


Combinatorial Pattern 
Matching Algorithms in 
Computational Biology 

Using Perl and R

© 2009 by Taylor & Francis Group, LLC



CHAPMAN & HALL/CRC 
Mathematical and Computational Biology Series

Aims and scope: 
This series aims to capture new developments and summarize what is known 
over the whole spectrum of mathematical and computational biology and 
medicine. It seeks to encourage the integration of mathematical, statistical and 
computational methods into biology by publishing a broad range of textbooks, 
reference works and handbooks. The titles included in the series are meant to 
appeal to students, researchers and professionals in the mathematical, statistical 
and computational sciences, fundamental biology and bioengineering, as well 
as interdisciplinary researchers involved in the field. The inclusion of concrete 
examples and applications, and programming techniques and examples, is 
highly encouraged.

Series Editors
Alison M. Etheridge
Department of Statistics
University of Oxford

Louis J. Gross
Department of Ecology and Evolutionary Biology
University of Tennessee

Suzanne Lenhart
Department of Mathematics
University of Tennessee

Philip K. Maini
Mathematical Institute 
University of Oxford

Shoba Ranganathan
Research Institute of Biotechnology 
Macquarie University

Hershel M. Safer
Weizmann Institute of Science
Bioinformatics & Bio Computing

Eberhard O. Voit
The Wallace H. Couter Department of Biomedical Engineering
Georgia Tech and Emory University

Proposals for the series should be submitted to one of the series editors above or directly to:
CRC Press, Taylor & Francis Group
4th, Floor, Albert House
1-4 Singer Street
London EC2A 4BQ
UK

© 2009 by Taylor & Francis Group, LLC



Published Titles

Bioinformatics: A Practical Approach 
Shui Qing Ye

Cancer Modelling and Simulation 
Luigi Preziosi

Computational Biology: A Statistical Mechanics Perspective  
Ralf Blossey

Computational Neuroscience: A Comprehensive Approach  
Jianfeng Feng

Data Analysis Tools for DNA Microarrays 
Sorin Draghici

Differential Equations and Mathematical Biology 
D.S. Jones and B.D. Sleeman

Exactly Solvable Models of Biological Invasion 
Sergei V. Petrovskii and Bai-Lian Li

Handbook of Hidden Markov Models in Bioinformatics 
Martin Gollery

Introduction to Bioinformatics 
Anna Tramontano

An Introduction to Systems Biology: Design Principles of Biological Circuits  
Uri Alon

Kinetic Modelling in Systems Biology 
Oleg Demin and Igor Goryanin

Knowledge Discovery in Proteomics 
Igor Jurisica and Dennis Wigle

Modeling and Simulation of Capsules and Biological Cells  
C. Pozrikidis

Niche Modeling: Predictions from Statistical Distributions 
David Stockwell

Normal Mode Analysis: Theory and Applications to Biological and  
Chemical Systems 
Qiang Cui and Ivet Bahar

Pattern Discovery in Bioinformatics: Theory & Algorithms 
Laxmi Parida

Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models,  and Simulation 
Horst Malchow, Sergei V. Petrovskii, and Ezio Venturino

Stochastic Modelling for Systems Biology 
Darren J. Wilkinson

Structural Bioinformatics: An Algorithmic Approach 
Forbes J. Burkowski

The Ten Most Wanted Solutions in Protein Bioinformatics  
Anna Tramontano

© 2009 by Taylor & Francis Group, LLC



Combinatorial Pattern 
Matching Algorithms in 
Computational Biology 

Using Perl and R

Gabriel Valiente

© 2009 by Taylor & Francis Group, LLC



Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487‑2742

© 2009 by Taylor & Francis Group, LLC 
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid‑free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number‑13: 978‑1‑4200‑6973‑0 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable 
efforts have been made to publish reliable data and information, but the author and publisher can‑
not assume responsibility for the validity of all materials or the consequences of their use. The 
authors and publishers have attempted to trace the copyright holders of all material reproduced 
in this publication and apologize to copyright holders if permission to publish in this form has not 
been obtained. If any copyright material has not been acknowledged please write and let us know so 
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, 
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or 
hereafter invented, including photocopying, microfilming, and recording, or in any information 
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy‑
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 
Rosewood Drive, Danvers, MA 01923, 978‑750‑8400. CCC is a not‑for‑profit organization that pro‑
vides licenses and registration for a variety of users. For organizations that have been granted a 
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and 
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Valiente, Gabriel, 1963‑
Combinatorial pattern matching algorithms in computational biology using 

Perl and R / Gabriel Valiente.
p. cm. ‑‑ (Mathematical and computational biology series)

Includes bibliographical references and index.
ISBN 978‑1‑4200‑6973‑0 (hardcover : alk. paper)
1. Computational biology. 2. Pattern formation (Biology)‑‑Computer 

simulation. 3. Graph algorithms. 4. Perl (Computer program language) 5. R 
(Computer program language) I. Title. II. Series.

QH324.2.V35 2009
572.80285‑‑dc22 2009003714

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

© 2009 by Taylor & Francis Group, LLC

http://www.copyright.com
http://www.copyright.com
http://www.copyright.com
http://www.taylorandfrancis.com
http://www.crcpress.com


To the loving memory of Helda Zulma Feruglio

© 2009 by Taylor & Francis Group, LLC



Contents

Foreword

Preface

1 Introduction 1
1.1 Combinatorial Pattern Matching . . . . . . . . . . . . . . . . 3
1.2 Computational Biology . . . . . . . . . . . . . . . . . . . . . 4
1.3 A Motivating Example: Gene Prediction . . . . . . . . . . . 4
Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 17

I Sequence Pattern Matching

2 Sequences 21
2.1 Sequences in Mathematics . . . . . . . . . . . . . . . . . . . 21

2.1.1 Counting Labeled Sequences . . . . . . . . . . . . . . 22
2.2 Sequences in Computer Science . . . . . . . . . . . . . . . . 24

2.2.1 Traversing Labeled Sequences . . . . . . . . . . . . . . 26
2.3 Sequences in Computational Biology . . . . . . . . . . . . . . 29

2.3.1 Reverse Complementing DNA Sequences . . . . . . . . 31
2.3.2 Counting RNA Sequences . . . . . . . . . . . . . . . . 33
2.3.3 Generating DNA Sequences . . . . . . . . . . . . . . . 35
2.3.4 Representing Sequences in Perl . . . . . . . . . . . . . 38
2.3.5 Representing Sequences in R . . . . . . . . . . . . . . 40

Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Simple Pattern Matching in Sequences 43
3.1 Finding Words in Sequences . . . . . . . . . . . . . . . . . . 43

3.1.1 Word Composition of Sequences . . . . . . . . . . . . 43
3.1.2 Alignment Free Comparison of Sequences . . . . . . . 49

Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 General Pattern Matching in Sequences 53
4.1 Finding Subsequences . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Suffix Arrays . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Finding Common Subsequences . . . . . . . . . . . . . . . . 67

© 2009 by Taylor & Francis Group, LLC



4.2.1 Generalized Suffix Arrays . . . . . . . . . . . . . . . . 74
4.3 Comparing Sequences . . . . . . . . . . . . . . . . . . . . . . 86

4.3.1 Edit Distance-Based Comparison of Sequences . . . . 86
4.3.2 Alignment-Based Comparison of Sequences . . . . . . 95

Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 110

II Tree Pattern Matching

5 Trees 115
5.1 Trees in Mathematics . . . . . . . . . . . . . . . . . . . . . . 115

5.1.1 Counting Labeled Trees . . . . . . . . . . . . . . . . . 115
5.2 Trees in Computer Science . . . . . . . . . . . . . . . . . . . 117

5.2.1 Traversing Rooted Trees . . . . . . . . . . . . . . . . . 118
5.3 Trees in Computational Biology . . . . . . . . . . . . . . . . 118

5.3.1 The Newick Linear Representation . . . . . . . . . . . 123
5.3.2 Counting Phylogenetic Trees . . . . . . . . . . . . . . 125
5.3.3 Generating Phylogenetic Trees . . . . . . . . . . . . . 126
5.3.4 Representing Trees in Perl . . . . . . . . . . . . . . . . 128
5.3.5 Representing Trees in R . . . . . . . . . . . . . . . . . 131

Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6 Simple Pattern Matching in Trees 137
6.1 Finding Paths in Unrooted Trees . . . . . . . . . . . . . . . . 137

6.1.1 Distances in Unrooted Trees . . . . . . . . . . . . . . . 138
6.1.2 The Partition Distance between Unrooted Trees . . . 140
6.1.3 The Nodal Distance between Unrooted Trees . . . . . 144

6.2 Finding Paths in Rooted Trees . . . . . . . . . . . . . . . . . 148
6.2.1 Distances in Rooted Trees . . . . . . . . . . . . . . . . 150
6.2.2 The Partition Distance between Rooted Trees . . . . . 151
6.2.3 The Nodal Distance between Rooted Trees . . . . . . 151

Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7 General Pattern Matching in Trees 155
7.1 Finding Subtrees . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.1.1 Finding Subtrees Induced by Triplets . . . . . . . . . 156
7.1.2 Finding Subtrees Induced by Quartets . . . . . . . . . 159

7.2 Finding Common Subtrees . . . . . . . . . . . . . . . . . . . 161
7.2.1 Maximum Agreement of Rooted Trees . . . . . . . . . 161
7.2.2 Maximum Agreement of Unrooted Trees . . . . . . . . 172

7.3 Comparing Trees . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.3.1 The Triplets Distance between Rooted Trees . . . . . 172
7.3.2 The Quartets Distance between Unrooted Trees . . . . 175

Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 178

© 2009 by Taylor & Francis Group, LLC



III Graph Pattern Matching

8 Graphs 181
8.1 Graphs in Mathematics . . . . . . . . . . . . . . . . . . . . . 181

8.1.1 Counting Labeled Graphs . . . . . . . . . . . . . . . . 182
8.2 Graphs in Computer Science . . . . . . . . . . . . . . . . . . 183

8.2.1 Traversing Directed Graphs . . . . . . . . . . . . . . . 183
8.3 Graphs in Computational Biology . . . . . . . . . . . . . . . 184

8.3.1 The eNewick Linear Representation . . . . . . . . . . 193
8.3.2 Counting Phylogenetic Networks . . . . . . . . . . . . 195
8.3.3 Generating Phylogenetic Networks . . . . . . . . . . . 198
8.3.4 Representing Graphs in Perl . . . . . . . . . . . . . . . 202
8.3.5 Representing Graphs in R . . . . . . . . . . . . . . . . 205

Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 208

9 Simple Pattern Matching in Graphs 211
9.1 Finding Paths in Graphs . . . . . . . . . . . . . . . . . . . . 211

9.1.1 Distances in Graphs . . . . . . . . . . . . . . . . . . . 214
9.1.2 The Path Multiplicity Distance between Graphs . . . 220
9.1.3 The Tripartition Distance between Graphs . . . . . . 228
9.1.4 The Nodal Distance between Graphs . . . . . . . . . . 234

9.2 Finding Trees in Graphs . . . . . . . . . . . . . . . . . . . . 238
9.2.1 The Statistical Error between Graphs . . . . . . . . . 243

Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 246

10 General Pattern Matching in Graphs 247
10.1 Finding Subgraphs . . . . . . . . . . . . . . . . . . . . . . . . 247

10.1.1 Finding Subgraphs Induced by Triplets . . . . . . . . 248
10.2 Finding Common Subgraphs . . . . . . . . . . . . . . . . . . 259

10.2.1 Maximum Agreement of Rooted Networks . . . . . . . 259
10.3 Comparing Graphs . . . . . . . . . . . . . . . . . . . . . . . 269

10.3.1 The Triplets Distance between Graphs . . . . . . . . . 269
Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 273

A Elements of Perl 275
A.1 Perl Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
A.2 Overview of Perl . . . . . . . . . . . . . . . . . . . . . . . . . 294
A.3 Perl Quick Reference Card . . . . . . . . . . . . . . . . . . . 297
Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 304

© 2009 by Taylor & Francis Group, LLC



B Elements of R 305
B.1 R Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
B.2 Overview of R . . . . . . . . . . . . . . . . . . . . . . . . . . 323
B.3 R Quick Reference Card . . . . . . . . . . . . . . . . . . . . 329
Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 336

References 339

© 2009 by Taylor & Francis Group, LLC



Foreword

When, more than 25 years ago, Zvi Galil and I decided to organize the
presentations at a NATO workshop into the volume entitled “Combinatorial
Algorithms on Words,” windows were building fixtures and webs were inhab-
ited by spiders and navigated, more or less inadvertedly, by doomed insects.
The “Atlas of Protein Sequences” by Margaret Dayhoff listed a handful of Cy-
tochrome C proteins and the first sequenced genome was more than a decade
away. Nonetheless, we were convinced that the few, scattered properties and
constructs of pattern matching available at the time had the potential to spark
and shape a specialty of algorithms design that would not fade in comparison
with already well-established areas such as graph and numerical algorithms.
It is safe to say that our volume presented a detailed account of the state of the
art, attracted attention to data structures such as the suffix trees that are still
the subject of deep study, and also listed most of the relevant open problems
that would be tackled, with varying success, in the following years. A reader
willing to invest some time on the contents of that volume could immigrate
rather quickly into the issues at the frontier and start making contributions
depending only on own taste and skills.

About ten years later, as we attempted to collect the state of the art in
“Pattern Matching Algorithms,” we faced an amazingly expanded scenario.
This time, each one of the contributed chapters had to be a rather synthetic
survey of the many intervening results, some of which had started new special-
ized sections, notable among which were two-dimensional and tree matching.
The neophyte interested in the subject could now take steps from reading one
or two chapters, but would then have to invest considerable additional time
in the study of numerous references. Many things had happened in between,
bringing new meanings to webs and windows and growing protein databases
and sequence repositories that included now sizable genomes such as yeast.

Since then, additional beautiful volumes have been produced and even con-
ferences such as CPM, RECOMB, SPIRE, WABI have started that keep
churning out an unrelenting crop of problems, applications, and results. All
of this shows how challenging it is to embark in a compendium of the state of
the art, and thus how admirable is the volume that results from the effort of
Gabriel Valiente.

The reader of this nicely structured volume will find a well-rounded expo-
sition of the traditional issues accompanied by an up-to-date account of more
recent developments, such as graph similarity and search. As is well known, a
great many pattern matching problems have been inspired over the years by

© 2009 by Taylor & Francis Group, LLC



the growing domain of computational molecular biology. This is due in part
to the fact that the crisp lexicon of biological sequence analysis provides the
natural habitat for pattern matching, and while probably not every problem
has received a fungible solution, it is admitted that nowhere else has pattern
matching found more stimuli and opportunities for growth as a discipline.
Continuing competently in this vein, the organization of this volume dove-
tails with the transition of computational biology from the molecular to the
cellular level.

For more than three decades, I have observed that one of the greatest diffi-
culties that biologists and computer scientists have to overcome when engaging
in interdisciplinary inquiries is the lack of a common language, hence of the
ability to set common goals. Such a language is the necessary prerequisite to
the ambitious and yet necessary task of developing a hybrid specialist, conver-
sant in both disciplines and able to appreciate a problem and its solution from
the standpoint of both computing and biology. Balancing a careful mixture of
formal methods, programming, and examples, Gabriel Valiente has managed
to harmoniously bridge languages and contents into a self-contained source of
lasting influence. It is not difficult to predict that this book will be studied
indifferently by the specialist of biology and computer science, helping each to
walk a few steps towards the other. It will entice new generations of scholars
to engage in its beautiful subject.

Alberto Apostolico
Atlanta

© 2009 by Taylor & Francis Group, LLC



Preface

Combinatorial pattern matching algorithms count among the main sources
of solutions to the computational biology problems that arise in the analysis
of genomic, transcriptomic, proteomic, metabolomic, and interactomic data.
Top in the ranking is the BLAST software tool for rapid searching of nucleotide
and protein databases, which is based on combinatorial pattern matching
algorithms for local sequence alignment. Also high in the ranking, suffix trees
and suffix arrays were developed to efficiently solve specific problems that
arise in computational biology, such as the search for patterns in nucleotide
or protein sequences.

This is a book on combinatorial pattern matching algorithms, with special
emphasis on computational biology and also on their implementation in Perl
and R, two widely used scripting languages in computational biology. The
book is aimed at anyone with an interest in combinatorial pattern matching
and in the broader subject of combinatorial algorithms, the only prerequisites
being an elementary knowledge of mathematics and computer programming,
the desire to learn, and unlimited time and patience.

Acknowledgments

This book is based on graduate lectures taught at the Technical Univer-
sity of Catalonia, Barcelona, and also invited lectures at the Phylogenet-
ics Programme of the Isaac Newton Institute for Mathematical Sciences,
held September 3 to December 21, 2007, in Cambridge, UK; at the Gul-
benkian PhD Program in Computational Biology of the Instituto Gulbenkian
de Ciência, held February 4–8, 2008, and January 26–30, 2009, in Oeiras,
Portugal; and at the Lipari International Summer School on Bioinformat-
ics and Computational Biology, held February 4–8, 2008, in Lipari Island,
Italy. I am very grateful to Vincent Moulton, Mike Steel, and Daniel Huson
(Isaac Newton Institute for Mathematical Sciences), to Jorge Carneiro and
Manuela Cordeiro (Gulbenkian PhD Program in Computational Biology), and
to Alfredo Ferro, Raffaele Giancarlo, Concettina Guerra, and Michael Levitt
(Lipari International Summer School on Bioinformatics and Computational
Biology) for their continuous encouragement and support.

The very idea of presenting combinatorial pattern matching problems in a

© 2009 by Taylor & Francis Group, LLC



uniform framework (pattern matching in and between sequences, trees, and
graphs) arose during the Second Haifa Annual International Stringology Re-
search Workshop, held April 3–8, 2005, at the Caesarea Rothschild Institute
for Interdisciplinary Applications of Computer Science, University of Haifa,
Israel. I am very grateful to Amihood Amir, Martin C. Golumbic, and Gad M.
Landau for providing such a stimulating environment.

The approach to algorithms in bioinformatics and computational biology
expressed in this book has been influenced by the interaction with numerous
colleagues at the Barcelona Biomedical Research Park, especially within the
Centre for Genomic Regulation and also in the Research Unit on Biomedical
Informatics. In particular, I would like to thank Roderic Guigó and Ferran
Sanz for granting me access to the Barcelona Biomedical Research Park.

I am grateful to the people who have read and commented on draft material.
In particular, I would like to thank José Clemente, Eduardo Eyras, Vincent
Lacroix, Michael Levitt, and Francesc Rosselló.

Last, but not least, it has been a pleasure to work out editorial matters
together with Amber Donley, Sarah Morris, and Sunil Nair of Taylor & Francis
Group.

Gabriel Valiente
Barcelona

© 2009 by Taylor & Francis Group, LLC



Chapter 1

Introduction

Computational biology, the application of computational and mathematical
techniques to problems inspired by biology, has witnessed an unprecedented
expansion over the last few years. The wide availability of genomic, tran-
scriptomic, proteomic, metabolomic, and interactomic data has fostered the
development of computational techniques for their analysis. Combinatorial
pattern matching is one of the main sources of algorithmic solutions to the
problems that arise in their analysis.

This is a text on combinatorial pattern matching algorithms, with special
emphasis on computational biology. Pattern matching is well known in com-
putational biology, not only because of biological sequence alignment. Data
structures such as suffix trees and suffix arrays were developed within the
combinatorial pattern matching research community to efficiently solve spe-
cific problems that arise in computational biology. This book provides an
organized and comprehensive view of the whole field of combinatorial pattern
matching from a computational biology perspective and addresses specific
pattern matching problems within and between sequences, trees, and graphs.
Much of the material presented on the book is only available in the specialized
research literature.

The book is structured around the specific algorithmic problems that arise
when dealing with those structures that are commonly found in computa-
tional biology, namely: biological sequences (such as DNA, RNA, and protein
sequences), trees (such as phylogenetic trees and RNA structures), and graphs
(such as phylogenetic networks, metabolic pathways, protein interaction net-
works, and signaling pathways). The emphasis throughout this book is on the
search for patterns within and between biological sequences, trees, and graphs,
with the understanding of exact (rather than approximate) occurrences as pat-
terns and pairwise (rather than multiple) comparison of structures. There is
also a strong emphasis on phylogenetic trees and networks as examples of
trees and graphs in computational biology.

For each of these structures (sequences, trees, and graphs), a clear distinc-
tion is made between the problems that arise in the analysis of one structure
(finding patterns within a structure) and in the comparative analysis of two
or more structures (finding patterns common to two structures and aligning
these structures).

The patterns contained in a sequence are words, and k-mer composition is
the basis of an important form of alignment-free sequence comparison. Suffix

1
© 2009 by Taylor & Francis Group, LLC



2 Combinatorial Pattern Matching Algorithms in Computational Biology

arrays allow for the efficient search of occurrences of a sequence in another
sequence, while generalized suffix arrays allow for the efficient search of oc-
currences common to two sequences. Besides finding common patterns, the
comparison of two sequences is also made on the basis of the Hamming dis-
tance, the Levenshtein distance, and the edit distance, as well as by means of
a global or a local alignment of the sequences.

The patterns contained in a tree are paths, and the distances (lengths of the
shortest paths) between the nodes of a tree are the basis of the nodal distance
between phylogenetic trees. The partition distance builds upon the distinction
in phylogenetic trees between descendant and non-descendant nodes. Small
subtrees common to two trees underlie both the triplets distance and the
quartets distance between phylogenetic trees. The comparison of two trees is
also made on the basis of their maximum agreement subtree.

The patterns contained in a graph are paths and trees, and the distances
between the nodes of a graph are the basis of the nodal distance between
graphs. The path multiplicity distance between phylogenetic networks builds
upon the number of different paths between the nodes of a graph. The tri-
partition distance is based on the distinction between strict descendant, non-
strict descendant, and non-descendant nodes in a phylogenetic network. Small
subgraphs common to two graphs underlie the triplets distance between phy-
logenetic networks, and large subgraphs common to two graphs underlie the
statistical error between phylogenetic networks. The comparison of two phy-
logenetic networks is also made on the basis of their maximum agreement
subgraph.

A thorough discussion is made of each of these specific problems, together
with detailed algorithmic solutions in pseudo-code, full Perl and R implemen-
tation, and pointers to off-the-shelf software and alternative implementations
such as those found on CPAN, the Comprehensive Perl Archive Network, or
integrated into the BioPerl project, as well as those found on CRAN, the Com-
prehensive R Archive Network, or integrated into the BioConductor project.
The Perl and R source code of all of the algorithms presented in the book is
also available at http://www.lsi.upc.edu/~valiente/comput-biol/.

The rest of this chapter contains an introduction to some of the biological,
mathematical, and computational notions used in this book, by means of a
motivating example, in an effort to make it as self-contained as possible for the
biologist, the mathematician, and the computer scientist reader as well. The
book itself is organized in a first part devoted to sequence pattern matching,
a second part on tree pattern matching, and a third part about graph pattern
matching, followed by a brief introduction to Perl and R in two appendices.

The first part contains an introductory chapter about sequences, a chapter
devoted to the problem of pattern matching within a sequence, and a chapter
on finding patterns common to two sequences. Following the same scheme, the
second part contains an introductory chapter about trees, a chapter devoted
to finding patterns within a tree, and a chapter on finding patterns common to
two trees, and the third part contains an introductory chapter about graphs,

© 2009 by Taylor & Francis Group, LLC

http://www.lsi.upc.edu


Introduction 3

a chapter devoted to finding patterns within a graph, and a chapter on finding
patterns common to two graphs. Each chapter includes detailed bibliographic
notes and pointers to the specialized research literature.

Throughout this book, sequence is often used as a synonym for string,
because the reader is assumed to be familiar with the notion of biological
(DNA, RNA, protein) sequences. The distinction between string and sequence
is important when referring to substructures, however, because subsequences
are not necessarily substrings. In general, subsequences will be referred to as
gapped subsequences, and the particular case of substrings (consecutive parts
of a string) will be referred to as just subsequences.

1.1 Combinatorial Pattern Matching

Pattern matching refers to the search for the occurrences of a pattern in
a text, where both the pattern and the text can be discrete structures such
as sequences, trees, and graphs. Examples of patterns in computational bi-
ology are a short nucleotide sequence, such as the TATAAAA motif found in
the promoter region of most eukaryotic genes; the amino acid sequence of a
transcription factor, such as the prokaryotic C2H2 zinc-finger motif x(2)-Cys-
x(2)-Cys-x(9)-His-x(2)-His-x(2); and an RNA secondary structure motif, such
as the CUUCGG hairpin found in the small subunit ribosomal RNA of most
bacteria. Corresponding examples of pattern matching problems are finding
motifs and transcription factor binding sites in DNA sequences, and searching
RNA sequences for recurrent structural motifs.

Sequence patterns are often described by means of regular expressions, with
a special syntax such as a vertical bar to separate alternatives, parentheses to
group patterns, and wild cards such as a dot for matching a single character,
a question mark for matching zero or one occurrence, an asterisk for matching
zero or more occurrences, and a plus sign for matching one or more occur-
rences. Regular expressions can be used as patterns for selecting and replacing
text with the utilities awk (named after the authors), ed (text editor), expr
(evaluate expression), grep (global regular expression pattern), sed (stream
editor), vim (visual editor improved), and in scripting programming languages
such as perl (practical extraction and report language), among others.

Combinatorial pattern matching addresses issues of searching and matching
strings and more complex patterns such as trees, regular expressions, graphs,
point sets, and arrays, with the goal of deriving non-trivial combinatorial
properties for such structures and then exploiting these properties in order
to either achieve improved performance for the corresponding computational
problems or pinpoint properties and conditions under which searches cannot
be performed efficiently.

© 2009 by Taylor & Francis Group, LLC



4 Combinatorial Pattern Matching Algorithms in Computational Biology

1.2 Computational Biology

In a broad sense, computational biology is the application of computational
and mathematical techniques to problems inspired by biology. A distinction is
often drawn between computational biology and bioinformatics, where com-
putational biology involves the development and application of theoretical
methods, mathematical modeling techniques, and computational simulation
techniques to biological data, while bioinformatics is centered on the develop-
ment and application of computational approaches and tools for the acquisi-
tion, organization, storage, analysis, and visualization of biological data.

Molecular biology itself is experiencing a shift from an understanding of
biological systems at the molecular level (nucleotide or amino acid sequences
and structures of individual genes or proteins) to an understanding of biolog-
ical systems at a system level (integrated function of hundreds or thousands
of genes and proteins in the cell, in tissues, and in whole organisms), and this
shift is also influencing computational biology.

There are two main branches in computational biology. On the one hand,
the area of biological data mining focuses on extracting hidden patterns from
large amounts of experimental data, forming hypotheses as a result. Most
of the research in computational genomics and computational proteomics be-
longs in this area. On the other hand, modeling and simulation focuses instead
on developing mathematical models and performing simulations to test hy-
potheses with in-silico experiments, providing predictions that can be tested
by in-vitro and in-vivo studies. Much of the research in mathematical bi-
ology, computational biochemistry, computational biophysics, and computa-
tional systems biology falls in this area.

Combinatorial pattern matching algorithms belong in the biological data
mining branch of computational biology.

1.3 A Motivating Example: Gene Prediction

The whole genome of an organism can be revealed from tissue samples by
using one of several DNA sequencing technologies, each of them producing a
large number of DNA fragments of various lengths that are then assembled
into the DNA sequence of the molecules in either the mitochondria or the
nucleus (for eukaryotes) or in the cytoplasm (for prokaryotes) of the cells. The
whole genomes of thousands of extant species have already been sequenced,
including 111 archaeal genomes ranging from 1,668 to 5,751,492 nucleotides;
2,167 bacterial genomes with 846 to 13,033,779 nucleotides; 2,593 eukaryote
genomes with 1,028 to 748,055,161 nucleotides; 2,651 viral genomes with 200

© 2009 by Taylor & Francis Group, LLC



Introduction 5

to 1,181,404 nucleotides; 39 viroid RNA genomes with 246 to 399 nucleotides;
and 1504 plasmid genomes with 846 to 2,094,509 nucleotides. Extant species
represent only a small fraction of the genetic diversity that has ever existed,
however, and whole genomes of extinct species can also be sequenced from
well-conserved tissue samples.

Once the genome of a species has been sequenced, one of the first steps
towards understanding it consists in the identification of genes coding for
proteins. In prokaryotic genomes, the sequence coding for a protein occurs as
one contiguous open reading frame, while in eukaryotic genomes, it is often
spliced into several coding exons separated by non-coding introns, and these
exons can be combined in different arrangements to code for different proteins
by the cellular process of alternative splicing.

Example 1.1
The DNA sequence of Bacteriophage φ-X174, which was the first genome to
be sequenced, has 11 protein coding genes within a circular single strand of
5,368 nucleotides. One of these genes is shown highlighted.

GAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTCGGATATTTCTGATGAGTCGAAAAAT
TATCTTGATAAAGCAGGAATTACTACTGCTTGTTTACGAATTAAATCGAAGTGGACTGCTGGCG
GAAAATGAGAAAATTCGACCTATCCTTGCGCAGCTCGAGAAGCTCTTACTTTGCGACCTTTCGC
CATCAACTAACGATTCTGTCAAAAACTGACGCGTTGGATGAGGAGAAGTGGCTTAATATGCTTG
GCACGTTCGTCAAGGACTGGTTTAGATATGAGTCACATTTTGTTCATGGTAGAGATTCTCTTGT
TGACATTTTAAAAGAGCGTGGATTACTATCTGAGTCCGATGCTGTTCAACCACTAATAGGTAAG
AAATCATGAGTCAAGTTACTGAACAATCCGTACGTTTCCAGACCGCTTTGGCCTCTATTAAGCT
CATTCAGGCTTCTGCCGTTTTGGATTTAACCGAAGATGATTTCGATTTTCTGACGAGTAACAAA
GTTTGGATTGCTACTGACCGCTCTCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGC
TGGACTTTGTGGGATACCCTCGCTTTCCTGCTCCTGTTGAGTTTATTGCTGCCGTCATTGCTTA
TTATGTTCATCCCGTCAACATTCAAACGGCCTGTCTCATCATGGAAGGCGCTGAATTTACGGAA
AACATTATTAATGGCGTCGAGCGTCCGGTTAAAGCCGCTGAATTGTTCGCGTTTACCTTGCGTG
TACGCGCAGGAAACACTGACGTTCTTACTGACGCAGAAGAAAACGTGCGTCAAAAATTACGTGC
GGAAGGAGTGATGTAATGTCTAAAGGTAAAAAACGTTCTGGCGCTCGCCCTGGTCGTCCGCAGC
CGTTGCGAGGTACTAAAGGCAAGCGTAAAGGCGCTCGTCTTTGGTATGTAGGTGGTCAACAATT
TTAATTGCAGGGGCTTCGGCCCCTTACTTGAGGATAAATTATGTCTAATATTCAAACTGGCGCC
GAGCGTATGCCGCATGACCTTTCCCATCTTGGCTTCCTTGCTGGTCAGATTGGTCGTCTTATTA
CCATTTCAACTACTCCGGTTATCGCTGGCGACTCCTTCGAGATGGACGCCGTTGGCGCTCTCCG
TCTTTCTCCATTGCGTCGTGGCCTTGCTATTGACTCTACTGTAGACATTTTTACTTTTTATGTC
CCTCATCGTCACGTTTATGGTGAACAGTGGATTAAGTTCATGAAGGATGGTGTTAATGCCACTC
CTCTCCCGACTGTTAACACTACTGGTTATATTGACCATGCCGCTTTTCTTGGCACGATTAACCC
TGATACCAATAAAATCCCTAAGCATTTGTTTCAGGGTTATTTGAATATCTATAACAACTATTTT
AAAGCGCCGTGGATGCCTGACCGTACCGAGGCTAACCCTAATGAGCTTAATCAAGATGATGCTC
GTTATGGTTTCCGTTGCTGCCATCTCAAAAACATTTGGACTGCTCCGCTTCCTCCTGAGACTGA
GCTTTCTCGCCAAATGACGACTTCTACCACATCTATTGACATTATGGGTCTGCAAGCTGCTTAT
GCTAATTTGCATACTGACCAAGAACGTGATTACTTCATGCAGCGTTACCATGATGTTATTTCTT
CATTTGGAGGTAAAACCTCTTATGACGCTGACAACCGTCCTTTACTTGTCATGCGCTCTAATCT

© 2009 by Taylor & Francis Group, LLC



6 Combinatorial Pattern Matching Algorithms in Computational Biology

CTGGGCATCTGGCTATGATGTTGATGGAACTGACCAAACGTCGTTAGGCCAGTTTTCTGGTCGT
GTTCAACAGACCTATAAACATTCTGTGCCGCGTTTCTTTGTTCCTGAGCATGGCACTATGTTTA
CTCTTGCGCTTGTTCGTTTTCCGCCTACTGCGACTAAAGAGATTCAGTACCTTAACGCTAAAGG
TGCTTTGACTTATACCGATATTGCTGGCGACCCTGTTTTGTATGGCAACTTGCCGCCGCGTGAA
ATTTCTATGAAGGATGTTTTCCGTTCTGGTGATTCGTCTAAGAAGTTTAAGATTGCTGAGGGTC
AGTGGTATCGTTATGCGCCTTCGTATGTTTCTCCTGCTTATCACCTTCTTGAAGGCTTCCCATT
CATTCAGGAACCGCCTTCTGGTGATTTGCAAGAACGCGTACTTATTCGCCACCATGATTATGAC
CAGTGTTTCCAGTCCGTTCAGTTGTTGCAGTGGAATAGTCAGGTTAAATTTAATGTGACCGTTT
ATCGCAATCTGCCGACCACTCGCGATTCAATCATGACTTCGTGATAAAAGATTGAGTGTGAGGT
TATAACGCCGAAGCGGTAAAAATTTTAATTTTTGCCGCTGAGGGGTTGACCAAGCGAAGCGCGG
TAGGTTTTCTGCTTAGGAGTTTAATCATGTTTCAGACTTTTATTTCTCGCCATAATTCAAACTT
TTTTTCTGATAAGCTGGTTCTCACTTCTGTTACTCCAGCTTCTTCGGCACCTGTTTTACAGACA
CCTAAAGCTACATCGTCAACGTTATATTTTGATAGTTTGACGGTTAATGCTGGTAATGGTGGTT
TTCTTCATTGCATTCAGATGGATACATCTGTCAACGCCGCTAATCAGGTTGTTTCTGTTGGTGC
TGATATTGCTTTTGATGCCGACCCTAAATTTTTTGCCTGTTTGGTTCGCTTTGAGTCTTCTTCG
GTTCCGACTACCCTCCCGACTGCCTATGATGTTTATCCTTTGAATGGTCGCCATGATGGTGGTT
ATTATACCGTCAAGGACTGTGTGACTATTGACGTCCTTCCCCGTACGCCGGGCAATAACGTTTA
TGTTGGTTTCATGGTTTGGTCTAACTTTACCGCTACTAAATGCCGCGGATTGGTTTCGCTGAAT
CAGGTTATTAAAGAGATTATTTGTCTCCAGCCACTTAAGTGAGGTGATTTATGTTTGGTGCTAT
TGCTGGCGGTATTGCTTCTGCTCTTGCTGGTGGCGCCATGTCTAAATTGTTTGGAGGCGGTCAA
AAAGCCGCCTCCGGTGGCATTCAAGGTGATGTGCTTGCTACCGATAACAATACTGTAGGCATGG
GTGATGCTGGTATTAAATCTGCCATTCAAGGCTCTAATGTTCCTAACCCTGATGAGGCCGCCCC
TAGTTTTGTTTCTGGTGCTATGGCTAAAGCTGGTAAAGGACTTCTTGAAGGTACGTTGCAGGCT
GGCACTTCTGCCGTTTCTGATAAGTTGCTTGATTTGGTTGGACTTGGTGGCAAGTCTGCCGCTG
ATAAAGGAAAGGATACTCGTGATTATCTTGCTGCTGCATTTCCTGAGCTTAATGCTTGGGAGCG
TGCTGGTGCTGATGCTTCCTCTGCTGGTATGGTTGACGCCGGATTTGAGAATCAAAAAGAGCTT
ACTAAAATGCAACTGGACAATCAGAAAGAGATTGCCGAGATGCAAAATGAGACTCAAAAAGAGA
TTGCTGGCATTCAGTCGGCGACTTCACGCCAGAATACGAAAGACCAGGTATATGCACAAAATGA
GATGCTTGCTTATCAACAGAAGGAGTCTACTGCTCGCGTTGCGTCTATTATGGAAAACACCAAT
CTTTCCAAGCAACAGCAGGTTTCCGAGATTATGCGCCAAATGCTTACTCAAGCTCAAACGGCTG
GTCAGTATTTTACCAATGACCAAATCAAAGAAATGACTCGCAAGGTTAGTGCTGAGGTTGACTT
AGTTCATCAGCAAACGCAGAATCAGCGGTATGGCTCTTCTCATATTGGCGCTACTGCAAAGGAT
ATTTCTAATGTCGTCACTGATGCTGCTTCTGGTGTGGTTGATATTTTTCATGGTATTGATAAAG
CTGTTGCCGATACTTGGAACAATTTCTGGAAAGACGGTAAAGCTGATGGTATTGGCTCTAATTT
GTCTAGGAAATAACCGTCAGGATTGACACCCTCCCAATTGTATGTTTTCATGCCTCCAAATCTT
GGAGGCTTTTTTATGGTTCGTTCTTATTACCCTTCTGAATGTCACGCTGATTATTTTGACTTTG
AGCGTATCGAGGCTCTTAAACCTGCTATTGAGGCTTGTGGCATTTCTACTCTTTCTCAATCCCC
AATGCTTGGCTTCCATAAGCAGATGGATAACCGCATCAAGCTCTTGGAAGAGATTCTGTCTTTT
CGTATGCAGGGCGTTGAGTTCGATAATGGTGATATGTATGTTGACGGCCATAAGGCTGCTTCTG
ACGTTCGTGATGAGTTTGTATCTGTTACTGAGAAGTTAATGGATGAATTGGCACAATGCTACAA
TGTGCTCCCCCAACTTGATATTAATAACACTATAGACCACCGCCCCGAAGGGGACGAAAAATGG
TTTTTAGAGAACGAGAAGACGGTTACGCAGTTTTGCCGCAAGCTGGCTGCTGAACGCCCTCTTA
AGGATATTCGCGATGAGTATAATTACCCCAAAAAGAAAGGTATTAAGGATGAGTGTTCAAGATT
GCTGGAGGCCTCCACTATGAAATCGCGTAGAGGCTTTGCTATTCAGCGTTTGATGAATGCAATG
CGACAGGCTCATGCTGATGGTTGGTTTATCGTTTTTGACACTCTCACGTTGGCTGACGACCGAT

© 2009 by Taylor & Francis Group, LLC



Introduction 7

TAGAGGCGTTTTATGATAATCCCAATGCTTTGCGTGACTATTTTCGTGATATTGGTCGTATGGT
TCTTGCTGCCGAGGGTCGCAAGGCTAATGATTCACACGCCGACTGCTATCAGTATTTTTGTGTG
CCTGAGTATGGTACAGCTAATGGCCGTCTTCATTTCCATGCGGTGCACTTTATGCGGACACTTC
CTACAGGTAGCGTTGACCCTAATTTTGGTCGTCGGGTACGCAATCGCCGCCAGTTAAATAGCTT
GCAAAATACGTGGCCTTATGGTTACAGTATGCCCATCGCAGTTCGCTACACGCAGGACGCTTTT
TCACGTTCTGGTTGGTTGTGGCCTGTTGATGCTAAAGGTGAGCCGCTTAAAGCTACCAGTTATA
TGGCTGTTGGTTTCTATGTGGCTAAATACGTTAACAAAAAGTCAGATATGGACCTTGCTGCTAA
AGGTCTAGGAGCTAAAGAATGGAACAACTCACTAAAAACCAAGCTGTCGCTACTTCCCAAGAAG
CTGTTCAGAATCAGAATGAGCCGCAACTTCGGGATGAAAATGCTCACAATGACAAATCTGTCCA
CGGAGTGCTTAATCCAACTTACCAAGCTGGGTTACGACGCGACGCCGTTCAACCAGATATTGAA
GCAGAACGCAAAAAGAGAGATGAGATTGAGGCTGGGAAAAGTTACTGTAGCCGACGTTTTGGCG
GCGCAACCTGTGACGACAAATCTGCTCAAATTTATGCGCGCTTCGATAAAAATGATTGGCGTAT
CCAACCTGCA

Protein coding regions of a DNA sequence are first transcribed into messen-
ger RNA and then translated into protein. A codon of three DNA nucleotides
is transcribed into a codon of three complementary RNA nucleotides, which
is translated in turn into a single amino acid within a protein. A fragment of
single-stranded DNA sequence has three possible reading frames, and transla-
tion takes place in an open reading frame, a sequence of codons from a certain
start codon to a certain stop codon and containing no further stop codon.

Example 1.2

Reading frame 2 of the DNA sequence of Bacteriophage φ-X174 from the pre-
vious example contains 15 open reading frames of more than 108 nucleotides,
which can potentially code for proteins of more than 36 amino acids. Only
two of them, shown highlighted in the next table, actually code for a protein.

sequence fragment start stop length
ATG TGA 17 136 120
ATG TAA 848 964 117
ATG TGA 1,001 2,284 1,284
ATG TGA 1,031 2,284 1,254
ATG TGA 1,130 2,284 1,155
ATG TGA 1,256 2,284 1,029
ATG TGA 1,421 2,284 864
ATG TGA 1,550 2,284 735
ATG TGA 1,580 2,284 705
ATG TGA 1,637 2,284 648
ATG TGA 1,715 2,284 570
ATG TGA 1,850 2,284 435
ATG TGA 1,991 2,284 294
ATG TGA 2,543 2,731 189
ATG TGA 2,552 2,731 180

© 2009 by Taylor & Francis Group, LLC



8 Combinatorial Pattern Matching Algorithms in Computational Biology

The reading frame determines the actual amino acids encoded by a gene.
For instance, the DNA sequence fragment GTCGCCATGATGGTGGTTATT
ATACCGTCAAGGACTGTGTGACTA can be read in the 5′ to 3′ direction
in the following three frames:

1 GTC GCC ATG ATG GTG GTT ATT ATA CCG TCA AGG ACT GTG TGA CTA
2 TCG CCA TGA TGG TGG TTA TTA TAC CGT CAA GGA CTG TGT GAC TA
3 CGC CAT GAT GGT GGT TAT TAT ACC GTC AAG GAC TGT GTG ACT A

A fragment of double-stranded DNA sequence, on the other hand, has six
possible reading frames, three in each direction. An open reading frame begins
with the start codon ATG (methionine) in most species and ends with a stop
codon TAA, TAG, or TGA.

The identification of genes coding for proteins in a DNA sequence is a very
difficult task. Even a simple organism such as Bacteriophage φ-X174, with
a single-stranded DNA sequence of only 5,368 nucleotides, has a total of 117
open reading frames, only 11 of which actually code for a protein. There are
several other biological signals that help the computational biologist in the
task of gene finding, but to start with, the known protein with the shortest
sequence has 8 amino acids and, thus, short open reading frames, with fewer
than 3 + 24 + 3 = 30 nucleotides, cannot code for a protein.

A first algorithmic problem consists in extracting all open reading frames
in the three reading frames of a DNA sequence fragment. The problem has
to be solved on the reverse complement of the sequence as well if the DNA is
double stranded.

Given a fragment of DNA sequence S of n nucleotides, let S[i] denote the
i-th nucleotide of sequence S, for 1 6 i 6 n. Thus, in the sequence S = GTC
GCCATGATGGTGGTTATTATACCGTCAAGGACTGTGTGACTA, which
has n = 45 nucleotides, S[1] = G, S[2] = T, S[3] = C, and S[n] = A. Let
also S[i, . . . , j], where i 6 j, denote the fragment of S containing nucleotides
S[i], S[i+1], . . . , S[j]. For instance, S[1, . . . , 4] = GTCG, and S[1, . . . , n] = S.
Therefore, S[i, . . . , i] = S[i] for any 1 6 i 6 n.

With this notation, an open reading frame is a fragment S[i, . . . , j], of length
j−i+1, such that S[i, . . . , i+2] is the start codon ATG and S[j−2, . . . , j] is one
of the stop codons TAA, TAG, or TGA. This is actually not quite the case. It
has to be at least 30 nucleotides long, that is, it must fulfill j−i+1 > 30. And
it cannot contain any other stop codon, that is, it must also fulfill the condition
S[k, . . . , k+2] /∈ {TAA,TAG,TGA} for i+3 6 k 6 j−6. In the sequence frag-
ment S = GTCGCCATGATGGTGGTTATTATACCGTCAAGGACTGTG
TGACTA, for instance, S[7, . . . , 42] is an open reading frame, as it begins
with S[7, . . . , 9] = ATG, ends with S[40, . . . , 42] = TGA, and has no other
codon between S[10] and S[39] equal to TAA, TAG, or TGA.

GTC GCC ATG ATG GTG GTT ATT ATA CCG TCA AGG ACT GTG TGA CTA

The reading frame determines a partition of the DNA sequence fragment S
in codons of three consecutive nucleotides. In reading frame 1, the first codon

© 2009 by Taylor & Francis Group, LLC



Introduction 9

is S[1, . . . , 3], the second codon is S[4, . . . , 6], and so on. In reading frame
2, however, the first codon is S[2, . . . , 4], and the second codon is S[5, . . . , 7].
The first codon in reading frame 3 is S[3, . . . , 5].

In a given reading frame, the codons can be accessed by sliding a window
of length three over the sequence, starting at position 1, 2, or 3, depending on
the reading frame. The sliding window is thus a kind of looking glass under
which a codon of the sequence can be seen and accessed:

1-3 4-6 7-9 ... ... ... ... ... ... ... ... ... ... ... ..n
−→ GTC GCC ATG ATG GTG GTT ATT ATA CCG TCA AGG ACT GTG TGA CTA

GTC GCC ATG ATG GTG GTT ATT ATA CCG TCA AGG ACT GTG TGA CTA
GTC GCC ATG ATG GTG GTT ATT ATA CCG TCA AGG ACT GTG TGA CTA
...
GTC GCC ATG ATG GTG GTT ATT ATA CCG TCA AGG ACT GTG TGA CTA
GTC GCC ATG ATG GTG GTT ATT ATA CCG TCA AGG ACT GTG TGA CTA

Consider, as a first example, the problem of finding an open reading frame
in a reading frame of a sequence, and let S[k, . . . , k+2] be the codon under the
sliding window in the given reading frame. Starting with an initial position k
given by the reading frame, the sliding window has to be displaced by three
nucleotides each time until accessing a start codon and then continue sliding
by three nucleotides each time until accessing a stop codon. Again, this is not
actually quite the case. The reading frame of the sequence fragment could
contain no start codon at all, or it could contain a start codon but no stop
codon, and the search for the beginning or the end of an open reading frame
might go beyond the end of the sequence.

The first start codon in the k-th reading frame of a given DNA sequence
fragment S of n nucleotides can be found by sliding a window S[i, . . . , i + 2]
of three nucleotides along S[k, . . . , n], until either i+2 > n or S[i, . . . , i+2] =
AGT. In the following description, the initial position i of the candidate
start codon is incremented by three as long as the codon does not fall off the
sequence (that is, i+2 6 n) and is not a start codon (that is, S[i, . . . , i+2] 6=
AGT).

i← k
while i + 2 6 n and S[i, . . . , i + 2] 6= AGT do

i← i + 3
if i + 2 6 n then

output S[i, . . . , i + 2]

After having found a start codon S[i, . . . , i + 2], the first stop codon can be
found by sliding a window S[j, . . . , j + 2] of three nucleotides, this time along
S[i + 3, . . . , n], until either j + 2 > n or S[j, . . . , j + 2] ∈ {TAA,TAG,TGA}.
In the following description, the initial position j of the candidate stop codon
is incremented by three as long as the codon does not fall off the sequence

© 2009 by Taylor & Francis Group, LLC



10 Combinatorial Pattern Matching Algorithms in Computational Biology

(that is, j +2 6 n) and the candidate codon is not a stop codon (that is, with
S[j, . . . , j + 2] /∈ {TAA,TAG,TGA}).

j ← i + 3
while j + 2 6 n and S[j, . . . , j + 2] /∈ {TAA,TAG,TGA} do

j ← j + 3
if j + 2 6 n then

output S[j, . . . , j + 2]

Now, the problem of extracting the first open reading frame in the k-th
reading frame of a DNA sequence fragment S of length n can be solved by
putting together the search for a start codon and the search for a stop codon.
In the following description, the start codon is S[i, . . . , i + 2] and the stop
codon is S[j, . . . , j + 2] of the sequence and, thus, the open reading frame
S[i, . . . , j + 2] is output.

i← k
while i + 2 6 n and S[i, . . . , i + 2] 6= AGT do

i← i + 3
if i + 2 6 n then

j ← i + 3
while j + 2 6 n and S[j, . . . , j + 2] /∈ {TAA,TAG,TGA} do

j ← j + 3
if j + 2 6 n then

output S[i, . . . , j + 2]

Notice that only the first start codon is found, and the first stop codon
after this start codon will then signal the end of the first open reading frame.
There may be other start codons in the sequence fragment between the first
start codon and the first stop codon, however, which would signal shorter
open reading frames contained in the first open reading frame found. Also,
the first open reading frame might be shorter than 30 nucleotides, much too
short to actually code for a protein.

The problem of extracting all open reading frames of at least 30 nucleotides
in the k-th reading frame of a DNA sequence fragment S of length n > 30
can be solved by repeating the previous procedure for each start codon found
in turn, checking that the open reading frames thus found have at least 30
nucleotides, as follows.

i← k
while i + 2 6 n do

if S[i, . . . , i + 2] = AGT then
j ← i + 3

© 2009 by Taylor & Francis Group, LLC



Introduction 11

while j + 2 6 n and S[j, . . . , j + 2] /∈ {TAA,TAG,TGA} do
j ← j + 3

if j + 2 6 n then
if j + 2− i + 1 > 30 then

output S[i, . . . , j + 2]
i← i + 3

Finally, the problem of extracting all open reading frames of at least 30 nu-
cleotides in the three reading frames of a DNA sequence fragment S of length
n > 30 can be solved by repeating the previous procedure for each reading
frame and for each start codon in turn, checking again that the open reading
frames thus found have at least 30 nucleotides. In the following description,
the whole algorithm is wrapped into a procedure that takes the DNA se-
quence fragment S as input and reports each of the open reading frames of S
as output.

procedure extract open reading frames(S)
n← length(S)
for i← 1, 2, 3 do

while i + 2 6 n do
if S[i, . . . , i + 2] = AGT then

j ← i + 3
while j + 2 6 n and S[j, . . . , j + 2] /∈ {TAA,TAG,TGA} do

j ← j + 3
if j + 2 6 n then

if j + 2− i + 1 > 30 then
output S[i, . . . , j + 2]

i← i + 3

The previous algorithm for extracting all open reading frames in the three
reading frames of a given DNA sequence fragment can be implemented in
Perl in a straightforward way. An open reading frame S[i, . . . , j + 2] is repre-
sented as the fragment of sequence $seq with starting position $i and length
$j+2-$i+1, that is, substr($seq,$i,$j+2-$i+1). Notice that Perl arrays do
not start with position 1 but, rather, with position 0 and, thus, the first codon
is substr($seq,0,3), the last nucleotide is substr($seq,$n-1,1), and the
three reading frames $r are numbered 0, 1, 2. This is all shown in the following
Perl script.

sub extract_open_reading_frames {
my $seq = shift;
for my $r (0,1,2) {

for (my $i = $r; $i <= length($seq) -3; $i += 3) {
if (substr($seq ,$i ,3) eq "ATG") {

© 2009 by Taylor & Francis Group, LLC



12 Combinatorial Pattern Matching Algorithms in Computational Biology

my $j = $i+3;
while ($j <= length($seq) -3 &&

substr($seq ,$j ,3) ne "TAA" &&
substr($seq ,$j ,3) ne "TAG" &&
substr($seq ,$j ,3) ne "TGA") {

$j += 3;
}
if ($j <= length($seq) -3) {

my $len = $j+2-$i+1;
if ($len >= 30) {

print substr($seq ,$i ,$j+2-$i+1),"\n";
}

}
}

}
}

}

The algorithm for extracting all open reading frames in the three reading
frames of a given DNA sequence fragment can also be implemented in R in a
straightforward way, as shown in the following R script.

extract.open.reading.frames <- function (seq) {
for (i in 1:3) {

while (i+2 <= nchar(seq)) {
if (substr(seq ,i,i+2) == "ATG") {

j <- i + 3
while (j+2 <= nchar(seq) &&

substr(seq ,j,j+2) != "TAA" &&
substr(seq ,j,j+2) != "TAG" &&
substr(seq ,j,j+2) != "TGA") {

j <- j + 3
}
if (j+2 <= nchar(seq)) {

if (j+2-i+1 >= 30) {
print(c(i,j+2,substr(seq ,i,j+2)))

}
}

}
i <- i + 3

}
}

}

There are indeed 104 open reading frames of at least 30 nucleotides and up
to 1,284 nucleotides in the DNA sequence of Bacteriophage φ-X174.

© 2009 by Taylor & Francis Group, LLC



Introduction 13

> seq <- "GAGTTTTATCGCTTCCATGACGCAGAAGTTAAC ... CGGATA"
> extract.open.reading.frames(seq)
[1] "133" "393" "ATGAGAAAATTCGACCTATCCTTG ... TCATGA"
[1] "250" "393" "ATGCTTGGCACGTTCGTCAAGGAC ... TCATGA"
[1] "568" "843" "ATGGTACGCTGGACTTTGTGGGAT ... GAGTGA"
[1] "643" "843" "ATGTTCATCCCGTCAACATTCAAA ... GAGTGA"
[1] "715" "843" "ATGGCGTCGAGCGTCCGGTTAAAG ... GAGTGA"
[1] "2395" "2922" "ATGTTTCAGACTTTTATTTCTCGC ... AAGTGA"
[1] "2578" "2922" "ATGGATACATCTGTCAACGCCGCT ... AAGTGA"
[1] "2827" "2922" "ATGGTTTGGTCTAACTTTACCGCT ... AAGTGA"
[1] "3037" "3066" "ATGTGCTTGCTACCGATAACAATA ... CTGTAG"
[1] "3076" "3684" "ATGCTGGTATTAAATCTGCCATTC ... AAATGA"
[1] "3109" "3684" "ATGTTCCTAACCCTGATGAGGCCG ... AAATGA"
[1] "3124" "3684" "ATGAGGCCGCCCCTAGTTTTGTTT ... AAATGA"
[1] "3316" "3684" "ATGCTTGGGAGCGTGCTGGTGCTG ... AAATGA"
[1] "3340" "3684" "ATGCTTCCTCTGCTGGTATGGTTG ... AAATGA"
[1] "3439" "3684" "ATGAGACTCAAAAAGAGATTGCTG ... AAATGA"
[1] "3508" "3684" "ATGCACAAAATGAGATGCTTGCTT ... AAATGA"
[1] "3517" "3684" "ATGAGATGCTTGCTTATCAACAGA ... AAATGA"
[1] "3742" "3930" "ATGGCTCTTCTCATATTGGCGCTA ... GATTGA"
[1] "3784" "3930" "ATGTCGTCACTGATGCTGCTTCTG ... GATTGA"
[1] "3796" "3930" "ATGCTGCTTCTGGTGTGGTTGATA ... GATTGA"
[1] "3826" "3930" "ATGGTATTGATAAAGCTGTTGCCG ... GATTGA"
[1] "3886" "3930" "ATGGTATTGGCTCTAATTTGTCTA ... GATTGA"
[1] "3946" "4263" "ATGTTTTCATGCCTCCAAATCTTG ... AGTTAA"
[1] "4186" "4263" "ATGGTGATATGTATGTTGACGGCC ... AGTTAA"
[1] "4198" "4263" "ATGTTGACGGCCATAAGGCTGCTT ... AGTTAA"
[1] "4234" "4263" "ATGAGTTTGTATCTGTTACTGAGA ... AGTTAA"
[1] "4267" "4323" "ATGAATTGGCACAATGCTACAATG ... CTATAG"
[1] "4288" "4323" "ATGTGCTCCCCCAACTTGATATTA ... CTATAG"
[1] "4429" "4500" "ATGAGTATAATTACCCCAAAAAGA ... CTATGA"
[1] "4465" "4500" "ATGAGTGTTCAAGATTGCTGGAGG ... CTATGA"
[1] "4537" "4611" "ATGCAATGCGACAGGCTCATGCTG ... GATTAG"
[1] "4555" "4611" "ATGCTGATGGTTGGTTTATCGTTT ... GATTAG"
[1] "4561" "4611" "ATGGTTGGTTTATCGTTTTTGACA ... GATTAG"
[1] "4621" "4857" "ATGATAATCCCAATGCTTTGCGTG ... AGTTAA"
[1] "4633" "4857" "ATGCTTTGCGTGACTATTTTCGTG ... AGTTAA"
[1] "4699" "4857" "ATGATTCACACGCCGACTGCTATC ... AGTTAA"
[1] "4744" "4857" "ATGGTACAGCTAATGGCCGTCTTC ... AGTTAA"
[1] "4756" "4857" "ATGGCCGTCTTCATTTCCATGCGG ... AGTTAA"
[1] "4774" "4857" "ATGCGGTGCACTTTATGCGGACAC ... AGTTAA"
[1] "4882" "5064" "ATGGTTACAGTATGCCCATCGCAG ... GTCTAG"
[1] "4957" "5064" "ATGCTAAAGGTGAGCCGCTTAAAG ... GTCTAG"
[1] "5008" "5064" "ATGTGGCTAAATACGTTAACAAAA ... GTCTAG"
[1] "17" "136" "ATGACGCAGAAGTTAACACTTTCG ... AAATGA"

© 2009 by Taylor & Francis Group, LLC



14 Combinatorial Pattern Matching Algorithms in Computational Biology

[1] "230" "331" "ATGAGGAGAAGTGGCTTAATATGC ... TTTTAA"
[1] "284" "331" "ATGAGTCACATTTTGTTCATGGTA ... TTTTAA"
[1] "302" "331" "ATGGTAGAGATTCTCTTGTTGACA ... TTTTAA"
[1] "848" "964" "ATGTCTAAAGGTAAAAAACGTTCT ... TTTTAA"
[1] "1001" "2284" "ATGTCTAATATTCAAACTGGCGCC ... TCGTGA"
[1] "1031" "2284" "ATGCCGCATGACCTTTCCCATCTT ... TCGTGA"
[1] "1130" "2284" "ATGGACGCCGTTGGCGCTCTCCGT ... TCGTGA"
[1] "1256" "2284" "ATGAAGGATGGTGTTAATGCCACT ... TCGTGA"
[1] "1421" "2284" "ATGCCTGACCGTACCGAGGCTAAC ... TCGTGA"
[1] "1550" "2284" "ATGACGACTTCTACCACATCTATT ... TCGTGA"
[1] "1580" "2284" "ATGGGTCTGCAAGCTGCTTATGCT ... TCGTGA"
[1] "1637" "2284" "ATGCAGCGTTACCATGATGTTATT ... TCGTGA"
[1] "1715" "2284" "ATGCGCTCTAATCTCTGGGCATCT ... TCGTGA"
[1] "1850" "2284" "ATGTTTACTCTTGCGCTTGTTCGT ... TCGTGA"
[1] "1991" "2284" "ATGAAGGATGTTTTCCGTTCTGGT ... TCGTGA"
[1] "2543" "2731" "ATGCTGGTAATGGTGGTTTTCTTC ... CTTTGA"
[1] "2552" "2731" "ATGGTGGTTTTCTTCATTGCATTC ... CTTTGA"
[1] "2639" "2731" "ATGCCGACCCTAAATTTTTTGCCT ... CTTTGA"
[1] "2732" "2776" "ATGGTCGCCATGATGGTGGTTATT ... GTGTGA"
[1] "2741" "2776" "ATGATGGTGGTTATTATACCGTCA ... GTGTGA"
[1] "2744" "2776" "ATGGTGGTTATTATACCGTCAAGG ... GTGTGA"
[1] "2816" "2878" "ATGTTGGTTTCATGGTTTGGTCTA ... CGCTGA"
[1] "4349" "4405" "ATGGTTTTTAGAGAACGAGAAGAC ... TGCTGA"
[1] "51" "221" "ATGAGTCGAAAAATTATCTTGATA ... AACTGA"
[1] "390" "848" "ATGAGTCAAGTTACTGAACAATCC ... ATGTAA"
[1] "681" "848" "ATGGAAGGCGCTGAATTTACGGAA ... ATGTAA"
[1] "1038" "1196" "ATGACCTTTCCCATCTTGGCTTCC ... CTGTAG"
[1] "1212" "1259" "ATGTCCCTCATCGTCACGTTTATG ... TCATGA"
[1] "1263" "1388" "ATGGTGTTAATGCCACTCCTCTCC ... ATTTGA"
[1] "1272" "1388" "ATGCCACTCCTCTCCCGACTGTTA ... ATTTGA"
[1] "1317" "1388" "ATGCCGCTTTTCTTGGCACGATTA ... ATTTGA"
[1] "1449" "1553" "ATGAGCTTAATCAAGATGATGCTC ... AAATGA"
[1] "1464" "1553" "ATGATGCTCGTTATGGTTTCCGTT ... AAATGA"
[1] "1467" "1553" "ATGCTCGTTATGGTTTCCGTTGCT ... AAATGA"
[1] "1476" "1553" "ATGGTTTCCGTTGCTGCCATCTCA ... AAATGA"
[1] "1599" "1775" "ATGCTAATTTGCATACTGACCAAG ... CGTTAG"
[1] "1650" "1775" "ATGATGTTATTTCTTCATTTGGAG ... CGTTAG"
[1] "1653" "1775" "ATGTTATTTCTTCATTTGGAGGTA ... CGTTAG"
[1] "1686" "1775" "ATGACGCTGACAACCGTCCTTTAC ... CGTTAG"
[1] "1743" "1775" "ATGATGTTGATGGAACTGACCAAA ... CGTTAG"
[1] "1746" "1775" "ATGTTGATGGAACTGACCAAACGT ... CGTTAG"
[1] "1842" "1928" "ATGGCACTATGTTTACTCTTGCGC ... CTTTGA"
[1] "1962" "1994" "ATGGCAACTTGCCGCCGCGTGAAA ... CTATGA"
[1] "1998" "2234" "ATGTTTTCCGTTCTGGTGATTCGT ... ATGTGA"
[1] "2061" "2234" "ATGCGCCTTCGTATGTTTCTCCTG ... ATGTGA"

© 2009 by Taylor & Francis Group, LLC



Introduction 15

[1] "2073" "2234" "ATGTTTCTCCTGCTTATCACCTTC ... ATGTGA"
[1] "2166" "2234" "ATGATTATGACCAGTGTTTCCAGT ... ATGTGA"
[1] "2172" "2234" "ATGACCAGTGTTTCCAGTCCGTTC ... ATGTGA"
[1] "2856" "2891" "ATGCCGCGGATTGGTTTCGCTGAA ... TATTAA"
[1] "2931" "3917" "ATGTTTGGTGCTATTGCTGGCGGT ... AAATAA"
[1] "2982" "3917" "ATGTCTAAATTGTTTGGAGGCGGT ... AAATAA"
[1] "3069" "3917" "ATGGGTGATGCTGGTATTAAATCT ... AAATAA"
[1] "3156" "3917" "ATGGCTAAAGCTGGTAAAGGACTT ... AAATAA"
[1] "3357" "3917" "ATGGTTGACGCCGGATTTGAGAAT ... AAATAA"
[1] "3399" "3917" "ATGCAACTGGACAATCAGAAAGAG ... AAATAA"
[1] "3432" "3917" "ATGCAAAATGAGACTCAAAAAGAG ... AAATAA"
[1] "3522" "3917" "ATGCTTGCTTATCAACAGAAGGAG ... AAATAA"
[1] "3570" "3917" "ATGGAAAACACCAATCTTTCCAAG ... AAATAA"
[1] "3615" "3917" "ATGCGCCAAATGCTTACTCAAGCT ... AAATAA"
[1] "3624" "3917" "ATGCTTACTCAAGCTCAAACGGCT ... AAATAA"
[1] "3681" "3917" "ATGACTCGCAAGGTTAGTGCTGAG ... AAATAA"

A related algorithmic problem consists of finding the longest open reading
frame of a given DNA sequence fragment. The longest open reading frame
often determines the correct reading frame for eukaryotes, where translation
usually takes place in one reading frame only. Again, the problem has to be
solved on the reverse complement of the sequence as well if the DNA is double
stranded.

The previous algorithm for extracting all open reading frames can be ex-
tended to find the longest open reading frame, by keeping the position of the
start and stop codon of the longest open reading frame found so far. In the
following description, the start codon of the longest open reading frame found
so far is S[i′, . . . , i′ + 2], and the corresponding stop codon is S[j′, . . . , j′ + 2].

function longest open reading frame(S)
i′ ← j′ ← 0
n← length(S)
for i← 1, 2, 3 do

while i + 2 6 n do
if S[i, . . . , i + 2] = AGT then

j ← i + 3
while j + 2 6 n and S[j, . . . , j + 2] /∈ {TAA,TAG,TGA} do

j ← j + 3
if j + 2 6 n then

if j + 2− i + 1 > j′ + 2− i′ + 1 then
i′ ← i
j′ ← j

i← i + 3
return (i′, j′ + 2)

© 2009 by Taylor & Francis Group, LLC



16 Combinatorial Pattern Matching Algorithms in Computational Biology

The previous algorithm for finding the longest open reading frame of a given
DNA sequence fragment can be implemented in Perl in a straightforward way,
as shown in the following Perl script.

sub longest_open_reading_frame {
my $seq = shift;
my ($ii ,$jj) = (0,0);
for my $r (0,1,2) {

for (my $i = $r; $i <= length($seq) -3; $i += 3) {
if (substr($seq ,$i ,3) eq "ATG") {

my $j = $i+3;
while ($j <= length($seq) -3 &&

substr($seq ,$j ,3) ne "TAA" &&
substr($seq ,$j ,3) ne "TAG" &&
substr($seq ,$j ,3) ne "TGA") {

$j += 3;
}
if ($j <= length($seq) -3) {

my $len = $j+2-$i+1;
if ($j+2-$i+1 > $jj+2-$ii+1) {

$ii = $i;
$jj = $j;

}
}

}
}

}
return [$ii ,$jj +2];

}

The algorithm for finding the longest open reading frame of a given DNA
sequence fragment can also be easily implemented in R, as shown in the fol-
lowing R script.

longest.open.reading.frame <- function (seq) {
ii <- jj <- 0
for (i in 1:3) {

while (i+2 <= nchar(seq)) {
if (substr(seq ,i,i+2) == "ATG") {

j <- i + 3
while (j+2 <= nchar(seq) &&

substr(seq ,j,j+2) != "TAA" &&
substr(seq ,j,j+2) != "TAG" &&
substr(seq ,j,j+2) != "TGA") {

j <- j + 3
}

© 2009 by Taylor & Francis Group, LLC



Introduction 17

if (j+2 <= nchar(seq)) {
if (j+2-i+1 > jj+2-ii+1) {

ii <- i
jj <- j

}
}

}
i <- i + 3

}
}
c(ii ,jj+2)

}

The longest of the 104 open reading frames with at least 30 nucleotides in
the DNA sequence of Bacteriophage φ-X174 has indeed 2,284 − 1,001 + 1 =
1,284 nucleotides.

> longest.open.reading.frame(seq)
[1] 1001 2284

The actual reading frame it belongs to can be obtained by integer division.
Open reading frame S[i, . . . , j] comes from reading frame ((i− 1) mod 3) + 1.

> ((1001 -1) %% 3) + 1
[1] 2

Bibliographic Notes

Most of the research in combinatorial pattern matching is reflected in the
various editions of the Annual Symposium on Combinatorial Pattern Match-
ing (Apostolico et al. 1992; 1993; Crochemore and Gusfield 1994; Galil and
Ukkonen 1995; Hirschberg and Myers 1996; Apostolico and Hein 1997; Farach-
Colton 1998; Crochemore and Paterson 1999; Giancarlo and Sankoff 2000;
Amir and Landau 2001; Apostolico and Takeda 2002; Baeza-Yates et al. 2003;
Sahinalp et al. 2004; Apostolico et al. 2005; Lewenstein and Valiente 2006; Ma
and Zhang 2007; Ferragina and Landau 2008). There are also several books on
specific aspects of combinatorial pattern matching, focused on algorithms on
sequences (Stephen 1998; Crochemore and Rytter 1994; Navarro and Raffinot
2002; Crochemore and Rytter 2003; Smyth 2003; Crochemore et al. 2007).

There are several books on algorithms in computational biology which also
address combinatorial pattern matching, including (Waterman 1995; Gusfield
1997; Pevzner 2000; Valiente 2002; Dwyer 2003; Jones and Pevzner 2004;
Deonier et al. 2005; Kasahara and Morishita 2006). A brief introduction to

© 2009 by Taylor & Francis Group, LLC



18 Combinatorial Pattern Matching Algorithms in Computational Biology

bioinformatics was written by Cohen (2004). Systems biology is a quite recent
discipline, although there are already a couple of textbooks (Alon 2006; Pals-
son 2006), and a brief introduction to systems biology was written by Kitano
(2002a;b).

The algorithmic techniques used in this book are rather simple, in order to
make life easier for the biologist reader. A basic understanding of algorithms
and computing will be more than sufficient to follow this book, with the
most advanced algorithmic technique used in the book being perhaps dynamic
programming, and the presentation of the algorithms is iterative rather than
recursive. The use of dynamic programming in computational biology was
reviewed by Giegerich (2000) and Eddy (2004b).

Alternative Perl and R implementations for some of the algorithms pre-
sented in this book can be found within the BioPerl project (Stajich et al.
2002; Birney et al. 2009) and in the Bioconductor project (Gentleman et al.
2005; Hahne et al. 2008), respectively. See the appendices for further biblio-
graphic notes on Perl and R.

The DNA sequence of Bacteriophage φ-X174, the first complete genome to
be sequenced, was determined by Sanger et al. (1977). The first complete mi-
tochondrial genome sequence of an extinct species was reported by Haddrath
and Baker (2001). See also (Sanger and Dowding 1996; Green et al. 2008).

© 2009 by Taylor & Francis Group, LLC



Part I

Sequence Pattern
Matching

© 2009 by Taylor & Francis Group, LLC



Chapter 2

Sequences

Sequences are fundamental mathematical objects that count among the most
common combinatorial structures in computer science and computational bi-
ology. Basic notions underlying combinatorial algorithms on sequences, such
as counting, generation, and traversal algorithms, as well as appropriate data
structures for the representation of sequences, are the subject of this intro-
ductory chapter.

2.1 Sequences in Mathematics

The notion of sequence most often found in discrete mathematics is that of
a (finite or infinite) ordered list of elements. The same element can appear
multiple times at different positions in the sequence. A sequence thus defines
an ordered multiset, that is, an ordered set of elements, each belonging to the
multiset with a certain multiplicity.

Some applications of sequences in mathematics involve labeled sequences,
where the elements have additional attributes such as, for instance, their
multiplicity in the sequence.

Example 2.1

The following three sequences (shown with the elements separated by spaces,
for clarity) are identical as multisets of elements, but they are all different
sequences.

A B C C D D D E E E E E F F F F F F F F
A B C D E F C D E F D E F E F E F F F F
F F F F F F F F E E E E E D D D C C B A

Actually, they all define the same labeled sequence: an ordered multiset with
elements A and B, element C twice, three occurrences of element D, five
occurrences of element E, and eight occurrences of element F.

(A,1) (B,1) (C,2) (D,3) (E,5) (F,8)

21
© 2009 by Taylor & Francis Group, LLC



22 Combinatorial Pattern Matching Algorithms in Computational Biology

2.1.1 Counting Labeled Sequences

Determining the number of possible labeled sequences is a trivial exercise
in mathematics. Here, counting refers to determining the number of possible
sequences that have certain properties, while generation is the process of
obtaining the actual sequences with these properties such as, for instance, all
labeled sequences.

Assume the elements are drawn from the alphabet {A,B}. There are 21 = 2
ways to make a sequence of length 1 with elements from this alphabet:

A
B

Each of these two sequences can be extended in two different ways to make
a sequence of length 2 and, thus, there are 2 · 2 = 22 = 4 possible sequences
of length 2 with elements from that alphabet:

AA
AB
BA
BB

Each of these four sequences can now be extended in two different ways
to make a sequence of length 3 and, thus, there are 2 · 4 = 23 = 8 possible
sequences of length 3 with elements from that alphabet:

AAA
AAB
ABA
ABB
BAA
BAB
BBA
BBB

In general, there are 2n possible sequences of length n with elements from
that alphabet, and there are mn possible sequences of length n with elements
from an alphabet of size m, as shown in the following R script for sequence
length 1 6 n 6 12 and alphabet size 1 6 m 6 6.

> outer (1:12 ,1:6 , function(n,m)m^n)
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 2 3 4 5 6
[2,] 1 4 9 16 25 36
[3,] 1 8 27 64 125 216
[4,] 1 16 81 256 625 1296
[5,] 1 32 243 1024 3125 7776
[6,] 1 64 729 4096 15625 46656
[7,] 1 128 2187 16384 78125 279936

© 2009 by Taylor & Francis Group, LLC



Sequences 23

[8,] 1 256 6561 65536 390625 1679616
[9,] 1 512 19683 262144 1953125 10077696

[10,] 1 1024 59049 1048576 9765625 60466176
[11,] 1 2048 177147 4194304 48828125 362797056
[12,] 1 4096 531441 16777216 244140625 2176782336

Assume now the elements are drawn from the alphabet {A,B,C}. There
are

(
3+1−1
3−1

)
=

(
3
2

)
= 3 ways to make a labeled sequence of length 1 with

elements from this alphabet:

(A,1)
(B,1)
(C,1)

There are
(
3+2−1
3−1

)
=

(
4
2

)
= 6 ways to make a labeled sequence of length 2

with elements from that alphabet:

(A,1) (B,1)
(A,1) (C,1)
(A,2)
(B,1) (C,1)
(B,2)
(C,2)

Also, there are
(
3+3−1
3−1

)
=

(
5
2

)
= 10 ways to make a labeled sequence of

length 3 with elements from that alphabet:

(A,1) (B,1) (C,1)
(A,1) (B,2)
(A,1) (C,2)
(A,2) (B,1)
(A,2) (C,1)
(A,3)
(B,1) (C,2)
(B,2) (C,1)
(B,3)
(C,3)

In general, there are
(
3+n−1

3−1

)
= (n+2)(n+1)/2 possible sequences of length

n with elements from that alphabet, and there are
(
m+n−1

m−1

)
possible labeled

sequences of length n with elements from an alphabet of size m, as shown in
the following R script for labeled sequence length 1 6 n 6 20 and alphabet
size 1 6 m 6 8.

> outer (1:20 ,1:8 , function(n,m)choose(m+n-1,m-1))
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 1 2 3 4 5 6 7 8
[2,] 1 3 6 10 15 21 28 36

© 2009 by Taylor & Francis Group, LLC



24 Combinatorial Pattern Matching Algorithms in Computational Biology

[3,] 1 4 10 20 35 56 84 120
[4,] 1 5 15 35 70 126 210 330
[5,] 1 6 21 56 126 252 462 792
[6,] 1 7 28 84 210 462 924 1716
[7,] 1 8 36 120 330 792 1716 3432
[8,] 1 9 45 165 495 1287 3003 6435
[9,] 1 10 55 220 715 2002 5005 11440

[10,] 1 11 66 286 1001 3003 8008 19448
[11,] 1 12 78 364 1365 4368 12376 31824
[12,] 1 13 91 455 1820 6188 18564 50388
[13,] 1 14 105 560 2380 8568 27132 77520
[14,] 1 15 120 680 3060 11628 38760 116280
[15,] 1 16 136 816 3876 15504 54264 170544
[16,] 1 17 153 969 4845 20349 74613 245157
[17,] 1 18 171 1140 5985 26334 100947 346104
[18,] 1 19 190 1330 7315 33649 134596 480700
[19,] 1 20 210 1540 8855 42504 177100 657800
[20,] 1 21 231 1771 10626 53130 230230 888030

2.2 Sequences in Computer Science

The notion of sequence most often found in computer science is also that
of an ordered list of elements, where it is often called a string of characters
or symbols drawn from an underlying set or alphabet. The alphabet itself is
usually ordered, thus allowing the definition of an ordering among sequences,
called the dictionary or lexicographical order.

A sequence (x1, x2, . . . , xk) precedes a sequence (x′
1, x

′
2, . . . , x

′
`) in lexico-

graphical order if x1 < x′
1, or x1 = x′

1 and (x2, . . . , xk) precedes (x′
2, . . . , x

′
`)

in lexicographical order, where the empty sequence precedes any non-empty
sequence.

Example 2.2
The 2 + 4 + 8 + 16 = 30 sequences of length 1 through 4 over the alphabet
{A,B} are shown in lexicographical order.

A
AA
AAA
AAAA
AAAB
AAB

© 2009 by Taylor & Francis Group, LLC



Sequences 25

AABA
AABB
AB
ABA
ABAA
ABAB
ABB
ABBA
ABBB
B
BA
BAA
BAAA
BAAB
BAB
BABA
BABB
BB
BBA
BBAA
BBAB
BBB
BBBA
BBBB

In labeled sequences, both the alphabet and the attributes associated with
the elements of the sequences are usually ordered, allowing also the definition
of a lexicographical ordering among labeled sequences. A labeled sequence
((x1, n1), (x2, n2), . . . , (xk, nk)) with x1 < x2 < · · · < xn precedes another
labeled sequence ((x′

1, n
′
1), (x

′
2, n

′
2), . . . , (x

′
`, n

′
`)) with x′

1 < x′
2 < · · · < x′

` in
lexicographical order if x1 < x′

1, or x1 = x′
1 and n1 < n′

1, or x1 = x′
1 and

n1 = n′
1 and (x2, . . . , xk) precedes (x′

2, . . . , x
′
`) in lexicographical order, where

the empty labeled sequence precedes any non-empty labeled sequence.

Example 2.3

The 2 + 3 + 4 + 5 = 14 labeled sequences of length 1 through 4 over the
alphabet {A,B} are shown in lexicographical order.

(A,1)
(A,1) (B,1)
(A,1) (B,2)
(A,1) (B,3)
(A,2)
(A,2) (B,1)

© 2009 by Taylor & Francis Group, LLC



26 Combinatorial Pattern Matching Algorithms in Computational Biology

(A,2) (B,2)
(A,3)
(A,3) (B,1)
(A,4)
(B,1)
(B,2)
(B,3)
(B,4)

A first assessment of the similarities and differences between two sequences
can be made by means of the symmetric difference of the corresponding labeled
sequences, that is, the number of elements in which the two sequences differ.
While the length of the symmetric difference of the labeled sequences is equal
to the difference in length of the two sequences, different weights can be given
to each element of the alphabet in a particular application. Distance measures
over sequences will be discussed in the next two chapters.

Example 2.4
Consider the following two sequences over the alphabet {A,B}.

AABAAABBAAAABBB
ABBAABBBAAABBBBAAAABBBBB

The corresponding labeled sequences, of length 15 and 24, are as follows.

(A,9) (B,6)
(A,10) (B,14)

Their symmetric difference is thus the following labeled sequence, of length 9.

(A,1) (B,8)

2.2.1 Traversing Labeled Sequences

Most algorithms on sequences require a systematic method of accessing the
elements of a sequence, and combinatorial pattern matching algorithms are no
exception. The most common method for accessing the elements of a sequence
is by traversing the ordered list of elements, from first to last.

The following Perl script illustrates the traversal of a sequence represented
as a character string.

my $seq = "AABAAABBAAAABBB";

for (my $i = 0; $i < length($seq); $i++) {
print substr($seq ,$i ,1),"\n";

}

© 2009 by Taylor & Francis Group, LLC



Sequences 27

The following R script illustrates the traversal of a sequence represented as
a vector of characters.

> seq <- "AABAAABBAAAABBB"
> str(seq)
chr "AABAAABBAAAABBB"

> nchar(seq)
[1] 15
> for (i in 1:nchar(seq)) print(substr(seq ,i,i))
[1] "A"
[1] "A"
[1] "B"
[1] "A"
[1] "A"
[1] "A"
[1] "B"
[1] "B"
[1] "A"
[1] "A"
[1] "A"
[1] "A"
[1] "B"
[1] "B"
[1] "B"

The labeled sequence corresponding to a given sequence can be obtained by
traversing the sequence, counting the number of occurrences of each element
in the sequence.

