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BAYESIAN INFERENCE FOR GENE
EXPRESSION AND PROTEOMICS

The interdisciplinary nature of bioinformatics presents a research challenge
in integrating concepts, methods, software, and multiplatform data. Although
there have been rapid developments in new technology and an inundation of
statistical methodology and software for the analysis of microarray gene ex-
pression arrays, there exist few rigorous statistical methods for addressing other
types of high-throughput data, such as proteomic profiles that arise from mass
spectrometry experiments. This book discusses the development and appli-
cation of Bayesian methods in the analysis of high-throughput bioinformatics
data that arise from medical, in particular cancer, research, as well as molecular
and structural biology. The Bayesian approach has the advantage that evidence
can be easily and flexibly incorporated into statistical models.

A basic overview of the biological and technical principles behind multi-
platform high-throughput experimentation is followed by expert reviews of
Bayesian methodology, tools, and software for single group inference, group
comparisons, classification and clustering, motif discovery and regulatory net-
works, and Bayesian networks and gene interactions.
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focus in the development of methodology and software to analyze data produced
from high-throughput technologies.
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posterior simulation, nonparametric Bayesian inference, hierarchical models,
mixture models, and Bayesian decision problems.
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research focuses on the theory and practice of Bayesian variable selection
techniques and on the development of wavelet-based statistical models and
their applications. Her work is often motivated by real problems that need to
be addressed with suitable statistical methods.
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University of Texas M.D. Anderson Cancer Center

MARINA VANNUCCI
Texas A&M University

iii



P1: JZP

CUNY477-FM CUNY477-DoMueller 0 521 86092 X December 6, 2006 8:50

cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org
Information on this title: www.cambridge.org/9780521860925

C© Cambridge University Press 2006

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2006

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Bayesian inference for gene expression and proteomics /
edited by Kim-Anh Do, Peter Müller, Marina Vannucci.

p. cm.
Includes bibliographical references.

ISBN-13: 978-0-521-86092-5 (hardback)
ISBN-10: 0-521-86092-X (hardback)

1. Gene expression – Statistical methods. 2. Proteomics –
Statistical methods. I. Do, Kim-Anh, 1960– II. Müller, Peter, 1963–

III. Vannucci, Marina, 1966– IV. Title.
QH450.B39 2006

572.8′6501519542 – dc22 2006005635

ISBN-13 978-0-521-86092-5 hardback
ISBN-10 0-521-86092-X hardback

Cambridge University Press has no responsibility for
the persistence or accuracy of URLs for external or

third-party Internet Web sites referred to in this publication
and does not guarantee that any content on such

Web sites is, or will remain, accurate or appropriate.

iv



P1: JZP

CUNY477-FM CUNY477-DoMueller 0 521 86092 X December 6, 2006 8:50

Contents

List of Contributors page xi

Preface xv

1 An Introduction to High-Throughput Bioinformatics Data
Keith A. Baggerly, Kevin R. Coombes, and Jeffrey S. Morris 1
1.1 Introduction 1
1.2 Microarrays 2
1.3 SAGE 19
1.4 Mass Spectrometry 24
1.5 Finding Data 34

2 Hierarchical Mixture Models for Expression Profiles
Michael A. Newton, Ping Wang, and Christina Kendziorski 40
2.1 Introduction 40
2.2 Dual Character of Posterior Probabilities 43
2.3 Differential Expression as Independence 45
2.4 The Multigroup Mixture Model 47
2.5 Improving Flexibility 49

3 Bayesian Hierarchical Models for Inference in Microarray Data
Anne-Mette K. Hein, Alex Lewin, and Sylvia Richardson 53
3.1 Introduction 53
3.2 Bayesian Hierarchical Modeling of Probe Level GeneChip

Data 56
3.3 Bayesian Hierarchical Model for Normalization and

Differential Expression 67
3.4 Predictive Model Checking 70

v



P1: JZP

CUNY477-FM CUNY477-DoMueller 0 521 86092 X December 6, 2006 8:50

vi Contents

4 Bayesian Process-Based Modeling of Two-Channel Microarray
Experiments: Estimating Absolute mRNA Concentrations
Mark A. van de Wiel, Marit Holden, Ingrid K. Glad, Heidi Lyng,
and Arnoldo Frigessi 75
4.1 Introduction 75
4.2 The Hierarchical Model 78
4.3 Reparameterization and Identifiability 82
4.4 MCMC-Based Inference 84
4.5 Validation 85
4.6 Illustration 85
4.7 TransCount Web Site and Computing Times 91
4.8 A Statistical Discussion of the Model 91
4.9 Discussion 93

5 Identification of Biomarkers in Classification and Clustering
of High-Throughput Data
Mahlet G. Tadesse, Naijun Sha, Sinae Kim, and Marina Vannucci 97
5.1 Introduction 97
5.2 Bayesian Variable Selection in Linear Models 100
5.3 Bayesian Variable Selection in Classification 101
5.4 Bayesian Variable Selection in Clustering via Finite Mixture

Models 103
5.5 Bayesian Variable Selection in Clustering via Dirichlet

Process Mixture Models 106
5.6 Example: Leukemia Gene Expression Data 108
5.7 Conclusion 113

6 Modeling Nonlinear Gene Interactions Using Bayesian MARS
Veerabhadran Baladandayuthapani, Chris C. Holmes,
Bani K. Mallick, and Raymond J. Carroll 116
6.1 Introduction 116
6.2 Bayesian MARS Model for Gene Interaction 118
6.3 Computation 121
6.4 Prediction and Model Choice 122
6.5 Examples 123
6.6 Discussion and Summary 131

7 Models for Probability of Under- and Overexpression:
The POE Scale
Elizabeth Garrett-Mayer and Robert Scharpf 137
7.1 POE: A Latent Variable Mixture Model 137
7.2 The POE Model 138
7.3 Unsupervised versus Semisupervised POE 144



P1: JZP

CUNY477-FM CUNY477-DoMueller 0 521 86092 X December 6, 2006 8:50

Contents vii

7.4 Using POE Scale 145
7.5 Example: POE as Applied to Lung Cancer Microarray Data 148
7.6 Discussion 152

8 Sparse Statistical Modelling in Gene Expression Genomics
Joseph Lucas, Carlos Carvalho, Quanli Wang, Andrea Bild,
Joseph R. Nevins, and Mike West 155

8.1 Perspective 156
8.2 Sparse Regression Modelling 157
8.3 Sparse Regression for Artifact Correction with Affymetrix

Expression Arrays 162
8.4 Sparse Latent Factor Models and Latent Factor Regressions 167
8.5 Concluding Comments 173

9 Bayesian Analysis of Cell Cycle Gene Expression Data
Chuan Zhou, Jon C. Wakefield, and Linda L. Breeden 177

9.1 Introduction 177
9.2 Previous Studies 178
9.3 Data 180
9.4 Bayesian Analysis of Cell Cycle Data 182
9.5 Discussion 197

10 Model-Based Clustering for Expression Data via a Dirichlet
Process Mixture Model
David B. Dahl 201
10.1 Introduction 201
10.2 Model 203
10.3 Inference 208
10.4 Simulation Study 209
10.5 Example 212
10.6 Conclusion 216

11 Interval Mapping for Expression Quantitative Trait Loci
Meng Chen and Christina Kendziorski 219
11.1 Introduction 219
11.2 eQTL Mapping Experiments 221
11.3 QTL Mapping Methods 222
11.4 Currently Available eQTL Mapping Methods 223
11.5 MOM Interval Mapping 225
11.6 Discussion 231

12 Bayesian Mixture Models for Gene Expression and Protein Profiles
Michele Guindani, Kim-Anh Do, Peter Müller,
and Jeffrey S. Morris 238
12.1 Introduction 238



P1: JZP

CUNY477-FM CUNY477-DoMueller 0 521 86092 X December 6, 2006 8:50

viii Contents

12.2 A Nonparametric Bayesian Model for Differential Gene
Expression 240

12.3 A Mixture of Beta Model for MALDI-TOF Data 243
12.4 A Semiparametric Mixture Model for SAGE Data 247
12.5 Summary 250

13 Shrinkage Estimation for SAGE Data Using a Mixture Dirichlet
Prior
Jeffrey S. Morris, Keith A. Baggerly, and Kevin R. Coombes 254
13.1 Introduction 254
13.2 Overview of SAGE 255
13.3 Methods for Estimating Relative Abundances 257
13.4 Mixture Dirichlet Distribution 260
13.5 Implementation Details 263
13.6 Simulation Study 264
13.7 Conclusion 267

14 Analysis of Mass Spectrometry Data Using Bayesian
Wavelet-Based Functional Mixed Models
Jeffrey S. Morris, Philip J. Brown, Keith A. Baggerly,
and Kevin R. Coombes 269
14.1 Introduction 270
14.2 Overview of MALDI-TOF 270
14.3 Functional Mixed Models 274
14.4 Wavelet-Based Functional Mixed Models 276
14.5 Analyzing Mass Spectrometry Data Using Wavelet-Based

Functional Mixed Models 280
14.6 Conclusion 288

15 Nonparametric Models for Proteomic Peak Identification
and Quantification
Merlise A. Clyde, Leanna L. House, and Robert L. Wolpert 293
15.1 Introduction 293
15.2 Kernel Models for Spectra 294
15.3 Prior Distributions 296
15.4 Likelihood 301
15.5 Posterior Inference 302
15.6 Illustration 303
15.7 Summary 305

16 Bayesian Modeling and Inference for Sequence Motif Discovery
Mayetri Gupta and Jun S. Liu 309
16.1 Introduction 309
16.2 Biology of Transcription Regulation 311



P1: JZP

CUNY477-FM CUNY477-DoMueller 0 521 86092 X December 6, 2006 8:50

Contents ix

16.3 Problem Formulation, Background, and General Strategies 312
16.4 A Bayesian Approach to Motif Discovery 316
16.5 Extensions of the Product-Multinomial Motif Model 320
16.6 HMM-Type Models for Regulatory Modules 321
16.7 Model Selection through a Bayesian Approach 327
16.8 Discussion: Motif Discovery Beyond Sequence Analysis 329

17 Identification of DNA Regulatory Motifs and Regulators
by Integrating Gene Expression and Sequence Data
Deukwoo Kwon, Sinae Kim, David B. Dahl, Michael Swartz,
Mahlet G. Tadesse, and Marina Vannucci 333
17.1 Introduction 333
17.2 Integrating Gene Expression and Sequence Data 335
17.3 A Model for the Identification of Regulatory Motifs 337
17.4 Identification of Regulatory Motifs and Regulators 340
17.5 Conclusion 344

18 A Misclassification Model for Inferring Transcriptional
Regulatory Networks
Ning Sun and Hongyu Zhao 347
18.1 Introduction 347
18.2 Methods 348
18.3 Simulation Results 355
18.4 Application to Yeast Cell Cycle Data 360
18.5 Discussion 361

19 Estimating Cellular Signaling from Transcription Data
Andrew V. Kossenkov, Ghislain Bidaut, and Michael F. Ochs 366
19.1 Introduction 366
19.2 Bayesian Decomposition 370
19.3 Key Biological Databases 373
19.4 Example: Signaling Activity in Saccharomyces cerevisiae 376
19.5 Conclusion 380

20 Computational Methods for Learning Bayesian Networks
from High-Throughput Biological Data
Bradley M. Broom and Devika Subramanian 385
20.1 Introduction 385
20.2 Bayesian Networks 387
20.3 Learning Bayesian Networks 389
20.4 Algorithms for Learning Bayesian Networks 391
20.5 Example: Learning Robust Features from Data 395
20.6 Conclusion 398



P1: JZP

CUNY477-FM CUNY477-DoMueller 0 521 86092 X December 6, 2006 8:50

x Contents

21 Bayesian Networks and Informative Priors: Transcriptional
Regulatory Network Models
Alexander J. Hartemink 401
21.1 Introduction 401
21.2 Bayesian Networks and Bayesian Network Inference 403
21.3 Adding Informative Structure Priors 407
21.4 Applications of Informative Structure Priors 409
21.5 Adding Informative Parameter Priors 418
21.6 Discussion 419
21.7 Availability of Papers and Banjo Software 421
21.8 Acknowledgments 421

22 Sample Size Choice for Microarray Experiments
Peter Müller, Christian Robert, and Judith Rousseau 425
22.1 Introduction 425
22.2 Optimal Sample Size as a Decision Problem 428
22.3 Monte Carlo Evaluation of Predictive Power 431
22.4 The Probability Model 432
22.5 Pilot Data 435
22.6 Example 435
22.7 Conclusion 436



P1: JZP

CUNY477-FM CUNY477-DoMueller 0 521 86092 X December 6, 2006 8:50

Contributors

Keith A. Baggerly, Department of Biostatistics & Applied Mathematics, Uni-
versity of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston,
TX 77030-4075

Veerabhadran Baladandayuthapani, Department of Biostatistics & Applied
Mathematics, University of Texas M.D. Anderson Cancer Center, 1515 Hol-
combe Blvd., Houston, TX 77030-4075

Ghislain Bidaut, Department of Genetics, The University of Pennsylvania
School of Medicine, 1423 Blockley Hall, 423 Guardian Drive, Philadelphia,
PA 19104-6021

Andrea Bild, Institute for Genome Sciences and Policy, Duke University,
Durham, NC 27710

Linda L. Breeden, Fred Hutchinson Cancer Research Center, 1100 Fairview
Ave. N., Mailstop A2-168, P.O. Box 19024, Seattle, WA 98109-1024

Bradley M. Broom, Department of Biostatistics & Applied Mathematics, Uni-
versity of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston,
TX 77030-4075

Philip J. Brown, Institute of Mathematics, Statistics and Actuarial Science,
Room E218, Cornwallis Building, University of Kent, Canterbury, Kent CT2
7NF, UK

Raymond J. Carroll, Department of Statistics, Texas A&M University, 3143
TAMU, College Station, TX 77843-3143

Carlos Carvalho, Institute of Statistics and Decision Sciences, Box 90251, Duke
University, Durham, NC 27708-0251

Meng Chen, Department of Statistics, The University of Wisconsin-
Madison, 1220 Medical Sciences Center, 1300 University Ave., Madison,
WI 53703

Merlise A. Clyde, Institute of Statistics and Decision Sciences, Box 90251,
Duke University, Durham, NC 27708-0251

xi



P1: JZP

CUNY477-FM CUNY477-DoMueller 0 521 86092 X December 6, 2006 8:50

xii Contributors

Kevin R. Coombes, Department of Biostatistics & Applied Mathematics, Uni-
versity of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston,
TX 77030-4075

David B. Dahl, Department of Statistics, Texas A&M University, 3143 TAMU,
College Station, TX 77843-3143

Kim-Anh Do, Department of Biostatistics & Applied Mathematics, University
of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX
77030-4075

Arnoldo Frigessi, Department of Biostatistics, University of Oslo, P.O. Box
1122, Blindern, 0317 Oslo, Norway

Elizabeth Garrett-Mayer, Johns Hopkins Kimmel Cancer Center, Johns Hopkins
University, Suite 1103, 550 N. Broadway, Baltimore, MD 21205

Ingrid K. Glad, Department of Mathematics, University of Oslo, P.O. Box 1053,
Blindern, 0316 Oslo, Norway

Michele Guindani, Department of Biostatistics & Applied Mathematics, Uni-
versity of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston,
TX 77030-4075

Mayetri Gupta, Department of Biostatistics, University of North Carolina at
Chapel Hill, McGavran, Greenberg Hall B CB#7420, Chapel Hill, NC 27599-
7420

Alexander J. Hartemink, Department of Computer Science, Duke University,
Box 90129, Durham, NC 27708-0129

Anne-Mette K. Hein, Department of Epidemiology and Public Health, Imperial
School of Medicine, St. Mary’s Campus, Norfolk Place, London W2 1PG, UK

Marit Holden, Norwegian Computing Center, P.O. Box 114, Blindern, 0314
Oslo, Norway

Chris C. Holmes, Department of Statistics, University of Oxford, 1 South Parks
Road, Oxford OX1 3TG, UK

Leanna L. House, Institute of Statistics and Decision Sciences, Box 90251,
Duke University, Durham, NC 27708-0251

Christina Kendziorski, Department of Biostatistics and Medical Informatics,
6785 Medical Sciences Center, 1300 University Ave., Madison, WI 53703

Sinae Kim, Department of Biostatistics, School of Public Health, University of
Michigan, 1420 Washington Heights, Ann Arbor, MI 48109-2029

Andrew V. Kossenkov, Division of Population Science, Fox Chase Cancer
Center, 333 Cottman Ave., Philadelphia, PA 19111-2497

Deukwoo Kwon, Radiation Epidemiology Branch, National Cancer Institute,
6120 Executive Blvd, MSC 7238, Executive Plaza South, Room 7045, Bethesda,
MD 20892-7238



P1: JZP

CUNY477-FM CUNY477-DoMueller 0 521 86092 X December 6, 2006 8:50

Contributors xiii

Alex Lewin, Department of Epidemiology and Public Health, Imperial School
of Medicine, St. Mary’s Campus, Norfolk Place, London W2 1PG, UK

Jun S. Liu, Statistics Department, Harvard University, Science Center, One
Oxford Street, Cambridge, MA 02138-2901

Joseph Lucas, Institute of Statistics and Decision Sciences, Box 90251, Duke
University, Durham, NC 27708-0251

Heidi Lyng, Department of Biophysics, The Norwegian Radium Hospital, Mon-
tebello, 0310 Oslo, Norway

Bani K. Mallick, Department of Statistics, Texas A&M University, 3143 TAMU,
College Station, TX 77843-3143

Jeffrey S. Morris, Department of Biostatistics & Applied Mathematics, Univer-
sity of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston,
TX 77030-4075

Peter Müller, Department of Biostatistics & Applied Mathematics, University
of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX
77030-4075

Michael A. Newton, Department of Statistics, University of Wisconsin-
Madison, Medical Sciences Center, RM 1245A, 1300 University Ave., Madison,
WI 53706-1532

Joseph R. Nevins, Institute for Genome Sciences and Policy, Duke University,
Durham, NC 27710

Michael F. Ochs, Division of Population Science, Fox Chase Cancer Center,
333 Cottman Ave., Philadelphia, PA 19111-2497

Sylvia Richardson, Department of Epidemiology and Public Health, Imperial
School of Medicine, St. Mary’s Campus, Norfolk Place, London W2 1PG, UK

Christian Robert, Ceremade – Université Paris-Dauphine, Bureau C638, Place
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Preface

Recent rapid technical advances in genome sequencing (genomics) and pro-
tein identification (proteomics) have given rise to research problems that re-
quire combined expertise from statistics, biology, computer science, and other
fields. The interdisciplinary nature of bioinformatics presents many research
challenges related to integrating concepts, methods, software, and multiplat-
form data. In addition to new tools for investigating biological systems via
high-throughput genomic and proteomic measurements, statisticians face many
novel methodological research questions generated by such data. The work in
this book is dedicated to the development and application of Bayesian statistical
methods in the analysis of high-throughput bioinformatics data that arise from
problems in medical research, in particular cancer research, and molecular and
structural biology. This book does not aim to be comprehensive in all areas
of bioinformatics. Rather, it presents a broad overview of statistical inference
problems related to three main high-throughput platforms: microarray gene
expression, serial analysis gene expression (SAGE), and mass spectrometry
proteomic profiles. The book’s main focus is on the design, statistical infer-
ence, and data analysis, from a Bayesian perspective, of data sets arising from
such high-throughput experiments.

Chapter 1 provides a detailed introduction to the three main data platforms
and sets the scene for subsequent methodology chapters. This chapter is mainly
aimed at nonbiologists and covers elementary biological concepts, details the
unique measurement technology with associated idiosyncrasies for the different
platforms, and generates an overall outline of issues that statistical methodology
can address.

Subsequent chapters focus on specific methodology developments and are
grouped approximately by the main bioinformatics platform, with several chap-
ters discussing the integration of at least two platforms. The central statistical
topics addressed include experimental design, single group inference, group
comparisons, classification and clustering, motif discovery and regulatory net-
works, and Bayesian networks and gene interactions. The general theme of each

xv
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chapter is to review existing methods, followed by a specific novel method de-
veloped by the author(s). Results are often demonstrated on simulated data
and/or a real application data set. Additionally, relevant software may be
discussed.

Chapters 2 through 11 are concerned with Bayesian inference for gene ex-
pression, focusing on microarray data. Chapter 2 discusses inference about
differential expression based on hierarchical mixture models, including a dis-
cussion of more than two patterns of differential expression. Inference is based
on conjugate parametric models, with empirical Bayes estimation of hyperpa-
rameters. Chapter 3 explores the use of Bayesian hierarchical models for an
integrated approach to the analysis of microarray data that includes flexible
model-based normalization. The chapter defines a Bayesian gene expression
(BGE) index as a gene-specific mean parameter in a hierarchical model. In
Chapter 4, a model that mimics the detailed experimental process, from gene
preparation to image analysis, is developed. The detailed process-based model
allows to estimate absolute and relative mRNA concentrations. The use of
Bayesian variable selection methods for biomarker selection in classification
and clustering problems is reviewed in Chapter 5. The model for classification
includes a mixture prior that specifies a positive probability of a given gene not
being included in the model. In the clustering setting, the group structure of the
data is uncovered by specifying mixture models where the random inclusion of
genes can be interpreted as an attribute selection. Chapter 6 applies multivariate
adaptive regression splines (MARS) to define a flexible model for the relation-
ship between gene expression and disease status. For a binary classification
problem the MARS model is defined on the logistic transformation of the class
probability. The resulting classification boundaries are highly nonlinear and
account for gene interactions. Chapter 7 reviews the popular probability of
expression (POE) model for differential gene expression. The model postulates
a mixture of a uniform submodel for under- and overexpression, and a central
normal for typical expression. Posterior probabilities of mixture indicators in
this model define the POE scale. Chapter 8 explores the use of sparsity priors
in multivariate regression and latent factor regression, applied to inference for
gene expression. The sparsity prior is a variation of a mixture prior on regres-
sion coefficients, with a positive point mass at zero- and a second-level mixture
allowing for gene- and covariate-specific relative weights in the mixture. Chap-
ter 9 develops a model for cell cycle gene expression, using a first-order Fourier
model. The set of all genes is partitioned into subsets of different frequency
and time-dependent amplitude, including a zero class of not-cycle-dependent
genes. The prior on the random partitioning is defined as a Dirichlet distribu-
tion for cluster membership indicators. Chapter 10 defines a semiparametric
Bayesian model for gene expression. The model exploits the clustering that
is implicitly defined by the Dirichlet process prior to define subsets of genes
based on gene-specific mean and sampling precision. Chapter 11 reviews the



P1: JZP

CUNY477-FM CUNY477-DoMueller 0 521 86092 X December 6, 2006 8:50

Preface xvii

expression quantitative trait (eQTL) mapping problem and commonly used
approaches. A new method is proposed to facilitate eQTL interval mapping
that can account for multiplicities across transcripts. The problem is to match
microarray gene expression (phenotype) with a set of genetic markers (genetic
map). The mixture over markers (MOM) model defines a mixture model for
gene expression, with the mixture being defined over submodels corresponding
to the transcript mapping to one of the considered markers. An extension to
interval mapping is discussed.

Chapters 12 through 15 discuss statistical inference for protein spectrometry.
Chapter 12 reviews the use of semiparametric mixture models for inference on
differential gene expression, for protein mass/charge spectra, and for SAGE
data. The underlying models are Dirichlet process mixtures of normals, mix-
tures of beta kernels, and Dirichlet process mixtures of Poissons, respectively.
Specific focus on SAGE data alone is detailed in Chapter 13, highlighting the
two main characteristics of such data: skewness in the distribution of relative
abundances, and small sample size relative to the dimension. A new Bayesian
procedure based on the mixture Dirichlet prior is reviewed and specific
properties depicted in terms of efficiency advantages over existing methods.
Chapters 14 and 15 present two different Bayesian approaches of analyz-
ing MALDI-TOF mass spectrometry. Chapter 14 generalizes the linear mixed
model to the case of functional data by using a wavelet-based functional mixed
model. In contrast, Chapter 15 presents model-based inference by focusing on
nonparametric Bayesian models; a sum of kernel functions is chosen as basis
functions for modeling spectral peaks.

Chapters 16 through 21 review motif discovery and regulatory networks.
During the process of gene transcription, proteins (transcription factors) in-
teract with control points of DNA sequences known as cis-acting regulatory
sequences, called motifs. Chapter 16 focuses on the problem of locating these
short sequence patterns in the DNA. The chapter provides an extensive expla-
nation of the biological background and then describes a Bayesian framework
for gene regulatory binding site discovery. Alternative models are also re-
viewed. Recent efforts in the development of methods that aid the detection
of transcription factor binding sites have attempted to integrate sequence data
with gene expression. In Chapter 17 the authors describe a regression model
and a Bayesian variable selection formulation that helps refine the search for
candidate motifs by selecting those that correlate with the gene expression.
The authors also propose a model extension that includes gene regulators.
Data integration is also the focus of Chapter 18, where gene expression and
protein–DNA binding information, obtained from ChIP-Chip data, are inte-
grated via a linear classification model to aid the reconstruction of gene regu-
latory networks. Chapter 19 deals with models that exploit the links between
transcription factors and signaling pathways via gene ontologies and annotation
databases. Bayesian decomposition models allow the extraction of overlapping
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transcriptional signatures. Popular approaches to infer gene regulatory net-
works are those that utilize probabilistic network models. Bayesian networks,
in particular, have received much attention. Chapter 20 provides an exten-
sive survey of computational techniques for learning Bayesian networks from
gene expression data. State-of-the art and open questions are also addressed.
Chapter 21 discusses the developments of Bayesian networks and dynamic
networks. Additional data are used to derive informative prior structures,
in particular combining gene expression data with protein–DNA binding
information.

The final chapter, Chapter 22, addresses the choice of the sample size for
microarray experiments. The authors take a decision theory point of view that
attempts to minimize a conditional expected loss. The method is exemplified
using a mixture Gamma/Gamma model.

We thank our friends and collaborators for contributing their ideas and in-
sights toward this collection. We are excited by the continuing opportunities
for statistical challenges in the area of high-throughput bioinformatics data. We
hope our readers will join us in being engaged with changing technologies and
statistical development.

Kim-Anh Do
Peter Müller
Marina Vannucci
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A Cy3 spot
Cy3 spot: Side view

Plate 1.6. Zoom on a single Cy3 spot. The ring shape is visible, indicating uneven
hybridization. Further, the side view shows that readings outside the spot are not at zero
intensity.

1
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Plate 1.7. Steps in the preparation of a SAGE library. (A) Extract mRNA. (B) Add
a biotin-labeled primer. (C) Synthesize cDNA. (D) Cleave with an anchoring enzyme
(AE). (E) Discard loose segments. (F) Split cDNA into two pools, and introduce a
linker for each. (G) Ligate linker to bound cDNA fragments. (H) Cleave the product
with a tagging enzyme, and discard the bound parts. In addition to the linker, the piece
remaining contains a 10-base “tag” that can be used to identify the initial mRNA. (I)
Ligate the fragments, and use PCR starting from the primers attached to the linkers to
amplify. (J) Cleave with the AE again, and discard the pieces bound to the linker. The
remaining fragments contain pairs of tags, or “ditags,” bracketed by the motif recognized
by the AE. (K) Ligate the ditags and sequence the product.

2
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Plate 8.2. First (a) and second (b) principal components in the expression levels across
oncogene experiment observations of the set of normalisation control and housekeeping
probe sets. The black symbols represent samples in the two control groups (10 initial
control samples as open black circles, and 5 later control samples as filled black circles)
that were assayed several months apart; the nine oncogene intervention groups are then
color-coded for presentation. Frame (c) displays an image intensity plot of the first eight
principal components across samples. Frame (d) displays the (centered) expression levels
of gene PEA-15 (PED) plotted across samples (circles); superimposed (as crosses) are
the (centered) fitted values from the sparse ANOVA/regression model with normalisation
control factors.
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Plate 8.3. Frame (a) displays expression levels of gene PEA-15 (PED) across sam-
ples; the horizontal lines superimposed represent the estimated levels of expression
within each of the groups in the analysis that ignores the normalisation control factors.
Frame (b) displays corrected expression levels from the sparse regression analysis using
the control factors; the fitted effects of the control components have been subtracted
from the samples displayed, and the horizontal lines superimposed represent the fitted
parameters/levels for the intervention effects on expression within each group.
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(a) (b)

Plate 8.5. Frame (a) is a scatter plot of the fitted values of 2 of the 14 latent factors –
factor 1, the “HER2 factor,” and factor 2, the primary “ER factor” – in the breast cancer
example. The colour coding indicates IHC assay ER+ tumours (red), ER− cases (blue),
and intermediate/indeterminate cases (cyan). The plot is concordant with the known
association between HER2 and ER; HER2 overexpression generally occurs much more
frequently in ER− tumours at a rate of about 30–40%. Frame (b) displays the fitted
probabilities from the probit regression model linked to the latent factors as predictors
of the IHC binary measures of ER and PR positivity, with colour coding as in frame (a).
The positive correlation of ER and PR is evident in these factor-based probabilities, as
is the discriminatory role of the estimated factors.
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Plate 9.9. Final partitioning with K = 16 fixed (note different vertical scales).
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Plate 12.1. Hypothetical distribution of difference scores for nondifferentially expressed
(left, f0) and differentially expressed genes (center, f1), and the observed mixture (right,
f ).
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Plate 14.4. Peak detection. Posterior mean for the overall mean spectrum, β0(t), with
detected peaks indicated by the dots. A peak is defined to be a location for which its
first difference and the first difference immediately preceding it are positive, and the
first differences for the two locations immediately following it are negative.
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(a) Laser Effect, Peaks 3412.6 and 3496.6
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(c) Laser Effect, Peak 11721.0
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(d) Group Mean Curves, Peak 11721.0

Overall Mean
Low Laser Intensity
High Laser Intensity

Overall Mean
Low Laser Intensity
High Laser Intensity

Plate 14.7. Laser intensity effect. Posterior mean laser intensity effect near peaks of
interest at (a) 3412.6 and 3496.6 and (c) 11721, along with 95% pointwise posterior
credible bands. The red dots indicate the locations of peaks detected in the fitted mean
spectrum. Panels (b) and (d) contain the corresponding fitted posterior mean curves for
the overall mean and the laser intensity-specific mean spectra in the same two regions.
Note that the nonparametrically estimated laser intensity effects are able to adjust for
both shifts in location (x-axis, see (a) and (b)), and shifts in intensity (y-axis, see (c) and
(d)).
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MotifGene expression
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Plate 17.1. Graphical representation of the methodology of Tadesse et al. [21]: Expres-
sion levels are regressed on a large list of candidate motif scores. Bayesian variable
selection methods are used to locate sets of motifs that best predict changes in gene
expression.
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the 15 experiments under consideration.
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increased from 5 to 20. The thickness of the connecting line indicates the correlation coefficient (thicker is closer to
1), while the numbers in each node are merely used for linking patterns in the p matrix to genes in the f matrix.
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Plate 21.1. Bayesian network models learned by model averaging over the 500 highest-
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and hard informative prior, respectively. Edges are included in the figure if and only if
their posterior probability exceeds 0.5. Node and edge color descriptions are included
in the text.
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An Introduction to High-Throughput
Bioinformatics Data

KEITH A. BAGGERLY, KEVIN R. COOMBES,
AND JEFFREY S. MORRIS

University of Texas M.D. Anderson Cancer Center

Abstract

High throughput biological assays supply thousands of measurements per sam-
ple, and the sheer amount of related data increases the need for better models
to enhance inference. Such models, however, are more effective if they take
into account the idiosyncracies associated with the specific methods of mea-
surement: where the numbers come from. We illustrate this point by describing
three different measurement platforms: microarrays, serial analysis of gene
expression (SAGE), and proteomic mass spectrometry.

1.1 Introduction

In our view, high-throughput biological experiments involve three phases: ex-
perimental design, measurement and preprocessing, and postprocessing. These
phases are otherwise known as deciding what you want to measure, getting
the right numbers and assembling them in a matrix, and mining the matrix for
information. Of these, it is primarily the middle step that is unique to the par-
ticular measurement technology employed, and it is there that we shall focus
our attention. This is not meant to imply that the other steps are less important!
It is still a truism that the best analysis may not be able to save you if your
experimental design is poor.

We simply wish to emphasize that each type of data has its own quirks
associated with the methods of measurement, and understanding these quirks
allows us to craft ever more sophisticated probability models to improve our
analyses. These probability models should ideally also let us exploit information
across measurements made in parallel, and across samples. Crafting these
models leads to the development of brand-new statistical methods, many of
which are discussed in this volume.
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In this chapter, we address the importance of measurement-specific method-
ology by discussing several approaches in detail. We cannot be all-inclusive,
so we shall focus on three. First, we discuss microarrays, which are perhaps
the most common high-throughput assays in use today. The common variants
of Affymetrix Gene Chips and spotted cDNA arrays are discussed separately.
Second, we discuss serial analysis of gene expression (SAGE). As with mi-
croarrays, SAGE makes measurements at the mRNA level, and thus provides a
picture of the expression profile of a set of cells, but the mechanics are different
and the data may give us a different way of looking at the biology. Third, we
discuss the use of mass spectrometry for profiling the proteomic complement
of a set of cells.

Our goal in this chapter is not to provide detailed analysis methods, but rather
to place the numbers we work with in context.

1.2 Microarrays

Microarrays let us measure expression levels for thousands of genes in a single
sample all at once. Such high-throughput assays allow us to ask novel biological
questions, and require new methods for data analysis.

In thinking about the biological context of a microarray, we start with our
underlying genomic structure [4]. Your genome consists of pairs of DNA
molecules (chromosomes) held together by complementary nucleotide base
pairs (in total, about 3 × 109 base pairs). The structure of DNA provides an
explanation for heredity, by copying individual strands and maintaining com-
plementarity.

All of your cells contain the same genetic information, but your skin cells
are different from liver cells or kidney cells or brain cells. These differences
come about because different genes are expressed at high levels in different
tissues. So, how are genes “expressed”?

The “central dogma” of molecular biology asserts that “DNA makes RNA
makes protein.” In order to direct actions within the cell, parts of the DNA will
uncoil and partially decouple to expose the piece of the single strand of DNA
on which a given gene resides. Within the nucleus, a complementary copy of
the gene sequence (not the entire chromosome) is assembled out of RNA. This
process of RNA synthesis is called transcription: copying the message. The
initial DNA sequence containing a gene may also contain bits of sequence that
will not be used – one feature of gene structure is that genes can have both
“coding” regions (exons) and “noncoding” regions (introns). After the initial
RNA copy of the gene is made, processing within the nucleus removes the
introns and “splices” the remaining pieces together into the final messenger
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RNA (mRNA) that will be sent out to the rest of the cell. Once the mRNA
leaves the nucleus, the external machinery (ribosomes) will read the code and
assemble proteins out of corresponding sequences of amino acids. This process
of assembling proteins from mRNA is called translation: mapping from one
type of sequence (nucleotides) to another (amino acids). The proteins then fold
into 3d configurations that in large part drive their final function. If different
genes are copied into RNA (expressed) in different cells, different proteins
will be produced and different types of cells will emerge. Microarrays measure
mRNA expression.

In thinking about the informational content of these various stages for un-
derstanding cellular function, we need to know different things. For DNA, we
need to know sequence. For mRNA, we need both sequence and abundance;
many copies can be made of a single gene. Gene expression typically refers
to the number of mRNA copies of that gene. For protein, we need sequence,
abundance, and shape (the 3d configuration).

If we could count the number of mRNA molecules from each gene in a
single cell at a particular time, we could assemble a barchart linking each
gene with its expression level. But how do we make these measurements? As
suggested, we exploit complementarity: sequences of DNA or RNA containing
complementary base pairs have a natural tendency to bind together:

...AAAAAGCTAGTCGATGCTAG...

...TTTTTCGATCAGCTACGATC...

If we know the mRNA sequence (which we typically do these days, since we
can look it up in a database), we can build a probe for it using the complementary
sequence. By printing the probe at a specific spot on the array, the probe location
tells us the identity of the gene being measured.

There are two common variants of microarrays:

• Oligonucleotide (oligo) arrays, where short subsequences of the gene are
deposited on a silicon wafer using photolithography (primarily Affymetrix).

• Full-length (entire gene) arrays, where probes are spotted onto a glass slide
using a robotic arrayer. These generally involve two samples run at the same
time with different labels.

1.2.1 Affymetrix Gene Chips

In looking at the structure of Affymetrix data, there are several in-depth re-
sources [2, 3, 39] that serve as major sources for what follows, including the
company’s Web site, www.affymetrix.com.
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In general, genes will be hundreds or thousands of bases in length, and the
probes are shorter by an order of magnitude. This is driven in part by the
manufacturing process, as the cost of synthesis increases with the number of
bases deposited. Thus, choosing probes to print requires finding sequences that
will be unique to the gene of interest (for specific binding) while still being
short enough to be affordable. The final length decided on was 25 bases, and all
Affymetrix probes are this length. It is important to note that different probes for
the same gene have different binding affinities, and these affinities are unknown
a priori. Thus, it’s difficult to tell whether “gene A beats gene B,” as opposed
to “there’s more gene A here than there.” Microarrays only produce relative
measurements of gene expression.

Given that the affinities are unknown, we can guard against problems with
any specific probe by using several different probes for each gene. The optimal
number of probes is not clear. Subsequent generations of Affymetrix chips have
used 20 (e.g., HuGeneFL, aka Hu6800), 16 (U95 series), and 11 (U133 series)
probes. There are some further difficulties with choosing probes:

• Some genes are short, so multiple subsequences will overlap.
• Genes have an orientation, and RNA degradation begins preferentially at one

end (3’ bias).
• The gene may not be what we think it is, as our databases are still evolving.
• Probes can “cross-hybridize,” binding the wrong targets.

Overlapping, we can live with. Orientation can be addressed by choosing the
probes to be more tightly concentrated at one end. Database evolution we
simply cannot do anything about. Cross-hybridization, however, we may be
able to address more explicitly.

Affymetrix tries to control for cross-hybridization by pairing probes that
should work with probes that should not. These are known as the Perfect Match
(PM) and Mismatch (MM) probes, and constitute “probe pairs.” The PM probe
is perfectly complementary to the sequence of interest. The MM probe is the
same as the PM probe for all bases except the middle one (position 13), where
the PM base is replaced by its Watson–Crick complement.

PM : GCTAGTCGATGCTAGCTTACTAGTC
MM : GCTAGTCGATGCAAGCTTACTAGTC

Ideally, the MM value can be used as a rough assessment of the amount of
cross-hybridization associated with a given PM probe.

Affymetrix groups probe pairs associated with a given gene into “probe sets”;
a given gene would be represented on a U133A chip by a probe set containing
11 probe pairs, or 22 probes with distinct sequences. The probes within a probe
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set are ordered according to the position of the specific PM sequence within
the gene itself. We have described the ideal case above, but in practice the
correspondence between genes and probe sets is not 1-to-1, so some genes are
represented by several probe sets.

Having printed the probes, we now need to attach the target mRNA in such
a way that we can measure the amounts bound. When we extract mRNA
from a sample of cells, we do not measure this mRNA directly. Rather, we
make copies. Copies are produced of the complementary sequence out of RNA
(cRNA). Some of the nucleotides used to assemble these copies have been
modified to incorporate a small molecule called biotin. Biotin has a strong
affinity for another molecule called streptavadin; their binding affinity is the
strongest known noncovalent biological interaction. After the biotin-labeled
cRNA molecules are hybridized to the array, they are stained with a conjugate of
streptavadin and phycoerythrin; phycoerythrin is one of the brightest available
fluorescent dyes. The final complex of printed probe, biotinylated target, and
streptavadin-phycoerythrin indirect label is then scanned, producing an image
file. For our purposes, this image constitutes bedrock: The image is the data.

All Affymetrix Gene Chips are scanned in an Affymetrix scanner, and the
initial quantification of features is performed using Affymetrix software. The
software involves numerous files. The file types are

[EXP] Contains basic information about the experiment
[DAT] Contains the raw image
[CEL] Contains feature quantifications
[CDF] Maps between features, probes, probe sets, and genes
[CHP] Contains gene expression levels, as assessed by the Affy software

Most frequently, we start with a DAT file, derive a CEL file, and then make
extensive use of the CEL and CDF files. We make no further use of the EXP
and CHP files here.

To illustrate the procedure, we begin by looking at the contents of a DAT file
from a U95Av2 chip (the raw image), shown in Figure 1.1A.

The array has 409,600 probes (features) arranged in a 640 × 640 grid. There
is actually some structure that can be seen by eye, as we can see if we zoom in on
the upper left corner: Figure 1.1B. The pixelated features have been combined
with positive controls to spell out the chip type – this helps ensure that the
image is correctly oriented. We note the border lattice of alternating dark and
bright QC probes, making image alignment and feature detection easier.

If we zoom in further on a single PM/MM pair or feature, shown in Fig-
ure 1.2A and B, we can see that features are square. The horizontal and vertical
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Fig. 1.1. An Affymetrix image (.DAT) file. (A) The entire image, 4,733 pixels on a side,
containing 409,600 features. (B) A zoom on the upper left corner of the image. Controls
are used in a checkerboard pattern to indicate the print region border, and to designate
the chip type. This is a U95Av2 chip; on v2 chips the “A” is filled in.
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Fig. 1.2. Sets of Affymetrix image features. (A) A PM/MM pair. Note that the PM pixel
readings are higher than the MM readings. (B) A zoom on the PM feature. (C) The
PM feature after trimming the outer boundary. Only the remaining pixels are used in
deriving a summary quantification (the 75th percentile).

alignment with the edges of the image is pretty good, but feature boundaries
can be rather blurry.

Each feature on this chip is approximately 20 µm on a side. The scanner
used for this scan had a resolution of 3 µm/pixel, so the feature is about 7 pixels
on a side (more recent scanners have higher resolution). In general, Affymetrix
features are far smaller than the round spots in the images of other types of
microarrays.

The DAT file structure consists of a 512-byte header followed by the raw
image data. The image shown above involved a 4733 × 4733 grid of pixels, so
the total file size is 2 × 47332 + 512 = 44,803,090 bytes (45 MB). This is big.
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File size is a nontrivial issue with Affy data; earlier versions of the software
could only work with a limited number of chips (say 30). Given this size,
our first processing step is to produce a single quantification for each feature,
keeping in mind that the edges are blurry and that the features may not be
perfectly uniform in intensity.

The CEL file contains the feature quantifications, achieved as follows. First,
the four corners of the entire feature grid (here 640 × 640) are located within
the DAT file, and a bilinear mapping is used to determine the pixel boundaries
for individual features. Given the pixels for a single feature, the outermost
boundary pixels are trimmed off, as shown in Figure 1.2C. Finally, the 75th
percentile of the remaining pixel values is stored as the feature summary.
Trimming is understandable, as this accounts for blurred edges in a moderately
robust way. Similarly, using a quantile makes sense, but the choice of the 75th
percentile as opposed to the median is arbitrary.

When Affymetrix data is posted to the Web, CEL files are far more often
supplied than DAT files. Over time, there have been various versions of the
CEL format. Through version 3 of the CEL file format, this was a plain text
file. In version 4, the format changed to binary to permit more compact storage
of the data. Affymetrix provides a free tool to convert between the file formats.

In the plain text version, sections are demarcated by headers in brackets, as
in the example below. The header tells us which DAT file it came from, the
feature geometry (e.g., 640 × 640), the pixel locations of the grid corners in the
DAT file, and the quantification algorithm used. This is followed by the actual
measurements, consisting of the X and Y feature locations (integers from 0 to
639 here), the mean (actually the 75th percentile) and standard deviation (this,
conversely, is the standard deviation), and the number of pixels in the feature
used for quantification after trimming the border. An example of a CEL file
header is given below.

[CEL]

Version=3

[HEADER]

Cols=640

Rows=640

TotalX=640

TotalY=640

OffsetX=0

OffsetY=0

GridCornerUL=219 235

GridCornerUR=4484 253

GridCornerLR=4469 4518
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GridCornerLL=205 4501

Axis-invertX=0

AxisInvertY=0

swapXY=0

DatHeader=[0..19412] U95Av2_CDDO_12_14_01: CLS=4733

RWS=4733 XIN=3 YIN=3 VE=17 2.0 12/14/01 12:23:30

HG_U95Av2.1sq 6 Algorithm=Percentile

AlgorithmParameters=Percentile:75;CellMargin:2;

OutlierHigh:1.500;OutlierLow:1.004

[INTENSITY]

NumberCells=409600

CellHeader=X Y MEAN STDV NPIXELS

0 0 133.0 16.6 25

1 0 8150.0 1301.3 20

A version 3 CEL file reduces the space required to about 12 MB from
45 MB for a DAT file, but we could do better. The X and Y fields are not
necessary, as these can be inferred from position within the CEL file. Keeping
1 decimal place of accuracy for the mean and standard deviation doubles the
storage space required (moving from a 16-bit integer to a float in each case) and
supplies only marginally more information. Finally, most people do not use the
STDV and NPIXELS fields. Keeping only the mean values and storing them
as 16-bit integers, storage can be reduced to 2 × 6402 = 819,200 bytes. This
type of compression is becoming more important as the image files get even
bigger.

The above description covered Affymetrix version 3.0 files. In version 4.0,
in binary format, each row is stored as a MEAN-STDV-NPIXEL or float-float-
short triplet, which cuts space, but not enough. Most recently, Affymetrix has
introduced a CCEL (compact CEL) format, which just stores the integer mean
values as discussed above.

The above problem, going from the image to the feature quantification, is a
major part of the discussion for quantification of other types of arrays because
there, we get only one spot per gene. For Affymetrix data, the company’s
quantification has become the de facto standard. It may not be perfect, but it is
reasonable. The real challenge with Affymetrix data lies in reducing the many
measurements of a probe set to a single number.

In summarizing a probe set, we first need to know where its component probes
are physically located on the chip. With any set of microarray experiments, one
of the major challenges is keeping track of how the feature quantifications map
back to information about genes, probes, and probe sets. The CDF file specifies
what probes are in each probe set, and where the probes are. There is one CDF
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file for each type of GeneChip. The header is partially informative, as shown
in the example below.

[CDF]

Version=GC3.0

[Chip]

Name=HG_U95Av2

Rows=640

Cols=640

NumberOfUnits=12625

MaxUnit=102119

NumQCUnits=13

ChipReference=

[Unit250_Block1]

Name=31457_at

BlockNumber=1

NumAtoms=16

NumCells=32

StartPosition=0

StopPosition=15

CellHeader=X Y PROBE FEAT QUAL EXPOS

POS CBASE PBASE TBASE ATOM INDEX

CODONIND CODON REGIONTYPE REGION

Cell1=517 568 N control 31457_at 0

13 A A A 0 364037

-1 -1 99

Cell2=517 567 N control 31457_at 0

13 A T A 0 363397

-1 -1 99

Cell3=78 343 N control 31457_at 1

13 T A T 1 219598

For this probe set, 31457 at, there are 16 “atoms” corresponding to probe
pairs (this is the standard number for this vintage chip) and 32 “cells” corre-
sponding to individual probes or features. The first probe pair (index 0), with
the PM sequence closest to one end of the gene, is located on the chip in the
518th column (the X offset is 517) and in the 568th and 569th rows. The in-
dex values for these probes are (567 × 640) + 517 = 363397 and 364037. The
feature in Cell 2 is the PM probe, as (a) it has a smaller Y index value, and (b)
the probe base (PBASE) in the central base position (POS) 13 is a T, which
is complementary to the corresponding target base (TBASE). The remaining
values in a given row are less important. The CDF files do not contain the actual
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probe sequences, but all CDF files and probe sequences are now downloadable
from www.affymetrix.com.

On early Affymetrix chips, all probes in a probe set were plotted next to each
other. This was soon realized to be imperfect, as any artifact on a chip could
corrupt the measurements for an entire gene. On more recent chips, probes
within a probe set are spatially scattered, though PM/MM pairs are always
together (the PM probe is always closer to the edge on which the chip id is
spelled out).

Given quantifications for individual chips, we turn next to quantifying a data
set, relating probe set values across chips.

Before we quantify individual probe sets, however, we need to address the
problem of normalization: Is the image data roughly comparable in intensity
across chips? Adding twice as much sample may make the resultant image
brighter, but it does not tell us anything new about the underlying biology. In
most microarray experiments, we are comparing samples of a single tissue type
(e.g., diseased brain to normal brain), and in such cases we assume that “most
genes do not change.” Typically, we enforce this by matching quantiles of the
feature intensity distributions. Given that the chips have been normalized, we
still need to find a way of summarizing the intensities in a probe set. The PM
and MM features for an example probe set are shown in Figure 1.3A and B.

The earliest widely applied method was supplied by Affymetrix in version
4 of their Microarray Analysis Suite package, and is commonly referred to as
MAS 4.0 (“Mass 4”) or AvDiff [2]. AvDiff works with the set of PM−MM
differences in a probe set one array at a time. These differences are sorted in
magnitude, the minimum and maximum values are excluded, and the mean and
standard deviation of the remaining differences are computed. Using this mean
and standard deviation, an “acceptance band” for the differences is defined as
±3 s.d. about the mean. All of the differences falling within this band are then
averaged to produce the final AvDiff value. This is illustrated in Figure 1.3C.
In the case illustrated here, the minimum value was excluded at the first step,
but fell into the acceptance band and was thus included in the final average,
moving the value down slightly.

AvDiff does have some nice features. It combines measurements across
probes, trying to exploit redundancy, and it attempts to insert some robustness.
However, there are some questionable aspects. AvDiff weights the contributions
from all probes equally, even though some may not bind well. It works on the
PM−MM differences in an additive fashion, but some of the effects may be
multiplicative in nature. It can give negative values, which are hard to interpret.
In some cases, where all of the signals for a probe set are concentrated in a very
small number of probes, these may be omitted altogether if they fall outside
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Fig. 1.3. A single probe set from a Hu6800 chip, containing 20 PM/MM pairs. (A) A
heatmap of the feature intensities extracted from the CEL file. (B) Plots of the PM (solid)
and MM (dashed) values shown in (A). Feature values are not uniform across the probe
set, and MM values occasionally exceed PM. (C) A plot of the PM−MM differences,
showing the computation of AvDiff. The extreme values (circled) are initially excluded,
and the mean and ±3 s.d. bounds (dotted) are imposed. All points within this band are
then averaged to produce AvDiff (dashed).

the band. All of these drawbacks, in our view, can be tied to the fact that
AvDiff works one chip at a time, and does not “learn” with the addition of more
chips.

Learning from multiple chips requires an underlying model with parameters
that can be estimated. In 2001, Cheng Li and Wing Wong introduced a new
method of summarizing probe set intensities as “model-based expression in-
dices,” or MBEI [35, 36, 59]. At the crux of their argument was a very simple
observation – the relative expression values of probes within a probe set were
very stable across multiple arrays.

Looking at the PM and MM profiles for the same probe set in 10 chips
from a single experiment, as shown in Figure 1.4, we can see that the overall
shape of the profile is fairly consistent. It is the amplitude of this profile which
changes, and which contains the summary information about the level of gene
expression.
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Fig. 1.4. Plots of PM and MM intensities for the same probe set on 10 different chips. The
overall profile shapes are fairly consistent across chips, with changes in gene expression
linked to amplitude. Modeling the shapes can improve inferences about expression
levels.

In order to exploit this stability, Li and Wong fit a model for each probe set:
for sample i and probe pair j , they posit that

PMij = νj + θiαj + θiφj + ε,

MMij = νj + θiαj + ε,

where νi and θiαj are intended to capture nonspecific binding, and ε is Gaus-
sian noise. Focusing on the PM−MM differences, this model condenses to
one with two sets of unknowns: θi and φj . The φj terms correspond to the
individual probe affinities, and give the shape of the profile. The θi values give
the amplitudes.

The MBEI approach caught on fairly quickly, in part because the numerical
approach made sense, but also due to the fact that it was imbedded in the free-
ware “DNA Chip Analyzer” (dChip) package, available at www.dchip.org.
This package has a very friendly user interface, and addresses many of the most
common questions (which genes are different? how should I cluster them?) in
a straightforward fashion. Further, by encoding the contents of CEL and CDF
files in a binary format using analogs of the data structures outlined above, the
program could handle lots of chips at once, and it could handle them quickly.

Using a model has several benefits. By using multiple chips, it can keep all
of the probes; there is no tossing of the most informative ones. By checking
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the residuals from the model, it is possible to identify outliers due to artifacts.
Using the hypothesized error model, confidence bands for the fold change can
be computed. Probe profiles can be computed in one experiment and used in
another.

The downside of most models is that they require several chips in order to
estimate the underlying model parameters. It is not a good idea to trust the
fits too much if they are based on just one or two chips; 10 or more is better.
However, we are not convinced that it is a bad thing to require a larger minimum
number of chips for drawing inferences.

The dChip model captures effects that are multiplicative, and inherits the
other good features of a model. However, the probability model is too simplistic,
as larger intensity probes typically also have larger variances.

In the wake of dChip, several other quantification methods have been sug-
gested, with many (but not all) using model-based approaches. A partial list
includes MAS 5.0, RMA, and PDNN.

The next algorithm from Affymetrix, MAS 5.0 [3], still produces quantifi-
cations one chip at a time, but replaces the MM values with a rather intricate
change threshold (CT) to avoid negative values. The differences are then com-
bined using a robust measure:

Tukey Biweight(log(PMj − CTj )).

The robust multichip analysis (RMA) method of Irizarry et al. [27, 28]
also uses a model for fitting the data, but the model differs from dChip’s in
some key ways. First, the authors elected to ignore the MM values, contending
that any gains in accuracy were more than offset by losses in precision, in
a classic bias-variance tradeoff. Second, since the MM values were not on
hand, “background” levels were estimated from the distribution of PM probe
intensities and subtracted off in such a way as to avoid negative values [13].
Third, the model introduced stochastic errors on the log scale as opposed to the
raw intensity scale. The final model is of the form

log(PMij − BG) = µi + αj + εij .

The above approaches use the probe intensities, but there is additional bi-
ological structure that can be exploited. In particular, Affymetrix now makes
the actual probe sequences available, though it did not when it first started
selling chips. Using the sequences, it is possible to build models describing
the default binding efficiencies for individual probes, and to decouple this
from binding due to gene abundance. This approach was first exploited in the
Position-Dependent Nearest Neighbor (PDNN) approach introduced by Zhang
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et al. [76]. The RMA method has since been extended to incorporate sequence
information in its modeling, giving GCRMA [73].

Given the proliferation of models, we need some means of deciding which
ones are “better.” In order to make such assessments, we need to have some
datasets for which “truth” can be known a priori, and some set of defined metrics
that measure proximity to truth. The most widely used truth-known data set
is a Latin Square experiment supplied by Affymetrix, in which 14 genes were
spiked into a common mixture according to a twofold dilution series, which
was then cyclicly permuted so that each gene was assessed at each dilution
level. In this case, only the spiked-in genes should be changing in expression,
and the amount of change is potentially known. In order to quantify truth, Cope
et al. [20] introduced a suite of metrics for putting each method through its paces
on the canonical data sets. The results for many different methods have been
assembled and posted at http://affycomp.biostat.jhsph.edu/, and new
submissions are welcome.

In addition to dChip, there are now several software packages available for an-
alyzing Affymetrix data, but the most widely used in the statistical community
are probably those implemented in R and freely available from Bioconductor.
R packages exist for implementing all of the approaches discussed here, and
most methods are sufficiently modular that different background correction,
normalization, and quantification methods can be juggled to suit. The book by
Gentleman et al. [25] provides an excellent introduction to this resource. Not
all of the methods available are equally fast; however, so for the analysis of
large data sets dChip and “justRMA” or “justGCRMA” in R are the ones that
we would suggest.

The models for Affymetrix data are now reasonably good, but dozens of
questions remain. Combining results of Affymetrix experiments across differ-
ent labs and different chip types is still difficult, and integrating these results
with those from glass arrays is still harder. Eventual combination of results at
the RNA level with those from the DNA and protein levels is tantalizing.

1.2.2 Spotted cDNA Arrays

We now shift from Affymetrix oligonucleotide arrays to spotted cDNA arrays.
Here, a good set of overview articles (from 1999) is available as a special
supplement to Nature Genetics, “The Chipping Forecast” [47]; see also [61, 60].
While the biological questions of interest are similar, the probes used are quite
different. On most cDNA arrays, the probes used correspond to full-length
copies of the gene of interest (sans introns), though there has been recent
interest in long-oligo arrays that use probes that are 60 or 70 bases in length
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(60-mers or 70-mers). Typically, each gene will be represented by one probe,
not a set. The other major distinction is that two samples, not one, are typically
hybridized to each array. The samples are prepared using different incorporated
dyes, mixed, and the mixture is then hybridized to the array.

The method of dye incorporation is different for spotted arrays than for
Affymetrix Gene Chips. On a gene chip (as noted), the fluorescent dye is
applied after hybridization has taken place (indirect labeling), but this strategy
does not work if multiple samples need to be labeled with different dyes. Rather,
when copies of mRNA are made for spotted arrays, they are made of cDNA,
and some of the bases used in the assembly of these copies have had molecules
of fluorescent dye attached. Thus, the dye is incorporated into the copies before
hybridization (direct labeling). These labeled copies are then hybridized to the
array, binding molecules of dye in specific positions.

The most commonly reported gene summary is the log ratio of two intensity
measurements, corresponding to the two dyes with which the two types of
cells being compared have been respectively tagged. The most commonly used
dyes are Cy5 (red) and Cy3 (green). Thus, the single number quoted is derived
from the two intensity values. The intensity values are also derived quantities;
they are derived from images. Again, for our purposes these images represent
bedrock. Images are our raw data.

These images are scans of slides with lots of dots on them, each dot corre-
sponding to the location of a DNA probe to which labeled cDNA derived from
the cells of interest has been bound. In some early experiments from M.D.
Anderson, there were approximately 4,800 dots on a slide, arranged in a 4 by
12 grid of patches, with each patch containing a 10 by 10 grid of dots. When
the images of the slide were produced, we got 3248 by 1248 arrays of grayscale
pixel values. The scans from one such slide are shown in Figure 1.5A and B.
The patch structure is quite apparent. This structure is linked to the method of
depositing the probes. In printing, a robotic arrayer takes an array of print tips
(similar to needles), dips them in wells of the DNA to be printed, moves the
coated print tips over to the slide, taps lightly to transfer probes, and takes the
print tips over to a wash solution before repeating the process. The arrayer we
used had a 4 by 12 array of print tips; each visible patch has been applied by a
single print tip.

Returning to consideration of the images, each pixel is a 16-bit intensity
measurement, so values range from 0 to 65,535. There is no color inher-
ently associated with these images, which is why we have presented them in
grayscale; other colormaps are externally applied to enhance contrast. Each
image is about 8 MB in size, which is large enough to make manipulation and
transmission somewhat unwieldy at times. As more genes are spotted on the
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Fig. 1.5. Cy3 and Cy5 image scans from a spotted cDNA microarray. (A) The full Cy3
image. (B) The full Cy5 image. In both A and B, the patch structure (one per print-tip on
the arrayer) is apparent. (C) A zoom on a Cy3 patch. (D) A zoom on the corresponding
Cy5 patch. The top half of each patch is replicated in the bottom half, and this structure
is visible. Imperfections in both the spotting and the image can also be seen, most clearly
in the zooms.

arrays, and the scanner resolutions are improved so that smaller objects can be
seen, these images will increase in size. It should be noted that the 16-bit nature
of the images can make things difficult to work with in ways not having to do
with file size. Some image viewing software assumes that the values are 8-bit,
ranging from 0 to 255, and consequently either fails to show the large image or
shows it as full white (all values set to 255). The values can be converted to 8-bit
fairly simply, as 8-bit = floor(16-bit/256), but we lose gradation information.
As the dynamic range of these images is quite large, this loss can be damaging
for the purposes of analysis.

To make things more concrete in getting down to the actual spot level, we
focus on a single 10 by 10 patch, marked in the bottom left of the large images.
The corresponding regions from the two image files are shown in Figure 1.5C
and D. These arrays were printed with replicate spottings of the same genes:
within each patch, the top half of the patch is replicated in the bottom half.
This replicate structure is visible – the brightest Cy3 spots are in rows 4 and 9
of column 7 of the patch, a replicate pair – giving us some confidence in the
assay.

A few other things are immediately apparent. First, the “dots” are not re-
ally “dot-like” in most cases. Rather, there are rings of high intensity about
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A Cy3 spot
Cy3 spot: Side view

Fig. 1.6. Zoom on a single Cy3 spot. The ring shape is visible, indicating uneven
hybridization. Further, the side view shows that readings outside the spot are not at zero
intensity. (See color plate 1.6.)

lower-level centers. This is true across both channels, indicating that the ring
pattern matches the amount of cDNA on the slide. The most likely explanation
is that surface tension on the drop as it dries may cause clumping at the edges.
In any event, how does morphology affect our measurements? Second, the dots
are not of equal size. This may make it difficult for an automatic procedure to
find the appropriate placement of a dot-shaped target ring. Third, there is some
mottling in the lower left corner (most visible in the Green channel). How does
this affect our assessment of how intense the dots in that region are?

Before considering these questions further, let us take a closer look at a single
spot, highlighted in Figure 1.5C. An expanded view of this spot is shown in
Figure 1.6. The ring shape is visible, indicating uneven hybridization. Further,
the side view shows that readings outside the spot are not at zero intensity,
indicating the need for some type of background subtraction so that we have
moderately good estimates of where zero should be.

All of these issues point out the need for good image quantification algorithms
for summarizing the spots. Some more detailed descriptions of algorithms for
image segmentation, background estimation, and spot summaries are given in
Yang et al. [74]. There are several software packages (mostly commercial) now
available for quantifying array images.

Given the metrics, however, a more basic question is why two samples are
used per array as opposed to one. The main reason is to guard against artifacts.
Some spots are bigger than others, and thus bind more material. The slide can
be tilted while hybridization is proceeding, resulting in more binding at one
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edge than another. Ideally, such artifacts will affect both channels similarly,
and taking ratios will cancel them out. If there are replicate spots printed on
the arrays, the importance of ratios can be checked by plotting the variance of
the replicate log intensities as a function of the mean, first for each individual
channel and then for the ratios. The variability of the ratios is typically less
(often much so).

While the use of two samples does protect against some large-scale biases,
it can also introduce new ones. The dyes used have different physical shapes,
and thus can have different binding efficiencies for given genes. In recognition
of this fact, many studies use one of two approaches for comparing two groups
of samples. The first approach involves direct comparison of a sample of type
A with a sample of type B on the same array. In this case, “dye swaps” are
used so that the A samples are labeled with Cy3 on some arrays and with Cy5
on others, so that dye biases can be factored out. The second approach is to
use the same dye to label the samples from both groups of interest, and to
contrast these with some common reference material labeled with the other
dye. Some of the design issues raised by this natural paired blocking structure
are discussed in [33, 63].

Even with these balancing features, normalization remains an issue, both
within and across arrays. Again, most methods make the simplifying assump-
tion that most genes do not change. Given this assumption, a common means
of correction is to plot the difference in channel log intensities as a function
of the average log intensity, and to fit a loess curve to the dot cloud. These
plots were introduced by Bland and Altman [12], but are more commonly re-
ferred to as “MA” plots in the microarray context [22]. Subtracting the loess
curve ideally normalizes expression values within the array. A further extension
of this approach is to apply a separate loess fit for the spots associated with
each print tip. This makes stronger assumptions about which groups of genes
are not expected to change, but smooths things more evenly. While we have
seen cases where print-tip loess has produced more stable values (and better
agreement between replicate spots), in many of these cases we are correcting
for spatial trends that are visible on the array images, as opposed to discrep-
ancies that are ascribable to the pins. Print-tip loess works in part because it
is a surrogate for spatial position. Once the individual arrays have been nor-
malized, quantile normalization can be used to match log ratio values across
arrays [75].

Given the spot quantifications, and knowledge of what samples are bound on
which arrays, there are freeware tools available for most basic analyses. Again,
the book by Gentleman et al. [25] provides a nice survey of the suite of R tools
available with Bioconductor.
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One last concern with glass arrays relative to Affymetrix chips is simply that
the number of different array configurations and gene spotting patterns is legion.
This means that annotation and gene information must be checked carefully
keeping the gene to spot mappings clear. It also means that comparisons across
different array platforms may yield different measures of the “same” gene if
different cDNAs are used.

1.3 SAGE

Microarrays work by exploiting hybridization to assess amounts of dye ag-
gregating to specific probes printed on the arrays. There are, however, some
potential downsides to microarrays. First, a microarray is a closed system, in
the sense that you will only be able to measure an mRNA if you have printed a
probe for it. Unexpected transcripts will not be seen. Second, the quantitative
nature of the data is somewhat questionable, as dye response is a nonlinear
phenomenon. Third, differences in protocols or preparations have made com-
parison of array results across labs difficult.

We would like to have some mechanism for more directly counting all of
the mRNA transcripts of a given type. Failing that, if we could take a random
sample of all of the mRNA transcripts available and count those, then this
would still provide an unbiased and quantitative profile of mRNA expression.
This idea of sampling and counting underlies the serial analysis of gene ex-
pression (SAGE) technique. Some case studies are given in [50–52, 56, 57, 64,
67–69, 77].

As before, we still need to know both sequence (identity) and abundance to
characterize the expression profile. With microarrays, the unknown sequence
of the transcript is inferred from the known sequence of the printed probe. With
SAGE, a part of the transcript itself is sequenced. Restricting attention to only a
part of the transcript is deliberate. While sequencing the entire transcript would
identify it unambiguously, sequencing is time-consuming and costly enough
that the expense would be prohibitive. We want to sequence just enough of the
transcript to identify it, and then move on. The question now becomes one of
how to biologically extract an identifying subsequence.

An identifying subsequence need not be long. Current estimates of the num-
ber of genes in the human genome are around 25,000–30,000. While alternative
splicing of the exons within the gene may allow the same gene to produce sev-
eral distinct transcripts, the total number of distinct transcripts is unlikely to
be more than a few hundred thousand. Considering the 4-letter DNA alphabet,
there are 410 = 1,048,576 distinct 10-letter “words,” suggesting that a 10 bp
(base pair) subsequence may be enough for unique identification. This rough
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calculation implicitly assumes that the 10 bp are in a specific location; it is
considerably harder to find unique subsequences if these are allowed to occur
anywhere within the gene. We are going to first specify position, and then
extract sequence. This process is rather intricate. The steps are illustrated in
Figure 1.7, and discussed in detail below.

We begin by harvesting the mRNA from a biological sample. The mRNA is
single-stranded and has a poly-A tail (Figure 1.7A). The mRNA is difficult to
work with, as it is prone to degradation, but DNA is more stable. We would thus
like to map the mRNA to cDNA. To get to DNA, we introduce a biotin-labeled
dT primer (Figure 1.7B) and use reverse transcriptase to synthesize more stable
double-stranded complementary DNA (cDNA; Figure 1.7C). Like the initial
mRNA, there is something special about one end (the biotin label), and we can
use this to “anchor” the cDNAs.

We anchor the cDNAs by binding the biotin to streptavidin-coated beads. To
focus on specific sites within the sequences, we introduce a restriction enzyme,
known in the SAGE context as the “anchoring enzyme” (AE), which will cut the
cDNA whenever a specific DNA “motif” occurs. We will only measure genes
that contain at least one occurrence of the motif, so we want the motif to be fairly
common; this in turn implies that the motif should be fairly short. Conversely,
we do not want the motif to be too short, or it will reduce the number of distinct
subsequences available afterwards. The most commonly used such enzyme is
NlaIII, which searches for the motif “CATG.” When this enzyme cleaves the
cDNA, it produces an “overhang” (an unmatched single strand) at the cleavage
site (Figure 1.7D). Cleaving produces a number of substrands, most of which
are “loose” – unconnected to the streptavidin bead (Figure 1.7E). These loose
fragments are washed away before the next step. At this point, we have zoomed
in on a particular site on each cDNA: the occurrence of the AE motif closest to
the bead (the mRNA poly-A tail).

As noted, cleaving typically produces an “overhang.” We can use this over-
hang to bind new “linker sequences” at the end. As it turns out, we are going
to bind two distinct linkers (Figure 1.7F). The two distinct linkers will be ex-
ploited in a PCR amplification step described below. So, we divide the material
into two pools, and add the two linkers. The linkers are different only at one
end; at the other they have an overhang (to match the bound sequence) and
another short motif, which will guide yet another enzyme. Within each pool,
the linker sequences will bind to the bound cDNAs due to base pairing – and
the sequences are ligated (Figure 1.7G).

Next, we introduce a “type IIS” restriction enzyme (called the “tagging
enzyme,” TE) which looks for the motif we introduced with the linker sequence.
Type IIS restriction endonucleases cleave not at the motif itself, but rather a
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Fig. 1.7. Steps in the preparation of a SAGE library. (A) Extract mRNA. (B) Add a
biotin-labeled primer. (C) Synthesize cDNA. (D) Cleave with an anchoring enzyme
(AE). (E) Discard loose segments. (F) Split cDNA into two pools, and introduce a
linker for each. (G) Ligate linker to bound cDNA fragments. (H) Cleave the product
with a tagging enzyme, and discard the bound parts. In addition to the linker, the piece
remaining contains a 10-base “tag” that can be used to identify the initial mRNA. (I)
Ligate the fragments, and use PCR starting from the primers attached to the linkers to
amplify. (J) Cleave with the AE again, and discard the pieces bound to the linker. The
remaining fragments contain pairs of tags, or “ditags,” bracketed by the motif recognized
by the AE. (K) Ligate the ditags and sequence the product. (See color plate 1.7.)

specific number of base pairs (say 20) away from it. Unlike the motif for the
anchoring enzyme, the motif for the tagging enzyme is asymmetric, so there is
a direction for placing the cut site. This cut is “blunt,” producing no overhang
(Figure 1.7H).
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At this point, the loose double strands in a pool have, in order, the linker, the
TE motif, the AE motif, and the 10 bp from the cDNA next to the anchoring
enzyme motif closest to the poly-A tail. This 10 bp subsequence is the “tag” that
we shall use to identify the parent gene.

To focus on the tags, we now remove the beaded ends, leaving just the loose
double strands. We then combine the two resultant pools, so that we have loose
strands with two different linkers. We then induce ligation amongst the strands
(Figure 1.7I).

The sequence geometry is now

Linker A – TE AE (motifs) – ditag – AE TE – Linker B,

where the central region, or “ditag,” contains the identifying information for
two distinct transcripts. Ideally, this ditag is bounded by linker A on one side,
and linker B on the other. However, since the ligation is not targeted, it is
possible to get linker A (or B) on both sides.

We now have a pool of DNA, but not necessarily a large amount. Since it
is easier to work with large amounts of DNA, we amplify what we have using
PCR. PCR requires primers at both ends of the target amplification sequence,
and we can choose primers to match the two distinct linkers (this is why we
divided things into two pools). Thus, the resultant products will be overwhelm-
ingly of the form shown above, with linker A at one end and linker B at the
other.

An amplified ditag with linkers has a fairly well-defined mass, so filtering
of unwanted amplification products can be achieved using a gel. At this point,
the information containing part of the data has been compressed (the length of
the linker is less than the length of the gene, on average), but the linkers and
enzyme motifs are still extraneous and we would prefer not to sequence them.
Fortunately, if we reintroduce the AE, the linkers and the TE motifs will be
cleaved off from the ditags. To isolate the ditags (Figure 1.7J), we use another
gel to select for the appropriate target mass.

After the above selection and cleaving, the information content of a short
piece of DNA (ditag plus overhangs) is quite high, but short reads are inefficient
with respect to sequencing. Thus, we ligate the ditags together (Figure 1.7K).
We then sequence the concatenated product. A typical sequencing read involves
500 bp, or about 20 ditags and motifs. The AE motif actually provides a useful
bit of “punctuation” for quality control purposes.

Within the read, we locate a bracketing pair of motifs and extract the ditag
(this can be between 20 and 26 bp). The 10 bp closest to the left end give
one tag, and the 10 bp closest to the right end are reversed and complemented
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Table 1.1. Part of a SAGE Library

Tag Count Tag Count Tag Count

CCCATCGTCC 1286 CCTGTAATCC 448 TGATTTCACT 358
CCTCCAGCTA 715 TTCATACACC 400 ACCCTTGGCC 344
CTAAGACTTC 559 ACATTGGGTG 377 ATTTGAGAAG 320
GCCCAGGTCA 519 GTGAAACCCC 359 GTGACCACGG 294
CACCTAATTG 469 CCACTGCACT 359 – –

to give the other. The tabulated results from a set of reads comprise a SAGE
“library.” Part of a typical SAGE library is shown in Table 1.1.

Given the data, what questions can we ask? The most common goal is (as
with microarray experiments) to find genes that show expression levels that
vary with phenotype. There are, however, complexities associated with the
methods of measurement.

The first question is whether we see all the data. There are some sequences
that we should not see. If we see the AE motif within a tag, we know that that
is an artifact and should be excluded. In many cases, sequences corresponding
to mitochondrial DNA will also be excluded. If there are multiple occurrences
of a given ditag, typically only one is recorded, to preclude biases associated
with PCR amplification. If there are genes that do not contain an occurrence of
the cleavage site, these will not be seen. Similarly, if a cleavage site is too close
to the poly-A tail, the true identity may be obscured. Conversely, if the RNA is
of poor quality, sequence degradation can remove the cleavage site altogether.

There are other issues related to whether the tags we do see are “correct.”
Mappings of tags to genes are not always unique; the math suggesting that
10 bp should be “enough” relies on independence assumptions that likely do
not hold. At present, our genomic information is still a draft, so annotations are
not fixed. At the processing level, there are sequencing errors. Published rates
are about 0.7% per base pair, so to a first approximation 7% of the tags will
be so affected [66]. This can produce small “shadow” counts for tags that are
“similar” to abundant tags. This renders estimation with rare counts difficult,
and somewhat limits the dynamic range.

Interim fixes have been suggested for some of the above problems, but there
is still room for improvement. “Long SAGE” [58], where the tags are 14 bp or
more in length, has been introduced to address the issue of identification ambi-
guity. Many of the issues with identification could also potentially be resolved
by using multiple restriction enzymes to produce “coupled libraries,” but in
practical terms this rarely happens (see, however, [72]). Errors in sequencing
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can be addressed by deconvolution, pulling shadows back to their source, given
definitions of a local neighborhood in the sequencing space [18]. Alternatively,
information about the tag quality could be acquired at the time of sequenc-
ing and used to suggest the most likely fixes; sequences can produce quality
“phred” scores associated with each base read [11, 23].

Once the table of counts has been “finalized,” there is still the question
of choosing a good test statistic for assessing differential expression. Many
statistics have been proposed, most focusing on comparing one library with
another and dealing primarily with the Poisson sampling variability associ-
ated with extracting a count [5, 17, 30, 34, 40, 42, 44, 55, 77]. Some papers
have looked at more than two groups [46, 52, 57, 77], and some analogs of
ANOVA have been suggested [26, 65]. However, each library supplies a vec-
tor of proportions for an individual. Even under ideal conditions, estimates
of the true level of a proportion in a group of individuals are subject to two
sources of error: binomial variation associated with the count nature of the data,
and variation in proportions between individuals within a group [6, 7]. Better
methods for combining these proportions to estimate contrasts are still under
development.

At present, SAGE is not as widely used as microarrays, due primarily to the
higher costs of assembling libraries. However, these costs are also linked to the
costs of sequencing, and the approach may become more viable as sequencing
gets easier. The sequencing and counting approach, however, still has many
open questions associated with it. Given estimated rates of sequencing errors,
what is the realistic dynamic range of this approach? Given this dynamic
range, how big does a library need to be to catch the measurable changes
stably? Given the relative sizes of the between and within library variance
components, should we assemble more small libraries or a small number of
big ones? Massively parallel signature sequencing (MPSS) [16] enables the
assembly of huge libraries, but the costs are still high. If we compare SAGE
and microarray results, how should we measure agreement?

There are some software packages available for analyzing SAGE data, and
some large repositories of SAGE data. We recommend SAGE Genie [14] as a
source of data for further exploration.

1.4 Mass Spectrometry

Microarrays and SAGE let us measure the relative abundance levels of thou-
sands of mRNA transcripts all at once, giving us some picture of the dynamic
activity within the cell. However, much of the action is happening at the pro-
tein level, and we would really like to have the equivalent of a microarray for
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proteins as well. Some progress has been made on this front, but there are
several limitations here.

• The number of distinct proteins is larger than the number of genes.
• Many proteins undergo posttranslational modifications (e.g., phosphoryla-

tion), and it is the amount of modification that can affect things.

Thus, it can be hard to get abundance and identity at the same time. However,
we can make substantial progress if we relax one of these constraints, getting
only partial identification. One tool for getting such information, letting us
measure hundreds of proteins at once, is mass spectrometry. (More extensive
descriptions are given in [38, 62].)

Mass spectrometry works by taking a sample and sequentially adding a
charge to the substances to be measured (ionizing proteins, protein fragments, or
peptides), using electromagnetic manipulation to separate the ionized peptides
on the basis of their mass to charge (m/z) ratios, and using a detector to count
the abundance of ions with a given m/z ratio. Plotting abundance as a function
of m/z gives a mass spectrum. There are many variants of mass spectrometry,
corresponding to different modular configurations of ionization, separation, and
detection tools (not all combinations are possible), with much greater emphasis
on the methods of ionization and separation than detection.

Mass spectrometry has been around for a long time; it was first introduced
by J.J. Thomson around 1900, but it is only in recent decades that it has
generated great excitement as a tool for exploring the proteome. This delay was
due to limitations of the first few ionization methods available; charges were
attached or broken off with sufficient force that larger molecules (including
proteins) were torn apart into much smaller chunks. The late 1980s saw the
introduction of two “soft” ionization methods, matrix-assisted laser desorption
and ionization (MALDI) [31, 32] and electrospray ionization (ESI) [24] that
allowed measurements to extend to the tens and hundreds of kiloDaltons (kDa,
1 Da = the mass of a hydrogen atom).

Recently, mass spectra have begun to be explored for their potential di-
agnostic utility – can peaks in the spectra serve as biomarkers of the early
stages of diseases such as cancer? See, for example, [1, 37, 48, 49, 53, 71, 78].
While similar questions have been asked with respect to microarrays, a key
difference has been that many explorations with mass spectra have focused
on spectra obtainable from readily available biological fluids such as blood,
urine, or saliva. In this context, the most common mass spectrometry methods
used have been variants of MALDI coupled with a time-of-flight (TOF) ion
separator (MALDI-TOF). This is the only method that we discuss in detail
here.
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In MALDI-TOF, the sample of interest (e.g., serum) is combined with one of
several matrix compounds, and this mixture is applied to a stainless steel plate.
As the mixture dries, the matrix forms a crystal structure holding the proteins in
place. Many samples are typically spotted on the same plate; one MALDI plate
we have (square, and about 7 cm on a side) has 100 deposition sites indicated.
After the samples have been spotted, the plate is inserted into a receiving
chamber connected to the main measurement instrument. The chamber is then
pumped out to near vacuum conditions. A robotic arm is used to position
the plate so that the spot of interest is in a desired target area, and a laser
is then fired at the spot. Most of the laser energy goes into breaking the
crystal structure of the matrix apart, and less to shaking the peptides apart.
The physics of exactly how this works is not well understood. As a result of
the matrix fragmentation, many peptides break free into the gas phase. Most
matrix compounds are slightly acidic, and thus are willing to donate spare
protons to nearby molecules during fragmentation – the peptides going into
gas phase are ionized by capturing a small number of protons (typically 1–3
in the data we have seen). In the receiving chamber, a strong electric field
propels the ions toward a flight tube. This electric field is typically set up by
raising the potential of the plate itself (to V) before the laser is fired; the flight
tube entrance is at zero. The flight tube itself is field-free, so the ions drift with
the velocity imparted by the electric field until they reach a detector at the far
end of the tube. The detector attempts to record the number of ions hitting it as a
function of time of flight, assembling an initial form of the spectrum. Typically,
several (∼100) laser shots are made and the resulting spectra are summed to
produce the final spectrum examined. To first order, the ions all cover the same
potential difference and thus the kinetic energy imparted is proportional to the
number of unbalanced charges, z (spare protons), the ion is carrying. The flight
tube itself is typically much longer than the region over which the potential
difference exists, and so the time spent in the acceleration region is typically
discounted and the ion is treated as moving at a fixed velocity down the flight
tube. Equating expressions for kinetic energy, we get

1

2
mv2 = zV .

As the velocity is fixed in the drift tube, v = L/t where L is the length of the
tube and t is the time of flight. Substituting and rearranging the above equation,
we get

m/z = t2(2V/L2) = kt2,

showing how the m/z ratio can be inferred from the time of flight.
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Fig. 1.8. Two views of the same MALDI-TOF spectrum. (A) Intensity plotted as a
function of m/z, which is the standard display option. (B) Intensity plotted against time
of flight, which is directly recorded by the instrument; m/z is a derived quantity. There
are two natural scales on which to look at this data, as the time to m/z mapping is not
linear.

MALDI spectra are commonly supplied as comma-separated value (CSV)
files with two columns, containing the m/z value and spectrum intensity for
each digitizer sample. Ignoring the m/z values, the rows give intensities that
are equally spaced in time. An example of a MALDI spectrum is shown in
Figure 1.8. The same spectrum is plotted against m/z in the panel A (the
most common display option), and against file row in the panel B. This dual
presentation is to emphasize that there is more than one natural scale on which
to examine this type of data. This spectrum was derived from a serum sample,
and peaks at 66 kDa and 150 kDa correspond to albumin and immunoglobulin,
known serum proteins. Most of the interest in the biomarker papers published
to date has been focused at somewhat lower m/z values; the identities of many
of the peaks seen here are not known, and we want to find some that are present
in patients with disease and not present in those without, or vice versa.

It is important to realize that not all of the peptides present in the sample
will be seen in a spectrum. Different types of matrix can cause different groups
of peptides to ionize more readily, so choosing a specific matrix amounts to
choosing a subset of the peptides to be examined. It is common to further subset
the peptides by “fractionating” the samples in a variety of ways; some separation
axes include pH (acidity) and hydrophobicity (greasiness). Fractionation yields
two clear benefits. First, it can allow for more precise identification of a peptide
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of interest. Several peptides may share a common (or very similar) m/z value,
and thus be “aliased” if the entire sample is used. Fractionation introduces
a second axis of separation for dealiasing. Second, it can remove (or split
off) some of the most abundant peptides. This is an issue because our present
instruments have a limited dynamic range, so if an abundant peptide is present
at a level of 100, a trace peptide present at a level less than 1 will simply not
be seen. The dynamic range of protein expression is thought to cover 9 or so
orders of magnitude, which means that truly scarce peptides will be difficult
to detect even with extensive fractionation [21]. The downside of fractionation
is that it requires more time, effort, and amount of starting material. One
variant of MALDI, known as surface-enhanced laser desorption and ionization
(SELDI), works by depositing the sample/matrix mixture on a chemically
precoated surface, where different surface coatings allow us to bind different
subsets of peptides with high efficiency. SELDI has been commercialized by
the company Ciphergen, which sells chips with different coatings preapplied, so
some fractionation is done for you. Ciphergen also sells their own instruments
and software, but there has been some experimentation with reading Ciphergen
chips with other instruments.

Having introduced the structure of the data, we now turn to processing
issues: Given a set of spectra, what do we have to do to it before analyzing an
expression matrix? A partial list of important steps includes

• Spectral calibration
• Correcting for matrix noise
• Spectral denoising
• Baseline estimation and subtraction
• Peak detection and quantification
• Normalization
• Looking for common patterns and modifications (harmonics)

and we will address each in turn.
Earlier, we derived the relationship m/z = kt2. In theory, physical param-

eters such as the potential difference, tube length, and digitizer rate of the
detector are known and a value for k can be derived. In practice, the same peak
may drift slightly over time due to changes in the instrument. One common
way of addressing this problem is to run a “calibration sample” consisting of
only a small number of proteins whose identities are known a priori, produc-
ing a spectrum with a small number of clearly defined peaks, as illustrated in
Figure 1.9. The masses of the peptides are known, the flight times are empiri-
cally observed, and a set of (mass, time) pairs is used to fit a quadratic model
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Fig. 1.9. A SELDI calibration spectrum. The sample was composed of a small number
of known peptides, and the associated peaks are clearly seen. The known masses and
the observed times of flight are then used to fit a quadratic calibration equation.

of the form

m/z = at2 + bt + c

by least squares. The model parameters found are then assumed to hold for
several samples. These parameters can change over time, so it is often useful
to check that some of the biggest peaks seen “line up” across samples [29].

Matrix noise is a problem unique to MALDI. When a sample is blasted
with a laser, many things break free, not just the peptides of interest. This
other, unwanted stuff is colloquially referred to as “matrix noise,” and it is
predominantly present at the very low m/z end of the spectrum. Matrix noise
can often saturate the detector, and detectors do not immediately recover after
saturation. This effect is quite unstable [41]. Empirically, this has largely been
addressed by excluding values below some chosen m/z cutoff. Exactly where
this cutoff should go is not clear, and it can be affected by other machine settings
such as the laser intensity. Higher intensity settings can blast loose heavier ions,
allowing higher m/z regions to be explored, but these same settings kick up more
noise and distort a larger low m/z region with noise. Conversely, low m/z regions
can be probed with lower laser settings.

Mathematically, we tend to think of spectra as being composed of three
pieces – the signals we want to extract, which are present as peaks, a smooth
underlying baseline, and some high-frequency noise. In short,

Yi(t) = kiSi(t) + Bi(t) + εit ,

where Yi(j ) is the intensity of spectrum i at time index t , ki is a normalization
factor, Si is the protein signal of interest (a set of peaks), Bi is baseline, and
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Fig. 1.10. Two raw MALDI spectra, with the peaks and intensities automatically flagged
by software superimposed. There are differences in baseline and scaling visible in the
raw spectra. These differences should be corrected for, but this was not done for the
peaks found. Baseline cannot be estimated from the peaks alone.

ε ∼ N (0, σ 2(t)). We would like to remove the noise, subtract the baseline,
estimate the peaks, and scale the spectra. There is a natural order to these
steps, and performing them out of sequence (or omitting some) can make the
downstream analysis more difficult.

Many mass spectrometry instruments are sold with associated software that
will perform peak detection and quantification automatically, but these may
not address all of the steps. For one data set we examined, we were supplied
with both raw spectra and associated lists of peak locations and intensities. Two
spectra from this set are plotted as curves in Figure 1.10, with the peaks supplied
plotted as asterisks. The two spectra obviously have different baseline levels,
still have additive white noise present, and may involve different normalization
factors. However, the peak lists supplied use the intensities from the peaks
before adjusting for baseline or normalization, and baseline cannot be reliably
estimated from the peaks alone. We also note that one of the larger peaks,
near m/z 36,000, is missed in one spectrum because it was not “sharp enough.”
Matrix noise is present at the very lowest m/z values, where the spectra jump
out of view [10].

One problem with both denoising and peak detection is simply that peaks
can have different shapes in different parts of the m/z range; higher m/z peaks
are broader. Some factors that can contribute to this broadening are uncertainty
in the initial velocity of the peptide, isotopic spread, and the nonlinearity of
the clock tick to m/z mapping. The last of these was mentioned earlier, so we
expand only on the former two. When peptides are blasted loose from the ma-
trix crystal, all peptides of the same type do not break out with the same initial
velocity. Rather, there is a velocity distribution, causing the peak to be spread
out. This spread becomes more pronounced the longer the peptide drifts down
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the tube, and is thus bigger at higher m/z values. For higher m/z peptides, the
definition of “mass” can actually be somewhat ambiguous. Carbon, for exam-
ple, exists 99% as 12C and 1% as 13C. If a peptide contains 100 carbon atoms,
the mass contribution from these atoms will be roughly 1,200 plus a small
integer; this integer will have a Poisson distribution with mean 100 ∗ 1% = 1.
Similar effects are associated with other elements. The overall isotopic spread
widens as mass increases, so that it is common to refer to both the monoisotopic
mass (assuming all carbons have mass 12) and the average mass (incorporating
the isotopic effects). It is possible to devise an approximate isotopic spread for a
peptide given either mass estimate, using the general abundances of carbon and
other elements in the population of amino acids. This can be used to sharpen
the peaks through deconvolution.

There are a number of denoising filters that exist for spectra (e.g., Savitzky-
Golay), but we admit a preference for wavelet-based methods that adapt natu-
rally to the multiscale nature of the data. Here, we map to the wavelet domain,
zero out the small coefficients (hard thresholding), and map back before looking
for peaks [19].

Once the spectra have been smoothed, we attempt to estimate baseline. At
present, we do not use very sophisticated algorithms for this purpose, gener-
ally sticking with a local minimum fit so that negative intensities will not be
produced by subtraction. Again, the “local” neighborhood used needs to be
altered as m/z increases. Even with basic algorithms, the effects can be rather
dramatic. In Figure 1.11, we show spectra derived from 20 pH fractions for a
single patient both before and after denoising and baseline subtraction (panels A
and B, respectively). In this case, baseline subtraction causes the more dramatic
effect, giving all of the base levels the same hue. As an aside, we note that this
display also points out that fractionation is an imperfect procedure, and that
signal from the same peptide can be found in several adjacent fractions.

After subtracting baseline from smoothed spectra, we still need to identify
peaks and get summary values for them. A first pass approach can use a simple
maximum finder. We could attempt to use peak areas instead, but we do not
pursue this here. We note, however, that locating the peaks can be aided by
considering a set of spectra rather than a single spectrum. Assuming the spectra
have been roughly aligned, we have found it useful to average spectra within a
group and perform peak detection on the average spectrum [45]. Averaging may
even be useful before doing wavelet denoising, as small peaks can be reinforced
as the noise level drops, and they can be retained. Values for individual spectra
can be extracted as local maxima in small windows about the central peak
location. The width of this window can be linked to the nominal precision of
the instrument. For a low-resolution instrument, the uncertainty can be on the
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Sample spectra before baseline correction and denoising

Sample spectra after baseline correction and denoising

Fig. 1.11. Spectra derived from 20 pH fractions of the serum from a single patient.
(A) Raw spectra. There are clear differences in baseline, seen as different shadings for
the rows. There is also some unwanted noise, visible as periodic ripples in the spectra.
(B) The same spectra after correcting for baseline and denoising. Peaks stand out more
clearly against a flat “surface.” In both cases, peaks can extend across neighboring
fractions, as the separation process is imperfect.

order of 0.1% of the nominal m/z; higher-resolution instruments will attain
mass accuracies expressed in parts per million (ppm).

Before comparing peak intensities across spectra, we need to normalize the
spectra to make them comparable. One common method is to use the total
ion current, or summed intensities for the entire spectrum. This is done after
excluding the matrix noise region and subtracting baseline. This step is where
we feel there is the most room for improvement, as there may be local scaling
factors that are more appropriate than a single factor throughout. Even if a
single scaling is to be used, it may be better to identify a small number of key
peaks that appear to be relatively stable and to target the median log ratio for
the set of peaks.

Having identified some peaks as being of potential interest, it also makes
sense to look at other peaks that may be related (as assessed by correlation)
or that should be related. The idea of “should be related” is different for mass
spectrometry data than for microarray data in that there is a natural ordering to
the peaks in a spectrum. In Figure 1.12, we show zooms on two distinct regions
of averaged spectra from a higher-resolution (Qstar) instrument. The patterns
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Fig. 1.12. Two regions derived from the average of several high-resolution Qstar spectra.
(A) The m/z range from 7,600 to 8,400. (B) The m/z range from 3,800 to 4,200 [values
exactly half those in (A)]. The peak patterns in the two panels are perfectly aligned, as
we are seeing the same peptides. In (A), the peptides are singly charged (z = 1), and in
(B) they are doubly charged (z = 2). Other regularities [offsets of 189 in (A)] are due
to further identifiable phenomena (matrix adducts).

of peaks look the same, though the m/z range in the bottom panel is half that
of the top panel, and the intensities are dramatically reduced. In this case, the
parallel structure is due to the fact that the two panels are showing singly and
doubly charged versions of the same peptides; finding the appropriate harmonic
patterns on the m/z scale can tell us the charge state of the peptide (and thus its
mass) and provide some reassurance that we have identified it correctly. (With
higher-resolution data, the charge state can also be inferred from the spacing
between isotopic peaks, which should be 1 Da apart.) Looking at the top panel,
we can also see that there are groups of peaks offset from each other by 189
Da. This offset mass matches that of a single molecule of the matrix used
here: α-cyano-4-hydroxycinnamic acid. These peaks are referred to as matrix
adducts. Similarly, there are smaller peaks close to the biggest one, with the
largest ones 18 Da below the main peak and 22 Da above. These correspond
to loss of a water molecule or replacing an ionized hydrogen atom with one of
sodium, respectively. Viewing the ensemble, we can see that almost all of the
peaks visible here are differently modified forms of the same major peptide.

Graphically, we have found it useful to construct heat maps of the spectral
regions surrounding peaks identified as potentially useful markers in a few
different ways. First, in a very localized region (say 20 Da on either side)
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simply to check that the peak is reasonably clear. Second, in a larger window
going out to either side by 250 Da or so, which is wide enough to capture most
matrix adducts and common modifications such as phosphorlyation (a mass
offset of 80 Da). Third, by checking heatmaps at half and twice the nominal
m/z value to check the charge state.

Finally, a note of caution. The use of mass spectrometry data for biomarker
discovery is more recent than the use of microarrays, and there are a number of
external factors that can introduce unwanted biases. Some of these are discussed
in Baggerly et al. [8, 9] and Villanueva et al. [70]. These tools are incredibly
sensitive, which they need to be if they are to pick up new biomarkers. This very
sensitivity, however, means that they will also pick up changes in experimental
conditions quite well. In terms of keeping track of and reporting on your data,
we recommend Ransohoff [54] for a discussion of some of the issues, and
McShane et al. [43] for a more specific set of guidelines.

1.5 Finding Data

Simply discussing the features of various types of data is no substitute for
diving in and working with raw data. If possible, we recommend visiting labs
as the data is being collected or trying to collect some yourself. (Our colleagues
have been willing to work with us on test cases.) Even without that, raw data
of the types discussed are readily available on the Web.

Lots of microarray data has been on the web for a while, and much more
has been posted since the advent of the minimum information about a mi-
croarray experiment (MIAME) standards [15]. Several major journals now
require that the raw data be made available at the time of publication. For
Affymetrix data, the first place to go is simply the company’s web site,
www.affymetrix.com. Sample data sets for several different chip types are
available, as are all of the CDF files, probe sequences, and the latest annota-
tion for what the probes on the chips actually correspond to. Registration is
required, but free. For cDNA microarray data (and Affymetrix data), we also
recommend the Gene Expression Omnibus (GEO) maintained by the NCBI, at
http://www.ncbi.nlm.nih.gov/geo.

For SAGE data, we recommend SAGE Genie [14], maintained as part
of the Cancer Genome Anatomy Project (CGAP), at http://cgap.nci.

nih.gov/SAGE.
The data repositories for mass spectrometry data are not yet as extensive, but

several proteomics journals are getting set to require raw data in a fashion akin
to MIAME, so we hope this will change shortly. In the meantime, there are a few
sites that have data of various types. The best known is probably the Clinical
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Proteomics program jointly run by the NCI and FDA [48]. The databank is
currently located at http://home.ccr.cancer.gov/ncifdaproteomics/
and has various SELDI and Qstar data sets. Questions have been raised
about the quality of some of this data, and we strongly recommend read-
ing Baggerly et al. [8] for a more detailed discussion of some of the is-
sues involved. There is some SELDI data available from M.D. Anderson, at
http://bioinformatics.mdanderson.org, together with Matlab scripts
for processing and analysis.
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Abstract

A class of probability models for inference about alterations in gene expression
is reviewed. The class entails discrete mixing over patterns of equivalent and
differential expression among different mRNA populations, continuous mixing
over latent mean expression values conditional on each pattern, and variation
of data conditional on latent means. An R package EBarrays implements in-
ference calculations derived within this model class. The role of gene-specific
probabilities of differential expression in the formation of calibrated gene lists
is emphasized. In the context of the model class, differential expression is
shown to be not just a shift in expected expression levels, but also an assertion
about statistical independence of measurements from different mRNA popula-
tions. From this latter perspective, EBarrays is shown to be conservative in its
assessment of differential expression.

