “ABC Transporter” pathway proteins shown in Fig. 6. Following links to the 
iProClass report then to KEGG pathway database, we see that “Q8Z297-Dipeptide transport ATP-binding protein” DppD 
is highlighted as part of a complex involved in dipeptide/Heme/d-aminolevulinic acid transport across the cell 
membrane.
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diseases. Also in this example, some pathway names are duplicated 
as UniProtKB in the past merged identical proteins from vir-
tually identical strains of an organism while KEGG maintains 
a separate identical pathway display for every strain of a 
sequenced organism. As a result, most of the UniProtKB pro-
teins for S. typhi and a few other bacterial species map to two 
pathways in KEGG. You can ignore the first “Metabolic 
Pathways” as its members are included in more specific path-
ways below. In this group, the largest number of proteins 
belongs to the first “ABC transporters” pathway.

 6. Click on the number “8” next to the first “ABC transporters” 
pathway and the proteins will appear in a new window. These 
proteins are all part of bacterial membrane bound transport 
systems for different compounds or ions; their presence on 
this list would seem to indicate the bacteria needs to import 
their specific substrates in these conditions. Let us look more 
closely at one protein.

 7. Click on the iProClass icon under accession Q8Z297-
Dipeptide transport ATP-binding protein DppD, the fifth 
protein on the list. This will take you to the iProClass report 
with information on the protein and links to many additional 
resources. Scroll down to one of these resources, under Cross-
References you will see Pathways and the links “ABC trans-
porters [PATH: sty02010]” click on the link and a browser 
will open displaying the KEGG pathway with the gene name 
dppD for this protein highlighted in red. This protein is part 
of a complex that imports small peptides/Heme/d-
aminolevulinic acid. By inspection of the other proteins, this 
list of ABC transporters in a similar manner you should find 
that four of the nine proteins are involved in peptide/nickel 
transport complexes like this one. The other proteins are part 
of complexes that transport sulfate, molybdate, 2-aminoeth-
ylposphonate, arginine and heme. Let us look at some other 
pathways.

 8. Back in the original Pathway Statistics window click on the 
number “7” next to the “Two component system” to inves-
tigate the proteins in the list. What signal and response sys-
tems seem to be induced? In the original published analysis of 
this data it was noted that Q8Z6B2 (PagC) and Q8Z4Y4 
(Pâté) are both part of a system that responds to Mg+2 starva-
tion (like in the media used here) and antimicrobial peptides. 
These proteins have been known to be involved in virulence.

 9. Investigate the other pathways. The authors of the original 
paper noted that the four sequential enzymes in the biotin 
pathway shown in the display were induced and thought it 
significant but did not comment on the other biosynthetic 
pathways shown here.
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  Pathway or GO classification can aid in discovery but each has 
its limits. A combination of techniques is often required and 
in the end, detailed investigation of individual proteins and 
the related literature on the organism is needed. Let us now 
examine the proteins in this list not classified by pathways.

 10. At the bottom of the Pathway Statistics window, click on the 
“55” unclassified proteins to retrieve a table of these 
proteins.

 11. Click on the GO/Pathway icon to initiate the analysis options. 
Inspect the new columns that appear in the list. It seems some 
but not all these proteins have GO slim terms associated with 
them so let us do a GO analysis starting with biological pro-
cess. Click on the GO “Proc.” Icon.

 12. Examine the GO biological process ontology results. The 
highest number of proteins in any category is seven and 
because this data set was designed to find proteins involved in 
infection and virulence the category called “interspecies inter-
action between organisms” seems most relevant. Click on the 
“7” and inspect the results. Six of the proteins are known or 
suspected to be toxins or virulence associated proteins that 
function to target and disrupt mammalian host cells includ-
ing: Q8Z727-Cytolethal distending toxin subunit B; 
Q8Z727-Hemolysin E; Q8Z6A4-Putative pertussis-like toxin 
subunit; Q8Z2J2-mgtC protein (a virulence factor know pre-
viously to respond to low Mg+2); and Q8Z550-Deubiquitinase 
sseL (a protein thought to disrupt the hosts ubiquitin path-
way and a member of a known pathogenicity island in the 
typhi genome).

Unfortunately, not all proteins are currently classified by 
GO terms or pathways. Some may have important annotation 
that can only be found by searches and inspection. As a final 
exercise examine the unclassified proteins at the bottom of 
our last GO biological process analysis by clicking on the 
number “27” next to the unclassified category.

 13. Examine the list of protein names. Some are well annotated 
with a complete enzyme name and EC number but no GO 
biological process or pathway yet assigned. Many are named 
“Putative uncharacterized protein” or some variant, meaning 
little is known except they are in the genome and similar to 
other proteins of unknown function. A few names indicate 
they are known or predicted virulence proteins because of 
their presence on a pathogenicity island (7) see O84945-
Putative pathogenicity island effector protein for an example. 
One intriguing protein is Q8Z4K1-Sigma-E factor negative 
regulatory protein, named for its similarity to an E. coli pro-
tein that inhibits transcription of some operons by cleaving a 
sigma factor.
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 1. JOB identifiers will be maintained and available for several 
weeks after first use but may be removed later, save some of 
your work locally.

 2. GO analysis options. In addition to the GO process option, 
the “Func.” link uses GO molecular function ontology (see 
example below), whereas the “Comp.” link uses the GO cel-
lular component ontology. The GO analysis tool displays GO 
terms annotated in UniProtKB. All proteins in the list with 
GO terms associated with it are displayed by default. A pro-
tein may have multiple GO terms associated with it. Proteins 
that do not map to GO terms are grouped in an “unclassi-
fied” box at the bottom of the display.

 3. GO and Pathway window. The pop-up window for the GO or 
Pathway analysis can be overwritten if you do multiple path-
way or GO analysis from the same batch retrieval. To prevent 
this do the following after the window appears. When you see 
the initial window text “To check status, click here.” Right-
click on “here” and select “Open in new Window”. This will 
put the analysis in a new and independent browser window.

 4. Additional pathway example. To see an example of the path-
way analysis with PID and Reactome pathways use the list 
ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_
Proteomics/VACV_infect_Hela_no-control.txt which con-
tains human proteins co-purified with Vaccinia virus IMV 
particles but excluding proteins seen in the uninfected con-
trol purifications (12).

 5. ID mapping background. The identifier mapping in iProClass 
is the result of several automated processes including  
(a) extracting the rich cross-references in UniProtKB,  
(b) using these cross-references as a bridge to other database 
IDs (for example, a GenBank/EMBL/DDBJ accession can 
map a NCBI gi number to a UniProtKB accession), and (c) 
computationally mapping the sequences at 100% identity to 
establish a relationship as is done for UniRef100 (13) (used to 
map databases such as RefSeq to UniProtKB). Currently iPro-
Class and ID mapping tables are updated every 3 weeks in 
sync with UniProtKB updates. The mappings are the most 
comprehensive protein-centric mappings available anywhere. 
They are available for download at ftp://ftp.pir.georgetown.edu/
databases/idmapping/ and ftp://ftp.uniprot.org/pub/data-
bases/uniprot/current_release/knowledgebase/idmapping. 
Web based mapping tools based on this data are available at 
http://proteininformationresource.org/pirwww/search/

4. Notes

ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_Proteomics/VACV_infect_Hela_no-control.txt
ftp://ftp.pir.georgetown.edu/pub/MiMB/Comparative_Proteomics/VACV_infect_Hela_no-control.txt
ftp://ftp.pir.georgetown.edu/databases/idmapping/
ftp://ftp.pir.georgetown.edu/databases/idmapping/
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping
http://proteininformationresource.org/pirwww/search/idmapping.shtml
http://proteininformationresource.org/pirwww/search/idmapping.shtml
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idmapping.shtml and http://www.uniprot.org/?tab=mapping. 
And the source we use in this chapter to map IDs to iProClass 
the PIR batch retrieval at Error! Hyperlink reference not valid.

 6. ID mapping problems and solutions. Difficulties usually fall 
into one of five categories.
(a) One-to-many mappings: A common problem, especially 

when eukaryotic proteins derived from alternate splicing 
or viral polyproteins are involved. Some databases handle 
taxonomy names and identifiers differently causing one-
to-many mappings. Possible solutions are to:

 i.  Leave it as is, in which you should make note of the 
proteins affected or it may cause you confusion later 
where you could see multiple proteins listed in a cat-
egory that is really only one protein.

 ii.  Remove redundancy now, keeping in mind for this 
analysis you want to keep the protein with the most 
annotation especially GO and pathway annotation. 
This can involve some manual effort doing batch 
retrieval on the redundant item and manually checking 
and selecting the best one, however, there are some 
tricks you can use to do this quickly. If one of the 
UniProtKB accessions is from the Swiss-Prot section 
keep that one as it has the most complete annotation. 
If you use the PIR batch retrieval option in this manu-
script any UniProtKB/Swiss-Prot accession will auto-
matically be listed first in the “match list” and if there 
is no UniProtKB/Swiss-Prot accession all the acces-
sions will be from the automatically annotated 
UniProtKB/TrEMBL section and are very unlikely to 
have significant differences in annotation. So we rou-
tinely copy/paste the match list into Excel do a find/
replace looking for “;*” and take only the first 
UniProtKB match to do a second batch retrieval.

(b) No matches: There are several common reasons for this:
 i.  Retired sequences: some gene predictions and transla-

tions are retired with each new genome build. iPro-
Class is not an archive and if an identifier is retired for 
the source database, it disappears from the mapping 
tables. This most often happens with RefSeq genome, 
IPI sequences from EBI and NCBI gi numbers. You 
can check gi numbers and RefSeq accession using 
Entrez tools at NCBI they will tell you is an identifier 
has been retired or replaced with a new sequence. IBI 
maintains tools to find retired sequences on their 
website. If a UniProtKB accession is not found search 
UniParc (14) on the uniprot.org website or UniSave 
at EBI (http://www.ebi.ac.uk/uniprot/unisave/). 

http://proteininformationresource.org/pirwww/search/idmapping.shtml
http://proteininformationresource.org/pirwww/search/idmapping.shtml
http://proteininformationresource.org/pirwww/search/idmapping.shtml
http://www.uniprot.org/?tab=mapping
http://www.ebi.ac.uk/uniprot/unisave/
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If you recover the missing sequence and which 
to include it in your analysis, you can map it to the 
current version of iProClass using Blast or Peptide 
Match on the PIR website.

 ii.  Protein sequences not available in iProClass or 
GenBank/EMBL/DDBJ: This occurs most often for 
organisms whose genome sequencing was still in 
progress and stable builds and/or gene predictions 
were not yet available in GenBank/EMBL/DDBJ. 
There is no solution except to use blast to see if an 
acceptable alternative sequence is available.

 iii.  Input identifier is not supported or identifier does not 
map to a protein: If the identifier is not supported 
there is little you can do except try to find another 
supported identifier in the data. Contact PIR help at 
http://pir.georgetown.edu/pirwww/support/ if 
you have questions. iProClass supports DNA and 
gene identifiers that link to protein translations. 
Identifiers that point to RNA genes or pseudogenes 
are not supported.