The following Perl script illustrates the traversal of a sequence $seq, start-
ing with position 0, to obtain the corresponding labeled sequence %seq, rep-
resented as a hash of integers indexed by the alphabet.

sub seq_to_labeled_seq {
my $seq = shift;
my %seq;
for (my $i = 0; $i < length($seq); $i++) {

my $elem = substr($seq ,$i ,1);
$seq{$elem }++;

}
return \%seq;

}

The following R script illustrates the traversal of a sequence to obtain the
corresponding labeled sequence, represented as a list of character vectors.

> seq.to.labeled.seq <- function (seq) {
alphabet <- sort(unique(strsplit(seq ,"")[[1]]))

© 2009 by Taylor & Francis Group, LLC



28 Combinatorial Pattern Matching Algorithms in Computational Biology

lab <- matrix(0,nrow=length(alphabet),ncol =1)
dimnames(lab) <- list(alphabet ,"count")
for (i in 1:nchar(seq))

lab[substr(seq ,i,i) ,] <-
lab[substr(seq ,i,i) ,] + 1

lab
}

> seq <- "AABAAABBAAAABBB"
> seq.to.labeled.seq(seq)

count
A 9
B 6

The most common method for accessing the elements of a labeled sequence
is by traversing the ordered list of labeled elements, from first to last. The
following Perl script illustrates the traversal of a labeled sequence represented
as a hash of integers indexed by the alphabet.

my $seq = "AABAAABBAAAABBB";
my %seq = %{ seq_to_labeled_seq($seq) };

for my $elem (sort keys %seq) {
print "($elem ,$seq{$elem })\n";

}

The following R script illustrates the traversal of a labeled sequence repre-
sented as a list of character vectors.

> seq <- "AABAAABBAAAABBB"
> lab <- seq.to.labeled.seq(seq)
> for (elem in row.names(lab))

print(paste("(",elem ,",",lab[elem ,],")",sep=""))
[1] "(A,9)"
[1] "(B,6)"

The symmetric difference of two sequences can be obtained by traversing
each of the corresponding labeled sequences in turn, computing the absolute
difference of the number of occurrences of each element in the two sequences.
In the following Perl script, the multiplicities in the second sequence are sub-
tracted from the multiplicities in the first sequence, keeping the absolute value
of the result.

sub symmetric_difference {
my $seq1 = shift;
my $seq2 = shift;

my %seq1 = %{ seq_to_labeled_seq($seq1) };

© 2009 by Taylor & Francis Group, LLC



Sequences 29

my %seq2 = %{ seq_to_labeled_seq($seq2) };

for my $elem (keys %seq2) {
$seq1{$elem} = abs($seq1{$elem}-$seq2{$elem });

}

return \%seq1;
}

In the following R script, the multiplicities of the elements in the second
sequence are subtracted from their multiplicities in the first sequence, keeping
again the absolute value of the result.

> symmetric.difference <- function (seq1 ,seq2) {
lab1 <- seq.to.labeled.seq(seq1)
lab2 <- seq.to.labeled.seq(seq2)
for (elem in row.names(lab2))

lab1[elem ,] <- abs(lab1[elem ,] - lab2[elem ,])
lab1

}

> seq1 <- "AABAAABBAAAABBB"
> seq2 <- "ABBAABBBAAABBBBAAAABBBBB"
> symmetric.difference(seq1 ,seq2)

count
A 1
B 8

2.3 Sequences in Computational Biology

One of the notions of sequence most often found in computational biology
is that of a genomic sequence, that is, a sequence over the alphabet of deoxyri-
bonucleic acid (DNA) or ribonucleic acid (RNA) nucleotides. The primary
structure of DNA can be represented as a sequence over the alphabet of nu-
cleotides: the purines A (adenine) and G (guanine), and the pyrimidines C
(cytosine) and T (thymine). The primary structure of RNA can also be rep-
resented as a sequence over the alphabet of nucleotides, where the pyrimidine
T (thymine) is replaced by U (uracil).

Along a genomic sequence, the nucleotides are held together by a backbone
of alternating phosphate and sugar residues. The sugar in DNA is 2-deoxy-
ribose, a pentose (five-carbon) sugar, whereas it is ribose, also a pentose sugar,
in RNA. The carbon atoms are numbered 1, 2, 3, 4, 5 in a nucleotide and

© 2009 by Taylor & Francis Group, LLC



30 Combinatorial Pattern Matching Algorithms in Computational Biology

1′, 2′, 3′, 4′, 5′ in a sugar, following the conventions of organic chemistry. The
phosphates form covalent bonds between the 3′ carbon of one sugar and the
5′ carbon of the next sugar along the backbone, thus defining a direction of
the DNA sequence from the unbound 5′ carbon to the unbound 3′ carbon.

In vivo, DNA consists of two strands held together by hydrogen bonds
between complementary nucleotides, which fold in space in the shape of a
double helix. Adenine and thymine are complementary, and the AT base pair
has two hydrogen bonds. Guanine and cytosine are also complementary, and
the GC base pair has three hydrogen bonds instead. Each of the two ends of
a double helix has the 3′ end of one DNA strand and the 5′ end of the other
one and, thus, two DNA sequences are complementary if one is the reverse
complement of the other, that is, if one sequence can be obtained from the
other by replacing each nucleotide by its complement (A by T, C by G, G by
C, T by A) and then reversing the resulting sequence.

Example 2.5
The DNA sequences AAAGGAGGTGGTCCA and TGGACCACCTCCTTT,
which are common to most organisms, are complementary.

5’-AAAGGAGGTGGTCCA -3’
3’-TGGACCACCTCCTTT -5’

Unlike DNA, however, RNA often consists of a single strand, which folds
back on itself in space by hydrogen bonds between short stretches of comple-
mentary nucleotides. The most usual ones are the canonical or Watson-Crick
nucleotide pairs: adenine with uracil, and guanine with cytosine.

Example 2.6
The large subunit ribosomal RNA sequence

5’-GGGUGCUCAGUACGAGAGGAACCGCACCC -3’

folds back on itself, forming the sarcin/ricin loop, a highly conserved form of
RNA secondary structure across different species.

5′

3′

GGGUGC
UCAGUAC

G
A
G

AGGAACC
GCACCC

The secondary structure of an RNA molecule is the spatial conformation
adopted by the molecule, and it is usually divided into various forms of loops

© 2009 by Taylor & Francis Group, LLC



Sequences 31

of unpaired nucleotides joined by helical stems of paired nucleotides within
the RNA molecule.

Sequences also arise as a mathematical model of protein structure. In fact,
the primary structure of a protein can be represented as a sequence over the
alphabet of amino acids or residues: the hydrophobic or water-insoluble A
(alanine), C (cysteine), I (isoleucine), L (leucine), M (methionine), F (pheny-
lalanine), and V (valine), and the hydrophilic or water-soluble R (arginine),
N (asparagine), D (aspartate), E (glutamate), Q (glutamine), G (glycine), H
(histidine), K (lysine), P (proline), S (serine), T (threonine), W (tryptophan),
and Y (tyrosine).

Example 2.7
The following protein sequence, 2bop, corresponds to a DNA binding protein
from a bovine virus, the Bovine papillomavirus.

SCFALISGTANQVKCYRFRVKKNHRHRYENCTTTWFTVADNGAERQGQAQILI
TFGSPSQRQDFLKHVPLPPGMNISGFTASLDF

Protein sequences also fold in space, driven by various interactions among
the residues and adopting particular spatial conformations that will ultimately
determine their biological function.

2.3.1 Reverse Complementing DNA Sequences

Recall that DNA consists of two strands of complementary nucleotides that
fold in space in the shape of a double helix, each of whose two ends has the
3′ end of one DNA strand and the 5′ end of the other DNA strand. Reading
one such sequence in the 5′ to 3′ direction, the complementary sequence will
be read in the reversed 3′ to 5′ direction, and corresponding nucleotides in
the two sequences will be complementary.

Example 2.8
The following DNA sequence is also shown reversed, complemented, and re-
verse complemented.

5’-AAAGGAGGTGGTCCA -3’
3’-ACCTGGTGGAGGAAA -5’
5’-TTTCCTCCACCAGGT -3’
3’-TGGACCACCTCCTTT -5’

The reverse of a DNA sequence can be obtained by traversing the DNA se-
quence from the 3′ to the 5′ end, and the reverse complement can be obtained
by replacing the nucleotides by their complementary nucleotides during the

© 2009 by Taylor & Francis Group, LLC



32 Combinatorial Pattern Matching Algorithms in Computational Biology

traversal. In the following description, a DNA sequence S of length n is re-
versed by putting, for each i with 1 6 i 6 n, the i-th nucleotide in position
n − i + 1 of the reverse sequence, and it is reverse complemented by also
replacing each nucleotide with the complementary one.

function reverse complement(S)
n← length(S)
for i← 1 to n do

if S[i] = A then
R[n− i + 1]← T

else if S[i] = C then
R[n− i + 1]← G

else if S[i] = G then
R[n− i + 1]← C

else if S[i] = T then
R[n− i + 1]← A

return R

The previous algorithm for computing the reverse complement of a DNA
sequence can be easily implemented in Perl by taking advantage of the array
reverse method, which, when used in scalar context instead of array context,
concatenates the elements of the array and returns a string with all elements
in the opposite order, and also by taking advantage of the transliteration
operator tr of Perl, as shown in the following Perl script.

sub reverse_complement {
my $seq = shift;
$seq = reverse $seq;
$seq =~ tr/ACGT/TGCA/;
return $seq;

}

The previous algorithm for computing the reverse complement of a DNA
sequence can also be easily implemented in R by taking advantage of the chartr
(character translation) function, as illustrated by the following R script.

> reverse.complement <- function (seq) {
rev <- paste(rev(unlist(strsplit(seq ,split=""))),

sep="",collapse="")
chartr("ACGT","TGCA",rev)

}

> seq <- "AAAGGAGGTGGTCCA"
> reverse.complement(seq)
[1] "TGGACCACCTCCTTT"

© 2009 by Taylor & Francis Group, LLC



Sequences 33

2.3.2 Counting RNA Sequences

RNA sequences are labeled over the alphabet {A,C, G,U} and, thus, there
are 4n possible RNA sequences of length n, as shown in the following R script
for sequence length 1 6 n 6 12.

> t(sapply (1:12 , function(n)c(n,4^n)))
[,1] [,2]

[1,] 1 4
[2,] 2 16
[3,] 3 64
[4,] 4 256
[5,] 5 1024
[6,] 6 4096
[7,] 7 16384
[8,] 8 65536
[9,] 9 262144

[10,] 10 1048576
[11,] 11 4194304
[12,] 12 16777216

A more interesting problem consists of counting the number R(n) of possi-
ble RNA secondary structures of length n. While there is only one possible
RNA secondary structure of length 0 (the empty sequence) and only one pos-
sible RNA secondary structure of length 1 or 2, there are two possible RNA
secondary structures of length 3,

XXX XXX

where X stands for an A, C, G, U base along the RNA sequence, in 5′ to 3′

order. Further, there are four possible RNA secondary structures of length 4,

XXXX XXXX XXXX XXXX

and eight possible RNA secondary structures of length 5,

XXXXX XXXXX XXXXX XXXXX

XXXXX XXXXX XXXXX XXXXX

In general, in a sequence of length n+1, the base at position n+1 is either
not paired or it is paired with the base at position j, where 1 6 j 6 n − 1.
In the latter case, the bases at positions 1 through j − 1 can form any of

© 2009 by Taylor & Francis Group, LLC



34 Combinatorial Pattern Matching Algorithms in Computational Biology

the R(j − 1) possible secondary structures of length j − 1, and the bases in
positions j +1 through n can also form any of the R(n−j) possible secondary
structures of length n− j. Therefore, R(0) = R(1) = R(2) = 1 and, for n > 2,

R(n + 1) = R(n) +
n−1∑
j=1

R(j − 1)R(n− j)

This gives an algorithm for counting the number R(n) of RNA secondary
structures of length n. The computation of R(n + 1) requires the values of
R(j − 1) and R(n − j) for each j = 1, . . . , n − 1; that is, it requires each of
the values R(0), R(1), . . . , R(n− 1). In the following description, these values
are computed in that order and stored in a vector, so that they are already
available whenever needed during the computation of R(n).

function count(n)
R[0]← R[1]← R[2]← 1
for i = 2 to n− 1 do

R[i + 1]← R[i]
for j = 1 to i− 1 do

R[i + 1]← R[i + 1] + R[j − 1] ·R[i− j]
return R[n]

The previous algorithm for counting the number of RNA secondary struc-
tures of a given length can be implemented in Perl in a straightforward way,
with the values R(0), R(1), . . . , R(n) stored in positions 0, 1, . . . , n of an array
R, as shown in the following Perl script.

sub count {
my $n = shift;
my @R;
$R[0] = $R[1] = $R[2] = 1;
for (my $i = 2; $i < $n; $i++) {

$R[$i+1] = $R[$i];
for (my $j = 1; $j < $i; $j++) {

$R[$i+1] += $R[$j -1] * $R[$i -$j]
}

}
return $R[$n];

}

The previous algorithm for counting the number of RNA secondary struc-
tures of a given length can also be easily implemented in R. The values
R(0), R(1), . . . , R(n) are stored in positions 1, 2, . . . , n + 1 of vector R, how-
ever, because unlike Perl array indexes that start at 0, R vector indexes do
start at 1. This is all illustrated by the following R script.

© 2009 by Taylor & Francis Group, LLC



Sequences 35

> count <- function (n) {
R <- rep(0,n)
R[1:3] <- 1
if (n > 2) {

for (i in 2:(n-1)) {
R[i+2] <- R[i+1]
for (j in 1:(i-1)) {

R[i+2] <- R[i+2] + R[j] * R[i-j+1]
}

}
}
R[n+1]

}

> t(sapply (0:12 , function(n)c(n,count(n))))
[,1] [,2]

[1,] 0 1
[2,] 1 1
[3,] 2 1
[4,] 3 2
[5,] 4 4
[6,] 5 8
[7,] 6 17
[8,] 7 37
[9,] 8 82

[10,] 9 185
[11,] 10 423
[12,] 11 978
[13,] 12 2283

Example 2.9

The following large subunit ribosomal RNA sequence, of length 29,

GGGUGCUCAGUACGAGAGGAACCGCACCC

has 8,622,571,758 possible secondary structures, only 789,564 of which are in-
deed possible for this RNA sequence. The remaining 8,621,782,194 secondary
structures involve base pairs other than AU or CG.

2.3.3 Generating DNA Sequences

All the DNA sequences with n nucleotides can be generated by taking each
of the DNA sequences with n−1 nucleotides in turn and then extending them
with one more nucleotide.

© 2009 by Taylor & Francis Group, LLC



36 Combinatorial Pattern Matching Algorithms in Computational Biology

Example 2.10
The four DNA sequences of length 1,

A C G T

can each be extended in four different ways to give sequences of length 2.

AA AC AG AT
CA CC CG CT
GA GC GG GT
TA TC TG TT

Each of these DNA sequences of length 2 can in turn be extended in four
different ways to give sequences of length 3.

AAA AAC AAG AAT
ACA ACC ACG ACT
AGA AGC AGG AGT
ATA ATC ATG ATT
CAA CAC CAG CAT
CCA CCC CCG CCT
CGA CGC CGG CGT
CTA CTC CTG CTT
GAA GAC GAG GAT
GCA GCC GCG GCT
GGA GGC GGG GGT
GTA GTC GTG GTT
TAA TAC TAG TAT
TCA TCC TCG TCT
TGA TGC TGG TGT
TTA TTC TTG TTT

Thus, the DNA sequences of length 1 are just the elements of the alphabet
Σ = {A,C, G, T}, and the DNA sequences of length n > 1 are the result of
extending the DNA sequences of length n − 1 with an element of Σ. This
gives an algorithm for generating all DNA sequences of length n > 1. In
the following description, concat refers not only to the concatenation of two
sequences but also to the concatenation of a sequence of elements from an
alphabet and a single element from that alphabet.

function words(n, Σ)
if n = 1 then

L← Σ
else

S ← words(n− 1,Σ)
L← ∅

© 2009 by Taylor & Francis Group, LLC



Sequences 37

for each word w of S do
for each element s of Σ do

w′ ← concat(w, s)
L← L ∪ {w′}

return L

The representation of sequences in BioPerl does not include any method to
generate all DNA sequences of a certain length. However, the previous algo-
rithm can be easily implemented in Perl by representing sequences as strings
and sets of sequences as arrays of strings, while using the string concatenation
operator to extend each sequence of length n− 1 with one nucleotide more to
obtain a sequence of length n, as illustrated by the following Perl script.

sub words {
my $n = shift;
my $alphabet = shift;
my @n = split "", $alphabet;
if ($n == 1) {

return \@n;
} else {

my $short = words($n - 1, $alphabet);
my @long;
for my $seq (@$short) {

for my $n (@n) {
push @long , $seq . $n;

}
}
return \@long;

}
}

my $k = 3; my $alphabet = "ACGT";
my $words = words($k,$alphabet);
my $count = 0;
map {

$count ++;
if ($count % 4) {

print "$_ "
} else {

print "$_\n"
}

} @$words;

Running the previous Perl script produces the following output, which con-
sists of the 64 DNA sequences with 3 nucleotides.

AAA AAC AAG AAT

© 2009 by Taylor & Francis Group, LLC



38 Combinatorial Pattern Matching Algorithms in Computational Biology

ACA ACC ACG ACT
AGA AGC AGG AGT
ATA ATC ATG ATT
CAA CAC CAG CAT
CCA CCC CCG CCT
CGA CGC CGG CGT
CTA CTC CTG CTT
GAA GAC GAG GAT
GCA GCC GCG GCT
GGA GGC GGG GGT
GTA GTC GTG GTT
TAA TAC TAG TAT
TCA TCC TCG TCT
TGA TGC TGG TGT
TTA TTC TTG TTT

The representation of sequences in R, on the other hand, includes a function
words to obtain all the sequences of length n, as illustrated by the following
R script.

> library(seqinr)
> options(width="32")
> words(length=3,alphabet=s2c("ACGT"))
[1] "AAA" "AAC" "AAG" "AAT"
[5] "ACA" "ACC" "ACG" "ACT"
[9] "AGA" "AGC" "AGG" "AGT"

[13] "ATA" "ATC" "ATG" "ATT"
[17] "CAA" "CAC" "CAG" "CAT"
[21] "CCA" "CCC" "CCG" "CCT"
[25] "CGA" "CGC" "CGG" "CGT"
[29] "CTA" "CTC" "CTG" "CTT"
[33] "GAA" "GAC" "GAG" "GAT"
[37] "GCA" "GCC" "GCG" "GCT"
[41] "GGA" "GGC" "GGG" "GGT"
[45] "GTA" "GTC" "GTG" "GTT"
[49] "TAA" "TAC" "TAG" "TAT"
[53] "TCA" "TCC" "TCG" "TCT"
[57] "TGA" "TGC" "TGG" "TGT"
[61] "TTA" "TTC" "TTG" "TTT"

2.3.4 Representing Sequences in Perl

There are many ways in which sequences can be represented in Perl, let
alone the simple representation of a sequence as a character string, and, as
a matter of fact, many different Perl modules implementing various types of

© 2009 by Taylor & Francis Group, LLC



Sequences 39

sequences are available for download from CPAN, the Comprehensive Perl
Archive Network, at http://www.cpan.org/. Among them, let us focus on
the BioPerl sequence representation, which is essentially an object-oriented
representation of sequences together with a collection of sequence features.

A sequence is represented in BioPerl as a Bio::Seq object, which consists of
the actual character string of the sequence along with a collection of optional
sequence features, such as an accession number, the species name, and an
indication of whether it is a DNA, an RNA, or a protein sequence.

For instance, the DNA sequence AAAGGAGGTGGTCCA can be obtained
by just creating a Bio::Seq object for the sequence, as shown in the following
Perl script.

use Bio::Seq;
my $seq = Bio::Seq ->new(-seq => "AAAGGAGGTGGTCCA");

The character string is recognized then as a DNA sequence, although this
information can also be made explicit when creating the Bio::Seq object for
the sequence.

use Bio::Seq;
my $seq = Bio::Seq ->new(-seq => "AAAGGAGGTGGTCCA",

-alphabet => "dna");

However, a Bio::Seq object can also be obtained from the character string
representing the sequence with the help of the Bio::SeqIO module in BioPerl,
as shown in the following Perl script, where the sequence is stored in a file in
the popular FASTA format.

use Bio:: SeqIO;
my $seqio = Bio::SeqIO ->new(-file => "seq.fas",

-format => "fasta");
my $seq = $seqio ->next_seq;

The Bio::SeqIO module in BioPerl can also be used to retrieve sequences
from genomic databases, as shown in the following Perl script, where the com-
plete genome sequence (4,639,675 nucleotides) of the bacterium Escherichia
coli K-12, strain MG1655, is retrieved from the GenBank database.

use Bio::DB:: GenBank;
my $db = Bio::DB::GenBank ->new;
my $seq = $db ->get_Seq_by_gi("48994873");

The representation of sequences in BioPerl includes additional methods
for performing various operations on sequences; for instance, to access the
identifier of a sequence,

my $id = $seq ->id;

to obtain the length of a sequence,

my $len = $seq ->length;

© 2009 by Taylor & Francis Group, LLC

http://www.cpan.org


40 Combinatorial Pattern Matching Algorithms in Computational Biology

to get the accession number or unique biological identifier for a sequence,

my $acc = $seq ->accession_number;

to access the description of a sequence,

my $desc = $seq ->desc;

to obtain the subsequence of a DNA, RNA, or protein sequence contained
between an initial and a final position, as a character string,

use Bio::Seq;
my $s = "GGGUGCUCAGUACGAGAGGAACCGCACCC";
my $seq = Bio::Seq ->new(-seq => $s);
my $prefix = $seq ->subseq (1,12);
my $suffix = $seq ->subseq(9,$seq ->length);

to truncate a DNA, RNA, or protein sequence from an initial to a final position
into a sequence instead of just a character string,

my $s = "SCFALISGTANQVKCYRFRVKKNHRHRYENCTTTWFTVADNGAE
RQGQAQILITFGSPSQRQDFLKHVPLPPGMNISGFTASLDF";
my $seq = Bio::Seq ->new(-seq => $s);
my $t = $seq ->trunc (4,9);

and to obtain the reverse complement of a DNA or RNA sequence.

my $seq = Bio::Seq ->new(-seq => "AAAGGAGGTGGTCCA");
my $rev_com = $seq ->revcom;

A fragment of a DNA sequence can also be translated into the corre-
sponding protein coding sequence, according to the mapping of triplets of
nucleotides (codons) to amino acids that underlies the genetic code. For ex-
ample, the DNA sequence fragment AAAGGAGGTGGTCCA, with the five
codons AAA, GGA, GGT, GGT, CCA, translates into the protein sequence
fragment KGGGP, with the five amino acids K (lysine), G (glycine), G, G, P
(proline).

my $seq = Bio::Seq ->new(-seq => "AAAGGAGGTGGTCCA");
my $prot_seq = $seq ->translate;

2.3.5 Representing Sequences in R

There are also many ways in which sequences can be represented in R, let
alone the simple representation of a sequence as a vector of characters and, as
a matter of fact, many different R contributed packages implementing various
types of sequences are available for download from CRAN, the Comprehensive
R Archive Network, at http://cran.r-project.org/. Among them, let us
focus on the seqinr (Sequences in R) sequence representation, which is es-
sentially a vector-based representation of sequences together with a collection
of retrieval and analysis functions.

© 2009 by Taylor & Francis Group, LLC

http://cran.r-project.org


Sequences 41

A sequence is represented in the R package seqinr as a vector of characters,
and there is a function c2s (character vector to string) to convert a sequence
to a character string, as well as a function s2c (string to character vector) to
convert a character string to a sequence.

> library(seqinr)
> s <- "TGCTTCTGACTATAATAG"
> options(width =54)
> s2c(s)
[1] "T" "G" "C" "T" "T" "C" "T" "G" "A" "C" "T" "A"

[13] "T" "A" "A" "T" "A" "G"
> c2s(s2c(s))
[1] "TGCTTCTGACTATAATAG"

Further, a sequence can also be obtained from the character string rep-
resenting the sequence with the help of the read.fasta function of the R
package seqinr, as shown in the following R script, where the sequence is
stored in a file in the popular FASTA format.

> fas <- read.fasta(file="seq.fas",forceDNAtolower=
FALSE)

> getSequence(fas [[1]])
[1] "T" "G" "C" "T" "T" "C" "T" "G" "A" "C" "T" "A"

[13] "T" "A" "A" "T" "A" "G"

The R package seqinr can also be used to retrieve sequences from genomic
databases, as shown in the following R script, where the complete genome se-
quence (4,639,675 nucleotides) of the bacterium Escherichia coli K-12, strain
MG1655, is retrieved from the GenBank database.

> library(seqinr)
> choosebank("genbank")
> query("eco","AC=U00096")
> seq <- getSequence(eco$req [[1]])
> closebank ()
> length(seq)
[1] 4639675

The representation of sequences in R package seqinr includes additional
functions for performing various operations on sequences; for instance, to
access the accession number or unique biological identifier for a sequence,

> getName(eco$req [[1]])
[1] "U00096"

to obtain the length of a sequence,

> getLength(eco$req [[1]])
[1] 4639675

© 2009 by Taylor & Francis Group, LLC



42 Combinatorial Pattern Matching Algorithms in Computational Biology

to obtain the subsequence of a DNA, RNA, or protein sequence contained
between an initial and a final position,

> getSequence(getFrag(fas [[1]] ,1 ,12))
[1] "T" "G" "C" "T" "T" "C" "T" "G" "A" "C" "T" "A"

> getSequence(getFrag(fas[[1]],9, length(fas [[1]])))
[1] "A" "C" "T" "A" "T" "A" "A" "T" "A" "G"

and to translate a fragment of DNA sequence into the corresponding protein
coding sequence, according to the mapping of triplets of nucleotides (codons)
to amino acids that underlies the genetic code.

> translate(s2c("AAAGGAGGTGGTCCA"))
[1] "K" "G" "G" "G" "P"

Bibliographic Notes

The problem of counting the number of possible RNA secondary structures
was first studied by Waterman (1978). See also (Schmitt and Waterman 1994).

The fact that the size of the symmetric difference of two sets or multisets
is a metric is a well-known result. For a proof in the case of sets, see (Restle
1959). See also (Deza and Deza 2006, ch. 1).

The FASTA format was developed by Pearson and Lipman (1988) for repre-
senting sequences in a sequence alignment program. The GenBank database
of genetic sequences is described in (Benson et al. 2008).

The complete genome sequence of Escherichia coli K-12 was first published
in (Blattner et al. 1997).

The representation of sequences in BioPerl (Stajich et al. 2002) is described
in more detail in (Birney et al. 2009). The representation of sequences in the
R package seqinr is described in more detail in (Charif and Lobry 2007).

© 2009 by Taylor & Francis Group, LLC



Chapter 3

Simple Pattern Matching in
Sequences

Combinatorial pattern matching is the search for exact or approximate oc-
currences of a given pattern within a given text. When it comes to biologi-
cal sequences, both the pattern and the text are sequences and the pattern
matching problem becomes one of finding the occurrences of a sequence within
another sequence. For instance, scanning a protein sequence for the presence
of a known pattern can help annotate both the protein and the corresponding
genome, and finding a sequence within another sequence can help in assessing
their similarities and differences. This will be the subject of the next chapter.

A related pattern matching problem consists in finding the patterns them-
selves that occur within a given sequence. For instance, finding all occurrences
of short words within a sequence is useful for analyzing the sequence and also
for computing distances between two sequences. This is the subject of this
chapter.

3.1 Finding Words in Sequences

A short word or pattern can appear many times within a genomic sequence.
An example of a very short, one-letter pattern in molecular biology is the
guanine cytosine content of a fragment of DNA, accounting for how often the
patterns G and C occur within a given DNA sequence. Further examples of
patterns in DNA sequences are the TATA box found in the promoter region
of most eukaryotic genes (an occurrence of the TATAAAA pattern within the
sequence) and the Pribnow box found in the promoter region of most prokary-
otic genes (an occurrence of the TATAAT pattern within the DNA sequence).

3.1.1 Word Composition of Sequences

A nucleic acid or amino acid sequence can be seen as composed of a number
of possibly overlapping k-mers or words of length k, for a certain k > 1. The
k-mer composition of a sequence is given by the frequency with which each
possible k-mer occurs within the sequence. The 1-mer composition is related

43
© 2009 by Taylor & Francis Group, LLC



44 Combinatorial Pattern Matching Algorithms in Computational Biology

to the GC content of a DNA sequence, and the 2-mer, 3-mer, and 4-mer
compositions are also known as the di-nucleotide, tri-nucleotide, and tetra-
nucleotide compositions of a DNA sequence.

Example 3.1

The fragment of DNA sequence

TTGATTACCTTATTTGATCATTACACATTGTACGCTTGTGTCAAAATATCACATGTGCCT

has the following 1-mer composition,

word frequency
A 16
C 12
G 8
T 24

the following di-nucleotide composition,

word freq word freq word freq word freq
AA 3 AC 5 AG 0 AT 8
CA 6 CC 2 CG 1 CT 3
GA 2 GC 2 GG 0 GT 4
TA 5 TC 3 TG 7 TT 8

and the following 3-mer composition.

word freq word freq word freq word freq
AAA 2 AAC 0 AAG 0 AAT 1
ACA 3 ACC 1 ACG 1 ACT 0
AGA 0 AGC 0 AGG 0 AGT 0
ATA 1 ATC 2 ATG 1 ATT 4
CAA 1 CAC 2 CAG 0 CAT 3
CCA 0 CCC 0 CCG 0 CCT 2
CGA 0 CGC 1 CGG 0 CGT 0
CTA 0 CTC 0 CTG 0 CTT 2
GAA 0 GAC 0 GAG 0 GAT 2
GCA 0 GCC 1 GCG 0 GCT 1
GGA 0 GGC 0 GGG 0 GGT 0
GTA 1 GTC 1 GTG 2 GTT 0
TAA 0 TAC 3 TAG 0 TAT 2
TCA 3 TCC 0 TCG 0 TCT 0
TGA 2 TGC 1 TGG 0 TGT 4
TTA 3 TTC 0 TTG 4 TTT 1

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Sequences 45

The k-mer composition of a sequence can be computed by first obtaining all
the sequences of length k over the alphabet Σ and then counting the number of
occurrences of each possible k-mer within the given sequence. In the following
description, the sequences of length k over the alphabet Σ are obtained using
the words algorithm, and S[i..i + k− 1] denotes the word of length k starting
at position i of sequence S.

function word composition(S, k,Σ)
L← words(k,Σ)
for each word w of L do

freq[w]← 0
n← length(S)
for i← 1 to n− k + 1 do

w ← S[i..i + k − 1]
freq[w]← freq[w] + 1

return freq

The representation of sequences in BioPerl does not include any method
to compute the k-mer composition of a sequence. However, the previous
algorithm can be easily implemented in Perl by using a hash freq of word
frequencies indexed by k-mers, as shown in the following Perl script.

sub word_composition {
my $seq = shift;
my $k = shift;
my $alphabet = shift;

my $words = words($k,$alphabet);

my %freq;
for my $word (@$words) {

$freq{$word} = 0;
}

for my $i (0 .. length($seq)-$k) {
my $word = substr($seq ,$i ,$k);
$freq{$word }++;

}

return \%freq;
}

Running the Perl script

my $seq = "TTGATTACCTTATTTGATCATTACACATTGTACGCTTGTGTC
AAAATATCACATGTGCCT";

© 2009 by Taylor & Francis Group, LLC



46 Combinatorial Pattern Matching Algorithms in Computational Biology

my $k = 3;
my $alphabet = "ACGT";
my $words = words($k,$alphabet);
my %freq = %{ word_composition($seq ,$k ,$alphabet) };
my $count = 0;
map {

$count ++;
print "$_ ",$freq{$_};
if ($count % 4) { print "  " } else { print "\n" }

} @$words;

produces the following output, which consists of the 3-mer composition of
DNA sequence TTGATTACCTTATTTGATCATTACACATTGTACGCTTG
TGTCAAAATATCACATGTGCCT.

AAA 2 AAC 0 AAG 0 AAT 1
ACA 3 ACC 1 ACG 1 ACT 0
AGA 0 AGC 0 AGG 0 AGT 0
ATA 1 ATC 2 ATG 1 ATT 4
CAA 1 CAC 2 CAG 0 CAT 3
CCA 0 CCC 0 CCG 0 CCT 2
CGA 0 CGC 1 CGG 0 CGT 0
CTA 0 CTC 0 CTG 0 CTT 2
GAA 0 GAC 0 GAG 0 GAT 2
GCA 0 GCC 1 GCG 0 GCT 1
GGA 0 GGC 0 GGG 0 GGT 0
GTA 1 GTC 1 GTG 2 GTT 0
TAA 0 TAC 3 TAG 0 TAT 2
TCA 3 TCC 0 TCG 0 TCT 0
TGA 2 TGC 1 TGG 0 TGT 4
TTA 3 TTC 0 TTG 4 TTT 1

The previous algorithm can also be used to obtain the k-mer composition
of an amino acid sequence, as illustrated by the following Perl script.

my $seq = "MKPVTLYDVAEYAGVSYQTVSRVVNQASHVSAKTREKVEAAM
AELNYIPN";
my $k = 1;
my $alphabet = "ACDEFGHIKLMNPQRSTVWY";
my $words = words($k,$alphabet);
my %freq = %{ word_composition($seq ,$k ,$alphabet) };
my $count = 0;
map {

$count ++;
print "$_ ",$freq{$_};
if ($count % 10) { print "  " } else { print "\n" }

} @$words;

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Sequences 47

Running the previous script produces the following output, which consists
of the amino acid composition of sequence MKPVTLYDVAEYAGVSYQTV
SRVVNQASHVSAKTREKVEAAMAELNYIPN.

A 7 C 0 D 1 E 4 F 0 G 1 H 1 I 1 K 3 L 2
M 2 N 3 P 2 Q 2 R 2 S 4 T 3 V 8 W 0 Y 4

The representation of sequences in R, on the other hand, includes a function
count to obtain the k-mer composition of a sequence, as illustrated by the
following R script.

> library(seqinr)
> seq <- "TTGATTACCTTATTTGATCATTACACATTGTACGCTTGTGTCA
AAATATCACATGTGCCT"
> options(width="32")
> count(s2c(seq),word=3,alphabet=s2c("ACGT"))

AAA AAC AAG AAT ACA ACC ACG ACT
2 0 0 1 3 1 1 0

AGA AGC AGG AGT ATA ATC ATG ATT
0 0 0 0 1 2 1 4

CAA CAC CAG CAT CCA CCC CCG CCT
1 2 0 3 0 0 0 2

CGA CGC CGG CGT CTA CTC CTG CTT
0 1 0 0 0 0 0 2

GAA GAC GAG GAT GCA GCC GCG GCT
0 0 0 2 0 1 0 1

GGA GGC GGG GGT GTA GTC GTG GTT
0 0 0 0 1 1 2 0

TAA TAC TAG TAT TCA TCC TCG TCT
0 3 0 2 3 0 0 0

TGA TGC TGG TGT TTA TTC TTG TTT
2 1 0 4 3 0 4 1

Again, the R function count can also be used to obtain the k-mer compo-
sition of an amino acid sequence, as shown in the following R script.

> library(seqinr)
> seq <- "MKPVTLYDVAEYAGVSYQTVSRVVNQASHVSAKTREKVEAAMA
ELNYIPN"
> count(s2c(seq),word=1,alphabet=s2c("

ACDEFGHIKLMNPQRSTVWY"))

A C D E F G H I K L M N P Q R S T V W Y
7 0 1 4 0 1 1 1 3 2 2 3 2 2 2 4 3 8 0 4
> options(width="48")
> count(s2c(seq),word=2,alphabet=s2c("

ACDEFGHIKLMNPQRSTVWY"))

© 2009 by Taylor & Francis Group, LLC



48 Combinatorial Pattern Matching Algorithms in Computational Biology

AA AC AD AE AF AG AH AI AK AL AM AN AP AQ AR AS
1 0 0 2 0 1 0 0 1 0 1 0 0 0 0 1

AT AV AW AY CA CC CD CE CF CG CH CI CK CL CM CN
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CP CQ CR CS CT CV CW CY DA DC DD DE DF DG DH DI
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DK DL DM DN DP DQ DR DS DT DV DW DY EA EC ED EE
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0

EF EG EH EI EK EL EM EN EP EQ ER ES ET EV EW EY
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1

FA FC FD FE FF FG FH FI FK FL FM FN FP FQ FR FS
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FT FV FW FY GA GC GD GE GF GG GH GI GK GL GM GN
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GP GQ GR GS GT GV GW GY HA HC HD HE HF HG HH HI
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

HK HL HM HN HP HQ HR HS HT HV HW HY IA IC ID IE
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

IF IG IH II IK IL IM IN IP IQ IR IS IT IV IW IY
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

KA KC KD KE KF KG KH KI KK KL KM KN KP KQ KR KS
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

KT KV KW KY LA LC LD LE LF LG LH LI LK LL LM LN
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

LP LQ LR LS LT LV LW LY MA MC MD ME MF MG MH MI
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

MK ML MM MN MP MQ MR MS MT MV MW MY NA NC ND NE
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NF NG NH NI NK NL NM NN NP NQ NR NS NT NV NW NY
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

PA PC PD PE PF PG PH PI PK PL PM PN PP PQ PR PS
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

PT PV PW PY QA QC QD QE QF QG QH QI QK QL QM QN
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

QP QQ QR QS QT QV QW QY RA RC RD RE RF RG RH RI
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

RK RL RM RN RP RQ RR RS RT RV RW RY SA SC SD SE
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0

SF SG SH SI SK SL SM SN SP SQ SR SS ST SV SW SY
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1

TA TC TD TE TF TG TH TI TK TL TM TN TP TQ TR TS
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0

TT TV TW TY VA VC VD VE VF VG VH VI VK VL VM VN
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Sequences 49

VP VQ VR VS VT VV VW VY WA WC WD WE WF WG WH WI
0 0 0 3 1 1 0 0 0 0 0 0 0 0 0 0

WK WL WM WN WP WQ WR WS WT WV WW WY YA YC YD YE
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

YF YG YH YI YK YL YM YN YP YQ YR YS YT YV YW YY
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

3.1.2 Alignment Free Comparison of Sequences

The similarities and differences between two biological sequences can be
assessed by computing a distance measure between the two sequences. The
alignment free distance is based on the word composition of the sequences.
While similar DNA sequences have similar GC content, the k-mer frequencies
for larger values of k reveal similarities and differences between two sequences.

Example 3.2
The fragments of DNA sequence

CCCCAATATGGGCGCGACCCCCCGGAATCTCTATTCACCAGCTT (1)
CCCCAATATGGGCGCGACCCCCCGGAATCTGTCTCCGCCAGCCT (2)
CCCCAATATGGGCGCTACTTTCACAATAACCCACTAGACAGCCT (3)

have the following 1-mer frequencies,

word A C G T
(1) 9 18 8 9
(2) 7 20 10 7
(3) 13 16 6 9

and they have the following 2-mer frequencies.

word AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT
(1) 2 2 1 4 3 9 3 3 2 3 3 0 2 3 1 2
(2) 2 1 1 3 2 11 4 3 2 4 3 1 1 3 2 0
(3) 3 5 2 3 5 6 1 4 1 3 2 0 4 1 1 2

The extent to which the k-mer frequencies of two sequences differ can be
measured in a number of ways, such as by computing their covariance or
correlation. The alignment free distance between two sequences is given by
the linear correlation coefficient of their k-mer frequencies.

Example 3.3
The alignment free distance between each pair of the DNA sequences from
the previous example is as follows.

© 2009 by Taylor & Francis Group, LLC



50 Combinatorial Pattern Matching Algorithms in Computational Biology

sequences k = 1 k = 2 k = 3 k = 4
(1) (2) 0.9453431 0.9205409 0.8260229 0.7631025
(1) (3) 0.8081352 0.6153795 0.5388881 0.3561884
(2) (3) 0.6148987 0.4210917 0.3995599 0.3561884

The first sequence is thus more similar to the second sequence than to the
third sequence, no matter the word length k used to assess similarities.

Given the k-mer composition of two biological sequences, their alignment
free distance can be obtained by computing the linear correlation coefficient
of the k-mer frequencies, that is, by dividing the covariance of the k-mer
frequencies by the product of their standard deviations.

function alignment free distance(S1, S2, k,Σ)
F1 ← word composition(S1, k, Σ)
F2 ← word composition(S2, k, Σ)
cov ← covariance(F1, F2)
sd1 ← standard deviation(F1)
sd2 ← standard deviation(F2)
return cov/(sd1sd2)

The representation of sequences in BioPerl does not include any method
to compute the linear correlation coefficient of the k-mer frequencies of two
sequences. However, the previous algorithm can be easily implemented in Perl
by first implementing methods to compute the mean and standard deviation
of an array of values and the covariance of two arrays of values.

The mean of an array of values can be obtained by dividing the sum of the
values by the number of values, as shown in the following Perl script.

sub mean {
my $a = shift;
my $res;
foreach (@$a) { $res += $_ }
$res /= @$a;

}

The standard deviation of an array of values, on the other hand, can be
obtained by computing first the mean of the squared values and the square of
the mean of the values and then taking the square root of their difference, as
illustrated by the following Perl script.

sub sd {
my $a = shift;
my $mean = mean($a);
return sqrt( mean( [map $_ ** 2, @$a] ) -

($mean ** 2) );
}

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Sequences 51

The covariance of two arrays of values of the same length can be obtained
by computing first the sum of the product of their values and then dividing
it by the number of values and subtracting the product of the mean of the
values of each of the two arrays, as show in the following Perl script.

sub cov {
my $a1 = shift;
my $a2 = shift;
my $res;
foreach (0 .. @$a1 - 1) {

$res += $a1 ->[$_] * $a2 ->[$_];
}
$res /= @$a1;
$res -= mean($a1) * mean($a2);

}

Finally, the linear correlation coefficient of two arrays of values of the same
length can be obtained by just dividing their covariance by the product of
their standard deviations, as shown in the following Perl script.

sub cor {
my $a1 = shift;
my $a2 = shift;
return cov($a1 ,$a2) / (sd($a1) * sd($a2));

}

The representation of sequences in R, on the other hand, does include a
function cor to compute the linear correlation coefficient of two vectors of
values of the same length. The computation of the alignment free distance
between two sequences can thus be implemented in R by first obtaining their k-
mer frequencies with the count function and then computing their correlation,
as illustrated by the following R script.

> library(seqinr)

> alignment.free.distance <- function (seq1 ,seq2 ,k,
sigma) {

freq1 <- count(seq1 ,word=k,alphabet=s2c(sigma))
freq2 <- count(seq2 ,word=k,alphabet=s2c(sigma))
cor(freq1 ,freq2)

}

> seq1 <- s2c("
CCCCAATATGGGCGCGACCCCCCGGAATCTCTATTCACCAGCTT")

> seq2 <- s2c("
CCCCAATATGGGCGCGACCCCCCGGAATCTGTCTCCGCCAGCCT")

> seq3 <- s2c("
CCCCAATATGGGCGCTACTTTCACAATAACCCACTAGACAGCCT")

© 2009 by Taylor & Francis Group, LLC



52 Combinatorial Pattern Matching Algorithms in Computational Biology

> alignment.free.distance(seq1 ,seq2 ,1,"ACGT")
[1] 0.9453431
> alignment.free.distance(seq1 ,seq3 ,1,"ACGT")
[1] 0.8081352
> alignment.free.distance(seq2 ,seq3 ,1,"ACGT")
[1] 0.6148987
>
> alignment.free.distance(seq1 ,seq2 ,2,"ACGT")
[1] 0.9205409
> alignment.free.distance(seq1 ,seq3 ,2,"ACGT")
[1] 0.6153795
> alignment.free.distance(seq2 ,seq3 ,2,"ACGT")
[1] 0.4210917
>
> alignment.free.distance(seq1 ,seq2 ,3,"ACGT")
[1] 0.8260229
> alignment.free.distance(seq1 ,seq3 ,3,"ACGT")
[1] 0.5388881
> alignment.free.distance(seq2 ,seq3 ,3,"ACGT")
[1] 0.3995599

> alignment.free.distance(seq1 ,seq2 ,4,"ACGT")
[1] 0.7631025
> alignment.free.distance(seq1 ,seq3 ,4,"ACGT")
[1] 0.3561884
> alignment.free.distance(seq2 ,seq3 ,4,"ACGT")
[1] 0.3561884

Bibliographic Notes

There are several approaches to the alignment free comparison of sequences,
reviewed, for instance, by Vinga and Almeida (2003) and further assessed
in (Ferragina et al. 2007).

© 2009 by Taylor & Francis Group, LLC



Chapter 4

General Pattern Matching in
Sequences

Combinatorial pattern matching is the search for exact or approximate oc-
currences of a given pattern within a given text. When it comes to biologi-
cal sequences, both the pattern and the text are sequences and the pattern
matching problem becomes one of finding the occurrences of a sequence within
another sequence. For instance, scanning a protein sequence for the presence
of a known pattern can help annotate both the protein and the corresponding
genome, and finding a sequence within another sequence can help in assessing
their similarities and differences. This is the subject of this chapter.

4.1 Finding Subsequences

There are several ways in which a sequence can be contained in another
sequence. A sequence can be a prefix of a longer sequence, or it can be
a suffix of the longer sequence. Also, a sequence can be contained deeper
within another sequence: it can be a suffix of a prefix or, equivalently, a prefix
of a suffix of the other sequence.

Example 4.1
The sequence TATTTGATCATT is contained in the following DNA sequence.

TTGATTACCTTATTTGATCATTACACATTGTACGCTTGTG

It is a suffix of a prefix of the longer sequence, as shown in the following
alignment.

TATTTGATCATT
TTGATTACCTTATTTGATCATT
TTGATTACCTTATTTGATCATTACACATTGTACGCTTGTG

It is also a prefix of a suffix of the longer sequence, as illustrated by the
following alignment.

TATTTGATCATT

53
© 2009 by Taylor & Francis Group, LLC



54 Combinatorial Pattern Matching Algorithms in Computational Biology

TATTTGATCATTACACATTGTACGCTTGTG
TTGATTACCTTATTTGATCATTACACATTGTACGCTTGTG

A sequence can also be contained many times in another sequence, and the
occurrences of the shorter sequence in the longer sequence may even overlap.

Example 4.2
There are four occurrences of the sequence ATT (top) but only two occur-
rences of the sequence ATTAC (middle) in the following longer DNA sequence
(bottom).

ATT ATT ATT ATT
ATTAC ATTAC

TTGATTACCTTATTTGATCATTACACATTGTACGCTTGTG

There are also two overlapping occurrences of the short sequence ACA within
the longer sequence.

ACA
ACA

TTGATTACCTTATTTGATCATTACACATTGTACGCTTGTG

The occurrences of a given sequence within another given sequence can
be found by traversing the longer sequence, starting at each possible initial
position in turn where the shorter sequence could occur. In the following
description, the starting positions of the occurrences of a pattern sequence P
of length m in a text sequence T of length n, with m 6 n, are collected in a
list L.

function occurrences(P, T )
m← length(P )
n← length(T )
L← ∅
for i← 1 to n−m + 1 do

if P [1, 2, . . . ,m] = T [i, i + 1, . . . , i + m− 1] then
L← L ∪ {i}

return L

The previous algorithm for finding all occurrences of a sequence P in an-
other sequence T can be implemented in Perl in a straightforward way, as
shown in the following Perl script.

sub occurrences {
my $p = shift;
my $t = shift;

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 55

my $m = length $p;
my $n = length $t;
my @L;
for (my $i = 0; $i < $n-$m+1; $i++) {

if ($p eq substr($t,$i,$m)) {
push @L, $i;

}
}
return \@L;

}

Notice, however, that the Perl regular expression matching method m can
also be used to find all occurrences of a sequence in another sequence.

my @L = $t =~ m/$p/g;

While the m method gives back the actual sequences as occurrences, the
starting position of each such occurrence can be obtained with the index
method, as illustrated by the following Perl script.

my @L;
my $i = index($t, $p, 0);
while ($i != -1) {

push @L, $i;
$i = index($t, $p, $i+1);

}

The previous algorithm for finding all occurrences of a sequence P in an-
other sequence T can also be implemented in R in a straightforward way, as
shown in the following R script.

> occurrences <- function (p,t) {
L <- c()
for (i in 1:nchar(t)-nchar(p)+1)

if (p == substr(t,i,i+nchar(p) -1))
L <- c(L,i)

L
}

> p <- "ATT"
> t <- "TTGATTACCTTATTTGATCATTACACATTGTACGCTTGTG"
> occurrences(p,t)
[1] 4 12 20 27

> sapply(occurrences(p,t),
function(i)substr(t,i,i+nchar(p) -1))

[1] "ATT" "ATT" "ATT" "ATT"

© 2009 by Taylor & Francis Group, LLC



56 Combinatorial Pattern Matching Algorithms in Computational Biology

The algorithm for finding all occurrences of a sequence within a longer se-
quence by traversing part of the latter once for each possible starting position
of the shorter sequence has the disadvantage that it can be rather slow in
practice for large sequences, because it cannot always be established whether
or not P [1, 2, . . . ,m] matches T [i, i + 1, . . . , i + m − 1] until m elementary
comparison operations have been made and this test is repeated n −m + 1
times altogether. Finding all occurrences of a sequence in another sequence
is indeed a classic pattern matching problem, for which faster algorithms are
known. Some of them are based on storing all the suffixes of a sequence in a
compact representation called a suffix array.

4.1.1 Suffix Arrays

The suffix array of a sequence is a permutation of all starting positions of
the suffixes of the sequence, lexicographically sorted. Despite its simplicity,
the suffix array of a sequence is very useful for finding subsequences, because
all the occurrences of a sequence within another sequence appear together in
the suffix array, as prefixes of suffixes of the longer sequence.

Example 4.3
The DNA sequence

TTGATTACCTTATTTGATCATTACACATTGTACGCTTGTG

has the following suffixes, starting at positions 1 through 40.

[1] TTGATTACCTTATTTGATCATTACACATTGTACGCTTGTG
[2] TGATTACCTTATTTGATCATTACACATTGTACGCTTGTG
[3] GATTACCTTATTTGATCATTACACATTGTACGCTTGTG
[4] ATTACCTTATTTGATCATTACACATTGTACGCTTGTG
[5] TTACCTTATTTGATCATTACACATTGTACGCTTGTG
[6] TACCTTATTTGATCATTACACATTGTACGCTTGTG
[7] ACCTTATTTGATCATTACACATTGTACGCTTGTG
[8] CCTTATTTGATCATTACACATTGTACGCTTGTG
[9] CTTATTTGATCATTACACATTGTACGCTTGTG

[10] TTATTTGATCATTACACATTGTACGCTTGTG
[11] TATTTGATCATTACACATTGTACGCTTGTG
[12] ATTTGATCATTACACATTGTACGCTTGTG
[13] TTTGATCATTACACATTGTACGCTTGTG
[14] TTGATCATTACACATTGTACGCTTGTG
[15] TGATCATTACACATTGTACGCTTGTG
[16] GATCATTACACATTGTACGCTTGTG
[17] ATCATTACACATTGTACGCTTGTG
[18] TCATTACACATTGTACGCTTGTG
[19] CATTACACATTGTACGCTTGTG
[20] ATTACACATTGTACGCTTGTG

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 57

[21] TTACACATTGTACGCTTGTG
[22] TACACATTGTACGCTTGTG
[23] ACACATTGTACGCTTGTG
[24] CACATTGTACGCTTGTG
[25] ACATTGTACGCTTGTG
[26] CATTGTACGCTTGTG
[27] ATTGTACGCTTGTG
[28] TTGTACGCTTGTG
[29] TGTACGCTTGTG
[30] GTACGCTTGTG
[31] TACGCTTGTG
[32] ACGCTTGTG
[33] CGCTTGTG
[34] GCTTGTG
[35] CTTGTG
[36] TTGTG
[37] TGTG
[38] GTG
[39] TG
[40] G

In lexicographical order, these suffixes define the suffix array of the sequence.

[23] ACACATTGTACGCTTGTG
[25] ACATTGTACGCTTGTG
[7] ACCTTATTTGATCATTACACATTGTACGCTTGTG

[32] ACGCTTGTG
[17] ATCATTACACATTGTACGCTTGTG
[20] ATTACACATTGTACGCTTGTG
[4] ATTACCTTATTTGATCATTACACATTGTACGCTTGTG

[27] ATTGTACGCTTGTG
[12] ATTTGATCATTACACATTGTACGCTTGTG
[24] CACATTGTACGCTTGTG
[19] CATTACACATTGTACGCTTGTG
[26] CATTGTACGCTTGTG
[8] CCTTATTTGATCATTACACATTGTACGCTTGTG

[33] CGCTTGTG
[9] CTTATTTGATCATTACACATTGTACGCTTGTG

[35] CTTGTG
[40] G
[16] GATCATTACACATTGTACGCTTGTG
[3] GATTACCTTATTTGATCATTACACATTGTACGCTTGTG

[34] GCTTGTG
[30] GTACGCTTGTG
[38] GTG
[22] TACACATTGTACGCTTGTG

© 2009 by Taylor & Francis Group, LLC



58 Combinatorial Pattern Matching Algorithms in Computational Biology

[6] TACCTTATTTGATCATTACACATTGTACGCTTGTG
[31] TACGCTTGTG
[11] TATTTGATCATTACACATTGTACGCTTGTG
[18] TCATTACACATTGTACGCTTGTG
[39] TG
[15] TGATCATTACACATTGTACGCTTGTG
[2] TGATTACCTTATTTGATCATTACACATTGTACGCTTGTG

[29] TGTACGCTTGTG
[37] TGTG
[21] TTACACATTGTACGCTTGTG
[5] TTACCTTATTTGATCATTACACATTGTACGCTTGTG

[10] TTATTTGATCATTACACATTGTACGCTTGTG
[14] TTGATCATTACACATTGTACGCTTGTG
[1] TTGATTACCTTATTTGATCATTACACATTGTACGCTTGTG

[28] TTGTACGCTTGTG
[36] TTGTG
[13] TTTGATCATTACACATTGTACGCTTGTG

The actual suffix array of the sequence is just the array of starting positions.

23 25 7 32 17 20 4 27 12 24 19 26 8 33 9 35
40 16 3 34 30 38 22 6 31 11 18 39 15 2 29 37
21 5 10 14 1 28 36 13

The suffix array of a sequence can be obtained by various methods. The
simplest way to obtain the suffix array of a sequence consists of sorting an
array of positions by comparing the corresponding suffixes of the sequence. In
the following description, the suffix array for a sequence S of length n is built
by sorting an array A of positions 1 through n, where the comparison of array
entries A[i] and A[j] is based on the comparison of suffixes S[A[i], . . . , n] and
S[A[j], . . . , n].

procedure suffix array(S, A)
n← length(S)
for i← 1 to n do

A[i]← i

sort A by comparing S[A[i], . . . , n] with S[A[j], . . . , n]

The previous algorithm for building the suffix array of a sequence can be
implemented in Perl in a straightforward way. The suffix array @sa of a
sequence seq of length n will be a permutation of array positions 0, 1, . . . , n−1,
however, because Perl arrays do not start with position 1 but, rather, with
position 0. This is all shown in the following Perl script.

sub suffix_array {

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 59

my $s = shift;
my @sa = (0 .. length($s) -1);
@sa = sort {substr($s,$a) cmp substr($s ,$b)} @sa;
return \@sa;

}

The previous algorithm for building the suffix array of a sequence can also
be implemented in R in a straightforward way, as shown in the following R
script.

> suffix.array <- function (seq) {
sa <- apply(matrix (1: nchar(seq)),1,function(i)

substr(seq ,i,nchar(seq)))
order(sa)

}

> seq <- "TTGATTACCTTATTTGATCATTACACATTGTACGCTTGTG"
> options("width"=40)
> suffix.array(seq)
[1] 23 25 7 32 17 20 4 27 12 24 19 26

[13] 8 33 9 35 40 16 3 34 30 38 22 6
[25] 31 11 18 39 15 2 29 37 21 5 10 14
[37] 1 28 36 13

The suffixes of the sequence appear indeed in lexicographical order within
the suffix array.

> t(sapply(suffix.array(seq),function(i)c(i,substr(
seq ,i,nchar(seq)))))

[,1] [,2]
[1,] "23" "ACACATTGTACGCTTGTG"
[2,] "25" "ACATTGTACGCTTGTG"
[3,] "7" "ACCTTATTTGATCATTACACATTGTACGCTTGTG"
[4,] "32" "ACGCTTGTG"
[5,] "17" "ATCATTACACATTGTACGCTTGTG"
[6,] "20" "ATTACACATTGTACGCTTGTG"
[7,] "4" "ATTACCTTATTTGATCATTACACATTGTACGCTTGTG"
[8,] "27" "ATTGTACGCTTGTG"
[9,] "12" "ATTTGATCATTACACATTGTACGCTTGTG"

[10,] "24" "CACATTGTACGCTTGTG"
[11,] "19" "CATTACACATTGTACGCTTGTG"
[12,] "26" "CATTGTACGCTTGTG"
[13,] "8" "CCTTATTTGATCATTACACATTGTACGCTTGTG"
[14,] "33" "CGCTTGTG"
[15,] "9" "CTTATTTGATCATTACACATTGTACGCTTGTG"
[16,] "35" "CTTGTG"
[17,] "40" "G"

© 2009 by Taylor & Francis Group, LLC



60 Combinatorial Pattern Matching Algorithms in Computational Biology

[18,] "16" "GATCATTACACATTGTACGCTTGTG"
[19,] "3" "GATTACCTTATTTGATCATTACACATTGTACGCTTGTG"
[20,] "34" "GCTTGTG"
[21,] "30" "GTACGCTTGTG"
[22,] "38" "GTG"
[23,] "22" "TACACATTGTACGCTTGTG"
[24,] "6" "TACCTTATTTGATCATTACACATTGTACGCTTGTG"
[25,] "31" "TACGCTTGTG"
[26,] "11" "TATTTGATCATTACACATTGTACGCTTGTG"
[27,] "18" "TCATTACACATTGTACGCTTGTG"
[28,] "39" "TG"
[29,] "15" "TGATCATTACACATTGTACGCTTGTG"
[30,] "2" "TGATTACCTTATTTGATCATTACACATTGTACGCTTGTG"
[31,] "29" "TGTACGCTTGTG"
[32,] "37" "TGTG"
[33,] "21" "TTACACATTGTACGCTTGTG"
[34,] "5" "TTACCTTATTTGATCATTACACATTGTACGCTTGTG"
[35,] "10" "TTATTTGATCATTACACATTGTACGCTTGTG"
[36,] "14" "TTGATCATTACACATTGTACGCTTGTG"
[37,] "1" "TTGATTACCTTATTTGATCATTACACATTGTACGCTTGTG"
[38,] "28" "TTGTACGCTTGTG"
[39,] "36" "TTGTG"
[40,] "13" "TTTGATCATTACACATTGTACGCTTGTG"

Given a pattern sequence and the suffix array of another sequence, an occur-
rence of the pattern in the sequence can be obtained by traversing the suffix
array and comparing the pattern sequence with the suffixes of the sequence
that start at the positions stored in the suffix array. Since the occurrences of
the pattern sequence within the other sequence appear together, as prefixes of
suffixes, in the suffix array of the longer sequence, however, an occurrence of
the pattern sequence can be found much more quickly by performing a binary
search on the suffix array of the longer sequence.

In the following description, an occurrence of a pattern sequence P of length
m in another sequence T of length n, with m 6 n, is obtained by binary search
on the suffix array A[1, . . . , n] of T . Starting with the index i = (1 + n)/2,
the pattern P is compared to the first m characters of the suffix of T starting
at position A[i], and, as a result, either the search continues in A[1, . . . , i− 1]
because P < T [A[i], . . . , A[i] + m− 1] in lexicographical order, it continues in
A[i + 1, . . . , n] because P > T [A[i], . . . , A[i] + m− 1] in lexicographical order,
or it finishes because an occurrence of P as a prefix of the suffix of T starting
at position A[i] was found. The portion of the suffix array being searched is
always A[`, . . . , r].

Once an occurrence, at position A[i], of pattern sequence P in sequence T
has been found, the remaining occurrences (if any) are obtained by extending
the interval (i, j) of suffix array indices as much as possible, where initially

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 61

i = j, profiting from the fact that all occurrences appear together in A. The
lower index i of the interval is decreased by one for each further occurrence
T [A[i − 1], . . . , A[i − 1] + m − 1] towards the beginning of the suffix array,
and the upper index j = i is increased by one for each further occurrence
T [A[j + 1], . . . , A[j + 1] + m − 1] towards the end of the suffix array. The
resulting interval (i, j) comprises the starting positions in suffix array A of all
the occurrences of sequence P in sequence T , with T [A[i], . . . , A[i]+m−1] as
the first occurrence and with T [A[j], . . . , A[j] + m− 1] as the last occurrence.

function occurrences(P, T,A)
m← length(P )
n← length(T )
`← 1
r ← n
while ` 6 r do

i← (` + r)/2
if P < T [A[i], . . . , A[i] + m− 1] then

r ← i− 1
else if P > T [A[i], . . . , A[i] + m− 1] then

`← i + 1
else

j ← i
while i > 1 and P = T [A[i− 1], . . . , A[i− 1] + m− 1] do

i← i− 1
while j < n and P = T [A[j + 1], . . . , A[j + 1] + m− 1] do

j ← j + 1
return (i, j)

return (−1,−1)

The previous algorithm for finding all occurrences of a sequence in another
sequence using the suffix array of the latter sequence can be implemented in
Perl in a straightforward way, as shown in the following Perl script. Recall
that the suffix array of a sequence of length n will be a permutation of array
positions 0, 1, . . . , n− 1, because Perl arrays do not start with position 1 but,
rather, with position 0.

sub occurrences {
my $p = shift;
my $t = shift;
my $sa = shift;
my ($l, $r) = (0, $#sa);
while ($l <= $r) {

my $i = int(($l + $r)/2);
my $c = $p cmp substr($t , $sa[$i], length $p);
if ($c < 0) {

© 2009 by Taylor & Francis Group, LLC



62 Combinatorial Pattern Matching Algorithms in Computational Biology

$r = $i - 1;
} elsif ($c > 0) {

$l = $i + 1;
} else {

my $j = $i;
while ($i > 0 &&

$p eq substr($t, $sa[$i -1], length $p)) {
$i --;

}
while ($j < $#sa -1 &&

$p eq substr($t, $sa[$j+1], length $p)) {
$j++;

}
return ($i, $j);

}
}
return (-1, -1);

}

The previous algorithm for finding all occurrences of a sequence in another
sequence using the suffix array of the latter sequence can also be implemented
in R in a straightforward way, as shown in the following R script.

> occurrences <- function (p,t,sa) {
ell <- 1
r <- nchar(t)
while (ell <= r) {

i <- as.integer ((ell + r) / 2)
s <- substr(t,sa[i],sa[i]+nchar(p) -1)
if (p < s) {

r <- i - 1
} else if (p > s) {

ell <- i + 1
} else {

j <- i
while (i > 1 &&

p== substr(t,sa[i-1],sa[i-1]+ nchar(p) -1)) {
i <- i - 1

}
while (j < nchar(t) &&

p== substr(t,sa[j+1],sa[j+1]+ nchar(p) -1)) {
j <- j + 1

}
return(c(i,j))

}
}

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 63

return(c(-1,-1))
}

> t <- "TTGATTACCTTATTTGATCATTACACATTGTACGCTTGTG"
> sa <- suffix.array(t)

> occurrences("ATTAC",t,sa)
[1] 6 7
> occurrences("ATT",t,sa)
[1] 6 9
> substr(t,sa[6],nchar(t))
[1] "ATTACACATTGTACGCTTGTG"
> substr(t,sa[7],nchar(t))
[1] "ATTACCTTATTTGATCATTACACATTGTACGCTTGTG"
> substr(t,sa[8],nchar(t))
[1] "ATTGTACGCTTGTG"
> substr(t,sa[9],nchar(t))
[1] "ATTTGATCATTACACATTGTACGCTTGTG"

The occurrences of a sequence in another sequence can be found even more
quickly when the suffixes of the sequence share long prefixes, because when
comparing P [1, . . . ,m] with T [A[i], . . . , A[i]+m−1] in the previous algorithm,
the length of the longest common prefix between them can be obtained as a by-
product of their comparison, and it can be used in later iterations to shorten
the suffixes that remain to be compared.

In fact, when searching for the occurrences of sequence P between posi-
tions ` and r of the suffix array A of sequence T , it suffices to keep track
of the length llcp of the longest common prefix between P and the suf-
fix T [A[`], . . . , n] as well as the length rlcp of the longest common prefix
between P and the suffix T [A[r], . . . , n], because the shortest of these two
longest common prefixes will be a prefix common to all the suffixes start-
ing at positions A[`] through A[r] of sequence T . That is, if P [1, . . . , llcp] =
T [A[`], . . . , A[`] + llcp − 1] and P [1, . . . , rlcp] = T [A[r], . . . , A[r] + rlcp − 1],
then P [1, . . . , h] = T [A[k], . . . , A[k] + h − 1] for all ` 6 k 6 r, where h is the
smallest of llcp and rlcp.

The length of the longest common prefix between P [i, . . . , m] and T [j, . . . , n]
can be obtained by traversing the two sequences and counting the number c
of common elements in their prefixes until P [i + c] 6= T [j + c].

function lcp(P [i, . . . , m], T [j, . . . , n])
c← 0
while i + c 6 m and j + c 6 n and P [i + c] = T [j + c] do

c← c + 1
return c

© 2009 by Taylor & Francis Group, LLC



64 Combinatorial Pattern Matching Algorithms in Computational Biology

Now, in the following description, the occurrences of sequence P [1, . . . ,m]
in sequence T [1, . . . , n], where m 6 n, are obtained by binary search on the
portion A[`, . . . , r] of the suffix array of T , while keeping track of the length
llcp of the longest common prefix between P and the suffix T [A[`], . . . , n]
as well as the length rlcp of the longest common prefix between P and the
suffix T [A[r], . . . , n]. Then the lexicographical comparison of P [1, . . . ,m] with
T [A[i], . . . , A[i] + m− 1] is replaced by the computation of the length c of the
longest common prefix between P [h + 1, . . . ,m] and T [A[i] + h, . . . , n], where
h is the smallest of llcp and rlcp, and P [1, . . . ,m] = T [A[i], . . . , A[i] + m− 1]
if h + c = m. Otherwise, the positions of the h + c common elements are
skipped, and P [h + c + 1] and T [A[i] + h + c] are compared next.

function occurrences(P, T,A)
m← length(P )
n← length(T )
`← 1
r ← n
llcp← rlcp← 0
while ` 6 r do

i← (` + r)/2
h← min{llcp, rclp}
c← lcp(P [h + 1, . . . ,m], T [A[i] + h, . . . , n])
if h + c = m then

j ← i
while i > 1 and P = T [A[i− 1], . . . , A[i− 1] + m− 1] do

i← i− 1
while j < n and P = T [A[j + 1], . . . , A[j + 1] + m− 1] do

j ← j + 1
return (i, j)

else if P [h + c + 1] < T [A[i] + h + c] then
r ← i− 1
rlcp← h + c

else
`← i + 1
llcp← h + c

return (−1,−1)

The algorithm for computing the length of the longest common prefix be-
tween P [i, . . . , m] and T [j, . . . , n] can be implemented in Perl in a straightfor-
ward way, as shown in the following Perl script.

sub lcp {
my ($p, $i, $t, $j) = @_;
my $c = 0;
while ($i+$c < length $p && $j+$c < length $t &&

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 65

substr($p,$i+$c ,1) eq substr($t ,$j+$c ,1)) {
$c++;

}
return $c;

}

The improved algorithm for finding the occurrences of sequence P [1, . . . ,m]
in sequence T [1, . . . , n] can also be implemented in Perl in a straightforward
way, as shown in the following Perl script. Recall that the suffix array of the
sequence T [1, . . . , n] will be a permutation of array positions 0, 1, . . . , n − 1,
because Perl arrays do not start with position 1 but, rather, with position 0.

sub occurrences {
my $p = shift;
my $t = shift;
my $sa = shift;
my ($l, $r) = (0, $#sa);
my ($llcp , $rlcp) = (0, 0);
while ($l <= $r) {

my $i = int(($l + $r)/2);
my $h = $llcp; $h = $rlcp if $rlcp < $h;
my $c = lcp($p,$h,$t,$sa[$i]+$h);
if ($h+$c == length $p) {

my $j = $i;
while ($i > 0 &&

$p eq substr($t, $sa[$i -1], length $p)) {
$i --;

}
while ($j < $#sa -1 &&

$p eq substr($t, $sa[$j+1], length $p)) {
$j++;

}
return ($i, $j);

} elsif (substr($p ,$h+$c ,1) lt
substr($t,$sa[$i]+$h+$c ,1)) {

$r = $i - 1;
$rlcp = $h + $c;

} else {
$l = $i + 1;
$llcp = $h + $c;

}
}
return (-1, -1);

}

The algorithm for computing the length of the longest common prefix be-
tween P [i, . . . , m] and T [j, . . . , n] and the improved algorithm for finding the

© 2009 by Taylor & Francis Group, LLC



66 Combinatorial Pattern Matching Algorithms in Computational Biology

occurrences of sequence P [1, . . . ,m] in sequence T [1, . . . , n] can both be im-
plemented in R in a straightforward way, as shown in the following R script.

> lcp <- function (seq1 ,pos1 ,seq2 ,pos2) {
n1 <- nchar(seq1)
n2 <- nchar(seq2)
c <- 0
while (pos1+c <= n1 && pos2+c <= n2 &&

substr(seq1 ,pos1+c,pos1+c) ==
substr(seq2 ,pos2+c,pos2+c)) {

c <- c + 1
}
c

}
> occurrences <- function (p,t,sa) {

ell <- 1
r <- nchar(t)
llcp <- 0
rlcp <- 0
while (ell <= r) {

i <- as.integer ((ell + r) / 2)
h <- min(llcp ,rlcp)
c <- lcp(p,h+1,t,sa[i]+h)
if (h+c == nchar(p)) {

j <- i
while (i > 1 &&

p== substr(t,sa[i-1],sa[i-1]+ nchar(p) -1)) {
i <- i - 1

}
while (j < nchar(t) &&

p== substr(t,sa[j+1],sa[j+1]+ nchar(p) -1)) {
j <- j + 1

}
return(c(i,j))

} else if (substr(p,h+c+1,h+c+1) <
substr(t,sa[i]+h+c,sa[i]+h+c)) {

r <- i - 1
rlcp <- h + c

} else {
ell <- i + 1
llcp <- h + c

}
}
return(c(-1,-1))

}

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 67

> t <- "TTGATTACCTTATTTGATCATTACACATTGTACGCTTGTG"
> sa <- suffix.array(t)

> occurrences("ATTAC",t,sa)
[1] 6 7
> occurrences("ATT",t,sa)
[1] 6 9
> substr(t,sa[6],nchar(t))
[1] "ATTACACATTGTACGCTTGTG"
> substr(t,sa[7],nchar(t))
[1] "ATTACCTTATTTGATCATTACACATTGTACGCTTGTG"
> substr(t,sa[8],nchar(t))
[1] "ATTGTACGCTTGTG"
> substr(t,sa[9],nchar(t))
[1] "ATTTGATCATTACACATTGTACGCTTGTG"

4.2 Finding Common Subsequences

Subsequences shared by two sequences reveal information common to the
two sequences. As there are several ways in which a sequence can be contained
in another sequence, common subsequences can be common prefixes, suffixes,
suffixes of prefixes, or prefixes of suffixes. Further, in order to reveal the most
of their shared information, it is interesting to find common subsequences of
largest size between two given sequences.

Example 4.4
The following fragments of DNA sequence

TGCTTCTGACTATAATAG
GCTTCCGGCTCGTATAATGTGTGG

contain the Pribnow box TATAAT as their longest common subsequence, as
shown in the two alignments below.

TATAAT TATAAT
TGCTTCTGACTATAATAG GCTTCCGGCTCGTATAATGTGTGG

The common occurrences of a pattern as a subsequence of two given se-
quences can be found by traversing the two sequences, starting at each pos-
sible initial position in turn where the pattern sequence could occur. In the
following description, the starting positions of the occurrences of a pattern

© 2009 by Taylor & Francis Group, LLC



68 Combinatorial Pattern Matching Algorithms in Computational Biology

sequence P of length m in each of the two text sequences T1 of length n1 and
T2 of length n2, with m 6 min{n1, n2}, are collected in a list L.

function common occurrences(P, T1, T2)
m← length(P )
n1 ← length(T1)
n2 ← length(T2)
L← ∅
for i← 1 to n1 −m + 1 do

if P [1, . . . ,m] = T1[i, . . . , i + m− 1] then
for j ← 1 to n2 −m + 1 do

if P [1, . . . ,m] = T2[j . . . , j + m− 1] then
L← L ∪ {(i, j)}

return L

The previous algorithm for finding all occurrences of a sequence P common
to two sequences T1 and T2 can be implemented in Perl in a straightforward
way, as shown in the following Perl script.

sub common_occurrences {
my $p = shift;
my $t1 = shift;
my $t2 = shift;
my $m = length $p;
my $n1 = length $t1;
my $n2 = length $t2;
my @L;
for (my $i = 0; $i < $n1 -$m+1; $i++) {

if ($p eq substr($t1 ,$i ,$m)) {
for (my $j = 0; $j < $n2 -$m+1; $j++) {

if ($p eq substr($t2 ,$j ,$m)) {
push @L, $i, $j;

}
}

}
}
return \@L;

}

The previous algorithm for finding all occurrences of a sequence P common
to two sequences T1 and T2 can also be implemented in R in a straightforward
way, as shown in the following R script.

> common.occurrences <- function (p,t1 ,t2) {
L <- c()
for (i in 1:nchar(t1)-nchar(p)+1)

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 69

if (p == substr(t1,i,i+nchar(p) -1))
for (j in 1:nchar(t2)-nchar(p)+1)

if (p == substr(t2,j,j+nchar(p) -1))
L <- c(L,i,j)

L
}

> p <- "TATAAT"
> t1 <- "TGCTTCTGACTATAATAG"
> t2 <- "GCTTCCGGCTCGTATAATGTGTGG"
> common.occurrences(p,t1 ,t2)
[1] 11 13

> L <- common.occurrences(p,t1 ,t2)
> sapply(split(L,1:2) [[1]] ,

function(i)substr(t1 ,i,i+nchar(p) -1))
[1] "TATAAT"
> sapply(split(L,1:2) [[2]] ,

function(j)substr(t2 ,j,j+nchar(p) -1))
[1] "TATAAT"

On the other hand, the longest common subsequences of two given sequences
can be found by traversing the two sequences, starting at each possible initial
position of each sequence in turn where a common subsequence could occur.
In the following description, given two sequences S1 and S2, the subsequences
S1[i, . . . , j], of length j − i + 1, and S2[k, . . . , k + j − i], also of length k + j −
i − k + 1 = j − i + 1, are compared to each other, and the longest common
subsequences, of length `, are collected in a list L.

function longest common subsequences(S1, S2)
L← ∅
`← 0
for i← 1 to length(S1) do

for j ← i to length(S1) do
X ← S1[i, . . . , j]
for k ← 1 to length(S2)− j + i do

Y ← S2[k, . . . , k + j − i]
if X = Y then

if length(X) = ` then
L← L ∪ {X}

else if length(X) > ` then
L← {X}
`← length(X)

return L

© 2009 by Taylor & Francis Group, LLC



70 Combinatorial Pattern Matching Algorithms in Computational Biology

The previous algorithm for finding the longest common subsequences of two
given sequences S1 and S2 can be implemented in Perl in a straightforward
way, as shown in the following Perl script. Repetitions in the list L of longest
common subsequences are discarded with the help of a hash %count indexed
by sequences.

sub longest_common_subsequences {
my $s1 = shift;
my $s2 = shift;
my $n1 = length($s1);
my $n2 = length($s2);
my @L;
my $l = 0;
for (my $i = 0; $i < $n1; $i++) {

for (my $j = $i; $j < $n1; $j++) {
my $seq = substr($s1 ,$i ,$j -$i+1);
for (my $k = 0; $k < $n2 -$j+$i; $k++) {

if ($seq eq substr($s2 ,$k ,$j -$i+1)) {
if (length($seq) == $l) {

push @L, $seq;
} elsif (length($seq) > $l) {

@L = $seq;
$l = length($seq);

}
}

}
}

}
my %count;
for my $seq (@L) { $count{$seq }++; }
@L = sort keys %count;
return \@L;

}

The previous algorithm for finding the longest common subsequences of two
given sequences S1 and S2 can also be implemented in R in a straightforward
way, with any repetitions in the list L of longest common subsequences being
discarded by the unique function, as shown in the following R script.

> longest.common.subsequences <- function (s1,s2) {
L <- c()
ell <- 0
for (i in 1:nchar(s1)) {

for (j in i:nchar(s1)) {
seq <- substr(s1,i,j)
for (k in 1:( nchar(s2)-j+i)) {

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 71

if (seq == substr(s2,k,k+j-i)) {
if (nchar(seq) == ell) {

L <- c(L,seq)
} else if (nchar(seq) > ell) {

L <- c(seq)
ell <- nchar(seq)

}
}

}
}

}
unique(L)

}

> s1 <- "TGCTTCTGACTATAATAG"
> s2 <- "GCTTCCGGCTCGTATAATGTGTGG"
> longest.common.subsequences(s1 ,s2)
[1] "TATAAT"

Now, the algorithm for finding the longest common subsequences of two
sequences S1 and S2 by traversing part of the sequences once for each possible
starting position of a common subsequence has the disadvantage that it can
be slow in practice for large sequences, because a subsequence S1[i, . . . , j] is
compared to a subsequence S2[k, . . . , k+j−i] even if the comparison of a prefix
of the former to a prefix of the latter has already failed and, thus, they cannot
be common subsequences. Finding the longest common subsequences of two
sequences is indeed another classic pattern matching problem, for which faster
algorithms are known. Some of them are based on dynamic programming,
while others are based on storing all the suffixes of the two sequences in a
compact representation called a generalized suffix array.

The longest common subsequences of two sequences can be obtained by
finding the longest common suffixes between each pair of prefixes of the se-
quences, keeping all the longest ones. In general, the length LCS(S1[1, . . . , i],
S2[1, . . . , j]) of a longest common suffix between two prefixes S1[1, . . . , i] and
S2[1, . . . , j] of the sequences S1 and S2 is given by the recurrence

LCS(S1[1, . . . , i], S2[1, . . . , j]) =

LCS(S1[1, . . . , i− 1], S2[1, . . . , j − 1]) + 1
if S1[i] = S2[j]

0 otherwise

Computation of this recurrence by dynamic programming involves the use
of a dynamic programming table to store each LCS(S1[1, . . . , i], S2[1, . . . , j]),
for 1 6 i 6 n1 and 1 6 j 6 n2, where n1 is the length of S1 and n2 is the
length of S2.

© 2009 by Taylor & Francis Group, LLC



72 Combinatorial Pattern Matching Algorithms in Computational Biology

Example 4.5
The longest common subsequences of the two sequences TGCTTCTGACT
ATAATAG and GCTTCCGGCTCGTATAATGTGTGG have length 6, as
shown in entry (16, 18) of the following dynamic programming table. Pre-
fix TGCTTCTGACTATAAT of the first sequence and prefix GCTTCCG
GCTCGTATAAT of the second sequence share TATAAT as a common suffix.

