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Preface

A challenge in clinical medicine is dealing with an ever-increasing volume of
information. This is particularly so in the emerging “omics” era, and impacts
researchers, health professionals, and the broader community. To respond to this
challenge requires computer-based storage, processing, and dissemination (i.e.,
bioinformatics). In this volume of Methods in Molecular MedicineTM, a number
of strategies utilizing clinical bioinformatics are described. This series of articles
focuses on software applications that can be used to translate information into
outcomes of clinical relevance. The six themes covered include:

Gene discovery—Chapters 1 to 4.

Gene function (microarrays)—Chapters 5 to 9.

DNA mutation analysis—Chapters 10 to 12.

Proteomics—Chapters 13 to 15.

Online approaches and resources—Chapters 16 and 17.

Informatics in clinical practice—Chapters 18 and 19.

I would like to thank Carol Yeung for her help in preparing this book.

Ronald J. A. Trent
Sydney, December 2006
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In Silico Gene Discovery

Bing Yu

Summary

Complex diseases can involve the interaction of multiple genes and environmental factors.
Discovering these genes is difficult, and in silico based strategies can significantly improve their
detection. Data mining and automated tracking of new knowledge facilitate locus mapping. At
the gene search stage, in silico prioritization of candidate genes plays an indispensable role in
dealing with linked or associated loci. In silico analysis can also differentiate subtle consequences
of coding DNA variants and remains the major method to predict functionality for non-coding
DNA variants, particularly those in promoter regions.

Key Words: Gene discovery, complex disease, data mining, prediction, data hosting,
in silico prioritization, haplotype inference, simulation.

Abbreviations: cM – centimorgan; EST – expressed sequence tag; LD – linkage
disequilibrium; OMIM – Online Mendelian Inheritance in Man; SNP – single nucleotide
polymorphism

1. Introduction
The completion of the Human Genome Project was a milestone in medical

science. However, sequencing of approximately 3 billion bases was only the
start in deciphering the human genome. Ultimately, the goal of the Human
Genome Project is to understand the biology and underlying physiology of
human health and disease. Today, common public health issues include cardio-
vascular disease, stroke, cancer, diabetes, obesity, and mental health problems.
These are the major health and economic challenges in many communities

From: Methods in Molecular Medicine, Vol. 141: Clinical Bioinformatics
Edited by: R. J. A. Trent © Humana Press, Totowa, NJ
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(1–3). Compared to simple monogenic or mendelian disorders, these common
diseases are “complex,” since their etiologies involve many genes and environ-
mental risk factors as well as complicated gene–gene and gene–environment
interactions (4,5). Discovery of disease-related genes improves our knowledge
of disease etiology and pathogenesis, and subsequently will lead to novel
diagnostic and therapeutic methods in treating common diseases.

Gene discovery started in the late 1970s with a functional approach, in
which the gene product and its function were used to identify a gene (4,5).
The discovery of the �-globin gene for the thalassemia syndrome was one
such example. However, the identification of abnormal gene products is not
always possible in many diseases with a gene defect or with a genetic
component. Therefore, positional cloning has become an important strategy in
gene discovery since the late 1980s (5). This method bypasses the protein and
enables direct cloning of genes on the basis of chromosomal position. It has
already proved highly successful for simple monogenic diseases, such as cystic
fibrosis, Huntington disease, and many other rare disorders during the past
two decades. Most of these gene discoveries were achieved with family-based
linkage analyses. However, the latter approach has limited capacity in identi-
fying genes with low penetrance and modest effect, which are traits predicted
to be present in most common complex diseases. As an alternative, genetic
association studies have become increasingly popular for gene discovery in
complex traits. This approach involves the testing of gene sequence variations
for their potential involvement in complex diseases. This is usually demon-
strated by showing disease alleles that are more or less common in affected
individuals than they are in the general population (1,2). In contrast to linkage
analysis, association studies have relatively more power to detect modest
effects (see also Chapter 2 for further discussion on Mendelian and complex
diseases).

In silico gene discovery is a complementary strategy and significantly
enhances the likelihood of finding genes, although on its own it is not
enough. It integrates biology, computer science, and mathematics to facil-
itate locus mapping, gene search, and DNA variant identification (Fig. 1) (5).
“In silico” describes the search for particular information stored in computers,
but also includes tasks such as organizing, analyzing, and predicting increas-
ingly complex data arising from molecular and clinical studies with the aid of
computers. This chapter focuses on how the in silico approach can facilitate
gene discovery.
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Fig. 1. Potential contributions of the in silico approach to the discovery of complex
disease-related genes.

2. Methods
Gene discovery involves three basic steps: (1) locus mapping, (2) gene

search, and (3) DNA variant identification (Fig. 1). The software resources
for in silico discovery are extensive in either free or subscription-based forms.
Some in silico resources are listed in Tables 1–3.