(c) Taxonomy issues: Occasionally you may retrieve proteins 
with alternate species or strain names. This is most com-
mon when microbial pathogens are involved. This can 
occur for several reasons.

 i.  Not all molecular databases manage their taxonomy 
IDs and name the same and occasionally the names or 
IDs will change slightly even in the source databases. 
Usually this will not affect the analysis.

 ii.  Experimental data sets often report sequence identi-
fiers for strains or variants other than the one used in 
the experimental sample. This is not an uncommon 
situation as the genetically most characterized variant 
is often an attenuated laboratory strain whereas the 
more virulent strains are either not yet fully sequenced 
or the sequence is of lower quality. Usually this will 
not affect the analysis, as the most annotated version 
of the protein is what you want.

 7. p-value use: The p-value shown in the GO and Pathway statis-
tics indicates if the proportion of an individual GO term or 
Pathway in your list deviates significantly from what would be 
the expected if a random sample of the same size was taken 
from the iProClass database. It is not calculated if the sample 
size is less than 30. For a large sample, it can give you some 
idea if a category deviates significantly from the database as a 
whole but as it does not take into account the distribution of 
terms in the database or the biology related to the term. 
Categories are not created or distributed through all organisms 

http://pir.georgetown.edu/pirwww/support/
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Chapter 21

Integration of Proteomic and Metabolomic Profiling  
as well as Metabolic Modeling for the Functional 
Analysis of Metabolic Networks

Patrick May, Nils Christian, Oliver Ebenhöh, Wolfram Weckwerth,  
and Dirk Walther 

Abstract

The integrated analysis of different omics-level data sets is most naturally performed in the context of 
common process or pathway association. In this chapter, the two basic approaches for a metabolic path-
way-centric integration of proteomics and metabolomics data are described: the knowledge-based 
approach relying on existing metabolic pathway information, and a data-driven approach that aims to 
deduce functional (pathway) associations directly from the data. Relevant algorithmic approaches for the 
generation of metabolic networks of model organisms, their functional analysis, database resources, visu-
alization and analysis tools will be described. The use of proteomics data in the process of metabolic 
network reconstruction will be discussed.

Key words: Network reconstruction, Genome annotation, Metabolic modeling, Network expan-
sion, Flux balance analysis, Expression analysis, Time-series data analysis, Granger causality, Systems 
biology

Recent years have seen a rapid development of profiling technologies 
allowing to probe cellular systems across multiple levels of molecu-
lar organization, most importantly the metabolomic, transcrip-
tomic, and proteomic systems levels. Although the degree of 
comprehensiveness still differs, available transcriptomics methods 
allow the near complete monitoring of the transcriptional activities 
of essentially all genes or genomic regions, whereas available pro-
teomics, and even more so, metabolomics methods provide access 
to only a fraction of all proteins and metabolites, respectively, still, 

1. Introduction

Cathy H. Wu and Chuming Chen (eds.), Bioinformatics for Comparative Proteomics, Methods in Molecular Biology, vol. 694,
DOI 10.1007/978-1-60761-977-2_21, © Springer Science+Business Media, LLC 2011
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unseen opportunities for a holistic experimental approach creating 
an integral understanding of cellular systems upon applying these 
various profiling technologies have arisen.

Metabolic as well as signaling and regulatory pathways 
provide a natural framework for the integration of data from 
different molecular organizational levels. Pathways represent 
our accumulated scientific knowledge of molecular processes, 
structure the available data in a meaningful way, and allow the 
detection of coherent behaviors and, thus, a better separation of 
noise from real molecular signals. In particular, metabolic path-
ways can be expected to follow universal biochemical rules. 
Thus, metabolic pathways are expected to offer a suitable order-
ing framework even across different organisms. As a conse-
quence, when studying system-wide responses of different 
organisms to external perturbations, the creation of this meta-
bolic pathway reference framework, the metabolic network, fre-
quently is among the first tasks when conducting systems biology 
experiments. Assuming that the underlying biochemical reac-
tions are universal and catalyzed by similar enzymes, the task of 
assembling the metabolic network primarily means to detect all 
enzymes encoded in the organism’s genomes – the so-called 
genome annotation. With this set of enzymes, all biochemically 
possible reactions can be derived, and thus the synthesizable set 
of metabolites can be determined. Comparison with actual 
experimental data then leads to the validation and refinement of 
the network, the detection of obvious gaps (missing enzymes), 
and a targeted search for filling these gaps (identification of 
enzymes in the genome).

At the same time, the available molecular profiling data sets 
also allow the reverse approach. Profile data, especially when fol-
lowed over time, are frequently interpreted as results of as yet 
unknown pathways and other types of cause–effect relationships. 
To detect these pathways, various statistical data analyses tech-
niques have been applied.

In this chapter, we describe the major steps involved in cre-
ating an integrated view of proteomics and metabolomics orga-
nizational domains. We will describe how the inventory of all 
enzymes encoded in a genome can be established, and how 
proteomics data can be used to obtain an improved view of the 
genomic complement. Flux balance analysis (FBA) as an 
approach to functionally characterize the resulting network is 
described in more detail. Furthermore, very basic statistical 
methods for the data-driven investigations to infer pathway 
associations between different molecules are introduced and 
relevant resources, software packages, and visualization means 
described.
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The basic steps involved in creating an integrated and network-based 
view of different molecule types in a given organism can be 
summarized as follows.

 1. Functional gene annotation.
 2. Automated genome-scale reconstruction.
 3. Determination of discrepancies between the predicted network 

and measured data.
 4. Expansion of the network to fill in the gaps and reconcile 

inconsistencies.

The reconstruction steps will be described in the subsequent 
paragraphs in more detail. Detailed description of the reconstruc-
tion process can also be found in (1, 2).

As metabolites are processed by enzymes that in turn are encoded 
in the genome, the knowledge of the complete set of enzymes in 
a given organism is pivotal. The metabolic network reconstruction 
is normally done using all sequence and functional annotation data 
that is available in public databases combined with manual cura-
tion using literature and experimental data (see Note 1).

If available, all genomic, transcript (Unigenes or EST data), 
and protein sequences of the organism of interest should be 
downloaded from the webpage of the corresponding genome 
project [e.g., for Chlamydomonas reinhardtii from the JGI web-
page (http://genome.jgi-psf.org/Chlre3/Chlre3.home.html) or 
the NCBI webpage (http://www.ncbi.nlm.nih.gov)). Functional 
annotations of genes and proteins can be retrieved from public 
databases or literature (see Table 1).

Enzyme functions can be obtained by transferring functional 
annotations like EC numbers, GO terms (3) or MapMan (4) bins 
across organisms using comparative analysis (see Note 1). 
Typically, proteins are then annotated using BLAST (5) against 
annotated transcripts or proteins. Instead of BLAST, more sensi-
tive methods like PSI-BLAST (6) or HHpred (7) can be used. 
The annotation is transferred if a certain hit identity and score 
threshold hold (standard values are 40% sequence identity and a 
blast score of at least 50 to ensure a sufficient alignment length). 
Another, more reliable, method to functionally annotate a set of 
genes is using orthology information of an annotated genome. 
The Inparanoid (8) software, the OrthoMCL-DB database (9), 
or the KEGG (10) Orthology (KO) can be used to obtain evolu-
tionary relationships. An automated method to map sequences to 
KO groups and KEGG pathways and reactions is KAAS (11) 
(KEGG Automatic Annotation Server), which is based on 

2  Methods

2.1. Reconstruction  
of Genome-Scale 
Metabolic Networks 
Using Proteomics  
and Metabolomics 
Data

2.1.1. Functional Gene 
Annotation

http://genome.jgi-psf.org/Chlre3/Chlre3.home.html
http://www.ncbi.nlm.nih.gov
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reciprocally best BLAST hits against all KO groups of functionally 
related genes assigned in the KEGG GENES database. To assign 
functional motifs and domains, InterproScan (12) can be used. 
The genome annotation can provide additional information such 
as subcellular localization, protein subunits, and protein complexes. 
If no experimental subcellular localization data is available, subcel-
lular localization of proteins can be predicted using bioinformatics 
tools. A comprehensive list of methods is available at: http://
en.wikipedia.org/wiki/Protein_subcellular_localization_prediction.

The genome annotation provides lists of metabolic enzymes that 
are present in the organism of interest catalyzing metabolic reac-
tions (see Note 2). The next step in the reconstruction process is 
to determine which biochemical reactions are carried out by these 
enzymes. This can be determined manually or by using automated 
tools. Starting from the functional annotation of a genome given 
as EC number, KO group, GO term, or MapMan bin, there are a 
number of methods (see Table 2) that can be used to produce an 
initial draft metabolic network or to refine an existing metabolic 
network filling the missing reactions (see Subheading 2.1.3). 
Transport reactions have to be defined to connect the separated 
networks of the single compartments (see Note 3).