G C T T C C G G C T C G T A T A A T G T G T G G

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T 1 0 0 1 1 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0
G 2 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 2 0 2 0 2 1
C 3 0 2 0 0 1 1 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
T 4 0 0 3 1 0 0 0 0 0 3 0 0 1 0 1 0 0 1 0 1 0 1 0 0
T 5 0 0 1 4 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0
C 6 0 1 0 0 5 1 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
T 7 0 0 2 1 0 0 0 0 0 2 0 0 1 0 1 0 0 1 0 1 0 1 0 0
G 8 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 2 0 2 0 2 1
A 9 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0
C 10 0 1 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
T 11 0 0 2 1 0 0 0 0 0 2 0 0 1 0 1 0 0 1 0 1 0 1 0 0
A 12 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 1 0 0 0 0 0 0 0
T 13 0 0 1 1 0 0 0 0 0 1 0 0 1 0 3 0 0 2 0 1 0 1 0 0
A 14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 4 1 0 0 0 0 0 0 0
A 15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 5 0 0 0 0 0 0 0
T 16 0 0 1 1 0 0 0 0 0 1 0 0 1 0 2 0 0 6 0 1 0 1 0 0
A 17 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 1 0 0 0 0 0 0 0
G 18 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 1

In the following description, the dynamic programming table LCS is filled
in for each 1 6 i 6 n1 and 1 6 j 6 n2 while keeping track of the length ` of a
longest common suffix between all pairs of prefixes considered so far, and all
common suffixes of prefixes of length i− (i− ` + 1) + 1 = ` are collected in a
list L.

function longest common subsequences(S1, S2)
L← ∅
`← 0
for i← 1 to length(S1) do

for j ← i to length(S2) do
LCS[i, j]← 0
if S1[i] = S2[j] then

if i = 1 or j = 1 then
LCS[i, j]← 1

else
LCS[i, j]← LCS[i− 1, j − 1] + 1

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 73

if LCS[i, j] > ` then
`← LCS[i, j]
L← ∅

if LCS[i, j] = ` then
L← L ∪ {S1[i− ` + 1, . . . , i]}

return L

The previous dynamic programming algorithm for finding the longest com-
mon subsequences of two given sequences S1 and S2 can be implemented in
Perl in a straightforward way, as shown in the following Perl script.

sub longest_common_subsequences {
my $s1 = shift;
my $s2 = shift;
my @L;
my $l = 0;
my @LCS;
for (my $i = 0; $i < length $s1; $i++ ) {

for (my $j = 0; $j < length $s2; $j++ ) {
$LCS[$i][$j] = 0;
if (substr($s1 ,$i ,1) eq substr($s2 ,$j ,1)) {

if ($i == 0 || $j == 0) {
$LCS[$i][$j] = 1;

} else {
$LCS[$i][$j] = $LCS[$i -1][$j -1] + 1;

}
if ($LCS[$i][$j] > $l) {

$l = $LCS[$i][$j];
@L = ();

}
if ($LCS[$i][$j] == $l) {

push @L, substr($s1 ,$i-$l+1,$l);
}

}
}

}
return @L;

}

The previous dynamic programming algorithm for finding the longest com-
mon subsequences of two given sequences S1 and S2 can also be implemented
in R in a straightforward way, as illustrated by the following R script.

> longest.common.subsequences <- function (s1,s2) {
L <- c()
ell <- 0

© 2009 by Taylor & Francis Group, LLC



74 Combinatorial Pattern Matching Algorithms in Computational Biology

LCS <- matrix(0,nrow=nchar(s1),ncol=nchar(s2))
for (i in 1:nchar(s1)) {

for (j in 1:nchar(s2)) {
if (substr(s1,i,i) == substr(s2 ,j,j)) {

if (i == 1 || j == 1) {
LCS[i,j] <- 1

} else {
LCS[i,j] <- LCS[i-1,j-1] + 1

}
if (LCS[i,j] > ell) {

ell <- LCS[i,j]
L <- c()

}
if (LCS[i,j] == ell) {

L <- c(L,substr(s1 ,i-ell+1,i))
}

}
}

}
L

}

> s1 <- "TGCTTCTGACTATAATAG"
> s2 <- "GCTTCCGGCTCGTATAATGTGTGG"
> longest.common.subsequences(s1 ,s2)
[1] "TATAAT"

4.2.1 Generalized Suffix Arrays

The generalized suffix array of two sequences is a permutation of all starting
positions of the suffixes of the sequences, lexicographically sorted, where the
starting position of each suffix is tagged as coming from the first or the second
sequence. Despite its simplicity, the generalized suffix array of two sequences
is very useful for finding common subsequences, because all the occurrences
of a sequence within both of the sequences appear together in the generalized
suffix array, as prefixes of suffixes of the sequences.

As in the case of the suffix array of a sequence, the generalized suffix array
of two sequences can also be obtained by various methods. The simplest
way to obtain the generalized suffix array of two sequences consists in first
tagging the sequences and then sorting an array of positions by comparing the
corresponding suffixes of the tagged sequences. In the following description,
the generalized suffix array for a sequence S1 of length n1 and a sequence S2

of length n2 is built by sorting an array A of positions 1 through n1 tagged by
the sequence identifier 1 and positions 1 through n2 tagged by the sequence

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 75

identifier 2, where the comparison of an array entry A[i] tagged by, say, 1 and
an array entry A[j] tagged by, say, 2 is based on the comparison of suffixes
S1[A[i], . . . , n1] and S2[A[j], . . . , n2].

procedure generalized suffix array(S1, S2, A)
n1 ← length(S1)
n2 ← length(S2)
for i← 1 to n1 do

A[i]← (i, 1)
for i← 1 to n2 do

A[n1 + i]← (i, 2)
sort A by comparing S1[A[i], . . . , n1] with S2[A[j], . . . , n2]

The previous algorithm for building the generalized suffix array of two se-
quences can be implemented in Perl in a straightforward way. The generalized
suffix array @gsa of a sequence %seq{1} of length n1 and a sequence %seq{2}
of length n2 will be a permutation of array positions 0, 1, . . . , n1 − 1 and a
permutation of array positions 0, 1, . . . , n2 − 1, however, because Perl arrays
do not start with position 1 but, rather, with position 0. Also, storing the
two sequences in a hash makes it easier to sort their suffixes, as shown in the
following Perl script.

sub generalized_suffix_array {
my $seq = shift;
my %seq = %{$seq};

my @gsa;
for my $id (keys %seq) {

for my $i (0 .. length($seq{$id}) -1) {
push @gsa , [$i, $id];

}
}

@gsa = sort {substr($seq{@{$a}[1]} , @{$a }[0]) cmp
substr($seq{@{$b}[1]} , @{$b }[0])} @gsa;

return \@gsa;
}

The previous algorithm for building the generalized suffix array of two se-
quences can also be easily implemented in R. The suffixes sa1 and sa2 of the
two sequences are sorted together in lexicographical order and tagged with the
identifier tag of the sequence they come from. Then the positions in lexico-
graphical order are transformed back to positions in the respective sequences.
This is all shown in the following R script.

© 2009 by Taylor & Francis Group, LLC



76 Combinatorial Pattern Matching Algorithms in Computational Biology

> generalized.suffix.array <- function (s1 ,s2) {
sa1 <- apply(matrix (1: nchar(s1)) ,1,

function (i) substr(s1 ,i,nchar(s1)))
sa2 <- apply(matrix (1: nchar(s2)) ,1,

function (i) substr(s2 ,i,nchar(s2)))
arr <- order(c(sa1 ,sa2))
tag <- sapply(arr ,function (i)

if (i <= nchar(s1)) { 1 } else { 2 } )
arr <- sapply(arr ,function (i)

if (i <= nchar(s1)) { i } else { i-nchar(s1) } )
cbind(arr ,tag)

}

> s1 <- "TGCTTCTGACTATAATAG"
> s2 <- "GCTTCCGGCTCGTATAATGTGTGG"
> options("width"=40)
> gsa <- generalized.suffix.array(s1 ,s2)
> gsa[,1]
[1] 14 16 9 17 12 14 15 17 5 6 11 10

[13] 9 6 2 3 18 24 8 8 1 2 23 7
[25] 12 21 19 13 15 16 11 13 4 10 5 7
[37] 1 22 20 18 3 4
> gsa[,2]
[1] 1 2 1 1 1 2 1 2 2 2 2 1 2 1 2 1 1 2

[19] 1 2 2 1 2 2 2 2 2 1 2 1 1 2 2 2 1 1
[37] 1 2 2 2 2 1

The suffixes of the two sequences appear indeed in lexicographical order
within the generalized suffix array.

> options("width"=60)
> cbind(gsa ,apply(gsa ,1,function (i)

if (i[2]==1) { substr(s1 ,i[1], nchar(s1)) }
else { substr(s2,i[1],nchar(s2)) } ))

arr tag
[1,] "14" "1" "AATAG"
[2,] "16" "2" "AATGTGTGG"
[3,] "9" "1" "ACTATAATAG"
[4,] "17" "1" "AG"
[5,] "12" "1" "ATAATAG"
[6,] "14" "2" "ATAATGTGTGG"
[7,] "15" "1" "ATAG"
[8,] "17" "2" "ATGTGTGG"
[9,] "5" "2" "CCGGCTCGTATAATGTGTGG"

[10,] "6" "2" "CGGCTCGTATAATGTGTGG"
[11,] "11" "2" "CGTATAATGTGTGG"

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 77

[12,] "10" "1" "CTATAATAG"
[13,] "9" "2" "CTCGTATAATGTGTGG"
[14,] "6" "1" "CTGACTATAATAG"
[15,] "2" "2" "CTTCCGGCTCGTATAATGTGTGG"
[16,] "3" "1" "CTTCTGACTATAATAG"
[17,] "18" "1" "G"
[18,] "24" "2" "G"
[19,] "8" "1" "GACTATAATAG"
[20,] "8" "2" "GCTCGTATAATGTGTGG"
[21,] "1" "2" "GCTTCCGGCTCGTATAATGTGTGG"
[22,] "2" "1" "GCTTCTGACTATAATAG"
[23,] "23" "2" "GG"
[24,] "7" "2" "GGCTCGTATAATGTGTGG"
[25,] "12" "2" "GTATAATGTGTGG"
[26,] "21" "2" "GTGG"
[27,] "19" "2" "GTGTGG"
[28,] "13" "1" "TAATAG"
[29,] "15" "2" "TAATGTGTGG"
[30,] "16" "1" "TAG"
[31,] "11" "1" "TATAATAG"
[32,] "13" "2" "TATAATGTGTGG"
[33,] "4" "2" "TCCGGCTCGTATAATGTGTGG"
[34,] "10" "2" "TCGTATAATGTGTGG"
[35,] "5" "1" "TCTGACTATAATAG"
[36,] "7" "1" "TGACTATAATAG"
[37,] "1" "1" "TGCTTCTGACTATAATAG"
[38,] "22" "2" "TGG"
[39,] "20" "2" "TGTGG"
[40,] "18" "2" "TGTGTGG"
[41,] "3" "2" "TTCCGGCTCGTATAATGTGTGG"
[42,] "4" "1" "TTCTGACTATAATAG"

Now, the common occurrences of a pattern as a subsequence of two given
sequences can also be found by binary search on the generalized suffix array
of the two sequences. In the following description, a common occurrence
of a pattern sequence P of length m in a sequence S1 of length n1, with
m 6 n1, and a sequence S2 of length n2, with m 6 n2, is obtained by
binary search on the generalized suffix array A[1, . . . , n1 + n2] of S1 and S2.
Starting with the index i = (1 + n1 + n2)/2, the pattern P is compared
to the first m characters of the suffix of St starting at position k, where
(k, t) = A[i], and, as a result, either the search continues in A[1, . . . , i − 1]
because P < St[k, . . . , k + m − 1] in lexicographical order, or it continues in
A[i + 1, . . . , n] because P > St[k, . . . , k + m− 1] in lexicographical order, or it
finishes because an occurrence of P as a prefix of the suffix of St starting at
position k was found. Again, the portion of the generalized suffix array being

© 2009 by Taylor & Francis Group, LLC



78 Combinatorial Pattern Matching Algorithms in Computational Biology

searched is always A[`, . . . , r].
Once a common occurrence, at position k, of pattern sequence P in sequence

St has been found, where (k, t) = A[i], the remaining occurrences (if any) are
obtained by extending the interval (i, i) of generalized suffix array indices as
much as possible, profiting from the fact that all occurrences appear together
in A. The lower index i of the interval is decreased by one for each further
occurrence towards the beginning of the generalized suffix array, and the upper
index j = i is increased by one for each further occurrence towards the end of
the generalized suffix array. The resulting interval (i, j) comprises the starting
positions in A of all the common occurrences of sequence P in sequences S1

and S2.

function common occurrences(P, S1, S2, A)
m← length(P )
n1 ← length(S1)
n2 ← length(S2)
`← 1
r ← n1 + n2

while ` 6 r do
i← (` + r)/2
(k, t)← A[i]
if P < St[k, . . . , k + m− 1] then

r ← i− 1
else if P > St[k, . . . , k + m− 1] then

`← i + 1
else

j ← i
while i > 1, (k, t)← A[i− 1] and P = St[k, . . . , k + m− 1] do

i← i− 1
while j < n, (k, t)← A[j + 1] and P = St[k, . . . , k + m− 1] do

j ← j + 1
return (i, j)

return (−1,−1)

The previous algorithm for finding all occurrences of a sequence P common
to two sequences S1 and S2 using the generalized suffix array of S1 and S2 can
be implemented in Perl in a straightforward way, as shown in the following
Perl script.

sub common_occurrences {
my $p = shift;
my $seq = shift;
my %seq = %{$seq};
my $gsa = shift;
my @gsa = @{$gsa};

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 79

my ($l, $r) = (0, $#gsa);
while ($l <= $r) {

my $i = int(($l + $r)/2);
my $c = $p cmp substr($seq{$gsa[$i][1]}, $gsa[$i

][0], length $p);
if ($c < 0) {

$r = $i - 1;
} elsif ($c > 0) {

$l = $i + 1;
} else {

my $j = $i;
while ($i > 0 &&

$p eq substr($seq{$gsa[$i -1][1]} , $gsa[$i
-1][0] , length $p)) {

$i --;
}
while ($j < $#gsa &&

$p eq substr($seq{$gsa[$j+1][1]} , $gsa[$j
+1][0] , length $p)) {

$j++;
}
return ($i, $j);

}
}
return (-1, -1);

}

The algorithm for finding all occurrences of a sequence P common to two
sequences S1 and S2 using their generalized suffix array can also be imple-
mented in R in a straightforward way, as shown in the following R script.

> common.occurrences <- function (p,seq ,gsa) {
ell <- 1
r <- n <- nchar(seq [1]) + nchar(seq [2])
while (ell <= r) {

i <- as.integer ((ell + r) / 2)
s <- substr(seq[gsa[i,2]],

gsa[i,1],gsa[i,1]+ nchar(p) -1)
if (p < s) {

r <- i - 1
} else if (p > s) {

ell <- i + 1
} else {

j <- i
while (i > 1 && p == s) {

s <- substr(seq[gsa[i-1,2]],

© 2009 by Taylor & Francis Group, LLC



80 Combinatorial Pattern Matching Algorithms in Computational Biology

gsa[i-1,1],gsa[i-1 ,1]+ nchar(p) -1)
if (p == s) i <- i - 1

}
s <- p
while (j < n && p == s) {

s <- substr(seq[gsa[j+1,2]],
gsa[j+1,1],gsa[j+1 ,1]+ nchar(p) -1)

if (p == s) j <- j + 1
}
return(c(i,j))

}
}
return(c(-1,-1))

}

> p <- "TATAAT"
> s1 <- "TGCTTCTGACTATAATAG"
> s2 <- "GCTTCCGGCTCGTATAATGTGTGG"
> gsa <- generalized.suffix.array(s1 ,s2)
> common.occurrences(p,c(s1 ,s2),gsa)
[1] 31 32
> gsa [31:32 ,]

arr tag
[1,] 11 1
[2,] 13 2
> substr(s1,gsa[31,1],gsa [31 ,1]+ nchar(p) -1)
[1] "TATAAT"
> substr(s2,gsa[32,1],gsa [32 ,1]+ nchar(p) -1)
[1] "TATAAT"

Now, as in the case of suffix arrays, the occurrences of a sequence com-
mon to two sequences can be found even more quickly when the suffixes of
the sequences share long prefixes, because when comparing P [1, . . . ,m] with
St[k, . . . , k + m− 1] in the previous algorithm, the length of the longest com-
mon prefix between them can be obtained as a by-product of their comparison,
and it can be used in later iterations to shorten the suffixes that remain to be
compared.

In fact, when searching for the occurrences of sequence P between positions
` and r of the generalized suffix array A of sequences S1 and S2, it suffices
to keep track of the length llcp of the longest common prefix between P
and the suffix St[k, . . . , nt], where A[`] = (k, t), as well as the length rlcp
of the longest common prefix between P and the suffix St[k . . . , nt], where
A[r] = (k, t), because the shortest of these two longest common prefixes will
be a prefix common to all the suffixes starting at positions A[`] through A[r]
of sequences S1 or S2.

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 81

In the following description, a common occurrence of a pattern sequence
P of length m in a sequence S1 of length n1, with m 6 n1, and a sequence
S2 of length n2, with m 6 n2, is obtained by binary search on the portion
A[`, . . . , r] of the generalized suffix array of S1 and S2, while keeping track
of the length llcp of the longest common prefix between P and the suffix
St[k, . . . , nt], where A[`] = (k, t), as well as the length rlcp of the longest
common prefix between P and the suffix St[k, . . . , nt], where A[r] = (k, t).
Then the lexicographical comparison of P [1, . . . ,m] with St[k, . . . , k + m− 1]
is replaced by the computation of the length c of the longest common prefix
between P [h + 1, . . . ,m] and St[k + h, . . . , nt], where h is the smallest of llcp
and rlcp, and P [1, . . . ,m] = St[k, . . . , k + m− 1] if h + c = m. Otherwise, the
positions of the h + c common elements are skipped, and P [h + c + 1] and
St[k + h + c] are compared next.

function common occurrences(P, S1, S2, A)
m← length(P )
n1 ← length(S1)
n2 ← length(S2)
`← 1
r ← n← n1 + n2

llcp← rlcp← 0
while ` 6 r do

i← (` + r)/2
(k, t)← A[i]
h← min{llcp, rclp}
c← lcp(P [h + 1, . . . ,m], St[k + h, . . . , nt])
if h + c = m then

j ← i
while i > 1, (k, t)← A[i− 1] and P = St[k, . . . , k + m− 1] do

i← i− 1
while j < n, (k, t)← A[j + 1] and P = St[k, . . . , k + m− 1] do

j ← j + 1
return (i, j)

else if P [h + c + 1] < St[k + h + c] then
r ← i− 1
rlcp← h + c

else
`← i + 1
llcp← h + c

return (−1,−1)

The improved algorithm for finding the occurrences of a sequence P com-
mon to two sequences S1 and S2 using the generalized suffix array of S1 and
S2 can be implemented in Perl in a straightforward way, as shown in the

© 2009 by Taylor & Francis Group, LLC



82 Combinatorial Pattern Matching Algorithms in Computational Biology

following Perl script.

sub common_occurrences {
my $p = shift;
my $seq = shift;
my %seq = %{$seq};
my $gsa = shift;
my @gsa = @{$gsa};
my ($l, $r) = (0, $#gsa);
my ($llcp , $rlcp) = (0, 0);
while ($l <= $r) {

my $i = int(($l + $r)/2);
my $h = $llcp; $h = $rlcp if $rlcp < $h;
my $c = lcp($p,$h,$seq{$gsa[$i][1]}, $gsa[$i][0]+

$h);
if ($h+$c == length $p) {

my $j = $i;
while ($i > 0 &&

$p eq substr($seq{$gsa[$i -1][1]} , $gsa[$i
-1][0] , length $p)) {

$i --;
}
while ($j < $#gsa -1 &&

$p eq substr($seq{$gsa[$j+1][1]} , $gsa[$j
+1][0] , length $p)) {

$j++;
}
return ($i, $j);

} elsif (substr($p ,$h+$c ,1) lt
substr($seq{$gsa[$i][1]} , $gsa[$i ][0]+$h+$c ,1)

) {
$r = $i - 1;
$rlcp = $h + $c;

} else {
$l = $i + 1;
$llcp = $h + $c;

}
}
return (-1, -1);

}

The improved algorithm for finding the occurrences of a sequence P com-
mon to two sequences S1 and S2 using the generalized suffix array of S1 and
S2 can also be implemented in R in a straightforward way, where the two se-
quences are input as a vector seq in order to be able to access them according
to the second column of the generalized suffix array, as seq[gsa[i,2]], for

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 83

instance. This is all shown in the following R script.

> common.occurrences <- function (p,seq ,gsa) {
ell <- 1
r <- n <- nchar(seq [1]) + nchar(seq [2])
llcp <- 0
rlcp <- 0
while (ell <= r) {

i <- as.integer ((ell + r) / 2)
s <- substr(seq[gsa[i,2]],gsa[i,1],

gsa[i,1]+ nchar(p) -1)
h <- min(llcp ,rlcp)
c <- lcp(p,h+1,s,1+h)
if (h+c == nchar(p)) {

j <- i
while (i > 1 && p == s) {

s <- substr(seq[gsa[i-1,2]],gsa[i-1,1],
gsa[i-1,1]+ nchar(p) -1)

if (p == s) i <- i - 1
}
s <- p
while (j < n && p == s) {

s <- substr(seq[gsa[j+1,2]],gsa[j+1,1],
gsa[j+1,1]+ nchar(p) -1)

if (p == s) j <- j + 1
}
return(c(i,j))

} else {
s <- substr(seq[gsa[i,2]],gsa[i,1]+h+c,

gsa[i,1]+h+c)
if (substr(p,h+c+1,h+c+1) < s) {

r <- i - 1
rlcp <- h + c

} else {
ell <- i + 1
llcp <- h + c

}
}

}
return(c(-1,-1))

}

> p <- "TATAAT"
> s1 <- "TGCTTCTGACTATAATAG"
> s2 <- "GCTTCCGGCTCGTATAATGTGTGG"

© 2009 by Taylor & Francis Group, LLC



84 Combinatorial Pattern Matching Algorithms in Computational Biology

> gsa <- generalized.suffix.array(s1 ,s2)
> common.occurrences(p,c(s1 ,s2),gsa)
[1] 31 32
> gsa [31:32 ,]

arr tag
[1,] 11 1
[2,] 13 2
> substr(s1,gsa[31,1],gsa [31 ,1]+ nchar(p) -1)
[1] "TATAAT"
> substr(s2,gsa[32,1],gsa [32 ,1]+ nchar(p) -1)
[1] "TATAAT"

On the other hand, the longest common subsequences of two given sequences
can be found by traversing the generalized suffix array of the two sequences
and computing the longest common prefix of each pair of consecutive entries
if they correspond to different sequences. In the following description, the
length p of the longest common prefix between suffixes F1 and F2 in each pair
of consecutive entries of the generalized suffix array A is computed, and the
largest length ` of the longest common prefixes found so far is kept together
with a list L of all such longest common subsequences.

function longest common subsequences(S1, S2, A)
L← ∅
`← 0
(k, t)← A[1]
F2 ← St[k, . . . , nt]
for i← 2 to n1 + n2 do

F1 ← F2

(k, t)← A[i]
F2 ← St[k, . . . , nt]
(k′, t′)← A[i− 1]
if t 6= t′ then

p← lcp(F1, F2)
if p > ` then

`← p
L← ∅

if p = ` then
L← L ∪ {St[1, . . . , p]}

return L

The previous algorithm for finding the longest common occurrences of two
sequences using their generalized suffix array can be implemented in Perl in
a straightforward way, as shown in the following Perl script.

sub longest_common_subsequences {
my $seq = shift;

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 85

my %seq = %{$seq};
my $gsa = shift;
my @gsa = @{$gsa};
my @L;
my $l = 0;
my $f2 = substr($seq{$gsa [0][1]} , $gsa [0][0] ,

length($seq{$gsa [0][1]}));
for (my $i = 1; $i < length($seq {1})+length($seq

{2}); $i++) {
my $f1 = $f2;
$f2 = substr($seq{$gsa[$i][1]} , $gsa[$i][0],

length($seq{$gsa[$i ][1]}));
if ($gsa[$i][1] != $gsa[$i -1][1]) {

my $p = lcp($f1 ,0,$f2 ,0);
if ($p > $l) {

$l = $p;
@L = ();

}
if ($p == $l) {

push @L,
substr($seq{$gsa[$i][1]} , $gsa[$i][0],$p);

}
}

}
return \@L;

}

The previous algorithm for finding the longest common occurrences of two
sequences using their generalized suffix array can also be implemented in R
in a straightforward way, as shown in the following R script. Recall that the
two sequences are input as a vector seq in order to be able to access them
according to the second column of the generalized suffix array gsa.

> longest.common.subsequences <- function (seq ,gsa) {
L <- c()
ell <- 0
suf2 <- substr(seq[gsa[1,2]],gsa[1,1],

nchar(seq[gsa [1 ,2]]))
for (i in 2:( nrow(gsa))) {

suf1 <- suf2
suf2 <- substr(seq[gsa[i,2]],gsa[i,1],

nchar(seq[gsa[i ,2]]))
if (gsa[i-1,2] != gsa[i,2]) {

pref <- substr(suf1 ,1,lcp(suf1 ,1,suf2 ,1))
if (nchar(pref) > ell) {

ell <- nchar(pref)

© 2009 by Taylor & Francis Group, LLC



86 Combinatorial Pattern Matching Algorithms in Computational Biology

L <- c()
}
if (nchar(pref) == ell) {

L <- c(L,pref)
}

}
}
L

}

> s1 <- "TGCTTCTGACTATAATAG"
> s2 <- "GCTTCCGGCTCGTATAATGTGTGG"
> gsa <- generalized.suffix.array(s1 ,s2)
> longest.common.subsequences(c(s1 ,s2),gsa)
[1] "TATAAT"

4.3 Comparing Sequences

The similarities and differences between two sequences can be assessed by
computing a distance measure between the two sequences. The edit distance is
based on the elementary edit operations of inserting an element in a sequence,
deleting an element from a sequence, and substituting another element for
an element in a sequence. The alignment of two sequences is an explicit
description of the correspondence between the elements of the two sequences,
together with the positions at which element insertions and deletions take
place in each sequence.

4.3.1 Edit Distance-Based Comparison of Sequences

The edit distance is based on the insertion, deletion, and substitution of
elements in the two sequences under comparison. The number and type of edit
operations needed to transform one sequence into the other reveal similarities
and differences between two sequences. There are several types of edit distance
between sequences, depending on the type of edit operations allowed.

The Hamming distance between two sequences of the same length is defined
as the number of positions at which the two sequences differ. This is the
same as the smallest number of element substitutions needed to transform one
sequence into the other, meaning that insertions and deletions are forbidden
and only substitutions are allowed in the Hamming distance.

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 87

Example 4.6
At least 12 element substitutions are needed to transform the DNA sequence
TGCTTCTGACTATAATAG into GCTTCCGGCTCGTATAAT, as shown in
the following alignment. Therefore, the Hamming distance between the two
sequences is 12.

TGCTTCTGACTATAATAG
||| | | |||| || |
GCTTCCGGCTCGTATAAT

The Hamming distance between two sequences of the same length can be
computed by traversing the sequences and counting the number of positions
at which they differ. In the following description, the Hamming distance
d between two sequences S1 and S2 is set to −1 when they have different
lengths; otherwise, it is obtained as the number of sequence positions i such
that S1[i] 6= S2[i].

function hamming distance(S1, S2)
n← length(S1)
if n 6= length(S2) then

d← −1
else

d← 0
for i← 1 to n do

if S1[i] 6= S2[i] then
d← d + 1

return d

The previous algorithm for computing the Hamming distance between two
sequences of the same length can be implemented in Perl in a straightforward
way, as shown in the following Perl script.

sub hamming_distance {
my $s1 = shift;
my $s2 = shift;
my $d = -1;
if (length $s1 == length $s2) {

$d = 0;
for (my $i = 0; $i < length $s1; $i++) {

$d++ if substr($s1 ,$i ,1) ne substr($s2 ,$i ,1);
}

}
return $d;

}

© 2009 by Taylor & Francis Group, LLC



88 Combinatorial Pattern Matching Algorithms in Computational Biology

The algorithm for computing the Hamming distance between two sequences
of the same length can also be easily implemented in R, for instance, by first
splitting the sequences into vectors with the strsplit function and then using
the sum function to count the number of positions at which the two vectors
differ. This is all shown in the following R script.

> hamming.distance <- function (s1 ,s2) {
if (nchar(s1) != nchar(s2))

-1
else

sum(strsplit(s1,"")[[1]] != strsplit(s2 ,"")[[1]])
}

> s1 <- "TGCTTCTGACTATAATAG"
> s2 <- "GCTTCCGGCTCGTATAAT"
> hamming.distance(s1,s1)
[1] 0
> hamming.distance(s1,s2)
[1] 12

The Levenshtein distance between two sequences (not necessarily of the
same length) is defined as the smallest number of element insertions and dele-
tions needed to transform one sequence into the other. Unlike the Hamming
distance, in which only element substitutions are allowed, in the Levenshtein
distance only element insertions and deletions are allowed.

Example 4.7
The DNA sequence GCTTCCGGCTCGTATAATGTGTGG can be trans-
formed into TGCTTCTGACTATAATAG by 4 insertions and 10 deletions,
as shown in the following alignment, and this is the least possible number of
insertions and deletions to transform one of these sequences into the other.
Therefore, the Levenshtein distance between them is 14.

-GCTTCC -GG-CTCGTATAAT -GTGTGG
||||| | || ||||| |

TGCTTC -TG -ACT ---ATAATAG -----

Given two sequences S1 and S2, assume a prefix S1[1, . . . , i − 1] can be
transformed into a prefix S2[1, . . . , j] by x insertions and deletions, a prefix
S1[1, . . . , i] can be transformed into a prefix S2[1, . . . , j − 1] by y insertions
and deletions, and S1[1, . . . , i − 1] can be transformed into S2[1, . . . , j − 1]
by z insertions and deletions. Then S1[1, . . . , i] can also be transformed into
S2[1, . . . , j] by z insertions and deletions if S1[i] = S2[j] or else by the x edit
operations plus the insertion of element S1[i] or the y edit operations plus the
deletion of element S2[j]. In general, the Levenshtein distance d between two

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 89

sequences S1 and S2 is given by the recurrence

d(S1[1, . . . , i], S2[1, . . . , j]) =

= min

d(S1[1, . . . , i− 1], S2[1, . . . , j]) + 1,
d(S1[1, . . . , i], S2[1, . . . , j − 1]) + 1,
d(S1[1, . . . , i− 1], S2[1, . . . , j − 1]) if S1[i] = S2[j]

where d(S1[1, . . . , i], S2[1, . . . , j]) = 0 if both i = 0 and j = 0, d(S1[1, . . . , i],
S2[1, . . . , j]) = i if i 6= 0 and j = 0, and d(S1[1, . . . , i], S2[1, . . . , j]) = j if i = 0
and j 6= 0.

Computation of this recurrence by dynamic programming involves the use
of a dynamic programming table to store each d(S1[1, . . . , i], S2[1, . . . , j]), for
1 6 i 6 n1 and 1 6 j 6 n2, where n1 is the length of S1 and n2 is the length
of S2.

Example 4.8
The Levenshtein distance between the DNA sequences GCTTCCGGCTCG
TATAATGTGTGG and TGCTTCTGACTATAATAG is 14, as shown in entry
(24, 18) of the following dynamic programming table.

T G C T T C T G A C T A T A A T A G

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
G 1 1 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
C 2 2 3 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T 3 3 2 3 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T 4 4 3 4 3 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14
C 5 5 4 5 4 3 2 1 2 3 4 5 6 7 8 9 10 11 12 13
C 6 6 5 6 5 4 3 2 3 4 5 4 5 6 7 8 9 10 11 12
G 7 7 6 5 6 5 4 3 4 3 4 5 6 7 8 9 10 11 12 11
G 8 8 7 6 7 6 5 4 5 4 5 6 7 8 9 10 11 12 13 12
C 9 9 8 7 6 7 6 5 6 5 6 5 6 7 8 9 10 11 12 13
T 10 10 9 8 7 6 7 6 5 6 7 6 5 6 7 8 9 10 11 12
C 11 11 10 9 8 7 8 7 6 7 8 7 6 7 8 9 10 11 12 13
G 12 12 11 10 9 8 9 8 7 6 7 8 7 8 9 10 11 12 13 12
T 13 13 12 11 10 9 8 9 8 7 8 9 8 9 8 9 10 11 12 13
A 14 14 13 12 11 10 9 10 9 8 7 8 9 8 9 8 9 10 11 12
T 15 15 14 13 12 11 10 11 10 9 8 9 8 9 8 9 10 9 10 11
A 16 16 15 14 13 12 11 12 11 10 9 10 9 8 9 8 9 10 9 10
A 17 17 16 15 14 13 12 13 12 11 10 11 10 9 10 9 8 9 10 11
T 18 18 17 16 15 14 13 14 13 12 11 12 11 10 9 10 9 8 9 10
G 19 19 18 17 16 15 14 15 14 13 12 13 12 11 10 11 10 9 10 9
T 20 20 19 18 17 16 15 16 15 14 13 14 13 12 11 12 11 10 11 10
G 21 21 20 19 18 17 16 17 16 15 14 15 14 13 12 13 12 11 12 11
T 22 22 21 20 19 18 17 18 17 16 15 16 15 14 13 14 13 12 13 12
G 23 23 22 21 20 19 18 19 18 17 16 17 16 15 14 15 14 13 14 13
G 24 24 23 22 21 20 19 20 19 18 17 18 17 16 15 16 15 14 15 14

© 2009 by Taylor & Francis Group, LLC



90 Combinatorial Pattern Matching Algorithms in Computational Biology

In the following description, the dynamic programming table D is filled in
for each 0 6 i 6 n1 and 0 6 j 6 n2, and the Levenshtein distance between S1

and S2 is stored in entry D[n1, n2].

function levenshtein distance(S1, S2)
n1 ← length(S1)
n2 ← length(S2)
D[0, 0]← 0
for i← 1 to n1 do

D[i, 0]← i

for j ← 1 to n2 do
D[0, j]← j

for i← 1 to n1 do
for j ← 1 to n2 do

if S1[i] = S2[j] then
D[i, j]← D[i− 1, j − 1]

else
D[i, j]← min(D[i− 1, j] + 1, D[i, j − 1] + 1)

return D[n1, n2]

The previous algorithm for computing the Levenshtein distance between
two sequences can be implemented in Perl in a straightforward way, as shown
in the following Perl script.

sub levenshtein_distance {
my $s1 = shift;
my $s2 = shift;
my ($n1 , $n2) = (length $s1 , length $s2);

my @d;
for ( my $i = 0; $i <= $n1; $i++ ) {

$d[$i][0] = $i;
}
for ( my $j = 0; $j <= $n2; $j++ ) {

$d[0][$j] = $j;
}

my @t1 = split //, $s1;
my @t2 = split //, $s2;

for ( my $i = 1; $i <= $n1; $i++ ) {
for ( my $j = 1; $j <= $n2; $j++ ) {

if ($t1[$i -1] eq $t2[$j -1]) {
$d[$i][$j] = $d[$i -1][$j -1];

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 91

} else {
$d[$i][$j] = $d[$i -1][$j] + 1;
if ($d[$i][$j -1] + 1 < $d[$i][$j]) {

$d[$i][$j] = $d[$i][$j -1] + 1;
}

}
}

}

return \@d;
}

The previous algorithm for computing the Levenshtein distance between
two sequences can also be implemented in R in a straightforward way. Unlike
Perl array indices that start at 0, however, R array indexes do start at 1 and,
thus, the values d(S1[1, . . . , i], S2[1, . . . , j]) are stored in positions i + 1, j + 1
of array D. This is all illustrated by the following R script.

> levenshtein.distance <- function(s1 ,s2) {
t1 <- strsplit(s1,split="")[[1]]
t2 <- strsplit(s2,split="")[[1]]
n1 <- length(t1)
n2 <- length(t2)
d <- array(0,dim=c(n1+1,n2+1))
d[,1] <- 0:n1
d[1,] <- 0:n2
for (i in 2:(n1+1))

for (j in 2:(n2+1))
if (t1[i-1] == t2[j-1])

d[i,j] <- d[i-1,j-1]
else

d[i,j] <- min(d[i-1,j]+1, d[i,j -1]+1)
d

}

> s1 <- "GCTTCCGGCTCGTATAATGTGTGG"
> s2 <- "TGCTTCTGACTATAATAG"
> d <- levenshtein.distance(s1 ,s1)
> d[nchar(s1)+1,nchar(s1)+1]
[1] 0
> d <- levenshtein.distance(s1 ,s2)
> d[nchar(s1)+1,nchar(s2)+1]
[1] 14

In general, the edit distance between two sequences (not necessarily of the
same length) is defined as the smallest number of insertions, deletions, and

© 2009 by Taylor & Francis Group, LLC



92 Combinatorial Pattern Matching Algorithms in Computational Biology

substitutions needed to transform one sequence into the other. The edit dis-
tance thus combines the Hamming distance, in which only element substi-
tutions are allowed, with the Levenshtein distance, in which only element
insertions and deletions are allowed.

Example 4.9
The DNA sequence GCTTCCGGCTCGTATAATGTGTGG can be trans-
formed into TGCTTCTGACTATAATAG by 1 insertion, 7 deletions, and 3
substitutions, as shown in the following alignment, and this is the least pos-
sible number of insertions, deletions, and substitutions to transform one of
these sequences into the other. Therefore, the edit distance between them is
11.

-GCTTCCGGCTCGTATAATGTGTGG
|||||*|*|| |||||* |

TGCTTCTGACT ---ATAATA -G---

Given two sequences S1 and S2, assume a prefix S1[1, . . . , i−1] can be trans-
formed into a prefix S2[1, . . . , j] by x insertions, deletions, and substitutions,
a prefix S1[1, . . . , i] can be transformed into a prefix S2[1, . . . , j−1] by y inser-
tions, deletions, and substitutions, and S1[1, . . . , i−1] can be transformed into
S2[1, . . . , j− 1] by z insertions, deletions, and substitutions. Then S1[1, . . . , i]
can also be transformed into S2[1, . . . , j] by z edit operations if S1[i] = S2[j]
or else by the x edit operations plus the insertion of element S1[i], the y edit
operations plus the deletion of element S2[j], or the z edit operations plus the
substitution of element S2[j] for element S1[i]. In general, the edit distance d
between two sequences S1 and S2 is given by the recurrence

d(S1[1, . . . , i], S2[1, . . . , j]) =

= min


d(S1[1, . . . , i− 1], S2[1, . . . , j]) + 1,
d(S1[1, . . . , i], S2[1, . . . , j − 1]) + 1,
d(S1[1, . . . , i− 1], S2[1, . . . , j − 1]) if S1[i] = S2[j]
d(S1[1, . . . , i− 1], S2[1, . . . , j − 1]) + 1 if S1[i] 6= S2[j]

where d(S1[1, . . . , i], S2[1, . . . , j]) = 0 if both i = 0 and j = 0, d(S1[1, . . . , i],
S2[1, . . . , j]) = i if i 6= 0 and j = 0, and d(S1[1, . . . , i], S2[1, . . . , j]) = j if i = 0
and j 6= 0.

Computation of this recurrence by dynamic programming involves the use
of a dynamic programming table to store each d(S1[1, . . . , i], S2[1, . . . , j]), for
1 6 i 6 n1 and 1 6 j 6 n2, where n1 is the length of S1 and n2 is the length
of S2.

Example 4.10
The edit distance between the DNA sequences GCTTCCGGCTCGTATAAT

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 93

GTGTGG and TGCTTCTGACTATAATAG is 11, as shown in entry (24, 18)
of the following dynamic programming table.

T G C T T C T G A C T A T A A T A G

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
G 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
C 2 2 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T 3 3 2 3 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T 4 4 3 3 3 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14
C 5 5 4 4 3 3 2 1 2 3 4 5 6 7 8 9 10 11 12 13
C 6 6 5 5 4 4 3 2 2 3 4 4 5 6 7 8 9 10 11 12
G 7 7 6 5 5 5 4 3 3 2 3 4 5 6 7 8 9 10 11 11
G 8 8 7 6 6 6 5 4 4 3 3 4 5 6 7 8 9 10 11 11
C 9 9 8 7 6 7 6 5 5 4 4 3 4 5 6 7 8 9 10 11
T 10 10 9 8 7 6 7 6 5 5 5 4 3 4 5 6 7 8 9 10
C 11 11 10 9 8 7 7 7 6 6 6 5 4 4 5 6 7 8 9 10
G 12 12 11 10 9 8 8 8 7 6 7 6 5 5 5 6 7 8 9 9
T 13 13 12 11 10 9 8 9 8 7 7 7 6 6 5 6 7 7 8 9
A 14 14 13 12 11 10 9 9 9 8 7 8 7 6 6 5 6 7 7 8
T 15 15 14 13 12 11 10 10 9 9 8 8 8 7 6 6 6 6 7 8
A 16 16 15 14 13 12 11 11 10 10 9 9 9 8 7 6 6 7 6 7
A 17 17 16 15 14 13 12 12 11 11 10 10 10 9 8 7 6 7 7 7
T 18 18 17 16 15 14 13 13 12 12 11 11 10 10 9 8 7 6 7 8
G 19 19 18 17 16 15 14 14 13 12 12 12 11 11 10 9 8 7 7 7
T 20 20 19 18 17 16 15 15 14 13 13 13 12 12 11 10 9 8 8 8
G 21 21 20 19 18 17 16 16 15 14 14 14 13 13 12 11 10 9 9 8
T 22 22 21 20 19 18 17 17 16 15 15 15 14 14 13 12 11 10 10 9
G 23 23 22 21 20 19 18 18 17 16 16 16 15 15 14 13 12 11 11 10
G 24 24 23 22 21 20 19 19 18 17 17 17 16 16 15 14 13 12 12 11

In the following description, the dynamic programming table D is filled in
for each 0 6 i 6 n1 and 0 6 j 6 n2, and the edit distance between S1 and S2

is stored in entry D[n1, n2].

function edit distance(S1, S2)
n1 ← length(S1)
n2 ← length(S2)
D[0, 0]← 0
for i← 1 to n1 do

D[i, 0]← i

for j ← 1 to n2 do
D[0, j]← j

for i← 1 to n1 do
for j ← 1 to n2 do

D[i, j]← min(D[i− 1, j] + 1, D[i, j − 1] + 1)

© 2009 by Taylor & Francis Group, LLC



94 Combinatorial Pattern Matching Algorithms in Computational Biology

if S1[i] = S2[j] then
D[i, j]← min(D[i, j], D[i− 1, j − 1])

else
D[i, j]← min(D[i, j], D[i− 1, j − 1] + 1)

return D[n1, n2]

The previous algorithm for computing the edit distance between two se-
quences can be implemented in Perl in a straightforward way, as shown in the
following Perl script.

sub edit_distance {
my $s1 = shift;
my $s2 = shift;
my ($n1 , $n2) = (length $s1 , length $s2);
my @d;
for ( my $i = 0; $i <= $n1; $i++ ) {

$d[$i][0] = $i;
}
for ( my $j = 0; $j <= $n2; $j++ ) {

$d[0][$j] = $j;
}

my @t1 = split //, $s1;
my @t2 = split //, $s2;

for ( my $i = 1; $i <= $n1; $i++ ) {
for ( my $j = 1; $j <= $n2; $j++ ) {

$d[$i][$j] = $d[$i -1][$j] + 1;
if ($d[$i][$j -1] + 1 < $d[$i][$j]) {

$d[$i][$j] = $d[$i][$j -1] + 1;
}
if ($t1[$i -1] eq $t2[$j -1]) {

if ($d[$i -1][$j -1] < $d[$i][$j]) {
$d[$i][$j] = $d[$i -1][$j -1];

}
} else {

if ($d[$i -1][$j -1] + 1 < $d[$i][$j]) {
$d[$i][$j] = $d[$i -1][$j -1] + 1;

}
}

}
}

return \@d;
}

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 95

The previous algorithm for computing the edit distance between two se-
quences can also be implemented in R in a straightforward way. Once again,
the values d(S1[1, . . . , i], S2[1, . . . , j]) are stored in positions i+1, j+1 of array
d, because unlike Perl array indexes that start at 0, R array indexes do start
at 1. This is all illustrated by the following R script.

> edit.distance <- function (s1 ,s2) {
t1 <- strsplit(s1,split="")[[1]]
t2 <- strsplit(s2,split="")[[1]]
n1 <- length(t1)
n2 <- length(t2)
d <- array(0,dim=c(n1+1,n2+1))
d[,1] <- 0:n1
d[1,] <- 0:n2
for (i in 2:(n1+1)) {

for (j in 2:(n2+1)) {
d[i,j] <- min(d[i-1,j]+1, d[i,j -1]+1)
if (t1[i-1] == t2[j-1])

d[i,j] <- min(d[i,j], d[i-1,j-1])
else

d[i,j] <- min(d[i,j], d[i-1,j -1]+1)
}

}
d

}

> s1 <- "GCTTCCGGCTCGTATAATGTGTGG"
> s2 <- "TGCTTCTGACTATAATAG"
> d <- edit.distance(s1 ,s1)
> d[nchar(s1)+1,nchar(s1)+1]
[1] 0
> d <- edit.distance(s1 ,s2)
> d[nchar(s1)+1,nchar(s2)+1]
[1] 11

4.3.2 Alignment-Based Comparison of Sequences

An alignment of two sequences is an arrangement of the two sequences as
rows of a matrix, with additional gaps (dashes) between the elements to make
some or all of the remaining (aligned) columns contain identical elements but
with no column gapped in both sequences. A dash in the first sequence of
an alignment corresponds to the insertion of the opposite element into the
first sequence, a dash in the second sequence of an alignment corresponds
to the deletion of the opposite element from the second sequence, and two
mismatched elements opposite in an alignment correspond to a substitution

© 2009 by Taylor & Francis Group, LLC



96 Combinatorial Pattern Matching Algorithms in Computational Biology

of the element in the second sequence for the element in the first sequence.
The Levenshtein distance between two sequences is thus given by an align-

ment of the two sequences with the smallest possible number of dashes (in-
sertions or deletions) and with no mismatched elements (substitutions), while
the edit distance between two sequences is given by an alignment of the two
sequences with the smallest possible number of dashes (insertions or deletions)
plus mismatched elements (substitutions).

Example 4.11
The DNA sequence GCTTCCGGCTCGTATAATGTGTGG can be trans-
formed into TGCTTCTGACTATAATAG by inserting T, T, A, A before
(original) positions 1, 7, 9, 19, and deleting C, G, C, G, T, T, G, T, G,
G at (original) positions 6, 8, 11, 12, 13, 20, 21, 22, 23, 24, as shown in the
following alignment.

-GCTTCC -GG-CTCGTATAAT -GTGTGG
||||| | || ||||| |

TGCTTC -TG -ACT ---ATAATAG -----

Sequence GCTTCCGGCTCGTATAATGTGTGG can also be transformed
into TGCTTCTGACTATAATAG by inserting T before position 1; substi-
tuting T for C at position 6; substituting A for G at position 8; deleting C,
G, T at positions 11, 12, 13; substituting A for G at position 19; deleting T
at position 20; and deleting T, G, G at positions 22, 23, 24, as shown in the
following alignment.

-GCTTCCGGCTCGTATAATGTGTGG
|||||*|*|| |||||* |

TGCTTCTGACT ---ATAATA -G---

An alignment of two sequences can be obtained from the dynamic program-
ming table, already filled in when computing the Levenshtein distance or the
edit distance between the two sequences, by tracing the sequence of edit op-
erations from the final (bottom right) position back to the initial (top left)
position. In the trace back at position i of S1 and position j of S2,

• D(S1[1, . . . , i], S2[1, . . . , j]) = D(S1[1, . . . , i], S2[1, . . . , j−1])+1 indicates
the insertion of a dash into S1, and

• D(S1[1, . . . , i], S2[1, . . . , j]) = D(S1[1, . . . , i−1], S2[1, . . . , j])+1 indicates
the insertion of a dash into S2.

Since there is a choice of moving left or moving up (if the previous condi-
tions are fulfilled) and also moving in diagonal, if either S1[i] = S2[j] and
D(S1[1, . . . , i], S2[1, . . . , j]) = D(S1[1, . . . , i − 1], S2[1, . . . , j − 1]) or S1[i] 6=
S2[j] and D(S1[1, . . . , i], S2[1, . . . , j]) = D(S1[1, . . . , i−1], S2[1, . . . , j−1])+1,
several alignments may be implicit in a single dynamic programming table.

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 97

Example 4.12
The Levenshtein distance between the DNA sequences GCTTCCGGCTCG
TATAATGTGTGG and TGCTTCTGACTATAATAG gives 1,430 different
alignments. Each such alignment can be obtained by following a different
path of shaded entries from the final (bottom right) back to the initial (top
left) entry of the following dynamic programming table, inserting a dash into
S1 when moving to the left and inserting a dash into S2 when moving up.

T G C T T C T G A C T A T A A T A G

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
G 1 1 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
C 2 2 3 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T 3 3 2 3 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T 4 4 3 4 3 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14
C 5 5 4 5 4 3 2 1 2 3 4 5 6 7 8 9 10 11 12 13
C 6 6 5 6 5 4 3 2 3 4 5 4 5 6 7 8 9 10 11 12
G 7 7 6 5 6 5 4 3 4 3 4 5 6 7 8 9 10 11 12 11
G 8 8 7 6 7 6 5 4 5 4 5 6 7 8 9 10 11 12 13 12
C 9 9 8 7 6 7 6 5 6 5 6 5 6 7 8 9 10 11 12 13
T 10 10 9 8 7 6 7 6 5 6 7 6 5 6 7 8 9 10 11 12
C 11 11 10 9 8 7 8 7 6 7 8 7 6 7 8 9 10 11 12 13
G 12 12 11 10 9 8 9 8 7 6 7 8 7 8 9 10 11 12 13 12
T 13 13 12 11 10 9 8 9 8 7 8 9 8 9 8 9 10 11 12 13
A 14 14 13 12 11 10 9 10 9 8 7 8 9 8 9 8 9 10 11 12
T 15 15 14 13 12 11 10 11 10 9 8 9 8 9 8 9 10 9 10 11
A 16 16 15 14 13 12 11 12 11 10 9 10 9 8 9 8 9 10 9 10
A 17 17 16 15 14 13 12 13 12 11 10 11 10 9 10 9 8 9 10 11
T 18 18 17 16 15 14 13 14 13 12 11 12 11 10 9 10 9 8 9 10
G 19 19 18 17 16 15 14 15 14 13 12 13 12 11 10 11 10 9 10 9
T 20 20 19 18 17 16 15 16 15 14 13 14 13 12 11 12 11 10 11 10
G 21 21 20 19 18 17 16 17 16 15 14 15 14 13 12 13 12 11 12 11
T 22 22 21 20 19 18 17 18 17 16 15 16 15 14 13 14 13 12 13 12
G 23 23 22 21 20 19 18 19 18 17 16 17 16 15 14 15 14 13 14 13
G 24 24 23 22 21 20 19 20 19 18 17 18 17 16 15 16 15 14 15 14

For instance, by moving to the left if possible, otherwise up if possible, or else
in diagonal, the following alignment of the two sequences is obtained, where
matches are indicated with a vertical bar.

-GCTTCC -GG-CTCGTATAAT -GTGTGG
||||| | || ||||| |

TGCTTC -TG -ACT ---ATAATAG -----

Example 4.13
The edit distance between the DNA sequences GCTTCCGGCTCGTATAAT
GTGTGG and TGCTTCTGACTATAATAG gives 187 different alignments.

© 2009 by Taylor & Francis Group, LLC



98 Combinatorial Pattern Matching Algorithms in Computational Biology

Each such alignment can be obtained by following a different path of shaded
entries from the final (bottom right) back to the initial (top left) entry of the
following dynamic programming table, inserting a dash into S1 when moving
to the left and inserting a dash into S2 when moving up.

T G C T T C T G A C T A T A A T A G
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
G 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
C 2 2 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T 3 3 2 3 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T 4 4 3 3 3 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14
C 5 5 4 4 3 3 2 1 2 3 4 5 6 7 8 9 10 11 12 13
C 6 6 5 5 4 4 3 2 2 3 4 4 5 6 7 8 9 10 11 12
G 7 7 6 5 5 5 4 3 3 2 3 4 5 6 7 8 9 10 11 11
G 8 8 7 6 6 6 5 4 4 3 3 4 5 6 7 8 9 10 11 11
C 9 9 8 7 6 7 6 5 5 4 4 3 4 5 6 7 8 9 10 11
T 10 10 9 8 7 6 7 6 5 5 5 4 3 4 5 6 7 8 9 10
C 11 11 10 9 8 7 7 7 6 6 6 5 4 4 5 6 7 8 9 10
G 12 12 11 10 9 8 8 8 7 6 7 6 5 5 5 6 7 8 9 9
T 13 13 12 11 10 9 8 9 8 7 7 7 6 6 5 6 7 7 8 9
A 14 14 13 12 11 10 9 9 9 8 7 8 7 6 6 5 6 7 7 8
T 15 15 14 13 12 11 10 10 9 9 8 8 8 7 6 6 6 6 7 8
A 16 16 15 14 13 12 11 11 10 10 9 9 9 8 7 6 6 7 6 7
A 17 17 16 15 14 13 12 12 11 11 10 10 10 9 8 7 6 7 7 7
T 18 18 17 16 15 14 13 13 12 12 11 11 10 10 9 8 7 6 7 8
G 19 19 18 17 16 15 14 14 13 12 12 12 11 11 10 9 8 7 7 7
T 20 20 19 18 17 16 15 15 14 13 13 13 12 12 11 10 9 8 8 8
G 21 21 20 19 18 17 16 16 15 14 14 14 13 13 12 11 10 9 9 8
T 22 22 21 20 19 18 17 17 16 15 15 15 14 14 13 12 11 10 10 9
G 23 23 22 21 20 19 18 18 17 16 16 16 15 15 14 13 12 11 11 10
G 24 24 23 22 21 20 19 19 18 17 17 17 16 16 15 14 13 12 12 11

For instance, by moving to the left if possible, otherwise up if possible, or else
in diagonal, the following alignment of the two sequences is obtained, where
matches are indicated with a vertical bar and mismatches with an asterisk.

-GCTTCCGGCTCGTATAATGTGTGG
|||||*|*|| |||||* |

TGCTTCTGACT ---ATAATA -G---

Once the Levenshtein distance or the edit distance between two sequences
has been computed, an alignment of the two sequences can be obtained by
tracing back the dynamic programming table from the final (bottom right)
to the initial (top left) entry, inserting a dash into S1 and moving up if
D(S1[1, . . . , i], S2[1, . . . , j]) = D(S1[1, . . . , i], S2[1, . . . , j−1])+1, otherwise in-
serting a dash into S2 and moving to the left if D(S1[1, . . . , i], S2[1, . . . , j]) =

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 99

D(S1[1, . . . , i − 1], S2[1, . . . , j]) + 1, or else moving up and to the left, in di-
agonal. Once the first row or the first column has been reached, further
movements up (after reaching the first column) or to the left (after reaching
the first row) may be needed in order to finish computing the alignment.

Recall that the dynamic programming table D of a sequence S1 of length
n1 and a sequence S2 of length n2 has n1 + 1 rows numbered 0, . . . , n1 and
n2 + 1 columns numbered 0, . . . , n2. In the following description, a centered
dot · denotes the concatenation of single elements (dashes) and sequences.

function alignment(S1, S2, D)
i← length(S1)
j ← length(S2)
T1 ← T2 ← “”
while i > 1 and j > 1 do

if D[i, j] = D[i, j − 1] + 1 then
T1 ← “-” · T1

T2 ← S2[j − 1] · T2

j ← j − 1
else if D[i, j] = D[i− 1, j] + 1 then

T1 ← S1[i− 1] · T1

T2 ← “-” · T2

i← i− 1
else

T1 ← S1[i− 1] · T1

T2 ← S2[j − 1] · T2

i← i− 1
j ← j − 1

while j > 1 do
T1 ← “-” · T1

T2 ← S2[j − 1] · T2

j ← j − 1
while i > 1 do

T1 ← S1[i− 1] · T1

T2 ← “-” · T2

i← i− 1
return (T1, T2)

The previous algorithm for obtaining an alignment between two sequences
can be implemented in Perl in a straightforward way, as shown in the following
Perl script.

sub alignment {
my $s1 = shift;
my $s2 = shift;
my $d = shift;

© 2009 by Taylor & Francis Group, LLC



100 Combinatorial Pattern Matching Algorithms in Computational Biology

my @d = @{$d};
my ($t1 , $t2) = ("", "");
my @t1 = split //, $s1;
my @t2 = split //, $s2;
my ($n1 , $n2) = (length $s1 , length $s2);
my ($i, $j) = ($n1 , $n2);
while ($i > 0 && $j > 0) {

if ($d[$i][$j] eq $d[$i][$j -1]+1) {
$t1 = "-" . $t1;
$t2 = $t2[$j -1] . $t2;
$j --;

} elsif ($d[$i][$j] eq $d[$i -1][$j]+1) {
$t1 = $t1[$i -1] . $t1;
$t2 = "-" . $t2;
$i --;

} else {
$t1 = $t1[$i -1] . $t1;
$t2 = $t2[$j -1] . $t2;
$i --;
$j --;

}
}
while ($j > 0) {

$t1 = "-" . $t1;
$t2 = $t2[$j -1] . $t2;
$j --;

}
while ($i > 0) {

$t1 = $t1[$i -1] . $t1;
$t2 = "-" . $t2;
$i --;

}
print "$t1\n$t2\n";

}

The algorithm for obtaining an alignment between two sequences can also
be implemented in R in a straightforward way, as shown in the following R
script.

alignment <- function (s1,s2,d) {
t1 <- strsplit(s1,split="")[[1]]
t2 <- strsplit(s2,split="")[[1]]
a1 <- a2 <- c()
i <- length(t1)+1
j <- length(t2)+1
while (i > 1 && j > 1) {

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 101

if (d[i,j] == d[i,j -1]+1) {
a1 <- c("-",a1)
a2 <- c(t2[j-1],a2)
j <- j-1

} else if (d[i,j] == d[i-1,j]+1) {
a1 <- c(t1[i-1],a1)
a2 <- c("-",a2)
i <- i-1

} else {
a1 <- c(t1[i-1],a1)
a2 <- c(t2[j-1],a2)
i <- i-1
j <- j-1

}
}
while (j > 1) {

a1 <- c("-",a1)
a2 <- c(t2[j-1],a2)
j <- j-1

}
while (i > 1) {

a1 <- c(t1[i-1],a1)
a2 <- c("-",a2)
i <- i-1

}
print(paste(a1 ,collapse=""))
print(paste(a2 ,collapse=""))

}

> s1 <- "GCTTCCGGCTCGTATAATGTGTGG"
> s2 <- "TGCTTCTGACTATAATAG"
> d <- levenshtein.distance(s1 ,s2)
> alignment(s1,s2,d)
[1] "-GCTTCC -GG-CTCGTATAAT -GTGTGG"
[1] "TGCTTC -TG-ACT ---ATAATAG -----"
> d <- edit.distance(s1 ,s2)
> alignment(s1,s2,d)
[1] "-GCTTCCGGCTCGTATAATGTGTGG"
[1] "TGCTTCTGACT ---ATAATA -G---"

The assessment of similarities and differences between two sequences based
on the computation of an edit distance or an alignment of the two sequences
can also reflect the relative frequencies with which nucleotide substitutions
(for DNA and RNA sequences) or amino acid substitutions (for protein se-
quences) take place. This can be achieved by assigning a weight or score to

© 2009 by Taylor & Francis Group, LLC



102 Combinatorial Pattern Matching Algorithms in Computational Biology

each edit operation, depending on either the type of edit operation (element
insertion, deletion, substitution) or the actual elements (nucleotides, amino
acids) involved in the edit operation. These generalized forms of edit distance
and alignment can be computed by a straightforward extension to the edit
distance recurrences and corresponding algorithms, where the particular score
or weight of the edit operation upon the actual elements is substituted for the
summand value 1.

Both the Levenshtein distance and the edit distance between two sequences
give a global alignment of the sequences, that is, an alignment in which the
overall number or the total score or weight of the insertions, deletions, and
mismatches is as small as possible. In a local alignment, on the other hand,
only some subsequences of the two sequences are aligned: those subsequences
that give the smallest possible edit distance. Two sequences might actually
have a large (global) edit distance but still contain subsequences at small
(local) edit distance.

In the formulation of local alignment in terms of edit distance, however, a
local alignment over short subsequences cannot always be distinguished from
a local alignment over longer subsequences. For instance, the edit distance
between two sequences that contain identical subsequences might be the same,
no matter the length of the common subsequences, while the sequences are
more similar to each other the longer the common subsequences.

The shift from distances to similarities, where matches have a positive
weight and insertions, deletions, and mismatches have a negative score, over-
comes this problem. Insertions and deletions are also called gaps, because
they introduce a gap (usually represented as a dash) in a sequence alignment.

In general, the local alignment of two sequences defines stretches of high
similarity between the sequences, where a certain subsequence of the first
sequence is aligned to a subsequence of the second sequence with a high com-
bined weight or score of matches, mismatches, and gaps.

Example 4.14

Prefix GCTTCCGGCTCGTATAAT of DNA sequence GCTTCCGGCTCG
TATAATGTGTGG can be aligned to subsequence GCTTCTGACTATAAT
of DNA sequence TGCTTCTGACTATAATAG with 13 matches and only 2
mismatches and 3 gaps, as shown in the following local alignment.

GCTTCCGGCTCGTATAAT
|||| |*| *| ||||||
GCTT -CTG -AC-TATAAT

Given two sequences S1 and S2, assume that the largest possible score when
aligning a suffix of prefix S1[1, . . . , i− 1] to a suffix of prefix S2[1, . . . , j] is x,
the largest possible score when aligning a suffix of prefix S1[1, . . . , i] to a suffix
of prefix S2[1, . . . , j − 1] is y, and the largest possible score when aligning a

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 103

suffix of S1[1, . . . , i − 1] to a suffix of S2[1, . . . , j − 1] is z. Then the largest
possible score for aligning a suffix of S1[1, . . . , i] to a suffix of S2[1, . . . , j] is
the largest value among z plus either the match weight, if S1[i] = S2[j], or the
mismatch weight, if S1[i] 6= S2[j]; y plus the gap score, for deleting element
S1[i] from S2; x plus the gap score, for inserting element S2[j] into S1; and
zero, to account for any negative values. In general, the suffix similarity s
between two sequences S1 and S2 is given by the recurrence

s(S1[1, . . . , i], S2[1, . . . , j]) =

= max


s(S1[1, . . . , i− 1], S2[1, . . . , j]) + gap,
s(S1[1, . . . , i], S2[1, . . . , j − 1]) + gap,
s(S1[1, . . . , i− 1], S2[1, . . . , j − 1]) + match, if S1[i] = S2[j]
s(S1[1, . . . , i− 1], S2[1, . . . , j − 1]) + mismatch, if S1[i] 6= S2[j]
0

where match is the positive match score, mismatch is the negative mismatch
score, gap is the negative gap score, and s(S1[1, . . . , i], S2[1, . . . , j]) = 0 if i = 0
or j = 0.

Computation of this recurrence by dynamic programming involves the use
of a dynamic programming table to store each s(S1[1, . . . , i], S2[1, . . . , j]), for
1 6 i 6 n1 and 1 6 j 6 n2, where n1 is the length of S1 and n2 is the length
of S2. The largest value of suffix similarity is the total weight or score of an
optimal local alignment of the two sequences, and the actual local alignment
can then be obtained by tracing the dynamic programming table from each
such largest suffix similarity value back to the first entry equal to zero.

The actual values chosen as match, mismatch, and gap score determine the
local alignment of two sequences. For instance, with a match score of 1, a
mismatch score of 0, and a gap score of 0, the local alignment corresponds
to the longest common gapped subsequence, while with a match score of
1, a mismatch score of −∞, and a gap score of −∞, the local alignment
corresponds to the longest common subsequence.

Example 4.15

The suffix similarities of the DNA sequences GCTTCCGGCTCGTATAAT
GTGTGG and TGCTTCTGACTATAATAG given in the following dynamic
programming table, for a match score of 3, a mismatch score of −1, and a
gap score of −3, contain three local alignments of the largest total score, 28.
Each such local alignment can be obtained by following a path of shaded
entries (shown here in one case only, for clarity) from the final (largest suffix
similarity) back to an initial (zero suffix similarity) entry of the following
dynamic programming table, inserting a dash into S1 when moving to the left
and inserting a dash into S2 when moving up.

© 2009 by Taylor & Francis Group, LLC



104 Combinatorial Pattern Matching Algorithms in Computational Biology

T G C T T C T G A C T A T A A T A G

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G 1 0 0 3 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 3
C 2 0 0 0 6 3 0 3 0 0 2 3 0 0 0 0 0 0 0 0
T 3 0 3 0 3 9 6 3 6 3 0 1 6 3 3 0 0 3 0 0
T 4 0 3 2 0 6 12 9 6 5 2 0 4 5 6 3 0 3 2 0
C 5 0 0 2 5 3 9 15 12 9 6 5 2 3 4 5 2 0 2 1
C 6 0 0 0 5 4 6 12 14 11 8 9 6 3 2 3 4 1 0 1
G 7 0 0 3 2 4 3 9 11 17 14 11 8 5 2 1 2 3 0 3
G 8 0 0 3 2 1 3 6 8 14 16 13 10 7 4 1 0 1 2 3
C 9 0 0 0 6 3 0 6 5 11 13 19 16 13 10 7 4 1 0 1
T 10 0 3 0 3 9 6 3 9 8 10 16 22 19 16 13 10 7 4 1
C 11 0 0 2 3 6 8 9 6 8 7 13 19 21 18 15 12 9 6 3
G 12 0 0 3 1 3 5 7 8 9 7 10 16 18 20 17 14 11 8 9
T 13 0 3 0 2 4 6 4 10 7 8 7 13 15 21 19 16 17 14 11
A 14 0 0 2 0 1 3 5 7 9 10 7 10 16 18 24 22 19 20 17
T 15 0 3 0 1 3 4 2 8 6 8 9 10 13 19 21 23 25 22 19
A 16 0 0 2 0 0 2 3 5 7 9 7 8 13 16 22 24 22 28 25
A 17 0 0 0 1 0 0 1 2 4 10 8 6 11 13 19 25 23 25 27
T 18 0 3 0 0 4 3 0 4 1 7 9 11 8 14 16 22 28 25 24
G 19 0 0 6 3 1 3 2 1 7 4 6 8 10 11 13 19 25 27 28
T 20 0 3 3 5 6 4 2 5 4 6 3 9 7 13 10 16 22 24 26
G 21 0 0 6 3 4 5 3 2 8 5 5 6 8 10 12 13 19 21 27
T 22 0 3 3 5 6 7 4 6 5 7 4 8 5 11 9 11 16 18 24
G 23 0 0 6 3 4 5 6 3 9 6 6 5 7 8 10 8 13 15 21
G 24 0 0 3 5 2 3 4 5 6 8 5 5 4 6 7 9 10 12 18

In this way, the following local alignment of the two sequences is obtained.

GCTTCCGGCTCGTATAAT
|||| |*| *| ||||||
GCTT -CTG -AC-TATAAT

In the following description, the dynamic programming table S is filled in
for each 0 6 i 6 n1 and 0 6 j 6 n2, and the local alignments are obtained by
tracing the dynamic programming table from each entry S[i, j] with largest
suffix similarity back to a zero suffix similarity entry.

procedure local alignment(S1, S2,match,mismatch, gap)
n1 ← length(S1)
n2 ← length(S2)
for i← 0 to n1 do

S[i, 0]← 0
for j ← 1 to n2 do

S[0, j]← 0

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 105

for i← 1 to n1 do
for j ← 1 to n2 do

if S1[i] = S2[j] then
S[i, j]← S[i− 1, j − 1] + match

else
S[i, j]← S[i− 1, j − 1] + mismatch

S[i, j]← max(S[i, j], S[i− 1, j] + gap, S[i, j − 1] + gap, 0)
for (i, j) in arg max(S) do

T1 ← T2 ← “”
while S[i, j] 6= 0 do

if S1[i] = S2[j] and S[i, j] = S[i− 1, j − 1] + match then
T1 ← S1[i− 1] · T1

T2 ← S2[j − 1] · T2

i← i− 1
j ← j − 1

else if S1[i] 6= S2[j] and S[i, j] = S[i− 1, j− 1]+mismatch then
T1 ← S1[i− 1] · T1

T2 ← S2[j − 1] · T2

i← i− 1
j ← j − 1

else if S[i, j] = S[i− 1, j] + gap then
T1 ← S1[i− 1] · T1

T2 ← “-” · T2

i← i− 1
else if S[i, j] = S[i, j − 1] + gap then

T1 ← “-” · T1

T2 ← S2[j − 1] · T2

j ← j − 1
output (T1, T2)

The previous algorithm for obtaining a local alignment between two se-
quences can be implemented in Perl in a straightforward way, as shown in the
following Perl script.

sub local_alignment {
my ($s1 , $s2 , $match , $mismatch , $gap) = @_;
my ($n1 , $n2) = ( length $s1 , length $s2);

my @s;
for (my $i = 0; $i <= $n1; $i++) { $s[$i][0] = 0; }
for (my $j = 0; $j <= $n2; $j++) { $s[0][$j] = 0; }

my @t1 = split //, $s1;
my @t2 = split //, $s2;

© 2009 by Taylor & Francis Group, LLC



106 Combinatorial Pattern Matching Algorithms in Computational Biology

for ( my $i = 1; $i <= $n1; $i++ ) {
for ( my $j = 1; $j <= $n2; $j++ ) {

if ($t1[$i -1] eq $t2[$j -1]) {
$s[$i][$j] = $s[$i -1][$j -1] + $match;

} else {
$s[$i][$j] = $s[$i -1][$j -1] + $mismatch;

}
$s[$i][$j] = $s[$i -1][$j] + $gap

if $s[$i -1][$j] + $gap > $s[$i][$j];
$s[$i][$j] = $s[$i][$j -1] + $gap

if $s[$i][$j -1] + $gap > $s[$i][$j];
$s[$i][$j] = 0 if 0 > $s[$i][$j];

}
}

my $max = 0;
my @opt;
for ( my $i = 1; $i <= $n1; $i++ ) {

for ( my $j = 1; $j <= $n2; $j++ ) {
if ($s[$i][$j] > $max) {

$max = $s[$i][$j];
@opt = ();

}
if ($s[$i][$j] == $max) {

$max = $s[$i][$j];
push @opt , $i, $j;

}
}

}

while (@opt) {
my $i = shift @opt;
my $j = shift @opt;
my ($t1 , $t2) = ("", "");
while ($s[$i][$j] != 0) {

if (($t1[$i -1] eq $t2[$j -1] && $s[$i][$j] eq
$s[$i -1][$j -1] + $match) || ($t1[$i -1] ne

$t2[$j -1] &&
$s[$i][$j] eq $s[$i -1][$j -1] + $mismatch))

{
$t1 = $t1[$i -1] . $t1;
$t2 = $t2[$j -1] . $t2;
$i --;
$j --;

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 107

} elsif ($s[$i][$j] eq $s[$i -1][$j] + $gap) {
$t1 = $t1[$i -1] . $t1;
$t2 = "-" . $t2;
$i --;

} elsif ($s[$i][$j] eq $s[$i][$j -1] + $gap) {
$t1 = "-" . $t1;
$t2 = $t2[$j -1] . $t2;
$j --;

}
}
print "$t1\n$t2\n";

}
}

The algorithm for obtaining a local alignment between two sequences can
also be implemented in R in a straightforward way. Since R array indexes start
at 1, however, the values s(S1[1, . . . , i], S2[1, . . . , j]) are stored in positions
i + 1, j + 1 of array S. This is all illustrated by the following R script.

local.alignment <- function
(s1 ,s2 ,match ,mismatch ,gap) {

t1 <- strsplit(s1,split="")[[1]]
t2 <- strsplit(s2,split="")[[1]]
n1 <- length(t1)
n2 <- length(t2)
s <- array(0,dim=c(n1+1,n2+1))
s[,1] <- 0
s[1,] <- 0
for (i in 2:(n1+1)) {

for (j in 2:(n2+1)) {
if (t1[i-1] == t2[j-1])

s[i,j] <- s[i-1,j-1] + match
else

s[i,j] <- s[i-1,j-1] + mismatch
s[i,j] <- max(

s[i,j],
s[i-1,j] + gap ,
s[i,j-1] + gap ,
0)

}
}
opt <- which(s==max(s),arr.ind=TRUE)
for (sol in 1:nrow(opt)) {

i <- opt[sol ,1]
j <- opt[sol ,2]
m1 <- c()

© 2009 by Taylor & Francis Group, LLC



108 Combinatorial Pattern Matching Algorithms in Computational Biology

m2 <- c()
while (s[i,j] != 0) {

if ((t1[i-1] == t2[j-1] && s[i,j] ==
s[i-1,j-1] + match) ||

(t1[i-1] != t2[j-1] && s[i,j] ==
s[i-1,j-1] + mismatch)) {

m1 <- c(t1[i-1],m1)
m2 <- c(t2[j-1],m2)
i <- i - 1
j <- j - 1

} else if (s[i,j] == s[i-1,j] + gap) {
m1 <- c(t1[i-1],m1)
m2 <- c("-",m2)
i <- i - 1

} else if (s[i,j] == s[i,j-1] + gap) {
m1 <- c("-",m1)
m2 <- c(t2[j-1],m2)
j <- j - 1

}
}
print(paste(m1 ,collapse=""))
print(paste(m2 ,collapse=""))

}
}

The three local alignments of the DNA sequences GCTTCCGGCTCG
TATAATGTGTGG and TGCTTCTGACTATAATAG for a match score of
3, a mismatch score of −1, and a gap score of −3 can then be obtained as
follows.

> s1 <- "GCTTCCGGCTCGTATAATGTGTGG"
> s2 <- "TGCTTCTGACTATAATAG"
> local.alignment(s1,s2 ,3,-1,-3)
[1] "GCTTCCGGCTCGTATAAT"
[1] "GCTT -CTG -AC-TATAAT"
[1] "GCTTCCGGCTCGTATA"
[1] "GCTTCTGACTATAATA"
[1] "GCTTCCGGCTCGTATAAT -G"
[1] "GCTT -CTG -AC-TATAATAG"

These sequences share GCTTCTGACTATAATAG, of length 17, as the
longest common gapped subsequence, which can be obtained with a match
score of 1, a mismatch score of 0, and a gap score of 0, as follows.

> local.alignment(s1,s2 ,1,0,0)
[1] "GCTTCCGGCTCGTATAAT -G"
[1] "GCTT -CTG -AC-TATAATAG"

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 109

[1] "GCTTCCGGCTCGTATAAT -GT"
[1] "GCTT -CTG -AC-TATAATAG -"
[1] "GCTTCCGGCTCGTATAATGTG"
[1] "GCTT -CTG -AC-TATAAT -AG"
[1] "GCTTCCGGCTCGTATAATGTGT"
[1] "GCTT -CTG -AC-TATAAT -AG-"
[1] "GCTTCCGGCTCGTATAATGTGTG"
[1] "GCTT -CTG -AC-TATAA --T-AG"
[1] "GCTTCCGGCTCGTATAATGTGTGG"
[1] "GCTT -CTG -AC-TATAA ----TAG"

Further, the two sequences share TATAAT, of length 6, as the longest com-
mon subsequence, which can be obtained with a match score of 1, a mismatch
score of −∞, and a gap score of −∞, as follows.

> local.alignment(s1,s2 ,1,-Inf ,-Inf)
[1] "TATAAT"
[1] "TATAAT"

The gaps introduced by insertions and deletions in the local alignment of
two sequences may be scattered through the sequences, but they may also
stick together, forming long runs of consecutive gaps. The distribution of gaps
in the local alignment of two sequences can be influenced by distinguishing
between gap opening and gap extension scores, where the combined weight
of k consecutive gaps is equal to the gap opening score plus k times the gap
extension score.

With the Perl package Bio::Tools::dpAlign (pairwise dynamic program-
ming sequence alignment) of BioPerl, which provides a fast implementation
of DNA sequence alignment, the local alignment of two DNA sequences can
be obtained as follows.

use Bio:: Tools :: dpAlign;
use Bio:: AlignIO;

my $s1 = "GCTTCCGGCTCGTATAATGTGTGG";
my $s2 = "TGCTTCTGACTATAATAG";
my $seq1 = Bio::Seq ->new(-seq => $s1);
my $seq2 = Bio::Seq ->new(-seq => $s2);

my $factory = new Bio:: Tools:: dpAlign;
my $out = $factory ->pairwise_alignment($seq1 , $seq2);
my $alnout = new Bio:: AlignIO(-format => "pfam");
$alnout ->write_aln($out);

The local alignment of the DNA sequences GCTTCCGGCTCGTATAAT
GTGTGG and TGCTTCTGACTATAATAG, with the default match score of
3, mismatch score of −1, gap opening score of −3, and gap extension score of
−1, is then as follows.

© 2009 by Taylor & Francis Group, LLC



110 Combinatorial Pattern Matching Algorithms in Computational Biology

seq1 /1-18 GCTTCCGGCTCGTATAAT
seq2 /2-16 GCTTCTGACT ---ATAAT

Also, with the Perl package Bio::Tools::pSW (pairwise Smith Waterman)
of BioPerl, which provides an interface to a fast implementation in C language
of protein sequence alignment, the local alignment of two protein sequences
can be obtained as follows.

use Bio:: Tools ::pSW;
use Bio:: AlignIO;

my $s1 = "MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTY
FPHFDLSHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDP
VNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR";
my $s2 = "MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFF
ESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDK
LHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH";
my $seq1 = new Bio::Seq(-seq => $s1);
my $seq2 = new Bio::Seq(-seq => $s2);

my $factory = new Bio:: Tools::pSW;
my $out = $factory ->pairwise_alignment($seq1 , $seq2);
my $alnout = new Bio:: AlignIO(-format => "pfam");
$alnout ->write_aln($out);

The local alignment of the human hemoglobin α and β protein sequences
with the default amino acid substitution matrix BLOSUM 62, gap opening
score of −12, and gap extension score of −2 is then as follows.

seq1 /3 -142 LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKT
seq2 /4 -147 LTPEEKSAVTALWGKV --NVDEVGGEALGRLLVVYPWTQR

YFPHF -DLSH -----GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHA
FFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHC

HKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR
DKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH

Bibliographic Notes

Suffix trees are a compact representation of the suffixes of a sequence. They
were introduced by Weiner (1973). Improved algorithms for constructing suf-
fix trees were proposed by McCreight (1976), Ukkonen (1992), and Farach

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Sequences 111

(1997). See also (Giegerich and Kurtz 1997). Excellent textbook presenta-
tions of suffix trees include (Gusfield 1997; Smyth 2003).

Suffix arrays were introduced by Manber and Myers (1993) and indepen-
dently by Gonnet et al. (1992) under the name of PAT arrays, in an effort to
reduce the space used by suffix trees while keeping their functionality. Fast al-
gorithms for the computation of suffix arrays include (Kärkkäinen et al. 2006;
Kim et al. 2005; Ko and Aluru 2005; Schürmann and Stoye 2007). The bottle-
neck of suffix array computation lies in sorting the suffixes of a sequence, for
which fast algorithms were proposed by Ahlswede et al. (2006) and Maniscalco
and Puglisi (2008).

The full functionality of suffix trees is maintained when the suffix array is
enhanced with a table of longest common prefixes between consecutive suffixes
in lexicographical order, known as an LCP array, and another additional
table (Abouelhoda et al. 2002; 2004). Fast algorithms for computing the LCP
array, given the suffix array of the sequence, were proposed by Kasai et al.
(2001) and Manzini (2004).

Compressed suffix arrays, introduced by Grossi and Vitter (2005), are still
another compact representation of the suffixes of a sequence. Fast algorithms
for constructing compressed suffix arrays were proposed by Hon et al. (2007),
Mäkinen (2003), and Rao (2002). See also (Firth et al. 2005). The notion of
the generalized suffix array was introduced by Shi (1996) as the suffix array
of the concatenation of two or more sequences.

The Hamming distance was introduced in the context of coding theory
by Hamming (1950). The Levenshtein distance was introduced by Leven-
shtein (1966), also in the context of coding theory. The edit distance was in-
troduced by Wagner and Fischer (1974), and the space used by the dynamic
programming computation of the edit distance was reduced by Hirschberg
(1975; 1977). See also (Navarro 2001).

Global sequence alignment was introduced by Needleman and Wunsch (1970).
Local sequence alignment was introduced by Smith and Waterman (1981). A
faster algorithm for local alignment was proposed by Gotoh (1982). The
space used by the dynamic programming computation of the sequence align-
ment was reduced by Myers and Miller (1988). FASTA (Pearson and Lipman
1988) and BLAST (Altschul et al. 1990) count among the most widely used
programs for DNA and protein sequence comparison against sequences stored
in databases.

Multiple sequence alignment is reviewed in (Gotoh 1999; Notredame 2007).
See also (Apostolico and Guerra 1987; Apostolico and Giancarlo 1998).

Nucleotide substitution matrices depend on a sequence evolution model.
The first models of DNA sequence evolution were proposed by Jukes and
Cantor (1969), Kimura (1980), and Felsenstein (1981).

The most widely used amino acid substitution matrices are the PAM (Point
Accepted Mutation) series of matrices (Dayhoff et al. 1978) for global sequence
alignment and the BLOSUM (Block Substitution Matrix) series (Henikoff and

© 2009 by Taylor & Francis Group, LLC



112 Combinatorial Pattern Matching Algorithms in Computational Biology

Henikoff 1992) for local sequence alignment. See also (Altschul 1991; Eddy
2004a).