2.1 Introduction

Technological advances and resources created by genome sequencing projects
have enabled biomedical scientists to measure precisely and simultaneously
the abundance of thousands of molecular targets in living systems. The effect
has been dramatic, not only for biology, where now the cellular role for all
genes may be investigated, or for medicine, where new drug targets may be
found and new approaches discovered for characterizing and treating complex
diseases, the effect has also been dramatic for statistical science. Many statisti-
cal methods have been proposed to deal with problems caused by technical and
biological sources of variation, to address questions of coordinated expression
and differential expression, and to deal with the high dimension of expression
profiles compared to the number of profiles. Our interest is in the question of
differential expression. We do not attempt to review the considerable body of

40
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statistical research that addresses this question; we focus here on methods for
this problem that are related to a class of hierarchical mixture models.

A model is hierarchical if it describes observed variation using both latent
random variables and the conditional variation of data given realizations of
these latent quantities. In our work, the latent random variables include gene-
and condition-specific expected values, these being the target quantities that
one would measure in the absence of either biological or technical variation.
Hierarchical models naturally incorporate multiple sources of variation, and
they have an important role in the analysis of experiments with few microarrays
because they can channel relevant information from other genes into gene-
specific calculations, thus improving sensitivity.

The term mixture model can be used in a very broad sense to describe
distributions; however, in expression work it has the following narrow inter-
pretation: gene-specific hypotheses about differential expression are treated as
latent discrete random variables. In comparing two mRNA populations, for
example, it is as if a gene tosses a coin to decide whether or not it is differen-
tially expressed, and then produces data distributed according to the particular
outcome. Mixture models are convenient in structuring high-dimensional in-
ference; genes become apportioned to different components of the mixture
model. Often this modeling is done late in the data analysis stream: a mixture is
fit to one-dimensional gene-specific summary measures (e.g., p values) rather
than to the full data, and thus it may be unable to recover information lost by
forming these summaries. Another problem is that some mixture methods rely
on permutation to develop null distributions. This can be effective but it can
fail when there is limited replication, as is often the case.

The first empirical Bayesian analysis of expression data was published in
2001. Focusing on preprocessed, two-channel microarray data, our group noted
an inefficiency of the naive fold change estimator R/G, obtained from each
gene’s intensity measurements R and G in the two color channels on a spot-
ted cDNA microarray (Newton et al. 2001). Our model-based estimate of fold
change was (R + c)/(G + c) for a statistic c which depends on sources of
variation affecting the intensity measurements and which is computed from
data on all genes. This modified fold-change estimator emerged as an in-
termediate between the posterior mode and posterior mean of the true fold
change in the context of a specific Gamma-Gamma (GG) hierarchical model.
We showed by simulation how this estimator has reduced mean squared er-
ror (log scale) and also how the gene ranking is improved. In addition, this
2001 JCB paper addressed the question of testing for differential expression
in the context of a parametric hierarchical mixture model, and gave formulas
for the posterior probability and odds of differential expression. The paper also
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noted a statistical curiosity of testing in this mixture model context, namely,
that the number of genes that may be confidently declared to be differen-
tially expressed may be much smaller than the estimated proportion of genes
that are truly differentially expressed. This concept is helpful in formalizing
power calculations. Further, in spite of improvements in statistical comput-
ing, we also recognized in this first paper the importance of computationally
efficient methods in the domain of high-throughput data; our models were
sufficiently simple that Markov chain Monte Carlo methods could be safely
avoided.

The 2001 JCB paper concerned both testing and estimation for high-
dimensional microarray data based on novel hierarchical and mixture-modeling
structures. However, the delivered methodology remained rather limited; it
handled single-slide spotted-array data comparing expression profiles in two
conditions. There was nothing intrinsic to the model development that forced
such restrictions, and so we pursued extensions that allowed replicate ex-
pression profiles in multiple mRNA populations (Kendziorski et al. 2003).
There, we extended the GG calculations to this setting and we also devel-
oped parallel calculations based on a log-normal-normal (LNN) hierarchical
specification. Emphasis was taken away from estimation of fold change and
was transferred to computing posterior probabilities for various patterns of
equality among gene- and condition-specific expected values. This has more
relevance for inference with multiple mRNA populations. Tools to implement
the multigroup inference calculations were offered in the Bioconductor package
EBarrays.

Data analysts tend to favor methods that are simply structured and that have
little reliance on modeling assumptions. A popular approach to differential ex-
pression, for example, is to apply ordinary statistical procedures (such as the
t-test) separately to each gene, and then to paste the inferences together in some
reasoned way (e.g., Dudoit et al. 2002). Although often effective, this approach
usually rests on implicit assumptions about variation and it can suffer inefficien-
cies when shared properties of genes are not well accommodated. EBarrays,
on the other hand, delivers inference summaries by attempting to capture the
relevant sources of variation of the entire high-dimensional expression profile.
It is explicit about the underlying assumptions:

(i) Parametric observation component (log-normal or Gamma)
(ii) Parametric mean component (conjugate to observation component)

(iii) Constant coefficient of variation
(iv) Only marginal information (rather than among-gene dependence) is

relevant
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Much experience with the package indicates good operating characteristics, es-
pecially when the number of replicate chips per condition is low. In examples
where the parametric fit is poor it is beneficial to have more flexible meth-
ods. Work since Kendziorski et al. (2003) has investigated these assumptions,
examined their significance, and generalized the methodology.

Adopting our proposed mixture structure, but not the hierarchical modeling
elements, Efron et al. (2001) described a nonparametric empirical Bayesian
analysis for assessing differential expression. The nonparametric nature of the
analysis is appealing, since it seems to alleviate parametric constraints and may
thus be favored in routine data analysis. However, the flexibility is somewhat
illusory; it enters mainly in estimation of a one-dimensional distribution of
gene-specific summary measures. The proposed method relies on permutation
to assess a common null distribution (so it can fail when the number of replicate
microarrays is low), and takes advantage of the large number of genes to develop
the nonparametric density estimate. Further, assumptions about the suitability
of the proposed gene-specific summary statistic are left implicit. Importantly,
the Efron et al. (2001) paper may have been the first to relate gene-specific
posterior probabilities of equivalent expression to rates of false detection in a
reported list of genes. Much subsequent research on the control of the false
discovery rate (FDR) seems to stem from this observation.

In the following sections we visit a few topics relevant to inference about
expression alterations that seem to be notable developments since our first work
in the area.

2.2 Dual Character of Posterior Probabilities

In the context of multiple simultaneous hypothesis testing, posterior probabili-
ties have a curious dual character that other testing summaries lack. The duality
is almost transparent once stated, but we think it is worth noting here because
it simplifies the interpretation of gene lists.

Each gene j from a large set of J genes may or may not be differentially
expressed between two mRNA populations. We say it is equivalently expressed,
EEj , if it is not differentially expressed; data are analyzed to assess this null
hypothesis. A Bayesian (or empirical Bayesian) analysis yields the posterior
probability ej = P (EEj |data); a non-Bayesian analysis might yield a p value
or some other gene-specific summary statistic.

Genes exhibiting the strongest evidence for differential expression will be
those with the smallest ej , and one could naturally consider forming a list of
discoveries, D = {j : ej ≤ τ }, for some threshold τ . The duality is this: gene
j gets to be in D by virtue of the small magnitude of ej . At the same time, ej
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is the probability (conditional on the data) that this assignment is a mistake.
In other words, it is the probability of a type I error; that gene j should not
have been placed on the list of differentially expressed genes. The magnitude
ej conveys both a decision about j and the conditional probability of a faulty
decision. Other gene-specific summaries, like p values, do not have this dual
character.

The property is useful for multiple simultaneous inference because the ex-
pected number of false discoveries (conditional on the data) is simply

cFD(τ ) =
∑

j

ej︸︷︷︸
error rate

1[ej ≤ τ ]︸ ︷︷ ︸
discovery

(2.1)

and the conditional false discovery rate is cFDR(τ ) = cFD(τ )/N (τ ), where
N (τ ) = ∑

j 1[ej ≤ τ ] is the size of the list. A list D formed from all genes for
which ej < 5%, for example, has cFDR less than 5%. A more refined usage
tunes τ to set the conditional false discovery rate at some value like 5%, and
has been called the direct posterior probability approach to controlling this
rate (Newton et al. 2004).

In Efron et al. (2001), ej was called the local FDR because it measured
the conditional type I error rate for that specific gene. Storey (2002) criticized
the unmodified use of ej ’s for inference because they lack error rate control
simultaneously for a list of discovered genes. Averages of ej values over a
short list of reported genes convey a more useful multiple-testing quantity.
Storey (2002) introduced the q value as a gene-specific inference measure that
carries a multiple-testing interpretation. In our notation, the q value for gene
j is qj = cFDR(ej ). This is the expected proportion of type I errors among
those genes k with ek no larger than that of the input gene j . The procedure that
rejects all null hypotheses EEj for which qj ≤ 5% targets a marginal FDR
of 5%. Literature on q values centers on the analysis not of raw data (or ej ’s)
but of p values derived from separate gene-specific hypothesis tests. Since p
values do not have the dual character described above, their distribution needs
to be modeled as a mixture in order that q values can be derived. In this way,
modeling is transferred from the full data down to gene-specific p values. An
advantage is that it is easier to be nonparametric with one-dimensional statistics;
a disadvantage is that information may have been lost in first producing the
gene-specific p values.

The dual character of posterior probabilities was pointed out in Newton et al.
(2004), though the issue is understood in other work (Genovese and Wasserman
2002; Storey 2003; Müller et al. 2005). Notably, Müller et al. (2005) tackle the
issue from a more formal Bayesian position, and study list-making inference
as a general decision problem.
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2.3 Differential Expression as Independence

Consider replicate profiles available from two mRNA populations, and al-
low that preprocessing has removed systematic sources of variation. Gene
j provides measurements xj = (xj,1, xj,2, . . . , xj,m) in one condition and
yj = (yj,1, yj,2, . . . , yj,n) in the second condition. The concept of equivalent
expression, EEj , and its counterpart differential expression, DEj , are hypothe-
ses that require some definition in terms of their effect on the probability density
p(xj , yj ). Most studies focus modeling on the null hypothesis EEj . One could
state this in terms of a common expectation µj = E(xj,i) = E(yj,k) (for any
chips i, k) that the measurements are targeting, or one could state it in terms
of exchangeability of all the measurements. Then under the null hypothesis,
permutation of microarray labels would be valid, and this could be used to
generate a null distribution of a test statistic (e.g., Dudoit et al. 2002). Such an
approach can be effective when the number of microarrays is large, but notice
that the approach avoids defining differential expression as anything more than
the opposite of EEj . The approach adopted in EBarrays does not require per-
mutation and can be applied when there are very few replicate microarrays. In
it, DEj is defined as independence of xj and yj . This independence is marginal
with respect to any gene level parameters and is conditional on genomic-level
hyperparameters that are not specific to gene j . That is, gene j is differentially
expressed if measurements from one condition are not useful predictors of
measurements in the second condition. By contrast, all measurements xj and
yj on a gene j that is equivalently expressed are correlated by virtue of having
a shared, latent, random mean.

For the sake of demonstration, consider a comparison in which xj and yj

are univariate (m = n = 1). The calculations embodied in the LNN model
of EBarrays consider that these (log) expression values are conditionally
independent normally distributed variables with means (µ1, µ2) and with a
common variance σ 2. Further, the means (µ1, µ2) are random effects (sup-
pressing the gene dependence); their marginal distribution is conjugate, being
normal centered at a genomic mean µ0 and having variance τ 2

0 . Thus xj and yj

have equal marginal distributions obtained after integrating the latent means:
Normal(µ0, σ

2 + τ 2
0 ). The issue of EEj or DEj enters into the dependence

between xj and yj . We assert that on EEj , µ1 = µ2 with probability 1, and,
further, that on DEj , the component means are independent. Upon integrating
the latent means, we have (1) exchangeability of gene-level measurements on
the null EEj , and (2) independence between xj and yj on the alternative DEj .
Mechanistically, we can imagine that on EEj a single mean value is realized
for the gene j , and then all the observations are generated as a random sample
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under that parameter setting. Alternatively, on DEj , each mRNA population
selects its mean value independently of the others, from the same distribution,
and measurements arise conditionally on these different means.

A model is fully specified when in addition we consider the discrete mixing
on EEj (probability p0) and DEj (probability p1). The marginal distribution
of gene-level data is

p(xj , yj ) = p0f (xj , yj ) + p1f (xj )f (yj ), (2.2)

where, conveniently, f ( ) returns a marginal density of its argument treated
as a conditional random sample given a common, latent, random mean. For
instance in the case considered,

f (xj , yj ) = p(xj , yj |EEj ) =
∫

p(xj |µ) p(yj |µ) π (µ) dµ,

where π ( ) is a normal univariate conjugate prior, p(xj , yj ) is a normal density
with common margins, as above, and with correlation 1/(1 + σ 2/τ 2

0 ) between
xj and yj owing to them having a common, latent mean. General formulas for
this LNN case, and for the GG case, are presented in Kendziorski et al. (2003).
Two-group comparisons in EBarrays are based on (2.2); the code allows other
combinations and user input of the function f ( ).

Gene-level inference is based on posterior probabilities, such as

ej = P (EEj |xj , yj ) = p0f (xj , yj )/p(xj , yj ).

Any decision about gene j is based on ej ; in this normal no-replicate case, for
example, the odds favor differential expression if

1 − ej

ej

> 1 ⇔ (xj − yj )2 > C (2.3)

where, more precisely,

C = 4σ 2(a − µ0)2

σ 2 + 2τ 2
0

+ 4σ 2
(
σ 2 + τ 2

0

)
τ 2

0

[
log

p0

p1
+ 1

2
log

(
σ 2 + τ 2

0

)2

σ 2
(
σ 2 + 2τ 2

0

)] .

In other words, we favor DEj if the measurements in the two conditions are
sufficiently far apart, the necessary distance depending on overall expression
a = (xj + yj )/2 and global parameters that delineate the different sources of
variation. Ultimately, the analysis is empirical Bayes because these global
parameters are estimated from the genomic data using an EM algorithm to
maximize a marginal likelihood.

We have presented two views about differential expression. The rather direct
view considers DEj as a difference in expected expression measurements
between the two mRNA populations, as revealed by a large difference in the
observed expression values for gene j (the difference xj − yj above, or the
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difference of averages in the case of replication). The alternative view holds that
differential expression corresponds to independence of measurements between
the two conditions; one sample is not a useful predictor of the other. This view,
which is not so widely appreciated, has the advantage of supporting a specific
alternative hypothesis to EEj with which we can develop posterior inference.
Conveniently, these two seemingly different views are two sides of the same
coin.

There is an intermediate ground on which DEj entails a shift in expected
expression without marginal independence between xj and yj . However, this
formulation is related to a nonidentifiability of the mixture model, and thus is
difficult to work with (see Newton et al. 2004). It is possible to establish that
inferences derived using the independence view of DEj (i.e., using EBarrays)
are conservative if some positive dependence happens to exist between xj and
yj on DEj . Wang and Newton (2005) show that when σ 2/τ 2

0 is sufficiently
small, then the EBarrays even–odds threshold C [see (2.3)] is larger than the
threshold C ′ one would have computed if one were supplied with the correct
correlation between xj and yj . In other words EBarrays is conservative: DEj

is harder to declare using EBarrays than if you know the true distribution,
and so you make fewer claims of differential expression. It is a rather realistic
condition, furthermore, that σ 2/τ 2

0 is small, since we expect variation within a
gene (certainly variation of an average in the case of replication) to be small
compared to the variation between genes.

2.4 The Multigroup Mixture Model

Pairwise comparisons are the bread and butter of statistics, but they may not
be suitable when analyzing data from more than two mRNA populations.
Extending (2.2) to three groups by the inclusion of data zj , we mix over
ν = 4 possible discrete patterns of differential expression and one pattern of
equivalent expression:

p(xj , yj , zj ) = p0f (xj , yj , zj ) + p1f (xj )f (yj , zj ) (2.4)

+p2f (xj , zj )f (yj ) + p3f (xj , yj )f (zj )

+p4f (xj )f (yj )f (zj ).

For instance, p3 is the proportion of genes for which xj and yj are equiva-
lently expressed while being differentially expressed from zj , and p4 is the
proportion of genes that are differentially expressed among all three condi-
tions. More generally, let dj = (dj,1, . . . , dj,N ) denote the vector holding all
measurements on gene j taken across all conditions. We mix over equivalent
expression and ν patterns of differential expression so that the joint distribution
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p(dj ) = ∑ν
k=0 pkfk(dj ), where pk is the overall proportion of genes governed

by the kth pattern and fk is the distribution of data conditional on that pattern.
The patterns are hypotheses about possible clustering of the expected expres-
sion levels across the N measurements, and so, like the case above with ν = 4,
each fk becomes a product of contributions from each component of the clus-
tering. The null pattern k = 0 corresponds to µj = E(dj,s) being the same for
all samples s ∈ S = {1, 2, . . . , N}. Any pattern k partitions S into r(k) mu-
tually exclusive and exhaustive subsets {Sk,i : i = 1, 2, . . . , r(k)} on each of
which the expected expression level is constant. To complete the specification,
we write

fk(dj ) =
r(k)∏
i=1

f (dj,Sk,i
) =

r(k)∏
i=1

∫ ∏
s∈Sk,i

fobs(dj,s |µ)

 π (µ) dµ, (2.5)

where π (µ) is a random effects distribution governing the latent, gene-specific
expression means and fobs is the observation component of the hierarchical
model. Model fitting amounts to estimating the mixing proportions pk , param-
eters of the observation component, and parameters of the mean component
π (µ).

As a brief illustration, we reconsider data on gene expression in mammary
epithelial tissue from a rat model of breast cancer. Each of 10 pools of mRNA
was probed with an Affymetrix U34 chip set having 26, 379 distinct probe sets;
the 10 pools represent rats of four different genetic strains (1 Copenhagan; 5
Wistar Furth; 2 Congenic I; 2 Congenic II) where each congenic strain was
genetically identical to the Wistar Furth parental strain except for a small
genomic region in which the genome is homozygous for Copenhagan alleles,
at least one of which confers resistance to the development of breast cancer
(Shepel et al. 1998; Kendziorski et al. 2003). Expression alterations among
these groups are relevant to understanding the Copenhagan strain’s resistance
to breast cancer.

Table 2.1 shows the ν = 14 patterns of differential expression among the
4 mRNA populations (strains), and the overall equivalent expression pattern.
Previous analysis of these data (Kendziorski et al. 2003) was restricted to a
subset of four patterns, as code at that point was not sufficiently flexible to
handle arbitrary sets of patterns. Figure 2.1 shows the proportions of genes
satisfying each pattern based on fitting the LNN model in EBarrays.

Detectable differential expression is rather limited in this example, as an esti-
mated 92.7% of genes are equivalently expressed among the four rat strains. DE
pattern k = 4 represents one case of interest as it concerns genes that may be
altered by the process of congenic formation. Filtering by gene-specific poste-
rior probabilities of this pattern P (µj,1 = µj,2 �= µj,3 = µj,4|data) =: 1 − ej ,
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Table 2.1. Patterns of DE Among Four Rat Strains

k Mean patterna k Mean pattern

0 µ1 = µ2 = µ3 = µ4 8 µ1 = µ2 = µ4 �= µ3

1 µ1 �= µ2 = µ3 = µ4 9 µ1 = µ2 �= µ3 �= µ4

2 µ1 = µ4 �= µ2 = µ3 10 µ1 = µ3 �= µ2 �= µ4

3 µ1 = µ3 = µ4 �= µ2 11 µ1 = µ4 �= µ2 �= µ3

4 µ1 = µ2 �= µ3 = µ4 12 µ1 �= µ2 = µ4 �= µ3

5 µ1 = µ2 = µ3 �= µ4 13 µ1 �= µ2 �= µ3 = µ4

6 µ1 �= µ2 = µ3 �= µ4 14 µ1 �= µ2 �= µ3 �= µ4

7 µ1 = µ3 �= µ2 = µ4

a (1) Copenhagan, (2) Wistar Furth, (3) Congenic I, (4) Congenic II. Here,
µi refers to the expected expression level for mRNA population i.

we can apply the direct posterior probability approach (2.1) to control FDR.
We find that five probe sets constitute a 5% cFDR short list of genes satisfying
this DE pattern. These probe sets have ej ≤ 0.013. One of the interesting ones,
rc_AI105022_at, corresponds to Cullin-3, a gene involved in the ubiquitin cycle
and related to breast cancer tumor suppression (Fay et al. 2003). Investigating
the biological significance of altered genes such as this is part of ongoing re-
search; it is important to have tools like EBarrays which can efficiently sort
and calibrate genes by alterations of interest.

2.5 Improving Flexibility

Utility of results from the hierarchical mixture model analysis, as obtained
from EBarrays, is limited by the suitability of the four structural modeling
assumptions described in the introduction. Each of these has been the subject
of analysis, and we find that certain assumptions seem to be more important
than others. For example, the use of a parametric observation component is
often innocuous. Tools in EBarrays provide diagnostic qq-plots for this com-
ponent; both Gamma and log-normal distributions often fit well, though a search
for improved robust alternatives would be valuable. Calculations in Gottardo
et al. (in press) allow log-t errors, and thus are less susceptible to heavy-tailed
observations.

The diagnostic plots often indicate suitability of the observation component;
however, marginal diagnostics can suggest an overall poor fit from EBarrays.
This has to do with inflexibility of the distribution π (µ) of latent means.
The issue was studied in Newton et al. (2004), and there a nonparametric
mean component was proposed. A nonparametric version of the EM algorithm
enabled model fit. Comparisons indicated improvements in terms of error rates



P1: JZP

chap CUNY477-DoMueller 0 521 86092 X December 5, 2006 11:28

50 Newton, Wang, and Kendziorski
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Fig. 2.1. Estimated mixing proportions for 15 patterns of mean expression among four
mRNA populations in a rat breast cancer study: Equality of angles in a column stands
for equality of the means. Above, height of lines indicates estimated proportion of genes
in each pattern.

on short lists compared to the parametric model, gene-specific t-testing, and
the method of Efron et al. (2001). That paper also showed how to formulate the
mixture model in terms of directional alternatives, which can further improve
flexibility, but it left unaddressed an extension beyond two-group comparisons
to multigroup comparisons.

It may be that improvements obtainable by nonparametric analysis of the
mean component are modest compared to improvements that would be possible
through a more effective modeling of gene-specific variances. Advances in this
direction by Lonnstedt and Speed (2002) and Smyth (2004) are significant,
though their empirical Bayesian formulation is rather different than the one
described here underlying EBarrays. In that work, expression shifts have to do
with nonzero contributions in a linear model for expected expression, rather than
separately realized mean values. The relative merits of the two forms of mean
modeling remain to be worked out (e.g., the role played by discrete mixing
proportions is present but less prominent in the linear-model formulation).
With regard to variances, Lonnstedt and Speed (2002) and Smyth (2004) put
a prior on gene-specific variances, and this provides some flexibility beyond



P1: JZP

chap CUNY477-DoMueller 0 521 86092 X December 5, 2006 11:28

Hierarchical Mixture Models for Expression Profiles 51

the constant variance assumption in the LNN version of EBarrays. The idea
was also used by Baldi and Long (2001) and also by Ibrahim et al. (2002).
Kendziorski and Wang (2005) investigate flexible variance modeling in the
context of EBarrays.

Among-gene dependence is an ever-present concern, though it is difficult
to handle owing to the dimensions involved. Permutation-based methods are
helpful in guarding against ill-effects of dependence, but they are not always ef-
fective. Note that FDR controlling procedures are popular in part because they
are fairly robust to among-gene dependencies compared to other multiplicity-
adjustment methods. Dahl (2004), generalizing Medvedovic and Sivaganesan
(2002), investigates methodology that directly models dependence among
genes using a Dirichlet process mixture (DPM) formulation. In the Bayesian
effects model for microarrays (BEMMA), different genes share parameters in
much the same way that different mRNA populations share mean parameters
on a given gene in EBarrays. Thus, correlation among genes is explained in
terms of shared, latent parameter values. The grouping of genes into clusters
where sharing occurs is mediated by the discrete clustering distribution inher-
ent in the DPM model, and is assessed by posterior sampling via Markov chain
Monte Carlo. Dahl (2004) shows improvements in the assessment of differential
expression when one accommodates coordinated expression by this BEMMA
approach. We note that BEMMA uses DPMs in a different way than Do, Müller,
and Tang (2005), which used them to improve nonparametric inference based
on one-dimensional reductions of the gene-level data. Using a novel mixture
formulation, Yuan and Kendziorski (in press) offer another approach for using
between-gene dependencies to improve differential expression analysis.

In summary, we see rapid development of methodology for altered gene
expression based on the flexible class of hierarchical mixture models reviewed
here. As new data analysis and data integration problems emerge in genomics,
there will be further demand for such modeling in order to organize variation
and to provide effective analysis of data.
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Abstract

We review Bayesian hierarchical models for inference in microarray data. The
chapter consists of two main parts that deal with use of Bayesian hierarchical
models at different levels of analysis encountered in the context of microarrays.
The first part reviews a Bayesian hierarchical model for the estimation of gene
expression levels from Affymetrix GeneChip data, and for inference on dif-
ferential expression. In the second part, an integrated model that incorporates
expression-dependent normalization within an ANOVA model of differential
expression is reviewed and compared to a model where normalization is prepro-
cessed. The chapter concludes by discussing how predictive Bayesian model
checking can be usefully included within the model inference.

3.1 Introduction

3.1.1 Background

Microarrays are one of the new technologies that have developed in line with
genome sequencing and developments in miniaturization and robotics. The
technology exploits the fact that single-stranded RNA (or DNA) molecules
have a high affinity to form double-stranded structures. Pairing is specific
and complementary strands have particularly high affinity for binding. On
microarrays gene-specific sequences are attached in tiny specified locations.
By hybridizing a cell sample of fragmented, fluorescently labeled RNA (or
DNA) to the array and measuring the fluorescence at the defined locations, one
can obtain measures of the amount of the different RNA or DNA transcripts
present in the sample hybridized.

53
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Arrays generally contain thousands of spots (or probes) at each of which a
particular gene or sequence is represented. In effect, a microarray experiment
thus represents data comparable to that obtained by performing tens of thou-
sands of experiments of a similar type in parallel. The experiments on a given
array will share certain characteristics related to the manufacturing process of
the particular array used, the extraction and handling of the biological sample
hybridized to the array, as well as the extraction and preparation for hybridiza-
tion of the RNA (or DNA). The interest is in comparing expression levels
between arrays with samples from different biological conditions of interest
(e.g., cancerous against noncancerous cells) and the challenge is identifying
differences that are related to the biology of the samples rather than to technical
experimental variation.

Many of the characteristic features of experiments involving microarrays
render them particularly well suited to the flexible modeling strategy of
Bayesian hierarchical modelling (BHM). The aim of this chapter is to highlight
this by discussing in detail the steps taken for modelling the variability in gene
expression data at several levels that can be roughly qualified as variability of
the signal, biological variability, and variability due to experimental contrasts.
Beforehand, a brief summary of the key points of the BHM strategy is
presented.

3.1.2 Bayesian Hierarchical Modeling

The framework of Bayesian hierarchical modelling (BHM) refers to a generic
model building strategy in which unobserved quantities (e.g., latent effect size
associated with experimental contrasts, statistical parameters, missing or mis-
measured data, random effects, etc.) are organized into a small number of
discrete levels with logically distinct and scientifically interpretable functions
and probabilistic relationships between them that capture inherent features of
the data. It has proved to be successful for analyzing many types of complex
data sets arising in biology, genetics, and medicine as illustrated, for example,
by the case studies detailed in Gilks et al. (1996) and Green et al. (2003). The
general applicability of Bayesian hierarchical models has been enhanced by
advances in computational algorithms, notably those belonging to the family
of stochastic algorithms based on Markov chain Monte Carlo (MCMC) tech-
niques. Nevertheless, the formidable dimension of many genomics data sets
requires their use to be pertinent and efficient. It is clear that full-scale im-
plementation of BHM for analyzing large microarray experiments will require
exploitation of parallel processing as well as judicious approximations.
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There are several related aspects that render BHM attractive for analyzing
microarray data; what is particularly interesting is the ability to potentially build
all these aspects in a common modelling scheme. Of course, before encom-
passing simultaneously several components into a global model, modularity is
first exploited to study each aspect in turn. Key benefits of the BHM strategy
are:

(i) Accounting for diverse sources of variability: Gene expression data aris-
ing from experimental protocols are naturally hierarchically structured along
descending layers: Substantive question −→ Experimental design −→ Sample
preparation −→ Array design and manufacture −→ Gene expression matrix
−→ Probe level data −→ Image quantification.

Consequently, gene expression data are the end process of multiple sources of
variability, systematic and random, biologically interpretable, or obscuring. We
shall see in the next sections how the modelling translates these different sources
of variability into fixed effects (possibly dependent on unknown quantities),
random effects, and distributional assumptions.

(ii) Modelling noise additively, multiplicatively or in a nonlinear fashion: It
has been noted that, empirically, gene expression data often exhibit a complex
mean–variance relationship. Thus, data transformation functions with nonstan-
dard forms that combine additive and multiplicative noise have been proposed
(Durbin et al. 2002; Huber et al. 2002). In a BHM strategy, instead of an
all-encompassing functional transformation, two latent variables can be intro-
duced, the first to represent the true level of the data after additive background
noise correction, the second to summarize signal information on the log scale.
Each of these latent variables are interpretable and the associated distributional
assumptions can be checked separately.

(iii) Borrowing information: Gene expression experiments are used by bi-
ologists to study fundamental processes of activation/suppression. Such pro-
tocols frequently involve genetically modified animals or specific cell lines
and such experiments are typically carried out only with a small number of
biological samples, as little as 3 or 4 in each experimental condition. It is
clear that this amount of replication renders hazardous the estimation of gene-
specific variability using empirical estimates and the use of standard tests for
comparing conditions. As with many situations of sparse data, inference is
strengthened by borrowing information from the comparable units through hi-
erarchical modelling, here through the modelling of the “population” of gene
variances. Thus, genes exhibiting by chance unusual small variability across
the samples will not lead to artificially inflated test values as their empirical
variance will be smoothed toward that of the group of genes. This regularization
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process is now widely used in the microarray context, often outside the
Bayesian paradigm (e.g., Smyth 2004), but is best seen as an integral part
of the BHM strategy, as will be illustrated below. Similarly, in Section 3.2
we shall see that by combining within a single model the information from
the probe level and the biological replicates, inference on differential expres-
sion may be strengthened in comparison to analyses that treat these two steps
separately.

(iv) Propagation of uncertainty: Gene expression data is usually processed
through a series of steps that aim to correct the artefactual variations potentially
introduced by the technical treatment of the samples. For example, array effects
are estimated and subtracted in order to make the arrays overall comparable. The
uncertainty associated with these adjustments is usually not taken into account
in the final analysis. The situation is akin to that occurring in measurement error
problems, when inference is carried out on corrected values without accounting
for the uncertainty of the correction. In this case, it is known that suboptimal
inference is achieved (Carroll et al. 1995). It is thus important to investigate
whether BHM that include the preprocessing steps within the global model
carry some benefit.

(v) Model checking: An additional benefit of BHM is that without much
extra computational burden, predictive inference can be made. This aspect can
be exploited to perform model checks, so long as care is taken to avoid the
overconservativeness arising from using the data twice (Marshall and Spiegel-
halter 2003; O’Hagan, 2003). Using the structure of the hierarchical models,
predictive checks can be made at several levels to assess, for example, distri-
butional choice made for latent parameters. This aspect will be illustrated in
Section 3.4.

3.2 Bayesian Hierarchical Modeling of Probe Level GeneChip Data

In this section, we review a fully Bayesian integrated approach to the analysis
of Affymetrix GeneChip data (Hein et al. 2005). In the approach, background
correction for nonspecific hybridization, signal extraction, gene expression
estimation, and assessment of differential expression are performed as one
integrated analysis. We demonstrate how the Bayesian approach allows the
parallel nature of the thousands of hybridizations with shared experimental
characteristics to be exploited, e.g., by borrowing information between signals
within probe sets, between genes within an array, or between the same genes
on replicate arrays within a condition. The integrated treatment of the different
steps in an analysis (e.g., gene expression level estimation and assessment
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of differential expression) allows propagation of the associated errors and is
likely to lead to more realistic measures of uncertainty of parameters and
other quantities of interest. We illustrate the difference between a stepwise
approach and the integrated approach, in relation to estimation of uncertainty
and differential expression, in analyses of a controlled data set.

3.2.1 Affymetrix GeneChip Arrays

Affymetrix is one of the leading manufacturers of microarrays. Their
GeneChips differ from some of the other available array types in a number
of important ways. They are oligonucleotide arrays and, in contrast to two-
color arrays, rely on hybridization of a single, fluorescently labeled sample of
mRNA, the intermediate product between the gene sequences and their prod-
ucts: the proteins. On a GeneChip array an oligonucleotide of length 25 is
represented at each location. As genes cannot in general be uniquely identi-
fied by a single sequence of length 25, each gene is represented by a probe
set, consisting of 11–20 probe pairs. Each probe pair contains a perfect match
(PM) probe and a mismatch (MM) probe. At each PM probe an oligonucleotide
that perfectly matches part of the sequence encoding the gene is represented.
As nonspecific hybridization is known to occur, an identical oligonucleotide
except for the middle nucleotide is represented at the accompanying MM
probe. The intention is that since PM and MM probes are almost identical,
equal amounts of nonspecific hybridization will occur at these probes, and ex-
cess hybridization to the PM probe, relative to the MM probe, will be due to
specific hybridization, that is, the hybridization of the intended gene-specific
sequences.

With the launch of the GeneChips, Affymetrix provided software that allowed
gene expression values for each of the genes represented on the GeneChip ar-
rays to be calculated from the scanned array images. Initially these measures
were derived as a robust mean value of the set of background corrected PM–
MM values obtained for the probes in the probe set representing each gene
(Lockhart et al. 1996). A considerable effort has since been devoted to the
further study of probe behavior and development of gene expression estimates
with improved performance by Affymetrix and the wider scientific commu-
nity (Li and Wong 2001; Hubbell, Liu and May 2002; Irizarry et al. 2003;
Hein et al. 2005). Focus has mainly been on model-based methods that re-
sult in outlier robust and variance stable point estimates. The derived point
estimates are subsequently used in the downstream gene expression analysis,
as reviewed in a number of chapters throughout this book, typically with no
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reference to the gene expression estimation process that resulted in the point
estimates.

3.2.2 Model Formulation

3.2.2.1 Single Array Setting

Bayesian gene expression (BGX) relies on the formulation of a Bayesian hier-
archical model for the estimation of gene expression indices from Affymetrix
GeneChip probe level data. In the BGX model the estimation of gene expres-
sion measures is dealt with in two (integrated) steps: a “signal extraction” level
and a “signal summarization” level. In controlled experiments both PM and
MM probes have been found to be subject to nonspecific hybridization, that is,
even in the absence of transcripts for the gene, some fluorescence is observed
at PM (and MM) probes representing the gene, due to the hybridization of short
fragments and fragments that do not perfectly match the probes. Furthermore,
contrary to the intention, the MM probes have been found to hybridize part
of the fragments perfectly matching the PM probes. At the “signal extraction”
level of the BGX model these features are modeled by assuming that the inten-
sity observed at a PM probe is the result of hybridization partly of fragments
that perfectly match the probe (specific hybridization: Sgj ) and partly by frag-
ments that do not perfectly match the probe (nonspecific hybridization: Hgj ).
A similar pattern is assumed for the MM probe, with only a fraction φ of the
signal Sgj binding. Both specific and nonspecific hybridization is assumed to
be gene- and probe-specific, hence the indexing by g (gene) and j (probe). To
account for the common situation of the MM being bigger than the PM we
assume an additive error on the normal scale, and hypothesize

PMgj ∼ N (Sgj + Hgj , τ
2)

MMgj ∼ N (φSgj + Hgj , τ
2).

(3.1)

We omit for simplicity in this and subsequent displays of distributions to state
that these are conditional on variables appearing on the right-hand side, and are
independent over all values of indexing suffixes.

At the “signal summarization” level we proceed on the log-scale, as is
generally recommended in the microarray setting. We obtain a (log-scale)
measure of gene expression for gene g from a simultaneous consideration of the
set of signals, {Sgj | j = 1, . . . , Jg}, by assuming gene-specific distributions
for these. For the (log-scale) nonspecific hybridization parameters, Hgj , we
assume an array-wide distribution intended to capture the common experiment’s
specific characteristics of the handling of the array and sample hybridized. To
allow for zero signal and nonspecific hybridization terms while operating on
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the log-scale we shift by 1 before logging, and consequently consider truncated
normal distributions TN (obtained from a normal distribution by conditioning
the variable to be nonnegative),

log(Sgj + 1) ∼ TN
(
µg, σ

2
g

)
,

log(Hgj + 1) ∼ TN (λ, η2).
(3.2)

In Hein et al. (2005) the medians of the truncated normal distributions, θg , were
used as measures of gene expression. From experience there is little difference
between θg and µg , and as µg is computationally advantageous we use µg here.
We refer to µg as Bayesian gene expression or BGX index.

To stabilize the gene-specific variance parameters, we assume exchange-
ability

log
(
σ 2

g

) ∼ N (a, b2), (3.3)

with a and b2 fixed at values obtained by an empirical procedure in the same
spirit as Empirical Bayes approaches (for details see Hein et al. 2005). A full
specification of the model is achieved by assuming a uniform prior, U (0, 15),
on µg , which comfortably covers the range of possible log-intensities, a B(1, 1)
prior on φ, a flat normal prior on λ (N (0, 1000)), and flat gamma priors on the
precisions (τ 2)

−1
and (η2)

−1
(�(0.001, 0.001)).

3.2.2.2 Multiple Array Setting

Extending the model to a situation with multiple conditions and replicate arrays
under conditions is straightforward. We let c = 1, . . . , C refer to the conditions,
and r = 1, . . . , Rc refer to the replicates under condition c. At the first level of
the model, we allow for different additive errors on the arrays, τ 2

cr , c = 1, . . . , C,
r = 1, . . . , Rc. We assume gene-, probe-, condition-, and replicate-specific
signals and nonspecific hybridization terms, and generalize (3.1) to

PMgjcr ∼ N
(
Sgjcr + Hgjcr , τ

2
cr

)
MMgjcr ∼ N

(
φSgjcr + Hgjcr , τ

2
cr

)
.

(3.4)

We base the estimation of the expression of gene g under condition c on a joint
consideration of the full set of signals represented by the replicate probe sets
on the arrays for this gene: {Sgjcr | j = 1, . . . , Jg, r = 1, . . . , Rc}. We retain
the assumption of distributions of nonspecific hybridization that are specific to
each array and arrive at

log(Sgjcr + 1) ∼ TN
(
µgc, σ

2
gc

)
log(Hgjcr + 1) ∼ TN

(
λcr , η

2
cr

)
.

(3.5)
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As in the single array model we assume that the σ 2
gc, g = 1, . . . ,G, parameters

are exchangeable, with condition-specific distributions

log
(
σ 2

gc

) ∼ N
(
ac, b

2
c

)
. (3.6)

The hyperparameters and specification of priors are as in the single array setting,
with priors specified independently for each g, c, and r (for details see Hein
et al. 2005).

3.2.2.3 MCMC Implementation

The models have been implemented in WinBUGS and C++. In the C++ imple-
mentations a flat prior was used for φ in place of the Beta prior for compu-
tational convenience; since φ did not vary outside the (0, 1) interval in any of
the MCMC runs reported here, our results continue to be valid for the Beta
prior.

The C++ implementation performs single-variable updating using Gibbs sam-
pler steps for parameters φ and τ̃cr . Simple random walk Metropolis updates
were used for the remainder of the parameters. These were tuned using pilot
runs so that acceptance rates fell in the range (0.2, 0.3).

The sampler used by WinBUGS also relies on single-site updating, but with
some more sophisticated individual updates, based on Neal’s overrelaxation
method. This gave improved performance by reducing the chain’s autocorrela-
tion on a sweep-by-sweep basis; however, sweeps were so much slower than
those of the C++ code that this advantage was easily outweighed.

3.2.3 Performance of the BGX Model

3.2.3.1 Single Array Setting

A single array from the Choe et al. (2005) data set (condition C, replicate 1) was
analyzed using the single array model. Probe intensity values for four example
genes along with summaries of the posterior distributions of parameters related
to the expression of the genes are given in Figure 3.1. Note that to allow the PM–
MM values to be depicted for all probe pairs, the raw probe response is given
on the normal scale (upper part of Figure 3.1). In the posterior distribution plots
log-scale PM–MM values are indicated for probe pairs for which they exist, for
the remaining probe pairs they are indicated as zero (the 1’s in the lower part
of Figure 3.1). The first gene, gene 1, illustrates the case of a gene with a probe
set of intensity values that are consistently high. This is reflected in the spiky
posterior distribution of µ1. The second gene, gene 11, has a few outlying
probe pair values of which two have MM>PM. By borrowing information
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Fig. 3.1. Upper row: probe set response for four genes. Each probe set consists of
14 probe pairs. The solid lines show PM, the dotted lines plot MM, and the dashed lines
plot PM–MM. Lower row: summaries of posterior distributions of parameters related
to expression of the four genes. The 5–95% credibility intervals for the 14 log-scale
signals for each gene are shown as black horizontal lines (shifted vertically) and should
be read off the x-axis. The gray line is for the gene expression index µg . The 1’s show
the observed log(PM–MM) values (plotted at zero for PM–MM<0) for each probe pair.

from the rest of the probes in the set, the posterior signals corresponding to
these are drawn upwards toward the remaining signals. In contrast, the last two
genes have much less homogeneous probe set responses, with more probe pairs
exhibiting MM>PM, and the rest having moderate to large PM–MM values.
This is well reflected in the posterior gene expression distributions that are
flatter for both genes and for gene 331 actually multimodal.

How information is borrowed within probe sets is summarized in Figure 3.2,
left. Here mean posterior log-scale signals are plotted against their approximate
empirical values: log(((PM–MM)∧0) + 1). The stratified plots reveal that sig-
nals for probe pairs with large log((PM–MM) + 1) values but that belong to
probe sets with overall low expression (Figure 3.2, middle) are drawn down-
wards. At the opposite end of the spectrum, log-scale signals for probe pairs
with small or zero log((PM–MM) + 1) but that belong to probe sets with overall
high level of expression are drawn upwards (Figure 3.2, right). The borrowing
of information between probe sets is illustrated in Figure 3.3, left. The plot
shows shrinkage of posterior mean σg values relative to the empirical standard
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Fig. 3.2. Mean posterior log(Sgj + 1) values against log(PMgj –MMgj
∧0) + 1) for dif-

ferent probe set strata. Left: signals for all probe pairs; middle: signals for probe pairs
that belong to probe sets with at least 10 probe pairs with MM>PM, and with a mean
log(PM–MM) value of the remaining lower than 4, right: signals for probe pairs that
belong to probe sets with at most 2 probe pairs with MM>PM.

Fig. 3.3. Left: shrinkage of probe set signal standard deviation, right: posterior standard
deviation of gene expression index using one against three arrays.

deviations (calculated over the set of log(((PM–MM)∧0) + 1) values for each
probe set), resulting from the assumption of exchangeable variances (3.3).

3.2.3.2 Multiple Arrays Setting

We now consider a situation where we have a number of replicate arrays
available to study the expression under an experimental condition. We focus
on two aspects of the performance of the BGX multiple array model relative
to standard analysis using point estimates of gene expression for each array:
(1) borrowing information between replicate arrays and (2) how the signal
extraction and gene expression level estimation are integrated. We use the three
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Fig. 3.4. Summaries of posterior distributions of parameters related to expression for
four genes using three replicates. The numbers 1, 2, and 3 indicate the log(PM–MM)
values for the probe pairs on array 1, 2, and 3, respectively.

replicate condition C arrays of the Choe data set (Choe et al. 2005) to illustrate
the multiple array model performance.

Figure 3.4 shows summaries of posterior distributions related to the ex-
pression of the same genes as previously shown for the single array model in
Figure 3.1 that are obtained for a multiple array model run on the three replicate
condition 1 arrays in the Choe data (c = 1, R1 = 3). Comparing the posterior
distributions of the gene expression indices obtained in the single and triple
array analyses (Figures 3.1 and 3.4), it is seen that for three of the genes (genes
1, 11, and 31) the posterior distribution is considerably tightened by the addi-
tional information available in the triple array setting, relative to that of a single
array. This is particularly striking for gene 31, where the additional information
results in the shape of the posterior becoming clearly unimodal. In contrast, the
inconsistent probe set behavior of gene 331 is reiterated on the replicate arrays
with half of the probe pairs indicating no expression (MM>PM) and the other
half indicating moderate to high expression. The posterior distribution of the
gene expression index for this gene remains dispersed, with the multimodality
found in the analysis of the single array persisting in the triple array analysis. A
summary of the effect of borrowing information over replicate arrays is given in
Figure 3.3, right, for the full set of genes. In general, the posterior distributions
of the gene expression indices are tighter for the triple array analysis than for
the analysis of a single array.

A further illustration of the difference in the BGX multiple array approach
and the point estimate approach is illustrated in Figure 3.5 (right). The plot
shows that the standard deviations calculated over the three point estimates of
gene expression (one for each replicate) are generally smaller than the stan-
dard deviations of gene expression indices obtained in a triple array analysis.
This reflects that the posterior standard deviations from the integrated analysis
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Fig. 3.5. Mean and standard deviation of three BGX point estimates plotted against
posterior mean and standard deviation of gene expression index using multiple array
model with three replicates.

incorporate uncertainty in the estimate of the expression level (stemming from
the within probe set variability) as well as between replicated probe sets,
whereas in the point estimate case the standard deviations reflect only the un-
certainty between the three gene expression point estimates. Importantly, the
difference is not just of scale – there is little correlation between the standard de-
viation of point estimates of gene expression levels and the standard deviation of
posterior distributions of gene expression levels from the integrated analysis. In
contrast, as expected, there is a high correlation in the means (Figure 3.5, left).

3.2.4 Differential Expression with the BGX Model

In the following we illustrate the difference between a two-step and an inte-
grated approach in the context of differential expression analysis. We use the
full Choe data set consisting of two conditions, C and S, each with three repli-
cate arrays. The data set has the special virtue that it was generated by spiking
in 3,870 gene fragments at known concentrations, with concentrations varying
between conditions for a subset of 1,331 genes. Thus it is known which of the
14,010 genes represented on the arrays should be expressed and, importantly,
which genes should be differentially expressed under the two conditions.

In a step-by-step approach one first obtains a point estimate of expression
for each gene on each array, using a specific approach to process the probe
level data, and then tests for differential expression between two groups of gene
expression indices using a t-type statistic. In the microarray setting a particularly
popular choice is SAM (Significance Analysis of Microarrays; Tusher et al.
2001), which uses a t-statistic with the denominator boosted by adding a “fudge
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Fig. 3.6. Left: sensitivity (y-axis) vs. false positive rate (x-axis) for BGX multiple array
model (left, black), BGX point estimates and exchangeable variances (middle, light
gray), and with SAM (right, dark gray). Middle: posterior mean and standard deviation
relationship for BGX gene expression indices in multiple array setting. Right: mean
standard deviation relationship for BGX point estimates.

factor.” This factor is chosen so that the coefficient of variation between the
nominator and denominator is minimized. SAM produces a ranking of the
genes according to these modified t values, and uses a permutation approach to
assess significance.

Differential expression in the BGX multiple array setting may be assessed
directly, for example, by examining the posterior distributions of the differences
in log-expression levels under two conditions, µg,1 − µg,2. In the following we
obtain for each gene the ratio of the mean to standard deviation of the posterior
sample of µg,1 − µg,2, g = 1, . . . ,G, and rank the genes according to these
values.

Figure 3.6. plots sensitivity (fraction of those genes that are classified as
differentially expressed among all truly differentially expressed genes) against
false discovery rate (fraction of truly non-differentially expressed genes among
all those that are classified as differentially expressed) for the multiple array
BGX model analysis and the BGX point estimate with SAM analysis. To
produce the curves, we consider the ranked gene list for each method, and
count for each possible cutoff in rank the number of true and false positives and
negatives in the list above the cutoff. We also show results for an intermediate
procedure between these two, which uses the model defined in Section 3.3
of exchangeable variances within each condition (e.g., Lewin et al. 2005),
starting from the BGX point estimates of gene expression. This third approach
is thus a two-step procedure (like the SAM approach) but allows borrowing
of information between genes (like the BGX multiple array approach) through
hierarchical modelling of the population of variances. As with the multiple
array BGX model, the ratio of posterior mean to standard deviation of the
difference in gene expression is used to rank the genes.
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Genes declared DE by SAM Genes declared DE by BGX

Fig. 3.7. Upper row: MA plot showing differences in expression levels against mean
expression levels, using means of three point estimates to represent each condition
(left) and using mean posterior value under each condition (right). Point for genes are
color-coded according to fold change (FC). The darker the gray, the higher the fold
change, light gray is FC = 1. Lower row: Same as upper row, with genes that are called
differentially expressed by each method with a cutoff of 5% (700 genes) shown in
black.

The ROC curves show that the BGX multiple array model performs markedly
better than the other methods. Some improvement is achieved by assuming ex-
changeable variances on the point estimates (middle curve) relative to the
one-common-fudge factor approach employed by SAM. The MA plots of
Figure 3.7 illustrate the differences in performance: the SAM approach wrongly
declares many genes with low average expression differentially expressed (the
pattern for the intermediate approach is similar although weaker, not shown).
This is likely to be due to unstable estimation caused by the limited num-
ber of available replicates, which, as shown by the illustration of the mean
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variance relationship of BGX point estimates in Figure 3.6 (right), is particu-
larly pronounced at lower levels of expression, a feature that is not taken into
account in the SAM approach. Hence the SAM approach is not suitable for
analyzing BGX point estimates or any expression index with a strong mean
variance relationship. The BGX multiple array model approach also exhibits a
strong mean variance relationship on the posterior samples of gene expression
values (Figure 3.6, middle), but this is implicitly accounted for in the global
model that integrates the gene expression level estimation and the assessment
of differential expression.

3.3 Bayesian Hierarchical Model for Normalization
and Differential Expression

In the previous section, we have discussed the benefits of integrating within
a single model the low-level signal extraction and the assessment of between
condition contrasts. In this section, we again consider the way in which an
integrated approach differs from the more usual step-by-step procedures, but
this time our focus is on proposing model specifications that can also account
for flexible normalization procedure. To be precise, we now consider a model
for differential gene expression which incorporates expression-level-dependent
array effects to normalize arrays.

3.3.1 The Model

We start with an ANOVA model for the log gene expression ygcr for gene g,
experimental condition c = 1, 2, and replicate r , as suggested by Kerr et al.
(2000). Relating to the BGX model of the previous section, ygcr corresponds to
posterior mean of µgcr , from single array analyses. The model includes additive
effects for gene and array:

yg1r ∼ N

(
αg − 1

2
δg + βg1r , σ

2
g1

)
yg2r ∼ N

(
αg + 1

2
δg + βg2r , σ

2
g2

)
, (3.7)

where αg is the gene effect or overall expression level, βgcr is the array effect
(this normalizes the arrays) that depends on g through αg (see below), and σ 2

gc

is the gene-specific variance for condition c. The differential effect between
conditions is δg .
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The array effect is a function of the expression level, βgcr = fcr (αg). For
flexibility, we choose fcr to be a quadratic spline:

βgcr = b
(0)
cr0 + b

(1)
cr0(αg − a0) + b

(2)
cr0(αg − a0)2

+
K∑

k=1

b
(2)
crk(αg − acrk)2I [αg ≥ acrk], (3.8)

where the polynomial coefficients b
(p)
crk and knots acrk are unknown parameters

that are estimated as part of the model. The number of knots K is fixed (but
sensitivity to different choices of K can be investigated as part of model
checking).

The equations (3.7) and (3.8) define the first level of the hierarchical model.
At the second level, information is shared between genes to stabilize the vari-
ances. The variances are modeled as exchangeable within each condition, that
is, the variances are assumed to come from a common distribution, chosen here
to be log Normal:

σ 2
gc ∼ logNorm

(
µc, η

2
c

)
. (3.9)

The third level of the model specifies prior distributions for all the unknown
parameters, which are intended to be noninformative. The gene effects αg

and knots acrk are uniformly distributed on (a0, aK+1) where a0 and aK+1

are fixed lower and upper limits (chosen to be wide enough not to affect the
results). Polynomial coefficients b

(p)
crk have independent N (0, 102) priors and the

hyperparameters µc and η−2
c have N (0, 103) and Gamma(10−2, 10−2) priors

respectively. In this work, the differential effects δg are given independent
N (0, 104) priors.

The model is made identifiable by normalizing within each condition by
setting β̄gc. = 0 ∀ g, c, where the dot indicates that we are taking an average
over the index r . This fully identifies the model. Normalizing using all genes
within condition seems reasonable, as we do not expect systematic differences
between genes on replicate arrays.

3.3.2 Comparison of Integrated and Nonintegrated Analyses

When covariates in a regression are not measured accurately but have some
unknown variability, it is well known that ignoring this variability leads to
a bias in estimates of regression coefficients (Carroll et al. 1995). Therefore,
we would expect to obtain biased estimates of the array effects if they are
estimated in a preprocessing step, which in turn will lead to worse estimates of
the differential effects δg . To illustrate this, we compare the results from the full
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Fig. 3.8. Left panel: Array effects βgcr (lines) used for three of the simulated arrays.
The points on the plot are the simulated data points with the overall gene expression
level subtracted for each gene. Right panel: Observed false discovery rate (FDR) versus
probability cutoff pcut for the simulated data set described in Section 3.3.2. The solid
line is for the full, integrated model and the dashed line is for the prenormalized model.
Curves are averages over five simulations.

model with those found by pre-normalizing the data using array effects from
local regression smoothing (loess).

As in Lewin et al. (2005), we simulate a microarray data set with 1000
genes and three repeat arrays under two conditions. The gene effects αg range
uniformly between 0 and 10, and the array effects are cubic functions of the
gene effects. The gene variances are simulated from the model we fit (equation
(3.9)), with µ1 = −1.8, µ2 = −2.2, η2

c = 1 for c = 1, 2, giving a similar range
of variances to those we have observed in real data. The differential effects δg

are zero for 900 genes, N (log(3), 0.12) for 50 genes, and N (−log(3), 0.12) for
the other 50, with the differentially expressed genes uniformly spread over the
range of αg . The left-hand panel of Figure 3.8 shows the array effects and data
points for one set of three simulated arrays.

To calculate loess estimates of array effects, we use the R function “loess”
with ygcr − ȳgc. as a function of ȳg... The array effects β̂ loess

gcr are the values of
the loess curve for sample c and array r predicted at ȳg...

In order to assess the effect on the differential effects δg of using a prepro-
cessing step, we fit a model where we prenormalize the data by subtracting
point estimates of the array effects, y ′

gcr ≡ ygcr − β̂gcr , and run our model
without array effects.

To assess the results, we need a decision rule to classify genes as differentially
expressed or not. For the purposes of this chapter, we focus on the differential
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effects δg and use posterior probabilities to pick genes: if P(|δg| > δcut| data ) ≥
pcut then gene g is selected. The choice of δcut corresponds to a statement of
biological interest. The choice of pcut is determined by the evaluation of the
false discovery rate and/or false nondiscovery rate (Benjamini and Hochberg
1995; Storey 2002).

Based on decision rules as above, we can calculate the number of false
positives and negatives. The right panel of Figure 3.8 shows the observed false
discovery rate (FDR: the number of false positives divided by the number
of genes declared positive) for both the full and prenormalized models, as a
function of the cutoff probability pcut, for a choice of δcut = log(3). Graphs
shown are curves averaged over five simulations. The FDR is consistently
lower for the integrated model than for the prenormalized model.

The difference shown here between the full and prenormalized models is
fairly small, as the simulation is inspired by the data we use in this work,
which has small array effects. In general, the larger the magnitude of array
effects, the larger the difference between the prenormalized and integrated
models.

Note that the differences found here are not due to difference between the
loess and spline array effects. We have carried out the two-step analysis using
array effects from the full model β̂gcr = E(βgcr | data), and the results are closer
to those of the two-step model using loess array effects than those of the full
model.

3.4 Predictive Model Checking

The Bayesian setting allows us to criticize various aspects of the model from
a predictive point of view. The idea is similar to cross-validation, in which
observations are taken out of the model a unit at a time. Each time, the model
is run to obtain a predictive distribution for the statistic of interest associated
with the observational unit that has been removed, and this is compared to the
observed statistic for that unit.

There are several choices to be made in order to carry out this procedure.
The test statistic T must be chosen, along with a method of comparing its
predicted distribution to the observed value. It is possible for T to be a function
of both data and parameters; however, here we will only consider a function
of data. In this case the natural method of comparison is the “p value”, that
is, the probability under the null of T being more extreme than the observed
value.

In hierarchical models there is also a choice of how to calculate the predictive
distribution, that is, which parameters of the model to condition on. Several
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choices are considered in Gelman et al. (1996) and Bayarri and Berger (2000).
For our work we use the mixed predictive distribution proposed in Gelman
et al. (1996) and Marshall and Spiegelhalter (2003), discussed below.

Under the null hypothesis of the model being “true,” the distribution of cross-
validation p values is uniform. This property provides a straightforward way to
see if any observations do not agree with the rest. If the distribution of p values
contains a small excess of small values, these observations can be declared
outliers. If the distribution is far from uniform, the model can be said to be a
bad fit to the data.

For large data sets cross-validation is computationally unfeasible, so full
data predictive p values have been proposed as approximations to their cross-
validatory equivalent. Here the predictive distributions are calculated for each
unit simultaneously, without removing any data from the analysis. Since in this
case the data from a particular unit influences its prediction, these p values are
conservative (Bayarri and Berger 2000). Such sharing of information shrinks
the p values toward 0.5.

In order to lessen the effect of using the data twice, another kind of pre-
dictive checking for hierarchical models has been proposed, known as mixed
predictive checking (Gelman et al. 1996; Marshall and Spiegelhalter 2003).
Here new model parameters are predicted for each unit, before new statistics
are predicted. To illustrate this, consider a model for exchangeable variances,
as we use in previous sections. Simplifying, we can write

ygr ∼ N
(
xg, σ

2
g

)
σ 2

g ∼ logNorm(µ, η2)

(µ, η2) ∼ N (0, 105)Gamma(10−3, 10−3) (3.10)

Suppose we are interested in the gene variances. We choose the test statistic
Tg to be the sample variance S2

g for gene g. In posterior predictive checks

these are simply calculated from the posterior predictive distribution: y
(pred)
gr ∼

N (xg, σ
2
g ). For mixed predictive checks new intermediate parameters are pre-

dicted within the model, σ 2 (mixpred)
g ∼ logNorm(µ, η2), and the predicted “data”

is conditioned on these predicted parameters: y(mixpred)
gr ∼ N (xg, σ

2 (mixpred)
g ). To

highlight the conditioning used, Figure 3.9 shows the directed acyclic graph
for the above model, along with the extra parameters needed to calculate mixed
predictive p values.

Mixed predictive checks have been shown to be much less conservative than
posterior predictive checks (Marshall and Spiegelhalter 2003). This is because
in the latter the information in the posterior predictive distribution for any given
gene comes mainly from the data from that gene (from the posterior on σ 2

g in
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µ, η2

xg σ2
σ

2 (mixpred)
g

ygr y
(mixpred)
gr

S2
g S

2 (mixpred)
g

Fig. 3.9. Directed acyclic graph for the model in equation (3.10), with additional param-
eters used in the calculation of mixed predictive p-values. Rectangles represent data;
circles represent stochastic parameters. Double arrows indicate that one quantity is a
deterministic function of another.

our example), whereas in the former the information about a given gene only
contributes through the estimation of the hyperparameters (µ, η2), which have
been informed by all the genes.

As an example, we calculate mixed predictive p values for the model in
Section 3.3. We have done this for two data sets. The first consists of MAS 5.0
expression values for three Affymetrix arrays of wild-type mouse data, dis-
cussed in Lewin et al. (2005). The p values for this data set are shown in
Figure 3.10. They are almost uniform, suggesting that the exchangeable vari-
ance model is appropriate for this data set. The second data set is the C group
of the Choe data set (Choe et al. 2005) described in Section 3.2.2. For this data
set the p values are not uniform, suggesting that the exchangeable model on
the variances could be improved.

Software

Software for the hierarchical models described is available at http://www.
bgx.org.uk/. The code for the BGX model is written in C++, with an R in-
terface. The model in Section 3.3 is implemented in WinBUGS.
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Fig. 3.10. Mixed and posterior predictive p values for a set of wild-type mouse data and
for the Choe data.
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Abstract

We present a Bayesian process-based model for spotted microarray data incor-
porating available information about the experiment from target gene prepa-
ration to image analysis. We demonstrate that, using limited calibration data,
our method can estimate absolute gene concentrations from spotted microarray
intensity data. Number of transcripts (copies of the gene sequence) per micro-
gram total RNA are obtained for each gene, enabling comparisons of transcript
levels within and between samples. All parameters are estimated in one Markov
chain Monte Carlo run thereby propagating uncertainties throughout the model.
We reparameterize the core of the model, binomial selection, and show iden-
tifiability of the parameters. Using a small data set, we illustrate potentials
of our method discriminating it from conventional, ratio-based methods. This
chapter gives a thorough description of the statistical methodologies that form
the foundation of the biology-focused companion paper [11].

4.1 Introduction

Analysis of microarray data is challenging due to the huge number of measure-
ments made in each experiment and the large uncertainty associated with it.

75
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When spotted cDNA microarrays are used, gene expression levels are generally
measured as a log-ratio of the fluorescence intensity of two cDNA samples to
reduce systematic effects in the data, though biological information that lies
in the absolute concentrations may be lost [7, 21]. Samples are derived from
mRNA by reverse transcription and dye labeling and cohybridized to an array
of DNA probes on a microscope slide. The intensities are measured by imaging
the array in an optical scanner. There are several sources of variation associated
with each step in the experimental procedure that influence the measured inten-
sities, and hence the expression. Experimental variation is present, and includes
measurement error and unstable experimental settings, such as the RNA purity
and amount, the cDNA length and extent of dye incorporation, the quality and
quantity of probe material, and the optical characteristics of the dyes. The large
and unknown uncertainty in the data has important implications on the strategy
used to identify differentially expressed genes and to group genes or samples
with similar characteristics.

The process-based Bayesian approach we present here is based on a com-
pletely novel strategy. We follow the various steps of the microarray experiment
and build a hierarchical model, incorporating technical and scientific knowledge
in terms of explanatory covariates and known qualitative effects. The effects
of all factors and all gene expressions are estimated in one single Bayesian
procedure. Moreover, our method is able to estimate absolute concentrations of
mRNA for each gene rather than ratios. The need for developing tools to obtain
these absolute concentrations instead of or next to ratios has been expressed by
the genomics community [6, 17]. Not only are these interesting quantities per
se, but also can they be directly compared between experiments and between
genes (as opposed to ratios), and are very useful for meta-analysis.

Commonly used methods to identify differentially expressed genes rely on
a normalization of the data, which has the aim to filter out the biological
content in the data from the experimental variability, by adjusting for dye-bias,
for scanner properties, and for variation not due to mRNA differences [22].
Normalization methods are based on strong prior assumptions about relations
in the data, which are then transformed in order to recreate such expected
behaviors [22]. Typically, several noncommutative adjustments are performed
sequentially, with no propagation of uncertainty. Such normalized data are then
plugged into expression analyzers as if they were the original data, mostly
ignoring the distributional consequences of the specific assumptions they were
based upon and the transformations undergone. This can lead to diminished
ability to detect genes that are differentially expressed [24]. Furthermore, all
these methods are based on log-ratios and do not utilize the information that
lies in the intensities per se.
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Improving methods for extracting the significant information from microar-
ray data is crucial to realize the full potential of the technology. Model-based
approaches, such as two-step ANOVA [18], incorporate knowledge of inherent
characteristics of variations. Our method is a further step in this direction. Our
model follows the experimental setting more closely, including the imaging
technology, and takes advantage of available experimental covariates (for ex-
ample, specific probe-related measurements) to explain experimental variation.

In this study we present and discuss in depth the mathematical model and re-
lated Markov chain Monte Carlo (MCMC)-based Bayesian inference. Bayesian
statistics is widely recognized as a fundamental tool for discovery in genetics
[3] and the present study is a further demonstration of its use. Other Bayesian
approaches to microarray data can be found in [2, 5, 20].

Estimates of absolute concentrations for spotted cDNA microarrays have
been obtained before (see, e.g., [10] and [16]). However, in these approaches,
each gene needs individual calibration, leading to very unusual and expensive
chip requirements. Our process-based model enables estimation of absolute
concentrations of mRNA targets using only chipwise calibration. We validated
this claim extensively in a large study elsewhere [11].

The basic idea of our model is to follow the mRNA molecules from tran-
scription to hybridization and imaging. Hence, we have adopted a Bayesian
process-based approach. Such an approach is somewhat similar to the inte-
grated hierarchical model approach in [14] for Affymetrix data, because these
approaches share the philosophy of propagating uncertainties. Our model, how-
ever, follows the process more closely. We interpret the microarray experiment
as a selection procedure, where the mRNA molecules initially present in a tis-
sue solution are stepwise selected, until eventually the intensities are measured.
Starting from the unknown number of mRNAs for each gene, each step of a
typical microarray protocol is represented as a selection, where each molecule
has a certain probability of being kept in the experiment. This probability is
different for each step, gene, and sample, and is modulated by probe-related
covariates and experimental settings. For example, on some microarrays more
than one probe sequence is used to hybridize with the same target, but it is
unlikely that all these sequences are equally efficient. Also, the amount of
probe is varying and likely to be important. We show that by using quality- and
quantity-related probe information, we are able to explain much of the spot-to-
spot variation of measured intensities in our data. We treat the imaging after
hybridization and washing as an integral part of the model. This means that we
propagate uncertainty due to the imaging in the rest of the model, taking special
care of the crucial relationship between the value of the photomultiplier tube
(PMT value: an adjustable setting of the scanner) and the measured intensities.



P1: JsY

Wiel CUNY477-DoMueller 0 521 86092 X December 5, 2006 11:33

78 van de Wiel, Holden, Glad, Lyng, and Frigessi

Given the measured intensities of the finally remaining molecules per spot,
we estimate backwards all parameters related to the various covariates and the
concentration ratios (or absolute concentrations) per gene. These estimates can
be considered as normalized data, since most variation due to the technology
rather than to biological differences has been subtracted. Since all concentration
ratios (or absolute concentrations) are jointly estimated and since we use each
data channel separately, our method easily deals with complex multisample
experiments as well as single channel arrays.

Our method, which we named TransCount, is illustrated here with data from
a simple experiment with four arrays only. The data are from a standard tis-
sue (reference) and three tumor biopsies. We concentrate on questions that are
difficult to solve with conventional methods, since these problems require ex-
plicit knowledge of the joint expression distribution and knowledge of absolute
concentrations.

4.2 The Hierarchical Model

The model we construct is able to estimate actual target concentrations, which
is the number of target molecules per microgram total RNA. When selecting
genes, one may choose to use such estimated concentrations, the estimated ra-
tios, or both. The model contains three levels: first, a selection process modeling
the proportion of target molecules that have survived the several steps of the
microarray experiment; second, the translation of the number of imaged target
molecules into pixel-wise intensities; and third, the final measurement process.
We go through the several steps of the experiment and discuss which covariates
correlate with molecule survival. Furthermore, we introduce scaling factors
that scale the number of molecules that have hybridized to a total number of
molecules in the solution. The resulting hierarchical model then propagates
uncertainties properly. We describe here the experimental protocol in use at the
Norwegian Cancer Hospital, which is standard, but other protocols could be
modeled similarly.

The several selections of molecules in the microarray experiment are mod-
eled as Bernoulli trials. That is, we assume that in each step the target molecules
act independently with a success probability modulated by covariates, target,
experiment, and probe dependence. We use pt,a

s to denote the multiplicative
effect on spot s, array a, and sample t of the experimental steps described
below. The following discussion introduces the relevant covariates that we will
later use to model pt,a

s .
Preparation of the mRNA solution. The known quantity of material for sample

t (t = 1, 2, . . . , T ) on array a is denoted qt,a , for example the weight of mRNA
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after amplification. For each gene i = 1, 2, . . . , G in the study, let Kt
i denote

the unknown number of transcripts per weight unit in sample t .
Reverse transcription and dye labeling. Dye-labeled cDNAs are achieved

by incorporation of Cy3-dUTP and Cy5-dUTP during or after cDNA synthe-
sis of the mRNAs. The amount of dye and nucleotides are assumed to be in
excess, so that all mRNA molecules can in principle be reverse-transcribed
and labeled. First assume that purity is high and homogeneous, and that the
expected number of actually bound Cy3- or Cy5-dUTPs is the same for all
transcripts of all genes, since the number of binding sites, though different, is
always large enough to allow for such a geometric approximation. The expected
number of actually bound CyX-dUTPs often depends on dye, that is, there is
a chemical dye effect. This effect will be important in the imaging step de-
scribed below. We assume the qt,a · Kt

i molecules in the solution to be reverse-
transcribed and labeled independently of each other. The probability to do so
may depend on gene-, array-, and sample-specific properties, such as the sample
purity.

Purification. The two solutions are mixed. Excessive CyX-dUTP molecules
are washed away. During this process some of the cDNA target molecules
will also be lost. We expect that the success probability depends on the target
molecule length of gene i. Target length possibly influences purification since
longer molecules are less likely to be mistakenly washed off. Currently, target
length has not been included directly in the model because it is not available.
Differences in the success probability specifically caused by target length will
instead be absorbed in a gene-specific parameter.

Microarray production. The variability of probe material and microarray
production modulates the probability of successful hybridization. For a certain
spot the microarray, the pen, and the probe used influence this probability.
Consequently, both microarray and pen are included as covariates in the model,
in addition to probe quantity- and quality-dependent covariates. Because each
of the pens is used on a specific sub-grid of the microarray, the pen effect
may confound with spatial effects. Quantity of the probe material also varies.
A test slide of the printing batch is stained with SYBR green, a fluorophore
with specific affinity for the DNA probes. The fluorescence intensity is used
as a measure of probe quantity of each spot and is included as a covariate in
the model. Quality of the probe material may also vary. We distinguish two
probe-related covariates. First, the probe identification number (PID), which is
unique for a specific sequence of cDNA. Second, the replication identification
number (RID), distinguishing between replications with the same PID. We do
not distinguish here between spot center and periphery, assuming for simplicity
that each part of a spot is equally covered by probe.



P1: JsY

Wiel CUNY477-DoMueller 0 521 86092 X December 5, 2006 11:33

80 van de Wiel, Holden, Glad, Lyng, and Frigessi

Hybridization. We assume that the spatial distribution of each target molecule
is uniform over the slide and target molecules do not cluster nor repulse,
except for interaction with the corresponding probe. Let na

s be the total number
of pixels in spot s on array a. After successful cDNA synthesis, labeling,
and purification, a proportion c · na

s of the target molecules present in the
purified solution may reach spot s for hybridization. Here c is a hybridization
scaling factor, determination of which we discuss later. The success probability
depends on probe molecule properties and technical experimental conditions as
well as on target molecule properties, including probe quantity, probe length,
PID, RID, pen, and microarray. Target molecule length possibly describes the
diffusion coefficient of target molecules and could have been included here also.
Hybridization is assumed to be dye-independent [23] and the hybridization
probability is assumed to be constant in time. The model does not include
cross-hybridization.

Washing. We assume that all nonhybridized material, including nontar-
get CyX-dUTPs, is removed during microarray washing. Some hybridized
molecules might however also drop out. The success probability may depend
on probe length reflecting the binding strength and on microarray effects. We
denote the number of molecules from sample t which have survived all the
aforementioned selection processes and are ready for imaging on spot s on
array a by J t,a

s .
Imaging. The microarray is gridded and segmented into spots. The PMT

scanning voltage, possibly varying between both channels and arrays, and the
scanner-dependent amplification factor [19] are included in the model. Assume
that the background captures local luminescence features. Let Sa

s be the set of
na

s pixels in the spot and Ba
s the set of background pixels for the same spot.

Assume for simplicity that segmentation is perfect, that is, Sa
s covers exactly

the spot on the slide. Let L
t,a
j,s be the intensity measured for sample t in array a

in pixel j of spot s. Assume that the hybridized molecules J t,a
s are on average

homogeneously spread over the pixels j in Sa
s , so that the expected intensity

is the same for each pixel in a spot; hence we do not model any variability
between the center of the spot and its periphery. We then model the measured
intensity as

L
t,a
j,s = µt,a

s

na
s

+ ε
t,a
j,s (4.1)

if pixel j is in Sa
s and na

s is the number of pixels in spot s on array a. Here µt,a
s

is the expected intensity from hybridized material in a pixel of spot s, and ε
t,a
j,s ,

representing an additive measurement error in the imaging process, is a zero-
mean normal variable with variance (τ t,a

s )2. We currently plug in estimated spot
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variances. Standard calculations for normal densities show that the sample mean
and sample variance of pixel-wise values are sufficient statistics to estimate
both µt,a

s and τ t,a
s .

It is sometimes advisable to assume that the background intensity adds to
the intensity from the hybridized material to form the total spot intensity. In
this case, L

t,a
j,s = µt,a

s /na
s + ξ t,a

s /na
s + ε

t,a
j,s if pixel j is in Sa

s , while L
t,a
j,s =

ξ t,a
s /na

s + ν
t,a
j,s , if j is in Ba

s . Here ξ t,a
s is the expected background intensity in a

pixel belonging to the background of spot s, while ε
t,a
j,s and ν

t,a
j,s are error terms.

In this paper we do not use background correction. Intermediate solutions are
also possible.

The expected scanned intensity on spot s, array a, is modeled as

µt,a
s = 2fdye(t,a)PMTt,a

J t,a
s αdye(t,a), (4.2)

where dye(t, a) and PMTt,a are the dye and PMT voltage used during scan-
ning of sample t on array a, fCy3 and fCy5 are the known scanner amplification
factors, and αCy3 and αCy5 are unknown chemical and optical dye effects. Scan-
ning has to be performed so that all spot and background intensities are within
the log2-linear range of the scanner [19]. In that case (4.2) holds. Extension to
sample-dependent dye effects (i.e., αt

dye(t,a)) is possible.

4.2.1 Collapsed Model and Link Function

Each step (labeling-transcription, purification, hybridization, washing, and
imaging) is modeled conditionally on the preceding one and depends on co-
variates, the effects of which are estimated together with the unknown mRNA
concentrations Kt

i . We shall perform Bayesian inference on all parameters of
interest based on the joint posterior density. Since for binomials it holds that if
X ∼ Bin(Y, p) and Y ∼ Bin(Z, q) then X ∼ Bin(Z,pq), the nested selection
process from Kt

i to J t,a
s can simply be modeled as one binomial process. We

get

J t,a
s ∼ Binomial

(
c · na

s · qt,a · Kt
g(s,a), p

t,a
s

)
, (4.3)

where c is a scaling constant related to the hybridization process and g(s, a) is
the index of the gene on spot s on array a. Knowledge of the scaling constant
c is needed for the interpretation of Kt

g(s,a) as an absolute concentration.
A calibration experiment with known quantities (spikes) is the best way

to estimate c. Note that this can be a relatively modest experiment, since c

does not depend on genes (see [11] for discussion of this off-line experiment).
Alternatively, we can assume c = A′/A, where A is the area of the array and
A′ is the attraction area of a spot. It is difficult to define A′ exactly, but in case
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of manual hybridization (where there is limited movement of the hybridization
solution) a rough estimate of A′ is simply the spot area. We will use this in our
illustration example in Section 4.6.

We regress the overall success probability parameter pt,a
s on the several

covariates. We use the following covariates in the selection process: purity (Pt ),
microarray, probe length (plas ), SYBR green (SGa

s ), probe identification number,
replication identification number, and pen, which correspond to parameters
γ, β1,a, β2, β3, β4,i , β5,j , and β6,p, respectively. Moreover, we introduce γ0 as a
common baseline parameter and γi, i = 1, . . . ,G as a gene-specific parameter,
which represents gene-specific properties that may alter success probability
pt,a

s . Let PID(s, a), RID(s, a), and p(s, a) denote probe identification number,
replication identification number, and pen, respectively, applied to spot s and
array a. We use the following regression:

pt,a
s = L−1 (γ0 + γg(s,a) + γ Pt + β1,a + β2 plas + β3 SGa

s

+β4,PID(s,a) + β5,RID(s,a) + β6,p(s,a)
)

(4.4)

= L−1
(
γ0 + γg(s,a) + γ Pt +β̄Xa

s

)
,

where L is a link function that maps the sum to a number between 0 and 1. The
matrix Xa

s contains all covariates that can differ within repeated measurements
on the same gene. We used the censored log link L−1(x) = min(1, exp(x)). An
alternative is the logit link L−1(x) = logit−1(x) = 1/(1 + exp(−x)), which did
not give very different results.

4.3 Reparameterization and Identifiability

The hierarchical model consists of four levels:

L
t,a
j,s = µt,a

s /na
s + ε

t,a
j,s

µt,a
s = 2fdye(t,a)·PMTt,a

J t,a
s αdye(t,a)

J t,a
s ∼ Binomial

(
c · na

s · qt,a · Kt
g(s,a), p

t,a
s

)
pt,a

s = min
[
1, exp

(
γ0 + γg(s,a) + γ Pt +β̄Xa

s

)]
.

We use the normal approximation to the binomial:

J t,a
s ∼ N

(
Ct,a

s · Kt
g(s,a) · pt,a

s , Ct,a
s · Kt

g(s,a) · pt,a
s

(
1 − pt,a

s

))
, (4.5)

where Ct,a
s = c · na

s · qt,a . For obtaining easier convergence of the MCMC, we
reparameterize (4.5) in such a way that only parameters directly identifiable
based on the expectation occur in the expectation, while all the others appear
only in the variances. To perform this reparameterization, it is easier to use the
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link function exp(x) instead of min(1, exp(x)). Note that identifiability under
the relaxed link function implies identifiability under the min(1, exp(x)) link
function, because for the latter the parameter space is smaller due to the con-
straint. Then, let

αdye(t,a) = α′
dye(t,a)α,

where α′
Cy5 = 1, and α′

Cy3 and α are the new parameters to be estimated,
replacing αCy3 and αCy5. In addition J̃ ’s and K̃’s replacing the J ’s and K’s are
defined as

J̃ t,a
s = J t,a

s α

K̃t
i = Kt

i α eγ0+γi+γ Pt

. (4.6)

Then, we observe that

J̃ t,a
s ∼ N

(
Ct,a

s · K̃t
g(s,a) · exp

(
β̄Xa

s

)
, Ct,a

s · K̃t
g(s,a) exp

(
β̄Xa

s

)
×(1 − exp

(
γ0 + γg(s,a) + γ Pt + β̄Xa

s

)) · α
)
. (4.7)

Since E[na
s L

t,a
j,s] = Ct,a

s · K̃t
g(s,a)α

′
dye exp(β̄Xa

s ), all parameters except γ0, the
γi’s, γ , and α are estimable based on the mean pixel-wise values with the
described reparameterization, provided that the regression of this mean on
the covariates Xa

s is identifiable, which can easily be checked by studying the
design-matrix of the study. This identifiability based on the mean values only
is equivalent to identifiability under a Poisson selection model. The parameters
γ0, γi’s, γ , and α are estimable based on the variances and none of them occur
in the expressions for the means. When there are pieces of data without repeats
(e.g., samples hybridized only once and genes spotted only once), such single
data points must be excluded when variance-related parameters are estimated,
otherwise these estimates are shrunken. For estimating all parameters we use
a two-step procedure. First, all parameters are estimated using all data except
such special single data points. Then, the remaining unestimated concentrations
are estimated using only single data points and the posterior distributions of all
parameters as priors. In practice, both steps are done within a single MCMC
run.

We further constrained the categorical parameters for identifiability. In order
to assure identifiability of the pen parameters, we use the constraint

∑
p β6,p =

0. A similar constraint is used for the array parameter β1,a and the gene-
related parameters γi . Moreover, the mean effect of all probes per gene sums
to zero (

∑
j β4,j = 0) where summation runs over all probes in the probe set

of each gene. Similarly,
∑

j β5,j = 0, for all probes, where summation runs
over all replicates for the particular probe. In addition, microarray (β1,a), pen
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(β6,p), gene-dependent selection efficiency (γi), probe identification number
(β4,j ), and replication identification number (β5,j ) are modeled as random
effects, that is, we have β1,a ∼ Normal(0, (σA)2), β6,p ∼ Normal(0, (σP )2) and
γi ∼ Normal(0, (σG)2). Since the number of probe products per gene is usually
small, we do not use separate variance parameters for each gene, but instead
we have β4,j ∼ Normal(0, (σPID)2) for all probe sequences. Similarly, we have
β5,j ∼ Normal(0, (σRID)2) for all replications. Otherwise, all hyperparameters
are equipped with flat improper noninformative priors.

We have discussed reparameterization and identifiability under the log-link.
However, use of a logit or censored log-link is important since it conserves the
complicated nonproportional effects of factors.

4.4 MCMC-Based Inference

Markov chain Monte Carlo is needed to sample from the posterior model. We
implement a single-update random-walk Metropolis-Hastings sampler. For all
the parameters we use a simple uniform proposal: let v be the current value of
the parameter p for which a new value will be proposed, and let cp,0 and cp,1

be two constants. If the parameter is not restricted to be positive, and its prior is
Normal(0, σ 2

p ), we draw from the uniform density U [v − cp,1σp, v + cp,1σp],
otherwise we draw from U [v − (cp,1|v| + cp,0), v + (cp,1|v| + cp,0)]. If the
parameter is restricted to be positive, we draw the logarithm of the parameter
from

U [log(v) − (cp,1|log(v)| + cp,0), log(v) + (cp,1|log(v)| + cp,0)].

The two constants cp,0 and cp,1 for each parameter p were tuned such that
acceptance rates between 0.2 and 0.6 were observed. Initial values for the
parameter α′

Cy3 and the β’s are found from the data using linear regression.
Initial values for the variances of the random effects, for the J̃ ’s and the K̃’s,
are then computed from these estimates. In all these computations we substitute
all random variables with their expectations. The parameters γ0, γ , and the γi’s
are initialized such that for each gene i, the geometric mean of the success
probabilities pt,a

s becomes 0.5. This is necessary to keep the model away from
its Poisson approximation, which would not allow estimation of parameters
only present in the variance. Finally, α is set equal to the geometric mean of(

J t,a
s − c · Kt

g · pt,a
s

)2/(
c · Kt

g · pt,a
s · (1 − pt,a

s

))
.

Convergence and mixing of the MCMC chain were assessed by comparing the
results of three to six different runs and observing similar results. Details on
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the MCMC, such as the number of iterations, are reported on the TransCount
Web site.

4.5 Validation

Validation of our model is described in detail in [11] on the basis of a spike
experiment, where spikes are gene-like molecules of which the concentrations
are known exactly. The validation experiment consists of 12 dye-swaps (24
arrays in total), where all dye-swaps contained the same reference material, but
12 different cervix tumor samples. The experiment was split in two parts on two
different days; next, the hybridization scaling constant c (4.3) was determined
for the first part and the model was fitted from data of the second part, using the
estimate of the hybridization constant c. Indeed, we found a good agreement
between the estimates and the true values. Moreover, an independent qRT-PCR
validation was performed for eight genes covering the whole concentration
range. It was shown that the absolute concentration estimates correlate very
well with the qRT-PCR results, even better so than the ratios do.

4.6 Illustration

We illustrate the use of the full Bayesian approach to estimate posterior uncer-
tainty of complex quantities. Our cDNA microarray slides were produced at
the cDNA Microarray Facility at The Norwegian Radium Hospital. The probes
were cDNA clones, representing named human genes or expressed sequence
tags (ESTs). The example we describe here includes four microarrays. Spots
at the same location on each of the four microarrays contain identical probe
material and they are printed under the same conditions. Hence, these spots
have equal values for the spot-related covariates in our model. Some probes
were printed in duplicate with different pens, enabling estimation of a pen ef-
fect on the intensities. Moreover, some probes with different cDNA sequence
represented the same genes, enabling the estimation of a probe length and
probeID effect on the intensities. Finally, some probes with the same cDNA
sequence, but with a slightly different amplification treatment, were duplicated
at different positions on the microarray. These correspond to different values of
RID(s, a). A test slide of each printing series was stained with SYBR green to
assess probe quantity. A small percentage of the spots corresponded to very low
SYBR green intensities. SYBR green served as a covariate to predict success
of hybridization.

Sample preparation, hybridization, and imaging. Total RNA was isolated
from tumor tissues. Labeled cDNA was produced from 50 to 60 µg total RNA.
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Table 4.1. Design of Tumor Heterogeneity Study

Microarray Sample, dye Cy3 Sample, dye Cy5

1 Ref A
2 A B1
3 B1 B2
4 B2 Ref

The labeled samples were suspended in hybridization buffer and applied to the
array slides. Three biopsies (A, B1, B2) and a reference (Ref) were considered.
The study design is displayed in Table 4.1.

We have a loop design and a dye-swap for each sample. In this example we
focus on 100 genes corresponding to 158 spots of each microarray. Of these
100 genes 27 genes are in duplicate with different probe sequences (PID), 31
genes are in duplicate with different replications of probe material (RID), and
42 genes are singles. The 100 genes were printed with five different pens. The
probe lengths of these 100 genes were available. The four arrays were produced
in batch and a SYBR green measurement was carried out for one of them. Since
purity of the three samples was high and very similar among the three, it is not
included in the model. This design is unbalanced. Our method can be equally
used for larger data sets of thousands of genes and many samples, as shown
in [11]. To provide concentrations, the estimated numbers of transcripts were
related to the known weight of the total RNA. In this illustration experiment
we did not calibrate estimates to represent actual absolute concentrations (see
[11] for a discussion on this). Results presented here are hence correct up to a
common constant factor.

In the imaging process a laser power of 100% was used. The PMT voltage was
adjusted for the red and green channel individually to ensure that the intensity
of the weakest spots and background segments was within the linear range of
the scanner. Saturated spot intensities were corrected using the algorithm in
[19]. The GenePix 3.0 image analysis software was used for spot segmentation
and intensity calculation. Bad spots and regions with high unspecific binding of
dye were manually flagged and excluded from the analysis. No normalization
of the data was performed.

Results. Table 4.2 displays the concentration estimates for genes with rank 1,
10, 50, 90, and 100 when ranked according to the median posterior mode com-
puted over the biopsies. We summarize the results of the parameter estimates
in Table 4.3. For the random effect parameters, we only show the variance
hyperparameters here. Complete tables containing all parameter estimates and
their 95% credibility intervals may be found on the TransCount Web site.
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Table 4.2. Transcript Concentration Estimates (∗106)

Reference Biopsy B1 Biopsy B2 Biopsy A
Gene mode and mode and mode and mode and
number credibility credibility credibility credibility
and rank interval interval interval interval

16, 1 0.06 (0.03, 0.14) 0.04 (0.02, 0.13) 0.05 (0.02, 0.13) 0.05 (0.02, 0.13)
36, 5 0.06 (0.03, 0.16) 0.07 (0.03, 0.19) 0.02 (0.04, 0.22) 0.09 (0.043, 0.21)
95, 50 0.42 (0.25, 0.92) 0.27 (0.13, 0.52) 0.24 (0.16, 0.59) 0.35 (0.19, 0.66)
42, 90 2.25 (1.30, 5.40) 1.31 (0.62, 2.75) 1.60 (0.81, 3.25) 1.89 (1.05, 4.55)
49, 100 0.53 (0.27, 1.51) 9.24 (3.80, 20.5) 8.57 (4.23, 20.9) 6.46 (2.64, 14.8)

Table 4.3. Parameter
Estimates

95% credibility 95% credibility
Parameter Mode interval Parameter Mode interval

γ0 −2.343 (2.614, −2.074) σPID 0.599 (0.53, 0.702)
α 1.589 (1.195, 2.102) σRID 0.556 (0.485, 0.61)
α′

Cy3 0.365 (0.355, 0.383) σP 0.041 (0.011, 0.346)
β2 −0.17 (−0.335, 0.036) σA 0.34 (0.2, 1.031)
β3 0.254 (0.106, 0.431) σG 0.034 (0.011, 0.365)
σ 0.294 (0.269, 0.321)

From Table 4.2 it is obvious that the information from absolute concentra-
tions may be quite different from that of the ratios computed with respect to
the reference. Besides the absolute concentrations, the estimated experimental
parameters may also be of use, for example to understand critical parameters
in the hybridization process and to improve protocols. Here, we observe that
the probe length effect β2 was negative meaning that probes with short length
have a higher probability to retain molecules for imaging, after hybridization
and washing. The positive sign and magnitude of β3 imply that the SYBR
green measurement is quite useful to incorporate and indeed large SYBR green
values indicate a positive effect on hybridization.

We verified whether the results for the estimates per sample confirmed our
prior expectation: expression profiles from biopsies B1 and B2 are expected to
be more similar to each other than to expression profiles from biopsy A, since
B1 and B2 were closer to each other in the tumor. The scale of the concentration
estimates was very similar for all three biopsies. However, the correlation of
estimated concentrations for B1 and B2 was as high as ρ(B1, B2) = 0.993, while
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Fig. 4.1. Probabilities of genes to be among the 10 genes with the highest (solid) and
lowest (dashed) mRNA concentrations.

the others were lower: ρ(A, B1) = 0.912 and ρ(A, B2) = 0.928. Moreover,
all correlations with the estimates for the reference were much lower, for
example, ρ(B1, Ref) = 0.258. Hence, the results were consistent with our prior
expectations.

Potentials. We illustrate the potentials of our approach by considering specific
issues. These problems are particularly hard to solve with standard methods,
since their solution either requires knowledge of the joint distribution of gene
expression values or the ability to estimate absolute concentrations (possibly
up to a constant factor). They are solved using this approach. The gene numbers
correspond to those in the complete tables on the Web site.

(1) We evaluated the probability that any single gene in turn had a mean
concentration among the highest (or lowest) 10. We then ranked all genes
according to this probability (Figure 4.1). There are six genes with probability
larger than 0.90 to have mRNA concentration among the 10 highest, and two
genes to have concentrations among the 10 lowest ones. The value of the success
probability (here chosen as 0.90) should be as high as possible, but still such
that enough genes are selected for the purpose of the study. Low concentrations
are associated with more uncertainty than high ones, resulting in less candidate
genes with low concentration. This ranking is independent of any reference
sample.

Alternatively, we can summarize the same inference by plotting against n

the probability of a gene being among the n highest (Figure 4.2). This involves
a 100-dimensional integration of the posterior joint distribution performed
with MCMC. The plots clearly indicate if a gene is among those with high
(gene 46), intermediate (genes 13 and 33), or low (gene 91) concentration. The
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Fig. 4.3. Comparison of the absolute transcript levels in a reference and a human cervical
tumor sample, estimated from two different experiments.

steepness of the curve describes the level of concentration of a gene compared to
others.

(2) We investigated the potential for analysis of nontransitive designs and
check reproducibility of our results by splitting the data into two sets of two
arrays each: (Ref-B1, B1-B2) and (B2-A, A-Ref). We analyzed these sepa-
rately, pretending samples were not shared. Figure 4.3 demonstrates the high
reproducibility in our results. Estimated mRNA concentrations (number of
mRNA molecules per microgram of total RNA; posterior modes) are plot-
ted for each gene and sample. The two independently estimated concentra-
tions Ref1 and Ref2 for the reference and B21 and B22 for sample B2 were
similar and highly correlated. A small difference was observed for both sam-
ples, 0.188 in log10-scale for Ref and 0.231 for B2. This difference orig-
inated from the uncertainty in the estimation of γ0, a difficult task with
just two arrays. This similarity supports our claim that estimated numbers
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Fig. 4.4. Estimate-based MA plot.

of transcripts of different samples can be compared and combined, also
when originating from separate experimental schemes, with a nontransitive
design.

(3) We graphically combined fold with absolute concentration estimates
(Figure 4.4). Gene selection methods based on either folds or absolute concen-
trations alone are simplistic: a ratio of 2 “means” something different when it
is, say, 20,000/10,000 (both signals high) than when it is 20/10 (both signals
low). The same holds for absolute concentrations: two absolute concentrations
of 20,000 in tumor tissue have a different interpretation when their reference
concentrations are, say, 5,000 and 15,000. We believe it is important to vi-
sualize both ratios and absolute concentrations simultaneously. In analogy to
data-based log2-intensity and log2-ratio, define the estimate-based mean log2-
intensity and mean log2-ratio as

M ′
i =

[
4∑

t=2

log2

(
K̂t

i ∗ K̂1
i

)/
2

]/
3 and A′

i =
[

4∑
t=2

log2

(
K̂t

i

K̂1
i

)]/
3,

where K̂1
i refers to the estimated reference concentration, based on the mode

of the MCMC trace, for gene i. Figure 4.4 displays M ′
i versus A′

i for all 100
genes. This plot is an analogue to the well-known MA plot (which shows
average log2-intensity versus log2-ratio for each array). We observe that gene
49 expresses roughly 12 times more than gene 90 in absolute sense. Therefore,
one might, for example, conclude that gene 49 is more important than gene 90,
although both correspond to an approximate mean log2 ratio equal to 3.5. Of
course, for final gene selection one would need to take the uncertainties of the
estimates into account as well.
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4.7 TransCount Web Site and Computing Times

A C++ implementation of our model applied to the data in this chapter is
available on www.nr.no/pages/samba/area emr smbi transcount2.

The Web site also contains further information on how to run TransCount.
The software and a demo data set is also available as a plug-in in BASE and
may be downloaded together with a demo data set from the aforementioned
Web site. We illustrated our approach on a small data set in terms of the number
of spots and parameters. For this illustration data set, convergence was reached
after a few hours. We are currently working on several solutions for speeding
up the algorithm such as making the program suitable for parallel computing.

4.8 A Statistical Discussion of the Model

In this section, we concentrate on some statistical issues that may be of more
general use than the context of this model. Our model is a complex variant
of a simple Binomial(K,p) model with both K and p unknown. General
methods to identify K and p together have been discussed in [9]. Moreover,
the simple Binomial(K,p) model is studied in [4] in which K is the parameter
of interest and p a nuisance parameter, using an integrated likelihood approach.
In our case, γ0, γi’s, γ , and α are nuisance parameters and MCMC effectively
integrates these out, to find the posterior distribution of Kt

i . Still, acknowledging
that estimation of both binomial parameters is problematic, one may wonder
why it works in our setting.

First of all, the scaling parameter c is important. It is crucial to use this
typically small value in (4.3) to discriminate the binomial from the Poisson
distribution. If c would not be introduced, it would be absorbed by p, which
would become very small and the two distributions would become indistin-
guishable. In the validation study, c was determined by use of spikes, which are
gene-like molecules of known concentration that undergo the same experiment
as the genes.

Secondly, some of the covariates in the regression of p [in (4.4)] are shared
by many genes, which allows for better estimation of their effect and hence
also of p.