2.1.2. Automated 
Genome-Based 
Reconstruction

Table 1 
Public resources for functional genome annotation

Database Data URL

Entrez Gene Gene annotation http://www.ncbi.nlm.nih.gov/sites/
entrez?db=gene

Entrez Genomes Genomes http://www.ncbi.nlm.nih.gov/genomes/
lproks.cgi

Uniprot Protein annotation http://www.uniprot.org/

Interpro Domain annotation http://www.ebi.ac.uk/interpro/

TransportDB Transporter annotation http://www.membranetransport.org/

Brenda EC numbers http://www.brenda-enzymes.org/

KEGG Pathways http://www.genome.jp/kegg/

MetaCyc Pathways http://metacyc.org/

MapMan Plant pathways http://www.gabipd.org/projects/MapMan/

GabiPD Plant annotation http://www.gabipd.org/

PSORTdb Subcellular localizations http://db.psort.org/

Pubmed Literature references http://www.ncbi.nlm.nih.gov/pubmed

http://en.wikipedia.org/wiki/Protein_subcellular_localization_prediction
http://en.wikipedia.org/wiki/Protein_subcellular_localization_prediction
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene
http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi
http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi
http://www.uniprot.org/
http://www.ebi.ac.uk/interpro/
http://www.membranetransport.org/
http://www.brenda-enzymes.org/
http://www.genome.jp/kegg/
http://metacyc.org/
http://www.gabipd.org/projects/MapMan/
http://www.gabipd.org/
http://db.psort.org/
http://www.ncbi.nlm.nih.gov/pubmed
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A metabolic draft network that has been derived from sequence 
homologies to known enzymes may be incomplete. First not for 
all enzymes, the protein sequences are known and, second, 
homology matches may fail because of low sequence but high 
structural similarities (see Notes 5, 6). Metabolic profiles deter-
mined experimentally under well-characterized conditions can 
efficiently be exploited to identify metabolic capabilities missing 
in the derived draft network. Clearly, all observed metabolites 
must have been produced by the organism from the provided 
nutrients (see Note 10). To identify discrepancies between the 
predicted network and measured data, the draft network derived 
above is analyzed by structural modeling techniques to determine 
whether it is capable of carrying fluxes that allow for the synthesis 
of the observed metabolites from the applied nutrients. Evidently, 
the more growth conditions have been experimentally tested and 
the more metabolites could unambiguously be identified, the 
more discrepancies may be discovered. Furthermore, it is possible 
to exploit proteomics data to define even more synthesis routes 
that the network must be able to synthesize. If, for example, 
observed amino acid sequences strongly indicate a gene model 
for which a function is clearly assigned, then it is highly plausible 
that this reaction takes place and thus the participating substrates 
and compounds must be producible from the nutrients.

The underlying test for determining whether the draft net-
work can carry the necessary flux can in principle be performed by 
the method of FBA (see Subheading 2.4.1). However, to avoid 
the tedious step in generating a manually curated stoichiometri-
cally balanced model that is necessary for FBA, we propose the 
more robust method of network expansion (13). Although with 
this methodology, it is not possible to quantify flux ratios, the 
principle capability to produce metabolites can be tested very 

2.1.3. Determine 
Discrepancies Between  
the Predicted Network  
and Measured Data

Table 2 
Automated network reconstruction methods

Network reconstruction 
system URL/reference

PathwayTools http://www.biocyc.org/

GEM System http://www.biomedcentral.com/ 
1471-2105/7/168

metaShark http://bioinformatics.leeds.ac.uk/shark/

SEED (DeJongh 2007)

AUTOGRAPH (Notebaart 2006)

KAAS http://www.genome.jp/tools/kaas/

http://www.biocyc.org/
http://www.biomedcentral.com/1471-2105/7/168
http://www.biomedcentral.com/1471-2105/7/168
http://bioinformatics.leeds.ac.uk/shark/
http://www.genome.jp/tools/kaas/
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efficiently. In comparison to FBA, it is less mathematically 
stringent than relying on heuristics. However, for well-curated 
networks, it could be shown that almost identical results for the 
producibility of compounds can be expected (14), using only a 
fraction of the computing time.

For a given set of nutrients (the seed) and a given set of 
observed metabolites (the target), the identification of discrepan-
cies involves the following steps:

 1. Define a suitable set of cofactors that are assumed to be present 
(e.g., ADP/ATP, NAD(P)/NADH(P) and Co-A).

 2. Denote by S the seed set of all nutrients.
 3. Determine all reactions for which all substrates are either con-

tained in S or belong to the cofactors defined in step 1.
 4. Expand the set S by all products of the identified reactions.
 5. Repeat the iteration with step 3 until no new products can be 

added.
 6. Identify all those observed target compounds that are not 

contained in S. The draft network cannot produce these 
metabolites and therefore disagrees with the metabolite 
profile.

A web-based front end to the network expansion algorithm is 
available at http://scopes.biologie.hu-berlin.de (15).

There exist several attempts to fill gaps in metabolic networks 
(16–18) (see Note 2). Some methods are based on analyzing the 
local context of the reactions, e.g., by adding reactions that 
belong to predefined pathways if a certain number of reactions 
within this pathway have already been annotated. This bears the 
danger of missing possible solutions that are not contained in 
manually and rather arbitrarily defined pathways. Other approaches 
are based on FBA and apply mixed-integer linear programming 
techniques to identify minimal sets of reactions that are needed to 
allow for the network to carry a flux to synthesize a given set of 
products. This implies the disadvantage that a stoichiometrically 
balanced model has first to be built and embedded in a larger 
network derived from databases. In Christian et al. (19) these 
approaches are discussed and an alternative is presented that 
employs the method of network expansion, which was described 
above to identify discrepancies between the network draft and 
experimental observations. The presented method has the advan-
tage that it can directly operate on networks derived from data-
bases and thus the integration of the draft network into a larger 
reference network is greatly facilitated. In general, the identifica-
tion of candidate reactions that should be added to the network 
relies on a draft network (see Subheading 2.1.2) and a reference 
network (derived from a database comprising known biochemical 

2.1.4. Expand the Network 
to Fill in the Gaps and 
Reconcile Inconsistencies

http://scopes.biologie.hu-berlin.de


347Integration of Proteomic and Metabolomic Profiling as well as Metabolic Modeling

reactions from a large number of species, e.g., KEGG or MetaCyc 
(20)). The algorithm involves the following steps (see Notes 
7–9):

 1. All reactions from the reference network, which are not part 
of the draft network, are written to a list of possible candidate 
reactions (candidate list) (see Note 11).

 2. The draft network is extended by this list.
 3. The network expansion algorithm is used to test whether the 

extended draft network is in agreement with experimentally 
observed metabolite profiles. If this is not the case for some 
target metabolites, then our complete knowledge of bio-
chemical reactions is not sufficient to explain their presence 
and for these metabolites, no extension can be predicted. In 
the following steps, we will therefore focus only on those tar-
get metabolites that may be produced from the fully extended 
network.

 4. Remove the reaction from the top of the candidate list.
 5. Test (with the method of network expansion) whether all tar-

gets can still be produced.
 6. If this is the case, permanently remove the reaction. If not, 

add the reaction to the network and store it as a predicted 
extension.

 7. Continue steps 4–6 until the complete candidate list is 
traversed.

This greedy algorithm will result in one particular minimal 
extension that is sufficient to reconcile inconsistencies. To sample 
various possible minimal extensions, this algorithm is repeated a 
large number of times for different list orderings of the candidate 
reaction list. Comparison of the solutions can give hints about 
the plausibility of the occurrence of a reaction. Those reactions, 
for example, which are found in all solutions, are very strong 
candidates that indeed have to be included in the metabolic 
network.

The quality of the predicted extensions can be considerably 
improved by including genomic sequence information. By a sys-
tematic comparison of the amino acid sequences predicted by the 
gene models to protein sequences from other organisms, a likeli-
hood score can be defined representing the probability that some 
gene in fact encodes a protein catalyzing a particular candidate 
reaction. This information can be used to randomize the candi-
date reaction list in such a way that there is a tendency for those 
reactions for which a strong signal is detected for a catalyzing 
enzyme which is encoded in the genome, placed at a later posi-
tion and is thus more likely to be retained in the predicted list of 
reactions.
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The sequence information is also useful to assign reactions in 
the predicted extensions to a particular gene. In this way, hypoth-
eses are generated such as which particular genes code for which 
enzymes. These hypotheses are in principle testable either directly 
by isolation of the gene product and in vitro studies or indirectly by 
knockout experiments. Further hints whether predicted sequences 
are in fact translated are obtained by proteomics measurements as 
described in the following section.

During experimental validation of the predicted genes and 
proteins and their functions, new evidence is likely to arrive about 
the existence of so far unobserved proteins and metabolites. This 
information can then be used to reiterate the reconciliation pro-
cess such that a repeated cycle of experiments and theoretical pre-
dictions result in an increasingly accurate description of the 
genome-scale metabolic network.

Often, not all genes encoding enzymes in an organism are known, 
or many different gene models from different gene prediction 
tools are available, or EST data are incomplete. The problem is 
even more evident in genomes of organisms that are not fully 
sequenced. Then, shotgun proteomics as well as transcriptomics 
methods (21) can be used to generate new or validate hypotheti-
cal gene models. Such a strategy also helps to eliminate metabolic 
reactions with experimentally unverified transcripts. Moreover, 
network gaps can be filled by alternative isoforms and better func-
tional annotation of new or changed gene models can be 
generated.

Like EST sequencing, high-throughput, high-mass-accuracy 
proteomics profiling methods provide actual evidence for the 
presence of gene products and thus can serve as validation of gene 
models (22). In proteomics, peptides, and proteins are normally 
identified using annotated protein sequence databases. Besides 
applying de novo sequencing, alternative gene model predictions, 
exon splice graphs (23), or EST and genomic sequence translated 
in all six reading frames can be used to identify as of yet unanno-
tated peptides and proteins. Exon-splice graphs compactly encode 
putative splicing events. In proteomics, it is standard to require at 
least two peptides per protein for identification. For new genes, 
only cases in which two or more previously unannotated peptides 
are mapping within a 1 kb of the genomic sequence are accepted. 
Identified peptides can then be used to predict new gene-models 
using software such as Augustus (24). The new gene models and 
their products can then be functionally annotated using the meth-
ods described in Subheading 2.1.1.

Figure 1 provides a schematic overview of the integrative 
approach using proteomics and metabolomics data and mathe-
matical modeling to improve the quality of metabolic network.

2.2. Using Proteomics 
Information to 
Improve Genome 
Annotation and the 
Metabolic Network
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Various functional genomics data from gene expression, protein 
expression, and metabolic profiling experiments can be visualized 
in the context of the reconstructed metabolic network using vari-
ous visualization tools (see Table 3). These visualization tools 
enable the visualization of the user’s own experimental data in the 
context of the reconstructed metabolic network.