The influence of gap opening and gap extension scores in the local alignment
of two sequences was reviewed by Vingron and Waterman (1994). The edit
distance with parametric substitution weight was studied by Bunke and Csirik
(1995). Sequence alignment with parametric match, mismatch, gap opening,
and gap extension scores was studied by Gusfield et al. (1994).

© 2009 by Taylor & Francis Group, LLC



Part II

Tree Pattern Matching

© 2009 by Taylor & Francis Group, LLC



Chapter 5

Trees

Trees and also graphs count among the most useful mathematical abstractions
and, at the same time, the most common combinatorial structures in computer
science and computational biology. Basic notions underlying combinatorial
algorithms on trees, such as counting, generation, and traversal algorithms,
as well as appropriate data structures for the representation of trees, are the
subject of this introductory chapter.

5.1 Trees in Mathematics

The notion of tree most often found in discrete mathematics is that of an
unrooted tree, that is, a connected graph without cycles. Any two nodes are
thus connected by exactly one path in a tree.

Some applications of trees in mathematics involve labeled trees, where nodes
and branches may have additional attributes such as, in the case of computa-
tional biology, taxa names and evolutionary distances or bootstrap values.

Example 5.1
The following four trees are identical as unlabeled trees, but they are all
different labeled trees.

B

A

C

D A

B

C

D A

C

B

D A

D

B

C

5.1.1 Counting Labeled Trees

Determining the number of possible trees is an important problem in math-
ematics and computer science, and it becomes even more important in compu-
tational biology, where it is essential to the uniform generation of random trees
and to the validation of trees produced by various phylogenetic reconstruction
methods. Here, counting refers to determining the number of possible trees

115
© 2009 by Taylor & Francis Group, LLC



116 Combinatorial Pattern Matching Algorithms in Computational Biology

that have certain properties, while generation is the process of obtaining the
actual trees with these properties such as, for instance, all labeled trees.

The number of possible labeled trees increases very rapidly with the number
of terminal nodes, and for 10 terminal nodes there are already 100 million
labeled trees.

There is 22−2 = 20 = 1 way to connect two labeled nodes A,B to make a
tree, as illustrated by the following single labeled tree:

A

B

Three labeled nodes A,B,C can be connected in 33−2 = 31 = 3 ways to
make a tree, as illustrated by the following three labeled trees:

A

B

C B

C

A C

A

B

Similarly, four labeled nodes A,B,C, D can be connected in 44−2 = 42 = 16
ways to make a tree, as shown below.

A

B C

D B

A C

D C

A B

D D

A B

C

A

C B

D B

C A

D C

B A

D D

B A

C

A

D B

C B

D A

C C

D A

B D

C A

B

© 2009 by Taylor & Francis Group, LLC



Trees 117

B

A

C

D A

B

C

D A

C

B

D A

D

B

C

In general, there are nn−2 different ways to connect n > 2 labeled nodes
to make a tree. The following R script computes the number of trees with
2 6 n 6 11 labeled nodes.

> t(sapply (2:11 , function(n)c(n,n^(n-2))))
[,1] [,2]

[1,] 2 1
[2,] 3 3
[3,] 4 16
[4,] 5 125
[5,] 6 1296
[6,] 7 16807
[7,] 8 262144
[8,] 9 4782969
[9,] 10 100000000

[10,] 11 2357947691

5.2 Trees in Computer Science

While the notion of tree most often found in discrete mathematics is that
of an undirected tree, the notion of tree which is most useful in computer
science is that of a rooted tree, that is, a directed graph in which there is a
distinguished node, called the root of the tree, such that there is a unique path
from the root to any node of the tree. The branches of the tree are directed
away from the root.

Example 5.2
In the following tree, there is a unique path from the root, A, to every node
of the tree: A–B, A–C, A–B–D, A–B–E, A–C–F, A–C–G, and A–C–H.

D E F G H

B C

A

© 2009 by Taylor & Francis Group, LLC



118 Combinatorial Pattern Matching Algorithms in Computational Biology

5.2.1 Traversing Rooted Trees

Most algorithms on trees require a systematic method of visiting the nodes
of a tree, and combinatorial pattern matching algorithms are no exception.
The most common methods for exploring a tree are the preorder and the
postorder traversal.

In a preorder traversal of a rooted tree, parents are visited before children,
and siblings are visited in left-to-right order. The root of the tree is visited
first, followed by a preorder traversal of the subtree rooted in turn at each of
the children of the root: the subtree rooted at the first child is traversed first,
followed by the subtree rooted at the next sibling, and so on.

In a postorder traversal of a rooted tree, on the other hand, children are
visited before parents, and siblings are also visited in left-to-right order. A
postorder traversal of the subtree rooted in turn at each of the children is
performed first, and the root of the tree is visited last. Again, the subtree
rooted at the first child is traversed first, followed by the subtree rooted at
the next sibling, and so on.

Example 5.3
In a preorder traversal of the following tree, the nodes are visited in the order
A, B, D, E, C, F, G, H. In a postorder traversal, the order in which the nodes
are visited is D, E, B, F, G, H, C, A.

D E F G H

B C

A

5.3 Trees in Computational Biology

The notion of tree most often found in computational biology is that of a
phylogenetic tree, that is, an either unrooted or rooted tree whose terminal
nodes are labeled by taxa names. In a classification tree, internal nodes may
also be labeled by nested taxa. These trees are often the product of clus-
tering methods that attempt to reconstruct phylogenetic relationships from
either distance data (estimates of the divergence between taxonomic units, in
terms of number of mutations or some other quantitative measure of evolu-
tionary change), such as the unweighted pair-group method with arithmetic
mean (UPGMA) or the neighbor-joining (NJ) method, or DNA sequence data
(making some assumption about the underlying model of DNA substitution),

© 2009 by Taylor & Francis Group, LLC



Trees 119

such as maximum parsimony, maximum likelihood, and Bayesian methods.
However, trees also arise as a mathematical model of RNA secondary struc-
tures without pseudo-knots.

The primary structure of ribonucleic acid (RNA) can be represented as
a sequence over the alphabet of nucleotides: the purines A (adenine) and
G (guanine), and the pyrimidines C (cytosine) and U (uracil). Within the
cell, RNA molecules do not retain such a linear form but, instead, fold back
on themselves in space to form hydrogen bonds between short stretches of
complementary nucleotide sequences: the most frequent ones are A–U and G–
C, followed by the G–U bond. The resulting secondary and tertiary structures
are essential for RNA molecules to perform their biological roles.

The secondary structure of an RNA sequence can be seen as a set of nu-
cleotide pairs i− j with i < j in which each nucleotide takes part in at most
one pair, that is, such that i = i′ if and only if j = j′ for all nucleotide
pairs i− j and i′ − j′. This representation is also known as an arc-annotated
sequence, and it is said to have no pseudo-knots when i < i′ if and only if
j > j′ for all nucleotide pairs i− j and i′ − j′. In an RNA structure without
pseudo-knots, two nucleotide pairs i− j and i′ − j′ are said to be stacking if
they are adjacent in the RNA sequence, that is, if i′ = i + 1 and j′ = j − 1.

Example 5.4

The secondary structure of the following RNA sequence, in 5′ to 3′ order,

AUAUUACCGUUUCGAAAGCAUCCUGUUGAUGGCUUGGCGGCCAA

corresponds to the arc-annotated sequence shown below.

AUAUUACCGUUUCGAAAGCAUCCUGUUGAUGGCUUGGCGGCCAA

There are no arc crossings in this arc-annotated sequence, because the sec-
ondary structure of this RNA sequence has no pseudo-knots. Among others,
the nucleotide pairs C–G at sequence positions 7–40 and 8–39 are stacking.

Several types of RNA secondary structure elements can be distinguished:

Hairpin loops are unpaired stretches of nucleotides located within the two
strands of the RNA molecule that end in an unpaired loop. They are
defined by stacking nucleotide pairs i− j, . . . , i′− j′ such that the inner
nucleotides, that is, those between i′ and j′, are unpaired.

© 2009 by Taylor & Francis Group, LLC



120 Combinatorial Pattern Matching Algorithms in Computational Biology

Internal loops are unpaired stretches of nucleotides located within the two
strands of the RNA molecule. They are defined by two non-stacking
nucleotide pairs i− j and i′ − j′ such that all the nucleotides between i
and i′ and also between j and j′ are unpaired.

Bulge loops are unpaired stretches of nucleotides located within one strand
of the RNA molecule. Bulges are thus a special class of internal loops
which have no nucleotides either between i and i′ or between j and j′.
In a bulge, either i′ = i + 1 or j′ = j − 1.

Multiple bifurcation loops are also unpaired stretches of nucleotides lo-
cated within the two strands of the RNA molecule, but they are defined
by three or more non-stacking nucleotide pairs i− j, i′− j′, and i′′− j′′

such that all the nucleotides between i and i′ and also between j and j′

and between i′′ and j′′ are unpaired.

5′

A U A U U A
C
C
G

U

U

U
C
G
A

G
A

A
U
U
G

C
A

A
A

A
U

U
C
A
A

C

A
U
C
G

A
A A G C A U C

C U
G

UU
GAU

G
GCUU

G
GC

G
G

C C A A

3′

FIGURE 5.1: Clover-leaf representation of an RNA secondary structure.

These secondary structure elements are joined by helical stems of paired

© 2009 by Taylor & Francis Group, LLC



Trees 121

nucleotides within the RNA molecule. Several methods are known for com-
puting an RNA secondary structure from sequence data, and the predicted
structures depend on either thermodynamic data or phylogenetic compari-
son, that is, the determination of those structural features that are conserved
during evolution.

Example 5.5
The following RNA sequence, in 5′ to 3′ order,

AUAUUACCGUUUCGAGAAUUGCAAAAUUCAACAUCGAAAGCAUCCUGUUGAUG
GCUUGGCGGCCAA

may fold into the predicted RNA secondary structure shown in Figure 5.1.
There is a single-stranded region of 6 and 4 nucleotides followed by a helical
stem of 3 paired nucleotides, a bifurcating loop of 6 nucleotides, and, along
the vertical branch, a helical stem of 3 paired nucleotides, an internal loop of
5 nucleotides, another helical stem of 3 paired nucleotides, and a hairpin loop
of 7 nucleotides, while along the horizontal branch there is a helical stem of
4 paired nucleotides, a small bulge loop of only 1 nucleotide, another helical
stem of 3 paired nucleotides, and a hairpin loop of 5 nucleotides.

In an abstract model, RNA secondary structures without pseudo-knots can
be represented by means of trees in which the ordering among sibling nodes
corresponds to the 5′ to 3′ order of the RNA sequence. There is a node in such
a tree for each secondary structure element of the RNA molecule, labeled by
H (hairpin loop), B (bulge), I (internal loop), M (multiple bifurcation loop),
or S (single-stranded region). Branches in the tree correspond to the helical
stems that join secondary structure elements in the RNA molecule.

Example 5.6
The following ordered labeled tree is an abstract representation of the RNA

secondary structure from Example 5.5.

S

M

I

H

B

H

In a more detailed model, RNA secondary structures without pseudo-knots
are also represented by means of trees in which the ordering among sibling
nodes corresponds to the 5′ to 3′ order of the RNA sequence, but where there

© 2009 by Taylor & Francis Group, LLC



122 Combinatorial Pattern Matching Algorithms in Computational Biology

is a node for each unpaired nucleotide (the leaves) or paired nucleotide (the
internal nodes of the tree). Branches in the tree correspond to consecutive
helical stems, and they also join the nucleotides of a secondary structure ele-
ment with the previous secondary structure element along the RNA sequence.
The whole tree is rooted at a special, additional node.

Example 5.7
The following ordered labeled tree is a mode detailed representation of the
RNA secondary structure from Examples 5.5 and 5.6.

A U A U U A C–G

C–G

G–C

U U U C–G

G–C

A–U

G A A U–A

U–A

G–C

C A A A A U U

C A

A A–U

A–U

G–C

C–G

A–U

U–A

C–G

C U G U U

G

G G

C C A A

Enough has been said about the tree representation of RNA secondary
structures. The evolutionary relationships among a group of organisms are
often illustrated by means of a phylogenetic tree, also called a cladogram or
a dendrogram. The nodes of a phylogenetic tree represent taxonomic units,
which can be species or taxa, higher or nested taxa, populations, individuals,
or genes. The branches of a phylogenetic tree define the evolutionary relation-
ships among the taxonomic units, in such a way that children nodes descend
from their parent. Such a pattern of ancestry and descent relationships is
called the topology of the phylogenetic tree.

© 2009 by Taylor & Francis Group, LLC



Trees 123

The root of a phylogenetic tree represents the most recent common ancestor
of the taxonomic units at the leaves of the tree, and it is called fully resolved if
every internal node in the tree has exactly two children. In the case of ancient
ancestry, though, such information is not always available. Moreover, most
phylogenetic tree reconstruction methods yield unrooted trees. In such a case,
the phylogenetic tree can be rooted by choosing an outgroup and then placing
the root between the outgroup and the node connecting it to the ingroup. An
outgroup is a taxonomic unit for which there is additional knowledge (such
as taxonomic or paleontological information) about its divergence from the
common ancestor prior to all the other taxonomic units, which then become
the ingroup of the phylogenetic tree.

Example 5.8

The phylogenetic relationships among pandas, bears, and raccoons, assessed
using mitochondrial DNA sequence evolution, indicate an early divergence
(about 30 million years ago) of the red panda from the raccoon, whereas
these species diverged from the outgroup of other carnivore families about 35
million years ago.

Red Panda
Raccoon
Giant Panda
Spectacled Bear
Sloth Bear
Sun Bear
American Black Bear
Asiatic Black Bear
Polar Bear
Brown Bear

0510203035

5.3.1 The Newick Linear Representation

The Newick format is the de facto standard for representing phylogenetic
trees, and it is quite convenient since it makes it possible to describe a whole
tree in linear form in a unique way once the tree is drawn or the ordering
among children nodes is fixed. The Newick description of a tree is a string of
nested parentheses annotated with taxa names and possibly also with branch
lengths or bootstrap values (which measure how consistently the phylogenetic
tree topology is supported by the underlying data), as illustrated by the fol-
lowing simple example:

© 2009 by Taylor & Francis Group, LLC



124 Combinatorial Pattern Matching Algorithms in Computational Biology

A B C D E

AB CDE

ABCDE

((A,B)AB ,(C,D,E)CDE)ABCDE;

The Newick description of a given tree can be obtained by traversing the
tree in postorder and writing down the name or label of the node when visiting
a terminal (taxon) node, a left parenthesis (preceded by a comma unless the
node is the first child of its parent) when visiting a non-terminal node for
the first time, and a right parenthesis followed by the name or label of the
node (if any) when visiting a non-terminal node for the second time, that is,
after having visited all its descendants. The name of a node is preceded by a
comma unless it is the first child of its parent, and it is followed by a colon and
the length (if any) of the branch from its parent. The description of the tree
is terminated with a semicolon. The following table summarizes the process
of obtaining the Newick description of the previous tree:

first visit non-terminal node ABCDE (
first visit non-terminal node AB ((

visit terminal node A ((A
visit terminal node B ((A,B

second visit non-terminal node AB ((A,B)AB
first visit non-terminal node CDE ((A,B)AB,(

visit terminal node C ((A,B)AB,(C
visit terminal node D ((A,B)AB,(C,D
visit terminal node E ((A,B)AB,(C,D,E

second visit non-terminal node CDE ((A,B)AB,(C,D,E)CDE
second visit non-terminal node ABCDE ((A,B)AB,(C,D,E)CDE)ABCDE;

In the Newick representation of an unrooted phylogenetic tree, there are
at least three siblings connected to some internal node, as illustrated by the
following alternative representations of the same simple example:

A

B

C

D
E

© 2009 by Taylor & Francis Group, LLC



Trees 125

((A,B),C,D,E);
(A,B,(C,D,E));

5.3.2 Counting Phylogenetic Trees

The number of possible phylogenetic trees also increases very rapidly with
the number of terminal nodes, and for 10 terminal nodes there are already
more than 2 million fully resolved unrooted phylogenetic trees and more than
34 million fully resolved rooted phylogenetic trees.

There is (2 ·3−5)!/(23−3(3−3)!) = (6−5)!/(200!) = 1 way to connect three
labeled nodes A,B,C to make an unrooted phylogenetic tree, as illustrated
by the following single fully resolved phylogenetic tree:

A

B

C

Four labeled nodes A,B,C, D can be connected in (2·4−5)!/(24−3(4−3)!) =
3!/(211!) = 3 different ways to make a fully resolved unrooted phylogenetic
tree, as illustrated by the following three fully resolved phylogenetic trees:

A

B

C

D

A

C

B

D

A

D

B

C

In general, a fully resolved unrooted phylogenetic tree with n > 3 terminal
nodes has n−2 internal nodes and 2n−3 internal branches, each of which can
be split to accomodate a branch to a new terminal node. Thus, the number
U(n) of fully resolved unrooted phylogenetic trees with n > 3 terminal nodes
is U(n) = U(n − 1)(2(n − 1) − 3) = U(n − 1)(2n − 5) = Πn

i=3(2i − 5) =
(2n− 5)!/(2n−3(n− 3)!). The following R script computes the number U(n)
of fully resolved unrooted phylogenetic trees with 2 6 n 6 12 terminal nodes.

> t(sapply (3:12 , function(n)
c(n,factorial (2*n-5)/(2^{n-3}*factorial(n-3)))))

[,1] [,2]
[1,] 3 1
[2,] 4 3
[3,] 5 15
[4,] 6 105
[5,] 7 945
[6,] 8 10395

© 2009 by Taylor & Francis Group, LLC



126 Combinatorial Pattern Matching Algorithms in Computational Biology

[7,] 9 135135
[8,] 10 2027025
[9,] 11 34459425

[10,] 12 654729075

On the other hand, each of the internal branches of a fully resolved unrooted
phylogenetic tree can be split to accommodate a branch to the root and, thus,
the number T (n − 1) of rooted phylogenetic trees with n − 1 > 3 terminal
nodes is the same as the number U(n) of unrooted phylogenetic trees with
n > 3 terminal nodes. Thus, the number T (n) of rooted phylogenetic trees
with n > 2 terminal nodes is T (n) = (2n− 3)!/(2n−2(n− 2)!). The following
R script computes the number of fully resolved rooted phylogenetic trees with
2 6 n 6 11 terminal nodes.

> t(sapply (2:11 , function(n)
c(n,factorial (2*n-3)/(2^{n-2}*factorial(n-2)))))

[,1] [,2]
[1,] 2 1
[2,] 3 3
[3,] 4 15
[4,] 5 105
[5,] 6 945
[6,] 7 10395
[7,] 8 135135
[8,] 9 2027025
[9,] 10 34459425

[10,] 11 654729075

5.3.3 Generating Phylogenetic Trees

All the fully resolved rooted phylogenetic trees on n > 2 terminal nodes can
be generated by taking each of the fully resolved rooted phylogenetic trees on
n− 1 terminal nodes in turn and then either splitting one of the branches to
the n-th terminal node or joining it together with the n-th terminal node at
a new root.

Example 5.9
The three fully resolved rooted phylogenetic trees on three terminal nodes
can be generated by taking the only fully resolved rooted phylogenetic tree
topology on two terminal nodes,

A B

and either splitting one of the two branches to the new terminal node C or
joining (A, B) with C at a new root:

© 2009 by Taylor & Francis Group, LLC



Trees 127

A C B A C B A B C

In the same way, the 15 fully resolved rooted phylogenetic trees on 4 terminal
nodes can be generated by taking each of these three fully resolved rooted
phylogenetic tree topologies on three terminal nodes and either splitting one
of the four branches to the new terminal node D or joining the tree with D
at a new root:

A D C B A D C B A C D B A C D B A C B D

A D C B A D C B A C D B A C D B A C B D

A D B C A D B C A B D C A B D C A B C D

Such an algorithm for generating fully resolved rooted phylogenetic trees is
implemented in the BioPerl modules for phylogenetic networks. The following
Perl script uses them to generate the 15 fully resolved rooted phylogenetic
trees on 4 terminal nodes.

use Bio:: PhyloNetwork;
use Bio:: PhyloNetwork :: TreeFactory;

my $factory=Bio:: PhyloNetwork :: TreeFactory ->new(
-leaves=>[qw(A B C D)]

);

while (my $net=$factory ->next_network ()) {
print $net ->eNewick ()."\n";

}

Running the previous Perl script produces the following output, which con-
sists of the 15 fully resolved rooted phylogenetic trees on four terminal nodes
labeled A, B, C, D, in Newick format:

© 2009 by Taylor & Francis Group, LLC



128 Combinatorial Pattern Matching Algorithms in Computational Biology

(((D,A),C),B);
((C,A) ,(D,B));
(((D,C),A),B);
(((A,C),B),D);
((D,(A,C)),B);
((D,A) ,(C,B));
(A,((D,B),C));
(A,((D,C),B));
((A,(C,B)),D);
(A,(D,(B,C)));
(C,(B,(D,A)));
(C,(A,(D,B)));
((D,C) ,(A,B));
((D,(A,B)),C);
((C,(B,A)),D);

5.3.4 Representing Trees in Perl

There are many ways in which trees can be represented in Perl and, as a
matter of fact, many different Perl modules implementing various types of
trees are available for download from CPAN, the Comprehensive Perl Archive
Network, at http://www.cpan.org/. Among them, let us focus on the Bio-
Perl tree representation, which is essentially an object-oriented representation
of phylogenetic trees.

A phylogenetic tree is represented in BioPerl as a Bio::Tree::Tree ob-
ject, whose nodes are in turn represented as Bio::Tree::Node objects. The
branches of the tree are represented as pointers to the parent and to each of the
children, which are thus associated with the nodes of the tree. These pointers
can be accessed by means of such methods as ancestor, each_Descendent,
and get_all_Descendents.

For instance, the phylogenetic tree with Newick string ((A,B)C); can be
obtained by first creating one Bio::Tree::Node object for each of the labeled
terminal nodes, then creating an internal node for the (A, B) clade and adding
branches to its children, creating another node for the root, again adding
branches to its children, and, finally, creating a Bio::Tree::Tree object with
the latter as root. This is all shown in the following Perl script.

use Bio::Tree::Tree;
use Bio::Tree::Node;

my $nodeA = Bio::Tree::Node ->new(-id => "A");
my $nodeB = Bio::Tree::Node ->new(-id => "B");
my $nodeC = Bio::Tree::Node ->new(-id => "C");

my $nodeAB = Bio::Tree::Node ->new();

© 2009 by Taylor & Francis Group, LLC

http://www.cpan.org


Trees 129

$nodeAB ->add_Descendent($nodeA);
$nodeAB ->add_Descendent($nodeB);

my $nodeABC = Bio::Tree::Node ->new();
$nodeABC ->add_Descendent($nodeAB);
$nodeABC ->add_Descendent($nodeC);

my $tree = Bio::Tree::Tree ->new(-root => $nodeABC);

The same phylogenetic tree can be obtained by adding the branches to
the children when creating each of the internal nodes, as illustrated by the
following Perl script.

use Bio::Tree::Tree;
use Bio::Tree::Node;

my $nodeA = Bio::Tree::Node ->new(-id => "A");
my $nodeB = Bio::Tree::Node ->new(-id => "B");
my $nodeC = Bio::Tree::Node ->new(-id => "C");

my $nodeAB = Bio::Tree::Node ->new(
-descendents => [$nodeA ,$nodeB]

);

my $nodeABC = Bio::Tree::Node ->new(
-descendents => [$nodeAB ,$nodeC]

);

my $tree = Bio::Tree::Tree ->new(-root => $nodeABC);

However, a Bio::Tree::Tree object can be also obtained from a Newick
string with the help of the Bio::TreeIO module in BioPerl, as shown in the
following Perl script, where the Newick string is stored in a file.

use Bio:: TreeIO;

my $input = new Bio:: TreeIO(
-file => "tree.tre",
-format => "newick"

);

my $tree = $input ->next_tree;

Furthermore, a Bio::Tree::Tree object can be reconstructed from dis-
tance data, using, for instance, the neighbor-joining method,

use Bio:: Matrix ::IO;
use Bio::Tree:: DistanceFactory;

© 2009 by Taylor & Francis Group, LLC



130 Combinatorial Pattern Matching Algorithms in Computational Biology

my $parser = new Bio:: Matrix ::IO(
-format => ’phylip ’,
-file => "distances.mat");

my $mat = $parser ->next_matrix;

my $dfactory = Bio::Tree:: DistanceFactory ->new(
-method => "NJ");

my $tree = $dfactory ->make_tree($mat);

and it can also be reconstructed from aligned DNA sequence data, using,
for instance, the Kimura model of DNA substitution together with neighbor-
joining,

use Bio:: AlignIO;
use Bio:: Align :: DNAStatistics;
use Bio::Tree:: DistanceFactory;

my $io = Bio::AlignIO ->new(-file => "file.aln",
-format => "clustalw");

my $fact = Bio::Tree:: DistanceFactory ->new(
-method => "NJ");

my $stat = Bio::Align :: DNAStatistics ->new;

my $aln = $io ->next_aln;
my $mat = $stat ->distance(-method => "Kimura",

-align => $aln);
my $tree = $fact ->make_tree($mat);

The representation of phylogenetic trees in BioPerl includes additional meth-
ods for performing various operations on trees and their nodes; for instance,
to access the root of a phylogenetic tree,

my $root = $tree ->get_root_node;

to access the terminal nodes of a phylogenetic tree,

my @taxa = $tree ->get_leaf_nodes;

to access the parent of a node other than the root of a phylogenetic tree,

my @parent = $node ->ancestor;

to access the children of a node in a phylogenetic tree,

my @children = $node ->each_Descendent;

to obtain the full lineage of a node, that is, all the ancestors of the node
starting from the root of the phylogenetic tree,

my @nodes = $tree ->get_lineage_nodes($node);

© 2009 by Taylor & Francis Group, LLC



Trees 131

to access all the descendants of a node in a preorder traversal of a phylogenetic
tree,

my @descendents = $node ->get_all_Descendents;

and to access all the descendants of a node in a postorder traversal of a
phylogenetic tree,

use Bio::Tree:: Compatible;

my @descendents = @{ $tree ->postorder_traversal }

Phylogenetic trees can be displayed using BioPerl in a variety of ways, such
as in Newick format,

use Bio:: TreeIO;

my $output = new Bio:: TreeIO(-format => "newick");

$output ->write_tree($tree);

drawn in Scalable Vector Graphics (SVG) format,

use Bio:: TreeIO;

my $output = new Bio:: TreeIO(
-file => ">output.svg",
-format => "svggraph"

);

$output ->write_tree($tree);

and drawn as a rectangular cladogram, with horizontal orientation and ances-
tral nodes centered over their descendants, in Encapsulated PostScript (EPS)
format,

use Bio::Tree::Draw:: Cladogram;

my $obj = Bio::Tree::Draw::Cladogram ->new(
-tree => $tree

);

$obj ->print(-file => "cladogram.eps");

5.3.5 Representing Trees in R

There are also many ways in which trees can be represented in R and, as a
matter of fact, many different R contributed packages implementing various
types of trees are available for download from CRAN, the Comprehensive R

© 2009 by Taylor & Francis Group, LLC



132 Combinatorial Pattern Matching Algorithms in Computational Biology

Archive Network, at http://cran.r-project.org/. Among them, let us fo-
cus on the APE (Analysis of Phylogenetics and Evolution) tree representation,
which is essentially a matrix-based representation of phylogenetic trees.

A phylogenetic tree in represented in the R package APE as a list of class
phylo consisting of three elements: a numeric matrix edge with two columns
and one row for each branch in the tree, a character vector tip.label with
the labels of the internal nodes, and the number Nnode of internal nodes in
the tree. In the edge matrix, all internal nodes appear in the first column at
least twice, and values corresponding to terminal nodes appear only in the
second column.

This representation is shared by rooted and unrooted phylogenetic trees.
For the former, in a tree with n terminal nodes the root is numbered n + 1,
while for the latter, the numbering of the root is arbitrary. In the edge
matrix, all nodes (except the root) appear exactly once in the second column,
corresponding to the only branch from their parent.

For instance, the phylogenetic tree with Newick string ((A,B)C); has three
terminal nodes numbered 1, 2, 3 and labeled A, B, C; two internal nodes num-
bered 4, 5; and branches 4–5, 5–1, 5–2, 4–3. The following R script computes
the representation of such a phylogenetic tree, where the edge matrix is given
by default in column order.

> library(ape)
Loading required package: gee
Loading required package: nlme
Loading required package: lattice
> tree <- list(

edge = matrix(c(4,5,5,4,5,1,2,3) ,4,2),
tip.label = c("A","B","C"),
Nnode = 2)

> class(tree) <- "phylo"
> tree

Phylogenetic tree with 3 tips and 2 internal nodes.

Tip labels:
[1] "A" "B" "C"

Rooted; no branch lengths.

The same tree representation can be obtained by reading in a Newick string,
as shown in the following R script.

> tree <- read.tree(text="((A,B),C);")
> tree

Phylogenetic tree with 3 tips and 2 internal nodes.

© 2009 by Taylor & Francis Group, LLC

http://cran.r-project.org


Trees 133

Tip labels:
[1] "A" "B" "C"

Rooted; no branch lengths.

A phylogenetic tree can also be reconstructed with the R package APE from
distance data, using, for instance, the neighbor-joining method,

> mat <- matrix(scan("distances.mat"),n,n,byrow=T)
> tree <- nj(mat)

and it can be reconstructed from aligned DNA sequence data, using, for in-
stance, the Kimura model of DNA substitution together with neighbor-joining,

> aln <- read.dna("sequences.aln")
> mat <- dist.dna(aln , model="K80")
> tree <- nj(mat)

The branches of a phylogenetic tree can be obtained by accessing the edge
matrix,

> tree$edge
[,1] [,2]

[1,] 4 5
[2,] 5 1
[3,] 5 2
[4,] 4 3

The labels of the terminal nodes can also be obtained by accessing the
tip.label character vector,

> tree$tip.label
[1] "A" "B" "C"

In the same way, the number of internal nodes can be obtained by accessing
the Nnode variable,

> tree$Nnode
[1] 2

Based on this matrix representation, it is rather easy to code various op-
erations on phylogenetic trees and their nodes and branches; for instance, to
obtain the number of terminal nodes,

> length(tree$tip.label)
[1] 3

to determine the number of branches,

> dim(tree$edge)[1]
[1] 4

© 2009 by Taylor & Francis Group, LLC



134 Combinatorial Pattern Matching Algorithms in Computational Biology

to find (the position, by column order, in the edge matrix of) a node in the
tree,

> which(tree$edge == 1)
[1] 6
> which(tree$edge == 2)
[1] 7
> which(tree$edge == 3)
[1] 8
> which(tree$edge == 4)
[1] 1 4
> which(tree$edge == 5)
[1] 2 3 5

to access the (branches from the) root of the tree,

> which(tree$edge [ ,1]== length(tree$tip.label)+1)
[1] 1 4
> tree$edge[

which(tree$edge [,1]== length(tree$tip.label)+1) ,]
[,1] [,2]

[1,] 4 5
[2,] 4 3

and to obtain the parent of a node in the tree,

> tree$edge[which(tree$edge[,2] == 1) ,1]
[1] 5
> tree$edge[which(tree$edge[,2] == 2) ,1]
[1] 5
> tree$edge[which(tree$edge[,2] == 3) ,1]
[1] 4
> tree$edge[which(tree$edge[,2] == 5) ,1]
[1] 4

These operations can certainly be wrapped in a function, as illustrated by
the following R script.

> parent <- function (tree ,x)
tree$edge[which(tree$edge[,2] == x) ,1]

> parent(tree ,1)
[1] 5
> parent(tree ,2)
[1] 5
> parent(tree ,3)
[1] 4
> parent(tree ,5)
[1] 4

© 2009 by Taylor & Francis Group, LLC



Trees 135

Phylogenetic trees can also be displayed using R in a variety of ways, such
as in Newick format,

> write.tree(tree)
[1] "((A,B),C);"

with the Newick string stored in a file,

> write.tree(tree , file = "tree.tre")

and drawn as a rectangular cladogram, with horizontal orientation and ances-
tral nodes centered over their descendants, in Encapsulated PostScript (EPS)
format,

> postscript(file="cladogram.eps")
> plot(tree , type = "p")
> dev.off()

among several other display options for unrooted and rooted phylogenetic
trees as well.

Bibliographic Notes

The correspondence between trees and nested parentheses was first noticed
by Cayley (1857; 1881). A modern proof of the result on counting labeled
trees can be found in (Shor 1995).

The very idea of representing evolution by means of trees dates back to
Charles Darwin (Burkhardt and Smith 1987). A proof of the counting formu-
las can be found in (Cavalli-Sforza and Edwards 1967). See also (Felsenstein
2004, ch. 3) and (Waterman 1995, p. 346).

The unweighted pair-group method with arithmetic mean (UPGMA) is
discussed in detail in (Sneath and Sokal 1973), where it is proved to be correct
for ultrametric distance matrices. The neighbor-joining (NJ) method was
introduced by Saitou and Nei (1987) and further improved in (Studier and
Keppler 1988; Mailund et al. 2006). A proof that NJ is correct for additive
distance matrices can be found in (Durbin et al. 1998, Appendix 7.8).

The model of RNA secondary structures without pseudo-knots by means
of trees was introduced by Shapiro (1988) and further developed in (Le et al.
1989; Shapiro and Zhang 1990). Arc-annotated sequences were introduced
by Evans (1999) as a more general model of RNA secondary structures.

The object-oriented representation of phylogenetic trees in BioPerl (Stajich
et al. 2002) is described in detail in (Birney et al. 2009). The matrix-based
representation of phylogenetic trees in R is described in more detail in (Paradis
2006).

© 2009 by Taylor & Francis Group, LLC



Chapter 6

Simple Pattern Matching in Trees

Combinatorial pattern matching is the search for exact or approximate oc-
currences of a given pattern within a given text. When it comes to trees
in computational biology, both the pattern and the text are trees and the
pattern matching problem becomes one of finding the occurrences of a tree
within another tree. For instance, scanning an RNA secondary structure for
the presence of a known pattern can help in finding conserved RNA motifs,
and finding a phylogenetic tree within another phylogenetic tree can help in
assessing their similarities and differences. This will be the subject of the next
chapter.

A related pattern matching problem that arises in the analysis of trees
consists in finding simpler patterns, that is, paths within a given tree. For
instance, finding the path between two nodes of a tree is useful for computing
distances in a tree and also for computing distances between two trees. This
is the subject of this chapter.

6.1 Finding Paths in Unrooted Trees

Any two nodes are connected by exactly one path in a tree, as long as no
branch is to be traversed more than once in the path between the two nodes
of the tree.

Example 6.1
In the following fully resolved unrooted phylogenetic tree, the path between
terminal nodes A and D involves three branches.

A

B C

D

The path A–D–B–C is not valid because the internal branch is traversed more
than once: it is traversed three times along this path.

137
© 2009 by Taylor & Francis Group, LLC



138 Combinatorial Pattern Matching Algorithms in Computational Biology

The path between any two given terminal nodes of a fully resolved rooted
phylogenetic tree traverses the most recent common ancestor of the nodes in
the tree. In an unrooted phylogenetic tree there is, in principle, no explicit
information about common ancestors, but it can be rooted by placing the root
between some chosen outgroup and the node connecting it to the ingroup.
An unrooted phylogenetic tree can also be rooted by placing the root at an
arbitrary internal node, or by adding a new root node.

Example 6.2

Rooting the fully resolved unrooted phylogenetic tree with Newick string
((A,B),C,D); (shown to the left) at an internal node gives the rooted phylo-
genetic trees with Newick string ((A,B),C,D); and (A,B,(C,D)); (shown at
the middle), while rooting it at a new node along the branch between the two
internal nodes gives the fully resolved rooted phylogenetic tree with Newick
string ((A,B),(C,D)); (shown to the right).

A

B C

D

A B C D A B C D A B C D

6.1.1 Distances in Unrooted Trees

The distance between any two terminal nodes in an unrooted phylogenetic
tree is the length of the path between the two terminal nodes in the tree. In
the case of phylogenetic trees with branch lengths, the distance between any
two terminal nodes can be calculated as the sum of the length of the branches
in the path between the two terminal nodes in the tree.

Example 6.3

The distance between each pair of terminal nodes in the following fully re-
solved unrooted phylogenetic tree is indicated in the table to the right.

A

B

C

D

E

F

A B C D E F
A 0 2 4 4 4 4
B 2 0 4 4 4 4
C 4 4 0 2 4 4
D 4 4 2 0 4 4
E 4 4 4 4 0 2
F 4 4 4 4 2 0

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Trees 139

The representation of phylogenetic trees in BioPerl also includes a method
distance to compute the distance between any two terminal nodes of a phy-
logenetic tree with branch lengths, as illustrated by the following Perl script.

use Bio:: TreeIO;

my $input = new Bio:: TreeIO(
-fh => \*DATA ,
-format => "newick"

);

my $tree = $input ->next_tree;

my @nodes = $tree ->find_node(-id => "A");
push @nodes , $tree ->find_node(-id => "F");

my $dist = $tree ->distance(-nodes => \@nodes);

__DATA__
((A:1,B:1):1,(C:1,D:1):1,(E:1,F:1) :1) :1;

The representation of phylogenetic trees in R, on the other hand, also in-
cludes a function cophenetic.phylo to compute the distance between each
pair of terminal nodes and a function dist.nodes to compute the distance
between each pair of nodes of a phylogenetic tree with branch lengths, as
illustrated by the following R script.

> library(ape)
> t <- read.tree(text="((A:1,B:1):1,(C:1,D:1):1,(E:1,

F:1):1):1;")

> cophenetic.phylo(t)
A B C D E F

A 0 2 4 4 4 4
B 2 0 4 4 4 4
C 4 4 0 2 4 4
D 4 4 2 0 4 4
E 4 4 4 4 0 2
F 4 4 4 4 2 0

> dist.nodes(t)
1 2 3 4 5 6 7 8 9 10 11

1 0 2 4 4 4 4 2 1 3 3 2
2 2 0 4 4 4 4 2 1 3 3 2
3 4 4 0 2 4 4 2 3 1 3 2
4 4 4 2 0 4 4 2 3 1 3 2

© 2009 by Taylor & Francis Group, LLC



140 Combinatorial Pattern Matching Algorithms in Computational Biology

5 4 4 4 4 0 2 2 3 3 1 2
6 4 4 4 4 2 0 2 3 3 1 2
7 2 2 2 2 2 2 0 1 1 1 0
8 1 1 3 3 3 3 1 0 2 2 1
9 3 3 1 1 3 3 1 2 0 2 1
10 3 3 3 3 1 1 1 2 2 0 1
11 2 2 2 2 2 2 0 1 1 1 0

6.1.2 The Partition Distance between Unrooted Trees

The similarities and differences between two unrooted phylogenetic trees
can be assessed by computing a distance measure between the two trees. The
partition distance is based on the partition of the taxa induced by each internal
branch in the two trees under comparison. While cutting a tree along each of
the the external branches partitions the set of taxa in a trivial way (with each
partition consisting of a single taxon on one side and the remaining taxa on
the other side), cutting along each of the internal branches reveals similarities
and differences between the two trees.

Example 6.4
Each of the following fully resolved unrooted phylogenetic trees has six taxa
and three internal branches and, thus, can be partitioned in three different
ways by cutting one of the internal branches.

(a)

A

B

C

D

E

F

(b)

A

B

C D

F

E

(c)

F

B

C

E

D

A

The three partitions of the six taxa in tree (a) are:

• (A, B) and (C, D, E, F)

• (A, B, C, D) and (E, F)

• (A, B, E, F) and (C, D)

while in tree (b), the three partitions are:

• (A, B) and (C, D, E, F)

• (A, B, E) and (C, D, F)

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Trees 141

• (A, B, E, F) and (C, D)

and the three partitions of the six taxa in tree (c) are:

• (A, B, D, F) and (C, E)

• (A, C, D, E) and (B, F)

• (A, D) and (B, C, E, F)

The partition distance between two unrooted phylogenetic trees is defined
as the size of the symmetric difference of the partitions of the set of taxa
obtained when cutting the trees along each of their internal branches, that
is, the number of internal branches in the two trees resulting in different
partitions of the taxa.

Example 6.5
In the previous example, there are two identical partitions between trees (a)
and (b), while neither tree (a) nor tree (b) share any partition with tree (c).
There are two different partitions between trees (a) and (b), the partition (A,
B, C, D) and (E, F) in tree (a) and the partition (A, B, E) and (C, D, F) in
tree (b) and, thus, the partition distance between trees (a) and (b) is 2, while
the partition distance between trees (a) and (c) and between trees (b) and (c)
is 6, and, therefore, tree (a) is more similar to tree (b) than to tree (c).

The partition distance between two unrooted phylogenetic trees can be
computed by first obtaining, for each of the two phylogenetic trees, the par-
tition of the taxa induced by each of their internal branches. In the rooted
representation of an unrooted tree, the partition of the taxa induced by an
internal branch (v, w) consists of the labels of all terminal nodes which are
descendants of node w and the labels of all other terminal nodes.

function partition(T )
P ← ∅
for each internal node v of T do

A← taxa of all descendants of v in T
B ← taxa of all other leaves of T
P ← P ∪ {(A,B)}

return P

Once the partition of the taxa in each of the two phylogenetic trees induced
by each of their internal branches is known, the partition distance can be
computed by counting the number of partitions of the taxa in each of the
trees that do not belong to the partitions of the taxa in the other tree.

© 2009 by Taylor & Francis Group, LLC



142 Combinatorial Pattern Matching Algorithms in Computational Biology

function partition distance(T1, T2)
P1 ← partition(T1)
P2 ← partition(T2)
d← 0
for (A,B) ∈ P1 do

if (A,B) /∈ P2 then
d← d + 1

for (A,B) ∈ P2 do
if (A,B) /∈ P1 then

d← d + 1
return d

The representation of phylogenetic trees in BioPerl does not include any
method to compute the partition distance between two unrooted phylogenetic
trees. However, the partition of the taxa in a phylogenetic tree induced by
each internal branch (which, in the rooted representation of the unrooted tree,
are actually induced by each internal node) can be obtained by finding the
labels of all terminal nodes which are descendants of the internal node, finding
the labels of all other terminal nodes, and then joining them into a string,
using some appropriate delimiter symbol.

Notice that in the rooted representation of the unrooted tree, the two nodes
connected by an internal branch may induce the same partition of the taxa.
These repeated partitions are removed with the help of a hash, as illustrated
by the following Perl script.

sub partition {
my $tree = shift;
my %partition = ();
for my $node ($tree ->get_nodes) {

next if $node ->is_Leaf; # discard terminal nodes

next unless $node ->ancestor; # discard root

my @a = sort { $a cmp $b } map { $_ ->id }
grep {$_->is_Leaf } $node ->get_all_Descendents;

my $aa = join ",", @a;
my @b = ();
my %count = ();
foreach my $label (@a, map { $_ ->id } $tree ->

get_leaf_nodes) {
$count{$label }++

}
foreach my $label (keys %count) {

push @b, $label if $count{$label} == 1;
}
my $bb = join ",", sort { $a cmp $b } @b;
my $p = $aa le $bb ? "$aa:$bb" : "$bb:$aa";

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Trees 143

$partition{$p} = 1;
}
my @partition = sort keys %partition;
return \@partition;

}

Given the partition of the taxa in each of the two phylogenetic trees induced
by each of their internal branches, the partition distance can be computed by
counting the number of partitions of the taxa in each of the trees that do
not belong to the partitions of the taxa in the other tree. Such a symmetric
difference can be easily obtained by counting the number of occurrences of
each partition and then selecting only those partitions that occur at most
once, as illustrated by the following Perl script.

sub partition_distance {
my $tree1 = shift;
my $tree2 = shift;
my @partition1 = @{ partition($tree1) };
my @partition2 = @{ partition($tree2) };
my $dist = 0;
my %count = ();
foreach my $p (@partition1 , @partition2) {

$count{$p}++
}
foreach my $p (keys %count) {

$dist++ if $count{$p} == 1;
}
return $dist;

}

The representation of phylogenetic trees in R, on the other hand, also in-
cludes a function dist.topo to compute the partition distance between two
unrooted phylogenetic trees, as illustrated by the following R script.

> library(ape)

> t1 <- read.tree(text="((A,B),(C,D),(E,F));")
> t2 <- read.tree(text="(((A,B),E),(C,D),F);")
> t3 <- read.tree(text="((F,B),(C,E),(D,A));")

> dist.topo(t1,t2)
[1] 2
> dist.topo(t1,t3)
[1] 6
> dist.topo(t2,t3)
[1] 6

© 2009 by Taylor & Francis Group, LLC



144 Combinatorial Pattern Matching Algorithms in Computational Biology

6.1.3 The Nodal Distance between Unrooted Trees

The nodal distance, also called path difference metric, is based on the dis-
tances between each two terminal nodes in the two trees under comparison.
Let D(T ) be the length n(n − 1)/2 vector of nodal distances between each
pair of terminal nodes of an unrooted phylogenetic tree T , that is,

D(T ) = (dT (1, 2), dT (1, 3), . . . , dT (1, n), dT (2, 3), . . . , dT (n− 1, n)),

where the n terminal nodes of T are numbered 1, . . . , n. The nodal distance
dN (T1, T2) between two unrooted phylogenetic trees T1 and T2 is the sum of
the absolute differences between their vectors of nodal distances, that is,

dN (T1, T2) =
∑

16i<n

i<j6n

|dT1(i, j)− dT2(i, j)|

Example 6.6

The distances between each two terminal nodes in the following fully resolved
unrooted phylogenetic trees are given in the tables next to each of the trees.

(a)

A

B

C

D

E

F

A B C D E F
A 0 2 4 4 4 4
B 2 0 4 4 4 4
C 4 4 0 2 4 4
D 4 4 2 0 4 4
E 4 4 4 4 0 2
F 4 4 4 4 2 0

(b)

A

B

C D

F

E

A B C D E F
A 0 2 5 5 3 4
B 2 0 5 5 3 4
C 5 5 0 2 4 3
D 5 5 2 0 4 3
E 3 3 4 4 0 3
F 4 4 3 3 3 0

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Trees 145

(c)

F

B

C

E

D

A

A B C D E F
A 0 4 4 2 4 4
B 4 0 4 4 4 2
C 4 4 0 4 2 4
D 2 4 4 0 4 4
E 4 4 2 4 0 4
F 4 2 4 4 4 0

Their vectors of nodal distances are given in the following table, together with
the absolute differences between each pair of vectors. The nodal distance
between phylogenetic trees (a) and (b) is 9, between (a) and (c) is 12, and
between (b) and (c) is 19. Trees (a) and (b) are thus more similar to each
other than they are to tree (c).

(a) (b) (c) |(a)− (b)| |(a)− (c)| |(b)− (c)|
AB 2 2 4 0 2 2
AC 4 5 4 1 0 1
AD 4 5 2 1 2 3
AE 4 3 4 1 0 1
AF 4 4 4 0 0 0
BC 4 5 4 1 0 1
BD 4 5 4 1 0 1
BE 4 3 4 1 0 1
BF 4 4 2 0 2 2
CD 2 2 4 0 2 2
CE 4 4 2 0 2 2
CF 4 3 4 1 0 1
DE 4 4 4 0 0 0
DF 4 3 4 1 0 1
EF 2 3 4 1 2 1

9 12 19

The nodal distance between two unrooted phylogenetic trees can be ob-
tained by computing the distance between each pair of terminal nodes in
each of the trees and then computing the absolute difference between the two
vectors of nodal distances.

function nodal distance(T1, T2)
L← terminal node labels in T1 and T2

n← length(L)
d← 0
for i← 1, . . . , n− 1 do

i1 ← terminal node of T1 labeled L[i]
i2 ← terminal node of T2 labeled L[i]

© 2009 by Taylor & Francis Group, LLC



146 Combinatorial Pattern Matching Algorithms in Computational Biology

for j ← i + 1, . . . , n do
j1 ← terminal node of T1 labeled L[j]
j2 ← terminal node of T2 labeled L[j]
d1 ← distance(T1, i1, j1)
d2 ← distance(T2, i2, j2)
d← d + |d1 − d2|

return d

The representation of phylogenetic trees in BioPerl does not include any
method to compute the nodal distance between phylogenetic trees. However,
the distance method can be used to compute the vector of distances between
each pair of terminal nodes in an unrooted phylogenetic tree, as illustrated
by the following Perl script.

sub distances {
my $tree = shift;
my @leaves = sort {$a->id cmp $b ->id} $tree ->

get_leaf_nodes;
my @labels = map { $_->id } @leaves;
my $n = scalar @labels;
my @dist;
for my $i (1..$n -1) {

my @nodes = $tree ->find_node(-id => $labels[$i
-1]);

for my $j ($i+1..$n) {
push @nodes , $tree ->find_node(-id => $labels[$j

-1]);
push @dist , $tree ->distance(-nodes => \@nodes);
pop @nodes;

}
}
return \@dist;

}

The nodal distance between two unrooted phylogenetic trees can then be
computed by performing a simultaneous traversal of their vectors of distances,
as implemented by the nodal_distance method in the following Perl script.

sub nodal_distance {
my $tree1 = shift;
my $tree2 = shift;
my @dist1 = @{ distances($tree1) };
my @dist2 = @{ distances($tree2) };
my ($dist , $d1 , $d2);
while (@dist1 and @dist2) {

$d1 = pop @dist1;

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Trees 147

$d2 = pop @dist2;
$dist += abs($d1 -$d2);

}
return $dist;

}

The representation of phylogenetic trees in R does not include any method
to compute the nodal distance between phylogenetic trees, either. However, a
nodal.distance function can easily be defined using the cophenetic.phylo
function to compute the distance between each two terminal nodes, as illus-
trated by the following Perl script. The matrices of distances between each
pair of terminal nodes in each of the phylogenetic trees are first rearranged by
sorting the rows and columns by node label, in order to ensure the two trees
coincide in the numbering of terminal nodes.

> library(ape)
> nodal.distance <- function (t1 ,t2) {

m1<-cophenetic.phylo(t1)
m1<-m1[order(rownames(m1)),order(colnames(m1))]
n1<-m1[upper.tri(m1)]
m2<-cophenetic.phylo(t2)
m2<-m2[order(rownames(m2)),order(colnames(m2))]
n2<-m2[upper.tri(m2)]
sum(abs(n1 -n2))

}

> t1 <- compute.brlen(
read.tree(text="((A,B) ,(C,D),(E,F));"),
1)

> t2 <- compute.brlen(
read.tree(text="(((A,B),E),(C,D),F);"),
1)

> t3 <- compute.brlen(
read.tree(text="((F,B) ,(C,E),(D,A));"),
1)

> nodal.distance(t1,t2)
[1] 9
> nodal.distance(t1,t3)
[1] 12
> nodal.distance(t2,t3)
[1] 19

© 2009 by Taylor & Francis Group, LLC



148 Combinatorial Pattern Matching Algorithms in Computational Biology

6.2 Finding Paths in Rooted Trees

Any two nodes are connected by exactly one path in a rooted tree, as long
as no branch is to be traversed more than once in the path between the two
nodes, and such a unique path traverses the most recent common ancestor of
the two nodes in the tree.

The most recent common ancestor of two terminal nodes in a rooted phylo-
genetic tree can be found by obtaining first the lineages (paths to the root) of
the two terminal nodes in the tree and then finding the first node in one of the
lineages than also belongs to the other lineage. In the following description,
the lineage of node i in a rooted phylogenetic tree T is stored in a list L and
then the nodes in the lineage of node j are tested one after the other until a
node is found that also belongs to the lineage of node i.

function mrca(T, i, j)
L← {i}
k ← i
while T [k] 6= root(T ) do

k ← parent(T, k)
L← L ∪ {k}

k ← j
while k 6= root(T ) do

if k ∈ L then
return k

else
k ← parent(T, k)

Example 6.7

In the following fully resolved rooted phylogenetic tree, the most recent com-
mon ancestor of each pair of terminal nodes is indicated in the table to the
right. The four terminal nodes labeled A through D are numbered 1 through
4, respectively, and the three internal nodes are numbered 5 through 7, for
reference.

1
A

2
B

3
C

4
D

6 7

5

A B C D
A 1 6 5 5
B 6 2 5 5
C 5 5 3 7
D 5 5 7 4

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Trees 149

The representation of phylogenetic trees in BioPerl has a method get_lca
to find the most recent common ancestor of any subset of the nodes of a
phylogenetic tree, as illustrated by the following Perl script.

use Bio:: TreeIO;

my $input = new Bio:: TreeIO(
-fh => \*DATA ,
-format => "newick"

);
my $tree = $input ->next_tree;

my @nodes = $tree ->find_node(-id => "A");
push @nodes , $tree ->find_node(-id => "C");

my $mrca = $tree ->get_lca(-nodes => \@nodes);

__DATA__
((A,B) ,(C,D));

The representation of phylogenetic trees in R, on the other hand, includes
a function mrca to find the most recent common ancestor of each pair of
terminal nodes or the most recent common ancestor of each pair of nodes of
a phylogenetic tree, as illustrated by the following R script.

> library(ape)
> t <- read.tree(text="((A,B),(C,D));")

> mrca(t)
A B C D

A 1 6 5 5
B 6 2 5 5
C 5 5 3 7
D 5 5 7 4

> mrca(t,full=TRUE)
1 2 3 4 5 6 7

1 1 6 5 5 5 6 5
2 6 2 5 5 5 6 5
3 5 5 3 7 5 5 7
4 5 5 7 4 5 5 7
5 5 5 5 5 5 5 5
6 6 6 5 5 5 6 5
7 5 5 7 7 5 5 7

© 2009 by Taylor & Francis Group, LLC



150 Combinatorial Pattern Matching Algorithms in Computational Biology

6.2.1 Distances in Rooted Trees

The distance between any two terminal nodes in a rooted phylogenetic tree
is the sum of the length of the paths between the two nodes and their most
recent common ancestor in the tree. In the case of phylogenetic trees with
branch lengths, the distance between any two terminal nodes can be calculated
as the sum of the lengths of the branches along these paths.

The distance method provided by the representation of phylogenetic trees
in BioPerl also allows one to compute the distance between any two terminal
nodes of a rooted phylogenetic tree with branch lengths, as illustrated by the
following Perl script.

use Bio:: TreeIO;

my $input = new Bio:: TreeIO(
-fh => \*DATA ,
-format => "newick"

);

my $tree = $input ->next_tree;

my @nodes = grep { $_->id =~ /A|C/ } $tree ->get_nodes
;

my $dist = $tree ->distance(-nodes => \@nodes);

__DATA__
((A:1,B:1):1,(C:1,D:1):1):1;

The cophenetic.phylo function provided by the representation of phylo-
genetic trees in R, on the other hand, also allows one to compute the distance
between each pair of terminal nodes of a rooted phylogenetic tree with branch
lengths, while the dist.nodes function also allows one to compute the dis-
tance between each pair of nodes of a rooted phylogenetic tree with branch
lengths, as illustrated by the following R script.

> library(ape)
> t <- compute.brlen(read.tree(text="((A,B),(C,D));")

,1)

> cophenetic.phylo(t)
A B C D

A 0 2 4 4
B 2 0 4 4
C 4 4 0 2
D 4 4 2 0

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Trees 151

> dist.nodes(t)
1 2 3 4 5 6 7

1 0 2 4 4 2 1 3
2 2 0 4 4 2 1 3
3 4 4 0 2 2 3 1
4 4 4 2 0 2 3 1
5 2 2 2 2 0 1 1
6 1 1 3 3 1 0 2
7 3 3 1 1 1 2 0

6.2.2 The Partition Distance between Rooted Trees

The partition distance between two rooted phylogenetic trees can also be
computed by first obtaining, for each of the two phylogenetic trees, the parti-
tion of the taxa induced by each of their internal branches (where the partition
of the taxa induced by an internal branch (v, w) consists of the labels of all
terminal nodes which are descendants of node w and the labels of all other
terminal nodes) and then counting the number of partitions of the taxa in
each of the trees that do not belong to the partitions of the taxa in the other
tree.

The partition_distance Perl method presented above, as well as the
dist.topo R function, can also be used to compute the partition distance
between two rooted phylogenetic trees.

6.2.3 The Nodal Distance between Rooted Trees

The nodal distance between two rooted phylogenetic trees can also be ob-
tained by computing the distance between each pair of terminal nodes in
each of the trees and then computing the absolute difference between the two
vectors of nodal distances. Both the nodal_distance Perl method and the
nodal.distance R function presented above can also be used to compute the
nodal distance between two fully resolved rooted phylogenetic trees.

When the rooted phylogenetic trees are not fully resolved, however, the
nodal distance fails to be a metric on the space of rooted phylogenetic trees.
For instance, the following two rooted phylogenetic trees have nodal distance
zero, but they are non-isomorphic. Notice that in the representation of rooted
phylogenetic trees in R, the length of the branch to the root has to be set to 0
if the root is not fully resolved; otherwise, the tree is interpreted as unrooted.

Example 6.8

The rooted phylogenetic trees with Newick string ((A,B),C,D); (left) and
(A,B,(C,D)); (right) have the same vectors of nodal distances and, thus,
their nodal distance is 0.

© 2009 by Taylor & Francis Group, LLC



152 Combinatorial Pattern Matching Algorithms in Computational Biology

A B C D A B C D

> t1 <- compute.brlen(read.tree(text="((A,B),C,D);")
,1)

> t1$root.edge <- 0
> t2 <- read.tree(text="(A:1,B:1,(C:1,D:1) :1) :0;")
> cophenetic.phylo(t1)

A B C D
A 0 2 3 3
B 2 0 3 3
C 3 3 0 2
D 3 3 2 0
> cophenetic.phylo(t2)

A B C D
A 0 2 3 3
B 2 0 3 3
C 3 3 0 2
D 3 3 2 0
> nodal.distance(t1,t2)
[1] 0

Bibliographic Notes

The partition distance between unrooted phylogenetic trees was introduced
by Robinson and Foulds (1981) and further studied in (Penny and Hendy 1985;
Rzhetsky and Nei 1992). Improved algorithms for computing the partition
distance can be found in Day (1985); Pattengale et al. (2007).

The nodal distance between phylogenetic trees was first studied by Williams
and Clifford (1971) and later rediscovered by Bluis and Shin (2003), and it was
proved to be a metric on the space of unrooted phylogenetic trees in (Zaretskii
1965). Further properties of the nodal distance (also called path difference
metric) were studied by Steel and Penny (1993).

Efficient algorithms for finding most recent common ancestors in rooted
trees can be found in (Bender and Farach-Colton 2000; Bender et al. 2005).

The partition distance and the nodal distance are two widely used measures
to assess the similarities and differences between two phylogenetic trees. Other
distances between unrooted phylogenetic trees include the nearest neighbor
interchange distance, the subtree transfer distance, and the quartet distance.

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Trees 153

Further distances between rooted phylogenetic trees include the transposition
distance.

A nearest neighbor interchange operation is the swap of two subtrees that
are separated by an internal edge in a fully resolved unrooted phylogenetic
tree, and the nearest neighbor interchange distance between two fully resolved
unrooted phylogenetic trees is the smallest number of nearest neighbor inter-
change operations needed to transform one tree into the other. The nearest
neighbor interchange distance was introduced independently in (Robinson and
Foulds 1971) and (Moore et al. 1973). See also (Smith and Waterman 1980).
Computing the nearest neighbor interchange distance is NP-hard (DasGupta
et al. 1997; Křivánek 1986).

A more general operation is the transfer of a subtree from one place to an-
other, and the subtree transfer distance between two fully resolved unrooted
phylogenetic trees is the smallest number of subtree transfer operations needed
to transform one tree into the other. The subtree transfer distance was in-
troduced by Hein (1990) and further studied in (Hein 1993). Computing the
subtree transfer distance is also NP-hard (Hein et al. 1996). See also (Allen
and Steel 2001).

The quartet distance is the number of quartets (subtrees induced by four
terminal nodes) that differ between two fully resolved unrooted phylogenetic
trees. The quartet distance was introduced in (Estabrook et al. 1985). Unlike
nearest neighbor interchange and subtree transfer, the quartet distance can
be computed in polynomial time (Brodal et al. 2003; Bryant et al. 2000;
Christiansen et al. 2006).

The transposition distance between two fully resolved rooted phylogenetic
trees is the smallest number of transpositions needed to transform the match-
ing representation of one tree into the matching representation of the other
one. The transposition distance, which was introduced in (Valiente 2005), can
be computed in polynomial time.

© 2009 by Taylor & Francis Group, LLC



Chapter 7

General Pattern Matching in Trees

Combinatorial pattern matching is the search for exact or approximate oc-
currences of a given pattern within a given text. When it comes to trees
in computational biology, both the pattern and the text are trees and the
pattern matching problem becomes one of finding the occurrences of a tree
within another tree. For instance, scanning an RNA secondary structure for
the presence of a known pattern can help in finding conserved RNA motifs,
and finding a phylogenetic tree within another phylogenetic tree can help in
assessing their similarities and differences. This is the subject of this chapter.

7.1 Finding Subtrees

There are several ways in which a tree can be contained in another tree.
In the most general sense, a subtree of a given (unrooted or rooted) tree is a
connected subgraph of the tree, while in the case of rooted trees, a distinction
can be made between top-down and bottom-up subtrees.

A bottom-up subtree of a given rooted tree is the whole subtree rooted at
some node of the tree, and a connected subgraph of a rooted tree is called a
top-down subtree if the parent of all nodes in the subtree (up to, and including,
the most recent common ancestor of all nodes in the subtree) also belongs to
the subtree. Further, the subtree of an (unrooted or rooted) tree induced by
a set of terminal nodes is the unique connected subgraph that contains the
set of terminal nodes but does not include any other connected subgraph of
the given tree with these terminal nodes, where elementary paths (paths of
two or more edges without internal branching) are contracted to single edges
in a subgraph.

In the following example, the elementary path of three edges between the
terminal node labeled C and the most recent common ancestor of the terminal
nodes labeled C and E is contracted to a single edge in the subtree induced
by the terminal nodes labeled A, C, and E.

Example 7.1
In the following fully resolved rooted phylogenetic tree, a top-down subtree is

155
© 2009 by Taylor & Francis Group, LLC



156 Combinatorial Pattern Matching Algorithms in Computational Biology

shown highlighted (left), and the bottom-up subtree rooted at the most recent
common ancestor of the terminal nodes labeled B, C, D, and E is also shown
(middle), together with the subtree induced by the terminal nodes labeled A,
C, and E (right).

A B C D E B C D E A C E

Example 7.2

In the following fully resolved unrooted phylogenetic tree (left), the subtree
induced by the terminal nodes labeled A, B, C, and F is shown highlighted be-
fore contraction of elementary paths. The subtree resulting from contraction
of elementary paths is shown to the right.

A

B

C D

F

E

A

B C

F

7.1.1 Finding Subtrees Induced by Triplets

Finding subtrees induced by triplets of terminal nodes in rooted trees is an
interesting problem, because a rooted tree can be reconstructed in a unique
way from the set of all its triplet topologies. Given a triplet of terminal nodes,
there are only three possible induced subtrees if the phylogenetic tree is fully
resolved.

Example 7.3

There are three fully resolved rooted phylogenetic trees on three terminal
nodes.

A B C A C B B C A

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Trees 157

The subtree induced by a triplet of terminal nodes of a fully resolved rooted
phylogenetic tree can be obtained by removing all other terminal nodes and
then contracting any elementary paths. However, a more efficient algorithm
consists in first finding the most recent common ancestor of each pair of termi-
nal nodes from the given triplet and then building the induced subtree by dis-
tinguishing among the three possible topologies on the basis of the relationship
among the most recent common ancestors. In the following description, the
three possible triplet topologies are distinguished by mrca(i, k) = mrca(j, k),
mrca(i, j) = mrca(j, k), and mrca(i, j) = mrca(i, k), and their Newick string
is output.

ik = jk

ij

i j k

ij = jk

ik

i k j

ij = ik

jk

j k i

function triplet(T, i, j, k)
ij ← mrca(T, i, j)
ik ← mrca(T, i, k)
jk ← mrca(T, j, k)
if ik = jk then

return ((i, j), k);
else

if ij = jk then
return ((i, k), j);

else
return ((j, k), i);

The representation of phylogenetic trees in BioPerl does not include any
method to compute subtrees induced by triplets of terminal nodes. Never-
theless, the subtree of a fully resolved rooted phylogenetic tree induced by a
triplet of terminal nodes can be easily obtained by using the get_lca method
to find the most recent common ancestor of the terminal nodes in the given
triplet, as illustrated by the following Perl script.

use Bio:: TreeIO;

my $input = new Bio:: TreeIO(
-fh => \*DATA ,
-format => "newick"

);

my $tree = $input ->next_tree;

© 2009 by Taylor & Francis Group, LLC



158 Combinatorial Pattern Matching Algorithms in Computational Biology

sub triplet {
my $tree = shift;
my $i = shift;
my $j = shift;
my $k = shift;

my @ij = grep { $_->id =~ /$i|$j/ } $tree ->
get_leaf_nodes;

my @ik = grep { $_->id =~ /$i|$k/ } $tree ->
get_leaf_nodes;

my @jk = grep { $_->id =~ /$j|$k/ } $tree ->
get_leaf_nodes;

my $ij = $tree ->get_lca(-nodes => \@ij);
my $ik = $tree ->get_lca(-nodes => \@ik);
my $jk = $tree ->get_lca(-nodes => \@jk);

my $str;
if ($ik == $jk) {

$str = "(($i,$j),$k);";
} else {

if ($ij == $jk) {
$str = "(($i,$k),$j);";

} else {
$str = "(($j,$k),$i);";

}
}

return $str;
}

my $str = triplet($tree ,"A","C","E");

__DATA__
(A,(((B,C),D),E));

The representation of phylogenetic trees in R does not include any method
to compute subtrees induced by triplets of terminal nodes either. However, a
triplet function can easily be defined using the mrca function, as illustrated
by the following R script.

> library(ape)

> triplet <- function (t,i,j,k) {
ij <- mrca(t)[i,j]
ik <- mrca(t)[i,k]

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Trees 159

jk <- mrca(t)[j,k]
if (ik == jk)

paste("((",i,",",j,"),",k,");",sep="")
else

if (ij == jk)
paste("((",i,",",k,"),",j,");",sep="")

else
paste("((",j,",",k,"),",i,");",sep="")

}

> t <- read.tree(text="(A,(((B,C),D),E));")

> triplet(t,"A","C","E")
[1] "((C,E),A);"

7.1.2 Finding Subtrees Induced by Quartets

In unrooted trees, finding subtrees induced by quartets of terminal nodes is
also an interesting problem, because an unrooted tree can be reconstructed in
a unique way from the set of all its quartet topologies. Given a quartet of ter-
minal nodes, there are only three possible induced subtrees if the phylogenetic
tree is fully resolved.

Example 7.4
There are three fully resolved unrooted phylogenetic trees on four terminal
nodes.

A

B

C

D

A

C

B

D

A

D

B

C

The subtree induced by a quartet of terminal nodes of a fully resolved un-
rooted phylogenetic tree can be obtained by removing all other terminal nodes
and then contracting any elementary paths. In the following description, the
removal of a terminal node causes the removal of the corresponding external
branch, while the removal of an internal node originates the contraction of
the corresponding internal branches, and the Newick string of the resulting
induced subtree is output.

function quartet(T, i, j, k, `)
for each node v of T do

if v is a terminal node labeled i, j, k or ` then

© 2009 by Taylor & Francis Group, LLC



160 Combinatorial Pattern Matching Algorithms in Computational Biology

w ← node of T adjacent to node v
remove nodes v and w from T

The representation of phylogenetic trees in BioPerl does not include any
method to compute subtrees induced by quartets of terminal nodes. Never-
theless, the subtree of a fully resolved unrooted phylogenetic tree induced by
a quartet of terminal nodes can be easily obtained by using the remove_Node
method to remove terminal nodes and contract the corresponding elementary
paths from a copy of an unrooted phylogenetic tree, obtained using the clone
method from the Clone module, as illustrated by the following Perl script.

use Clone qw(clone);

sub quartet {
my ($tree ,$i,$j,$k,$l) = @_;
my $copy = clone $tree;

map { $copy ->remove_Node($_) }
grep { !($_->id =~ /$i|$j|$k|$l/) }
$copy ->get_leaf_nodes;

return $copy;
}

The representation of phylogenetic trees in R does not include any method
to compute subtrees induced by quartets of terminal nodes, either. However, a
quartet function can easily be defined using the drop.tip function to remove
terminal branches and the corresponding internal branches from an unrooted
phylogenetic tree, as illustrated by the following R script.

> library(ape)

> quartet <- function (t,i,j,k,l) {
unroot(drop.tip(t,setdiff(t$tip.label ,c(i,j,k,l))))

}

> t <- read.tree(text="((A,B),(C,D),(E,F));")
> q <- quartet(t,"A","B","C","F")
> write.tree(q)
[1] "((A,B),C,F);"

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Trees 161

7.2 Finding Common Subtrees

Subtrees shared by two trees reveal information common to the two trees.
As there are several ways in which a tree can be contained in another tree,
common subtrees can be bottom-up, top-down, or induced by a set of terminal
nodes. Further, in order to reveal the most of their shared information, it is
interesting to find common subtrees of largest size between two given trees.

7.2.1 Maximum Agreement of Rooted Trees

Two (unrooted or rooted) phylogenetic trees are said to agree on a set of
terminal nodes if their subtrees induced by that set of terminal nodes are
isomorphic, and a maximum agreement subtree of two phylogenetic trees is a
common subtree induced by a set of terminal nodes of largest possible size.

Example 7.5

The following fully resolved rooted phylogenetic trees agree on the set of
terminal nodes labeled A, B, D, and E, and this is the largest set of terminal
nodes on which they agree. Thus, their maximum agreement subtree has four
terminal nodes.

A B C D E F A B F D E C

Example 7.6

The following fully resolved unrooted phylogenetic trees also agree on the set
of terminal nodes labeled A, B, D, and E, and this is the largest set of terminal
nodes on which they agree. Their maximum agreement subtree also has four
terminal nodes.

A

B

C

D

E

F

A

B

F

D

E

C

© 2009 by Taylor & Francis Group, LLC



162 Combinatorial Pattern Matching Algorithms in Computational Biology

A maximum agreement subtree of two fully resolved rooted phylogenetic
trees can be obtained by matching one of the trees to the other one in such a
way that the number of common terminal nodes is maximized. If one of the
trees is just a terminal node, the maximum agreement subtree will consist of
a single node (a tree of size one) if there is a terminal node labeled the same
in the other tree, and it will be empty (of size zero) otherwise. In general,
when the two trees have three or more nodes each, the maximum agreement
subtree will result from either matching the subtree rooted at a child of the
root in one of the trees to the other tree or matching the two subtrees in one
tree to the two subtrees in the other tree.

Thus, in general, the number of terminal nodes M(T1, T2) of a maximum
agreement subtree of two fully resolved rooted phylogenetic trees T1 and T2

is given by the recurrence

M(T1[v1], T2[v2]) = max



M(T1[`1], T2[`2]) + M(T1[r1], T2[r2])
M(T1[`1], T2[r2]) + M(T1[r1], T2[`2])
M(T1[`1], T2[v2])
M(T1[r1], T2[v2])
M(T1[v1], T2[`2])
M(T1[v1], T2[r2])

where T1[v1] is the subtree of T1 rooted at node v1, with left child `1 and right
child r1, and T2[v2] is the subtree of T2 rooted at node v2, with left child `2
and right child r2. Notice that in phylogenetic trees, the distinction between
left and right children is arbitrary, and it is just a way to refer to each of the
two children of an internal node in a fully resolved rooted phylogenetic tree.
The six cases are as follows.

• Match T1[`1] to T2[`2] and T1[r1] to T2[r2]

• Match T1[`1] to T2[r2] and T1[r1] to T2[`2]

• Match T1[`1] (which contains all the common terminal nodes) to T2[v2]

• Match T1[r1] (which contains all the common terminal nodes) to T2[v2]

• Match T1[v1] to T2[`2] (which contains all the common terminal nodes)

• Match T1[v1] to T2[r2] (which contains all the common terminal nodes)

The number of terminal nodes of a maximum agreement subtree of two fully
resolved rooted phylogenetic trees can be obtained by computing the number
of terminal nodes of a maximum agreement subtree of the trees rooted in turn
at each node of the given trees, using dynamic programming. It suffices to
perform the computation upon the two trees in postorder.

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Trees 163

function mast(T1, T2)
for each node v1 of T1 in postorder do

for each node v2 of T2 in postorder do
M [v1, v2]← 0
if v1 is a terminal node then

if v2 is a terminal node then
if v1 and v2 are labeled the same then

M [v1, v2]← 1
else

if T2[v2] has a terminal node labeled as v1 then
M [v1, v2]← 1

else
if v2 is a terminal node then

if T1[v1] has a terminal node labeled as v2 then
M [v1, v2]← 1

else
`1, r1 ← children of v1

`2, r2 ← children of v2

m1 ←M [`1, `2] + M [r1, r2]
m2 ←M [`1, r2] + M [r1, `2]
m3 ←M [v1, `2]
m4 ←M [v1, r2]
m5 ←M [`1, v2]
m6 ←M [r1, v2]
M [v1, v2]← max{m1,m2,m3,m4,m5,m6}

return M [root(T1), root(T2)]

Example 7.7

A maximum agreement subtree of the fully resolved rooted phylogenetic trees
with Newick string (((A,B),(C,D)),(E,F)); and (((A,B),(F,D)),(E,C));
has 4 terminal nodes, as shown in the last entry of the following dynamic
programming table.

1
A

2
B

4
C

5
D

8
E

9
F

3 6

7

10

11

1
A

2
B

5
D

8
E

3

7

11

1
A

2
B

4
F

5
D

8
E

9
C

3 6

7

10

11

© 2009 by Taylor & Francis Group, LLC



164 Combinatorial Pattern Matching Algorithms in Computational Biology

1 2 3 4 5 6 7 8 9 10 11
1 1 0 1 0 0 0 1 0 0 0 1
2 0 1 1 0 0 0 1 0 0 0 1
3 1 1 2 0 0 0 2 0 0 0 2
4 0 0 0 0 0 0 0 0 1 1 1
5 0 0 0 0 1 1 1 0 0 0 1
6 0 0 0 0 1 1 1 0 1 1 2
7 1 1 2 0 1 1 3 0 1 1 3
8 0 0 0 0 0 0 0 1 0 1 1
9 0 0 0 1 0 1 1 0 0 0 1
10 0 0 0 1 0 1 1 1 0 1 2
11 1 1 2 1 1 2 3 1 1 2 4

The representation of phylogenetic trees in BioPerl does not include any
method to compute the number of terminal nodes of a maximum agreement
subtree of two fully resolved rooted phylogenetic trees. However, the previous
algorithm can easily be implemented using the postorder_traversal method
from the Bio::Tree::Compatible module to perform the computation upon
the two trees in postorder, as shown in the following Perl script.

sub mast_size {
my $tree1 = shift;
my $tree2 = shift;
my (@m, $m);
for my $node1 (@{ $tree1 ->Bio::Tree:: Compatible ::

postorder_traversal }) {
my $n1 = $node1 ->internal_id;
for my $node2 (@{ $tree2 ->Bio::Tree:: Compatible ::

postorder_traversal }) {
my $n2 = $node2 ->internal_id;
if ($node1 ->is_Leaf) {

if ($node2 ->is_Leaf) {
$m = ($node1 ->id eq $node2 ->id ? 1 : 0);

} else {
my $label1 = $node1 ->id;
$m = (grep { /$label1/ } map { $_ ->id }

grep { $_->is_Leaf } $node2 ->
get_all_Descendents) ? 1 : 0;

}
} else {

if ($node2 ->is_Leaf) {
my $label2 = $node2 ->id;
$m = (grep { /$label2/ } map { $_ ->id }

grep { $_->is_Leaf } $node1 ->
get_all_Descendents) ? 1 : 0;

} else {

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Trees 165

my ($l1 ,$r1) = map { $_ ->internal_id }
$node1 ->each_Descendent;

my ($l2 ,$r2) = map { $_ ->internal_id }
$node2 ->each_Descendent;

$m = $m[$l1][$l2] + $m[$r1][$r2];
if ($m[$l1][$r2] + $m[$r1][$l2] > $m) {

$m = $m[$l1][$r2] + $m[$r1][$l2];
}
if ($m[$n1][$l2] > $m) {

$m = $m[$n1][$l2];
}
if ($m[$n1][$r2] > $m) {

$m = $m[$n1][$r2];
}
if ($m[$l1][$n2] > $m) {

$m = $m[$l1][$n2];
}
if ($m[$r1][$n2] > $m) {

$m = $m[$r1][$n2];
}

}
}
$m[$n1][$n2] = $m;

}
}
return $m;

}

The representation of phylogenetic trees in R does not include any method
to compute the number of terminal nodes of a maximum agreement subtree
of two fully resolved rooted phylogenetic trees, either. However, the previous
algorithm can easily be implemented with the help of a function to obtain the
parent of a node in a tree,

> parent <- function (tree ,node)
tree$edge[which(tree$edge [ ,2]== node) ,1]

to access the children of a node in a tree,

> children <- function (tree ,node)
tree$edge[which(tree$edge [ ,1]== node) ,2]

to determine if a node is the root of a tree,

> is.root <- function (tree ,node)
length(tree$tip.label)+1== node

to determine if a node is an ancestor of another node in a tree,

© 2009 by Taylor & Francis Group, LLC



166 Combinatorial Pattern Matching Algorithms in Computational Biology

> is.ancestor <- function(tree ,anc ,des) {
if (anc==des) return(TRUE)
if (is.root(tree ,des)) return(FALSE)
else return(is.ancestor(tree ,anc ,parent(tree ,des)))

}

and to perform a postorder traversal of a tree,

> postorder <- function (tree) {
r <- length(tree$tip.label)+1
postorder.traversal(tree ,r,c())

}
> postorder.traversal <- function (tree ,v,res) {

for (w in t1$edge[which(tree$edge [ ,1]==v) ,2])
res <- postorder.traversal(tree ,w,res)

c(res ,v)
}

Now, the previous algorithm for computing the number of terminal nodes
of a maximum agreement subtree of two fully resolved rooted phylogenetic
trees can be implemented as shown in the following R script.

> mast.size <- function (t1 ,t2) {
po1 <- postorder(t1)
po2 <- postorder(t2)
m <- matrix(0,nrow=length(po1),ncol=length(po2),

dimnames=list(po1 ,po2))
for (i in po1) {

for (j in po2) {
if (length(t1$edge[which(t1$edge [,1]==i) ,1])

==0) {
if (length(t2$edge[which(t2$edge [,1]==j) ,1])

==0) {
if (t1$tip.label[i]==t2$tip.label[j]) m[i,j

] <- 1
} else {

jj <- which(t2$tip.label==t1$tip.label[i])
if (is.ancestor(t2,j,jj)) m[i,j] <- 1

}
} else {

if (length(t2$edge[which(t2$edge [,1]==j) ,1])
==0) {

ii <- which(t1$tip.label==t2$tip.label[j])
if (is.ancestor(t1,i,ii)) m[i,j] <- 1

} else {
l1 <- children(t1,i)[1]
r1 <- children(t1,i)[2]

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Trees 167

l2 <- children(t2,j)[1]
r2 <- children(t2,j)[2]
m[i,j] <- max(m[l1 ,l2]+m[r1,r2],m[l1,r2]+m[

r1 ,l2],m[i,l2],m[i,r2],m[l1,j],m[r1,j])
}

}
}

}
m <- m[po1 ,po2]
dimnames(m) <- list(po1 ,po2)
m

}

Recall that with the representation of a phylogenetic tree in the R package
APE, the terminal nodes are numbered 1, . . . , n and the root is numbered n+1.
Therefore, in a postorder traversal of the fully resolved rooted phylogenetic
trees from the previous example, the numbering of the nodes is 1, 2, 9, 3, 4,
10, 8, 5, 6, 11, 7.