Thirdly, we assumed a N (0, (σG)2) prior for the gene-wise hybridization
efficiency parameter γi (4.4), using one common variance parameter. Note that
γi is difficult to estimate. However, use of this prior shrinks the γi estimates to
the mean. The parameter γi describes the efficiency of hybridization for gene
i independently of any other factor, including probe quantity. We can safely
assume that hybridization efficiency is not very low for the majority of genes,
so that we will obtain reasonably precise estimates of Kt

i for most genes; for
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those few genes that do correspond to low efficiencies, Kt
i is estimable due to

this prior, but the estimates are (and should be) unprecise.
Finally, while the reference design is currently seen with scepticism, it is in

fact very useful in the context of our full mechanistic parameterization. The
large amount of data on the reference material in the validation study (at least
24 intensities per gene) is very useful for this model. The reason for this is that
the reference material and the tumor tissues share most regression parameters,
including the “difficult” γi , in equation (4.4). Since the reference intensities
share the same K1

i for all genes, these parameters will adapt to the mean and
variance of these 24 data points. This makes it easier to estimate Kt

i for t ≥ 2.

We note that estimating parameters appearing only in the variance of a model
requires the exclusion of nonrepeated single data pieces, which otherwise would
reduce posterior uncertainty. It is easy to cope with such a situation in a two-step
scheme, where the posterior of the first step becomes the prior in the second
one.

The reparameterization as introduced in Section 4.3 may be of general use
as a way to speed up convergence in a model where mean-related parameters
are also present in the variance. It effectively separates the contribution to
the variance of those parameters contributing also to the mean from those not
contributing to the mean. It improves orthogonality of the joint posterior of the
mean and variance parameters of J̃ t,a

s in (4.7) with respect to those of J t,a
s in

(4.5). In an MCMC setting, where parameters would be updated sequentially,
this helps: suppose one temporarily fixes the means of the normals, then, when
using parameterization (4.7) instead of (4.5), many parameters may be varied
independently to fit the variance of the normal to the “data”.

Our process-based model should be considered in the context of model val-
idation. Each of the levels is motivated by interpretation of physical processes,
which is a large advantage over conventional hierarchical Bayes modeling,
where the levels are only vaguely connected with the system. Several levels of
our model are validated by independent studies. First of all, the relationship
between the observed intensity and the scanner settings (4.2) was extensively
checked in [19]. The normality assumption for the within-spot variability de-
scribed in (4.1) is easily checked and tested for and seemed reasonable in our
data. The core of the process-based model, the binomial selection (4.3), is
mainly based on the assumption that for the majority of genes the hybridiza-
tion experiment is reasonably efficient (meaning p � 0). We indeed found
that this was true for most genes. However, it may be useful to test it more
extensively using spike data (known Kt

i ), preferably under constant conditions
to obtain true replicates. Note that binomial selection was used before for
modeling gene expression data in [1]. We did not find large differences in the
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estimates for Kt
i between the use of censored log-link or logit-link (4.4), but a

broader class of link functions could be tried and tested for, like in [8]. When
a reasonable amount of replicates of Kt

i is available (at least for some genes),
cross-validation techniques may be useful to validate results of the model as a
whole. For example, one could test whether the credibility intervals for Kt

i are
of correct size. Model validation techniques are extensively discussed in [13].

4.9 Discussion

We developed a process-based Bayesian model for a typical cDNA microarray
experiment, which allows to estimate with sufficient precision absolute and
relative mRNA concentrations. This allows a more precise assessment of dif-
ferential gene expressions than usual normalization. Furthermore, as described
in [11], the method does not require transitivity in the experimental design,
and hence opens for the possible merging of data obtained without common
reference. In addition, there is no need to impute missing values, since our
method naturally copes with unbalanced designs. The hierarchical setting is
very flexible and allows to introduce in the future deeper knowledge about the
technology and biology. The process-based model allows to include a plausible
mechanistic description of the experimental phenomena, making the global
model more realistic and reliable. We make explicit use of available covariates
and treat the unequal number of replicates per gene. This in turn allows to
attribute backwards dependencies observed in the data to various experimental
factors (experienced by molecules), while the rest is interpretable as biological
dependency between the levels of transcripts for each gene. The model we have
constructed is also useful as a cDNA microarray data simulator.

Extensions. The model can be improved by inclusion of more covariates.
When available, hybridization settings like temperature, humidity, and ozone
concentration could be included. Also, spatial related covariates (grids of the
array) may improve the fit of the model. It is possible to include competition
between target molecules in our model in terms of density dependence, for
example by adding the term β7K

t
g(s,a) to pt,a

s in (4.4). Then, we expect β7 to
be negative: the larger Kt

g(s,a), the more competition and hence the smaller the
probability to hybridize. However, inclusion of such a term seriously increases
computing times of the MCMC. For the same reason, we did not implement
a more advanced hybridization model, such as the Langmuir model in [15],
describing the kinetics of the mRNA molecules in greater detail. Nevertheless,
it is very interesting to find the value of β7 (or the parameters in the Langmuir
model) to infer what the impact of competition is, possibly using an experiment
with few genes only to keep computing times manageable. The imaging and
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segmentation part of the model could also be extended, like in [12], possibly
again with some efficiency loss. If non-(log)-linear dye-effects occur, for exam-
ple in the low expression regions, this is probably due to the scanner. Therefore,
such effects should be included in the calibration formula (4.2) if one wishes
to include those genes.

Currently, we do not explicitly use the pixel-wise values, which are available
for each spot. In fact, we only model the spot mean as a function of the absolute
concentrations. The (spread of) pixel-wise values may give additional infor-
mation on the binomial selection process. Note that under normality, modeling
the spot mean and variance simultaneously would be sufficient.

It is also possible to make more explicit use of the spike information. Cur-
rently, we use it only to determine the scaling constant c in an off-line experi-
ment. However, for example, a more informative prior on γi may be based on
the estimated γi’s for the spike experiment.

Addition of clinical levels. After obtaining the absolute concentrations, Kt
i ,

for all samples including the reference, an obvious task is to relate these to
clinical data (testing, survival, group membership, effect of treatment over
time, etc.). In principle, all types of analyses for ratio data may be applied to
absolute concentrations. Which type of data is more useful may depend on the
clinical issue at hand.

For example, clustering of genes may be more natural on absolute concen-
trations, because this is not biased by what happens for those genes in the
reference material. We may now directly compare genes with another, which
is potentially very useful for drug targeting. Note that statistical comparison
of genes is conceptually not different from comparing samples for the same
gene. As noted before (Figure 4.4) it may be interesting to combine the two
measures of gene expression. One would then hope that there is more biolog-
ically relevant information in the pair (Kt

i , f
t
i ) than there is in either of the

two. For example, one can speculate that a classifier based on both ratios and
absolute concentrations is more powerful and robust than one that is based on
either of these gene expression measures, simply because ratios and absolute
concentrations are different pieces of biological information. However, several
hurdles need to be taken here, since the two quantities are obviously dependent
and with twice as many variables the dimension problem becomes larger.
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Abstract

Variable selection has been the focus of much research in recent years. In this
chapter we review our contributions to the development of Bayesian methods
for variable selection in problems that aim at either classifying or clustering
samples. These methods are particularly relevant for the analysis of genomic
studies, where high-throughput technologies allow thousands of variables to be
measured on individual samples. We illustrate the methodologies using a DNA
microarray data example.

5.1 Introduction

One of the major challenges in analyzing genomic data is their high-
dimensionality. Such data comes with an enormous amount of variables, which
is often substantially larger than the sample size. A typical example with this
characteristic, and one that we use to illustrate our methodologies, is DNA
microarray data. Commonly used approaches for analyzing gene expression
data proceed in two steps. First, the dimension of the data is reduced either
by assessing each gene one at a time and removing those that do not pass a
certain threshold, or by using a dimension reduction technique such as princi-
pal component analysis. Then, in a second stage of the analysis, a statistical
model is applied to the reduced data. A limitation of the univariate screening
approach is that it does not assess the joint effect of multiple variables and
could throw away potentially valuable markers, which are not significant in-
dividually but may be important in conjunction with other variables. With the

97
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dimension reduction techniques, one drawback is that the actual markers are
not assessed, since principal components, for example, are linear combinations
of all the original variables. The Bayesian methods reviewed here overcome
these limitations and address the selection and prediction problems in a unified
manner.

In high-throughput genomic and proteomic studies, there is often interest in
identifying markers that discriminate between different groups of tissues. The
distinct classes may correspond to different subtypes of a disease or to groups
of patients who respond differently to treatment. The problem of locating rel-
evant variables could arise in the context of a supervised or an unsupervised
analysis. In the supervised setting, a training data is available in which the
group membership of all samples is known. The goal of variable selection in
this case is to locate sets of variables that relate to the prespecified groups, so
that the class membership of future samples can be predicted accurately. In the
unsupervised setting, instead, the samples’ outcomes are not observed and the
goal of the analysis is to identify variables with distinctive expression patterns
while uncovering the latent classes. In statistics the supervised and unsuper-
vised frameworks are respectively referred to as classification and clustering.
The problem of variable selection is inherently different in the two settings and
requires different modeling strategies.

The practical utility of variable selection is well recognized and this topic has
been the focus of much research. Variable selection can help assess the impor-
tance of explanatory variables, improve prediction accuracy, provide a better
understanding of the underlying mechanisms generating the data, and reduce
the cost of measurement and storage for future data. A comprehensive account
of widely used classical methods, such as stepwise regression with forward
and backward selection, can be found in [18]. In recent years, procedures that
specifically deal with very large number of variables have been proposed. One
such approach is the least absolute shrinkage and selection operator (lasso)
method of Tibshirani [29], which uses a penalized likelihood approach to
shrink to zero coefficient estimates associated with unimportant covariates. For
Bayesian variable selection methods, pioneering work in the univariate linear
model setting was done by Leamer [16], Mitchell and Beauchamp [19], and
George and McCulloch [12], and in the multivariate setting by Brown et al. [3].
The key idea of the Bayesian approach is to introduce a latent binary vector to
index possible subsets of variables. This indicator is used to induce a mixture
prior on the regression coefficients, and the variable selection is performed
based on the posterior model probabilities.

Standard methods for classification include linear and quadratic discrimi-
nant analyses. When dealing with high-dimensional data, where the sample
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size n is smaller than the number p of variables, a dimension reduction step,
such as partial least squares [21] or singular value decompositions [33], is
often used. Methods that directly perform variable selection in classification,
such as support vector machines [32] and the shrunken centroid approach
[30], have also been developed in recent years. For cluster analysis, the most
popular algorithms include k-means and hierarchical clustering, which group
observations based on similarity or distance measures [13]. Model-based clus-
tering methods, which view the data as coming from a mixture of probability
distributions, offer an attractive alternative [17]. In this approach, a latent vec-
tor is introduced to identify the sample allocations and is estimated using
the expectation–maximization algorithm [5] or Markov chain Monte Carlo
(MCMC) techniques. Diebolt and Robert [6] present MCMC strategies when
the number of mixture components is known. Richardson and Green [22] and
Stephens [26] propose methods for handling finite mixture models with an
unknown number of components. This general case can also be addressed via
infinite mixture models that use Dirichlet process priors [2, 8]. A few procedures
that combine the variable selection and clustering tasks have been proposed. For
instance, Fowlkes et al. [9] use a forward selection approach in the context of
hierarchical clustering. Recently, Friedman and Meulman [10] have proposed
a hierarchical clustering procedure that uncovers cluster structure on separate
subsets of variables.

In this chapter we review our work on Bayesian variable selection tech-
niques for classification and clustering. In the classification setting, we build
the variable selection procedure in a multinomial probit model and use the
latent variable selection indicator to induce mixture priors on the regression
coefficients. In the clustering setting, the group structure in the data is uncov-
ered by specifying mixture models. We discuss both finite mixtures with an
unknown number of components and infinite mixture models with Dirichlet
process priors. The discriminating covariates are selected via a latent binary
vector, which in this case indicates variables that define a mixture distribu-
tion for the data, versus those that favor a single multivariate distribution
across all samples. In both classification and clustering settings, we spec-
ify conjugate priors and integrate out some of the parameters to accelerate
the model fitting. We use MCMC techniques to identify the high probability
models.

This chapter is organized as follows. In Section 5.2, we briefly review the
Bayesian stochastic search variable selection method in the linear models set-
ting. In Section 5.3, we describe extensions of this method to handle classi-
fication problems. We discuss variable selection in the context of clustering
in Sections 5.4 and 5.5 by formulating the clustering problem respectively in
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terms of finite mixture models with an unknown number of components and
infinite mixture models using Dirichlet process priors. We conclude the chap-
ter in Section 5.6 with an application of the methods to a DNA microarray
data set.

5.2 Bayesian Variable Selection in Linear Models

In the multivariate linear model setting an n × q continuous response YYY is
related to the n × p covariate matrix XXX via a model of the form

YYY i = 111α′ + XXX′
iBBB + εεε, εεε ∼ N (000, �), i = 1, . . . , n, (5.1)

where BBB is the p × q matrix of regression coefficients. Often, not all the
covariates in XXX explain changes in YYY and the goal is to identify the promising
subset of predictors. For instance, in DNA microarray studies where thousands
of variables (genes) are measured, a large number of them provide very little, if
any, information about the outcome. This is a problem of variable selection. In
the Bayesian framework, variable selection is accomplished by introducing a
latent binary vector, γγγ , which is used to induce mixture priors on the regression
coefficients [3, 12]

BBBj ∼ γjN
(
0, τ 2

j �
)+ (1 − γj )I0, (5.2)

where BBBj indicates the j th row of BBB and I0 is a vector of point masses at
0. If γj = 1, variable Xj is considered meaningful in explaining the outcome;
if γj = 0, the corresponding vector of regression coefficients has a prior with
point mass at 0 and variable Xj is therefore excluded from the model and
deemed unimportant.

Suitable priors can be specified for γγγ , the simplest choice being independent
Bernoulli priors

p(γγγ ) =
p∏

j=1

θγj (1 − θ )1−γj , (5.3)

where θ = pprior/p and pprior is the number of variables expected a priori to
be included in the model. This prior can be relaxed, for example, by putting
a beta distribution on θ . Conjugate normal- and inverse-Wishart priors can be
specified for the parameters BBB and �, respectively.

For posterior inference, fast and efficient MCMC can be implemented by
integrating out BBB and �, so that γγγ becomes the only parameter that needs to
be updated. Posterior samples for γγγ can be obtained via Gibbs sampling or a
Metropolis algorithm. For instance, the latent vector can be updated using a



P1: JsY

vannucci_ch1 CUNY477-DoMueller 0 521 86092 X December 5, 2006 11:35

Identification of Biomarkers in Classification and Clustering 101

Metropolis algorithm that generates at each iteration a new candidate γγγ new by
randomly choosing one of these transition moves:

(i) Add/Delete: Randomly pick one of the indices in γγγ old and change its value.
(ii) Swap: Draw independently and at random a 0 and a 1 in γγγ old and switch

their values.

The new candidate is accepted with probability

min

{
1,

f (γγγ new|YYY ,XXX)

f (γγγ old|YYY ,XXX)

}
. (5.4)

The MCMC procedure results in a list of visited models, γγγ (0), . . . , γγγ (T ) and
their corresponding posterior probabilities. Posterior inference for selecting
variables can then be based on the γγγ vectors with largest posterior probabilities
among the visited models, that is,

γ̂γγ = argmax
1≤t≤T

p(γγγ (t)|YYY ,XXX). (5.5)

Alternatively, one can estimate marginal posterior probabilities for inclusion of
each γj by

p(γj = 1|XXX, YYY ) ≈
∑

t :γj =1

p(YYY |XXX, γγγ (t))p(γγγ (t)) (5.6)

and choose those γj ’s with marginals exceeding an arbitrary cutoff. As for
prediction of future observations, this can be achieved via least squares predic-
tion based on a single “best” model or using Bayesian model averaging, which
accounts for the uncertainty in the selection process by averaging over a set of
a posteriori likely models to estimate YYYf as

ŶYYf =
∑

γ

(
1α̃′ + XXXf (γ )B̃BB (γ )

)
p(γγγ |YYY ,XXX), (5.7)

where XXXf (γ ) consists of the covariates selected by γγγ , α̃ = ȲYY , B̃BBγ = (XXXγ ′XXXγ +
HHH−1

γ )−1XXXγ ′YYY and HHH is the prior row covariance matrix of BBB.

5.3 Bayesian Variable Selection in Classification

In classification, the observed outcome is a categorical variable that takes
one of K values identifying the group from which each sample arises. A
multinomial probit model can be used to link the categorical outcome ZZZ to
the linear predictors XXX by using a data augmentation approach, as in [1].
This approach introduces a latent matrix YYY n×(K−1) where the row vector YYY i =
(yi,1, . . . , yi,K−1) indicates the propensities of sample i to belong to one of the
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K classes. A correspondence between the categorical outcome Zi and the latent
continuous outcome YYY i is defined by

zi =
0 if max

1≤k≤K−1
{yi,k} ≤ 0

j if max
1≤k≤K−1

{yi,k} > 0 and yi,j = max
1≤k≤K−1

{yi,k}. (5.8)

Here we view the first category as a “baseline.” The data augmentation allows
us to express the classification problem as a multivariate regression model of
the form (5.1), in terms of the latent continuous outcome YYY .

If Z is an ordered categorical outcome, such as the stage of a tumor, we
account for the ordering by introducing a latent continuous vector Y and mod-
ifying the correspondence between yi and zi to

zi = j if δj < yi ≤ δj+1, j = 0, . . . , K − 1, (5.9)

where the boundaries δj are unknown and −∞ = δ0 < δ1 < · · · < δK−1 <

δK = ∞. In this case the classification problem reduces to a linear regression
model that is univariate in the response.

Bayesian variable selection can then be implemented for these models as
described in Section 5.2 by introducing a latent binary vector γγγ that induces
mixture priors on the regression coefficients and using MCMC techniques to
explore the posterior space of variable subsets. The model fitting in the classi-
fication setting, however, is a bit more intricate because the regression model
is defined in terms of latent outcomes. The MCMC procedure needs to account
for this and includes a step that updates the latent values YYY from their full
conditionals. For classification into nominal categories, YYY |(γγγ ,XXX,ZZZ) follows
a truncated matrix-variate t-distribution. For ordered classes, YYY |(γγγ ,XXX,ZZZ) fol-
lows a multivariate truncated normal distribution and we also need to update
the boundary parameters δj from their posterior densities, which are uniform
on the interval[

max{max{Yi : Zi = j − 1}, δj−1}, min{min{Yi : Zi = j}, δj+1}
]

with j = 1, . . . , K − 1. The variable selection indicator γγγ is updated using a
Metropolis algorithm as discussed in the previous section.

Posterior inference for the discriminating variables can be based on the joint
posterior probability of the vector γγγ or the marginal posterior probabilities of
the γj ’s, as described in Section 5.2. The class membership for future sam-
ples can be predicted by estimating their latent outcomes, YYYf , then using the
correspondence defined between YYY and ZZZ. The details of the method and its
implementation along with applications to DNA microarray data from arthritis
studies can be found in Sha et al. [24, 25]. In Sha et al. [24], markers were
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identified for the classification of two forms of arthritis, rheumatoid arthritis
(RA) and osteoarthritis (OA), which have a similar clinical endpoint but differ-
ent underlying molecular mechanisms. Because of the inflammatory compo-
nent that characterizes RA, the discrimination between established RA and OA
represents an ideal scenario to assess the significance of classification meth-
ods. The study aimed at selecting the genes that best characterize the different
classes. In Sha et al. [25], the methodology was applied to the identification of
molecular signatures predictive of different stages of RA. The goal was to un-
derstand how the immune cells in the peripheral blood modify their molecular
profiles with the progression of the disease. The small subset of genes identified
led to good classification results. In addition, some of the selected genes were
clearly correlated with known aspects of the biology of arthritis.

5.4 Bayesian Variable Selection in Clustering via Finite Mixture Models

In recent years, there has been an increased interest in using DNA microarray
technologies to uncover disease subtypes and identify discriminating genes.
There is a consensus that the existing disease classes for various malignancies
are too broad and need to be refined. Indeed, patients receiving the same diagno-
sis often follow significantly different clinical courses and respond differently
to therapy. It is believed that gene expression profiles can capture disease het-
erogeneities better than currently used clinical and morphological diagnostics.
The goal is to identify a subset of genes whose expression profiles can help
stratify samples into more homogeneous groups. This is a problem of variable
selection in the context of clustering samples.

From a statistical point of view, this is a more complicated problem than
variable selection for linear models or classification, where the outcomes are
observed. In clustering, the discriminating genes need to be selected and the
different classes need to be uncovered simultaneously. The appropriate statisti-
cal approach therefore must identify genes with distinctive expression patterns,
estimate the number of clusters and allocate samples to the different uncovered
classes. We have proposed model-based methodologies that provide a unified
approach to this problem. In Tadesse et al. [28] we formulate the clustering
problem in terms of finite mixture models with an unknown number of com-
ponents and use a reversible jump MCMC technique to allow creation and
deletion of clusters. In Kim et al. [15] we propose an alternative approach that
uses infinite mixture models with Dirichlet process priors. In both models, for
the variable selection we introduce a latent binary vector γγγ and use stochastic
search MCMC techniques to explore the space of variable subsets. The def-
inition of this latent indicator and its inclusion into the models, however, are
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inherently different from the regression settings. In this section we present the
method under the finite mixture models formulation, and describe the approach
using infinite mixture models in the subsequent section.

5.4.1 Model

In model-based clustering, the data are viewed as coming from a mixture of
distributions:

f (xxxi |www,φφφ) =
K∑

k=1

wkf (xxxi |φφφk), (5.10)

where f (xxxi |φφφk) is the density of sample xxxi from group k and www =
(w1, . . . , wK )T are the cluster weights (

∑
k wk = 1, wk ≥ 0) [17]. We assume

that K is finite but unknown. In order to identify the cluster from which each
observation is drawn, we introduce latent variables ccc = (c1, . . . , cn)T , where
ci = k if the ith sample comes from group k. The sample allocations ci are
assumed to be independently and identically distributed with probability mass
function p(ci = k) = wk . We assume that the mixture distributions are multi-
variate normal with component parameters φφφk = (µµµk,���k). Thus, for sample i,
we have

xxxi |ci = k,www, φφφ ∼ N (µµµk,���k). (5.11)

When dealing with high-dimensional data, it is often the case that a large
number of collected variables provide no information about the group struc-
ture of the observations. The inclusion of too many unnecessary variables in
the model could mask the true grouping of the samples. The discriminating
variables therefore need to be identified in order to successfully uncover the
clusters. For this, we introduce a latent binary vector γγγ to identify relevant
variables {

γj = 1 if variable j defines a mixture distribution,
γj = 0 otherwise.

(5.12)

In particular, γγγ is used to index the contribution of the variables to the likelihood.
The set of variables indexed by a γj = 1, denoted X(γ ), define the mixture
distribution, while the variables indexed by γj = 0, X(γ c), favor one multivariate
normal distribution across all samples. The distribution of sample i is then
given by

xxxi(γ )|ci = k,www, φφφ, γγγ ∼ N (µµµk(γ ), ���k(γ ))

xxxi(γ c)|ψψψ, γγγ ∼ N (ηηη(γ c),���(γ c)), (5.13)

where ψψψ = (ηηη,���). Notice that the use of the variable selection indicator here
is different from the linear model context, where γγγ was used to induce mixture
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priors on the regression coefficients. In clustering, the outcome is not observed
and the elements of the matrix X are viewed as random variables.

5.4.2 Prior Setting

The elements of γγγ can be taken to be independent Bernoulli random vari-
ables. For the vector of component weights, we specify a symmetric Dirichlet
prior. We assume that the number of components, K , is unknown and choose
a truncated Poisson or a discrete Uniform prior on [1, . . . , Kmax], where Kmax

is chosen arbitrarily large. As γγγ gets updated, the dimensions of the model
parameters φφφk(γ ) = (µµµk(γ ), ���k(γ )) and ψψψ (γ c) = (ηηη(γ c),���(γ c)) change. Posterior
inference on these parameters therefore requires a sampler that moves between
different dimensional spaces. An efficient sampler can be implemented by
working with a marginalized likelihood where these model parameters are in-
tegrated out. The integration is facilitated by taking conjugate normal-Wishart
priors on both φφφ and ψψψ . Some care is needed in the choice of the hyperparame-
ters. In particular, the variance parameters need to be specified within the range
of variability of the data. An extensive discussion on the prior specification and
the MCMC procedure can be found in [28].

5.4.3 MCMC Implementation

The MCMC procedure iterates the following steps:

(i) Update γγγ using a Metropolis algorithm. The transition moves described
in Section 5.2 for the linear setting can be used.

(ii) Update the component weights, www, from their full conditionals.
(iii) Update the sample allocation vector, ccc, from its full conditional.
(iv) Split/merge moves to create/delete clusters. We make a random choice

between attempting to divide or combine clusters. The number of com-
ponents may therefore increase or decrease by 1, and the necessary cor-
responding changes need to be made for the sample allocations and the
component parameters. These moves require a sampler that jumps between
different dimensional spaces, which is not a trivial task in the multivariate
setting.

(v) Birth/death of empty components.

The MCMC output can then be used to draw posterior inference for the
sample allocations and the variable selection. Posterior inference for the
cluster structure is complicated by the varying number of components. A
simple approach for estimating the most probable cluster structure ccc is to
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use the maximum a posteriori (MAP) configuration, which corresponds to the
vector with highest conditional posterior probability among those visited by
the MCMC sampler. An alternative is to estimate the number of clusters, K , by
the value most frequently visited by the MCMC sampler and then draw infer-
ence conditional on K̂ . With this approach, we first need to address the label
switching problem using for instance Stephens’ relabeling algorithm [27]. The
sample allocation vector, ccc, can then be estimated by the mode of the marginal
posterior probabilities given by

ĉi = argmax
1≤k≤K

{p(ci = k|XXX, K̂)}. (5.14)

Several other inferential approaches are possible. An alternative estimator, for
example, is the one proposed by Dahl [4], which relies on the posterior pairwise
probabilities of allocating samples to the same cluster.

For the variable selection, inference can be based on the γγγ vectors with
highest posterior probability among the visited models or on the γj ’s with
largest marginal posterior probabilities.

5.5 Bayesian Variable Selection in Clustering via Dirichlet Process
Mixture Models

Dirichlet process mixture (DPM) models have gained a lot of popularity in
nonparametric Bayesian analysis and have particularly been successful in clus-
ter analysis. Samples from a Dirichlet process are discrete with probability 1
and can therefore produce a number of ties, that is, form clusters.

A general DPM model is written as

xxxi |θθθ i ∼ F (θθθ i)

θθθ i |G ∼ G (5.15)

G ∼ DP (G0, α),

where θθθ is a vector of sample-specific parameters and DP is the Dirichlet
process with concentration parameter α and base distribution G0. Due to
properties of the Dirichlet process, some of the θθθ i’s will be identical and
can be set to θθθ i = φφφci

, where ci represents the latent class associated with
sample i [2, 8].

5.5.1 Dirichlet Process Mixture Models

Mixture distributions with a countably infinite number of components can be
defined in terms of finite mixture models by taking the limit as the number of
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components K goes to infinity

xxxi |ci = k, φφφ ∼ F (φφφk)

ci |www ∼ Discrete(w1, . . . , wK )

φφφk ∼ G0 (5.16)

www ∼ Dirichlet(α/K, . . . , α/K).

As shown in [20], integrating over the mixing proportions www and letting K go
to infinity leads to the following priors for the sample allocations:

p(ci = cl for some l �= i|ccc−i) = n−i,k

n − 1 + α

p(ci �= cl for all l �= i|ccc−i) = α

n − 1 + α
, (5.17)

where ccc−i is the allocation vector ccc without the ith element and n−i,k is the
number of cl = k for l �= i. Thus, sample i is assigned to an existing cluster
with probability proportional to the cluster size and it is allocated to a new
cluster with probability proportional to α. As in the finite mixture case, we
assume that samples in group k arise from a multivariate normal distribution
with component parameters φφφk = (µµµk,���k) and we use the latent indicator γγγ

to identify discriminating variables as in (5.12).

5.5.2 Prior Setting and MCMC Implementation

We are interested in estimating the variable selection vector γγγ and the sample
allocation vector ccc. As in the finite mixture setting of Section 5.4, the other
model parameters can be integrated out from the likelihood leading to a more
efficient MCMC algorithm. We specify conjugate priors for the component
parameters and take Bernoulli priors for the elements of γγγ .

The variable selection indicator γγγ and the cluster allocation vector ccc are
updated using the following MCMC steps:

(i) Update γγγ using a Metropolis algorithm.
(ii) Update ccc via Gibbs sampling using the following conditional posterior

probabilities to assign each sample to an existing cluster or to a newly
created one:

p(ci = cj for l �= i|ccc−i , xxxi, γ ) ∝ n−i,k

n − 1 + α

∫
F (xxxi ; φφφk(γ )) dH−i,k(φφφk(γ ))

p(ci �= cj for l �= i|ccc−i , xxxi, γ ) ∝ α

n − 1 + α

∫
F (xxxi ; φφφk(γ )) dG0(φφφk(γ )),

(5.18)
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where H−i,k is the posterior distribution of φφφ based on the prior G0 and all
observations xxxl for which l �= i and cl = k.

At each MCMC iteration, the number of clusters may decrease as compo-
nents become empty, it may remain the same with possible changes in the
sample allocations, or it may increase if new clusters are formed. The Gibbs
sampler often exhibits poor mixing when dealing with mixture models. This can
be improved by combining the MCMC algorithm with a split-merge method
that essentially avoids local modes by separating or combining groups of ob-
servations based on a Metropolis–Hastings algorithm (see, for example, [14]).
In addition, parallel tempering can be used to further improve the performance
of the sampler. Details on the MCMC implementation can be found in [15].

Inference on the cluster structure and on the selected variables is performed
using the MCMC output, similarly to what discussed in Section 5.4. In par-
ticular, the allocation vector ccc can be estimated by the MAP configuration,
after removing the label switching, or it can be based on the posterior pairwise
probabilities p(ci = cj |X). For the variable selection vector γγγ , inference can
be drawn based on the vector with highest posterior probability or the elements
γj with largest marginal posterior probabilities.

5.6 Example: Leukemia Gene Expression Data

We illustrate the variable selection methods both in the classification and the
clustering settings using the widely analyzed leukemia microarray data of
Golub et al. [11]. The data consists of 38 bone marrow samples collected from
patients with two types of leukemia: 27 with acute lymphoblastic leukemia
(ALL) and 11 with acute myeloid leukemia (AML). An independent data set
of 24 ALL and 10 AML samples is also available for validation.

We pre processed the data following other investigators who have analyzed
this particular data set (see, for example, [7]). The expression measures were
truncated at 100 and 16,000, and probe sets with maximum and minimum
intensities across samples such that max/min≤ 5 or max−min≤ 500 were
excluded. This left 3,571 genes for analysis. The expression levels were then
log-transformed and normalized across genes.

5.6.1 Illustration in a Classification Setting

We applied our multinomial probit model with K = 2. We chose Bernoulli
priors for the variable selection indicators γj with the expected number
of discriminating genes set to 5. We took normal and inverse-Wishart
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Table 5.1. Classification Results: GenBank Accession
Numbers and Names of 20 Selected Genes

AccNum Name

M27891 CST3 Cystatin C
Y00787 Interleukin-8 precursor
M28130 Interleukin-8 (IL8) gene
M84526 DF D component of complement (adipsin)
D88422 Cystatin A
X95735 Zyxin
M27783 ELA2 Elastatse 2, neutrophil
M96326 Azurocidin gene
M19507 MPO Myeloperoxidase
M57731 GRO2 oncogene
U46499 Glutathione S-transferase, microsomal
U05259 MB-1 gene
X82240 TCL1 gene (T-cell leukemia)
M57710 LGALS3 Lectin, galactoside-binding
M11722 Terminal transferase mRNA
J04615 SNRPN small nuclear ribonucleoprotein

polypeptide N
U22376 C-myb gene extracted from human (c-myb) gene
Z69881 Adenosine triphosphatase, calcium
U02020 Pre-B cell enhancing factor (PBEF) mRNA
M63438 GLUL Glutamate-ammonia ligase

(glutamine synthase)

priors for the parameters BBB and � in the regression model. See [25] for
more insight on the choice of the hyperparameters. Nine MCMC chains
with different starting γγγ vectors were run for 200,000 iterations each.
We allowed ample burn-in time by discarding the first 100,000 iterations. Infer-
ence was done by pulling together the outcomes from the nine chains. We used
marginal probabilities to locate sets of genes that can be of interest for further in-
vestigation by selecting genes with marginal posterior probabilities greater than
a threshold. Interesting gene subsets can also be found by considering the mod-
els with highest posterior probabilities among those visited by the MCMC sam-
plers. Table 5.1 lists the 20 genes selected at a threshold of .001 in decreasing
order of their marginal posterior probabilities. These genes were also included
in the 20 models with highest probabilities among those from the pooled output.

We assessed the predictive performance of the selected genes on the indepen-
dent test data. The least squares prediction based on the single model with high-
est posterior probability misclassified 5/34 samples, while the prediction based
on the 20 genes selected above led to a misclassification error of 2/34. These
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Fig. 5.1. Clustering results: Histogram of number of clusters of sampled configurations.

two misclassified samples are the same ones reported in [7] and [11] as difficult
cases. In general, we noticed that good prediction can be obtained with one or
two genes. For example, the model with adipsin alone gave a 1/34 misclassifi-
cation error rate and cystatin alone misclassified 2 out of the 34 test samples.

5.6.2 Illustration in a Clustering Setting

We now exemplify the method for variable selection in the context of clus-
tering using the DPM model formulation of Section 5.5. We assume that the
leukemia subtypes for the 38 patients in the training data are not known and
we try to cluster the samples into homogeneous groups. Thus, the goal is to
uncover potential subclasses within the broadly defined leukemia group and
simultaneously identify the discriminating genes.

We specified priors for the model parameters and chose the hyperparameters
following the guidelines of Section 5.5. We assumed the gene selection indica-
tors γj to be Bernoulli random variables and set the prior expected number of
discriminating genes to 20. We ran several MCMC chains with different initial
models for 200,000 iterations and used the first 100,000 as burn-in. Figure 5.1
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Fig. 5.2. Clustering results: Pairwise posterior probabilities p(ci = cj |XXX).

shows an histogram of the number of clusters of the sampled configurations
for one of the chains, after burn-in. We note that the sampler visits models with
four to seven clusters. The sample allocation estimates based on the various
approaches presented in Section 5.5 gave similar results. Figure 5.2 shows a
heatmap of the pairwise posterior probabilities p(ci = cj |XXX) that two samples
are assigned to the same group. We note that the ALL patients were all, except
for one sample, allocated to the same cluster with high posterior probabilities.
The AML patients, on the other hand, exhibit less homogeneity. Thus, we were
able to successfully separate the ALL and AML patients, and the results seem
to suggest that there may be potential subtypes among the AML group.

As for the selected genes, we report some of them in Table 5.2. Several are
known to be implicated with the differentiation and progression of leukemia
cells. For example, caveolin-1 (CAV1), which is believed to be a useful marker
for adult T-cell leukemia diagnosis, was selected. The model also picked the
Charcot-Leyden crystal protein (CLC), which is involved in the differentia-
tion of myeloid cell differentiation into specific lineages and is found to be
downregulated in AML patients with high white blood cell count. Another in-
teresting gene that was picked is the myeloid cell nuclear differentiation antigen
(MNDA), which is correlated with myeloid and monocytic differentiation of
acute leukemia but is absent in ALL.
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Table 5.2. Clustering Results: Some Selected Genes with
Known Association to Leukemia

Gene Description

AR The amphiregulin gene is localized in chromosomal region
4q13-4q21, a common breakpoint for ALL.

CA2 Expressed in most patients with leukemic blast cells.
CAV1 Hematological cells express caveolin-1 in certain states of cell

activation and are believed to be a useful marker for adult T-cell
leukemia diagnosis.

CD14 antigen Maps to a region of chromosome 5 that contains a cluster of genes
encoding several myeloid-specific growth factors and frequently
deleted in certain myeloid leukemias.

CLC Believed to be associated with myeloid cell differentiation into
specific lineage leukemias and found to be significantly
down-regulated in AML patients with high white blood cell count.

CSTA Cystein protease inhibitor that induces apoptosis of leukemia cells.
ELA2 Elastase 2 cleaves the fusion protein generated by the translocation

associated with promyelocytic leukemia.
ID4 Putative tumor suppressor silenced by promoter methylation in the

majority of human leukemias.
IL6 & IL8 These cytokines are elevated in activated T cells in large granular

lymphocytic leukemia.
LTF Lactoferrin can transactivate human T-cell leukemia virus type I,

which causes adult T-cell leukemia and lymphoma.
MNDA Correlated with myeloid and monocytic differentiation of acute

leukemia, and expressed in M3 type leukemia but absent in ALL.
MT1G The metalloprothionein gene cluster is mapped to 16p22, a breakpoint

found in a subgroup of patients with AML.
PRAME Expressed in acute leukemia samples, with highest association in

AML tumors carrying t(8;21) or t(15;17) chromosomal abnormalities
that have a relatively favorable prognosis.

THBS1 Methylation of THBS1 is associated with the absence of the
Philadelphia chromosome and a favorable prognosis for ALL patients.

TRAIL Induces apostolic cell death in most chronic myelogenous and acute
leukemia-derived Ph1-positive cell lines.

Among the selected genes, some were common to both the classification and
clustering settings and have known association with leukemia. For instance,
interleukin-8, which was identified in both cases, is a chemokine released in
response to an inflammatory stimulus and is elevated in activated T cells in
large granular lymphocytic leukemia. Cystatin A (CSTA), a cystein protease
inhibitor that induces apoptosis of leukemia cells, and elastase 2, which cleaves
the fusion protein generated by the translocation associated with promyeloctytic
leukemia, were also found to discriminate leukemia subtypes in both models.
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5.7 Conclusion

Bayesian variable selection techniques are well suited for the analysis of high-
dimensional data. In this chapter, we have described methods to integrate the
variable selection task into models for classification and clustering. The latter
is a more complicated problem since the class discovery and gene selection
are performed simultaneously. The methodologies were briefly illustrated on a
DNA microarray data example.

The Bayesian approaches we have described offer a coherent framework
in which variable selection and clustering or classification of the samples are
performed simultaneously. Bayesian variable selection techniques can cope
with a large number of regressors and have the flexibility of allowing the
number of variables to exceed the number of observations. In addition, these
methods allow the evaluation of the joint effect of sets of variables and the
use of stochastic search techniques to explore the high-dimensional variable
space. They provide joint posterior probabilities of sets of variables, as well as
marginal posterior probabilities for the inclusion of single variables.

The methods we have described are not restricted to microarray data. Van-
nucci et al. [31], for example, describe adaptations of Bayesian variable se-
lection methods for classification to the case of functional predictors. One of
the applications discussed by the authors is to studies that involve proteomic
mass-spectra. There the authors employ wavelet transforms as a tool for dimen-
sion reduction and noise removal, reducing spectra to wavelet components. The
Bayesian variable selection mechanism built into the model allows the selection
of those coefficients describing the discriminating features of the spectra.

Current developments of the Bayesian techniques we have described include
extensions to the analysis of censored survival data. In Sha et al. [23] we
propose a Bayesian variable selection approach for accelerated failure time
(AFT) models under various error distributional assumptions. We use a data
augmentation approach to impute the failure times of censored observations
and mixture priors to perform variable selection. When applied to microarray
data the proposed approach identifies relevant genes and provides a prediction
of the survivor function.
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Abstract

DNA microarray technology enables us to monitor the expression levels of
thousands of genes simultaneously, and hence helps to obtain a better picture
of the interactions between the genes. In order to understand the biological
structure underlying these gene interactions, we present here a statistical ap-
proach to model the functional relationship between genes and also between
genes and disease status. We suggest a hierarchical Bayesian model based
on multivariate adaptive regression splines (MARS) to model these complex
nonlinear interaction functions. The novelty of the approach lies in the fact
that we attempt to capture the complex nonlinear dependencies between the
genes which otherwise would have been missed by linear approaches. Owing
to the large number of genes (variables) and the complexity of the data, we
use Markov Chain Monte Carlo (MCMC) based stochastic search algorithms
to choose among models. The Bayesian model is flexible enough to identify
significant genes as well as model the functional relationships between them.
The effectiveness of the proposed methodology is illustrated using two pub-
licly available microarray data sets: leukemia and hereditary breast cancer.

6.1 Introduction

DNA microarray technology has revolutionized biological and medical re-
search. The use of DNA microarrays allows simultaneous monitoring of the
expressions of thousands of genes (Schena et al. 1995; Duggan et al. 1999),
and has emerged as a tool for disease diagnosis. This technology promises to
monitor the whole genome on a single chip so that researchers can have a bet-
ter picture of the interactions among thousands of genes simultaneously. In
order to understand the biological structure underlying the gene interactions,

116
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that is, on what scale can we expect genes to interact with each other, we need
to model the functional structure between the genes. However, due to the com-
plexity of the data and the curse of dimensionality, it is not an easy task to find
these structures. The purpose of this chapter is to present a statistical approach
to model the functional relationship between genes and also between genes
and disease status, with special focus on nonlinear relationships.

One of the key goals of microarray data is to perform classification via dif-
ferent expression profiles. In principle, gene expression profiles might serve
as molecular fingerprints that would allow for accurate classification of dis-
eases. The underlying assumption is that samples from the same class share
expression profile patterns unique to their class (Yeang et al. 2001). In ad-
dition, these molecular fingerprints might reveal newer taxonomies that previ-
ously have not been readily appreciated. Several studies have used microarrays
to profile colon, breast, and other tumors and have demonstrated the potential
power of expression profiling for classification (Alon et al. 1999; Hedenfalk
et al. 2001). Such problems can be classified as unsupervised, when only the
expression data are available, and supervised, when a response measurement
is also taken for each sample. In unsupervised problems (clustering) the goal
is mainly to identify distinct sets of genes with similar expression profiles,
suggesting that they may be biologically related. Both supervised and unsu-
pervised problems also focus on finding sets of genes that relate to different
kinds of diseases, so that future samples can be classified correctly. Classical
statistical methods for clustering and classification have been applied exten-
sively to microarray data (see Eisen et al. 1998 and Alizadeh et al. 2000 for
clustering and Golub et al. 1999 and Hedenfalk et al. 2001 for classification).
For this chapter we focus on classification and in doing so we also identify
(select) the genes that are significantly more influential than the others, that is,
variable selection.

A common objective in microarray studies is to highlight genes that (on av-
erage) coregulate with tissue type. This can be treated within a classification
framework, where the tissue type is the response and the gene expressions are
predictors. In this chapter we will consider rule-based classifiers to discover
genes that coregulate and hence provide some of most explicit representations
of the classification scheme. Rule-based classifiers use primitives such as IF
A THEN B, where A relates to conditions on the value of a set of predictors
(genes) X and consequence B relates to change in Pr(Y|X). These type of rules
are easy to interpret. The best known such models are Classification and Re-
gression Trees (CART; Breiman et al. 1984), where decision trees provide a
graphical order of the rules. The objective of this chapter is twofold: (1) find
significant genes of interest and (2) find the underlying nonlinear functional
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form of the gene interaction. Related approaches in literature such as Lee et al.
(2003) consider only linear functions of the genes, which may not be able to
model such complex functional forms.

In this chapter we propose to use unordered rule sets based on a Bayesian
nonparametric regression approach to model the high-dimensional gene ex-
pression data. In order to explore the complex nonlinear form of the expected
responses without knowledge about the functional form in advance, it is im-
perative that we look to nonparametric techniques, since parametric models
will not be flexible enough to model these complex functions. To capture
the linear dependencies, and perhaps more crucially the nonlinear functional
structures between the genes, we use a Bayesian version of multivariate adap-
tive regression splines (MARS), proposed by Friedman (1991) and extended
in the Bayesian framework (BMARS) by Denison et al. (1998). MARS is
a popular method for flexible regression modeling of high-dimensional data
and has been extended to deal with classification problems (see, for example,
Kooperberg et al. 1997).

In this chapter we treat the classification problem in a logistic regression
framework. The logistic link has a direct interpretation of the log odds of hav-
ing the disease in terms of the explanatory variables (genes). Since our model
space is very large, that is, with p genes we have 2p models, exhaustive com-
putation over this model space is not possible. Hence Markov Chain Monte
Carlo (MCMC; Gilks et al. 1996) based stochastic search algorithms are used.
Our approach is to identify significant set(s) of genes over this vast model
space, first to classify accurately and then to model the functional relationship
between them. The flexible nonparametric setup creates a powerful predictive
model, but unlike many black box predictive machines, our method identifies
the significant genes as well as focuses on the interactions among them. In this
sense, the method has the advantage that it combines scientific interpretation
with accurate prediction.

In order to illustrate our methodology, we choose as examples two publicly
available data sets: leukemia data (Golub et al. 1999) and hereditary breast
cancer data (Hedenfalk et al. 2001). For each case we find sets of genes that
have discriminating power. We also find the functional form of the main effect
of dominant genes and the interaction function between genes that have sig-
nificant interactions. Also, in data sets that we have investigated, our method
shows equal ability to classify but uses far fewer genes to do so.

6.2 Bayesian MARS Model for Gene Interaction

For a binary class problem the response is usually coded as Yi = 1 for class 1
and Yi = 0 for the other class, where i = 1, . . . , n and where n is the number
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of samples (arrays). Gene expression data for p genes for n samples is sum-
marized in an n × p matrix, X, where each element xij denotes the expres-
sion level (gene expression value) of the j th gene in the ith sample, where
j = 1, . . . , p. The exact meaning of expression values may be different for
different matrices, representing absolute or comparative measurements (see
Brazma et al. 2001). Our objective is to use the training data Y = (Y1, . . . , Yn)T

to estimate p(X) = Pr(Y = 1|X) or alternatively the logit function f (X) =
log[p(X)/(1 − p(X))].

Assume that the Yi’s are independent Bernoulli random variables with
Pr(Yi = 1) = pi so that p(Yi |pi) = p

Yi

i (1 − pi)1−Yi . We construct a hierar-
chical Bayesian model for classification as thus. Writing pi = exp(ωi)/[1 +
exp(ωi)], wherein ωi’s are the latent variables introduced in the model to make
Yi’s conditionally independent given the ωi’s. We relate ωi to f (Xi) as

ωi = f (Xi) + εi, (6.1)

where Xi is the ith row of the gene expression data matrix X (vector of gene
expression levels of the ith sample) and εi are residual random effects. The
residual random effects account for the unexplained sources of variation in
the data, most probably due to explanatory variables (genes) not included in
the study.

We choose to model f in nonparametric framework, primarily due to the
fact that parametric approaches are not flexible enough to model such “rich”
gene expression data sets. One of the most common choices for f is to use a
basis function method of the form

f (Xi) =
k∑

i=1

βjB(Xi , θj ),

where β are the regression coefficients for the bases B(Xi , θj ), which are
nonlinear functions of Xi and θ . Examples of basis function include regres-
sion splines, wavelets, artificial neural networks, and radial bases. In this chap-
ter we choose a MARS basis function proposed by Friedman (1991) to model
f as

f (xi) = β0 +
k∑

j=1

βj

zj∏
l=1

(xidjl
− θjl)qjl

, (6.2)

where k is the number of spline basis, β = {β1, . . . , βk} is the set of spline
coefficients (or output weights), zj is the interaction level (or order) of the
j th spline, θjl is a spline knot point, djl indicates which of the p predictors
(genes) enters into the lth interaction of the j th spline, djl ∈ {1, . . . , p}, and
qjl determines the orientation of the spline components, qjl ∈ {+,−} where
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(a)+ = max(a, 0), (a)− = min(a, 0). We choose the MARS basis function as
it can flexibly model the functional relationship between explanatory variables
(genes) and gives interpretable models as compared to black box techniques
such as artificial neural networks.

We illustrate this rather complex notation (6.2) through an example. Suppose
a MARS model is of the following form (dropping the subscript i):

f = 2.5 + 3.2(x20 − 2.5)+ + 4.1(x10 − 1.2)−(x30 + 3.4)+

Here we have k = 2 spline basis functions with β = {2.5, 3.2, 4.1} as the
spline coefficients. Gene 20 enters the model as a linear term (main ef-
fect) with interaction level z1 = 1, knot point θ11 = 2.5, and spline orienta-
tion q11 = +. We observe a bivariate interaction between genes 10 and 30,
that is, d21 = 10, d22 = 30 with corresponding knots = (1.2,−3.4) and spline
orientation = (−,+). See Friedman (1991) for a comprehensive illustration of
the model.

Write (6.1) and (6.2) in matrix form as

ω = �β + ε, (6.3)

where ω is the vector of the latent variables and � is the MARS basis matrix,

� =


1
∏z1

l=1(x1d1l
− θ1l)q1l

· · · ∏zk

l=1(x1dkl
− θkl)qkl

1
∏z1

l=1(x2d1l
− θ1l)q1l

· · · ∏zk

l=1(x2dkl
− θkl)qkl

...
...

. . .
...

1
∏z1

l=1(xnd1l
− θ1l)q1l

· · · ∏zk

l=1(xndkl
− θkl)qkl

 . (6.4)

In order to aid a Bayesian formulation we impose a prior structure on all the
model parameters, M = {β, θ , q, d, z, v, k, ,λ, σ 2}. The specific forms of the
priors that we take are as follows. We assign a Gaussian prior to β with mean
0 and variance σ 2 D−1, where D ≡ diag(λ1, λ, . . . , λ) is (n + 1) × (n + 1) di-
agonal matrix. We fix λ1 to a small value, amounting to a large variance for the
intercept term, but keep λ unknown. We assign an Inverse-Gamma (IG) prior
to σ 2 and a gamma prior to λ with parameters (γ1, γ2) and (τ1, τ2) respectively.
Note that the above model can be extended to have multiple prior variances on
β as

p(β, σ ) ∼ Nn+1(β|0, σ 2 D−1)IG(σ 2|γ1, γ2),

where D is a diagonal matrix with diagonal elements λ = (λ1, . . . , λn+1)T .
Once again λ1 is fixed to a small value but all other λ’s are unknown. We
assign independent Gamma (τ1, τ2) priors to them.

The prior structure on the MARS model parameters are as follows. The
prior on the individual knot selections θjl is taken to be uniform over the
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n data points p(θjl|djl) = U (x1djl
, x2djl

, . . . , xndjl
), where djl indicates which

of the genes enter our model and p(djl) is uniform over the p genes, p(djl) =
U (1, . . . , p). The prior on the orientation of the spline is again uniform,
p(qjl = +) = p(qjl = −) = 0.5. The interaction level in each spline has a
prior, p(zj ) = U (1, . . . , zmax), where zmax is the maximum level of interac-
tion set by the user. Finally the prior on k, the number of splines, is taken to an
improper one, p(k) = U (1, . . . ,∞), which indicates no a priori knowledge on
the number of splines. Hence the model now has only one user defined param-
eter, zmax, the maximum level of interaction, for which we shall recommend
a default setting in Section 6.5.

6.3 Computation

The information from the data are combined with the prior distributions on the
parameters via Bayes’ theorem and the likelihood function as

p(ω, θ , q, d, z,β, v, k,λ, σ 2|Y) = p(Y|ω, θ , q, d, z,β, v, k,λ, σ 2)

×p(ω, θ , q, d, z,β, v, k,λ, σ 2).

For classification problems with binary data and logistic likelihood, conjugate
priors do not exist for the regression coefficients. With the Bayesian hierar-
chical structure as in the previous section the posterior distributions are not
available in explicit form, so we use MCMC techniques (Gilks et al. 1996)
for inference. Conventional MCMC methods such as the Metropolis–Hastings
(MH) algorithm (Metropolis et al. 1953; Hastings 1970) are not applicable
here since the parameter (model) space is variable: we do not know the num-
ber of splines a priori. Hence we use the variable dimension reversible jump
algorithm outlined in Green (1995).

In our framework, the chain is updated using the following proposals with
equal probability:

(i) Add a new spline basis to the model.
(ii) Remove one of the k existing spline bases from the model.

(iii) Alter an existing spline basis in the model (by changing the knot points).

Following each move an update is made to the spline coefficients β. Note that
the above three move steps are equivalent to adding, removing, and altering a
column of � in (6.4). The algorithm is included in the appendix. The update
to β is the critical step determining the efficiency of the algorithm. A poor
proposal distribution for β results in the current state having low posterior
probabilities and low acceptance rates. This is because adding, deleting, or
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altering a column of � in (6.4) would alter the remaining β parameters as they
are now ill-tuned to the data.

We introduce the latent variables ω to circumvent the problem. The idea is
to introduce an extra set of parameters into the model that leave the original
(marginal) model distribution unchanged, in order to improve the overall ef-
ficiency of the sampling algorithms. Therefore conditional on ω, all the other
parameters are independent of Y. This allows us to adopt conjugate priors for
(β, σ 2) to perform the MCMC calculations as well as marginalize over the
model space. Considerable computational advantage is gained from the fact
that the posterior distribution of β given the other parameters is now known
exactly, that is, normally distributed. The details of the procedure are given in
the appendix.

6.4 Prediction and Model Choice

For a new sample with gene expression xnew, the marginal posterior distribu-
tion of the new disease state, ynew, is given by

Pr(ynew = 1|xnew) =
∞∑

k=1

∫
P (ynew = 1|xnew,Mk)P (Mk|Y ) dMk, (6.5)

where Pr(Mk|Y ) is the posterior probability and Mk indicates the MARS
model with k splines. The integral given in (6.5) is computationally and ana-
lytically intractable and needs approximate procedures. We approximate (6.5)
by its Monte Carlo estimate by

Pr(ynew = 1|xnew) = 1

m

m∑
j=1

P
(
ynew = 1|xnew,M(j )

)
, (6.6)

where M(j ) for j = 1, . . . , m are the m MCMC posterior samples of the
MARS model parameters M. The approximation (6.6) converges to the true
value (6.5) as m → ∞.

In order to select from different models, we generally use misclassification
error. When a test set is provided, we first obtain the posterior distribution of
the parameters based on training data, ytrn (train the model), and use them to
classify the test samples. For a new observation from the test set yi,test, we will
obtain the probability Pr(yi,test = 1|ytrn, xi,test) by using the approximation to
(6.5) given by (6.6). When this probability is greater than 0.5 we will classify
it as 1 and when it is less than 0.5 we will classify it as 0. The number of
misclassified samples from the test set is defined as the misclassification error.
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If there is no test set available, we will use a hold-one-out cross-validation
approach. We follow the technique described in Gelfand (1996) to simplify the
computation. For the cross-validation predictive density, in general, let Y−i be
the vector of Yj ’s without the ith observation Yi ,

P (Yi |Y−i) = P (Y)
P (Y−i )

= [∫ {P (yi |Y−i ,Mk)}−1P (Mk|Y)dMk

]−1
.

The MCMC approximation to this is

P̂ (Yi |Y−i,trn) = m−1
m∑

j=1

{
P
(
yi |Y−i,trn,M(j )

)}−1
,

where M(j ) for j = 1, . . . , m are the m MCMC posterior samples of the
MARS model parameters M. This simple expression is due to the fact that
the Yi’s are conditionally independent given the model parameters M.

6.5 Examples

We illustrate the Bayesian methodology with two microarray examples. For
all the examples considered below we set the maximum level of interac-
tion, zmax = 1, that is, allow for only additive and bivariate interactions. The
MCMC chain is run for 50,000 iterations of which the first 10,000 are dis-
carded as burn-in.

6.5.1 Leukemia Data

This microarray data set is taken from Golub et al. (1999). The data set contains
measurements corresponding to samples from Bone Marrow and Peripheral
blood samples taken from 72 patients with either acute lymphoblastic leukemia
(ALL) or acute myeloid leukemia (AML). As in the original paper we split the
data into a training set of 38 samples (27 are ALL and 11 AML) and a test set
of 34 samples (20 ALL and 14 AML). The data set contains expression levels
for 7,129 human genes produced by Affymetrix high-density oligonucleotide
microarrays.

In order to identify significant genes, we isolate those genes that enter our
MARS model most frequently in the posterior samples; genes may enter the
model either as a main effect or an interaction effect. The plots of the posterior
mean main effect functions of the top six genes ranked in this manner are
shown in Figure 6.1. These curves are estimated by

E{fi(X)} = 1

T

T∑
t=1

∑
j :zj =1

djl=i

β
(t)
j �

(t)
j (X), (6.7)
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Fig. 6.1. Leukemia data: Posterior mean main effects of the significant genes entering
the MARS model. The horizontal axis is the standardized expression level of the gene
and the vertical axis is the mean main effect function.

where T is the number of models in the generated sample, indexed with the
superscript. The second summation ensures that the curves are estimated by
only considering the main effect basis functions involving the i gene (predic-
tor), thus averaging over the basis functions relating to the desired gene main
effect. These curves demonstrate the effect of individual genes on the odds of
carrying a disease (ALL in this example). We can see that there is evidence
that gene BSG Basigin shows little effect on the odds for all expression levels.
As the expression level of gene Adenosine triphosphatase mRNA increases, the
odds decrease linearly and are low for higher expression levels of this particu-
lar gene. For gene Zyxin the odds are unaffected over the negative expression
values but decrease linearly for increasing positive expression values, while
on the other hand exactly the opposite feature is found for gene SNRPN Small
nuclear ribonucleoprotein polypeptide N, where the odds increase linearly for
positive expression values and are unaffected in the negative range. Similar
conclusions can be drawn for other genes too. This demonstrates how thresh-
old basis functions such as MARS allow for insightful interpretation of the
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Fig. 6.2. Leukemia data: Posterior mean interaction functions of the significant genes
entering the MARS model. The x- and y-axis are the standardized expression levels of
the interacting genes and the vertical axis is the mean interaction function.

relationship between odds (response) and genes (predictors), with the added
advantage being that MARS model automatically ignores genes that have little
effect on the response.

Added to the effect of a single gene, our model also unearths gene pairs that
have significant interactions along with the functional form of the interaction
function. Figure 6.2 shows the bivariate interaction surface of the three gene
pairs that have a significant interaction and appear in the posterior MCMC sam-
ples most number of times. This figure illustrates the joint contribution to the
odds of having a disease of the two genes. The surface is estimated in a manner
similar to (6.7), but now we only consider interaction terms involving the two
genes desired in the second summation. This figure highlights the advantage
of using flexible nonlinear MARS basis functions in discerning this complex
interaction function between genes over linear approaches. In the top panel of
Figure 6.2 we can see that high expression levels of gene Alpha-Amylase 2B
Precursor combined with low (negative) expression levels of gene Adenosine
triphosphatase calcium results in an increased level of response, which is unaf-
fected for low levels of both genes. A similar feature is also detected observing
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Leukemia data: Probability contour of p (yi =1)

Fig. 6.3. Leukemia data: Probability contours showing P (Yi = 1) under the Bayesian
MARS model. The circles and the crosses represent diseased/nondiseased respectively.

the interaction surface of genes Natural killer cell receptor (KIR) mRNA and
HOXA1 Homeo box A1. From the bottommost panel we can observe that the
odds increase as the expression level of gene LYN V-yes-1 Yamaguchi sarcoma
viral related oncogene homolog increases and that of gene DAGK1 Diacylglyc-
erol kinase alpha decreases.

Using two pairs of genes that discriminate between the two classes AML
and ALL reasonably, we plot the probability contours, Pr(Yi = 1) (Figure 6.3),
to demonstrate the advantages of using a nonlinear model. Any linear approach
would divide the predictor space into two regions separated by a straight line.
Such a complex decision boundary can only be uncovered using a nonlinear
model. Note that these predictive contours appear smooth even though indi-
vidual MARS models have axis parallel nonsmooth contours. This is due to
averaging over thousands of MARS models, thus marginalizing over the model
space.

Golub et al. (1999) used a 50-gene predictor trained using their weighted
voting scheme on the training samples. The predictor made strong predictions
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for 29 of the 34 test samples, declining to predict the other 5 cases. For the
same case our misclassification error rate for the test set is 0.08, that is, we
misclassify 3 out of the 34 test samples. Our results appear to be competitive
to the results from Golub et al., but we use far fewer genes. Our mode for
the distribution of p(k|Y ), the marginal density of the number of splines, is 2
basis terms, thus showing that we get competitive results by using considerably
fewer genes.

6.5.2 Hereditary Breast Cancer

We use the microarray data set used in Hedenfalk et al. (2001) on breast tu-
mors from patients carrying mutations in the predisposing genes, BRCA1 or
BRCA2, or from patients not expected to carry a hereditary predisposing muta-
tion. Pathological and genetic differences appear to imply different but overlap-
ping functions for BRCA1 and BRCA2. They examined 22 breast tumor sam-
ples from 21 breast cancer patients, and all patients except one were women.
Fifteen women had hereditary breast cancer, seven tumors with BRCA1 and
eight tumors with BRCA2. For each breast tumor sample 3,226 genes were
used. We use our method to classify BRCA1 versus the others (BRCA2 and
sporadic).

Table 6.1 lists the top 50 genes that enter as main effects in the MARS
model in posterior MCMC samples, along with the corresponding frequency
of appearance. The “frequency” here is the proportion of number of times the
given gene appears as a main effect in the MCMC posterior samples. Simi-
larly, Table 6.2 shows the top 25 interacting genes that enter the MARS model.
These genes enter our model most frequently while classifying BRCA1 versus
BRCA2 and sporadic. A similar list of 51 genes which best differentiate among
the types of tumor is also provided by Hedenfalk et al. (2001). We find quite
a few overlapping genes (marked by an *) between the two lists like keratin 8
(KRT8), ODCantizyme, and ACTR1A. KRT8 is a member of the cytokeratin
family of genes and cytokeratins are frequently used to identify breast cancer
metastases by immunohistochemistry, and cytokeratin 8 abundance has been
shown to correlate well with node-positive disease (Brotherick et al. 1998).

Figure 6.4 shows the posterior mean main effect function of the top six genes
selected from the list. The vertical axis shows the odds of having BRCA1 mu-
tation and the horizontal axis is the standardized expression level of that par-
ticular gene. An advantage of using a nonlinear approach is evident here as
we can unearth a threshold expression level and its corresponding effect on the
the odds of having a BRCA1 mutation. For example, for polymerase (RNA) II
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Table 6.1. Breast Cancer Data

Image clone ID Gene description Frequency

767817 Polymerase (RNA) II (DNA-directed) polypeptide F 0.943
307843 ESTs (*) 0.932
81331 Fatty acid-binding protein, epidermal 0.921

843076 Signal transducing adaptor molecule (SH3 domain
and ITAM motif) 1

0.917

825478 Zinc finger protein 146 0.895
28012 O-linked N-acetylglucosamine (GlcNAc) transferase 0.881

812227 Solute carrier family 9 (sodium/hydrogen
exchanger), isoform 1

0.872

566887 Heterochromatin-like protein 1 (*) 0.856
841617 Ornithine decarboxylase antizyme 1 (*) 0.849
788721 KIAA0090 protein 0.833
811930 KIAA0020 gene product 0.822
32790 mutS (E. coli) homolog 2 (colon cancer,

nonpolyposis type 1)
0.819

784830 D123 gene product (*) 0.811
949932 Nuclease sensitive element binding protein 1 (*) 0.807
26184 Phosphofructokinase, platelet (*) 0.801

810899 CDC28 protein kinase 1 0.795
46019 Minichromosome maintenance deficient

(S. cerevisiae) 7 (*)
0.787

897781 Keratin 8 (*) 0.774
32231 KIAA0246 protein (*) 0.765

293104 Phytanoyl-CoA hydroxylase (Refsum disease) (*) 0.753
180298 Protein tyrosine kinase 2 beta 0.744
47884 Macrophage migration inhibitory factor

(glycosylation-inhibiting factor)
0.732

137638 ESTs (*) 0.728
246749 ESTs, weakly similar to trg [R. norvegicus] 0.711
233365 HP1-BP74 0.695
815530 PAK-interacting exchange factor beta 0.680
123425 ESTs, moderately similar to AF141326 RNA helicase 0.642
22230 Collagen, type V, alpha 1 0.612

324210 Sigma receptor (SR31747 binding protein 1) 0.608
824117 Vaccinia related kinase 2 0.602
124405 Androgen induced protein 0.594
83210 Complement component 8, beta polypeptide 0.592
49788 Carnitine acetyltransferase 0.590

344352 ESTs 0.586
842806 Cyclin-dependent kinase 4 0.568
810734 Human 1.1 kb mRNA upregulated in retinoic acid

treated HL-60
0.564

814701 MAD2 (mitotic arrest deficient, yeast,
homolog)-like 1

0.554

36007 Zinc finger protein 133 (clone pHZ-13) 0.518
110503 FOS-like antigen-1 0.492
767784 jun D proto-oncogene 0.488
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Image clone ID Gene description Frequency

486844 Gap junction protein, alpha 1, 43kD
(connexin 43)

0.486

810408 Hypothetical 43.2 Kd protein 0.456
199381 vav 3 oncogene 0.446
509682 Histone deacetylase 3 0.446

43021 Histidyl-tRNA synthetase 0.438
212198 Tumor protein p53-binding protein, 2 (*) 0.418
840702 Selenophosphate synthetase; Human

selenium protein (*)
0.402

666128 D component of complement (adipsin) 0.400
613126 Ubiquitin-specific protease 13 (isopeptidase

T-3)
0.396

139705 ESTs 0.384

Note: Top 50 genes (predictors) entering MARS model as main effects ranked in de-
scending order of the frequency of times they appear in posterior MCMC samples.

polypeptide it is seen that the odds are relatively high for negative expression
levels while the odds decrease for higher expression levels of the gene. Fig-
ure 6.5 shows posterior mean interaction function of two pairs of genes that
have significant interaction. This shows the combined effect of these two genes
on the odds of carrying mutation of BRCA1. The top panel of Figure 6.5 shows
that the odds decrease uniformly with expression levels of BTG family, member
3 with higher odds when combined with low expression levels of replication
factor C (activator 1) and lower odds when combined with higher expression
levels of replication factor C (activator 1). The bottom panel shows that there
is evidence that higher expression levels of Glycogenin combined with low ex-
pression levels of ornithine decarboxylase antizyme 1 lead to increased odds
of carrying a mutation of BRCA1.

Since test data were not provided, to check our model adequacy we used
full hold-one-out cross-validation. The results are summarized in Table 6.3.
We compare our cross-validation results with other popular classification
algorithms as in Lee et al. (2003). All the other methods use 51 genes for
classification purposes while the MARS method selects far fewer genes; our
mode of the distribution of p(k|Y ) is 3 showing that the number of splines ba-
sis terms (genes) used by the model adapts to the problem at hand and uses
fewer genes with the results being competitive to any other method.
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Table 6.2. Breast Cancer Data

Image Image
clone ID Gene description clone ID Gene description Frequency

753285 Glycogenin 841617 Ornithine decarboxylase antizyme 1 (*) 0.950
134748 Glycine cleavage system protein H 137506 Dishevelled 2 (homologous to Drosophila dsh) 0.932
126412 Ring finger protein 14 282980 ESTs 0.922
784830 D123 gene product (*) 814270 Polymyositis/scleroderma autoantigen 1 (75kD) 0.906
823663 Fragile X mental retardation 377275 Ataxia-telangiectasia group D-associated protein 0.894

50754 Mitochondrial translational initiation factor 2 282980 ESTs 0.874
346117 Guanylate binding protein 2, interferon-inducible 786083 Ubiquitin-conjugating enzyme E2 variant 2 0.864

79898 Transducin-like enhancer of split 1 204179 Hypothetical protein FLJ20036 0.854
214537 Replication factor C (activator 1) 1 (145kD) 246304 BTG family, member 3 0.842
307843 ESTs (*) 199624 ESTs 0.744
136730 TATA box binding protein (TBP)-associated factor 32790 mutS (E. coli) homolog 2 0.708
711959 Polymerase (RNA) III (DNA directed) (62kD) 195947 ESTs, Weakly similar to [H. sapiens] 0.622
949932 Nuclease-sensitive element binding protein 1 (*) 38393 Connective tissue growth factor 0.616
756847 Suppressin 29054 ARP1 (actin-related protein 1, yeast) (*) 0.592
814054 KIAA0040 gene product 309045 Sarcolemmal-associated protein 0.576
51740 Hydroxyacyl-Coenzyme A 340644 Integrin, beta 8 (*) 0.566

823930 Actin-related protein 2/3 complex, subunit 1A (41 kD) 32609 Laminin, alpha 4 0.518
297392 Metallothionein 1L 366647 Butyrate response factor 1 (EGF-response factor 1) 0.504

73531 Nitrogen fixation cluster-like (*) 29063 Homo sapiens clone 23620 mRNA sequence 0.498
898123 Phosphoribosylglycinamide formyltransferase 32231 KIAA0246 protein (*) 0.480
194364 RNA binding motif protein 6 21652 Catenin (cadherin-associated protein), alpha 1 0.462
143227 ESTs 135381 Growth arrest and DNA-damage-inducible 34 0.442
249705 Deleted in split-hand/split-foot 1 region 344352 ESTs 0.408
771173 Hypothetical protein 784744 M-phase phosphoprotein 6 0.402
713647 Tetraspan 3 240033 Homo sapiens mRNA; cDNA DKFZp434L162 0.400

Note: Top 25 interacting genes entering MARS model ranked in descending order of the frequency of times they appear in posterior MCMC
samples.
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(f) Polymerase (RNA) II polypeptide

(d) Fatty Acid-Binding Protein, Epidermal

(b) Zinc finger protein 146

(c) Signal reducing adaptor molecule

(a) O-linked GicNAC transferase

(e) ESTs

Fig. 6.4. Breast cancer data: Posterior mean main effects of the significant genes entering
the MARS model. The horizontal axis is the standardized expression level of the gene
and the vertical axis is the mean main effect function.

6.6 Discussion and Summary

We have presented an approach to model nonlinear gene interactions using
a Bayesian MARS. Our method uses MCMC-based stochastic search algo-
rithms to obtain the models. The advantage of our method is that we capture
the nonlinear dependencies between the genes, dependencies that would have
been missed by linear approaches. Our approach is not only flexible enough
to model these complex interaction functions, but it also identifies significant
genes of interest for further biological study. We illustrated our method using
two microarray data sets which have been well analyzed in literature. In both
cases we used far fewer genes and yet obtained competitive results to those
reported in literature.

We have treated the binary case in detail in this chapter. When the response
is not binary, such that the number of classes (C) is greater than two, then
the problem becomes a multiclass classification problem. This can be han-
dled in a manner similar to the binary classification approach, as follows. Let
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Table 6.3. Model Misclassification Errors Using
Hold-One-Out Cross-Validation for Breast Cancer Data

Number of
Model misclassifies samples

Bayesian MARS 0
Feed-forward neural networks 1.5 (average error)
(3 hidden neurons, 1 hidden layer)
Gaussian kernel 1
Epanechnikov kernel 1
Moving window kernel 2
Probabilistic neural network (r = 0.01) 3
kNN (k = 1) 4
SVM linear 4
Perceptron 5
SVM nonlinear 6

Ornithine decarboxylase antizyme 1

BTG Family, member 3 Replication factor C1

Glycogenin

Fig. 6.5. Breast Cancer data: Posterior mean interaction functions of the significant
genes entering the MARS model. The x- and y-axis are the standardized expression
levels of the interacting genes and the vertical axis is the mean interaction function.
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Yi = (Yi1, . . . , YiC) denote the multinomial indicator vector with elements
Yiq = 1 if the qth sample belongs to the qth class, and Yij = 0 otherwise. Let
Y denote the n × C matrix of these indicators. The likelihood of the data given
the MARS spline bases (�1, . . . , �C) is given by

P(Yi = 1|Xi) = p
yi1
1 p

yi2
2 , . . . , p

yiC

C ,

where pq is the probability that the sample came from class q. This is modeled
in a similar manner to the binary class case as in Section 6.2. The prior structure
imposed on the parameters is also akin to that described in Section 6.2.
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Appendix: Technical Complements

Details of the Sampler

The algorithm for the MCMC is the following:

• Start with a constant intercept model with k = 0 and � = (1, . . . , 1)′.
• Set the initial values of the latent variables ω.
• Draw the intercept (β0, σ

2) using the update for (β, σ 2) as given below.
• Start the MCMC sampler and iterate.

– Draw latent variable ω given the current model.
– Update prior precision λ on β as given below.
– Update � using one of the following moves with equal probability.

� Add a spline basis function.
� Delete a spline basis function.
� Alter a spline basis function.

– Redraw (β, σ 2)
– Accept the modifications to � and β with probability

Q = min

{
1,

|V̂ ∗|1/2

|V̂ |1/2
exp

( a

a∗

)}
, (A.1)

where |V̂ | is the determinant of the posterior variance covariance matrix of β and
is given by (�′� + D)−1, the superscript ∗ refers to the parameters of the
proposed update model and a is the error term,

a = ω′ω − β̂
′
V̂ −1β̂. (A.2)

– Otherwise keep the current model.
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The procedures for updating �, that is, adding, deleting, and modifying a spline base,
and for updating (β, σ 2) are given below.

Adding a Spline
The steps to add a basis function to the model are as follows:

(i) Draw the interaction level of the spline zj ∼ U (1, . . . , zmax).
(ii) Draw zj elements {dj1, . . . , djzj

} from {1, . . . , p} without replacement.
(iii) For each of the zj interactions that make up the j th spline, select a data point at

random from the data set, say xi , and set the corresponding knot point θjl = xidjl
.

Then draw the orientation of the spline from uniform {0, 1}, where 0 corresponds
to + (positive orientation) and 1 to − (negative orientation).

(iv) Update (β, σ 2) as given below.

Deleting a Spline
Choose one of the k splines at random and remove it from the model and subsequently
update the values of (β, σ 2) as shown below.

Modifying a Spline
The following is the procedure to modify a basis function to the model:

(i) Select at random one of the k splines, say the j th, to modify.
(ii) Select the lth of the zj interactions at random and reset the knot point θj l by

randomly drawing a data point xi from the data set and fixing the value of
θjl = xidjl

.
(iii) Update (β, σ 2) as given below.

Updating the Latent Variables ω

For the update to ω, we propose to update each ωi in turn conditional on the rest. That is,
we update ωi |ω−i , Y,M (i = 1, . . . , n), where ω−i indicates the ω with the ith element
removed.

The latent variables ωi’s conditional on the current model parameters M and the data
Yi do not have an explicit form. Thus we resort to the MH procedure with a proposal
density T (ω∗

i |ωi) that generates the moves from the current state ωi to a new state ω∗
i .

The proposed updates are then accepted with probabilities,

α = min

{
1,

p(yi |ω∗
i )p(ω∗

i |ω−i , �)T (ωi |ω∗
i )

p(yi |ωi)p(ωi |ω−i , �)T (ω∗
i |ωi)

}
,

otherwise the current model is retained.
Finally, the full conditional for ωi is,

p(ωi |ω−i , Y,M) ∝ exp

 n∑
j=1

Yiωi −
n∑

j=1

log(1 + exp(ωi)) − 1

2σ 2
(ωi − �′

iβ)2

 ,

where �i is the ith row of MARS basis matrix � as given in (6.4).
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It is convenient to take the proposal distribution T (ω∗
i |ωi) to be a symmetric distri-

bution (e.g., Gaussian) with mean equal to the old value ωi and a prespecified standard
deviation.

Updating (β, σ 2) Conditional on Changes to the Spline Base and Latent Variables ω

Conditional on the latent variables ω and the current MARS model, using Bayesian
linear model theory we update the spline coefficients and the residual random effects,
given the changes to the spline basis using their posterior distribution, so that

(β, σ 2) ∼ Nn+1(β|m, σ 2V)IG(σ 2|γ̃1, γ̃2),

where m = V (�∗)′ω, V = [(�∗)′�∗ + D]−1, γ̃1 = (γ1 + n/2), and γ̃2 = (γ2 +
(1/2)(ω′ω − m′V m)). Here �∗ now is the n × (k + 1) matrix of outputs from k splines
with the intercept and D is the prior precision on β.

Updating prior precision λ conditional on the current model
We draw new values of λi using the conditional posterior distribution,

λi ∼ Gamma

(
τ1 + 1

2
, τ2 + β ′β

2

)
,

where k is the number of basis functions and β are the regression coefficients.
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Models for Probability of Under- and
Overexpression: The POE Scale

ELIZABETH GARRETT-MAYER AND ROBERT SCHARPF
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Abstract

The probability of expression (i.e., POE) scale was developed to achieve two
main goals: (1) Microarray data are generated using a variety of measurement
techniques that are not directly comparable. We sought to develop a common
scale for which microarray data generated using differing methods could be
converted and then compared. (2) In many cases, we are interested in defining
whether genes and/or samples fall into one of three categories: overexpressed,
underexpressed, or normally expressed. However, gene expression values are
usually generated on a continuous scale. The scale that we have developed is cat-
egorical, assigning these continuous individual expression values probabilities
of falling into one of these three categories. We describe the POE scale, several
of its practical uses, and demonstrate its use on a lung cancer microarray data set.

7.1 POE: A Latent Variable Mixture Model

7.1.1 The Motivation and Practicality of POE

One reason for developing the probability of expression (POE) scale is to
transform continuous expression values to a three-component categorical scale.
Often the continuous expression values are displayed by image plots that use
a red–green scale for over- and underexpression, respectively. The commonly
used red and green image plots effectively display microarray data and generally
have three main colors: red (overexpression), green (underexpression), and
black (normal expression). The visual impact is that we see red, green, and
black and not the “smooth-scale” that would blend from red to black to green
as implied by continuous data. Our goal is to assign probabilities to each
observed expression value where the probabilities correspond to the chance
that an expression value should be called “red,” “green,” or “black.”
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The second goal is to provide a common gene expression metric. Our ra-
tionale for this stems from the problem that there are thousands of gene ex-
pression studies generated by multiple platforms that have been performed,
many of which are publicly available. Due to the expense of microarray studies
in recent years, many of these studies are quite small, some with fewer than
10 chips. Considered independently, the smaller studies provide insufficient ev-
idence for identifying interesting genes. However, if multiple small studies of
similar sample types (e.g., breast cancer and normal breast tissues) that address
comparable biologicial hypotheses can be combined, then the power to detect
interesting genes would increase significantly.

7.1.2 A Mixture Model Approach

Consider that we have measured gene expression for J genes and I samples,
captured in a J × I matrix where elements in the gene expression matrix are
represented by xji . Phenotypic information on sample i, such as indicators of
whether the sample is cancerous or normal, the survival time of the individual
from whom the sample was taken, or histologic subtype, if available, can be
defined by yi , which can take a vector form if more than one phenotype is of
interest.

We present two types of POE estimation procedures: unsupervised and
semisupervised. Both approaches use the same model framework, but the im-
plementation is slightly different. The unsupervised approach assumes that no
phenotype information is available, and the goal of the analysis is subtype
discovery. The semi-supervised approach assumes that there is some relevant
phenotypic information available and it is of interest to use this information
as part of the scale development where a “reference” class is defined. One
goal for an analysis using the semisupervised approach is to find differentially
expressed genes, or, like the unsupervised approach, to discover subtypes.

7.2 The POE Model

7.2.1 The Latent Variable

The basic underlying assumption of the POE model is that a gene’s expression
across individuals follows a three-component mixture model. The components
of the mixture are defined by eji :

eji = −1 gene j is abnormally low in sample i

eji = 0 gene j is at a typical level in sample i

eji = 1 gene j is abnormally high in sample i
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The components eji provide a biologically meaningful interpretation for under-,
over-, and normal expression. More motivation for this idea can be found in
[10].

For each gene j , we define the under-, normally, and overexpressed distri-
butions as f−1,j , f0,j , and f1,j , respectively, where

xji |(eji = e) ∼ fe,j (·), e ∈ {−1, 0, 1}. (7.1)

The population proportion of samples that show overexpression in gene j is
denoted by π+

j = P (eji = 1), and the analogous parameter for underexpression
is π−

j . We assume that the latent variables eji are independent conditional on
the πs and f s.

7.2.2 Model Assumptions

In Section 7.2.1, the distributions for the three components are generally de-
fined by fe,j for e ∈ −1, 0, 1. Theoretically, there are many choices for these
densities. In practice, issues of identifiability limit our choice. For instance,
many data sets have relatively few samples (i.e., < 100) and so it is imperative
to limit the number of parameters to be estimated. We have used uniform (U)
distributions for the over- and underexpression distributions, and a Gaussian
(N ) distribution for normal expression. These choices have been success-
ful in modeling the categorical nature of the data in both real and simulated
data.

Our parameterization of POE is

f−1,j (·) = U(−κ−
j + αi + µj , αi + µj )

f0,j (·) = N
(
αi + µj , σ

2
j

)
f1,j (·) = U(αi + µj , αi + µj + κ+

j ).

Beginning with the Gaussian component (denoted by f0,j (·)), µj + αi is the
expected expression for gene j in sample i, where µj represents the gene
effect and αi the sample effect, and σj is the standard deviation. We include a
sample effect to account for different mean levels of expression across samples.
In prenormalized samples where average expression per chip is standardized
across chips, the sample effect readjusts the normalization so that it considers
only the normally expressed values of xji and not those that are differentially
expressed. The over- and underexpression distributions are nonoverlapping
and each has a limit corresponding to the mean of the Gaussian distribution
with widths of κ−

j and κ+
j for the under- and overexpression components,
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Fig. 7.1. Fit of the POE model for two genes. The figures on the left show the empirical density (dotted line) and the fitted mixture
model (solid lines). Observed data are shown as tick marks above the figure (normal samples), and below the figure (tall ticks
are squamous cell carcinomas, short ticks are adenocarcinomas). Figures on the right are quantile–quantile plots making evident
deviations from normality. Shading of points shows the level of pji .

140



P1: JZP

garrett CUNY477-DoMueller 0 521 86092 X December 5, 2006 11:39

The POE Scale 141

respectively. This particular three-component mixture model is depicted in
Figure 7.1.

The parameterization described above is efficient because it requires rela-
tively few parameters. For each gene, we estimate six parameters (µj , σj , κ−

j ,
κ+

j , π−
j , π+

j ), but had we chosen a three-component Gaussian mixture model,
we would have eight parameters to estimate (three means, three standard devi-
ations, plus π−

j and π+
j ). Our model is convenient in that stable estimates are

provided even when the majority of the genes fall into the normal component
of the mixture. Additionally, because of the flat shape of the uniform, no values
are assigned very low densities. We have imposed an additional constraint that
κ+

j > rσj and κ−
j > rσj to ensure that the uniforms truly represent high and

low values and do not have a large portion of their range overlapping with
the Gaussian component. In our implementation, we generally choose a value
of r > 3, which ensures relatively little overlap between the Gaussian and the
uniform components.

In addition to efficiency in estimation, the chosen distributions are consistent
with the nature of genomic and proteomic data. For example, it can be assumed
in many cases that the error associated with measuring gene expression fol-
lows a Gaussian distribution, justifying our use of the Gaussian distribution for
normal expression. In our applied setting, the uniform distribution naturally
lends itself to the case of differential gene expression. In cancer applications,
differential expression is often thought to be caused by the failure of bio-
logical mechanisms. As a result, the observed expression levels may take a
broad range of values. Although we advocate the use of the three-component
mixture model illustrated in Figure 7.1, other mixture models may be
used.

Examples of normal/uniform mixtures for finding outliers and sparse clus-
ters are discussed in [4]. For other examples of mixture modeling applied to
microarray data, see [8, 9, 12].

7.2.3 Bayesian Hierarchical Model

A Bayesian hierarchical model is used for model estimation, as described by
[10]. Inference is based on posterior distributions of the parameters defined
in the previous sections. For the gene-specific parameters, we implement hi-
erarchical modeling to borrow strength across genes. This is practical and
reasonable due to the high gene-to-sample ratio which may make estimation
of gene-specific parameters difficult. Additionally, there are likely to be arti-
facts associated with the technology that would affect all genes similarly. The
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hierarchical modeling that we have implemented is as follows:

µj |θµ, τµ ∼ N (θµ, τµ)

σ−2
j |γ, λ ∼ G(γ, λ)

κ+
j |θ+

κ ∼ E(θ+
κ )

κ−
j |θ−

κ ∼ E(θ−
κ )

logit(π+
j )|θ+

π ∼ N (θ+
π , τ+

π )

logit(π−
j )|θ−

π ∼ N (θ−
π , τ−

π )

where G is the gamma distribution, and E is the exponential distribution. Gene-
specific parameters are independent conditional on the hyperparameters on the
right-hand side of the distributions above. Hyperparameters can be assigned
dispersed, noninformative priors, as the large number of variables allows for
data-driven estimation. For genes that show little or no evidence of high or
low values (i.e., π−

j ≈ π+
j ≈ 0), there is essentially no information in the

data to estimate the parameters associated with the high and low distributions.
The advantage of the hierarchical model is that the parameters for such genes
are estimated by using information that is shared with other genes. In this
parameterization, although we have not included a hierarchical distribution for
αi , the model could easily be modified to include a prior for α. Given the
amount of information that is available to estimate αi , such a parameterization
may not be useful.

7.2.4 Model Estimation

A Markov chain Monte Carlo (MCMC) estimation procedure is used for model
fitting. Data augmentation is used with an eji for each xji so that at each iteration
of the chain, the latent variable was sampled [3, 11]. Sampling of the κ’s is
facilitated by marginalizing with respect to e when resampling κ . This results
in the sampling sequence [κ|ω∗] [e|κ, ω∗] [ω∗|κ, e] , where brackets indicate
posterior distributions, ω denotes all the parameters, and ω∗ denotes all the
parameters excluding the κ’s and the e’s. As mentioned above, we include
a constraint on the κ’s, σj r < min(κ+

j , κ−
j ), that improves identifiability. An

additional constraint necessary for ensuring that all expression values assume
positive probability in either the over- or underexpression distribution is κj >

maxi(|xji − µj − αi |) for each κ+
j and κ−

j . Conditional on the eji , the full
conditional distribution of π+

j s and π−
j s is Dirichlet, and the full conditional

distribution of the normal component is conjugate (with the constraint relating
the σj ’s and the κ’s).



P1: JZP

garrett CUNY477-DoMueller 0 521 86092 X December 5, 2006 11:39

The POE Scale 143

There are some ambiguities that need to be addressed as part of the estimation.
The model attempts to find a three-component mixture for each gene. However,
there will be many genes for which the gene expression values tend to follow a
one-component Gaussian or bimodal distribution, and such genes have “empty”
mixture components. In the case of unimodal data, the gene expression values
will tend to fall into the Gaussian component, and the parameters defining the
limits of the over- and underexpression distributions will be easily identified
by the hierarchical distributions. A slightly less obvious situation is when the
data appear to arise from a bimodal distribution, so that just one component
of the mixture is empty. For this case, we have constrained the model so that
π+

j < 0.50 and π−
j < 0.50. Also, when the third component appears to have a

very small fraction of samples (i.e., π+
j < 1/I or π−

j < 1/I ), we collapse our
three-component mixture into two components.

7.2.5 The POE Scale

After model estimation, the POE scale is created as a function of the posterior
estimates of the model parameters. Using Bayes’ rule, we estimate for each
data point, xji , the probability that it is overexpressed (p+

ji) and the probability
that it is underexpressed (p−

ji):

p+
ji = P (eji = 1|xji, ω) =

π+
j f1,j (xji)

π+
j f1,j (xji) + π−

j f−1,j (xji) + (1 − π+
j − π−

j )f0,j (xji)
(7.2)

p−
ji = P (eji = −1|xji, ω) =

π−
j f−1,j (xji)

π+
j f1,j (xji) + π−

j f−1,j (xji) + (1 − π+
j − π−

j )f0,j (xji)
. (7.3)

The POE scale is defined as the difference in these values, so that the POE
scale ranges from −1 to 1. Genes with positive probability of underexpres-
sion have a POE value between −1 and 0 and those with positive probability
of overexpression between 0 and 1. Because the under- and overexpression
distributions do not overlap, any given value xji cannot have positive prob-
ability of both overexpression and underexpression (i.e., min(p+

ji , p
−
ji) = 0).

Symbolically, we denote the POE value for gene j in sample i as

pji = p+
ji − p−

ji . (7.4)

An alternative useful scale uses an approximate Bayes’ estimator to shrink
the observed gene expression values. Here, an xji value that has strong evidence
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of being from the normal component (i.e., pji is close to 0) will have a shrunken
value close to µj + αi , while an xji value with strong evidence of differen-
tial expression will have a shrunken value close to the observed value, xji .
These shrinkage estimates can be obtained by introducing latent quantitative
expression values ηji and defining xji ∼ N (ηji, σj ) for the normal component,
where ηji = µj + αi with σj unknown. The over- and underexpressed classes
are defined by ηji − µj − αi ∼ U(0, κ+

j ) and ηji − µj − αi ∼ U(−κ−
j , 0), re-

spectively. The posterior means zji of ηji can be used as estimates of the
shrunken expression values:

E(ηji) = zji ≈ µj + αi + (xji − µj − αi)pji

= pjixji + (1 − pji)(µj + αi). (7.5)

These can be thought of as multiple shrinkage estimates [6] and used as
“denoised” versions of the original expression values.

7.3 Unsupervised versus Semisupervised POE

In the unsupervised setting, eji is a parameter to be estimated for each gene
and each sample. This is a relatively straightforward latent variable problem
and at each iteration of the MCMC, the eji values are sampled so that posterior
estimates of probability of under- and overexpression can be easily estimated.

In the semi-supervised setting, we use the phenotypic information to assign
eji to be “typical” for a relevant reference sample type:

if yi = 0 then eji = 0 for j = 1, . . . , J

if yi = 1 then eji is unknown for j = 1, . . . , J

Assume that the phenotype of interest is disease and that yi = 0 if sample i is
normal and yi = 1 if the sample is diseased. This parameterization assumes that
all of the normal samples are from the normal component of the mixture, while
the diseased samples are from the overexpression, underexpression, or normal
components. Because only the eji of diseased samples can take values 1 and −1,
the normal component of the mixture has the interpretation as the category that
would be expected in normal samples. However, depending on the application
of interest, the phenotypic category assigned to the normal component of the
mixture may change. For example, assume that we have a heterogeneous set
of lung cancer samples taken from patients with varying survival times. Our
goal might be to identify genes that are relatively differentially expressed in
long-surviving patients, or a subset of long-surviving patients. As such, we
would want to define our reference to be samples who had short survival. In
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general, we are most likely to be interested in defining the reference to be a
phenotype for which finding subgroups is not of interest: we want to use the
hierarchical model to assign latent variable values of −1, 0, or 1 to genes in
heterogeneous samples. This is consistent with the idea that there are multiple
mechanistic pathways that can lead to cancer.

The assumption that the diseased samples can be from any of the three
components yet the nondiseased samples are all from the normal components
generates an asymmetry in the way that the unsupervised analysis is nested
in the supervised analysis. However, it allows us to borrow strength from the
utilized class information and adds efficiency and improved identifiability to
model estimation. Implementation is almost identical to that for the unsuper-
vised POE. The major difference is that the eji parameters are fixed for the
reference category and are sampled for the other samples. Additionally, the
constraints π+

j < 0.50 and π−
j < 0.50 are removed.

7.4 Using POE Scale

Once the POE model has been estimated for a data set, then the POE transformed
data can be used for a variety of purposes. Two that we describe here include
evaluating the utility of genes for distinguishing between sample phenotypes,
and mining for genes that are potentially related to subtypes.

7.4.1 Evaluating Diagnostic Criteria of Genes

We quantify diagnostic criteria of genes by their sensitivity (se) and specificity
(sp). Considering a data set with normal and cancer samples, we define se and
sp in the setting of normal and cancer samples as follows:

sej = P (gene j in sample i is differentially expressed | sample i is cancer)

spj = P (gene j in sample i is typically expressed | sample i is normal)

The above definitions for se and sp are only applicable when using semi-
supervised POE. Based on the estimated POE model for each gene, sej and
spj are easily calculated as a function of model parameters. For specificity
of gene j we simply calculate 1 minus the average of |pji | for the normal
samples. For sensitivity, we estimate the average of |pji | for the nonnormal
samples. This procedure can be easily adapted to other subtypes.

Using gene-specific information, we can (1) identify genes that are related
to phenotype or (2) filter genes that have low specificity and/or sensitivity from
further analyses. In the context of normal and cancer diagnostics, we tend to
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place more emphasis on identifying genes with high specificity: this implies
that the normal samples tend to have similar gene expression values (i.e., they
all tend to fall within the normal component of the mixture). However, it is
reasonable that we could be interested in genes with relatively low sensitivity
(e.g., sej ≈ 0.20). For instance, sensitivities in the range of 0.20 and higher
may imply that there is a subgroup of nonnormal samples that is differentially
expressed. Genes with high specificity and at least moderate sensitivity may be
useful for discriminating subclasses of cancer.

7.4.2 Mining for Genes

In both the semi-supervised and unsupervised POE approaches, we can apply
methods to look for subsets of genes that define subtypes of cancers. We call
this approach “gene mining” and the general idea is to find a set of genes
with prespecified over- and underexpression profiles and to then look at the
subgroups of samples based on gene expression profiles of a few chosen genes.
This is an exploratory approach, as it is an unsupervised way of choosing
interesting genes, and figures are provided for understanding how combinations
of genes differentiate samples.

The gene mining approach hinges on two statistics: gene coherence, and
gene agreement defined by

rjk =
I∑

i=1

(p+
jip

+
ki + p−

jip
−
ki + (1 − pji)(1 − pki)), (7.6)

which ranges from 0 to I . rjj is a measure of coherence of gene j , and rjk

is a measure of agreement for genes j and k for j �= k. Intuitively, coherence
measures how well a gene distinguishes between the components of the mixture
when assigning class probabilities. The coherence will be high if the values
of pji are close to −1, 0, or 1. Conversely, coherence will be low if many of
the pji’s are near 0.50. Agreement is defined as the proportion of samples that
“agree” across two genes in terms of their assignment to one of the components
of the mixture.

For both coherence and agreement, we define thresholds of acceptable levels
a priori. After the rjk matrix has been calculated, we look at the the distribution
of gene coherence (i.e., the diagonal of the matrix) to determine a reasonable
threshold, typically based on a percentile of the distribution of coherences. Al-
though high levels of coherence are preferable, the percentile chosen depends
on the data set and whether a semisupervised or unsupervised estimation ap-
proach was used. For selecting a threshold for sufficient gene agreement, we
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have two approaches that we have used. The first approach chooses a fixed
level of gene agreement (similar to that described for coherence), whereas the
second approach sets a threshold for agreement as a proportion of coherence of
the “seed” gene, described below. The latter approach may be more reasonable
as gene coherence serves as an upper bound for a gene’s agreement with other
genes.

An algorithm has been developed for gene mining that utilizes user inputs
to guide selection. As mentioned above, this is an exploratory approach for
understanding gene expression across samples and as such there is no “best”
set of genes provided by the algorithm. The way the algorithm works is that
the user chooses a specific pattern of over- and underexpression (e.g., {0.20,
0.10}) and genes consistent with this pattern are identified. While it might
seem difficult to choose an expression pattern, this is part of the flexibility of
the mining approach: the procedure can be repeated for a variety of expression
patterns and given the algorithm’s speed, it will not be cumbersome or time-
consuming. Additionally, the algorithm is not particularly sensitive to the choice
of expression pattern. For example, the patterns {0.20, 0.10} and {0.25, 0.05}
will likely choose very similar genes.

The algorithm is defined as follows, with more detail provided in [10]
and [5].

(i) Choose an expression pattern that indicates the proportion of samples
over- and underexpressed (e.g., {0.20, 0.05} indicates 20% of samples are
overexpressed, 5% underexpressed, and 75% are typically expressed).

(ii) For each gene, calculate the probability of exhibiting the over- and un-
derexpression pattern defined in step i using the estimates of p+

ji and p−
ji .

Then, sort genes based on this probability.
(iii) Choose the “seed gene”: the gene with the highest probability from step

ii that has sufficient coherence (according to the coherence threshold).
(iv) Identify genes that agree with the seed gene (using agreement threshold)

and add these genes to the group seeded by the gene identified in step iii.
(v) Remove the seed gene and those that agree with it (in step iv) from

consideration and repeat steps ii and iii to identify additional gene groups
consistent with the expression pattern of interest.