The PathwayTools Omics Viewer (25) as part of the PathwayTools 
software is a user data visualization and analysis tool allowing lists 
of genes, enzymes, or metabolites with experimental values to be 
drawn on a diagram of the full pathway map for an organism for 
which Pathway Genome Databases (PGDBs) have been devel-
oped. Examples are EcoCyc (26), AraCyc (27), YeastCyc (28), or 
ChlamyCyc (29).

2.3. Visualization Tools 
for the Integrated 
Metabolic Pathway 
Analysis of Profiling 
Data

2.3.1. PathwayTools Omics 
Viewer

Fig. 1. Integrative approach using proteomics and metabolomics data and mathematical modeling to improve the 
completeness of the metabolic network. The initial network is derived from genomic data. The draft network may not be 
sufficient to explain the presence of all metabolites observed in metabolomics measurements or part of isolated reac-
tions for new gene models predicted from proteomics experiments. The draft network is then embedded into a reference 
network consisting of reactions collected in databases such as MetaCyc or KEGG. A greedy algorithm calculates minimal 
sets of reactions (extensions) that have to be added to the draft network to make it compliant with all experimental data. 
A network is in agreement with observations if it is able to carry fluxes producing the measured metabolites from the 
applied nutrient medium. The calculation of a large number of extensions is achieved by initializing the algorithm with 
many differently ordered lists of reactions (see Subheadings 2.1.3 and 2.1.4). The solutions are compared and used to 
derive hypotheses about the existence of biochemical reactions and genes encoding the respective enzymes. These 
hypotheses can be tested experimentally or by bioinformatics methods. With this strategy, modeling, bioinformatics and 
experiment are combined in an iterative process to improve gene annotations and arrive at more complete genome-scale 
metabolic networks.
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Cytoscape is an open source bioinformatics software platform for 
visualizing molecular interaction networks and biological path-
ways and integrating these networks with annotations, gene 
expression profiles and other state data. Cytoscape supports the 
standard network and annotation file formats used in systems 
biology: GML, BioPAX, SBML, and OBO.

MapMan (30) is a visualization platform that has been developed 
for the display of metabolite, transcript, and proteomics data onto 
metabolic pathways of Arabidopsis and other plant genomes and 
thus features a special emphasis on plant-specific pathways (31).

VANTED (Visualization and Analysis of Networks containing 
Experimental Data) (32) is a platform independent tool for ana-
lyzing biological networks. VANTED combines the following fea-
tures: dynamic network editing and layout, mapping of medium- to 
large-scale experimental data sets from different time points or 
conditions on networks, statistical tests, generation of correlation 
networks, and clustering of similarly behaving substances.

Pajek (Slovene word for Spider) (33) is a program, for the analysis 
and visualization of large networks providing efficient algorithms 
for network analysis, e.g., partitions, paths, components, flow, 
decompositions, reduction, etc..

Once a metabolic network model has been created, several 
approaches have been developed to investigate their quantitative 
and qualitative behavior. For example, it is possible to predict 
the flux distribution; i.e., the metabolic throughput per unit time 

2.3.2. Cytoscape

2.3.3. MapMan

2.3.4. VANTED

2.3.5. Pajek

2.4. Functional 
Metabolic Network 
Analysis

Table 3 
Network visualization tools

Visualization tool URL

PathwayTools  
Omics Viewer

http://www.biocyc.org/

Cytoscape http://www.cytoscape.org/

MapMan http://www.gabipd.org/projects/MapMan/

Vanted http://vanted.ipk-gatersleben.de/

Pajek http://pajek.imfm.si/doku.php

MetaViz http://www.labri.fr/perso/bourqui/software.html

SimPheny™ http://www.genomatica.com/technology/
technologySuite.html

http://www.biocyc.org/
http://www.cytoscape.org/
http://www.gabipd.org/projects/MapMan/
http://vanted.ipk-gatersleben.de/
http://pajek.imfm.si/doku.php
http://www.labri.fr/perso/bourqui/software.html
http://www.genomatica.com/technology/technologySuite.html
http://www.genomatica.com/technology/technologySuite.html
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across all reactions in the network that optimizes growth of an 
organism. Quantitative network analysis includes methods such 
as kinetic modeling using differential equations (34, 35), 
Elementary Mode Analysis (36) to identify subpathways that can 
operate at steady state thus providing an objective criterion for 
the definition of pathways, and Flux Balance Analysis (FBA) 
(35). In this chapter, we will describe FBA as it directly relates to 
the reconstructed metabolic network (see Subheading 2.1.1) 
and uses additional proteomics data such as subcellular localiza-
tion of enzymes.

Ultimately, quantitative results are sought from an integrated net-
work analysis, in particular in the context of metabolic engineer-
ing, where optimized reaction kinetics and fluxes through the 
metabolic network are determined that increase yields of certain 
desired product metabolites. FBA has become a popular quantita-
tive network analysis approach (35, 37, 38). Unlike complete 
deterministic modeling using differential equations that require 
the determination of (prohibitively) many reaction parameters 
(rate constants etc.), FBA operates under the most basic assump-
tion of conservation of mass as reflected in the stoichiometric 
matrix dictated by the chemical pathways. Thus, FBA explores 
the possible steady-state operating modes of a given network, 
modes that are consistent with the conservation of mass. All inter-
converting processes [including transport processes (see Notes 3 
and 4)] are treated as fluxes (V) with reversible reactions split into 
two separate fluxes, a forward and reverse flux. The change of the 
level of particular compound, Xi, then is the integrative effect of 
all fluxes, V, acting on it:

 
synthesis degradation growth/use transport

d

d
iX

V V V V
t
= − − ±

 
(1)

The time dependent change of all metabolites, X (vector nota-
tion), in the system can then be computed from the product of 
the stoichiometric matrix, S, and all fluxes, V:

 

d

d
=X

SV
t  

(2)

At steady state, the net change of all metabolites is zero. Thus,

 0 = SV  (3)

Assuming additional constraints – most importantly non-negative 
and bounded values for fluxes and concentrations, the solution of 
this equation can be determined that optimizes the yield of pre-
selected target metabolites via linear programming techniques, 
such that

2.4.1. Flux Balance 
Analysis
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is maximized for T, where T represents the desired optimization 
parameter, ci are the coefficients (weights) to be determined for 
all N fluxes.

As a result, a numeric solution for all fluxes in the system is 
found that are consistent with an optimal yield of a particular 
metabolite or target parameter that can be expressed as a result of 
fluxes.

In general, the FBA workflow includes the following steps:

 1. Determine the metabolic network for the organism under study 
(see Subheading 2.1). Of particular importance are the cor-
rect assignments of subcellular compartment in which the 
reactions are occurring. The reconstruction of the network 
also includes the generation of the stoichiometric matrix, 
which follows basic biochemical principles of conservation of 
mass (see Notes 7, 8, and 12).

 2. Define constraints. The steady-state condition is already a lim-
iting constraint. Other constraints on maximally possible flux 
values can be derived from consideration rate kinetics of par-
ticular enzymes determining the maximally possible conver-
sion rate. Physical constraints such as thermodynamic 
considerations based on Gibbs free energy have recently been 
proposed (39) to avoid implausible solutions. The biomass 
composition that needs to be maintained adds additional 
constraints on elemental and compound composition.

 3. Specify the optimization criteria. Define the objective func-
tion; i.e., the parameter that is to be maximized (T in Eq. 4). 
Examples are yield of a specific metabolite (ATP, for exam-
ple), maximized growth rate and others.

 4. Solve the linear equation systems under constraints to maximize 
objective function. Apply linear programming as a mathemati-
cal means to find the solutions with optimized results speci-
fied under step 3 and constraints defined under step 2. Several 
linear programming optimizers are available such as the ILOG 
CPLEX solver (ILOG, Inc. Mountain View, CA, http://
www.ilog.com/products/cplex/) or the optimization rou-
tines available under the Matlab mathematical programming 
environment (for additional software tools, see http://en.
wikipedia.org/wiki/Linear_programming).

 5. Analyze results. FBA provides information on the possible 
operating modes of metabolic networks at steady-state and 
helps identify suitable sites for metabolic engineering efforts 
that aim at boosting the yield of a particular compound or 
rendering processes more efficient (reduced nutrient uptake).

http://www.ilog.com/products/cplex/
http://www.ilog.com/products/cplex/
http://en.wikipedia.org/wiki/Linear_programming
http://en.wikipedia.org/wiki/Linear_programming
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The FBA framework also allows studying hypothetical flux 
distributions for knockout mutants by deleting the knocked-out 
gene (enzyme) from the metabolic network. Furthermore, ques-
tions of robustness (sensitivity analysis) can be addressed as well. 
Thus, FBA allows integrating the proteomics level (presence or 
absence of enzymes) with the functional consequences on metab-
olism. An approach to integrate gene expression levels into the 
FBA formalism has been described recently (40).

A visual inspection of resulting flux distributions from FBA 
mapped onto the metabolic network and additional analyses such 
as knockout studies and robustness as well as flux variability analy-
sis can be conveniently performed using the FBA-SimVis plug-in 
(41) for the VANTED software. An illustration of the resulting 
flux distribution and their visualization in the FBA-SimVis tool is 
shown in Fig. 2.

Recently, the concept of FBA with focus on metabolic reac-
tions has been expanded to also include time-dependent regula-
tory steps (42).

An example for the successful application of FBA to the study 
of primary metabolism of C. reinhardtii under three growth con-
ditions (autotrophic, heterotrophic, and mixotrophic) based on a 
reconstructed network generated under consideration of subcel-
lular compartmentalization was presented recently by Boyle and 

Fig. 2. Visualization of flux distribution in a model of barley seed metabolism with FBA-SimViz (41). Width of reaction 
arrows reflect flux values. Image courtesy Falk Schreiber.
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Morgen (43). For the various conditions examined, the dominating 
metabolic routes were identified. Furthermore, FBA revealed the 
conditions associated with carbon efficiency. Thus, the study 
identified intervention sites for rational engineering of 
Chlamydomonas with the objective to modify its economically rel-
evant or environmental properties (CO2 fixation, for example).

Software programs for FBA computations include CellNetAnalyzer 
(44), the COBRA Toolbox (45), FBA (http://gcrg.ucsd.edu/
Downloads/Flux_Balance_Analysis), and TinkerCell (http://
www.tinkercell.com/).