> t1 <- read.tree(text="(((A,B),(C,D)),(E,F));")
> t2 <- read.tree(text="(((A,B),(F,D)),(E,C));")
> mast.size(t1,t2)

1 2 9 3 4 10 8 5 6 11 7
1 1 0 1 0 0 0 1 0 0 0 1
2 0 1 1 0 0 0 1 0 0 0 1
9 1 1 2 0 0 0 2 0 0 0 2
3 0 0 0 0 0 0 0 0 1 1 1
4 0 0 0 0 1 1 1 0 0 0 1
10 0 0 0 0 1 1 1 0 1 1 2
8 1 1 2 0 1 1 3 0 1 1 3
5 0 0 0 0 0 0 0 1 0 1 1
6 0 0 0 1 0 1 1 0 0 0 1
11 0 0 0 1 0 1 1 1 0 1 2
7 1 1 2 1 1 2 3 1 1 2 4

An actual maximum agreement subtree of two fully resolved rooted phylo-
genetic trees can be obtained as the subtree (of any of the two trees) induced
by a set of common terminal nodes of largest size on which the two trees agree.
Now, the set of terminal nodes in a maximum agreement subtree of two fully
resolved rooted phylogenetic trees can be obtained by computing the set of
terminal nodes in a maximum agreement subtree of the trees rooted in turn
at each node of the given trees, using dynamic programming.

function mast(T1, T2)
for each node v1 of T1 in postorder do

for each node v2 of T2 in postorder do

© 2009 by Taylor & Francis Group, LLC



168 Combinatorial Pattern Matching Algorithms in Computational Biology

M [v1, v2]← ∅
if v1 is a terminal node then

if v2 is a terminal node then
if v1 and v2 are labeled the same then

M [v1, v2]← {label of v1}
else

if T2[v2] has a terminal node labeled as v1 then
M [v1, v2]← {label of v1}

else
if v2 is a terminal node then

if T1[v1] has a terminal node labeled as v2 then
M [v1, v2]← {label of v2}

else
`1, r1 ← children of v1

`2, r2 ← children of v2

M [v1, v2]←M [`1, `2] ∪M [r1, r2]
if size(M [`1, r2]) + size(M [r1, `2]) > size(M [v1, v2]) then

M [v1, v2]←M [`1, r2] ∪M [r1, `2]
if size(M [v1, `2]) > size(M [v1, v2]) then

M [v1, v2]←M [v1, `2]
if size(M [v1, r2]) > size(M [v1, v2]) then

M [v1, v2]←M [v1, r2]
if size(M [`1, v2]) > size(M [v1, v2]) then

M [v1, v2]←M [`1, v2]
if size(M [r1, v2]) > size(M [v1, v2]) then

M [v1, v2]←M [r1, v2]
return M [root(T1), root(T2)]

Example 7.8

A maximum agreement subtree of the fully resolved rooted phylogenetic trees
with Newick string (((A,B),(C,D)),(E,F)); (left) and with Newick string
(((A,B),(F,D)),(E,C)); (right) is the fully resolved rooted phylogenetic
tree with Newick string (((A,B),D),E); (middle).

1
A

2
B

4
C

5
D

8
E

9
F

3 6

7

10

11

1
A

2
B

5
D

8
E

3

7

11

1
A

2
B

4
F

5
D

8
E

9
C

3 6

7

10

11

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Trees 169

The maximum agreement subtree has four terminal nodes labeled A, B, D,
and E, as shown in the last entry of the following dynamic programming
table. Notice that there are two maximum agreement subtrees of the left
subtree rooted at node 11 and the right subtree rooted at node 7, which are
induced by the terminal nodes labeled A, B, D and by the terminal nodes
labeled A, B, F (the latter shown in the dynamic programming table). Also,
there are two maximum agreement subtrees of the left subtree rooted at node
7 and the right subtree rooted at node 11, which are induced by the terminal
nodes labeled A, B, D (shown in the dynamic programming table) and by the
terminal nodes labeled A, B, C.

1 2 3 4 5 6 7 8 9 10 11
1 A A A A
2 B B B B
3 A B A,B A,B A,B
4 C C C
5 D D D D
6 D D D C C C,D
7 A B A,B D D A,B,D C C A,B, C

8 E E E
9 F F F F
10 F F F E E E,F
11 A B A,B F D D,F A,B, F E C C,E A,B,D, E

The previous algorithm for obtaining an actual maximum agreement sub-
tree of two fully resolved rooted phylogenetic trees can easily be implemented
by storing an array of terminal node labels at each position of the dynamic
programming table, as shown in the following Perl script.

sub mast {
my $tree1 = shift;
my $tree2 = shift;
my @m;
for my $node1 (@{ $tree1 ->Bio::Tree:: Compatible ::

postorder_traversal }) {
my $n1 = $node1 ->internal_id;
for my $node2 (@{ $tree2 ->Bio::Tree:: Compatible ::

postorder_traversal }) {
my $n2 = $node2 ->internal_id;
my @mm = ();
if ($node1 ->is_Leaf) {

if ($node2 ->is_Leaf) {
if ($node1 ->id eq $node2 ->id) {

© 2009 by Taylor & Francis Group, LLC



170 Combinatorial Pattern Matching Algorithms in Computational Biology

@mm = ($node1 ->id);
}

} else {
my $label1 = $node1 ->id;
if (grep { /$label1/ } map { $_ ->id } grep

{ $_ ->is_Leaf } $node2 ->
get_all_Descendents) {

@mm = ($label1);
}

}
} else {

if ($node2 ->is_Leaf) {
my $label2 = $node2 ->id;
if (grep { /$label2/ } map { $_ ->id } grep

{ $_ ->is_Leaf } $node1 ->
get_all_Descendents) {

@mm = ($label2);
}

} else {
my ($l1 ,$r1) = map { $_ ->internal_id }

$node1 ->each_Descendent;
my ($l2 ,$r2) = map { $_ ->internal_id }

$node2 ->each_Descendent;
@mm = @{$m[$l1][$l2 ]};
push @mm , @{$m[$r1][$r2]};
if (scalar(@{$m[$l1][$r2]})+scalar(@{$m[$r1

][$l2 ]})>scalar(@mm)) {
@mm = @{$m[$l1][$r2 ]};
push @mm , @{$m[$r1][$l2]};

}
if (scalar(@{$m[$n1][$l2]})>scalar(@mm)) {

@mm = @{$m[$n1][$l2 ]};
}
if (scalar(@{$m[$n1][$r2]})>scalar(@mm)) {

@mm = @{$m[$n1][$r2 ]};
}
if (scalar(@{$m[$l1][$n2]})>scalar(@mm)) {

@mm = @{$m[$l1][$n2 ]};
}
if (scalar(@{$m[$r1][$n2]})>scalar(@mm)) {

@mm = @{$m[$r1][$n2 ]};
}

}
}
$m[$n1][$n2] = \@mm;

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Trees 171

}
}
return \@m;

}

The previous algorithm for obtaining an actual maximum agreement sub-
tree of two fully resolved rooted phylogenetic trees can also be implemented by
extending the previous R implementation, storing a vector of terminal node
labels at each position of the dynamic programming table, as shown in the
following R script.

> mast <- function (t1,t2) {
po1 <- postorder(t1)
po2 <- postorder(t2)
m <- matrix(rep(list(),length(po1)),nrow=length(po1

),ncol=length(po2),dimnames=list(po1 ,po2))
for (i in po1) {

for (j in po2) {
mm <- list()
if (length(t1$edge[which(t1$edge [,1]==i) ,1])

==0) {
if (length(t2$edge[which(t2$edge [,1]==j) ,1])

==0) {
if (t1$tip.label[i]==t2$tip.label[j])

mm <- c(t1$tip.label[i])
} else {

jj <- which(t2$tip.label==t1$tip.label[i])
if (is.ancestor(t2,j,jj))

mm <- c(t1$tip.label[i])
}

} else {
if (length(t2$edge[which(t2$edge [,1]==j) ,1])

==0) {
ii <- which(t1$tip.label==t2$tip.label[j])
if (is.ancestor(t1,i,ii))

mm <- c(t2$tip.label[j])
} else {

l1 <- children(t1,i)[1]
r1 <- children(t1,i)[2]
l2 <- children(t2,j)[1]
r2 <- children(t2,j)[2]
mm <- c(m[[l1,l2]],m[[r1 ,r2]])
if ( length(m[[l1,r2]]) + length(m[[r1 ,l2

]]) > length(mm) )
mm <- c(m[[l1,r2]],m[[r1 ,l2]])

if ( length(m[[i,l2]]) > length(mm) )

© 2009 by Taylor & Francis Group, LLC



172 Combinatorial Pattern Matching Algorithms in Computational Biology

mm <- m[[i,l2]]
if ( length(m[[i,r2]]) > length(mm) )

mm <- m[[i,r2]]
if ( length(m[[l1,j]]) > length(mm) )

mm <- m[[l1,j]]
if ( length(m[[r1,j]]) > length(mm) )

mm <- m[[r1,j]]
}

}
m[[i,j]] <- mm

}
}
unlist(m[[ length(t1$tip.label)+1,length(t2$tip.

label)+1]])
}

> t1 <- read.tree(text="(((A,B),(C,D)),(E,F));")
> t2 <- read.tree(text="(((A,B),(F,D)),(E,C));")
> mast(t1,t2)
[1] "a" "b" "d" "e"

7.2.2 Maximum Agreement of Unrooted Trees

A maximum agreement subtree of two fully resolved unrooted phylogenetic
trees can be obtained by computing a maximum agreement subtree of the first
tree rooted at an arbitrary node and the second tree rooted at each node in
turn. The largest of them is a maximum agreement subtree of the unrooted
phylogenetic trees.

7.3 Comparing Trees

The similarities and differences between two phylogenetic trees can be as-
sessed by computing a distance measure between the two trees. The triplets
distance is based on the subtrees induced by triplets of terminal nodes in two
rooted phylogenetic trees, and the quartets distance is based on the subtrees
induced by quartets of terminal nodes in two unrooted phylogenetic trees.

7.3.1 The Triplets Distance between Rooted Trees

The triplets distance is based on the subtrees induced by triplets of terminal
nodes in the two trees under comparison. The sets of subtrees induced by

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Trees 173

triplets of terminal nodes reveal similarities and differences between two fully
resolved rooted phylogenetic trees.

The triplets distance between two fully resolved rooted phylogenetic trees
labeled over the same taxa is defined as the size of the symmetric difference
of their sets of triplets, that is, the number of triplets in which the two phy-
logenetic trees differ.

Example 7.9
Consider again the fully resolved rooted phylogenetic trees with Newick string
(((A,B),(C,D)),(E,F)); and (((A,B),(F,D)),(E,C)); and n = 6 terminal
nodes labeled A, B, C, D, E, F.

T1

A B C D E F A B F D E C

T2

The sets of
(
6
3

)
= 20 triplets induced by the terminal nodes of each of them

are given in the following table, where the triplets common to the two trees
are marked with an asterisk.

T1 T2

∗ ((A,B),C); ((A,B),C); ∗
∗ ((A,B),D); ((A,B),D); ∗
∗ ((A,B),E); ((A,B),E); ∗
∗ ((A,B),F); ((A,B),F); ∗

((C,D),A); ((A,D),C);
((A,C),E); ((C,E),A);
((A,C),F); ((A,F),C);

∗ ((A,D),E); ((A,D),E); ∗
((A,D),F); ((D,F),A);
((E,F),A); ((A,F),E);
((C,D),B); ((B,D),C);
((B,C),E); ((C,E),B);
((B,C),F); ((B,F),C);

∗ ((B,D),E); ((B,D),E); ∗
((B,D),F); ((D,F),B);
((E,F),B); ((B,F),E);
((C,D),E); ((C,E),D);
((C,D),F); ((D,F),C);
((E,F),C); ((C,E),F);
((E,F),D); ((D,F),E);

The two phylogenetic trees differ in 14 of the 20 triplets and, thus, their
triplets distance is 28.

© 2009 by Taylor & Francis Group, LLC



174 Combinatorial Pattern Matching Algorithms in Computational Biology

The triplets distance between two phylogenetic trees can be computed by
first obtaining the triplet induced by each set of three terminal node labels
in each of the trees and then counting the number of triplets in which the
two trees differ. In the following description, the two sets of

(
n
3

)
triplets are

obtained using the previous algorithm for finding the subtree induced by a
triplet of terminal nodes upon each set of three terminal node labels in turn.

function triplets distance(T1, T2)
L← terminal node labels in T1 and T2

n← length(L)
d← 0
for i← 1, . . . , n do

for j ← i + 1, . . . , n do
for k ← j + 1, . . . , n do

t1 ← triplet(T1, L[i], L[j], L[k])
t2 ← triplet(T2, L[i], L[j], L[k])
if t1 6= t2 then

d← d + 2
return d

The representation of phylogenetic trees in BioPerl does not include any
method to compute the triplets distance between two fully resolved rooted
phylogenetic trees with the same terminal node labels. However, the sets of
triplets of terminal nodes can be computed using the triplet method and
the previous algorithm can easily be implemented, as shown in the following
Perl script.

sub triplets_distance {
my $tree1 = shift;
my $tree2 = shift;
my @leaves = sort {$a->id cmp $b ->id} $tree1 ->

get_leaf_nodes;
my @labels = map { $_->id } @leaves;
my $dist = 0;
for (my $i = 0; $i < @leaves; $i++) {

for (my $j = $i+1; $j < @leaves; $j++) {
for (my $k = $j+1; $k < @leaves; $k++) {

my $t1 = triplet($tree1 ,$labels[$i],$labels[
$j],$labels[$k]);

my $t2 = triplet($tree2 ,$labels[$i],$labels[
$j],$labels[$k]);

$dist += 2 unless ($t1 eq $t2);
}

}
}

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Trees 175

return $dist;
}

The representation of phylogenetic trees in R does not include any method
to compute the triplets distance between two phylogenetic trees, either. How-
ever, the sets of triplets of terminal nodes can be computed using the triplet
function and the previous algorithm can be implemented in a straightforward
way, as illustrated by the following R script.

> triplets.distance <- function (t1 ,t2) {
L <- sort(t1$tip.label)
d <- 0
for (i in L[1:( length(L) -2)]) {

for (j in L[(match(i,L)+1):( length(L) -1)]) {
for (k in L[(match(j,L)+1):length(L)]) {

str1 <- triplet(t1,i,j,k)
str2 <- triplet(t2,i,j,k)
if (str1 != str2) { d <- d + 2 }

}
}

}
d

}

> t1 <- read.tree(text="(((A,B),(C,D)),(E,F));")
> t2 <- read.tree(text="(((A,B),(F,D)),(E,C));")
> triplets.distance(t1,t2)
[1] 28

7.3.2 The Quartets Distance between Unrooted Trees

The quartets distance is based on the subtrees induced by quartets of ter-
minal nodes in the two trees under comparison. The sets of subtrees induced
by quartets of terminal nodes reveal similarities and differences between two
fully resolved unrooted phylogenetic trees.

The quartets distance between two fully resolved unrooted phylogenetic
trees labeled over the same taxa is defined as the size of the symmetric dif-
ference of their sets of quartets, that is, the number of quartets in which the
two phylogenetic trees differ.

Example 7.10

Consider the following fully resolved unrooted phylogenetic trees with Newick
string (((A,B),(C,D)),(E,F)); and (((A,B),(F,D)),(E,C)); and n = 6
terminal nodes labeled A, B, C, D, E, F.

© 2009 by Taylor & Francis Group, LLC



176 Combinatorial Pattern Matching Algorithms in Computational Biology

T1

A

B

C

D

E

F T2

A

B

F

D

E

C

The sets of
(
6
4

)
= 15 quartets induced by the terminal nodes of each of them

are given in the following table, where the quartets common to the two trees
are marked with an asterisk.

T1 T2

∗ ((A,B),C,D); ((A,B),C,D); ∗
∗ ((A,B),C,E); ((A,B),C,E); ∗
∗ ((A,B),C,F); ((A,B),C,F); ∗
∗ ((A,B),D,E); ((A,B),D,E); ∗
∗ ((A,B),D,F); ((A,B),D,F); ∗
∗ ((A,B),E,F); ((A,B),E,F); ∗

((A,E),C,D); ((A,D),C,E);
((A,F),C,D); ((A,C),D,F);
((A,C),E,F); ((A,F),C,E);
((A,D),E,F); ((A,E),D,F);
((B,E),C,D); ((B,D),C,E);
((B,F),C,D); ((B,C),D,F);
((B,C),E,F); ((B,F),C,E);
((B,D),E,F); ((B,E),D,F);
((C,D),E,F); ((C,E),D,F);

The two phylogenetic trees differ in 9 of the 15 quartets and, thus, their
quartets distance is 18.

The quartets distance between two phylogenetic trees can be computed by
first obtaining the quartet induced by each set of four terminal node labels
in each of the trees and then counting the number of quartets in which the
two trees differ. In the following description, the two sets of

(
n
4

)
quartets are

obtained using the previous algorithm for finding the subtree induced by a
quartet of terminal nodes upon each set of four terminal node labels in turn.

function quartets distance(T1, T2)
L← terminal node labels in T1 and T2

n← length(L)
d← 0
for i← 1, . . . , n do

for j ← i + 1, . . . , n do

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Trees 177

for k ← j + 1, . . . , n do
for `← k + 1, . . . , n do

q1 ← quartet(T1, L[i], L[j], L[k], L[`])
q2 ← quartet(T2, L[i], L[j], L[k], L[`])
if q1 6= q2 then

d← d + 2
return d

The representation of phylogenetic trees in BioPerl does not include any
method to compute the quartets distance between two fully resolved unrooted
phylogenetic trees with the same terminal node labels. However, the sets of
quartets of terminal nodes can be computed using the quartet method and
the previous algorithm can easily be implemented, as shown in the following
Perl script.

sub quartets_distance {
my $tree1 = shift;
my $tree2 = shift;
my @leaves = sort {$a->id cmp $b ->id} $tree1 ->

get_leaf_nodes;
my @labels = map { $_->id } @leaves;
my $dist = 0;
for (my $i = 0; $i < @leaves; $i++) {

for (my $j = $i+1; $j < @leaves; $j++) {
for (my $k = $j+1; $k < @leaves; $k++) {

for (my $l = $k+1; $l < @leaves; $l++) {
my $q1 = quartet($tree1 ,$labels[$i],$labels

[$j],$labels[$k],$labels[$l]);
my $q2 = quartet($tree2 ,$labels[$i],$labels

[$j],$labels[$k],$labels[$l]);
if (partition_distance($q1 ,$q2) != 0) {

$dist += 2;
}

}
}

}
}
return $dist;

}

The representation of phylogenetic trees in R does not include any method
to compute the quartets distance between two phylogenetic trees, either. How-
ever, the sets of quartets of terminal nodes can be computed using the quartet
function and the previous algorithm can be implemented in a straightforward
way, as illustrated by the following R script.

© 2009 by Taylor & Francis Group, LLC



178 Combinatorial Pattern Matching Algorithms in Computational Biology

quartets.distance <- function (t1,t2) {
L <- sort(t1$tip.label)
d <- 0
for (i in L[1:( length(L) -3)]) {

for (j in L[(match(i,L)+1):( length(L) -2)]) {
for (k in L[(match(j,L)+1):( length(L) -1)]) {

for (l in L[(match(k,L)+1):length(L)]) {
q1 <- quartet(t1,i,j,k,l)
q2 <- quartet(t2,i,j,k,l)
if (dist.topo(q1,q2) != 0) { d <- d + 2 }

}
}

}
}
d

}

> t1 <- read.tree(text="((A,B),(C,D),(E,F));")
> t2 <- read.tree(text="((A,B),(F,D),(E,C));")
> quartets.distance(t1,t2)
[1] 18

Bibliographic Notes

The triplets distance between fully resolved rooted phylogenetic trees was
introduced by Critchlow et al. (1996).

The quartet distance was introduced in (Estabrook et al. 1985). The char-
acterization of unrooted phylogenetic trees in term of their quartets was es-
tablished in (Bandelt and Dress 1986). Algorithms for computing the quar-
tets distance between fully resolved unrooted phylogenetic trees can be found
in (Brodal et al. 2003; Bryant et al. 2000; Christiansen et al. 2006).

The maximum agreement subtree problem was introduced by Steel and
Warnow (1993). Improved algorithms for computing a maximum agreement
subtree between two fully resolved rooted phylogenetic trees can be found
in (Amir and Keselman 1997; Cole et al. 2000; Goddard et al. 1994; Lee et al.
2005).

© 2009 by Taylor & Francis Group, LLC



Part III

Graph Pattern Matching

© 2009 by Taylor & Francis Group, LLC



Chapter 8

Graphs

Graphs, together with trees, count among the most useful mathematical ab-
stractions and, at the same time, the most common combinatorial structures
in computer science and computational biology. Basic notions underlying
combinatorial algorithms on graphs, such as counting, generation, and traver-
sal algorithms, as well as appropriate data structures for the representation
of graphs, are the subject of this introductory chapter.

8.1 Graphs in Mathematics

The notion of graph most often found in discrete mathematics is that of
an undirected graph, that is, a set (the nodes of the graph) equipped with a
binary relation (the edges of the graph). Such a binary relation is symmetric
in an undirected graph, and often it is also irreflexive (for graphs without
self-loops).

Some applications of graphs in mathematics involve labeled graphs, where
nodes and edges may have additional attributes such as, in the case of com-
putational biology, gene names, protein names, taxa names and confidence
values, evolutionary distances, or bootstrap values.

Example 8.1

The following four graphs are identical as unlabeled graphs, but they are all
different labeled graphs.

B

A

C

D A

B

C

D A

C

B

D A

D

B

C

181
© 2009 by Taylor & Francis Group, LLC



182 Combinatorial Pattern Matching Algorithms in Computational Biology

8.1.1 Counting Labeled Graphs

Determining the number of possible graphs is an important problem in
mathematics and computer science, and it becomes even more important in
computational biology, where it is essential to the uniform generation of ran-
dom graphs and to the validation of graphs produced by various phylogenetic
reconstruction methods. Here, as in the case of trees, counting refers to de-
termining the number of possible graphs that have certain properties, while
generation is the process of obtaining the actual graphs with these properties
such as, for instance, all labeled graphs without self-loops.

The number of possible labeled graphs increases very rapidly with the num-
ber of nodes, and for 10 nodes there are already more than 35 trillion labeled
graphs.

There is 21·0/2 = 20 = 1 way to arrange one labeled node A to make a
graph, as illustrated by the following single labeled graph:

A

There are 22·1/2 = 21 = 2 ways to arrange two labeled nodes A,B to make
a graph, as illustrated by the following two labeled graphs:

A B A B

Three labeled nodes A,B,C can be arranged in 23·2/2 = 23 = 8 ways to
make a graph, as illustrated by the following eight labeled graphs:

A

B

C A

B

C A

C

B B

C

A

A

B

C A

C

B B

C

A A

B

C

Similarly, four labeled nodes A,B,C, D can be arranged in 24·3/2 = 26 = 64
ways to make a graph. In general, there are 2n(n−1)/2 different ways to arrange
n > 1 labeled nodes to make a graph, because the edges of a graph with n
nodes are a subset of the set of

(
n
2

)
= n(n−1)/2 pairs of nodes. The following

R script computes the number of graphs with 1 6 n 6 9 labeled nodes.

© 2009 by Taylor & Francis Group, LLC



Graphs 183

> t(sapply (1:9, function(n)c(n,2^ choose(n,2))))
[,1] [,2]

[1,] 1 1
[2,] 2 2
[3,] 3 8
[4,] 4 64
[5,] 5 1024
[6,] 6 32768
[7,] 7 2097152
[8,] 8 268435456
[9,] 9 68719476736

8.2 Graphs in Computer Science

While the notion of graph most often found in discrete mathematics is that
of an undirected graph, the notion of graph which is most useful in computer
science is that of a directed graph, that is, a graph in which the edges are
directed from a source node to a target node. In a directed acyclic graph,
there is no path of directed edges starting and ending in the same node. In a
rooted directed acyclic graph, there is a distinguished node, called the root of
the graph, such that there is at least one directed path from the root to any
node of the graph. The edges of the graph are directed away from the root.

Example 8.2
In the following rooted directed acyclic graph, there are paths from the root,
A, to every node of the graph: A–B, A–B–C, A–D–C, A–D, A–B–E, A–B–C–
F, A–D–C–F, and A–D–G.

A

B C D

E F G

8.2.1 Traversing Directed Graphs

Most algorithms on graphs require a systematic method of visiting the nodes
of a graph, and combinatorial pattern matching algorithms are no exception.
The most common methods for exploring a graph are the depth-first and the
breadth-first traversal.

© 2009 by Taylor & Francis Group, LLC



184 Combinatorial Pattern Matching Algorithms in Computational Biology

In a depth-first traversal of a graph, also known as depth-first search, the
nodes reachable by paths from a given initial node are visited before their
adjacent nodes, and those non-visited nodes to which a visited node is adjacent
are visited in left-to-right order.

In a breadth-first traversal of a graph, also known as breadth-first search,
the nodes reachable by paths from a given initial node are visited in order
of increasing distance from the initial node. The initial node is visited first,
followed by the adjacent nodes in left-to-right order, then the non-visited
nodes adjacent to them, also in left-to-right order, and so on.

Example 8.3
In a depth-first traversal of the following rooted directed acyclic graph, the
nodes are visited in the order A, B, E, C, F, D, G. In a breadth-first traversal,
the order in which the nodes are visited is A, B, D, E, C, G, F.

A

B

C

D

E

F

G

8.3 Graphs in Computational Biology

One of the notions of graph most often found in computational biology is
that of a phylogenetic network, that is, an either unrooted or rooted directed
acyclic graph whose terminal nodes are labeled by taxa names. However,
directed graphs also arise as a mathematical model of metabolic pathways,
and undirected graphs also arise as a mathematical model of RNA and pro-
tein structure, the regulatory interactions between genes, and the physical
interactions between proteins.

A metabolic pathway is a complex network of biochemical reactions occur-
ring within a cell. These biochemical reactions are activated or catalyzed by
enzymes, and they often require additional cofactors to achieve their func-
tion of transforming substrate into product metabolites. The structure of
a metabolic pathway can be represented as a directed graph of metabolites
and biochemical reactions as nodes and directed edges from the substrate
metabolites to the biochemical reaction, as well as from the biochemical re-
action to the product metabolites. Such a graph is called bipartite, because

© 2009 by Taylor & Francis Group, LLC



Graphs 185

the nodes can be partitioned in two subsets (metabolites and reactions) such
that there are no edges between metabolites or between reactions. The edges
are undirected if the biochemical reaction is reversible.

Example 8.4

The tricarboxylic acid cycle, also known as the TCA cycle, citric acic cycle,
or Krebs cycle, is a cyclic metabolic pathway that oxidizes acetyl residues
to carbon dioxide in a series of eight biochemical reactions. The following
directed graph is an abstract representation of this metabolic pathway.

OG
3

IC

2

TCA

1

OA

8
MAL

4

SCA

5

SUC

6

FUM

7

H2O
ACA

CoA NAD+

NADH+

CO2

GDP

GTP

FAD+

FADH2

The biochemical reactions are numbered 1 through 8. The first reaction,
activated by the enzyme citrate synthase, takes three substrates, OA (ox-
aloacetate), ACA (acetyl-CoA), and H2O (water), and gives two products,

© 2009 by Taylor & Francis Group, LLC



186 Combinatorial Pattern Matching Algorithms in Computational Biology

TCA (tricarboxylic acid) and CoA (coenzyme A). The second reaction, acti-
vated by the enzyme aconitase hydratase, takes a single substrate, TCA, and
gives a single product, IC (isocitrate). The third reaction, activated by the
enzyme isocitrate, takes two substrates, IC and NAD+ (nicotinamide adenine
dinucleotide), and gives three products, OG (2-oxoglutarate), NADH+ (re-
duced nicotinamide adenine dinucleotide), and CO2 (carbon dioxide). The
fourth reaction, activated by the enzyme complex 2-oxoglutarate dehydroge-
nase, takes three substrates, OG, NAD+, and CoA, and gives three products,
SCA (succinyl coenzyme A), NADH+, and CO2. The fifth reaction, acti-
vated by the enzyme succinate-CoA ligase, takes two substrates, SCA and
GDP (guanosine diphosphate), and gives three products, SUC (succinate),
GTP (guanosine triphosphate), and CoA. The sixth reaction, activated by
the enzyme succinate dehydrogenase, takes two substrates, SUC and FAD+
(flavin adenine dinucleotide), and gives two products, FUM (fumarate) and
FADH2 (reduced flavin adenine dinucleotide). The seventh reaction, activated
by the enzyme fumarate hydratase, takes two substrates, FUM and H2O, and
gives a single product, MAL (malate). Finally, the eighth biochemical reac-
tion, activated by the enzyme malate dehydrogenase, takes two substrates,
MAL and NAD+, and gives two products, OA and NADH+.

In a more abstract representation, a metabolic pathway can be seen as a
directed graph of biochemical reactions as nodes and directed edges between
reactions with some common metabolite as a product of the source reaction
and a substrate of the target reaction.

Example 8.5
The following directed graph is a more abstract representation of the metabolic
pathway of Example 8.4.

3

2

1

8

4

5

6

7

There is a directed edge from the first to the second biochemical reaction
because they share the metabolite tricarboxylic acid as a product of the for-
mer and a substrate of the latter. There are also directed edges between the
second and the third reactions (because they share the metabolite isocitrate),
between the third and the fourth reactions (because they share the metabo-

© 2009 by Taylor & Francis Group, LLC



Graphs 187

lite 2-oxoglutarate), between the fourth and the fifth reactions (because they
share the metabolite succinyl coenzyme A), between the fifth and the sixth
reactions (because they share the metabolite succinate), between the sixth
and the seventh reactions (because they share the metabolite fumarate), be-
tween the seventh and the eighth reactions (because they share the metabolite
malate), and between the eighth and the first reactions (because they share
the metabolite oxaloacetate). There are also directed edges from the first and
the fifth to the fourth biochemical reaction, because they share the metabo-
lite coenzyme A as a product of the former ones and a substrate of the latter
reaction.

A protein interaction network, on the other hand, is a complex network
of associations between protein molecules. These associations are essential
to various biological functions, including signal transduction (the process by
which a signal or stimulus in a cell is converted into another, often involv-
ing a series of biochemical reactions inside the cell), the formation of protein
complexes (a stable association of two or more proteins, in which one or more
of the associated proteins are often activated or inhibited), transport (for in-
stance, a protein carrying another protein between the cytoplasm and the
nucleus of a cell), and the modification of proteins (such as the phosphoryla-
tion of a protein by a protein kinase). A protein interaction network can be
represented as an undirected graph of proteins (or genes coding for proteins)
as nodes and edges between interacting proteins.

Example 8.6
Protein interactions have been determined for several model organisms us-
ing a variety of experimental techniques, such as the high-throughput yeast
two-hybrid method. The whole protein interaction network of the bacterium
Campylobacter jejuni consists of 11,687 interactions among 1,654 proteins,
and the chemotaxis signal transduction pathway (which is responsible for di-
rectional swimming in bacteria) of this organism has 23 interactions among
21 proteins. The following undirected graph is an abstract representation of
the latter.

Cj1648

Cj0951c Cj0262c Cj1110c Cj0448c Cj0246c Cj1190c

RpsJ CheW CheV FlhF FlaC FlgG2

Cj1004 CheA Pal Cj0649 FliM

CheY IamA FliY

© 2009 by Taylor & Francis Group, LLC



188 Combinatorial Pattern Matching Algorithms in Computational Biology

The nodes represent chemotaxis proteins (CheW, CheV, CheA, CheY); methyl-
accepting chemotaxis proteins (Cj0951c, Cj0262c, Cj1110c, Cj0448c, Cj0246c,
Cj1190c); flagellar proteins (FlhF, FlaC, FlgG2, FliM, FliY); and other pro-
teins not related to motility (Cj0649, Cj1004, Cj1648, IamA, Pal, RpsJ).
Nodes depicted in green (CheW, CheA, CheY, FliM) correspond to proteins
in the canonical chemotaxis signal transduction pathway. The edges represent
signal transduction interactions between proteins, such as complex formation
between CheA and CheW, the phosphorylation of CheY by CheA, and the
interaction of CheY and FliM to change the direction of flagellar rotation.

In the undirected graph representation of a protein interaction network,
nodes stand for either proteins or genes coding for proteins, and there are
undirected edges between interacting proteins or genes. A particular case of a
protein interaction network is a transcription regulation network, which can
be represented as a directed graph of transcription factors and genes as nodes
and directed edges from transcription factors to the genes they transcribe.

Enough has been said about the representation of pathways of biochemical
reactions and networks of interacting genes and proteins. The evolutionary
relationships among a group of organisms are often illustrated by means of
a phylogenetic tree, whose nodes represent taxonomic units (which can be
species or taxa, higher or nested taxa, populations, individuals, or genes) and
whose branches define the evolutionary relationships among the taxonomic
units (where children nodes descend from their parents by mutation). How-
ever, there are evolutionary processes acting at the population level, such as
recombination between genes, hybridization between lineages, and lateral gene
transfer, that lead to reticulate relationships that can no longer be modeled
by a phylogenetic tree. The modeling and explicit representation of reticulate
evolutionary events turn phylogenetic trees into a particular form of directed
acyclic graphs called phylogenetic networks.

A phylogenetic network is a directed acyclic graph whose terminal nodes
are labeled by taxa names and whose internal nodes are either tree nodes (if
they have only one parent) or hybrid nodes (if they have two or more parents).
As in the case of phylogenetic trees, a phylogenetic network is fully resolved
if every internal tree node in the network has two children and every hybrid
node has two parents and a single child, which is often a tree node.

Example 8.7

The alcohol dehydrogenase enzyme is one of the most abundant proteins in
Drosophila melanogaster, and it is encoded by a single gene. The alcohol
dehydrogenase gene was studied by Kreitman (1983) on a sample of eleven
species from five natural populations of Drosophila melanogaster (Af: Africa;
Fl: Southern Florida; Fr: France; Ja: Japan; Wa: Seattle, Washington). The
two most frequent forms of the alcohol dehydrogenase gene differ by a single
nucleotide replacement, and they are denoted Slow (S) and Fast (F) because

© 2009 by Taylor & Francis Group, LLC



Graphs 189

of their influence in the catalytic efficiency of the enzyme. The sampled se-
quences contain 44 polymorphic (segregating) sites, shown below, where the
eleven cloned genes are numbered 1 (Wa-S), 2 (Fl-1S), 3 (Af-S), 4 (Fr-S), 5
(Fl-2S), 6 (Ja-S), 7 (Fl-F), 8 (Fr-F), 9 (Wa-F), 10 (Af-F), and 11 (Ja-F).

1 CCGCAATAATGGCGCTACTCTCACAATAACCCACTAGACAGCCT
2 CCCCAATATGGGCGCTACTTTCACAATAACCCACTAGACAGCCT
3 CCGCAATATGGGCGCTACCCCCCGGAATCTCCACTAAACAGTCA
4 CCGCAATATGGGCGCTGTCCCCCGGAATCTCCACTAAACTACCT
5 CCGAGATAAGTCCGAGGTCCCCCGGAATCTCCACTAGCCAGCCT
6 CCCCAATATGGGCGCGACCCCCCGGAATCTCTATTCACCAGCTT
7 CCCCAATATGGGCGCGACCCCCCGGAATCTGTCTCCGCCAGCCT
8 TGCAGATAAGTCGGCGACCCCCCGGAATCTGTCTCCGCGAGCCT
9 TGCAGATAAGTCGGCGACCCCCCGGAATCTGTCTCCGCGAGCCT

10 TGCAGATAAGTCGGCGACCCCCCGGAATCTGTCTCCGCGAGCCT
11 TGCAGGGGAGGGCTCGACCCCACGGGATCTGTCTCCGCCAGCCT

Under the infinite sites assumption, by which mutations are rare enough to
discard the possibility of more than one mutation to occur at the same site in
a sample of sequences, no site of a sample can contain more than two different
nucleotides. The most frequent nucleotide along a site is often taken as the
base, with the least frequent nucleotide being taken as the mutant. The base
and mutant nucleotides for each site of the previous sequences are as follows.

CCCCAATAAGGGCGCGACCCCCCGGAATCTCTATTCGCCAGCCT
TGGAGGGGTTTCGTATGTTTTAACAGTAACGCCCCAAAGTATTA

This allows for a binary representation of a sample of sequences, where the
base nucleotide in each site is encoded as 0 and the mutant nucleotide is
encoded as 1.

1 00100000010000010010101110111101010101000000
2 00000000100000010011101110111101010101000000
3 00100000100000010000000000000001010111000101
4 00100000100000011100000000000001010111011000
5 00111000001100101100000000000001010100000000
6 00000000100000000000000000000000000010000010
7 00000000100000000000000000000010101000000000
8 11011000001110000000000000000010101000100000
9 11011000001110000000000000000010101000100000

10 11011000001110000000000000000010101000100000
11 11011111000001000000010001000010101000000000

The evolutionary relationships among these eleven cloned genes cannot be
modeled by a phylogenetic tree. In fact, any phylogenetic network with hy-
brid nodes representing recombination events explaining these evolutionary
relationships must include at least 7 recombination events. One such possible
explanation is the following fully resolved phylogenetic network, which has 11
leaves and exactly 7 hybrid nodes.

© 2009 by Taylor & Francis Group, LLC



190 Combinatorial Pattern Matching Algorithms in Computational Biology

7 6 2 4 3 1 5 9 8 10 11

12 13

14 15

16 17 18

19 20 21 22

23 24 25 26

27

28 29

30 31

32

33

34

35

The edges are directed from top to bottom, and some of them represent mu-
tation events. For instance, the edge from the node labeled 23 (which corre-
sponds to the sequence 00000000100000000000000000000010101000000000)
to the leaf node labeled 6 represents a single mutation of C to T at segregat-
ing site number 43, and the edge from the node labeled 21 (for the sequence
00100000100000011100000000000001010100000000) to the node labeled 16
(for the sequence 00100000100000011100000000000001010111000000) rep-
resents a mutation of G to A at segregating site number 37 and a muta-
tion of C to A at segregating site number 38. The edges going into a hy-
brid node, on the other hand, represent recombination events. For instance,
the edges from the nodes labeled 21 (which corresponds to the sequence
00100000100000011100000000000001010100000000) and 22 (which corre-
sponds to the sequence 00111000001100000000000000000010101000000000)
to the node labeled 18 represent the single crossover recombination of a pre-
fix of the latter (the first 16 segregating sites, sequence 0011100000110000)

© 2009 by Taylor & Francis Group, LLC



Graphs 191

with a suffix of the former (the last 28 segregating sites, that is, the sequence
1100000000000001010100000000) to give the 44 segregating sites at the node
labeled 18 (sequence 00111000001100001100000000000001010100000000).

A phylogenetic network explaining the evolutionary relationships among a
given set of taxonomic units can be very large indeed, as there is no upper
bound on the number of hybrid nodes. There is, however, a lower bound
on the number of recombination events needed to explain the evolutionary
relationships among a set of organisms given their DNA or RNA sequences,
and this lower bound is 7 for the phylogenetic network of Example 8.7.

While most phylogenetic reconstruction algorithms attempt to achieve the
lower bound on the number of hybridization, recombination, or lateral gene
transfer events, the resulting phylogenetic networks often lack topological
properties that are essential to their further analysis. This is especially rele-
vant to the comparative analysis of phylogenetic networks, which is the sub-
ject of the next chapter, and most distances and alignment algorithms impose
some condition on phylogenetic network topology; for instance, that recom-
bination or hybridization cycles be pairwise disjoint, that internal nodes have
some child that is a tree node, or that hybrid nodes have some sibling that is
a tree node.

A phylogenetic network is called tree-sibling if every hybrid node has at
least one sibling that is a tree node. For instance, the phylogenetic network
of Example 8.7 is not tree-sibling, because the hybrid nodes labeled 16 and 18
have each other as their only sibling. The biological meaning of the tree-sibling
condition is that in each of the recombination or hybridization processes, at
least one of the species involved in them also has some descendant through
mutation.

A phylogenetic network is called tree-child if every internal node has at least
one child that is a tree node. All tree-child networks are also tree-sibling; thus,
the phylogenetic network of Example 8.7 is not tree-child, either. In fact, the
nodes labeled 19, 21, 22, and 29 have all their children hybrid. The biological
meaning of the tree-child condition is that every non-extant species has some
descendant through mutation.

A recombination or hybridization cycle consists of two paths from some
common ancestor to the two parents of a hybrid node, and a phylogenetic
network is called a galled-tree if all recombination or hybridization cycles are
pairwise disjoint. All galled-trees are also tree-child networks and, thus, the
phylogenetic network of Example 8.7 is not a galled-tree, either. For instance,
the recombination cycles that end up in the hybrid nodes labeled 18 and 19
are disjoint, but those ending up in the hybrid nodes labeled 17 and 27 share
the hybrid node labeled 27 and the tree nodes labeled 28 and 29.

On the other hand, a phylogenetic network is time-consistent if there is a
temporal representation of the network, that is, an assignment of times to the
nodes of the network that strictly increases on tree edges (those edges whose

© 2009 by Taylor & Francis Group, LLC



192 Combinatorial Pattern Matching Algorithms in Computational Biology

head is a tree node) and remains the same on hybrid edges (whose head is a
hybrid node). For instance, the phylogenetic network of Example 8.7 is not
time-consistent, because the nodes labeled 18, 21, 22, 26, and 31 share the
same time assignment (there are hybrid edges from the nodes labeled 26 and
31 to the node labeled 22, as well as from the nodes labeled 21 and 22 to the
node labeled 18) and, thus, no time assignment to the nodes along the path
from the node labeled 31 down to the node labeled 21 (that is, the nodes
labeled 29, 27, and 25) that strictly increases on these tree edges is possible.
The biological meaning of a temporal assignment is the time when certain
species exist or when certain hybridization processes occur, because for these
processes to take place, the species involved must coexist in time.

Example 8.8
The fully resolved phylogenetic network of Example 8.7 is not time-consistent.
Let x be the time assigned to the node labeled 12. Since the time assignment
must remain the same on hybrid edges, the nodes labeled 14 and 25 get
assigned time x as well. Now, along the path between the parents of the
former, the nodes labeled 21 and 16 must also have a time assignment strictly
greater than x and, thus, the time assignment along the tree edge from the
node labeled 16 to the node labeled 14 cannot be increasing.

In a similar way, let y be the time assigned to the node labeled 31. Since
the time assignment must remain the same on hybrid edges, the nodes labeled
22 and 26, and also 18 and 21, get assigned time y as well. Now, the nodes
labeled 29, 27, and 25 must have a time assignment strictly greater than y,
so the time assignment along the tree edge from the node labeled 25 to the
node labeled 21 cannot be increasing, either.

12

14

16

21

25

> x

x

x

x

> x

18

21 22

25 26

27

29

31

33

34

y

> y

> y

> y

y

y

y

y

© 2009 by Taylor & Francis Group, LLC



Graphs 193

A phylogenetic network with the least possible number of hybrid nodes does
not necessarily exhibit any of the topological properties of being tree-sibling,
tree-child, a galled-tree, or time-consistent. However, under the hypothesis
of more recombination events, the evolutionary history of the sample from
Example 8.7 can be explained by a tree-sibling phylogenetic network.

Example 8.9
Another possible explanation of the evolutionary relationships among the
eleven alcohol dehydrogenase genes from Example 8.7 is the following fully
resolved tree-sibling phylogenetic network, which has 8 hybrid nodes.

2 3 1 4 5 6 10 9 8 11 7

12 13 14 15

16 17 18 19 20 21

22 23 24

25 26 27

28 29 30

31 32

33 34

35

36

37

8.3.1 The eNewick Linear Representation

The eNewick format is an extension of the Newick format for representing
phylogenetic trees, and it is quite convenient for representing phylogenetic
networks since it makes it possible to describe a whole network in linear form
in a unique way once the network is drawn or the ordering among parents and
children nodes is fixed. The eNewick description of a network is a string of
nested parentheses annotated with taxa names and possibly also with branch

© 2009 by Taylor & Francis Group, LLC



194 Combinatorial Pattern Matching Algorithms in Computational Biology

lengths or bootstrap values, with hybrid nodes appropriately tagged, as illus-
trated by the following simple example:

r

x

h

y

A B C

r

x

h h

y

A B C

((A,(B)h#H1)x,(h#H1,C)y)r;

The eNewick description of a given network can be obtained by first splitting
each hybrid node into as many copies as parents has the node, where the first
such copy carries the children and the other copies have no children, and
then obtaining the Newick description of the resulting tree. In this way, the
leftmost occurrence of each hybrid node in an eNewick string corresponds
to the full description of the network rooted at that node, and all labeled
occurrences of a hybrid node in an eNewick string carry the same label.

A phylogenetic network can be recovered from an eNewick string by first
recovering the tree and then identifying all copies of the same hybrid node,
that is, identifying those nodes that are labeled as hybrid nodes and are tagged
with the same identifier.

The reticulate evolutionary event represented by a hybrid node in a phyloge-
netic network can be a recombination between genes, a hybridization between
lineages, or a lateral gene transfer. The unique representation of the latter as
hybrid nodes requires encoding each gene transfer event as a hybrid edge. In
the following example, a gene is transferred from the species corresponding to
the node labeled B to the species corresponding to the node labeled C after
the divergence of the species corresponding to the node labeled A from the
species corresponding to the node labeled B. The eNewick string

((A,(B,(C)h#LGT1)y)x,h#LGT1)r;

describes such a phylogenetic network in a unique way.

Example 8.10

The representation of a lateral gene transfer event (left) as a hybrid edge in
a phylogenetic network (right) is shown below.

© 2009 by Taylor & Francis Group, LLC



Graphs 195

r

x

A B C

r

x

y h

A B C

8.3.2 Counting Phylogenetic Networks

The number of possible phylogenetic networks increases much more rapidly
with the number of terminal nodes than the number of possible phylogenetic
trees. In fact, without any topological constraint such as being tree-sibling,
tree-child, a galled-tree, or time-consistent, there is no upper bound on the
size of a phylogenetic network with a given number of terminal nodes and,
thus, there is no upper bound on the number of possible phylogenetic networks
with a given number of terminal nodes, either.

Even with the constraint of having only one hybridization or recombination
cycle, the number of possible fully resolved unicyclic phylogenetic networks
increases more rapidly with the number of terminal nodes than the number
of possible fully resolved phylogenetic trees, and for 10 terminal nodes there
are already more than 58 million such unrooted phylogenetic networks: undi-
rected acyclic graphs with the terminal nodes labeled by taxa names. Having
exactly one cycle, these networks cannot have intersecting recombination or
hybridization cycles and, thus, they are galled-trees.

There is (2 · 3 − 3 − 1)!/((3 − 3)!23−3+1) = 2!/(21) = 1 way to connect
three labeled nodes A,B,C to make an unrooted phylogenetic network with a
single cycle of length three, as illustrated by the following single fully resolved
phylogenetic network:

A

B

C

Four labeled nodes A,B,C, D can be connected in (2 · 4 − 3 − 1)!/((4 −
3)!24−3+1) = 4!/22 = 6 different ways to make an unrooted phylogenetic
network with a single cycle of length three, as illustrated by the following six
fully resolved phylogenetic networks:

© 2009 by Taylor & Francis Group, LLC



196 Combinatorial Pattern Matching Algorithms in Computational Biology

C

D

A

B

B

D

A

C

B

C

A

D

A

D

B

C

A

C

B

D

A

B

C

D

Four labeled nodes A,B,C, D can also be connected in (2 · 4− 4− 1)!/((4−
4)!24−4+1) = 3!/2 = 3 different ways to make an unrooted phylogenetic net-
work with a single cycle of length four, as illustrated by the following three
fully resolved phylogenetic networks:

A

B

C

D

A

B

D

C

A

C

D

B

In general, the number C(n, k) of fully resolved unrooted unicyclic phyloge-
netic networks with n > 3 terminal nodes and whose unique cycle has length
k > 3 is C(n, k) = (2n − k − 1)!/((n − k)!2n−k+1), and the number C(n) of
fully resolved unrooted unicyclic phylogenetic networks with n > 3 terminal
nodes is C(n) = (n−1)!2n−2−(2n−2)!/((n−1)!2n−1). The following R script
computes the number C(n) of fully resolved unrooted unicyclic phylogenetic
networks with 3 6 n 6 12 terminal nodes.

© 2009 by Taylor & Francis Group, LLC



Graphs 197

> c <- function(n)(factorial(n-1) *2^(n-2)-factorial
(2*n-2)/( factorial(n-1) *2^(n-1)))

> cbind (3:12, sapply (3:12 ,c))
[,1] [,2]

[1,] 3 1
[2,] 4 9
[3,] 5 87
[4,] 6 975
[5,] 7 12645
[6,] 8 187425
[7,] 9 3133935
[8,] 10 58437855
[9,] 11 1203216525

[10,] 12 27125492625

Galled-trees with three labeled nodes are unicyclic phylogenetic networks,
and there is (2(3− 2)− 3 + 3 · 1)!(3− 2 · 1− 1)!23−(3−2)−3·1/((3− 2− 3 + 2 ·
1)!(3− 3 · 1)!(1− 1)!1!) = (2!0!2−1/(0!0!0!1!) = 1 way to connect three labeled
nodes to make an unrooted galled-tree. Four labeled nodes A,B,C, D can be
connected in (2(4 − 2) − 3 + 3 · 1)!(3 − 2 · 1 − 1)!23−(4−2)−3·1/((4 − 2 − 3 +
2 · 1)!(3− 3 · 1)!(1− 1)!1!) = 4!0!2−2/(1!0!0!1!) = 6 different ways to make an
unrooted galled-tree with a single cycle of length three; they can be connected
in (2(4 − 2) − 4 + 3 · 1)!(4 − 2 · 1 − 1)!24−(4−2)−3·1/((4 − 2 − 4 + 2 · 1)!(4 −
3 · 1)!(1− 1)!1!) = 3!1!2−1/(0!1!0!1!) = 3 different ways to make an unrooted
galled-tree with a single cycle of length four; and they can be connected in
(2(4−2)−6+3·2)!(6−2·2−1)!26−(4−2)−3·2/((4−2−6+2·2)!(6−3·2)!(2−1)!2!) =
4!1!2−2/(0!0!1!2!) = 3 different ways to make an unrooted galled-tree with two
cycles of total length six, as illustrated by the following three galled-trees:

A

B

C

D

A

B

D

C

A

C

D

B

In general, the number G(n, k,m) of fully resolved galled-trees with n > 3
terminal nodes, k cycles, and m edges across all the cycles is G(n, k,m) =
(2(n−2)−m+3k)!(m−2k−1)!2m−(n−2)−3k/((n−2−m+2k)!(m−3k)!(k−
1)!k!). The number G(n) of fully resolved galled-trees with n > 3 terminal
nodes is thus G(n) =

∑n−2
k=1

∑n−2−2k
m=3k G(n, k,m). The following R script

© 2009 by Taylor & Francis Group, LLC



198 Combinatorial Pattern Matching Algorithms in Computational Biology

computes the number G(n) of fully resolved galled-trees with n > 3 terminal
nodes, k cycles, and m edges across all the cycles.

> gkm <- function(n,k,m)factorial (2*(n-2)-m+3*k)*
factorial(m-2*k-1) *2^(m-(n-2) -3*k)/( factorial(n-2-
m+2*k)*factorial(m-3*k)*factorial(k-1)*factorial(k
))

> g <- function(n)lapply (1:(n-2),function(k)lapply
((3*k):(n-2+2*k),function(m)gkm(n,k,m)))

> options (" digits "=8)
> cbind (3:12, lapply (3:12 , function(n)sum(unlist(g(n)))

))
[,1] [,2]

[1,] 3 1
[2,] 4 12
[3,] 5 177
[4,] 6 3345
[5,] 7 78795
[6,] 8 2242485
[7,] 9 75091905
[8,] 10 2896454295
[9,] 11 126536043375

[10,] 12 6176725787925

8.3.3 Generating Phylogenetic Networks

All phylogenetic networks cannot be generated without imposing any topo-
logical constraint such as being tree-sibling, tree-child, a galled-tree, or time-
consistent, because, otherwise, there is no upper bound on network size and
the number of possible phylogenetic networks also grows unbounded. How-
ever, under some of these constraints, a simple algorithm for their generation
consists of taking each of the phylogenetic trees on the desired terminal nodes
and adding one hybrid node to each of them in each possible way in turn, re-
peating this process until the produced networks do not satisfy the topological
constraints. The procedure for adding a new hybrid node consists of splitting
two edges with a new internal node along each of them and then adding a
new edge from one of the new nodes to the other. The latter becomes the
new hybrid node.

The same phylogenetic network may be obtained more than once with this
algorithm, and many of the networks obtained with this algorithm may be
discarded because of not being acyclic, fully resolved, tree-sibling, tree-child,
galled-trees, or time-consistent. In any case, all tree-child phylogenetic net-
works and all tree-child, time-consistent phylogenetic networks with a given
number of terminal nodes can be obtained using this algorithm.

All the fully resolved tree-child phylogenetic networks on n > 2 terminal

© 2009 by Taylor & Francis Group, LLC



Graphs 199

nodes can be generated by taking each of the fully resolved rooted phylogenetic
trees on n terminal nodes in turn and then, adding one hybrid node to each
of them in each possible way in turn, repeating this process until the result is
not a fully resolved tree-child phylogenetic network.

Example 8.11
The three fully resolved tree-child phylogenetic networks on two terminal
nodes can be generated by taking the only fully resolved rooted phylogenetic
tree topology on two terminal nodes,

A B

and either adding an edge from a new tree node along the edge from the root
to the node labeled A, to a new hybrid node along the edge from the root to
the node labeled B, or vice versa, with the new hybrid node along the edge
from the root to the node labeled A:

A B A B

Each of these two tree-child phylogenetic networks with one hybrid node has
5 edges and, thus, there are 2 · 5 · (5− 1) = 2 · 20 = 40 further possibilities for
obtaining a phylogenetic network with two hybrid nodes, none of which is a
fully resolved tree-child phylogenetic network.

In the same way, the six fully resolved time-consistent tree-child phylo-
genetic networks on 3 terminal nodes can be generated by taking each of
the three fully resolved rooted phylogenetic tree topologies on three terminal
nodes,

A B C A C B B C A

which have 4 branches, and adding a new hybrid node in each of the 3 ·4 · (4−
1) = 3 · 12 = 36 possible ways. Only three of the resulting networks are fully
resolved time-consistent tree-child phylogenetic networks, and each of them is
obtained in two different ways:

© 2009 by Taylor & Francis Group, LLC



200 Combinatorial Pattern Matching Algorithms in Computational Biology

A B C A C B B C A

A B C A C B B C A

Each of the three fully resolved time-consistent tree-child phylogenetic net-
works with one hybrid node has 7 edges and, thus, there are 3 · 7 · (7 − 1) =
3 · 42 = 126 further possibilities for obtaining a phylogenetic network with
two hybrid nodes, none of which is a fully resolved time-consistent tree-child
phylogenetic network.

Such an algorithm for generating fully resolved rooted phylogenetic net-
works is implemented in the BioPerl modules for phylogenetic networks. The
following Perl script uses them to generate the 66 fully resolved tree-child
phylogenetic networks on 3 terminal nodes.

use Bio:: PhyloNetwork;
use Bio:: PhyloNetwork :: Factory;

my $factory=Bio:: PhyloNetwork ::Factory ->new(
-leaves=>[qw(A B C)]

);

while (my $net=$factory ->next_network ()) {
print $net ->eNewick ()."\n";

}

Running the previous Perl script produces the following output, which con-
sists of the 66 fully resolved tree-child phylogenetic trees on three terminal
nodes labeled A, B, C, in eNewick format:

((A,C)t3,B)t0;
((B)#H1 ,(#H1 ,(C,A)t3)T1)t0;
((((C)#H2,B)T2)#H1 ,((#H2 ,A)t3 ,#H1)T1)t0;
((B)#H1 ,(#H1 ,((C)#H2 ,(#H2 ,A)T2)t3)T1)t0;
((B)#H1 ,((#H1 ,(A,(C)#H2)t3)T1 ,#H2)T2)t0;

© 2009 by Taylor & Francis Group, LLC



Graphs 201

((((A)#H2,B)T2)#H1 ,((C,#H2)t3 ,#H1)T1)t0;
((B)#H1 ,(#H1 ,((A)#H2 ,(#H2 ,C)T2)t3)T1)t0;
((((B)#H1 ,(C,(A)#H2)t3)T1 ,#H2)T2 ,#H1)t0;
((A,((B)#H1,C)T1)t3 ,#H1)t0;
((((A)#H2,B)T2)#H1 ,((C,#H1)T1 ,#H2)t3)t0;
((B)#H1 ,((A)#H2 ,((#H1,C)T1 ,#H2)t3)T2)t0;
((B)#H1 ,((A,((#H1,C)T1)#H2)t3 ,#H2)T2)t0;
((C,((B)#H1,A)T1)t3 ,#H1)t0;
((((C)#H2,B)T2)#H1 ,((A,#H1)T1 ,#H2)t3)t0;
((B)#H1 ,((C)#H2 ,((#H1,A)T1 ,#H2)t3)T2)t0;
((B)#H1 ,((C,((#H1,A)T1)#H2)t3 ,#H2)T2)t0;
(((C,A)t3)#H1 ,(#H1,B)T1)t0;
((((C)#H2 ,(#H2,A)t3)T2)#H1 ,(B,#H1)T1)t0;
((((C)#H2,A)t3)#H1 ,((#H2 ,B)T2 ,#H1)T1)t0;
(((A,(C)#H2)t3)#H1 ,((#H1,B)T1 ,#H2)T2)t0;
((((A)#H2 ,(C,#H2)t3)T2)#H1 ,(B,#H1)T1)t0;
(((C,(A)#H2)t3)#H1 ,((#H2,B)T2 ,#H1)T1)t0;
(((((C,(A)#H2)t3)#H1 ,B)T1 ,#H2)T2 ,#H1)t0;
((A,(C)#H1)t3 ,(#H1,B)T1)t0;
(B,((C)#H1 ,(A,#H1)t3)T1)t0;
((C,(A)#H1)t3 ,(#H1,B)T1)t0;
(B,((A)#H1 ,(C,#H1)t3)T1)t0;
((B,C)t3,A)t0;
(((B,C)t3)#H1 ,(#H1,A)T1)t0;
((((B)#H2 ,(#H2,C)t3)T2)#H1 ,(A,#H1)T1)t0;
((((B)#H2,C)t3)#H1 ,(#H1 ,(#H2 ,A)T2)T1)t0;
(((C,(B)#H2)t3)#H1 ,((A,#H1)T1 ,#H2)T2)t0;
((((C)#H2 ,(#H2,B)T2)t3)#H1 ,(A,#H1)T1)t0;
((A)#H1 ,(#H1 ,(B,C)t3)T1)t0;
((((B)#H2,A)T2)#H1 ,((#H2 ,C)t3 ,#H1)T1)t0;
((A)#H1 ,(((B)#H2 ,(#H2,C)T2)t3 ,#H1)T1)t0;
((A)#H1 ,(((C,(B)#H2)t3 ,#H1)T1 ,#H2)T2)t0;
((A)#H1 ,(((C)#H2 ,(#H2,B)T2)t3 ,#H1)T1)t0;
((((A)#H1 ,(B,(C)#H2)t3)T1 ,#H2)T2 ,#H1)t0;
((C,((A)#H1,B)T1)t3 ,#H1)t0;
((A)#H1 ,((C)#H2 ,((#H1,B)T1 ,#H2)t3)T2)t0;
((A)#H1 ,((C,((#H1,B)T1)#H2)t3 ,#H2)T2)t0;
((B,((A)#H1,C)T1)t3 ,#H1)t0;
((((B)#H2,A)T2)#H1 ,(#H2 ,(C,#H1)T1)t3)t0;
((A)#H1 ,((B)#H2 ,((C,#H1)T1 ,#H2)t3)T2)t0;
((((C,(A)#H1)T1)#H2 ,(B,#H2)T2)t3 ,#H1)t0;
(A,((B)#H1 ,(C,#H1)t3)T1)t0;
((C,(B)#H1)t3 ,(#H1,A)T1)t0;
(A,((C)#H1 ,(B,#H1)t3)T1)t0;
((A,B)t0,C)t3;

© 2009 by Taylor & Francis Group, LLC



202 Combinatorial Pattern Matching Algorithms in Computational Biology

(((B,A)t0)#H1 ,(#H1,C)T1)t3;
((((B)#H2 ,(#H2,A)t0)T2)#H1 ,(C,#H1)T1)t3;
((((A)#H2 ,(B,#H2)t0)T2)#H1 ,(C,#H1)T1)t3;
(C,((A)#H1 ,(B,#H1)t0)T1)t3;
((C)#H2 ,((((#H2,A)T2)#H1 ,B)t0 ,#H1)T1)t3;
((((A)#H1 ,((C)#H2,B)T2)t0 ,#H1)T1 ,#H2)t3;
((C)#H2 ,((A)#H1 ,(#H2 ,(#H1 ,B)t0)T2)T1)t3;
((C)#H2 ,(((B,(A)#H1)t0 ,#H1)T1 ,#H2)T2)t3;
((C)#H1 ,(#H1 ,(B,A)t0)T1)t3;
((C)#H1 ,(#H1 ,((B)#H2 ,(#H2 ,A)T2)t0)T1)t3;
((C)#H1 ,((#H1 ,(A,(B)#H2)t0)T1 ,#H2)T2)t3;
((B,((C)#H1,A)T1)t0 ,#H1)t3;
((C)#H1 ,((B)#H2 ,((#H1,A)T1 ,#H2)t0)T2)t3;
((A,((C)#H1,B)T1)t0 ,#H1)t3;
((C)#H1 ,((A,((#H1,B)T1)#H2)t0 ,#H2)T2)t3;
(C,((B)#H1 ,(A,#H1)t0)T1)t3;

8.3.4 Representing Graphs in Perl

There are many ways in which graphs can be represented in Perl and, as
a matter of fact, many different Perl modules implementing various types
of graphs are available for download from CPAN, the Comprehensive Perl
Archive Network, at http://www.cpan.org/. Among them, let us focus
on the BioPerl phylogenetic network representation, which is essentially an
object-oriented representation of directed graphs that relies on the collection
Graph::Directed of Perl modules for representing and manipulating graphs.

A phylogenetic network is represented in BioPerl as a Bio::PhyloNetwork
object, whose nodes are represented as an array reference and whose edges
are represented as an array of array references. The nodes can be accessed by
means of such methods as vertices and has_vertex, and the edges can be
accessed by means of the edges and has_edge methods.

For instance, the phylogenetic network with eNewick string ((A,(B)h#H1)x,
(h#H1,C)y)r; can be obtained by first creating an array of node labels, then
creating an array of source and target node labels for the edges, creating a
Graph::Directed object with the array of node labels as nodes and the array
of node label arrays as edges, and, finally, creating a Bio::PhyloNetwork ob-
ject with the latter as the underlying graph. This is all shown in the following
Perl script.

use Bio:: PhyloNetwork;

my $g = Graph ::Directed ->new(
vertices=>[qw(A B C r x y h)],
edges => [

[qw(r x)], [qw(r y)], [qw(x h)], [qw(y h)],

© 2009 by Taylor & Francis Group, LLC

http://www.cpan.org


Graphs 203

[qw(x A)], [qw(h B)], [qw(y C)]
]

);

my $net = Bio:: PhyloNetwork ->new(-graph => $g);

The same phylogenetic network can be obtained by adding the nodes and
edges to an empty graph, as illustrated by the following Perl script.

use Bio:: PhyloNetwork;

my $g = Graph ::Directed ->new;
$g ->add_vertices(qw(A B C r x y h));
$g ->add_edges(

qw(r x), qw(r y), qw(x h), qw(y h),
qw(x A), qw(h B), qw(y C)

);

my $net = Bio:: PhyloNetwork ->new(-graph => $g);

Since phylogenetic networks are connected graphs, though, the nodes do
not need to be given explicitly and it suffices to give the edges, as shown in
the following Perl script.

use Bio:: PhyloNetwork;

my $g = Graph ::Directed ->new;
$g ->add_edges(

qw(r x), qw(r y), qw(x h), qw(y h),
qw(x A), qw(h B), qw(y C)

);

my $net = Bio:: PhyloNetwork ->new(-graph => $g);

Moreover, the edges can be specified as an array of nodes, where the even
elements are source nodes and the odd elements are the corresponding target
nodes. This is shown in the following Perl script.

use Bio:: PhyloNetwork;

my $g = Graph ::Directed ->new;
$g ->add_edges(qw(r x r y x h y h x A h B y C));

my $net = Bio:: PhyloNetwork ->new(-graph => $g);

On the other hand, the phylogenetic network can be obtained straight from
the array of source and target node of the edges, as illustrated by the following
Perl script.

© 2009 by Taylor & Francis Group, LLC



204 Combinatorial Pattern Matching Algorithms in Computational Biology

use Bio:: PhyloNetwork;

my $net = Bio:: PhyloNetwork ->new(-edges => [
qw(r x x A x h h B r y y h y C)

]);

Furthermore, a Bio::PhyloNetwork object can be also obtained from an
eNewick string, as shown in the following Perl script.

my $net = Bio:: PhyloNetwork ->new(
-eNewick => ’((A,(B)h#H1)x,(h#H1 ,C)y)r;’

);

The representation of phylogenetic networks in BioPerl includes additional
methods for performing various operations on networks and their nodes and
edges; for instance, to access all the roots of a phylogenetic network,

my @roots = $net ->roots;
my $rooted = scalar @roots == 1;

to access the terminal nodes of a phylogenetic network,

my @taxa = $net ->leaves;

to access the tree and hybrid nodes of a phylogenetic network,

my @tree_nodes = $net ->tree_nodes;
my @hybrid_nodes = $net ->hybrid_nodes;

to access the tree and hybrid edges of a phylogenetic network,

my @tree_edges = $net ->tree_edges;
my @hybrid_edges = $net ->edges;

to obtain the directed acyclic graph underlying a phylogenetic network,

my $graph = $net ->graph;

to test for time consistency and obtain a temporal representation of a time-
consistent phylogenetic network,

if ( $net ->is_time_consistent ) {
my %time = $net ->temporal_representation;

}

to test if a phylogenetic network is tree-child,

my $tree_child = $net ->is_tree_child;

and to obtain all the phylogenetic trees contained in a phylogenetic network,

my @trees = $net ->explode;

Phylogenetic networks can be displayed using BioPerl in a variety of ways,
such as in eNewick format,

© 2009 by Taylor & Francis Group, LLC



Graphs 205

my $str = $net ->eNewick;

and drawn as a layered directed acyclic graph, with tree nodes depicted as
circles and hybrid nodes as rectangles, in several graphic formats, including
Encapsulated PostScript (EPS), Graphics Interchange Format (GIF), Joint
Photographic Experts Group (JPEG), and Scalable Vector Graphics (SVG).

use Bio:: PhyloNetwork :: GraphViz;

my $g = Bio:: PhyloNetwork ::GraphViz ->new(
-net => $net)

;

$g ->as_ps("net.eps");
$g ->as_gif("net.gif");
$g ->as_jpeg("net.jpg");
$g ->as_svg("net.svg");

8.3.5 Representing Graphs in R

There are also many ways in which graphs can be represented in R and, as
a matter of fact, many different R contributed packages implementing various
types of graphs are available for download from CRAN, the Comprehensive
R Archive Network, at http://cran.r-project.org/. Among them, let us
focus on the iGraph representation, which is essentially a vector-based repre-
sentation of undirected and directed graphs and, in particular, phylogenetic
networks.

A phylogenetic network in represented in the R package iGraph as a list of
class igraph consisting of nine elements, including: the number of nodes in
the network, a Boolean indicating whether the graph is directed or undirected
and set to TRUE because phylogenetic networks are directed graphs, a numeric
vector with the source node of each edge, and another numeric vector with
the target node of each edge.

For instance, the phylogenetic network with eNewick string ((A,(B)h#H1)x,
(h#H1,C)y)r; has a root numbered 0 and labeled r; two internal tree nodes
numbered 1, 2 and labeled x, y; one hybrid node numbered 3 and labeled h;
three terminal nodes numbered 4, 5, 6 and labeled A, B, C; and edges 0–1, 0–
2, 1–3, 1–4, 2–3, 2–6, 3–5. The following R script computes the representation
of such a phylogenetic network, where the edges are specified as a vector of
nodes, with the even elements standing for source nodes and the odd elements
standing for the corresponding target nodes.

> library(igraph)
> net <- graph(c(0,1,0,2,1,4,1,3,2,3,2,6,3,5),n=7)
> net
Vertices: 7

© 2009 by Taylor & Francis Group, LLC



206 Combinatorial Pattern Matching Algorithms in Computational Biology

Edges: 7
Directed: TRUE
Edges:

[0] 0 -> 1
[1] 0 -> 2
[2] 1 -> 4
[3] 1 -> 3
[4] 2 -> 3
[5] 2 -> 6
[6] 3 -> 5

Nodes are referred to by their numbers, although they can still have a label
assigned to them.

> V(net)
Vertex sequence:
[1] 0 1 2 3 4 5 6
> V(net)$name <- c("r","x","y","h","A","B","C")
> net
Vertices: 7
Edges: 7
Directed: TRUE
Edges:

[0] r -> x
[1] r -> y
[2] x -> A
[3] x -> h
[4] y -> h
[5] y -> C
[6] h -> B

Edges make reference to their source and target nodes by label instead of
number, though, when the nodes are labeled.

> V(net)
Vertex sequence:
[1] "r" "x" "y" "h" "A" "B" "C"
> E(net)
Edge sequence:

[0] r -> x
[1] r -> y
[2] x -> A
[3] x -> h
[4] y -> h

© 2009 by Taylor & Francis Group, LLC



Graphs 207

[5] y -> C
[6] h -> B

The number of nodes and edges of a phylogenetic network are also readily
available.

> vcount(net)
[1] 7
> ecount(net)
[1] 7

Based on this vector representation, is is rather easy to code various oper-
ations on phylogenetic networks and their nodes and edges; for instance, to
obtain the root node or nodes,

> V(net)[which(degree(net ,mode="in")==0) -1]
Vertex sequence:
[1] "r"

to obtain the terminal nodes,

> V(net)[which(degree(net ,mode="out")==0) -1]
Vertex sequence:
[1] "A" "B" "C"

to access the tree nodes and the hybrid nodes of the phylogenetic network,

> V(net)[which(degree(net ,mode="in") <=1) -1]
Vertex sequence:
[1] "r" "x" "y" "A" "B" "C"
> V(net)[which(degree(net ,mode="in") >1) -1]
Vertex sequence:
[1] "h"

to obtain the parent or parents of a node in the phylogenetic network,

> V(net)[nei(which(V(net)$name=="x")-1,"in")]
Vertex sequence:
[1] "r"
> V(net)[nei(which(V(net)$name=="h")-1,"in")]
Vertex sequence:
[1] "x" "y"

and to obtain the children of a node in the phylogenetic network,

> V(net)[nei(which(V(net)$name=="r")-1,"out")]
Vertex sequence:
[1] "x" "y"
> V(net)[nei(which(V(net)$name=="x")-1,"out")]
Vertex sequence:
[1] "h" "A"

© 2009 by Taylor & Francis Group, LLC



208 Combinatorial Pattern Matching Algorithms in Computational Biology

Phylogenetic networks can also be displayed using R in a variety of ways,
such as in edge list format,

> write.graph(net ,file="net.txt",format="edgelist")

and drawn as a layered directed acyclic graph, with tree nodes depicted as
circles and hybrid nodes as rectangles, in Adobe Portable Document Format
(PDF),

> pdf(file="net.pdf")
> net$layout <- layout.reingold.tilford(net)
> V(net)$shape <- "circle"
> V(net)[which(degree(net ,mode="in") >1) -1]$shape <- "

square"
> plot.igraph(net ,layout=cbind(net$layout[,1],-net$

layout [,2]),vertex.shape=V(net)$shape ,vertex.label
=V(net)$name)

> dev.off()

among several other display options for undirected and directed graphs and,
in particular, phylogenetic networks.

Bibliographic Notes

The number of possible, not necessarily connected, labeled graphs is given
in (Sloane and Plouffe 1995, p. 19).

The depth-first traversal of undirected and directed graphs was first de-
scribed in (Tarjan 1972). Breadth-first graph traversal was first described
in (Lee 1961; Moore 1959). See also (Valiente 2002, ch. 5).

Graph-based models of metabolic pathways are reviewed in detail by Deville
et al. (2003). The metabolic pathway of the tricarboxylic acid cycle is adapted
from (Koolman and Roehm 2005, 136–139). See also (Nelson and Cox 2008,
ch. 16).

The representation of protein interaction networks as undirected graphs
underlies computational approaches to the prediction of protein function from
protein interaction data (Pandey et al. 2008). The protein interaction network
of Campylobacter jejuni was determined by Parrish et al. (2007).

The use of directed acyclic graphs to model reticulate evolution was first
proposed in (Strimmer and Moulton 2000; Strimmer et al. 2001). Tree-sibling
phylogenetic networks were introduced by Moret et al. (2004) and further
studied by Cardona et al. (2008a;d). Tree-child phylogenetic networks were
introduced by Cardona et al. (2009c). Galled-trees were introduced by Wang
et al. (2001) and further studied by Gusfield et al. (2004a;b). The temporal
representation of a phylogenetic network was first studied in (Baroni et al.

© 2009 by Taylor & Francis Group, LLC



Graphs 209

2006; Maddison 1997). Tree-sibling, tree-child, and galled-tree phylogenetic
networks were further studied by Arenas et al. (2008) using computer simu-
lation. The fully resolved phylogenetic networks explaining the evolutionary
relationships among the eleven alcohol dehydrogenase genes of Drosophila
melanogaster were reconstructed using the beagle tool (Lyngsø et al. 2005).

The eNewick linear representation for phylogenetic networks was first pro-
posed in (Morin and Moret 2006) and further described by Cardona et al.
(2008b;c). Further linear representations of graphs in computational biol-
ogy include the notation for protein molecular structures developed by Levitt
and Lifson (1969) and the SMILES (Simplified Molecular Input Line Entry
System) notation for molecular structures of Weininger (1988).

The number of possible unicyclic phylogenetic networks and galled-trees as
a function of the number of terminal nodes was determined by Semple and
Steel (2006).

The representation of phylogenetic networks in BioPerl is described in more
detail in (Cardona et al. 2008b), where the simple algorithm for generat-
ing fully resolved tree-child phylogenetic networks and the interface to the
GraphViz toolset (http://www.graphviz.org/) are also discussed. The rep-
resentation of undirected and directed graphs in the R package iGraph is
described in (Csárdi and Nepusz 2006).

© 2009 by Taylor & Francis Group, LLC

http://www.graphviz.org


Chapter 9

Simple Pattern Matching in Graphs

Combinatorial pattern matching is the search for exact or approximate oc-
currences of a given pattern within a given text. When it comes to graphs
in computational biology, both the pattern and the text are graphs and the
pattern matching problem becomes one of finding the occurrences of a graph
within another graph. For instance, scanning a metabolic pathway for the
presence of a known pattern can help in finding conserved network motifs,
and finding a phylogenetic network within another phylogenetic network can
help in assessing their similarities and differences. This will be the subject of
the next chapter.

A related pattern matching problem that arises in the analysis of graphs
consists in finding simpler patterns, that is, paths and trees within a given
graph. For instance, finding paths between two nodes of a graph is useful for
computing distances in a graph and also for computing distances between two
graphs, and finding the trees contained in a graph is also useful for computing
distances between two graphs. This is the subject of this chapter.

9.1 Finding Paths in Graphs

Any two nodes may be connected by more than one path in a graph, even
if no edge is to be traversed more than once in a path between the two nodes
of the graph.

Example 9.1
In the following fully resolved phylogenetic network, there are two paths from
the root to the terminal node labeled B, the paths r–x–h–B and r–y–h–B.

r

x

h

y

A

B

C

211
© 2009 by Taylor & Francis Group, LLC



212 Combinatorial Pattern Matching Algorithms in Computational Biology

The height of a node in a phylogenetic network is the length of a longest
path from the node to a terminal node, that is, the largest of the paths in the
network from the node to the terminal nodes.

The paths from a given node to each of the terminal nodes of a phylogenetic
network are the paths from the children of the node to the terminal nodes.
Thus, the number of paths from the root to the terminal nodes of a phyloge-
netic network can be computed by order of increasing height of the nodes in
the network, adding up the number of paths from the children to each of the
terminal nodes. From a terminal node, there is one (trivial) path to itself and
no path to any of the other terminal nodes.

Example 9.2
In the phylogenetic network of the previous example, the terminal nodes are
at height 0, the hybrid node is at height 1, the internal tree nodes are at height
2, and the root is at height 3. There is one path from the root to each of the
terminal nodes labeled A and C in this network, and there are two paths from
the root to the terminal node labeled B, and this is all represented by the
vector (1, 2, 1) of path multiplicities.

r

x

h

y

A B C

(1, 2, 1)

(1, 1, 0) (0, 1, 1)

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

The children of the root have (1, 1, 0) and (0, 1, 1) as path multiplicity vectors,
and (1, 2, 1) = (1, 1, 0) + (0, 1, 1). The path multiplicity vector of the hybrid
node is (0, 1, 0), the same as the terminal node labeled B.

The height of the nodes in a phylogenetic network cannot be obtained by
performing a depth-first or a breadth-first traversal of the network, though,
and a bottom-up traversal is needed, from the terminal nodes up to the root
of the network.

A bottom-up traversal of a phylogenetic network can be performed with
the help of a queue of nodes, which holds the nodes waiting to be traversed.
Initially, the queue contains the terminal nodes of the network, which have
height 0. Every time a node is dequeued and visited, the heights of its parents
are updated (by keeping the largest of their current height value and the height
of the dequeued node plus 1), and the parents are enqueued as soon as all

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Graphs 213

their children have been visited. The procedure finishes when the queue has
been emptied and no nodes remain to be enqueued.

In the following description, the height h(v) of each node v in a phylogenetic
network N is computed during a bottom-up traversal of N , with the help of
an (initially empty) queue Q of nodes.

function height(N)
for all nodes v of N do

h(v)← 0
if v is a terminal node then

enqueue(Q, v)
while Q is not empty do

v ← dequeue(Q)
mark node v as visited
for all parents u of node v do

h(u)← max(h(u), h(v) + 1)
if all children of u are marked visited then

enqueue(Q, u)
return h

Example 9.3
The following table illustrates the step-by-step computation of node heights
in the phylogenetic network of the previous example.

node A B C h x y r
height after initial loop 0 0 0 0 0 0 0

height after dequeue of terminal node labeled 1 0 0 0 0 1 0 0
height after dequeue of terminal node labeled 2 0 0 0 1 1 0 0
height after dequeue of terminal node labeled 3 0 0 0 1 1 1 0

height after dequeue of hybrid node h 0 0 0 1 2 2 0
height after dequeue of internal tree node x 0 0 0 1 2 2 3
height after dequeue of internal tree node y 0 0 0 1 2 2 3

height after dequeue of root r 0 0 0 1 2 2 3

With the representation of phylogenetic networks in BioPerl, the height
of the nodes is computed when constructing the Bio::PhyloNetwork object,
and it is readily available by means of the heights method, as shown in the
following Perl script.

use Bio:: PhyloNetwork;

my $net = Bio:: PhyloNetwork ->new(
-eNewick => ’((A,(B)h#H1)x,(h#H1 ,C)y)r;’

);

© 2009 by Taylor & Francis Group, LLC



214 Combinatorial Pattern Matching Algorithms in Computational Biology

my %h = $net ->heights;

The representation of phylogenetic networks in R, on the other hand, does
not include any method to compute the height of the nodes in a phylogenetic
network. However, a network.height function can easily be defined using a
vector to represent the queue of nodes waiting to be traversed, as illustrated
by the following R script.

> library(igraph)
> net <- graph(c(0,1,0,2,1,4,1,3,2,3,2,6,3,5),n=7)
> V(net)$name <- c("r","x","y","h","A","B","C")

> network.height <- function (net) {
V(net)$height <- 0
V(net)$visited <- FALSE
Q <- as.vector(V(net)[which(degree(net ,mode="out")

==0) -1])
while (length(Q) >0) {

j <- Q[1]
Q <- Q[-1]
V(net)[j]$visited <- TRUE
I <- as.vector(V(net)[nei(j,mode="in")])
for (i in I) {

V(net)[i]$height <- max(V(net)[i]$height ,V(net)
[j]$height +1)

if (all(V(net)[nei(i,mode="out")]$visited)) Q
<- c(Q,i)

}
}
V(net)$height

}

> network.height(net)
[1] 3 2 2 1 0 0 0

9.1.1 Distances in Graphs

Recall that the path between any two given terminal nodes of a fully re-
solved rooted phylogenetic tree traverses the most recent common ancestor of
the nodes in the tree. In a phylogenetic network, however, the path between
any two terminal nodes need not be unique, because of the existence of hybrid
nodes in the network.

Hybrid nodes make it necessary to distinguish between strict and non-strict
descendants of a node in a phylogenetic network. For a strict descendant of

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Graphs 215

a node, every path from the root to the descendant must contain the node,
while for a non-strict descendant, there is at least one path from the root to
the descendant containing the node and at least one path from the root to
the descendant not containing it. Every node of a phylogenetic network is
thus a (trivial) strict descendant of itself, and every strict ancestor of a node
is connected by a path with every ancestor of the node.