2.1. Locus Mapping

2.1.1. Power Prediction

Gene discovery is demanding of time and resources (5). It would be unwise
to start this approach if a study did not have sufficient power to obtain a
conclusive result. Therefore, power prediction is a useful starting point. In silico
simulation can be applied to estimate the power of the available collection
(either families or case/control cohorts) in the presence of gene effect only,
gene–gene interaction, or gene–environment interaction (6–8).
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Table 1
In silico resources for locus mapping

Note Internet Address

List of genetic analysis software http://www.nslij-genetics.org/soft/

FBAT: Family Based Association Test
including power prediction function

http://www.biostat.harvard.edu/∼fbat/

QUANTO: a program for power and sample
size calculations for genetic epidemiology
studies

http://hydra.usc.edu/gxe

Human genome sequences
National Center for Biotechnology
Information (NCBI, GenBank) http://www.ncbi.nlm.nih.gov/
Ensembl http://www.ensembl.org/index.html
University of California, Santa Cruz

(UCSC) Genome Browser
http://genome.ucsc.edu/

International HapMap Project http://www.hapmap.org/
GeneSeeker: extract & integrate human
disease-related information from many
web-based genetic databases

http://www.cmbi.ru.nl/GeneSeeker/

Phenotype resources
PubMed: the main repository of published

biomedical literature
http://www.ncbi.nlm.nih.gov/

OMIN: Online Mendelian Inheritance in
Man

Same as above

OMIA: Online Mendelian Inheritance in
Animals

Same as above

In a family-based design, the conditional power of available offspring can be
calculated based on informative parental genotypes using the FBAT program
(Table 1). Any association can then be tested in the most promising combina-
tions of DNA markers and phenotypes. This approach also avoids the penalty
that comes when multiple comparisons are made.

In a population design, power estimation can be easy when the sample
sizes are fixed, and the frequencies of genotypes and/or alleles are known in
the target population (see Note 1) (8). However, it can be complicated if the
above information is not available. Ambrosius and colleagues (9) developed a
program for power calculations based on a Bayesian approach. This program
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Table 2
In silico resources for gene searching

Note Internet Address

STACKdb™ (Sequence Tag
Alignment and Consensus
Knowledgebase): an EST database
of virtual human transcript and is
separated by tissue type.

http://www.sanbi.ac.za/Dbases.html

Heart-specific transcripts http://tcgu.bwh.harvard.edu/

BioManager: a subscription-based
bioinformatics workspace that
provides a single, user-friendly and
intuitive web interface.

http://www.angis.org.au/

PROSPECTR (PRiOritization by
Sequence & Phylogenetic Extent
of CandidaTe Regions): an
alternating decision tree that has
been trained to differentiate
potential disease-related genes.

http://www.genetics.med.ed.ac.uk/
prospectr/

Haplotypes estimation from
unphased genotype data in unrelated
individuals

Phase http://www.stat.washington.edu/
stephens/software.html

SNPHAP http://www-
gene.cimr.cam.ac.uk/clayton/software/

Haplo.stat http://mayoresearch.mayo.edu/mayo/
research/biostat/schaid.cfm

Haplotyper http://www.people.fas.harvard.edu/
∼junliu/Haplo/docMain.htm

can test an association between one or more genetic variants and a phenotype of
interest, effectively dealing with the sampling variability and allowing for allele
frequency uncertainty for both qualitative and quantitative traits. QUANTO is
another program (Table 1) that can compute either power or required sample
size for association studies of genes, environmental factors, gene–environment
interactions, or gene–gene interactions (6). This program can also cope with
both qualitative and quantitative outcomes.
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Table 3
In silico resources for DNA variant identification

Note Internet Address

Prediction DNA scanning
temperatures using DHPLC

http://insertion.standord.edu/melt.html

Sorting Intolerant From Tolerant
(SIFT): predictions for which amino
acid substitutions will affect protein
function

http://blocks.fhcrc.org/sift/SIFT.html

PolyPhen (Polymorphism
Phenotyping): prediction of
functional effect of human
non-synonymous SNPs.

http://coot.embl.de/PolyPhen/

SNPs3D: a web tool that
assigns functional effects of
non-synonymous SNPs based on
structure and sequence analysis.

http://www.snps3d.org/

Orthologous gene information:
GenBank
Ensembl
Inparanoid

http://www.ncbi.nlm.nih.gov/
http://www.ensembl.org/index.html
http://inparanoid.cgb.ki.se/

RESCUE-ESE: predict potential
splicing elements using a
statistical/computational method

http://genes.mit.edu/burgelab/rescue-
ese/

Prediction of potential SNP effect at
transcriptional level

PupaSNP Finder http://pupasnp.bioinfo.ochoa.fib.es/
rSNP_Guide http://wwwmgs.bionet.nsc.ru/mgs/

systems/rsnp/
Consensus http://bioweb.pasteur.fr/seqanal/

interfaces/consensus.html
MEME (Multiple Em for Motif

Elicitation)
http://meme.sdsc.edu/meme/

AlignACE http://atlas.med.harvard.edu/
BioProspector http://ai.stanford.edu/∼xsliu/

BioProspector/
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With reliably estimated power, the investigators can make a more informed
decision on whether to proceed with the study. In silico simulations are also
useful to guide the recruitment of effective numbers of cases and controls
(see Note 1) (6). The simulation results are needed to convince granting bodies
to support a gene discovery project.