To detect and understand relationships between molecules is a 
central goal of systems biology experiments that involve the paral-
lel profiling of different molecule types (transcripts, proteins, 
metabolites). In the general sense, the interest is to determine, 
which molecules are involved in the same molecular processes. 
These associations can be inferred from profiling data derived 
from different samples taken at different steady states applying 
correlation followed by clustering techniques or from time series 
data monitoring the molecular response to external perturba-
tions. Beyond functional associations, time series data also offer 
the potential to infer cause–effect relationships between mole-
cules. The basic logic is that causes must precede effects. Thus, 
correlations of the time profile associated with one molecule with 
another molecule at later time points may be indicative, but not 
proof, of cause–effect relationships. In the following, we will 
focus our discussion of methods on the integrated analysis of pro-
tein with metabolite data. Evidently, the same concepts apply to 
other data types as well.

As a hallmark of their association, molecules participating in the 
same process can be expected to follow a similar pattern of up- 
and down-regulation, in essence, to be correlated. Quantitatively, 
this is most frequently measured by their Pearson correlation. As 
profile data representing different molecule types (metabolites, 
transcripts, and proteins) can fall onto very different scales, other 
distance measures, such as Euclidean distance cannot be applied 
directly. Instead, all data sets need to be standardized beforehand, 
but transforming all values to a new range with zero mean and 
unit standard deviation. Correlation measures, on the other hand, 
are insensitive to absolute values, but identify similar patterns.

The linear correlation coefficient between two vectors (col-
umns of data, e.g., level data for proteins, x, and metabolites, y, 
across n common samples) is defined as:
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2.4.2. FBA Software

2.5. Statistical 
Methods for the 
Integrated Analysis 
of Profile Data

2.5.1. Correlation Analysis

http://gcrg.ucsd.edu/Downloads/Flux_Balance_Analysis
http://gcrg.ucsd.edu/Downloads/Flux_Balance_Analysis
http://www.tinkercell.com/
http://www.tinkercell.com/
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where x  and y  are the sample mean of x and y, sx and sy are 
the sample standard deviation of x and y and the sum is from i = 1 
to n, the length of the data vector (see Notes 13, 14).

Based on the pairwise correlation coefficient as defined in 
Eq. 5, all variables (e.g., metabolites and proteins) can be clus-
tered to identify subgroups of compounds and proteins that 
behave similarly. A number of different clustering techniques can 
be applied and depend to some degree on the question at hand 
(see Subheading 2.6.1, the Multiexperiment Viewer).

Correlation analysis can be applied to identify groups of proteins, 
genes, metabolites that behave coherently and may thus be asso-
ciated with similar processes. If time series data are available, the 
concept of correlation can also be used to identify potential cause–
effect relationships with the ultimate goal to elucidate pathways 
from the data. For example, one could ask, whether a change of a 
particular metabolite is caused by a preceding change of enzyme 
levels. The basic assumption is that any cause resulting in an effect 
must precede the effect in time. Thus, time shifted (or time-
lagged/time-delayed) correlation is performed to identify such 
shifted cause–effect patterns (see Fig. 3). Its use has been demon-
strated for the detection of gene interaction networks (46). The 
conceptual expansion to correlate different molecule types is 
straightforward.

2.5.2. Time-Lagged 
Correlation Analysis  
of Time Series Data

Fig. 3. Illustration of the concept of time-lagged correlation between two data vectors 
(e.g., protein and metabolite levels). The indexes denote the different time points in 
sequential order. The lines connecting the cells denote the pairwise association for 
which the correlation is computed. With every time lag increment, data points are lost 
(one for every variable in the example, shaded cells). Thus, the extent of possible time-
delays is determined by the number of available time points. In the example, the sce-
nario that X precedes Y is tested.
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High time-lagged correlation levels are no proof of causal 
relationship as the observed correlations can also be caused by 
unconnected processes. However, absence of correlation is a 
strong indicator of independence.

As an alternative to time-lagged correlation analysis, Granger 
causality testing (47) can be applied to detect significant and 
directed (cause–effect) associations between metabolites and pro-
teins (or any other combinations of molecule types). Granger 
causality tests whether past values of a time series associated with 
a variable (e.g., a particular metabolite) contain information that 
significantly improve the prediction of a future value of another 
variable (e.g., protein level) above and beyond the past values for 
this variable alone. Significance is established by applying a series 
of F-tests on the cross-term-coefficients for a linear regression 
model (see Eq. 6) for time dependent values of protein, P(t), and 
metabolite data, M(t), (or any other combination of variables) and 
computing associated p-values, with 
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where P(t)/M(t) denote protein/metabolite levels at time point 
t, the matrix A contains the linear regression coefficients, E the 
resulting residual error, and d is the maximal time lag (number of 
considered past values in the time series). In the model, if either 
one of the cross-term-coefficients (AMP or APM) is significantly dif-
ferent from zero as tested by the F-test, past values of this variable 
improve the prediction of future values of the respective other 
variable. The variable is said to be Granger-caused by the respec-
tive other.

Granger causality was shown in the past to yield meaningful 
directed relationships between transcripts when applied to gene 
expression time series (48, 49).

Compared to correlation measures, Granger causality assigns 
very low mutual predictive values to variables showing mono-
tonic behavior. Although in such cases, any time lag – forward or 
backward – will yield significant Pearson correlations, the Granger 
causality will be low, as the future values of a variable can be pre-
dicted from the variable itself. Thus, these trivial time-lagged cor-
relations (that can, nonetheless, indicate true causal relationships) 
are eliminated under the concept of Granger causality.

Granger causality assumes covariance stationality, which in 
cases of perturbed systems is or may not be fulfilled. Nonetheless, 
Granger causality was shown to yield meaningful results even if 
this assumption is violated (49).

2.5.3. Granger-Causality
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Granger causality computations can be performed using the 
MSBVAR-R package (http://cran.r-project.org/web/packages/
MSBVAR/index.html; Method description: http://rss.acs.unt.
edu/Rdoc/library/MSBVAR/html/granger.test.html). As dis-
cussed above for time-lagged correlation analysis, possible time 
lag values d will depend on the length of the available time series 
data. Obviously, the more time points available, the better.

For the computation of pairwise correlations and clustering of 
data, many different software solutions and packages are avail-
able. At the most generic level, statistical computing environ-
ments, such as the freely available R or commercial solutions such 
as Matlab or Statistica, can be used to compute quantitative mea-
sures of interest. Because they essentially represent programming 
environments, they offer the greatest flexibility. By contrast, cus-
tomized software packages that operate via a graphical application 
interface are more easily usable. Stand-alone applications 
[MultiExperiment Viewer (MeV)] are available as well as web-
based software solutions (Metagenealyse) (see Table 4).

2.6. Software for the 
Statistical Analysis 
of Multilevel Profiling 
Data

Table 4 
Selected software packages for integrated, multivariate data analysis

Software Commercial/free Source Features

Multiexperiment 
Viewer

Free http://www.tm4.org/ 
mev.html

Menu-driven statistical analyses 
options including biclustering, 
principal component analysis, 
correlation network 
generation

Statistica Commercial Statsoft,  
http://www.statsoft.com

Implementation of most 
clustering and many multivari-
ate data analysis techniques.

R Free http://www.r-project.org/ Statistical computing environ-
ment with implementations of 
essentially all known statistical 
procedures

Matlab Commercial http://www.mathworks. 
com

Mathematical and statistical 
programming environment

Metagenealyse Free http://metagenealyse.
mpimp-golm.mpg.de

Web-based suite of statistical 
analyses including imputation 
of missing values, clustering, 
principal component analysis, 
independent component 
analysis

http://cran.r-project.org/web/packages/MSBVAR/index.html
http://cran.r-project.org/web/packages/MSBVAR/index.html
http://rss.acs.unt.edu/Rdoc/library/MSBVAR/html/granger.test.html
http://rss.acs.unt.edu/Rdoc/library/MSBVAR/html/granger.test.html
http://www.tm4.org/mev.html
http://www.tm4.org/mev.html
http://www.statsoft.com
http://www.r-project.org/
http://www.mathworks.com
http://www.mathworks.com
http://metagenealyse.mpimp-golm.mpg.de
http://metagenealyse.mpimp-golm.mpg.de
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Designed for the analysis of microarray gene expression datasets, 
the freely available MeV offers a broad spectrum of standard and 
advanced statistical data analysis methods that can also be applied 
to other data types. Most noteworthy is the very intuitive graphi-
cal user interface, in which the various applied methods remain 
neatly organized such that the results of the various approaches 
are easily comparable. For the purpose of integrated analysis, the 
various clustering methods [hierarchical, K-means performed 
optionally as biclustering; i.e., simultaneously clustering rows 
(e.g., representing protein levels) and columns (e.g., representing 
samples)] can be applied. The program allows choosing between 
different distance measures. Without data standardization, cor-
relation measures are most appropriate as different variables can 
fall into different value ranges. From the computed correlations, 
network views can be generated (so called Relevance Networks), 
thereby quickly revealing any significant associations between the 
different molecules. The program also allows investigating 
whether particular functions are overrepresented in user selected 
clusters. For several organisms and gene expression platforms, 
built-in annotation files are available. For other custom data, cus-
tom annotation files need to be generated and uploaded. Note, as 
the program assumes to process gene expression data, some 
options and predefined labels may not apply. For data import,if 
treatment minus control datasets are to be analyzed, choose the 

2.6.1. The MultiExperiment 
Viewer

Fig. 4. Hierarchical clustering of molecular level data based on Pearson correlation distances using the Multiexperiment 
Viewer. Columns refer to different samples, rows correspond to the different gene transcript levels and metabolite levels. 
Evidently, any other data types can be treated similarly (protein levels, for example). Similar correlation patterns will result 
in a clustering of the corresponding molecules that may be indicative of functional association.
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“Two-color Array” option as then also negative values will be 
colored appropriately, otherwise choose “Single-color Array” if 
only positive values are contained in the data matrix. Despite 
these idiosyncrasies, we find the program very valuable to easily 
perform sophisticated statistical analyses on the data at hand. 
Figure 4 shows an example of hierarchical clustering of molecular 
level data across different samples using the MeV.

A comprehensive review of integrated data analysis methods 
can be found in (50).

Here, we list some common problems encountered during 
automated genome-scale metabolic network reconstruction that 
can be used as a guide for the use of such methods (more details 
can be found in Feist et al. (2)) and add notes on the application 
of statistical concepts for the inference of pathways from data.