A common semi-strict ancestor of two nodes in a phylogenetic network is
a common ancestor of the nodes which is also a strict ancestor of at least
one of them. The path between any two given terminal nodes of a fully
resolved phylogenetic network is the shortest path that traverses the most
recent common semi-strict ancestor of the nodes in the network, which always
exists. Any other path between the two terminal nodes is not of much use
when computing distances in phylogenetic networks.

Example 9.4

In the following phylogenetic network, the most recent common semi-strict
ancestor of the terminal nodes labeled A and B is the node labeled x, because
it is a strict ancestor of the terminal node labeled A and a (non-strict) ancestor
of the terminal node labeled B, and none of its descendants is an ancestor of
these two terminal nodes.

r

x y

A B C D

The most recent common semi-strict ancestor of the terminal nodes labeled
B and C is the root r, because it is a strict ancestor of the two terminal
nodes, and none of its descendants is also a strict ancestor of any of them.
The internal tree nodes labeled x and y are indeed common ancestors of these
two terminal nodes and their most recent common ancestors in terms of path
length, but they are not strict ancestors of any of them.

The common ancestors are those nodes which the two terminal nodes can
be reached from by directed paths and can thus be easily obtained by testing
the existence of these paths in the directed acyclic graph representation of
the phylogenetic network. Further, it can be decided if a common ancestor
node is a strict ancestor of at least one of the two terminal nodes and thus

© 2009 by Taylor & Francis Group, LLC



216 Combinatorial Pattern Matching Algorithms in Computational Biology

a common semi-strict ancestor of them, by testing if at least one of the two
terminal nodes is no longer reachable from the root after having removed from
the phylogenetic network the common ancestor node.

In the following description, the common semi-strict ancestors of two ter-
minal nodes v and w in a phylogenetic network N are collected in an (initially
empty) queue Q of nodes.

function CSA(N, v,w)
for all nodes u of N do

if v and w are reachable from u in N then
if strict ancestor(N,u, v) or strict ancestor(N,u,w) then

enqueue(Q, u)
return Q

The test for a node u being a strict ancestor of a terminal node v involves
removing u from a copy N ′ of the phylogenetic network N .

function strict ancestor(N,u, v)
N ′ ← N
remove node u from N ′

r ← root(N ′)
if v is reachable from r in N ′ then

return false
else

return true

Now, the most recent common semi-strict ancestor of two terminal nodes is
just the common semi-strict ancestor of the two nodes that has the smallest
height in the directed acyclic graph representation of the phylogenetic net-
work. In the following description, the node u of least height among all the
common semi-strict ancestors of two terminal nodes v and w in a phylogenetic
network N is selected.

function LCSA(N, v,w)
Q← CSA(N, v,w)
u← dequeue(Q)
while Q is not empty do

x← dequeue(Q)
if height(x) < height(u) then

u← x
return u

The representation of phylogenetic networks in Perl by means of directed
acyclic graphs makes it possible to implement the previous algorithms in a

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Graphs 217

straightforward way. In the following Perl script, the is_strict_ancestor
test removes with the delete_vertex method the candidate ancestor node
from a local copy of the directed acyclic graph, obtained with the copy_graph
method; the root of the phylogenetic network is (the only) one of the source_
vertices in the directed acyclic graph; and the node reachability test is per-
formed by the is_reachable method of the Graph::Directed Perl module.

The CSA method uses both the is_reachable and the is_strict_ancestor
tests, and the LCSA method uses the heights method of Bio::PhyloNetwork.

use Bio:: PhyloNetwork;

sub is_strict_ancestor {
my $net = shift;
my $u = shift;
my $v = shift;
my $dag = $net ->graph ->copy_graph;

my @roots = $dag ->source_vertices;
my $root = shift @roots;

$dag ->delete_vertex($u);
return !$dag ->is_reachable($root ,$v);

}

sub CSA {
my $net = shift;
my $v = shift;
my $w = shift;
my $dag = $net ->graph;

my @csa = ();
foreach my $u ( $net ->nodes ) {

if ( $dag ->is_reachable($u ,$v) and $dag ->
is_reachable($u,$w) ) { # common ancestor

if (is_strict_ancestor($net ,$u ,$v) or
is_strict_ancestor($net ,$u,$w)) {

push @csa , $u;
}

}
}

return \@csa;
}

sub LCSA {

© 2009 by Taylor & Francis Group, LLC



218 Combinatorial Pattern Matching Algorithms in Computational Biology

my $net = shift;
my $v = shift;
my $w = shift;

my %height = $net ->heights;
my @CSA = @{ CSA($net ,$v ,$w) };

my $lcsa = shift @CSA;
for my $node ( @CSA ) {

if ( $height{$node} < $height{$lcsa} ) {
$lcsa = $node;

}
}

return $lcsa;
}

The representation of phylogenetic networks in R by means of directed
acyclic graphs also makes it possible to implement the previous algorithms in
a straightforward way. In the following R script, the shortest paths from the
root to the descendant node are obtained using the get.all.shortest.paths
function of the R package iGraph. Notice that the identifier of the descendant
node in the representation of the phylogenetic network may change when
deleting the ancestor node from the network.

> library(igraph)
> net <- graph(c(0,1,0,2,1,4,1,3,2,3,2,6,3,5),n=7)
> V(net)$name <- c("r","x","y","h","A","B","C")

> is.strict.ancestor <- function (net ,i,j) {
if (length(get.all.shortest.paths(net ,V(net)[i],V(

net)[j],mode="out")) == 0) return(FALSE)
r <- V(net)[which(degree(net ,mode="in")==0) -1]
if (i == r || i == j) return(TRUE)
net <- delete.vertices(net ,i)
if (i < j) j <- j - 1 # account for deleted node

length(get.all.shortest.paths(net ,r,V(net)[j],mode=
"out")) == 0

}

> V(net)
Vertex sequence:
[1] "r" "x" "y" "h" "A" "B" "C"

> is.strict.ancestor(net ,1,4)
[1] TRUE

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Graphs 219

> is.strict.ancestor(net ,1,5)
[1] FALSE
> is.strict.ancestor(net ,1,6)
[1] FALSE

Based on the is.strict.ancestor function, it is straightforward to obtain
the common semi-strict ancestors of two terminal nodes in a phylogenetic
network, as illustrated by the following R script.

> is.ancestor <- function (net ,i,j) {
length(get.all.shortest.paths(net ,V(net)[i],V(net)[

j],mode="out")) != 0
}

> CSA <- function (net ,i,j) {
strict <- lapply(V(net),function (u) is.ancestor(

net ,u,i) && is.ancestor(net ,u,j) && (is.strict.
ancestor(net ,u,i) || is.strict.ancestor(net ,u,j)
))

V(net)[unlist(strict)]
}

> V(net)
Vertex sequence:
[1] "r" "x" "y" "h" "A" "B" "C"

> CSA(net ,4,5)
Vertex sequence:
[1] "r" "x"
> CSA(net ,4,6)
Vertex sequence:
[1] "r"
> CSA(net ,5,6)
Vertex sequence:
[1] "r" "y"

Then the most recent common semi-strict ancestor of two terminal nodes
is just the common semi-strict ancestor of the two terminal nodes that has
the smallest height, which can be obtained with help of the network.height
function, as shown in the following R script.

> LCSA <- function (net ,i,j) {
csa <- match(CSA(net ,i,j),V(net))
V(net)[csa[which.min(network.height(net)[csa])]-1]

}

> V(net)

© 2009 by Taylor & Francis Group, LLC



220 Combinatorial Pattern Matching Algorithms in Computational Biology

Vertex sequence:
[1] "r" "x" "y" "h" "A" "B" "C"

> LCSA(net ,4,5)
Vertex sequence:
[1] "x"
> LCSA(net ,4,6)
Vertex sequence:
[1] "r"
> LCSA(net ,5,6)
Vertex sequence:
[1] "y"

9.1.2 The Path Multiplicity Distance between Graphs

The similarities and differences between two phylogenetic networks can be
assessed by computing a distance measure between the two networks. The
path multiplicity distance is based on the number of different paths from the
internal nodes to each of the terminal nodes of the networks. While there
is one (trivial) path from a terminal node to itself and no path to any other
terminal node, the numbers of paths from the internal nodes to the terminal
nodes reveal similarities and differences between two phylogenetic networks.

Example 9.5

The following fully resolved tree-child phylogenetic networks with eNewick
string (((A,(C)h1#H1)x,(B)h2#H2)y,(h2#H2,(h1#H1,D)z)w)r; (left) and
((A,(B,(C)h#H)x)y,(h#H,D)z)r; (right) differ in six path multiplicity vec-
tors, and, thus, their path multiplicity distance is 6.

r

y w

x

h2

z

h1

A B C D

r

y

zx

h

A B C D

The path multiplicity vectors for the first phylogenetic network are given in
the following table, with the nodes sorted by height.

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Graphs 221

node height vector
A 0 (1, 0, 0, 0)
B 0 (0, 1, 0, 0)
C 0 (0, 0, 1, 0)
D 0 (0, 0, 0, 1)
h1 1 (0, 0, 1, 0)
h2 1 (0, 1, 0, 0)
x 2 (1, 0, 1, 0)
z 2 (0, 0, 1, 1)
w 3 (0, 1, 1, 1)
y 3 (1, 1, 1, 0)
r 4 (1, 2, 2, 1)

The path multiplicity vectors for the second phylogenetic network are given
in the following table, also with the nodes sorted by height.

node height vector
A 0 (1, 0, 0, 0)
B 0 (0, 1, 0, 0)
C 0 (0, 0, 1, 0)
D 0 (0, 0, 0, 1)
h 1 (0, 0, 1, 0)
x 2 (0, 1, 1, 0)
z 2 (0, 0, 1, 1)
y 3 (1, 1, 1, 0)
r 4 (1, 1, 2, 1)

The two networks differ in the path multiplicity vectors (0, 1, 0, 0), (0, 1, 1, 0),
(0, 1, 1, 1), (1, 0, 1, 0), (1, 1, 2, 1), and (1, 2, 2, 1). Notice that the path mul-
tiplicity vector (0, 1, 0, 0) occurs twice in the first network but only once in
the second network and, thus, it contributes |2 − 1| = 1 to the symmetric
difference of the multisets of path multiplicity vectors.

The path multiplicity distance between two phylogenetic networks labeled
over the same taxa is defined as the size of the symmetric difference of their
multisets of path multiplicity vectors, that is, the number of path multiplicity
vectors in which the two phylogenetic networks differ. The symmetric differ-
ence applies to multisets rather than to sets, because path multiplicity vectors
in a phylogenetic network are not necessarily unique. For instance, in a fully
resolved phylogenetic network, a hybrid node and its single child share the
same path multiplicity vector.

Now, since the paths from an internal node to the terminal nodes of a
phylogenetic network are the paths from the children of the internal node
to the terminal nodes, the vector of path multiplicities associated with each
node of a phylogenetic network can be computed by performing a bottom-up
traversal, from the terminal nodes up to the root of the network, adding the

© 2009 by Taylor & Francis Group, LLC



222 Combinatorial Pattern Matching Algorithms in Computational Biology

path multiplicity vectors of the children to obtain the path multiplicity vector
of the parent node. The path multiplicity vector of the i-th terminal node has
1 in the i-th position and 0 everywhere else.

In the following description, the path multiplicity vector µ(v) of each node v
in a phylogenetic network N is computed during a bottom-up traversal of N ,
with the help of an (initially empty) queue Q of nodes. The path multiplicity
vector µ(v) of each child v of an internal node u is added in turn to the
(initially all-zero) path multiplicity vector µ(u) of the parent node u.

procedure path multiplicity(N,µ)
for all nodes v of N do

µ(v)← (0, 0, . . . , 0)
if v is a terminal node then

i← rank of v in the terminal nodes of N
µ(v)[i]← 1
enqueue(Q, v)

while Q is not empty do
v ← dequeue(Q)
mark node v as visited
for all parents u of node v do

µ(u)← µ(u) + µ(v)
if all children of u are marked visited then

enqueue(Q, u)

Example 9.6

Consider again the fully resolved tree-child phylogenetic network with eNewick
string (((A,(C)h1#H1)x,(B)h2#H2)y,(h2#H2,(h1#H1,D)z)w)r; from the pre-
vious example.

r

y w

x

h2

z

h1

A B C D

The following table illustrates the step-by-step computation of the path mul-
tiplicity vector for each of the internal nodes in the network.

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Graphs 223

dequeued node height computation of path multiplicity vector
A 0 µ(x)← (0, 0, 0, 0) + (1, 0, 0, 0) = (1, 0, 0, 0)
B 0 µ(h2)← (0, 0, 0, 0) + (0, 1, 0, 0) = (0, 1, 0, 0)
C 0 µ(h1)← (0, 0, 0, 0) + (0, 0, 1, 0) = (0, 0, 1, 0)
D 0 µ(z)← (0, 0, 0, 0) + (0, 0, 0, 1) = (0, 0, 0, 1)
h1 1 µ(x)← (1, 0, 0, 0) + (0, 0, 1, 0) = (1, 0, 1, 0)

µ(z)← (0, 0, 0, 1) + (0, 0, 1, 0) = (0, 0, 1, 1)
h2 1 µ(w)← (0, 0, 0, 0) + (0, 1, 0, 0) = (0, 1, 0, 0)

µ(y)← (0, 0, 0, 0) + (0, 1, 0, 0) = (0, 1, 0, 0)
x 2 µ(y)← (0, 1, 0, 0) + (1, 0, 1, 0) = (1, 1, 1, 0)
z 2 µ(w)← (0, 1, 0, 0) + (0, 0, 1, 1) = (0, 1, 1, 1)
w 3 µ(r)← (0, 0, 0, 0) + (0, 1, 1, 1) = (0, 1, 1, 1)
y 3 µ(r)← (0, 1, 1, 1) + (1, 1, 1, 0) = (1, 2, 2, 1)

With the representation of phylogenetic networks in BioPerl, the path mul-
tiplicities are computed when constructing the Bio::PhyloNetwork object,
and they are readily available by means of the mudata method, as shown in
the following Perl script.

use Bio:: PhyloNetwork;

my $net = Bio:: PhyloNetwork ->new( -eNewick => ’(((A,(
C)h1#H1)x,(B)h2#H2)y,(h2#H2 ,(h1#H1,D)z)w)r;’ );

my %mu = $net ->mudata;

for my $node (sort keys %mu) {
print "$node $mu{$node}\n";

}

Running the previous Perl script produces the following output:

#1 (0 0 1 0)
#2 (0 1 0 0)
A (1 0 0 0)
B (0 1 0 0)
C (0 0 1 0)
D (0 0 0 1)
r (1 2 2 1)
w (0 1 1 1)
x (1 0 1 0)
y (1 1 1 0)
z (0 0 1 1)

The representation of phylogenetic networks in R, on the other hand, does
not include any method to compute the path multiplicity vectors of the nodes

© 2009 by Taylor & Francis Group, LLC



224 Combinatorial Pattern Matching Algorithms in Computational Biology

in a phylogenetic network. However, a path.multiplicity function can eas-
ily be defined using a vector to represent the queue of nodes waiting to be
traversed and a matrix indexed by node names (rows) and terminal node
names (columns) to represent the multiset of path multiplicity vectors, as
illustrated by the following R script.

> library(igraph)
> el <- matrix(c("r","y","r","w","y","x","y","h2","w"

,"h2","w","z","x","A","x","h1","h2","B","z","h1","
z","D","h1","C"),nc=2,byrow=TRUE)

> net <- graph.edgelist(el)

> path.multiplicity <- function (net) {
leaves <- V(net)[which(degree(net ,mode="out")==0)

-1]
mu <- matrix(0,nrow=vcount(net),ncol=length(leaves)

,dimnames=list(sort(V(net)$name),sort(leaves$
name)))

for (v in sort(V(net)[leaves]$name)) mu[v,v] <- 1
V(net)$visited <- FALSE
Q <- as.vector(V(net)[which(degree(net ,mode="out")

==0) -1])
while (length(Q) >0) {

j <- Q[1]
Q <- Q[-1]
V(net)[j]$visited <- TRUE
I <- as.vector(V(net)[nei(j,mode="in")])
for (i in I) {

mu[V(net)[i]$name ,] <- mu[V(net)[i]$name ,] + mu
[V(net)[j]$name ,]

if (all(V(net)[nei(i,mode="out")]$visited)) Q
<- c(Q,i)

}
}
mu

}

> path.multiplicity(net)
A B C D

A 1 0 0 0
B 0 1 0 0
C 0 0 1 0
D 0 0 0 1
h1 0 0 1 0
h2 0 1 0 0

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Graphs 225

r 1 2 2 1
w 0 1 1 1
x 1 0 1 0
y 1 1 1 0
z 0 0 1 1

The path multiplicity distance between two phylogenetic networks can be
computed by counting the number of path multiplicity vectors shared by the
two networks, during a simultaneous traversal of the sorted path multiplicity
vectors of the two networks. In the following description, the matrices of
path multiplicities are sorted by rows and then the simultaneous traversal
is performed by advancing the row index to the path multiplicity matrix of
the first network, the second network, or both, depending on the indexed
path multiplicity vector of the first network being less than, greater than, or
equal to the indexed path multiplicity vector of the second network. In the
latter case, the number of common path multiplicity vectors is increased by
one. Then the path multiplicity distance is the number of nodes in the two
networks minus twice the number of path multiplicity vectors shared by the
two networks.

function path multiplicity distance(N1, N2)
path multiplicity(N1, µ1)
path multiplicity(N2, µ2)
sort µ1 and µ2

n1 ← number of nodes of N1

n2 ← number of nodes of N2

i1 ← 1
i2 ← 1
c← 0
while i1 6 n1 and i2 6 n2 do

if µ1[i1] < µ2[i2] then
i1 ← i1 + 1

else if µ1[i1] > µ2[i2] then
i2 ← i2 + 1

else
i1 ← i1 + 1
i2 ← i2 + 1
c← c + 1

return n1 + n2 − 2 · c

Example 9.7
The fully resolved tree-child phylogenetic networks from the previous exam-
ples, with (((A,(C)h1#H1)x,(B)h2#H2)y,(h2#H2,(h1#H1,D)z)w)r; (left)
and ((A,(B,(C)h#H)x)y,(h#H,D)z)r; (right) as eNewick strings, have the

© 2009 by Taylor & Francis Group, LLC



226 Combinatorial Pattern Matching Algorithms in Computational Biology

following sorted path multiplicity vectors.

0001

0010

0010

0011

0100

0100

0111

1000

1010

1110

1221

0001

0010

0010

0011

0100

0110

1000

1110

1121

i1

1
2
3
4
5
6
7
8
9

10
11

D
C
h1

z

B
h2

w

A
x

y

r

i2

1
2
3
4
5
6
7
8
9

D
C
h

z

B
x

A
y

r

There are 7 path multiplicity vectors shared by the two networks and, thus,
their path multiplicity distance is 11 + 9− 2 · 7 = 6.

The mu_distance method provided by the representation of phylogenetic
networks in BioPerl allows one to compute the path multiplicity distance
between two phylogenetic networks with the same terminal node labels, as
shown in the following Perl script.

use Bio:: PhyloNetwork;

my $net1 = Bio:: PhyloNetwork ->new( -eNewick => ’((A
,((B,(C)h1#H1)w)h2#H2)x,(h1#H1 ,(h2#H2 ,D)y)z)r;’ );

my $net2 = Bio:: PhyloNetwork ->new( -eNewick => ’((A,(
B,(C)h#H)x)y,(h#H,D)z)r;’ );

my $dist = $net1 ->mu_distance($net2);

The representation of phylogenetic networks in R, on the other hand, does
not include any method to compute the path multiplicity distance between
two phylogenetic networks. However, the matrices of path multiplicities can
be computed using the path.multiplicity function and then sorted by rows,
and the simultaneous traversal algorithm can be implemented in a straightfor-
ward way by defining a lex.cmp function for the lexicographical comparison
of two path multiplicity vectors, as illustrated by the following R script.

> library(igraph)
> el <- matrix(c("r","y","r","w","y","x","y","h2","w"

,"h2","w","z","x","A","x","h1","h2","B","z","h1","
z","D","h1","C"),nc=2,byrow=TRUE)

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Graphs 227

> net1 <- graph.edgelist(el)

> el <- matrix(c("r","z","r","y","y","A","y","x","z",
"h","z","D","x","B","x","h","h","C"),nc=2,byrow=
TRUE)

> net2 <- graph.edgelist(el)

> lex.cmp <- function(vec1 ,vec2) {
index <- which.min(vec1 == vec2)
as.numeric(sign(vec1[index] - vec2[index]))

}

> path.multiplicity.distance <- function (net1 ,net2)
{

mu1 <- path.multiplicity(net1)
mu1 <- mu1[do.call("order",lapply (1: ncol(mu1),

function (j) mu1[,j])),]
mu2 <- path.multiplicity(net2)
mu2 <- mu2[do.call("order",lapply (1: ncol(mu2),

function (j) mu2[,j])),]
i1 <- 1
i2 <- 1
c <- 0
while (i1 <= nrow(mu1) && i2 <= nrow(mu2)) {

lex <- lex.cmp(mu1[i1 ,],mu2[i2 ,])
if ( lex == -1 ) {

i1 <- i1 + 1
} else if ( lex == 1 ) {

i2 <- i2 + 1
} else {

i1 <- i1 + 1
i2 <- i2 + 1
c <- c + 1

}
}
nrow(mu1)+nrow(mu2) -2*c

}

> path.multiplicity.distance(net1 ,net2)
[1] 6

The path multiplicity distance is a metric on the space of all tree-child phy-
logenetic networks, as well as on the space of all fully resolved time-consistent
tree-sibling phylogenetic networks, and it generalizes the partition distance
between rooted phylogenetic trees.

© 2009 by Taylor & Francis Group, LLC



228 Combinatorial Pattern Matching Algorithms in Computational Biology

9.1.3 The Tripartition Distance between Graphs

The tripartition distance is based on the partition of the taxa into strict
descendants, non-strict descendants, and non-descendants induced by each
node in the two phylogenetic networks under comparison. While terminal
nodes are their only (strict) descendants, the tripartitions induced by the
internal nodes reveal similarities and differences between two phylogenetic
networks.

Example 9.8

Consider again the fully resolved tree-child phylogenetic network with eNewick
string (((A,(C)h1#H1)x,(B)h2#H2)y,(h2#H2,(h1#H1,D)z)w)r; (left) and
with eNewick string ((A,(B,(C)h#H)x)y,(h#H,D)z)r; (right) from the pre-
vious examples.

r

y w

x

h2

z

h1

A B C D

r

y

zx

h

A B C D

The tripartition vectors for the first phylogenetic network are given in the
following table, with the nodes sorted by height, where A denotes a strict de-
scendant, B denotes a non-strict descendant, and C denotes a non-descendant.

node height tripartition
A 0 (A,C,C, C)
B 0 (C,A,C, C)
C 0 (C,C,A, C)
D 0 (C,C,C,A)
h1 1 (C,C,A, C)
h2 1 (C,A,C, C)
x 2 (A,C, B, C)
z 2 (C,C,B,A)
w 3 (C,B,B,A)
y 3 (A,B,B, C)
r 4 (A,A, A,A)

The tripartition vectors for the second phylogenetic network are given in the
following table, also with the nodes sorted by height.

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Graphs 229

node height tripartition
A 0 (A,C, C, C)
B 0 (C,A, C, C)
C 0 (C,C,A, C)
D 0 (C,C,C,A)
h 1 (C,C,A, C)
x 2 (C,A,B, C)
z 2 (C,C,B,A)
y 3 (A,A, B, C)
r 4 (A,A, A,A)

The two phylogenetic networks differ in the tripartition vectors (A,A, B,C),
(A,B,B, C), (A,C,B, C), (C,A, B, C), (C,A, C, C), (C,B,B,A) and, thus,
their tripartition distance is 6.

The tripartition distance between two phylogenetic networks labeled over
the same taxa is defined as the size of the symmetric difference of their mul-
tisets of tripartition vectors, that is, the number of tripartition vectors in
which the two phylogenetic networks differ. The symmetric difference applies
to multisets rather than to sets, because tripartition vectors in a phylogenetic
network are not necessarily unique. For instance, a hybrid node and its single
child share the same tripartition vector in a fully resolved network.

Now, the multiset of tripartition vectors of a phylogenetic network can be
obtained by testing for each node of the network if it is a strict ancestor, a
non-strict ancestor, or not an ancestor at all of each of the terminal nodes in
turn. In the following description, the tripartition vector θ(v) of each node v
in a phylogenetic network N is computed by testing if the node v is a strict
ancestor, a non-strict ancestor, or not an ancestor of each terminal node w in
the network N .

procedure tripartition(N, θ)
for all nodes v of N do

for all terminal nodes w of N do
if w is reachable from v in N then

if strict ancestor(N, v,w) then
θ[v][w]← A

else
θ[v][w]← B

else
θ[v][w]← C

With the representation of phylogenetic networks in BioPerl, the tripar-
tition vector of each node in a network is computed when constructing the
corresponding Bio::PhyloNetwork object, and it is readily available by means
of the tripartitions method, as shown in the following Perl script.

© 2009 by Taylor & Francis Group, LLC



230 Combinatorial Pattern Matching Algorithms in Computational Biology

use Bio:: PhyloNetwork;

my $net = Bio:: PhyloNetwork ->new( -eNewick => ’(((A,(
C)h1#H1)x,(B)h2#H2)y,(h2#H2 ,(h1#H1,D)z)w)r;’ );

my %theta = $net ->tripartitions;

map { print "$_ $theta{$_}\n" } sort keys %theta;

Running the previous Perl script produces the following output:

#1 CCAC
#2 CACC
A ACCC
B CACC
C CCAC
D CCCA
r AAAA
w CBBA
x ACBC
y ABBC
z CCBA

The representation of phylogenetic networks in R, on the other hand, does
not include any method to compute the tripartition vectors of the nodes in
a phylogenetic network. However, a tripartitions function can easily be
defined using a matrix indexed by node names (rows) and terminal node names
(columns) to represent the multiset of tripartition vectors, as illustrated by
the following R script.

> library(igraph)
> el <- matrix(c("r","y","r","w","y","x","y","h2","w"

,"h2","w","z","x","A","x","h1","h2","B","z","h1","
z","D","h1","C"),nc=2,byrow=TRUE)

> net <- graph.edgelist(el)

> tripartitions <- function (net) {
leaves <- V(net)[which(degree(net ,mode="out")==0)

-1]
theta <- matrix("",nrow=vcount(net),ncol=length(

leaves),dimnames=list(sort(V(net)$name),sort(
leaves$name)))

for (i in V(net)) {
for (j in leaves) {

if ( is.ancestor(net ,i,j) ) {
if ( is.strict.ancestor(net ,i,j) ) {

theta[V(net)[i]$name ,V(net)[j]$name] <- "A"

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Graphs 231

} else {
theta[V(net)[i]$name ,V(net)[j]$name] <- "B"

}
} else {

theta[V(net)[i]$name ,V(net)[j]$name] <- "C"
}

}
}
theta

}

> tripartitions(net)
A B C D

A "A" "C" "C" "C"
B "C" "A" "C" "C"
C "C" "C" "A" "C"
D "C" "C" "C" "A"
h1 "C" "C" "A" "C"
h2 "C" "A" "C" "C"
r "A" "A" "A" "A"
w "C" "B" "B" "A"
x "A" "C" "B" "C"
y "A" "B" "B" "C"
z "C" "C" "B" "A"

As in the case of the path multiplicity distance, the tripartition distance
between two phylogenetic networks can be computed by counting the num-
ber of tripartition vectors shared by the two networks during a simultaneous
traversal of the sorted tripartition vectors of the two networks. In the follow-
ing description, the matrices of tripartitions are sorted by rows and then the
simultaneous traversal is performed by advancing the row index to the tripar-
titions matrix of the first network, the second network, or both, depending
on the indexed tripartition vector of the first network being less than, greater
than, or equal to the indexed tripartition vector of the second network. In the
latter case, the number of common tripartition vectors is increased by one.
Then the tripartition distance is the number of nodes in the two networks
minus twice the number of tripartition vectors shared by the two networks.

function tripartition distance(N1, N2)
tripartition(N1, θ1)
tripartition(N2, θ2)
sort θ1 and θ2

n1 ← number of nodes of N1

n2 ← number of nodes of N2

i1 ← 1

© 2009 by Taylor & Francis Group, LLC



232 Combinatorial Pattern Matching Algorithms in Computational Biology

i2 ← 1
c← 0
while i1 6 n1 and i2 6 n2 do

if θ1[i1] < θ2[i2] then
i1 ← i1 + 1

else if θ1[i1] > θ2[i2] then
i2 ← i2 + 1

else
i1 ← i1 + 1
i2 ← i2 + 1
c← c + 1

return n1 + n2 − 2 · c

The representation of phylogenetic networks in BioPerl does not include
any method to compute the tripartition distance between two phylogenetic
networks. However, the matrices of tripartition vectors can be computed using
the tripartitions method and then sorted by rows, and the simultaneous
traversal algorithm over two phylogenetic networks with the same terminal
node labels can be implemented in a straightforward way, as illustrated by
the following Perl script.

use Bio:: PhyloNetwork;

sub tripartition_distance {
my $net1 = shift;
my $net2 = shift;

$net1 ->compute_tripartitions () unless defined $net1
->{ tripartitions };

$net2 ->compute_tripartitions () unless defined $net2
->{ tripartitions };

my @tri1 = sort map {$net1 ->{ tripartitions}->{$_}}
$net1 ->nodes;

my @tri2 = sort map {$net2 ->{ tripartitions}->{$_}}
$net2 ->nodes;

my $i1 = 0;
my $i2 = 0;
my $c = 0;
while ($i1 < scalar @tri1 && $i2 < scalar @tri2) {

if ($tri1[$i1] lt $tri2[$i2]) {
$i1 ++;

} elsif ($tri1[$i1] gt $tri2[$i2]) {
$i2 ++;

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Graphs 233

} else {
$i1 ++;
$i2 ++;
$c++;

}
}

return scalar @tri1+scalar @tri2 -2*$c;
}

The representation of phylogenetic networks in R does not include any
method to compute the tripartition distance between two phylogenetic net-
works, either. However, the matrices of tripartition vectors can be computed
using the tripartitions function and then sorted by rows, and the simulta-
neous traversal algorithm over two phylogenetic networks with the same ter-
minal node labels can be implemented in a straightforward way by defining a
lex.cmp.char function for the lexicographical comparison of two tripartition
vectors, as illustrated by the following R script.

> library(igraph)
> el <- matrix(c("r","y","r","w","y","x","y","h2","w"

,"h2","w","z","x","A","x","h1","h2","B","z","h1","
z","D","h1","C"),nc=2,byrow=TRUE)

> net1 <- graph.edgelist(el)

> el <- matrix(c("r","z","r","y","y","A","y","x","z",
"h","z","D","x","B","x","h","h","C"),nc=2,byrow=
TRUE)

> net2 <- graph.edgelist(el)

> lex.cmp.char <- function (vec1 ,vec2) {
for (j in 1: length(vec1)) {

if (vec1[j] < vec2[j]) { return (-1) }
if (vec1[j] > vec2[j]) { return (1) }

}
return (0)

}

> tripartition.distance <- function (net1 ,net2) {
theta1 <- tripartitions(net1)
theta1 <- theta1[do.call("order",lapply (1: ncol(

theta1),function (j) theta1[,j])),]
theta2 <- tripartitions(net2)
theta2 <- theta2[do.call("order",lapply (1: ncol(

theta2),function (j) theta2[,j])),]
i1 <- 1

© 2009 by Taylor & Francis Group, LLC



234 Combinatorial Pattern Matching Algorithms in Computational Biology

i2 <- 1
c <- 0
while (i1 <= nrow(theta1) && i2 <= nrow(theta2)) {

lex <- lex.cmp.char(theta1[i1 ,],theta2[i2 ,])
if ( lex == -1 ) {

i1 <- i1 + 1
} else if ( lex == 1 ) {

i2 <- i2 + 1
} else {

i1 <- i1 + 1
i2 <- i2 + 1
c <- c + 1

}
}
nrow(theta1)+nrow(theta2)-2*c

}

> tripartition.distance(net1 ,net2)
[1] 6

The tripartition distance is a metric on the space of all time-consistent
tree-child phylogenetic networks, and it also generalizes the partition distance
between rooted phylogenetic trees.

9.1.4 The Nodal Distance between Graphs

The nodal distance is based on the shortest paths between terminal nodes in
the two phylogenetic networks under comparison. The matrices of distances
between each pair of terminal nodes and their most recent common semi-
strict ancestors reveal similarities and differences between two phylogenetic
networks.

Example 9.9

Consider again the two fully resolved tree-child phylogenetic networks with the
eNewick string (((A,(C)h1#H1)x,(B)h2#H2)y,(h2#H2,(h1#H1,D)z)w)r; and
((A,(B,(C)h#H)x)y,(h#H,D)z)r; from the previous examples. The most re-
cent common semi-strict ancestors of each pair of terminal nodes in the first
phylogenetic network are given in the following table.

A B C D
A A y x r
B y B r w
C x r C z
D r w z D

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Graphs 235

The most recent common semi-strict ancestors of each pair of terminal nodes
in the second phylogenetic network are given in the following table.

A B C D
A A y y r
B y B x r
C y x C z
D r r z D

The shortest path from the most recent common semi-strict ancestor of the
terminal nodes labeled A and B to the terminal node labeled B has length 2
in the two networks, while the shortest path to the terminal node labeled A
has length 2 in the first network and length 2 in the second network.

r

y w

x

h2

z

h1

A B C D

r

y

zx

h

A B C D

The absolute differences between the corresponding shortest path length ma-
trices are as follows.∣∣∣∣∣∣∣∣


0 2 1 3
2 0 3 2
2 4 0 2
3 2 1 0

−


0 1 1 2
2 0 1 3
3 2 0 2
2 2 1 0


∣∣∣∣∣∣∣∣ =


0 1 0 1
0 0 2 1
1 2 0 0
1 0 0 0


The nodal distance between the two phylogenetic networks is thus 9.

The nodal distance between two phylogenetic networks labeled over the
same taxa is defined as the sum of the absolute differences of distance be-
tween each pair of terminal nodes and their most recent common semi-strict
ancestor in the two networks. Therefore, the nodal distance can be obtained
by computing the distance between each pair of terminal nodes and their
most recent common semi-strict ancestor in each of the two networks and
then computing the absolute difference between the two matrices of nodal
distances.

In the following description, the most recent common semi-strict ancestor
of each pair of terminal nodes in a network is computed only once, in order
to obtain the two nodal distances between them.

© 2009 by Taylor & Francis Group, LLC



236 Combinatorial Pattern Matching Algorithms in Computational Biology

function nodal distance(N1, N2)
L← terminal node labels in N1 and N2

n← length(L)
d← 0
for i← 1, . . . , n do

i1 ← terminal node of N1 labeled L[i]
i2 ← terminal node of N2 labeled L[i]
for j ← i + 1, . . . , n do

j1 ← terminal node of N1 labeled L[j]
j2 ← terminal node of N2 labeled L[j]
`1 ← LCSA(N1, i1, j1)
`2 ← LCSA(N2, i2, j2)
d1 ← distance(N1, `1, i1)
d2 ← distance(N2, `2, i2)
d← d + |d1 − d2|
d1 ← distance(N1, `1, j1)
d2 ← distance(N2, `2, j2)
d← d + |d1 − d2|

return d

The representation of phylogenetic networks in BioPerl does not include
any method to compute the nodal distance between two phylogenetic net-
works. However, using the SP_Dijkstra method of the Graph::Directed
Perl module to obtain the shortest paths between two terminal nodes and
their most recent common semi-strict ancestor, the previous algorithm can
be implemented in a straightforward way, as illustrated by the following Perl
script.

sub nodal_distance {
my $net1 = shift;
my $net2 = shift;
my @L = $net1 ->leaves;
my $dist = 0;
for (my $i = 0; $i < @L; $i++) {

for (my $j = $i+1; $j < @L; $j++) {
my $lcsa1 = LCSA($net1 ,$L[$i],$L[$j]);
my $lcsa2 = LCSA($net2 ,$L[$i],$L[$j]);
my @p1 = $net1 ->graph ->SP_Dijkstra($lcsa1 ,$L[$i

]);
my @p2 = $net2 ->graph ->SP_Dijkstra($lcsa2 ,$L[$i

]);
my $d1 = @p1 - 1;
my $d2 = @p2 - 1;
$dist += abs($d1 - $d2);
@p1 = $net1 ->graph ->SP_Dijkstra($lcsa1 ,$L[$j]);

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Graphs 237

@p2 = $net2 ->graph ->SP_Dijkstra($lcsa2 ,$L[$j]);
$d1 = @p1 - 1;
$d2 = @p2 - 1;
$dist += abs($d1 - $d2);

}
}
return $dist;

}

The representation of phylogenetic networks in R does not include any
method to compute the nodal distance between two phylogenetic networks,
either. However, using the get.shortest.paths function of the R package
iGraph to obtain the shortest paths between two terminal nodes and their
most recent common semi-strict ancestor, the previous algorithm can also be
implemented in a straightforward way, as illustrated by the following R script.

> library(igraph)
> el <- matrix(c("r","y","r","w","y","x","y","h2","w"

,"h2","w","z","x","A","x","h1","h2","B","z","h1","
z","D","h1","C"),nc=2,byrow=TRUE)

> net1 <- graph.edgelist(el)

> el <- matrix(c("r","z","r","y","y","A","y","x","z",
"h","z","D","x","B","x","h","h","C"),nc=2,byrow=
TRUE)

> net2 <- graph.edgelist(el)

> nodal.distance <- function (net1 ,net2) {
l1 <- V(net1)[which(degree(net1 ,mode="out")==0) -1]
n1 <- matrix(0,nrow=length(l1),ncol=length(l1),

dimnames=list(sort(l1$name),sort(l1$name)))
l2 <- V(net2)[which(degree(net2 ,mode="out")==0) -1]
n2 <- matrix(0,nrow=length(l2),ncol=length(l2),

dimnames=list(sort(l2$name),sort(l2$name)))
for (i in l1) {

for (j in c(l1)[match(i,l1):length(l1)]) {
lcsa <- LCSA(net1 ,i,j)
paths <- get.shortest.paths(net1 ,lcsa ,i,mode="

out")
n1[V(net1)[i]$name ,V(net1)[j]$name] <- length(

paths [[1]]) -1 # number of edges

paths <- get.shortest.paths(net1 ,lcsa ,j,mode="
out")

n1[V(net1)[j]$name ,V(net1)[i]$name] <- length(
paths [[1]]) -1 # number of edges

}

© 2009 by Taylor & Francis Group, LLC



238 Combinatorial Pattern Matching Algorithms in Computational Biology

}
for (i in l2) {

for (j in c(l2)[match(i,l2):length(l2)]) {
lcsa <- LCSA(net2 ,i,j)
paths <- get.shortest.paths(net2 ,lcsa ,i,mode="

out")
n2[V(net2)[i]$name ,V(net2)[j]$name] <- length(

paths [[1]]) -1 # number of edges

paths <- get.shortest.paths(net2 ,lcsa ,j,mode="
out")

n2[V(net2)[j]$name ,V(net2)[i]$name] <- length(
paths [[1]]) -1 # number of edges

}
}
sum(abs(n1 -n2))

}

> nodal.distance(net1 ,net2)
[1] 9

The nodal distance is a metric on the space of all time-consistent tree-child
phylogenetic networks, and it generalizes the nodal distance between rooted
phylogenetic trees.

9.2 Finding Trees in Graphs

Finding the trees contained in a graph is useful for computing distances
between two graphs. A fully resolved phylogenetic network with n terminal
nodes and m hybrid nodes contains 2m phylogenetic trees, each of them with
n terminal nodes, which result from cutting one of the two edges coming into
each hybrid node and then contracting any elementary paths.

Example 9.10
The fully resolved tree-child phylogenetic network with the eNewick string
((A,((B,(C)h1#H1)w)h2#H2)x,(h1#H1,(h2#H2,D)y)z)r; from the previous
examples, which has m = 2 hybrid nodes, contains 2m = 4 phylogenetic trees.

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Graphs 239

((D,(B,C)w)y,A)r;

r

x

z

y

h2 w

h1

A

B

C

D

(D,((B,C)w,A)x)r;

r

x

z

y

h2 w

h1

A

B

C

D

(((D,B)y,C)z,A)r;

r

x

z

y

h2 w

h1

A

B

C

D

((D,C)z,(B,A)x)r;

r

x

z

y

h2 w

h1

A

B

C

D

The 2m phylogenetic trees contained in a phylogenetic network with m
hybrid nodes can be obtained by removing each of the edges coming into each
of the hybrid nodes in turn and contracting any elementary paths whenever
there are no hybrid nodes left.

In the following description, the removed edges are added back to the net-
work N after all the trees not containing the edge have been generated, in
order to avoid making a local copy of the phylogenetic network at each stage,
and the result is collected in an (initially empty) set T of phylogenetic trees.

procedure explode(N,T )
if N has no hybrid nodes then

contract any elementary paths in N
T ← T ∪N

else
v ← an hybrid node of N
for all parents u of node v do

delete edge (u, v) from N
explode(N,T )
add edge (u, v) to N

The representation of phylogenetic networks in BioPerl includes a method
explode to obtain all the phylogenetic trees contained in a phylogenetic net-
work, as illustrated by the following Perl script.

use Bio:: PhyloNetwork;

my @trees = $net ->explode;

my $output = new Bio:: TreeIO(’-format ’ => ’newick ’);

© 2009 by Taylor & Francis Group, LLC



240 Combinatorial Pattern Matching Algorithms in Computational Biology

for my $tree (@trees) {
$output ->write_tree($tree);

}

The actual Perl code of the explode method in BioPerl is as follows.

sub explode_rec {
my ($self ,$trees) = @_;
my @h = $self ->hybrid_nodes;
if (scalar @h) {

my $v = shift @h;
for my $u ($self ->{graph}->predecessors($v)) {

$self ->{graph}->delete_edge($u ,$v);
$self ->explode_rec($trees);
$self ->{graph}->add_edge($u ,$v);

}
} else {

my $io = IO::String ->new($self ->eNewick);
my $treeio = Bio::TreeIO ->new(-format => ’newick ’

, -fh => $io);
my $tree = $treeio ->next_tree;
$tree ->contract_linear_paths;
push @{$trees}, $tree;

}
}

sub explode {
my ($self) = @_;
my @trees;
$self ->explode_rec (\ @trees);
return @trees;

}

The representation of phylogenetic networks in R, on the other hand, does
not include any method to obtain the trees contained in a network, although
the representation of phylogenetic networks by means of directed acyclic
graphs makes it possible to implement the previous algorithm in a straight-
forward way.

Recall that the Newick description of a phylogenetic tree can be obtained
by traversing the tree in postorder and writing down the name or label of the
node when visiting a terminal node, a left parenthesis (preceded by a comma
unless the node is the first child of its parent) when visiting a non-terminal
node for the first time, and a right parenthesis followed by the name or label
of the node (if any) when visiting a non-terminal node for the second time,
that is, after having visited all its descendants, where the name of a node is
preceded by a comma unless it is the first child of its parent. This algorithm
can be implemented as shown in the following R script.

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Graphs 241

> network.to.newick <- function (net) {
r <- V(net)[which(degree(net ,mode="in")==0) -1]
newick <- obtain.newick(net ,r,c())
paste(c(newick ,";"),collapse="")

}

> obtain.newick <- function (net ,v,newick) {
if (length(V(net)[nei(v,"out")]) != 0) {

if ( length(V(net)[nei(v,"in")]) != 0 && match(v,
V(net)[nei(V(net)[nei(v,"in")],"out")]) != 1 )

newick <- c(newick ,",")
newick <- c(newick ,"(")

}
for (w in V(net)[nei(v,"out")]) {

newick <- obtain.newick(net ,w,newick)
}
if (length(V(net)[nei(v,"out")]) != 0)

newick <- c(newick ,")")
if ( length(V(net)[nei(v,"in")]) != 0 && length(V(

net)[nei(v,"out")]) == 0 && match(v,V(net)[nei(V
(net)[nei(v,"in")],"out")]) != 1 )

newick <- c(newick ,",")
c(newick ,V(net)[v]$name)

}

Now, the algorithm for obtaining all the phylogenetic trees contained in
a phylogenetic network can be implemented by removing from the directed
acyclic graph representing the network each of the incoming edges of each
hybrid node in turn and then contracting any elementary paths during a
postorder traversal of the tree. In the following R script, those nodes and
edges to be deleted in order to contract any elementary paths are first marked
with the $del attribute by the postorder.traversal function, and then
they are all removed from the directed acyclic graph by the network.to.tree
function to produce a tree, which is output in Newick format by the previous
network.to.newick function.

> library(igraph)
> el <- matrix(c("r","x","r","z","z","h1","z","y","y"

,"h2","y","D","x","A","x","h2","h2","w","w","B","w
","h1","h1","C"),nc=2,byrow=TRUE)

> net <- graph.edgelist(el)

> network.to.tree <- function (net) {
V(net)$del <- FALSE
E(net)$del <- FALSE
r <- V(net)[which(degree(net ,mode="in")==0) -1]

© 2009 by Taylor & Francis Group, LLC



242 Combinatorial Pattern Matching Algorithms in Computational Biology

net <- postorder.traversal(net ,r)
net <- delete.vertices(net ,V(net)[del])
net <- delete.edges(net ,E(net)[del])
network.to.newick(net)

}

> postorder.traversal <- function (net ,v) {
for (w in V(net)[nei(v,"out")]) {

net <- postorder.traversal(net ,w)
}
VW <- E(net)[from == v & del== FALSE]
if (length(c(VW)) == 1) {

u <- V(net)[nei(v,"in")]
w <- get.edge(net ,VW)[2]
E(net ,path=c(V(net)[u],V(net)[v]))$del <- TRUE
E(net ,path=c(V(net)[v],V(net)[w]))$del <- TRUE
V(net)[v]$del <- TRUE
net <- add.edges(net ,c(V(net)[u],V(net)[w]))
E(net ,path=c(V(net)[u],V(net)[w]))$del <- FALSE

}
net

}

> explode <- function (net) {
trees <- c()
H <- V(net)[which(degree(net ,mode="in") >1) -1]
if (length(H) == 0) {

trees <- c(trees ,network.to.tree(net))
} else {

v <- c(H)[1]
for (u in V(net)[nei(v,"in")]) {

new <- delete.edges(net ,E(net ,P=c(u,v)))
trees <- c(trees ,explode(new))

}
}
trees

}

> options(width="40")
> explode(net)
[1] "((D,(B,C)w)y,A)r;"
[2] "((A,(B,C)w)x,D)r;"
[3] "(((D,B)y,C)z,A)r;"
[4] "((A,B)x,(D,C)z)r;"

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Graphs 243

9.2.1 The Statistical Error between Graphs

The path multiplicity distance, tripartition distance, and nodal distance
can be computed between any two fully resolved phylogenetic networks la-
beled over the same taxa, but they only yield a metric when the networks
exhibit some of the topological properties of being tree-sibling, tree-child,
or time-consistent. An alternative method for the assessment of similarities
and differences between two phylogenetic networks that lack the necessary
topological properties consists of computing the statistical error between the
phylogenetic trees contained in the two networks.

The false negative rate is the fraction of trees contained in the first network
that are not contained in the second network. Conversely, the false positive
rate is the fraction of trees contained in the second network that are not con-
tained in the first network. The error rate between two phylogenetic networks
is just the average of their false negative and false positive rates.

Example 9.11

Consider again the two fully resolved tree-child phylogenetic networks with the
eNewick string ((A,((B,(C)h1#H1)w)h2#H2)x,(h1#H1,(h2#H2,D)y)z)r; and
((A,(B,(C)h#H)x)y,(h#H,D)z)r; from the previous examples. The first net-
work has m = 2 hybrid nodes and, thus, it contains the following 2m = 4
phylogenetic trees.

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

The second network only has m = 1 hybrid nodes and, thus, it contains the
following 2m = 2 phylogenetic trees.

© 2009 by Taylor & Francis Group, LLC



244 Combinatorial Pattern Matching Algorithms in Computational Biology

A

B

C

D

A

B

C

D

Two of the four trees in the first network are not contained in the second
network (false negatives), while none of the two trees in the second network is
not contained in the first network (false positives). Therefore, the error rate
between the two networks is (2/4 + 0/2)/2 = 0.25.

Using the explode method of the representation of phylogenetic networks in
BioPerl, the computation of the error rate between two phylogenetic networks
can be implemented in a straightforward way, where identical trees in the
two networks are identified as those at partition distance zero by using the
partition_distance method, as shown in the following Perl script.

sub error_ratio {
my $net1 = shift;
my $net2 = shift;
my @trees1 = $net1 ->explode;
my @trees2 = $net2 ->explode;
my $FN = 0;
my $FP = 0;
for my $tree1 (@trees1) {

my $found = 0; # false

for my $tree2 (@trees2) {
if (partition_distance($tree1 ,$tree2) == 0) {

$found = 1; # true

}
}
if (! $found) { $FN++; }

}
for my $tree2 (@trees2) {

my $found = 0; # false

for my $tree1 (@trees1) {
if (partition_distance($tree1 ,$tree2) == 0) {

$found = 1; # true

}
}
if (! $found) { $FP++; }

}
return (($FN/@trees1)+($FP/@trees2))/2;

}

© 2009 by Taylor & Francis Group, LLC



Simple Pattern Matching in Graphs 245

Using the previous R implementation of the explode function to obtain
the trees contained in a network, the computation of the error rate between
two phylogenetic networks can be also implemented in a straightforward way,
where identical trees in the two networks are identified as those at partition
distance zero by using the dist.topo function, as illustrated by the following
R script.

> library(ape)
> library(igraph)

> el <- matrix(c("r","x","r","z","z","h1","z","y","y"
,"h2","y","D","x","A","x","h2","h2","w","w","B","w
","h1","h1","C"),nc=2,byrow=TRUE)

> net1 <- graph.edgelist(el)

> el <- matrix(c("r","z","r","y","y","A","y","x","z",
"h","z","D","x","B","x","h","h","C"),nc=2,byrow=
TRUE)

> net2 <- graph.edgelist(el)

> error.rate <- function (net1 ,net2) {
trees1 <- explode(net1)
trees2 <- explode(net2)
FN <- 0
FP <- 0
for (t1 in trees1) {

tree1 <- read.tree(text=t1)
found <- FALSE
for (t2 in trees2) {

tree2 <- read.tree(text=t2)
if (dist.topo(tree1 ,tree2) == 0) {

found <- TRUE
break

}
}
if (!found) FN <- FN+1

}
for (t2 in trees2) {

tree2 <- read.tree(text=t2)
found <- FALSE
for (t1 in trees1) {

tree1 <- read.tree(text=t1)
if (dist.topo(tree1 ,tree2) == 0) {

found <- TRUE
break

© 2009 by Taylor & Francis Group, LLC



246 Combinatorial Pattern Matching Algorithms in Computational Biology

}
}
if (!found) FP <- FP+1

}
(FN/length(trees1)+FP/length(trees2))/2

}

> options(width="40")
> explode(net1)
[1] "((D,(B,C)w)y,A)r;"
[2] "((A,(B,C)w)x,D)r;"
[3] "(((D,B)y,C)z,A)r;"
[4] "((A,B)x,(D,C)z)r;"
> explode(net2)
[1] "((A,(B,C)x)y,D)r;"
[2] "((D,C)z,(A,B)y)r;"
> error.rate(net1 ,net2)
[1] 0.25

Bibliographic Notes

The most recent common semi-strict ancestor of two terminal nodes in a
phylogenetic network was shown to play the role of the most recent common
ancestor in a phylogenetic tree in (Cardona et al. 2009a;b).

The path multiplicity distance between tree-child phylogenetic networks
was introduced by Cardona et al. (2009c), and further studied in (Cardona
et al. 2008a;d) for fully resolved time-consistent tree-sibling phylogenetic net-
works.

The tripartition distance between time-consistent tree-sibling phylogenetic
networks was introduced by Moret et al. (2004) and further studied by Car-
dona et al. (2008d) for fully resolved time-consistent tree-sibling phylogenetic
networks and by Cardona et al. (2009c) for time-consistent tree-child phylo-
genetic networks.

The nodal distance between time-consistent tree-child phylogenetic net-
works was introduced in (Cardona et al. 2009b).

The use of statistical error for the assessment of similarities and differ-
ences between phylogenetic networks was advocated by Moret et al. (2004)
and Woolley et al. (2008), although it fails to be a metric on the space of all
phylogenetic networks.

© 2009 by Taylor & Francis Group, LLC



Chapter 10

General Pattern Matching in Graphs

Combinatorial pattern matching is the search for exact or approximate oc-
currences of a given pattern within a given text. When it comes to graphs
in computational biology, both the pattern and the text are graphs and the
pattern matching problem becomes one of finding the occurrences of a graph
within another graph. For instance, scanning a metabolic pathway for the
presence of a known pattern can help in finding conserved network motifs,
and finding a phylogenetic network within another phylogenetic network can
help in assessing their similarities and differences. This is the subject of this
chapter.

10.1 Finding Subgraphs

There are several ways in which a graph can be contained in another graph.
In the most general sense, a subgraph of a given (unrooted or rooted) phy-
logenetic network is a connected subgraph of the network, while in the case
of rooted phylogenetic networks, a distinction can be made between top-down
and bottom-up subgraphs.

A bottom-up subgraph of a given rooted phylogenetic network is the whole
subgraph rooted at some node of the network, and a connected subgraph of
a rooted phylogenetic network is called a top-down subgraph if the parents
of all nodes in the subgraph (up to, and including, the most recent common
semi-strict ancestor of all nodes in the subgraph) also belong to the subgraph.
Further, the subgraph of an (unrooted or rooted) network induced by a set
of terminal nodes is the unique top-down subgraph that contains the set of
terminal nodes but does not include any other top-down subgraph of the given
network with these terminal nodes, where elementary paths (paths of two or
more edges without internal branching) are contracted to single edges in a
subgraph.

In the following example, the elementary path of two edges between the
root and node y, as well as the elementary path of two edges between hybrid
node h2 and the terminal node labeled B, is contracted to single edges in the
subgraph induced by the terminal nodes labeled A, B, and D.

247
© 2009 by Taylor & Francis Group, LLC



248 Combinatorial Pattern Matching Algorithms in Computational Biology

Example 10.1
In the following fully resolved rooted phylogenetic network, with eNewick
string ((A,((B,(C)h1#H1)w)h2#H2)x,(h1#H1,(h2#H2,D)y)z)r; and termi-
nal nodes labeled A, B, C, D, a top-down subgraph is shown highlighted (left),
and the bottom-up subgraph rooted at the most recent common semi-strict
ancestor of the terminal nodes labeled A, B, and C is also shown (middle),
together with the subgraph induced by the terminal nodes labeled A, B, and
D (right).

r

x

z

y

h2

w

h1

A B C D

r

x

z

y

h2

w

h1

A B C D

r

x y

h2

A B D

Example 10.2
In the following fully resolved unrooted phylogenetic network (left), the sub-
graph induced by the terminal nodes labeled A, B, C, and D is shown high-
lighted before contraction of elementary paths. The subgraph resulting from
contraction of elementary paths is shown to the right.

A

B

C D

E

F

A

B C

D

10.1.1 Finding Subgraphs Induced by Triplets

Finding subgraphs induced by triplets of terminal nodes in rooted phy-
logenetic networks is an interesting problem, because a rooted phylogenetic
network can be reconstructed (although not in a unique way) from the set of

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Graphs 249

all its triplet topologies. Given a triplet of terminal nodes, there are only six
possible induced subgraphs if the phylogenetic network is fully resolved and
time consistent.

Example 10.3
There are six fully resolved time-consistent phylogenetic networks on three
terminal nodes.

A B C A C B B C A

A C B A B C B A C

However, if the phylogenetic network is not time consistent, there is an
infinite number of possible subgraphs induced by a triplet of terminal nodes,
even if the phylogenetic network is fully resolved.

Example 10.4
There is an infinite number of fully resolved phylogenetic networks on three
terminal nodes.

A B C A B C A B C A B C · · ·

The subgraph induced by a triplet of terminal nodes of a fully resolved
time-consistent phylogenetic network can be obtained by finding the most
recent common semi-strict ancestor of the three terminal nodes and then
removing all those nodes which are not in a path from one of the three terminal

© 2009 by Taylor & Francis Group, LLC



250 Combinatorial Pattern Matching Algorithms in Computational Biology

nodes to the most recent common semi-strict ancestor, contracting also any
elementary paths. However, a more efficient algorithm consists of first finding
the most recent common ancestor of each pair of terminal nodes from the given
triplet and then building the induced subgraph by distinguishing among the
six possible topologies on the basis of the relationship among the most recent
common semi-strict ancestors. In the following description, the six possible
triplet topologies are distinguished by

• LCSA(i, j) is not an ancestor of LCSA(i, k), LCSA(i, k) is an ancestor
of LCSA(i, j), and LCSA(j, k) is an ancestor of LCSA(i, j)

• LCSA(i, j) is an ancestor of LCSA(i, k), LCSA(i, k) is not an ancestor
of LCSA(i, j), and LCSA(j, k) is an ancestor of LCSA(i, j)

• LCSA(i, j) is an ancestor of LCSA(i, k), LCSA(i, k) is an ancestor of
LCSA(i, j), and LCSA(j, k) is not an ancestor of LCSA(i, j)

• LCSA(i, j) is an ancestor of LCSA(i, k) but neither LCSA(i, k) nor
LCSA(j, k) is an ancestor of LCSA(i, j)

• LCSA(i, j) is not an ancestor of LCSA(i, k), LCSA(i, k) is an ancestor
of LCSA(i, j), and LCSA(j, k) is not an ancestor of LCSA(i, j)

• LCSA(i, j) is not an ancestor of LCSA(i, k), LCSA(i, k) is not an ances-
tor of LCSA(i, j), and LCSA(j, k) is an ancestor of LCSA(i, j)

and their eNewick string is output.

ik = jk

ij

i j k

ij = jk

ik

i k j

ij = ik

jk

j k i

ij

ik jk

i k j

ik

ij jk

i j k

jk

ij ik

j i k

function triplet(N, i, j, k)
ij ← LCSA(N, i, j)
ik ← LCSA(N, i, k)
jk ← LCSA(N, j, k)
if ij is an ancestor of ik in N then

if ik is an ancestor of ij in N then
return ((j, k), i);

else
if jk is an ancestor of ij in N then

return ((i, k), j);
else

return ((i, (k)#H1), (#H1, j));
else

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Graphs 251

if ik is an ancestor of ij in N then
if jk is an ancestor of ij in N then

return ((i, j), k);
else

return ((i, (j)#H1), (#H1, k));
else

return ((j, (i)#H1), (#H1, k));

Example 10.5
The subgraphs induced by triplets of terminal nodes of the phylogenetic net-
work with eNewick string ((A,(B,(C)h#H)x)y,(h#H,D)z)r;, which is fully
resolved and time consistent, are shown next.

r

y

zx

h

A B C D

r

y

zx

h

A B C D

r

y

zx

h

A B C D

r

y

zx

h

A B C D

In the subgraph induced by the terminal nodes labeled A, B, C, node y =
LCSA(A,B) = LCSA(A,C) is an ancestor of node x = LCSA(B,C). In
the subgraph induced by the terminal nodes labeled A, B, D, node r =
LCSA(A,D) = LCSA(B,D) is an ancestor of y = LCSA(A,B). In the sub-
graph induced by the terminal nodes labeled A, C, D, node r = LCSA(A,D)
is an ancestor of both y = LCSA(A,C) and z = LCSA(C,D). Finally,
in the subgraph induced by the terminal nodes labeled B, C, D, node r =
LCSA(B,D) is an ancestor of both x = LCSA(B,C) and z = LCSA(C,D).

The representation of phylogenetic networks in BioPerl does not include
any method to compute subgraphs of a time-consistent phylogenetic network
induced by triplets of terminal nodes. Nevertheless, the subgraph of a fully
resolved time-consistent phylogenetic tree induced by a triplet of terminal
nodes can be easily obtained by using the LCSA method to find the most
recent common semi-strict ancestor of the terminal nodes in the given triplet,
as illustrated by the following Perl script.

sub triplet {
my ($net ,@triple) = @_;
my ($i,$j,$k) = @triple;

© 2009 by Taylor & Francis Group, LLC



252 Combinatorial Pattern Matching Algorithms in Computational Biology

my @L = $net ->leaves;
my $ij = LCSA($net ,$L[$i],$L[$j]);
my $ik = LCSA($net ,$L[$i],$L[$k]);
my $jk = LCSA($net ,$L[$j],$L[$k]);

my $t;
if ($net ->graph ->SP_Dijkstra($ij ,$ik)) {

if ($net ->graph ->SP_Dijkstra($ik ,$ij)) {
$t = "(($L[$j],$L[$k]),$L[$i]);";

} else {
if ($net ->graph ->SP_Dijkstra($jk ,$ij)) {

$t = "(($L[$i],$L[$k]),$L[$j]);";
} else {

$t = "(($L[$i],($L[$k])#H1) ,(#H1 ,$L[$j]));";
}

}
} else {

if ($net ->graph ->SP_Dijkstra($ik ,$ij)) {
if ($net ->graph ->SP_Dijkstra($jk ,$ij)) {

$t = "(($L[$i],$L[$j]),$L[$k]);";
} else {

$t = "(($L[$i],($L[$j])#H1) ,(#H1 ,$L[$k]));";
}

} else {
$t = "(($L[$j],($L[$i])#H1) ,(#H1 ,$L[$k]));";

}
}
return $t;

}

The representation of phylogenetic networks in R does not include any
method to compute subgraphs of a phylogenetic network induced by triplets
of terminal nodes, either. However, a triplet function can easily be defined
using the LCSA function, as illustrated by the following R script.

> library(igraph)

> triplet <- function (net ,i,j,k) {
ij <- LCSA(net ,i,j)
ik <- LCSA(net ,i,k)
jk <- LCSA(net ,j,k)

ij.ancestor.of.ik <- length(get.all.shortest.
paths(net ,ij ,ik ,mode="out")) != 0

ik.ancestor.of.ij <- length(get.all.shortest.
paths(net ,ik ,ij ,mode="out")) != 0

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Graphs 253

ij.ancestor.of.jk <- length(get.all.shortest.
paths(net ,ij ,jk ,mode="out")) != 0

jk.ancestor.of.ij <- length(get.all.shortest.
paths(net ,jk ,ij ,mode="out")) != 0

if (ij.ancestor.of.ik)
if (ik.ancestor.of.ij)

paste("((",V(net)[j]$name ,",",V(net)[k]$name ,
"),",V(net)[i]$name ,");",sep="")

else
if (jk.ancestor.of.ij)

paste("((",V(net)[i]$name ,",",V(net)[k]$
name ,"),",V(net)[j]$name ,");",sep="")

else
paste("((",V(net)[i]$name ," ,(",V(net)[k]$

name ,"))#H,(#H,",V(net)[j]$name ,"));",
sep="")

else
if (ik.ancestor.of.ij)

if (jk.ancestor.of.ij)
paste("((",V(net)[i]$name ,",",V(net)[j]$

name ,"),",V(net)[k]$name ,");",sep="")
else

paste("((",V(net)[i]$name ," ,(",V(net)[j]$
name ,"))#H,(#H,",V(net)[k]$name ,"));",
sep="")

else
paste("((",V(net)[j]$name ," ,(",V(net)[i]$name

,"))#H,(#H,",V(net)[k]$name ,"));",sep="")
}

> el <- matrix(c("r","z","r","y","y","A","y","x","z",
"h","z","D","x","B","x","h","h","C"),nc=2,byrow=
TRUE)

> net <- graph.edgelist(el)

> triplet(net ,3,7,8)
[1] "((B,C),A);"
> triplet(net ,3,7,6)
[1] "((A,B),D);"
> triplet(net ,3,8,6)
[1] "((A,(C))#H,(#H,D));"
> triplet(net ,7,8,6)
[1] "((B,(C))#H,(#H,D));"

© 2009 by Taylor & Francis Group, LLC



254 Combinatorial Pattern Matching Algorithms in Computational Biology

Finding subtrees induced by triplets of terminal nodes in rooted phyloge-
netic networks is also an interesting problem, because a rooted phylogenetic
network can be reconstructed (although, again, not in a unique way) from a
dense set of triplet topologies, that is, from a set of triplet topologies con-
taining at least one triplet for each three terminal nodes. Given a triplet of
terminal nodes, there are only three possible induced subtrees if the phylo-
genetic network is fully resolved, as already shown in the previous example.
However, a phylogenetic network can contain more than one subtree induced
by the same triplet of terminal nodes.

Example 10.6
The fully resolved time-consistent phylogenetic network with eNewick string
((A,(B,(C)h#H)x)y,(h#H,D)z)r; has the following six subtrees induced by
triplets of terminal nodes.

r

y

zx

h

A B C D

r

y

zx

h

A B C D

r

y

zx

h

A B C D

r

y

zx

h

A B C D

r

y

zx

h

A B C D

r

y

zx

h

A B C D

The subtrees induced by a triplet of terminal nodes of a fully resolved
time-consistent phylogenetic network can be obtained by finding the subgraph
induced by the triplet of terminal nodes using the previous algorithm and
then finding the trees contained therein using the explode algorithm from the
previous chapter.

Finding subtrees induced by the most recent common semi-strict ancestors
of triplets of terminal nodes in rooted phylogenetic networks is another inter-
esting problem, because a rooted phylogenetic network can be reconstructed
in a unique way from the set of all such triplet topologies if the network is

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Graphs 255

tree-child and also time consistent. Given a triplet of terminal nodes, there
are only five possible subgraphs induced by their most recent common semi-
strict ancestors if the time-consistent tree-child phylogenetic network is fully
resolved, and all these triplets are trees.

Example 10.7

There are five possible triplets induced by the recent common semi-strict
ancestors of any three terminal nodes in a fully resolved rooted time-consistent
tree-child phylogenetic network.

[i, j] = [i, k] = [j, k]

[i, j] = [i, k]

[j, k]

[j, k]

[i, j] = [i, k]

[i, j]

[i, k]

[j, k] [i, j]

[i, k]

[j, k]

These five trees can be distinguished in several ways; for instance, by means
of their adjacency matrices.

[i
,j

]
[i
,k

]
[j

,k
]

[i
,j

]
[i
,k

]
[j

,k
]

[i
,j

]
[i
,k

]
[j

,k
]

[i
,j

]
[i
,k

]
[j

,k
]

[i
,j

]
[i
,k

]
[j

,k
]

[i, j] 1 1 1 [i, j] 1 1 1 [i, j] 1 1 0 [i, j] 1 1 1 [i, j] 1 0 0
[i, k] 1 1 1 [i, k] 1 1 1 [i, k] 1 1 0 [i, k] 0 1 1 [i, k] 1 1 1
[j, k] 1 1 1 [j, k] 0 0 1 [j, k] 1 1 1 [j, k] 0 0 1 [j, k] 0 0 1

Example 10.8

In the fully resolved time-consistent phylogenetic network with eNewick string
((A,(B,(C)h#H)x)y,(h#H,D)z)r;, the subtree induced by the most recent
common semi-strict ancestors of the terminal nodes labeled A, B, C, node
y = LCSA(A,B) = LCSA(A,C) is an ancestor of node x = LCSA(B,C).
In the subtree induced by the terminal nodes labeled A, B, D, node r =
LCSA(A,D) = LCSA(B,D) is an ancestor of y = LCSA(A,B). In the
subtree induced by the terminal nodes labeled A, C, D, node r = LCSA(A,D)
is an ancestor of both y = LCSA(A,C) and z = LCSA(C,D). Finally, in the
subtree induced by the terminal nodes labeled B, C, D, node r = LCSA(B,D)
is an ancestor of both x = LCSA(B,C) and z = LCSA(C,D).

© 2009 by Taylor & Francis Group, LLC



256 Combinatorial Pattern Matching Algorithms in Computational Biology

r

y

zx

h

A B C D

r

y

zx

h

A B C D

r

y

zx

h

A B C D

r

y

zx

h

A B C D

The topological relationships among the most recent common semi-strict an-
cestors are encoded in the following adjacency matrices.

[A
,B

]
[A

,C
]

[B
,C

]

[A
,B

]
[A

,D
]

[B
,D

]

[A
,C

]
[A

,D
]

[C
,D

]

[B
,C

]
[B

,D
]

[C
,D

]

[A,B] 1 1 1 [A,B] 1 0 0 [A,C] 1 0 0 [B,C] 1 0 0
[A,C] 1 1 1 [A,D] 1 1 1 [A,D] 1 1 1 [B,D] 1 1 1
[B,C] 0 0 1 [B,D] 1 1 1 [C,D] 0 0 1 [C,D] 0 0 1

The subtree induced by a triplet of terminal nodes of a fully resolved phy-
logenetic network can be obtained by first finding the most recent common
semi-strict ancestor of each pair of terminal nodes from the given triplet and
then building the induced subtree by distinguishing among the five possible
topologies on the basis of the relationship among the most recent common
semi-strict ancestors. In the following description, such a relationship is en-
coded in an adjacency matrix R.

function triplet(N, i, j, k)
ij ← LCSA(N, i, j)
ik ← LCSA(N, i, k)
jk ← LCSA(N, j, k)
R[ij, ij]← R[ik, ik]← R[jk, jk]← true
R[ij, ik]← ij is an ancestor of ik in N
R[ij, jk]← ij is an ancestor of jk in N
R[ik, ij]← ik is an ancestor of ij in N
R[ik, jk]← ik is an ancestor of jk in N
R[jk, ij]← jk is an ancestor of ij in N
R[jk, ik]← jk is an ancestor of ik in N
return R

The representation of phylogenetic networks in BioPerl does not include
any method to compute subtrees of a phylogenetic network induced by the
most recent common semi-strict ancestors of terminal nodes. Nevertheless,
the subtree of a fully resolved time-consistent phylogenetic tree induced by

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Graphs 257

the most recent common semi-strict ancestors of a triplet of terminal nodes
can be easily obtained by using the LCSA method to find the most recent
common semi-strict ancestor of the terminal nodes in the given triplet, as
illustrated by the following Perl script, where the adjacency matrix of the
induced subtree is encoded in a vector in row order and later packed into a
string.

sub triplet {
my ($net ,@triple) = @_;
my ($i,$j,$k) = @triple;

my @L = $net ->leaves;
my $ij = LCSA($net ,$L[$i],$L[$j]);
my $ik = LCSA($net ,$L[$i],$L[$k]);
my $jk = LCSA($net ,$L[$j],$L[$k]);

my @R;
$R[0] = 1;
$R[1] = $net ->graph ->SP_Dijkstra($ij ,$ik) ? 1 : 0;
$R[2] = $net ->graph ->SP_Dijkstra($ij ,$jk) ? 1 : 0;
$R[3] = $net ->graph ->SP_Dijkstra($ik ,$ij) ? 1 : 0;
$R[4] = 1;
$R[5] = $net ->graph ->SP_Dijkstra($ik ,$jk) ? 1 : 0;
$R[6] = $net ->graph ->SP_Dijkstra($jk ,$ij) ? 1 : 0;
$R[7] = $net ->graph ->SP_Dijkstra($jk ,$ik) ? 1 : 0;
$R[8] = 1;

return join "", @R;
}

The representation of phylogenetic networks in R does not include any
method to compute subtrees of a phylogenetic network induced by the most
recent common semi-strict ancestors of a triplet of terminal nodes, either.
However, a triplet function can easily be defined using the LCSA function,
as illustrated by the following R script.

> library(igraph)

> triplet <- function (net ,i,j,k) {
ij <- LCSA(net ,i,j)
ik <- LCSA(net ,i,k)
jk <- LCSA(net ,j,k)

L <- c(V(net)[i]$name ,V(net)[j]$name ,V(net)[k]$name
)

R <- matrix(rep(NA ,9),nrow=3,dimnames=list(L,L))

© 2009 by Taylor & Francis Group, LLC



258 Combinatorial Pattern Matching Algorithms in Computational Biology

R[1,1] <- TRUE
R[1,2] <- length(get.all.shortest.paths(net ,ij ,ik ,

mode="out")) != 0
R[1,3] <- length(get.all.shortest.paths(net ,ij ,jk ,

mode="out")) != 0
R[2,1] <- length(get.all.shortest.paths(net ,ik ,ij ,

mode="out")) != 0
R[2,2] <- TRUE
R[2,3] <- length(get.all.shortest.paths(net ,ik ,jk ,

mode="out")) != 0
R[3,1] <- length(get.all.shortest.paths(net ,jk ,ij ,

mode="out")) != 0
R[3,2] <- length(get.all.shortest.paths(net ,jk ,ik ,

mode="out")) != 0
R[3,3] <- TRUE

R
}

> el <- matrix(c("r","z","r","y","y","A","y","x","z",
"h","z","D","x","B","x","h","h","C"),nc=2,byrow=
TRUE)

> net <- graph.edgelist(el)

> V(net)
Vertex sequence:
[1] "r" "z" "y" "A" "x" "h" "D" "B" "C"

> triplet(net ,3,7,8)
A B C

A TRUE TRUE TRUE
B TRUE TRUE TRUE
C FALSE FALSE TRUE
> triplet(net ,3,7,6)

A B D
A TRUE FALSE FALSE
B TRUE TRUE TRUE
D TRUE TRUE TRUE
> triplet(net ,3,8,6)

A C D
A TRUE FALSE FALSE
C TRUE TRUE TRUE
D FALSE FALSE TRUE
> triplet(net ,7,8,6)

B C D

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Graphs 259

B TRUE FALSE FALSE
C TRUE TRUE TRUE
D FALSE FALSE TRUE

10.2 Finding Common Subgraphs

Subgraphs shared by two graphs reveal information common to the two
graphs. As there are several ways in which a graph can be contained in
another graph, common subgraphs can be connected, bottom-up, top-down,
induced by a set of terminal nodes, or induced by the most recent common
semi-strict ancestors of a set of terminal nodes. Further, in order to reveal the
most of their shared information, it is interesting to find common subgraphs
of largest size between two given graphs.

10.2.1 Maximum Agreement of Rooted Networks

Two (unrooted or rooted) phylogenetic networks are said to agree on a set
of terminal nodes if they have isomorphic bottom-up subgraphs with that set
of terminal nodes, and a maximum agreement subgraph of two phylogenetic
networks is a common bottom-up subgraph with the largest possible number
of terminal nodes.

Example 10.9

Consider again the fully resolved phylogenetic networks with eNewick string
((A,((B,(C)h1#H1)w)h2#H2)x,(h1#H1,(h2#H2,D)y)z)r; and with eNewick
string ((A,(B,(C)h#H)x)y,(h#H,D)z)r; from previous examples. The two
networks agree on the set of terminal nodes labeled A, B, C, and this is
the largest set of terminal nodes on which they agree, as shown below. In
fact, the subgraph of the first phylogenetic network rooted at node x has
three terminal nodes labeled A, B, C and is isomorphic (after contraction of
elementary paths) to the subgraph of the second phylogenetic network rooted
at node y. On the other hand, the subgraphs of the first phylogenetic network
rooted at nodes y and z also have three terminal nodes, labeled B, C, D, but
no bottom-up subgraph of the second phylogenetic network has these terminal
nodes. Thus, the maximum agreement subgraph of the two networks has three
terminal nodes.

© 2009 by Taylor & Francis Group, LLC



260 Combinatorial Pattern Matching Algorithms in Computational Biology

r

x

z

y

h2

w

h1

A B C D

r

x

z

y

h2

w

h1

A B C D

r

x

z

y

h2

w

h1

A B C D

r

x

z

y

h2

w

h1

A B C D

r

y

zx

h

A B C D

r

y

zx

h

A B C D

r

y

zx

h

A B C D

r

y

zx

h

A B C D

Computing the maximum agreement of two fully resolved rooted phyloge-
netic networks requires obtaining the subgraph rooted at each internal node
in each of the two networks and also testing each subgraph of one network
and each subgraph of the other network for isomorphism.

The subgraph rooted at an internal node of a phylogenetic network can be
obtained by adding all the descendant nodes of the given internal node to
an empty graph and then adding a directed edge between each pair of nodes
of the subgraph that are connected in the original graph. In the following
description, a directed edge (v, w) of the original graph N is added to the
subgraph N ′ only if both v and w are also nodes of N ′, and any elementary
paths are contracted by removing each elementary node v right after adding
a directed edge from the only parent u to the only child w of node v.

function bottom up subgraph(N, v)
N ′ ← ∅
for each node w of N do

if v is an ancestor of w in N then
add w to N ′

for each edge (v, w) of N do
if v and w are nodes of N ′ then

add edge (v, w) to N ′

while N ′ has some elementary node do
v := an elementary node of N ′

u := parent of v in N ′

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Graphs 261

w := child of v in N ′

add edge (u, w) to N ′

delete node v from N ′

return N ′

The representation of phylogenetic networks in BioPerl does not include any
method to compute the subgraph rooted at an internal node in the directed
acyclic graph representation of a phylogenetic network. However, the descen-
dant nodes of the given node $node in the directed acyclic graph $graph can
be easily obtained with the help of a queue @Q of nodes, and the previous
algorithm can be implemented as shown in the following Perl script.

sub bottom_up_subgraph {
my $graph = shift;
my $node = shift;
my $sub = Graph ->new;
my @Q = ($node);
while (@Q) {

$node = shift @Q;
$sub ->add_vertex($node);
push @Q, $graph ->successors($node);

}
for my $edge ($graph ->edges) {

if ($sub ->has_vertex(@$edge [0]) &&
$sub ->has_vertex(@$edge [1])) {

$sub ->add_edge(@$edge [0], @$edge [1]);
}

}
while (my @V = grep {

$sub ->in_degree($_)==1 &&
$sub ->out_degree($_)==1 }
$sub ->interior_vertices) {

my $v = shift @V;
my @U = $sub ->predecessors($v);
my $u = shift @U;
my @W = $sub ->successors($v);
my $w = shift @W;
$sub ->add_edge($u,$w);
$sub ->delete_vertex($v);

}
return $sub;

}

The representation of phylogenetic networks in R does not include any
method to compute the subgraph rooted at an internal node in the directed
acyclic graph representation of a phylogenetic network, either. However, the

© 2009 by Taylor & Francis Group, LLC



262 Combinatorial Pattern Matching Algorithms in Computational Biology

previous algorithm can be easily implemented using the subgraph function of
the R package iGraph to obtain the subgraph induced by a set of nodes, as
illustrated by the following R script.

bottom.up.subgraph <- function (net ,i) {
Q <- c(i)
S <- c()
while (length(Q) >0) {

i <- Q[1]
Q <- Q[-1]
S <- c(S,i)
Q <- c(Q,as.vector(V(net)[nei(i,mode="out")]))

}
g <- subgraph(net ,unique(S))
while (length(V(g)[which(degree(g,mode="in")==1 &

degree(g,mode="out")==1) -1]) >0) {
D <- V(g)[which(degree(g,mode="in")==1 &

degree(g,mode="out")==1) -1]
v <- head(c(D),n=1) # elementary node

u <- V(g)[nei(v,"in")]
w <- V(g)[nei(v,"out")]
g <- add.edges(g,c(V(g)[u],V(g)[w]))
g <- delete.vertices(g,V(g)[v])

}
g

}

Computing the maximum agreement of two phylogenetic networks also re-
quires testing each subgraph of one network and each subgraph of the other
network for isomorphism. Testing isomorphism of directed acyclic graphs is as
hard as testing graph isomorphism in general, but in the case of phylogenetic
networks, the set of descendant terminal node labels of each node, known
as the cluster map of the network, allows for a significant reduction in the
number of possible isomorphic mappings of the nodes of one network to the
nodes of the other network, since in an isomorphic mapping, the nodes of one
network can only be mapped to equivalent nodes of the other network, that
is, to nodes with the same cluster of descendant node labels.

Mapping nodes in one network only to equivalent nodes in the other net-
work is the basis of a fast backtracking algorithm for testing isomorphism of
phylogenetic networks.

Example 10.10
The following fully resolved tree-child phylogenetic network with eNewick
strings (((A,(C)h1#H1)x,(B)h2#H2)y,(h2#H2,(h1#H1,D)z)w)r; (left) and

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Graphs 263

((A,((B,(C)h1#H1)w)h2#H2)x,(h1#H1,(h2#H2,D)y)z)r; (right) have the
same number of nodes, the same number of directed edges, the same ter-
minal node labels, the same number of tree nodes, and the same number of
hybrid nodes.

r

y w

x

h2

z

h1

A B C D

r

x

z

y

h2

w

h1

A B C D

However, they differ in their cluster maps, and there are nodes in one network
with no equivalent node in the other network, while there are nodes in one
network with more than one equivalent node in the other network.

node cluster equivalent node cluster equivalent
r A, B, C, D r r A, B, C, D r
w B, C, D y, z w B, C —
x A, C — x A, B, C y
y A, B, C x y B, C, D w
z C, D — z B, C, D w
h1 C h1, C h1 C h1, C
h2 B B h2 B, C —
A A A A A A
B B B B B h2, B
C C h1, C C C h1, C
D D D D D D

The backtracking test of two phylogenetic networks, or two bottom-up sub-
graphs of phylogenetic networks, for isomorphism involves computing the set
of equivalent nodes in the second network for each node of the first network
and then trying to extend an empty mapping of nodes of the first network
to equivalent nodes of the second network in all possible ways, until either
an isomorphic mapping is found (in which case the two networks are isomor-
phic) or no isomorphic mapping can be found (because the networks are not
isomorphic).