2.1.2. Hosting Abundant and Dynamic Information

2.1.2.1. Phenotyping

Clinical assessment or phenotyping of affected and unaffected individuals
has to be completed early in gene discovery (Fig. 1). Success is very much
dependent on the confidence with which phenotypes were assigned from the
start. Phenotyping is not necessarily straightforward, and it requires a prede-
fined protocol of inclusion and exclusion criteria along with carefully designed
database(s) to host increasingly complex data.

The number of individuals increases significantly from single family
members in a linkage study to large cohorts of cases and controls numbering
in the hundreds or thousands, as well many families (with variable sizes) in
genetic association studies. There are large, heterogeneous and highly interre-
lated datasets at the initial stage. These data should be collected in a systematic
way with predefined protocols. It is common to have repeated measurements
in complex traits, such as body mass index in obesity (2). These data can be
important clues in a gene search, and the longitudinal data can also increase the
reliability of a phenotype. A careful record of the onset of disease can be useful
in the stratification of extreme subsets since an early onset usually suggests a
strong genetic component, whereas a late onset might be more likely attributable
to an environmental effect. The environmental data can be another crucial
component to analyze, especially when gene-environmental interactions play a
role in the relevant disease or complex trait. The phenotypic database should
have a complete and a uniform set of data encompassing all key aspects of the
phenotype. Finally, the re-classification of study subjects is not uncommon in
gene discovery, because conventional definitions are revisited or refocused to a
particular intermediate phenotype or endophenotype. The phenotypic database
should be sufficiently flexible to cope with broad diagnostic criteria as well as
changes in the phenotype.

2.1.2.2. Locus Information

With the available sequence data from the Human Genome Project, the
in silico approach eliminates the laboratory-based contig creation and time-
consuming sequence walking. Genomic sequences and linkage disequilibrium
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(LD) information within the region of interest can be easily retrieved from the
human genome databases and the HapMap project (see Table 1 and Chapter 3).
It is essential to construct a well-organized locus database with all relevant infor-
mation such as retrieved sequences, DNA markers, LD blocks, and all available
transcripts. This locus database can provide a platform for fine mapping and
the subsequent gene isolation as well as DNA variant identification (Fig. 1);
see Note 2.

The increasingly larger sizes for complex-trait loci have increased the work
required for DNA variant scanning. This has gradually been replaced by the
candidate gene approach (see candidate prioritization in section 2.2.1). The
obvious requirement for a gene’s becoming a candidate is its expression in
the disease-related tissue or organ. Therefore, it is quite useful to construct a
second transcriptome database for the target tissue or organ. The transcripts in
the second database can be classified into constitutive, structural, and functional
genes, and incorporated with all potential alternative splicing data. If possible, the
microarray expression data from unaffected and affected sources can be integrated
into this transcriptome database, which can augment the chance of gene identi-
fication. Genes that overlap the locus database and the transcriptome databases
should be considered as an essential criterion in gene identification (see Note 2).

2.1.3. Data Mining

2.1.3.1. Selection of DNA Markers

DNA markers with known chromosomal locations compose another essential
component in locus mapping (Fig. 1). A plethora of genetic variations are
available in the human genome (4,5). These include the restriction fragment-
length polymorphisms (RFLP), short tandem repeats (also called microsatel-
lites), and single nucleotide polymorphisms (SNPs). It is one of the key tasks
for in silico gene discovery to identify and select a set of appropriate DNA
markers.

In linkage analysis, several selected sets of microsatellites, in the hundreds,
are available for a genome-wide scan. Since these markers are spaced millions
of bases apart, fine mapping is usually needed to narrow down the linked region
after the locus is identified. It is important to perform an in silico search in the
region of interest and to identify all the available DNA markers. High-quality
(informativeness) of selected DNA markers can provide the valuable clue in
fine mapping in given families and greatly facilitate the identification of the
target gene(s).

In silico search is even more critical in association studies using a gene-
based candidate approach or fine mapping under a linkage peak, looking for
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a particular marker or a set of markers to be correlated with disease (or trait
values) across a population rather than within families. Because segments of
LD are measured in a few thousands to tens of thousands of bases, a large
number of DNA markers are required to scan a candidate region (10). Mining
of valid and informative SNPs is important to initiate an association study. In
silico tools can increase the efficiency of marker selection via simulation (7) in
order to capture more genetic variation in candidate genes and to avoid multiple
comparisons. If SNPs are scarce in one candidate region, both in silico and a
more traditional experimental approach may be required. If there are abundant
SNPs in another region, an in silico search can be helpful to reduce redundancy.
With the regional LD information, the in silico approach can define a set
of SNPs, forming a haplotype in a particular candidate region, which would
essentially “tag” other variants not directly tested (11). This makes it possible
to survey substantial fractions of human variation in a cost-effective manner.
It can be assumed that the causal DNA variants or trait-modifying alleles will
be in strong LD with one of the tagging SNPs being directly genotyped if the
set of SNPs are sufficiently dense (see also Chapter 3).