 1. Functional annotations can change very quickly, but annota-
tions are not continuously updated. Try to use regularly 
updated databases and automated methods for updating.

 2. Manually check your reconstructed network for incorrect anno-
tations or use methods that can test for inconsistencies (51).

 3. Transporter reactions often have to be added manually, 
because annotation of transporters is still very insufficient.

 4. The correct assignment of the enzymes to their respective 
subcellular compartment is of particular relevance for the 
analysis of metabolic pathways.

 5. Protein–enzyme relationships are often not clearly defined. 
Problems can arise from the incorrect or missing annotation 
of isozymes, subunits, and protein complexes.

 6. Reactions are often unspecifically defined. They can be associ-
ated with general classes of compounds, which can result in 
ambiguous connections in networks. Examples include elec-
tron carriers (NAD and NADP) or d-glucose (a-d-glucose 
and b-d-glucose).

 7. Reactions are often unbalanced for H, C, P, N, O, or S in 
public databases (52).

 8. Reactions are most often defined as reversible throughfully 
are not. Automated methods have been developed to address 
this problem (53, 54).

 9. The protonation state of metabolites within reactions are 
often wrongly annotated.

 10. Enzymes often need cofactors to be functional. The network 
must be able to produce them.

3. Notes
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 11. Often network and pathway annotation is derived by homology, 
but not all pathways are general across species, e.g., the pho-
torespiration pathway between algae and higher plants.

 12. In FBA, it is essential that the network is stoichiometrically 
fully balanced as otherwise the conservation of mass criterion 
is not fulfilled. Networks should also be balanced with regard 
to charge.

 13. In correlation analysis, fewer data points will lead to increasing 
proportions of high correlation levels. In the extreme case of 
only two data points, the correlation will always be perfect, but 
trivial. Especially for the interpretation of time series data, 
where typically only few data points are available, this effect 
needs to be taken into account. Every additional time point 
significantly improves the statistical power. With six time points, 
there are 720 random orderings possible. By adding one more 
time point, this number goes up to 5,040. As a consequence, 
establishing statistical significance via randomized (shuffled) 
data set will yield much improved results in the latter case.

 14. The Pearson correlation coefficient is sensitive to outliers and 
assumes Gaussian distributions. Thus, an apparent high degree 
of correlation can also result data points that are far removed 
from the majority of data points. To circumvent this problem, 
the rank-based Spearman correlation coefficient should be 
used. Instead of correlating the original values, the correlation 
is computed using the respective ranks associated with original 
level data in the different samples. Thus, the impact of outliers 
on the overall correlation is reduced significantly as the maxi-
mal rank difference can only be one unit. In practice, both 
measures should be used and/or the observed data points be 
examined beforehand for occurrences of outliers.
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Chapter 22

Time Series Proteome Profiling

Catherine A. Formolo, Michelle Mintz, Asako Takanohashi,  
Kristy J. Brown, Adeline Vanderver, Brian Halligan, and Yetrib Hathout 

Abstract

This chapter provides a detailed description of a method used to study temporal changes in the endoplasmic 
reticulum (ER) proteome of fibroblast cells exposed to ER stress agents (tunicamycin and thapsigargin). 
Differential stable isotope labeling by amino acids in cell culture (SILAC) is used in combination with 
crude ER fractionation, SDS–PAGE and LC-MS/MS to define altered protein expression in tunicamycin 
or thapsigargin treated cells versus untreated cells. Treated and untreated cells are harvested at different 
time points, mixed at a 1:1 ratio and processed for ER fractionation. Samples containing labeled and 
unlabeled proteins are separated by SDS–PAGE, bands are digested with trypsin and the resulting pep-
tides analyzed by LC-MS/MS. Proteins are identified using Bioworks software and the Swiss-Prot data-
base, whereas ratios of protein expression between treated and untreated cells are quantified using 
ZoomQuant software. Data visualization is facilitated by GeneSpring software.

Key words: Time series, Proteome profiling, SILAC, LC-MS/MS, ER stress response, Subcellular 
proteomics

Time series proteome profiling is a powerful approach for deciphering 
the molecular mechanisms of biological processes because this 
method allows for the tracking of both the quantitative and the 
dynamic aspects of complex protein networks. Although the changes 
in protein expression and trafficking that occur over time can be 
assessed via a proteomic approach, it is almost impossible to increase 
throughput and proteome coverage without losing quantitative 
accuracy. For instance, the extensive subcellular fractionation and 
separation techniques that must be used to increase proteome cov-
erage for an organelle can introduce large variations in results from 
sample to sample during preparation. To circumvent such obstacles, 

1. Introduction

Cathy H. Wu and Chuming Chen (eds.), Bioinformatics for Comparative Proteomics, Methods in Molecular Biology, vol. 694,
DOI 10.1007/978-1-60761-977-2_22, © Springer Science+Business Media, LLC 2011
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samples to be compared can be paired for analysis and processed 
under the same conditions using differential stable isotope labeling 
techniques. In this approach, proteins or peptides in control and 
experimental pools are labeled with light and heavy stable isotope 
tags and then mixed together for a single liquid chromatography 
tandem mass spectrometry (LC-MS/MS) run. The light and heavy 
peptide pairs coelute from the chromatographic column while their 
masses are resolved by the mass spectrometer. Therefore, their 
respective intensities allow for relative quantitation between the 
control and experimental samples. Though a variety of differential 
labeling techniques are available (1–3) we and others have found 
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Fig. 1. Overview of the experimental design used to study temporal changes in ER stress response following treatment 
with tunicamycin (Tun) or thapsigargin (Thp). Control human primary fibroblasts are grown in medium in which Lys and 
Arg are replaced by 13C6, 

15N2-Lys and 13C6-Arg. The cells fully incorporate these amino acids after about five cell dou-
blings. Labeled control cells remain untreated (−Tun/−Thp) while unlabeled cells are treated with an ER stress agent 
(+Tun or +Thp). At the indicated times, treated and untreated cells are mixed at a 1:1 ratio, then processed for subcellular 
fractionation. In this case, the ER fraction is prepared and proteins are extracted and further separated by SDS–PAGE. 
Each lane is sliced into 30–40 bands, digested by trypsin and the resulting peptides analyzed by LC-MS/MS. The base 
peak chromatogram is representative of the labeled and unlabeled peptide mixture obtained from one single gel band. 
The zoom scan image shows the mass spectrum of a pair of labeled and unlabeled peptides eluting at the retention time 
indicated by the arrow in the base peak chromatogram. The MS/MS window depicts the fragment ions generated from 
one peptide. Proteins are identified from the MS/MS data of their tryptic peptides using Bioworks software and ratios 
between treated and untreated samples are determined from the peak areas of labeled and unlabeled peptide pairs using 
the zoom scan and ZoomQuant software.
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that stable isotope labeling by amino acids in cell culture (SILAC) is 
ideal for subcellular proteome profiling (4–6) because:

 1. Cells to be analyzed are mixed before subcellular fraction-
ation and protein extraction, greatly reducing any variation 
caused by experimental handling and sample processing.

 2. It is the most comprehensive way to uniformly label all cel-
lular proteins, thereby ensuring more accurate quantitative 
analysis.

 3. Relative quantities are obtained for each tryptic peptide pair 
allowing for better assessment of differential protein 
expression.

 4. It allows accurate temporal proteome profiling and monitor-
ing of protein translocation.

Time series proteome profiling using the SILAC strategy can 
be implemented for any subcellular organelle (Fig. 1). Because 
the samples to be compared are mixed and processed in parallel, 
any organelle cross contamination will affect both samples equally, 
thus distinguishing true biological variations from technical varia-
tions. We recently implemented this strategy to examine temporal 
changes in the endoplasmic reticulum (ER) proteome of human 
fibroblast cells exposed to the ER stress inducers tunicamycin and 
thapsigargin (5). Our ability to quantify expression changes at six 
time points was made possible by pairing each time point with the 
same control. This control then acted as a reference point against 
which all data could easily be cross-correlated. Quantitative data 
was obtained with the use of ZoomQuant software and visualiza-
tion was facilitated using the GeneSpring GX analysis platform, 
originally designed to process Affymetrix microarray data.

Unless otherwise noted, all reagents are made using distilled, 
deionized water (ddH2O).

 1. Human primary fibroblasts established from a punch skin 
biopsy explant from a 5-year-old donor (gift from Dr. Raphael 
Schiffmann, NINDS/NIH).

 2. T-25 and T-75 tissue culture flasks.
 3. Low glucose Dulbecco’s Modified Eagle Medium (DMEM) 

containing 1 g/L d-glucose, 110 mg/L sodium pyruvate, 
0.4 mg/mL pyridoxine HCl without Arg and Lys (Atlanta 
Biologicals, Lawrenceville, GA).

 4. Fetal bovine serum (Invitrogen Corporation, Carlsbad, CA).

2. Materials

2.1. Cell Culture  
and Reagents
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 5. Penicillin (10,000 U/mL)/streptomycin (10,000 mg/mL) 
(100×) (Invitrogen Corporation, Carlsbad, CA).

 6. Stable isotope labeled (heavy) amino acids: 13C6-l-Arginine:HCl 
(13C6-Arg) and 13C6, 

15N2-l-Lysine:2HCl (13C6, 
15N2-Lys) 

(Cambridge Isotopes Laboratories, Inc., Andover, MA).
 7. Unlabeled (light) amino acids: l-Arginine:HCl (Arg) and 

l-Lysine:2HCl (Lys) (Sigma-Aldrich Corp., St. Louis, MO).
 8. SILAC “labeled” medium: Dissolve 84 mg of 13C6-Arg and 

146 mg of 13C6, 
15N2-Lys in 890 mL of DMEM. Add 10 mL 

of penicillin/streptomycin and 100 mL of FBS. Sterilize by 
passing through a 0.22-mm filter.

 9. SILAC “unlabeled” medium: Prepare as above, but using 
“unlabeled” Arg and Lys.

 10. ER stress stock reagents: 5 mg/mL tunicamycin in DMSO 
(1,000×), 1 mM thapsigargin in DMSO (1,000×) (Sigma-
Aldrich Corp., St. Louis, MO).