In the following description, N1 and N2 are assumed to have the same
number of nodes and directed edges, the nodes v2 of N2 that are equivalent
to each node v1 of N1 are collected in X[v1], each node v1 is mapped to

© 2009 by Taylor & Francis Group, LLC



264 Combinatorial Pattern Matching Algorithms in Computational Biology

an equivalent node M [v1] ∈ X[v1], and the Boolean variable found indicates
whether or not the phylogenetic networks have been found to be isomorphic.

function graph isomorphic(N1, N2)
C1 ← cluster map of N1

C2 ← cluster map of N2

for each node v1 of N1 do
X[v1]← ∅
for each node v2 of N2 do

if C1[v1] = C2[v2] then
X[v1]← X[v1] ∪ {v2}

v1 ← undefined
M ← ∅
V1 ← nodes of N1 in some fixed order
found← false
backtrack(N1, N2, X, v1,M, V1, found)
return found

The mapping M of the nodes of N1 to the nodes of N2, initially empty,
is extended in all possible ways by mapping each node v1 to each equivalent
node v2 ∈ X[v1] in turn, while ensuring that the resulting mapping M is
valid, until all the nodes of N1 have been mapped to the nodes of N2. In the
following description, M is extended according to a fixed, but arbitrary, order
V1 of the nodes of N1. The extension of M by mapping v1 to M [v1] is valid if,
for each other node w1 of N1 already mapped to a node M [w1] of N2, either
v1 is adjacent to w1 in N1 and M [v1] is adjacent to M [w1] in N2, or v1 is not
adjacent to w1 in N1 and M [v1] is not adjacent to M [w1] in N2. Also, M is
an isomorphic mapping of N1 to N2 if all the nodes of N1 have been mapped
to the nodes of N2, that is, if V1 is empty, in which case found is set to true.

procedure backtrack(N1, N2, X, v1,M, V1, found)
if not found and M is valid then

if V1 is empty then
found← true

else
v1 ← first node in V1

V1 ← V1 \ {v1}
for each node v2 in X[v1] do

M [v1]← v2

backtrack(N1, N2, X, v1,M, V1, found)
M [v1]← undefined

The representation of phylogenetic networks in Perl by means of directed
acyclic graphs makes it possible to implement the previous backtracking algo-

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Graphs 265

rithm in a straightforward way. In the following Perl script, the cluster equal-
ity test is performed by the is_LequivalentR method of the List::Compare
Perl module, and references to the hash %X of equivalent nodes, to the hash
%M of mapped nodes, to the array @V of remaining nodes to be mapped, and
to the variable $found are passed together with the variable $node1 to the
backtrack subroutine as arguments.

The input directed acyclic graphs $g1 and $g2 are assumed to have the same
number of nodes and directed edges, and the could_be_isomorphic method
of the Graph::Directed Perl module returns true if they have the same num-
ber of nodes and edges and also the same distribution of node in-degrees and
out-degrees, that is, if the fully resolved rooted phylogenetic networks have
the same number of tree nodes and hybrid nodes.

sub graph_isomorphic {
my $g1 = shift;
my $g2 = shift;
my $found = 0;
if ($g1 ->could_be_isomorphic($g2)) {

my $C1 = cluster_map($g1);
my $C2 = cluster_map($g2);
my %X;
for my $node1 ($g1 ->vertices) {

for my $node2 ($g2 ->vertices) {
my $lc = List::Compare ->new(@{$C1}{ $node1},

@{$C2}{ $node2 });
if ($lc ->is_LequivalentR) {

push @{$X{$node1}}, $node2;
}

}
}
my $node1 = undef;
my %M;
my @V1 = sort $g1 ->vertices;
backtrack($g1 ,$g2 ,\%X,$node1 ,\%M,\@V1 ,\ $found);

}
return $found;

}

In the backtrack subroutine, validity of the extension of %M by mapping
$node1 to $M{node1} is determined by checking that $prev1 is adjacent to
$node1 in $g1 if and only if $M{$node1} is adjacent to $M{$prev1} in $g2, for
all nodes $prev1 already mapped. Notice that a reference to a scalar value
is dereferenced by either enclosing the reference inside ${} or just adding a
second dollar sign in front of the variable name.

sub backtrack {

© 2009 by Taylor & Francis Group, LLC



266 Combinatorial Pattern Matching Algorithms in Computational Biology

my ($g1 ,$g2 ,$X,$node1 ,$M ,$V1 ,$found) = @_;
my %X = %{$X};
my %M = %{$M};
my @V1 = @{$V1};
unless ($$found) {

for my $prev1 (keys %M) {
if ($g1 ->has_edge($prev1 ,$node1) &&

!$g2 ->has_edge($M{$prev1},$M{$node1 }) ||
$g1 ->has_edge($node1 ,$prev1) &&

!$g2 ->has_edge($M{$node1},$M{$prev1 }) ||
!$g1 ->has_edge($prev1 ,$node1) &&

$g2 ->has_edge($M{$prev1},$M{$node1 }) ||
!$g1 ->has_edge($node1 ,$prev1) &&

$g2 ->has_edge($M{$node1},$M{$prev1 })) {
return;

}
}
if (scalar @V1) {

$node1 = shift @V1;
for my $node2 (@{$X{$node1 }}) {

$M{$node1} = $node2;
backtrack($g1 ,$g2 ,$X ,$node1 ,\%M,\@V1 ,$found);
$M{$node1} = undef;

}
} else {

$$found = 1;
}

}
}

The cluster map of a phylogenetic network can be obtained by collecting
in cluster C[v] each terminal node w that is a descendant of node v in the
network.

function cluster map(N)
for each node v of N do

C[v]← ∅
for each terminal node w of N do

if v is an ancestor of w in N then
C[v]← C[v] ∪ {w}

return C

This algorithm for computing the cluster map of a phylogenetic network
can also be easily implemented in Perl, as shown in the following script.

sub cluster_map {

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Graphs 267

my $graph = shift;
my %C;
for my $node ($graph ->vertices) {

for my $leaf ($graph ->successorless_vertices) {
if ($graph ->is_reachable($node ,$leaf)) {

push @{$C{$node}}, $leaf;
}

}
}
return \%C;

}

The representation of phylogenetic networks in R, on the other hand, has
a function graph.isomorphic for testing isomorphism of two directed graphs
or two undirected graphs.

Now, the maximum agreement of two fully resolved rooted phylogenetic
networks is computed by testing the subgraph rooted at each internal node
of one network and the subgraph rooted at each internal node of the other
network for isomorphism. In the following description, a common bottom-up
subgraph C of two fully resolved rooted phylogenetic networks N1 and N2

with the largest set L1 of terminal nodes is obtained.

function maximum agreement subgraph(N1, N2)
C ← empty graph
size← 0
for each node v1 of N1 do

G1 ← bottom up subgraph(N1, v1)
for each node v2 of N2 do

G2 ← bottom up subgraph(N2, v2)
if graph isomorphic(G1, G2) then

L1 ← terminal nodes in G1

if length(L1) > size then
C ← G1

size← length(L1)
return C

The representation of phylogenetic networks in Perl by means of directed
acyclic graphs also makes it easy to implement the previous algorithm. In the
following Perl script, the terminal nodes of the bottom-up subgraph rooted at
a node of a network are obtained by means of the successorless_vertices
method of the Graph::Directed Perl module.

sub max_agreement_subgraph {
my $net1 = shift;
my $net2 = shift;
my $graph1 = $net1 ->graph;

© 2009 by Taylor & Francis Group, LLC



268 Combinatorial Pattern Matching Algorithms in Computational Biology

my $graph2 = $net2 ->graph;
my $common = Graph ->new;
my $size = 0;
for my $node1 ($graph1 ->interior_vertices) {

my $sub1 = subgraph($graph1 ,$node1);
for my $node2 ($graph2 ->interior_vertices) {

my $sub2 = subgraph($graph2 ,$node2);
if (graph_isomorphic($sub1 ,$sub2)) {

my $leaves1 = $sub1 ->successorless_vertices;
if ($leaves1 > $size) {

$common = $sub1;
$size = $leaves1;

}
}

}
}
return $common;

}

The representation of phylogenetic networks in R does not include any
method to compute the maximum agreement of two phylogenetic networks,
either. However, the previous algorithm can be easily implemented using the
bottom.up.subgraph function and the graph.isomorphic function defined
above, as illustrated by the following R script.

max.agreement.subgraph <- function (net1 ,net2) {
max <- graph.empty ()
max.size <- 0
for (i in V(net1)) {

g1 <- bottom.up.subgraph(net1 ,i)
for (j in V(net2)) {

g2 <- bottom.up.subgraph(net2 ,j)
if (graph.isomorphic(g1 ,g2)) {

L <- V(g1)[which(degree(g1,mode="out")==0) -1]
if (length(L)>max.size) {

max <- g1
max.size <- length(L)

}
}

}
}
max

}

The maximum agreement subgraph of the two fully resolved phylogenetic
networks from the previous example has, indeed, three terminal nodes.

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Graphs 269

> library(igraph)
> el <- matrix(c("r","x","r","z","z","h1","z","y","y"

,"h2","y","D","x","A","x","h2","h2","w","w","B","w
","h1","h1","C"),nc=2,byrow=TRUE)

> net1 <- graph.edgelist(el)
> el <- matrix(c("r","z","r","y","y","A","y","x","z",

"h","z","D","x","B","x","h","h","C"),nc=2,byrow=
TRUE)

> net2 <- graph.edgelist(el)
> max.agreement.subgraph(net1 ,net2)
Vertices: 5
Edges: 4
Directed: TRUE
Edges:

[0] x -> A
[1] w -> B
[2] w -> C
[3] x -> w

10.3 Comparing Graphs

The similarities and differences between two phylogenetic networks can be
assessed by computing a distance measure between the two phylogenetic net-
works. The triplets distance is based on the subtrees induced by the most re-
cent common semi-strict ancestors of triplets of terminal nodes in two rooted
phylogenetic networks.

10.3.1 The Triplets Distance between Graphs

The triplets distance is based on the subtrees induced by the most recent
common semi-strict ancestors of triplets of terminal nodes in the two net-
works under comparison. The sets of subtrees induced by the most recent
common semi-strict ancestors of triplets of terminal nodes reveal similarities
and differences between two fully resolved rooted phylogenetic networks.

The triplets distance between two fully resolved phylogenetic networks is
defined as the size of the symmetric difference of their sets of subtrees in-
duced by the most recent common semi-strict ancestors of triplets, that is,
the number of induced subtrees in which the two phylogenetic networks differ.

© 2009 by Taylor & Francis Group, LLC



270 Combinatorial Pattern Matching Algorithms in Computational Biology

Example 10.11
Consider once more the fully resolved tree-child phylogenetic networks with
the eNewick string (((A,(C)h1#H1)x,(B)h2#H2)y,(h2#H2,(h1#H1,D)z)w)r;
and ((A,(B,(C)h#H)x)y,(h#H,D)z)r; from previous examples. They have
n = 4 terminal nodes labeled A, B, C, D.

r

y

w

x

h2

z

h1

A

B

C

D

r

y

z

x

h

A

B

C

D

The
(
4
3

)
= 4 subtrees induced by the most recent common semi-strict ancestors

of triplets of terminal nodes in the first phylogenetic network are given in the
following table.

[A
,B

]
[A

,C
]

[B
,C

]

[A
,B

]
[A

,D
]

[B
,D

]

[A
,C

]
[A

,D
]

[C
,D

]

[B
,C

]
[B

,D
]

[C
,D

]

[A,B] 1 1 0 [A,B] 1 0 0 [A,C] 1 0 0 [B,C] 1 1 1
[A,C] 0 1 0 [A,D] 1 1 1 [A,D] 1 1 1 [B,D] 0 1 1
[B,C] 1 1 1 [B,D] 0 0 1 [C,D] 0 0 1 [C,D] 0 0 1

The subtrees induced by the most recent common semi-strict ancestors of
triplets of terminal nodes in the second phylogenetic network are as follows.

[A
,B

]
[A

,C
]

[B
,C

]

[A
,B

]
[A

,D
]

[B
,D

]

[A
,C

]
[A

,D
]

[C
,D

]

[B
,C

]
[B

,D
]

[C
,D

]

[A,B] 1 1 1 [A,B] 1 0 0 [A,C] 1 0 0 [B,C] 1 0 0
[A,C] 1 1 1 [A,D] 1 1 1 [A,D] 1 1 1 [B,D] 1 1 1
[B,C] 0 0 1 [B,D] 1 1 1 [C,D] 0 0 1 [C,D] 0 0 1

The two phylogenetic networks differ in 3 of the 4 induced subtrees and, thus,
their triplets distance is 6.

The triplets distance between two phylogenetic networks can be computed
by first obtaining the subtree induced by the most recent common semi-strict
ancestors of each set of three terminal nodes in each of the networks and then
counting the number of induced subtrees in which the two networks differ.
In the following description, the two sets of

(
n
3

)
subtrees are obtained using

the previous algorithm for finding the subgraph induced by the most recent
common semi-strict ancestors of a triplet of terminal nodes, upon each set of
three terminal node labels in turn.

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Graphs 271

function triplets distance(N1, N2)
L← terminal node labels in N1 and N2

n← length(L)
d← 0
for i← 1, . . . , n do

for j ← i + 1, . . . , n do
for k ← j + 1, . . . , n do

R1 ← triplet(N1, L[i], L[j], L[k])
R2 ← triplet(N2, L[i], L[j], L[k])
if R1 6= R2 then

d← d + 2
return d

The representation of phylogenetic networks in BioPerl does not include any
method to compute the triplets distance between two fully resolved rooted
phylogenetic networks with the same terminal node labels. However, the
sets of subtrees induced by the most recent common semi-strict ancestors of
triplets of terminal nodes can be computed using the triplet method and
the previous algorithm can easily be implemented, as shown in the following
Perl script.

sub triplets_distance {
my $net1 = shift;
my $net2 = shift;
my $comp = Array ::Compare ->new;
my @L = $net1 ->leaves;
my $dist = 0;
for (my $i = 0; $i < @L; $i++) {

for (my $j = $i+1; $j < @L; $j++) {
for (my $k = $j+1; $k < @L; $k++) {

my $t1 = triplet($net1 ,$i ,$j ,$k);
my $t2 = triplet($net2 ,$i ,$j ,$k);
$dist += 2 unless ($t1 eq $t2);

}
}

}
return $dist;

}

The representation of phylogenetic trees in R does not include any method
to compute the triplets distance between two phylogenetic networks, either.
However, the sets of subtrees induced by the most recent common semi-strict
ancestors of triplets of terminal nodes can be computed using the triplet
function and the previous algorithm can be implemented in a straightforward
way, as illustrated by the following R script.

© 2009 by Taylor & Francis Group, LLC



272 Combinatorial Pattern Matching Algorithms in Computational Biology

triplets.distance <- function (net1 ,net2) {
L <- sort(V(net1)[which(degree(net1 ,mode="out")==0)

-1]$name)
d <- 0
for (i in L[1:( length(L) -2)]) {

i1 <- V(net1)[V(net1)$name == i]
i2 <- V(net2)[V(net2)$name == i]
for (j in L[(match(i,L)+1):( length(L) -1)]) {

j1 <- V(net1)[V(net1)$name == j]
j2 <- V(net2)[V(net2)$name == j]
for (k in L[(match(j,L)+1):length(L)]) {

k1 <- V(net1)[V(net1)$name == k]
k2 <- V(net2)[V(net2)$name == k]
t1 <- triplet(net1 ,i1,j1 ,k1)
t2 <- triplet(net2 ,i2,j2 ,k2)
if (!isTRUE(all.equal(t1 ,t2))) { d <- d + 2 }

}
}

}
d

}

> el <- matrix(c("r","y","r","w","y","x","y","h2","w"
,"h2","w","z","x","A","x","h1","h2","B","z","h1","
z","D","h1","C"),nc=2,byrow=TRUE)

> net1 <- graph.edgelist(el)

> el <- matrix(c("r","z","r","y","y","A","y","x","z",
"h","z","D","x","B","x","h","h","C"),nc=2,byrow=
TRUE)

> net2 <- graph.edgelist(el)

> triplets.distance(net1 ,net2)
[1] 6

The triplets distance is a metric on the space of all time-consistent tree-
child phylogenetic networks, and it generalizes the triplets distance between
rooted phylogenetic trees.

© 2009 by Taylor & Francis Group, LLC



General Pattern Matching in Graphs 273

Bibliographic Notes

The problem of reconstructing a galled-tree from a set of rooted triplets of
terminal nodes was studied in (Jansson and Sung 2006; Jansson et al. 2006).
See also (He et al. 2006).

The maximum agreement of galled-trees was introduced by Choy et al.
(2005) and further studied in (Jansson and Sung 2008). Bottom-up subgraphs
and graph isomorphism algorithms are discussed in more detail in (Valiente
2002). See also (Read and Corneil 1977; Gati 1979).

The triplets distance between phylogenetic networks was introduced by Car-
dona et al. (2009b).

© 2009 by Taylor & Francis Group, LLC



Appendix A

Elements of Perl

A brief introduction to Perl is given in this appendix by way of sample scripts
that solve a simple computational biology problem using different methods.
These scripts are then dissected in order to explain basic aspects of the Perl
language, followed by an overview of more advanced aspects of the language,
not covered in the sample scripts. This is all summarized for convenience in
a Perl quick reference card.

A.1 Perl Scripts

Perl is an interpreted scripting language. A Perl program is a script con-
taining a series of instructions, which are interpreted when the program is run
instead of being compiled first into machine instructions and then assembled
or linked into an executable program, thus avoiding the need for separate
compilation and linking.

There are Perl distributions available for almost every computing platform,
and free distributions can be downloaded from http://www.perl.org/. The
actual mechanism of running a script using a Perl interpreter depends on
the particular operating system, the common denominator being the Unix or
Linux command line. Assuming one of the Perl scripts shown further below
was already written using a text editor and stored in a file named sample.pl
(where pl is the standard file extension for Perl scripts), the following com-
mand invokes the Perl interpreter on the sample script:

$ perl sample.pl

The simple computational biology problem at hand consists of translating
to protein a messenger RNA sequence stored (in 5′ to 3′ direction) in a text
file. Recall that the primary structure of a protein can be represented as a
sequence over the alphabet of amino acids A (alanine, Ala), R (arginine, Arg),
N (asparagine, Asn), D (aspartate, Asp), C (cysteine, Cys), E (glutamate,
Glu), Q (glutamine, Gln), G (glycine, Gly), H (histidine, His), I (isoleucine,
Ile), L (leucine, Leu), K (lysine, Lys), M (methionine, Met), F (phenylalanine,
Phe), P (proline, Pro), S (serine, Ser), T (threonine, Thr), W (tryptophan,
Trp), Y (tyrosine, Tyr), and V (valine, Val).

275
© 2009 by Taylor & Francis Group, LLC

http://www.perl.org


276 Combinatorial Pattern Matching Algorithms in Computational Biology

A codon of three nucleotides is translated into a single amino acid within a
protein, with translation beginning with a start codon (AUG) and ending with
a stop codon (UAA, UAG, or UGA). The 43 = 64 different nucleotide triplets
code for 20 amino acids, one translation start signal (methionine, one of these
amino acids) and three translation stop signals, with some redundancies. The
genetic code defines a mapping between codons and amino acids, and despite
variations in the genetic code across species, there is a standard genetic code
common to most species, shown in the following circular table.

¿ sapply(1:16,function(x)x*45/2) [1] 22.5 45.0 67.5 90.0 112.5 135.0 157.5
180.0 202.5 225.0 247.5 270.0 292.5 315.0 337.5 360.0

UG

A C

G

A
C

UG
A

C

U

G

A
C

U G
A

C

U

G
A
C

U
G

A
C

U
G

A
C

UGACUGACUG
A

C
U

G
A

C
U

G
A
C
U
G
A
C
U
G
A
C

U
G

A
C

U G A C U G A C U G
A

C
U

G
A
C
U
G
A
C
U

Trp (W)

stop

Cys (C)

sto
p

Tyr
(Y

)

Se
r
(S

)

L
eu

(L
)

P
h
e

(F
)G

ly
(G

)

G
lu

(E
)

A
sp

(D
)

Ala (A)

Val (V)

Arg (R)

Ser (S)

Lys
(K

)

A
sn

(N
)

T
hr

(T
)

M
et

(M
)

Il
e

(I
)

A
rg

(R
)

G
ln

(Q
)

H
is

(H
)

Pro (P)

Leu (L)

A codon is looked up in the circular genetic code table by starting with the
first nucleotide at the center of the table, following with the second nucleotide
at the inner circle, and finishing with the third nucleotide at the outer circle.
For instance, UAC and UAU both code for Tyr (Y).

Let us assume first the input messenger RNA sequence is already stored in
a variable $rna and, thus, readily available for translation to protein. The
translation method will consist of skipping any nucleotides before the first
start codon and then translating the rest of the sequence to protein using

© 2009 by Taylor & Francis Group, LLC



Elements of Perl 277

the standard genetic code, until the first stop codon. As an example, trans-
lating sequence GUCGCCAUGAUGGUGGUUAUUAUACCGUCAAGGACUGUGUGACUA to pro-
tein involves skipping GUCGCC and then translating AUGAUGGUGGUUAUUAUACCG
UCAAGGACUGUGUGA to MVVIIPSRTV, because AUG codes for Met (M), GUG
and GUU code for Val (V), AUU and AUA code for Ile (I), CCG for Pro (P),
UCA for Ser (S), AGG for Arg (R), and ACU codes for Thr (T).

First Script

In a Perl script, the messenger RNA sequence stored in variable $rna can
be translated to a protein sequence, stored in a variable $protein, and output
to the console window, as shown in the following script.

#!/usr/bin/perl -w

use strict;

my $rna = "GCCAAUGACUAAGGCCUAAAGA";
my $protein = rna_to_protein($rna);
print "$rna translates to $protein\n";

Well, this is not quite the case. The Perl interpreter cannot run this short
script because rna_to_protein has not been defined yet. Nevertheless, let us
dissect this script in order to discuss some basic elements of Perl programming.

The Perl script contains a few header lines followed by some instructions
to translate the $rna sequence and output the resulting $protein sequence.
The first header line, #!/usr/bin/perl -w, points to the Perl interpreter and
turns warnings on by setting the -w command line switch. This is perhaps
the most important tool for writing good Perl code, because turning warnings
on will make the Perl interpreter report on various things that are almost
always sources of error in a Perl script. Further, the second header line is an
instruction to make the Perl interpreter enforce good programming style by
reporting on, among other things, any missing variable declarations.

The first line after the header declares the scalar variable $rna and makes
the character string "GCCAAUGACUAAGGCCUAAAGA" the value stored in the mem-
ory location referenced by that variable. In other words, it assigns the charac-
ter string to the variable, and a variable can be assigned different values at the
same or different places in a Perl script. Unlike variables, the character string
is a constant, whose value cannot change unless the Perl script is changed.

Variables are thus named references to memory locations, and there are
scalar, array, and hash variables in Perl. Scalar variables hold scalar values
such as numbers and character strings, and their names must begin with a
dollar sign, such as $rna. Array and hash variables, on the other hand, hold
lists of values, and their names must begin with either an at sign, such as
@rna, for array variables or a percent sign, such as %rna, for hash variables.

Almost any name can follow the dollar, at, or percent sign in a variable
name, as long as it consists of uppercase or lowercase letters, digits, or un-

© 2009 by Taylor & Francis Group, LLC



278 Combinatorial Pattern Matching Algorithms in Computational Biology

derscores and begins with a letter, with a few exceptions. Some variable
names have a special meaning, such as $_, @_, @ARGV, and $1 through $9,
which cannot be used to declare new variables. Besides, variable names are
case sensitive and, thus, $rna, $Rna, and $RNA all reference different memory
locations when used in the same Perl script.

An initial value can be assigned to a variable when declaring it,

my $rna = "GCCAAUGACUAAGGCCUAAAGA";

or the variable can be declared first and later have a value assigned,

my $rna;
...
$rna = "GCCAAUGACUAAGGCCUAAAGA";

In any case, a value is assigned to a variable in an assignment instruction
or statement that resembles an equation, with the variable name to the left
and the value to the right of the equal sign. Like most Perl statements, the
assignment ends with a semicolon.

The declaration of a variable consists of the variable name preceded by my
and followed by a semicolon. These variables are called lexical, and their scope
is local to the block where they are declared, something that will be made
clear further below, unlike global variables, which do not need to be declared
and have the whole script as scope. Global variables are frequent sources of
error and, thus, they are forbidden by the use strict; header line.

More than one variable can be declared in a single instruction, with the
variable names enclosed in parentheses and separated by commas. Thus,

my $dna;
my $rna;
my $protein;

and

my ($dna , $rna , $protein);

both declare the same three variables.
In the next line of the Perl script, the rna_to_protein subroutine is invoked

upon the value of the variable $rna, and the resulting value is assigned to the
variable $protein. Before discussing subroutines, let us see how the protein
sequence stored in variable $protein finds its way to the console window.

A print statement outputs the value of one or more constants or variables
to the console window, also known as standard output in Unix and Linux.
The value returned by a subroutine invocation can also be output in this way.
In a print statement, the values to be output are separated by commas, as in

print $rna ," translates to ",$protein ,"\n";

or

© 2009 by Taylor & Francis Group, LLC



Elements of Perl 279

print $rna ," translates to ",rna_to_protein($rna),
"\n";

which both output the value of the variable $rna followed by the string
constant " translates to " followed by either the value of the variable
$protein or the result of the subroutine invocation rna_to_protein($rna),
followed also by the special string constant "\n" that indicates the end of an
output line on the console window, and ending with a semicolon.

String constants must be enclosed in either double or single quotes in Perl,
and a string enclosed in double quotes is subject to variable interpolation,
the substitution of the value for any variable embedded in the string. In the
last line of the Perl script, the values of the variables $rna and $protein are
interpolated in a string constant,

print "$rna translates to $protein\n";

and invoking the Perl interpreter on the sample script will result in the fol-
lowing output,

GUCGCCAUGAUGGUGGUUAUUAUACCGUCAAGGACUGUGUGACUA trans
lates to MVVIIPSRTV

where this long output line might be broken at a different position, depending
on the actual console window size.

Let us come back to discussing subroutines now. As in any programming
language, there are various functions readily available in Perl, which take
one or more arguments as input and give a single result as output. Examples
include numeric functions such as abs (absolute value), exp (raise to a power),
int (integer part of a real number), log (natural logarithm), and sqrt (square
root), and string functions such as lc (convert to lowercase), up (uppercase),
and length (number of characters), among many others.

Subroutines are, like functions, named pieces of code that perform a specific
task and are evaluated when invoked upon particular argument values. Unlike
functions, however, subroutines need not return a value, although they often
do, and the rna_to_protein subroutine will take a string (a messenger RNA
sequence) as input and return a string (a protein sequence) as output.

A subroutine begins with sub followed by the subroutine name and by the
subroutine code enclosed in braces, such as in

sub rna_to_protein {
...

}

In this subroutine, the input messenger RNA sequence, stored in a string
variable $rna, will be translated to protein and stored in a string variable
$protein by first skipping any nucleotides before the first start codon and
then translating the rest of the sequence to protein using the standard genetic
code, until the first stop codon. The translation of each codon to amino acid

© 2009 by Taylor & Francis Group, LLC



280 Combinatorial Pattern Matching Algorithms in Computational Biology

will be done in turn in a codon_to_amino_acid subroutine, to be defined
later. The code of the subroutine at hand is as follows.

sub rna_to_protein {
my $rna = shift;
my $protein;
my $i = 0;
while ($i < length($rna) - 2 &&

substr($rna ,$i ,3) ne "AUG") { # start codon

$i++;
}
$i += 3; # skip the start codon

while ($i < length($rna) - 2 &&
substr($rna ,$i ,3) ne "UAA" &&
substr($rna ,$i ,3) ne "UAG" &&
substr($rna ,$i ,3) ne "UGA") {

my $codon = substr($rna ,$i ,3);
$protein .= codon_to_amino_acid($codon);
$i += 3;

}
return $protein;

}

Values such as the actual sequence stored in the string variable $rna can be
passed to a subroutine as arguments, by listing them right after the subroutine
name. Within the subroutine, these values are accessed as a special temporary
array named @_ either all together or one by one.

Recall that array variables hold lists of values. For instance, an array vari-
able named @stop can be declared and have the three stop codons assigned
as a list of values,

my @stop = ("UAA", "UAG", "UGA");

or it can be declared first and then have each of the three stop codons stored
at a different position in the array, starting with position 0,

my @stop;
$stop [0] = "UAA";
$stop [1] = "UAG";
$stop [2] = "UGA";

or have each of the three stop codons pushed into the array,

my @stop;
push @stop , "UAA", "UAG", "UGA";

or have each of the stop codons pushed in reverse order into the array,

my @stop;
unshift @stop , "UGA", "UAG", "UAA";

© 2009 by Taylor & Francis Group, LLC



Elements of Perl 281

While the value of the array variable is the whole list, individual elements
can be accessed by position, as in the previous assignment instructions, or by
either shifting off the first value in the array,

my $first_stop_codon = shift @stop;

or popping the last value in the array,

my $last_stop_codon = pop @stop;

The value of the array variable is the list of elements when evaluated in
list context, that is, when used in a list valued expression. However, in scalar
context, when used in a scalar valued expression, the value of the array variable
is the number of elements in the array,

my $length = @stop;

In fact, every expression is interpreted in either list or scalar context, and this
is a feature almost unique to the Perl language.

Now, within the rna_to_protein subroutine, the string value passed as an
argument can be accessed by either assigning the whole temporary array to a
list of variables, which consists of just one variable in this case,

sub rna_to_protein {
my ($rna) = @_;
...

}

or shifting off the only element in the temporary array, which is the default
argument for the shift function,

sub rna_to_protein {
my $rna = shift;
...

}

With the string value passed as an argument and stored in the $rna variable,
the subroutine translates it to protein and returns the string value of the
$protein variable. The first step consists of skipping any nucleotides before
the first start codon, and the scalar variable $i will hold the initial position
in the $rna string of the first start codon, which is position 6 after skipping
six nucleotides in the following sample sequence:

GUCGCCAUGAUGGUGGUUAUUAUACCGUCAAGGACUGUGUGACUA
.UCGCCAUGAUGGUGGUUAUUAUACCGUCAAGGACUGUGUGACUA
.. CGCCAUGAUGGUGGUUAUUAUACCGUCAAGGACUGUGUGACUA
... GCCAUGAUGGUGGUUAUUAUACCGUCAAGGACUGUGUGACUA
.... CCAUGAUGGUGGUUAUUAUACCGUCAAGGACUGUGUGACUA
..... CAUGAUGGUGGUUAUUAUACCGUCAAGGACUGUGUGACUA
...... AUGAUGGUGGUUAUUAUACCGUCAAGGACUGUGUGACUA
0123456789...

© 2009 by Taylor & Francis Group, LLC



282 Combinatorial Pattern Matching Algorithms in Computational Biology

The position $i of the first start codon in the $rna string can be found by
starting with $i = 0 and increasing the value of $i as many times as needed,
until the codon substr($rna,$i,3) in string $rna that begins at position $i
and has length 3 is a start codon. This is achieved by continuing to increase $i
by one, where $i++ is shorthand for $i = $i + 1, while substr($rna,$i,3)
is not a start codon, that is, until substr($rna,$i,3) is a start codon:

my $i = 0;
while (substr($rna ,$i ,3) ne "AUG") { # start codon

$i++;
}

Comments can be placed starting with a hash symbol either at the end of a
line or on one or more separate lines, to make the code easier to understand.
The substring function substr returns a substring of a given string starting at
a given position and of a given length, and, thus, substr($rna,$i,3) is the
substring of $rna starting at position $i and of length 3, that is, the codon
starting at position $i of string $rna.

Scalar values can be compared by means of various operators, and the result
is always a Boolean value. The equality test, == for numeric and eq for string
values, returns true if the values are equal and false otherwise. Testing for
the opposite, not equal, is done with != for numeric and ne for string values,
which return true if the values are different and false if they are equal.

Testing if two numeric values are greater than, or greater than or equal to,
each other is done with > and >=, respectively, and testing if two string values
are greater than, or greater than or equal to, each other in lexicographical
order is done with gt and ge, respectively. Similarly, testing if two numeric
values are less than, or less than or equal to, each other is done with < and <=,
respectively, and with lt and le for string values, in lexicographical order.

On the other hand, the signed inequality test, <=> for numeric and cmp
for string values, returns −1 if the first value is less than the second value,
0 if the values are equal, and 1 if the second value is greater than the first
value. Since any numeric value other than 0 qualifies as truth in Perl, the
signed inequality test returns true (either −1 or 1) if the values are different
and false (0) otherwise. Also, any string value other than the empty string
qualifies as truth in Perl, and the Boolean comparison operators return the
scalar value 1 (as a number or as a string, depending on the context) for true
and the empty string for false.

There are several ways of looping across a block of Perl code. In a for loop,
a block of code is executed a specific number of times: a variable controlling
the loop is set to an initial value, a test expression is evaluated true or false
on each repetition of the loop, and the control variable is reset in some way at
the end of each loop repetition. For instance, by setting the control variable
$i to the initial value $i = 0, executing the block of code as long as the test
expression $i < @stop evaluates to true, and increasing the control variable

© 2009 by Taylor & Francis Group, LLC



Elements of Perl 283

with $i++ at the end of each repetition, the block of code is executed three
times, the length of the @stop array:

my @stop = ("UAA", "UAG", "UGA");
for (my $i = 0; $i < @stop; $i++) {

print "$stop[$i]\n";
}

In a for each loop, a block of code is executed once upon each of the values
in a given list, without need for the explicit position of the values in the list.
For instance, by looping over the list stored in the @stop array, the block of
code is executed once for each of the three $codon values:

foreach my $codon (@stop) {
print "$codon\n";

}

In a while loop, a block of code is executed while a specific condition is met:
if the expression controlling the loop evaluates to true, the block of code is
executed once and then it continues to execute in a loop until the expression
evaluates to false, but if the expression initially evaluates to false, the block
of code is not executed at all. For instance, by setting a variable to the
initial value $i = 0 before the loop and then executing the block of code as
long as the test expression $i < @stop evaluates to true, where the variable
is increased with $i++ within the block of code, the block of code is also
executed a number of times equal to the length of the @stop array:

my $i = 0;
while ($i < @stop) {

print "$stop[$i]\n";
$i++;

}

Finally, in a repeat loop, a block of code is executed until a specific condition
is met: the block of code is executed once and then it continues to execute in a
loop until the expression evaluates to true. Unlike the while loop, the block of
code is always executed at least once in a repeat loop. For instance, by setting
a variable to the initial value $i = 0 before the loop and then executing the
block of code until the test expression $i >= @stop evaluates to true, where
the variable is increased with $i++ within the block of code, the block of code
is also executed a number of times equal to the length of the @stop array:

my $i = 0;
do {

print "$stop[$i]\n";
$i++;

} until ($i >= @stop);

© 2009 by Taylor & Francis Group, LLC



284 Combinatorial Pattern Matching Algorithms in Computational Biology

Back to the rna_to_protein subroutine, the previous while loop for skip-
ping any nucleotides before the first start codon was correct only if the $rna
string contained at least one start codon. Otherwise, the loop would eventu-
ally fall off beyond the end of the string, and substr($rna,$i,3) would then
report a substr outside of string error. In order to skip nucleotides within the
$rna string only, an additional condition is needed in the expression control-
ling the loop: the position $i must be less than or equal to length($rna) - 3,
the starting position of the last codon in the string. This condition is equiv-
alent to $i < length($rna) - 2, thus leading to the following code:

my $i = 0;
while ($i < length($rna) - 2 &&

substr($rna ,$i ,3) ne "AUG") { # start codon

$i++;
}

In the expression controlling this while loop, two expressions are combined
by means of the Boolean && (and) binary operator, which returns true if the
two expressions evaluate to true and returns false otherwise, that is, if at least
one of the expressions evaluates to false. Further, the Boolean || (or) binary
operator returns true if at least one of the expressions evaluates to true and
returns false otherwise, that is, if the two expressions evaluate to false, and
the Boolean ! (not) unary operator returns true if the expression evaluates to
false and returns false otherwise, that is, if the expression evaluates to true.

The order of the expressions matters here, because they are always evalu-
ated from the left to the right. Therefore, if the test for a start codon is put
before the test for the end of the string,

my $i = 0;
while (substr($rna ,$i ,3) ne "AUG") &&

$i < length($rna) - 2 { # start of last codon

$i++;
}

the substr outside of string error will still be avoided, but in the case in which
the $rna string does not contain any start codon, the loop will indeed fall
off the end of the string, and substr($rna,$i,3) will then return only two
nucleotides, instead of a codon of three nucleotides:

....................................... UGACUA

........................................ GACUA

......................................... ACUA

.......................................... CUA

........................................... UA

Once the nucleotides before the first start codon have been skipped, the
start codon itself has to be skipped as well,

$i += 3; # skip the start codon

© 2009 by Taylor & Francis Group, LLC



Elements of Perl 285

where $i += 3 is just shorthand for $i = $i + 3 to skip three positions in
the string. The second step consists of translating to protein the rest of the
string, until the first stop codon. In the second while loop of the subroutine,
each $codon is translated to amino acid, the amino acid is added to the end
of the $protein, the codon is skipped, and the loop is repeated as long as
there are still enough nucleotides in the string and the codon is not any of the
stop codons.

while ($i < length($rna) - 2 &&
substr($rna ,$i ,3) ne "UAA" &&
substr($rna ,$i ,3) ne "UAG" &&
substr($rna ,$i ,3) ne "UGA") {

my $codon = substr($rna ,$i ,3);
$protein .= codon_to_amino_acid($codon);
$i += 3;

}

The dot assignment $protein .= codon_to_amino_acid($codon) is just
shorthand for $protein = $protein.codon_to_amino_acid($codon), where
the dot operator denotes string concatenation. During the execution of this
second while loop, the $protein string grows from an initial empty string to
the 10 amino acids MVVIIPSRTV coded by the 30 nucleotides AUGGUGGUUAUUAUA
CCGUCAAGGACUGUG, as the 10 codons are translated to protein and added one
after the other to the end of the string:

.. AUGAUGGUGGUUAUUAUACCGUCAAGGACUGUGUGA ..

..... AUGGUGGUUAUUAUACCGUCAAGGACUGUGUGA .. M

........ GUGGUUAUUAUACCGUCAAGGACUGUGUGA .. MV

........... GUUAUUAUACCGUCAAGGACUGUGUGA .. MVV

.............. AUUAUACCGUCAAGGACUGUGUGA .. MVVI

................. AUACCGUCAAGGACUGUGUGA .. MVVII

.................... CCGUCAAGGACUGUGUGA .. MVVIIP

....................... UCAAGGACUGUGUGA .. MVVIIPS

.......................... AGGACUGUGUGA .. MVVIIPSR

............................. ACUGUGUGA .. MVVIIPSRT

................................ GUGUGA .. MVVIIPSRTV

The empty string is the default initial value when a string variable such as
$protein is declared without an explicit value assignment, and the final value
of the $protein variable is the string returned by the subroutine:

sub rna_to_protein {
my $rna = shift;
my $protein;
...
return $protein;

}

© 2009 by Taylor & Francis Group, LLC



286 Combinatorial Pattern Matching Algorithms in Computational Biology

In the absence of an explicit return instruction, the subroutine would return
the value of the last expression that was evaluated, which in this case is the
empty string, when substr($rna,$i,3) is equal to one of the stop codons.

Now, a codon can be translated to protein by looking it up in the genetic
code table, and the 64 entries of the genetic code table can be encoded in
a series of 64 tests within the codon_to_amino_acid subroutine. Reading
the circular genetic code table in clockwise order, for instance, leads to the
following subroutine code:

sub codon_to_amino_acid {
my $codon = shift;
if ($codon eq "UUU") { return "F" } # Phe

elsif ($codon eq "UUC") { return "F" } # Phe

elsif ($codon eq "UUA") { return "L" } # Leu

elsif ($codon eq "UUG") { return "L" } # Leu

elsif ($codon eq "UCU") { return "S" } # Ser

elsif ($codon eq "UCC") { return "S" } # Ser

elsif ($codon eq "UCA") { return "S" } # Ser

elsif ($codon eq "UCG") { return "S" } # Ser

elsif ($codon eq "UAU") { return "Y" } # Tyr

elsif ($codon eq "UAC") { return "Y" } # Tyr

elsif ($codon eq "UAA") { return "-" } # stop

elsif ($codon eq "UAG") { return "-" } # stop

elsif ($codon eq "UGU") { return "C" } # Cys

elsif ($codon eq "UGC") { return "C" } # Cys

elsif ($codon eq "UGA") { return "-" } # stop

elsif ($codon eq "UGG") { return "W" } # Trp

elsif ($codon eq "CUU") { return "L" } # Leu

elsif ($codon eq "CUC") { return "L" } # Leu

elsif ($codon eq "CUA") { return "L" } # Leu

elsif ($codon eq "CUG") { return "L" } # Leu

elsif ($codon eq "CCU") { return "P" } # Pro

elsif ($codon eq "CCC") { return "P" } # Pro

elsif ($codon eq "CCA") { return "P" } # Pro

elsif ($codon eq "CCG") { return "P" } # Pro

elsif ($codon eq "CAU") { return "H" } # His

elsif ($codon eq "CAC") { return "H" } # His

elsif ($codon eq "CAA") { return "Q" } # Gln

elsif ($codon eq "CAG") { return "Q" } # Gln

elsif ($codon eq "CGU") { return "R" } # Arg

elsif ($codon eq "CGC") { return "R" } # Arg

elsif ($codon eq "CGA") { return "R" } # Arg

elsif ($codon eq "CGG") { return "R" } # Arg

elsif ($codon eq "AUU") { return "I" } # Ile

elsif ($codon eq "AUC") { return "I" } # Ile

© 2009 by Taylor & Francis Group, LLC



Elements of Perl 287

elsif ($codon eq "AUA") { return "I" } # Ile

elsif ($codon eq "AUG") { return "M" } # Met

elsif ($codon eq "ACU") { return "T" } # Thr

elsif ($codon eq "ACC") { return "T" } # Thr

elsif ($codon eq "ACA") { return "T" } # Thr

elsif ($codon eq "ACG") { return "T" } # Thr

elsif ($codon eq "AAU") { return "N" } # Asn

elsif ($codon eq "AAC") { return "N" } # Asn

elsif ($codon eq "AAA") { return "K" } # Lys

elsif ($codon eq "AAG") { return "K" } # Lys

elsif ($codon eq "AGU") { return "S" } # Ser

elsif ($codon eq "AGC") { return "S" } # Ser

elsif ($codon eq "AGA") { return "R" } # Arg

elsif ($codon eq "AGG") { return "R" } # Arg

elsif ($codon eq "GUU") { return "V" } # Val

elsif ($codon eq "GUC") { return "V" } # Val

elsif ($codon eq "GUA") { return "V" } # Val

elsif ($codon eq "GUG") { return "V" } # Val

elsif ($codon eq "GCU") { return "A" } # Ala

elsif ($codon eq "GCC") { return "A" } # Ala

elsif ($codon eq "GCA") { return "A" } # Ala

elsif ($codon eq "GCG") { return "A" } # Ala

elsif ($codon eq "GAU") { return "D" } # Asp

elsif ($codon eq "GAC") { return "D" } # Asp

elsif ($codon eq "GAA") { return "E" } # Glu

elsif ($codon eq "GAG") { return "E" } # Glu

elsif ($codon eq "GGU") { return "G" } # Gly

elsif ($codon eq "GGC") { return "G" } # Gly

elsif ($codon eq "GGA") { return "G" } # Gly

elsif ($codon eq "GGG") { return "G" } # Gly

else { return "*" }
}

This long instruction is called a conditional and allows for the conditional
execution of a block of code, depending on whether or not a given expression
evaluates to true. In the simplest form of the conditional, a block of code is
executed if an expression evaluates to true:

if ($codon eq "AUG") {
print "stop codon\n";

}

Another common form of the conditional provides for the alternative execu-
tion of two blocks of code, depending on the outcome of the evaluation of a
given expression. A block of code is executed if an expression evaluates to
true. Otherwise, if the expression evaluates to false, another block of code is
executed:

© 2009 by Taylor & Francis Group, LLC



288 Combinatorial Pattern Matching Algorithms in Computational Biology

if ($codon eq "AUG") {
print "stop codon\n";

} else {
$i += 3;

}

The whole Perl script, stored in the sample.pl file, will look as follows.

#!/usr/bin/perl -w

use strict;

my $rna = "GCCAAUGACUAAGGCCUAAAGA";
my $protein = rna_to_protein($rna);
print "$rna translates to $protein\n";

sub rna_to_protein {
...

}

sub codon_to_amino_acid {
...

}

Second Script

The previous Perl script would be more flexible if the $rna string could
be input from the console, instead of being hardwired in the script, since this
would allow for using exactly the same script over and over again, to translate
to protein any given messenger RNA sequence.

A Perl script can be invoked upon particular argument values, much like a
subroutine. For example, the following command invokes the Perl interpreter
on the sample script with a short string as first argument:

$ perl sample.pl AUGGUGGUUAUUAUACCGUCAAGGACUGUG

Argument values can be read from the console, also known as standard in-
put in Unix and Linux. Command line arguments are stored in a special array
named @ARGV (argument values) and, thus, $ARGV[0] contains the first argu-
ment, $ARGV[1] contains the second argument, and $ARGV[$#ARGV] contains
the last argument. The sample script would be as follows when the string
argument is read from the command line:

my $rna = $ARGV [0];
my $protein = rna_to_protein($rna);
print "$rna translates to $protein\n";

The string argument can also be read from the standard input in a separate
line, right after the command line, as follows.

© 2009 by Taylor & Francis Group, LLC



Elements of Perl 289

my $rna = <STDIN >;
my $protein = rna_to_protein($rna);
print "$rna translates to $protein\n";

Here, STDIN (standard input) is an example of a file handle, and <STDIN>
can be replaced by <> for brevity. File handles will be further discussed in
the third script. Reading the argument from the standard input in a separate
line has the advantage that the Perl script can then be invoked upon as many
input strings as desired, with each input string in a separate line, by just
reading the input string inside a loop.

After reading and translating to protein all the input strings, the end of
the input is signaled by just pressing Control-D (uppercase or lowercase) on
Unix or Linux.

while (my $rna = <STDIN >) {
my $protein = rna_to_protein($rna);
print "$rna translates to $protein\n";

}

Besides, using a long conditional is not the only solution to the messenger
RNA to protein translation problem in the codon_to_amino_acid subroutine.
In fact, the circular genetic code table can also be encoded as a list of codons
and corresponding amino acids, using a hash variable:

my %codon2aa = (
"UUU" => "F", # Phe

"UUC" => "F", # Phe

"UUA" => "L", # Leu

"UUG" => "L", # Leu

"UCU" => "S", # Ser

"UCC" => "S", # Ser

"UCA" => "S", # Ser

"UCG" => "S", # Ser

"UAU" => "Y", # Tyr

"UAC" => "Y", # Tyr

"UAA" => "-", # stop

"UAG" => "-", # stop

"UGU" => "C", # Cys

"UGC" => "C", # Cys

"UGA" => "-", # stop

"UGG" => "W", # Trp

"CUU" => "L", # Leu

"CUC" => "L", # Leu

"CUA" => "L", # Leu

"CUG" => "L", # Leu

"CCU" => "P", # Pro

"CCC" => "P", # Pro

© 2009 by Taylor & Francis Group, LLC



290 Combinatorial Pattern Matching Algorithms in Computational Biology

"CCA" => "P", # Pro

"CCG" => "P", # Pro

"CAU" => "H", # His

"CAC" => "H", # His

"CAA" => "Q", # Gln

"CAG" => "Q", # Gln

"CGU" => "R", # Arg

"CGC" => "R", # Arg

"CGA" => "R", # Arg

"CGG" => "R", # Arg

"AUU" => "I", # Ile

"AUC" => "I", # Ile

"AUA" => "I", # Ile

"AUG" => "M", # Met

"ACU" => "T", # Thr

"ACC" => "T", # Thr

"ACA" => "T", # Thr

"ACG" => "T", # Thr

"AAU" => "N", # Asn

"AAC" => "N", # Asn

"AAA" => "K", # Lys

"AAG" => "K", # Lys

"AGU" => "S", # Ser

"AGC" => "S", # Ser

"AGA" => "R", # Arg

"AGG" => "R", # Arg

"GUU" => "V", # Val

"GUC" => "V", # Val

"GUA" => "V", # Val

"GUG" => "V", # Val

"GCU" => "A", # Ala

"GCC" => "A", # Ala

"GCA" => "A", # Ala

"GCG" => "A", # Ala

"GAU" => "D", # Asp

"GAC" => "D", # Asp

"GAA" => "E", # Glu

"GAG" => "E", # Glu

"GGU" => "G", # Gly

"GGC" => "G", # Gly

"GGA" => "G", # Gly

"GGG" => "G" # Gly

);

© 2009 by Taylor & Francis Group, LLC



Elements of Perl 291

Hash variables hold lists of values. A hash is just an advanced form of an
array, in which the values are accessed by a scalar key instead of an array
position. For instance, a hash variable can be declared and have the start
codon and the three stop codons assigned as a list of keys and values,

my %codon = (
"AUG" => "start",
"UAA" => "stop",
"UAG" => "stop",
"UGA" => "stop"

);

or it can be declared first and then have each of the four codons stored in the
hash,

my %codon;
$codon{"AUG"} = "start";
$codon{"UAA"} = "stop";
$codon{"UAG"} = "stop";
$codon{"UGA"} = "stop";

While the value of the hash is the whole list of keys and values, individual
elements can be accessed by a key, as in the previous assignment instructions,
or by means of a for each loop,

foreach my $key (keys %codon) {
print "$key $codon{$key}\n";

}

where the values appear in no particular order, or with the values sorted by
the hash key,

foreach my $key (sort keys %codon) {
print "$key $codon{$key}\n";

}

Within the rna_to_protein subroutine, the encoding of the genetic code
table is then replaced by the hash of codons and corresponding amino acids,

if (defined $codon2aa{$codon }) {
$aa = $codon2aa{$codon };

} else {
$aa = "*";

}
$protein .= $aa;

where the defined function returns true if there is a value for the $codon
key in the %codon2aa hash and false otherwise, when either there is no value
for the key in the hash or the value is undef, a special scalar that denotes
undefined values in Perl.

© 2009 by Taylor & Francis Group, LLC



292 Combinatorial Pattern Matching Algorithms in Computational Biology

The second Perl script, also stored in the sample.pl file, will then look as
follows.

#!/usr/bin/perl -w

use strict;

while (my $rna = <STDIN >) {
my $protein = rna_to_protein($rna);
print "$rna translates to $protein\n";

}

my %codon2aa = (
...

)

sub rna_to_protein {
my $rna = shift;
my $protein;
my $aa;
my $i = 0;
while ($i < length($rna) - 2 &&

substr($rna ,$i ,3) ne "AUG") { # start codon

$i++;
}
$i += 3; # skip the start codon

while ($i < length($rna) - 2 &&
substr($rna ,$i ,3) ne "UAA" &&
substr($rna ,$i ,3) ne "UAG" &&
substr($rna ,$i ,3) ne "UGA") {

my $codon = substr($rna ,$i ,3);
if (defined $codon2aa{$codon }) {

$aa = $codon2aa{$codon };
} else {

$aa = "*";
}
$protein .= $aa;
$i += 3;

}
return $protein;

}

Third Script

The messenger RNA sequences to be translated to protein could be stored
in a text file and then input to the Perl script straight from the file, instead

© 2009 by Taylor & Francis Group, LLC



Elements of Perl 293

of being input one after the other from the console. This behavior can be
achieved with the previous Perl script, by using the input redirection operator
in the Unix or Linux command line to have the standard input read from a
file:

$ perl sample.pl < sample.dna

The Perl script can also be modified to read the input strings from a text
file, with the file name passed as an argument:

my $file = $ARGV [0];
open IN, "<$file" or die "Cannot open file: $!";
while (my $rna = <IN >) {

my $protein = rna_to_protein($rna);
print "$rna translates to $protein\n";

}
close IN;

The following command would then invoke the Perl interpreter on the sam-
ple script with the name of the text file containing all the input strings as the
first argument:

$ perl sample.pl sample.dna

All input and output take place in Perl using a file handle, which is just an
unquoted string that has been associated with a particular file by means of an
open instruction and remains valid until finished by a close instruction. The
default file handles, which need not be opened or closed, are STDIN (standard
input) for input from the console, STDOUT (standard output) for output to the
console window, and STDERR (standard error) for output of error and warning
messages, also to the console window.

A file can be opened for either reading, writing, or appending data. In
the open instruction, the file name is preceded by the intuitive symbols < for
reading, > for writing, and >> for appending. The symbol for reading can be
omitted, since files are open for reading by default. Opening for writing an
already existing file results in the loss of any previous contents of the file, while
opening a file for appending results in the addition of new contents to the end
of the file. Failure to open a file results in the open instruction returning false
right after setting the special variable $! to reflect the system error. In this
case, the die instruction will output an error message to the standard error
and exit immediately.

Once a file has been opened for reading and associated with the IN file han-
dle, for instance, the <IN> input operator is readily available, and it behaves
much like <STDIN>. On the other hand, once a file has been opened for writing
or appending, the print instruction can be used to write to the file by adding
the file handle before the values to be written:

open OUT , ">$file" or die "Cannot open file: $!";

© 2009 by Taylor & Francis Group, LLC



294 Combinatorial Pattern Matching Algorithms in Computational Biology

foreach my $key (sort keys %codon2aa) {
print OUT "$key $codon2aa{$key}\n";

}
close OUT;

The third Perl script, stored again in the sample.pl file, will then look as
follows.

#!/usr/bin/perl -w

use strict;

my $file = $ARGV [0];
open IN, "<$file" or die "Cannot open file: $!";
while (my $rna = <IN >) {

my $protein = rna_to_protein($rna);
print "$rna translates to $protein\n";

}
close IN;

my %codon2aa = (
...

)

sub rna_to_protein {
...

}

A.2 Overview of Perl

After the brief introduction by way of sample scripts in the previous section,
let us focus now on a few more advanced aspects of the language which were
not covered in these sample scripts.

Passing References as Arguments

Scalar values can be passed to a subroutine as arguments, by listing them
right after the subroutine name. Array and hash variables, however, hold lists
of values, and passing them to a subroutine as arguments is problematic for
several reasons. First of all, the lists of values get messed up when passing two
or more array or hash variables to a subroutine, because all the arguments
are passed as a single list of values and stored in the special temporary array
named @_ and then there is no way to tell them apart within the subroutine.

© 2009 by Taylor & Francis Group, LLC



Elements of Perl 295

Second, if some or all of the values are modified within the subroutine, the
modified values cannot be passed back. Third, and most important, passing a
long list of values can be slow, as they are copied one by one to the @_ array.

These problems are solved by passing to the subroutine a reference to the
memory location referenced by the array or hash variable, instead of passing
the actual list of values.

A reference to a variable is created by just adding the backslash symbol in
front of the variable name, and the reference to the variable can be passed to
a subroutine as an argument.

my @start = ("AUG");
my @stop = ("UAA", "UAG", "UGA");
my $protein = rna_to_protein($rna ,\@start ,\ @stop);

The reference to the variable is a scalar value, which can be dereferenced
within the subroutine to get back the list of values stored in the memory
location referenced by the variable. A reference to an array or hash variable
is dereferenced by enclosing the reference inside @{} and %{}, respectively.

sub rna_to_protein {
my ($rna ,$start ,$stop) = @_;
my @start = @{$start };
my @stop = @{$stop };
...

}

Perl also allows for anonymous references to lists of values, which avoid the
need for storing first the list of values in an array or hash variable and still
can be passed to subroutines as arguments. An anonymous reference to an
array variable is created by enclosing the list of values inside square brackets,
instead of parentheses.

my $start = ["AUG"];
my $stop = ["UAA", "UAG", "UGA"];
my $protein = rna_to_protein($rna ,$start ,$stop);

An anonymous reference to an hash variable, on the other hand, is created
by enclosing the list of keys and values inside braces, instead of parentheses.

my $codon = {
"AUG" => "start",
"UAA" => "stop",
"UAG" => "stop",
"UGA" => "stop"

};
my $protein = rna_to_protein($rna ,$codon);

Anonymous references are already references and, thus, there is no need for
adding any backslash symbol when passing them to a subroutine.

© 2009 by Taylor & Francis Group, LLC



296 Combinatorial Pattern Matching Algorithms in Computational Biology

Using Modules and Packages

Subroutines written for one script can be made available to other scripts
by placing them in a module, a text file with the extension pm (perl module)
containing Perl code. For instance, any subroutines written in a text file
named sample.pm are readily available in any script using this module, that
is, in any script containing the following header line:

use sample;

This is all right when the module and the script reside in the same directory.
Otherwise, the Perl interpreter will not be able to find the sample.pm file, and
the path to this file has to be given in the script header. For instance,

use lib "stuff/moo";
use sample;

The module file itself has to end with a true value, which indicates the
successful loading of the module in the script for further use. The usual
convention is to put the following last line in the module:

1;

Now, when using several modules in a Perl script, the variable and sub-
routine names declared in one module might clash with the names declared
in another module. Even in the same module, there might be two different
reverse_complement subroutines, one for DNA and the other one for RNA
nucleotides.

Name clashes can be avoided by keeping the name space of one subroutine
apart from the name space of the other subroutine, putting them in separate
packages within the module. For instance, declaring packages named DNA
and RNA for the two versions of the reverse_complement subroutine, the
sample.pm file would look as follows.

package DNA;

sub reverse_complement {
my $seq = shift;
$seq = reverse $seq;
$seq =~ tr/ACGT/TGCA/;
return $seq;

}

package RNA;

sub reverse_complement {
my $seq = shift;
$seq = reverse $seq;
$seq =~ tr/ACGU/UGCA/;

© 2009 by Taylor & Francis Group, LLC



Elements of Perl 297

return $seq;
}

1;

The two versions of the reverse_complement subroutine are readily avail-
able in any script using this module, although the subroutine name now has
to be prefixed by the package name:

use sample;

my $dna = "TTGATTACCTTATTTGATCATTACACATTGTACGCTTGTG ";
my $rc_dna = DNA:: reverse_complement($dna);

my $rna = "GGGUGCUCAGUACGAGAGGAACCGCACCC ";
my $rc_rna = RNA:: reverse_complement($rna);

A.3 Perl Quick Reference Card

Most of the basic functions available in Perl, including all the Perl built-in
functions used in this book, are summarized next, in a kind of inset quick
reference card. They are grouped into subroutines, packages, and modules;
arithmetic functions; conversion functions; string functions; list functions; ar-
ray functions; hash functions; search and replace functions; and input output
functions.

More detailed information on any of these built-in functions can be obtained
with the Unix or Linux command perldoc -f followed by the function name.

Subroutines, Packages, and Modules

bless REF , CLASSNAME

Turns the object referenced by REF into an object in the CLASSNAME
package.

package NAMESPACE

Declares the remainder of the current block as being in NAMESPACE.

ref EXPR

Returns a string valued "SCALAR", "ARRAY", "HASH" (among other values) if
EXPR is a reference, and the empty string otherwise. If the referenced object
has been blessed into a package, then that package name is returned instead.

© 2009 by Taylor & Francis Group, LLC



298 Combinatorial Pattern Matching Algorithms in Computational Biology

sub NAME BLOCK

Defines NAME as a subroutine with code BLOCK.

use MODULE VERSION LIST

Imports the LIST of subroutines and variables into the current package from
MODULE using Perl version VERSION or later.

Arithmetic Functions

abs EXPR

Returns the absolute value of EXPR.

atan2 Y, X

Returns the arc tangent of Y/X in the range −π to π.

cos EXPR

Returns the cosine of EXPR (expressed in radians).

exp EXPR

Returns e (the natural logarithm base) to the power of EXPR.

int EXPR

Returns the integer portion of EXPR.

log EXPR

Returns the natural logarithm (base e) of EXPR.

rand EXPR

Returns a random fractional number greater than or equal to 0 and less than
the value of EXPR. If EXPR is omitted, returns a value between 0 and 1.

sin EXPR

Returns the sine of EXPR (expressed in radians).

sqrt EXPR

Returns the square root of EXPR.

srand EXPR

Sets the random number seed for the rand function.

time

Returns the number of non-leap seconds since January 1, 1970. Suitable for
feeding to gmtime and localtime.

Conversion Functions

© 2009 by Taylor & Francis Group, LLC



Elements of Perl 299

chr EXPR

Returns the character represented by EXPR in the character set.

gmtime EXPR

Converts EXPR as returned by the time function to an eight-element list
(seconds, minutes, hours, day of the month, month, number of years since
1900, day of the week, day of the year) with the time localized for the standard
Greenwich time zone.

hex EXPR

Interprets EXPR as a hexadecimal string and returns the corresponding value.

localtime EXPR

Converts a time as returned by the time function to a nine-element list with
the time analyzed for the local time zone. See gmtime for the first eight
elements. The last element is true if the specified time occurs during daylight
savings time and false otherwise.

oct EXPR

Interprets EXPR as an octal string and returns the corresponding value.

ord EXPR

Returns the numeric value of the first character of EXPR.

vec EXPR , OFFSET , BITS

Treats the string in EXPR as a bit vector made up of elements of width BITS,
and returns the value of the element specified by OFFSET as an unsigned
integer.

String Functions

chomp LIST

Removes any line endings from each of the elements of LIST. Returns the
total number of characters removed.

chop LIST

Chops off the last character from each of the elements of LIST. Returns the
last character chopped.

index STR , SUBSTR , POSITION

Returns the position of the first occurrence of SUBSTR in STR at or after
POSITION.

lc EXPR

© 2009 by Taylor & Francis Group, LLC



300 Combinatorial Pattern Matching Algorithms in Computational Biology

Returns a lowercased version of EXPR.

lcfirst EXPR

Returns the value of EXPR with the first character lowercased.

length EXPR

Returns the length in characters of the value of EXPR.

q/STRING/

Returns STRING as a single-quoted, literal string.

qq/STRING/

Returns STRING as a double-quoted, interpolated string.

rindex STR , SUBSTR , POSITION

Returns the position of the last occurrence of SUBSTR in STR at or before
POSITION.

sprintf FORMAT , LIST

Returns the elements of LIST as a string formatted according to FORMAT.

substr EXPR , OFFSET , LENGTH , REPLACEMENT

Extracts a substring of LENGTH characters starting at position OFFSET
out of EXPR and returns it. Removes from EXPR the characters designated
by OFFSET and LENGTH, and replaces them with REPLACEMENT, if the
latter is supplied.

uc EXPR

Returns an uppercased version of EXPR.

ucfirst EXPR

Returns the value of EXPR with the first character uppercased.

List Functions

grep EXPR , LIST

Evaluates EXPR for each element of LIST and returns the list value consisting
of those elements for which EXPR evaluated to true. In scalar context, returns
the number of times EXPR was true.

join EXPR , LIST

Joins the separate strings of LIST into a single string with fields separated by
the value of EXPR, and returns the string.

map EXPR , LIST

© 2009 by Taylor & Francis Group, LLC



Elements of Perl 301

Evaluates EXPR for each element of LIST and returns the list value composed
of the results of each such evaluation. In scalar context, returns the total
number of elements generated.

qw/STRING/

Splits STRING into a list of strings using embedded white space as delimiter,
and returns that list.

reverse LIST

Returns a list value consisting of the elements of LIST in the opposite order.
In scalar context, concatenates the elements of LIST and returns a string
value with all characters in the opposite order.

sort LIST

Sorts LIST and returns the sorted list value.

Array Functions

delete $ARRAY[EXPR]

Deletes the elements specified by EXPR from ARRAY, and returns a list with
the deleted elements.

pop ARRAY

Pops the last value of ARRAY and returns it, shortening the array by one
element.

push ARRAY , LIST

Pushes the values of LIST onto the end of ARRAY, and returns the new
number of elements in the array.

shift ARRAY

Shifts off the first value of ARRAY and returns it, shortening the array by
one element.

splice ARRAY , OFFSET , LENGTH , LIST

Removes the elements designated by OFFSET and LENGTH from ARRAY,
and replaces them with the elements of LIST, if any.

unshift ARRAY , LIST

Inserts the elements of LIST to the front of ARRAY, and returns the new
number of elements in the array.

Hash Functions

defined $HASH{EXPR}

© 2009 by Taylor & Francis Group, LLC



302 Combinatorial Pattern Matching Algorithms in Computational Biology

Returns true if the element with key EXPR in HASH has a value other than
undef, and false otherwise.

delete $HASH{EXPR}

Deletes the elements with key specified by EXPR from HASH, and returns a
list with the deleted elements.

each HASH

Returns a two-element list consisting of the key and value for the next element
of HASH. After all values of the hash have been returned, an empty list is
returned.

exists $HASH{EXPR}

Returns true if the element with key EXPR in HASH has ever been initialized,
even if the corresponding value is undef, and returns false otherwise.

keys HASH

Returns a list consisting of all the keys of HASH. In scalar context, returns
the number of keys.

values HASH

Returns a list consisting of all the values of HASH. In scalar context, returns
the number of values.

Search and Replace Functions

m/PATTERN/

Searches a string for a match to PATTERN, and in scalar context returns
true if it succeeds and false otherwise.

pos SCALAR

Returns the offset of where the last m//g search left off for the variable in
question.

s/PATTERN/REPLACEMENT/

Searches a string for a match to PATTERN and if found, replaces it with
REPLACEMENT and returns the number of substitutions made. Otherwise,
it returns false.

split /PATTERN/, EXPR , LIMIT

Splits the string EXPR into a list of strings and returns that list. Anything
matching PATTERN is taken to be a delimiter separating the fields. A posi-
tive LIMIT gives the maximum number of fields the EXPR will be split into.

study SCALAR

© 2009 by Taylor & Francis Group, LLC



Elements of Perl 303

Takes extra time to study SCALAR in anticipation of doing many pattern
matches on the string before it is next modified.

tr/LIST/REPLACEMENT/

Transliterates all occurrences of the characters found in LIST with the corre-
sponding character in REPLACEMENT, and returns the number of charac-
ters replaced or deleted.

Input Output Functions

close FILEHANDLE

Closes the file or pipe associated with the file handle.

die LIST

Prints the value of LIST to STDERR and exits with the current value of $!
(error number).

eof FILEHANDLE

Returns true if the next read on FILEHANDLE will return end of file, or if
FILEHANDLE is not open.

getc FILEHANDLE

Returns the next character from the input file attached to FILEHANDLE, or
undef at end of file.

print FILEHANDLE LIST

Prints LIST to the output channel attached to FILEHANDLE, and returns
true if successful.

printf FILEHANDLE FORMAT , LIST

Equivalent to print FILEHANDLE sprintf FORMAT, LIST.

read FILEHANDLE , SCALAR , LENGTH , OFFSET

Reads LENGTH characters of data into variable SCALAR at OFFSET from
the specified FILEHANDLE, and returns the number of characters actually
read.

select FILEHANDLE

Returns the currently selected file handle. Sets the current default file handle
for output if FILEHANDLE is supplied.

warn LIST

© 2009 by Taylor & Francis Group, LLC



304 Combinatorial Pattern Matching Algorithms in Computational Biology

Prints the value of LIST to STDERR just like die but does not exit.

Bibliographic Notes

Perl was developed by Larry Wall (http://www.wall.org/~larry/) around
1987 as a general-purpose Unix scripting language and has since been quite
influential in computational biology (Stein 1996).

General books on Perl include (Christiansen and Torkington 2003; Cozens
2005; Foy 2007; Schwartz et al. 2006; 2008; Wall et al. 2000), among many oth-
ers. More specialized books on Perl for computational biology include (Birney
et al. 2009; Dwyer 2003; Jamison 2003; LeBlanc and Dyer 2007; Tisdall 2001;
2003). See also (Tregar 2002).

Beside these sources, there is a comprehensive Perl manual available with
any Perl distribution, including detailed descriptions and examples of al-
most every aspect of the Perl language. The manual is split into as many
as 135 Unix or Linux man pages, which can be read with man perl and
perldoc perl on the Unix or Linux command line.

Alternative Perl implementations for some of the algorithms presented in
this book can be found as part of the BioPerl project (Stajich et al. 2002;
Birney et al. 2009).

© 2009 by Taylor & Francis Group, LLC

http://www.wall.org


Appendix B

Elements of R

A brief introduction to R is given in this appendix by way of sample scripts
that solve a simple computational biology problem using different methods.
These scripts are then dissected in order to explain basic aspects of the R
language, followed by an overview of more advanced aspects of the language,
not covered in the sample scripts. This is all summarized for convenience in
an R quick reference card.

B.1 R Scripts

R is an interpreted scripting language. An R program is a script containing
a series of instructions, which are interpreted when the program is run instead
of being compiled first into machine instructions and then assembled or linked
into an executable program, thus avoiding the need for separate compilation
and linking. The R language is actually integrated in a software environment
for statistical computing and graphics.

There are R distributions available for almost every computing platform,
and free distributions can be downloaded from http://www.r-project.org/.
The actual mechanism of running a script using an R interpreter depends on
the particular operating system, the common denominator being the Unix or
Linux command line. Assuming one of the R scripts shown further below
was already written using a text editor and stored in a file named sample.R
(where R is the standard file extension for R scripts), the following command
invokes the R interpreter on the sample script:

$ R --vanilla < sample.R

The following command, on the other hand, invokes the R interpreter on
the sample script from within the R software environment:

> source (" sample.R")

When launching the R software environment, a new window with the name
“R Console” will open and a welcome message like the following one will
show in the console window. When invoking the R interpreter from a console
window, the same welcome message will show:

305
© 2009 by Taylor & Francis Group, LLC

http://www.r-project.org


306 Combinatorial Pattern Matching Algorithms in Computational Biology

R version 2.7.1 (2008-06-23)
Copyright (C) 2008 The R Foundation for Statistical Computing
ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type ’license()’ or ’licence()’ for distribution details.

R is a collaborative project with many contributors.
Type ’contributors()’ for more information and
’citation()’ on how to cite R or R packages in publications.

Type ’demo()’ for some demos, ’help()’ for on-line help, or
’help.start()’ for an HTML browser interface to help.
Type ’q()’ to quit R.

>

The simple computational biology problem at hand consists of translating
to protein a messenger RNA sequence stored (in 5′ to 3′ direction) in a text
file. See Appendix A for a detailed discussion of this problem.

Let us assume first the input messenger RNA sequence is already stored
in a variable rna and, thus, readily available for translation to protein. The
translation method will consist of skipping any nucleotides before the first
start codon and then translating the rest of the sequence to protein using
the standard genetic code, until the first stop codon. As an example, trans-
lating sequence GUCGCCAUGAUGGUGGUUAUUAUACCGUCAAGGACUGUGUGACUA to pro-
tein involves skipping GUCGCC and then translating AUGAUGGUGGUUAUUAUACCG
UCAAGGACUGUGUGA to MVVIIPSRTV.

First Script

In an R script, the messenger RNA sequence stored in the variable rna can
be translated to a protein sequence, stored in a variable protein, and output
to the console window, as shown in the following script.

rna <- "GCCAAUGACUAAGGCCUAAAGA"
protein <- rna.to.protein(rna)
cat(rna ,"translates to",protein)

Well, this is not quite the situation. The R interpreter cannot run this
short script because the rna.to.protein function has not been defined yet.
Nevertheless, let us dissect this script in order to discuss some basic elements
of R programming.

The R script contains instructions to translate the rna sequence and out-
put the resulting protein sequence. The first line makes the character string

© 2009 by Taylor & Francis Group, LLC



Elements of R 307

"GCCAAUGACUAAGGCCUAAAGA" the value stored in the memory location refer-
enced by the variable rna. In other words, it assigns the character string to
the variable, and a variable can be assigned different values at the same or
different places in an R script. Notice that variables need not be declared
beforehand in R. Unlike variables, the character string is a constant whose
value cannot change unless the R script is changed.

Variables are thus named references to memory locations, and there are
scalar, vector, matrix, array, data frame, and list variables in R. Scalar vari-
ables hold scalar values such as integer, real, and complex numbers, or logical
(Boolean) values. Vector, matrix, array, data frame, and list variables, on the
other hand, hold lists of values. Vector variables hold one-dimensional vec-
tors, matrix variables hold two-dimensional matrices, and array variables hold
multi-dimensional matrices. Data frame variables hold matrices in which the
columns may contain values of different classes, and list variables hold vectors
of values not necessarily belonging to the same class. Character strings are
not scalar values in R, and they are represented as character vectors.

Almost any name can be used as a variable name, as long as it consists of
uppercase or lowercase letters, digits, or dots and begins with a letter, with a
few exceptions. Some variable names have a special meaning, such as TRUE,
FALSE, NULL, Inf, NaN, and NA, which cannot be used to declare new variables.
Beside these conditions, variable names are case sensitive and thus rna, Rna,
and RNA all reference different memory locations when used in the same R
script.

A value is assigned to a variable in an assignment instruction or statement
that resembles an equation, with the variable name to the left and the value
to the right of the left arrow sign.

In the second line of the R script, the rna.to.protein function is invoked
upon the value of the variable rna, and the resulting value is assigned to
the variable protein. Before discussing functions, let us see how the protein
sequence stored in the variable protein finds its way to the console window.

A cat statement outputs the concatenated values of one or more constants
or variables to the console window, also known as standard output in Unix
and Linux. The value returned by a function call can also be output in this
way. In a cat statement, the values to be output are separated by commas,
as in

cat(rna ,"translates to",protein)

or

cat(rna ,"translates to",rna.to.protein(rna))

which both output the value of the variable rna, followed by the string
constant " translates to ", followed by either the value of the variable
protein or the result of the function call rna.to.protein(rna) on the con-
sole window.

© 2009 by Taylor & Francis Group, LLC



308 Combinatorial Pattern Matching Algorithms in Computational Biology

A print statement, on the other hand, outputs the value of a single constant
or variable, which does not need to be a scalar, to the console window.

String constants must be enclosed in either double or single quotes in R,
but unlike Perl, a string enclosed in double quotes is not subject to variable
interpolation.

Invoking the R interpreter on the sample script will result in the following
output,

GUCGCCAUGAUGGUGGUUAUUAUACCGUCAAGGACUGUGUGACUA trans
lates to MVVIIPSRTV

where this long output line might be broken at a different position depending
on the actual console window size.

Let us come back to discussing functions now. As in any programming
language, there are various functions readily available in R, which take one or
more arguments as input and give a single result as output. Examples include
numeric functions such as abs (absolute value), exp (raise to a power), trunc
(integer part of a real number), log (natural logarithm), and sqrt (square
root), and string functions such as tolower (convert to lowercase), toupper
(uppercase), and nchar (number of characters), among many others.

Functions are named pieces of code that perform a specific task and are
evaluated when called upon particular argument values. Functions need not
return a value, although they often do, and the rna.to.protein function will
take a string (a messenger RNA sequence) as input and return a string (a
protein sequence) as output.

A function begins with the function name followed by a left arrow, function,
any arguments enclosed in parentheses, and the function code enclosed in
braces, such as in

rna.to.protein <- function (rna) {
...

}

In this function, the input messenger RNA sequence, stored in a string
variable rna, will be translated to protein and stored in a string variable
protein by first skipping any nucleotides before the first start codon and
then translating the rest of the sequence to protein using the standard genetic
code, until the first stop codon. The translation of each codon to amino acid
will be done in turn in a codon.to.amino.acid function, to be defined later.
The code of the function at hand is as follows.

rna.to.protein <- function (rna) {
protein <- ""
i <- 1
while (i < nchar(rna)-1 &&

substr(rna ,i,i+2) != "AUG") { # start codon

i <- i+1

© 2009 by Taylor & Francis Group, LLC



Elements of R 309

}
i <- i+3 # skip the start codon

while (i < nchar(rna)-1 &&
substr(rna ,i,i+2) != "UAA" &&
substr(rna ,i,i+2) != "UAG" &&
substr(rna ,i,i+2) != "UGA") {

codon <- substr(rna ,i,i+2)
protein <- paste(protein ,

codon.to.amino.acid(codon),sep="")
i <- i+3

}
return(protein)

}

Values such as the actual sequence stored in the string variable rna can be
passed to a function as arguments, by listing them right after the function
name.

Recall that vector variables hold lists of values. For instance, a vector
variable named stop can have the three stop codons assigned as a list of
values by means of the c (combine) function that puts the arguments in a
vector,

stop <- c("UAA", "UAG", "UGA")

or it can be created first and then have each of the three stop codons stored
at a different position in the vector, starting with position 1,

stop <- vector(mode="character",length =3)
stop [1] <- "UAA"
stop [2] <- "UAG"
stop [3] <- "UGA"

or have each of the three stop codons pushed into the vector,

stop <- vector(mode="character")
stop <- c(stop ,"UAA","UAG","UGA")

or have each of the stop codons pushed in reverse order into the vector,

stop <- vector(mode="character")
stop <- c("UGA",stop)
stop <- c("UAG",stop)
stop <- c("UAA",stop)

This illustrates another aspect of the R software environment. The R in-
terpreter can be invoked on a script by means of the source command, but
commands can also be typed at the R prompt. In both cases, the result of
the computation is output on the console window. The [ ] preceding each
output line indicates the position in the list of the first value in the line and
is useful when the output is a long list of values:

© 2009 by Taylor & Francis Group, LLC



310 Combinatorial Pattern Matching Algorithms in Computational Biology

[1] "AAA" "AAC" "AAG" "AAT"
[5] "ACA" "ACC" "ACG" "ACT"
[9] "AGA" "AGC" "AGG" "AGT"

[13] "ATA" "ATC" "ATG" "ATT"
[17] "CAA" "CAC" "CAG" "CAT"
[21] "CCA" "CCC" "CCG" "CCT"
[25] "CGA" "CGC" "CGG" "CGT"
[29] "CTA" "CTC" "CTG" "CTT"
[33] "GAA" "GAC" "GAG" "GAT"
[37] "GCA" "GCC" "GCG" "GCT"
[41] "GGA" "GGC" "GGG" "GGT"
[45] "GTA" "GTC" "GTG" "GTT"
[49] "TAA" "TAC" "TAG" "TAT"
[53] "TCA" "TCC" "TCG" "TCT"
[57] "TGA" "TGC" "TGG" "TGT"
[61] "TTA" "TTC" "TTG" "TTT"

While the value of the vector variable is the whole list, individual elements
can be accessed by position, as in the previous assignment instructions, by set
of positions, or by range of positions; for instance, to access the second and
third values in the vector,

> stop[c(2,3)]
[1] "UAG" "UGA"

the second through third values in the vector,

> stop [2:3]
[1] "UAG" "UGA"

or all but the first value in the vector,

> stop[-1]
[1] "UAG" "UGA"

Now, with the string value passed as an argument and stored in the rna
variable, the previous function translates it to protein and returns the string
value of the protein variable. The first step consists of skipping any nu-
cleotides before the first start codon, and the scalar variable i will hold the
initial position in the rna string of the first start codon, which is position 7
after skipping six nucleotides in the following sample sequence:

GUCGCCAUGAUGGUGGUUAUUAUACCGUCAAGGACUGUGUGACUA
.UCGCCAUGAUGGUGGUUAUUAUACCGUCAAGGACUGUGUGACUA
.. CGCCAUGAUGGUGGUUAUUAUACCGUCAAGGACUGUGUGACUA
... GCCAUGAUGGUGGUUAUUAUACCGUCAAGGACUGUGUGACUA
.... CCAUGAUGGUGGUUAUUAUACCGUCAAGGACUGUGUGACUA
..... CAUGAUGGUGGUUAUUAUACCGUCAAGGACUGUGUGACUA
...... AUGAUGGUGGUUAUUAUACCGUCAAGGACUGUGUGACUA
123456789...