For each implementation of the algorithm, we choose a different expression
pattern of interest and identify homogeneous groups of genes (in terms of
expression profiles). Because of the homogeneity, the genes can be considered
statistically redundant. As such, when looking at molecular profiles, only one
gene per gene group needs to be considered. It makes sense statistically to use
the seed gene, because it is the most coherent. But, because an EST used as a
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seed gene may not be biologically interesting, users have the option to choose
a gene from the gene group that is “familiar,” in the sense that it is plausibly
related to the biologic mechanism under investigation.

Once several interesting genes have been chosen based on the results of
mining, molecular profiles can be created using the pji values. The profiles
measure the probability of a particular sample having a profile, defined by
under-, typical, and overexpression values for each of the genes being consid-
ered. For example, with only two genes defining a profile, we have nine (32)
profiles: (−1,−1), (−1,0), (−1,1), (0,−1), (0,0), (0,1), (1,−1), (1,0), (1,1). Pro-
files in this case will generally be most informative with relatively few genes,
otherwise the number of profiles is unwieldy – even for only four genes, we
have 34 = 81 possible profiles. However, in practice, it is likely that many of
the profiles will be “empty” in the sense that no samples will be very likely to
fall into them. In that case, inference can be simplified by looking only at the
profiles that have positive probabilities for one or more samples. A useful way
of interpreting the profiles is via a heatmap, as we demonstrate in the example
in the next section.

7.5 Example: POE as Applied to Lung Cancer Microarray Data

The methods described in the previous sections are demonstrated using mi-
croarray data on 177 lung tissue samples of three types: adenocarcino-
mas (n = 139), squamous cell carcinomas (n = 21), and normal lung tissue
(n = 17) [1]. mRNA expression was measured using Affymetrix HGU95A
oligonucleotide arrays, including 12,600 genes and ESTs, and the original
.CEL files were available for analysis. The samples were collected from
two different tumor banks, one at Brigham and Women’s Hospital, and
the other at Masschusetts General Hospital. Details of sample preparation
and RNA extraction can be found in the Web supplement to [1], available
at http://research.dfci.harvard.edu/meyerson/lungca. Data were preprocessed
using RMA [7] for quantile normalization and to calculate expression val-
ues across probe sets. Initial screening of genes was performed to identify a
subset of genes which show evidence of reproducibility using integrative cor-
relation [2]. Using this approach, a total of 1,547 genes were kept for POE
analysis.

Using the phenotype information (i.e., normal, squamous cell, or adeno-
carcinoma), the normal samples were chosen as a reference group and the
semisupervised version of POE was fit to the data set. To understand the model,
consider Figure 7.1 which shows the POE model fit to two genes. We see two
genes, the first (gene 184) showing strong evidence of underexpression in the
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Fig. 7.2. Sensitivity and specificity of genes, where interest is in distinguishing cancers
from normals.

squamous cell samples, and the second (gene 225) showing strong evidence of
overexpression in some of both the squamous cell and adenocarcinomas.

For all of the genes in the analysis, sensitivity and specificity were estimated
as described in Section 5.1 with the interest of distinguishing between cancers
and normals. These values are plotted in Figure 7.2, where genes with high
specificity (>0.90) and relatively high sensitivity (>0.40) are highlighted.
Recall that in this application we would expect there might be subsets of can-
cerous samples and so we would not expect all of the cancer samples to fall
into the differential expression components. As such, we tolerate seemingly
low sensitivities, but we do prefer high specificity implying that the normal
samples all tend to be included in the normal component of the mixture. In
addition, we also considered which genes can distinguish between squamous
and adenocarcinoma tumors. We do this by treating squamous cell carcinoma
as the “reference” (i.e., the “normal” category), so that sensitivity represents
the probability of a gene being differentially expressed given that it is adeno-
carcinoma, and specificity is the probability of a gene being typically expressed
if it is squamous cell carcinoma. The results are not shown here for brevity.
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Fig. 7.3. POE mining plot, showing several gene groups found when mining for
expression patterns of {0.10, 0.50}. Gene groups are separated by solid horizontal
black lines. Seed genes are at the bottom of each gene group. Expression (as measured
by POE) is shown in gray-scale, ranging from underexpression (black) to overexpression
(white). Normal expression is gray. Unigene ID for each gene is shown on the y-axis.
Samples are ordered according to phenotype, with adenocarcinomas indicated by short
gray ticks, squamous cell carcinomas by black long ticks, and normal samples by gray
long ticks.

At this point, we could use the sensitivity and specificity information to
remove some genes from the analysis. We can also choose to keep the whole
set of genes, and then consider the sensitivity and specificity of the genes when
choosing which genes to include in our molecular profiling after mining. For
this illustration, we will keep all genes and then refer back to their sensitivities
and specificities when we perform profiling.

We applied the mining algorithm using the following expression patterns:
{0.10, 0.25}, {0.10, 0.50}, {0.25, 0.10}. One of these is shown in Figure 7.3.
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Fig. 7.4. Molecular profiles based on Hs.504115, Hs.518198, Hs.55279, respectively.
Shading indicates probability of sample having a molecular profile ranging from white
(probability of 0) to black (probability of 1). The vertical ticks on the horizontal axis
are described in Figure 7.3.

There are several things to note. First, the normal samples have consistently
“gray” expression across almost all of the selected genes, an expected re-
sult due to the semisupervised approach assigning normal samples to the
Gaussian component. Rather it is more interesting that the patterns of dif-
ferential expression are quite different in the gene groups. In particular, gene
Hs.55279 is overexpressed in squamous cell carcinomas. For the other gene
groups, the majority show normal to underexpression in the squamous cell
samples.

Based on these gene mining procedures (the one shown in Figure 7.3 and
the other two defined by the expression patterns described in the previous para-
graph), three genes were chosen for creating molecular profiles. The molecular
profiles of these genes are shown in Figure 7.4.
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Hs.55279 (SERPINB5) is a gene encoding a serine protease inhibitor of
the serpin family, termed maspin. Members of the maspin family have been
reported to have tumor suppressor function. The sensitivity and specificity of
SERPINB5 are 0.40, and specificity is 0.92, respectively.

Hs.504115 encodes a protein belonging to the TRIM protein family. This
gene may function as a transcription factor involved in cancer, or in cell differ-
entiation. The sensitivity of this gene was low (0.05), but discriminated well
between the two types of cancer with specificity of 0.95.

Hs.518198 (Cystatin A) is known to be expressed in the lung and its protein
product is an intracellular thiol proteinase inhibitor. Although it has not been
reported to be involved in cancer, its sensitivity is 0.23 and specificity is 0.89.

7.6 Discussion

With the large number of gene expression studies published and publicly avail-
able, there is a great need for comparability of data and results. The POE scale
was created to do just that: gene expression data from a variety of technologies
can be transformed to the POE probability scale, allowing data to be combined
and/or compared across studies. Two versions of POE are available. The unsu-
pervised version of POE is used when there is no obvious reference category
as defined by phenotype. The semisupervised POE is used when at least one
subgroup (defined by phenotype) is defined and can be considered a reference
category. For instance, in the example in Section 7.5 the phenotype was tissue
type with categories adenocarcinoma, squamous cell carcinoma, and normal.
The semisupervised POE was fit using the normal phenotype as the reference.
As an alternative, the unsupervised POE model could have been used which
would ignore phenotype information. In addition to using POE to transform the
original data to a comparable scale, gene profiles and discrimination statistics
can been derived using the POE-transformed data.

Our example demonstrates the POE approach on a lung cancer data set
with 160 lung cancer and 17 normal lung tissue samples. After fitting POE,
we evaluated each gene for its sensitivity and specificity, finding a handful of
genes with high (>90%) specificity and relatively high (>40%) sensitivity.
These genes could be further investigated and validated to determine if they are
useful for distinguishing, in a clinical setting, between normal and malignant
tissue. Additionally, the results were not presented, but we also estimated the
sensitivity and specificity for discriminating between the squamous cell and
the adenocarcinoma tissues, demonstrating that any phenotypic categories can
be compared. However, the estimates of sensitivity and specificity are only
meaningful in the context of the semisupervised POE: without declaring a
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reference category, we cannot assume that the normal component of the mixture
will always represent the reference category. This is especially true in a situation
such as we have in the lung cancer example where the majority of the samples
are cancerous. Recall that in the unsupervised POE, the differential expression
components are constrained so that π+

j < 0.50 and π−
j < 0.50. For genes that

show good separation between the cancers and normals (and there are far more
cancer samples than normal samples), we would expect that the cancerous
samples would be in the Gaussian component and the normal samples would
be in the over- or underexpression components.

The gene mining techniques were also applied to find genes that show
patterns for gene expression across phenotypes. This is particularly interesting
when phenotype is unavailable and the goal is to describe new potential subtypes
by molecular profiles. When phenotype is available, gene mining is a useful
exploratory tool, but evaluating sensitivity and specificity is more useful for
finding potentially interesting genes. For a detailed example of unsupervised
POE for gene mining, see [10].

An important consideration is where to go from here. Using the sensitivities
and specificities, and/or the gene mining tools, the POE user will find sets of
genes of interest that look promising for describing cancer (or other pheno-
typic) subtypes. The critical next step is validation which can be achieved in
several ways. One validation approach would be to apply these techniques to
another comparable data set in regards to phenotype. For example, comparing
sensitivities and specificities of genes across data sets would be a helpful way
to investigate the reproducibility of results. Another approach would be to val-
idate the interesting genes using more sensitive gene-specific approaches (e.g.,
RT-PCR for a small set of genes). This could be done using the same samples
from the original data set, if they are available, or using newly collected tissues
of the same subtypes (e.g., lung cancer and normal lung tissues).

POE is available as an R library and continues to be improved and expanded.
It can be downloaded from http://astor.som.jhmi.edu/poe/.
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Abstract

The concept of sparsity is more and more central to practical data analysis and
inference with increasingly high-dimensional data. Gene expression genomics
is a key example context. As part of a series of projects that has developed
Bayesian methodology for large-scale regression, ANOVA, and latent factor
models, we have extended traditional Bayesian “variable selection” priors and
modelling ideas to new hierarchical sparsity priors that are providing sub-
stantial practical gains in addressing false discovery and isolating significant
gene-specific parameters/effects in highly multivariate studies involving thou-
sands of genes. We discuss and review these developments, in the contexts
of multivariate regression, ANOVA, and latent factor models for multivariate
gene expression data arising in either observational or designed experimental
studies. The development includes the use of sparse regression components
to provide gene-sample-specific normalisation/correction based on control and
housekeeping factors, an important general issue and one that can be critical –
and critically misleading if ignored – in many gene expression studies. Two rich
data sets are used to provide context and illustration. The first data set arises
from a gene expression experiment designed to investigate the transcriptional
response – in terms of responsive gene subsets and their expression signatures –
to interventions that upregulate a series of key oncogenes. The second data set
is observational, breast cancer tumour-derived data evaluated utilising a sparse
latent factor model to define and isolate factors underlying the hugely complex
patterns of association in gene expression patterns. We also mention software
that implements these and other models and methods in one comprehensive
framework.

155
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8.1 Perspective

A series of recent developments in Bayesian multivariate modelling has em-
phasised the relevance and utility of structured, sparsity-inducing hierarchical
models in a variety of multivariate contexts and applied gene expression stud-
ies. We review and exemplify some of this methodology here, utilising two
current cancer genomics projects to provide illuminating examples. The main
methodological foci are as follows:

• A novel hierarchical “sparsity prior” for variable/effect selection in highly
multivariate models, and its use and application in multivariate regression and
ANOVA when many of the regression parameters and effects are expected
to be zero [1];

• The use of such sparsity priors in connection with regressions for gene-
sample-specific normalisation to correct for multiple components of nonbio-
logical error and bias in expression intensity estimates – referred to as “assay
artifacts” [1, 2]; and

• The use of such sparsity priors in Bayesian latent factor models for parsimo-
nious representation of expression profiles and deconvolution of the com-
plexities of patterns of covariation among genes that are potentially related
to underlying pathway interactions as well as experimental influences [2, 3].

Over the last several years, the development of larger and richer genomic
studies – both experimental and observational – has motivated a number of
developments that underlie the current work. The decreasing costs of DNA
microarray assays are leading to larger and richer data sets from observational
studies in human cancers and other areas, and advances in molecular technolo-
gies such as siRNA are leading to rapid increase in the scale and complexity
of designed experiments in which genome-scale gene expression (and other)
data is the response variable. Across all such studies, the concepts of pattern
profiling and expression signature identification are central: it is now common
for analyses to utilise aggregate measures of gene expression on a selection
of defined subsets of genes as characterising multiple aspects of either an un-
derlying response to a biological intervention [4–7], or empirical prognostic
markers in observational and clinical studies [8–17].

The two examples here provide specificity and context. The first data set
comes from [6], where experiments using primary breast epithelial cells gen-
erate expression profiles that are used to identify subsets of genes that show
transcriptional responses to the action of a known oncogenic activity. Each
oncogene intervention is replicated several times and the responses are evalu-
ated using Affymetrix U133+ DNA microarray data. Resulting selected subsets
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of genes – or metagenes, one for each oncogene response – are then explored
in gene expression data sets from human tumours, where summary patterns of
aggregate gene expression variations of these “oncogene signatures” may have
prognostic or therapeutic significance. This study builds on the development
of this general concept in biological pathway interrogation and disease studies
[4, 5, 7]. The example highlights the need for sensitive evaluation of which
of the thousands of genes are truly transcriptionally responsive, emphasises
the need for care that false discovery be minimised, and promotes attention to
questions of data quality, comparability, and the likely need for within-model
correction for systematic, nonbiological biases and artifacts.

The second data set consists of expression profiles from human breast cancer
tissues from a program with multiple clinical and basic pathway identification
goals (e.g., [11, 15]). The example here concerns the complexity of structure
in patterns of association among hundreds of genes connected to the key breast
cancer hormonal and growth pathways linked to ER (oestrogen receptor) and
HER2/ERB-B2 proteins, each of interest in connection with improved thera-
peutics in breast cancer. One interest is the potential for tumour-derived gene
expression measures to provide increasingly accurate, and higher-resolution,
evaluation of the status of these pathways, hence the interest in gene subsets
related to transcriptional variation within these pathways. This links intimately
with the prognostic interests in improved gene expression signatures as covari-
ates in predictive models [15].

In the first example, the primary interest is ANOVA/regression modelling to
identify gene subsets related to each of the interventions, and to account for
artifactual effects in expression profiles across samples. The second example
focuses on deconvolution of expression associations in a multivariate latent
factor framework, again taking into account potential artifactual effects, and
includes a predictive regression component to relate latent factors underlying
gene expression across the ER and HER2 pathways to the (noisy) pathological
measures of ER and HER2 status at the protein level using traditional im-
munohistochemistry. The overarching sparse factor regression model context
subsumes both cases.

8.2 Sparse Regression Modelling

8.2.1 General Framework and Notation

Our data in these two examples, and many others, is generated from Affymetrix
microarrays, and we utilise as a current standard the RMA expression intensity
estimates on the log 2 (fold change) scale [18, 19]. In either example, write
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xg,i for the expression of gene g on any sample i, assuming p genes and n

independent samples. Then write xi for the column p-vector of expression on
sample i, and set X = [x1, . . . , xn]. In notation, all vectors are column vectors,
so that x ′

i is the 1 × p row vector, for example, and ⊥⊥ denotes conditional
independence.

In a regression or designed experiment context, we assume

xi = µ + Bhi + νi, (8.1)

where µ is a p−vector of constant intercept terms, hi is a known d-vector
of covariates for sample i, with j th element hj,i , B is the p × d matrix of
regression parameters, νi is a p−vector of assumedly normal error terms, and
νi ∼ N (0, �) independently where � is the p × p diagonal matrix of elements
ψg (g = 1, . . . , p). Write µg for the gth element of µ, β ′

g for the gth row of B,

and βg,j for the j th element of βg; the {gene g, sample i} univariate regression
is then

xg,i = µg +
d∑

j=1

βg,jhj,i + νg,i , νg,i ⊥⊥ N (0, ψg). (8.2)

The design vector hi may include dummy variables representing the levels of
experimental factors and the observed values of measured covariates.

Sparse regression modelling is defined by classes of priors on B. The other
prior components are the prior for µ, typically taken as independent normals
for the elements µg, and that for the unexplained components of variance
ψg. The latter represent biological, technical, and measurement error that are
idiosyncratic to each gene. With Affymetrix RMA data, experience with many
data sets indicates technical variation in the range of about 0.1–0.5, with values
around 0.2–0.3 being quite typical. For such data, then, values of ψg will
typically range across 0.01–0.25 or thereabouts, so providing the basis for
prior specification. A standard specification consistent with these guidelines –
while rather diffuse – is used in the examples here; this is a common gamma
prior with shape 5 and scale 1 for each of the ψ−1

g .

8.2.2 Sparsity Priors

Sparsity modelling aims to induce (many) zeros in the high-dimensional (“tall
and skinny”) parameter matrix B, reflecting the view that the effects of co-
variates will be sparse. An intervention or measured covariate may relate to a
number of genes – “downstream” genes in a pathway intervention experiment,
for example – but many other genes will be unrelated. This complements the
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statistical view of parsimony in modelling – that is, we aim to identify as few
parameters as the data and context require to adequately represent the observed
patterns in the expression profiles. The traditional ideas underlying Bayesian
“point-mass mixture” priors/models are then absolutely natural. Several groups
have used this approach in expression genomics (e.g., [20–25]), as did [3] in
the context of latent factor models.

Motivated by large-scale expression studies, this thinking and methodology
has recently been extended with new hierarchical specifications for such “point-
mass mixture” priors [1]. An example of the new class of general models is

βg,j ∼ (1 − πg,j )δ0(βg,j ) + πg,jN (βg,j |0, τj ), (8.3)

conditionally independently over genes g and covariates j. Here δ0(·) is a
point-mass at zero, N (·|m, t) is the normal prior of mean m and variance t,

and the covariate-specific parameters τj control the levels of variation in the
magnitudes of the nonzero |βg,j |.

Importantly, this new model has individual {gene g, covariate j} association
probabilities πg,j ; that is, πg,j is the probability gene g is associated with
covariate j. Write � = {πg,j } for these p × d probabilities. The new class of
priors in [1] embodies the view that many genes will have zero (or very small)
prior probability of association with any one covariate; we simply do not know
which genes do, and which do not. The natural hierarchical model to reflect
this view is

πg,j ∼ (1 − ρj )δ0(πg,j ) + ρjBe(πg,j |sr, s(1 − r)), (8.4)

where Be(·|sr, s(1 − r)) is the beta prior (with mean r and variance r(1 −
r)/(1 + s)) and the covariate-specific probabilities ρj are assumed to be drawn
from a common specified prior ρj ∼ Be(ρj |av, a(1 − v)). Note that while each
gene-covariate pair now has its own individual probability πg,j of an effect,
marginalising over these parameters shows that rρj is the implied population
base-rate of nonzero effects for covariate j.

Posterior analysis leads to the evaluations of, among other things, the p × d

posterior probabilities �∗ = {π∗
g,j }, where π∗

g,j = Pr(βg,j �= 0|X); these re-
flect individual gene-covariate shrinkage effects, and may be used to rank and
select genes showing association with covariate j. The model-based approach
naturally shrinks π∗

g,j toward zero for genes showing little evidence of associa-
tion with covariate j, while estimating the ρj and “shrinking” the nonzero π∗

g,j

toward the estimated base-rate rρj . This provides the automatic adaptation to
the many inherent “point null (at zero) versus continuous alternative” hypothe-
ses being evaluated – a key and critical strength of the Bayesian approach,
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obviating the need for any ad hoc (and post hoc) multiple testing/comparison
consideration.

We stress that this hierarchical model is quite different to the traditional
approach – it represents an hierarchical/random effects extension of the usual
point-mass mixture prior approach, inserting an additional “layer” between the
individual gene-covariate parameters πg,j and the implicit underlying popula-
tion base-rate of nonzero βg,j effects. Now, by marginalisation over the πg,j in
equation (8.3), we obtain

βg,j ∼ (1 − rρj )δ0(βg,j ) + rρjN (βg,j |0, τj ). (8.5)

This population-level model has the usual point-mass mixture form, with a base-
rate rρj of nonzero covariate effects for covariate j. Critically, however, in the
full model each gene-covariate combination also has its own prior “base-rate”
πg,j that is estimated. Since equation (8.4) permits zero values, the posterior
will then estimate the data-based support for πg,j = 0 individually. This key
feature, induced by the new hierarchical model component, can lead to practical
improvements over the standard Bayesian approach in acting against false
discovery, especially in contexts where the base-rate is likely to be relatively
large. By inserting the additional hierarchical layer between the population
base-rate of nonzero effects and the individual-level effects, the extended model
is able to more adequately shrink toward zero through the induction of zeros
under the prior, and hence posterior, for the πg,j . As a result, the hierarchical
model is more conducive to separation of the real signals from noise, and
will act conservatively – reducing false discovery – relative to the traditional
prior. An example in the next section, and displayed in Figure 8.1, very clearly
highlights this.

The model of equations (8.3) and (8.4) is completed with priors for the
variances τj , taken as conditionally conjugate inverse gamma distributions.
Bayesian analysis is performed using Markov chain Monte Carlo (MCMC)
methods to produce samples from the posterior distributions for all model
parameters: µ,B,�, and the τj . Full MCMC details are given in [1]. For our
purposes here, MCMC analysis produces full posterior samples for all model
parameters, now including the critical posterior “significance” parameters in the
p × d matrix �∗ = {π∗

g,j }, as well as µ,B,�, and the {ρj , τj : j = 1, . . . , d}.
Additional important summaries involve posterior samples of the (βg,j |βg,j �=
0, X). Prior specification is completed through assignment of values to the
beta prior hyperparameters (s, r) and (a, v), as well as prior hyperparameters
for independent gamma priors for the ψ−1

g for each g = 1, . . . , p as earlier
mentioned; the examples here use (s, r) = (10, 0.9) and (a, v) = (200, 0.001)
for these beta priors.
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Fig. 8.1. Frames (a) and (b) display histograms of estimated posterior probabilities of
nonzero effects on average expression of all genes based on the MYC oncogene in-
tervention: (a) under the traditional shrinkage prior and (b) under the new hierarchical
shrinkage prior. Frames (c) and (d) display boxplots of these estimated posterior prob-
abilities of nonzero effects now for each of the nine experimental intervention groups:
(c) under the traditional shrinkage prior and (d) under the new hierarchical shrinkage
prior.

8.2.3 Example: Oncogene Intervention Experiments

The oncogene intervention data provides illumination. The experimental groups
represent upregulation, using viral transfection, of key oncogenes MYC, SRC,
b-catenin, E2F3, H-RAS, Np63α, AKT1, E2F1, and PIK3Ca. Several of these
genes play transcriptional roles related to the complex Rb/E2F pathway [26, 27]
that is pivotal in regulating cell cycle progression, cell proliferation, and cell
death (apoptosis). The E2F family of transcription factors is particularly key
in this complex of interacting pathways, and one interest relates to differential
function for members of the E2F family. The design is a simple one-way
classification: one control group with 15 samples (biological replicates), and 9
separate intervention groups with between 7 and 10 replicates per group, for a
total of n = 97 samples. So µg is the average (log 2, RMA) expression for gene
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g in the nonintervention control group, and the d = 9 parameters in βg define
changes in level relative to control in each of the 9 intervention groups. Across
all genes, most of the βg,j parameters will be zero; the analysis aims to isolate
gene-factor combinations with nonzero parameters to identify resulting groups
of genes transcriptionally regulated via the cascade of activation initiated for
each intervention.

Group j = 2 represents the MYC interventions, for example. Figure 8.1(b)
displays a histogram of the MCMC-based estimates of the π∗

g,2 over all
p = 10, 777 genes used here. For comparison, Figure 8.1(a) shows the cor-
responding histogram under the traditional prior. The effect of the hierarchical
model is clear: more shrinkage to zero or very small values of many proba-
bilities, and improved isolation of significant effects consistent with the much
reduced propensity for false discovery. Frames (c) and (d) of Figure 8.1 provide
boxplots of these π∗

g,j probabilities for each of the j = 1 : 9 intervention groups,
again comparing the new hierarchical sparsity prior with the traditional, and
even more clearly highlighting the impact. To verify and empirically validate
the view that the traditional model typically fails to induce enough shrinkage –
and overestimates the numbers of “significant” effects as a result – similar anal-
yses have been performed in a series of simulation studies in which synthetic
data have been generated from the model as defined. Pervasively, the numbers
of inferred nonzero parameters – in terms of high values of the posterior prob-
abilities of nonzero values gene-by-gene – are systematically overestimated
under the traditional analysis and much more adequately estimated using the
new sparsity prior.

8.3 Sparse Regression for Artifact Correction with Affymetrix
Expression Arrays

8.3.1 Context and Model

Data from all microarray studies is contaminated by nonbiological noise from a
multitude of sources. Low-level processing and normalisation methods aim to
address and either correct for or model some of the issues of sample-to-sample,
and in some cases gene-sample-specific, variation. However, high-throughput
expression technologies are still effectively first-generation and the resulting
data can often exhibit profound levels of artifactual noise and systematic exper-
imental biases that are induced by small, random, and unpredictable changes
and fluctuations in experimental controls (hybridisation temperatures, salinity,
etc.), assay reagents, technician practices, equipment settings, and so forth.
Complex patterns of such artifactual variations can impact on the resulting
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estimates of expression levels of many genes, but leave many others unchanged;
variation in sequence structure (such as GC content) of oligonucleotides defin-
ing Affymetrix probe sets is just one reason for gene-sample-assay-specific
variation in resulting expression intensities that require consideration. When a
study on one microarray platform is performed over time, perhaps involving
different technicians, stations/machines within a laboratory or even different
laboratories, and almost surely different batches of arrays and reagents, the
resulting differences across sample expression profiles will often have major
time-of-study effects. Such effects will be reflected in many but not all genes,
with a multidimensional complexity to the pattern of the effects across many
genes that can dominate the inherent biological variation that is the target of
the study. Issues of comparability of expression results are high-profile in dis-
cussions of the potential for microarrays in clinical testing (e.g., [28]), but in
more routine applications the issues they generate can be easily underestimated.
Low-level processing and normalisation partially corrects for such artifacts, but
very often data will remain contaminated – often substantially so – by these
“assay artifacts.” Hence the need for follow-on statistical models to explicitly
address assay artifacts as components of analysis.

Affymetrix arrays include probe sets for a number of housekeeping genes
and also “maintenance” genes – genes that robustly show constant levels of
expression over a diverse set of (in our case, human) tissue studies, and that
serve as normalisation controls. Most studies ignore these normalisation con-
trols and use data from the housekeeping genes as laboratory controls only to
be informally checked as part of the overall quality assessment. These probe
sets can provide read-outs of assay artifacts, and serve as covariate information
to model out components of the complex artifactual distortions as a result. If
substantial numbers of these normalisation control genes exhibit common pat-
terns of systematic variation over samples at meaningful levels, and if patterns
of similar form show up in levels of expression of subsets of other genes, then
the normalisation gene set can provide regression-based corrections for those
gene subsets. Assay artifacts will generally impact multiple subsets of genes
in differing ways, but leave many genes uncontaminated. As a result, we need
multiple such factors as regression covariates, and a model that allows for parsi-
monious – and sparse – estimation of the regression coefficients of these control
factors across the thousands of genes on the array. Clearly, the sparse regres-
sion context here is ideal, and underlies an approach to gene-sample-specific,
model-based artifact correction.

The model in [1] utilises multiple principal components of the set of nor-
malisation control probes, and a selection of the housekeeping probes, as co-
variates; thus the regression vector hi includes these “normalisation factors” as
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specified values, in addition to whatever other design and covariate structure is
in the model. The analysis already described then applies directly to estimate
the regression coefficients on these factors under the same sparsity prior; now,
the rate πj applying to any one (j ) of the normalisation factors represents the
proportion of genes showing association with that factor; a gene with a nonzero
and higher value of π∗

g,j is then identified as exhibiting variation over samples
that is in part related to the assay artifact reflected in the normalisation factor
j. The model thus provides the ability to isolate these effects from the other
components of the regression. Evidently, if ignored, these effects may obscure
underlying biological structure, leading to lost signals; potentially more perni-
ciously, it may also generate false discovery through the suggestive appearance
of significant effects that are in fact strongly associated with gene-study-specific
artifacts. The oncogene experiment data provides useful examples.

8.3.2 Example: Oncogene Intervention Experiments

Figure 8.2 displays the first eight principal components from the normalisation
control genes (in this case, 100 probe sets on the Affymetrix U133+ microar-
ray). Systematic and stochastic assay artifacts are apparent in what should, in
principle, be stable levels of expression of these summaries of control probes.
The evident systematic differences between the two sets of replicate control
samples in this data set (the initial black open and filled circles) provide in-
formation relevant to global gene-sample-specific normalisation in that many
gene probe sets reflect similar systematic differences. These two different con-
trol samples were in fact generated and assayed several months apart, so that
different assay conditions are surely why the two samples are different in terms
of normalisation factors. The observations in purple represent the RAS in-
tervention samples; clear distortions in the control probes are evident in the
second normalisation factor for that group alone. The final set of 37 sample
observations, coded yellow to blue, were intervention experiments performed
and assayed several months after the first set, and the need for correction of
samples is clear. Additional features representing apparent artifactual effects
appear in additional principal components of the normalisation probes, as the
image display in Figure 8.2(c) indicates. Figure 8.2(d) displays the (centered)
expression levels of a selected gene, PEA-15 (PED), across samples. Though
there may be real biological variation underlying some aspects of variation in
expression of this gene (explored futher below), there is clear evidence of some
systematic variation apparently related to structure in the patterns of artifac-
tual variation of normalisation probes. The superimposed fitted values from
the sparse ANOVA/regression model that incorporates the eight normalisation
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Fig. 8.2. First (a) and second (b) principal components in the expression levels across
oncogene experiment observations of the set of normalisation control and housekeeping
probe sets. The black symbols represent samples in the two control groups (10 initial
control samples as open black circles, and 5 later control samples as filled black circles)
that were assayed several months apart; the nine oncogene intervention groups are
then color-coded for presentation. Frame (c) displays an image intensity plot of the
first eight principal components across samples. Frame (d) displays the (centered)
expression levels of gene PEA-15 (PED) plotted across samples (circles); superimposed
(as crosses) are the (centered) fitted values from the sparse ANOVA/regression model
with normalisation control factors. (See color plate 8.2.)

factors as regression terms highlight the artifacts in this gene. Many gene probe
sets show little or no evidence of association with these assay artifact factors,
though others are clearly contaminated; the sparse model approach can isolate
and correct such cases within the formal shrinkage analysis.

The model fit to this gene is explored further in Figure 8.3. PEA-15 (PED)
is a phosphoprotein that mediates apoptosis and plays roles in the molecu-
lar mechanisms of chemoresistance in cancer [29, 30]. The action of PEA-15
is known to depend on phosphorylation by AKT1, though AKT1 does not
play a role in regulation of expression levels of PEA-15. On the other hand,
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Fig. 8.3. Frame (a) displays expression levels of gene PEA-15 (PED) across samples;
the horizontal lines superimposed represent the estimated levels of expression within
each of the groups in the analysis that ignores the normalisation control factors. Frame
(b) displays corrected expression levels from the sparse regression analysis using the
control factors; the fitted effects of the control components have been subtracted from
the samples displayed, and the horizontal lines superimposed represent the fitted pa-
rameters/levels for the intervention effects on expression within each group. (See color
plate 8.3.)

PEA-15 is a direct target for regulation by members of the E2F family of
transcription factors, with known promoter binding sequence for E2F (the E2F
family members share a common binding site). Hence PEA-15 is anticipated to
respond to one or more of the E2F interventions but to our knowledge should not
show a transcriptional response as a result of any of the other interventions. As
noted earlier, the data show strong association with the temporal sequence of the
sample generation, real differences between the two sets of control samples, and
structure related to the assay artifact patterns in the control components. Fig-
ure 8.3(a) displays the original RMA expression levels. Superimposed on frame
(a) are horizontal lines representing the estimated levels of expression within
each of the groups in the sparse ANOVA analysis that ignores the normalisation
issue. Frame (b) displays corrected levels from the sparse analysis now includ-
ing the normalisation factors; here the fitted effects of the normalisation factors
have been subtracted from the samples displayed. Superimposed are horizontal
lines representing the fitted parameters/levels for the intervention effects on
expression within each group. This demonstrates the artifactual nature of the
expression fluctuations in frame (a) and how the control factors correct those
effects and are able to recover the apparent real transcriptional response of
PEA-15 to the upregulation of E2F3 (the central group of samples, coloured
cyan). That there is no corresponding effect in the E2F1 group (the penultimate
group of samples, coloured red) is suggestive of differential function in tran-
scriptional control of PEA-15 within the E2F family of transcriptional factors,
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consistent with the known diversity of functional roles across that family [7, 26].
Evidently, ignoring the assay artifact issue would, in this case, lead to substan-
tial false discovery with frame (a) suggestive of multiple potential regulators of
PEA-15 within the pathways downstream of several of this set of oncogenes,
and also a false negative with respect to the role of E2F3. As with other exam-
ples, the artifactual differences between the two control sets in Figure 8.3(a),
and the comparability of fitted values in Figure 8.3(b), provide support for the
relevance of sparse gene-sample-specific normalisation component.

8.4 Sparse Latent Factor Models and Latent Factor Regressions

8.4.1 General Model Structure

Sparse latent factor models, as introduced to the statistics community in [3],
represent a natural extension of the sparse regression modelling approach as
well as a natural framework for more incisive development of approaches to
pattern/signature profiling in expression genomics. The pilot gene expression
study in [3] demonstrated the ability of latent factor models – under tradi-
tional Bayesian variable selection priors – to improve the identification and
estimation of metagene groups and patterns related to underlying biological
phenomena. Part of the motivation for that work was, again, directed at gen-
erating a more comprehensive statistical framework for flexible modelling of
multiple, complex aspects of substructure in expression data, moving from the
empirical methods (using singular value decomposition-based factors within
multiple gene clusters, e.g., [8, 9, 11, 14]) into more formal models.

One of the key recent extensions and innovations in sparse factor modelling
[2] is the application of the new hierarchical sparse prior modelling approach
described and developed above. The extension of the sparse regression model
framework of Sections 8.2.1 and 8.2.2 is immediate, as follows.

Extend the model of equation (8.1) with the addition of a latent factor
component involving k latent factors. That is,

xi = µ + Bhi + Aλi + νi, (8.6)

where the k-vectors λi are independent random latent factors, distributed as

λi ∼ N (0, I ),

and A is a sparse p × k factor loadings matrix. As with B, the loadings matrix
A will generally have many more rows than columns; the number of factors
k will usually be very small compared to the number of genes. Structuring
follows prior work with latent factor models in other contexts [31, 32]. The
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preferred structure for A has the upper right triangle of A set to zero, with
positive diagonal elements Ai,i for i = 1, . . . , k. Sparse matrices A in fact lead
to models that do not require identification constraints, but this specific structure
is attractive as it permits the selection of the order of the first k variables (genes)
in xi as defining “names” for the latent factors.

One interpretation of the extended factor regression model is that of the
regression µ + Bhi with an extended “error” term Aλi + νi ; this term has
zero mean and variance matrix � = AA′ + �, so that the model represents
a regression allowing complex patterns of correlation among the errors. In
gene expression studies, especially involving observational data sets, this is
particularly relevant since the structure of empirical patterns of covariation
among genes across samples is generally rather elaborate, far more so than
regression models will adequately describe. Complementing this view, in many
applications we are interested in the latent factors as a statistical representation
of groupings and cross-linkages of subsets of genes that may be biologically
interpretable in terms of pathway interconnections. The notion of latent factor
models as estimating and reflecting multiple interacting biological pathways
through the associations observed in expression patterns is germane to some of
our current studies.

Evidently, the sparsity prior strategy and resulting Bayesian analysis applies
directly to this extended model. The sparsity prior of equation (8.3) is simply
extended to also apply to the free elements of the factor loading matrix A,

with a modification to constrain the diagonal elements to positivity. This then
leads to an extension of the MCMC in which the latent factors themselves are
also estimated: conditional on values of all latent factors � = [λ1, . . . , λn], the
analysis proceeds as in the straight regression model (with the minor change
to add the positivity constraint on diagonal entries in A). Within each MCMC
iteration, we then simply add in simulations from the complete conditional
posterior of � given the data and all other parameters, and this is trivially a
set of n conditionally independent k-variate normals for the columns of �,

thereby neatly completing the MCMC setup. This extends the analysis in [3]
to the hierarchical sparsity prior as well as to coupled ANOVA/regression and
factor models.

8.4.2 Factor Regression Component

Many gene expression studies also involve explanatory associations between
expression profiles and response variables (phenotypes). Following [3], we
can couple response variables into the sparse regression and factor model
framework to develop models in which the response is linked, via a separate
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regression model that itself may be subject to sparsity prior analysis, to the
latent factors underlying gene expression. This again extends to a model-based
context the notion of aggregate patterns in gene expression as predictors of
outcomes; the latent factors λi are now the candidate predictors of phenotypic
measures on sample/case i in the study. Additional generalisations of the initial
framework of [3] are possible, but the example here adopts this approach.

Consider first the case of a continuous univariate response variable yi on
sample i = 1, . . . , n. Linear regression on the latent factor structure underlying
expression profiles is then simply incorporated as yi = α + θ ′λi + εi with
independent normal errors. By simply prepending yi to the expression vector
xi, we can clearly just extend the model of equation (8.6) to include α as a first
entry in µ and the elements of θ as a first row of A. We may choose alternative
prior specification for θ, or may just extend the sparsity prior directly. The
latter approach is used for the example summarised below. This clearly extends
trivially to include more than one response variable, and the example below has
three such phenotypes, treated similarly. With such a model extension, analysis
proceeds as before with minor changes to the MCMC.

Our example below involves three binary phenotypes, however, rather than
continuous measurements. In the above example of a single response, suppose
that we actually only observe a binary outcome zi = 0/1. The linear regression
framework maps onto this under a probit regression model, in which yi is a
latent variable and the errors εi ∼ N (0, 1). This extension permits immediate
analysis of binary phenotypes, simply extending the MCMC to iteratively
impute samples of the “missing” latent {yi} together with all other model
quantities in the standard manner for Bayesian binary regression (e.g., [3, 9,
33]).

8.4.3 Example: Breast Cancer Gene Expression Analysis

An analysis of expression profiles from primary breast tumours is illustrative
of this framework, and also ties into current goals in breast cancer expres-
sion genomics. Some summaries of analysis of n = 212 samples appear in
Figures 8.4–8.6. This data comes from a larger sample of expression profiles
on breast tumours from the Sun-Yat Sen Cancer Center in Taipei [11, 15]. The
analysis here involves p = 500 genes, many of which are related to key breast
cancer hormonal and growth pathways – and the interactions of multiple such
pathways – especially those linked to oestrogen through the ER (oestrogen re-
ceptor) pathway, the very strongly related PR (progesterone receptor) pathway,
and the HER2/ERB-B2 proteins. ER and HER2 are each the target of current
hormonal therapies in breast cancer. One interest in this application area is
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(a) (b)

Fig. 8.4. Frame (a) displays a visual representation of the “skeleton” of the gene-factor
association structure from the breast cancer expression example. The image is black for
gene g (row)-factor j (column) combinations for which π∗

g,j > 0.99, for g = 1, . . . , 500
and k = 1, . . . , 19. The first 5 columns represent the normalisation control factors, and
the final 14 columns represent the latent factors. Frame (b) provides a similar display
but now restricting to the 14 latent factors alone, and reordering so that the most densely
loaded factors come first; this provides a clearer visual display of the sparsity patterns
and cross-talk between latent factors.

improved assays of levels of activation of these pathways, and this raises the
question of gene-expression-based characterisation as alternatives, or adjuncts,
to the traditional immunohistochemical (IHC) assays. For these samples, the
IHC assays provide (imperfect and noisy) binary outcomes: 0/1 for each of
ER+/−, PR+/−, and HER2+/−.

The example model for xi is equation (8.6) with an intercept and the first
five normalisation factors from this data set defining hi so that d = 5. We then
have k = 14 latent factors defining the dimensions of λi. Repeat analysis with
more latent factors leads to the additional factors having very few loaded genes,
so that the analysis essentially cuts back to that summarised. In addition, we
couple in the three binary phenotypes as responses, using probit regression
components as described above.

Figure 8.4(a) displays a binary representation of the posterior probabilities
in �∗ across the d = 5 normalisation factors and the k = 14 latent factors;
these 19 factors are indicated in that order horizontally, and genes represent
rows of the image display. This gives a simple visual impression of the sparsity
structure in both normalisation control and latent factor components.

It is evident that latent factor modelling has the capacity to adapt to artifactual
as well as biological structure in patterns of covariation among genes, and this
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(a) (b)

Fig. 8.5. Frame (a) is a scatter plot of the fitted values of 2 of the 14 latent factors –
factor 1, the “HER2 factor,” and factor 2, the primary “ER factor” – in the breast cancer
example. The colour coding indicates IHC assay ER+ tumours (red), ER− cases (blue),
and intermediate/indeterminate cases (cyan). The plot is concordant with the known
association between HER2 and ER; HER2 overexpression generally occurs much more
frequently in ER− tumours at a rate of about 30–40%. Frame (b) displays the fitted
probabilities from the probit regression model linked to the latent factors as predictors
of the IHC binary measures of ER and PR positivity, with colour coding as in frame (a).
The positive correlation of ER and PR is evident in these factor-based probabilities, as
is the discriminatory role of the estimated factors. (See color plate 8.5.)

is a common experience in a number of our studies. Here some of the latent
factors, especially those with fewer significantly loaded genes, evidently reflect
artifacts that the Affymetrix normalisation control genes are simply not picking
up. The ability of the factor model to “soak up” such structure is a strength of
the approach. The second frame in Figure 8.4 represents the same thresholded
probabilities but now just for the k = 14 latent factors. Factors are reordered
here to give a cleaner visual impression of the implied sparsity of the structure
and the “cross-talk” between factors represented by genes significantly loaded
on more than one factor.

Other factors very clearly reflect breast cancer biology and the ER/PR and
HER2 pathways. This can be examined by listing genes most highly weighted
on each factor, taking into account the absolute values of estimated βg,j , and
then examining these subsets of genes for known biological function. This
analysis generates two factors replete with known ER-related genes, of which
factor 2 is dominant in terms of exhibiting many ER-related genes and also
strongly discriminating tumour samples based on the reported ER+/− IHC
status (see Figure 8.5). One other factor, factor 1, significantly loads on the
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Fig. 8.6. Plot across breast tumour samples of levels of expression (X) of the gene
Cyclin D1 (from the PRAD1/CCND1 probe set on the Affymetrix U95a microarray,
one of three probe sets for Cyclin D1 on this array). Plots F2, F9, and E represent the
estimated (posterior mean) effects of two of the latent factors and the fitted residual for
this gene from the multivariate factor regression model. The four plots are on the same
vertical scale, so indicating the breakdown of the expression fluctuations for Cyclin D1
according to contributions from, primarily, these two factors. Factor 2 is the primary ER
factor, and factor 9 a factor defined by the three probe sets for Cyclin D1.

several probe sets for HER2/ERB-B2 as well as a small number of genes known
to be regulated by or coregulated with HER2; this therefore defines a primary
“HER2 factor.” That these factors arise from the analysis, reflecting the major
structure these pathways induce in gene expression patterns, indicates that there
should be strong associations with the ER and HER2 IHC phenotypes through
the coupled factor regression model component; this is evident in Figure 8.5.
The relationship for PR is similarly well defined, as it is very highly correlated
with ER and so well delineated by the factors that reflect ER pathway activation
levels.

A final point relates to decompositions of gene expression. Figure 8.6 plots
expression levels for one gene – a probe set representing Cyclin D1 on this
microarray – across samples. Also plotted, on the same vertical scale, are the
fitted effects of two factors for which π∗

g,j > 0.99 for this gene, factors 2 and 9,
and the fitted residuals across the samples for this gene. The model represents
a direct decomposition of the data into components contributed by the factors
plus residual; the graph illustrates the key aspects of this decomposition for this
gene. These two factors contribute comparably to the variations in expression of
Cyclin D1 across the breast tumours. Factor 2 is an ER factor (discussed above).
Cyclin D1 is a critical gene in cell cycle regulation, acting to phosphorylate
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the Rb protein and hence aid cell development and proliferation by relaxing
inhibition of the E2F transcriptional machinery. Thus some component of
expression variation reflects cell cycle activity unrelated to ER. However, Cyclin
D1 is also known to be directly involved in the ER pathway; ER is a cell-type
specific inducer of Cyclin D1, and Cyclin D1 antagonises repressors of ER.
Hence we have a clear biological rationale and interpretation of the two factors
arising from the statistical analysis. Indeed, factor 9 has only a very small
number of significantly loaded genes, and the three most highly loaded (with
estimated π∗

g,j very close to 1, and the highest estimated loading parameters)
are three Affymetrix probe sets representing Cyclin D1; that is, factor 9 is a
cell cycle related “Cyclin D1” factor that is unrelated to ER.

8.5 Concluding Comments

Gene expression genomics is only one area of modern biotechnology in
which the capacity to generate higher-resolution data on increasingly higher-
dimensional variables continues to expand. In this and other areas, the concept
of sparsity in mathematical and statistical models is central; the ability to in-
duce sparse structure in increasingly high-dimensional and complex models
will be more and more critical to scalability of statistical methods. The basic
concepts and machinery of Bayesian hierarchical modelling are most relevant,
and our theme here – hierarchical modelling with sparsity inducing priors – is
highlighted by a number of gene expression genomic examples. Our references
above include additional developments in sparse regression and factor mod-
elling, with computational developments as well as applications. There are also
close connections with sparse graphical modelling for display and interrogation
of multivariate structure in gene expression contexts [34–36], a related area of
current research interest in terms of both statistical methodology and genomic
application.

The linkings of linear and binary/probit regression to factor models are of
course just examples of broader classes of models for gene-expression-based
prediction of clinical or physiological phenotypes. Similar extensions permit
analysis of censored survival data, which is a central consideration in many ge-
nomic studies (e.g., [6, 15]). For example, latent variable imputation also easily
leads to an approach to survival regression in which the underlying survival
times (such as cancer recurrence or death, for example) are assumed condi-
tionally log-normally (or log-T) distributed. Right-censored cases can then be
treated by including the “missing” survival times as latent variables to be im-
puted, parallel to the treatment of the “missing” normal latent variables under-
lying binary data. Additional extensions utilising nonnormal survival models,
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including Weibull regression models [15] for example, are also amenable to
treatment in this framework, though such developments will require customised
extensions to the MCMC analysis.

Finally, executable code implementing the combined sparse factor regression
models and methods presented here is freely available for interested researchers,
and can be found at www.isds.duke.edu/ ˜ mw under the software link.
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Abstract

The study of the cell cycle is important in order to aid in our understanding of
the basic mechanisms of life, yet progress has been slow due to the complexity
of the process and our lack of ability to study it at high resolution. Recent
advances in microarray technology have enabled scientists to study the gene
expression at the genome-scale with a manageable cost, and there has been
an increasing effort to identify cell-cycle-regulated genes. In this chapter, we
discuss the analysis of cell cycle gene expression data, focusing on model-
based Bayesian approaches. The majority of the models we describe can be
fitted using freely available software.

9.1 Introduction

Cells reproduce by duplicating their contents and then dividing into two. The
repetition of this process is called the cell cycle, and is the fundamental means
by which all living creatures propagate. On the other hand, abnormal cell
divisions are responsible for many diseases, most notably cancer. Therefore,
studying cell cycle control mechanisms and the factors essential for the process
is important in order to aid in our understanding of cell replication, malignancy,
and reproductive diseases that are associated with genomic instability and
abnormal cell divisions.

For decades, biologists have been studying the cell cycle, using the model
organism budding yeast Saccharomyces cerevisiae. This focus on budding yeast
is due to the fact that it exists as a free living, single cell, which has the same
general architecture and control pathways as the cells of its highly complex,
multicellular relatives (e.g., humans). Moreover, a number of conditions have
been identified that enable researchers to arrest yeast cells at a specific point
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in the cell cycle and then release them from that state in order to follow a
population of cells that are progressing through the cell cycle in synchrony. Until
technologies are available to follow the molecular events in individual cells,
synchronizing populations of cells is our only means to follow and characterize
the key events in the cell cycle.

Duplication of a complex structure like a living cell requires the organization
and coordinated activity of thousands of components. These components are
built from plans coded in the genes of the cell (DNA). This code is accessed and
duplicated or transcribed into RNA and then read and translated to generate
the components, which are called proteins. As with any assembly process,
each component is required in different amounts and at different times. One
universal strategy that has evolved to simplify this process is the regulation of
transcription, which means that a gene is not transcribed (and translated) until
the component is needed. It is believed that up to 20% of the genes of organisms
as diverse as bacteria and humans may be transcriptionally regulated during the
cell cycle and many of the components encoded by these genes participate in
or control specific events in the cell cycle. For reviews of cell cycle regulation,
see for example [10] and [15].

Recent breakthroughs in microarray technology have enabled biologists to
measure the number of transcripts made from every gene in an organism’s
DNA. This microarray technology allows an unprecedented look at the state
of a cell at a particular time within the cell cycle. Due to the importance of
understanding the cell duplication process, studies of transcriptional regulation
during the cell cycle of yeast were among the first experiments to be carried
out using microarray technology. These pioneering efforts provided far more
information than had been gleaned from the previous 20 years of research in the
area. They also highlighted the need for computational methods for analyzing
microarray data and for identifying statistically significant patterns in time
series gene expression.

9.2 Previous Studies

As one of the first genome-wide gene expression studies, Cho et al. [4] used
Affymetrix microarrays and visual inspection to identify 416 out of 6,000
yeast genes as cell-cycle-regulated. Spellman et al. [18] conducted a set of
experiments using cDNA arrays and three different synchronization methods
to obtain three more data sets. By fitting these profiles to sinusoidal functions
and correlating those profiles with the profiles of transcripts already known
to be cell-cycle-regulated, these authors identified 800 genes as cell-cycle-
regulated. These data have further served as a testing ground for dozens of new
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computational methods; the earliest among these were a number of clustering
algorithms [6, 16, 22].

Recently, there has been increasing interest in developing model-based ap-
proaches for analyzing gene expression data. The clustering algorithms are
useful exploratory tools, but they lack the ability to model the variability at
various levels of the microarray experiments, the structure to take into account
covariates and external information, a distributional framework for formal sta-
tistical inference, and they also have difficulties with missing data. As a contrast,
many of the problems associated with these ad hoc clustering algorithms can be
overcome by assuming specific functional forms on the expression pattern or
distributional assumptions on model parameters, leading to more informative
analysis and principled inference. Zhao, Prentice, and Breeden [27] employed
a single-pulse model (SPM) along with generalized estimating equation tech-
niques to reexamine the three data sets by Spellman et al. [18]. Johansson,
Lindgren, and Berglund [9] used a partial least-squares regression approach
on the three data sets individually and in combination. Lu et al. [12] used a
two-component mixture-Beta model with an empirical Bayesian method to de-
tect periodic genes. Wakefield, Zhou, and Self [24] proposed a fully Bayesian
hierarchical models for the analysis of cell cycle expression data, and their
approach was subsequently extended by Zhou and Wakefield [28]. Other ap-
proaches using mixed-effect models and smoothing techniques have also been
applied to these data (see, for example, [13]). However, the agreement be-
tween these methods is remarkably poor. As reported in a comparison study by
Lichtenberg et al. [11], in total nearly 1,800 different genes have been proposed
to be periodic – which is almost one-third of the S. cerevisae genome. These re-
sults suggest that more powerful statistical methods, more accurate data, or the
incorporation of biological information are required to resolve these problems.

When applying model-based approaches to the time-course gene expression
data, it is important to specify the model in such a way that it captures the
systematic behavior of the regulation process as much as possible, otherwise
important information might be missed. The incorporation of additional infor-
mation is important due to the noise inherent in these time series data sets with
no replicates, and also from the difficulties in comparing and combining the
results from different data sets. The four experiments reported in [18] were
carried out with different synchronization methods, in the hope that analysis
of the combined data would minimize the effect of artifacts due to any one
synchronization method. However, it is not clear how many periodic transcript
profiles would be obscured by synchrony artifacts in any one data set, nor is
it clear what other complexities would arise in combining them. In addition
to the cycle lengths being different across experiments, the cycles themselves
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are slightly out of phase, because the points of arrest differ. Moreover, the syn-
chrony at release is not perfect and it decays with time. An additional problem
is that the arrested cells continue to grow and accumulate key cell components
even during the arrest, so the first cycle after release may be shorter than the
second one.

We emphasize that these experimental artifacts should be carefully consid-
ered in the analysis, as they are often systematically reflected in the expression
levels throughout experiments course. Failure to recognize them may lead to
unreliable results and erroneous conclusion. We have three major goals for this
work: first, to extend and apply the model framework proposed in [24] to cell cy-
cle time-course gene expression data with the characteristics described above;
second, to provide a streamlined analysis of such data including evaluation of
measurement error, filtering, and partitioning; third, to demonstrate that with
carefully specified models, we can extract important biological information
from such analysis.

9.3 Data

The working data is provided by Tata Pramila and Linda Breeden at the Fred
Hutchinson Cancer Research Center. It was collected from cDNA microarrays
and was normalized using GenePix software (Axon Instruments, Inc.) [1]. It
has the advantages of refined microarray technology compared to that obtained
6 years earlier and a shorter sampling interval. Microarray experiments were
also performed to directly assess measurement error. The three cell cycle data
sets we used monitor all yeast transcripts and each involves the same α-factor
method of synchronization; α-factor was used because it is a physiological
arrest of wild-type cells from which cells recover rapidly. Since α-factor is a
natural inhibitor of the cell cycle, we can assume that all cellular processes
that might interfere with the viability or recovery of these cells from the arrest
are stopped. The quality of the synchronous release can be inferred from the
fact that periodic transcripts can be followed for up to four cell cycles after
release from the arrest [3]. The timing of release is also highly reproducible,
thus enabling multiple experiments to be compared.

The data was collected with the following design: cells were first synchro-
nized by α-factor arrest; then the cells were released to progress through the
cell cycle. Gene expression levels through the cell cycle relative to asynchro-
nized cell samples were measured at 5-minute time intervals from t = 0 to
t = 120 minutes. This length covers approximately two full yeast cell cycles.
The 5-minute intervals offer finer resolution in time compared to those of
Spellman et al. [18] and Cho et al. [4]. Two microarrays were performed with
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Fig. 9.1. Expression of 100 CCR genes and 100 randomly selected genes.

the RNA collected from this experiment. In the first case (referred to as 38 wt),
the cell cycle transcripts were labeled with red dye, and the reference transcripts
from asynchronous cells were labeled with green dye. A second microarray
(30 wt) was then performed with the dyes swapped. This dye-swapped data
set is treated as a replicated experiment. The duplicated experiment provided
valuable additional information regarding the variability and magnitude of the
expression patterns.

Another important data set consists of six arrays with expression measures of
all transcripts relative to themselves to give a so-called self–self hybridization.
Deviations from a ratio of 1 in these measurements indicate measurement error.
Using the fully Bayesian-model-based approach, we were able to incorporate
the additional information gathered from these data into our main analysis,
using informative prior distributions.

All three data sets use the same 6,216 yeast transcripts, which cover the
complete yeast genome. An initial exploratory analysis, which was confirmed
by closer examination, revealed that the mRNA sample at 105 minutes was
contaminated, and therefore the data generated from that array were dropped
from subsequent analyses.

The left panel in Figure 9.1 shows expression of 100 genes which are known
to be cell cycle regulated (CCR) from previous studies. It appears that they do
demonstrate strong cyclic signals in our data set. As a contrast, a large portion
of the genes do not show strong signals as we see from the random sample of
100 genes shown in the right panel of Figure 9.1.
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Fig. 9.2. Boxplots for the data from each of the six chips.

9.4 Bayesian Analysis of Cell Cycle Data

9.4.1 Measurement Error

There are various sources of variation involved in microarray experiments, and
their identification and evaluation have proven to be crucial for making accurate
inference. Other than variations which we can attribute to certain systematic
sources, the remaining variability is often referred to as measurement error. To
estimate measurement error, we use data from six microarrays with mRNAs
collected at 0, 25, 35, 45, 60, and 100 minutes. These mRNAs were copied into
cDNA, split, and then coupled to either Cy5 or Cy3 dyes. The two samples
were mixed and hybridized to cDNA arrays. Fluorescence measured from
each dye is expressed as a ratio and its deviation from unity provides an
estimate of measurement error. This is often referred to as a same versus same
measurement.

We now summarize the analysis of this reference data, based on which the
prior distribution on the measurement error was specified. Figure 9.2 shows
the boxplots of the data from these six chips; we can see that the average gene
expressions of these asynchronized samples are close to zero. There were genes
that exhibited large variations across time, but they did not appear to be cyclic
under closer inspection. The samples appear to be more spread out at later times,
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suggesting that measurement error may increase with time. This observation
supports our speculation that using only early data could underestimate the
measurement error. Therefore we proceeded to carry out a Bayesian analysis
using the pooled data from all six chips.

Let y = {y1, . . . , yN } denote the pooled reference data, and yi denote the ith
observation. We assume a simple normal model for the data

yi | µ, σ 2 ∼i.i.d. N(yi | µ, σ 2). (9.1)

We assume a “noninformative” prior on (µ, σ 2) with p(µ, σ 2) ∝ 1/σ 2,
which leads to the following posterior distribution:

p(σ−2 | y) = Ga(σ−2 | a, b), (9.2)

where a = 1
2 (N − 1), b = 1

2ns2 with ns2 = ∑n
i=1(yi − ȳ)2.

We could use the parameter values from this posterior analysis as a way of
obtaining a prior specification for later analyses, but the large sample size from
pooling the six chips leads to a highly concentrated posterior distribution on the
standard deviation σ . The sampling posterior median of σ is 0.151, with 95%
sampling interval (0.150, 0.153). To avoid being too restrictive, we calibrated
a and b to allow larger variation. We set the modal value for σ to be 0.15,
and an upper bound 0.5 so that Pr(0 < σ < 0.5) = 0.95. Solving the resultant
equations gave a = 1.52 and b = 0.05, under which the 95% sampling interval
is (0.10, 0.68). These values were then used as priors in subsequent filtering
and partitioning analysis.

9.4.2 Filtering

In cell cycle analysis, our main interest lies in identifying and characterizing
genes that are cell-cycle-regulated. For those genes that show differential ex-
pression but do not coincide with cell cycle events, we do not consider them
as cell-cycle-regulated, and consequently exclude them from later analysis. In
this section, we apply a filtering procedure to cell cycle data. The aim is to
first identify candidate periodic genes, and then perform more reliable analysis
on these candidates, using a more sophisticated model tuned to the cell cycle
nature of the data.

Let yij denote gene expression at time tj for gene i, i = 1, . . . , n, j =
1, . . . , T . We assume a first order Fourier model for the data,

yij = Ri cos 2π(f0tj + φi) + εij , (9.3)

where εij ∼i.i.d. N(0, σ 2
e ) are the measurement errors and (Ri, φi) are gene-

specific parameters, where Ri is the amplitude, that is, the magnitude of the
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cyclic signal, and φi is the phase, governing where the signal peaks. The cell
cycle frequency is denoted by f0, fixed at 1/58 minute−1, and assumed to be
common to all genes. The cell cycle span is estimated to be 58 minutes using
the known CCR genes [27].

For the purpose of filtering, we want to test the following hypothesis inde-
pendently for each gene i:

M0: Ri = 0 v.s. M1: Ri �= 0.

To carry out the filtering procedure, we need to specify the prior distribu-
tions. For measurement error, we assume σ−2 ∼ Ga(a, b), where a and b are
determined from the reference data analysis described in Section 9.4.1.

We assume models M0 and M1 are equally probable a priori. Under M0, the
parameter φi is redundant. Under M1, we assume Ri and φi are independent
with the following prior distributions:

Ri ∼i.i.d. Exp(λ) (9.4)

φi ∼i.i.d. Unif(−0.5, 0.5) (9.5)

Because the trigonometric functions in the Fourier model are periodic, φi

is restricted to (−0.5, 0.5) for identifiability, and so the uniform prior on φi is
noninformative. We chose an exponential prior on the amplitude Ri because
it has a simple form and reasonably reflects prior belief based on data. The
parameter λ was based upon an exploratory analysis of the 100 known CCR
genes. We have found that these 100 known CCR genes showed consistently
strong signals in both the main and the dye-swapping experiments, and believed
their expression levels were representative of genes with strong signals. So we
extracted data for the 100 known CCR genes from the dye-swapping experiment
and transformed them into the same format as the 38-wt data set by changing
the signs of the log ratios. Model (9.3) can be reparameterized as

yij = Ai cos(2πf0tj ) + Bi sin(2πf0tj ) + εij , (9.6)

with Ai = Ri cos 2πφi and Bi = Ri sin 2πφ. Given f0 and tj , it is just a simple
linear model, for which we can obtain least-squares estimates of (Ai, Bi) and
transform them back to (Ri, φi). We chose λ to be 1.43 so that the mean
amplitude is 0.7 with variance 0.5 on the basis of the least-squares estimates. We
believe that amplitudes of these known CCR genes are within the upper range
of the signals. We would expect many CCR genes to have smaller amplitude
than these genes. Figure 9.3 shows the expression of the 100 CCR genes,
with fitted curves based on the least-squares estimates. The distributional and
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Fig. 9.3. Observed gene expression of 100 known CCR genes, and their fitted values
based on least-squares estimates using model (9.3).
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Fig. 9.4. N = 100 simulated gene expression time series based on the following priors:
Ri ∼ Exp(1.43), φi ∼ Unif(−0.5, 0.5), σ 2

e = 0.22.

independence assumptions were checked by inspecting the histograms and
scatter plots of the parameter estimates.

Figure 9.4 shows 100 simulated gene expression time series from the above
priors including measurement error. It suggests our prior choices are reasonable,
as we see patterns in the simulated data match quite closely to what we see in
the main data (as seen in Figure 9.1).
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Fig. 9.5. Expression of the 100 highest ranked genes (left panel) and lowest ranked
genes (right panel).

We sampled parameter values from the prior distributions and used im-
portance sampling technique to estimate the posterior probabilities pi =
Pr(M1 | yi), and then ordered genes based on these probabilities. Figure 9.5
displays the 100 highest ranked genes and the 100 lowest ranked genes. It
appears that the filter was able to pick out genes with large variations. Because
the model (9.3) allows cyclic oscillation in the data, genes showing cyclic
patterns tend to be ranked higher than genes that are not cyclic even though
they may show differential expression. So the higher a gene is ranked by this
filtering procedure, the more likely it is cyclic and thus a candidate for cell
cycle regulation.

At this point, we can either pick a cutoff point subjectively, and proceed with
genes above the threshold, or we can choose the cutoff point based on some
more formal criteria, such as controlling the false discovery rate (FDR) and
false negative rate (FNR). The concepts of FDR and FNR and the Bayesian
procedures for controlling them have been discussed in [21]. Note FDR and
FNR are two competing concepts; optimal results for minimizing both error
rates cannot be achieved at the same time. We would miss nothing by reject-
ing all hypotheses and concluding that all genes are cell-cycle-regulated; so
FNR = 0, but clearly FDR would be high in this case, and vice versa. Therefore
some compromise has to be made, depending on the scientific question and
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our subsequent preference for making the two types of errors. In our analysis,
we feel we are in a “discovery” mode, and therefore a certain amount of false
discovery is tolerable as long as we do not miss too many cell cycle genes.

Figure 9.6 illustrates various thresholds from minimizing the loss function
cFDR + FNR, where c is a positive number chosen to reflect our preference
in controlling FDR and FNR. For example, if we are twice as concerned with
FDR as with FNR, we could set c = 2 and consider the top 1,340 genes (bottom
left panel). Of course, choosing an appropriate value c is not a trivial task.

As an alternative, Figure 9.7 shows the optimal number of rejections for
minimizing Bayesian FNR while controlling Bayesian FDR at the 0.05 level.
This is similar to the frequentist practice of maximizing the power while con-
trolling the significance level. Based upon this result, we decided to identify
the top 1,680 genes as candidates for cell cycle regulation, and the cutoff for
marginal posterior probability Pr(M1 | yi) was set to be 0.78∗. More sophisti-
cated Bayesian methods for differential gene expression have been proposed
(see, for example, [5]).

9.4.3 Model-Based Partitioning

This first-order Fourier model requires model refinement since it does not
account for the attenuation in the cell cycle data. This synchronization causes
an intrinsic difficulty in a cell cycle study. To effectively observe the cell cycles,
yeast cells have to be initially synchronized. In addition, our ability to observe
the true cell cycle span is impeded because the cell cycle can be altered by the
synchronization. This fact has long been recognized by biologists, and has been
addressed in gene expression analyses as well [12]. α-factor synchronization
is considered as a better choice compared to other synchronization methods
because of its relative ease, sensitivity, and gentleness to cells. α-factor is
a mating pheromone that is secreted by haploid S. cerevisiae cells of the α

mating type. It blocks cell division in G1 and induces mating-specific gene
expression. Even when transcriptions are held at START,† during this time
cell mass increases and cell wall growth continues, resulting in enlarged and
frequently distorted cells. After the release the large size of cells leads to
near elimination of the G1 phase and hence an abbreviated cell cycle. This
is consistent with our observation that there tends to be shortened cell cycle
span early on after release, but the difference decreases over time. Breeden [3]

∗ The discrepancy of 5 is due to the rounding error in 0.78.
† An important checkpoint in the eukaryotic cell cycle. Passage through START commits the cells

to enter S-phase.
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Fig. 9.7. Optimal solutions to minimizing FNR, subject to FDR ≤ 0.05.

recommends that with α-factor arrest, the first cycle after release should be
considered a recovery cycle, which may differ from the normal mitotic cycle
in specific ways. Any oscillating activity that persists through the second and
third cycles after recovery is most likely to be a property of the normal mitotic
cell cycle.

There are drug-induced cell cycle arrests, which are unnatural and potentially
toxic and nonspecific. Genetically induced arrests using cdc mutants are more
specific and two such arrests (cdc28, cdc15) have been used by Spellman et al.
[18]. However, the arrests evoked by these mutations are abnormal in the sense
that they are caused by the loss of a critical gene product. The cells arrest in an
apparently uniform state, but it cannot be assumed that all cell-cycle-specific
progresses are halted, or that recovery from the arrest occurs under balanced
growth conditions. Even with the elutriation synchronization, which collects
G1 cells based on size and introduces minimal perturbation, cells need some
time before they resume normal mitotic cell cycles. With these synchronization
methods, the first cell cycle should also be considered a recovery cycle, as with
α-factor synchronization.

So if the first cycle cannot be trusted, why not run the experiments longer
and only look at later cell cycles? This brings up a second point: the number of
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observable cell cycles is limited. Most of the time the cyclic signals dissipate
after three or four cycles. There are several factors that could contribute to
this phenomenon. One is how well the cells are synchronized. But even with a
perfect synchrony, after two doublings only one of four of the cells experienced
the initial conditions. This, in addition to random fluctuation in the transcription
of each gene, means that soon the cells become asynchronous and we are unable
to observe the cyclic patterns any more.

To make the matter even more complicated, certain signals we observe could
be artifacts of the synchronization. Even with a perfect release from the ar-
rest, this budding yeast divides asymmetrically yielding a new daughter cell
that is smaller than the mother cell. This daughter cell must grow during the
next G1 before it can enter S-phase. The mother cell has no growth require-
ment and as a result has a shorter G1 interval. This asymmetry precludes per-
fect synchronization. For example, in the case of α-factor synchrony, because
α-factor is a mating pheromone, it will induce mating-specific gene expres-
sion. As a consequence, many mating-related genes will either be induced or
repressed, leading to increased or decreased transcript levels. In some extreme
cases, the changes in expression level are so dramatic that the cyclic signals are
totally obscured.

In the following we extend the first-order Fourier model to allow variable
frequency and time-dependent amplitude. Let yij denote the expression level
of gene i measured at time tj , and let yi = (yi1, . . . , yiTi

) denote the expression
profile for gene i measured across Ti time points, so that genes are allowed to
be measured at different sets of time points or have missing values under our
model.

• Stage 1: We assume each observed gene expression profile follow a multi-
variate normal distribution,

yi | θ i , Si ∼ NTi
(θ i , Si), (9.7)

where θ i is the Ti × 1 mean vector and Si is the Ti × Ti covariance matrix,
for i = 1, . . . , n.

• Stage 2: We introduce partition label zi , which indicates the partition that gene
i belongs to. We assume the mean vector is a context-specific function of co-
variates X i and partition-specific parameter vector µk , with θ i = h(X i ,µk)
if zi = k. For the cell cycle data, the covariate is time, and the mean structure
has the form

h(tj ,µk) = e−γktj
{
Ak cos[2πftj (φk)tj ] + Bk sin[2πftj (φk)tj ]

}
, (9.8)
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where ftj (φk) = f0
( tj

tmax

)φk , with µk = (Ak,Bk, γk, φk) characterizing the
mean trajectory, parameters Ak and Bk account for the amplitude and phase
of the cyclic pattern, γk accounts for the attenuation in the amplitude, and
φk is a time stretching factor for varying cell cycle length. We assume the
covariance matrix is also characterized by partition-specific parameter(s) so
that Si = S(ξ k) if zi = k. If Ti = T for all i, and there is no restriction on
the covariance structure, we can assume Si = �k , for example, σ 2

k I given
zi = k.

• Stage 3: We assume the partition label zi’s are independent and identically
distributed, conditional on the total number of partitions K and mixing
proportion π = (π1, . . . , πK ),

Pr(z1, . . . , zn) =
n∏

i=1

Pr(zi | K,π ), (9.9)

with

Pr(zi = k | K,π ) = πk, (9.10)

for k = 1, . . . , K , and i = 1, . . . , n.
• Stage 4: At this stage, we specify the prior distributions for the partition-

specific parameters. Assume

µk | K, m, V ∼i.i.d. Nq(m, V ), (9.11)

�−1
k | K, g, R ∼i.i.d. Wishart(g, (gR)−1), (9.12)

π | K, δ ∼ Dirichlet(δ), (9.13)

with priors on {ξ k} if they are present in the model. We also include a
“zero” partition with Ak = Bk = 0. Genes showing no cyclic pattern will be
included in this partition.

• Stage 5: The hierarchy is completed with specification of prior constants and
hyperpriors. Throughout the analysis, we choose δ to be a K-vector of 1’s
for the Dirichlet prior. We assume the total number of partitions K follows a
Poisson distribution with parameter λ if it is considered unknown. We choose
g = p, the dimension of �k , for it is the least informative in the sense that
the distribution is the flattest while being proper [25].

When K is known, this hierarchical model has a partitioning-by-features
interpretation, and posterior computations can be carried out using standard
Markov chain Monte Carlo (MCMC) software such as WinBUGS [19]. When
K is unknown, it can be treated as a random variable and inferred from the
data. More sophisticated techniques such as reversible-jump MCMC [17] or
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Fig. 9.8. Observed expression of the 100 known CCR genes, and their fitted values
based on nonlinear least-squares estimates using model (9.8).

birth–death MCMC [20] are required to deal with the changing dimension. For
more details on computation, see [24] and [28].

9.4.4 Results

We now report the results from applying our enhanced hierarchical mixture
model to the cell cycle expression data.

Among all 6,309 genes (including controls) on each of the 24 microarrays
(t = 105 was dropped due to mRNA contamination), 6,141 had no missing
data across all chips, 75 had one missing value, 25 had two missing values, and
68 had three or more. A close inspection reveals that genes with many missing
values tend to be highly unreliable, and thus genes with three or more missing
values were dropped. Some of the measurements were flagged as unreliable at
the data processing stage, but we still decided to include them in subsequent
analysis because of the ad hoc nature of flagging.

We first identified 1,680 genes as candidates for cell cycle regulation using
the filter described in Section 9.4.2. Next we evaluate the extension to the mean
structure. Figure 9.8 shows the observed curves and the fitted curves based on
nonlinear least-squares estimates from model (9.8). Compared to Figure 9.3,
the improvement in the attenuation adjustment and time stretching is clear.
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Fig. 9.9. Final partitioning with K = 16 fixed (note different vertical scales). (See color
plate 9.9.)

We have found that the number of partitions K is highly sensitive to the
prior specification, not only the Poisson prior, but also other priors on the
variance parameters which could affect the size and shape of partitions. This
is in agreement with Stephens [20]. In addition, our enhanced model allows
genes to be classified at a finer scale (with more features), which lead to a large
number of partitions. Given there is no clear definition regarding the underlying
regulation pathways during the cell cycle, we found this number hard to interpret
and highly variable depending on the prior choices, so we decided to restrict
our attention to the analyses with K fixed. Figure 9.9 displays the classification
and estimated mean profiles from fitting the enhanced model to the 38-wt data
with K fixed at 16. There is an inherit unidentifiability problem with Bayesian
mixture modeling so that relabeling needs to be carried out, (see [20]) for
discussion). Here we relabeled the partitions on the basis of time to the first
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peak. This decision is based on the fact that the cell cycle events are regulated in
an orderly fashion. The early activation or deactivation of transcription factors
are often responsible for the next wave of gene expression, so this relabeling
has an appealing biological interpretation.

Our model was able to identify some interesting cell cycle gene partitions,
and the effect of model enhancement is obvious. From Figure 9.9, we can see
that partitions 3, 6, 8, 13, and 16 are partitions with strong cyclic signals, and
they all show the dissipation of synchrony over time. In particular, partition 3
has a greatly heightened first peak, which is large enough to obscure the later
cyclic pattern. Without the improvement to the model, we may not be able to
identify this group of genes. We suspect these genes are related to the mating
process, so their expression is induced by the pheromone. Several partitions
appear to have shortened first cycles, such as partition 2, 3, and 11. These are
G1 or G2 phase genes, confirming our speculation that the synchronization
may shorten the growth phase. At least 9 out of the 13 genes classified into
partition 8 are the S-phase histone coding genes. The products of these genes
form a single complex that is used for DNA condensation. These genes are
coordinately regulated and have been well characterized. A closer inspection
reveals that many genes in partition 2 are M–G1 genes and share a promoter
element called ECB; many genes in partitions 5 and 6 are late G1 genes and
share MCB and/or SCB promoter elements; partition 9 consists of G2-phase
genes and many of them also share the MCB/SCB promoter elements; and
many genes in partition 13 appear to share MCM1 and FKH sites. Partition
11 contains many genes involved in ribosome biogenesis. Their promoters are
enriched for two sequence motifs referred to as PAC and RRPE [8, 23]. Our
data indicate that these transcripts are modestly periodic and peak 10 minutes
after the histones peak.

Note that the time to first peak in partition 16 is larger than 58 minutes, the
normal cell cycle span we used. This is because the attenuation at the beginning
of the experiment is so large that the first peak of this partition is obscured. If
we shift the time to peak by 58 minutes, we can see that this group actually
coincide with partition 2, except with much larger amplitude.

Under the Bayesian mixture models, specific partitions are susceptible to the
relabeling problem. But as suggested in [24], we can examine the probabilities
of coexpression p(zi = zi ′ | y), which are invariant to relabeling. A good visual
display of coexpression is the heatmap. Due to space limitation, we select a
subsample of the partitions to display. Figure 9.10 shows the coexpression,
with dark areas indicating high coexpression, and, as expected, shaded areas
are close to the diagonal, suggesting strong coexpression within partitions.
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Fig. 9.10. Heatmap of probabilities that two genes share a common label, for partitions
2, 3, 5, 6, 8, 13, 15, and 16. Shaded blocks correspond to pairwise probabilities larger
than the chosen cutoff.

There is some overlap between partitions 1 and 2, which is not surprising given
our previous discussion.

The posterior classification probability of each gene p(zi = k | y) provides
a natural measure of uncertainty concerning the partitioning of each individual
gene. However, it is also of interest to measure the strength of the partitions,
such as how tight genes are within a partition, and how much overlap there is
between different partitions. So we examine the sensitivity and specificity of the
partitions, where sensitivity is the probability of coexpression, given labeling
in the same partition, and specificity is the probability of noncoexpression,
given labeling in different partitions. Such functions cannot be evaluated with
traditional partitioning approaches.

The sensitivity of partition k is estimated by

Sensitivity =
∑

i,i ′∈Ck

p(zi = zi ′ = k | y)/Nk1, (9.14)

where Ck denotes partition k, and Nk1 is the number of distinct gene pairs
classified into Ck . The specificity of partition k is estimated by

Specificity =
∑

i∈Ck,i ′∈Ck′ ,k′ �=k

p(zi = k, zi ′ = k′ | y)/Nk2, (9.15)

where Ck and Ck′ are different partitions, and Nk2 is the number of distinct
gene pairs with only one gene classified into Ck . The sensitivity and specificity
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Fig. 9.11. Strength of coexpression within and between partitions, measured through
sensitivity and specificity.

of the 16 partitions are shown in Figure 9.11. Partition 1 is the “zero” partition
for noncyclic genes, so it is not surprising to see it has the lowest sensitivity.
Partitions 11 and 12 only have weak signals and there is overlap between genes
in these partitions, hence their sensitivity and specificity are low. Partition 8
contains a tight group of histone genes that have strong cyclic signals, and it
is ranked the highest in terms of sensitivity and specificity. Other high-quality
partitions include partitions 3, 6, 13, and 16, as was evident from Figure 9.9.
The sensitivity and specificity estimates provide a natural quantitative measure
of the quality of partitions, based on which we can focus on the high-quality
partitions, and proceed with validation or more sophisticated analysis such as
motif discovery.

Studying the coexpression can also provide important information about re-
lationship between partitions. For example, Figure 9.12 shows several genes
identified from the heatmap that had high coexpression with genes in parti-
tion 16 though they were classified into partition 2. Examination of the mean
trajectories reveals that the peaks of one trajectory appear to coincide with
the other, suggesting these two partitions could be coregulated, although the
magnitude of the signals differs. Some would argue that these genes should be
considered coregulated as long as the peaks and troughs of their oscillations
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Fig. 9.12. Selected genes partitioned into group 2, but with coexpression with parti-
tion 16.

concur, regardless of their magnitude. Here we distinguish these genes, for
we speculate that genes with higher amplitude may contain more promoting
elements, or some other element(s) responsible for increased expression levels,
or the low amplitude profiles may be from genes with unstable mRNAs. In fact,
a sequence search reveals that partition 16 and partition 2 do share common
MCM1 elements. The relevant motif is TTTCCNNNNNNGGAAA, a flanking palin-
drome to which two MCM1 proteins bind (N = A or C or G or T). Such binding
is required for transcriptional activation at the M/G1 boundary. And as we
thought, the partition 16 genes have multiple elements and a larger consensus
sequence, and the partition 2 genes have only one site. Many partition 2 genes
do not have the MCM1 site at all. This causes us to suspect that there may be
new element(s) in partition 2 genes which have similar properties as MCM1.
We will continue investigation of these speculatives.

9.5 Discussion

As explained above, the changing cell cycle span and magnitude of signals
are systematic and correspond to actual biological phenomena. Although a
large number of research papers have been published on the topic of cell cycle
gene expression, few have taken these systematic variations into account. Zhao
et al. [27] considered the issue of decreasing signals in their SPM, in which
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they allowed the precision to decrease over time. Bar-Joseph [2] mentioned
both issues, but used semiparametric models instead of directly modeling the
phenomena. Here we advocate a science-motivated, model-based approach
toward cell cycle gene expression analysis. We believe that it is less appropriate
to rely totally on data-driven approaches, regardless of the biological context
and scientific questions waiting to be addressed.

Because every synchronization protocol has its limitations, a prudent strategy
for determining whether a specific process is cell-cycle-regulated is to employ
at least two different synchrony methods. If the oscillation can be observed
through two or more mitotic cycles in two different synchrony experiments, it
is unlikely the oscillation is induced by the arrest [3]. But combining analyses
from different experiments is a difficult task, and has not been fully addressed
by researchers. We leave it as future research, and do not attempt this problem
here.

Our approach of assuming a mixture model with flexible mean structures is
crucially different from the “model-based” clustering approach of Yeung et al.
[26], who analyzed similar data but simply assumed that the data arose from a
mixture of T -dimensional normal distributions and hence did not acknowledge
the time ordering of the data (the analysis would be unchanged if the time
ordering were permuted). In particular, it would be desirable to allow serial
dependence, within such an approach, but the MCLUST software [7] that is
used by Yeung et al. [26] does not allow for this possibility, and it does not
perform well when the dimension T gets large. In their approach, missing data
and unbalanced design also cause complications, whereas in our model no such
problems arise. Medvedovic and Sivaganesan [14] also proposed a Bayesian
hierarchical model for clustering microarray data, but again they failed to take
the time ordering into account in their approach.

We have demonstrated that our enhanced model can provide further in-
sight into our understanding of cell cycle transcription programs. In our en-
hanced model, each partition is characterized by a set of four parameters.
Intuitively speaking, the finer we characterize the mean model, the easier to
distinguish different features and we see more partitions. So we were not sur-
prised to find that a large number of partitions were being identified under
our refined model. Although many numerical methods for detecting underly-
ing clusters based on gene expression data have been published, none of them
are satisfactory. From our experience we have found that without plausible
interpretation and biological validation, the number of partitions produced by
numerical analysis is highly unreliable, and sometimes even misleading. The
partitions are defined by the model, which in turn is motivated by the biol-
ogy. The ultimate validation of the partitioning should be based on scientific
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investigation, with data analysis providing numerical support and further hy-
potheses. In other words, the conclusion should be based on science, not just
on data analysis.
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Model-Based Clustering for Expression Data
via a Dirichlet Process Mixture Model

DAVID B. DAHL
Texas A&M University

Abstract

This chapter describes a clustering procedure for microarray expression data
based on a well-defined statistical model, specifically, a conjugate Dirichlet
process mixture model. The clustering algorithm groups genes whose latent
variables governing expression are equal, that is, genes belonging to the same
mixture component. The model is fit with Markov chain Monte Carlo and the
computational burden is eased by exploiting conjugacy. This chapter introduces
a method to get a point estimate of the true clustering based on least-squares
distances from the posterior probability that two genes are clustered. Unlike ad
hoc clustering methods, the model provides measures of uncertainty about the
clustering. Further, the model automatically estimates the number of clusters
and quantifies uncertainty about this important parameter. The method is com-
pared to other clustering methods in a simulation study. Finally, the method is
demonstrated with actual microarray data.

10.1 Introduction

The main goal of clustering microarray data is to group genes that present
highly correlated data; this correlation may reflect underlying biological fac-
tors of interest, such as regulation by a common transcription factor. A
variety of heuristic clustering methods exist, including k-means clustering
(MacQueen 1967) and hierarchical agglomerative clustering. These methods
have had an enormous impact in genomics (Eisen et al. 1998) and are intuitively
appealing. Nevertheless, the statistical properties of these heuristic clustering
methods are generally not known. Model-based clustering procedures have
been proposed for microarray data, including (1) the MCLUST procedure
of Fraley and Raftery (2002) and Yeung et al. (2001), and (2) the Bayesian

201
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mixture model based clustering of Medvedovic and Sivaganesan (2002) and
Medvedovic et al. (2004). Model-based techniques offer advantages over
heuristic schemes, such as the ability to assess uncertainty about the result-
ing clustering and to formally estimate the number of clusters.

This chapter describes a model-based clustering procedure for microarray
expression data based on a well-defined statistical model, specifically, a conju-
gate Dirichlet process mixture (DPM) model. In the assumed model, two genes
come from the same mixture component if and only if their relevant latent
variables governing expression are equal. The model itself, known as BEMMA
for Bayesian Effects Model for Microarrays, was first introduced by Dahl and
Newton (submitted) as a means of exploiting the clustering structure of data
for increased sensitivity in a battery of correlated hypothesis tests (e.g., finding
differentially expressed genes). The focus of this chapter is not finding differ-
ential expression, but rather identifying the underlying clustering structure of
expression data.

Computations for Bayesian mixture models can be challenging. Unlike
the finite and infinite mixture models of Medvedovic and Sivaganesan (2002)
and Medvedovic et al. (2004), the proposed method is, however, conjugate.
This conjugacy permits the latent variables to be integrated away, thereby
simplifying to state space over which the Markov chain is run. The model is
fit using Markov chain Monte Carlo (MCMC), specifically using the conjugate
Gibbs sampler (MacEachern 1994; Neal 1992) and the merge–split algorithm
of Dahl (2003). Each iteration of the Markov chain yields a clustering of the
data.

Providing a single point estimate for clustering based on the thousands
of clusterings in the Markov chain has been proven to be challenging
(Medvedovic and Sivaganesan 2002). One approach is to select the observed
clustering with the highest posterior probability; this is called the maximum a
posteriori (MAP) clustering. Unfortunately, the MAP clustering may only be
slightly more probable than the next best alternative, yet represent a very dif-
ferent allocation of observations. Alternatively, Medvedovic and Sivaganesan
(2002) and Medvedovic et al. (2004) suggest using hierarchical agglomerative
clustering based on a distance matrix formed using the observed clusterings
in the Markov chain. It seems counterintuitive, however, to apply an ad hoc
clustering method on top of a model which itself produces clusterings.

This chapter proposes a method to form a clustering from the many cluster-
ings observed in the Markov chain. The method is called least-squares model-
based clustering (or, simply, least-squares clustering). It selects the observed
clustering from the Markov chain that minimizes the sum of squared deviations
from the pairwise probability matrix that genes are clustered. The least-squares
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clustering has the advantage that it uses information from all the clusterings (via
the pairwise probability matrix) and is intuitively appealing because it selects
the “average” clustering (instead of forming a clustering via an external, ad hoc
algorithm).

Section 10.2 presents the details of the proposed model, including the like-
lihood, prior, and how to set the hyperparameters. Section 10.2.3 describes the
model fitting approach and how the conjugate nature of the model aids in its fit-
ting. Section 10.3 details the new least-squares clustering estimator using draws
from the posterior clustering distribution. Section 10.4 presents a simulation
study showing that the method compares well with other clustering methods.
Finally, the model is demonstrated in Section 10.5, using a microarray data set
with 10,043 probe sets, 10 treatments conditions, and 3 replicates per treatment
condition. This section also introduces the effects intensity plot which displays
the clustering of all genes simultaneously. The chapter ends with a discussion
in Section 10.6.

10.2 Model

The model-based clustering procedure presented here is based on the Bayesian
Effects Model for Microarrays (BEMMA) of Dahl and Newton (submitted).
The model was originally proposed as a means to gain increased sensitivity in
a battery of correlated hypothesis tests by exploiting the underlying clustering
structure of data. In their application, Dahl and Newton (submitted) were in-
terested in identifying differentially expressed genes. In this chapter, we apply
their model to the task of clustering highly correlated genes that may reveal
underlying biological factors of interest.

10.2.1 Likelihood Specification

The model assumes the following sampling distribution:

ygtr |µg, τgt , λg ∼ N (ygtr |µg + τgt , λg), (10.1)

where ygtr is a suitably transformed expression of replicate r (r = 1, . . . , Rt )
of gene g (g = 1, . . . , G) at treatment condition t (t = 1, . . . , T ) and N (z|a, b)
denotes the univariate normal distribution with mean a and variance 1/b for
the random variable z. The parameter µg represents a gene-specific mean,
the gene-specific treatment effects are τg1, . . . , τgT , and λg is a gene-specific
sampling precision.

The model assumes that coregulated genes have the same treatment ef-
fects and precision. That is, genes g and g′ are in the same cluster if
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(τg1, . . . , τgT , λg) = (τg′1, . . . , τg′T , λg′). The clustering can be encoded with
cluster labels c1, . . . , cG, where cg = cg′ if and only if genes g and g′ are in the
same cluster.

The gene-specific means µ1, . . . , µG are nuisance parameters; they are not
related to differential expression across treatments and they are not used to
define clusters. Indeed, there can exist constant differences in expression
from probe sets known to be coregulated. These constant differences may
be due to the biology (e.g., mRNA degradation) or the microarray technol-
ogy (e.g., hybridization differences between probes or labeling efficiency).
Whatever the reason, constant differences between probe sets may natu-
rally exist in microarray experiments, yet they are not of interest. Indeed,
two genes having a constant difference across treatments is the essence of
coregulation.

The nuisance parameters µ1, . . . , µG could be handled by specifying a prior
over them and integrating the likelihood implied by (10.1) over this prior. The
resulting model would be nonconjugate since the prior specification (detailed
in the next subsection) induces mixing with respect to both the treatment
effects τg1, . . . , τgT and the sampling precision λg . (If the mixing were only
with respect to the treatment effects, conjugacy would remain intact when
integrating over the nuisance parameters µ1, . . . , µG.) Fitting this nonconjugate
model would be computationally challenging in the presence of thousands of
genes.

The following pragmatic approach is used to address the nuisance param-
eters µ1, . . . , µG. Select a reference treatment (taken here to be the first
treatment for notational convenience). Let dg be a vector whose elements
are ygtr − yg1 for t ≥ 2, where yg1 is the mean of the reference treatment.

Further, let τg = (τg2, . . . , τgT ) be a treatment effect vector and N = ∑T
t=2 Rt

be the dimension of dg . Simple calculations reveal that dg is independent of the
nuisance parameters µ1, . . . , µG and distributed:

dg |τg, λg ∼ NN (dg |Xτg, λgM), (10.2)

where Nc(z|a, b) is a c-dimensional multivariate normal distribution with mean
vector a and covariance matrix b−1 for the random vector z. Also, M is an
N × N matrix equal to ( I + 1

R1
J )−1, where I is the identify matrix and J is a

matrix of ones. Finally, X is an N × (T − 1) design matrix whose rows contain
all zeros except where the number 1 is needed to pick off the appropriate
element of τg . If one prefers, the model could equivalently be written in terms
of sample averages from each treatment. This would, for example, reduce the
dimension of dg from N to T .
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10.2.2 Prior Specification

Clustering based on equality of τ ’s and λ’s across genes is achieved by using
a Dirichlet process prior for these model parameters, resulting in a Dirichlet
process mixture (DPM) model. See Müller and Quintana (2004) and references
therein for a review of the DPM model literature. The model assumes the
following prior:

τg, λg |F (τg, λg) ∼ F (τg, λg)

F (τ, λ) ∼ DP (η0F0(τ, λ)), (10.3)

where DP (η0F0(τ, λ)) is the Dirichlet process having centering distribution
F0(τ, λ) for the random variables τ and λ and mass parameter η0. The centering
distribution F0(τ, λ) is a joint distribution for τ and λ having the following
conjugate density:

p(τ, λ) = p(τ |λ)p(λ)

= NT −1(τ |0, λ�0)Ga(λ |α0, β0), (10.4)

where Ga(z |a, b) is the gamma distribution with mean a/b for the random
variable z and α0, β0, and �0 are fixed hyperparameters set based on either
prior experience or current data.

10.2.3 Sampling from the Posterior Distribution

Quintana and Newton (2000) and Neal (2000) have good reviews and compar-
isons of methods for fitting DPM models. We suggest fitting the proposed model
using MCMC. The centering distribution F0(τ, λ) in (10.4) is conjugate to the
likelihood for τg and λg in (10.2). Thus, the model parameters may be integrated
away, leaving only the clustering of the G genes. As a result, the stationary dis-
tribution of a Markov chain for the model is p(c1, . . . , cG|d1, . . . , dg), the pos-
terior distribution of the clustering configurations. This technique was shown
by MacEachern (1994) and MacEachern et al. (1999) to greatly improve the
efficiency of Gibbs sampling and sequential importance sampling, respectively.
Efficiency is very important if the model is to be useful in practice.

It should be noted that the technique of integrating away the model parame-
ters is merely a device used for model fitting. Inference on the model parameters
τ1, . . . , τG and λ1, . . . , λG can still be made by sampling from posterior dis-
tribution of the model parameters (i.e., (10.6) in next subsection) after having
obtained samples from the posterior clustering distribution.

The Gibbs sampler can be used to sample from the posterior clustering dis-
tribution of conjugate DPM models (MacEachern 1994; Neal 1992). The Gibbs
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sampler repeatedly takes a gene out of the clustering and draws a new cluster
label from the full conditional distribution. Because the Gibbs sampler only
moves one gene at a time, it may explore the posterior clustering distribution
rather slowly. Jain and Neal (2004) and Dahl (2003) present merge–split algo-
rithms that attempt to update more than one cluster label at a time. The Gibbs
sampler and both of these merge–split samplers require the evaluation of the
posterior predictive distribution. The next subsection gives the full conditional
distribution and the posterior predictive distribution for the proposed model.

10.2.4 Full Conditional and Posterior Predictive Distributions

The full conditional distribution is essential for fitting the model using the
Gibbs sampler. Let c−i denote the collection of all cluster labels except that
corresponding to gene i. For notational convenience, let the cluster labels in
c−i be numbered from 1 to k and let k + 1 be the label of an empty cluster.
Finally, let nc be the number of cluster labels equal to c (not counting ci), unless
cluster c is empty, in which case, nc is set to the mass parameter η0. The full
conditional distribution is a multinomial distribution given by

p(ci = c | c−i , d1, . . . , dG) ∝ nc

∫
B(di |τ, λ)p(τ, λ|Dc) dτ dφ, (10.5)

for c = 1, . . . , k + 1, where B(di |τ, λ) is the normal distribution in (10.2), and
p(τ, λ|Dc) is the density of the posterior distribution of τ and λ based on the
prior F0(τ, λ) in (10.4) and all differences dj for which j �= i and cj = c. In
the case of an empty cluster, p(τ, λ|Dc) is just the density of the prior F0(τ, λ)
and nc is set to the mass parameter η0 instead of 0; otherwise, it is rather
straightforward to show that

p(τ, λ |Dc) ∝ p(τ |λ,Dc)p(λ |Dc)

= NT −1(τ |�−1
nc

S1, λ�nc
)Ga(λ |αnc

, β1), (10.6)

where

�nc
= �0 + ncX′MX,

αnc
= α0 + ncN

2
,

β1 = β0 + 1

2
S2 − 1

2
S ′

1�
−1
nc

S1, (10.7)

S1 =
∑
d∈Dc

X′Md, and

S2 =
∑
d∈Dc

d ′Md.
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The integral in (10.5) refers to the posterior predictive distribution of d be-
longing to cluster c. For conjugate DPM models, this distribution can usually be
found in closed form. In the present model, the posterior predictive distribution
for a new difference vector d∗ evaluated at d (when its cluster label c∗ is c and
given the data Dc having cluster label c) has the following density:

p(d∗ = d |c∗ = c,Dc) = cn

β
αnc

1

β
αnc+1

2

, (10.8)

where

β2 = β0 + 1

2
S2 + 1

2
d ′Md − 1

2
(X′Md + S1)′�−1

nc+1(X′Md + S1)

cn = �(αnc+1)

�(αnc
)

√
| �n || M |

| �nc+1 | (2π )N
. (10.9)

It is interesting to note that (10.8) is not the usual multivariate Student t-
distribution.

10.2.5 Setting the Hyperparameters

Lacking strong prior belief about the hyperparameters η0, α0, β0, and �0, an
empirical Bayes procedure can be used. Notice that (10.7) implies that �n+1 =
�n + X′MX and αn+1 = αn + N

2 . That is, for each additional observation, �n

and αn are incremented by X′MX and N
2 , respectively. It is natural, therefore, to

set the hyperparameter �0 to n0X′MX and the hyperparameter α0 to n0
N
2 , for

n0 > 0 representing the number of observations that prior experience is worth.
By default, we recommend n0 = 1.