 11. Phosphate buffered saline (PBS): 1 mM KH2PO4, 155 mM 
NaCl, 3 mM Na2HPO4. Adjust to pH 7.4.

 12. Cell lysis buffer: 10 mM Tris–HCl, pH 7.4, 1 mM ethylenedi-
aminetetraacetic acid (EDTA) and 2.5 M sucrose. One com-
plete, Mini protease inhibitor cocktail tablet is added fresh 
for every 10 mL of buffer used (Roche Pharmaceuticals, 
Nutley, NJ).

 13. Protein extraction buffer: 7 M urea, 2 M thiourea, 2% CHAPS 
(w/v) and fresh 50 mM DTT.

 1. Protein concentration assay: Bio-Rad protein assay kit II (Bio-
Rad Laboratories, Inc., Hercules, CA).

 2. Sample desalting and clean up: Bio-Spin 6 columns with Bio-
Gel P-6 in Tris buffer (Bio-Rad Laboratories, Inc., Hercules, 
CA); vacuum centrifuge.

 3. Pre-cast polyacrylamide gel: 10–20% Criterion Tris–HCl gel 
(Bio-Rad Laboratories, Inc., Hercules, CA).

 4. Laemmli sample buffer: 2% SDS, 25% glycerol, 0.01% bro-
mophenol blue, 62.5 mM Tris–HCl, pH 6.8 and 50 mM dl-
dithiothreitol (DTT) added just before use.

 5. Tris/Glycine/SDS (TGS) running buffer (10×): 25 mM Tris-
Base, 192 mM glycine, 0.1% SDS, pH 8.3 (Bio-Rad 
Laboratories, Inc., Hercules, CA).

 6. Gel fixing solution: 45% methanol, 5% acetic acid (Prepare one 
liter and store at room temperature).

 7. Gel staining solution: Ready to use Bio-Safe Coomassie stain 
(Bio-Rad Laboratories, Inc., Hercules, CA).

2.2. SDS–PAGE
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Except for digestion buffer, prepare 100 mL of each solution and 
store at room temperature. Solutions are stable at room tempera-
ture for up to 2 months.)

 1. 100% acetonitrile (ACN).
 2. 50% ACN.
 3. 50% ACN, 5% formic acid (FA) (v/v).
 4. 100 mM NH4HCO3.
 5. 50 mM NH4HCO3.
 6. 25 mM NH4HCO3.
 7. 0.1% trifluoroacetic acid (TFA).
 8. Digestion buffer: 12.5 ng/mL of mass spectrometry grade 

Trypsin Gold (Promega Corp, Madison, WI) in 50 mM 
NH4HCO3. Dissolve one vial containing 100 mg of lyo-
philized trypsin in 8 mL of ice cold 50 mM NH4HCO3 solu-
tion. Prepare 50–100 mL aliquots in ice chilled Eppendorf 
tubes and store immediately at −80°C. The solution is stable 
at this temperature for up to a year.

 1. Aqueous mobile phase: 0.1% formic acid (A).
 2. Organic mobile phase: 95% acetonitrile with 0.1% formic 

acid (B).
 1. Sample loading: Autosampler (Dionex LC Packings, 

Sunnyvale, CA).
 2. Reverse-phase high pressure liquid chromatography (HPLC) sys-

tem: Dionex LC Packings nano-HPLC (Dionex-LC Packings, 
Sunnyvale, CA).

 3. Mass spectrometer: LTQ (Thermo Fisher Scientific, Inc., 
Waltham, MA).

 4. Sample washing: C18 trap column (5 mm, 300 mm i.d. × 5 mm), 
(LC Packings, Sunnyvale, CA).

 5. Sample fractionation (stationary phase): Zorbax C18 (3.5 mm, 
100 mm × 15 cm) reverse-phase nanocolumn (Agilent 
Technologies, Palo Alto, CA).

 6. Sample injection: 10-mm silica tip (New Objective Inc., 
Ringoes, NJ).

 1. Raw data collection: Xcalibur 2.0.7 (Thermo Fisher Scientific, 
Inc., Waltham, MA).

 2. Protein identification: Bioworks 3.1 (Thermo Fisher Scientific, 
Inc., Waltham, MA); UniProt/Swiss-Prot database (ftp://
ftp.ncbi.nih.gov/blast/db/FASTA/) (see Note 1).

2.3. In-Gel Digestion 
and Peptide Extraction

2.4. Mass 
Spectrometry 
Instruments and 
Bioinformatics Tools

2.4.1. Buffers

2.4.2.  Instrumentation

2.4.3. Bioinformatics
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 3. Protein quantification: ZoomQuant software (http:// 
proteomics.mcw.edu/ZoomQuant).

 4. Data normalization and visualization: GeneSpring software 
(Agilent Technologies, Palo Alto, CA).

 1. Thaw and seed one vial of cells into a T-25 tissue culture flask 
with SILAC labeled medium. Similarly thaw and seed one vial 
of cells into a T-25 tissue culture flask with unlabeled medium 
(see Note 2).

 2. Culture cells at 37°C, 5% CO2, and replace with correspond-
ing labeled or unlabeled medium every 2–3 days, until they 
have reached 70–80% confluence.

 3. Passage cells into a T-75 flask using their respective labeled or 
unlabeled medium. Continue splitting cells 1:3 each time 
they reach 70–80% confluence until the cells have been fully 
labeled with the stable isotopes (see Notes 3 and 4). Labeled 
and unlabeled cells are cultured in parallel with the same 
number of passages and subcultures.

 4. Continue to culture the cells until they have reached 100% con-
fluence, then proceed with ER stress experiment as follows.

 1. Add 100 mL of tunicamycin stock solution to 100 mL of the 
unlabeled medium (for a final concentration of 5 mg/mL) 
and 100 mL of thapsigargin to an additional 100 mL of unla-
beled medium (for a final concentration of 1 mM).

 2. To six flasks of unlabeled cells, add 12 mL of the unlabeled 
medium containing tunicamycin. To the remaining six flasks 
of unlabeled cells, add 12 mL of the unlabeled medium con-
taining thapsigargin.

 3. To the labeled cells (12 culture flasks), add 12 mL of labeled 
medium.

 4. Incubate two dishes of the labeled cells, one dish of the tuni-
camycin treated cells and one dish of the thapsigargin treated 
cells for each of the following amounts of time: 0 min, 1, 6, 
12, and 24 h (see Note 5).

 1. Dissolve one protease inhibitor cocktail tablet in 10 mL of 
lysis buffer and keep on ice during use.

 2. After each time point discard the conditioned medium from 
each paired control and treated culture flask and add 
10–15 mL of PBS to each flask to wash the cells. Repeat the 
washing twice to remove any serum protein contaminants 
from the cell surface.

3. Methods

3.1. Stable Isotope 
Labeling by Amino 
Acids in Cell Culture

3.2. ER Stress 
Induction

3.3. Cell Harvesting 
and Subcellular 
Fractionation

3.3.1. Cell Harvesting
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 3. Add 2 mL of ice-cold lysis buffer to each flask and harvest the 
cells with a cell scraper while keeping the flask on ice. Transfer 
the cell suspensions to preweighed 10-mL polypropylene 
conical tubes and pellet the cells by gentle centrifugation for 
5 min at 300 × g and 4°C.

 4. Discard the supernatant and weigh the cell pellets using a 
precision balance. Mix equal amounts of labeled and unla-
beled cells (w/w), add 1 mL of lysis buffer and process for 
subcellular fractionation (see Note 6).

 1. Homogenize the cells by passing them 15 times through a 
1-mL syringe with a 23 gauge needle and centrifuge for 
10 min at 4,000 × g and 4°C.

 2. Transfer the supernatant containing the microsomal (ER) 
fraction to a clean Eppendorf tube and further centrifuge at 
13,000 × g for 20 min and 4°C to obtain the microsomal 
pellet.

 3. Resuspend the pellet in a small volume of protein extraction 
buffer and vortex vigorously. Determine the protein concen-
tration of each sample using Bio-Rad protein assay reagent 
(Bio-Rad, Hercules, CA) and store samples at – 80°C until 
analysis.

 1. Take aliquots containing 100 mg of total protein from each 
time point sample and reduce the volume to about 75 mL 
each by vacuum centrifugation. Desalt samples using Bio-spin 
6 columns following the manufacturer’s instructions.

 2. Dry samples completely by vacuum centrifugation, then 
resuspend in 20 mL of Laemmli buffer with freshly added 
DTT (50 mM).

 3. Boil samples for 5 min at 95°C.
 4. Load samples and molecular weight marker into individual 

wells of a 10–20% Criterion Tris–HCl pre-cast gel. Run the 
gel with TGS buffer at 200 V (constant) until just after the 
dye front runs off the gel (45 min to 1 h).

 5. Remove the gel from the cassette and cover with fixing solu-
tion. Incubate for 30 min at room temperature with gentle 
agitation.

 6. Wash the gel three times for 5 min each in ddH2O with gentle 
agitation.

 7. Cover the gel with Bio-Safe Coomassie and stain for 1 h (this 
can be done at room temperature with gentle agitation, or 
overnight at 4°C).

 8. Cover the gel with ddH2O and destain for 1 h, replacing with 
clean water every 15 min.

3.3.2. ER Fractionation

3.4. Prefractionation  
of Proteins by 
SDS–PAGE
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 9. With a razor blade, slice the gel on either side of the lane 
containing each sample. Then make horizontal slices to pro-
duce 30–40 gel bands per lane (see Note 7).

 1. Wash gel slices twice by incubation in 50 mL of 50% ACN at 
room temperature, with vortexing, for 15 min each time.

 2. Remove the 50% ACN and add 50 mL of 100% ACN. Wait for 
the gel pieces to shrink and turn white (this will happen 
almost immediately; some blue color may remain from the 
Coomassie).

 3. Remove ACN and rehydrate gel pieces with 50 mL of 100 mM 
NH4HCO3.

 4. Incubate at room temperature for 5 min.
 5. Add 50 mL of 100% ACN (maintaining a 1:1 ratio with 

NH4HCO3).
 6. Incubate at room temperature for 15 min, with vortexing.
 7. Remove any liquids that did not absorb into the gel.
 8. Add 50 mL of 100% ACN and wait for the gel pieces to shrink 

and turn white.
 9. Remove all ACN.
 10. Rehydrate gel pieces with 10–20 mL of digestion buffer and 

incubate on ice for 45 min.
 11. Remove any excess digestion buffer.
 12. Add 5 mL of 50 mM NH4HCO3.
 13. Incubate overnight at 37°C (an incubator is preferable to a 

water bath).