2.1.3.2. Retrieving Available Genes

In silico search plays a role in the annotation of genes in an identified locus. As
discussed previously, the target tissue-expressed and locus-specific genes can
be retrieved through the database overlap (see Note 2). Some of these retrieved
genes have known biological functions while others do not. It is crucial to be
as inclusive as possible in positional cloning. The potential functions of these
unknown genes can be predicted through sequence alignment with available
known genes in different species. The presence of characteristic motifs is
helpful for determining putative function via similarity searches. Alternatively,
the othologous block i.e. the synteny region, that is assumed to be derived from
the immediate ancestor of two species can be detected in model organisms
using sequence alignment between a pair of genomes (12). Then the potential
function of a gene or a locus can be studied in model organisms. Data mining
from available microarray studies, tissue-2D gel or two-hybrid systems are also
useful to identify the potential functions of unknown genes, especially for the
novel ones without any identified sequence similarity.

2.1.3.3. Tracking New Knowledge

Gene discovery is an ongoing process. It is necessary to combine observa-
tions and existing knowledge at the time of defining candidate genes. Profi-
ciency in computer-aided literature search would identify new knowledge that
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researchers may not always be aware. Equally important is to keep abreast
of emerging knowledge. Online tools are available to support literature-based
discovery in the life sciences (13). GeneSeeker is one such tool. It gathers infor-
mation that conforms to investigator-defined criteria from several databases
such as OMIM, human and mouse genomes and expression data (14) (see
Table 1). Other similar tools are available based on sequence or protein
motif similarity and Gene Ontology (GO) terms (15–17). Automated literature
tracking is also useful to guide the prioritizing process for candidate genes
(see section 2.2.1).

2.2. Gene Search

This is a time-consuming task (Fig. 1). In silico gene discovery can accelerate
the process or bypass many steps in the traditional gene discovery process.

2.2.1. Candidate Gene Prioritization

Prioritizing an increasing number of candidate genes for DNA variant
screening is a challenge. This is particularly so when the region of interest,
especially for complex diseases, can expand from a few centimorgans (cM) to
10–40 cM (18). It is still too laborious and expensive to genotype thousands to
a few hundred thousand SNPs or to sequence all genes in a region of interest
in complex diseases. Prioritization of candidate genes is cost-effective, and can
maximize the chance of success.

2.2.1.1. Common Practice in Gene Prioritization

Usually candidate genes are prioritized through an integration of various
datasets including phenotypic and/or expression data, linkage results in animal
models, knowledge of biologic pathways, and genes in the chromosomal
region(s) of interest. This is done to match the functional annotation of particular
gene(s) to knowledge of the disease or phenotype in question, and to exclude
any candidate genes that have not fulfilled certain criteria. The in silico approach
can facilitate this process (see Note 2). However, the standard prioritization
approach has limitations. The link between a gene and the phenotype of interest
tends to be weak in complex traits or disease. It is not always possible to
identify an apparent matching between the gene’s function and the related
phenotype. Target genes can be embedded in genes with unknown function or
can have an unexpected connection (1). Functional annotation of the human
genome is incomplete and biased toward better-studied genes. The annotation
is time-consuming and unavoidably error-prone (19). New bioinformatics tools
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have now been developed for complementing common practice in the prioriti-
zation process.

2.2.1.2. In Silico Tools in Gene Prioritization

Adie and co-workers (18) developed a unique program, “Prospectr,” which is
independent on any available functional annotation (Table 2). This program has
integrated many sequence-based features that have been derived from detailed
studies of >1,000 disease genes available from OMIM. The features used in
building the alternating decision tree include the numbers of exons and CpG
islands, the length of the 3’ untranslated region, the distance to the nearest
neighboring gene, the tissue-specific expression, and the sequence conservation
across species. As the Prospectr outputs are the alternating decision tree scores,
it can adjust the specificity (precision) at the expense of sensitivity (recall). This
program can help prioritization involving large regions of interest in minutes,
and select candidate genes for further case/control association or DNA variant
identification (Fig. 1).

2.2.1.3. Gene Prioritization from Model Organisms

Studying the relevant disease in animals is another alternative to assist in
prioritizing the candidate genes since this type of study can be conducted in a
carefully controlled environment. Although results from animal studies cannot
unconditionally translate into data of relevance to humans, mechanistic insights
can help improve experimental design in the human studies. This is particularly
interesting in animals with evolutionarily related pathways and conserved gene
sequence and function. For example, a quantitative trait locus for coronary
artery disease (atherosclerosis 1) was identified on mouse chromosome 1
that renders C57BL16 mice susceptible to diet-induced atherosclerosis. Tnfsf4
(tumour necrosis factor superfamily, member 4) was then identified as the
underlying gene. This leads to a link between coronary artery disease and
immunological pathways in humans [for review see (3)]. In silico search
can also provide the clue in identifying relevant animal models from Online
Mendelian Inheritance in Animals (OMIA, Table 1) or published literature with
links to potential human homologs. It would be worthwhile knowing if a gene
in a disease-related animal is in a syntenic region to the identified human locus.
With the help of whole genome information from at least 25 model organisms
(listed in GenBank and Ensembl, Table 1), the use of comparative genomics
can accelerate gene discovery and identify the promising gene candidates for
common complex diseases.
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2.2.2. Contribution to Analysis