As shown in (10.1) and (10.4), the hyperparameters α0 and β0 are, respec-
tively, the shape and rate parameters of the gamma prior distribution for the
precision of an observation in a given cluster. We recommend setting α0 and β0

such that the mean of this distribution, α0/β0, matches a data-driven estimate
of the expected precision for a cluster. Equivalently, in terms of the standard
deviation, choose α0 and β0 so that

√
β0/α0 matches the estimated standard

deviation for a cluster. The software implementation of BEMMA uses the me-
dian standard deviation across all probe sets if no value is specified by the
user. Since α0 = n0

N
2 (from the previous paragraph), specifying the expected

standard deviation implies a value for β0.
The final hyperparameter to consider is the mass parameter η0, which affects

the distribution on the number of clusters. The mass parameter in DPM mod-
els has been well studied (Escobar 1994; Escobar and West 1995; Liu 1996;



P1: JZP

dahl CUNY477-DoMueller 0 521 86092 X December 5, 2006 14:6

208 Dahl

Medvedovic and Sivaganesan 2002). From Antoniak (1974), the prior expected
number of clusters is

K(G) =
G∑

g=1

η0

η0 + g − 1
.

In some DPM model applications, the mass parameter is set to 1.0. This seems
overly optimistic for microarray experiments since, for example, it implies a
prior belief that there are less than 12 clusters in data set with 50,000 genes. We
use an empirical Bayes approach which sets η0 such that the posterior expected
number of clusters equals the prior expected number of clusters. The software
implementation of BEMMA provides this option.

10.3 Inference

Draws c1, . . . , cB from the posterior clustering distribution can be obtained
using MCMC, where B is a number of sampled clusterings. Several methods
have been used to arrive at a point estimate of the clustering using draws from
the posterior clustering distribution. Perhaps the simplest method is to select
the observed clustering that maximizes the density of the posterior clustering
distribution. This is known as the maximum a posteriori (MAP) clustering.
Unfortunately, the MAP clustering may only be slightly more probable than the
next best alternative, yet represent a very different allocation of observations.

For each clustering c in c1, . . . , cB , an association matrix δ(c) of dimen-
sion G × G can be formed whose (i, j ) element is δi,j (c), an indicator of
whether gene i is clustered with gene j . Element-wise averaging of these as-
sociation matrices yields the pairwise probability matrix of clustering, denoted
π̂ . Medvedovic and Sivaganesan (2002) and Medvedovic et al. (2004) suggest
forming a clustering estimate by using the pairwise probability matrix π̂ as a
distance matrix in hierarchical agglomerative clustering. It seems counterintu-
itive, however, to apply an ad hoc clustering method on top of a model which
itself produces clusterings.

We introduce the least-squares model-based clustering (or, simply, least-
squares clustering), a new method for estimating the clustering of observa-
tions using draws from a posterior clustering distribution. As with the method
of Medvedovic and Sivaganesan (2002), the method is based on the pairwise
probability matrix π̂ that genes are clustered together. The method differs,
however, in that it selects one of the observed clusterings in the Markov chain as
the point estimate. Specifically, the least-squares clustering cLS is the observed
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clustering c which minimizes the sum of squared deviations of its association
matrix δ(c) from the pairwise probability matrix π̂ :

cLS = arg min
c∈{c1,...,cB }

G∑
i=1

G∑
j=1

(δi,j (c) − π̂i,j )2. (10.10)

The least-squares clustering has the advantage that it uses information from all
the clusterings (via the pairwise probability matrix) and is intuitively appealing
because it selects the “average” clustering (instead of forming a clustering via
an external, ad hoc clustering algorithm).

Uncertainty about a particular clustering estimate can be accessed from the
posterior clustering distribution. For example, one can readily estimate the prob-
ability that two genes are clustered together by computing the relative frequency
of this event among the clusterings in the Markov chain. Also, the posterior
distribution of the number of clusters is easily obtained.

10.4 Simulation Study

This section provides a simulation study comparing the proposed clustering
method to several standard methods. To assess the robustness of the clustering
methods, four degrees of clustering are considered:

Heavy clustering: Data with 12 clusters of 100 genes per cluster.
Moderate clustering: Data with 60 clusters of 20 genes per cluster.
Weak clustering: Data with 240 clusters of 5 genes per cluster.
No clustering: Data with no clustering of the genes.

Each data set has 1,200 genes. The simulated experimental design is a time-
course experiment (with three time points) and two groups, making in all T = 6
treatments.

Each cluster may be classified as either containing genes that are differ-
entially expressed or equivalently expressed. Clusters that are equivalently
expressed have equal treatment effects for the two treatments within a time
point. Clusters that are differentially expressed have independently sampled
treatment effects at one or more of the time points. In all cases, the precision λ

for a cluster is a draw from a gamma distribution with mean 1 and variance 1/10,
the treatment effects τ1, . . . , τ6 for a cluster are drawn independently from a
normal distribution with mean 0 and variance (9λ)−1, and the gene-specific
shift µ is drawn from a normal distribution with mean 7 and variance 1.
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Regardless of the degree of clustering, each data set contains 300 genes that
are differentially expressed. A third of the differentially expressed clusters have
unequal treatment effects at only one time point, a third have unequal treatment
effects at two time points, and the remaining third have unequal treatment
effects at all three time points. Finally, the observed data is drawn as specified
in (10.1), with the first time point having five replicates per treatment and the
other time points having three replicates.

10.4.1 Simulation Results

The MAP and least-squares clusterings based on the BEMMA model (as de-
scribed in Section 10.3) were computed for each simulated data set and are
labeled “BEMMA(map)” and “BEMMA(least-squares),” respectively. To com-
pare the performance of BEMMA, the MCLUST procedure (Fraley and Raftery
1999, 2002) and hierarchical clustering (Hartigan 1975; Ihaka and Gentleman
1996) were applied to the simulated data. Specifically, the following methods
were used:

MCLUST: The Mclust( ) function of the mclust package of R
(Ihaka and Gentleman 1996)

HCLUST(correlation,average): Hierarchical clustering where the distance
between genes was one minus the square of the Pearson correlation
of the sample treatment means and using the “average” agglomeration
method

HCLUST(correlation,complete): Hierarchical clustering using correlation
distance and using the “complete” agglomeration method

HCLUST(effects,average): Hierarchical clustering where the distance be-
tween genes was the Euclidean distance between the sample treatment
effects and using the “average” agglomeration method

HCLUST(effects,complete): Hierarchical clustering using effects distance
and using the “complete” agglomeration method

Hierarchical clustering is a heuristic clustering procedure, while BEMMA and
MCLUST are model-based clustering procedures. The number of clusters in
the data is unspecified in the proposed model. For simplicity, the number
of clusters for the other clustering methods was set to the true number of
clusters.

There are many indices for measuring the agreement between two cluster-
ings. In a comprehensive comparison, Milligan and Cooper (1986) recommend
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Table 10.1. Adjusted Rand Index for BEMMA and Other Methods

Adjusted Rand
Degree of clustering Clustering method index w/95% C.I.

Heavy MCLUST 0.413 (0.380, 0.447)
BEMMA(least-squares) 0.402 (0.373, 0.431)
BEMMA(map) 0.390 (0.362, 0.419)
HCLUST(effects,average) 0.277 (0.247, 0.308)
HCLUST(effects,complete) 0.260 (0.242, 0.279)
HCLUST(correlation,complete) 0.162 (0.144, 0.180)
HCLUST(correlation,average) 0.156 (0.141, 0.172)

Moderate BEMMA(least-squares) 0.154 (0.146, 0.163)
MCLUST 0.144 (0.136, 0.152)
BEMMA(map) 0.127 (0.119, 0.135)
HCLUST(effects,complete) 0.117 (0.111, 0.123)
HCLUST(effects,average) 0.101 (0.095, 0.107)
HCLUST(correlation,average) 0.079 (0.075, 0.083)
HCLUST(correlation,complete) 0.073 (0.068, 0.078)

Weak MCLUST 0.050 (0.048, 0.052)
HCLUST(effects,complete) 0.045 (0.043, 0.048)
BEMMA(least-squares) 0.042 (0.040, 0.043)
HCLUST(effects,average) 0.037 (0.035, 0.038)
BEMMA(map) 0.031 (0.030, 0.033)
HCLUST(correlation,average) 0.029 (0.027, 0.030)
HCLUST(correlation,complete) 0.027 (0.025, 0.029)

Note: Large values of the adjusted Rand index indicate better agreement between the
estimated and true clustering.

the adjusted Rand index (Hubert and Arabie 1985; Rand 1971) as the preferred
measure of agreement between two clusterings. Large values for the adjusted
Rand index mean better agreement. That is, an estimated clustering that closely
matches the true clustering has a relatively large adjusted Rand index.

Table 10.1 shows the adjusted Rand index for BEMMA and the other clus-
tering methods. Under heavy, moderate, and weak clustering, the MCLUST
does very well. BEMMA too performs well. Notice that the newly pro-
posed least-squares clustering method of Section 10.3 performs better than
the MAP clustering method. The hierarchical clustering procedures generally
do not perform very well, especially those based on the correlation distance
matrix.

In summary, the simulation study suggests that the least-squares cluster-
ing is able to estimate the true clustering relatively well. It does about as
well as MCLUST and much better than hierarchical clustering, even though
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Fig. 10.1. Posterior distribution of the number of clusters.

BEMMA does not have the benefit of knowing the true number of clusters.
Further, the model-based nature of BEMMA allows one to readily assess
the variability in the estimated clustering. Finally, when information on dif-
ferential expression is desired, BEMMA is also shown by Dahl and Newton
(submitted) to be a very sensitive method for detecting differentially expressed
genes.

10.5 Example

The proposed method was implemented on a replicated, multiple treatment
microarray experiment. Researchers were interested in the transcriptional re-
sponse to oxidative stress in mouse skeletal muscle and how that response
changes with age. Young (5-month-old) and old (25-month-old) mice were
treated with an injection of paraquat (50 mg/kg). Mice were sacrificed at
1, 3, 5, and 7 hours after paraquat treatment or were sacrificed having not
received paraquat (constituting a baseline). Thus, T = 10 experimental con-
ditions were under consideration. Edwards et al. (2003) discuss the experi-
mental details. All treatments were replicated three times. Gene expression
was measured on G = 10,043 probe sets using high-density oligonucleotide
microarrays manufactured by Affymetrix (MG-U74A arrays). The data was
background-corrected and normalized using the Robust Multichip Averaging
(RMA) method of Irizarry et al. (2003) as implemented in the affy package of
BioConductor (Gentleman et al. 2004). For a review of the issues and proce-
dures for background-correction and normalization, see Irizarry et al. (2003)
and Dudoit et al. (2002)
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Fig. 10.2. Effects intensity plot for genes clustered with the probe set of interest. This
effects intensity plot shows the estimated treatment effects for the other probe sets
that were clustered with the probe set of interest in the least-squares clustering. Rows
correspond to the genes in this cluster. The reference treatment is old at baseline and is
shaded gray. Lighter shades indicate underexpression relative to the reference, whereas
darker shades indicate overexpression.

10.5.1 Burn-in and Posterior Simulation

The model was fit using MCMC. The hyperparameters α0, β0, �0, and η0 were
set according to Section 10.2.5, resulting in the prior and posterior expected
number of clusters being 98 (i.e., mass parameter η0 = 15).

Two Markov chains were run from one of two extreme starting configura-
tions: (1) all genes belonging to a single cluster, or (2) each gene belonging
to its own cluster. One iteration of the Markov chain consisted of a Gibbs
scan (accounting for more than 97% of the CPU time) and five sequentially
allocated merge–split proposals of Dahl (2003). The moving average (of size
50) of the number of clusters was monitored. When these averages crossed,
the chains were declared to be burned-in. Trace plots of various univariate
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Fig. 10.3. Effects intensity plot for all probe sets. This figure, based on the least-squares
clustering, shows the estimated treatment effects of all the clusters simultaneously and
sorts the clusters based on size.

summaries of the chains support this burn-in procedure. Two desktop comput-
ers independently implemented this burn-in procedure and then sampled from
the posterior for less than four days. To reduce disk storage requirements, the
sample was thinned by saving only one in 100 states, leaving a total of 1,230
nearly independent draws from the posterior distribution.

10.5.2 Inference

The least-squares clustering (described in Section 10.3) of the expression data
had 105 clusters, ranging in size from 1 to 700 probe sets. Pairwise probabilities
of coregulation can readily be obtained by examining the relative frequency
that genes are clustered together in states of the Markov chain. The posterior
distribution of the number of clusters is given in Figure 10.1.
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Fig. 10.4. Effects intensity plot for the 4% of probe sets in the smallest clusters.

Probe set 92885 at was identified as scientifically interesting based on an-
other analysis. Biologists may be interested in the other probe sets that are
clustered with probe set 92885 at. The proposed clustering procedure provides
this information. Figure 10.2 graphically shows the treatment effects for the
other probe sets that were clustered with probe set 92885 at in the least-squares
clustering. The columns represent the 10 different treatment conditions and
the rows correspond to the probe sets in this cluster. The reference treatment
is old at baseline and is shaded gray. At other treatments, lighter shades are
used to indicate underexpression relative to the reference and the darker shades
indicate overexpression.

This chapter introduces the effects intensity plot which displays the entire
clustering in one plot. An effects intensity plot is produced by making a plot like
Figure 10.2 for each cluster and then stacking them in order of size. Figure 10.3
shows an effects intensity plot for the least-squares clustering. Since some of the
clusters are very small, the smaller clusters are difficult to see. To better see the
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small clusters, Figure 10.4 shows only 4% of the probe sets corresponding to the
smallest clusters. Notice that the smaller clusters exhibit more variation from
the reference treatment than do the larger clusters. The effects intensity plot
can help researchers visualize a clustering and identify clusters for additional
study.

10.6 Conclusion

This chapter describes a model-based clustering procedure for microarray ex-
pression data based on a conjugate Dirichlet process mixture model. The model
was first proposed by Dahl and Newton (submitted) to exploit clustering for
increased sensitivity in a battery of correlated hypothesis tests. This chapter
shows how the model can also be used as a clustering procedure. The model is
fit with MCMC and the computational burden of the DPM model is eased by
exploiting conjugacy. This chapter also introduced least-squares model-based
clustering in which a point estimate of the true clustering is based on squared
distances for the pairwise probability matrix. Unlike ad hoc clustering methods,
the model provides measures of uncertainty about the clustering. Further, the
model automatically estimates the number of clusters and quantifies uncertainty
about this parameter. The method compares well to other clustering methods
in a simulation study and the demonstration shows its feasibility using a large
microarray data set.
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Interval Mapping for Expression Quantitative
Trait Loci

MENG CHEN AND CHRISTINA KENDZIORSKI
University of Wisconsin at Madison

Abstract

Efforts to identify the genetic loci responsible for variation in quantitative
traits have traditionally focused on one or at most a few phenotypes. With
high-throughput technologies now widely available, investigators can measure
thousands of phenotypes for quantitative trait loci (QTL) mapping. Gene ex-
pression measurements are particularly amenable to QTL mapping and the
results from these expression QTL (eQTL) studies have proven utility in ad-
dressing a number of important biological questions. Although useful in many
ways, the results are limited by lack of statistical methods designed specifically
for this problem. Most studies to date have applied single QTL trait analysis
methods to each expression trait in isolation. Doing so can reduce the power for
eQTL localization since information common across transcripts is not utilized;
furthermore, false discovery rates can be inflated if relevant multiplicities are
not considered. To maximize the information obtained from eQTL mapping
studies, new statistical methods are required. We here review the eQTL map-
ping problem and commonly used approaches, and we propose a new method
to facilitate eQTL interval mapping. Results are demonstrated using simulated
data and data from a study of diabetes in mouse.

11.1 Introduction

Although efforts to identify the genetic loci responsible for variation in quan-
titative traits have been going on for over 80 years [36], the vast majority of
studies have taken place in the last two decades. This is due largely to two major
advances in the 1980s: the advent of restriction fragment length polymorphisms
(RFLPs) [1] making it possible to genotype markers on a large scale and the
advent of statistical methods for the related data analysis [25].

219
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A recent advance of comparable significance has been made in the area
of phenotyping. With high-throughput technologies now widely available, in-
vestigators can measure thousands of phenotypes at once. Gene expression
measurements are particularly amenable to QTL mapping and much excite-
ment abounds for this field of “genetical genomics” [3, 8, 17, 18]. These
so-called expression QTL (eQTL) studies have been used to identify candidate
genes [5, 10, 13, 15, 20, 37, 42], to infer not only correlative but also causal
relationships among modulator and modulated genes [2, 37, 44], to better de-
fine traditional phenotypes [37], to serve as a bridge between genetic variation
and traditional complex traits of interest [37], and perhaps most importantly,
to identify “hot spot” regions – genomic regions where multiple transcripts
map [2, 31]. These regions are particularly attractive for follow-up studies as
they are likely to contain master regulators that affect transcripts of common
function and serve as potential targets of gene therapies [8, 37].

Although successful in many ways, the methods used in eQTL studies to date
are limited. In the earliest studies, each transcript was considered separately
as a phenotype for QTL mapping, and single trait QTL analysis was then
carried out thousands of times. This allowed for eQTL identification at and
in between markers. However, although adjustments for multiple tests across
genome locations were considered, no adjustments were made for multiple
tests across transcripts. This can lead to a potentially serious multiple testing
problem and an inflated false discovery rate (FDR). Kendziorski et al. [21]
proposed a Bayesian approach that combined data across both markers and
transcripts, facilitating simultaneous localization of eQTL while controlling
an overall expected posterior FDR. Their approach, the mixture over markers
(MOM) model, allows for the identification and rank ordering of eQTL and hot
spots. The disadvantage is that no information is provided between markers.

In this chapter, we review the eQTL mapping problem and commonly used
approaches, and we propose a new method to facilitate eQTL interval mapping.
Section 11.2 provides a brief background on the data collected and questions
addressed in eQTL mapping experiments. The data and questions are very sim-
ilar to those observed in traditional QTL mapping studies and, not surprisingly,
so too are early methods of analysis. Section 11.3 provides a brief summary
of the early analysis methods, with subsequent developments for eQTL map-
ping methods reviewed in Section 11.4. As we discuss, the methods currently
available for eQTL mapping either allow for interval mapping of eQTL but
do not properly account for multiplicities across transcripts, or they account
for multiplicities but do not allow for interval mapping. Section 11.5 provides
the details of our interval mapping approach designed so that inferences be-
tween markers can be made while at the same time relevant error rates can be
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controlled. Results are demonstrated on simulated data and data from a study
of diabetes in mouse. Our perspectives on this problem are discussed in
Section 11.6.

11.2 eQTL Mapping Experiments

The general data collected in an eQTL mapping experiment consists of a genetic
map, marker genotypes, and microarray gene expression data (phenotypes)
measured on a set of individuals. A genetic marker is a region of the genome
of known location. These locations make up the genetic map. The distance
between markers is given by genetic distance, measured in centimorgans (cM;
the expected percentage of crossovers between two loci during meiosis). At
each marker, genotypes are obtained. Expression QTL mapping studies take
place in both human and experimental populations. We focus on the latter. For
these populations, the marker genotype structure is simplified.

For example, studies with experimental populations most often involve ar-
ranging a cross between two inbred strains differing substantially in some trait
of interest to produce F1 offspring. Segregating progeny are then typically de-
rived from a backcross (F1× Parent) or an F2 intercross (F1 × F1). Repeated
intercrossing (Fn × Fn) can also be done to generate so-called recombinant
inbred (RI) lines. For simplicity of notation, we focus on a backcross popula-
tion. Consider two inbred parental populations P1 and P2, genotyped as AA

and aa, respectively, at M markers. The offspring of the first generation (F1)
have genotype Aa at each marker (allele A from parent P1 and a from parent
P2). In a backcross, the F1 offspring are crossed back to a parental line, say
P1, resulting in a population with genotypes AA or Aa at a given marker. For
notational simplicity, we denote AA by 0 and Aa by 1. Each individual in an
eQTL study is genotyped as 0 or 1 at the M markers.

Phenotypes for each individual are obtained via microarrays, which allow
us to snapshot the expressions of thousands of genes at the same time. The
oligonucleotide and spotted cDNA microarrays are the two types of technol-
ogy that are most widely used. A nice review of these two commonly used
microarray technologies can be found in [33]. We present a very brief, by no
means complete review here.

Affymetrix is one company that produces oligonucleotide chips that con-
tain tens of thousands of probe sets, or DNA sequences related to a gene. We
will refer to these sequences throughout this chapter as “transcripts.” Each
probe set contains some number (usually 11) of perfect match (PM) and mis-
match (MM) probe pairs. A PM probe is a sequence of 25 nucleotides exactly
matched to a particular gene and thus measures the expression of that gene.
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The MM probe differs from the PM probe by a single base substitution at the
center base (i.e., 13th) position. The MM was designed in an effort to estimate
the background and nonspecific hybridization that contributes to the signal
measured for the PM. There are a number of methods for processing and nor-
malization (DNA-Chip Analyzer (dChip) [26, 27]; Robust Multiarray Analysis
(RMA) [16] Positional-Dependent-Nearest-Neighbor (PDNN) [45]). RMA is
currently the most widely used.

In a spotted cDNA array experiment, a gene is represented by a long cDNA
fragment. The experimental sample of interest is labeled with fluorescent tags of
some color (often red), and a reference sample with another color (often green).
The amount of cDNA hybridized to each probe is approximated by measuring
the amount of fluorescence emitted by excitation of the tags. Yang et al. [43]
propose useful methods for cDNA array data preprocessing and normalization.
With proper preprocessing and normalization, from either technology (or alter-
native technologies), a single summary score of expression for each transcript
on each array is obtained. These summary scores are the phenotypes used for
eQTL mapping.

11.3 QTL Mapping Methods

The literature on QTL mapping methods is quite large. We here review only
those methods relevant to eQTL mapping and refer the interested reader to [9]
or [29] for more information.

11.3.1 Single Phenotype Mapping

Consider a backcross with n progeny and univariate phenotypes yi measured
on ith individual, i = 1, . . . , n, together with genotypes for a set of M markers.
Let gim = 0 or 1 according to whether the individual i has genotype AA or Aa

at the mth marker, m = 1, . . . ,M . The model most commonly used to test for
a single segregating QTL at location l, between markers m and m + 1, is

yi = µ + β∗ g∗
il + ei, (11.1)

where g∗
il is the genotype at the test position for individual i [25], taking value

0 or 1 with probability depending on the genotypes of the flanking markers
and the test position; β∗ is the effect of the putative QTL and ei’s are assumed
independent and identically distributed (iid) as Normal (0, σ 2). The logarithm
base 10 of the likelihood ratio, the so-called LOD score, is calculated to test

H0 : β∗ = 0 vs. H1 : β∗ �= 0. (11.2)
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This is repeated across the genome. We refer to this interval mapping ap-
proach as QTL-IM. Much effort has been expended to derive the appropri-
ate genome-wide LOD score threshold [7, 11, 12, 14, 25, 34, 35]. Each of
these methods is designed to account for the multiple tests across genome
locations. For traditional QTL mapping studies, a QTL is inferred at loca-
tions where the LOD profile exceeds the chosen threshold. Generally, the
genome-wide threshold is obtained using the 95th percentile of the distribution
of the maximum genome-wide LOD scores, under the null hypothesis of no
segregating QTL.

11.3.2 Multiple Phenotype Mapping

In many QTL mapping studies, there are multiple traits being measured. Per-
forming single trait analysis repeatedly is not optimal since information in the
correlation structure among the traits is not utilized. It is well known that ac-
counting for the correlation structure can increase the power of QTL detection
[19, 23]. For this reason, QTL methods designed specifically to address the
multi-trait case are very attractive (for a review of multi-trait QTL mapping
methods, see [28] and references therein). However, as the number of traits gets
large, so too does the number of parameters that need to be estimated. In some
cases, this can be prohibitive.

11.4 Currently Available eQTL Mapping Methods

The earliest eQTL mapping studies applied single phenotype–single QTL map-
ping methods repeatedly to every transcript in isolation [2, 37]. Multitrait QTL
mapping methods have not been used as investigators recognize that estima-
tion of a phenotype covariance matrix with thousands of phenotypes is not
feasible. In [37], transcript-specific LOD score profiles were obtained using
standard QTL-IM. A common genome-wide LOD score threshold was chosen
to account for the potential increase of type I error induced by testing across
multiple markers. Brem et al. [2] conducted a Wilcoxon-Mann-Whitney rank
sum test for every transcript at every marker. Nominal p values were reported
and the number of linkages expected by chance was estimated by permuta-
tions. Transcript-specific LOD profiles were also obtained in [6] and [15]. In
these studies, permutations were used to obtain empirical p-values associated
with the maximum LOD score; q values [39, 40] were then used to adjust for
multiplicities across transcripts.

These methods provide a straightforward approach to the identification of
eQTL, and they have been used to ascertain important biological results.
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However, the theoretical properties of these approaches in the presence of
thousands of transcripts are not known and the operating characteristics have
not been studied. Preliminary results from simulations such as those described
in [21] suggest that for many of these approaches, FDR is not consistently
controlled and power is often compromised. This is consistent with the results
of [6], where the FDR threshold was increased to 25% so that a reasonable
transcript list size could be obtained. The reasons for this may be that for some
of the methods, multiplicities across both markers and transcripts are not ac-
counted for while for other methods, information common across transcripts
and markers is not utilized. These issues are addressed by the MOM approach
to eQTL mapping.

11.4.1 Mixture Over Markers (MOM) Model

Kendziorski et al. [21] developed an approach designed to account for multiplic-
ities across both markers and transcripts while controlling an overall expected
posterior FDR. The model assumes a transcript j maps nowhere with probabil-
ity p0 or maps to marker m with probability pm, such that

∑M
m=0 pm = 1. The

marginal distribution of expression measurements yj = {yj1, yj2, . . . , yjn} is
then given by

p0f0(yj ) +
M∑

m=1

pmfm(yj ), (11.3)

where fm is the predictive density of the data if transcript j maps to marker
m; f0 is the predictive density when the transcript maps nowhere. Specifically,
suppose transcript abundance measurements yji arise independently from some
observation distribution fobs(·|µj,·, θ ). The dependence among the underlying
means µj,· is captured by a distribution π (µ). Within this setting, f0(yj ) =∫ (∏n

i=1 fobs(yji |µ)
)
π (µ) dµ. For a transcript that maps to marker m, the

underlying expression means defined by the marker genotype groups are not
equal (µj,0 �= µj,1), but both are assumed to come from π (µ). The governing
distribution is then

fm(yj ) = f0
(
y0

j

)
f0
(
y1

j

)
, (11.4)

where y
0(1)
j denotes the set of transcript j values for animals with genotype

0(1).
Model fit proceeds via the EM algorithm. Once the parameter estimates

are obtained, posterior probabilities of mapping nowhere or to any of the M

locations can be calculated via Bayes rule. For instance, the posterior probability
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that transcript j maps to location l, l = 0, . . . , M , is given by

plfl(yj )

p0f0(yj ) +∑M
m=1 pmfm(yj )

. (11.5)

With the MOM approach, a transcript is identified to be differentially expressed
(DE) if the posterior probability of DE exceeds some threshold. The threshold
is the smallest posterior probability such that the average posterior probability
of all transcripts exceeding the threshold is larger than 1 − α. In order to make a
transcript-specific call, highest posterior density (HPD) regions are constructed.
A main advantage of this approach is that the operating characteristics are well
understood. When model assumptions hold, the transcript-specific posterior
expected FDR is controlled at α · 100%. This is shown theoretically [32] and
in simulation studies [21]. A second advantage is that the magnitude of the
posterior probabilities can be used as evidence either in favor of or against a
particular transcript mapping. Furthermore, these probabilities are comparable
across transcripts. This type of information is not obtained using p-value-based
methods.

The main disadvantage of MOM is that the genomic regions identified are
limited by their size, which may be large as analysis is conducted at genotyped
markers only. When dense maps are not available [21, 37], this limitation can be
a serious one. The biological techniques currently available to search for genes
in large genomic regions (e.g., candidate gene approach, congenic lines) can
take years and, as a result, additional statistical methods capable of narrowing
down regions are necessary. In the next section, we propose a method for
interval mapping of eQTL.

11.5 MOM Interval Mapping

Consider a set of L locations spanning the entire genome. As in MOM, we
imagine that the transcript may map nowhere with probability p0 or to any of
the L locations with probability pl , l = 1, 2, . . . , L. We stress that a location l

need not be a genotyped marker. As in Section 11.4.1, transcript j is mapped
to location l if µ0

j,l �= µ1
j,l , where µ

0(1)
j,l denotes the latent mean level of ex-

pression for transcript j for the population of individuals with genotype 0(1)
at location l. Let zl

j be an indicator of whether transcript j maps to location
l. If l is at a marker, the predictive density under the alternative hypothesis
is as before fl(yj ) = f0(y0

j ) f0(y1
j ), where the grouping is determined by the

marker’s genotype. However, when l is between markers, the decomposition is
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no longer valid. Instead, we have the following

fl(yj ) =
∫

fl(yj |gl) p(gl|M) dgl,

where

fl(yj |gl) =
∫ ∫ ∏

i∈G l
0

fobs
(
yji |µ0

j

)∏
i∈G l

1

fobs
(
yji |µ1

j

)
×π

(
µ0

j

)
π
(
µ1

j

)
d
(
µ0

j

)
d
(
µ1

j

)
.

Here, gl = (gl
1, g

l
2, . . . , g

l
n) denotes the unknown genotype vector at location

l; G l
0(1) denotes the individuals with genotype 0(1) at location l. Under the null

hypothesis, the predictive density of the data, f0(yj ) can be calculated as before
since it does not rely on genotype groupings.

Theoretically, parameter estimates for mixing proportions and hyperparame-
ters are obtained via the EM algorithm and, as before, the posterior probability
for transcript j mapping to location l is given by

p
(
zl
j = 1|y,M

) = p
(
zl
j = 1

) ∫
fl(yj |gl)p(gl|M) dgl

p(yj |M)
, (11.6)

where p(zl
j = 1) is the prior probability transcript j maps to location l; y and

M denote the expression and marker data, respectively.
In practice, evaluation of this integral can be prohibitive. At a particular loca-

tion l, the conditional distribution of the genotype vector given the expression
and marker data, p(gl|M), depends on the two markers flanking l. Since gl

is a vector of length n, there are 2n possible genotypes, and as a result, the
integral in (11.6) is a very large mixture (when n is even moderately large).
One option is to restrict to fewer possibilities since many genotype vectors have
very small probabilities. However, as the number of individuals in the study
gets large (>200), this quickly becomes computationally infeasible even with
the restriction.

11.5.1 Pseudomarker-MOM

To address the 2n problem, we use importance sampling as was done in [38]
for traditional QTL mapping. First, multiple versions of pseudomarkers are
sampled from p(gl|M); equation (11.6) is then replaced by its Monte Carlo ap-
proximation. In simulating the pseudomarkers, one could use a simple Markov
chain structure where the putative QTL genotype at a given location only de-
pends on the two flanking markers. However, this does not work well when
the marker data contains genotyping errors or noninformative markers. Instead,
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we consider a hidden Markov model (HMM) as was done in R/qtl [4] where
the “true” marker genotypes follow a Markov chain, and the observed marker
genotypes are characterized by distributions conditional on the underlying state
process.

Suppose for each location l, Q genotype vectors are sampled from the
proposal distribution p(g|M), where g = {g1, g2, . . . , gL}, to yield (gl

1,

gl
2, . . . , g

l
Q), for l = 1, . . . , L. Then equation (11.6) can be approximated by

p
(
zl
j = 1|y,M

)
≈ pl

j

∑Q
q=1 fl

(
yj

∣∣gl
q

)(
1 −∑L

l′=1 pl′
j

)∑Q
q=1 f0(yj ) +∑L

l′=1 pl′
j

∑Q
q=1 fl′

(
yj

∣∣gl′
q

) , (11.7)

where pl
j is p(zl

j = 1). This approach is effectively an extension of the MOM
model evaluated by averaging over pseudomarkers. We therefore refer to it as
pseudomarker-MOM.

11.5.2 Two-Stage Approach

Pseudomarker-MOM can be applied to grids of varying sizes (i.e., varying L)
to localize eQTL at and in between markers. However, as the computational
burden increases with L, very fine searches can be prohibitive. Fortunately in
many cases, eQTL regions can be identified using a first pass with a fairly
sparse grid followed by pseudomarker-MOM in interesting regions. In par-
ticular, if each mapping transcript has only 1 eQTL, then under some mild
conditions, the expected posterior probability of a transcript mapping to a
particular marker is a nonincreasing function of the recombination frequency
between that marker and the eQTL (for support, see appendix). As a result,
the marker regions picked by the first scan are those regions nearest the eQTL.
Once the regions are defined, pseudomarker-MOM can be used to localize the
eQTL with greater accuracy. Simulation studies shown in the next section sug-
gest that this two-stage approach works quite well, even under more general
conditions.

11.5.3 Simulation Results

To assess the performance of the two-stage approach, we performed a small
set of simulation studies. The simulations are in no way designed to capture
the many complexities of eQTL data, but rather to provide some preliminary
information on operating characteristics of the approach in simple settings.
Twenty simulated data sets were generated. Each contained 5,000 transcripts
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Fig. 11.1. The upper left panel shows the average posterior probabilities of linkage at ev-
ery marker. The solid curve represents MOM, and the dashed one is from pseudomarker-
MOM with pseudomarker spacing of 2 cM. The solid black vertical lines and the “”
symbols on the x-axis indicate eQTL positions. The upper right panel shows the 96.8%
HPD region (red) for the eQTL locations of the mapping transcripts. The lower left
panel shows the average LOD scores at every marker. The solid curve is from marker
regression and the dashed curve is from standard QTL-IM mapping every 2 cM. The
lower right panel shows the 1-LOD drop interval (red) around the true eQTL locations.

and 100 individuals genotyped at 10 markers evenly spaced every 10 cM on a
single chromosome. Intensity values were obtained as described in [21]. The
proportion of DE transcripts was set to 10% and two eQTL were considered
(at 35 cM and 75 cM).

The two-stage approach was applied to the simulated data. In the first stage,
genome locations making up the 96.8% HPD region were selected from the av-
erage posterior probability profile obtained using MOM. Pseudomarker-MOM
was then applied across a 2-cM grid spanning the locations, with 100 pseudo-
marker realizations (Q = 100). For comparison, we applied QTL-IM to each
transcript and obtained genome-wide LOD score cutoffs based on the approx-
imation given in [34].

Figure 11.1 (upper left panel) shows the posterior probability profile, aver-
aged across the mapping transcripts for one simulation (results are represen-
tative of those observed in the other 19 simulations). The eQTL regions are
identified both by MOM and pseudomarker-MOM. MOM picks up a wide peak
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over the true eQTL positions, but pseudomarker-MOM provides much greater
accuracy. Figure 11.1 (upper right panel) shows the 96.8% HPD regions for
individual mapping transcripts (96.8% is used to compare with the QTL-IM
results below). As shown, the eQTL are identified correctly for most of the
transcripts.

Traditional QTL-IM as implemented in R/qtl was considered for comparison
(for details on R/qtl, see [4]). Figure 11.1 (lower left panel) shows the LOD
profile averaged across mapping transcripts. The regions containing the eQTL
have the highest average LODs, but the average LOD scores are overall very
high for mapping transcripts and it is not clear what cutoff one should use in
order to correctly identify the eQTL regions.

To compare with the HPD regions obtained using pseudomarker-MOM,
96.8% “confidence intervals” were constructed around each eQTL using a
1-LOD drop interval around peak LOD scores [30]. We use quotes here to
stress that these intervals can be biased. In general, they have been shown to be
too small and the bootstrap procedure has been recommended [41]. For a large
number of transcripts in repeated simulations, obtaining bootstrap samples
is computationally prohibitive. In addition, for our purposes of comparison,
confidence intervals that are slightly too small biases the results in favor of
QTL-IM as eQTL appear to be better localized. It is not always clear which
peaks to construct confidence intervals around (see the lower left panel of
Figure 11.1 which shows many peaks). To give QTL-IM the best possible
result, we considered a 10-cM window around the first eQTL (35 cM) and
defined the LOD peak as the highest LOD within that window. The 1-LOD
drop interval was then constructed. This was repeated for the second eQTL.
Of course, in practice, one does not have the luxury of knowing where to
choose these peaks and only the largest peak would be identified. For these
simulations, this method of identifying eQTL favors QTL-IM. Even so, the
traditional approach provides less precise estimates of eQTL locations when
compared with pseudomarker-MOM.

11.5.4 Diabetes Study Results

The favorable results observed in our simulation study are also observed in
a case study investigating the genetic basis of diabetes. The details of the
experiment are described in [21]. Briefly, an F2 cross was generated from
two parental strains differing in diabetes susceptibility. The cross contained
60 animals, each genotyped at 194 locations across the genome. Affymetrix
MOE430 chips were used to obtain 45,265 phenotypes for 60 members of the
F2. Following some initial preprocessing, RMA values were considered for
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Fig. 11.2. The posterior probability of linkage for a set of nine transcripts from the diabetes study. The solid
lines give results from MOM and the dashed lines are from pseudomarker-MOM every 2 cM.
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40,738 transcripts. The 145 marker locations with over 90% of the individuals
genotyped were selected from the full set of 194 markers.

The two-stage approach was applied to the data along with QTL-IM. For
QTL-IM, LOD score thresholds were determined by transcript-specific per-
mutations. Nine transcripts known to be involved in diabetes [24] are shown
in Figure 11.2. These nine are among the transcripts identified by MOM if
FDR is controlled at 5%. The LOD profiles for these same transcripts are
shown in Figure 11.3. The solid lines represent MOM and marker regression in
Figures 11.2 and 11.3, respectively. The dashed lines represent pseudomarker-
MOM and QTL-IM in the corresponding figures. As in the simulation study,
pseudomarker-MOM provides a more precise localization of eQTL regions.
Furthermore, for five of the nine transcripts, the LOD score does not exceed
the threshold for significance; these transcripts would have been missed by
QTL-IM.

11.6 Discussion

The microarray has revolutionized traditional QTL mapping studies. Instead of
considering at most a handful of traits, investigators now have the opportunity
to map thousands. With this opportunity comes a number of challenges in both
experimental design and analysis, most of which have not yet been addressed.

We have here considered the problem of identifying mapping transcripts
and the genomic locations to which they map. Initial attempts to address this
problem involved applying traditional QTL mapping methods to each trait
in isolation, followed by adjustments for some multiplicities. This allows for
eQTL identification at and in between markers. However, we note that caution
should be used when interpreting any results derived from these approaches
as the operating characteristics of QTL methods applied in the eQTL set-
ting are not known. In particular, the power to identify eQTL could be low
as information common across transcripts is not utilized. At the same time,
FDR could be inflated as some multiplicities are accounted for while others
are not.

Kendziorski et al. [21] proposed a Bayesian approach that combined data
across both markers and transcripts, facilitating simultaneous localization of
eQTL while controlling an overall expected posterior FDR. Their approach, the
MOM model, allows for the identification and rank ordering of eQTL and hot
spots. Section 11.5.1 proposed pseudomarker-MOM, an extension of MOM
allowing for interval mapping. A main advantage of MOM and pseudomarker-
MOM is that the operating characteristics are well understood in the context
of the models. Of course, diagnostics must always be checked and biological
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Fig. 11.3. LOD score profiles for the set of nine transcripts shown in Figure 11.2. The solid lines give results
from marker regression and the dashed lines are from QTL-IM every 2 cM. The horizontal dashed line
represents the 95th percentile of the maximum LOD score from 5,000 permutations.
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results validated. To this end, our preliminary evaluation using both simulated
and case study data is encouraging.

In summary, much more work is required before the analysis of eQTL data
becomes routine. It seems that a clever application of methods designed to
handle traditional quantitative traits is limited. It is certainly true that some
very useful information has been derived using these approaches, much like
the fold-change analysis provided information in early microarray studies.
However, significant improvement can be gained by more carefully considering
the relevant multiplicities, the hierarchical nature of the data, and the error
rates of most interest in any particular study. Advances in addressing these
issues will ensure that maximal information is derived from these powerful
experiments.

Appendix

If (i) for each mapping transcript, there is only 1 eQTL and (ii) the prior
probability of a transcript mapping to a marker is equal for all markers, then the
posterior probability of DE will be highest at the marker nearest the eQTL. For
our model, we make no prior assumptions regarding the location of mapping
transcripts and thus the assumption of equality imposed in (ii) is not very
restrictive.

Proof: For algebraic simplicity, consider a backcross.
We assume the lognormal-normal (LNN) model described in [22]. First

assume the eQTL is located at a marker (so the genotypes are known). Let n0

and n1 denote the number of animals having genotype 0 and 1, respectively,
at the eQTL. The log predictive density of mRNA expression for transcript j

evaluated at the eQTL position can be written as

log(f ∗
1 (yj )) = −n0

2
log(2π ) − n0 − 1

2
log(σ 2) − 1

2
log
(
σ 2 + n0τ

2
0

)
−
∑

i∈G0

(
y0

ji − µ0
)2

2
(
σ 2 + n0τ

2
0

) + τ 2
0

[(∑
y0

ji

)2 − n0
∑(

y0
ji

)2]
2σ 2

(
σ 2 + n0τ

2
0

)
−n1

2
log(2π ) − n1 − 1

2
log(σ 2) − 1

2
log
(
σ 2 + n1τ

2
0

)
−
∑

i∈G1

(
y1

ji − µ0
)2

2
(
σ 2 + n1τ

2
0

) + τ 2
0

[(∑
y1

ji

)2 − n1
∑(

y1
ji

)2]
2σ 2

(
σ 2 + n1τ

2
0

)
(A.1)



P1: JZP

ChenKendziorski CUNY477-DoMueller 0 521 86092 X December 5, 2006 11:48

234 Chen and Kendziorski

Since n0 + n1 is fixed for a given experiment, the quantity in A.1 that varies
across different marker locations is

−1
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When an eQTL is located in between markers, at some location l having
recombination frequency r with the eQTL, (A.2) evaluated at marker location
l becomes
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where the unknown eQTL genotypes for the AA and Aa groups are now
incorporated in y

′0
ji and y

′1
ji , respectively.

Using distribution theory, we have∑
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With this, the expectation of (A.3) becomes
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where
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The derivative of (A.4) with respect to r is a little messy but can be shown to be
negative for 0 ≤ r ≤ 1

2 and equal to 0 for r = 1
2 . Therefore, (A.3) is maximized

when r = 0. In other words, the posterior probability of DE at the test location
closest to the eQTL is maximized in expectation.
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Abstract

We review the use of semiparametric mixture models for Bayesian inference
in high-throughput genomic data. We discuss three specific approaches for mi-
croarray data, for protein mass spectrometry experiments, and for serial analysis
of gene expression (SAGE) data. For the microarray data and the protein mass
spectrometry we assume group comparison experiments, that is, experiments
that seek to identify genes and proteins that are differentially expressed across
two biologic conditions of interest. For the SAGE data example we consider
inference for a single biologic sample. For all three applications we use flexible
mixture models to implement inference. For the microarray data we define a
Dirichlet process mixture of normal model. For the mass spectrometry data we
introduce a mixture of Beta model. The proposed inference for SAGE data is
based on a semiparametric mixture of Poisson distributions.

12.1 Introduction

We discuss semiparametric Bayesian data analysis for high-throughput ge-
nomic data. We introduce suitable semiparametric mixture models to imple-
ment inference for microarray data, mass spectrometry data, and SAGE data.
The proposed models include a Dirichlet process mixture of normals for mi-
croarray data, a mixture of Beta distributions with a random number of terms
for mass spectrometry data, and a Dirichlet process mixture of Poisson model
for SAGE data. For the microarray data and the protein mass spectrometry data
we consider experiments that compare two biologic conditions of interest. We
assume that the aim of the experiment is to find genes and proteins, respec-
tively, that are differentially expressed under the two conditions. For the SAGE
example, we propose data analysis for a single biologic sample.
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Several aspects of data analysis for microarray and other high-throughput
gene and protein expression experiments give rise to mixture models. One
important application of mixture models is THE flexible modeling of sampling
distributions. This is attractive, for example, when the number of genes on a
microarray is the relevant sample size, thus allowing flexible semiparametric
representations. Such approaches are discussed, among others, in Broet et al.
(2002), Dahl (2003), and Tadesse et al. (2005). The latter exploit the clustering
implicitly defined by the mixture model to identify biologically interesting
subclasses. Also, see Dahl (2006) and Tadesse et al. (2006) in this volume.
In this chapter we review three approaches that are typical examples of this
literature. In Section 12.2 we discuss the use of Dirichlet process mixtures for
model-based inference about differential gene expression. In Section 12.3 we
describe a mixture of Beta model for the mass/charge spectrum in MALDI-TOF
mass spectrometry experiments. In Section 12.4 we introduce a semiparametric
mixture of Poisson model for SAGE data.

Another important class of applications for mixture models in data analysis
for high-throughput gene expression data is finite mixtures, with each term in
the mixture corresponding to a different condition of interest. A typical example
is the model used in Parmigiani et al. (2002) who construct a sampling model
for observed gene expression in microarray experiments as a mixture of three
terms corresponding to normal, under-, and overexpression. Newton et al.
(2001) define a Gamma/Gamma hierarchical model with a mixture induced by
an indicator for ties between two biologic conditions of interest. Kendziorski
et al. (in press) use mixtures for expression QTL mapping. See also Chen
and Kendziorski (2006 ) in this volume. Kendziorski et al. (2003 ) use finite
mixtures to identify patterns of differential expression across multiple biologic
conditions.

Naturally, the distinction between the two types of mixtures, that is, flexi-
ble mixtures for an unknown sampling model versus mixtures of submodels
with a biologically meaningful interpretation, is not strict. A typical example
is the use of semiparametric mixtures to define a probability model for clus-
tering of genes or samples. Inference about clusters can often be interpreted
as inference on biologically meaningful groups of genes or subpopulations
corresponding to biologically distinct subtypes of a disease. From a model-
ing perspective, the intention of our distinction is to focus on semiparamet-
ric mixture models with a random and, at least in spirit, unconstrained size
mixture.

Also, approaches that use hierarchical models to define flexible sampling
models could alternatively be considered as mixture models. Collapsing the
hierarchical model by marginalizing with respect to some intermediate level
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Fig. 12.1. Hypothetical distribution of difference scores for nondifferentially expressed
(left, f0) and differentially expressed genes (center, f1), and the observed mixture
(right, f ). (See color plate 12.1.)

parameters one can often rewrite the hierarchical model as a mixture. See, for
example, Hein et al. (2005) or the chapter by Hein et al. (2006) in this volume.

In this chapter we only focus on the use of semiparametric mixtures to
represent an unknown sampling model, that is, applications of infinite size
mixtures, and will not discuss the other types of mixture models.

12.2 A Nonparametric Bayesian Model for Differential Gene Expression

We consider inference for microarray group comparison experiments. Assume
that the data has been summarized as a set of difference scores, zi , i = 1, . . . , n,
for n genes. The difference score zi could be, for example, a two-sample
t-statistic for observed fluorescence intensities for gene i in samples under two
biologic conditions of interest. See Efron et al. (2001) for a discussion of ap-
propriate data preprocessing and Baggerly et al. (2006), in this volume, for an
explanation of the experimental setup and important issues in data analysis for
such experiments. We assume that the set i = 1, . . . , n of genes is partitioned
into a subset of differentially expressed genes and nondifferentially expressed
genes. Inference proceeds by assuming that for differentially expressed genes,
the difference scores zi arise by independent sampling from some unknown
distribution f1; for nondifferentially expressed genes, zi are independent sam-
ples from an unknown distribution f0. For a reasonable choice of difference
scores, the distribution f0 should be a unimodal distribution centered at zero.
The distribution f1 should be a bimodal distribution with symmetric modes
to the left and right of zero corresponding to over- and underexpressed genes.
Figure 12.1 shows possible histograms for observed difference scores generated
from f0 and f1. Of course, the partition into differentially and nondifferentially
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expressed genes is unknown. Thus, instead of samples from f0 and f1, we can
only work with the sample zi , i = 1, . . . , n, generated from a mixture of f0

and f1. Let p0 denote the unknown proportion of nondifferentially expressed
genes. We assume

zi
iid∼ f (z) = p0 f0(z) + (1 − p0) f1(z), i = 1, . . . , n. (12.1)

The main goal of inference in the two-group comparison microarray experiment
can be formally described as the deconvolution of (12.1). We introduce a latent
indicator variable ri ∈ {0, 1} to rewrite (12.1) equivalently as a hierarchical
model

p(zi | ri = j ) = fj (zi)

Pr(ri = 0) = p0. (12.2)

The latent variable ri can be interpreted as indicator for gene i being differen-
tially expressed. Efron et al. (2001) propose cleverly chosen point estimates for
p0, f0, and f1 and report the implied inference for ri . To develop the point esti-
mate they introduce an additional set of difference scores, zi , i = n + 1, . . . , 2n.
The additional difference scores are generated using the same original data, but
deliberately computing difference scores for samples under the same biologic
conditions. Thus,

zi ∼ f0(zi), i = n + 1, . . . , 2n,

for this additional null sample.
In Do et al. (2005) we propose a model-based semiparametric Bayesian ap-

proach to inference in this problem. We recognize f0, f1, and p0 as unknown
quantities and proceed by defining a suitable prior probability model. Probabil-
ity models for unknown functions, including distributions such as f0 and f1 in
this problem, are known as nonparametric Bayesian models. See, for example,
Müller and Quintana (2004) for a recent review of non-parametric Bayesian
inference. The term “non-parametric” is a misnomer, as the random functions
are infinite dimensional parameters. However, the name is traditionally used
because implied posterior inference closely resembles inference under classical
non-parametric methods.

In choosing a prior probability model for f0 and f1 we face two competing
aims. On one hand we wish to generalize traditional parametric models, like
a normal sampling model. On the other hand we want to retain as much
computational simplicity as possible. This leads us to use a mixture of normal
model, with a nonparametric prior on the mixing measure. Inference under this
model is almost as straightforward as under a simple normal model, yet, subject
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to some technical constraints, the mixture of normal model can approximate
arbitrary sampling distributions. As probability model for the mixing measure
we use a Dirichlet process (DP) prior (Ferguson, 1973; Antoniak, 1974). For
reasons of computational simplicity and ease of interpretation, the DP prior
is one of the most widely used nonparametric Bayes models. The DP model
has two parameters, a base measure and a total mass parameter. We write
G ∼ DP (G∗,M) to indicate that G has a DP prior with a base measure G∗

and total mass M . The base measure has the interpretation as mean measure,
in fact E(G) = G∗. The total mass parameter can be interpreted as a precision
parameter. The larger the M , the closer the random G will be to G∗. Another
important implication of the total mass parameter is mentioned below.

In summary, we assume the following model. Let N (z; m, s) denote a nor-
mal distribution for the random variable z, with moments (m, s). We define a
probability model for the random distributions f0 and f1 as

fj (z) =
∫

N (z; µ, σ ) dGj (µ) Gj ∼ DP (G∗
j ,M). (12.3)

One of the critical properties of the DP prior is that a DP-generated random
measure is almost surely discrete. Thus the integral in (12.3) is simply a sum
over all point masses in Gj . The total mass parameter M determines the
distribution of the weights attached to these point masses. Mixture models
with respect to a mixing measure with DP prior, such as (12.3), are known as
mixture of DP (MDP) models and are widely used in nonparametric Bayesian
inference. See, for example, MacEachern and Müller (2000) for a review of
such models.

We complete the model given by the likelihood (12.2) and prior (12.3) with
a hyperprior on the base measures G∗

j . We assume G∗
0 = N (0, τ 2) with a con-

jugate inverse Gamma hyperprior on τ 2, and G∗
1 = 1

2N (−b, τ 2) + 1
2N (b, τ 2)

with a conjugate normal hyperprior on b. Finally, we assume a Beta prior for
p0, p0 ∼ Be(α, β). The hyperparameters α, β, and M are fixed.

Inference in the proposed model is implemented by Markov chain Monte
Carlo (MCMC) simulation. See Do et al. (2005) for a detailed description of
the posterior MCMC algorithm. A direct implication of the models (12.2)
and (12.3) is that the marginal posterior probability of differential expression,
Pr(ri = 1 | data), is the same for all genes with equal difference score zi . Thus
posterior inference can be summarized as a function Pr(ri = 1 | zi = z, data).
Starting with model (12.2), a straightforward use of Bayes theorem shows

Pr(ri = 0 | zi = z, f0, f1, p0) = p0 f0(z)/[p0 f0(z) + (1 − p0) f1(z)︸ ︷︷ ︸
f (z)

].
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Fig. 12.2. P̄ 1(z): posterior mean probability of differential expression as a function of
the observed difference score z (solid black line). The left figure conditions on the full
data, zi, i = 1, . . . , 2n, including the null data. The right figure does not make use of
the null data, conditioning only on zi , i = 1, . . . , n. The dark gray shaded band shows
the central 50% posterior density interval. Light gray shows a 75% posterior interval.
The dark and light gray shaded areas are very narrow and can hardly be distinguished
from the posterior mean curve.

Let P1 = p0 f0/f . Then the posterior expectation P̄ 1 = E(P1 | data) is ex-
actly the desired marginal posterior probability of differential expression,
P̄1 = Pr(ri = 1 | zi = z, data). Figure 12.2 shows posterior inference for a
simulation experiment. The figure shows the simulation truth, the reported pos-
terior mean curve P̄1(z), and pointwise posterior credible intervals for P1(z).
The curve P̄1(z) allows one to readily read off the marginal posterior prob-
ability of differential expression for each gene. In contrast to reasonable but
ad hoc point estimates, the reported probabilities are interpreted as marginal
probabilities in one coherent encompassing probability model. This leads to a
straightforward definition, evaluation, and control of false discovery rates. See
Newton et al. (2004) or Do et al. (2005) for a discussion.

12.3 A Mixture of Beta Model for MALDI-TOF Data

Matrix-assisted laser desorption – time of flight (MALDI-TOF) experiments
allow the investigator to simultaneously measure abundance for a large number
of proteins. Details of the experimental setup are described, for example, in
Baggerly et al. (2003) and also in the chapter by Baggerly et al. (2006) in this
volume. Briefly, the biological sample for which we wish to determine protein
abundance is fixed in a matrix. A laser beam is used to break free and ionize
individual protein molecules. The experiment is arranged such that ionized
proteins are exposed to an electric field that accelerates molecules along a flight
tube. On the other end of the flight tube, molecules hit a detector that records a
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Fig. 12.3. Spectra for a normal samples (left) and a tumor samples (right), on grid of
size I = 60,000.

histogram of number of molecules that hit over time. Assuming that all ionized
molecules carry a unit charge, the time of flight is deterministically related to
the molecule mass. The histogram of detector events over time can therefore
be changed to a histogram of detector events over protein masses. Allowing
for multiple charges, the mass scale is replaced by a scale of mass/charge
ratios. The histogram of detector events is known as mass/charge spectrum.
Figure 12.3 shows typical spectra.

Ideally, each protein that is present in the original probe should correspond to
a peak in the spectrum. Because of the random initial velocities, when proteins
are ionized by the laser impact we would expect to see peaks rather than
sharp lines even in an idealized experiment. Many additional artifacts of the
experiment add to the idealized description, leading to an additional baseline
that adds to the protein peaks. See the data shown in Figure 12.3.

Assume we observe spectra for experiments k = 1, . . . , K . Let yk(mi) denote
the recorded count for sample k at mass/charge grid point mi , and let fk(mi)
denote the assumed underlying cleaned spectra corresponding to detected pro-
teins only. The desired inference about the unknown protein abundance in the
original probes can be formalized as (i) removing noise and baseline from the
observed spectra yki to impute fk; (ii) finding peaks in fk; and (iii) reporting
the relative sizes of these peaks. The relative size of the peaks corresponds to
the relative abundance of the corresponding protein in the probe. If samples
are collected under different biologic conditions, we need additional inference
about different versus equal abundance of different proteins.

In Müller et al. (2006) we develop a nonparametric Bayes model to allow
such inference. Based on the above stylized description of the experiment, we
consider yk as the empirical histogram of detector events. We represent it as
a mixture of a baseline Bk corresponding to detector noise, protein fragments,
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etc., and a cleaned spectrum fk:

pk(m) = p0k Bk(m) + (1 − p0k) fk(m).

The spectrum fk is a sum of peaks, with each detected protein contributing a
peak centered at its mass/charge value. The experimental arrangement implies
a finite support for fk . Motivated by nonparametric models for random distribu-
tions on a finite support developed in Petrone (1999) and Robert and Rousseau
(2002), we use a mixture of Beta distributions to define the random distribution
fk . The location for each Beta kernel is interpreted as the mass/charge ratio
of the protein giving rise to this peak. To facilitate later interpretation, we use
a nonstandard parameterization of the Beta distribution. We write Be(x; ε, α)
for a Beta kernel for the random variable x, with mean and standard deviation
ε and α (with appropriate constraints on α).

Let x denote the biologic condition of sample k. We assume a two-group
comparison, that is, x ∈ {0, 1}. Then

fk(m) =
J∑

j=1

wxj Beta(m; εj , αj ). (12.4)

In words, the kth spectrum is a mixture of Beta kernels, corresponding to J

distinct proteins with mass/charge values εj . The relative weight wxj , that is,
relative abundance of protein j , is assumed the same for all samples under
the same biologic condition. For reasons of technical convenience we chose
a similar mixture of Beta prior for the baseline Bk . Different hyperparame-
ters reflect the fact that the baseline is much smoother than fk and we expect
fewer terms in the mixture. Bk(m) = ∑Jk

j=1 vkj Beta(m; ηkj , βkj ). The sizes
of the mixtures are random. We use truncated Poisson priors for J and Jk ,
k = 1, . . . , K . Baseline Bk and mean spectrum fk are combined to define the
distribution of mass/charge ratios pk = p0k Bk + (1 − p0k) fk. Following the
idealized description of the experimental setup, the sampling model is random
sampling from pk . Let yk = (yki, i = 1, . . . , I ) denote the empirical spectrum
for the kth sample over the grid of mass/charge values. Typically I is large, say
60,000, defining a very fine grid. Let θ = (J, Jk, wxj , vkj , εj , αj , ηi, βi, x =
0, 1, j = 1, . . . , J, k = 1, . . . , K, i = 1, . . . , Jk) denote the parameter
vector. The likelihood is

logp(yk | θ ) =
I∑

i=1

yki logpk(mi). (12.5)

Instead of the random sampling model (12.5) many authors use a regression
likelihood, assuming normal residuals, yki ∼ N (pk(mi), σ 2). Little changes
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in the following discussion if we were to replace (12.5) by this regression
likelihood.

The model is completed with a prior for the Beta parameters and the weights.
For the weights wxj we use a hierarchical prior with indicators λj for ties

λj = I (w0j = w1j ).

Posterior inference on the λj and the locations εj summarizes the desired
inference on proteins that are differentially expressed across the two groups of
samples.

Implementation of posterior inference requires MCMC over a varying di-
mension parameter space, as the dimension of the parameter space depends on
the sizes J and Jk of the mixtures. We use reversible jump MCMC (RJMCMC)
as proposed in Green (1995 ) and, specifically for mixture models, in Richard-
son and Green (1997). See M üller et al. (2006) for a detailed description of the
MCMC algorithm.

A minor complication arises in reporting and summarizing posterior infer-
ence about distinct proteins and their mass/charge ratios. The mixture fk only
includes exchangeable indices j , leading to the complication that the Beta ker-
nel corresponding to a specific protein might have different indices at different
iterations of the posterior MCMC simulation. In other words, the protein iden-
tity is not part of the probability model. To report posterior inference on the
mean abundance of a given protein requires additional postprocessing to match
Beta kernels that correspond to the same protein across iterations. We use a
reasonable ad hoc rule. Any two peaks j and h with a difference in masses
below a certain threshold are counted as arising from the same protein. Specif-
ically, we use the condition |εj − εh| < 0.5αj to match peaks. Here j indexes
the peak that was imputed in an earlier MCMC iteration than the peak h. The
problem of reporting inference related to the terms in a mixture is known as
the label switching problem (Holmes, et al. 2005).

Figure 12.4 summarizes estimated masses and abundance of detected pro-
teins. Assuming that the main inference goal is to identify proteins with dif-
ferential expression across the two biologic conditions, we focus on inference
about the indicator for differential expression, 1 − λj . The figure indicates all
protein masses with Pr(λj = 0 | data, . . .) > 50%, that is, with posterior prob-
ability greater than 50% for differential expression. The probability is evaluated
conditional on the protein being present in the probe (therefore the “. . .” in the
conditioning set). Also, only proteins are reported in the figure that have poste-
rior probability greater than 5% of being present, that is, a peak being identified
at the corresponding mass. In a data analysis, the list of reported protein masses
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Fig. 12.4. Posterior mean abundance of detected proteins. All peaks with posterior
probability of differential expression greater than 50% are marked as solid dots, with a
line combining w0j = E(w0j | data) and w1j . Mass/charge ratios on the horizontal axis
are rescaled to the unit interval.

would now be compared against a list of known protein masses to match the
discovered peaks with specific proteins.

12.4 A Semiparametric Mixture Model for SAGE Data

Consider data from a SAGE (Serial Analysis of Gene Expression) experiment.
See Baggerly et al. (2006) for a description of the experimental setup, and the
nature of the data. We consider inference for data from one biologic sample.
Let yi , i = 1, . . . , k, denote observed tag frequencies for k distinct transcripts.
Let n = ∑

yi denote the total number of recorded transcripts, and let πi denote
the unknown true abundance of the ith transcript in the probe. For large yi , the
empirical frequency π̂i = yi/n is an appropriate point estimate for πi . The asso-
ciated uncertainty, formalized as variance of the maximum likelihood estimator
or as posterior standard deviation in a suitable model, is negligible. However,
for scarce tags with small πi , more elaborate estimates are required. The em-
pirical frequency for scarce tags includes considerable sampling variability.
Also, when the data includes samples across different biologic conditions, the
inference goal might not be restricted to estimating the transcript frequencies.
For discrimination and classification, additional inference about differences
in transcript frequencies, and related probability statements are required. In
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addition to inference on πi for a specific tag i, one might be interested in the
distribution of tag frequencies across different transcripts. This can be achieved
by model-based posterior inference.

Morris et al. (2003 ) introduce an approach that is based on a hierarchical
model with a mixture of two Dirichlet distributions as population distribution
prior for the πi . See Morris et al. (2006) in this volume for a review of this
approach. Building on this model, we introduce a semiparametric Bayesian
mixture model, replacing the two-component mixture of Dirichlet distributions
by an unknown random measure, with a nonparametric Bayesian prior model.

For the following model construction it is convenient not to condition on
n. In other words, instead of assuming that the set of observed counts arise
as a multinomial sample with cell frequencies πi , we assume that, conditional
on hyperparameters, the counts yi arise as independent samples from some
distribution. Specifically, we assume that the counts yi are sampled from a
mixture of Poisson model. Let Poi(x; λ) denote a Poisson distribution for the
random variable x with parameter λ. We assume

yi ∼
∫

Poi(yi ; λ) dG(λ),

i = 1, . . . , n, independently conditional on G. We specify a prior distribu-
tion for the mixture model by assuming a nonparametric prior on the mixing
measure, choosing a DP prior as in (12.3),

G ∼ DP (G∗,M). (12.6)

The mixture model can alternatively be written as a hierarchical model

yi | λi ∼ Poi(λi) with λi ∼ G. (12.7)

The discrete nature of the DP random measure G implies a positive probability
for ties among the λi . We denote with L the number of distinct values.

A minor complication arises from the fact that yi = 0 is not observed; it
is censored. Let k0 denote the number of tags with nonzero count, that is the
number of tags recorded in a SAGE library as shown in Baggerly et al. (2006).
One could augment the model to include inference on k, k ≥ k0. Alternatively,
we follow Stollberg et al. (2000), and fix k by imputing a point estimate for the
unknown number of unobserved tags, that is, tags with yi = 0.

Models (12.6) and (12.7) define a DP mixture of Poisson distributions. Such
models are popular choices for nonparametric Bayesian data analysis. See, for
example, MacEachern and Müller (2000) for a review of such models, including
implementation of posterior inference by MCMC simulation. Choosing the base
measure G∗ to be conjugate with the Poisson distribution we define a conjugate
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Fig. 12.6. Posterior means λ̄i = E(λi | data) versus observed counts yi (panel a). Note
the strong shrinkage for small counts. For large counts, yi > 6, posterior shrinkage
quickly becomes negligible. Posterior distribution for the number of clusters L (panel b).

DP mixture, greatly facilitating the MCMC implementation. Let Ga(x; α, β)
denote a Gamma distribution with mean α/β. We use

G∗(λ) = Ga(x; α, β),

with fixed hyperparameters α and β.
To illustrate the model we implemented posterior inference for a SAGE

library reported in Zhang et al. (1997). The same data was used in Morris
et al. (2003), and is available at http://www.sagenet.org/SAGEData/NC1.htm.
It records counts for k0 = 17, 703 distinct transcripts, with a total number of
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Fig. 12.7. Estimated mixing measure G. The left panel zooms in on the lower end,
λ < 100. The highly skewed nature of G∗ = E(G | data) reflects the same feature in
the recorded data yi .

n = ∑
yi = 49, 610 recorded tags. We use the estimate from Stollberg et al.

(2000), and set k = 25,336, with yi = 0 for i = k0 + 1, . . . , k, that is, we esti-
mate the number of tags with censored counts yi = 0, as

∑
I (yi = 0) = 8,072.

Figure 12.5a shows a histogram of observed counts yi in the data. Figure 12.6
summarizes posterior inference for the transcript abundances. The figure plots
posterior mean estimates E(λi | data) versus observed counts yi . The nature of
the shrinkage follows patterns reported in Morris et al. ( 2003 ). For censored
tags, with yi = 0, the posterior mean estimate inflates the maximum likelihood
estimate and reports E(λi | data) ≈ 0.9. For rare tags with nonzero counts, pos-
terior inference shrinks the maximum likelihood estimate. For abundant poste-
rior tags, posterior inference is driven only by the observed counts. And E(λi |
data) ≈ yi . Figure 12.7 shows the estimated distribution of tag abundances λi .

12.5 Summary

We have illustrated the use of mixture models for Bayesian inference with gene
expression and proteomics data. We focused on the use of mixtures as a flexible
class of distributions to parameterize random distributions. Another important
use of mixtures arises in models where the submodels in the mixture correspond
to different biologic conditions. Such models are extensively reviewed in other
chapters in this volume.

We introduced DP mixtures of normals models to model microarray gene
expression data, DP mixtures of Poissons to model tag counts in SAGE data,
and location/scale mixtures of Beta kernels to represent mass/charge spectra
in protein mass spectrometry experiments. The underlying theme in all three
applications is the use of model-based inference, with a probability model
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on the random distribution (or mass/charge spectrum). This is in contrast to
traditional, and very reasonable, multistep methods. The power of the model-
based methods lies in the full probabilistic description of all related uncertain-
ties. Many important inference problems go beyond point estimates. For exam-
ple, consider the decision problem of flagging genes for differential expression,
or the problem of identifying a set of proteins that can serve as biomarker panel,
or sample size choice for a microarray experiment. A decision theoretic answer
to these question relies on a description of all uncertainties in one coherent
probability model.
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Abstract

Serial analysis of gene expression (SAGE) is a technique for estimating the gene
expression profile of a biological sample. Any efficient inference in SAGE must
be based upon efficient estimates of these gene expression profiles, which con-
sist of the estimated relative abundances for each mRNA species present in
the sample. The data from SAGE experiments are counts for each observed
mRNA species, and can be modeled using a multinomial distribution with two
characteristics: skewness in the distribution of relative abundances and small
sample size relative to the dimension. As a result of these characteristics, a
given SAGE sample will fail to capture a large number of expressed mRNA
species present in the tissue. Standard empirical estimates of the relative abun-
dances effectively ignore these missing, unobserved species, and consequently
tend to also overestimate the abundance of the scarce observed species com-
prising a vast majority of the total. In this chapter, we review a new Bayesian
procedure that yields improved estimates for the missing and scarce species
without trading off much efficiency for the abundant species. The key to the
procedure is the mixture Dirichlet prior, which stochastically partitions the
mRNA species into abundant and scarce strata, with each stratum modeled
with its own multivariate prior, a scalar multiple of a symmetric Dirichlet.
Simulation studies demonstrate that the resulting shrinkage estimators have ef-
ficiency advantages over the maximum likelihood estimator for SAGE scenarios
simulated.

13.1 Introduction

Serial analysis of gene expression (SAGE) is a method for estimating the
gene expression profile of a biological sample of interest. In this chapter, we
review a method introduced in Morris, Baggerly, and Coombes (2003) for
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obtaining Bayesian shrinkage estimates of these profiles using a fully specified
probability model. Bayesian inference using this method is straightforward
since the estimators arise from a coherent probability model. An outline of the
chapter is as follows.

In Section 13.2, we provide an overview of SAGE and motivate the use of
the multinomial likelihood to model the resulting data, and then in Section
13.3 we describe some standard methods for estimating multinomial relative
frequencies. After explaining why we believe these standard approaches are
inadequate for SAGE data, we review a method based on the mixture Dirichlet
prior. Section 13.4 describes the prior and Section 13.5 provides implemen-
tation details for obtaining posterior mean estimates for the mRNA species’
relative abundances. In Section 13.6, we present the results of a simulation
study demonstrating the benefit of shrinkage estimation based on the mixture
Dirichlet prior, and Section 13.7 contains some conclusions.

13.2 Overview of SAGE

13.2.1 Measuring Gene Expression

The central dogma in genetics is that DNA is used as a template to make mRNA
molecules, which then assemble the proteins that perform the biological tasks
of a living organism. The “expression level” of a gene refers to the amount of its
corresponding mRNA present in a cell, which is taken to be a rough surrogate
for how active that gene is in coding its protein. Levels of gene expression are
important to study in cancer research, as well as other biological applications.
It is often of interest to compare the gene expression profiles of different
biological samples, for example to identify genes differentially expressed across
biological conditions (e.g., cancer/normal) or clinical outcomes (e.g., response
to chemotherapy/no response).

The most common method for measuring gene expression is cDNA hy-
bridization using microarrays, which can simultaneously measure the expres-
sion levels of the genes represented on the array, typically numbering in the
thousands. In this method, sequences of DNA from the genes of interest are
arranged on an array, either by spotting or direct synthesis. The sample of inter-
est is then labeled and hybridized with the targets on the array. The amount of
material hybridized to each target is estimated by measuring the corresponding
staining intensity. After normalization, these intensities are used as an estimate
of the expression levels of the target genes. Note that microarrays are a “closed
system,” since they only provide information on the prespecified genes that
have been placed on the array.
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An alternative method for measuring gene expression is serial analysis of
gene expression (SAGE), introduced by Velculescu et al. (1999). Unlike mi-
croarrays, SAGE is an “open system,” since one need not prespecify the genes
of interest. It is possible to obtain expression level estimates for any gene ex-
pressed in the sample. First, a sample of n mRNA transcripts are selected from
the biological sample and complementary cDNA strands are constructed. Com-
monly, the number of transcripts sampled is between n =10,000 and 100,000.
For each selected transcript, a 10-base region at a specific location within its
sequence is isolated, sequenced, and recorded. This sequence is called a tag.
Ideally, these tags uniquely identify the source mRNA, and in practice this is
roughly true. Thus, the relative expression level of a gene, measured by the
relative quantity of the corresponding mRNA species, is approximated by the
relative frequency of its corresponding SAGE tag. The data from a SAGE ex-
periment consists of the counts for each unique tag observed in the sample. The
collection of these counts for a biological sample is called a “SAGE library.”

13.2.2 Characterizing SAGE Data

Suppose that from a SAGE sample consisting of n transcripts, we obtain a li-
brary containing k∗ unique tags, with the counts for each unique tag represented
by Xi, i = 1, . . . , k∗, with

∑k∗
i=1 Xi = n. In a typical library, the number of

unique tags observed is between k∗ = 3,000 and 30,000. By the nature of the
sampling, it is very likely that the SAGE sample has failed to capture a number
of mRNA species present in the biological sample. Let k0 be the number of
these “missing species,” and k = k∗ + k0 the true number of expressed tran-
scripts in the sample. If we knew k0 or at least had an estimate of it, we could
append our data set with Xi = 0, for i = k∗ + 1, . . . , k, to include the zero
counts for the missing species.

Assuming the sampling of mRNA proceeds in a roughly independent fash-
ion, the vector X = (X1, . . . , Xk)′ can be modeled as a random draw from
a multinomial distribution with parameters n and π = (π1, . . . , πk)′, with∑k

i=1 πi = 1. The vector π characterizes the relative expression profile of
the biological sample, with πi representing the true relative abundance of the
mRNA species corresponding to unique tag i. These are the main parameters
of interest in SAGE, and efficient inference depends on efficient estimation of
these parameters. It is estimated that a typical cell contains roughly 300,000
mRNA transcripts, so frequently the πi are reported as fractions over 300,000
to represent “mean copies of the transcript per cell.”

Table 13.1 summarizes the distribution of relative frequencies across tags
estimated by pooling together a series of large colon cancer SAGE libraries
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Table 13.1. Skewness in SAGE Data

Copies/cell % of Tags % of Mass

≤5 89.9 23
5–50 9.2 30

50–500 0.8 27
500–5,000 0.1 20

Source: (Velculescu et al. 1999).

(Velculescu et al. 1999). Note that a vast majority of the observed tags have
relative expression levels of no more than 5 per cell, that is, πi ≤ 5/300,000.
Although containing almost 90% of all unique tags, this group only accounts for
23% of the total probability mass; the πi for the unique tags in this group sum to
0.23. There are progressively fewer genes with larger relative frequencies. Only
1/1,000 of genes are present at rates of over 500 per cell, but these few abundant
genes account for almost as much probability mass as the scarcest ones. The
1% most abundant tags account for almost 50% of the total probability mass
of the sample.

Thus, we see that there are a small number of “abundant” genes, and a large
number of “scarce” genes. This is an inherent characteristic of SAGE data, and
gene expression in general. We could say from this that the distribution of the
πi is very strongly skewed right. Note that this skewness, along with the fact
that n is not large relative to k, contributes to the fact that a large number of
mRNA species are missing from any given SAGE sample.

13.3 Methods for Estimating Relative Abundances

13.3.1 Maximum Likelihood Estimation

It is typical to estimate the relative abundances for mRNA species πi by the
standard empirical estimators π̂i,MLE = Xi/n. These are trivial to compute and
are maximum likelihood estimators (MLEs), so are asymptotically efficient.
Thus, for large enough samples, they can be shown to outperform all other
estimators. However, since n ≈ k and the distribution of πi is strongly skewed,
a SAGE library is essentially a small sample, even with values of n that seem
“large.” In this setting, the MLE performs well for the relatively few abundant
species, but has undesirable properties for the scarce species comprising the
vast majority of the total number of unique tags. For a given SAGE sample, it
underestimates the relative frequency for all missing tags, and as a result, tends
to overestimate the relative frequencies of the scarce observed tags.
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The estimator for each missing tag is zero, which we know is less than the
true value. As a result of the relative frequency constraint that the πi’s must
sum to 1, this implies that the MLE tends to, on average, overestimate the rela-
tive frequencies for the nonmissing tags, that is,

∑
i: Xi>0 π̂i,MLE >

∑
i: Xi>0 πi .

The genes with small but nonzero counts will be the ones most likely to be
overestimated. Thus, for a given data set, the MLE will underestimate πi for
any species with zero counts, and tend to overestimate πi for genes with small
nonzero counts.

To further illustrate this point, consider the following toy example. Suppose
we have a biological sample with 51 expressed genes. One is abundant with
relative frequency πi = 0.50, and the other 50 are scarce with πi = 0.01.
Suppose we sample 20 transcripts and record the counts for each. On average,
40 of the 50 scarce tags will be missing, with the other 10 occurring once.
Thus, our estimate for a scarce tag will either be much smaller (0) or much
larger (≥ 0.05) than the true value. In this effectively small sample setting, these
estimators are limited as to how well they can estimate the relative abundances
of the scarce tags.

We would like to find an estimator that improves on the MLE. We would like
for it to give positive estimates when Xi = 0, which would require shrinking
the estimates for the genes with counts greater than zero in order to honor
the relative frequency contstraint

∑k
i=1 πi = 1. This can be accomplished by

specifying a prior distribution for π and using a Bayesian estimator.

13.3.2 Bayesian Estimation with a Symmetric Dirichlet Prior

The Dirichlet distribution is commonly used as a prior distribution with the
multinomial likelihood, since it is conjugate. When there is no prior knowledge
on which of the multinomial categories are more likely than the others, it is
common practice to set all Dirichlet parameters to be the same a priori, which
we refer to as a symmetric Dirichlet with parameter θ , or SymmDir(θ ). A
common choice for this hyperparameter is θ = 1, described by Jeffreys (1961,
Section 3.23), and corresponding to a k-variate generalization of the Uniform
distribution.

In that case, the posterior distribution of π is Dirichlet with parameters
θ + Xi for i = 1, . . . , k. The posterior mean for πi is π̂i,DIR = Xi+θ

n+kθ
, which can

also be written as ( n
n+kθ

)∗Xi/n + ( kθ
n+kθ

)∗1/k. Thus, we see that the posterior
mean is a weighted average of the MLE and the prior mean, with the weight
determined largely by the sample size. As n gets very large, the estimator is
approximately Xi/n, the MLE. When n is smaller, there is more weight given
to the prior mean, 1/k.
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Now, consider our toy example again, this time using the posterior mean
estimator with this Dirichlet prior, assuming θ = 1. When Xi = 0, π̂i,DIR =
1/71 = 0.014, and when Xi = 1, π̂i,DIR = 2/71 = 0.028. These are both closer
to the true value of 0.01 than the MLE. In fact, it can be shown that, for the
scarce genes in this toy example, the Bayesian estimators are always closer
to the truth than the MLEs, no matter when Xi is! However, this estimator
performs abysmally for the abundant gene. When X = 10, we see the posterior
mean estimate is 0.15, versus the MLE of 0.50. Recall the true value was 0.50.
We see in our example that the Bayesian method with Dirichlet prior results
in improved estimation for the scarce species relative to the MLE, but induces
a severe bias that results in horrible estimates for the abundant species. This
is not just true in this contrived example, but these results would also hold for
real SAGE data.

13.3.3 Robin Hood and Nonlinear Shrinkage

Following is an analogy to illustrate the heuristics behind this problem. We
know that the MLEs yield zero relative frequency estimates for all species
not seen in our SAGE sample. Since we know that there are a large number of
true mRNA species out there with positive relative frequencies that were simply
missed by our random sampling procedure, we would like to have some positive
probability mass for these species. Because of the relative frequency constraint,
this means we need to decrease the estimators for some of the observed classes.
There is no free lunch; in order to “pay” the zero count classes, we need to
“steal” some probability mass from the other classes.

A Bayesian estimator will do this. Because the Bayesian posterior mean takes
a weighted average of the prior mean and empirical estimator, it will result in
a positive relative frequency estimate for the zero counts, and will shrink the
estimates for tags with empirical estimates greater than the prior mean. The
form of the prior determines how this shrinkage is done; that is, who do we
“steal from” to “pay the zeroes.”

The simple symmetric Dirichlet performs linear shrinkage, so steals the most
mass from the “richest” or most abundant classes. This prior could be called
a “Robin Hood” prior, since it steals from the rich to pay the poor. This is
reasonable when we truly believe the multinomial classes are exchangeable,
since then it is likely that any very large count is an aberration, and so should
be shrunken the most. However, in settings like SAGE where we know there is
a great deal of heterogeneity in the relative frequencies, this type of shrinkage
is undesirable and, as we see from our simulation studies, leads to very poor
estimators.



P1: JZP

MorrisSAGE CUNY477-DoMueller 0 521 86092 X December 5, 2006 11:52

260 Morris, Baggerly, and Coombes

In SAGE, we would like a prior that is the opposite of a Robin Hood prior. It
would be best to “steal” from the most “poor” classes, those with low counts,
and leave the “rich” alone, since the sampling properties of the problem suggest
that the poorest classes are the ones whose empirical probability estimates are
holding on to the mass rightfully belonging to the zero classes. In other words,
we would like an estimator that shrinks the MLEs in a nonlinear fashion, where
classes with large counts are left largely unaffected, but those with small counts
are shrunken.

This idea of nonlinear shrinkage has been implemented in other statistical
settings. For example, in wavelet regression, noise is removed from a functional
signal by shrinking wavelet coefficients toward zero in such a way that the
smallest wavelet coefficients, likely to consist mostly of noise, are shrunken
the most, while the large coefficients, likely to consist of signal, are left largely
unaffected. In that setting, this shrinkage is achieved by using a prior that is a
mixture of a Normal and point mass at zero (Vidakovic 1998), or alternatively
a mixture of two Normals, one with a small and the other with a large variance
(Chipman, Kolaczyk, and McCulloch, 1997). Here we accomplish nonlinear
shrinkage via a mixture Dirichlet prior, which we now describe.

13.4 Mixture Dirichlet Distribution

One reason the symmetric Dirichlet prior fails in this context is that it inac-
curately represents the population of relative frequencies in SAGE. It assumes
that all k classes are a priori exchangeable, with relative frequencies of 1/k,
while in reality they are very heterogeneous. As previously mentioned, the
characteristics of gene expression suggest that there should be a small number
of very abundant tags, and a very large number of scarce tags. However, we
typically do not know a priori which tags will be abundant. We quantify this
prior knowledge through the following mixture Dirichlet prior, introduced by
Morris, Baggerly, and Coombes (2003). This distribution stochastically par-
titions the tags into scarce and abundant strata, each of which has its own
multivariate distribution, a scalar multiple of a symmetric Dirichlet.

13.4.1 Prior Specification

In order to specify this prior, we first introduce a new set of parameters
{λ, π∗, q}. Each unique tag is assumed to belong to one of two classes, ei-
ther “abundant” or “scarce.” The parameter λi = 1 indicates that unique tag
i belongs to the abundant class. We assume a priori that λi ∼Bernoulli(P ),
where P represents the prior proportion of unique tags belonging to the
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abundant class. Let the indices of tags belonging to the scarce and abun-
dant classes be represented by S = {i: λi = 0} and A = {i: λi = 1}, which
are of length kS = ∑k

i=1(1 − λi) and kA = ∑k
i=1 λi , respectively. The pa-

rameter π∗ = ∑k
i=1 λiXi represents the “abundant mass,” and is given a

Beta(απ∗ , βπ∗ ).
The vector q = (q1, . . . , qk)′ contains the relative frequencies for each unique

tag within its class. Given λ, q is partitioned into q S = π S/(1 − π∗) and
q A = π A/π∗. If λi = 1, then the qi represents the relative proportion of
abundant mass attributable to tag i, while if λi = 0, qi represents the relative
proportion of scarce mass attributable to tag i. The vectors q A and q S are
assumed to each follow symmetric Dirichlet distributions of dimension kA and
kS and parameters θA and θS, respectively. This construct allows the scarce
and abundant tags to have their own prior distributions, yet honors the relative
frequency constraint

∑k
i=1 πi = 1. If k0 is unknown, we give it an improper

prior f (k0) ∝ k−1
0 , which was suggested by Jim Berger as a good reference

prior in this context (personal communication, 2002).
Following is a summary of our mixture Dirichlet prior structure.

q A|λ = Symmetric Dirichlet(θA),

q S |λ = Symmetric Dirichlet(θS),

λi ∼ Bernoulli(P ),

π∗ = Beta(απ∗ , βπ∗ ),

f (k0) ∝ k−1
0 .

The relative frequencies for the individual multinomial classes are constructed
using these quantities as follows: πi = {qiπ

∗}λi {qi(1 − π∗)}(1−λi ).
This prior yields a nonlinear shrinkage profile, whereby the scarce species

are shrunken strongly toward zero while the abundant species are more or less
left alone, leaving positive mass for the missing species we know are there.
Figure 13.1 contains shrinkage curves for a SAGE sample of size n = 10,000
for the MLE and Bayesian estimators with symmetric Dirichlet prior with θ = 1
and a mixture Dirichlet prior with θA = 1, θS = 0.5, and P = 0.005. Note the
linear and nonlinear shrinkage profiles that characterize the symmetric and
mixture Dirichlet priors, respectively.

13.4.2 Selection of Prior Hyperparameters

The hyperparameters θA, θS, and P largely determine the shape of the shrinkage
curve. In general, larger values of θA and θS lead to stronger shrinkage toward
the prior means within the abundant and scarce classes, respectively. Because
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Fig. 13.1. Shrinkage curves for Bayesian estimators using symmetric and mixture Dirich-
let priors for SAGE data with n = 10,000 and k = 44,984. The shrinkage plots plot
the Bayesian posterior mean estimates versus the observed counts to demonstrate their
shrinkage profiles relative to the MLE, given by the line. The hyperparameters of the
mixture Dirichlet are θS = 0.5 and θA = 1.0, with P = 0.005 and a Uniform prior for
π∗. The hyperparameter for the symmetric Dirichlet is θ = 1.0. This plot only gives the
shrinkage plot for observed counts from 0 to 10. If it were extended to include larger
counts, the mixture Dirichlet would remain relatively close to the MLE line, while the
symmetric Dirichlet would continue on its linear course, moving further away from the
MLE.

we would like more shrinkage for scarce tags, we recommend making θS > θA.
However, making θA too small will have the side effect of making the boundary
between scarce and abundant species too sharp, which can hinder the efficiency
of the shrinkage estimator. We have found that θS = 1 and θA = 0.5 have
worked well in the examples we have tried. The hyperparameter P has a strong
influence on the location of the boundary between scarcity and abundance. We
have found that values of P between 0.005 and 0.03 seem to work well in
practice, with P larger as n is larger.
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13.5 Implementation Details

With the mixture Dirichlet prior, there is no closed form expression for the
posterior distribution of π that would allow efficient random variate generation.
The following Markov chain Monte Carlo (MCMC) procedure can be used to
obtain posterior samples from this distribution.

(i) For i = 1, . . . , k, sample λi from Bernoulli(αi), with αi = Pr(λi =
1|λ(−i), X, P ), and λ(−i) is the set of all λj , j = 1, . . . , k, except for the
ith one. The formula for αi is given below. Based on this sample, redefine
the sets of indices A = {i: λi = 1} and S = {i: λi = 0}.

(ii) Sample π∗ from its complete conditional distribution, which is Beta(απ∗ +
nA, βπ∗ + nS).

(iii) Sample q A and q S from their complete conditional distributions, which
are symmetric Dirichlets of dimension kA and kS and parameters {Xi +
θA, i ∈ A} and {Xi + θS, i ∈ S}, respectively.

(iv) If one wishes to update k0, the number of “missing species,” then sample k0

from f (k0|X∗, λ, θS, P ) using a Metropolis step, where X∗ is the vector
containing all Xi > 0 from our sample. Details for this step are given
below.

Given these posterior samples, then, posterior samples of πi are constructed by
πi = {qiπ

∗}λi {qi(1 − π∗)}(1−λi ).
In step (i), the probability αi = Oi/(Oi + 1), where Oi is the conditional

posterior odds that tag i is abundant, which is the product of the prior odds
P/(1 − P ) and the conditional Bayes Factor BFi , given by

BFi =
{

�(nA(−i) + απ∗ + Xi)�(nS(−i) + βπ∗ )

�(nA(−i) + απ∗ )�(nS(−i) + βπ∗ + Xi)

}
(13.1)

×
{

�(nA(−i) + kA(−i)θA)�(nS(−i) + kS(−i)θS + Xi + θS)

�(nA(−i) + kA(−i)θA + Xi + θA)�(nS(−i) + kS(−i)θS)

}

×
{

�(kA(−i)θA + θA)�(kS(−i)θS)

�(kA(−i)θA)�(kS(−i)θS + θS

}{
�(θA + Xi)�(θS)

�(θA)�(θS + Xi)

}
.

�(x) = ∫∞
0 exp(−u)ux−1 du is the Gamma function, kA(−i) = ∑

j �=i λi and
kS(−i) = ∑

j �=i(1 − λi) are the number of abundant and scarce tags, leaving
out species i, and nA(−i) = ∑

j �=i Xiλi and nS(−i) = ∑
j �=i Xi(1 − λi) are the

total abundant and scarce counts, again leaving out species i. The first and sec-
ond factors (in curly braces) arise from two Dirichlet multinomial distributions
for the observed tag counts in A and S. The third and fourth factors arise from a
Beta-binomial distribution for kA and kS. Note that this expression differs from
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the expression (3) in Morris, Baggerly, and Coombes (2003), which contains
typographical errors.

In step (iv), to update k0, we generate a proposal value k′
0 ∼ N (k0, σk0 ) for

some chosen proposal standard deviation σk0 . We accept this new proposal with
probability min(1,γ ), given by

γ = �{(k∗
S + k′

0)θS}�{nS + (k∗
S + k′

0)θS}
�{(k∗

S + k0)θS}�{nS + (k∗
S + k0)θS}} (13.2)

×�(k∗
S + k′

0 + 1)�(k′
0 + 1)k′

0

�(k∗
S + k0 + 1)�(k0 + 1)k0

(1 − P )k
′
0−k0 ,

where k∗
S = ∑k∗

i=1(1 − λi). The first two terms on the second line come from the
fact that the generalized multinomial distribution must be used when the number
of zero-class categories are unknown, which includes an extra combinatoric
term into the likelihood (see Boender and Kan 1987). In updating k0, we
assume that all missing species are scarce, that is, λi = 0 for all i: Xi = 0.

13.6 Simulation Study

In Morris, Baggerly, and Coombes (2003), a simulation study was performed to
compare the relative performance of four estimators in estimating the relative
frequencies of mRNA transcripts in SAGE: the MLE, a Bayesian estimator
with symmetric Dirichlet prior, a Bayesian estimator with the mixture Dirichlet
prior, and an alternative empirical Bayes-based shrinkage estimator from Good
(1953).

13.6.1 Description of Simulation

The simulation was based on a true set of relative frequencies π obtained
by pooling together the observed counts from six SAGE libraries from breast
cancer tissue in a study at M.D. Anderson Cancer Center. All totaled, these
data consist of 495,947 sequenced tags, with k = 44,984 unique tags, assumed
to represent different mRNA species. There were 684 (1.5%) of the tags with
relative frequencies greater than 50 copies per cell, accounting for 41% of
the total mRNA mass. With such a large number of sequenced tags, our hope
is that the set of observed relative frequencies from this pooled sample is a
reasonable approximation for the distribution of true relative frequencies of
mRNA transcripts in a biological tissue sample.

Simulations were performed with SAGE sample sizes of n = 10,000 and n =
50,000 transcripts. For each, 100 samples of size n were randomly generated
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from a multinomial population with relative frequencies π . For each sample, π

was estimated using various estimators: (1) maximum likelihood and Bayesian
posterior means using the (2) symmetric Dirichlet prior with θ = 1, and (3)
the mixture Dirichlet prior with θS = 0.5 and θA = 1.0, and (4) a shrinkage
estimator described by Good (1953), and attributed to Turing. This estimator
is empirical Bayes and involves substituting a smoothed histogram of the
observed counts for the histogram of true counts. For the mixture Dirichlet,
P = 0.005 was used for the n = 10,000 simulation, and P = 0.01 was used
for the n = 50,000 simulations. The total number of mRNA transcripts k was
assumed known at 44,984, and π∗ was given a Uniform prior. The estimates
were based on 2,000 MCMC iterations obtained after a burn-in of 100.

The squared error loss for each of the three estimators was computed for each
of the k = 44,984 species in each data set. The squared error loss for species
i in data set j , SEij , is given by (π̂ij − πi)2. From this, the mean square error
for each species i was computed as MSEi = 100−1∑100

j=1SEij . These measures
compared the performance for each individual species over repeated sampling.
Overall performance averaging over species was assessed using integrated
mean square error, IMSE = ∑k

i=1MSEi . In order to compare estimators for
each given data set, the integrated square error for each sample j was computed
as ISEj = ∑k

i=1SEij . All these summary measures were rescaled by a factor
of 107 for readability.

13.6.2 Results

Figure 13.2 summarizes the simulation results for the n = 10,000 and n =
50,000 simulations. For each simulation, the relative efficiency of the three
estimators to the MLE for each species is plotted against the true relative
abundance. The relative efficiency for species i for estimator l is given by
REil = MSEi,MLE/MSEil . To make the plot more readable, the relative effi-
ciencies for species with similar true abundances were averaged together and
plotted as a single circle, with the size of the circle made proportional to the
log of the number of species averaged at that abundance.

First, consider the performance of the symmetric Dirichlet. For both sam-
ple sizes, the estimator was more efficient than the MLE for scarce tags, but
performed increasingly poorly for more abundant tags, with the relative effi-
ciency close to zero for the most abundant ones. The IMSE for n = 10,000
and n = 50,000 were 4,489 and 1,546, respectively, versus 995 and 201 for the
MLE. This was what we expected based on our discussion in Section 13.3.2.

For n = 10,000, the mixture Dirichlet estimator showed efficiency improve-
ments of more than 35% over the MLE based on IMSE (IMSE = 995 for MLE
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Fig. 13.2. Simulation results. Relative efficiency of estimators from a simulation of 100
multinomial samples of size 10,000 and 50,000 taken from a SAGE-like population.
The horizontal axis consists of true relative frequencies multiplied by 300,000 to rep-
resent number of copies per cell containing 300,000 total mRNA transcripts. To aid
presentation, the results for unique tags with like true relative frequencies have been
combined, and the size of each plotted circle made proportional to the log(number of
unique tags) with that true relative frequency.

vs. 643 for mixture Dirichlet). Efficiency gains of this order were seen for every
one of the 100 simulated data sets, as measured by ISE. For the scarce tags
(0–50 copies per cell), the mixture method was more efficient with RE of up to
25. These scarce tags account for 98.4% of the total number of unique tags. In
the region of 200–1,000 copies per cell (0.37% of total tags), its performance
was essentially equivalent to the MLE. For an intermediate range (50–200
copies per cell, 1.2% of tags) and for the most abundant tags (>1,000 copies
per cell, 0.03% of tags), the mixture method was outperformed by the MLE,
with minimum RE near 0.60. Turing’s estimator had identical IMSE to the
mixture Dirichlet (643), with slightly extended regions of improved efficiency
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(0–60 copies per cell) and reduced efficiency (60–500 copies per cell) within
the parameter space.

For n = 50,000, the mixture Dirichlet again had smaller IMSE than the MLE
(166 vs. 201), outperforming the MLE for scarce tags (0–15 copies per cell,
93.5% of total), with RE of up to 6, with less efficiency than the MLE for an
intermediate range (15–50 copies per cell, 4.9% of total), and equivalent for
the abundant tags. The magnitude of improvement for scarce tags was again
larger than the efficiency loss in the intermediate range (RE > 0.50). Turing’s
estimator had a slightly smaller IMSE (160) than the mixture Dirichlet, and
again had extended regions of improved efficiency (0–20 copies per cell) and
reduced efficiency (20–150 copies per cell) within the parameter space.

13.7 Conclusion

We have introduced a new method for estimating the relative abundance profiles
of SAGE tags that explicitly takes into account the skewed nature of the data
and as a result can have efficiency advantages over the MLE. Its key benefit is
that the nonlinear shrinkage profile imposed by our prior helps correct for some
of the sampling limitations in the data. Other methods could be constructed that
yield nonlinear shrinkage profiles, and would likely experience similar types
of efficiency gains (and tradeoffs) as our method.

Turing’s estimator cited in Good (1953) had similar performance to ours,
although it is not model-based. Blades et al. (in press) propose a mixture model
for SAGE data that partitions the data into scarce and abundant tags based on
whether they belong to the linear or noise portions of a log(number of tags) vs.
log(frequency of tags) plot. The nonlinear shrinkage profile inherent in their
method results in more shrinkage for intermediate and abundant tags than ours,
with shrinkage for tags with observed counts into the 10’s and 100’s.