 1. Spin down the tubes to collect any condensation.
 2. Add 25 mL of 25 mM NH4HCO3 and incubate at room tem-

perature for 15 min.
 3. Add 25 mL of 100% ACN and incubate for 15 min at room 

temperature, with vortexing.
 4. Recover and save the supernatant containing extracted 

peptides.
 5. Extract additional peptides from the gel piece by adding 

30 mL of buffer comprising 50% ACN, 5% FA.
 6. Incubate 10 min at room temperature, with vortexing.
 7. Pool supernatant with that from the same gel piece in step 4.
 8. Repeat steps 5–7.
 9. Dry supernatants by vacuum centrifugation.
 10. Resuspend peptides in 6 mL of 0.1% TFA in an autosampler 

vial, store at −80°C.

3.5. In-Gel Digestion

3.6. Peptide Extraction 
(see Note 8)



373Time Series Proteome Profiling

 1. Externally calibrate and tune the LTQ mass spectrometer 
using the manufacturer’s tune mixture and protocol.

 2. Load the sample vials onto the autosampler and inject 6 mL 
into the LC-MS system using the Dionex-LC-Packings 
autosampler and loading pump.

 3. Load peptide samples first onto a C18 trap connected in series 
with the C18 column and wash for 6 min using 0.1% TFA (A) 
before introducing them onto the C18 column.

 4. Desalted peptides are turned in-line to the gradient column 
and eluted using a 100 min linear gradient from 5 to 60% B.

 5. Introduce peptides to the mass spectrometer through a 
10-mm silica tip at 1.7 kV and the heated capillary set to 
160°C.

 6. Operate the LTQ mass spectrometer continuously during the 
chromatographic elution.

 7. Acquire a survey MS scan to determine the mass and intensity 
of eluting peptides.

 8. Acquire data dependent MS/MS scans for the top five most 
intense peptides in the survey scan, which will be used for 
protein identification searches.

 9. Acquire zoom scans (14 Da window) for each precursor mass 
to provide higher resolution data of the unlabeled and labeled 
peptide pairs for quantitation (non-zoom data on the LTQ is 
low resolution and not ideal for quantitation).

Unfortunately there is no universal software that can perform 
both identification and quantification of proteins generated by 
the different mass spectrometry instruments and the different 
proteomics strategies currently in use. In our study we used the 
SILAC strategy together with LC-MS/MS to generate raw data 
followed by analysis using a combination of Bioworks and 
ZoomQuant software for protein identification and quantifica-
tion (see Fig. 2).

 1. To streamline search time, use Bioworks software to index 
the Swiss-Prot database for proteins rising from the human 
species with fully enzymatic tryptic digestion and allowing up 
to two missed cleavages.

 2. Search the raw mass spectral data using the Sequest algorithm 
within Bioworks and the indexed database. Set the search 
parameters as follows: signal threshold ³ 1,000, peptide mass 
tolerance ± 1.5 Da, fragment ion tolerance ± 0.35 Da and dif-
ferential modifications of 15.99492 Da for Met oxidation, 
8.01420 Da for the 13C6, 

15N2-Lys isotope, 6.02040 Da for 
the 13C6-Arg isotope.

3.7. Mass 
Spectrometry Analysis

3.8. Protein 
Identification  
and Quantification
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 3. Download and install the ZoomQuant software (see Note 9). 
The ZoomQuant package has three components: RawBitZ, 
Epitwrapper, and the ZoomQuant application.

 4. Extract zoom scans by uploading the raw mass spectrometry 
data files to RawBitZ and saving the generated .zcn files in a 
new folder.

 5. Upload the corresponding Sequest search files to Epitwrapper 
to filter identified peptides based on X-corr (1.9 for z = 1, 2.5 
for z = 2, 3.5 for z = 3), initial rank (50), ion match (0.2) and 
TIC or signal to noise ³ 1,000. Save the new .colon files in the 
same folder as the zoom scan files from step 4.

 6. Upload corresponding .zcn and .colon files to the ZoomQuant 
application as well as the label shift profile configured for dif-
ferential SILAC labeling (this .lsp file will be found in the 
ZoomQuant program folder). The ZoomQuant application 
will generate a list of identified proteins with their corre-
sponding peptides and ratios of labeled to unlabeled peptide 
pairs. One can select a peptide to view the quality of the cor-
responding zoom scan and choose valid labeled and unlabeled 
pairs to include in the analysis. After viewing and selecting 
data, save the report as HTML and Excel files.

 7. Combine all Excel data files rising from one sample set (i.e., 
all the bands cut from one gel lane). Create a file that contains 
protein identifiers (e.g., accession number and/or name) in 

Fig. 2. Overall workflow used to identify and quantify protein ratios in this study.
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the first column and the corresponding peptide ratios in the 
second column. Use the sample name (e.g., the time point 
and ER stressor used) as the first cell in the second column. 
Discard any proteins that are not represented by two or more 
unique peptides. Save this as a .txt file for GeneSpring 
analysis.

 1. Upload the generated .txt peptide ratio list from each time 
point to GeneSpring using accession numbers as identifiers 
and peptide ratios as signal intensities.

 2. Use GeneSpring to normalize expression values for each time 
point by dividing individual peptide ratios by the median 
value of all ratios. This corrects for any unequal mixing of 
labeled and unlabeled cells that may have occurred before 
sample fractionation (see Note 11).

 3. The GeneSpring algorithm recognizes the number of peptides 
per protein as it would array probe sets mapping to one gene 
and will determine an average ratio for each protein using the 
peptide count and generate p- or z-score values that can be 
used to filter significant data from nonsignificant data.

 4. GeneSpring has several visualization options to facilitate data 
set comparison in a time series experiment. Set up the view 
depending on the type of display needed, filter for up and 
down-regulated proteins or show expression patterns for each 
single protein across different time points.

 1. It is recommended to download the most updated FASTA 
format protein database. The UniProt knowledgebase con-
sists of two sections: a section containing manually curated 
FASTA format protein sequences referred to as the “Swiss-
Prot database,” and a section with computationally analyzed 
records that await full manual annotation referred to as the 
“TrEMBL database.” Most proteomics users prefer the Swiss-
Prot database as opposed to the TrEMBL database since it 
contains a less redundant protein list.

 2. In our experience the use of 10% serum in the culture medium 
does not interfere with the incorporation of the exogenous 
stable isotope labeled amino acids and thus the conventional 
3 kDa cut off dialyzed serum is omitted. We found that the 
use of dialyzed serum is not adequate for primary cell cultures 
because it lacks several necessary low mass growth factors.

 3. For most cell lines, approximately 97% incorporation of the 
stable isotope labeled amino acids is achieved after five cell 

3.9. Data Normalization 
and Visualization 
(see Note 10)

4. Notes
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doublings. However, each cell line may behave differently 
and full labeling should be verified by mass spectrometry 
before the experiment proceeds. Usually, soluble proteins are 
extracted from an aliquot of cells by whole cell lysis and pre-
pared as described in Subheadings 3.4–3.7. A Sequest search 
for labeled and unlabeled peptides is performed to determine 
the level of isotope incorporation.

 4. Though twelve T-75 flasks of cells are needed for the final 
stage, it is wise to maintain additional flasks of labeled cells to 
be frozen down and stored for future use. Once the cells are 
fully labeled, they will remain so as long as they are always cul-
tured in labeled medium. Therefore, cells seeded from frozen 
stocks are “ready to use” and do not have to go through the 
extensive passaging required for the initial labeling process.

 5. Depending on the experiment and the subcellular organelle 
to be studied one can use alternate time points or drug doses. 
A pilot study should be performed to determine the optimal 
dose of ER stress agent to be used. In our experiments, the 
concentration of thapsigargin and tunicamycin were deter-
mined by using cell viability or cytotoxicity assays, such as the 
MTT assay (Promega) and/or LDH releasing assay (Sigma).

 6. Equal amounts of wet cell material are established in each 
tube by removing cells from the tube containing the higher 
amount with a fine spatula.

 7. Before cutting the gel, it is a good idea to scan an image of 
the gel. Then, as you cut the gel, number each band and mark 
their location on a print out of the image. This will allow you 
to match identified proteins with their approximate molecu-
lar weight on the gel. Also, dicing each band into smaller 
pieces before placing it into its corresponding numbered tube 
will increase the efficiency of tryptic digestion and peptide 
extraction in later steps.

 8. In-gel digestion and peptide extraction can be stopped at any 
time and samples kept at −20°C for up to a few days.

 9. There are only a few specialized software packages equipped 
to determine peptide ratios from a SILAC experiment. 
Unfortunately each instrument requires specific software. 
While software such as MaxQuant (7) and Census (8) are 
aimed at high resolution mass spectrometers (Sciex Qstar, 
Thermo LTQ-Orbitrap and Thermo LTQ-FTICR) fewer 
programs have been developed for low resolution mass spec-
trometers owing to the challenges in processing low resolu-
tion mass spectral data. For laboratories equipped with a low 
resolution LTQ there is an option to generate high resolution 
mass spectral data using the zoom scan capability and to ana-
lyze the data using ZoomQuant software (9). The zoom scan 
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events allow complete resolution of labeled and unlabeled 
peptide pairs, especially for triply and quadruply charged 
ions and thus facilitate intensity ratio measurements. All 
these software packages are publicly available and can be 
installed on any standard desktop PC. (Download MSQuant at 
http://msquant.sourceforge.net/, Census at http://fields.scripps.
edu/census/download.php?menu=6 and ZoomQuant at 
http://proteomics.mcw.edu/zoomquant). Detailed instructions 
are provided on how to install and run each of these programs.

 10. Software platforms for proteome profiling and data visualiza-
tion are still emerging. In the meantime, we used the mature 
GeneSpring analysis platform that was originally designed to 
process Affymetrix microarray data to help filter and visualize 
our time series proteomics data.

 11. Usually, mixing labeled and unlabeled cells 1:1 using a high 
precision balance is very accurate, but sometimes slight errors 
may occur and will result in the overall peptide ratios being 
skewed too high or too low. This can be corrected for using 
internal normalization by dividing the ratio of labeled and 
unlabeled peptide pairs in each experiment by the median 
value of all ratios generated in the experiment.
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