2.2.2.1. In Silico Haplotype Inference

The prioritized candidate genes have to be tested experimentally. Single SNPs
have limited informativeness. The achievement of the HapMap project provides
a complete reference panel of LD structure in the human genome (see Chapter
3). It leads to the natural progression from a single marker analyses toward
multimarker haplotype analyses, especially in gene-based association studies
or fine mapping. Haplotypes refer to a set of SNP alleles that are co-segregate
on a single chromosome. Haplotype tests are more efficient with significantly
improved statistical power in association studies compared with the pairwise
analysis between single SNPs and a phenotype (10,20). Different combinations
of particular SNP alleles in the same gene may act as meta-alleles and signifi-
cantly increase the sensitivity in phenotype-genotype correlations. If the most
important variants for complex diseases are non-coding sequence, haplotyping
is the most cost-effective screening method. “Diplotype” represent the interac-
tions between various haplotypes that come together in an individual’s diploid
genome and provide more power to discriminate subtle effects.

Empirically, haplotypes, i.e., the phase of each DNA marker, are determined
based on the genotype data from parents and grandparents or sequencing after
cloning of long-range PCR products. The familial data are difficult or impos-
sible to collect especially in late onset diseases. The experimental methods
of long-range amplification, cloning, and sequencing are expensive and labor-
intensive. In order to carry out high-throughput haplotype analysis, in silico
inference is essential in dealing with SNP genotype data with ambiguous phase
for unrelated individuals. Some available methods for haplotype prediction
include Phase, SNPHAP, Haplo.stat, and Haplotyper (Table 2). These programs
use different algorithms in haplotype inference, which include the expectation-
maximization algorithm, Bayesian method and parsimony or subtraction method
[for review see (21)]. Compared with the empirical results, most of the above
programs can assign about 90% correct haplotypes for individuals heterozygous
for up to three SNPs and are about 80% correct for up to five heterozygous
sites. These methods can identify every haplotype with a frequency above 1%.
Incorrect haplotypes are possible but if so they will not exceed a 1% frequency
(21). It is also useful to estimate haplotypes using several methods. Consis-
tency in the estimation results would imply the approximation is more likely
to be correct. Inferred haplotypes with their probabilities greatly enhance the
capacity to confirm or exclude a target candidate gene.
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2.2.2.2. Simulation in the Assessment of Association Results

False positive results in association studies remain a major concern (4). One of
the underlying contributors to this is a chance finding due to multiple testing.
One way to address this is applying in silico power. Datasets can be simulated
according to the null hypothesis in the linkage or association study using
available pedigree structures, case-control collection, marker map or LD infor-
mation, allele frequencies, and patterns of missing data as in the study itself.
Observed significance levels can then be assessed. A permutation procedure
can also test how often a random subset of the same size yields a p value equal
or smaller to the one observed (22). With advances in computer technology,
simulation has become the standard method of assessing the significance of
association studies in gene discovery.

2.3. DNA Variant Identification

Once a candidate gene is isolated, it becomes necessary to show the gene has
a causal relationship with the disease of interest. This usually involves extensive
DNA scanning to search for the disease-causing (pathogenic) mutation(s) or
modifying (either susceptible or protective) DNA variant(s) (Fig. 1). Although
extensive scanning is daunting, it is the ultimate goal for gene discovery to
uncover the molecular etiology, and to identify potential targets for disease
prevention and/or intervention. The in silico approach greatly enhances the
capacity to characterize functional DNA variants.

2.3.1. In Silico Support for DNA Scanning

High throughput and effective methods such as DHPLC are essential in
DNA scanning with large linked or associated loci. A predictive algorithm is
available to assist in the amplicon design and to suggest screening temper-
ature(s) in DHPLC analysis (see Table 3) so that DNA scanning can achieve
high sensitivity. In the identification of DNA variant(s) with a sequencing
approach, software is available for computer-assisted DNA sequence reading
(see Chapter 10). The latter computational support markedly relieves the
labor-intensive reading process, and increases the sensitivity in DNA variant
identification, especially heterozygous changes, from long stretches of normal
sequence. However, the in silico approach goes far beyond the above supporting
role, and it also plays a critical role in prediction of structural and functional
consequences of a particular DNA variant.
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2.3.2. In Silico Prediction of Mutational Effects

In simple monogenic disorders, DNA variants such as missense mutations,
small insertion/deletion (indel), nonsense changes, and altered splicing sites
can have profound effects on the structure and function of the corresponding
proteins, with major functional consequences. Whether a particular amino
acid is conserved can be identified through the multiple sequence alignment
with the orthologous sequences from different species (12). The impact of a
missense mutation can be modeled if the protein or motif structure is available
in the mutation region (23). Nonsense mutations and frame-shift changes can
introduce an early termination and lead to nonsense-mediated decay or a
truncated protein with obvious functional changes (see Chapter 11).