The fact that our method flows naturally from a fully specified coherent
probability model gives it several inferential advantages over other more ad
hoc methods. First, we obtain posterior samples from the joint distribution of
all tags’ expression levels, from which any inference, univariate or multivariate,
can be obtained. For example, estimates, posterior intervals, density estimates,
and Bayesian hypothesis tests are available for any quantities derivable from
the relative frequencies for any set of tags, including fold-change differences.
The efficiency advantages seen in estimation should translate to inferential
procedures with better properties. For example, fold-change assessments in-
volving species with very small counts in one group should be more accu-
rate using inferential procedures based on the shrinkage estimator introduced
here.
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Another advantage of this method is that it can give an estimate of k0,
the number of missing species, and thus can estimate k, the total number of
unique mRNA transcripts expressed in the biological sample. In that case, it
is important to first apply a method to correct likely sequencing errors before
applying the procedure described in this chapter, for example the procedures
described by Colinge and Feger (2001) or Blades, Parmigiani, and Velculescu
(in press). We believe these estimates of k should be taken with a grain of
salt, however, since they are still based on a severely oversimplified model
for the distribution of the πi across species, consisting of a mixture of 2
symmetric Dirichlets. It would be interesting to consider other more flexible
prior distributions for π that do an even better job of accommodating the
heterogeneity seen in these expression data. This would likely lead to even
better shrinkage estimators for π as well as improved estimates of the number
of mRNA species present in the sample, k.
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Abstract

In this chapter, we demonstrate how to analyze MALDI-TOF/SELDI-TOF
mass spectrometry data using the wavelet-based functional mixed model in-
troduced by J. S. Morris and R. J. Carroll (wavelet-based functional mixed
models. Journal of the Royal Statistical Society, Series B, in 2006, which gen-
eralizes the linear mixed model to the case of functional data. This approach
models each spectrum as a function, and is very general, accommodating a
broad class of experimental designs and allowing one to model nonparamet-
ric functional effects for various factors, which can be conditions of interest
(e.g., cancer/normal) or experimental factors (blocking factors). Inference on
these functional effects allows us to identify protein peaks related to vari-
ous outcomes of interest, including dichotomous outcomes, categorical out-
comes, continuous outcomes, and any interactions among factors. Functional
random effects make it possible to account for correlation between spectra
from the same individual or block in a flexible manner. After fitting this model
using Markov chain Monte Carlo, the output can be used to perform peak
detection and identify the peaks that are related to factors of interest, while
automatically adjusting for nonlinear block effects that are characteristic of
these data. We apply this method to mass spectrometry data from a Univer-
sity of Texas M.D. Anderson Cancer Center experiment studying the serum
proteome of mice injected with one of two cell lines in one of two organs.
This methodology appears promising for the analysis of mass spectrometry
proteomics data, and may have application for other types of proteomics data
as well.

269
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14.1 Introduction

MALDI-TOF is a mass-spectrometry-based proteomics method that yields
spiky functional data, with peaks corresponding to proteins present in the
biological sample. SELDI-TOF is a type of MALDI-TOF instrument in which
the surface of the chips is specially coated to bind only certain types of proteins.
An introduction to these technologies can be found in Chapter 1. In this chapter,
we apply a new Bayesian method for modeling spiky functional data (Morris
and Carroll in 2006) to analyze these data. This chapter reviews the material
in Morris et al. (2006). This method yields posterior samples of fixed effect
functions, which can be used to identify differentially expressed peaks while
adjusting for potentially nonlinear block effects that are typical in these data.

In Section 14.2, we introduce our example data set and describe important
preprocessing methods and standard analysis approaches in the existing litera-
ture. In Section 14.3, we describe the functional mixed model upon which our
method is based. We introduce wavelets and describe a Bayesian, wavelet-based
method for fitting the functional mixed model in Section 14.4. We describe how
to apply this method to MALDI-TOF data to detect peaks, identify differen-
tially expressed peaks, and adjust for block effects, and we provide concluding
discussions in Sections 14.5 and 14.6.

14.2 Overview of MALDI-TOF

14.2.1 Example

At the University of Texas M.D. Anderson Cancer Center, we conducted a
SELDI-TOF experiment to study proteins in the serum of mice implanted
with cancer tumors. The study included 16 nude mice. A tumor from one of
two cancer cell lines was implanted into one of two organs (brain or lung)
within each mouse. The cell lines were A375P, a human melanoma cancer cell
line with low metastatic potential, and PC3MM2, a highly metastatic human
prostate cancer cell line.

After a period of time, a blood sample was taken, from which the serum was
extracted and then placed on a SELDI chip. This chip was run on the SELDI-
TOF instrument twice, once using a low laser intensity and the other using a
high laser intensity, yielding two spectra per mouse. The low laser intensity
spectrum tends to measure the low molecular weight proteins more efficiently,
while the higher laser intensity yields more precise measurements for proteins
with higher molecular weights. This resulted in a total of 32 spectra, two per
mouse. Since the measurements for the very low mass regions are unreliable,
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for this analysis we kept only the part of the spectrum between 2,000 and
14,000 Da, a range which contains roughly 24,000 observations per spectrum.

Our primary goals were to assess whether differential protein expression is
more tightly coupled to the host organ site or to the donor cell line type, and to
identify any protein peaks differentially expressed by organ site, by cell line,
and/or their interaction. Typically, spectra from different laser intensities are
analyzed separately. This is inefficient since spectra from both laser intensities
contain information on the same proteins. We wanted to perform these analy-
ses combining information across the two laser intensities, which required us
to adjust for the systematic laser intensity effect and account for correlation
between spectra obtained from the same mouse.

14.2.2 Preprocessing MALDI-TOF/SELDI-TOF Data

A number of preprocessing steps must be performed before modeling MALDI-
TOF or SELDI-TOF data. It has been shown that inadequate or ineffective
preprocessing can make it difficult to extract meaningful biological information
from the data (Baggerly et al. 2003, 2004; Sorace and Zhan 2003). These steps
include baseline correction, normalization, and denoising. The baseline, which
is frequently seen in spectra, is a smooth underlying function that is thought to
be largely due to a large cloud of particles striking the detector in the early part
of the experiment and signal saturation (Malyarenko et al. 2005). This is an
artifact that must be removed. Normalization refers to a constant multiplicative
factor that is used to adjust for spectrum-specific variability, for example to
adjust for different amounts of protein ionized and desorbed from the sample.
Denoising is done to remove white noise from the spectrum that is largely
due to electronic noise from the detector. In recent years, various methods
have been proposed to deal with these issues. In the analysis presented in
this chapter, we used the methods described by Coombes et al. (2005b). The
first two columns of Figure 14.1 contain the raw spectrum and corresponding
preprocessed spectrum for low- and high-intensity laser scans from one mouse,
and demonstrate the effects of preprocessing. A more thorough discussion of
these issues can be found in Chapter 1.

We used linear interpolation to downsample the observations within each
spectrum to a 2,000-unit grid, equally spaced on the time scale. The third
column in Figure 14.1 contains the interpolated spectra corresponding to the
preprocessed spectra in the second column. Visual inspection of the raw and
interpolated spectra revealed virtually no differences. The interpolation was
performed for computational convenience. Further optimization of our code
for fitting the functional mixed model described in this chapter will allow us to
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Fig. 14.1. Sample spectra. Raw, preprocessed, and interpolated SELDI-TOF spectra for low- and high-
intensity laser scans for one mouse. Note that these spectra are characterized by many peaks corresponding
to proteins present in the sample.
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model the entire spectrum without downsampling. All analyses were performed
on the interpolated, preprocessed spectra.

Some recent case studies (Baggerly et al. 2003, 2004; Conrads and Veenstra
2005; Coombes et al. 2005a; Hu et al. 2005; Sorace and Zhan 2003; Villanueva
et al. 2005) have demonstrated that the MALDI-TOF instrument can be very
sensitive to experimental conditions. Spectra can vary substantially for sam-
ples collected at different locations or stored under different conditions. Also,
spectra obtained on different days can appear different from one another. These
differences can be manifest in changes in both the intensities and locations of
the peaks (i.e., both the y and x axes; see Figure 14.7). They are sometimes
so large in magnitude that they swamp the biological differences that are of
primary interest (Coombes et al. 2005a). Thus, it is important to take care in
the experimental design phase to ensure that these factors are not counfounded
with factors of interest, thus introducing systematic biases between the spectra
from different treatment groups. Even when not confounded, it is still important
to account for these block effects when modeling the spectra.

14.2.3 Peak Detection vs. Functional Modeling

It is common to use a two-step approach to analyze mass spectrometry data
(Baggerly et al. 2003; Coombes et al. 2003, 2005b; Morris et al. 2005; Yasui
et al. 2003). First, some type of feature detection algorithm is applied to identify
peaks in the spectra, and then a quantification for each peak is obtained for each
spectrum, for example, by taking the intensity at a local maximum or computing
the area under the peak. Assuming there are p peaks and N spectra, this results
in a p × N matrix of protein expression levels that is somewhat analogous to
the matrix of mRNA expression levels obtained after preprocessing microarray
data. Second, this matrix is analyzed using methods similar to those used
for microarrays to identify peaks differentially expressed across experimental
conditions.

This two-step approach is (i) intuitive since it focuses on the peaks, the most
scientifically relevant features of the spectra, and (ii) convenient, since it can
borrow from a wide array of available methods developed for microarrays.
However, it also has disadvantages. First, since group comparisons are done
only after peak detection, using this approach could result in not detecting
important differences in low-intensity peaks if the peak detection algorithm is
not sensitive enough. Important information can be lost in the reduction from
the full spectrum to the set of detected peaks. Second, using this approach may
not provide a natural way to account for block effects that affect the spectra in
both the x and y axes.
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Mass spectra can also be viewed as functional data. Let yi(x) denote the
ith spectrum after preprocessing, but before peak detection. The observation
yi(x) contains an intensity measurement from spectrum i associated with mass
per unit charge value x. These functions are irregular, characterized by many
peaks corresponding to proteins present in the tissue sample. An alternative to
the two-step approach described above is to model the spectra as functions, in
the spirit of functional data analysis (Ramsay and Silverman 1997). This is the
approach we take in this chapter. Specifically, we describe a Bayesian func-
tional modeling approach based on the functional mixed model, generalizing
the linear mixed model equation for potentially irregular functional data. Since
it involves modeling the entire spectrum, this method may detect significant
group differences for very low abundance peaks that might be missed by peak
detection algorithms. Further, by allowing a very flexible nonparametric rep-
resentation of the fixed and random effects, this method can simultaneously
model the functional effects of a number of factors, such as experimental fac-
tors of interest and nuisance factors related to the experimental design. These
nonparametrically modeled effects can account for differences on both the x

and y axes. In the subsequent sections, we introduce the functional mixed
model, describe our method for fitting it, and demonstrate how to apply it to
MALDI-TOF data.

14.3 Functional Mixed Models

Suppose we observe n functional profiles Yi(t), i = 1, . . . , n, all defined on the
compact set T ∈ �1. A functional mixed model for these profiles is given by

Yi(t) =
p∑

j=1

XijBj (t) +
m∑

k=1

ZikUk(t) + Ei(t), (14.1)

where Xij are covariates, Bj (t) are functional fixed effects, Zik are elements
of the design matrix for functional random effects Uk(t), and Ei(t) are resid-
ual error processes. Here, we assume that Uk(t) are independent and identi-
cally distributed (iid) mean-zero Gaussian processes with covariance surface
Q(t1, t2), and Ei(t) are iid mean-zero Gaussian processes with covariance sur-
face S(t1, t2), with Uk(t) and Ei(t) assumed to be independent. The matrix Q is
the covariance function for the random effect functions k = 1, . . . , m, and S is
the covariance function for the residual error processes for the n curves, after
conditioning on the fixed and random effects. This model is a special case of
the one discussed by Morris and Carroll (2006), and is also equivalent to the
functional mixed model discussed by Guo (2002).
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Suppose all observed profiles are sampled on the same equally spaced grid
t = (th; h = 1, . . . , T ) of length T . Let Y be the n × T matrix containing the
observed profiles on the grid, with each row containing one observed profile
on the grid t. A discrete, matrix-based version of this mixed model can be
written as

Y = XB + ZU + E. (14.2)

The matrix X is an n × p design matrix of covariates; B is a p × T matrix
whose rows contain the corresponding fixed effect functions on the grid t. Bjh

denotes the effect of the covariate in column j of X on the response at time th.
The matrix U is an m × T matrix whose rows contain random effect functions
on the grid t, and Z is the corresponding n × m design matrix. Each row of
the n × T matrix E contains the residual error process for the corresponding
observed profile. We assume that the rows of U are iid MVN(0,Q) and the
rows of E are iid MVN(0, S), independent of U , with Q and S being T × T

covariance matrices that are discrete evaluations of the covariance surfaces in
(14.1) on the grid.

This model is very flexible and can be used to represent a wide range
of functional data. The fixed effect functions may be group mean functions,
interaction functions, or functional linear effects for continuous covariates,
depending on the structure of the design matrix. The random effect functions
provide a convenient mechanism for modeling between-function correlation,
for example when multiple profiles are obtained from the same individual. The
model places no restrictions on the form of the fixed or random effect functions.
Since the forms of the covariance matrices Q and S are also left unspecified,
it is necessary to place some type of structure on these matrices before fitting
this model.

Guo (2002) introduced frequentist methodology for fitting this model,
whereby the functions are represented as smoothing splines and the matri-
ces Q and S are assumed to follow a particular fixed covariance structure based
on the reproducing kernel for the spline. By using smoothing splines, one
implicitly makes certain assumptions about the smoothness of the underlying
functions that are not appropriate for the irregular, spiky functions encountered
in MALDI-TOF. Also, the structures assumed for the Q and S matrices in
that paper, while appropriate for very smooth data, are not flexible enough
to accommodate the complex types of curve-to-curve deviations encountered
for irregular spiky functional data like MALDI-TOF data. Morris and Carroll
(2006) introduced a Bayesian wavelet-based method for fitting this model which
uses wavelet shrinkage for regularization and allows more flexible structures
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for Q and S, and thus is better suited for the spiky functions encountered in
MALDI-TOF data.

14.4 Wavelet-Based Functional Mixed Models

We give a brief overview of wavelets and wavelet regression, then describe
the Bayesian wavelet-based approach for fitting the functional mixed model
introduced by Morris and Carroll (2006), which extended the work of Morris
et al. (2003). This method is described in detail by Morris and Carroll (in
press), and applied to accelerometer data with an extension to partially missing
functional data in the paper by Morris et al. (in press).

14.4.1 Wavelets and Wavelet Regression

Wavelets are families of basis functions that can be used to represent other
functions, often very parsimoniously. A wavelet series approximation for a
function y(t) is given by

y(t) =
∑

k

cJ,kφJ,k(t) +
J∑

j=1

∑
k

dj,kψj,k(t), (14.3)

where J is the number of scales, and k ranges from 1 to Kj , the number of coeffi-
cients at scale j . We define the scale index j such that higher j refers to a coarser
level of detail. The functions φJ,k(t) and ψj,k(t) are father and mother wavelet
basis functions that are dilations and translations of a father and mother wavelet
function, φ(t) and ψ(t), respectively, with φj,k(t) = 2−j/2φ(2−j t − k) and
ψj,k(t) = 2−j/2ψ(2−j t − k). These wavelet coefficients comprise a location-
scale decomposition of the curve, with j indexing the scales and k indexing the
locations within each scale. The coefficients cJ,k, dJ,k, . . . , d1,k are the wavelet
coefficients. The cJ,k are called the smooth coefficients, and represent smooth
behavior of the function at coarse scale J , and the dj,k are called the detail
coefficients, representing deviations of the function at scale j , where a smaller
j corresponds to a finer scale. The wavelet coefficients at scale j essentially
correspond to the differences of averages of 2j−1 time units, spaced 2j units
apart. In addition, by examining the phase properties of the wavelet bases, we
can associate each wavelet coefficient on each scale with a specific set of time
points.

Theoretically, each coefficient can be computed by taking the inner prod-
uct of the function and the corresponding wavelet basis function, although
in practice more efficient approaches are used. If the function is sampled
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on an equally spaced grid of length T , then the coefficients may be com-
puted using a pyramid-based algorithm implementing the discrete wavelet
transform (DWT) in just O(T ) operations. Applying the DWT to a row
vector of observations y produces a row vector of wavelet coefficients d =
(cJ,1, . . . , cJ,KJ

, dJ,1, . . . , dJ,KJ
, dJ−1,1, . . . , d1,K1 ). This transformation is a

linear projection, so it may also be represented by matrix multiplication,
d = yW ′, with W ′ being the DWT projection matrix. Similarly, the inverse
discrete wavelet transform (IDWT) may be used to project wavelet coefficients
back into the data space, and can also be represented by matrix multiplication
by the IDWT projection matrix W , the transpose of the DWT projection matrix.
We use the method implemented in the Matlab Wavelet Toolbox (Misiti et al.
2000) for computing the DWT; other implementations can be used just as well.

Wavelets can be used to perform nonparametric regression using the follow-
ing three-step procedure. Assume yi = f (ti) + ei for an equally spaced grid ti .
First, noisy data y are projected into the wavelet domain using the DWT, yield-
ing empirical wavelet coefficients d. The coefficients are then thresholded by
setting to zero any coefficients smaller in magnitude than a specified threshold,
and/or nonlinearly shrunken toward zero using one of a number of possible fre-
quentist or Bayesian approaches. These result in estimates of the true wavelet
coefficients, which would be the wavelet coefficients for the regression mean
function f if there were no noise. Finally, these estimates are projected back
to the original data domain using the IDWT, yielding a denoised nonparamet-
ric estimate of the true function. Since most signals may be represented by
a small number of wavelet coefficients, yet white noise is distributed equally
among all wavelet coefficients, this procedure yields denoised function esti-
mates that tend to retain dominant local features of the function. We refer to
this property as adaptive regularization, since the function is regularized (i.e.,
denoised or smoothed) in a way that adapts to the characteristics of the func-
tion. This property makes the procedure useful for modeling functions with
many local features like peaks. References on wavelet regression can be found
in the literature, in the work of Vidakovic (1999, Chapters 6 and 8), in Donoho
and Johnstone (1995), Chipman, Kolaczyk, and McCulloch (1997), Vidakovic
(1998), Abramovich, Sapatinas, and Silverman (1998), Clyde, Parmigiani, and
Vidakovic (1998), and Clyde and George (2000).

14.4.2 Wavelet-Based Modeling of Functional Mixed Model

Morris and Carroll (2006) used a similar three-step procedure to fit the func-
tional mixed model discussed in Section 14.3. First, the DWT is used to
compute the wavelet coefficients for the N observed functions, effectively
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projecting these functions into the wavelet space. Second, a Markov chain
Monte Carlo (MCMC) simulation is performed to obtain posterior samples of
the model parameters in a wavelet-space version of the functional mixed model.
Third, the IDWT is applied to the posterior samples, yielding posterior sam-
ples of the parameters in the data-space functional mixed model (14.2), which
could be used to perform Bayesian inference. The wavelet-space modeling al-
lows parsimonious yet flexible modeling of the covariance matrices Q and S,
leading to computationally efficient code, and providing a natural mechanism
for adaptively regularizing the random and fixed effect functions.

The projection in the first step is accomplished by applying the DWT to
each row of Y , yielding a matrix of wavelet coefficients D = YW ′, where W ′

is the DWT projection matrix. Row i of D contains the wavelet coefficients
for profile i, with the columns corresponding to individual wavelet coefficients
and double-indexed by scale j and location k. It is easy to show that the
wavelet-space version of model (14.2) is

D = XB∗ + ZU ∗ + E∗, (14.4)

where each row of B∗ = BW ′ contains the wavelet coefficients corresponding
to one of the fixed effect functions, each row of U ∗ = UW ′ contains the
wavelet coefficients for a random effect function, and E∗ = EW ′ contains the
wavelet-space residuals. The rows of U∗ and E∗ remain independent mean-
zero Gaussian distributions, but with covariance matrices Q∗ = WQW ′ and
S∗ = WSW ′.

Motivated by the whitening property of the wavelet transform, many wavelet
regression methods in the single-function setting assume that the wavelet coeffi-
cients for a given function are mutually independent. In this context, this corre-
sponds to making Q∗ and S∗ diagonal matrices. Allowing the variance compo-
nents to differ across both wavelet scale j and location k yields Q∗ = diag(qjk)
and S∗ = diag(sjk). This assumption reduces the dimensionality of Q and S

from T (T + 1)/2 to T , while still accommodating a reasonably wide range of
nonstationary within-profile covariance structures for both the random effects
and residual error processes. For example, it allows heteroscedasticity and dif-
fering degrees of smoothness for different regions of the curves, which are
important characteristics of these matrices for MALDI-TOF spectra. Figure 1
in the paper by Morris and Carroll (2006) illustrates this point.

Next, an MCMC scheme is used to generate posterior samples for quantities
of model (14.4). We use vague proper priors for the variance components and
independent mixture priors for the elements of B∗. Specifically, the prior for
B∗

ijk , the wavelet coefficient at scale j and location k for fixed effect function
i, is a spike-slab prior given by B∗

ijk = γijkNormal(0, τij ) + (1 − γijk)δ0, with
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γijk ∼ Bernoulli(πij ) and δ0 being a point mass at zero. This prior is commonly
used in Bayesian implementations of wavelet regression, including those by
Clyde, Parmigiani, and Vidakovic (1998) and Abramovich, Sapatinas, and
Silverman (1998). Use of this mixture prior causes the posterior mean estimates
of the B∗

ijk to be nonlinearly shrunken toward zero, which results in adaptively
regularized estimates of the fixed effect functions. The parameters τij and πij

are regularization parameters that determine the relative tradeoff of variance
and bias in the nonparametric estimation. They may either be prespecified or
estimated from the data using an empirical Bayes method; see the paper by
Morris and Carroll (2006) for details.

There are three major steps in the MCMC scheme. Let � be the set of all
covariance parameters indexing the matrices Q∗ and S∗. The first step is a
series of Gibbs steps to sample from the distribution of the fixed effect func-
tions’ wavelet coefficients conditional on the variance components and the data,
f (B∗|�,D), which is a mixture of a point mass at zero and a Gaussian distri-
bution. See the original paper (Morris and Carroll in press) for an expression
for the mixing parameters, means, and variances of these distributions. The
second step is to sample from the distribution of the variance components con-
ditional on the fixed effects and data, f (�|B∗,D). We accomplish this using
a series of random walk Metropolis-Hastings steps, one for every combination
of (j, k). We estimate each proposal variance from the data by multiplying
an estimate of the variance of the MLE by 1.5. An automatic procedure for
selecting the proposal variances was necessary in order for our MCMC scheme
to be automated and thus computationally feasible to implement in this very
high-dimensional, highly parameterized setting. Note that we work with the
marginalized likelihood with the random effects U ∗ integrated out when we
update the fixed effects B∗ and variance components �. This greatly improves
the computational efficiency and convergence properties of the sampler over a
simple Gibbs sampler that also conditions on the random effects. The stationary
distribution for these first two steps is f (B∗,�|D). The third step is a series
of Gibbs steps to update the random effects’ wavelet coefficients from their
complete conditional distribution, f (U ∗|B∗,�,D), which is a Gaussian distri-
bution. Note that this step is optional, and only necessary if one is specifically
interested in estimating the random effect functions.

Posterior samples for each fixed effect function, {B(g)
i , g = 1, . . . , G}, on the

grid t are then obtained by applying the IDWT to the posterior samples of the
corresponding complete set of wavelet coefficients B∗(g)

i = [B∗(g)
i11 , . . . , B

∗(g)
iJKJ

].
This is similarly done for the random effect functions Ui . If desired, posterior
samples for the covariance matrices Q and S may also be computed using
matrix multiplication Q(g) = WQ∗(g)W ′ and S(g) = WS∗(g)W ′, respectively.
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Since Q∗(g) and S∗(g) are diagonal, this may be accomplished in an equiv-
alent but more efficient manner by applying the two-dimensional version
of the IDWT (2d-IDWT) to Q∗(g) and S∗(g) (Vannucci and Corradi 1999).
These posterior samples of the quantities in model (14.2) may subsequently
be used to perform any desired Bayesian inference. Code to fit the wavelet-
based functional mixed model can be found online at the following URL:
http://biostatistics.mdanderson.org/Morris.

14.5 Analyzing Mass Spectrometry Data Using Wavelet-Based
Functional Mixed Models

In this section, we apply the Bayesian wavelet-based functional mixed model
to analyze our example SELDI-TOF data set. Recall that this data set consisted
of N = 32 spectra, Yi(t), i = 1, . . . , 32, one low-intensity laser scan, and one
high-intensity laser scan for each of 16 mice. Each mouse had one of two
cancer cell lines (A375P or PC3MM2) injected in one of two organ sites
(lung or brain). We were interested in identifying protein peaks differentially
expressed between organs, between cell lines, and with significant interactions
between any organ and cell line.

The functional mixed model we used to fit these spectra is given by

Yi(t) =
4∑

j=0

XijBj (t) +
16∑

k=1

ZikUk(t) + Ei(t), (14.5)

where Xi0 = 1 and corresponds to the overall mean spectrum β0(t), Xi1 = 1
if the mouse was injected with the A375P cell line, −1 if PC3MM2, and
corresponds to the cell line main effect function β1(t). Also, Xi2 = 1 if the
injection site was the lung and -1 if the injection site was the brain, and
corresponds to the organ main effect function β2(t), while Xi3 = Xi1 ∗ Xi2

and corresponds to the organ-by-cell line interaction function β3(t). Finally,
we included a fixed effect function β4(t) to model the laser intensity ef-
fect, with corresponding covariate Xi4 = 1 or −1 if the spectrum came from
low- or high-intensity scans, respectively. We included random effects functions
Ui(t) for each mouse, i = 1, . . . , 16, to model the correlation between spectra
obtained from the same mouse, so Zik = 1 if and only if spectrum i came from
mouse k.

We modeled the spectra on the time scale t because they were equally spaced
on that scale, but plotted our results on the mass-per-unit-charge scale (m/z, x),
since that scale is biologically meaningful. In our wavelet-space modeling, we
chose the Daubechies wavelet with vanishing 4th moments and performed the
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Fig. 14.2. Fixed effect curves. Posterior mean and 95% pointwise posterior credible
bands for (a) organ main effect function, (b) cell line main effect function, (c) organ-
by-cell-line interaction function, and (d) laser intensity effect function.

DWT down to J = 11 levels. We used a modified empirical Bayes procedure to
estimate the shrinkage hyperparameters πij and τij , i = 1, . . . , 5, j = 1, . . . 10,
constraining τ ≥ 10 so there would be less bias in the estimation of peak
heights, which we believed to be important in this context. We did almost no
shrinkage (π ≈ 1, τ = 1, 000) for wavelet level 11 or the scaling coefficients.
After a burn-in of 1,000 iterations, we ran our MCMC scheme for a total of
20,000 iterations, keeping every 10th. The entire model fitting took 7 hours,
53 minutes in Matlab on a Windows 2000 Pentium IV 2.8 GHz machine
with 2 GB RAM. Using random walk Metropolis transition probabilities, the
acceptance probabilities for the roughly 2,000 sets of covariance parameters
were all between 0.041 and 0.532, with median of 0.294, and 10th and 90th
quantiles of 0.20 and 0.50.

Figure 14.2 contains the posterior means and 95% posterior credible bands
for the organ and cell line main effect functions, the interaction function,
and the laser intensity effect function. The interpretation of the organ main
effect function β1(x), for example, is the difference between the mean spectra
for lung- and brain-injected animals at m/z value x, after adjusting for the
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Fig. 14.3. Posterior probabilities. Logit transformed pointwise posterior probabilities
of being greater than zero for (a) organ main effect function, (b) cell line main ef-
fect function, (c) organ-by-cell-line interaction function, and (d) laser intensity effect
function.

functional effects of cell line, cell-line-by-organ interaction, and laser intensity.
The spiky nature of these fixed effect functions indicates that differences in
spectra between treatment groups are localized, and highlights the importance
of using adaptive regularization methods with these data. Although difficult to
see in these plots, there are a number of locations within the curves at which
there is strong evidence of significant effects. These are evident in Figure 14.3,
which contains the pointwise posterior probabilities of each fixed effect curve
being greater than zero, Prob(βj (x) > 0|Y). These significant regions are also
evident if one zooms in on certain regions of the plots (e.g., see Figures 14.5
and 14.6).

14.5.1 Peak Detection

While it is not necessary to perform peak detection when using this func-
tional analysis approach, it still may be useful to perform a peak-level analysis
since the peaks are the biologically most relevant features of the spectra, and
by restricting attention to the peaks, we can reduce the multiplicity prob-
lems inherent to performing pointwise inference on these curves. Morris et al.
(2005) demonstrated that for MALDI-TOF data, it was possible to obtain more
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Fig. 14.4. Peak detection. Posterior mean for the overall mean spectrum, β0(t), with
detected peaks indicated by the dots. A peak is defined to be a location for which
its first difference and the first difference immediately preceding it are positive, and
the first differences for the two locations immediately following it are negative. (See
color plate. 14.4.)

sensitive and specific peak detection by performing the peak detection on the
mean spectrum rather than on the individual spectra. In the present context, we
can perform peak detection using the posterior mean estimate of the overall
mean spectrum β0(t) and expect to see similar advantages. The adaptive regu-
larization inherent to our estimation approach results in a natural denoising of
this curve, reducing the number of spurious peaks detected.

In order to perform this peak detection, we applied the first difference op-
erator � to our regularized estimate of the mean spectrum �0(t) = �β0(t) =
β0(t + 1) − β0(t). We considered a location t to be a peak if its first difference
and the first difference immediately preceding it were positive (�0(t − 1) > 0
and �0(t) > 0), and the first differences for the two locations immediately
following it were negative (�0(t + 1) < 0 and �0(t + 2) < 0). This condition
assured that this location was a local maximum, and the left and right slopes of
the peak were monotone for at least two adjacent points.

Using this procedure, we found a total of 82 peaks out of the 2,000 obser-
vations within the spectrum. Figure 14.4 contains the posterior mean overall
mean curve with peak locations indicated by dots. Based on visual inspection,
this procedure appears to have done a reasonable job of identifying the peaks.



P1: JZP

MorrisMS CUNY477-DoMueller 0 521 86092 X December 5, 2006 11:53

284 Morris, Brown, Baggerly, and Coombes

14.5.2 Identifying Peaks of Interest

We further investigated each fixed effect function at the m/z values correspond-
ing to detected peaks. For each of the j = 1, . . . , 82 peaks with locations tj , and
i = 1, . . . , 3 comparisons of interest (organ main effect, cell line main effect,
organ-by-cell-line interaction), we computed the minimum posterior probabil-
ity for each fixed effect function to be greater than or less than zero, that is,
pij = min[Pr{βi(tj ) > 0|D}, Pr{βi(tj ) < 0|D}]. We determined a threshold φ

below which a comparison was considered interesting and worthy of further
investigation. To obtain φ, we first specified a small positive number α and
sorted the pij from smallest to largest, p(1), . . . , p(246). We defined φ to be p(δ),
where δ was the largest integer for which

∑δ
k=1{2p(k) + (2G)−1} < α. Let G

be the number of MCMC samples used to compute the posterior probabilities.
The factor of 2 is included to adjust for the two-sided nature of the analysis,
and the factor involving G adjusts for the limitation in precision for estimating
pij that is due to the number of MCMC samples run. This approach provides
a somewhat ad hoc procedure for multiplicity adjustment. More formal ap-
proaches will be investigated in future research. Note that for our example, the
peaks flagged as significant are very strongly significant, so would likely be
flagged by other procedures for adjusting for multiplicities.

We applied this procedure to our data using α = 0.01, and found that φ =
0.0033, and δ = 18 of the pij were flagged as interesting. These 18 pij were
from a total of 12 peaks. Table 14.1 lists the m/z values for these peaks, along
with the pij values and a description of the interesting effect. Whenever an
interaction effect was found to be interesting, the main effects for that peak
were not considered. Out of these 12 peaks, we found 4 with organ main effects,
3 with cell-line main effects, 1 with both organ and cell-line main effects, and
4 associated with the organ-by-cell-line interaction effects.

We attempted to find information about the possible identity of the
flagged peaks by running the estimated m/z values of the corresponding
peaks through TagIdent, a searchable database (available at http://us.exp
asy.org/tools/tagident.html) that contains the molecular masses and pH
for proteins observed in various species. We searched for proteins emanating
from both the source (human) and the host (mouse) whose molecular masses
were within the estimated mass accuracy (0.3%) of the SELDI instrument from
the peak found. This only gives an educated guess at what the protein identity
of the peak could be; it would be necessary to perform an additional MS/MS
experiment in order to definitively identify the peak. For illustration, we plotted
posterior means and posterior pointwise credible intervals for the interesting
effect functions in the neighborhood of the peaks at 3886.3, 5805.3, 7628.1,
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Table 14.1. Flagged Peaks from Proteomics Example

Peak location Effect type p Comment

3412.6 Interaction <0.0005 PC3MM2>A375P for brain-injected only
3496.6 Organ <0.0005 Only expressed in brain-injected mice
3886.3 Organ <0.0005 Only expressed in brain-injected mice
4168.2 Interaction 0.0005 PC3MM2>A375P in brain-injected only
4252.1 Interaction <0.0005 PC3MM2>A375P in brain-injected only
4814.2 Cell line 0.0030 PC3MM2>A375P
5805.3 Interaction <0.0005 Brain>lung only for mice with A375P

cell line
6015.2 Cell line <0.0005 PC3MM2>A375P
7628.1 Organ 0.0015 Only expressed in brain-injected mice
8438.1 Cell line 0.0015 PC3MM2>A375P
9074 Organ 0.0020 Lung>brain
11721.0 Organ <0.0005 Lung>brain
11721.0 Cell line <0.0005 PC3MM2>A375P

Note: Location of peak (in Daltons per coulomb) is given, along with which effect
was deemed significant, the associated posterior probability p, and a description of
the effect.

and 11721.0 (Figures 14.5 and 14.6). In Figure 14.5(a), we see that the peak at
3886.3 is expressed more highly in brain-injected mice than in lung-injected
mice. In fact, our observation of the posterior mean curves for the 4 organ-by-
cell-line group mean curves (β0(x) + β1(x) + β2(x) + β3(x), β0(x) + β1(x) −
β2(x) − β3(x), β0(x) − β1(x) + β2(x) − β3(x), and β0(x) − β1(x) − β2(x) +
β3(x)) indicates that this peak does not even appear to be present in the serum
proteomic profile of lung-injected mice; it is only in brain-injected mice. Us-
ing TagIdent, we found that this peak closely matched calcitonin gene-related
peptide II precursor (CGRP-II, 3882.34 Da, pH 5.41). This peptide is in the
mouse proteome, dilates blood vessels in the brain, and has been observed to be
abundant in the central nervous system. This result may represent an important
host response to the implanted tumor.

Figures 14.5(c) and (d) contain the posterior mean interaction main effect
curve β3(x) and group mean functions, respectively, in the neighborhood of
the peak at 5805.3 Da. The measurement corresponding to this protein is
higher in brain-injected mice than in lung-injected mice only for those mice
given cell line A375P. There is a protein in the human proteome, KiSS-16,
with molecular weight of 5794.7 Da that is known to be highly expressed in
metastasis-suppressed chromosome 6 melanoma hybrids.

Figures 14.6(a) and (b) contain the posterior mean organ main effect curve
β1(x) and group mean functions, respectively, in the neighborhood of the peak
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(a) Organ main effect, peak 3886.3
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(b) Group mean curves, peak 3886.3
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(c) Interaction effect, peak 5805.3
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(d) Group mean curves, peak 5805.3
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Fig. 14.5. Peaks of Interest. (a) Posterior mean for organ main effect function and 95%
pointwise posterior credible bands for the peak near 3886.3. (b) Posterior mean for
mean functions for each organ-by-cell-line group near the peak at 3886.3. (c) Posterior
mean organ-by-cell-line interaction effect function and 95% pointwise posterior credible
bands near the peak at 5805.3. (d) Posterior mean for mean functions for each organ-
by-cell-line group near the peak at 5805.3.

at 7628.1 Da. This protein is only present in spectra from brain-injected mice.
The protein neurogranin in the human proteome, with a molecular weight
of 7618.47 Da, is active in synaptic development and remodeling in the
brain.

Figures 14.6(c) and 14.6(d) contain the posterior mean and 95% posterior
pointwise credible intervals for the organ and cell line main effects curves
β1(x) and β2(x) in a neighborhood around the peak at 11721.0 Da, and Figure
14.6(e) contains the corresponding group mean curves. This protein has higher
expression in the metastatic cell line PC3MM2 than the nonmetastatic cell line
A375P, and in lung-injected mice than in brain-injected mice. There is a protein
MTS1 in the mouse proteome with molecular mass 11721.4 Da that is known to
be specifically expressed in different metastatic cells (Tulchinsky et al. 1990).
A similar protein with a molecular mass of 11728.5 Da is present in the human
proteome.
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(e) Group mean curves, peak 11721.0
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Fig. 14.6. Peaks of Interest. (a) Posterior mean for organ main effect function and 95% pointwise
posterior credible bands for the peak near 7628.1. (b) Posterior mean for mean functions for each
organ-by-cell-line group near the peak at 7628.1. (c) and (d) Posterior mean cell line and organ main
effect functions, respectively, and 95% pointwise posterior credible bands near the peak at 11721.0.
(e) Posterior mean for mean functions for each organ-by-cell-line group near the peak at 11721.0.
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14.5.3 Nonparametric Modeling of Block Effects

The analysis described above identified a number of interesting peaks. Our abil-
ity to detect these differences was aided by the fact that we were able to combine
information from both the low- and high-intensity laser spectra to perform our
analysis, giving us greater power to detect differences. Recall that it is typical
to analyze spectra with different laser intensities separately because there are
systematic differences between the spectra, but this is inefficient since spectra
from both laser intensities contain information about the same protein peaks.

Our inclusion of a nonparametric functional laser intensity effect β4(x) in
the modeling allowed us to combine these in a common model. The interpre-
tation of this effect is the difference between the mean spectrum from the two
laser intensities, after adjusting for the other functional effects in the model.
The flexibility of the nonparametric modeling allows this factor to adjust for
systematic differences in both the x and y axes. Figure 14.7 illustrates this
point. Figure 14.7(a) contains the posterior mean laser effect function β4(x)
and 95% posterior bounds in the region of two peaks at 3412.6 and 3496.6,
while Figure 14.7(b) contains the posterior mean for the overall mean spec-
trum β0(x) in the same region. The pulse-like characteristics in the laser effect
curve near the peak location demonstrate that the inclusion of this effect in
the model adjusts for a slight misalignment in the peaks across the differ-
ent laser intensity blocks, that is, differences in the x-axis. The mean curves
for low-intensity laser β0(x) + β4(x) and high-intensity laser β0(x) − β4(x)
(Figure 14.7(b)) demonstrate that the peak at 3412.6 in the overall mean curve
is at a slightly higher m/z value for the low-intensity spectra and slightly lower
m/z value for the high-intensity spectra. Figures 14.7(c) and 14.7(d) contain
β4(x) and β0(x) in the neighborhood of the peak at 11721.0, and demonstrate
that the nonparametric laser effect can also adjust for an additive offset in the
mean peak intensity across blocks, that is, the y-axis.

This same strategy can be used in other MALDI-TOF data sets to adjust for
systematic effects when spectra are run in batches, at different laboratories, and
when samples are obtained from different locations, as long as these factors
are not completely confounded with one of the other covariates of interest.
This is important, since MALDI-TOF instruments are quite sensitive to these
factors, and it is necessary to deal successfully with them in order to obtain
reproducible results.

14.6 Conclusion

We have demonstrated how to use the newly developed Bayesian wavelet-based
functional mixed model to model MALDI-TOF proteomics data. This method
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3,300 3,350 3,400 3,450 3,500 3,550 3,600
0

5

10

15

m/z

N
or

m
al

iz
ed

 in
te

ns
ity

(b) Group mean curves, peak 3886.3

Overall Mean
Low Laser Intensity
High Laser Intensity

1.15 1.16 1.17 1.18 1.19 1.2 1.21

x 10
4

 −1.5

 −1

 −0.5

0

0.5

1

1.5

m/z

N
or

m
al

iz
ed

 in
te

ns
ity

(c) Laser effect, peak 11721.0
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Overall Mean
Low Laser Intensity
High Laser Intensity

Fig. 14.7. Laser intensity effect. Posterior mean laser intensity effect near peaks of
interest at (a) 3412.6 and 3496.6 and (c) 11721, along with 95% pointwise posterior
credible bands. The red dots indicate the locations of peaks detected in the fitted mean
spectrum. Panels (b) and (d) contain the corresponding fitted posterior mean curves for
the overall mean and the laser intensity-specific mean spectra in the same two regions.
Note that the nonparametrically estimated laser intensity effects are able to adjust for both
shifts in location (x-axis, see (a) and (b)), and shifts in intensity (y-axis, see (c) and (d)).
(See color plate 14.7.)

appears well suited to this context, for several reasons: the functional mixed
model is very flexible; it is able to simultaneously model nonparametric func-
tional effects of many covariates simultaneously, both factors of interest and
nuisance factors such as block effects. Further, the random effect functions can
be used to model correlation structure among spectra that might be induced
by the experimental design. The wavelet-based modeling approach works well
for modeling functional data with many local features like MALDI-TOF peaks
since it results in adaptive regularization of the fixed effect functions, avoids
attenuation of the effects at the peaks, and is reasonably flexible in modeling the
between-curve covariance structures, accomodating autocovariance structures
induced by peaks and heteroscedasticity allowing different between-spectrum
variances for different peaks. Given the posterior samples produced by this
method, we were able to perform peak detection and flag a number of peaks
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as interesting and worthy of future investigation. The efficiency of our anal-
ysis was increased because the random effect functions and a nonparametric
laser-intensity-effect function allowed us to combine information across spec-
tra obtained from different laser intensities. This strategy has more general
application for calibrating spectra so data can be combined across different
laboratories or batches. Our approach may also be useful for analyzing data
from other proteomic platforms that generate functional data, and may be ex-
tended to model functional data on two-dimensional domains, including data
from two-dimensional gel electrophoresis and liquid chromatography mass
spectrometry.
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Nonparametric Models for Proteomic Peak
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Abstract

We present model-based inference for proteomic peak identification and quan-
tification from mass spectroscopy data, focusing on nonparametric Bayesian
models. Using experimental data generated from MALDI-TOF mass spec-
troscopy (matrix-assisted laser desorption ionization time-of-flight) we model
observed intensities in spectra with a hierarchical nonparametric model for
expected intensity as a function of time-of-flight. We express the unknown in-
tensity function as a sum of kernel functions, a natural choice of basis functions
for modeling spectral peaks. We discuss how to place prior distributions on the
unknown functions using Lévy random fields and describe posterior inference
via a reversible jump Markov chain Monte Carlo algorithm.

15.1 Introduction

The advent of matrix-assisted laser desorption/ionization such time-of-flight
(MALDI-TOF) mass spectroscopy and related SELDI-TOF (surface enhanced
laser desorption/ionization) allows the simultaneous assay of thousands of
proteins, and has transformed research in protein regulation underlying complex
physiological processes. This technology provides the means to detect large
proteins in a range of biological samples, from serum and urine to complex
tissues, such as tumors and muscle. With appropriate statistical analysis, one
may explore patterns of protein expression on a large scale in high-throughput
studies without the need for prior knowledge of which proteins may be present
(Baldwin et al., 2001; Diamandis, 2003; Martin and Nelson, 2001; Petricoin
and Liotta, 2003; Petricoin et al., 2002). As such, it becomes a discovery tool,
identifying proteins and pathways that are linked to a biological process. In

293
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applications, tens to thousands of spectra may be collected, leading to massive
volumes of data. Each spectrum contains on the order of tens of thousands
of intensity measurements, with an unknown number of peaks representing
proteins of specific mass-to-charge ratios.

The combined effects of heterogeneity in protein composition of samples and
other complexities due to the biochemical/physical processes of the measure-
ment procedures lead to many challenges in identifying proteins or biomarkers
that differentiate subgroups. Several steps, involving low-level processing of
the spectra, such as calibration, filtering of noise, baseline subtraction, normal-
ization, and peak detection, are often carried out in separate stages in order
to identify the location of peaks (representing proteins) and to quantify their
abundance; inadequate or incorrect methods may introduce substantial biases
or create more challenges for later stages of analysis, such as classification of
subjects (Coombes et al., 2005). In this chapter, we describe nonparametric
statistical models for spectra that permit simultaneous filtering of noise and re-
moval of baseline trends in conjunction with peak identification, quantification,
and, ultimately, classification.

15.2 Kernel Models for Spectra

We describe the model for a single spectrum, which may be either a raw
spectrum or the average of spectra from several laser shots, individuals, etc.
(Morris et al., 2005). The raw data consist of a time series of intensities of ions
striking the detector at recorded time intervals (each clock tick is 4ns). The
data in Figure 15.1 represent the average spectrum from 10 laser shots for a
single serum sample. Typically, TOFs are calibrated using known samples to
provide associated mass/charge values via a quadratic (or higher polynomial)
transformation. Following Malyarenko et al. (2005), we prefer to develop the
model for intensity as a function of TOF rather than with mass/charge. We
denote the observed intensity measurement at observed TOF t ∈ T ≡ [to, tn]
as Yt , with expected intensity E[Yt ] given by the function f (t). Nonparamet-
ric models (such as wavelets) have been highly successful in representing
the unknown expected intensity function f (t) (Coombes et al., 2004; Morris
et al., 2005), expressing it as a linear combination of basis functions. Rather
than using basis functions generated from a wavelet, we express the mean
intensity through a linear combination of kernel functions

f (t) = b(t) +
J∑

j=1

k(t ; τj , ωj )γj (15.1)
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Fig. 15.1. The average spectrum from 10 laser shots for a single serum sample. The time
axis denotes individual clock ticks with intensities recorded every 4 ns.

where k(t ; τj , ωj ) is proportional to a nonnegative density, such as a Gaussian
or Cauchy kernel, and b(t) represents the systematic background process.

The kernel model has several notable features that are attractive for modeling
spectra. First, J , the number of terms in the expansion, is meaningful, repre-
senting the number of kernels (peaks) or proteins in the spectrum. As basis
functions, the kernels also have an intuitive interpretation. Because of varia-
tions in their kinetic energy, ions of equivalent mass may reach the detector at
different times, resulting in a spread or distribution of arrival times. In the case
of single ion peaks, the literature suggests that peak shape should be symmetric
with possibly Gaussian (Dass, 2001) or Cauchy (Kempka et al., 2004) forms.
Kernels based on normalized densities, such as the Gaussian

k(t ; τj , ωj ) =
√

ω

2π
exp

(
−ω

2
(t − τ )2

)
(15.2)

or Cauchy

k(t ; τj , ωj ) =
√

ω

π

(
1 + ω (t − τ )2

)−1
, (15.3)

capture the spiky nature of peaks in the time domain and serve as natural
choices for basis functions for expanding the mean function. In the parame-
terizations above, τj may be interpreted as the expected TOF for protein j .
When normalized densities (that integrate to one) are used to construct the
kernels, the coefficient γj corresponds to the area under the curve, which may
be thought of as a measure of the concentration of protein j or of its abundance.
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Finally, the parameter ωj controls the width of peaks. Determining whether a
given peak in the spectrum corresponds to a single protein or to two or more
proteins is an issue of the resolving power of the mass spectrometer, which is
characterized by its resolution. For a symmetric single ion peak with expected
TOF τj , the resolution ρj at peak j is defined as

ρj = τj

�τj

, (15.4)

where �τj is the full peak width at 50% of the maximum height (FWHM)
(Siuzdak, 2003) as illustrated in Figure 15.2. Solving for ωj , we have

ωj = (2ρj/τj )2 Cauchy kernel (15.5)

ωj = log(4)(2ρj/τj )2 Gaussian kernel (15.6)

or in general, for a symmetric kernel k(t, τ, ω), ω = gk(τ, ρ) for gk that satisfies
(15.4).

Figure 15.3 illustrates how peak width increases as TOF increases (larger
mass/charge). As the proteins in the figure have the same concentration (γj ),
the area under each curve is constant, but the height decreases inversely with
the square of TOF. The two peaks at 3,000 and 3,015 clock ticks are too close to
resolve as individual peaks by isolating the mode, but may be resolved through
the model because the width is wider than expected for the particular TOF.
Using the relationship in (15.4), available prior information about resolution
can be translated into prior knowledge about ωj , which will aid in resolving
the number of proteins in a peak.

15.3 Prior Distributions

To make posterior inference about the unknown function f (which we will
assume belongs to some separable Hilbert space H), we must first propose
a prior distribution for functions in H. With the representation of f (t) in
(15.1), an intuitive construction begins by choosing any positive number ν+ >

0 and assigning J a Poisson distribution, J ∼ Poisson(ν+) with mean ν+.
Conditionally on J , accord the (γj , τj , ωj ) independent identical distributions,

(γj , τj , ωj )
iid∼ π (dγ, dτ, dω), where π is a probability distribution on R

+ ×
T × R

+. This leads to the equivalent representation of f (t) as a convolution of
kernels of the form

f (t) = b(t) +
∫

T × R+
k (t ; τ, ω) 	(dτ, dω), (15.7)
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Fig. 15.2. Gaussian kernel with ω = 0.055 (top) and Cauchy kernel (bottom) with
ω = 0.04 with expected TOF τ = 1,000 ns. The resolution is the same in both cases
(�τ )/τ = 100).

where

	(dτ, dω) =
J∑

j=1

γj δτj
(dτ )δωj

(dω)

is a discrete random Borel measure on T × R
+ with a random number J jumps

of random height γj at the random points (τj , ωj ).
More generally, the prior distribution π (dγ, dτ, dω) need not be proper (i.e.,

finite) for the random measure 	 (and the convolution) to be finite and well
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Fig. 15.3. Cauchy kernels with equal concentrations and constant resolution (ρ = 100).
With equal concentrations, the heights are inversely related to the TOF, 2ρ/τj . The two
peaks at 3,000 and 3,015 appear as a single peak, but the combined peak is wider than
expected for the given resolution.

defined. In particular, a natural choice for modeling concentrations is with a
Gamma random field prior, a special case of a Lévy random field prior, where
we take

	 ∼ Lv(ν) (15.8)

with Lévy measure ν of the form

ν(dγ, dτ, dω) = αγ −1 e−βγ 1{γ>0} dγ π(dτ, dω) (15.9)

for α > 0 and β > 0 and for some finite measure π (dτ, dω) on T × R
+. For

disjoint sets Ai ⊂ T × R
+, the random measure 	 assigns 	[Ai] indepen-

dent Gamma distributions, 	[Ai] ∼ Gamma(απ (A), β). For example, with
Ai = (ti , ti+1] × R

+ and π (dτ, dω) = 1τ∈T dτπ (dω)), the random variable
	[Ai] represents the total abundance of proteins with expected TOFs in the
interval (ti , ti+1]. While other approaches may be used to construct a prior for
f (t), the Gamma random field, which is a stationary independent increment
field, ensures that our prior beliefs are specified coherently across all possible
partitions of TOF. Because the Gamma random field prior assigns probability
1 to nonnegative functions f , we are assured that the expected intensity will
always be nonnegative.
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Infinite Lévy measures ν, such as in the Gamma random field in (15.9), lead
to a random measure 	 with an infinite number of support points J a priori, as
the mean

ν+(α, β) ≡ ν(R+, T, R
+) =

∫ ∫ ∫
R+×T×R+

ν(dγ, dτ, dω) (15.10)

in the Poisson distribution is infinite. As the Lévy measure ν, however, satisfies
the bound ∫ ∫

R+×T×R+K (1 ∧ |γ |) ν(dγ, dτ, dω) < ∞, (15.11)

tractable computation may be obtained by the approximation

νε(dγ, dτ, dω) ≡ ν(dγ, dτ, dω)1γ>ε, (15.12)

which will lead to finite

ν+
ε (α, β) ≡ νε(R+, T, R

+) (15.13)

and hence finite J (almost surely). This approximation may be viewed as
incorporating just the J largest intensities into the mean f (t). Although
we may expect on the order of 30−50 proteins (Campa et al., 2003) and
hence finite J , the total number of protein products may be much higher
due to protein modifications, such as the addition of matrix adducts or ad-
dition/loss of other ions, or isotopic differences in protein composition. For
ε > 0, J corresponds to the number of peaks or proteins in the spectra
with expected intensity greater than ε, thus the choice of ε may be guided
by expected noise levels and overall resolution. For more details concern-
ing Lévy random fields and approximations, see Cont and Tankov (2004);
Jacod and Shiryaev (1987); Khinchine and Lévy (1936); Maruyama (1970);
Sato (1999); Wolpert and Ickstadt (1998a,b); Wolpert and Taqqu (2005).

To complete the Gamma random field prior we must specify a joint dis-
tribution for τj and ωj . Without prior information on the distribution of the
mass/charge of expected proteins, a default choice is to take τj uniform over T.
Given existing databases of proteins and associated masses, one can construct
a more informative prior for τj for a given proteomic application.

Because information is available regarding resolution, we develop priors for
resolution, rather than directly placing a prior distribution on the parameter ωj ,
which governs peak width. Because the resolution ρj depends on only char-
acteristics of the mass spectrometer (laser and detector settings, experimental
conditions) and not on the kernel representation, this provides a model inde-
pendent method for assessing prior distributions for ωj . Resolution may differ
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among peaks, primarily because of variation in ion kinetic energy. We develop

a hierarchical prior distribution for peak resolution ρj , with ρj |� iid∼ π (ρj | �),
which allows for variation in resolution from peak to peak, and place a prior
distribution on the overall resolution � to correspond to expected ranges. Be-
cause the width at 50% of the peak height is a function of the kernel parameters,
the relationship between peak resolution ρj and τj given by equation (15.4)
may be used to find the distribution of the peak width parameter ωj given τj

for any kernel parameterization. The hierarchical representation allows peak
widths to vary slightly from protein to protein, but “borrows strength” from the
ensemble of peaks and information regarding the overall resolution.

The prior may be restated in hierarchical fashion as

f (t) = β{β0 + kb(t, τ0, ω0)γ0 +
J∑

j=1

k(t, τj , ωj )γj }

γj | J, ε
iid∼ Gamma(0, 1; ε) for j = 0, . . . , J

τj | J
iid∼ Uniform(T) for j = 1, . . . , J

ρj | J
iid∼ LogNormal(�, 0.05) for j = 1, . . . , J

ωj = gk(τj , ρj ) for j = 1, . . . , J

J | α, ε ∼ Poisson
(
ν+

ε (α, 1)
)

where in the distribution for γj , Gamma(0, b; ε) represents a truncated Gamma
distribution with density proportional to γ −1 exp (−bγ ) on [ε,∞) and normal-
izing constant E1 (bε  ) (E1 (z ) is the Exponential Integral function (Abramowitz
and Stegun, 1970, Section 5.1)).In the above reformulation, the intensities
{γj } all have scale 1; however, the parameter β can be thought of as an overall
spectrum-specific scale parameter used to adjust the intensities and background
parameters. The function gk used to transform ρj to ωj is given in (15.5) and
(15.6) for the Cauchy and Gaussian kernels, respectively. For MALDI data,
we represent b(t) as an overall constant plus a kernel fixed at the initial time
τ0 ≡ t0 (near 8000 clock ticks),

b(t) = β{β0 + k(t, τ0, ω0)γ0}, (15.14)

which effectively captures much of the high intensity measurements below
2,000 Da.

Prior distributions at higher stages of the hierarchy depend on prior knowl-
edge about the anticipated number of proteins J0 and the choice of ε and are
taken to be weakly data-dependent. The prior on the overall scaling parameter
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Fig. 15.4. Means and variances of intensities using a sliding window of 50 clock ticks.
The solid line represents a robust fit of the model with the variance linear in the mean
(Gamma model), while the dashed line represents the robust fit to a model for the
variance that is quadratic in the mean (LogNormal model).

β depends on the data through the sum of the observed intensities, and is cho-
sen so that the expected intensity at any point in time is roughly 0.01% of the
total observed intensity. The prior on ρ leads to 95% of the resolution values
being between roughly 80 and 125, based on our experience with similar data.
Finally, the Gamma prior on the parameter α in the Lévy measure ν (15.9) leads
to J having a negative binomial distribution marginally with expected value J0

(the anticipated number of proteins), and provides robustness to a fixed choice
of α.

15.4 Likelihood

Posterior inference about parameters in the model requires specification of an
appropriate likelihood. Because intensity measurements are nonnegative, both
Gamma and LogNormal distributions are reasonable candidates that allow the
variance to depend on the mean. Under the Gamma model the variance is pro-
portional to the mean, while with the LogNormal, the variance is proportional
to the square of the mean. To explore which model is more appropriate, we
took running windows of 50 clock ticks and computed the mean and vari-
ance of intensity (Yt ) in each window. We used a robust quantile regression
(Koenker and D’Orey, 1994) to fit the linear and quadratic models for variance
as function of the mean (Figure 15.4). Overall, the linear relationship between
the mean and variance appears to be more appropriate over a larger range of the
data.
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Based on the exploratory analysis, we adopt the following Gamma model
for intensities:

Yt − min(Yt ) + c | f (t), φ
iid∼ Gamma (f (t)φ, φ) (15.15)

parameterized with mean f (t) and variance f (t)/φ to accommodate the
nonconstant variability present in spectra. To avoid problems with evaluat-
ing the likelihood at zero, we add a small constant c to the data (allowing c to
be random and estimated from the data did not change inferences).

To complete our model specification, we need to choose a prior for φ. From
experiments using blank chips, where there is no signal but just pure noise, we
observe intensities ranging from 20 to 25, or for the average of 10 spectra, we
would expect standard deviations around 1.1 − 1.3. From the robust regression
line in Figure 15.4, the slope estimate is 4.3, which provides another estimate of
1/φ, the variance inflation factor. We take the prior for φ to be Gamma(0.5, 1),
which provides reasonable coverage of these values (roughly 30% of the mass
is in the interval), but puts 50% of the mass on values of φ less than 1/4.3
allowing for greater prior uncertainty (lower precisions).

15.5 Posterior Inference

Given prior distributions on all unknowns, the number of proteins J , the lo-
cations τj , peak widths ωj , peak resolutions ρj , and peak masses γj , as well
as other parameters, α, β, etc., the posterior distribution of all unknowns is
proportional to the likelihood of the data based on the Gamma model, multi-
plied by the prior distributions defined by the Gamma random field and other
prior distributions at higher stages of the hierarchy. Marginal posterior dis-
tributions for most quantities of interest are not available analytically. The
prior construction using Lévy random fields, however, permits tractable simu-
lation of the posterior distribution via a reversible jump Markov chain Monte
Carlo (RJ-MCMC) algorithm (Green, 1995). The RJ-MCMC algorithm pro-
ceeds by drawing computer simulations of the high-dimensional state vector
{α, β, ρ, J, {γj , τj , ωj }j≤J } and any other uncertain features. At each iteration,
we randomly select to either increment J and add a new peak and associated
parameters (Birth), decrement J and remove a peak (Death), or update peak or
other parameters (Update); Birth/Death moves that allow a peak to be Split into
two peaks or be Merged into a single peak are also included. Efficient compu-
tation is possible because updates to f based on adding/deleting or updating
peaks bypass the need to invert large matrices that often arise in Gaussian ap-
proaches. Furthermore, because kernels are only computed as needed, memory
requirements scale linearly with the sample size. For starting values, we have
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developed an EM algorithm (Dempster Laird and Rubin., 1977) to find modal
estimates of the parameters in a single spectrum under an approximate Gaus-
sian model, with positivity constraints. An R package for fitting these models
is under development by the authors.

15.6 Illustration

To illustrate inference using the adaptive kernel model, we use the data from
the average spectrum shown in Figure 15.1. We select hyperparameters in a
Gamma prior distribution for α such that the prior mean number of peaks
is E(J ) = 30, based on discussions with the researchers, who provided the
data. The value of ε, which controls the minimum detectable peak mass, was
set based on previous simulation experiments with similar levels of noise and
overall total intensity. Using the Cauchy kernel, we ran the RJ-MCMC for
2 million iterations, thinning by 1,000, and kept the last 1,000 values for
inference.

Figure 15.5 summarizes the marginal distribution of 1/φ (the variance infla-
tion factor) as well as joint draws of ρj and τj . The resolution ρj does not appear
to vary systematically with TOF (or mass/charge), although the few areas with
higher resolution suggest that the hierarchical model may be more appropriate
than a model with one common resolution throughout. The figure also shows
the cumulative distribution for relative concentration

∑
τj ≤t γj /

∑J
j=1 γj ver-

sus TOF t . Jumps in the cumulative distribution indicate locations of peaks in
the spectrum.

At each iteration of the RJ-MCMC sampler, locations of the expected TOF
(τj ) are updated, with the number of peaks potentially changing. Point estimates
of quantities of interest are computed from ergodic averages along the Markov
chain or the maximum a posteriori (MAP) draw. Figure 15.6 illustrates the
function estimates corresponding to the highest posterior probability draw (top)
and to the posterior mean (model averaging).

The rug plot at the bottom of each plot indicates locations of peaks. A tech-
nical issue with using RJ-MCMC algorithms for peak identification involves
summarizing a high-dimensional parameter vector of varying dimension. Un-
der model averaging, we identify peaks or local modes by using the posterior
distribution of the derivative process of the mean intensity function shown in
Figure 15.7. Peak identification is carried out by finding where the derivative
process crosses zero. This typically results in fewer peaks than the MAP draw,
but identifies major peaks. Figure 15.7 illustrates that the model can capture
features such as asymmetry and can differentiate between peaks composed
of a single protein or multiple protein peaks. Despite the inherent flexibility
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Fig. 15.5. Posterior distribution of 1/φ with prior shown by the dashed curve (top),
posterior draws of resolution ρj versus TOF τj (middle), and posterior draws of cumu-
lative distribution of relative concentration

∑
τj ≤t γj /

∑J

j=1 γj as a function of TOF τj

(bottom).

of nonparametric models, the prior information on resolution helps in resolv-
ing peaks, as peaks that are wider than expected will require multiple kernels
(proteins) to fit well. The choice of the minimum peak size, ε, also prevents
overfitting as extremely small coefficients that do not contribute much to the
overall estimate are not included.
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Fig. 15.6. Estimates of mean intensity from the highest posterior draw (top), and un-
der model averaging (posterior mean) (bottom). The rug plot at the bottom indicates
locations of peaks.

15.7 Summary

The use of kernels to generate basis functions in the nonparametric model
for spectra provides the flexibility and adaptivity of wavelet methods, but
additionally provides peak identification and protein quantification directly
from model parameters τj and γj , respectively. The locations (τj ) may be
viewed as the expected TOF of protein j , with γj corresponding to its
abundance. The parameters ωj , which control kernel shape, are allowed
to vary over time, providing adaptivity in both time and frequency, simi-
lar to wavelet regression models and signal processing representations using
Gabor frames (Clyde and George, 2000; Clyde et al., 1998; Morris et al., 2005;
Wolfe et al., 2004). Unlike these nonparametric regression models, the Gamma
random field prior handles easily the nonnegativity constraints on parameters γj

in the mean intensity function, but still achieves “sparse” local time-frequency
representations. Tu et al. (2005) demonstrate that Lévy process priors for non-
parametric regression provide excellent MSE (mean squared error) properties,
outperforming translational invariant (nondecimated) wavelets in many cases.
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Fig. 15.7. Estimates of mean intensity from the highest posterior draw (top) and with
model averaging (middle). The posterior distribution of the first derivative of the mean
intensity is illustrated in the bottom row. The rug plot at the bottom of each graph
indicates locations of peaks.

The single spectrum model may be extended to multiple spectra for classifi-
cation problems or for discovering which proteins differentiate groups. In the
case of multiple spectra, peak locations will not necessarily coincide, because
of lack of alignment or sample-to-sample variability. Hierarchical models that
allow expected TOF, τj , and relative abundances, γj , and other parameters to
vary from spectrum to spectrum may be used to address alignment, normaliza-
tion, calibration, and baseline adjustments. The hierarchical representation can
easily accommodate replicate spectra from the same subject, day effects, or
other aspects of the experimental design. For classification problems, such as
identifying disease states (cancer, for example), separate hierarchical models
may be fit within groups. For new subjects, one may find the probability of
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disease states given the new spectrum and observed data using estimates of the
marginal predictive distributions under each group, and then finding the prob-
ability of cancer using Bayes Theorem. While these models do not identify
directly proteins that are differentially expressed between the two (or more)
groups, differences between the posterior distributions of the intensity function
can be used to highlight regions with differential expression.
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Khinchine, A. Y. and Lévy, P. (1936) Sur les lois stables. Comptes Rendus
Hebdomadaires des Seances de l’Académie des Sciences. Académie des science
(France), Serie A. Paris, 202, 374–376.

Koenker, R. W. and D’Orey, V. (1994) Computing regression quantiles. Applied
Statistics, 43, 410–414.

Malyarenko, D. I., Cooke, W. E., Adam, B.-L., Malik, G., Chen, H., Tracy, E. R.,
Trosset, M. W., Sasinowski, M., Semmes, O. J. and Manos, D. M. (2005)
Enhancement of sensitivity and resolution of surface-enhanced laser
desorption/ionization time-of-flight mass spectrometric records for serum
peptides using time-series analysis techniques. Clinical Chemistry, 51, 65–74.

Martin, D. B. and Nelson, P. S. (2001) From genomics to proteomics: Techniques and
applications in cancer research. Trends in Cell Biology, 11, 560–656.

Maruyama, G. (1970) Infinitely divisible processes. Theory of Probabability and Its
Applications, 15, 1–22.

Morris, J. S., Coombes, K. R., Koomen, J., Baggerly, K. A. and Kobayashi, R. (2005)
Feature extraction and quantification for mass spectrometry in biomedical
applications using the mean spectrum. Bioinformatics, 21, 1764–1775.

Petricoin, E. I., Ardekani, A., Hitt, B., Levine, P., Fusaro, V., Steinberg, S., Mills, G.,
Simone, C., Fishman, D., Kohn, E. and Liotta, L. (2002) Use of proteomic
patterns in serum to identify ovarian cancer. The Lancet, 359, 572–577.

Petricoin, E. I. and Liotta, L. (2003) Mass spectrometry-based diagnostics: The
upcoming revolution in disease detection. Clinical Chemistry, 49, 533–534.
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Abstract

Motif discovery, which focuses on locating short sequence patterns associ-
ated with the regulation of genes in a species, leads to a class of statis-
tical missing data problems. These problems are discussed first with ref-
erence to a hypothetical model, which serves as a point of departure for
more realistic versions of the model. Some general results relating to mod-
eling and inference through the Bayesian and/or frequentist perspectives are
presented, and specific problems arising out of the underlying biology are
discussed.

16.1 Introduction

The goal of motif discovery is to locate short repetitive patterns in DNA that
are involved in the regulation of genes of interest. To fix ideas, let us consider
the following paragraph modified from Bellhouse [4, Section 3, p. 5]:

Richard Bayes (1596–1675), a great-grandfather of Thomas Bayes, was a successful
cutler in Sheffield. In 1643 Richard served in the rotating position of Master of the
Company of Cutlers of Hallamshire. Richard was sufficiently well off that he sent
one of his sons, Samuel Bayes (1635–1681) to Trinity College Cambridge during the
Commonwealth period; Samuel obtained his degree in 1656. Another son, Joshua Bayes
(1638–1703) followed in his father’s footsteps in the cutlery industry, also serving as
Master of the Company in 1679. Evidence of Joshua Bayes’s wealth comes from the
size of his house, the fact that he employed a servant and the size of the taxes that he
paid. Joshua Bayes’s influence may be taken from his activities in . . .

Imagine that a person who has never seen the English language before looks
at this paragraph and tries to make sense out of it (this is very much analogous
to how we view the genome sequences of various species). Also imagine that

309
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all the punctuation marks, capitalizations, and spaces have been taken away
from this paragraph so that available to him are collections of sequences like

richardbayes15961675agreatgrandfatherofthomasbayeswasas . . .

in1643richardbayesservedintherotatingpositionofmasterofthe . . .

richardwassufficientlywelloffthathesentoneofhissonssamuelbayes . . .

. . .

How should the non-English speaker proceed? The first natural question to
ask is, what might be an internal “linkage” of these sequences? This question
leads one to find the most commonly occurring “words” (or, rather, short sub-
sequences of unknown length) that might characterize this paragraph. Indeed,
if one tries to list all the possible subsequences of length 5, the word “bayes”
pops up as the most frequent or “enriched” one. If one tries this on all segments
of length 10 or 11, “joshuabayes” tops the list. After these findings, you may
suggest to your collaborators (i.e., biologists) to investigate the properties of
“bayes” or “joshuabayes,” which may ultimately lead to the discovery of the
great probabilist’s name, although this paragraph per se mainly discusses a
few relatives of the probabilist. So, it appears that by looking for “significantly
enriched” words, one can indeed get some insight on a paragraph written in a
completely unknown language.

However, in order to make the above procedure statistically sound, one
needs (a) to model in what context a word is “significantly enriched” (thus,
a probabilistic structure for generating the observed text is needed); (b) a
strategy for determining the length(s) of the enriched word(s) to be discov-
ered; and (c) an efficient computational strategy to find all enriched words. In
the genomic context, the problem is even more difficult because the “words”
used by the nature are never “exact,” that is, certain “misspellings” can
be tolerated. Thus, one also needs (d) a probabilistic model to describe a
fuzzy word.

A simplified model leads to the following class of statistical problems.
Let Xij , j = 1, . . . , Li, represent the ith observed genomic sequence (i.e.,
each Xij takes four different values: A, C, G, and T, instead of the 26 let-
ters in the English alphabet). Our first “null” statistical model is to assume
that each Xij is the result of a toss of a four-sided die characterized by the
probability vector θ0 = (θ0A, θ0C, θ0G, θ0T ). The problem of interest is to infer
whether there exist subsequences corresponding to one or more enriched words.
That is, whether there are subsequences Y ia = {Yil : l = a, . . . , a + w − 1; 1 ≤
a ≤ Li − w + 1} of {Xij : 1 ≤ j ≤ Li} which are generated from a “run” of
tosses from w “special” dice, each characterized by the multinomial probability
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vector θm = (θm,A, . . . , θm,T ). Thus, we now use a product-multinomial model,
[θ1, . . . , θw], to characterize a fuzzy word.

The values of w, a, θ0, and θm (m = 1, . . . , w) are all unknown. The ba-
sic setup above constitutes a missing data problem which somewhat dif-
fers from standard missing data problems in two ways: (i) estimating the
unknown locations a of the beginning of the “run” is generally consid-
ered to be of more interest than the values of the unknown parameters θ

and (ii) at an individual locus level, there exist experimental methods (even
though expensive and potentially inaccurate) to verify the computational
predictions.

The purpose of this chapter is to (i) explain in brief the biological back-
ground of the preceding problem in relation to gene regulatory binding site
discovery, (ii) propose a Bayesian framework for its solution that serves as a
point of departure for discussing more realistic versions of the problem, and (iii)
describe some alternative models and methods designed to capture the com-
plicating features arising in practice. We consider issues of model selection
and robustness of the inference procedures that are especially relevant in the
Bayesian context. Some of the problems have close connections in the rich liter-
ature on hidden Markov models (HMMs), to which relevant similarities will be
discussed.

16.2 Biology of Transcription Regulation

With the completion of many genome sequencing projects, a challenge now fac-
ing biologists is to determine which parts of the genome encode for biological
functions, and the mechanisms by which sequence information is “translated”
into these functions. In transcriptional regulation, sequence signals upstream of
each gene provide a target (the promoter region) for an enzyme complex called
RNA polymerase (RNAP) to bind and initiate the transcription of the gene into
messenger RNA (mRNA). Certain proteins called transcription factors (TFs)
can bind to the promoter regions, either interfering with the action of RNAP
and inhibiting gene expression, or enhancing gene expression. TFs recognize
sequence sites that give a favorable binding energy, which often translates into a
sequence-specific pattern (∼8–20 base pairs long). Binding sites thus tend to be
relatively well-conserved in composition – such a conserved pattern is termed
as a “motif” (corresponding to the “key word” in the example of Section 16.1).
For example, an important TF in Escherichia coli, the cyclic AMP receptor
protein (CRP), recognizes a pattern of the form TGTGANNNNNNTCACA
(“N” denotes that any one of the four nucleotides may be present) – but a sub-
stantial deviation from this pattern may sometimes be tolerated. It is estimated
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that ∼2,000 (out of a total of ∼30,000) genes in the human genome encode
sequence-specific DNA-binding TFs [39]. For identifying and understanding
the functional role of noncoding sequences in the human and other genomes, it
would be valuable to identify all the sequence patterns that can be recognized
by these proteins. Experimental detection of TF-binding sites (TFBSs) on a
gene-by-gene and site-by-site basis is possible [8], but remains an extremely
difficult and expensive task at a genomic level, especially as the amount of se-
quence to be analyzed increases. Computational methods that assume no prior
knowledge of the pattern of the binding sites then become a necessary tool for
aiding in their discovery.

16.3 Problem Formulation, Background, and General Strategies

One of the first motif-finding approaches was CONSENSUS, an information-
theory-based progressive alignment procedure [35]. Assuming each sequence
contains one motif site of width w, the objective was to find the set of
sites maximizing “information content,” that is, Kullback-Leibler entropy dis-
tance between the motif site composition and the background distribution:∑w

i=1

∑J
j=1 fij log2

( fij

f0j

)
, where fij is the observed frequency of letter j in

position i of the site, and f0j denotes the corresponding background letter fre-
quencies. CONSENSUS starts by examining all pairs of w-long subsequences
(w-mers) in the first two sequences, and retains the top-scoring M (say, 50)
motifs (each consisting of pairs of sites). Each of the M motifs is next aligned
to all w-mers in the third sequence, again the top M motifs are retained, and
the process is continued for all the sequences.

Other early statistical methods for finding motifs include an EM algorithm [9]
based on a missing-data formulation [23], and a Gibbs sampling (GS) algorithm
[22]. In both approaches, starting positions of true motif sites were treated as
“missing” components of the observed sequence data. Under the assumption
that there is exactly one motif site per sequence, an iterative procedure was used
to alternately refine the motif description (parameters) and sample sites in the
sequences that could represent instances of the motif. Later generalizations that
allow for a variable number of motif sites per sequence were a Gibbs sampler
[27, 31] and an EM algorithm for finite mixture models [2].

Another class of methods approach the motif discovery problem from a
“segmentation” perspective. MobyDick [5] treats the motifs as “words” used
by nature to construct the “sentences” of DNA and estimates word frequencies
using a Newton–Raphson optimization procedure. The dictionary model was
later extended to include “stochastic” words in order to account for variations
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in the motif sites [14] and a data augmentation (DA) [37] procedure introduced
for finding such words.

Recent approaches to motif discovery have improved upon the previous
methods in at least two primary ways: (i) improving and sensitizing the ba-
sic model to reflect realistic biological phenomena, such as multiple motif
types in the same sequence, “gapped” motifs, and clustering of motif sites
(cis-regulatory modules) [15, 29, 42], and (ii) using auxiliary data sources,
such as gene expression microarrays, phylogenetic information, and the physi-
cal structure of DNA [7, 21]. Due to limitations of space, in this chapter we will
mainly focus on (i) and indicate ways in which the Bayesian approach has fa-
cilitated making significant inroads into this field. We will primarily discuss de
novo methods of discovering uncharacterized motifs in biological sequences, as
opposed to scanning sequences with a previously (experimentally) determined
motif representation to find probable matches.

16.3.1 Likelihood-Based Approaches to Motif Discovery

In Lawrence and Reilly [23], an EM algorithm was developed to estimate
the motif pattern and infer the motif site locations. In their formulation, ev-
ery sequence in the data set is assumed to contain one and only one motif
site, and its start position is considered the “missing data” part of the model.
In order to model multiple motif sites per sequence, Bailey and Elkan [2]
present a simplified model (see Figure 16.1) in which the sequence data set
is broken up conceptually into all overlapping subsequences of length w and
each of these w-mers is assumed to be generated from one of the two classes:
“motif” or “background.” More precisely, denoting the set of all w-mers by
X = (X1, X2, . . . , Xn), each w-mer Xi = (xi1, . . . , xiw) is assumed to be
generated from a two-component mixture model indexed by an unobserved
group indicator Zij , where

Zij =
{

1 if Xi is a motif site of type j (j = 1, 2),
0 otherwise.

A similar model is also presented in Liu et al. [27], where Zij is allowed to
take on J + 1 possible values to accommodate J distinct motif types, and a GS
strategy is proposed for the inference.

Let us write the set of parameters corresponding to the motif component
and background as 
1 = (θ1, . . . , θw) and 
0 = (θ0, . . . , θ0) (where θ i =
(θi1, . . . , θi4)T ), while π denotes the relative proportion of motif segments
(mixing proportion). Given the class indicator Zij = 1, Xi is assumed to be
generated from a product-multinomial model characterized by 
j . Under this
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Fig. 16.1. (a) The basic motif model [23] and (b) the mixture model approximation [2].

setup, considering Zij as missing data, it is now possible to set up a standard EM
algorithm to maximize the likelihood function P (X | 
1,
0, π ) with respect
to (
1,
0, π ).

A possible way to overcome the limitations of this oversimplified model,
as suggested in Liu and Lawrence [26] and explained in more detail in the
following section, is to recast the motif-finding problem as a problem of
segmenting the sequences into two types of contiguous pieces, one described
by the block-motif model (of a fixed length w) and the other by an iid model.

16.3.2 Dictionary Models for Motif Discovery

The dictionary model [5] is perhaps one of the first implementations of the
aforementioned segmentation idea for motif discovery. In this model, one as-
sumes that nature has a dictionary available, consisting of a list of d known
words D = {M1,M2, . . . ,Md}. As a mathematical abstraction, we treat the
whole observed data set as a single sequence, S. S is assumed to be gen-
erated by randomly drawing words from the dictionary according to a prob-
ability vector ρ = (ρ(M1), . . . , ρ(Md )) and sequentially concatenating them
together.

Since we cannot observe the actual words that are used to compose the data
S, we need to sum over all possible segmentations of the sequences to get the
likelihood function:

P (S | ρ) =
∑
H

N(H)∏
i=1

ρ(S[Hi]) =
∑
H

d∏
j=1

[ρ(Mj )]NMj
(H)

, (16.1)

where H = (H1, . . . , Hk) is a partition of S so that each part Hi corresponds
to a word in the dictionary, N (H) is the total number of words in H, and
NMj

(H) is the number of occurrences of word type Mj in the partition. This
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can be viewed as a missing data problem where the partition H is missing; the
summation over all H can be achieved recursively [26]. Let �i−1(ρ) be the
sum of all legitimate partitions for partial sequence S[1:(i−1)]. Then,

�i(ρ) =
W∑

j=1

ρ(S[(i−j ):i])�i−j , (16.2)

where W is the length of the longest word in the dictionary. In other words,
we check whether the last segment is a word from the dictionary for all pos-
sible word lengths j . To avoid minor complications, we assume that all the
single letters (i.e., A, C, G, and T) are contained in the dictionary; if not, the
above recursion needs to be modified slightly.

The maximum likelihood estimate (MLE) of ρ from model (16.1) can be
found via a Newton–Raphson algorithm, since one can compute the derivative
of the likelihood function (16.1) using a recursive procedure similar to (16.2).
One can also employ an EM algorithm or a Gibbs sampler. More precisely, we
can derive an estimating equation from (16.1) by taking derivatives with respect
to ρi [5], the summations required in the estimating equation being computed
recursively as in (16.2).

Bussemaker et al. [5] adopted a progressive strategy to estimate the unknown
“dictionary” used by nature for constructing the genome. They start with the
simplest dictionary consisting only of the D = 4 single-letter words, D(0) =
{A,C,G, T } and then iterate as follows: For a current dictionary consisting of
D words, they find the MLE of the word usage frequencies, ρ = (ρ1, . . . , ρD),
based on model (16.1); then, they consider whether any concatenation of a pair
of the estimating words is overrepresented compared to what is expected by
chance, and these new words are added to the current dictionary. This procedure
is carried out iteratively until a stopping criterion is reached. The assumption
that longer words are made up of overrepresented fragments may not be true,
but this defect can be rectified by progressively considering words of increasing
lengths. That is, for example, we may let the (t + 1)st iteration of the dictionary,
D(t+1), be the union of D(t) and all “significant” words of length t + 1. After
introducing longer words, one can also remove some of the shorter words that
appear to be parts of certain long words.

To generalize the model of Bussemaker et al. [5] to “fuzzy” words, Gupta and
Liu [14] and Sabatti and Lange [32] introduce the idea of a stochastic dictionary,
which consists of a collection of “stochastic words” each represented by a
probabilistic word matrix, or exchangeably, a position-specific weight matrix
(PWM). Each column of the PWM (
) gives the probabilities of finding each
letter in that position of the corresponding stochastic word. For example, ACAGG
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and GCAGA may be two realizations, with probabilities 0.4328 and 0.0072
respectively, of the stochastic word characterized by the PWM


 =


A 0.85 0.07 0.80 0.02 0.12
C 0.05 0.78 0.07 0.01 0.01
G 0.10 0.05 0.12 0.96 0.85
T 0.00 0.10 0.01 0.01 0.02

 .

In the setting described above, the motif-finding problem reduces to inferring
the form of the PWM and the likely locations of the stochastically varying
words in the sequence, which can be carried out effectively under a Bayesian
framework [14].

16.4 A Bayesian Approach to Motif Discovery

In this section, unless otherwise specified, we assume that the data set is
a set of N unaligned DNA fragments. Let S = (S1, . . . , SN ) denote the N

sequences of the data set, where sequence Si is of length Li (i = 1, . . . , N ).
Multiple instances of the same pattern in the data are referred to as motif
sites or elements while different patterns are termed motifs. Motif type k (of,
say, width wk) is characterized by a PWM �k = (θ k1, . . . , θ kwk

), where the
J -dimensional (J = 4 for DNA) vector θ ki = (θki1, . . . , θkiJ )T represents the
probabilities of occurrence of the J letters in column i (i = 1, . . . , wk). The
corresponding letter occurrence probabilities in the background are denoted by
θ0 = (θ01, . . . , θ0J ). Let 
 = {�1, . . . , �K}.

We assume for now that the motif widths, wk (k = 1, . . . , K), are known
(this assumption will be relaxed later). The locations of the motif sites are un-
known, and are denoted by an array of missing indicator variables A = (Aijk),
where Aijk = 1 if position j (j = 1, . . . , Li) in sequence i (i = 1, . . . , N ) is
the starting point of a motif of type k (k = 1, . . . , K). For motif type k, we let
Ak = {Aijk : i = 1, . . . , N ; j = 1, . . . , Li}, that is, the indicator matrix for
the site locations corresponding to this motif type, and define the alignment:

S
( Ak)
1 = {Sij : Aijk = 1; i = 1, . . . , N ; j = 1, . . . , Li},

S
( Ak)
2 = {Si(j+1) : Aijk = 1; i = 1, . . . , N ; j = 1, . . . , Li},
. . .

S( Ak)
wk

= {Si,j+wk−1 : Aijk = 1; i = 1, . . . , N ; j = 1, . . . , Li}.

In words, S
( Ak)
i is the set of letters occurring at position i of all the instances

of the type k motif.



P1: JZP

Gupta CUNY477-DoMueller 0 521 86092 X December 5, 2006 11:57

Bayesian Modeling and Inference for Sequence Motif Discovery 317

In a similar fashion, we use S(Ac) to denote the set of all letters occurring in the
background, where S(Ac) = S \⋃K

k=1

⋃wk

l=1 S
(Ak)
l (for two sets A,B, A ⊂ B,

B \ A ≡ B ∩ Ac). Further, let C : S → Z
4 denote a “counting” function that

gives the frequencies of the J letters in a specified subset of S. For example,
if after taking the set of all instances of motif k, in the first column, we

observe a total occurrence of 10 “A”s, 50 “T”s and no “C” or “G”s, C(S( Ak)
1 ) =

(10, 0, 0, 50). Assuming that the motif columns are independent, we have

[C(S(Ak)
1 ), . . . , C(S(Ak )

wk
))] ∼ Product-Multinomial[�k = (θ k1, . . . , θ kwk

)],

that is, the ith vector of column frequencies for motif k follows a multinomial
distribution parameterized by θki .

We next introduce some general mathematical notation. For vectors v =
(v1, . . . , vp)T , let us define |v| = |v1| + · · · + |vp|, and �(v) = �(v1) · · · �(vp).
Then the normalizing constant for a p-dimensional Dirichlet distribution with
parameters α = (α1, . . . , αp)T can be denoted as �(|α|)/�(α). For notational
convenience, we will denote the inverse of the Dirichlet normalizing constant
as ID(α) = �(α)/�(|α|). Finally, for vectors v and u = (u1, . . . , up), we use
the shorthand uv = ∏p

i=1 u
vi

i .
The probability of observing S conditional on the indicator matrix A can

then be written as

P (S | 
, θ0, A) ∝ θ
C(S(Ac ))
0

K∏
k=1

wk∏
i=1

θ
C(S

(Ak )
i )

ki .

For a Bayesian analysis, we assume a conjugate Dirichlet prior distribu-
tion for θ0, θ0 ∼ Dirichlet(β0), β0 = (β01, . . . β0D), and a corresponding
product-Dirichlet prior (i.e., independent priors over the columns) PD(B)
for �k (k = 1, . . . K), where B=(βk1,βk2, . . . βkwk

) is a J ×wk matrix with
βki=(βki1, . . . βkiJ )T . Then the conditional posterior distribution of the param-
eters given A is

P (
, θ | S, A) ∝ θ
C(S(Ac ))+β0
0

K∏
k=1

wk∏
i=1

θ
C(S

(Ak )
i )+β

ki

ki .

For the complete joint posterior of all unknowns (
, θ , A), we further need to
prescribe a prior distribution for A. In the original model [22], a single motif site
per sequence with equal probability to occur anywhere was assumed. However,
in the later model [27] that can allow multiple sites, a Bernoulli(π ) model is
proposed for motif site occurrence. More precisely, assuming that a motif site
of width w can occur at any of the sequence positions, 1, 2, . . . , L∗ − w + 1
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in a sequence of length L∗, with probability π , the joint posterior
distribution is

P (
,θ ,A | S)∝θ
C(S(Ac ))+β0
0

K∏
k=1

wk∏
i=1

θ
C(S

(Ak )
i )+β

ki

ki π |A|(1 − π )L−|A|, (16.3)

where L = ∑N
i=1(Li − w) is the adjusted total length of all sequences and

|A| = ∑K
k=1

∑N
i=1

∑Li

j=1 Aijk . If we have reason to believe that motif occur-
rences are not independent, but occur as clusters (as in regulatory modules),
we can instead adopt a prior Markovian model for motif occurrence [15, 38],
which is discussed further in Section 16.6.

16.4.1 Markov Chain Monte Carlo Computation

Under the model described in (16.3), it is straightforward to implement a GS
scheme to iteratively update the parameters, that is, sampling from [�, θ0 |
C, A], and impute the missing data, that is, sampling from [A | C,�, θ0].
However, drawing � from its posterior at every iteration can be computationally
inefficient. Liu et al. [27] demonstrated that marginalizing out (�, θ0) from the
posterior distribution can lead to much faster convergence of the algorithm
[28]. In other words, one can use the Gibbs sampler to draw from the marginal
distribution

p(A | S,π )=
∫ ∫

p(
, θ0 | S, A, π )p(A)p(
, θ0) d
dθ0, (16.4)

which can be easily evaluated analytically.
If π is unknown, one can assume a beta prior distribution Beta(α1, α2) and

marginalize out π from the posterior, in which case p(A | S) can be derived
from (16.4) by altering the last term in (16.4) to the ratio of normalizing con-
stants for the Beta distribution, B(|A| + α1, L − |A| + α2)/B(α1, α2). Based
on (16.4), Liu et al. [27] derived a predictive updating algorithm for A, which
is to iteratively sample each component of A according to the predictive distri-
bution

P (Aijk = 1 | S)

P (Aijk = 0 | S)
= π

1 − π

wk∏
l=1

(
θ̂ kl

θ̂0

)C(Si,j+l,k )

, (16.5)

where the posterior means are θ̂ kl = C
(
S

(Ak )
l

)
+β

kl

|C
(
S

(Ak )
l

)
+β

kl
|

and θ̂0 = C
(
S(Ac )
)
+β0

|C
(
S(Ac )
)
+β0|

.

Under the model specified above, it is also possible to implement a “partition-
based” DA approach [14] that is motivated by the recursive algorithm used in
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Auger and Lawrence [1]. The DA approach samples A jointly according to the
conditional distribution

P (A | 
, S) =
N∏

i=1

P (AiLi
| 
, S)

Li−1∏
j=1

P (Aij |Ai,j+1, . . . , AiLi
, S,
).

At a position j , the current knowledge of motif positions is updated using
the conditional probability P (Aij | Ai,j+1 . . . AiLi

,
) (backward sampling),
with Ai,j−1 . . . Ai1 marginalized out using a forward summation procedure
(an example will be given in Section 16.6.1.2). In contrast, at each iteration,
GS iteratively draws from the conditional distribution, P (Aijk|A \ Aijk, S),
iteratively visiting each sequence position i, updating its motif indicator con-
ditional on the indicators for other positions. The Gibbs approach tends to
be “sticky” when the motif sites are abundant. For example, once we have
set Aijk = 1 (for some k), we will not be able to allow segment S[i,j+1:j+wk ]

to be a motif site. The DA method corresponds to a grouping scheme (with
A sampled together), whereas the GS corresponds to a collapsing approach
(with 
 integrated out). Both have been shown to improve upon the original
scheme [28].

16.4.2 Scoring Functions and Bayesian Optimization

In motif discovery problems, the predictions of interest often correspond to
the estimated maximizer A∗ of the posterior probability P (A | S), rather than
the posterior average. In this regard, BioProspector [29] attempts to find a fast
approximate estimate of A by slightly altering the Gibbs search strategy. From
(16.5), an approximate posterior “scoring” function is derived as

φ(A) = log(|A|)
w

w∑
i=1

J∑
j=1

θ̂ij log
θ̂ij

θ0j

.

When using the current weight matrix to scan the sequence, all segments whose
scores φ(·) exceed a “high” threshold are automatically called a motif site, while
those that are between the high and a “low” threshold are given a chance to be
sampled into the set of sites. The low threshold is started as 0 and increased
gradually during iterations to a suitable level. Jensen and Liu [18] present
an optimization algorithm that provides (i) a more accurate scoring function
approximation of (16.5) and (ii) a simulated annealing procedure to optimize
this function.
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16.5 Extensions of the Product-Multinomial Motif Model

Unknown motif width. In the following discussion, for simplicity of notation,
we assume a single motif type � of width w. Previously, w was assumed
to be known and fixed; we may instead view w as an additional unknown
model parameter. Jointly sampling from the posterior distribution of (A,�,w)
is difficult as the dimensionality of � changes with w. One way to update
(w,�) jointly would be through a reversible jump procedure [12] – however,
note that we can again integrate out � from the posterior distribution to avoid
a dimensionality change during the updating. By placing an appropriate prior
distribution p(w) on w (a possible choice is a Poisson(λ)), we can update w

using a Metropolis step. Using a Beta(α1, α2) prior on π , the marginalized
posterior distribution of interest is P (A, w|S),

∝ ID(C(S(Ac)) + β0)
w∏

i=1

ID(C(S(A)
i ) + β i)

ID(β i)

B(|A| + α1, L − |A| + α2)

B(α1, α2)
p(w).

The product-multinomial model used for � is a first approximation to a realistic
model for TFBSs. In empirical observations, it has been reported that certain
specific features often characterize functional binding sites. We mention here a
few extensions of the primary motif model that have been recently implemented
to improve the performance of motif discovery algorithms.

Variations of the product multinomial assumption. The product multinomial
model assumes that all columns of a weight matrix are independent – however,
it has been observed that about 25% of experimentally validated motifs show
statistically significant positional correlations. Zhou and Liu [41] extend the
independent weight matrix model to including one or more correlated column
pairs, under the restriction that no two pairs of correlated columns can share
a column in common. For example, if columns 1 and 5 are correlated, 2 and
3 can be, but 1 and 2 cannot. A Metropolis–Hastings step is added in the
Gibbs sampler [27] that deletes or adds a pair of correlated column at each
iteration. Again, the posterior distribution can be collapsed over � during the
Metropolis–Hastings step to avoid a parameter space of varying dimensions for
different numbers of correlated columns. Barash et al. [3] proposed a Bayesian
tree-like network to model the possible correlation structure among all the
positions within a TF model. Zhao et al. [40] described a permuted Markov
model – they assume that an unobserved permutation has acted on the positions
of all the motif sites and that the original ordered positions can be described
by a Markov chain. Thus, mathematically, the model of Zhou and Liu [41] is a
subcase of Zhou and Liu [41], which is, in turn, a subcase of Barash et al. [3].
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It has been observed that real TFBSs are not uniformly conserved over all
positions – the conserved positions often occur as a group at one or two regions
over the motif, since contacts between proteins and the DNA are likely to occur
over a few bases at a time (more conservation indicates a higher chance of
contact). In the hope that incorporation of this positional trend is more likely to
find the correct motif, Kechris et al. [19] use a prior distribution that “penalizes”
deviations from a conserved profile. Instead of using a Dirichlet distribution
as a prior for the motif column probabilities θ , they instead use a normal or
double exponential prior, for example, p(θ ) ∝ e−∑4

i=1 |θi−βi |. To update param-
eters of the model, they developed an EM algorithm in which the M-step was
slightly modified from Lawrence and Reilly [23] to reflect the change in the
prior.

16.6 HMM-Type Models for Regulatory Modules

Motif predictions for high eukaryotes (e.g., human, mouse, dog, etc.) are more
challenging than that for simpler organisms such as yeast and bacteria. Some of
the reasons are (i) large sections of low-complexity regions (repeat sequences),
(ii) weak motif signals, (iii) sparseness of signals compared to entire region
under study – binding sites may occur as far as 2,000–3,000 bases away from
the transcription start site, either upstream or downstream, and (iv) motifs oc-
curring in clusters, varying in order or composition between sequences. In
complex eukaryotes, regulatory proteins often work in combination to regulate
target genes, and their binding sites have often been observed to occur in spa-
tial clusters, or cis-regulatory modules (CRMs; Figure 16.2). One approach to
locating CRMs is by predicting novel motifs and looking for co-occurrences
[34]. However, since individual motifs in the cluster may not be well con-
served, such an approach often leads to a large number of false negatives.
Our strategy is to first use existing de novo motif-finding algorithms and TF
databases to compose a list of putative binding motifs, D = {�1, . . . , �D},
where D is in the range of 50–100, and then simultaneously update these mo-
tifs and estimate the posterior probability for each of them to be included in
the CRM.

Let S denote the set of n sequences with lengths L1, L2, . . . , Ln, respectively,
corresponding to the upstream regions of n coregulated genes. We assume that
the CRM consists of K different kinds of TFs with distinctive PWMs. Both the
PWMs and K are unknown and need to be inferred from the data. In addition
to the indicator variable A defined in Section 16.4, we define a new variable
ai,j , which denotes the location of the j th site (irrespective of motif type) in
the ith sequence. Let a = {aij ; i = 1, . . . , n; j = 1, . . . , Li}. Associated with
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Fig. 16.2. Graphical illustration of a CRM.

each site is its type indicator Ti,j , with Ti,j taking one of the K values (Let
T = (Tij )). Note that the specification (a, T ) is essentially equivalent to A.

Next, we model the dependence between Ti,j and Ti,j+1 by a K × K proba-
bility transition matrix τ . The distance between neighboring TFBSs in a CRM,
dij = ai,j+1 − ai,j , is assumed to follow Q(; λ,w), a geometric distribution
truncated at w, that is, Q(d; λ,w) = (1 − λ)d−wλ (d = w,w + 1, . . .). The
distribution of nucleotides in the background sequence a multinomial distribu-
tion with unknown parameter ρ = (ρA, . . . , ρT ).