© 2009 by Taylor & Francis Group, LLC



Elements of R 311

The position i of the first start codon in the rna string can be found by
starting with i <- 1 and increasing the value of i as many times as needed,
until the codon substr(rna,i,i+2) in the string rna that begins at posi-
tion i and ends at position i+2 is a start codon. This is achieved by con-
tinuing to increase i by one, by means of the assignment i <- i+1, while
substr(rna,i,i+2) is not a start codon, that is, until substr(rna,i,i+2)
is a start codon:

i <- 1
while (substr(rna ,i,i+2) != "AUG") { # start codon

i <- i+1
}

Comments can be placed starting with a hash symbol either at the end of
a line or on one or more separate lines, to make the code easier to under-
stand. The substring function substr returns a substring of a given string
starting at a given position and ending at another given position, and, thus,
substr(rna,i,i+2) is the substring of rna of length 3 starting at position i
and ending at position i+2, that is, the codon starting at position i of string
rna.

Scalar values can be compared by means of various operators, and the result
is always a Boolean value. The equality test == returns true if the values are
equal and false otherwise. Testing for the opposite, not equal, is done with
!= and returns true if the values are different and false if they are equal.

Testing if two values are greater than, or greater than or equal to, each
other is done with > and >=, respectively. Similarly, testing if two values
are less than, or less than or equal to, each other is done with < and <=,
respectively. The comparison is done in lexicographical order when the values
are not scalar.

Beware of the finite representation of real numbers and the possibility for
rounding error when comparing numeric values. R provides the all.equal
function for testing near equality, which returns true if the values are nearly
equal and a report of the differences otherwise. Testing exact equality, on the
other hand, can be done with the identical function, which returns true if
the values are equal and false otherwise, where isTRUE(x) is an abbreviation
of identical(TRUE,x).

> pi1 <- (81+(19^2)/22)^(1/4)
> pi2 <- 63*(17+15*sqrt (5))/(25*(7+15*sqrt (5)))
> options(digits =18)
> pi1
[1] 3.141592652582646
> pi2
[1] 3.141592653805688
> pi1 == pi2
[1] FALSE

© 2009 by Taylor & Francis Group, LLC



312 Combinatorial Pattern Matching Algorithms in Computational Biology

> identical(TRUE ,all.equal(pi1 ,pi2))
[1] TRUE
> all.equal (223/71,22/7)
[1] "Mean relative difference: 0.000640614990390815"

There are several ways of looping across a block of R code. In a for loop, a
block of code is executed once upon each of the values in a given list, without
a need for the explicit position of the values in the list. For instance, by
looping over the list stored in the stop vector, the block of code is executed
once for each of the three codon values:

> for (codon in stop) print(codon)
[1] "UAA"
[1] "UAG"
[1] "UGA"

The list of values in a for loop can also be a list of position numbers, which
are then used to access the values in the list:

> for (i in 1: length(stop)) print(stop[i])
[1] "UAA"
[1] "UAG"
[1] "UGA"

In a while loop, a block of code is executed while a specific condition is met:
if the expression controlling the loop evaluates to true, the block of code is
executed once and then it continues to execute in a loop until the expression
evaluates to false, but if the expression initially evaluates to false, the block
of code is not executed at all. For instance, by setting a variable to the initial
value i <- 1 before the loop and then executing the block of code as long as
the test expression i <= length(stop) evaluates to true, where the variable
is increased with i <- i+1 within the block of code, the block of code is also
executed a number of times equal to the length of the stop vector:

i <- 1
while (i <= length(stop)) {

print(stop[i])
i <- i+1

}

Finally, in a repeat loop, a block of code is executed until an explicit break
instruction is encountered within the block. For instance, by setting a variable
to the initial value i <- 1 before the loop and then executing the block of code
until the test expression i > length(stop) evaluates to true, in which case a
break instruction is executed, where the variable is increased with i <- i+1
within the block of code, the block of code is also executed a number of times
equal to the length of the stop vector:

i <- 1

© 2009 by Taylor & Francis Group, LLC



Elements of R 313

repeat {
print(stop[i])
i <- i+1
if (i > length(stop)) break

}

Considering again the rna.to.protein function, the previous while loop
for skipping any nucleotides before the first start codon was correct only if
the rna string contained at least one start codon. Otherwise, the loop would
eventually fall off beyond the end of the string, and substr(rna,i,i+2) would
then return an empty string while the loop continued forever. In order to skip
nucleotides within the rna string only, an additional condition is needed in
the expression controlling the loop: the position i must be less than or equal
to nchar(rna)-2, the starting position of the last codon in the string. This
condition is equivalent to i < nchar(rna)-1, thus leading to the following
code:

i <- 1
while (i < nchar(rna)-1 &&

substr(rna ,i,i+2) != "AUG") { # start codon

i <- i+1
}

In the expression controlling this while loop, two expressions are combined
by means of the Boolean && (and) binary operator, which returns true if the
two expressions evaluate to true and returns false otherwise, that is, if at least
one of the expressions evaluates to false. Further, the Boolean || (or) binary
operator returns true if at least one of the expressions evaluates to true and
returns false otherwise, that is, if the two expressions evaluate to false, and
the Boolean ! (not) unary operator returns true if the expression evaluates to
false and returns false otherwise, that is, if the expression evaluates to true.

The order of the expressions matters here, because they are always evalu-
ated from the left to the right. Therefore, if the test for a start codon is put
before the test for the end of the string,

i <- 1
while (substr(rna ,i,i+2) != "AUG" &&

i < nchar(rna) -1) { # start of last codon

i <- i+1
}

the execution will not continue forever, but in the case the rna string does
not contain any start codon, the loop will indeed fall off the end of the string,
and substr(rna,i,i+2) will then return only two nucleotides, instead of a
codon of three nucleotides:

....................................... UGACUA

........................................ GACUA

© 2009 by Taylor & Francis Group, LLC



314 Combinatorial Pattern Matching Algorithms in Computational Biology

......................................... ACUA

.......................................... CUA

........................................... UA

Once the nucleotides before the first start codon have been skipped, the
start codon itself has to be skipped as well,

i <- i+3 # skip the start codon

The second step consists of translating to protein the rest of the string, until
the first stop codon. In the second while loop of the function, each codon is
translated to amino acid, the amino acid is added to the end of the protein,
the codon is skipped, and the loop is repeated as long as there are still enough
nucleotides in the string and the codon is not any of the stop codons.

while (i < nchar(rna)-1 &&
substr(rna ,i,i+2) != "UAA" &&
substr(rna ,i,i+2) != "UAG" &&
substr(rna ,i,i+2) != "UGA") {

codon <- substr(rna ,i,i+2)
protein <- paste(protein ,

codon.to.amino.acid(codon),sep="")
i <- i+3

}

The paste function returns the string concatenation of two or more charac-
ter vectors, here protein and codon.to.amino.acid(codon), separated by
the empty string. During the execution of this second while loop, the protein
string grows from an initial empty string to the 10 amino acids MVVIIPSRTV
coded by the 30 nucleotides AUGGUGGUUAUUAUACCGUCAAGGACUGUG, as the 10
codons are translated to protein and added one after the other to the end of
the string:

.. AUGAUGGUGGUUAUUAUACCGUCAAGGACUGUGUGA ..

..... AUGGUGGUUAUUAUACCGUCAAGGACUGUGUGA .. M

........ GUGGUUAUUAUACCGUCAAGGACUGUGUGA .. MV

........... GUUAUUAUACCGUCAAGGACUGUGUGA .. MVV

.............. AUUAUACCGUCAAGGACUGUGUGA .. MVVI

................. AUACCGUCAAGGACUGUGUGA .. MVVII

.................... CCGUCAAGGACUGUGUGA .. MVVIIP

....................... UCAAGGACUGUGUGA .. MVVIIPS

.......................... AGGACUGUGUGA .. MVVIIPSR

............................. ACUGUGUGA .. MVVIIPSRT

................................ GUGUGA .. MVVIIPSRTV

The final value of the protein variable is the string (character vector)
returned by the function:

rna.to.protein <- function (rna) {

© 2009 by Taylor & Francis Group, LLC



Elements of R 315

...
return(protein)

}

In the absence of an explicit return instruction, the function would return
the value of the last expression that was evaluated, which in this case is the
empty string, when substr(rna,i,i+2) is equal to one of the stop codons.

Now, a codon can be translated to protein by looking it up in the genetic
code table, and the 64 entries of the genetic code table can be encoded in a
series of 64 tests within the codon.to.amino.acid function. Reading the cir-
cular genetic code table in clockwise order, for instance, leads to the following
function code:

codon.to.amino.acid <- function (codon) {
if (codon == "UUU") return("F") # Phe

else if (codon == "UUC") return("F") # Phe

else if (codon == "UUA") return("L") # Leu

else if (codon == "UUG") return("L") # Leu

else if (codon == "UCU") return("S") # Ser

else if (codon == "UCC") return("S") # Ser

else if (codon == "UCA") return("S") # Ser

else if (codon == "UCG") return("S") # Ser

else if (codon == "UAU") return("Y") # Tyr

else if (codon == "UAC") return("Y") # Tyr

else if (codon == "UAA") return("-") # stop

else if (codon == "UAG") return("-") # stop

else if (codon == "UGU") return("C") # Cys

else if (codon == "UGC") return("C") # Cys

else if (codon == "UGA") return("-") # stop

else if (codon == "UGG") return("W") # Trp

else if (codon == "CUU") return("L") # Leu

else if (codon == "CUC") return("L") # Leu

else if (codon == "CUA") return("L") # Leu

else if (codon == "CUG") return("L") # Leu

else if (codon == "CCU") return("P") # Pro

else if (codon == "CCC") return("P") # Pro

else if (codon == "CCA") return("P") # Pro

else if (codon == "CCG") return("P") # Pro

else if (codon == "CAU") return("H") # His

else if (codon == "CAC") return("H") # His

else if (codon == "CAA") return("Q") # Gln

else if (codon == "CAG") return("Q") # Gln

else if (codon == "CGU") return("R") # Arg

else if (codon == "CGC") return("R") # Arg

else if (codon == "CGA") return("R") # Arg

else if (codon == "CGG") return("R") # Arg

© 2009 by Taylor & Francis Group, LLC



316 Combinatorial Pattern Matching Algorithms in Computational Biology

else if (codon == "AUU") return("I") # Ile

else if (codon == "AUC") return("I") # Ile

else if (codon == "AUA") return("I") # Ile

else if (codon == "AUG") return("M") # Met

else if (codon == "ACU") return("T") # Thr

else if (codon == "ACC") return("T") # Thr

else if (codon == "ACA") return("T") # Thr

else if (codon == "ACG") return("T") # Thr

else if (codon == "AAU") return("N") # Asn

else if (codon == "AAC") return("N") # Asn

else if (codon == "AAA") return("K") # Lys

else if (codon == "AAG") return("K") # Lys

else if (codon == "AGU") return("S") # Ser

else if (codon == "AGC") return("S") # Ser

else if (codon == "AGA") return("R") # Arg

else if (codon == "AGG") return("R") # Arg

else if (codon == "GUU") return("V") # Val

else if (codon == "GUC") return("V") # Val

else if (codon == "GUA") return("V") # Val

else if (codon == "GUG") return("V") # Val

else if (codon == "GCU") return("A") # Ala

else if (codon == "GCC") return("A") # Ala

else if (codon == "GCA") return("A") # Ala

else if (codon == "GCG") return("A") # Ala

else if (codon == "GAU") return("D") # Asp

else if (codon == "GAC") return("D") # Asp

else if (codon == "GAA") return("E") # Glu

else if (codon == "GAG") return("E") # Glu

else if (codon == "GGU") return("G") # Gly

else if (codon == "GGC") return("G") # Gly

else if (codon == "GGA") return("G") # Gly

else if (codon == "GGG") return("G") # Gly

else return("*")
}

This long instruction is called a conditional and allows for the conditional
execution of a block of code, depending on whether or not a given expression
evaluates to true. In the simplest form of the conditional, a block of code is
executed if an expression evaluates to true:

if (codon == "AUG") {
cat("stop codon")

}

Another common form of the conditional provides for the alternative execu-
tion of two blocks of code, depending on the outcome of the evaluation of a

© 2009 by Taylor & Francis Group, LLC



Elements of R 317

given expression. A block of code is executed if an expression evaluates to
true. Otherwise, if the expression evaluates to false, another block of code is
executed:

if (codon == "AUG") {
cat("stop codon")

} else {
i <- i + 3

}

The whole R script, stored in the sample.R file, will look as follows.

rna <- "GCCAAUGACUAAGGCCUAAAGA"
protein <- rna.to.protein(rna)
cat(rna ,"translates to",protein)

rna.to.protein <- function (rna) {
...

}

codon.to.amino.acid <- function (codon) {
...

}

Second Script

The previous R script would be more flexible if the rna string could be input
from the console, instead of being hardwired in the script, since this would
allow for using exactly the same script over and over again, to translate to
protein any given messenger RNA sequence.

An R script can be invoked upon particular argument values, much like a
function, and these argument values can be read from the console, also known
as standard input in Unix and Linux, by means of the scan function:

rna <- scan(file=stdin (),what="character",n=1)
protein <- rna.to.protein(rna)
cat(rna ,"translates to",protein)

Here, stdin (standard input) is an example of a file handle, and stdin()
can be replaced by "" for brevity. File handles will be further discussed in the
third script. The string (character vector) argument is read from the standard
input in a separate line, right after the command line. For instance,

> source (" sample.R")
1: GUCGCCAUGAUGGUGGUUAUUAUACCGUCAAGGACUGUGUGACUA
Read 1 item
GUCGCCAUGAUGGUGGUUAUUAUACCGUCAAGGACUGUGUGACUA trans
lates to MVVIIPSRTV

© 2009 by Taylor & Francis Group, LLC



318 Combinatorial Pattern Matching Algorithms in Computational Biology

Reading the argument from the standard input in a separate line has the
advantage that the R script can then be invoked upon as many input strings
as desired, with each input string in a separate line, by just reading the input
string inside a loop.

After reading and translating to protein all the input strings, the end of the
input is signaled by just entering an empty line.

repeat {
rna <- scan(file="",what="character",n=1)
if (length(rna) == 0) break
protein <- rna.to.protein(rna)
cat(rna ,"translates to",protein)

}

Beside all this, using a long conditional is not the only solution to the
messenger RNA to protein translation problem in the codon.to.amino.acid
function. In fact, the circular genetic code table can also be encoded as a list
of codons and corresponding amino acids, using a vector variable:

codon2aa <- c(
"UUU" = "F", # Phe

"UUC" = "F", # Phe

"UUA" = "L", # Leu

"UUG" = "L", # Leu

"UCU" = "S", # Ser

"UCC" = "S", # Ser

"UCA" = "S", # Ser

"UCG" = "S", # Ser

"UAU" = "Y", # Tyr

"UAC" = "Y", # Tyr

"UAA" = "-", # stop

"UAG" = "-", # stop

"UGU" = "C", # Cys

"UGC" = "C", # Cys

"UGA" = "-", # stop

"UGG" = "W", # Trp

"CUU" = "L", # Leu

"CUC" = "L", # Leu

"CUA" = "L", # Leu

"CUG" = "L", # Leu

"CCU" = "P", # Pro

"CCC" = "P", # Pro

"CCA" = "P", # Pro

"CCG" = "P", # Pro

"CAU" = "H", # His

"CAC" = "H", # His

© 2009 by Taylor & Francis Group, LLC



Elements of R 319

"CAA" = "Q", # Gln

"CAG" = "Q", # Gln

"CGU" = "R", # Arg

"CGC" = "R", # Arg

"CGA" = "R", # Arg

"CGG" = "R", # Arg

"AUU" = "I", # Ile

"AUC" = "I", # Ile

"AUA" = "I", # Ile

"AUG" = "M", # Met

"ACU" = "T", # Thr

"ACC" = "T", # Thr

"ACA" = "T", # Thr

"ACG" = "T", # Thr

"AAU" = "N", # Asn

"AAC" = "N", # Asn

"AAA" = "K", # Lys

"AAG" = "K", # Lys

"AGU" = "S", # Ser

"AGC" = "S", # Ser

"AGA" = "R", # Arg

"AGG" = "R", # Arg

"GUU" = "V", # Val

"GUC" = "V", # Val

"GUA" = "V", # Val

"GUG" = "V", # Val

"GCU" = "A", # Ala

"GCC" = "A", # Ala

"GCA" = "A", # Ala

"GCG" = "A", # Ala

"GAU" = "D", # Asp

"GAC" = "D", # Asp

"GAA" = "E", # Glu

"GAG" = "E", # Glu

"GGU" = "G", # Gly

"GGC" = "G", # Gly

"GGA" = "G", # Gly

"GGG" = "G" # Gly

)

Vector variables hold lists of values, which are accessed by position. How-
ever, the values in a vector can be accessed by a scalar key instead of a position
in the vector. For instance, a vector variable can be created and have the start
codon and the three stop codons assigned as a list of keys and values,

codon = c(

© 2009 by Taylor & Francis Group, LLC



320 Combinatorial Pattern Matching Algorithms in Computational Biology

"AUG" = "start",
"UAA" = "stop",
"UAG" = "stop",
"UGA" = "stop"

)

or it can be created first and then have each of the four codons stored in the
vector,

codon <- vector(mode="character")
codon["AUG"] <- "start"
codon["UAA"] <- "stop"
codon["UAG"] <- "stop"
codon["UGA"] <- "stop"

While the value of the vector variable is the whole list of keys and values,
individual elements can be accessed by key, as in the previous assignment
instructions, or by means of a for loop,

for (key in names(codon)) {
cat(c(key ,codon[key],"\n"))

}

where the values appear in no particular order, or with the values sorted by
the vector key,

for (key in sort(names(codon))) {
cat(c(key ,codon[key],"\n"))

}

Within the rna.to.protein function, the encoding of the genetic code
table is then replaced by the vector of codons and corresponding amino acids,

if (is.na(codon2aa[codon])) {
aa <- "*"

} else {
aa <- codon2aa[codon]

}

where the is.na function returns false if there is a value for the codon key in
the codon2aa vector and true otherwise, when either there is no value for the
key in the vector or the value is NA (not available), a special scalar constant
that denotes missing values in R.

The second R script, also stored in the sample.R file, will then look as
follows.

repeat {
rna <- scan(file="",what="character",n=1)
if (length(rna) == 0) break
protein <- rna.to.protein(rna)

© 2009 by Taylor & Francis Group, LLC



Elements of R 321

cat(rna ,"translates to",protein)
}

codon2aa <- c(
...

)

rna.to.protein <- function (rna) {
protein <- ""
i <- 1
while (i < nchar(rna)-1 &&

substr(rna ,i,i+2) != "AUG") { # start codon

i <- i+1
}
i <- i+3 # skip the start codon

while (i < nchar(rna)-1 &&
substr(rna ,i,i+2) != "UAA" &&
substr(rna ,i,i+2) != "UAG" &&
substr(rna ,i,i+2) != "UGA") {

codon <- substr(rna ,i,i+2)
if (is.na(codon2aa[codon])) {

aa <- "*"
} else {

aa <- codon2aa[codon]
}
protein <- paste(protein ,aa ,sep="")
i <- i+3

}
return(protein)

}

Third Script

The messenger RNA sequences to be translated to protein could be stored
in a text file and then input to the R script straight from the file, instead
of being input one after the other from the console. In fact, the previous R
script can be easily modified to read the input strings from a text file, with
the file name passed as an argument:

rna.file <- commandArgs(trailingOnly=TRUE)[1]

RNA <- scan(file=rna.file ,what="character")
for (rna in RNA) {

protein <- rna.to.protein(rna)
cat(rna ,"translates to",protein ,"\n")

© 2009 by Taylor & Francis Group, LLC



322 Combinatorial Pattern Matching Algorithms in Computational Biology

}

The following command would then invoke the R interpreter on the sample
script with the name of the text file containing all the input strings as the
first argument:

$ R --slave --vanilla --args "sample.rna" < sample.R

The scan instruction is used to read data into a vector or list from the
console or from a file, while read.table can be used to read data matrices.

All input and output takes place in R using a connection, which is just a
variable that has been associated with a particular file by means of a file
instruction, becomes valid when initiated by an open instruction, and remains
valid until finished by a close instruction. The default connections, which
need not be opened or closed, are stdin (standard input) for input from the
console, stdout (standard output) for output to the console window, and
stderr (standard error) for output of error and warning messages, also to the
console window.

A file can be opened for either reading, writing, or appending data. In the
open and file instructions, the file name is followed by "r" for reading, "w"
for writing, and "a" for appending. Opening for writing an already existing
file results in the loss of any previous contents of the file, while opening a file
for appending results in the addition of new contents to the end of the file.

Once a file has been associated with a connection and opened for reading,
the scan instruction can be used to read data from the file by adding the
connection before the values to be read. On the other hand, once a file has
been opened for writing or appending, the cat instruction can be used to
write to the file by adding the connection after the values to be written:

OUT <- file("sample.out")
open(OUT ,open="w")
for (key in sort(names(codon2aa))) {

cat(c(key ,codon2aa[key],"\n"),file=OUT)
}
close(OUT)

The connection can also be opened by the file instruction:

OUT <- file("sample.out",open="w")

The third Perl script, stored again in the sample.R file, will then look as
follows.

rna.to.protein <- function (rna) {
...

}

codon2aa <- c(
...

© 2009 by Taylor & Francis Group, LLC



Elements of R 323

)

rna.file <- commandArgs(trailingOnly=TRUE)[1]

RNA <- scan(file=rna.file ,what="character")
for (rna in RNA) {

protein <- rna.to.protein(rna)
cat(rna ,"translates to",protein ,"\n")

}

B.2 Overview of R

After the brief introduction by way of sample scripts in the previous section,
let us focus now on a few more advanced aspects of the language which were
not covered in these sample scripts.

Conditional Selection

Vector variables hold lists of values, and these values can be accessed by
position. For instance, codon AGC is stored in position 46 of the codon2aa
vector, and it can be extracted using the square bracket operator,

> codon2aa [46]
AGC
"S"

Vector values can also be accessed by a scalar key, using again the square
bracket operator. A list of one or more keys and values can be extracted using
single square brackets,

> codon2aa["AGC"]
AGC
"S"

and a single value can be extracted using double square brackets,

> codon2aa [["AGC"]]
[1] "S"

A list of keys and values can also be extracted by position, enclosing a list
of positions inside square brackets. For instance, UCU, UCC, UCA, UCG,
AGU, AGC all code for Ser (S), and these codons are stored in positions 5, 6,
7, 8, 45, 46 of the codon2aa vector,

© 2009 by Taylor & Francis Group, LLC



324 Combinatorial Pattern Matching Algorithms in Computational Biology

> codon2aa[c(5:8 ,45 ,46)]
UCU UCC UCA UCG AGU AGC
"S" "S" "S" "S" "S" "S"

The square bracket operator also allows for the conditional selection of
values in a vector, matrix, array, or list of values, by enclosing a Boolean
expression inside single square brackets; for instance,

> codon2aa[codon2aa == "S"]
UCU UCC UCA UCG AGU AGC
"S" "S" "S" "S" "S" "S"

These six values are the only ones throughout the codon2aa vector for which
the codon2aa == "S" expression evaluates to true:

> codon2aa == "S"
UUU UUC UUA UUG UCU UCC UCA UCG

FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
UAU UAC UAA UAG UGU UGC UGA UGG

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
CUU CUC CUA CUG CCU CCC CCA CCG

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
CAU CAC CAA CAG CGU CGC CGA CGG

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
AUU AUC AUA AUG ACU ACC ACA ACG

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
AAU AAC AAA AAG AGU AGC AGA AGG

FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
GUU GUC GUA GUG GCU GCC GCA GCG

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
GAU GAC GAA GAG GGU GGC GGA GGG

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Computing with Vectors, Matrices, and Arrays

Most of the operations on scalar values can also be applied to vectors,
matrices, and arrays, as long as they are of the same length. This is a powerful
feature of R indeed, which may avoid the need for looping through a list of
values. For instance, the mean of a list of values stored in a vector, x̄ =∑

xi/n, can be computed as their sum divided by the number of values,
using basic arithmetical operations on the whole vector:

> x <- c(0:100)
> sum(x)
[1] 5050
> length(x)
[1] 101

© 2009 by Taylor & Francis Group, LLC



Elements of R 325

> sum(x)/length(x)
[1] 50

The standard deviation of a list of values, σ =
√∑

(xi − x̄)2/(n− 1), can
also be computed using basic arithmetical operations on the whole vector:

> x.mean <- sum(x)/length(x)
> sqrt(sum((x-x.mean)^2)/(length(x) -1))
[1] 29.30017

Being that R is a software environment for statistical computing, these basic
statistical functions are already available as mean and sd (standard deviation):

> mean(x)
[1] 50
> sd(x)
[1] 29.30017

The genetic code table can also be represented as a three-dimensional array,
with one dimension for each of the three nucleotides in a codon. The amino
acids are listed with the 64 codons sorted in reverse order, from the third
nucleotide back to the first nucleotide: AAA, CAA, GAA, UAA, ACA, CCA,
GCA, UCA, . . . , AUU, CUU, GUU, UUU.

> t <- c("K","Q","E","-","T","P","A","S","R","R","G",
"-","I","L","V","L","N","H","D","Y","T","P","A","S",
"S","R","G","C","I","L","V","F","K","Q","E","-","T",
"P","A","S","R","R","G","W","M","L","V","L","N","H",
"D","Y","T","P","A","S","S","R","G","C","I","L","V",
"F")

> acgu <- c("A","C","G","U")
> acgu <- list(acgu ,acgu ,acgu)
> c2aa <- array(t,dim=c(4,4,4),dimnames=acgu)

Array values, like vector and matrix values, can be accessed by position and
also by a scalar key, using the square bracket notation:

> c2aa[1,3,2]
[1] "S"
> c2aa["A","G","C"]
[1] "S"

An empty position indicates the selection of all entries in the corresponding
dimension; for instance, the amino acids coded by the four codons that start
with the two nucleotides AG,

> c2aa["A","G" ,]
A C G U

"R" "S" "R" "S"

or the 16 codons that start with the nucleotide A,

© 2009 by Taylor & Francis Group, LLC



326 Combinatorial Pattern Matching Algorithms in Computational Biology

> c2aa["A" ,,]
A C G U

A "K" "N" "K" "N"
C "T" "T" "T" "T"
G "R" "S" "R" "S"
U "I" "I" "M" "I"

A matrix is just a two-dimensional array, and the bracket notation can
still be used for selecting individual values or whole rows or columns from a
matrix. For instance, the 16 codons that start with the nucleotide A in the
c2aa array can also be seen as a matrix with four rows and four columns, one
for each nucleotide.

> mat <- c2aa["A" ,,]
> mat["G","C"]
[1] "S"
> mat["G" ,]

A C G U
"R" "S" "R" "S"

In the previous matrix, AGU and AGC both code for Ser (S). Their posi-
tions in the matrix can be revealed by means of the which function, which
returns the array indices for which a given expression evaluates to true:

> which(mat == "S",arr.ind=TRUE)
row col

G 3 2
G 3 4
> mat[3,2]
[1] "S"
> mat[3,4]
[1] "S"

Most of the operations on scalar values can also be applied to matrices,
as long as they are of the same length, with one important exception to the
latter rule. Comparison operators can be applied to two matrices, but also to
a scalar value and a matrix, and the result is, in both cases, a matrix.

> mat == "S"
A C G U

A FALSE FALSE FALSE FALSE
C FALSE FALSE FALSE FALSE
G FALSE TRUE FALSE TRUE
U FALSE FALSE FALSE FALSE

© 2009 by Taylor & Francis Group, LLC



Elements of R 327

Missing Values

Vector, matrix, array, data frame, and list variables hold lists of values,
including the special scalar constant NA (not available) that denotes missing
values in R. This special value is often carried through, because most opera-
tions on NA yield also NA as a result.

> m <- matrix(c(1,2,NA),nrow=3,ncol=4,byrow=TRUE)
> 3*m

[,1] [,2] [,3] [,4]
[1,] 3 6 NA 3
[2,] 6 NA 3 6
[3,] NA 3 6 NA

Notice that the three values 1, 2, NA are recycled by the matrix function
in this example in order to fill in the 12 entries of the matrix.

Default Argument Values

Default values for arguments to a function can be included in the function
definition by just giving the default value after each argument, separated by
an equal sign; for instance,

sort <- function (x, decreasing = FALSE) { ... }

Using Packages

Functions written for one script can be made available to other scripts by
placing them in a package, a text file with the usual extension containing
R code. For instance, any functions written in a text file named sample.R
are readily available in any script using this package, that is, in any script
containing the following header line:

library(sample)

A package in R is not only a text file containing R code, but a whole direc-
tory containing code and documentation files, including at least a DESCRIPTION
file and a directory with at least one R code file; for instance,

sample/DESCRIPTION
sample/R/sample.R

The DESCRIPTION file contains basic information about the package, includ-
ing at least the Package, Version, Title, Author, Maintainer, Description,
and License information; for instance,

Package: sample
Version: 1.0
Title: Sample package

© 2009 by Taylor & Francis Group, LLC



328 Combinatorial Pattern Matching Algorithms in Computational Biology

Author: Wilma Flintstone <wilma@hanna -barbera.com >
Maintainer: Betty Rubble <betty@hanna -barbera.com >
Description: Sample R package.
License: GPL version 3 or newer

The package can then be installed by the R CMD INSTALL command:

R CMD INSTALL sample

Now, when using several modules in an R script, the variable and func-
tion names declared in one module might clash with the names declared in
another module. Even in the same module, there might be two different
reverse_complement functions, one for DNA and the other one for RNA
nucleotides.

Such a name clash can be avoided by defining a generic function for re-
verse complementing a sequence, together with a reverse.complement.dna
function for DNA and a reverse.complement.rna function for RNA. The
sample.R file in the sample directory would then look as follows.

reverse.complement <- function (seq)
UseMethod (" reverse.complement ")

reverse.complement.dna <- function (seq) {
rev <- paste(rev(unlist(strsplit(seq ,split =""))),

sep="", collapse ="")
chartr ("ACGT","TGCA",rev)

}

reverse.complement.rna <- function (seq) {
rev <- paste(rev(unlist(strsplit(seq ,split =""))),

sep="", collapse ="")
chartr ("ACGU","UGCA",rev)

}

The two versions of the reverse.complement function are readily available
in any script using this module, and it suffices to make the sequence of class
DNA or RNA,

> dna <- "TTGATTACCTTATTTGATCATTACACATTGTACGCTTGTG"
> class(dna) <- "dna"
> rna <- "GGGUGCUCAGUACGAGAGGAACCGCACCC"
> class(rna) <- "rna"

before calling the general reverse complement function,

> reverse.complement(dna)
[1] "CACAAGCGTACAATGTGTAATGATCAAATAAGGTAATCAA"
> reverse.complement(rna)
[1] "GGGUGCGGUUCCUCUCGUACUGAGCACCC"

© 2009 by Taylor & Francis Group, LLC



Elements of R 329

B.3 R Quick Reference Card

Most of the basic functions available in R, including all the R built-in func-
tions used in this book, are summarized next, in a kind of inset quick reference
card. They are grouped into arithmetic functions; conversion functions; string
functions; list functions; matrix functions; selection functions; search and re-
place functions; and input output functions.

More detailed information on any of these built-in functions can be obtained
with the function name as an argument of the help function in R. Beside this,
a list of the available R functions for statistical computing can be obtained
with the command library(help="stats"), and a list of the functions for
graphics in R can be obtained with the command library(help="graphics").

Arithmetic Functions

abs(X)

Returns the absolute value of X.

acos(X)

Returns the arc cosine of X.

acosh(X)

Returns the hyperbolic cosine of X.

approx(X,Y)

Returns a list of points that linearly interpolate the values in X and Y.

asin(X)

Returns the arc sine of X.

asinh(X)

Returns the hyperbolic sine of X.

atan(X)

Returns the arc tangent of X.

atanh(X)

Returns the hyperbolic tangent of X.

atan2(Y,X)

Returns the arc tangent of Y/X.

© 2009 by Taylor & Francis Group, LLC



330 Combinatorial Pattern Matching Algorithms in Computational Biology

ceiling(X)

Returns the smallest integer not less than X.

choose(X,Y)

Returns the binomial coefficient of X and Y.

cor(X,Y)

Returns the correlation of the values in X and Y.

cos(X)

Returns the cosine of X radians.

cov(X,Y)

Returns the covariance of the values in X and Y.

cumprod(X)

Returns the cumulative products of the values in X.

cumsum(X)

Returns the cumulative sums of the values in X.

exp(X)

Returns e (the natural logarithm base) to the power of X.

factorial(X)

Returns the factorial of X.

floor(X)

Returns the largest integer not greater than X.

log(X,Y)

Returns the base Y logarithm of X. The default value for Y is e (the natural
logarithm base).

mean(X)

Returns the arithmetic mean of the values in X.

median(X)

Returns the median of the values in X.

prod(X)

Returns the product of the values in X.

quantile(X)

Returns sample quantiles corresponding to the values in X.

© 2009 by Taylor & Francis Group, LLC



Elements of R 331

range(X)

Returns the minimum and the maximum of the values in X.

rank(X)

Returns the rank of the values in X, that is, their positions in X sorted.

round(X,Y)

Returns X rounded to Y decimal places. The default value for Y is 0.

sd(X)

Returns the standard deviation of the values in X.

signif(X,Y)

Returns X rounded to Y significant digits. The default value for Y is 6.

sin(X)

Returns the sine of X radians.

sqrt(X)

Returns the square root of X.

sum(X)

Returns the sum of the values in X.

tan(X)

Returns the tangent of X radians.

trunc(X)

Returns the integer portion of X.

var(X)

Returns the variance of the values in X.

Conversion Functions

array(X,Y)

Returns an array with the values in X, where Y gives the largest index in each
dimension.

as.array(X)

Interprets the values in X as numbers and returns an array with the corre-
sponding numeric values.

© 2009 by Taylor & Francis Group, LLC



332 Combinatorial Pattern Matching Algorithms in Computational Biology

as.character(X)

Interprets the values in X as characters and returns the corresponding char-
acter values.

as.list(X)

Returns a list of the values in X.

as.logical(X)

Interprets the values in X as logical and returns the corresponding Boolean
values.

as.matrix(X)

Interprets the values in X as numbers and returns a matrix with the corre-
sponding numeric values.

as.numeric(X)

Interprets the values in X as numbers and returns the corresponding numeric
values.

as.vector(X)

Interprets the values in X as numbers and returns a vector with the corre-
sponding numeric values.

list(X)

Returns a list of the values of X, any of which could also be a list.

matrix(X,Y,Z)

Returns a matrix of Y rows and Z columns with the values in X.

vector(X,Y)

Returns a vector of Y elements of type X initialized to the default value of X.

String Functions

nchar

Returns the number of characters of (the representation of) the values in X.

paste(X,sep=Y)

Interprets the values in X as character vectors and returns the corresponding
values, concatenated and separated by Y.

substr(X,Y,Z)

Extracts a substring from position Y to position Z out of X and returns it.

© 2009 by Taylor & Francis Group, LLC



Elements of R 333

strsplit(X,Y)

Splits X into substrings according to the presence of Y.

tolower(X)

Returns a lowercased version of the values in X.

toupper(X)

Returns an uppercased version of the values in X.

List Functions

X:Y

Generates a consecutive sequence from X to Y and returns the list value.
Same as seq(X,Y).

c(X)

Combines the values in X and returns the list value.

length(X)

Returns the number of values in X.

max(X)

Returns the maximum of the values in X.

min(X)

Returns the minimum of the values in X.

order(X)

Returns a permutation that rearranges X in sorted order.

rep(X,Y)

Replicates Y times the values in X and returns the resulting list value.

rev(X)

Returns a list value consisting of the elements of X in the opposite order.

sapply(X,Y)

Evaluates Y for each value in X and returns the list value composed of the
results of each such evaluation.

seq(X,Y)

Generates a consecutive sequence from X to Y and returns the list value.
Same as X:Y.

© 2009 by Taylor & Francis Group, LLC



334 Combinatorial Pattern Matching Algorithms in Computational Biology

sort(X)

Sorts X and returns the sorted list value.

unlist(X)

Simplifies the list structure of the values in X and returns the resulting list
value.

unique(X)

Removes duplicate elements from X and returns the list value.

which.max(X)

Returns the first position of the maximum of the values in X.

which.min(X)

Returns the first position of the minimum of the values in X.

Matrix Functions

apply(X,Y,Z)

Returns a vector, array, or list of values obtained by applying function Z to
the rows (if Y=1), the columns (if Y=2), or both the rows and the columns
(if Y=c(1,2)) of array X.

cbind(X)

Combines the vectors, matrices, or data frames in X by columns.

chol(X)

Returns the Choleski factorization of matrix X.

crossprod(X,Y)

Returns the cross-product of matrices X and Y.

dim(X)

Returns the dimension of array, data frame, or matrix X.

dimnames(X)

Returns the dimension names of array, data frame, or matrix X.

eigen(X)

Returns the eigenvalues and eigenvectors of matrix X.

ncol(X)

Returns the number of columns of matrix X.

© 2009 by Taylor & Francis Group, LLC



Elements of R 335

nrow(X)

Returns the number of rows of matrix X.

rbind(X)

Combines the vectors, matrices, or data frames in X by rows.

solve(A,B)

Solves the system of equations AX = B.

svd(X)

Returns the singular value decomposition of matrix X.

t(X)

Returns the transpose of matrix X.

Selection Functions

X[Y]

Extracts from X the elements indexed by Y.

X[[Y]]

Extracts from X a single element indexed by Y.

attr(X,Y)

Returns the attribute Y of X.

X$Y

Returns the first element of X named Y.

subset(X,Y)

Returns the elements of X that meet Boolean condition Y. Same as X[Y].

which(X)

Returns a vector of the indices for which the Boolean condition X is true.

Search and Replace Functions

grep(X,Y)

Searches for matches to X within Y.

gsub(X,Y,Z)

Searches for all occurrences of X within Z, and replaces them by Y.

© 2009 by Taylor & Francis Group, LLC



336 Combinatorial Pattern Matching Algorithms in Computational Biology

match(X,Y)

Returns a vector of the positions of the first matches of the values in X as a
prefix of the values of Y.

pmatch(X,Y)

Returns a vector of the positions of the unique partial matches of the values
in X as a prefix of the values of Y.

sub(X,Y,Z)

Searches for the first occurrence of X within Z, and replaces it by Y.

Input Output Functions

cat(X,file=Y,sep=Z)

Prints the values in X to the connection or file Y, concatenated and separated
by Z.

format(X)

Returns the values in X formatted for pretty printing.

print(X)

Prints the values in X to the standard output.

scan(file=X,what=Y,sep=Z)

Reads data of type Y separated by Z from the connection or file X.

sink(file=X)

Sends any further output to the connection or file X.

source(X)

Evaluates input from file X.

unlink(X)

Deletes the directories and files in X.

write(X,file=Y)

Writes the values in X to the connection or file Y.

Bibliographic Notes

The S language (Becker et al. 1988; Chambers 1998; Venables and Ripley
2000) was originally developed by John M. Chambers at Bell Labs, and he was

© 2009 by Taylor & Francis Group, LLC



Elements of R 337

honored the 1998 ACM Software System Award for “the S system, which has
forever altered how people analyze, visualize, and manipulate data.” There is
more information about S available at http://cm.bell-labs.com/stat/S/.
R is an open source implementation of S, the rationale for their names being
perhaps that R is one step ahead of S.

General books on R include (Chambers 2008; Maindonald and Braun 2008;
Murrell 2005; Spector 2008). More specialized books on R for computational
biology include (Deonier et al. 2005; Gentleman et al. 2005; Gentleman 2008;
Hahne et al. 2008; Paradis 2006). See also (Siegmund and Yakir 2007).

Beside these sources, a comprehensive R manual is available with any R
distribution, including detailed descriptions and examples of almost every
aspect of the R language. The documentation can be browsed in HTML
format by invoking the command help.start() from within the R software
environment.

Alternative R implementations for some of the algorithms presented in this
book can be found in the seqinr (Sequences in R) package (Charif and Lobry
2007), in the APE (Analysis of Phylogenetics and Evolution) package (Paradis
2006), and in the Biostrings package of the Bioconductor project (Gentle-
man et al. 2005; Hahne et al. 2008). The latter includes the DNASuffixArray
and LongestCommonPrefix functions as part of an efficient implementation
of suffix arrays for DNA sequences.

© 2009 by Taylor & Francis Group, LLC

http://cm.bell-labs.com


References

M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. The enhanced suffix array and its applications

to genome analysis. In Proc. 2nd International Workshop on Algorithms in Bioinformatics,

volume 2452 of Lecture Notes in Bioinformatics, pages 449–463. Springer, 2002.

M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with enhanced suffix arrays.

Journal of Discrete Algorithms, 2(1):53–86, 2004.

R. Ahlswede, B. Balkenhol, C. Deppe, and M. Fröhlich. A fast suffix-sorting algorithm. In

General Theory of Information Transfer and Combinatorics, volume 4123 of Lecture Notes

in Computer Science, pages 719–734. Springer, 2006.

B. L. Allen and M. A. Steel. Subtree transfer operations and their induced metrics on evolutionary

trees. Annals of Combinatorics, 5(1):1–13, 2001.

U. Alon. An Introduction to Systems Biology: Design Principles of Biological Circuits. Chap-

man & Hall/CRC, 2006.

S. F. Altschul. Amino acid substitution matrices from an information theoretic perspective.

Journal of Molecular Biology, 219(3):555–565, 1991.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment search

tool. Journal of Molecular Biology, 215(3):403–410, 1990.

A. Amir and D. Keselman. Maximum agreement subtree in a set of evolutionary trees: Metrics

and efficient algorithms. SIAM Journal on Computing, 26(6):1656–1669, 1997.

A. Amir and G. M. Landau, editors. Proc. 12th Annual Symp. Combinatorial Pattern Matching,

volume 2089 of Lecture Notes in Computer Science. Springer, 2001.

A. Apostolico and Z. Galil, editors. Combinatorial Algorithms on Words, volume 12 of NATO

Advanced Science Institutes Series F, Computer and Systems Sciences. Springer, 1985.

A. Apostolico and R. Giancarlo. Sequence alignment in molecular biology. Journal of Compu-

tational Biology, 5(2):173–196, 1998.

A. Apostolico and C. Guerra. The longest common subsequence problem revisited. Algorithmica,

2(1–4):316–336, 1987.

A. Apostolico and J. Hein, editors. Proc. 8th Annual Symp. Combinatorial Pattern Matching,

volume 1264 of Lecture Notes in Computer Science. Springer, 1997.

A. Apostolico and M. Takeda, editors. Proc. 13th Annual Symp. Combinatorial Pattern Match-

ing, volume 2373 of Lecture Notes in Computer Science. Springer, 2002.

A. Apostolico, M. Crochemore, Z. Galil, and U. Manber, editors. Proc. 3rd Annual Symp. Com-

binatorial Pattern Matching, volume 644 of Lecture Notes in Computer Science. Springer,

1992.

A. Apostolico, M. Crochemore, Z. Galil, and U. Manber, editors. Proc. 4th Annual Symp. Com-

binatorial Pattern Matching, volume 684 of Lecture Notes in Computer Science. Springer,

1993.

A. Apostolico, M. Crochemore, and K. Park, editors. Proc. 16th Annual Symp. Combinatorial

Pattern Matching, volume 3537 of Lecture Notes in Computer Science. Springer, 2005.

339
© 2009 by Taylor & Francis Group, LLC



340 References

M. Arenas, G. Valiente, and D. Posada. Characterization of phylogenetic reticulate networks

based on the coalescent with recombination. Molecular Biology and Evolution, 25(12):2517–

2520, 2008.

R. A. Baeza-Yates, E. Chávez, and M. Crochemore, editors. Proc. 14th Annual Symp. Combi-

natorial Pattern Matching, volume 2676 of Lecture Notes in Computer Science. Springer,

2003.

H.-J. Bandelt and A. Dress. Reconstructing the shape of a tree from observed dissimilarity data.

Advances in Applied Mathematics, 7(3):309–343, 1986.

M. Baroni, C. Semple, and M. Steel. Hybrids in real time. Systematic Biology, 55(1):46–56,

2006.

R. A. Becker, J. M. Chambers, and A. R. Wilks. The New S Language: A Programming

Environment for Data Analysis and Graphics. Wadsworth & Brooks/Cole, 1988.

M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Proc. 4th Latin American

Symp. Theoretical Informatics, volume 1776 of Lecture Notes in Computer Science, pages

88–94. Springer, 2000.

M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P. Sumazin. Lowest common

ancestors in trees and directed acyclic graphs. Journal of Algorithms, 57(2):75–94, 2005.

D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L. Wheeler. GenBank. Nucleic

Acids Research, 36(D):25–30, 2008.

E. Birney, S. Markel, and J. E. Stajich. Using BioPerl. Cambridge University Press, 2009. In

press.

F. R. Blattner, G. Plunkett, C. A. Bloch, N. T. Perna, V. Burland, M. Riley, J. Collado-Vides,

J. D. Glasner, C. K. Rode, G. F. Mayhew, J. Gregor, N. W. Davis, H. A. Kirkpatrick, M. A.

Goeden, D. J. Rose, B. Mau, and Y. Shao. The complete genome sequence of Escherichia coli

K-12. Science, 277(5331):1453–1462, 1997.

J. Bluis and D.-G. Shin. Nodal distance algorithm: Calculating a phylogenetic tree comparison

metric. In Proc. 3rd IEEE Symp. BioInformatics and BioEngineering, pages 87–94. IEEE

Press, 2003.

G. S. Brodal, R. Fagerberg, and C. N. S. Pedersen. Computing the quartet distance between

evolutionary trees in time O(nlogn). Algorithmica, 38:377–395, 2003.

D. Bryant, J. Tsang, P. Kearney, and M. Li. Computing the quartet distance between evolutionary

trees. In Proc. 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 285–286.

ACM/SIAM, 2000.

H. Bunke and J. Csirik. Parametric string edit distance and its application to pattern recognition.

IEEE Transactions on Systems, Man and Cybernetics, 25(1):202–206, 1995.

F. Burkhardt and S. Smith, editors. The Correspondence of Charles Darwin, volume 2, 1837–

1843 of The Correspondence of Charles Darwin. Cambridge University Press, 1987.

G. Cardona, M. Llabrés, F. Rosselló, and G. Valiente. A distance metric for a class of tree-sibling

phylogenetic networks. Bioinformatics, 24(13):1481–1488, 2008a.

G. Cardona, F. Rosselló, and G. Valiente. A Perl package and an alignment tool for phylogenetic

networks. BMC Bioinformatics, 9:175, 2008b.

G. Cardona, F. Rosselló, and G. Valiente. Extended Newick: It is time for a standard represen-

tation of phylogenetic networks. BMC Bioinformatics, 9:532, 2008c.

G. Cardona, F. Rosselló, and G. Valiente. Tripartitions do not always discriminate phylogenetic

networks. Mathematical Biosciences, 211(2):356–370, 2008d.

G. Cardona, M. Llabrés, F. Rosselló, and G. Valiente. Metrics for phylogenetic networks I:

© 2009 by Taylor & Francis Group, LLC



References 341

Generalizations of the Robinson-Foulds metric. IEEE/ACM Transactions on Computational

Biology and Bioinformatics, 6(1):46–61, 2009a.

G. Cardona, M. Llabrés, F. Rosselló, and G. Valiente. Metrics for phylogenetic networks II:

Nodal and triplets metrics. IEEE/ACM Transactions on Computational Biology and Bioin-

formatics, 2009b. In press.

G. Cardona, F. Rosselló, and G. Valiente. Comparison of tree-child phylogenetic networks.

IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2009c. In press.

L. L. Cavalli-Sforza and A. W. F. Edwards. Phylogenetic analysis: Models and estimation pro-

cedures. American Journal of Human Genetics, 19(3):233–257, 1967.

A. Cayley. On the theory of the analytical forms called trees. Philosophical Magazine, 13:19–30,

1857.

A. Cayley. On the analytical forms called trees. American Journal of Mathematics, 4(1):266–268,

1881.

J. M. Chambers. Programming with Data: A Guide to the S Language. Springer, 1998.

J. M. Chambers. Software for Data Analysis: Programming with R. Springer, 2008.

D. Charif and J. R. Lobry. SeqinR 1.0-2: A contributed package to the R project for statistical

computing devoted to biological sequences retrieval and analysis. In U. Bastolla, M. Porto,

H. E. Roman, and M. Vendruscolo, editors, Structural Approaches to Sequence Evolution:

Molecules, Networks, Populations, Biological and Medical Physics, Biomedical Engineering,

pages 207–232. Springer, 2007.

C. Choy, J. Jansson, K. Sadakane, and W.-K. Sung. Computing the maximum agreement of

phylogenetic networks. Theoretical Computer Science, 335(1):93–107, 2005.

C. Christiansen, T. Mailund, C. N. S. Pedersen, M. Randers, and M. S. Stissing. Fast calculation

of the quartet distance between trees of arbitrary degrees. Algorithms for Molecular Biology,

1:16, 2006.

T. Christiansen and N. Torkington. Perl Cookbook. O’Reilly, 2nd edition, 2003.

J. Cohen. Bioinformatics: An introduction for computer scientists. ACM Computing Surveys,

36(2):122–158, 2004.

R. Cole, M. Farach-Colton, R. Hariharan, T. M. Przytycka, and M. Thorup. An O(n log n)

algorithm for the maximum agreement subtree problem for binary trees. SIAM Journal on

Computing, 30(5):1385–1404, 2000.

S. Cozens. Advanced Perl Programming. O’Reilly, 2nd edition, 2005.

D. E. Critchlow, D. K. Pearl, and C. Qian. The triples distance for rooted bifurcating phylogenetic

trees. Systematic Biology, 45(3):323–334, 1996.

M. Crochemore and D. Gusfield, editors. Proc. 5th Annual Symp. Combinatorial Pattern Match-

ing, volume 807 of Lecture Notes in Computer Science. Springer, 1994.

M. Crochemore and M. Paterson, editors. Proc. 10th Annual Symp. Combinatorial Pattern

Matching, volume 1645 of Lecture Notes in Computer Science. Springer, 1999.

M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.

M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific, 2003.

M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings. Cambridge University Press,

2007.

G. Csárdi and T. Nepusz. The igraph software package for complex network research. InterJour-

nal Complex Systems, 1695, 2006.

© 2009 by Taylor & Francis Group, LLC



342 References

B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp, and L. Zhang. On distances between phylogenetic

trees. In Proc. 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 427–436.

ACM/SIAM, 1997.

W. H. E. Day. Optimal algorithms for comparing trees with labeled leaves. J. Classification, 2

(1):7–28, 1985.

M. O. Dayhoff, R. Schwartz, and B. C. Orcutt. A model of evolutionary change in proteins. In

M. O. Dayhoff, editor, Atlas of Protein Sequence and Structure, volume 5, supplement 3,

pages 345–358. National Biomedical Research Foundation, Washington, DC, 1978.

R. C. Deonier, S. Tavaré, and M. S. Waterman. Computational Genome Analysis: An Intro-

duction. Springer, 2005.

Y. Deville, D. Gilbert, J. van Helden, and S. J. Wodak. An overview of data models for the

analysis of biochemical pathways. Briefings in Bioinformatics, 4(3):246–259, 2003.

M.-M. Deza and E. Deza. Dictionary of Distances. Elsevier Science, 2006.

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis: Probabilistic

Models of Proteins and Nucleic Acids. Cambridge University Press, 1998.

R. A. Dwyer. Genomic Perl: From Bioinformatics Basics to Working Code. Cambridge

University Press, 2003.

S. R. Eddy. Where did the BLOSUM62 alignment score matrix come from? Nature Biotechnol-

ogy, 22(8):1035–1036, 2004a.

S. R. Eddy. What is dynamic programming? Nature Biotechnology, 22(7):909–910, 2004b.

G. Estabrook, F. R. McMorris, and C. Meacham. Comparison of undirected phylogenetic trees

based on subtrees of four evolutionary units. Systematic Zoology, 34(2):193–200, 1985.

P. A. Evans. Finding common subsequences with arcs and pseudoknots. In Proc. 10th Annual

Symp. Combinatorial Pattern Matching, volume 1645 of Lecture Notes in Computer Science,

pages 270–280. Springer, 1999.

M. Farach. Optimal suffix tree construction with large alphabets. In Proc. 38th Annual Sympo-

sium on Foundations of Computer Science, pages 137–143. IEEE Computer Science Press,

1997.

M. Farach-Colton, editor. Proc. 9th Annual Symp. Combinatorial Pattern Matching, volume

1448 of Lecture Notes in Computer Science. Springer, 1998.

J. Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal

of Molecular Evolution, 17(6):368–376, 1981.

J. Felsenstein. Inferring Phylogenies. Sinauer Associates, 2004.

P. Ferragina and G. M. Landau, editors. Proc. 19th Annual Symp. Combinatorial Pattern

Matching, volume 5029 of Lecture Notes in Computer Science. Springer, 2008.

P. Ferragina, R. Giancarlo, V. Greco, G. Manzini, and G. Valiente. Compression-based classifica-

tion of biological sequences and structures via the Universal Similarity Metric: Experimental

assessment. BMC Bioinformatics, 8:252, 2007.

A. Firth, T. Bell, A. Mukherjee, and D. Adjeroh. A comparison of BWT approaches to string

pattern matching. Software Practice and Experience, 35(13):1217–1258, 2005.

B. D. Foy. Mastering Perl. O’Reilly, 2007.

Z. Galil and E. Ukkonen, editors. Proc. 6th Annual Symp. Combinatorial Pattern Matching,

volume 937 of Lecture Notes in Computer Science. Springer, 1995.

G. Gati. Further annotated bibliography on the isomorphism disease. Journal of Graph Theory,

3(2):95–109, 1979.

© 2009 by Taylor & Francis Group, LLC



References 343

R. Gentleman. R Programming for Bioinformatics, volume 12 of Chapman & Hall/CRC Com-

puter Science & Data Analysis. Chapman & Hall/CRC, 2008.

R. Gentleman, V. Carey, W. Huber, R. Irizarry, and S. Dudoit, editors. Bioinformatics and

Computational Biology Solutions Using R and Bioconductor. Springer, 2005.

R. Giancarlo and D. Sankoff, editors. Proc. 11th Annual Symp. Combinatorial Pattern Match-

ing, volume 1848 of Lecture Notes in Computer Science. Springer, 2000.

R. Giegerich. A systematic approach to dynamic programming in bioinformatics. Bioinformatics,

16(8):665–677, 2000.

R. Giegerich and S. Kurtz. From Ukkonen to McCreight and Weiner: A unifying view of linear-

time suffix tree construction. Algorithmica, 19(3):331–353, 1997.

W. Goddard, E. Kubicka, G. Kubicki, and F. R. McMorris. The agreement metric for labeled

binary trees. Mathematical Biosciences, 123(2):215–226, 1994.

G. H. Gonnet, R. A. Baeza-Yates, and T. Snider. New indices for text: PAT trees and PAT arrays.

In W. B. Frakes and R. A. Baeza-Yates, editors, Information Retrieval: Data Structures and

Algorithms, pages 66–82. Prentice-Hall, 1992.

O. Gotoh. An improved algorithm for matching biological sequences. Journal of Molecular

Biology, 162(3):705–708, 1982.

O. Gotoh. Multiple sequence alignment: Algorithms and applications. Advances in Biophysics,

36(1):159–206, 1999.

R. E. Green, A.-S. Malaspinas, J. Krause, A. W. Briggs, P. L. F. Johnson, C. Uhler, M. Meyer,

J. M. Good, T. Maricic, U. Stenzel, K. Prüfer, M. Siebauer, H. A. Burbano, M. Ronan,

J. M. Rothberg, M. Egholm, P. Rudan, D. Brajković, Željko Kućan, I. Gušić, M. Wikström,

L. Laakkonen, J. Kelso, M. Slatkin, and S. Pääbo. A complete Neandertal mitochondrial

genome sequence determined by high-throughput sequencing. Cell, 134(3):416–426, 2008.

R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with applications to text

indexing and string matching. SIAM Journal on Computing, 35(2):378–407, 2005.

D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-

tional Biology. Cambridge University Press, 1997.

D. Gusfield, K. Balasubramanian, and D. Naor. Parametric optimization of sequence alignment.

Algorithmica, 12(4/5):312–326, 1994.

D. Gusfield, S. Eddhu, and C. Langley. The fine structure of galls in phylogenetic networks.

INFORMS Journal on Computing, 16(4):459–469, 2004a.

D. Gusfield, S. Eddhu, and C. Langley. Optimal, efficient reconstruction of phylogenetic networks

with constrained recombination. Journal of Bioinformatics and Computational Biology, 2

(1):173–213, 2004b.

O. Haddrath and A. J. Baker. Complete mitochondrial DNA genome sequences of extinct birds:

Ratite phylogenetics and the vicariance biogeography hypothesis. Proc. Royal Society B:

Biological Sciences, 268(1470):939–945, 2001.

F. Hahne, W. Huber, R. Gentleman, and S. Falcon. Bioconductor Case Studies. Springer, 2008.

R. W. Hamming. Error detecting and error correcting codes. The Bell System Technical Journal,

26(2):147–160, 1950.

Y.-J. He, T. N. D. Huynh, J. Jansson, and W.-K. Sung. Inferring phylogenetic relationships

avoiding forbidden rooted triplets. Journal of Bioinformatics and Computational Biology, 4

(1):59–74, 2006.

J. Hein. Reconstructing the history of sequences subject to gene conversion and recombination.

Mathematical Biosciences, 98(2):185–200, 1990.

© 2009 by Taylor & Francis Group, LLC



344 References

J. Hein. A heuristic method to reconstruct the history of sequences subject to recombination.

Journal of Molecular Evolution, 36(4):396–405, 1993.

J. Hein, T. Jiang, L. Wang, and K. Zhang. On the complexity of comparing evolutionary trees.

Discrete Applied Mathematics, 71(1–3):153–169, 1996.

S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from protein blocks. Proc.

National Academy of Sciences USA, 89(22):10915–10919, 1992.

D. S. Hirschberg. A linear space algorithm for computing maximal common subsequences. Com-

munications of the ACM, 18(6):341–343, 1975.

D. S. Hirschberg. Algorithms for the longest common subsequence problem. Journal of the ACM,

24(4):664–675, 1977.

D. S. Hirschberg and E. W. Myers, editors. Proc. 7th Annual Symp. Combinatorial Pattern

Matching, volume 1075 of Lecture Notes in Computer Science. Springer, 1996.

W.-K. Hon, T. W. Lam, K. Sadakane, W.-K. Sung, and S.-M. Yiu. A space and time efficient

algorithm for constructing compressed suffix arrays. Algorithmica, 48(1):23–36, 2007.

D. C. Jamison. Perl Programming for Biologists. John Wiley & Sons, 2003.

J. Jansson and W.-K. Sung. Inferring a level-1 phylogenetic network from a dense set of rooted

triplets. Theoretical Computer Science, 363(1):60–68, 2006.

J. Jansson and W.-K. Sung. The maximum agreement of two nested phylogenetic networks. In

O. N. Terikhovsky and W. N. Burton, editors, New Topics in Theoretical Computer Science,

chapter 4, pages 119–141. Nova Science Publishers, Hauppauge, New York, 2008.

J. Jansson, N. B. Nguyen, and W.-K. Sung. Algorithms for combining rooted triplets into a

galled phylogenetic network. SIAM Journal on Computing, 35(5):1098–1121, 2006.

N. C. Jones and P. A. Pevzner. An Introduction to Bioinformatics Algorithms. MIT Press,

2004.

T. H. Jukes and C. R. Cantor. Evolution of protein molecules. In H. N. Munro, editor, Mam-

malian Protein Metabolism, volume 3, pages 21–123. Academic Press, New York, 1969.

J. Kärkkäinen, P. Sanders, and S. Burkhardt. Linear work suffix array construction. Journal of

the ACM, 53(6):918–936, 2006.

M. Kasahara and S. Morishita. Large-Scale Genome Sequence Processing. World Scientific,

2006.

T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-common-prefix

computation in suffix arrays and its applications. In Proc. 12th Annual Symp. Combinato-

rial Pattern Matching, volume 2089 of Lecture Notes in Computer Science, pages 181–192.

Springer, 2001.

D. K. Kim, J. S. Sim, H. Park, and K. Park. Constructing suffix arrays in linear time. Journal

of Discrete Algorithms, 3(2–4):126–142, 2005.

M. Kimura. A simple method for estimating evolutionary rates of base substitutions through

comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2):111–120,

1980.

H. Kitano. Computational systems biology. Nature, 420(6912):206–210, 2002a.

H. Kitano. Systems biology: A brief overview. Science, 295(5560):1662–1664, 2002b.

P. Ko and S. Aluru. Space efficient linear time construction of suffix arrays. Journal of Discrete

Algorithms, 3(2–4):143–156, 2005.

J. Koolman and K.-H. Roehm. Color Atlas of Biochemistry. Georg Thieme Verlag, 2nd edition,

2005.

© 2009 by Taylor & Francis Group, LLC



References 345

M. Kreitman. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila

melanogaster. Nature, 304(5925):412–417, 1983.

M. Křivánek. Computing the nearest neighbor interchange metric for unlabeled binary trees is

NP-complete. Journal of Classification, 3(1):55–60, 1986.

S.-Y. Le, R. Nussinov, and J. V. Maizel. Tree graphs of RNA secondary structures and their

comparisons. Computers and Biomedical Research, 22(5):461–473, 1989.

M. D. LeBlanc and B. D. Dyer. Perl for Exploring DNA. Oxford University Press, 2007.

C.-M. Lee, L.-J. Hung, M.-S. Chang, C.-B. Shen, and C.-Y. Tang. An improved algorithm for the

maximum agreement subtree problem. Information Processing Letters, 94(5):211–216, 2005.

C. Y. Lee. An algorithm for path connection and its applications. IRE Trans. Electronic

Computers, 10(3):346–365, 1961.

V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Doklady

Physics, 10(8):707–710, 1966.

M. Levitt and S. Lifson. Refinement of protein conformations using a macromolecular energy

minimization procedure. Journal of Molecular Biology, 46(2):269–279, 1969.

M. Lewenstein and G. Valiente, editors. Proc. 17th Annual Symp. Combinatorial Pattern

Matching, volume 4009 of Lecture Notes in Computer Science. Springer, 2006.

R. B. Lyngsø, Y. S. Song, and J. Hein. Minimum recombination histories by branch and bound. In

Proc. 5th International Workshop on Algorithms in Bioinformatics, volume 3692 of Lecture

Notes in Bioinformatics, pages 239–250. Springer, 2005.

B. Ma and K. Zhang, editors. Proc. 18th Annual Symp. Combinatorial Pattern Matching,

volume 4580 of Lecture Notes in Computer Science. Springer, 2007.

W. P. Maddison. Gene trees in species trees. Systematic Biology, 46(3):523–536, 1997.

T. Mailund, G. S. Brodal, R. Fagerberg, C. N. S. Pedersen, and D. Phillips. Recrafting the

neighbor-joining method. BMC Bioinformatics, 7:29, 2006.

J. Maindonald and J. Braun. Data Analysis and Graphics Using R: An Example-based Ap-

proach. Cambridge University Press, 2nd edition, 2008.

V. Mäkinen. Compact suffix array: A space-efficient full-text index. Fundamenta Infomaticae,

56(1–2):191–210, 2003.

U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches. SIAM Journal

on Computing, 22(5):935–948, 1993.

M. A. Maniscalco and S. J. Puglisi. An efficient, versatile approach to suffix sorting. Journal of

Experimental Algorithmics, 12(1):1.2, 2008.

G. Manzini. Two space saving tricks for linear time LCP array computation. In Proc. 9th

Scandinavian Workshop on Algorithm Theory, volume 3111 of Lecture Notes in Computer

Science, pages 372–383. Springer, 2004.

E. M. McCreight. A space-economical suffix tree construction algorithm. Journal of the ACM,

23(2):262–272, 1976.

E. F. Moore. The shortest path through a maze. In Proc. Int. Symp. Theory of Switching, pages

285–292. Harvard University Press, 1959.

G. W. Moore, M. Goodman, and J. Barnabas. An iterative approach from the standpoint of

the additive hypothesis to the dendogram problem posed by molecular data sets. Journal of

Theoretical Biology, 38(3):423–457, 1973.

B. M. E. Moret, L. Nakhleh, T. Warnow, C. R. Linder, A. Tholse, A. Padolina, J. Sun, and

R. Timme. Phylogenetic networks: Modeling, reconstructibility, and accuracy. IEEE/ACM

© 2009 by Taylor & Francis Group, LLC



346 References

Transactions on Computational Biology and Bioinformatics, 1(1):13–23, 2004.

M. M. Morin and B. M. E. Moret. NETGEN: Generating phylogenetic networks with diploid

hybrids. Bioinformatics, 22(15):1921–1923, 2006.

P. Murrell. R Graphics, volume 6 of Computer Science & Data Analysis. Chapman & Hall/CRC,

2005.

E. W. Myers and W. Miller. Optimal alignments in linear space. Computer Applications in the

Biosciences, 4(1):11–17, 1988.

G. Navarro. A guided tour to approximate string matching. ACM Computing Surveys, 33(1):

31–88, 2001.

G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings. Cambridge University Press,

2002.

S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similarities in

the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3):443–453, 1970.

D. L. Nelson and M. M. Cox. Lehninger Principles of Biochemistry. W. H. Freeman, 5th edition,

2008.

C. Notredame. Recent evolutions of multiple sequence alignment algorithms. PLOS Computa-

tional Biology, 3(8):1405–1408, 2007.

B. Ø. Palsson. Systems Biology: Properties of Reconstructed Networks. Cambridge University

Press, 2006.

G. Pandey, V. Kumar, and M. Steinbach. Computational Approaches for Protein Function Pre-

diction. Wiley Series on Bioinformatics: Computational Techniques and Engineering. Wiley,

2008.

E. Paradis. Analysis of Phylogenetics and Evolution with R. Springer, 2006.

J. R. Parrish, J. Yu, G. Liu, J. A. Hines, J. E. Chan, B. A. Mangiola, H. Zhang, S. Pacifico,

F. Fotouhi, V. J. DiRita, T. Ideker, P. Andrews, and R. L. Finley, Jr. A proteome-wide protein

interaction map for Campylobacter jejuni. Genome Biology, 8(7):R130.1–R130.19, 2007.

N. D. Pattengale, E. J. Gottlieb, and B. M. Moret. Efficiently computing the Robinson-Foulds

metric. Journal of Computational Biology, 14(6):724–735, 2007.

W. R. Pearson and D. J. Lipman. Improved tools for biological sequence comparison. Proc.

National Academy of Sciences USA, 85(8):2444–2448, 1988.

D. Penny and M. D. Hendy. The use of tree comparison metrics. Systematic Zoology, 34(1):

75–82, 1985.

P. A. Pevzner. Computational Molecular Biology: An Algorithmic Approach. MIT Press, 2000.

S. S. Rao. Time-space trade-offs for compressed suffix arrays. Information Processing Letters,

82(6):307–311, 2002.

R. C. Read and D. G. Corneil. The graph isomorphism disease. Journal of Graph Theory, 1(4):

339–363, 1977.

F. Restle. A metric and an ordering on sets. Psychometrika, 24(3):207–220, 1959.

D. F. Robinson and L. R. Foulds. Comparison of phylogenetic trees. Mathematical Biosciences,

53(1/2):131–147, 1981.

D. F. Robinson and L. R. Foulds. Comparison of labeled trees with valency three. Journal of

Combinatorial Theory, 11:105–119, 1971.

A. Rzhetsky and M. Nei. A simple method for estimating and testing minimum-evolution trees.

Molecular Biology and Evolution, 9(5):945–967, 1992.

© 2009 by Taylor & Francis Group, LLC



References 347

S. C. Sahinalp, S. Muthukrishnan, and U. Dogrusüz, editors. Proc. 15th Annual Symp. Com-

binatorial Pattern Matching, volume 3109 of Lecture Notes in Computer Science. Springer,

2004.

N. Saitou and M. Nei. The neighbor-joining method: A new method for reconstructing phyloge-

netic trees. Molecular Biology and Evolution, 4(4):406–425, 1987.

F. Sanger and M. Dowding, editors. Selected Papers of Frederick Sanger. World Scientific, 1996.

F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with chain-terminating inhibitors.

Proc. National Academy of Sciences USA, 74(12):5463–5467, 1977.

W. R. Schmitt and M. S. Waterman. Linear trees and RNA secondary structure. Discrete Applied

Mathematics, 51(3):317–323, 1994.

K.-B. Schürmann and J. Stoye. An incomplex algorithm for fast suffix array construction. Soft-

ware Practice and Experience, 37(3):309–329, 2007.

R. L. Schwartz, B. D. Foy, and T. Phoenix. Intermediate Perl. O’Reilly, 2006.

R. L. Schwartz, T. Phoenix, and B. D. Foy. Learning Perl. O’Reilly, 5th edition, 2008.

C. Semple and M. Steel. Unicyclic networks: Compatibility and enumeration. IEEE/ACM

Transactions on Computational Biology and Bioinformatics, 2(1):84–91, 2006.

B. A. Shapiro. An algorithm for comparing multiple RNA secondary structures. Computer

Applications in the Biosciences, 4(3):387–393, 1988.

B. A. Shapiro and K. Zhang. Comparing multiple RNA secondary structures using tree compar-

isons. Computer Applications in the Biosciences, 6(4):309–318, 1990.

F. Shi. Suffix arrays for multiple strings: A method for on-line multiple string searches. In

Proc. 2nd Asian Computing Science Conf. Concurrency and Parallelism, Programming,

Networking, and Security, volume 1179 of Lecture Notes in Computer Science, pages 11–22.

Springer, 1996.

P. W. Shor. A new proof of Cayley’s formula for counting labeled trees. Journal of Combinatorial

Theory Series A, 71(1):154–158, 1995.

D. Siegmund and B. Yakir. The Statistics of Gene Mapping. Springer, 2007.

N. J. A. Sloane and S. Plouffe. The Encyclopedia of Integer Sequences. Academic Press, 1995.

T. F. Smith and M. S. Waterman. How alike are two trees? American Mathematical Monthly,

87(7):552–553, 1980.

T. F. Smith and M. S. Waterman. Identification of common molecular subsequences. Journal of

Molecular Biology, 147(1):195–197, 1981.

B. Smyth. Computing Patterns in Strings. Addison-Wesley, 2003.

P. H. A. Sneath and R. R. Sokal, editors. Numerical Taxonomy: The Principles and Practice

of Numerical Classification. W. H. Freeman, 1973.

P. Spector. Data Manipulation with R. Springer, 2008.

J. E. Stajich, D. Block, K. Boulez, S. E. Brenner, S. A. Chervitz, C. Dagdigian, G. Fuellen, J. G.

Gilbert, I. Korf, H. Lapp, H. Lehvaslaiho, C. Matsalla, C. J. Mungall, B. I. Osborne, M. R.

Pocock, P. Schattner, M. Senger, L. D. Stein, E. Stupka, M. D. Wilkinson, and E. Birney.

The BioPerl toolkit: Perl modules for the life sciences. Genome Research, 12(10):1611–1618,

2002. URL http://www.bioperl.org.

M. A. Steel and D. Penny. Distributions of tree comparison metrics: Some new results. Systematic

Biology, 42(2):126–141, 1993.

M. A. Steel and T. Warnow. Kaikoura tree theorems: Computing the maximum agreement

© 2009 by Taylor & Francis Group, LLC

http://www.bioperl.org


348 References

subtree. Information Processing Letters, 48(2):77–82, 1993.

L. D. Stein. How Perl saved the Human Genome Project. The Perl Journal, 1(2), 1996.

G. A. Stephen. String Searching Algorithms. World Scientific, 1998.

K. Strimmer and V. Moulton. Likelihood analysis of phylogenetic networks using directed graph-

ical models. Molecular Biology and Evolution, 17(6):875–881, 2000.

K. Strimmer, C. Wiuf, and V. Moulton. Recombination analysis using directed graphical models.

Molecular Biology and Evolution, 18(1):97–99, 2001.

J. A. Studier and K. J. Keppler. A note on the neighbor-joining algorithm of Saitou and Nei.

Molecular Biology and Evolution, 5(6):729–731, 1988.

R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1

(2):146–160, 1972.

J. Tisdall. Beginning Perl for Bioinformatics. O’Reilly, 2001.

J. Tisdall. Mastering Perl for Bioinformatics. O’Reilly, 2003.

S. Tregar. Writing Perl Modules for CPAN. Apress, 2002.

E. Ukkonen. Constructing suffix trees on-line in linear time. In J. van Leeuwen, editor, Proc.

IFIP 12th World Computer Congress, pages 484–492. Elsevier, 1992.

G. Valiente. Algorithms on Trees and Graphs. Springer, 2002.

G. Valiente. A fast algorithmic technique for comparing large phylogenetic trees. In Proc. 12th

Int. Symp. String Processing and Information Retrieval, volume 3772 of Lecture Notes in

Computer Science, pages 371–376. Springer, 2005.

W. N. Venables and B. D. Ripley. S Programming. Springer, 2000.

S. Vinga and J. Almeida. Alignment-free sequence comparison: A review. Bioinformatics, 19

(4):513–523, 2003.

M. Vingron and M. S. Waterman. Sequence alignment and penalty choice: Review of concepts,

case studies and implications. Journal of Molecular Biology, 235(1):1–12, 1994.

R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal of the ACM,

21(1):168–173, 1974.

L. Wall, T. Christiansen, and J. Orwant. Programming Perl. O’Reilly, 3rd edition, 2000.

L. Wang, K. Zhang, and L. Zhang. Perfect phylogenetic networks with recombination. Journal

of Computational Biology, 8(1):69–78, 2001.

M. S. Waterman. Secondary structure of single-stranded nucleic acids. In G.-C. Rota, editor,

Studies in Foundations and Combinatorics, volume 1 of Advances in Mathematics: Supple-

mentary Studies, pages 167–212. Academic Press, 1978.

M. S. Waterman. Introduction to Computational Biology: Maps, Sequences and Genomes.

Chapman & Hall/CRC, 1995.

P. Weiner. Linear pattern matching algorithms. In Proc. 14th Annual IEEE Symposium on

Switching and Automata Theory, pages 1–11. IEEE Computer Science Press, 1973.

D. Weininger. SMILES, a chemical language and information system. 1. Introduction to method-

ology and encoding rules. Journal of Chemical Information and Computer Sciences, 28(1):

31–36, 1988.

W. T. Williams and H. T. Clifford. On the comparison of two classifications of the same set of

elements. Taxon, 20(4):519–522, 1971.

S. M. Woolley, D. Posada, and K. A. Crandall. A comparison of phylogenetic network methods

© 2009 by Taylor & Francis Group, LLC



References 349

using computer simulation. Plos ONE, 4(3):e1913, 2008.

K. A. Zaretskii. Constructing a tree on the basis of a set of distances between the hanging

vertices. Uspekhi Matematicheskikh Nauk, 20(6):90–92, 1965.

© 2009 by Taylor & Francis Group, LLC


	Cover Page

	Title Page

	Combinatorial Pattern Matching Algorithms in Computational Biology Using Perl and R
	Contents
	Foreword
	Preface
	Acknowledgments



	Chapter 1: Introduction

	Chapter 1: Introduction
	1.1 Combinatorial Pattern Matching
	1.2 Computational Biology
	1.3 A Motivating Example: Gene Prediction
	Bibliographic Notes


	Part I: Sequence Pattern Matching

	Part I: Sequence Pattern Matching
	Chapter 2: Sequences
	2.1 Sequences in Mathematics
	2.1.1 Counting Labeled Sequences

	2.2 Sequences in Computer Science
	2.2.1 Traversing Labeled Sequences

	2.3 Sequences in Computational Biology
	2.3.1 Reverse Complementing DNA Sequences
	2.3.2 Counting RNA Sequences
	2.3.3 Generating DNA Sequences
	2.3.4 Representing Sequences in Perl
	2.3.5 Representing Sequences in R

	Bibliographic Notes


	Chapter 3: Simple Pattern Matching in Sequences

	Chapter 3: Simple Pattern Matching in Sequences
	3.1 Finding Words in Sequences
	3.1.1 Word Composition of Sequences
	3.1.2 Alignment Free Comparison of Sequences

	Bibliographic Notes


	Chapter 4: General Pattern Matching in Sequences

	Chapter 4: General Pattern Matching in Sequences
	4.1 Finding Subsequences
	4.1.1 Suffix Arrays

	4.2 Finding Common Subsequences
	4.2.1 Generalized Suffix Arrays

	4.3 Comparing Sequences
	4.3.1 Edit Distance-Based Comparison of Sequences
	4.3.2 Alignment-Based Comparison of Sequences

	Bibliographic Notes


	Part II: Tree Pattern Matching

	Part II: Tree Pattern Matching
	Chapter 5: Trees
	5.1 Trees in Mathematics
	5.1.1 Counting Labeled Trees

	5.2 Trees in Computer Science
	5.2.1 Traversing Rooted Trees

	5.3 Trees in Computational Biology
	5.3.1 The Newick Linear Representation
	5.3.2 Counting Phylogenetic Trees
	5.3.3 Generating Phylogenetic Trees
	5.3.4 Representing Trees in Perl
	5.3.5 Representing Trees in R

	Bibliographic Notes


	Chapter 6: Simple Pattern Matching in Trees

	Chapter 6: Simple Pattern Matching in Trees
	6.1 Finding Paths in Unrooted Trees
	6.1.1 Distances in Unrooted Trees
	6.1.2 The Partition Distance between Unrooted Trees
	6.1.3 The Nodal Distance between Unrooted Trees

	6.2 Finding Paths in Rooted Trees
	6.2.1 Distances in Rooted Trees
	6.2.2 The Partition Distance between Rooted Trees
	6.2.3 The Nodal Distance between Rooted Trees

	Bibliographic Notes


	Chapter 7: General Pattern Matching in Trees

	Chapter 7: General Pattern Matching in Trees
	7.1 Finding Subtrees
	7.1.1 Finding Subtrees Induced by Triplets
	7.1.2 Finding Subtrees Induced by Quartets

	7.2 Finding Common Subtrees
	7.2.1 Maximum Agreement of Rooted Trees
	7.2.2 Maximum Agreement of Unrooted Trees

	7.3 Comparing Trees
	7.3.1 The Triplets Distance between Rooted Trees
	7.3.2 The Quartets Distance between Unrooted Trees

	Bibliographic Notes


	Part III: Graph Pattern Matching

	Part III: Graph Pattern Matching
	Chapter 8: Graphs
	8.1 Graphs in Mathematics
	8.1.1 Counting Labeled Graphs

	8.2 Graphs in Computer Science
	8.2.1 Traversing Directed Graphs

	8.3 Graphs in Computational Biology
	8.3.1 The eNewick Linear Representation
	8.3.2 Counting Phylogenetic Networks
	8.3.3 Generating Phylogenetic Networks
	8.3.4 Representing Graphs in Perl
	8.3.5 Representing Graphs in R

	Bibliographic Notes


	Chapter 9: Simple Pattern Matching in Graphs

	Chapter 9: Simple Pattern Matching in Graphs
	9.1 Finding Paths in Graphs
	9.1.1 Distances in Graphs
	9.1.2 The Path Multiplicity Distance between Graphs
	9.1.3 The Tripartition Distance between Graphs
	9.1.4 The Nodal Distance between Graphs

	9.2 Finding Trees in Graphs
	9.2.1 The Statistical Error between Graphs

	Bibliographic Notes


	Chapter 10: General Pattern Matching in Graphs

	Chapter 10: General Pattern Matching in Graphs
	10.1 Finding Subgraphs
	10.1.1 Finding Subgraphs Induced by Triplets

	10.2 Finding Common Subgraphs
	10.2.1 Maximum Agreement of Rooted Networks

	10.3 Comparing Graphs
	10.3.1 The Triplets Distance between Graphs

	Bibliographic Notes


	Appendix A: Elements of Perl

	Appendix A: Elements of Perl
	A.1 Perl Scripts
	First Script
	Second Script
	Third Script

	A.2 Overview of Perl
	Passing References as Arguments
	Using Modules and Packages

	A.3 Perl Quick Reference Card
	Subroutines, Packages, and Modules
	Arithmetic Functions
	Conversion Functions
	String Functions
	List Functions
	Array Functions
	Hash Functions
	Search and Replace Functions
	Input Output Functions

	Bibliographic Notes


	Appendix B: Elements of R

	Appendix B: Elements of R
	B.1 R Scripts
	First Script
	Second Script
	Third Script

	B.2 Overview of R
	Conditional Selection
	Computing with Vectors, Matrices, and Arrays
	Missing Values
	Default Argument Values
	Using Packages

	B.3 R Quick Reference Card
	Arithmetic Functions
	Conversion Functions
	String Functions
	List Functions
	Matrix Functions
	Selection Functions
	Search and Replace Functions
	Input Output Functions

	Bibliographic Notes


	References

	References