2.3.3. In Silico Differentiation of Functional DNA Variants

In complex diseases, the tested SNP may be a true variant that leads
directly to disease susceptibility. Alternatively it may merely be in LD with
an unobserved susceptibility allele i.e. functional variant. It is important to
differentiate the functional DNA variants from numerous neutral DNA changes.
Application of in silico methods can provide some answers in a fraction of the
time that it once took in the laboratory.

2.3.3.1. Visualizing the Variant Location

DNA variants can be found anywhere near or in a gene, and their potential
influence on the function of DNA, RNA, and proteins is closely related to
the genomic location. Many in silico resources are available in assist in the
visualization of variant loci and their annotation. In the public domain there are
UCSC Genome Browser and Ensembl. Both are quite useful with a friendly
interface (see Table 1 and Chapter 17).

2.3.3.2. Identifying Potential Subtle Consequences of Coding DNA

Variants

Not all non-synonymous DNA variants have obvious deleterious effects on
the structure or function. These changes in a complex trait may have subtle
effects on protein–protein interactions, a fine balance of different alternative
spliced isoforms, glycosylation site changes, or may make a protein function
less optimal.

The in silico approach can help to differentiate a functional variant from
a polymorphic non-synonymous change by taking many factors into consid-
eration (24). These factors includes the protein’s structural properties such



In Silico Gene Discovery 15

as solvent accessibility, location within �-strands or active sites, and partici-
pation in disulfide bonds; and altering protein stability such as ligand binding,
catalysis, allosteric regulations, and post-translational modification. The SIFT
and Polyphen programs (Table 3) are commonly used resources for classifying
uncharacterized non-synonymous SNPs (25). These programs can estimate a
particular amino acid substitution as tolerant or damaging based on the position
in homologous genes. It can assess local functionality using both protein struc-
tural and evolutionary information that are obtained by comparing orthologous
genes. A wide variety of orthologs can be retrieved from many databases such
as GenBank, Ensembl or Inparanoid (Table 3). SNPs3D is another resource
for inferring the molecular function of DNA variants based on structure and
sequence analysis.

Synonymous changes may not necessarily be “silent” as previously thought.
These changes can be part of exonic splicing regulatory elements that affect
the gene expression via altered splicing selection or efficiency. For example,
a synonymous change (TTC to TTT, Phe to Phe) was identified in exon 7
of the Survival of Motor Neuron 2 (SMN2) gene. This change disrupts an
exonic splicing enhancer site and creates an exonic splicing repressor site
(26,27), which is enough to prevent efficient exon 7 splicing. In the absence
of the SMN1 gene, this C→T transition is directly related to the severity
of spinal muscular atrophy. Since these functional synonymous changes are
under selective pressure, they can be predicted or identified through multiple
sequence alignment of the orthologous genes in closely related mammalian
genomes (12). One program, RESCUE-ESE, has been developed to predict
potential exonic splicing elements using a statistical/computational method (28)
(Table 3). This program can effectively predict the loss of the exonic splicing
enhancer site of the above synonymous change in the SMN2 gene. This type
of in silico approach greatly enhances the capacity for differentiating exonic
variants (either synonymous or non-synonymous) as putative exonic splicing
elements from non-functional ones.

2.3.3.3. Predicting Potential Functionality of Non-Coding DNA

Variants

DNA variants can be located in the non-coding regions, including the promoter
region, introns, the 5’- and 3’-untranslated regions, or the polyadenylation signal
site. Some can be random polymorphisms with neutral effects; others can have
an impact on a disease process via their influence on gene expression. It has
been reported that introns can contain regulatory elements for gene expression
and be significantly associated with increased risk for complex disease such
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as diabetes (1,29,30). Assessment of non-coding DNA variants apart from
those in well-conserved splicing sites remains a challenge since it is difficult
to separate regulatory variation (cis-acting and trans-acting factors) from the
cellular environment.

Regions that are biologically important tend to be more constrained by
evolution and therefore more conserved. In silico analysis provides a unique
platform for identifying the promoter DNA variants at the conserved sites and
potential binding motifs for transcription factors (31,32). This remains the only
way of trying to predict if a DNA variant will affect expression levels. PupaSNP
Finder is one such tool for identifying SNPs that could have an effect on
transcription (see Table 3). rSNP_Guide contains annotations of SNPs based on
potential effects on regulation. Other in silico tools for predicting transcription
factor binding sites include Consensus, MEME, AlignACE, and BioProspector
(see Table 3).

Over the past few years, in silico analysis of alternative splicing has emerged
as an important new focus. It is of great interest that each gene can be “reused”
to create multiple functions and new modes of regulation. Potential non-coding
DNA changes can alter the essential recognition sites for the spliceosome,
intronic splicing enhancers or silencers, and the binding sites for splicing
regulatory factors. It is almost impossible to recognize the above variants
without in silico analysis. The in silico identification of DNA variants that affect
splicing (28) and deciphering the regulatory control mechanisms that govern
gene expression would simplify interpretation of complicated and puzzling data
in the complex diseases.