Next, we let u be a binary vector indicating which motifs are included in the
module, that is, u = (u1, . . . uD)T , where

uj =
{

1, if the j th motif type is present in the module,
0, otherwise.

By construction, |u| = K . Thus, the information regarding K is completely
encoded by u. In light of this notation, the set of PWMs for the CRM is
defined as 
 = {�j : uj = 1}. Since now we restrict our inference of CRM
to a subset of D, the probability model for the observed sequence data can be
written as

P (S |D,τ ,u,λ,ρ)=
∑
a

∑
T

P (S | a,T ,D,τ ,u,λ, ρ)P (a |λ)P (T | a, τ ).

From the above likelihood formulation, we need to simultaneously estimate the
optimal u and the parameters (D, τ , λ, ρ). To achieve this, we first prescribe a
prior distribution on the parameters and missing data:

P (D, τ , u, λ, ρ) = f1(D | u)f2(τ | u)f3(ρ)g1(u)g2(λ).

Here the fi(·)’s are (product) Dirichlet distributions. Assuming each ui takes the
value 1 with a prior probability of π (i.e., π is the prior probability of including a
motif in the module), g1(u) represents a product of D Bernoulli(π ) distributions,
and g2(λ), a generally flat Beta distribution. More precisely, we assume a
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priori that �i ∼ ∏w
j=1 Dirichlet(β ij ) (for i = 1, . . . , D); ρ ∼ Dirichlet(β0);

λ ∼ Beta(a, b). Given u (with |u| = K), each row of τ is assumed to follow
an independent Dirichlet. Let the ith row vi |u ∼ Dirichlet(αi), where i =
1, . . . , K .

Let � = (D,τ ,λ,ρ) denote the full parameter set. Then the posterior distri-
bution of � has the form

P (�, u | S)∝P (S |u,�)f1(D |u)f2(τ |u)f3(ρ)g1(u)g2(λ). (16.6)

A GS approach was developed in Thompson et al. [38] to infer the CRM
from a special case of the posterior distribution (16.6) with fixed u. Given the
flexibility of the model and the size of the parameter space for an unknown u,
it is unlikely that a standard MCMC approach can converge to a good solution
in a reasonable amount of time. If we ignore the ordering of sites T and assume
components of a to be independent, this model is reduced to the original motif
model in Section 16.4, which can be updated through the previous Gibbs or
DA procedure.

16.6.1 A Hybrid EMC–DA Approach

With a starting set of putative binding motifs D, we simultaneously modify
these motifs and estimate the posterior probability for each of them to be in-
cluded in the CRM through iterations of the following Monte Carlo sampling
steps: (i) Given the current collection of motif PWMs (or sites), sample mo-
tifs into the CRM by evolutionary Monte Carlo (EMC); (ii) Given the CRM
configuration and the PWMs, update the motif site locations through DA; and
(iii) Given motif site locations, update the corresponding PWMs and other
parameters.

16.6.1.1 Evolutionary Monte Carlo for Module Selection

It has been demonstrated that the EMC method is effective for sampling and
optimization with functions of binary variables [25]. Conceptually, we should
be able to apply EMC directly to select motifs comprising the CRM, but a
complication here is that there are many continuous parameters such as the
�j ’s, λ, and τ . We cannot just fix these parameters (as in the usual Gibbs
sampler) and update the CRM composition because some of them vary in
dimensionality when a putative motif in D is included or excluded from the
CRM. We therefore have to integrate out the continuous parameters 
 and
τ analytically and condition on variables a and T when updating the CRM
composition. Let �(u) = (
, ρ, τ , λ) denote the set of all parameters in the
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model, for a fixed u. Then, the marginalized conditional posterior probability
for a module configuration u is

P (u | a,T ,S)∝π |u|(1 − π )D−|u|
∫

P (S | a,T ,�(u))P (�(u) | u)d�(u), (16.7)

where only 
 and τ are dependent on u; and a and T are the sets of locations
and types, respectively, of all putative motif sites (for all the D motifs in D).
Thus, only when the indicator ui for the weight matrix �i is 1, do its site
locations and types contribute to the computation of (16.7). When we modify
the current u by excluding a motif type, its site locations and corresponding
motif type indicators are removed from the computation of (16.7).

For EMC, we need to prescribe a set of temperatures, t1 > t2 > · · · > tM =
1, one for each member in the population. Then, we define

φi(ui) ∝ exp[logP (ui | a, T , S)/ti],

and φ(U) ∝ ∏M
i=1 φi(ui). The “population” U = (u1, . . . , uM ) is then updated

iteratively using two types of moves: mutation and crossover.
In the mutation operation, a unit uk is randomly selected from the current

population and mutated to a new vector vk by changing the values of some of
its bits chosen at random. The new member vk is accepted to replace uk with
probability min(1, rm), where

rm = φk(vk)/φk(uk).

In the crossover step, two individuals, uj and uk , are chosen at random from
the population. A crossover point x is chosen randomly over the positions
1 to D, and two new units vj and vk are formed by switching between the
two individuals the segments on the right side of the crossover point. The two
“children” are accepted into the population to replace their parents uj and uk

with probability min(1, rc), where

rc = φj (vj )φk(vk)

φj (uj )φk(uk)
.

If rejected, the parents are kept unchanged. On convergence, the samples of
uM (for temperature tM = 1) follow the target distribution (16.7).

16.6.1.2 Sampling Motif Sites A through Recursive DA

The second part of the algorithm consists of updating the motif sites conditional
on a CRM configuration (i.e., with u fixed). For simplicity, we describe the
method for a single sequence S = (s1, . . . , sL); the same procedure is repeated
for all sequences in the data set. For simplicity of notation, we assume that all
motifs are of width w. For fixed u, let F (i, j, k, u) = P (s[i,j,k] | �(u), u) denote
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the probability of observing the part of the sequence S from position i to j , with
a motif of type k {k ∈ D : uk = 1} occupying positions from j − w + 1 to j

(k = 0 denotes the background). Let K = ∑D
k=1 uk denote the number of motif

types in the module. For notational simplicity, let us assume that u represents
the set of the first K motifs, indexed 1 through K . Since the motif site updating
step is conditional given u, we drop the subscript u from F (i, j, k, u) in the
remaining part of the section.

In the forward summation step, we recursively calculate the probability of
different motif types ending at a position j of the sequence

F (1, j, k)=
∑

i<j

K∑
l=1

F (1, i, l)τl,k Q(j−i−w; λ,w) + P (s[1,j−w,0]|ρ)


× F (j−w + 1, j, k).

By convention, the initial conditions are F (0, 0, k) = 1 (k = 0, 1, . . . , K) and
F (i, j, k) = 0 for j < i and k > 0. In the backward sampling step, we use
Bayes theorem to calculate the probability of motif occurrence at each position,
starting from the end of the sequence. If a motif of type k ends at position i in
the sequence, the probability that the next motif further ahead in the sequence
spans position (i ′ − w + 1) to i ′ (i ′ ≤ i − w) and is of type k′ is

P (A·,i ′−w+1,k′ = 1 | S,�,A·,i−w+1,k = 1)

= F (1, i ′, k′) P (s[i ′+1,i−w,0]|ρ) F (i−w+1, i, k) Q(i−i ′−w; λ,w) τk′,k

F (1, i, k)
.

The required expressions have all been calculated in the forward sum.

16.6.1.3 Sampling Parameters from Posterior Distributions

Given the motif type indicator u and the motif position and type vectors a and
T , we now update the parameters � = (
, ρ, τ , λ) by a random sample from
their joint conditional distribution. Since conjugate priors have been assumed
for all parameters, their conditional posterior distributions are also of the same
form and are straightforward to simulate from. For example, the posterior of �i

will be
∏w

j=1 Dirichlet(β ij + nij ), where nij is a vector containing the counts
of the four nucleotides at the j th position of all the sites corresponding to motif
type i. For those motifs that have not been selected by the module (i.e., with
ui = 0), the corresponding �’s still follow their prior distribution. Similarly,
the posterior distribution of ρ is Dirichlet(β0 + n0), where n0 denotes the
frequencies for the four nucleotides in the background sequence.

For updating τ , we note that if mij {i, j ∈ D : ui = uj = 1} denotes the
number of transitions from PWM type i to j (when i and j are both included
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Table 16.1. Error Rates for Module Prediction Methods

Method MEF MYF SP1 SRF Total SENS SPEC TSpec

EM 0 1 21 0 161 0.14 0.14 0.20
BioProspector 6 1 8 1 155 0.10 0.10 0.36
GS 6 6 2 1 84 0.10 0.25 0.44
GSp∗ 14 14 4 6 162 0.25 0.23 0.60
EMC–DA 12 12 5 7 180 0.23 0.20 0.67
EMC–DAp∗ 17 13 8 10 108 0.31 0.44 0.80
True 32 50 44 28 154 – – –

Note: The Total column shows the total number of sites predicted. There are 154

true sites. SENS (sensitivity) ≡ (#predicted true positives)

(#true positives)
; SPEC (specificity) ≡

(#predicted true positives)

#predicted sites ; TSpec: Total specificity, defined as the fraction of the

predicted motif types that “correspond” to known motifs (match in at least 80%
of all positions). The Gibbs sampler (GS) requires the total number of motif types
to be specified (set equal to 5). GSp∗ denotes the GS using a strong informative
prior, EMC–DAp∗ denotes using prior information from the JASPAR database.
Rounded averages over five runs of each algorithm are recorded.

in the module), then the posterior distribution of vi is Dirichlet(αi + mi).
Let the distance between consecutive sites on sequence i (i = 1, . . . , n) be
dij = ai,j+1 − aij , where each d follows Q( ; λ,w), a geometric(λ) distribution

truncated at w. Let d = ∑n
i=1

∑|Ai |−1
j=1 dij be the total length of sequence

covered by the CRMs, where |Ai | is the total number of sites in sequence i,
and |A′| = ∑n

i=1(|Ai | − 1). Then the posterior distribution of λ is Beta(a +
|A′|, b + d − w|A′|).

16.6.2 A Case Study

We compared the performance of EMC–DA with EM- and GS-based methods
in an analysis of mammalian skeletal muscle regulatory sequences [38]. The raw
data consist of upstream sequences of lengths up to 5,000 bp each corresponding
to 24 orthologous pairs of genes in the human and mouse genomes – each of the
sequences being known to contain at least one experimentally reported TFBS
corresponding to one of five motif types: MEF, MYF2, SRF, SP1, and TEF.
Following the procedure of Thompson et al. [38], we aligned the sequences
for each orthologous pair (human and mouse) and retained only the parts that
shared a percent identity greater than 65%, cutting down the sequence search
space to about 40% of the original sequences.

Using BioProspector, EM (MEME), and AlignAce (Gibbs sampler for inde-
pendent motifs), we obtained initial sets of 100 motifs including redundant ones.
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Fig. 16.3. Posterior probability of sampling sites in human–rodent sequence pairs. The
light and dark lines correspond to the MEF2 and MYF motif; the horizontal axes denote
the site location on sequences.

The top-scoring 10 motifs from BioProspector and MEME respectively con-
tained two and three matches to the true motif set (of five), whereas AlignAce
found none. The Gibbs sampler under a module model [38] found two matches
in general, but could find two others with a more detailed and precise prior
input (the number of sites per motif and motif abundance per sequence), which
is generally unavailable in real applications. The best scoring module configu-
ration from EMC–DA contained three of the true five, MYF, MEF2, and SP1,
and two uncharacterized motifs. There are few TEF sites matching the reported
consensus in these sequences, and they were found by none of the algorithms.

The relative error rates for the algorithms could be compared in this case
as we had exact knowledge of each of the experimentally determined TFBSs.
Table 16.1 shows that EMC–DA significantly cuts down the percentage of
false positives in the output, compared to the methods that do not adjust for
positional clustering of motifs. We next tested whether it is beneficial to choose
a subset of motifs from the eukaryotic motif database [33] as the starting motif
set for EMC–DA. This time, EMC–DA can find four out of five expected
motifs. Figure 16.3 shows the posterior probability of site occurrence over the
first three aligned sequence pairs, indicating a strong evidence of clustering. For
multiple runs of EMC–DA with different starting seeds, there was no noticeable
difference in the results over a wide range of prior settings.

16.7 Model Selection through a Bayesian Approach

One of the basic questions that arise in motif discovery is whether the patterns
“discovered” from the sequence data by these algorithms are “real.” Although
the biological relevance of such findings generally needs further biological
experimentation, we can at least try to assess the significance of the predictions
from a statistical viewpoint.

As a Bayesian model selection problem, it is of interest to assess whether
the sequence data should be better explained by model M1, which assumes the
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Table 16.2. Comparison of Model Selection Criteria for Three Data Sets from
Bacillus subtilis (BS), yeast (Y), and E. coli (EC)

TF Order logMAP BIC AIC KLI Motif consensus Count

SigA 1 −326.27 185.01 258.26 4.10 TTTTTT 186
(BS) 2 −192.02 163.2 309.69 4.07 TGAAAA 94

3 263.31 2.48 148.98 5.70 TTGACA 40
4 90.19 101.46 247.95 4.91 TATAAT 41

GAL 1 20.3 −130.74 43.45 11.52 GGAGCACTTTCCTCCGA 16
(Y) 2 −20.26 −259.75 88.62 9.97 AGCACGCAACTTGCAAA 6

3 −49.26 −341.15 7.23 11.44 GGGTGCCTGTGCCATGG 5
4 −12.53 −398.98 −50.61 9.10 TTTTTTTTTTTTTTGAA 16

CRP 1 2.27 −167.93 17.8 10.70 TTATTTGAACGAGGTCACACTT 11
(EC) 2 −7.53 −394.14 −22.67 10.83 GGATCATATGTTGTGTGAAATA 5

3 −19.33 −401.54 −30.07 9.44 ATTTATAAACATTTAAAATCGT 8
4 −1.99 −360.39 11.08 10.63 TGTATTGATGTGTCTTACGAAA 5

Note: “Order” represents the order in which the motif was found using the method of
Gupta and Liu [14]. Experimentally confirmed motifs are highlighted in boxes. For all
data sets, the MAP score decreased after the true motif was found [BIC: Bayes Informa-
tion Criterion; AIC: Akaike Information Criterion; KLI: Kullback-Leibler Information].

existence of a nontrivial motif, than by M0, which says that the sequences are
generated entirely from a background model (e.g., an i.i.d. or Markov model).
The Bayes factor, which is the ratio of the marginal likelihoods under the two
models, can be computed as

p(S | M1)

p(S | M0)
=
∑

A
∫
θ p(A, S, θ | M1)dθ∫

θ p(S, θ | M0)dθ
=
∑

A p(A, S | M1)

p(S | M0)
. (16.8)

The individual additive terms in the numerator of (16.8) consist of ratios
of products of gamma functions. To evaluate this sum exhaustively over all
partitions involves prohibitive amounts of computation. A lower bound for
(16.8) is p(A∗, S | M1)/p(S | M0), where A∗ is the maximizer of the ratio.
This bound, called the maximum a posteriori score (denoted by MAP(A∗)),
can be used as a model selection criterion which can be tracked along with
the Gibbs or DA iterations. As a frequentist evaluation of its performance,
we have elsewhere [13] shown that the MAP asymptotically attains several
desirable properties. For example, with a single motif type (width w) having
occurrence probability π , under mild conditions, the MAP score selects the cor-
rect model, with the performance of the MAP improving as w and π increases
(Table 16.2).
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16.8 Discussion: Motif Discovery Beyond Sequence Analysis

TFBS prediction remains an important unsolved problem in molecular biology.
The availability of massive amounts of genomic data, such as multispecies
genome sequence, gene expression microarray, and the physical structure of
DNA, has thrown up a huge challenge to computational scientists to develop
investigative tools to infer biological function. In this chapter we have mainly
demonstrated how Bayesian statistical models can be used to capture signifi-
cant aspects of genomic sequence data and lead to more accurate motif predic-
tions. Using the Bayesian approach naturally leads to a host of flexible Monte
Carlo based algorithms that can deal with high-dimensional integration and
multimodality problems effectively. The Bayesian framework also provides
us with a basic infrastructure for hierarchically modeling dependence and for
dealing with nuisance parameters without leading to overwhelming analytical
complexity. Finally, the Bayesian paradigm allows a “learning” capability so
that “historical” data can be used in modeling a new, but similar problem. This
can be important in building prior distributions based on partial information
for known motifs, improving estimation of novel motifs.

It is becoming increasingly clear that sequence information alone is in-
sufficient for accurate motif predictions (being especially true for complex
genomes). An important aspect of further development of motif discovery
tools is the efficient integration of multiple sources of genomic data, with the
aim of refining and improving predictions.

16.8.1 Cross-species Phylogenetic Information

When multi-species sequence information is available, it is often seen that using
multiple alignment [10] and restricting motif search to regions having a high
sequence similarity improves the specificity of motif predictions. Thompson
et al. [38] use this strategy to simultaneously search for motifs in aligned pairs
of regulatory sequences from the human and mouse genomes, significantly
improving predictions. It is still a challenge to efficiently incorporate more
complete evolutionary information such as a phylogenetic tree of sequence
divergence [11] in probabilistic motif models.

16.8.2 Chromatin Structure Information

The precise control of transcription in eukaryotes depends on the binding
of TFs to promoter regions on DNA. Although in general practice, TF–DNA
binding is represented as a one-dimensional process, in reality, binding occurs in
three-dimensional space. DNA is neither static nor one-dimensional – much of
DNA is wrapped around certain proteins called histones in a specific pattern,
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and binding is most likely to occur at the regions of exposed DNA [24].
For a given TF, there may be many potential TFBSs conserved in sequence,
scattered throughout the genome of an organism; however, only a subset of
these is actually active. As more experimental data become available (e.g.,
from chromatin immunoprecipitation or ChIP-chip experiments), knowledge
of DNA structure holds a huge potential to aid in motif discovery.

16.8.3 Further Incorporation of Gene Expression Information

A highly successful tactic for computational motif prediction is to cluster genes
based on their expression profiles, and search for motifs in the sequences up-
stream of tightly clustered genes. When noise is introduced into the cluster
through spurious correlations, however, such an approach may result in many
false positives. A filtering method based on the specificity of motif occurrences
has been shown to effectively eliminate false positives [17]. An iterative pro-
cedure for simultaneous gene clustering and motif finding has been suggested
[16], but no effective algorithm has been implemented to demonstrate its advan-
tage. Two methods for TFBM discovery via the association of gene expression
values with motif abundance have been proposed by Bussemaker et al. [6] and
Keles et al. [20]. These first conduct word enumeration and then use regres-
sion to check whether the genes whose upstream sequences contain a set of
words have significant changes in their expression. Conlon et al. [7] provide an
algorithm to further utilize gene expression or ChIP-chip information to help
motif discovery. They first use an algorithm such as BioProspector, MEME,
or MDscan [30] to report a large set of putative motifs, and then do a linear
stepwise regression to select candidates that correlate with the microarray ex-
pression data (Tadesse et al. [36] later present a Bayesian version). However,
these methods still face drawbacks such as the inappropriateness of the linearity
assumption, high-dimensionality, and difficulties in using multiple microarray
data sets simultaneously. Surmounting such challenges and finding effective
ways to integrate multiple data sources into motif discovery is likely to hold
the future key to accurate inference in biological systems.
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Abstract

We discuss methods to identify DNA regulatory elements by exploiting the
correlation between sequence data and gene expression. We start by reviewing
the contribution of M. G. Tadesse et al. (Identification of DNA regulatory motifs
using Bayesian variable selection. Bioinformatics, 20 (2005), 2553–2561) in
the use of Bayesian methods for variable selection for the identification of
binding sites for regulatory factors. We then propose an extension of their model
to include gene regulators. Although the modeling frameworks for variable
selection has been extensively studied in the literature, their application in
genomic studies for the identification of regulatory elements represents a novel
contribution. We report performances of the methodologies on the well-studied
regulatory systems of Saccharomyces cerevisiae under heat shock.

17.1 Introduction

The study of gene regulation plays an important role in understanding gene ex-
pression. A biological understanding of this complicated process motivates the
techniques for analyzing and modeling gene expression and gene regulation.

333
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Fundamental principles of genetics are transcription (the process of encod-
ing information in DNA as mRNA) and translation (the process of making
proteins from mRNA). Microarrays measure the abundance of mRNA and,
thus, describe gene expression at the transcription level. Understanding how
transcription is regulated in the cell can provide insights into developing rich
models for analyzing microarrays.

The mechanisms that control gene transcriptions consist of many different
classes of proteins and classes of DNA sequences [10]. The proteins involved,
known as trans-acting factors or transcription factors, interact with control
points of DNA sequences known as cis-acting regulatory sequences. In eu-
karyotic systems, such as human cells and yeast, RNA polymerase II is solely
responsible for transcribing DNA to mRNA. This polymerase requires multi-
ple sets of cis-acting regulatory sequences. Therefore, gene transcription is the
result of multiple transcription factors binding these cis-acting regulatory se-
quences. The transcription factors contain structural motifs that are designed to
recognize and bind the cis-regulatory sequences of DNA [1, 10]. The term motif
is also sometimes associated with the particular sequence in the cis-acting regu-
latory sequence that the transcription factor binds to. A regulator is a molecule
that affects gene regulation, either activating or repressing it. Regulators can
be either signal modules from outside the cell or proteins (such as transcription
factors and protein kinases) which are themselves products of genes regulated
by a whole set of other proteins. In this chapter we refer to the expression of
regulators as the expression levels of the genes that code for such regulators.
Therefore, the regulation of gene expression involves a network of genes that
code for transcription factors, which bind to cis-regulatory sequences, which
in turn bind to motifs, and thereby induce the expression of the genes.

An example can be useful to understand gene regulation: Suppose that the
expression of gene B is regulated by transcription factor A that binds to the
cis-regulatory sequence for gene B, and transcription factor A is a protein
coded for by gene A. Since gene A codes for the protein that regulates gene B,
gene A can be referred to as a regulator gene. In this example, for simplicity,
we have described it as a simple, one-to-one process. In reality, many genes
can be coregulated by the same small set of transcription factors, especially if
these genes have a common biological purpose. Therefore, examining a set of
coregulated genes can reveal the motifs in the cis-regulatory sequences.

Many of the popular statistical methods for motif detection are based on
clustering genes by similar expression profiles. DNA microarrays in fact pro-
vide a simple and natural vehicle for exploring the regulation of thousands of
genes and their interactions. Methods such as CONSENSUS, MEME, Gibbs
Motif sampler, and AlignACE identify sets of genes that may be coregulated by
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clustering genes based on expression levels. Clustering-based methods how-
ever have some drawbacks. In particular, it is not always true that coregulated
genes have similar expression profiles, a fact that can introduce false positives
in the motifs detection approaches. An improvement on these methods is the
REDUCE algorithm [4] that further refines the sets of candidate motifs by using
linear models to exploit the correlation between sequences data and expression
level.

Other approaches for studying transcriptional regulation utilize probabilistic
models, such as networks. Segal et al. [19] modeled coregulated genes into
modules as functions of small sets of regulators that coordinate certain genes
whose products perform a specific function in the cell. Accounting for the
activity of regulators in the model improves prediction. In Segal et al. [20],
the authors suggest a probabilistic model that combines sequence data with
gene expression to model transcriptional and regulatory modules. Recently,
Middendorf et al. [17] developed a learning algorithm, called MEDUSA, based
on a classification model that predicts the up- and downregulation of genes
using motif information and the expression patterns of potential regulators as
covariates for the classification model. They code the information as a binary
matrix indicating whether a motif is present or not and whether a regulator is
up- or downregulated.

In this chapter we describe two applications of methods for Bayesian vari-
able selection to the identification of regulatory elements. In Section 17.2, we
provide background information for the model formulation and data process-
ing. In Section 17.3, we review the work of Tadesse et al. [21] in the context
of linear regression models relating gene expression data to large sets of can-
didate motifs. In Section 17.4, we propose an extension of their model to sets
of predictors that include regulators. This is similar in spirit to the approach of
Middendorf et al. [17]. With respect to their work, however, we model gene ex-
pressions and pattern scores, rather than discretized values that indicate up- or
downregulation and presence or absence. In addition, instead of a classification
model, we employ a linear regression setting with variable selection methods
to detect sets of motifs and regulators that act together to affect the target gene
expression. Section 17.5 presents some concluding remarks.

17.2 Integrating Gene Expression and Sequence Data

Motif detection involves searching for DNA patterns that are overrepresented
in the upstream regions of a set of coregulated genes. Several computational
algorithms have been developed for this task. Some algorithms are based
on word-enumeration approaches [22], others are based on probability-based
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models [14, 15], and still others are based on dictionary models [3, 11]. A
detailed account of the different methods can be found in the contribution of
Gupta and Liu [12] to this edited volume.

Computational methods for motifs detection require a set of coregulated
genes, which can be determined experimentally or computationally. A com-
mon approach consists of clustering high-throughput gene expression data
and searching the upstream regions of each cluster for shared sequence pat-
terns. This approach, however, often leads to large lists of candidate motifs.
Bussemaker et al. [4] and Keleş et al. [13] have proposed methods to refine
the search for biologically meaningful motifs by considering linear models
that relate the expression data to the counts of each motif present in such
candidate lists. Conlon et al. [7] have considered similar models where the
gene expression is regressed on scores of candidate motifs, rather than simple
counts. Scores are obtained by using MDScan [16], an algorithm that makes
use of word-enumeration and position-specific probability matrix updating
techniques. Conlon and collaborators have also proposed the use of stepwise
selection to identify pattern scores that most correlate with the gene expression.
Tadesse et al. [21] have investigated the alternative use of Bayesian variable
selection techniques to select pattern scores. Their methodology is summarized
in Figure 17.1. The methods employ stochastic search methods that perform
a more thorough search of the model space and hence might potentially pick
up motifs that can be missed by stepwise methods. In the next section we
review the contribution of Tadesse et al. [21] and describe an application to
cDNA microarrays on the transcriptional response of Saccharomyces cerevisiae
to heat shock. Next, we propose an adaptation of the model by Tadesse and
collaborators to sets of predictors that include regulators.

In both modeling frameworks described next we will define sets of predictors
as pattern scores computed using the software Motif Regressor [7] via MDScan
[16]. The algorithm starts by enumerating each segment of width w (seed) in
the top t sequences. For each seed, it looks for w-mers with at least n base
pair matches in the t sequences. These are used to form a motif matrix and the
highest scoring seeds are retained, based on a semi-Bayesian scoring function

log(xn)

w

 w∑
i=1

T∑
j=A

pij log(pij ) − 1

xn

∑
all segments

log(p0(s))

 ,

where xn is the number of n-matches aligned in the motif, pij is the frequency
of nucleotide j at position i of the motif matrix, and p0(s) is the probability
of generating the n-match s from the background model. The updating step
is done iteratively by scanning all w-mers in the set of sequences used for
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Fig. 17.1. Graphical representation of the methodology of Tadesse et al. [21]: Expres-
sion levels are regressed on a large list of candidate motif scores. Bayesian variable
selection methods are used to locate sets of motifs that best predict changes in gene
expression. (See color plate 17.1.)

refinement and adding in or removing from the weight matrix segments that
increase the score. This is repeated until the alignment stabilizes.

17.3 A Model for the Identification of Regulatory Motifs

Our goal is to identify regulatory motifs among the overrepresented nucleotide
patterns obtained as described above. This is accomplished by fitting a linear
regression model relating gene expression levels (Y ) to pattern scores (X), and
using a Bayesian variable selection method to select motifs that best predict
the expression. Motif pattern scores are calculated in terms of number of sites
and degree of matching with each gene. The pattern score of motif m for gene
g is given by

Xgm = log2

∑
s∈Swg

P (s from θm)

P (s from θ0)

 ,
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where θm is the probability matrix of motif m of width w, θ0 is the transition
probability matrix for the background model, and Swg is the set of all w-mers
in the upstream sequence of gene g [7].

Variable selection is achieved by writing the regression model as

Y = XXXγ βγ + ε, ε ∼ N (0, σ 2I ) (17.1)

with γγγ a vector of binary indicators for the exclusion and inclusion of the single
variables (here motifs) [2, 9]. A prior is specified on γγγ , typically independent
Bernoulli’s on the single elements with common probability π = pprior/p,
where pprior is the number of variables expected a priori to be included in the
model. Conjugate priors can be specified for the model parameters

βγ ∼ N (0, c σ 2{XXX′
γ XXXγ }−1)

σ 2 ∼ Inv-χ2(a, b), (17.2)

where Inv-χ2(a, b) indicates the scaled-inverse-χ2 distribution. The hyperpa-
rameters a, b, and c need to be suitably specified. Here, columns of XXX and Y
are assumed to be mean-centered.

Posterior inference is performed on γγγ only by integrating out the model
parameters. Stochastic search Markov chain Monte Carlo (MCMC) techniques
can be employed to look for sets of variables with high posterior probabilities.
These methods visit a sequence of models that differ successively by one or
two variables. At each iteration a new γγγ vector is generated from the current
one by one of the following two moves:

(i) Add or delete one variable from γγγ old

(ii) Swap the inclusion status of two variables in γγγ old.

The new candidate γγγ new is accepted with probability

min

{
1,

f (γγγ new|XXX, Y)

f (γγγ old|XXX, Y)

}
. (17.3)

The MCMC samples lead to an estimate of γγγ as either the model with largest
joint posterior probability or the marginal model consisting of those γj ’s with
marginal posterior probability larger than a chosen cutoff value.

17.3.1 Application

We briefly describe an application of the methodology to cDNA microarray
experiments that explore the transcriptional responses of the budding yeast
S. cerevisiae [8] to heat shock caused by temperature increase. The other data
consist of the organism genome sequences and related information, such as the
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start/stop position and orientation of each open reading frame (ORF). These
were obtained from the NCBI’s FTP site (ftp://ftp.ncbi.nih.gov/genomes/).
The details of this and other applications can be found in Tadesse et al.
[21]. That paper also reports a simulation study and comparisons to existing
methods.

The model regresses the expression levels on the pattern scores. Motif Re-
gressor [7] can be used to generate a large list of candidate motifs and calculate
the matching scores for each gene. In the application presented here, sequences
up to 800 bp upstream were extracted, shortening them, if necessary, to avoid
overlap with adjacent ORFs. For genes with negative orientation, this was done
by taking the reverse complement of the sequences. The search was restricted
to the top 20 upregulated and top 20 downregulated genes. The top 50 upregu-
lated and top 50 downregulated genes were used for refinement. The intergenic
regions were extracted and used as background models. Nucleotide patterns
of length 5–12 bp were considered with up to 30 distinct candidates for each
width. This process resulted in a set of around 400 patterns.

Priors were specified by taking pprior = 20 and setting a = 3 and b to be
commensurate with the variability of the data. To assess the sensitivity of the
results, three different values of the hyperparameter c were considered. For
every regression model, two MCMC chains were run for 100,000 iterations
each. One of the chains was started with 10 and the other with 100 randomly
selected γj ’s set to 1. The sets of motifs visited by the two MCMC chains
were pooled together. The normalized posterior probabilities of each distinct
visited set were computed, together with the marginal posterior probabilities,
p(γj = 1|X, Y), for the inclusion of single nucleotide patterns.

Table 17.1 reports motifs selected by the “best” model and ordered according
to their marginal probabilities. Selections that are robust to the choice of c, that
is, motifs that showed up in the best model of all MCMC analyses run with
different values of c, are represented with two asterisks, and those that appeared
in two of the three MCMC analyses have a single asterisk. Selected motifs
explained approximately 16% of the expression variability in response to heat
stress. Some of the selected motifs were experimentally known to be related
to stress. Others were novel and constituted a set of promising candidates
for future experimental work. Nucleotide patterns that match known motifs
appear in the tables with bold characters, along with the associated binding site
or a reference. Among the selected motifs, some contained matches to three
well-known stress-related motifs: STRE, M3A, and M3B. STRE is known to
respond to general environmental stress and to positively regulate transcription
[18]. M3A and M3B had previously been found in genes repressed under
environmental stress and act by slowing down cell growth [8]. Some patterns
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Table 17.1. Selection of Motifs: Selected Motifs Ordered
According to Their Marginal Posterior Probability

Selected Known p

WTAAGGGAK∗∗ 1.0000
TGAAA∗∗ M3A 1.0000
ACCYTGAAA∗∗ M3A 0.9999
TCYAGAATRTT∗∗ Cliften et al. 0.9998
GGCAGGAMA∗∗ 0.9991
HYCCWTMCAT∗∗ 0.9991
WARGGG∗∗ STRE 0.9987
MGATGAGATGAR∗∗ M3B 0.9985
GMGATGAGMWT∗∗ M3B 0.9839
GAADRAAAGGGR∗∗ STRE 0.9739
GCCCC∗ 0.9573
AGGGRGSGAAD∗ STRE 0.9251
GCWCATCCACC 0.8441
CMAACAAAS 0.8195
GSCCKGSWA 0.5308
ARGGGGSGGR∗ STRE 0.5136
AMRWGCCAGAA 0.4364

Note: Selections that are robust to the choice of the hyperparam-
eter c are shown with asterisks. Characters in bold correspond to
matches between known and discovered motifs. IUPAC codes are used
for degenerate nucleotides: K = G/T; M = A/C; R = A/G; S = C/G;
Y = C/T; W = A/T; B = C/G/T; D = A/G/T; H = A/C/T; V = A/C/G;
N = A/C/G/T.

that overlap with the stress-related motifs found by Cliften et al. [6] using
comparative genomics were also selected.

17.4 Identification of Regulatory Motifs and Regulators

We now present a novel application of the model where predictors include sets
of regulators. To fix our notation, we assume there are G genes, E experiments,
M motifs, and R regulators. Let ye,g be the expression level of a target gene g

from experiment e. Then we have

Y = (y1,1, . . . , y1,G, y2,1, . . . , y2,G, . . . , yE,1, . . . , yE,G). (17.4)

Each gene has a set of associated motif pattern scores. Genes across experiments
share same regulators while the expression levels of regulators is dependent on
the experiment. We therefore have a motif score matrix, XXX, with G rows and
M columns and an expression matrix for the regulators, ZZZ, with E rows and R
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columns. The design matrix for our linear regression model is defined in terms
of Kronecker products as

WWW = [j (E) ⊗ XXX,ZZZ ⊗ j (G)] , (17.5)

where j (n) is a column vector of ones having length n. The resulting matrix W
has G × E rows and M + R columns. A linear regression model with response
Y and predictors WWW is then defined as

Y = WWWβββ + ε, (17.6)

where ε ∼ N (0, σ 2I ).

17.4.1 Application

We exemplify our model using the data from Gasch et al. [8]. The data set
consists of cDNA microarray experiments measuring gene expression in S.
cerevisiae under various environmental stress conditions. The data set has a
total of 6,110 genes and 173 experiments. Here we focus on the experiments
under heat shock by temperature increase.

In our study we used the processed data available at www.cs.columbia.
edu/compbio/geneclass. There were 29 experiments that involved temperature
changes. We focused on the E = 15 heat shock experiments from 25 to 37◦C.
As described in Section 17.2, the computational tools for motif search require
a set of coregulated genes. We used hierarchical clustering with complete
linkage to locate a set of genes with similar expression patterns across the
15 experiments. These “coregulated" genes were used by MotifRegressor to
search for overrepresented nucleotide patterns and led to the identification of
432 motifs. For each of these motifs, we calculated their scores in each of
G = 1,326 regulated genes provided by Middendorf et al. [17]. In addition,
we obtained from the Web site cited above the expression profiles of R = 456
potential regulators.

We used different c values (c = 4, 25, and 100) and ran two MCMC chains
with 200,000 iterations and different initial number of selected variables (10
and 50). We pooled chains together and computed the normalized posterior
probabilities of distinct visited sets. We also computed the marginal posterior
probabilities, p(γj = 1|WWW,Y ), for the inclusion of motifs and regulators.

Table 17.2 reports motifs selected by the “best” model and ordered accord-
ing to their marginal probabilities. Selections that are robust to the choice
of c (i.e., motifs that showed up in the best model of all MCMC analyses
run with different values of c) are represented with two asterisks, and those
that appeared in two of the three MCMC analyses have a single asterisk.
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Table 17.2. Selection of Motifs and Regulators: Selected Motifs Ordered
According to Their Marginal Posterior Probability

Selected Factor Known Function p

TTTCA∗∗ SWI4 TTTTCGCG Transcription factor
that participates in the
SBF complex
(SWI4p-SWI6p) for
regulation at the cell
cycle box element

1.000

CCCCTTA∗∗ STRE TMAGGGGN Controls expression of
genes in response to
heat shock and DNA
damage

0.957

GMGATGMSCA∗∗ GCN4 RTGACTCAT Increases after
starvation for various
amino acids or purines

0.948

CTCTCTTKTKT∗∗ STF GTMAACAA Stabilizes and facilitates
the formation of the
complex between
mitochondrial ATP
synthase and its intrinsic
inhibitor protein

0.766

TCAKCTCATCGC∗∗ GCN4 RTGACTCAT Increases after
starvation for various
amino acids or purines

0.6819

GCWCGCA∗ MBF ACGCGT Mediates
GCN4-dependent
transcriptional
activation

0.6624

AGRGMAAAGGAG∗∗ HSF AGAAN Heat shock transcription
factor – necessary for
recovery from heat
shock

0.568

SAGCCTG∗ UME6 TCGGCGGCTA Required for glucose
repression of FOX3;
involved in nitrogen
repression and
induction of meiosis

0.563

CKACCCCT STRE TMAGGGGN Controls expression of
genes in response to
heat shock and DNA
damage

0.466

Note: Selections that are robust to the choice of the hyperparameter c are shown with
asterisks.
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Table 17.3. Selection of Motifs and Regulators:
Selected Regulators Ordered According to Their

Marginal Posterior Probability

Regulator p Known

YJL187C∗∗ 0.489 SWE1
YGL099W∗∗ 0.228 LSG1
YLR433C∗∗ 0.097 CNA1
YGR123C∗∗ 0.095 PPT1
YIL154C∗∗ 0.038 IMP2’
YIR023W∗ 0.028 DAL81
YLR336C∗∗ 0.013 SGD1
YNL309W 0.013 STB1

Note: Selections that are robust to the choice of the
hyperparameter c are shown with asterisks.

We compiled the table by looking at the motif sequences in both directions
as well as the different possibilities for ambiguous nucleotides. We searched
for matches in the TRANSFAC database and also compared them with sev-
eral published papers that have looked at regulatory motifs for S. cerevisiae.
Nucleotide patterns that match known motifs appear in the table with bold
characters, along with the associated binding sites and factors. A brief descrip-
tion of their function is also given. As in the previous application, some of the
selected motifs were experimentally known to be related to stress. Others were
novel and constituted a set of promising candidates for future experimental
work.

Table 17.3 reports results on the selection of the regulators. Our novel finding
here is the SWE1 (YJL187C) regulator, that ranked at the top in all simulations
we ran with different c values. This regulator has not been previously identified
by other methods. According to Ciliberto et al. [5], SWE1 is known to be a
mitosis inhibitor protein kinase. It is involved in the morphogenesis checkpoint
that arrests the cell cycle at the G2-M transition when bud formation is impaired,
perhaps due to environmental stimuli such as heat or osmotic shock. The cell
cycle delay induced by the morphogenesis checkpoint requires Swe1p. When
bud formation is impaired, SWE1 is stabilized and active. Among the other
regulators we selected, PPT1 and LSG1 are known to relate to severe heat
shock and have been identified also by Middendorf et al. [17]. Also, from
Segal et al. [19] we notice that PPT1 is related to GCN4, which appears in the
list of selected motifs. CNA1, Calcineurin A, is a Ca2+/calmodulin-regulated
protein phosphatase that regulates Crz1p, a known stress-response transcription
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Fig. 17.2. Selection of motifs and regulators: Heatmap of the selected regulators over
the 15 experiments under consideration. (See color plate 17.2.)

factor. Figure 17.2 shows the activity of the selected regulators over the 15
experiments. Many of them exhibit a change in expression over some portion
of the experiments.

17.5 Conclusion

We have discussed methods to identify DNA regulatory elements by exploiting
the correlation between sequence data and gene expression. In particular we
have reviewed the work of Tadesse et al. [21] who used Bayesian methods for
variable selection for the identification of binding sites for regulatory factors.
We have also presented an extension of this model to include gene regulators
and showed applications to regulatory systems of S. cerevisiae under heat
shock.

In the extended model, only the main effects of motifs and regulators are
considered. It may be biologically interesting to consider statistical interactions
between motifs and regulators. A model containing interactions between motifs
and regulators will result in a design matrix WWW with M + R + M ∗ R columns
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and, therefore, may present computational challenges for typical values of M

and R. Of course, the prior of the regression coefficient βββ would also need to
be modified to ensure that main effects are not eliminated in the presence of
interactions.
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Abstract

One major goal in biological research is to understand how genes are regulated
through transcriptional regulatory networks. Recent advances in biotechnology
have generated enormous amounts of data that can be utilized to better achieve
this goal. In this chapter, we develop a general statistical framework to integrate
different data sources for transcriptional regulatory network reconstructions.
More specifically, we apply measurement error models for network recon-
structions using both gene expression data and protein–DNA binding data. A
linear misclassification model is used to describe the relationship between the
expression level of a specific gene and the binding activities of the proteins
(transcription factors) that regulate this gene. We propose Markov chain Monte
Carlo method for statistical inference based on this model. Extensive simula-
tions are conducted to evaluate the performance of this model and assess the
sensitivity of its performance when the model parameters are misspecified. Our
simulation results suggest that our approach can effectively integrate gene ex-
pression data and protein–DNA binding data to infer transcriptional regulatory
networks. Lastly, we apply our model to jointly analyze gene expression data
and protein–DNA binding data to infer transcriptional regulatory networks in
the yeast cell cycle.

18.1 Introduction

Understanding gene regulations through the underlying transcriptional regula-
tory networks (referred as TRNs in the following) is a central topic in biology.
A TRN can be thought of as consisting of a set of proteins, genes, small mod-
ules, and their mutual regulatory interactions. The potentially large number of
components, the high connectivity among various components, and the tran-
sient stimulation in the network result in great complexity of TRNs. With the

347
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rapid advances of molecular technologies and enormous amounts of data being
collected, intensive efforts have been made to dissect TRNs using data gen-
erated from the state-of-the-art technologies, including gene expression data
and other data types. The computational methods include gene clustering (e.g.,
Eisen et al. 1998), Boolean networks (e.g., Akutsu et al. 2000; Shmulevich et al.
2002), Bayesian networks (e.g., Friedman et al. 2000; Hartemink et al. 2002;
Hartemink 2005), differential equation systems (e.g., Gardner et al. 2003;
Tegnér et al. 2003), information integration methods (e.g., Bar-Joseph et al.
2003; Gao et al. 2004), and other approaches. For recent reviews, see de Jong
(2002) and Sun and Zhao (2004). As discussed in our review (Sun and Zhao
2004), although a large number of studies are devoted to infer TRNs from gene
expression data alone, such data only provide very limited amount of infor-
mation. On the other hand, other data types, such as protein–DNA interaction
data (which measure the binding targets of each transcription factor, denoted
by TF in our following discussion, through direct biological experiments),
may be much more informative and should be combined together for network
inference.

In this chapter, we describe a Bayesian framework for TRN inference based
on the combined analysis of gene expression data and protein–DNA interaction
data. The statistical properties of our approach are investigated through exten-
sive simulations, and our method is then applied to study TRNs in the yeast
cell cycle.

18.2 Methods

In this chapter, we model a TRN as a bipartite graph: a one-layer network where
a set of genes are regulated by a set of TFs. The TFs bind to the regulatory
regions of their target genes to regulate (activate or inhibit) their transcription
initiation, which is a principal mode of regulating the expression levels of many,
if not most, genes (Carey and Smale 1999). Because the number of genes largely
exceeds the number of TFs in any organism, there is combinatorial control of
the TFs on genes. That is, for a given gene, its expression level is controlled
by the joint actions of its regulators. Two well-known facts on the joint actions
of TFs include cooperativity, which in the context of protein–DNA interaction
refers to two or more TFs engaging in protein–protein interaction stabilizing
each other’s binding to DNA sequences, and transcriptional synergy, which
refers to the interacting effects among the Polymerase II general transcriptional
machinery and the multiple TFs on controlling transcription levels. In our
previous work (Zhao et al. 2003), we assumed that the expression level of
a specific gene is controlled through the additive effects of its regulators.
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Liao et al. (2003) applied Hill’s equation for the cooperative TF bindings on
the regulatory regions of their target genes and the first-order kinetics for the
rate of gene transcription. Under a quasi-steady-state assumption, they proved
that the relative gene expression level has a linear relationship with the relative
activities of the TFs that bind on the gene’s regulatory region. In this chapter, we
extend our previous work (Zhao et al. 2003) to fully incorporate gene expression
data and protein–DNA binding data to infer TRNs. Before the discussion of
our model, we first give a brief overview of the protein–DNA binding data used
in our method.

As the primary goal of TRN inference is to identify the regulatory targets of
each TF, the most direct biological approach is to experimentally identify the
targets of various TFs. Many different biological methodologies are available to
serve this purpose. The large-scale chromatin immunoprecipitation microarray
data (ChIP-chip data) provide the in vivo measurements on TFs and DNA
binding (e.g., Ren et al. 2000; Lee et al. 2002). In our study, the protein–DNA
binding data thus collected are viewed as one measurement of the TRN with
certain level of measurement errors due to biological and experimental errors,
for example, physical binding is not equivalent to regulation. We use the ChIP-
chip data collected by Lee et al. (2002) as the data source for protein–DNA
binding. These data represent a continuous measurement of the binding strength
between each TF and its potential targets, and a p value is derived based on
replicated experiments to assess the statistical significance of binding. In the
following, the inferred binding p values between a TF and its potential target
genes are converted into binary observations using a significance level cutoff
of 0.05. That is, for all TF–gene pairs whose p value is below 0.05, we denote
the observation as 1, representing evidence for binding, and for those pairs
whose p value is larger than 0.05, we denote the observation as 0, representing
not sufficient evidence for binding. The reason that we utilize protein–DNA
binding data is because we believe that the information from such data serves
as a close measurement for the true underlying TRN.

In our previous work (Zhao et al. 2003), we treated protein–DNA binding
data as representing the true underlying network, and used a linear model to
describe the relationship between the transcript amounts of the genes consid-
ered and their regulators’ activities. In our current work, we extend this linear
model to incorporate potential errors associated with protein–DNA binding
data to integrate three components that are biologically important in tran-
scription regulation, namely, the TRN as characterized by the covariate (or
design) matrix in the linear model, protein regulation activities as defined
by the predictors in the model, and gene expression levels as defined by the
response variables. We propose a misclassification model to simultaneously
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extract information from protein–DNA binding data and gene expression data
to reconstruct TRNs.

18.2.1 Model Specification

Our model relating gene expression levels, TRNs, and TF activities can be
described through three submodels:

• A linear regression model relating gene expression levels with the true un-
derlying TRNs and regulators’ activities;

• A misclassification model relating the true underlying networks and the
observed protein–DNA binding data;

• Prior distribution on the TRNs.

The hierarchical structure of our graphical model is summarized in Fig-
ure 18.1 and we describe each component in detail in the following. Note
that measurement error models have been advocated in other contexts in the
literature (e.g., Richardson and Gilks, 1993).

18.2.1.1 The First Submodel: The Linear Regression Model

Let N denote the number of genes and M denote the number of TFs related to
the regulation of these genes. We consider a total of T microarray experiments,
which may represent a time-course study, or different knock-out experiments.
We focus on time-course experiments in our following discussion, where t

represents a specific time point. The observed gene expression levels at time
t , Yt , are the vector of N expression levels normalized over all time points for
each gene i and serve as the response variable in the linear model (18.1) with
the following form:

Yt = Xβ t + εt , (18.1)

εit ∼ N
(
0, σ 2

t

)
, (18.2)

where X represents the true TRN, β t represents the time-dependent regulator
activities of the M TFs, and εt represents the errors that are associated with
gene expression measurements. In matrix X, each row corresponds to a gene
and each column corresponds to a TF, and the (i, j )th entry is 1 if the jth TF
regulates the ith gene, and the value is 0 otherwise. Because our primary interest
is to infer the TRN, the overall objective is to infer the values in this matrix,
either 0 or 1.

This model states that (1) the expression level of a gene is largely controlled
by the additive regulation activities of its regulators, (2) the same regulator has
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{Wi,j}

{Yi1}

{Xi,j}

p and q

{βj1} {εi1}

{YiT}

.

.

.

πX

{βjT} {εiT}

Fig. 18.1. The hierarchical structure of the misclassification model discussed in this
chapter. The unknown parameters are in the ovals, and the known parameters are in
the rectangles. Yit is log-transformed relative gene expression value of gene i at time t .
βjt is the log-transformed relative TF activity of TF j at time t . εit represents the error
associated with gene expression data. {Xij } is the TRN. {Wij } is the observed binding
matrix with a false-positive rate of q and a false-negative rate of p. πX is the prior
distribution for TRN, X, in the exposure model.

the same relative effect on all its targets, (3) the TRN is identical across all
time points, and (4) the errors associated with gene expression measurements
have the same distribution across all the genes. We note that these assumptions
are simplistic and may provide only a first-order approximation to reality.
The limitations and modifications of these assumptions are discussed in the
Discussion section.

Since protein–DNA binding data are often obtained from a mixture of bio-
logical samples across all the time points, for example, the asynchronized cells,
they measure an averaged protein–DNA binding over cell cycles. Although we
may use the time-course gene expression data to investigate the fluctuation of
the network over time, the information at one time point may not be sufficient
for statistical inference (see results in the simulation study in the following).
Therefore, we make the assumption that the network is time independent and
combine the information across time points. Consequently, the variation of
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the response variable, gene expression, across time points is accredited to the
change in the activities of the TFs, β t .

18.2.1.2 The Second Submodel: The Misclassification Model

In our model setup, both the true and observed covariates are binary, where 0
corresponds to no regulation and 1 corresponds to regulation. We assume the
following model [(18.3)–(18.6)]:

P (Wij = 1|Xij = 1) = 1 − p, (18.3)

P (Wij = 0|Xij = 1) = p, (18.4)

P (Wij = 0|Xij = 0) = 1 − q, (18.5)

P (Wij = 1|Xij = 0) = q, (18.6)

where the values of p and q are the false-negative and false-positive rates of
the protein–DNA interaction data. In practice, these values may be directly
estimated from some control experiments, and thus we treat these parameters
as known. In the case these values are not precisely known, we can study
the robustness of their misspecifications on statistical inference. Note that the
false-positive and false-negative rates may be gene-TF-specific, therefore, our
assumption here represents an approximation to reality that may need further
extension in future studies. The binary matrix W serves as the measurement
for the true TRN X.

18.2.1.3 The Third Submodel: The Exposure Model

For this submodel, we need to specify the prior distribution of the regulatory
matrix X = {Xij }. We assume that the Xij are independent and have an iden-
tical Bernoulli distribution with parameter πX. For a given true network X,
the value of πX can be calculated from the data. When X is unknown and
W serves as the surrogate of X, πX is a model parameter that needs to be
specified.

18.2.2 MCMC Algorithm for Statistical Inference

In our model setup, a large number of unknown parameters {X, β t , σ
2
t } need to

be inferred based on the observations Yt , t = 1, . . . , T , and W. We propose to
use the Gibbs sampler for statistical inference. The Gibbs sampler is alternated
between two steps: (1) sample {β t , σ

2
t } conditional on X, and (2) sample
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X conditional on {β t , σ
2
t }. These two steps are described in detail in the

following.
Given current estimate X̂, the model reduces to a standard linear regres-

sion model. The parameters {β t , σ
2
t } are sampled through (18.7) and (18.8)

(Gelman et al. 1995):

σ 2
t ∼ Inv − χ2(df, s2

t

)
, (18.7)

β t ∼ N
(
β̂ t , Vβσ 2

t

)
, (18.8)

where df = N − M , Vβ = (X̂
T

X̂)−1, β̂ t = VβX̂
T

Yt , and st is the sample
standard deviation.

Given current estimates of {β t , σ
2
t }, we individually update the TRN for

each gene. If there are M TFs, there are a total of K = 2M possible joint
patterns among the TFs to jointly regulate a specific gene. The likelihood Lik

for each pattern k can be evaluated as

Lik = LX
ik + LY

ik + constant, (18.9)

where

LX
ik = n1 logπX + n11 log(1 − p) + n10 logp + n0 log(1 − πX)

+ n01 logq + n00 log(1 − q), (18.10)

LY
ik = −

T∑
t=1

(Yit − Ŷikt )2

2σ 2
t

. (18.11)

In the above expression, LX
ik and LY

ik represent the likelihood contributions
from the protein–DNA binding data and the expression data, respectively. In
the expression for LX

ik , nso represents the number of TF–gene pairs whose true
regulation is s and the observed binding is o, where the value of s (or o) is 0 or 1.
For example, n11 corresponds to the number of pairs whose true regulation and
observed binding are both 1. In addition, n1 = n10 + n11, and n0 = n00 + n01.
The expression for LY

ik represents the likelihood component derived from gene
expression data across all time points. After evaluating the log-likelihood for
all the patterns, we sample one pattern based on the following multinomial
distribution:

X̂i ∼ multinomial

(
1,

exp(Lik)∑K
k=1 exp(Lik)

)
. (18.12)

Therefore, in updating X, our algorithm does an exhaustive search over all
possible network patterns for each gene, and sample a specific pattern based
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on the relative likelihood of all possible networks. We repeat this for each of
the N genes to obtain the updated X̂ for the next iteration.

Based on the sampled parameter values, we can derive the posterior distribu-
tions for all the unknown parameters. For example, we can obtain the inferred
TRN describing the binding between the j th TF and the ith gene through the
marginal posterior distribution, that is, the proportion of samples for which
the value of Xij is 1. These posterior probabilities can then be used to in-
fer the presence or absence of regulation through specifying a cutoff value
(e.g., 0.5).

18.2.3 Data Analysis and Simulation Setup

As our simulation model is based on the real data to be analyzed, we describe
the data sources first. According to the literature, we select eight cell cycle TFs,
namely Fkh1, Fkh2, Ndd1, Mcm1, Ace2, Swi5, Mbp1, and Swi4. Based on
protein–DNA interaction data reported in Lee et al. (2002), we obtain a binary
binding matrix for these regulators and all yeast genes by applying a threshold
of 0.05 onto the p values reported by Lee and colleagues. We then remove
those genes with no in vivo binding evidence with any of the eight TFs from
the binding matrix, and further focus only on yeast cell cycle genes defined by
Spellman et al. (1998). These steps result in a total of 295 genes to be analyzed,
and the observed protein–DNA binding matrix has a dimension of 295 (genes)
by 8 (TFs). For gene expression data, we use the α arrest cell cycle data with
18 time points collected by Spellman et al. (1998).

Now we describe our simulation setup to evaluate the performance of our
proposed procedure. In our simulation model, we need to specify (1) true
TRN, (2) true protein regulation activities, (3) false-positive and false-negative
rates in the observed binding matrix, and (4) measurement errors associated
with microarray data. We consider all 295 genes used in the real data analy-
sis, and select five TFs (Fkh2, Mcm1, Ace2, Mbp1, and Swi4, which control
gene expression at the four cell cycle stages) in our simulations to simplify
the analysis. For the specification of the “true” TRN in our simulations, we
use the observed binding data to represent the true TRN. As for TF activity
specifications, we estimate the activities of the chosen five TFs from the linear
regression model using the above true TRN and the expression levels of all
295 genes at each time point. The estimated activity levels of the five TFs over
18 time points are shown in Figure 18.2. As for false-positive and false-negative
rates, we vary their levels from 0.1 to 0.9 to examine their effects on statis-
tical inference. Finally, we assess the effect of the measurement variation
associated with microarray data on statistical inference. For the majority of
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Fig. 18.2. The inferred activities of five transcription factors vary over 18 time points. Two
of the five transcription factors share similar profiles, which may lead to an identifiability
problem of the model. However, our results show that the slight difference between the
TF activities prevent the problem.

simulations, we assume that the microarray data are collected from 18 time
points as in Spellman et al. (1998). In one case, we vary the number of time
points available to investigate the effect of the number of time points on statis-
tical inference.

18.3 Simulation Results

18.3.1 Convergence Diagnosis of the MCMC Procedure

Based on our simulation runs, we generally find good mixing of the proposed
MCMC procedure. Both the traces of the parameter values and the autocorrela-
tions of the parameter curves indicate that a burn-in run of 1,000 iterations out
of 10,000 iterations is stable enough to obtain reliable posterior distributions.
The posterior distributions of the five TF activities (βt ) and measurement errors
from microarrays σ 2

t at a time point from one simulated data set are shown in
Figure 18.3. We also investigate the effect of the initial network (covariate
matrix) on MCMC results. When the measurement errors in gene expression
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Fig. 18.3. The posterior distributions for the model parameters β t and σ 2
t at t = 4. The

standard deviations of these posterior distributions are 0.075, 0.078, 0.092, 0.077, 0.091,
and 0.027, respectively.

data are low, the MCMC procedure has good convergence regardless of the
initial network. In general, the observed protein–DNA binding data provide a
good starting point for statistical inference.

In our model specification, there are two types of errors: the errors associated
with the measured gene expression levels (responses, denoted by σ ) and those
associated with the observed protein–DNA binding data (denoted by p and
q). In order to systematically investigate the effect of both types of errors, we
consider seven pairs of p and q as (0.1, 0.1), (0.2, 0.2), (0.2, 0.4), (0.4, 0.2), (0.3,
0.3), (0.4, 0.4), and (0.5, 0.5). For each pair of p and q values, we simulate the
observed protein–DNA binding data as well as gene expression data under 22
different σ values, ranging from 0.001 to 1.5. For each specification of the 22 ×
7 = 154 sets of parameter values, we simulate data sets consisting of protein–
DNA interaction data and gene expression data. Each data set is analyzed
through our proposed MCMC approach with a burn-in of 1,000 iterations and
a further run of 5,000 iterations. The posterior distribution for each unknown
parameter is summarized and compared to the true underlying network. We
use a cutoff of 0.5 to infer the presence or absence of regulations between
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Fig. 18.4. The false-positive and false-negative rates of the inferred network. The x-
axis is the standard deviation in gene expression data, while the y-axis is either the
false-positive rate or false-negative rate of the posterior network with respect to the true
regulatory network. Different lines correspond to different levels of assumed quality of
protein–DNA binding data.

TFs and genes. The inferred network is then compared to the true network
to calculate the proportion of false-positive and false-negative inferences for
each TF–gene pair. The overall false-positive and false-negative rates are then
estimated through the average of all TF–gene pairs across all the simulated
data sets. The results are summarized in Figure 18.4. In Figure 18.4(a), we
plot the false-positive rates for the inferred network. As can be seen from this
figure, the false-positive rates for the inferred network increase as σ , p, and
q increase. The false-negative rates for the inferred networks show a similar
pattern. The major feature is that the information from gene expression data
may significantly improve the estimation on X. When σ is small and p and q are
not too high, there is a very good chance that the true network can be recovered
from the joint analysis of gene expression data and protein–DNA binding data.
For example, with 30% false-positive and 30% false-negative rates, when σ

is less than 0.2, the whole network may be fully recovered. Even when σ is
large, the false-positive rates in the inferred network using both binding data
and gene expression data still outperform those in the observed protein–DNA
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Fig. 18.5. The effects of misspecifying model parameters p, q, and πX on the inferred
network. The standard deviation of the simulated gene expression data is 0.2. The real
values of parameters (p, q) or πX are indicated in the title of each plot. In (a)–(c), the
true value of πX is 0.46, but (p, q) are specified as (0.9, 0.9), (0.8, 0.8), (0.7, 0.7), (0.6,
0.6), (0.5, 0.5), (0.4, 0.4), (0.3, 0.3), (0.2, 0.2), (0.1, 0.1), (0.05, 0.05), (0.01, 0.01), and
(0.05, 0.4). For (d), the values of (p, q) are (0.1, 0.1), but πX is specified at various
levels: 0.1, 0.2, 0.3, 0.4, 0.46, 0.5, 0.6, 0.7, 0.8, and 0.9.

binding data. The results for the false-negative rates as shown in Figure 18.4(b)
show similar patterns.

18.3.2 Misspecification of the Model Parameters p, q, and πX

In the results summarized above, we assume that the true values of p and
q are precisely known. However, their exact values may not be accurately
inferred. Therefore, we conduct simulation experiments to examine the per-
formance of the proposed procedure when the values of p and q are mis-
specified. In this set of simulations, we simulate data from three sets of p

and q values: (0.1, 0.1), (0.3, 0.3), and (0.2, 0.4). For each simulated data set
under a given set of parameter values, we perform statistical analysis under
different sets of specifications for p and q, including (0.9, 0.9), (0.8, 0.8),
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(0.7, 0.7), (0.6, 0.6), (0.5, 0.5), (0.4, 0.4), (0.3, 0.3), (0.2, 0.2), (0.1, 0.1),
(0.05, 0.05), (0.01, 0.01), and (0.05, 0.4). Throughout these simulations, we
assume σ = 0.2. The performance of our procedure in terms of false-positive
and false-negative rates is summarized in Figures 18.5(a) to 18.5(c). These
results suggest that the statistical inference is robust to the misspecification
of the parameters p and q when the specified values are not too distinct
from the true parameter values. We observe similar patterns for other values
of σ .

As another parameter that needs to be specified in our approach is the
prior probability πX, we further investigate the performance of our approach
when πX is misspecified. The true value of πX is about 0.46 (683/(295 × 5),
where there are 683 regulation pairs in the protein–DNA binding data) in
the given true network X, but we consider 0.1, 0.2, 0.3, 0.4, 0.46, 0.5,
0.6, 0.7, 0.8, and 0.9 in our analysis. The results are summarized in Fig-
ure 18.5(d). Compared to the results for p and q, the statistical inference is
more sensitive to the value of πX. However, when the specified parameter
value is reasonably close to the true value, our approach generally yields robust
estimates.

Overall, our simulation studies suggest that misspecifications of model pa-
rameters p, q, and πX within a reasonable range will not substantially affect
the statistical inference of the true network.

18.3.3 Effect of the Number of Experiments Used in the Inference

In the above simulations, we simulated data from 18 time points and used
all of them in the inference of the underlying network. In this subsection, we
consider the effect of the number of time points on the inference. For this set
of simulations, we simulate the protein–DNA binding data by fixing the values
of p and q at 0.1, selecting the value of σ at 0.001, 0.2, and 0.5, and varying
the number of time points used in the analysis from 1 to 18. When there is
little error associated with gene expression data (i.e. σ = 0.001), the data at
one time point can carry enough information to fully recover the true network.
With increasing σ values, the number of time points affects the results on the
inferred network (Figure 18.6). When σ is 0.2, our previous results show that
there is a significant improvement of the inferred network from the binding data.
As more time points are included in the analysis, we observe more accurate
inference of the underlying network. When σ is 0.5, the improvement of the
inferred network from the binding data is still obvious but limited due to too
much noise in gene expression data.
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Fig. 18.6. The effect of sample size on the inferred network. The number besides each
symbol indicates the number of the time points used in the simulated gene expression
data. The value of πX is 0.46, and the values of other parameters are indicated in the
title of each plot.

18.4 Application to Yeast Cell Cycle Data

In this section, we apply our method to jointly analyze gene expression data
from 295 genes over 18 time points (Spellman et al. 1998) and protein–DNA
binding data of Fkh1, Fkh2, Ndd1, Mcm1, Swi5, Ace2, Mbp1, and Swi4 (Lee
et al. 2002). We consider eight sets of model parameters for {p, q, πX}: {0.1,
0.1, 0.5}, {0.2, 0.2, 0.5}, {0.2, 0.1, 0.5}, {0.1, 0.2, 0.5}, {0.2, 0.2, 0.4},
{0.2, 0.2, 0.6}, {0.1, 0.1, 0.4}, and {0.1, 0.1, 0.6}. For each set of parameter
specifications, we run MCMC with a burn-in of 1,000 runs and an additional
5,000 runs to obtain the posterior distributions for the parameters of interest. The
overall inference is based on the average posterior probabilities over the eight
model parameter settings, which yield similar results among different settings.

The posterior distributions of the protein activities for the eight TFs and the
σ at every time point are summarized in Table 18.1. The average value of σ

across 18 time points is about 0.55. Based on our simulation studies, at this
level of expression errors, the incorporation of gene expression data should
improve the inference of TRNs.
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Table 18.1. The Estimated Regulation Activities
of the Transcription Factors and σ

Time Fkh1 Fkh2 Ndd1 Mcm1 Ace2 Swi5 Mbp1 Swi4 σ

1 0.09 −0.81 −0.55 0.54 1.84 −0.29 −0.79 −0.27 0.88
±0.13 ±0.12 ±0.13 ±0.13 ±0.14 ±0.13 ±0.12 ±0.12

2 −0.36 −1.00 0.24 0.28 1.18 −0.46 −0.18 −0.01 0.75
±0.11 ±0.11 ±0.11 ±0.11 ±0.13 ±0.12 ±0.10 ±0.11

3 −0.53 −0.63 0.14 0.09 0.98 −0.35 1.43 0.06 0.66
±0.10 ±0.10 ±0.10 ±0.10 ±0.14 ±0.11 ±0.09 ±0.10

4 −0.34 −0.31 −0.25 −0.29 0.17 −0.42 1.86 0.27 0.58
±0.08 ±0.09 ±0.09 ±0.08 ±0.13 ±0.10 ±0.07 ±0.08

5 0.73 0.12 −0.62 −0.63 0.26 −0.67 0.79 0.13 0.54
±0.07 ±0.08 ±0.08 ±0.07 ±0.09 ±0.08 ±0.07 ±0.08

6 0.72 0.20 −0.42 −0.49 −0.17 −0.49 0.28 −0.04 0.6
±0.08 ±0.08 ±0.09 ±0.08 ±0.10 ±0.09 ±0.08 ±0.08

7 1.31 0.16 0.41 −0.61 −0.07 −0.55 −0.28 −0.28 0.53
±0.08 ±0.09 ±0.08 ±0.08 ±0.10 ±0.09 ±0.08 ±0.08

8 0.44 0.18 0.61 0.01 −0.47 −0.31 −0.43 −0.57 0.44
±0.06 ±0.06 ±0.06 ±0.06 ±0.08 ±0.07 ±0.06 ±0.06

9 0.17 0.09 1.03 0.58 −0.46 −0.00 −0.57 −0.74 0.5
±0.07 ±0.07 ±0.07 ±0.07 ±0.09 ±0.08 ±0.07 ±0.07

10 −0.27 −0.48 0.81 0.47 −0.54 1.11 −0.39 −0.42 0.57
±0.07 ±0.08 ±0.07 ±0.07 ±0.10 ±0.08 ±0.07 ±0.07

11 −0.90 0.02 −0.01 0.79 −0.32 1.23 0.13 0.08 0.75
±0.10 ±0.11 ±0.11 ±0.10 ±0.13 ±0.12 ±0.10 ±0.11

12 −1.07 0.22 −0.29 0.14 −0.45 0.93 0.56 0.65 0.44
±0.07 ±0.06 ±0.07 ±0.06 ±0.08 ±0.07 ±0.07 ±0.06

13 −0.20 0.44 −0.82 −0.28 −0.15 0.35 0.16 0.63 0.45
±0.07 ±0.07 ±0.07 ±0.06 ±0.08 ±0.07 ±0.06 ±0.06

14 −0.35 0.42 −0.68 −0.37 −0.31 −0.08 −0.31 0.52 0.45
±0.06 ±0.07 ±0.07 ±0.07 ±0.08 ±0.07 ±0.06 ±0.06

15 0.44 0.68 −0.61 −0.51 −0.08 −0.32 −0.44 0.38 0.44
±0.06 ±0.07 ±0.07 ±0.06 ±0.08 ±0.07 ±0.06 ±0.07

16 0.09 0.59 −0.10 −0.16 −0.58 −0.04 −0.45 0.13 0.6
±0.08 ±0.08 ±0.08 ±0.08 ±0.10 ±0.09 ±0.07 ±0.08

17 0.26 0.26 0.46 −0.02 −0.27 −0.08 −0.71 −0.26 0.62
±0.08 ±0.09 ±0.09 ±0.08 ±0.10 ±0.09 ±0.07 ±0.08

18 −0.20 −0.15 0.66 0.48 −0.57 0.44 −0.63 −0.26 0.57
±0.08 ±0.09 ±0.09 ±0.08 ±0.10 ±0.10 ±0.07 ±0.08

18.5 Discussion

In this chapter, we have developed a misclassification model to integrate gene
expression data and protein–DNA binding data to infer TRNs. Compared to
other models, our model (1) integrates gene expression data and protein–DNA
binding data through a consistent framework, (2) considers misclassifications
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associated with protein–DNA binding data explicitly, and (3) consists of a flex-
ible model structure. The systematic simulation results indicate that this model
performs well in TRN reconstruction, when the measurement errors associated
with gene expression data and (more importantly) protein–DNA binding data
are within reasonable ranges. For example, in the case of less than 30–40%
false-positive and false-negative rates in the observed binding data, our method
may significantly reduce both types of errors in the inferred network when the
standard deviation in gene expression measurements is around 0.5 or less. In
all the cases, the inclusion of gene expression data leads to improved inference
of the underlying network compared to that solely based on the binding data
even when the measurement error in gene expression data is very high.

Simulation studies suggested that (1) protein–DNA binding data can serve
as a good starting point in the proposed MCMC procedure, and (2) the larger
the number of gene expression data sets used, the more accurate we expect our
procedure performs. Therefore, in general, when the number of TFs increases,
we hope to collect more samples on relevant gene expressions. More samples
can be achieved by increasing the number of experimental conditions or the
number of replicates per experimental condition or both. The advantage of
increasing the number of experimental conditions is that more variations of TF
activity profiles can be introduced so as to better infer the underlying network.
However, more parameters are needed to specify the model for the additional
conditions. We also need to be cautious on how to pool the experiments to infer
the TRN, for example, a time-invariant TRN may not hold when using data un-
der drastically different experimental conditions. The advantage of increasing
the number of replicates per condition is that errors associated with measured
gene expression levels can be reduced at each point without introducing more
model parameters. In this study, the replicates were not included in the model
setup; however, the flexible structure of our model allows an easy incorporation
of such information.

In our simulation studies, we have investigated the sensitivity of our method
when some of the model parameters are misspecified, including the prior distri-
bution on the network connections and our belief on the quality of protein–DNA
binding data. We found that the method is not sensitive to the misspecifications
of these parameters unless they are drastically different from the true values. In
the analysis of yeast cell cycle data, we considered eight sets of model parame-
ters and observed general agreements. In practice, we may take a full Bayesian
approach to inferring the network through averaging inferred networks under
certain prior distributions for the model parameters.

As discussed above, although we have treated the observed protein–DNA
binding data as a 0–1 variable, the observed data are, in fact, continuous.
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Our model can be modified within the measurement model framework so
that the measured and true covariate values are continuous. To specify the
prior distribution for the covariates, we may use normal mixtures or more
sophisticated models.

In our model setup, we assume that all the TFs act additively to affect the
transcription levels of their target genes and this linear relationship between
the normalized expression levels and TF activities is a key assumption for
this model. Because of the complexity in transcription regulation, such as
synergistic effects among TFs, a linear model can serve as an approximation
at best. Nevertheless, linear models have been used in this context by various
authors (e.g., Bussemaker et al. 2001; Liu et al. 2002; Wang et al. 2002; Gao
et al. 2004). Similar to yeast data, protein–DNA binding data are available
for human (e.g., Boyer et al. 2005). Since the mechanisms of TRN remains
unknown, especially for human, our model can serve as a tool to jointly use
gene expression and protein–DNA binding in understanding TRNs in human.

To conclude, we note that our model can be extended in different ways to
be more comprehensive and better represent the underlying biological mecha-
nisms. For example, the linear form of the model can be extended to incorporate
nonlinear interactions among different TFs; the replicates per experiment can
be considered into the model to improve the data quality; more prior informa-
tion or more sophisticated statistical models can be used to construct the prior
distribution of the network (πX). In addition, our general framework has the
potential to integrate more data types into the model, such as sequence data
and mRNA decay data.
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Abstract

Cells initiate responses to the external environment and internal state through
a complex network of signaling pathways composed of many multipurpose
proteins. Errors within these signaling networks play a major role in disease
progression, so determining signaling activity is crucial in understanding many
diseases, including cancer. The changes in these pathways lead to multiple
responses within cells, including induction of transcription, allowing the use of
microarray data for interpretation of signaling activity. However, linking tran-
scriptional changes to signaling pathways is complicated by the multipurpose
nature of proteins, the overlap of signaling pathways, the presence of routine
background transcription of housekeeping genes, and the lack of correlation
between transcript and protein levels. In order to recover estimates of signaling
from microarray data, several steps are required, including (1) modeling of
signaling pathways and their links to transcription factors, (2) analysis of tran-
scription factor and transcription complex binding sites in the genome, (3) use
of Bayesian methods to extract overlapping transcriptional signatures, and (4)
determination of the appropriate dimensionality for analysis. Here we present
an approach using simplistic network models, existing databases of transcrip-
tion factors, and Bayesian Decomposition to demonstrate the methodology.

19.1 Introduction

Many methods have been developed to model biological processes and extract
information from transcriptional data, and this review cannot fully cover all
such methods. The goal will be instead to provide an overview of the key issues
to resolve in estimating signaling changes when working with transcriptional
data, as provided by GeneChips and microarrays.

366
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Fig. 19.1. RAS signaling. The transcriptional response of activation of the RAS protein
depends on activity in proteins that are either activated downstream of RAS (AKT, RAL,
MEK) or repressed due to RAS (CASP9). Activation of a full signaling pathway results
in activation of specific transcription factors, leading to transcription of a set of genes.

19.1.1 Signaling Networks and Transcription

Signaling networks provide cells with the ability to initiate complex responses
to the external environment and internal state. Changes in signaling pathways
lead to multiple responses within cells, which comprise many different potential
changes, including modification of enzymatic activity [10], triggering of mul-
tiple different pathways through activation of proteins by phosphorylation or
cleavage [13], and, of primary interest here, induction of transcription [37]. The
pathways generally interact through cross-talk, forming networks that generate
complex responses [22].

Because of the central role of signaling in controlling cellular behavior, the
development and progression of cancer, as well as many other diseases, often
involves disruption of the cellular signaling networks [20, 24]. Because of the
extreme underlying biological complexity of these pathways, observed cancers
arise from a myriad of different cellular malfunctions [8, 27]. An analysis must
address this inherent biological complexity.

An example of this complexity is given in Figure 19.1, which is modified
from [9] with additional information from BioCarta (see below for details on
the BioCarta database). Figure 19.1 provides a reduced and highly simplified
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view of the critical RAS signaling network (for a more complete view of the
network see Figure 2 in [11] and the review in [24]). The RAS signaling pro-
tein is a cytosolic protein that undergoes posttranslational modification leading
to its being bound to the membrane and capable of initiating signaling. As
Figure 19.1 shows, RAS interacts with many downstream signaling proteins,
including PI3K, a well-connected node linking many signals, RAF, which acti-
vates the ERK pathway important in cell growth, and RAL, through RALGEF
and CASPASE9, both of which play critical roles in apoptosis (i.e., programmed
cell death). The final points in each pathway (i.e., c-JUN, NFκB, AFX, and
ELK-1) are transcription factors that initiate transcription of overlapping sets
of genes.

19.1.2 Biological Issues in the Analysis of Gene Expression

One of the standard assumptions within many analyses of transcriptional data
is that the function of a gene identified through standard biological studies can
be assumed to be initiated if the mRNA for that gene is detected. Unfortunately,
studies that have looked at mRNA and protein level correlations suggest that
this is not the case, since the correlation excluding highly expressed structural
and housekeeping genes is only about 0.36 [14, 15]. Since signaling proteins
are both produced at very low levels and require significant transport and
posttranslational modification to enter the active state, the correlation of mRNA
levels and activities for signaling proteins is likely to be significantly less than
even this low level.

Interpreting the activity within the pathways of Figure 19.1 from transcrip-
tional data therefore requires estimation of the activity of the individual tran-
scription factors as downstream indicators of signaling activity, rather than
the use of mRNA species encoding signaling proteins as upstream indicators.
Unfortunately, the majority of genes regulated by these factors have not been
identified, and additional regulators of the genes also remain poorly delineated.
This leaves the problem of identifying overlapping signatures of transcription
factor activity (i.e., patterns of expression that explain part of the behavior of
a gene) without the knowledge of how many such signatures exist or whether
any individual gene may be uniquely linked to a single factor.

In addition, what is not shown in Figure 19.1 cannot be ignored. While the
transcription factors shown may represent the proteins of interest for a study,
additional factors are active at all times in living cells. These factors initiate
transcription of genes encoding proteins required for cellular metabolism, on-
going protein and biochemical synthesis, and other housekeeping functions, so
that the signals of interest always exist in a background of unknown and varying
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Table 19.1. Genes Regulated by Transcription Factors in Figure 19.1

Transcription factor Regulated genes

AFX BCL6, IGFBP-1, RBL2
ELK-1 B-ACT, C-FOS, EGR2, ELK1, NOS3, TNFA
NFκB COL1A2, F8, GRO2, GROA, ICAM-1, IFNB, IFNG, IL-2,

IL-2Rα, IL-6, MCP1, p53, RANTES, SELE, TNFA, TNFB,
TNFRSF6

c-JUN 4F2HC, ANF, ATF3, BCL2A1, GLOB-B, CD11c, C-JUN,
CYCD1, ET-1, FN, GJA1, IFNβ, IL-2, IL-5, KRT16, MMP1,
MSH2, MT-IIA, p53, ENK, RANTES, SELE, TNFA, TSG-6,
TSHB, uPA, VIP

transcription. In addition, as noted above, genes generally encode proteins that
are active in multiple biological functions, so that genes are not transcribed
uniquely in response to a single transcription factor. For example, as can be
seen in Table 19.1, even for the limited pathways in Figure 19.1, transcription
of TNFA is initiated by ELK-1, c-JUN, and NFκB. [Note that for each gene in
Table 19.1, TRANSFAC provides evidence codes, as all genes are not equally
reliably linked to the transcription factors.] In effect, we are faced with unknown
overlap in transcriptional response, incomplete models of signaling pathways,
and incomplete knowledge of the links between genes and the transcription
factors that regulate them.

19.1.3 Modeling Signaling Networks

The ideal method of interpreting a successfully disentangled set of transcrip-
tional signatures would be to create a model of all cellular protein networks
(signaling and metabolic), chemical fluxes, and transcriptional behavior. Un-
fortunately such a model is well beyond current technology and knowledge.
Presently, a number of potential approaches are being taken to model cellular
networks, focused primarily on genetic networks with some work on protein
interactions as well [36].

Perhaps the most widely used network model is a Bayesian network, which is
a form of a directed acyclic graph (DAG) with transition probabilities governing
how nodes evolve. This has been used to model the transcriptional response
of a genetic network, deriving relations between genes from microarray data
[16]. These models are data-driven and reconstruct the relationship between
expression levels of genes, creating networks that can couple microarray data
and proteomic data together.
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Another computational approach has been to use probabilistic Boolean net-
works (PBNs) to predict genetic networks [43]. Boolean networks have a useful
feature for signaling, in that each node is either active (1) or inactive (0), which
can abstract the primary measurement of interest in signaling, whether or not
the signaling protein is activating downstream targets. PBNs extend Boolean
networks by having probabilistic transition rules, making them more appro-
priate to stochastic processes such as protein interactions. PBNs also have the
advantage of allowing estimation of node transitions (i.e., signaling protein
activity) using Markov chains [43].

A recent development is the derivation of signaling networks from per-
turbative experiments where phosphoantibody measurements are made [40].
This approach uses Bayesian networks to reconstruct signaling from protein
measurements. While this method is focused on signaling, it relies on both
perturbations and the availability of highly targeted phosphoantibodies, instead
of transcriptional response measurements that can be made globally. Such anti-
bodies remain limited and have issues with specificity, and the experiments
desired are often untenable in vivo and are certainly impossible in humans.

Another approach to determining networks has been the large-scale determi-
nation of protein interactions, generating networks determining links between
proteins. While this has been useful for determination of overall structure, for
instance showing that protein networks appear to follow scale-free structures
typical in robust networks [1, 21], these studies do not lead to determination of
the arrows defining how one protein affects another. In signaling, this is critical,
since one protein may serve as an activator of another protein, while a second
protein may be an inhibitor of the same protein. These protein interaction stud-
ies may be useful for identifying potential partners; however, the false positive
problem remains in addition to the problem of arrows [47].

In addition, one can approach the problem of modeling by creating full
biochemical models that include rate constants, dissociation rates, diffusion,
and transport [2, 41]. These models are useful for exploring parameters of
interest to the problem of signaling [28]; however, the present state of knowl-
edge does not allow these models to reflect physiologically relevant networks.
Nevertheless, one key development of these models has been the demonstration
of the validity of using a modular view [6]. This permits models such as that
shown in (19.1) to be used when interpreting overall signaling activity from
transcriptional data.

19.2 Bayesian Decomposition

The issue of overlapping transcriptional response signatures requires an analy-
sis that can identify patterns within the data that are nonorthogonal, since many
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biological processes are strongly overlapping both in time and between sam-
ples. Essentially, the basis vectors that describe the transcriptional response of a
pathway or a group of pathways activated or deactivated simultaneously within
an experiment form the natural bases for describing the biological response.
As noted above, the patterns of interest (i.e., those related to the signaling
pathways) will be joined by patterns arising from transcription due to ongoing
normal metabolic processes and cellular maintenance. As such, one can expect
that the set of expression changes of interest will comprise one or a few mul-
tiple patterns (i.e., basis vectors) present within the data. The transcriptional
data from a study, such as a time course following perturbation or measure-
ments across multiple subjects, can be viewed then as arising from a matrix
multiplication,

aji =
Np∑
p=1

fjpppi + εji = mji + εji, (19.1)

where aji is the measured average relative expression level for the j th gene in
the ith condition, mji is the modeled average relative expression level for the
j th gene in the ith condition, fjp is the amount of pattern p that is included
in the model for gene j , ppi is the fractional level of expression in pattern p

under condition i (relative to the other conditions), and εji is the error or misfit
of the model to the data for the expression of the j th gene in the ith condition,
which under ideal circumstances is a random error. However, if the number of
patterns is incorrectly estimated or if systematic error remains in the data, this
term can include nonrandom components.

Since equation (19.1) is mathematically degenerate, allowing multiple so-
lutions, a Bayesian Markov chain Monte Carlo (MCMC) procedure [17, 30]
is used to identify the f and p matrices that best explain the observed data. In
general, a single solution may not exist; however, in practice when the number
of data points (elements of a) significantly exceeds the number of parame-
ters, then a single solution (i.e., monomodal distributions at each element in
f and p allowing a reasonable estimate of the mean and variance) can often
be recovered. At a maximum, the number of elements of f and p will be the
number of parameters. However, if correlations can be identified a priori in the
f and p matrices, then the number of parameters can be significantly lower. The
algorithm proposes solutions to equation (19.1) by assuming that the elements
of f and p arise from an underlying mixture model. Let � generically denote
an element of f and p, then

� =
∑
w

Kw�w. (19.2)
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provides a method of encoding prior knowledge of correlations within kernels,
Kw, operating on a family of measures, �w [44]. This permits multiple matrix
elements to vary in a coordinated fashion. The algorithm incorporates a domain
for creation, destruction, and modification of flux elements that are mapped
to the f and p matrices using the convolution functions in equation (19.2),
which is detailed in [37]. In the present work, each row of p can be viewed
as measuring flux through a set of pathways, indicating the strength of a
transduced signal as measured by the transcriptional response. Each associated
element of f will be the relative level of expression for each gene related to
the associated pathways. Ideally the convolution functions would encode full
transcriptional response from transcription factors, but such data is not yet
available.

MCMC simulation is implemented as a Gibbs sampler that requires relative
probability estimates between points in the posterior distribution. The posterior
is evaluated as proportional to the likelihood, which is easily determined by
comparing the model to the data, times the prior, which is the probability of the
model independent of the data. Inserting the f and p matrices in Bayes’ equa-
tion and ignoring the normalization integral, p (a) (the marginal probability),
generates the posterior distribution used by Bayesian decomposition,

p (f, p|a) ∝ p (a|f, p) p (f, p) , (19.3)

where p (a|f, p) gives the likelihood and p (f, p) gives the prior. The sampling
from the posterior distribution and the encoding of the prior are done using
a customized form of the Massive Inference (TM) Gibbs sampler (Maximum
Entropy Data Consultants, Cambridge, England) [44]. For the work presented
here, the prior encodes only positivity of expression (ratios are positive) and
an Occam’s razor preference for minimal structure. Other implementations
have encoded prior information in class association [25, 32] and coregulation
information gathered through transcription factor databases [26].

Assuming a normal error distribution, the log-likelihood, L, is given by

L = −
J∑

j=1

I∑
i=1

 1

2σ 2
ji

aji −
Np∑
p=1

fjpppi

2
, (19.4)

where σji is the standard deviation for the expression measurement of the j th
gene in the ith condition. Although other likelihoods could be encoded, in
our experience, a normal error model has been adequate. For any change to
the model, the change in the log-likelihood can be calculated by inserting the
change in equation (19.4) and subtracting the result from equation (19.4). For
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a change δp at matrix element [x, y] in the p matrix, for example, the change
in the log-likelihood is

δL
(
δpxy

) = −
J∑

j=1

{
2�jyfjxδpxy + 1

2σ 2
jy

f 2
jxδp

2
xy

}
, (19.5)

with

�ji = 1

2σ 2
ji

aji −
Np∑
p

fjpppi

 (19.6)

defining the normalized mismatch between the model and data at each point.
A similar equation applies for any change in the f matrix. In addition, the
prior probability is included in determining the transition probability for the
step in the Markov chain. In order to simplify the calculations, simultaneous
changes in f and p are not permitted, since allowing such changes would require
evaluation of terms involving δfδp. Note that barring these changes does not
prevent the system from reaching any state and should have no effect on the
final result, since the sampler can move δp followed by δf and reach the same
point. The algorithm presently calculates the mean and variance at each matrix
element, although more complex analyses of the samples could be performed.

19.3 Key Biological Databases

The analysis described below relies on detailed knowledge of a number of
key biological components within cells. This information has been generated
over many decades of study. Several databases exist that can be queried to
retrieve data on signaling pathways, transcription factors and the genes they
regulate, consensus binding sites for transcription factors, and protein–protein
interactions that may be useful in interpreting inconsistencies in predictions
of signaling activity that arise in analysis. In all cases the data within these
resources must be viewed as a mixture of highly reliable annotations for well-
studied genes and proteins mixed with tentative assignments of function or
interaction for less well studied ones. A few Web accessible data resources are
listed in Table 19.2.

There are two main repositories of pathway information which include
known signaling pathways, as well as metabolic pathways. The first is the
Kyoto Encyclopedia of Genes and Genomes (KEGG), which includes sig-
naling pathways for many organisms from yeast through humans, as well as
information on metabolic, biosynthetic, degradation, and other pathways [23].
The KEGG system allows interactive highlighting of signaling components
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Table 19.2. Web Resources

Resource URL

KEGG http://www.genome.ad.jp/kegg/pathway.html
BioCarta http://www.biocarta.com/genes/allpathways.asp
TRANSFAC http://www.biobase.de/pages/products/transfac.html
PAINT http://www.dbi.tju.edu/dbi/tools/paint/
WebGestalt http://genereg.ornl.gov/webgestalt/
SGD http://www.yeastgenome.org/

within a simple schematic presentation of the network information, which is
used by some Web tools for interpretation of the results of microarray analyses
[46]. The second database is the BioCarta pathways database, provided openly
by BioCarta, Inc. (San Diego, CA), that includes signaling pathways for mouse
and human, as well as many other cellular pathways similar to those in the
KEGG database. The BioCarta pathways are presented as high-quality figures
that indicate some aspects of protein structure; however, they do not allow
interactive annotation.

Both databases must be used somewhat carefully. Signaling pathways are
known to be cell-type-dependent, and the literature contains numerous exam-
ples of contradictory claims for network structure. The databases will also
sometimes miss a key published and accepted component of the pathways.
For example, the KEGG pathway for the yeast signaling pathways fails to
include the direct activation by a G-protein coupled receptor of the MAPK
cascade leading to the mating response, despite the publication of this mode of
activation in a review [39].

The systems for transcription factor identification from groups of genes
comprise two different approaches. The first contains curated lists of genes that
are believed to be regulated by specific known transcription factors, including
the gene, the consensus transcription factor binding sequence, and the evidence
for the claim. The primary database is TRANSFAC [29], although there are
many databases specific to organisms or included in organism-specific genome
databases. The second type uses information in these databases together with
genomic data to predict potential transcription factors for sets of genes based
on the presence of binding sites at a higher than expected rate in the up-
stream regions of the genes. For instance, PAINT relies on information from
TRANSFAC on consensus binding sequences to guide searching for binding
sites shared by many genes in a group, such as a cluster from an analysis [45].
Finding a significantly enhanced set of binding sites is then taken as evidence
for activity of the corresponding transcription factor. In addition, tools exist to
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Fig. 19.2. The tree relating the patterns identified by Bayesian decomposition as the number of posited patterns
increased from 5 to 20. The thickness of the connecting line indicates the correlation coefficient (thicker is closer
to 1), while the numbers in each node are merely used for linking patterns in the p matrix to genes in the f matrix.
(See color plate 19.2.)
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look for potential binding sites independent of known transcription factor sites,
for instance AlignACE [18]; however, for the approach here linking back to a
transcription factor is critical.

19.4 Example: Signaling Activity in Saccharomyces cerevisiae

Here we demonstrate the methodology using the the Rosetta compendium,
which provides a large set of replicated measurements of expression in 300
separate deletion mutants or chemically treated cultures of S. cerevisiae [19].
The data were downloaded from Rosetta Inpharmatics and filtered to remove
experiments where less than two genes underwent threefold changes and to re-
move genes that did not change by threefold across the remaining experiments.
The resulting data set contains 764 genes and 228 conditions. The Rosetta
gene-specific error model provides an estimate of the uncertainty based on the
replicates and 63 replications of control cultures [19].

The analysis proceeds by application of Bayesian Decomposition [33, 37,
38] positing many different potential numbers of transcriptional signatures
or patterns, estimation of the correct dimensionality for interpretation by a
consistency argument, and linking of the patterns to signaling pathways through
transcription factors. This then allows inference of the activity of signaling
pathways and proteins in specific conditions. The analysis here summarizes the
results presented previously [4].

19.4.1 Bayesian Decomposition Analysis

Bayesian Decomposition was applied multiple times to the reduced Rosetta data
set, with each application positing a different number of patterns (i.e., transcrip-
tional signatures), from 3 to 30. A tree was constructed using ClutrFree [5].
First, each analysis was represented as a tree level, beginning with the experi-
ment positing three patterns. Second, the next level was compared to the pre-
vious level by calculating the Pearson correlation between all nodes at the first
level and all at the second level. Third, connections were made from the highest
to the lowest correlation, with nodes removed from the process as they were
connected. Each remaining node was connected to the node at the previous
level that gave the highest Pearson correlation coefficient. This was repeated
for each additional level, until the full tree was constructed (see Figure 19.2,
where results for 5–20 patterns are shown). The first issue to resolve in
this analysis is the correct number of patterns, equivalent to identifying the
appropriate number of basis vectors (rows of p) needed to reconstruct the
data (a).
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Fig. 19.3. Schematic view of three MAPK modules that regulate mating, filamentous
growth, and high-osmolarity glycerol signaling pathways in the yeast Saccharomyces
cerevisiae. Activation of these pathways is determined by the state of the cell and
exposure to external signals.

In order to determine the dimensionality, we calculated the persistence of
a gene within the branches defined in Figure 19.2. The persistence is defined
by the number of consecutive times a gene appears within a branch given its
presence in a node at the present level. We conjectured that once we exceeded
the correct number of basis vectors, genes would be able to move more easily
between patterns (i.e., nodes) due to mathematical degeneracy as the number
of patterns increased (i.e., as we move down the tree), leading to a reduction
in the average persistence. The persistence as we increase the number of basis
vectors showed a significant drop between 15 and 16 basis vectors, suggesting
15 as the correct dimensionality for interpretation of the data.

19.4.2 Transcription Factors

The next step in the analysis is to relate the transcriptional signatures identified
in the analysis at 15 dimensions with the transcription factors of interest in the
experiment. Figure 19.3 shows the signaling pathways in S. cerevisiae as three
separate MAPK cascades [42]. The network actually uses the MAPKKK protein
Ste11p for all pathways and the MAPKK protein Ste7p for both mating and
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filamentation responses. In addition, the Ste12p transcription factor is required
for both mating and filamentation; however, in filamentation the coactivator
Tec1p is required. [Note: for yeast the suffix p indicates the protein and the
name without the p the gene.]

In order to identify which patterns relate to different transcription factors,
each pattern is explored for enhancement in gene ontology (GO) [3]. This
is approached in two ways using ClutrFree [5]. First, the enhancement is
calculated as

E = N term
patt /Npatt

N term
data /Ndata

(19.7)

where N term
patt is the number of genes with the GO term in the pattern, Npatt is

the number of genes in the pattern, N term
data is the number of genes with the GO

term in the full data set, and Ndata is the number of genes in the full data set.
Second, a hypergeometric test of overrepresentation of ontology terms in each
pattern is performed. The enhancement provides a useful simple estimate for
exploration, while the hypergeometric test insures that terms with few genes
are not erroneously highlighted. However, because genes encode proteins with
multiple functions, an ontology term may appear significant in a pattern when
the reason for association of some genes with the pattern is not due to that
specific function. Enhancement calculations allow a quick overview of terms
that may be related to processes, and it is the overall combination of terms that
provide insight. Here we use the MIPS ontology for yeast to assign biological
processes to genes [31]. The GO analysis allows each pattern to be interpreted in
terms of how likely it is to be related to signaling activity of interest to minimize
the amount of effort in the next step. Alternatively, one could immediately move
to link the individual genes associated with the patterns to transcription factors
as detailed below.

For this analysis, patterns 13 and 15 show significant enhancement in several
GO terms (enhancement given first for pattern 13, then for pattern 15): mating
type determination (E = 6.3, E = 7.2), mating (E = 6.1, E = 5.7), meiosis (E =
2.9, not enhanced), filamentation (not enhanced, E = 2.9), and development
(E = 6.1, E = 5.7), among other terms including several for signal transduction.
These enhancements suggest that patterns 13 and 15 are related to mating or
filamentation signaling pathway activity. No enhancement is seen in any pattern
that suggests activity of the high-osmolarity glycerol pathway; however, this is
not surprising since the cultures are all grown in rich medium, and the yeast
are unlikely to require proteins useful in high-osmolarity conditions.

Focusing on patterns 13 and 15, the individual genes that are highly asso-
ciated with the patterns can be explored for information on whether they are
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regulated by Ste12p or the Ste12p–Tec1p complex through use of information
in the Saccharomyces Genome Database [7]. Since Bayesian Decomposition
provides an amplitude of assignment for each gene with each pattern, the genes
can be ranked in order of strength of association with a pattern. For pattern 13,
the top 10 genes are (with M indicating known function in mating and S indi-
cating known to be regulated by Ste12p) Fig1 (M), Prm6 (M, S), Fus1 (M, S),
Ste2 (M, S), Aga1 (M), Fus3 (M, S), Pes4, Prm1 (M, S), a hypothetical ORF,
Bar1 (M). This provides strong support for linking pattern 13 to activation of
Ste12p. [As noted previously, many genes have not been fully elucidated as to
function with even fewer having been fully studied in terms of known transcrip-
tional regulation, so that having 5 of 10 genes known to be regulated by Ste12p
is quite strong evidence.] For pattern 15, 7 of the top 10 genes are transposable
element genes involved in gene rearrangement. The other three genes include
Prm5, which encodes a protein of unknown function, and two hypothetical
ORFs. Little is known about the genes directly regulated by the Ste12p–Tec1p
complex; however, it is known that activation of transposable elements is nec-
essary for filamentous growth [34, 35], so pattern 15 is likely the filamen-
tation response signature and thus linked to activation of the Ste12p–Tec1p
complex.