3. Conclusions
Genetic association studies currently focus on a candidate gene or a

candidate region. These studies have an inherent disadvantage because of
limited knowledge of the molecular basis for complex diseases. Ultimately,
with the increased throughput and reduced costs of genotyping, genome-wide
association studies based on LD-directed tag-SNPs will become feasible and
allow the identification of the genetic contributions in complex diseases to
be made more efficiently. This genome-wide approach will heavily rely on
in silico strategies.

The integration of the in silico approach with the genome-wide association
studies will provide enormous scope for testing genetic effects or interactions
across genetic regions. Such integration will lead the genetics of complex
diseases to a point of success comparable to where mendelian genetics now
firmly resides.
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4. Notes
1. As discussed in 2.1.1, the power of a case-control study can be estimated when

the sample sizes are fixed and the frequencies of genotypes and/or alleles are
known in the target population. For example, as an exercise let us determine
whether the case-control study reported by Gayagay et al. (33) has enough power
to detect a frequency increase of ACE allele I (angiotensin II-converting enzyme
gene insertion/deletion polymorphism) from 0.43 in the unmatched controls (R)
to 0.57 in the cases (C), i.e., pR = 0.43 and pC = 0.57.

The number of alleles as reported were 128 and 236 for the case and control
groups, respectively, i.e., nC = 128 and nR = 236. The geometric mean of the
alleles being tested can be calculated as follows:

n = 2×nC ×nR

nC +nR

= 166

The effect size index (h) can be calculated using the allele frequencies from the
cases and controls after the nonlinear transformation. As suggested by Lalouel and
Rohrwasser (8), using the arcsin transformation � = 2 arcsin

√
p calculate �C and

�R and h = �C - �R. The calculator should be set to use radian rather than degree
in arcsin transformation.

h = �C −�R = 2 arcsin
(√

pC

)−2 arcsin
(√

pR

)= 0�28

To calculate power at a significance level of � = 0.05, z1 − � can be obtained from
a table of normal distributions (Table 4). When z1 − � = 1.65, it gives the value of
0.9505, i.e., the value of t, in the table, for which the shaded area under the curve
is equal to 0.95. The power of the study can be calculated as follows:

z1−� = h

√
n

2
−Z1−� = 0�90

This gives the value to be referred to in the table of the normal distribution
(Table 4), i.e., z = 0.90 −→ 0.8159. It means the power 1-� = 0.82. Let us further
assume that we wanted to increase the power to 0.85, but we could not increase the
case numbers. It would still be possible to achieve a power of 0.85 by increasing
the control alleles from 236 to 384, i.e., case-control ratio of 1:3.
If we wanted to estimate the genetic relative risk (or odds ratio) detectable with a
given number of cases, the Quanto program (Table 1) could be used. Let us go back
to the Gayagay’s study again as an example. First assume ACE I allele frequency
of 0.43 and the log-additive as the mode of inheritance (gene effect: G = 2 if II,
G = 1 if ID and G = 0 if DD). The calculated genotypes frequencies would
be II = 0.18, ID = 0.49, and DD = 0.32, and the observed genotype were
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Table 4
Simplified normal distribution table (Probability content from 0 to z)

z 0 0.01 0.02 0.03 0.04 0.05 … 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 … 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 … 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 … 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 … 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 … 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 … 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 … 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 … 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 … 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 … 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 … 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 … 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 … 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 … 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 … 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 … 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 … 0.9545
… … … … … … … … …
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 … 0.9990

II = 0.18, ID = 0.51, and DD = 0.32 as reported (33), in which there is no signif-
icant difference. Therefore, this polymorphism is in Hardy–Weinberg equilibrium.
Finally, let us assume that there would be 64 cases with 128 unmatched controls.
As we see from the results in Table 5, the case numbers of 60 and 70 have the
power of 0.78 and 0.84, respectively. Hence, the case-control study from Gayagay
et al. (case number of 64) would have a power of 0.80 to detect the genetic relative
risk of 1.85 and above.

2. In a recently completed gene-based association study, our aim was to identify
the complex trait gene(s) related to cardiovascular performance in elite endurance
athletes (34). Genome-wide scans based on the maximum oxygen uptake (VO2max)
as the endurance phenotype identified four loci related to baseline VO2max and
five loci in response to endurance training (35). Although these linked loci were
only suggestive, we started the gene discovery steps assisted by an in silico
approach (Fig. 2). The locus on chromosome 2p16.1 was anchored by DNA
marker D2S2739. First a locus-specific genomic sequence database (see discussion
in section 2.1.2.2) was constructed extending 5 Mb on either side of D2S2739.
Expressed sequence tags (ESTs) related to cardiovascular function were collected
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Table 5
Estimated results of genetic relative risk using the QUANTO program

Relative Genetic Risk Number of Cases* Power**

1.60
50 0.48
60 0.55
70 0.62

1.85
50 0.70
60 0.78
70 0.84

2.10
50 0.85
60 0.90
70 0.94

*The number of cases required for the desired power with unmatched case-control (1:2).
**Power is estimated with the hypothesis of gene effect only and under the log-additive

model of inheritance.