19.4.3 Inference on Signaling

From the transcription factors, we can infer activity of the previous protein in
the pathway using Figure 19.3. For instance, for pattern 13, we infer that Fus1p
has activated Ste12p, that therefore Ste7p has activated Fus1p, that Ste11p has
activated Ste7p, and on to other factors not shown here linking to a membrane
receptor. For pattern 15, we get activation of Ste11p and Ste7p as well; however,
we do not get activation of Fus3p, instead get activation of Kss1p. In reality,
life can be more complex even in yeast, as in certain conditions Kss1p has
been noted to substitute for Fus3p in the mating pathway. Nevertheless, this
approach allows prediction of specific signaling activity from microarray data.

19.4.4 Validation

The Rosetta data set also provides a way to validate this approach, at least for
S. cerevisiae. The inferences on signaling have relied only on the gene lists
contained in the F matrix. If the transcription factors have been correctly iden-
tified and linked to signaling pathways, any mutant that eliminates a key gene
encoding a signaling protein, as noted in the previous section, must eliminate
the presence of the pattern (13 or 15), since that pattern is the transcriptional
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response induced by activation of the pathway. The pathway clearly cannot be
activated if a required signaling protein is not present.

Pattern 13 shows near-zero signal (i.e., is absent) for the deletion mutants
of Ste11, Ste7, Fus3, and Ste12, while being present for the deletion mutant
of Tec1, which is the transcriptional cofactor for filamentation response. This
is exactly as expected for the mating pathway, as all signaling proteins in the
cascade and the transcription factor necessary to generate the transcriptional
response related to the mating signal do not contain the pattern. For pattern
15, the response is very similar. The signal is near zero for deletion mutants
of Ste11, Ste7, and Ste12. The Fus3 deletion mutant shows a signal for pattern
15, as appropriate, while the Fus3,Kss1 double deletion mutant does not (there
is no Kss1 single deletion mutant in the data set). However, the Tec1 deletion
mutant shows no signal for pattern 15, indicating that Tec1p is required for
filamentation [34]. Together the presence and absence of patterns for these
mutants, and for others detailed in [4], demonstrate that the transcriptional
signatures for two strongly overlapping signaling pathways can be separated
by this approach.

19.5 Conclusion

Many diseases, including cancer, develop because of errors in signaling, and
newer therapeutics specifically target proteins involved in cellular signaling.
However, these therapeutics are not always effective, both in human studies
and in model organisms. Microarrays provide one of the first truly global
measurements of biological functional response, so that use of transcriptional
data offers a chance to identify key points of failure for therapeutics and key
proteins required for disease progression. However, identification of signaling
protein activity is problematic due to the complexity of the biological system
and the limitations of the data.

Here we have demonstrated an approach that relies on models of signaling
pathways and their links to transcription factors identified through decades
of research in molecular biology, use of Bayesian methods to extract over-
lapping transcriptional signatures that can be linked to transcription factors
through annotations, and inference from the transcription factors back to the
signaling pathways. In this simplistic approach, which does not require a full
network model, the recovery of activity within S. cerevisiae is demonstrated.
The key components permitting this recovery are the identification of overlap-
ping transcriptional signatures using Bayesian Decomposition, estimation of
dimensionality by ClutrFree, and the linking of these signatures to transcription
factors using GO and the SGD database.
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As this methodology is extended into higher organisms, the signaling net-
works increase significantly in complexity, so that the simple approach of
moving from transcription factor activity to signaling proteins will require
modification. As noted in the introduction, a great deal of work has been done
on modeling networks. Importantly, work by Kholodenko and colleagues [6]
suggests that much of the biochemical complexity can be abstracted away,
so that relatively simple PBNs may be able to provide enough complexity to
recover significant biological behavior. As noted above, PBNs have the addi-
tional advantage of being mappable to Markov chains, permitting the efficient
computational methods already developed to be applied to the problem [12].

The use of Bayesian Decomposition to identify transcriptional signatures in
mammalian cells has already been successfully accomplished [25, 32]. While
estimation of dimensionality remains an issue, as with estimation of the correct
number of clusters in other approaches, ClutrFree provides one method of
addressing this issue. Hopefully a stronger statistical approach will allow more
reliable estimation in the future. Nevertheless, the key issue for extension
now is likely to be creation of reasonable network models for inference and
extension of data on transcription factors and the genes that they regulate. In
addition, as proteomics technologies improve, it should become easier to get
direct estimation of the phosphorylation state of some signaling proteins, which
should improve inference on the network models.
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Abstract

Data from high-throughput technologies, such as gene expression microarrays,
promise to yield insight into the nature of the cellular processes that have been
disrupted by disease, thus improving our understanding of the disease and
hastening the discovery of effective new treatments. Most of the analysis thus
far has focused on identifying differential measurements, which form the basis
of biomarker discovery. However, merely listing differentially expressed genes
or gene products is not sufficient to explain the molecular basis of disease.
Consequently, there is increasing interest in extracting more information from
available data in the form of biologically meaningful relationships between
the quantities being measured. The holy grail of such techniques is the robust
identification of causal models of disease from data.

The goal of this chapter is to survey computational learning methods that
extract models of altered interactions that lead to and occur in the diseased
state. Our focus is on methods that represent biological processes as Bayesian
networks and that learn these networks from experimental measurements of cel-
lular activity. Specifically, we will survey computational methods for learning
Bayesian networks from high-throughput biological data.

20.1 Introduction

Many diseases, especially cancers, involve the disruption or deregulation of
many cellular processes. It is hoped that high-throughput technologies, such
as gene expression microarrays – which provide a snapshot of the level of
gene transcription occurring in a cell, for many thousands of genes – will yield
insight into the nature of the affected processes, improve our understanding of
the disease, and hasten the discovery of effective new treatments.
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However, merely identifying differential measurements is not enough. For
instance, numerous studies [1, 2, 5, 8, 10, 16, 20, 23–26, 31, 32] have iden-
tified hundreds of genes that are differentially expressed between tumor cells
corresponding to prostate cancer of different grades and normal prostate cells.
Yet our detailed understanding of the genetic and/or regulatory events that lead
to the initiation and progression of prostate cancer remains incomplete. There
is increasing evidence that disease progression in complex diseases, especially
solid tumors, does not arise from an individual molecule or gene, but from
complex interactions between a cell’s numerous constituents and its environ-
ment [3].

Consequently, in addition to making inferences about the differential expres-
sion of individual measurements, such as gene and protein expression levels,
there is increasing interest in learning the underlying relationships between the
quantities being measured. For example, we might hope to obtain a network
of dependencies between the differentially expressed genes. Such a network
can help distinguish root causes from downstream effects of a cellular process
disruption. The goal of this chapter is to survey computational learning meth-
ods for elucidating from high-throughput experimental measurements, insights
into the nature of the altered interactions that lead to and occur in the diseased
state.

Biological interaction networks (often called pathways) can be represented
at several levels of abstraction ranging from network models which emphasize
the fundamental components (genes and metabolic products) and connections
between them (the L1 models as defined in [17]), to detailed differential equa-
tion models of the kinetics of specific reactions (the L2 models) [17, 18]. The
choice of abstraction level is generally a function of the biological problem
being addressed and the type and quantity of data available. For instance, mod-
els based on differential equations have been used for detailed modeling of
specific molecular interactions when time series data for the concentrations
of the various molecular components involved is available. Boolean networks
approximate gene expression values as binary variables that are either on or
off, and represent gene interactions as Boolean functions. Approaches based on
Bayesian networks [12] and their generalizations allow representations of mul-
tiple valued discrete values as well as continuous quantities. Bayesian networks
have a solid formal foundation in probability theory and naturally support rea-
soning about incomplete and noisy data. They have been used in a wide variety
of models generated from gene expression data including [4, 13, 15, 27–29].

The following section introduces Bayesian networks and their use in model-
ing biological processes. Section 20.3 describes challenges that arise in learning
Bayesian networks from high-throughput data. Section 20.4 presents methods
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for addressing these challenges. A complete example of structure learning from
expression data is presented in Section 20.5. Section 20.6 concludes the chapter
with a summary of the state-of-the art as well as open questions in the area.

20.2 Bayesian Networks

Bayesian networks are a compact graphical representation of the joint probabil-
ity distribution over a set of random variables, X1, . . . , Xn. A variable Xi can
represent the mRNA expression level of a gene, or expression level of a protein,
or the activity level of a signaling molecule. Typically, continuous expression
levels are discretized into two or more categories, for example, on/off for sig-
naling activity and high/medium/low for enzyme levels, by the selection of
appropriate thresholds. A Bayesian network specification has two components:

(i) A directed acyclic graph G = (V,E) with a node set V corresponding
to the random variables X1, . . . , Xn, and edge set E on these nodes. The
edges reflect conditional independence assumptions made. A node is con-
ditionally independent of all other nodes given its parents in the network.

(ii) A set θ of conditional probability distributions for each node in the
graph G. These probability distributions are local, and are of the form
P (Xi |ParentsG(Xi)).

The two components (G, θ ) specify a unique distribution on the random
variables X1, . . . , Xn.

P (X1, . . . , Xn) =
n∏

i=1

P (Xi |ParentsG(Xi))

Thus, unlike purely qualitative network models, Bayesian networks contain
quantitative information in the form of conditional probabilities of variables
given their parents in the network.

As an example, consider the portion of the PI3K/PTEN/AKT signaling path-
way implicated in androgen-independent prostatic adenocarcinoma [14]. PI3
kinase generates the potent phospholipid PIP3 in the absence of PTEN. PIP3
is absent in quiescent cells, but is significantly upregulated following stimula-
tion by growth and survival factors. PIP3 recruits AKT (a proto-oncoprotein),
which is activated by two kinases: PDK1 and PDK2. Once activated, AKT
suppresses apoptosis by phosphorylating and inactivating the pro-apoptotic
proteins caspase-9 and BAD. A Bayesian network representation of this
pathway is shown in Figure 20.1. The edges in the network topology mir-
ror the causal mechanisms in this pathway, and the conditional probability
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Fig. 20.1. The PI3K/PTEN/AKT signaling pathway represented as a Bayesian network.

PTEN PI3K P(PIP3 = high)
low low 0.1
low high 0.95
high low 0.05
high high 0.07

PIP3 PDK* P(AKT = high)
low low 0.05
low high 0.05
high low 0.05
high high 0.95

AKT P(CASP9 = high) P(BAD = high)
low 0.05 0.05
high 0.95 0.95

distributions associated with the nodes reflect our understanding of how the
individual components of the pathway work. The network topology makes a
number of conditional independence assumptions explicit. For instance, the
AKT levels are a function of its parents in the network: PIP3 and PDK12. The
influence of other nodes on the levels of AKT is mediated through their effects
on the levels of its parents. Thus,

P(AKT = high|PIP3, PDKI2, PTEN, PI3K, CASP9, BAD) =
P(AKT = high|PIP3, PDK12)

We say that AKT is conditionally independent of all other nodes in the
network, given its parent nodes. The quantitative network parameters model
the underlying processes. The first conditional probability table Pr (PIP3 =
high|PTEN, PI3K) represents a stochastic process that turns on the levels of
PIP3 when PTEN is underexpressed and there is plenty of PI3K available in
the cell. The levels of caspase-9 and BAD respond directly to the level of AKT.
AKT is activated by high levels of PIP3 and PDK12.

Bayesian networks are representations of the full joint distributions on their
nodes. In our example network which has seven Boolean nodes, we would
need 27 − 1 = 127 parameters to fully specify the distribution. Our factored
representation only requires 14 parameters. We can derive any probability
of interest from this model. For example, using standard Bayesian network
inference we can calculate that BAD levels are high when PTEN is suppressed
and PIP3 levels are high, and low otherwise. Note that having elevated levels
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of PTEN is not sufficient to raise levels of BAD unless PIP3 is also present.

P(BAD = high|PTEN = low, PIP3 = high) = 0.824

P(BAD = high|PTEN = low, PIP3 = low) = 0.090

P(BAD = high|PTEN = high) = 0.138

We now turn to the problem of learning such networks from available data on
cellular activity.

20.3 Learning Bayesian Networks

To learn a Bayesian network on variables X1, . . . Xn, we start with M measure-
ments of these n variables in a data set

D = {(X1(1), . . . Xn(1)), . . . , (X1(M), . . . , Xn(M))}
These measurements can be obtained from a variety of sources. One source
is flow cytometry, where each measurement (X1(i), . . . , Xn(i)) is a set of
n phosphorylated protein expression levels measured simultaneously in an
individual cell. Flow cytometry easily yields thousands of data points (M ≈
10,000). Using such data, Sachs et al. [27] automatically derived most of
the traditionally described signaling relations among 11 (n = 11) signaling
components in human immune system cells.

The data most commonly available at the current time are gene expression
microarrays that simultaneously measure the level of mRNA transcription for
tens of thousands of genes. For such data sets, n ≈ 12,500, while the number
of independent measurements M is very small; for example, M = 100 would
be a fairly large study. This chapter concentrates on the issues raised by this
kind of data, but many of the principles involved apply to other data types also.

The problem of learning Bayesian networks from data has been studied ex-
tensively over the past decade [13, 22]. Most approaches define a hypothesis
space of potential network models and use the data to find ones that are most
likely given the data. Learning a network model on a set X1, . . . , Xn of variables
entails inferring the graph of dependencies between them, as well as the param-
eters θ consisting of the local conditional probabilities: P (Xi |ParentsG(Xi)).
If the graph structure G is known, the parameters θ can be estimated from
the available data D by maximum likelihood estimation if M is large, or by
Bayesian estimation, if M is small and priors on the parameter vector θ are
available. The likelihood of the data D given parameter vector θ for a known
structure G is

L(θ ; D) = P (D|θ ) =
M∏
i=1

P (X1(i), . . . , Xn(i))|θ ).
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For maximum likelihood estimation, we estimate parameters θ∗
ML such that

θ∗
ML = argmaxθL(θ ; D).

When the number of samples M is small, the above approach tends to overfit
the model parameters to the available data. Bayesian methods reduce overfitting
by representing and using available knowledge about the parameters in the
form of a prior distribution P (θ ). For example, if we had knowledge about how
levels of AKT impacted the levels of caspase-9, then we can generate a prior
distribution such as P(AKT = high|caspase 9 = high) = 0.8 and P(AKT =
high|caspase 9 = low) = 0.2. The data D then serves to update the prior P (θ )
to yield the posterior probability distribution P (θ |D). By Bayes rule,

P (θ |D) = P (D|θ )P (θ )

P (D)
.

Then, the estimated parameter θ∗
MAP is

θ∗
MAP = argmaxθP (D|θ )P (θ ).

Since P (D) is independent of θ , it is treated as normalizing constant, and the
scoring function is simply the product of the likelihood of the data given the
parameter vector θ and the prior P (θ ). When the prior distribution is a Dirichlet
distribution, which is a conjugate prior, the posterior distribution P (θ |D) can
be easily computed in closed form.

Learning the structure G of the Bayesian network from data is a very chal-
lenging problem. The most common approach to discovering the structure of
Bayesian networks from data is to define a space of graph models to consider,
and then set up a scoring function that evaluates how well a model explains
the available data. Then, an optimization algorithm is used to search for the
highest-scoring model. The scoring function is the logarithm of the posterior
probability of the network structure given the data

Score(G; D) = logP (G|D) = logP (D|G) + logP (G),

where P (D|G) = ∫
θ
P (D|G, θ )P (θ |G) dθ . We average over all parameters θ

associated with a graph structure G.
Learning a Bayesian network that provably maximizes the above scoring

function is NP-hard [6]. Thus, learning optimal Bayesian networks for high-
throughput data sets is computationally infeasible.
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20.4 Algorithms for Learning Bayesian Networks

There are three main challenges in designing learning algorithms for Bayesian
networks. First, the number of potential networks in n variables is superexpo-
nential in n. The first challenge, therefore, is to choose an appropriate subset
of variables to include in the model. The second challenge is to devise and use
good approximation algorithms for guiding search toward biologically plausi-
ble solutions consistent with the data.

The second property that makes learning networks difficult is the very small
number, M , of samples. Any error associated with each sample is signifi-
cant, and could lead to erroneous network structures being learnt. Further,
when the number of available samples is limited, the data is not sufficient to
uniquely identify a structure. In fact, there may be an exponential number of
networks with the same score with respect to the available data. Enumerating
them is itself infeasible. Extracting common structural properties of a set of
high scoring networks, which is a form of model averaging, is usually em-
ployed for learning the graph structure of a domain. The third challenge is
therefore to devise and use robust methodologies to identify particular network
structures.

Another consequence of the small number of samples is that nodes can
reliably have at most two or three parents. There is simply insufficient data from
which to reliably learn the conditional probability distribution of any nodes with
more parents. The natural representations for many biological networks would
contain many variables with more parents, so this is a severe limitation that
raises challenging issues for determining the biological meaning and validity
of the computed networks.

The remainder of this section will address in detail each of these challenges.

20.4.1 Node Selection

In ab initio construction of gene regulatory networks, a starter set of differ-
entially expressed genes obtained from a preprocessing phase (such as by
clustering or correlational analyses followed by thresholding on p values) is
used [13, 15, 28]. A particular danger of the ab initio approach is that it may
select several highly correlated variables. Because there are so few samples,
this is inappropriate, since the learnt network will then more likely correspond
to noise in the data than to a functional relationship between the genes involved.
Nevertheless, while learning Bayesian networks we clearly expect some corre-
lations, so how can we select an appropriate subset of genes from the thousands
of potential candidates in a typical high-throughput experiment? One approach
is to consider variables that occur on specific pathways of interest, as in [9].
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Tools such as Cytoscape [30] and GenMAPP [7] make this selection easy to
perform.

20.4.2 Computational Complexity

Since learning optimal Bayesian networks from data is NP-hard, most net-
works of practical interest are much too large for exact methods to be feasible.
Thus considerable research is devoted to finding good approximations to opti-
mal networks. Even so, many of these approximation methods are themselves
computationally infeasible for problems involving several thousand genes.

20.4.2.1 Greedy Hill-Climbing Algorithm

A standard algorithm for finding an approximately optimal network is to start
with a candidate network (such as the network with no edges), and consider a
set of potential modifications, such as the addition, removal, or reversal of an
edge between nodes (subject to the acyclic constraint). The scoring function,
P (G|D), is evaluated for every modified network. The highest-scoring modified
network becomes the current candidate, and the process is repeated until no
modified network scores higher than the current candidate. A well-known
limitation of this algorithm is that it may become trapped in a local maximum,
so it is usual to restart the hill-climbing process a number of times from random
permutations of the best candidate, and to keep the network that scores highest
overall.

The major computational cost of this algorithm is evaluating the scoring
function for each potential candidate network. However, the overall score is
composed of the scores for each node given its parents in the network. Many of
these node configurations will be shared by many of the networks considered,
so the computation can be made more efficient by caching the scores for these
nodes. Even so, computing the score for each node, given its parents, for all
combinations of parents considered by the algorithm is the major computational
expense.

20.4.2.2 Sparse Candidate Algorithm

To reduce the computational expense of learning an approximately optimal
Bayesian network containing a few hundred variables, Friedman et al. [13]
introduced the sparse candidate algorithm, in which the potential parents of a
node in the network are initially limited to the k nodes with which it is most
highly correlated. Any such nodes that do not appear as parents in the learned
network are replaced by the next most highly correlated nodes, and the entire
process is repeated. If k is much less than the number n of nodes, the total search
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space is reduced and, more importantly, far fewer parent configurations must
be evaluated for each variable (at most 2k instead of 2n). This approximation
algorithm was used in [12] to reconstruct portions of the yeast cell cycle from
expression data obtained at different points in the cell cycle. Each measurement
was treated as an independent sample, and an additional node representing the
cell cycle phase was introduced as a mandatory root node in the network. Using
no prior biological knowledge or constraints, the method identified several
important subnetworks of interactions.

20.4.3 Identifying Robust Network Features

Although gene expression microarrays measure the expression levels of many
thousands of genes simultaneously, a typical study includes at most a few
hundred different samples, which is far too few to reliably reconstruct a unique
network model. In fact, it is not unusual for an exponential number of different
networks on a given set of variables to have very similar high scores! To
circumvent this fundamental limitation on the amount of data needed to learn
network structures with high confidence, it is often more appropriate to learn
the probabilities of specific network features, such as edges. Specifically, the
probability of a network feature f given the data D is obtained by summing
the probabilities of all graphs in which the feature occurs:

∑
G P (G|D)f (G)

where f (G) is 1 if the feature is present in graph G, or 0 if not. Note that
the resulting set of network features is not necessarily a Bayesian network; for
instance, an edge between two commonly connected variables need not always,
or even predominately, occur in the same direction.

A simple approach for estimating this probability is to learn a large number
of approximately optimal, but different, networks from the data, and then count
those network features (such as edges between variables) that are common to
these high-scoring networks.

Friedman and Koller [11] describe an efficient Bayesian approach for esti-
mating the probability of network features across all high-scoring networks.
They introduce a total order between nodes: only nodes that occur before a node
can be parents of that node. They show that the probability of a network feature
due to all graph structures consistent with a specific fixed order of variables
can be computed efficiently. The total probability of each network feature is
then computed by using Markov chain Monte Carlo (MCMC) to integrate over
all possible orders. MCMC over the space of orders instead of directly over
the space of Bayesian networks converges to the stationary distribution of the
Markov chain much faster, since the space of orders is much smaller and much
less peaked than the space of Bayesian networks. Friedman and Koller showed
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that MCMC over orders converges at least 10 times faster than MCMC over
Bayesian networks (some of which did not converge within the limits on the
number of iterations). Koivisto and Sood [19] modify this approach by using
an efficient exponential algorithm to sum over all possible orders, which is
computationally feasible for networks of up to about 30 nodes.

A significant issue with both approaches is that the robust features identified
are not necessarily biological in origin. As mentioned above, gene expres-
sion data typically contains many highly correlated genes. We “identified”
significant gene interactions amongst a set of moderately correlated candidate
genes by extracting those edges common to hundreds of high-scoring Bayesian
networks learnt from the discretized gene expression data using the sparse can-
didate algorithm. However, when we modified the discretization method, the
set of edges obtained changed drastically. Since many of the genes were reason-
ably correlated, we believe that many of the edges common to the high-scoring
networks are merely artifacts of the discretization.

To overcome this problem it is not sufficient merely to require that the genes
included in the network not occur in the same cluster, since typical clustering
methods exclude all but the most highly correlated genes to reduce the number
of false positives identified. Consequently, many of the excluded genes are
still sufficiently correlated to cause problems. This is a significant issue for
applying these methods to genetic pathways, since genes within the same (or
even a closely related) pathway are expected to be highly correlated.

20.4.4 Incorporating Known Biological Information

A complementary approach for overcoming the problems created by the small
number of samples is to incorporate known biological information into the
network learning process, such as by incrementally adding additional genes
into the network using existing knowledge about gene interactions. Segal et al.
[29] have combined gene expression data and promoter sequence data to iden-
tify transcriptional modules in Saccharomyces cerevisiae. Bar-Joseph et al.
[4] combined genome-wide location data with the gene expression data to
obtain insights into regulatory networks for the same organism.

Another pathway-centric line of work is exemplified by that of Mamitsuka
and Okuno [21]. They observe that current metabolic interaction maps imply
many possible metabolic pathways, only some of which are biologically ac-
tive. By synthesizing genetic pathways from the interactions described in these
metabolic interaction maps and evaluating their likelihood using existing pro-
tein class information and gene expression microarray data, they were able to
identify specific biologically active pathways.
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Koivisto and Sood [19] describe an extension of their feature estimation
algorithm that allows biological information to constrain the possible variable
orders, thus making exact structure discovery feasible for larger networks.

Sachs et al. [27] incorporated interventional data into their network learn-
ing algorithm. By directly perturbing the phosphorylation states of measured
molecules, they were able to infer more strongly whether one molecule was
upstream, downstream, or neither of other molecules with which it was corre-
lated.

20.4.5 Biological Relevance and Validation

It is tempting to think that Bayesian networks can naturally represent the
modularity found in biological pathways, with the parent–child relationship
implying causality. For instance, Sachs et al. [27] used the directionality of
parent–child relationships to encode event cascades in signaling networks. A
common misgiving is that feedback loops in pathways cannot be represented by
acyclic Bayesian networks, but a temporal extension called dynamic Bayesian
networks [33] enables the loop to be represented by unrolling it over time.

In practice, however, the interpretation of a network structure derived by
computational methods is not trivial. The parent–child relationship in a de-
rived network need not be causal. Even if causal, an edge between variables
in a Bayesian network does not imply a direct biological mechanism. There
may be a number of intermediate variables between the linked variables that
have not been included in the network being modeled. Studies that recreate
a known network, perhaps with some new interactions, from high-throughput
data, are easily interpretable. It remains a challenge to understand the biolog-
ical significance of a network learnt de novo from biological data, especially
gene expression data for which the only realistic prospect is to learn network
features.

20.5 Example: Learning Robust Features from Data

To illustrate the learning of robust network features from data, we will learn
the likely links in a Bayesian network for a subset of the publicly available
prostate cancer data obtained by Singh et al. [31]. This data set consists of 102
Affymetrix U95Av2 gene expression arrays from prostate samples (50 normals
and 52 tumors). The Affymetrix CEL files were processed using Bioconductor
to obtain numeric gene expression values for over 12,000 genes.

All gene expression values were individually discretized into three values
(low, medium, and high) by determining the two cutoff points that would
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maximize a weighted average of the gene’s self-information (Is) and its mutual
information (Im) with the sample classification, specifically 0.425Is + Im. The
weight of 0.425 was chosen empirically because it appears to balance the
tendency to create small discretization ranges that are probably overfitting the
data, with the creation of ranges with a uniform number of members.

From this database of discretized genes, we selected probe sets indicative
of 13 genes known to be associated with glutathione metabolism. Reduced
glutathione (GSH) is an important cellular tripeptide that plays a vital role
in the degradation of toxic cellular compounds. GSTM5, GSTP1, GGTL4,
and GGTLA1 catalyze the conjugation of GSH with toxic cellular compounds
and its subsequent decomposition. Reformation of GSH from its oxidized
form involves GSR, GPX4, IDH1, and IDH2, while GSS, GCLC, and GCLM
are responsible for the de novo synthesis of GSH from its three constituent
peptides. The de novo synthesis rate is controlled by GCLC, whose expression
is determined by transcription factors KEAP1 and NFE2L2.

We learnt 500 different high-scoring Bayesian networks from this discretized
data using the sparse candidate algorithm with a limit of at most three parents
per node. Duplicate networks were excluded by storing generated networks in
a database, and excluding previously encountered networks from the search
space. The scores of the high-scoring networks were recorded and checked to
verify there was no trend.

The network shown in Figure 20.2 was obtained by recording an edge be-
tween nodes if there was an edge between those nodes – in either direction –
in at least 60% of the high-scoring networks. The most frequently occurring
edges occur in more than 99% of the networks and are thick black, and get
progressively lighter with reduced frequency (90% black, 80% dark gray, 70%
medium gray, 60% light gray). Edges between positively correlated nodes are
terminated with a solid arrow if the edge occurs in the same direction at least
90% of the time, with an open arrow if the edge occurs in the same direction
between 60 and 90% of the time, or nothing if neither direction is dominant.
Edges between inversely correlated nodes are terminated with a solid box (at
least 90% directionality), an open box (between 60 and 90%), or a bar (less
than 60%). Edges between nodes without a simple linear correlation are ter-
minated in a solid star (and all occur in the same direction at least 90% of the
time).

Deriving a biological explanation of these links is challenging. However, by
employing what is known about the biological interactions between these genes
and their products, we can interpret the significance of the edges that occur in
this network, and thereby gain an understanding of the types of biological
inferences that could be made from networks of this kind.
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Fig. 20.2. Frequent edge network between 13 genes involved in glutathione synthesis,
reclamation, and conjugation. Edges denote commonly occurring edges in 500 high-
scoring Bayesian networks learnt from the data, with edge color corresponding to
edge frequency, and edge termination denoting positive, negative, or nonmonotonic
correlations, as detailed in the text.

From this network, it is apparent that the levels of IDH1, IDH2, and GPX4,
which are all involved in the conversion of oxidized glutathione to GSH, are
highly correlated. The absence of arrows on the edges between these nodes
suggests that this data is insufficient to separate the nodes in this clique. Node
GGT1 is also closely correlated with IDH1 and IDH2.

Interestingly, GSR, which catalyzes conversion of oxidized glutathione to
GSH, is inversely correlated with GPX4 (and IDH1, IDH2). The two genes
that mediate conjugation of GSH with toxins, GSTP1 and GSTM5, occur in
different parts of this network, with GSTP1 correlated to GPX4 and GSTM5
inversely correlated with the whole clique of IDH1, IDH2, GPX4, and GGT1.

In the de novo synthesis of GSH, the final, but not rate limiting, step is
catalyzed by GSS, whose expression depends most closely on that of GGT1
and GGTLA1, which both occur in the downstream degradation of GSH after
its conjugation with toxins.

The rate-limiting step in the de novo synthesis of GSH is controlled by a dimer
of the GCLC and GCLM proteins, with GCLC expression controlling the rate.
GCLC is expressed when the NFE2L2 protein migrates from the cytoplasm
to the nucleus, and this migration is triggered by KEAP1 expression. Thus,
KEAP1 expression is the effective regulator of GCLC expression, and so it is
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reasonable that the figure shows KEAP1 and not NFE2L2 as a parent of GCLC.
The edges from the parents of GCLC to GCLC terminate in a star because
GCLC expression is highest for medium levels of each parent. High-levels of
KEAP1 also correlate with reduced conversion of oxidized glutathione into
GSH via GSR. Consequently, for the highest-levels of KEAP1 expression, the
levels of GSH would be low since it is being neither synthesized nor reclaimed.

As exemplified by the relations between KEAP1, NFE2L2, and GCLC, the
edges in this diagram do not (necessarily) represent direct biological interac-
tions at the protein–protein, protein–DNA, or DNA–DNA levels, but represent
a higher level of effective interactions. For instance, expression of GSS, a key
gene in GSH synthesis, is highly correlated with its downstream degradation
by GGT1 and GGTLA1, even though there is no direct biological interac-
tion. Thus, interaction networks learnt via Bayesian networks show promise
for modeling the effective high-level mechanisms that control the underlying
molecular interaction pathways.

20.6 Conclusion

This chapter has surveyed computational learning methods for elucidating
Bayesian network models, or at least robust features of such models, from
high-throughput experimental measurements, such as gene expression data.
The challenges imposed by the large number of variables but the small number
of sample points were described, and a variety of computational strategies for
addressing these challenges were outlined. To date, Bayesian networks have
been successfully inferred for microarray data from yeast and for flow cytome-
try data from human immune system cells, but not for gene expression data from
mammalian or oncological sources. Computational inference of Bayesian net-
work structures from high-throughput data is difficult, but new computational
methods are making it feasible to automatically deduce robust interactions
between variables. The application of these methods to high-throughput bio-
logical data sets will help us to understand the nature of the altered biological
interactions that lead to and occur in many diseases.
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Bayesian Networks and Informative Priors:
Transcriptional Regulatory Network Models

ALEXANDER J. HARTEMINK
Duke University

Abstract

We discuss the use of Bayesian networks as robust probabilistic models of the
multivariate statistical dependencies among interacting variables in transcrip-
tional regulatory networks. We explain how principled scores can be computed
to compare network models with one another in terms of their ability to explain
observed data simply. With principled scores, we can automatically learn static
or dynamic network models that provide simple explanations for a variety of
high-throughput data. We make a case for, and demonstrate the utility of, infor-
mative priors over network structures and parameters: informative priors can be
used to incorporate different kinds of data into the learning process, and also to
guide the learning process toward network models that exhibit greater biolog-
ical plausibility. Results from both simulated and experimental data illustrate
the benefits of this modeling framework.

21.1 Introduction

Proteins are the primary molecular workhorses of the cell, playing signifi-
cant roles in metabolism, biosynthesis and degradation, transport, homeostasis,
structure and scaffolding, motility, sensing, signaling and signal transduction,
replication, and repair. However, one of the most intriguing roles for proteins
is that of transcriptional regulation: control of precisely which genes are being
transcribed into RNA at any given time. Since ribosomes subsequently trans-
late most of this RNA into protein, proteins are in large part responsible for
regulating their own existence. Although much has been learned about the large
network of molecular interactions that regulate transcription, it would probably
be fair to say that far more still remains to be learned.

Discovering and understanding the operation of large transcriptional regula-
tory networks is clearly an important problem in both molecular and synthetic

401
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biology. Progress has been accelerated by the advent of high-density DNA
microarrays, which can be used to profile levels of RNA expression across
the entire genome. When this expression data started becoming available after
1996, the first generation of methods for analyzing it were data-driven, initially
unsupervised (e.g., clustering, correlation, and visualization) and later also
supervised (e.g., classification). While these kinds of data-driven methods are
useful in uncovering interesting patterns in the data, they typically provide little
traction for explaining the biological mechanisms that give rise to these pat-
terns. To overcome this limitation, model-driven methods for analyzing RNA
expression data began to be developed.

The suggestion that probabilistic graphical models – and Bayesian networks
in particular – might serve as an appropriate framework for representing tran-
scriptional regulatory networks and learning models of their structure in the
presence of noisy high-throughput RNA expression data was made indepen-
dently in 1999 at least twice (and, in all likelihood, more than twice): by Murphy
and Mian in an unpublished technical report [23], and by Hartemink and col-
leagues in an invited talk [11]. The first publications demonstrating the utility
of this approach seem to be the independent work of Friedman et al. [8] and
Hartemink et al. [14], shortly thereafter. These papers share a common theme
beyond the choice of Bayesian network models: both realized that there was not
enough available expression data to accurately learn large networks (a fact that
has later been demonstrated repeatedly through simulation studies [18, 34]).
Friedman and colleagues responded by focusing on network features that occur
with high frequency in a bootstrap analysis, while Hartemink and colleagues
restricted their attention to small sets of network models and investigated the
utility of biologically relevant informative parameter priors.

However, RNA expression data is not the only high-throughput data available
for providing insight into transcriptional regulatory networks: DNA sequence,
protein-DNA binding, and protein–protein interaction data are also available.
Protein-DNA binding can be assayed in vitro using a protein binding microar-
ray (PBM) [22] or in vivo using chromatin immunoprecipitation followed by
microarray (ChIP-chip; sometimes called transcription factor binding location
analysis, or location analysis for short) [26]. Protein-protein interactions can
be queried experimentally using techniques like yeast two-hybrid (Y2H) or
affinity purification followed by mass spectrometry (AP-MS). Incorporating
evidence from multiple kinds of data can often overcome the limitations of any
one kind of data, because data collected using different technologies usually
offer different perspectives on a problem; jointly analyzing such data in a single
framework enables a consensus perspective to emerge. In addition, analysis of
many kinds of data together is likely to produce more accurate results since
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noise characteristics and biases of the various technologies should be largely
independent.

Many have recognized the value in jointly analyzing disparate kinds of
biological data. Marcotte and colleagues made substantial early progress in re-
fining our understanding of protein-protein interactions by integrating multiple
kinds of data (see, e.g., [21]), while Ideker and colleagues used both RNA and
protein expression data in predicting the effects of perturbations on regulatory
networks [19]. Our work in 2001 [12] and early 2002 [15] introduced two new
concepts: first, using various kinds of data to derive informative structure priors
for guiding Bayesian inference, an idea later extended by Nariai et al. [24] to
protein-protein interaction data; and second, combining RNA expression data
with protein-DNA binding data, an idea which has been the basis of many later
developments in the field (see, e.g., [2, 28] and [32] (this volume)).

After a brief introduction to Bayesian networks and Bayesian network infer-
ence (see also [4] (this volume), which provides a more lengthy introduction),
we summarize our work on the use of informative priors for learning Bayesian
models of transcriptional regulatory networks. We also present examples of the
application of this approach to both simulated and actual experimental data.

21.2 Bayesian Networks and Bayesian Network Inference

Imagine a set of N random variables X = {Xi}Ni=1 and consider how these
variables may depend on one another. At one end of the spectrum, the variables
may be completely independent; at the other end of the spectrum, they may be
completely interdependent, which is to say that no two random variables are
independent of one another, even conditioned on a subset of the other variables.
Bayesian networks are a class of models for representing and reasoning about
sets of random variables with conditional dependence relationships within
this full range of possibilities – from complete independence to complete
interdependence.

A Bayesian network (BN) is a graphical model: it uses a graph to represent
information about the conditional independencies among random variables. In
our context of modeling transcriptional regulatory networks, variables might
represent RNA concentrations, protein concentrations, protein modifications
or complexes, metabolites or other small molecules, experimental conditions,
genotypic information, or conclusions such as diagnosis or prognosis. Variables
can be discrete or continuous. To simplify exposition, we consider only discrete
variables for the remainder of this chapter. Each variable is thus in one of a
finite set of states, and the number of states used to model a variable represents a
tradeoff between on the one hand, capturing a variable’s behavior with sufficient
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precision, and on the other hand, retaining an ability to interpret what the states
of the variable mean, as well as managing the computational and statistical
complexity of learning models over variables with large numbers of states.

Each directed edge in the graph represents a conditional dependency be-
tween a pair of random variables; more precisely, the absence of a directed
edge between two vertices represents a conditional independency between the
corresponding pair of random variables. These conditional independencies are
all summarized by the so-called Markov property: variables are conditionally
independent of their nondescendants given their parents. The fewer edges a
model has, the more constrained the model is. Thus, a graph over completely
independent random variables is empty, while a graph over completely inter-
dependent random variables is complete. In practice, we seek sparser (simpler)
models because they are able to explain “indirect” dependencies through more
“direct” dependencies mediated by other variables.

In characterizing the conditional dependencies among a set of random vari-
ables, not only does a BN provide a qualitative description in the form of
a graph, but it also provides a quantitative description. Following from the
Markov property, the joint probability distribution over the space of variables
can be factored into a product over variables, where each term is a probability
distribution for that variable conditioned on the set of its parent variables:

Pr(X) ≡ Pr(X1, . . . , XN ) =
N∏

i=1

Pr(Xi | Pa(Xi)). (21.1)

We will denote by θ the parameters that collectively characterize the conditional
probability distributions on the right-hand side of (21.1).

Because variables can have many parents, BNs are not limited to pairwise
interactions between genes, but rather can describe arbitrary combinatorial
control of transcriptional regulation; this is particularly straightforward when
working with discrete variables. Also, due to their probabilistic nature, BNs are
robust in the face of both noisy data and imperfectly specified transcriptional
regulatory networks.

21.2.1 Dynamic Bayesian Networks

A dynamic Bayesian network (DBN) [9] extends the notion of a BN to model
the stochastic evolution of a set of random variables over time; the structure
of a DBN thus describes the qualitative nature of the dependencies that exist
between variables in a temporal process. We use Xi[t] to denote the random
variable Xi at time t and the set X[t] is defined analogously. Here, the evolution
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of the temporal process is assumed to occur over discrete time points indexed
by the variable t ∈ {1, . . . , T }, although continuous time DBNs also exist [25].
Under such an assumption, we have T × N interacting random variables where
previously we had N . The resultant joint probability distribution is

Pr(X[1], . . . , X[T ]) =
T∏

t=1

[
N∏

i=1

Pr(Xi[t] | Pa(Xi[t]))

]
. (21.2)

To simplify the situation, we make two further assumptions. First, we as-
sume that each variable depends only on variables that temporally precede it.
This fairly innocuous assumption still allows us to model natural cyclic phe-
nomena like feedback loops, but guarantees that the underlying graph will be
acyclic. It also greatly simplifies the computational complexity of learning.
As one example, if we were to further restrict variables in our network to
have at most k parents, we could find the globally optimal network in poly-
nomial time: O(Nk+1). Second, we assume the process is a stationary first-
order Markov process, which means that Pr(X[t] | X[t − 1], . . . , X[1], t) =
Pr(X[t] | X[t − 1]). Given these two assumptions, the variables in Pa(Xi[t])
are a subset of X[t − 1]. The underlying acyclic graph with T × N vertices
can now be compactly represented by a (possibly cyclic) graph with N vertices,
where an edge from Xi to Xj indicates that Xj [t] depends on Xi[t − 1].

21.2.2 Scoring Models with the Bayesian Scoring Metric

To learn a network model from observed data, we want to maximize some
scoring function that describes the ability of a network to explain the observed
data simply. In the case of BNs, we can employ the Bayesian scoring metric
(BSM). The scores produced by the BSM permit us to rank alternative models,
and the score difference for any two models leads to a direct significance
measure for determining how strongly one should be preferred over the other.
According to the BSM, the score of a model is defined as the logarithm of the
probability of the model being correct given the observed data. Formally,

BSM(S) = log Pr(S | D) = log Pr(S) + log Pr(D | S) + c, (21.3)

where the first term in the last expression is the log prior distribution of the
model structure S, the second term is the log (marginal) likelihood of the
observed data D given S, and c is a constant that does not depend on S and can
thus be safely ignored when comparing structures on the basis of their scores.
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The marginal likelihood term can be expanded as

Pr(D | S) =
∫
θ

Pr(D, θ | S) dθ =
∫
θ

Pr(D | θ , S) Pr(θ | S) dθ , (21.4)

and is analytically tractable when the data are complete and the variables
in the network are discrete [16], as we assume here. Marginalizing in this
way introduces an inherent penalty for model complexity, thereby balancing
a model’s ability to explain observed data with its ability to do so simply.
Consequently, it guards against overfitting models to data when data are limited.

21.2.3 Learning Networks: Model Selection and Averaging

Finding the highest-scoring model under the BSM for a given set of data is
known to be NP-complete in the general case [5] (although see the discus-
sion of DBNs above). As a result, in the general case, we resort to heuris-
tic search strategies to find good models. Commonly used strategies include
greedy hill-climbing, greedy random, genetic algorithms, Metropolis, and sim-
ulated annealing. We have implemented each of these search strategies and
have observed that in our own context, simulated annealing seems to find the
highest-scoring models, although in many cases greedy methods identify the
same models in much less time. The temperature schedule we employ allows
for “reannealing” after the temperature becomes sufficiently low.

We need not select only a single maximum a posteriori model. A more
principled Bayesian approach is to compute probabilities of features of interest
by averaging over the posterior model distribution. Using model averaging in
this way reduces the risk of overfitting the data by considering a multitude of
models when computing probabilities of features of interest. For example, if
we are interested in determining whether the data D support the inclusion of
an edge from variable Xi to variable Xj , we compute

Pr(Eij | D) =
∑

S

Pr(Eij | D, S) · Pr(S | D) =
∑

S

1ij (S) · eBSM(S),

where Eij is a binary random variable representing the existence of an edge
from Xi to Xj , and 1ij (S) is an indicator function that is 1 if and only if
S has an edge from Xi to Xj . However, this sum is difficult to compute
because the number of structures S is enormous. Fortunately, it is possible to
approximate this sum by sampling, or since the vast bulk of its mass lies among
the highest-scoring models, to further approximate by restricting our attention
to the highest-scoring models we encounter in our search. We then compute
an appropriately normalized version of the last expression using only these
models.
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21.2.4 Prior Establishment

In a Bayesian setting, we need to establish prior distributions both over param-
eters θ and over network structures S. In a discrete BN satisfying reasonable
assumptions, the prior over parameters must be a product-of-Dirichlet distribu-
tion [17]. If prior information about parameters is available, this can be captured
in the form of an equivalent prior network [17]. Otherwise, an uninformative
prior is frequently employed. In either case, an “equivalent sample size” needs
to be specified, which is a measure of how confident we are in the prior relative
to the quantity of data.

An especially common choice for the prior over structures is to assume that it
is uniform; in this case, the corresponding term in (21.3) can be safely ignored
since it is the same for all structures. In the rare instance where an informative
prior is chosen, it is typically hand-constructed by domain experts [16]. Here, we
summarize a novel approach for automatically constructing informative priors
over network structures based on evidence provided by other kinds of data.

21.3 Adding Informative Structure Priors

To complement RNA expression data, we can extend our BN framework to
include data describing the genome-wide DNA binding locations of protein
transcription factors. If a transcription factor is reported to bind DNA upstream
of a particular gene, it provides evidence that the factor is involved in the
regulation of that gene. We can incorporate this evidence when scoring our
BN models by modifying the prior distribution over structures. The Bayesian
methodology has a natural provision for incorporating prior information into its
scoring metric; in practice, determining appropriate weights for diverse sources
of information poses a significant challenge.

We can incorporate an informative structure prior in two ways. First, we
can adopt what we call a “hard” prior, which is uniform except that it gives
zero probability to structures that do not satisfy constraints specifying which
edges are required to be present and which are required to be absent. We
can implement this prior by restricting our search algorithms to move only
through the space of valid network structures. While this means we search in
a smaller space, it is inconsistent with the notion that high-throughput data are
generally quite noisy. Second, and alternatively, we can adopt what we call a
“soft” prior, with varying but positive weights on all networks, down-weighting
rather than excluding structures that do not satisfy the constraints. In such a
setting, protein-DNA binding location data provides evidence as to whether a
regulatory relationship exists, and the more significant the location data (lower
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the p value), the more likely the edge is to be included. As a consequence,
this prior is subtler and more robust; nevertheless, it remains factorable in the
context of a DBN, enabling computationally efficient local search. In fact, we
can learn a DBN model using a soft informative structure prior in essentially
the same amount of time as with an uninformative uniform prior. We describe
this in more detail in the following sections.

21.3.1 Probability of an Edge Being Present

Transcription factor binding location data provides (noisy) evidence regarding
the existence of regulatory relationships between a transcription factor and each
of the genes in the genome. This evidence is reported as a p value, and the
probability of an edge being present in the true regulatory network is inversely
related to this p value: the smaller the p value, the more likely the edge is to exist
in the true structure. In previously published work [3], we provide a detailed
derivation of a function for mapping p values to corresponding probabilities of
edges being present in structure S, but here we simply state the results. Let β

denote Pr(Eij ), the prior probability that an edge exists from Xi to Xj , which
we take to be constant for all i and j . Using Bayes’ rule, we can show that the
probability of Eij after observing the corresponding p value is

Prλ(Eij | Pij = p) = λ e−λpβ

λ e−λpβ + (1 − e−λ)(1 − β)
, (21.5)

where λ is a parameter controlling the amount of confidence we place in the
reported p values as accurate indicators of binding and nonbinding. Some
insight into the role of λ can be gained by considering the value p∗ obtained
by solving the equation Prλ(Eij | Pij = p∗) = 1/2, which yields

p∗ = −1

λ
log

[
(1 − e−λ)(1 − β)

λβ

]
. (21.6)

For any fixed value of λ, an edge from Xi to Xj is more likely to be present
than absent if the corresponding p value is below this critical value p∗ (and
vice versa). As we increase the value of λ, the value of p∗ decreases and we
become more stringent about how low a p value must be before we consider it
as prior evidence for edge presence. Conversely, as λ decreases, p∗ increases
and we become less stringent; indeed, in the limit as λ → 0, we have that
Prλ(Eij | Pij = p) → β independent of p, revealing that if we have no con-
fidence in the location data, the probability of Eij is the same value β both
before and after seeing the corresponding p value, as expected. Thus, λ acts
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as a tunable parameter indicating the degree of confidence in the evidence
provided by the location data; this allows us to model our belief about the noise
level inherent in the location data and correspondingly, the amount of weight
its evidence should be given.

One approach to suitably weighing the evidence of the location data would
be to select a single value for λ, either through parameter estimation or by some
heuristic like finding the value of λ that corresponds to a certain “magic” value
for p∗, such as 0.001. Instead, we adopt a Bayesian approach that places a prior
on λ and then marginalizes over it. The net effect of marginalization is an edge
probability that is a smoother function of the reported p values than without
marginalization.

21.3.2 Prior Probability of a Structure

The prior probability of a structure Pr(S) is proportional to the following
product over the edges in S:

∏
{ij : 1ij (S)=1}

[
Pr(Eij | Pij = p)

1 − Pr(Eij | Pij = p)

]
. (21.7)

The normalizing constant can be safely ignored since it is the same for all
structures. Analogous to the likelihood calculations, the calculations required
for updating the structure prior under a local change to S are computationally
efficient because the structure prior factors over the edges in S, as shown
in (21.7). In particular, we need not recompute the entire prior from scratch
with each local change.

Note that in the absence of location data pertaining to a particular edge, we
simply use the probability Pr(Eij ) = β for that edge. Our informative prior is
thus a natural generalization of traditional priors: in the absence of any location
data whatsoever, the prior probability of a network structure is exponential in
the number of edges in the graph, with edges favored if we choose β > 0.5 and
edges penalized if we choose β < 0.5. In the special case where β = 0.5, the
prior over structures is uniform.

21.4 Applications of Informative Structure Priors

In this section, we present two examples of how BN models and informative
structure priors can be used to elucidate transcriptional regulatory networks
in the yeast Saccharomyces cerevisiae. We examine networks responsible for
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controlling the expression of various genes that code for proteins involved in
pheromone response and in cell cycle regulation. With respect to the former,
the protein Ste12 is the ultimate target of the pheromone response signaling
pathway and binds DNA as a transcriptional activator for a number of other
genes. Transcription factor binding location data indicates which intergenic
regions in the yeast genome are bound by Ste12, both in the presence and
absence of pheromone [26]. With respect to the latter, a number of known cell
cycle transcription factors have also been profiled by location analysis [20, 29].

To demonstrate the full range of methods discussed above, in the first example
we use a model averaging approach with a hard informative structure prior to
learn a static BN model, while in the second example we use a model selection
approach with a soft informative structure prior to learn a dynamic BN model.

21.4.1 Pheromone Response: Static Network, Model Averaging

In the case of pheromone response, we used a set of 320 samples of unsynchro-
nized S. cerevisiae populations of various wild-type and mutant strains grown
under a variety of environmental conditions including exposure to different
nutritive media as well as exposure to stresses like heat, oxidative species,
excessive acidity, and excessive alkalinity. Genome-wide RNA expression data
for each of these 320 observations were collected using four low-density 50 µm
Affymetrix Ye6100 GeneChips per observation (roughly a quarter of the
genome can be measured on each chip). The reported “average differ-
ence” values from these 1,280 Affymetrix GeneChips were normalized us-
ing maximum a posteriori normalization methods based on exogenous spiked
controls [13].

From the 6,135 genes of the S. cerevisiae genome, 32 were selected either
on the basis of their participation in the pheromone response signaling cascade
or as being known to affect other aspects of mating response in yeast. The nor-
malized levels of RNA expression for these 32 genes were log-transformed and
discretized using discretization level coalescence methods that incrementally
reduce the number of discretization levels for each gene while preserving as
much total mutual information between genes as possible [12]. In this case, each
gene was discretized to have four levels of discretization while preserving over
98% of the original total mutual information between pairs of genes [12]. In ad-
dition to the 32 variables representing levels of RNA expression, an additional
variable named mating type was considered. The variable mating type rep-
resents the mating type of the various haploid strains of yeast used in the 320
observations and can take one of two values, corresponding to the MATa and
MATα mating types of yeast, respectively.
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21.4.1.1 Results Using Experimental Data

We used simulated annealing to visit high-scoring regions of the model posterior
and present the results of two of those runs here. In the first run, we traversed the
model space with a uniform structure prior. In the second run, we incorporated
a hard informative structure prior using available location data by requiring
edges from STE12 to FUS1, FUS3, AGA1, and FAR1 which had p values less
than 0.001.

After gathering the 500 highest-scoring models that were visited during each
run of the search algorithm, we computed the probability of edges being present
using model averaging, as discussed above. Thus, the estimated probability of
an edge can be exactly 1 if (and only if) the edge appears in all 500 highest-
scoring models.

We then compiled a composite network for each run that consists of all
edges with estimated posterior probability over 0.5. These networks are shown
in Figure 21.1. Nodes have been augmented with color to indicate groups of
variables known in the literature to have some commonality with one another.
Edges have also been augmented with color: solid black edges have posterior
probability of 1, solid blue edges have probability between 1 and 0.99, dashed
blue edges have probability between 0.99 and 0.75, and dotted blue edges have
probability between 0.75 and 0.5. The strength of an edge does not indicate how
significantly a parent node contributes to the ability to explain the child node
but rather an approximate measure of how likely a parent node is to contribute
to the ability to explain the child node.

In both of the networks presented in Figure 21.1, we observe a number of
interesting properties. In each case, the mating type variable is at the root of
the graph, and contributes to the ability to predict the state of a large number
of variables, which is to be expected. The links are generally quite strong indi-
cating that their presence was fairly consistent among the 500 highest-scoring
models. Almost all the links between mating type and genes known to be ex-
pressed only in MATa or MATα strains occur with posterior probability above
0.99. Moreover, in both networks there exists a directly connected subgraph
consisting of genes expressed only in MATa cells (magenta) and a directly
connected subgraph consisting of genes expressed only in MATα cells (red).
In each case the subgraph has the mating type variable as a direct ancestor
with strong predictive power, as expected.

The heterotrimeric G-protein complex components GPA1, STE4, and STE18
(green) form a directly connected component with the informative prior but
only GPA1 and STE18 are connected with the uniform prior. Indeed, even the
link between GPA1 and STE4 with the informative prior is fairly weak. On
the other hand, SWI1 and SNF2 (aqua) are weakly adjacent with a uniform
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Fig. 21.1. Bayesian network models learned by model averaging over the 500 highest-
scoring models visited during the simulated annealing search runs with a uniform prior
and hard informative prior, respectively. Edges are included in the figure if and only if
their posterior probability exceeds 0.5. Node and edge color descriptions are included
in the text. (See color plate 21.1.)

prior, but not adjacent with an informative prior, though in both cases they
are close descendants of TUP1. STE11 and STE5, two of the core elements
of the primary signaling cascade complex (yellow), are seen as descendants
of G-protein complex genes, indicating statistical dependence that may be the
result of common or serial regulatory control. STE7 occurs elsewhere, however.
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Auxiliary signaling cascade genes (orange) are always descendants of TUP1,
sometimes directly and sometimes more indirectly, but STE50 and KSS1 are
siblings in both cases. In general, the auxiliary cascade elements do not tend to
cluster with the core elements, suggesting that the regulation of their transcript
levels may occur by a different mechanism than those of the genes in the core
signal transduction complex.

In both networks, TUP1 appears with a large number of children, consistent
with its role as a general repressor of RNA polymerase II transcription. Both
networks have MCM1 and SIN3 as children of TUP1; Tup1 and Mcm1 are
known to interact in the cell [10] and this result that the level of Tup1 is helpful
in predicting the level of Mcm1 suggests a possible regulatory relationship
between the two. FAR1 is a parent of TEC1 and GPA1 in both networks. Far1,
Tec1, and Gpa1 are all known to be cell-cycle-regulated and all three are clas-
sified as being transcribed during early G1 phase [6]. This result suggests that
Far1 may play a role in regulating the expression of Tec1 and Gpa1, providing
a possible mechanism for their previously observed G1 phase coexpression.

Though it is produced at higher levels in MATa cells, it is known that Aga1 is
produced in both MATa and MATα cells [27]. The networks are each consistent
with this knowledge, including a frequent predictive edge from mating type

to AGA1, but not clustering AGA1 with other mating type specific genes
(magenta and red) as it is likely regulated differently. In both networks, AGA1
and SST2 are adjacent, consistent with the fact that the two are expressed very
similarly, both peaking at the M/G1 phase of the cell cycle [31].

21.4.2 Cell Cycle: Dynamic Network, Model Selection

Turning our attention now to the cell cycle, we earlier assumed that the stochas-
tic dynamics of variables in a DBN arise from a stationary process. This poses
a bit of a problem in the case of the cell cycle since we may have a different
underlying transcriptional regulatory network during each phase of the cycle.
To overcome this problem, we can employ an additional variable φ that can
be used by the model to explain how each variable’s regulators depend on the
cell cycle phase, allowing us to model a different stationary process within
each phase. The phase variable φ is multinomial and the number of states is
simply the number of phases we choose to model as having distinct regulatory
networks. If we can label each of the time points with the appropriate phase,
the inference problem remains an instance of learning network structure from
complete data. We prefer this option to the alternative of learning a hidden phase
variable because in our context, the quantity of available cell cycle expression
data is quite limited; besides, the state of φ changes smoothly and predictably,
so labeling each time point with the appropriate phase is straightforward. A
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Fig. 21.2. Simplified schematic of a first-order Markov DBN model of the cell cycle.
On the left, variables X1 through X4 are shown both at time t and t + 1; variable φ
represents the cell cycle phase; dashed edges are stipulated to be present whereas solid
edges are recovered by the learning algorithm. On the right, a compact representation
of the same DBN model in which the cycle between X4, X3, and X2 is apparent.

simplified schematic of such a DBN model of the cell cycle is depicted in
Figure 21.2.

In the context of the cell cycle, we conducted tests with both simulated and
actual experimental data. We used a synthetic cell cycle model to evaluate
the accuracy of our algorithm and determine the relative utility of different
quantities of available RNA expression data. The synthetic cell cycle model
involves 100 genes and a completely different regulatory network operates in
each of the three modeled phases of the cycle. The 100 genes include synthetic
transcription factors, only some of which are involved in the cell cycle, and
only some of which have simulated location data available. The target genes
of the transcription factors are sometimes activated and sometimes repressed;
some are under cell cycle control, but many are not. In addition, we include
a number of additional genes whose expression is random and not regulated
by genes in the model. The simulated expression data are generated using the
(stochastic) Boolean Glass gene model [7]. The expression data are discretized
into two states because the generating model is Boolean. Noisy p values for the
simulated location data associated with a subset of the regulators are generated
with noise models of varying intensity.

For experimental data, we use publicly available cell cycle RNA expression
data [31] and transcription factor binding location data [20]. The expression
data consist of 69 time points collected over eight cell cycles. Since these
belong to different phases, the resultant number of time points in each phase is
quite small. As a consequence, we choose to use only three states for the phase
variable, by splitting the shortest phase G2 in half and lumping the halves with
the adjacent phases. Thus, the three states of our phase variable correspond
roughly to G1, S + G2, and G2 + M . We assign a phase label for each time point
by examining the behavior of characteristic genes known to be regulated during
specific phases [31]. This is done separately for each of the four synchronization
protocols in the data set (alpha, cdc15, cdc28, and elu). We then select a set
of 25 genes to model in our network, of which 10 are known transcription
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factors for which we have available location data. The only important cell
cycle transcription factor missing from this set for which we have location data
is FKH2; we are not able to use it in our analysis because RNA expression
levels are missing for many of the time points. The remaining 15 genes in our
set are selected on the basis of their known regulation by one or more of these
10 transcription factors. The experimental expression data are discretized into
three states using interval discretization [12].

Because space is quite limited here, we provide only a brief description of
the basic structure of each of our experiments. The discretized data in each case
are used to compute the marginal likelihood component of the BSM. The soft
informative prior component is computed using (21.7), where individual edge
probabilities are computed from the location data p values using (21.5) with
λ marginalized out. The parameter λ is marginalized uniformly in the interval
[λL, λH ], with λL = 1 to avoid problems near zero (λL = 1 corresponds to
p∗ = 0.459) and λH = 10,000 to avoid problems near infinity (λH = 10,000
corresponds to p∗ = 0.001). We set β = 0.5 so that edges for which we have
no location data are equally likely to be present or absent in the graph; as
a consequence, without location data, edge presence in the graph depends
on expression data alone. The output of our DBN inference algorithm is the
network structure with the highest BSM score among all those visited by the
heuristic search during its execution.

21.4.2.1 Results Using Simulated Data

We repeatedly conduct the following three experiments: score network struc-
tures with expression data alone, ignoring the log prior component in (21.3);
score network structures with location data alone, ignoring the log marginal
likelihood component in (21.3); and score network structures with both ex-
pression and location data. We use these experiments to evaluate the effects
of location data with different noise characteristics, expression data of varying
quantity, and different choices for β.

Each of our experiments is conducted on five independently generated syn-
thetic data sets and results are averaged over those five data sets. Figure 21.3
offers a representative result. The vertical axis measures the (average) total
number of errors: the sum of false positives and false negatives in the learned
network. As expected, the total number of errors drops sharply as the amount
of available expression data increases. The figure demonstrates that our joint
learning algorithm consistently reduces the total number of false positives and
false negatives learned when compared to the error rate obtained using either
expression or location data alone. Also, observe that the availability of location
data means that we require typically only half as much expression data to
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Fig. 21.3. Total number of errors while learning a synthetic cell cycle network using
(noisy simulated) expression and location data, separately and with both types of data
together. The graph shows the effect of increasing the number of cell cycles worth
of expression data, both with and without location data. The dashed horizontal line
represents learning using location data alone.

achieve the same error rate as would be achieved with expression data alone,
suggesting that the availability of location data can be used to compensate for
small quantities of expression data.

21.4.2.2 Results Using Experimental Data

We next apply our soft informative prior in learning networks describing the
regulation of transcription during the cell cycle in yeast. As with the simulated
data, we learn network structures using expression data alone, using location
data alone, and jointly from both expression and location data. In the latter
case, we compare our soft informative prior to our hard informative prior with
a cutoff of p = 0.001 [15].

As an evaluation criterion (which is more difficult in this context than in the
synthetic network context), we create a “gold standard” network consisting of
the set of edges that are known to exist from one of the 10 transcription factors
with both expression and location data to any one of the other genes in our set;
we do not count edges from the other 15 genes when comparing with our gold
standard since it would be difficult to determine whether recovered edges are
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Table 21.1. Comparison of the Highest-Scoring Networks Found in Four
Different Experiments with the Gold Standard Network

Experiment TP TN FP FN

Expression data only 7 181 20 32
Location data only 25 184 17 14
Expression and location data (hard prior) 23 187 19 11
Expression and location data (soft prior) 28 189 12 11

Note: As discussed in the text, the gold standard contains edges from only the 10
variables for which both location and expression data are available.

true or false positives, and whether omitted edges are true or false negatives.
The gold standard comes from a compiled list of evidence in the literature and
from the Saccharomyces Genome Database (http://www.yeastgenome.org), but
we have tried to ensure that it depends on neither the specific expression data
nor the specific location data used in these experiments. Note also that the
gold standard is likely not the true underlying regulatory network, but rather is
the best we can do given the current understanding of the yeast cell cycle (a
“bronze standard”?).

With these caveats in place, Table 21.1 shows the total number of positives
and negatives that are true and false for the networks found in the four experi-
ments, with respect to the gold standard network. We see that the location data
by itself does noticeably better than the expression data, suggesting that this
particular set of location data are quite insightful or that this particular set of
expression data are quite limited in quantity or quality. Despite the relatively
poor performance of the expression data when considered in isolation, when
we use our soft informative prior to include evidence from the location data
along with the expression data, the number of false positives and the number of
false negatives are both reduced; in contrast, the hard prior reduces the number
of false negatives and increases the number of true negatives, but also increases
the number of false positives and reduces the number of true positives. The soft
prior uniformly outperforms the other three.

From Table 21.1, we see that combining expression and location data with our
soft informative prior results in three fewer false negatives as compared to loca-
tion data alone. These three are the regulation of SIC1 by ACE2 (p = 0.010),
of ACE2 by FKH1 (p = 0.006), and of CLN2 by SWI4 (p = 0.005). These
edges are detected because while the evidence of the location data in isolation is
below threshold for inclusion, during the joint learning it is reinforced with evi-
dence from expression data. In contrast, consider the regulation of transcription
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factor FKH1 by the transcription factor MBP1: although this interaction is re-
covered with expression data alone, it is not included when both location and
expression data are used because the corresponding p value of 0.93 is so high
that the quantity of expression data is insufficient to overcome the location data
evidence against inclusion of the edge. Among the supposed false positives, we
observe that both location and expression data provide evidence for the regula-
tion of cyclin PCL2 by the transcription factor SWI6, although this interaction
was not reported in the gold standard network. However, SWI6 participates
in the SBF complex with SWI4, and SBF is currently believed to regulate the
expression of PCL2 [1], reinforcing the notion that our gold standard network
is not without flaws.

21.5 Adding Informative Parameter Priors

Thus far, we have discussed the utility of informative priors over structures,
but informative priors over parameters are also useful. As with priors over
structures, informative priors over parameters can be formulated as a hard prior
where parameters that are inconsistent with a set of known constraints are
eliminated in advance [14], or as a soft prior where different sets of parameters
are relatively up- or down-weighted based on their degree of conformance to
the constraints. In the case of a hard prior, the data are not forced to obey the
constraints (after all, the data are noisy) but the parameters that characterize
the distributions used to model the data are forced to obey these constraints.

What benefit will either of these choices have? The marginal likelihood
component of a model’s score can be viewed as the average probability of
generating the observed data over all possible values of the parameter vector
θ . From a sampling perspective, the contribution of the likelihood term to
the score can be viewed as a two-level data generation process whereby a
realization of θ is selected at random from its prior distribution, and then the
probability of generating the observed data is calculated using this realization of
θ . The probability of generating the data is averaged over repeated samplings
to compute the marginal likelihood. This interpretation reveals that a model
will score poorly if there is not a sufficiently large mass of realizations in
the complete distribution of θ that are capable of generating the data with
sufficiently high probability. On the other hand, if the model is constrained by
a prior in the sense that the distribution of θ has more of its mass concentrated
on realizations that are capable of generating the data with sufficiently high
probability, then the constrained model will score better under the BSM. In
short, if the constraint permits the model to avoid unnecessary complexity, then
the model’s score will increase.
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In the case of a hard prior, we simply modify the scoring metric so that
the marginal likelihood term is now the average probability of generating the
observed data over all possible values of the parameter vector θ that satisfy
the constraints [14]. In the case of a soft prior, we adjust the pseudocounts
associated with the Dirichlet priors over parameters so that they are not all the
same [33].

21.6 Discussion

BNs have certain limitations when used to model transcriptional regulatory
networks. The most important of these is the caution with which models must
be interpreted. While graphs are highly interpretable structures for representing
statistical dependencies, they have the potential to be misleading if interpreted
incorrectly. In particular, it is important to distinguish between statistical inter-
action and physical interaction.

For example, if the data strongly supports the inclusion of an edge between
two variables Xi and Xj , that may indicate a physical interaction between these
two factors in the cell. Alternatively, it is possible that an unmodeled variable
Y actually intermediates between Xi and Xj or is a latent common cause of
Xi and Xj such that Xi and Xj exhibit statistical dependence but no physical
interaction. Caution must be used when interpreting models that may be missing
critical explanatory variables. In contrast, if the data strongly supports the
exclusion of an edge between two variables Xi and Xj , that may indicate no
physical interaction between these two factors in the cell. Alternatively, we may
not have observed the cell under an appropriate set of conditions where this
interaction could have been observed. Incorporating additional complementary
sources of data like transcription factor binding location can sometimes clarify
the situation.

In general, multiple biological mechanisms may map to the same set of
statistical dependencies and thus be hard to distinguish on the basis of statis-
tical tests alone. Moreover, if sufficient data do not exist to observe a system
in a number of different configurations, we may not be able to uncover cer-
tain dependencies. These two limitations are not specific to this methodology,
however, but rather are true for scientific inquiry in general.

Similarly, although the interactions in our dynamic models can be oriented
unambiguously (because time cannot flow backwards), that does not neces-
sarily imply that the interactions are causal since we cannot account for cel-
lular interactions that have not been measured, as mentioned above. One of
the main hopes of this line of research is that more direct causal informa-
tion from alternative assays like transcription factor binding location data and
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protein-protein interaction data will ameliorate this problem when we can in-
clude them in the analysis framework in a principled way.

From a computational perspective, BN structure inference should scale fine
to networks of hundreds of interacting variables, as we have demonstrated here
and elsewhere [30]. The primary factor in its ability to scale is not so much com-
putational as statistical, and not so much with respect to the number of variables
but with respect to the number of parents for each variable. As this number
increases, larger and larger quantities of data are needed to learn an accurate
model [35]. On a related note, while nothing precludes us computationally from
modeling a higher-order Markov process in our DBNs, we are often constrained
statistically by the limited quantity of available time-series expression data.

Successful elucidation of transcriptional regulatory networks will not likely
be a batch learning process. Rather, we will need to increasingly consider learn-
ing that is incremental and algorithms that are online. In particular, gathering
data sampled even sparsely from the joint probability space over all relevant
variables in cellular regulatory networks would require an inordinate amount
of data. To overcome this, it will be important to carefully design experiments
to learn information about the specific portions of these networks that remain
ambiguous. Being able to suggest the next series of experiments to conduct is
especially valuable when learning from high-throughput data because the data
are often costly to gather. Knowing in advance which are likely to be the most
informative experiments to conduct for elucidating biological mechanisms of
interest would be quite useful.

This field is known as “active learning” and an existing literature can be
applied and extended in this domain. Of special interest is the ability to suggest
experiments for collecting not only observational data but also interventional
data. In the context of transcriptional regulatory networks, this can be imple-
mented by deleting a gene so that it cannot be expressed, or by constitutively
overexpressing a gene from a heterologous promoter. Interventional data needs
to be treated differently from observational data in the context of learning, but
the framework easily extends to handle interventional data.

Finally, we should offer one last note on the viability of BNs as models
of transcriptional regulatory networks in higher eukaryotes. From a biological
perspective, regulation in multicellular organisms is quite a bit more compli-
cated owing to extra spatial and temporal complexity, for example in the form
of intercellular signaling and differentiation of cell types. From an experi-
mental perspective, collecting data is often more challenging in this context
as well because multiple cell types need to be profiled and because there are
often technical, financial, or ethical limitations to data collection. However,
provided that the models are flexible enough to capture the complexity of



P1: JZP

hartemink CUNY477-DoMueller 0 521 86092 X December 5, 2006 12:5

Informative Priors for Transcriptional Regulatory Network Models 421

these organisms and provided that sufficient data can be collected, there does
not seem to be any fundamental limitation of BNs as useful models for repre-
senting and elucidating transcriptional regulation in higher eukaryotes.

21.7 Availability of Papers and Banjo Software

This chapter summarizes a large body of work from our research group over
the past six years. As such, it borrows heavily from papers written during
this period, but offers a broader and more unified perspective on the research
program as a whole. We have in some places omitted details that have been
published previously; readers interested in greater detail are encouraged to read
the original papers.

In addition to the work on BNs as models of transcriptional regulation
summarized in this chapter, our group has undertaken research along a num-
ber of other directions related to the various topics treated elsewhere in this
book. These include analysis of microarray data, analysis of proteomic spec-
tra, modeling of the eukaryotic cell cycle, motif identification, integration of
diverse kinds of data, and disease diagnosis and other classification tasks in
high-dimensional systems biology. Bayesian statistical formulations and infor-
mative priors arise as common themes in all this work. Papers from our group
are available from http://www.cs.duke.edu/∼amink.

Finally, we have recently developed a software package called Banjo –
Bayesian network inference with Java objects – to perform network inference
in static and dynamic Bayesian networks of discrete variables. Banjo is designed
to be efficient, modular, and extensible. The program and complete source code
are available under a noncommercial use license, and commercial licensing
opportunities are available as well. For more information, visit http://www.
cs.duke.edu/∼amink/software/banjo.
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Abstract

We review Bayesian sample size arguments for microarray experiments, focus-
ing on a decision theoretic approach. We start by introducing a choice based
on minimizing expected loss as theoretical ideal. Practical limitations of this
approach quickly lead us to consider a compromise solution that combines this
idealized solution with a sensitivity argument. The finally proposed approach
relies on conditional expected loss, conditional on an assumed true level of
differential expression to be discovered. The expression for expected loss can
be interpreted as a version of power, thus providing for ease of interpretation
and communication

22.1 Introduction

We discuss approaches for a Bayesian sample size argument in microarray
experiments. As is the case for most sample size calculations in clinical trials
and other biomedical applications the nature of the sample size calculation is to
provide the investigator with decision support, and allow an informed sample
size choice, rather than providing a black-box method to deliver an optimal
sample size.

Several classical approaches for microarray sample size choices have been
proposed in the recent literature. Pan et al. (2002) develop a traditional power
argument, using a finite mixture of normal sampling model for difference scores
in a group comparison microarray experiment. Zien et al. (2002) propose to plot
ROC-type curves to show achievable combinations of false-negative and false-
positive rates. Mukherjee et al. (2003) use a machine learning perspective.
They consider a parametric learning curve for the empirical error rate as a
function of the sample size, and proceed to estimate the unknown parameters
in the learning curve. Lee and Whitmore (2002) set up an ANOVA model, and

425
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reduce the sample size choice to a traditional power analysis in the ANOVA
model. Bickel (2003) proposes an approach based on a formal loss function
with terms corresponding to a payoff for correct discoveries and a penalty for
false discoveries. The loss function is equivalent to the loss L introduced below.

An interesting sequential approach is developed in Fu et al. (2005). After
each microarray, or batch of arrays, they compute the posterior predictive
probability of misclassification for the next sample. Sampling continues until
this probability achieves some prespecified threshold.

In Müller et al. (2004) we develop a Bayesian decision theoretic approach
to sample size selection for group comparison microarray experiments. We
assume that each array reports expression for n genes. Also, we assume that the
sample size choice is about multiple arrays with independent biologic samples
recorded on each array (excluding, among others, technical repeats based on
the same biologic sample).

Main features of the proposed approach. Before introducing the formal setup
and approach we provide a brief summary of the results discussed in more detail
later. This will help to motivate and focus the following formal discussion. Let
J denote the sample size, that is, the number of microarrays that we recommend
to be carried out. In a decision theoretic approach, we define a criterion for
the sample size recommendation by stating how much a specific sample size
would be worth for a hypothetical outcome y of the experiment, and an assumed
hypothetical truth, that is, true values of all relevant parameters θ . This function
of decision, data, and parameters is known as the utility function. Alternatively,
flipping signs we get the loss function. Of course, at the time of the sample size
selection the future data y is not known, and the parameters θ will never be
known. One can argue (DeGroot, 1970; Robert, 2001) that a rational decision
maker should then choose a sample size based on expected loss, taking the
expectation with respect to the relevant probability distribution on parameters
and future data. The relevant distribution is the posterior predictive distribution
conditional on any data available at the time of making the decision. In the
absence of any data this is the prior predictive distribution. Some complications
arise when the nature of the decision is sequential. See below.

Figure 22.1 shows expected loss for a microarray sample size selection.
The loss function is L(J, y, θ ) = FD + cFN − k · J, where FD denotes the
number of false positives (truly not differentially expressed genes that are
flagged), and FN the number of false negatives (truly differentially expressed
genes that are not discovered). See Section 22.2.1 for a formal definition of
FD and FN. The function includes two tradeoff parameters, c and k. See the
following sections for more details about the choice of the loss function, the
nature of the expectation, including complications that arise from a sequential
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Fig. 22.1. Expected loss as a function of sample size J for a two-group comparison
microarray experiment. Evaluating the expectation involves a large scale Monte Carlo
simulation. See the text for details. The dots show realized losses for simulated exper-
iments. The solid line plots an estimate of expected loss based on a parametric fit of
the dots. The dashed line shows the same using a spline fit. Sample size J is plotted
on a logarithmic scale. Note the relatively flat nature of the expected loss, rendering a
sample size recommendation difficult.

decision setup, details of the probability model, and the Monte Carlo simula-
tion used to evaluate expected loss. The relatively flat nature of the expected
loss hinders a decisive sample size recommendation based on expected loss
alone. To be of practical use, the minimum is too sensitive to technical, ar-
bitrary choices of details in the loss function and probability model. We will
therefore proceed with a closer look at important features of the expected loss
function. In particular, we will consider expected loss conditional on an as-
sumed true level of differential expression for one gene, marginalizing with
respect to future data and all other parameters as before. This adds an addi-
tional dimension to the plot in Figure 22.1. Let ρi denote the assumed true level
of differential expression for gene i. We assume that ρi is defined such that
ρi = 0 is interpreted as nondifferential expression, and ρi > 0 as differential
expression. We consider expected loss as a function of J and ρi . Focusing
on only the change in expected utility across J and ρi , and dropping the de-
terministic sampling cost k · J, we argue that the plot can be interpreted as a
variation of power. Details are discussed in the next section. See Figure 22.2 for
an example.

The rest of this chapter is organized as follows. In Section 22.2 we cast sample
size choice as a decision problem. In Section 22.2.1 we argue that sample
size choice should be considered as a sequential decision problem. Solving
the sequential decision problem we start in Section 22.2.2 with the terminal
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decision of selecting a list of differentially expressed genes, and proceed in
Section 22.2.3 to address the sample size problem. In Section 22.3 we develop
a Monte Carlo scheme to evaluate expected losses. In Section 22.4 we introduce
a specific probability model. Section 22.5 discusses the use of pilot data. Finally,
Section 22.6 demonstrates the proposed approach in an example.

22.2 Optimal Sample Size as a Decision Problem

A decision problem is specified by a set of possible actions d ∈ D; a set of
relevant unknown quantities, typically parameters θ and data y; a probability
model pd (θ, y); and a loss function L(d, y, θ ) that formalizes the relative
preferences over decisions for assumed hypothetical values of y and θ . The
probability model for data and parameters can depend on the decision d. See,
for example, Berger (1993) for a general description. In the application to
microarray sample size choice the decision d includes the sample size J , the
data y are the gene expressions that will be recorded in the J microarray
experiments, and θ typically includes indicators for true differential expression
for each of the n genes under the biologic conditions of interest.

The optimal decision is the action d∗ that minimizes the loss in expectation,
d∗ = arg min E{L(d, θ, y)}. The expectation is with respect to the relevant
probability model. In so-called nonsequential problems, the relevant probability
model is pd (θ, y). In general, the calculation of expected utility might involve
more steps. As we will argue, this is the case for the sample size problem.

22.2.1 The Decision Problem

Approaching sample size choice as a decision problem it is important to rec-
ognize the sequential nature of the decision. In words, optimal sample size is
always defined in the context of the intended inference or decision that will
be carried out eventually, once all data is collected (terminal decision). Differ-
ent inference goals might lead to different sample size recommendations. We
therefore need to consider the entire sequence of (i) the sample size decision,
(ii) the observation of gene expressions for the chosen number of arrays, and
(iii) the terminal decision about differentially expressed genes. Let J denote
the sample size choice, let n denote the number of genes that are recorded on
each of the J arrays, let yJ = (y1, . . . , yJ ) denote the data for J arrays, and let
δ = (δ1, . . . , δn) denote the terminal decision, with δi = 1 if gene i is reported
as differentially expressed, and δi = 0 otherwise. The problem involves two
decisions, d = (J, δ). The terminal decision δ is made after observing the data.
We thus condition on yJ , and the expected loss integral is only with respect
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to the unknown parameters θ . In contrast, the sample size is chosen before
observing the data. We thus marginalize with respect to both, data y and pa-
rameters θ , substituting the optimal terminal decision δ∗. Decision problems
with such multistep structures are known as sequential decision problems. The
optimal decision δ∗ is defined as before, with the expected loss taken w.r.t. the
posterior distribution, δ∗(yJ ) = arg min

∫
L(d, θ, y) dp(θ | yJ ). We include an

argument yJ in the notation for δ∗ to highlight the dependence on the observed
data. The optimal sample size choice is defined by

J ∗ = arg min
∫

L(δ∗(yJ ), θ ) dpd (θ, yJ ). (22.1)

The conditions for J ∗ and δ∗(yJ ) define an ideal solution, following from first
principles about rational decision making (Robert, 2001). In practice, several
compromises are made when implementing Bayesian optimal design.

An attractive feature of the proposed approach is that the nature of the
optimal decision does not depend on details of the probability model. The only
required assumption is that the probability model include indicators ri ∈ {0, 1}
for true differential expression of gene i. Except for this minimal assumption,
we can discuss the optimal decision before defining a specific probability
model, requiring only a loss function to complete the formal description of the
decision problem.

We define a loss function that defines a tradeoff of false negative and false
rejection counts. Let FN = ∑

i(1 − δi) ri denote the number of false negatives,
and let FD = ∑

i δi(1 − ri) denote the false rejections (discoveries). The counts
FN and FD are functions of the parameters ri and the data yJ , implicitly through
δi(yJ ). We use the loss function

L(J, δ, θ, yJ ) = FD + c FN.

The loss function does not include a term representing sampling cost. See the
discussion below, when we consider the optimal decision sample size choice.

22.2.2 The Terminal Decision δ∗

The decision about the optimal sample size in any experiment is always rel-
ative to the intended data analysis after carrying out the experiment. This is
formalized in the definition (22.1) by requiring to plug in the optimal rule δ∗

about reporting genes as differentially expressed. It is therefore natural to first
discuss δ∗ before we consider the original sample size question.

Let ri = Pr(ri = 1 | yJ ) denote the marginal posterior probability of gene
being differentially expressed. It can be easily shown (Müller et al., 2004) that
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under L the optimal decision δ∗
i is of the form

δ∗
i (yJ ) = I (ri > t),

that is, flag all genes with marginal posterior probability of differential ex-
pression beyond a certain threshold. The threshold is t = c/(c + 1). The op-
timal rule is very intuitive and similar to a popularly used method to control
(frequentist) expected false discovery rate (Benjamini and Hochberg, 1995;
Storey, 2003), with the critical difference that the rule is defined as a cutoff
for marginal probabilities instead of nominal p va l ues. See also Genovese and
Wa sserman (2003) for more discussion of Bayesian variations of the Benjamini
and Hochberg rule.

22.2.3 Sample Size Choice

We now use the optimal decision δ∗ to substitute in definition (22.1). First
we note that L(J, δ, θ, yJ ) does not include any sampling cost. To define an
optimal sample size J ∗ we could add a deterministic sampling cost, say kJ.

However, the choice of the tradeoff k is problematic. We therefore prefer to use
a goal programming approach, plotting expected loss as a function of J, and
allowing the investigator to make an informed choice by, for example, selecting
the minimum sample size to achieve expected loss below a certain target.

Doing so we run into an additional complication. Let L̄(J ) denote the ex-
pected loss

L̄(J ) =
∫

L(δ∗(yJ ), θ ) dpd (θ, yJ ). (22.2)

For relevant sample sizes the expected loss L̄(J ) is far too flat to allow a con-
clusive sample size choice. In fact, in Müller et al. (2004) we show that the prior
expectation of FN, plugging in the optimal rule δ∗, decreases asymptotically as
OP (

√
log J/J ).

The flat nature of the expected loss surface is a typical feature for decision
problems in many applications. A common solution to address this problem is to
consider sensitivity analysis of the expected loss with respect to some relevant
features of the probability model. In particular, we assume that for each gene
the probability model includes a parameter ρi ≥ 0 that can be interpreted as
level of differential expression, with ρi = 0 for non-differentially expressed
genes. Assuming a gene with true ρi > 0, we explore the change in expected
loss as a function of ρi and J . In other words, we consider the integral (22.2),
but conditioning on an assumed true value for ρi , instead of including it in
the integration. Assuming a large number of genes, fixing one ρi leaves the
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inference for all other genes approximately unchanged, impacting the loss
function only when the ith gene is (wrongly) not flagged as differentially
expressed and adds to FN. Thus, for ρi > 0, the only effected term in the loss
function is the ith term in the definition of FN, that is, (1 − δi) ri . We are led to
consider

βi(J, ρi) ≡ Pr(δi = 1 | yJ , ρi) = Pr(ri > t | yJ , ρi). (22.3)

The probability includes the marginalizations over all other genes, and the
application of the optimal terminal rule δ∗. Assuming that the probability model
is exchangeable over genes, we can drop the index from βi . The expression
β(J, ρ) has a convenient interpretation as power, albeit marginalizing over all
unknowns except for ρi . We refer to β(J, ρ) as predictive power.

22.3 Monte Carlo Evaluation of Predictive Power

Evaluation of β(J, ρ) is most conveniently carried out by Monte Carlo sim-
ulation. Let J0 and J1 denote minimum and maximum sample sizes under
consideration. We first describe the algorithm in words. Simulate many, say
M , possible experiments (θm, ym

J1
), m = 1, . . . , M , simulating responses for a

maximum number J1 of arrays. For a grid of sample sizes, from J1 down to
J0, compute ri for each gene i, each simulation m, and each sample size J on
the grid. Record the triples (J, ρi, ri) across m, i, and J . Plot δi = I (ri > t)
against J and ρi . Finally, fitting a smooth surface through δi as a function of
(J, ρi) we estimate β(J, ρ). The algorithm is summarized by the following
steps. To simplify notation we drop the i index from ri , ρi , and δi .

(i) Simulate experiments (θm, ym
J1

) ∼ p(θ ) p(yJ1 | θ ), m = 1, . . . , M .
(ii) Compute r across all genes i = 1, . . . , n, simulations m = 1, . . . ,M , and

for all sample sizes J on a given grid. Record all triples (J, ρ, r).
(iii) Let δ = I (r > t) and fit a smooth surface β̂(J, ρ) through δ as a function

of (J, ρ).

Note 1: Most probability models for microarray data assume that yj are
independent given the parameters θ . This allows easy simulation from the
joint probability model.

Note 2: Evaluating posterior probabilities ri usually involves posterior
Markov Chain Monte Carlo (MCMC). However, the MCMC requires no
burn-in since p(θ )p(yJ | θ ) = p(yJ ) p(θ | yJ ). In words, the prior draw
θ generated in step (i) is a draw from the posterior distribution given yJ .
It can be used to initialize the posterior MCMC.
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The plot of β̂(J, ρ) is used for an informed sample choice, in the same way as
power curves are used in sample size arguments under a frequentist paradigm.

22.4 The Probability Model

22.4.1 A Hierarchical Mixture of Gamma/Gamma Model

The proposed approach builds on the model introduced in Newton et al. (2001)
and Newton and Kendziorski (2003). Let Xij and Yij denote appropriately
normalized intensity measurements for gene i on slide j under the two biologic
conditions of interest, that is, yJ = (Xij , Yij , i = 1, . . . , n and j = 1, . . . , J ).
We assume conditionally independent measurements given gene-specific scale
parameters (θ0i , θ1i):

Xij ∼ Gamma(a, θ0i) and Yij ∼ Gamma(a, θ1i).

We define a hierarchical prior probability model, including a positive prior
probability for a tie between θi0 and θi1, corresponding to nondifferential ex-
pression across the two conditions. We introduce a parameter ri ∈ {0, 1} as
latent indicator for θ0i = θ1i , and assume

θ0i ∼ Gamma(a0, ν)

and

p(θ1i | ri, θ0i) =
{

I (θ1i = θ0i) if ri = 0

Gamma(a0, ν) if ri = 1

with Pr(ri = 0) = p0. The model is completed with a prior for the parameters
(a, a0, p) ∼ π (a, a0, p), and fixed ν. We assume a priori independence and
use marginal gamma priors for a0 and a, and a conjugate beta prior for p.
As in Newton et al. (2001), the above model leads to a closed form marginal
likelihood after integrating out θ1i , θ0i , but still conditional on η = (p, a, a0).
Let Xi = (Xij , j = 1, . . . , J ) and Yi = (Yij , j = 1, . . . , J ). We find

p(Xi, Yi |ri = 0, η) =
{

�(2Ja + a0)

�(a)2J �(a0)

}
(ν)a0

(∏
j Xij

∏
j Yij

)a−1[(∑
j Xi +∑

j Yi + ν
)]2a+a0

and

p(Xi, Yi |ri = 1, η) =
{

�(aJ + a0)

�(a)J �(a0)

}2 (νν)a0
(∏

j Xij

∏
j Yij

)a−1[(∑
j Xij + ν

)(∑
j Yij + ν

)]a+a0
,
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and thus the marginal distribution is

p(Xi, Yi |η) = p0 p(Xi, Yi | ri = 0, η) + (1 − p0) p(Xi, Yi | ri = 1, η).
(22.4)

Availability of the closed form expression for the marginal likelihood greatly
simplifies posterior simulation. Marginalizing with respect to the random ef-
fects reduces the model to the three-dimensional marginal posterior p(η | y) ∝
p(η)

∏
i p(Xi, Yi |η). Conditional on currently imputed values for η we can at

any time augment the parameter vector by generating ri ∼ p(ri | η,Xi, Yi) as
simple independent Bernoulli draws, if desired.

22.4.2 A Mixture of Gamma/Gamma Model

One limitation of a parametric model like this hierarchical Gamma/Gamma
model is the need to fix specific model assumptions. The investigator has to
select hyperparameters that reflect the relevant experimental conditions. Also,
the investigator has to assume that the sampling distribution for observed gene
expressions can adequately be approximated by the assumed model. To mitigate
problems related with these requirements we consider a model extension that
still maintains the computational simplicity of the basic model, but allows for
additional flexibility.

A computationally convenient implementation is a mixture extension of the
basic model. In particular, we replace the Gamma distributions for p(Xij |θ0i)
and p(Yij |θ1i) by scale mixtures of Gamma distributions

Xij ∼
∫

Ga(a, θ0i qij ) dp(qij |w,m) and

Yij ∼
∫

Ga(a, θ1i sij ) dp(sij |w,m), (22.5)

where p(q | w,m) is a discrete mixing measure with P (q = mk) = wk (k =
1, . . . , K). Locations m = (m1, . . . , mK ) and weights w = (w1, . . . , wK ) pa-
rameterize the mixture. To center the mixture model at the basic model, we
fix m1 = 1.0 and assume high prior probability for large weight w1. We use
the same mixture for sjk , P (sjk = mh) = wh. The model is completed with
mk ∼ Ga(b, b), k > 1, and a Dirichlet prior w ∼ DirK (M · W,W, . . . ,W ).
Selecting a large factor M in the Dirichlet prior assigns high prior probability
for large w1, as desired. By assuming a dominating term with m1 = 1.0 and
E(mk) = 1, k > 1, we allocate large prior probability for the basic model and
maintain the interpretation of θ0i/θ1i as level of differential expression.
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Model (22.5) replaces the Gamma sampling distribution with a scale mixture
of Gamma distributions. This is important in the context of microarray data
experiments, where technical details in the data collection process typically in-
troduce noise beyond simple sampling variability due to the biological process.
A concern related to microarray data experiments prompts us to introduce a
further generalization to allow for occasional slides that are outliers compared
to the other arrays in the experiment. This happens for reasons unrelated to the
biologic effect of interest but needs to be accounted for in the modeling. We
achieve this by adding a second mixture to (22.5)

(Xij |qij , gj ) ∼ Ga(a, θ0i gj qij ) and (Yij |sij , gj ) ∼ Ga(a, θ1i gj sij ),
(22.6)

with an additional slide-specific scale factor gj . Paralleling the definition of
p(qij |w,m) we use a finite discrete mixture P (gj = mgk) = wgk , k = 1, . . . , L,
with a Dirichlet prior (wg1, . . . mgL) ∼ DirL(Mg · Wg,Wg, . . . , Wg), mgk ∼
Ga(bg, bg) for k > 1 and mg1 ≡ 1.

22.4.3 Posterior MCMC

Posterior inference is implemented by MCMC posterior simulation. See, for
example, Tierney (1994), for a review of MCMC methods. MCMC simulation
proceeds by iterating over the following transition probabilities. We use notation
like [x | y, z] to indicate that x is being updated, conditional on the known or
currently imputed values of y and z. We generically use θ− to indicate all
parameters, except the parameter on the left side of the conditioning bar.

(i) [qij | θ−, Xi], for i = 1, . . . , n and j = 1, . . . , J.

(ii) [sij | θ−, Yi], for i = 1, . . . , n and j = 1, . . . , J.

(iii) [gj | θ−, X, Y ], j = 1, . . . , J.

(iv) [a | θ−, X, Y ]
(v) [a0 | θ−, X, Y ]

(vi) [mh | θ−, X, Y ], h = 1, . . . , K

(vii) [w | θ−, X, Y ], w = (w1, . . . , wK )
(viii) [mg | θ−, X, Y ], g = 1, . . . , L

(ix) [wg | θ−, X, Y ], wg = (wg1, . . . , wgL).
(x) [K | θ−, X, Y ]

(xi) [L | θ−, X, Y ]

All but steps x and xi are standard MCMC transition probabilities. Changing
K and L we use reversible jump MCMC (Green, 1995 ). See Richardson and
Green (1997 ) for a description of RJMCMC specifically for mixture models.
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Our reversible jump implementation includes a merge move to combine two
terms in the current mixture, a matching split move, a birth move, and a
matching death move. Details are similar to Richardson and Green ( 1997),
with the mixture of gammas replacing the mixture of normals. Inference is
based on a geometric prior on the number of terms K and L in both mixtures.

22.5 Pilot Data

The flexible mixture model allows to use pilot data to learn about details of the
sampling distribution. We envision a process where the investigator either uses
available data from similar previous experiments, or collects preliminary data
to allow estimation of the mixture model parameters before proceeding with
the sample size argument. The pilot data might not include samples under both
biologic conditions. Pilot data is often available only for control tissue. For such
data a reduced version of the model, using only the parts of the model relevant
for Xij , is used. This is sufficient to estimate the mixture model parameters.

In summary, we proceed in two stages. In the first stage the pilot data
is used to fit the mixture model. Let Xo

ij , j = 1, . . . , J o, denote the pilot
data. We will use posterior MCMC simulation to estimate the posterior mean
model. This is done once, before starting the optimal design. We then fix
the mixture model at the posterior modes K̂ and L̂, and the posterior means
(w̄, m̄, w̄g, m̄g) = E(w,m,wg,mg | Xo, K̂, L̂). We proceed with the optimal
sample size approach, using model (22.5) with the fixed mixtures.

22.6 Example

For illustration we consider the data reported in Richmond et al. (1999), and
used in Newton et al. (2001). We use the control data as pilot data to plan the
sample size for a hypothetical future experiment. Estimating the mixture model
we find a posterior mode K̂ = 3 and L̂ = 2.

We now fix K and L at the posterior mode, and the remaining mixture
parameters (m,w,mg,wg) at their conditional posterior means, conditional on
K − 3 and L = 2. We then use the mixture Gamma/Gamma model with fixed
mixture parameters to proceed with the Monte Carlo simulation to compute
β(J, ρ). In the context of the mixture of Gamma/Gamma model we define
ρi = log(θ0i/θ1i), the log ratio of scale parameters for gene i. Figure 22.2
shows the estimated predictive power curves β(J, ρ). The left panel shows
β(J, ρ) for fixed ρ. Aiming for fourfold differential expression, the plot shows
the predictive power that can be achieved with increasing sample size. The left
panel of Figure 22.2 summarizes the surface β(J, ρ) by fixing J at J = 15, and
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(a) (J, = log(4)) (b) (J = 15, )ρβ β ρ

Fig. 22.2. Power β (labeled BETA in the plot) against sample size for assumed fourfold
overexpression, ρ = log(4) (left), and against ρ for sample size J = 15 (right). Power
β(J, ρ) is defined in (22.3) as the average posterior probability of discovery, conditional
on the true level of differential expression ρi = log(θ0i/θ1i).

plotting predictive power against assumed level of differential expression ρ.
For increasing level of ρ the figure shows the predictive power that can be
achieved with J = 15 arrays.

The points show the simulated true fraction of rejections for J and ρ on a
grid. The estimated surface β(J, ρ) is based on all simulations, across all ρ and
J . But the plot only shows the simulations corresponding to the shown slice of
the surface.

22.7 Conclusion

We have discussed ideas for a Bayesian decision theoretic sample size argument
for microarray experiments. The strength of the approach is the opportunity
to use essentially arbitrarily complex probability models. The proposed mix-
ture Gamma/Gamma model is an example. But the argument is valid for any
probability model, as long as the model includes latent variables ri that can
be interpreted as indicators for a true effect for gene i, and parameters ρi that
can be interpreted as strength of the effect. In particular, the probability model
could include more complicated designs than two-sample experiments.

Limitations of the proposed approach are the assumed independence across
genes, and the implicit 0-1 loss function. More general loss functions could,
for example, include a weight proportional to the true ρi in the penalty for
false negatives. More general models could explicitly allow for networks and
dependence.
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