from many available databases including the STACK database (36) and the Cardio-
vascular Gene Unit website (heart-specific-transcripts—Table 2). These ESTs
were used to construct the target-specific expression database (see discussion
in section 2.1.2.2). Both locus- and target expressed-databases were hosted
in BioManager, a platform provided by the Australian National Genomic Infor-
mation Service (Table 2).
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Fig. 2. In silico discovery of cardiovascular genes related to athletic performance.
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The entry criteria for the candidate genes were then set up, i.e., any candidate gene must
be both locus-specific and target-specific. This was achieved by identifying the overlap
candidates that were present in both the locus-specific genomic sequence database
and the target-specific expression database (Fig. 2). One hundred ninety-two ESTs
fulfilled the entry criterion. After the extensive sequence analysis and full-length cDNA
assembly from multiple EST hits, 40 putative genes were identified. Nearly half of
the genes were unknown at the time, and the remainder was scrutinized for known
functions. After the exclusion of housekeeping genes, four plausible candidate genes
were short listed including calmodulin 2, epithelial PAS protein 1 (EPAS1 or hypoxia-
inducible factor 2 alpha), cytochrome c oxidase subunit VIIa polypeptide 2, and solute
carrier family 8 member 1. With further enquiry, only EPAS1 remained since it can
interact with the environment and execute its transcriptional regulation after sensing
oxygen deficiency, which occurs commonly during endurance training or competition
(Fig. 2). Following this, a genetic association study was performed involving 492 cases
(elite athletes) and 444 matched controls and 12 selected SNPs. This confirmed that
EPAS1 is at least one of the relevant genes in the 2p16.1 locus (34).
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Whole Genome-Wide Association Study Using
Affymetrix SNP Chip: A Two-Stage Sequential
Selection Method to Identify Genes That Increase
the Risk of Developing Complex Diseases
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Summary

Whole-genome association studies of complex diseases hold great promise to identify
systematically genetic loci that influence one’s risk of developing these diseases. However, the
polygenic nature of the complex diseases and genetic interactions among the genes pose signif-
icant challenge in both experimental design and data analysis. High-density genotype data make
it possible to identify most of the genetic loci that may be involved in the etiology. On the
other hand, utilizing large number of statistic tests could lead to false positives if the tests are
not adequately adjusted. In this paper, we discuss a two-stage method that sequentially applies
a generalized linear model (GLM) and principal components analysis (PCA) to identify genetic
loci that jointly determine the likelihood of developing disease. The method was applied to a
pilot case-control study of esophageal squamous cell carcinoma (ESCC) that included 50 ESCC
patients and 50 neighborhood-matched controls. Genotype data were determined by using the
Affymetrix 10K SNP chip. We will discuss some of the special considerations that are important
to the proper interpretation of whole genome-wide association studies, which include multiple
comparisons, epistatic interaction among multiple genetic loci, and generalization of predictive
models.
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Abbreviations: ESCC – esophageal squamous cell carcinoma; GLM – generalized
linear model; HWE – Hardy Weinberg equilibrium; LD – linkage disequilibrium;
PCA – principal components analysis; PC1 – first principal component; SNP – single nucleotide
polymorphism

1. Introduction
Human diseases are generally classified into two categories: Mendelian

disease versus complex disease. These two classes of disease have many distinct
genetic and phenotypic characteristics (1). Mendelian diseases are primarily
determined by single genes. They are usually rare and occur in a family setting.
Mendelian genes can be mapped by linkage analysis and are identified through
positional cloning. Causative mutations are often located within the conserved
regions of the affected gene, and these mutations usually change the function of
the protein (2). In contrast, complex diseases are caused by the combined effect
of many genes, each of which has a small to moderate effect. Complex diseases
are usually common, and examples include cardiovascular diseases, cancer,
and diabetes. The complex nature of interactions among the multiple genes and
between genes and environmental factors imply that a single locus is unlikely
to have enough effect on the risk of the disease. Thus, the linkage analysis
approach is less effective. Attention has now been shifted to strategies such as
association or linkage disequilibrium (LD) studies that attempt to identify an
association between a genetic marker and a disease susceptibility locus (3,4).

LD can be generated by mutation, migration, selection, and genetic drift.
However, LD begins to decay once it is generated. LD between unlinked loci
decays rapidly. The rate of LD decay slows down when the two loci are linked.
When the two loci are tightly linked, LD can persist through many generations.
It is this type of LD that is useful for identifying disease genes. However, a
spurious association can exist due to population admixture, sample selection
bias, and LD generated from a recent event. So care needs to be taken to reduce
the spurious association due to unlinked loci by experimental design and data
analysis. Association due to linked loci is more powerful than linkage analysis
since such linkage disequilibrium is restricted to small regions of the genome,
usually a few kb to 50–60 kb, depending on genetic loci and study population.
These regions are also referred to as haplotype or LD blocks.

With the completion of the human genome sequence and the availability
of high-throughput genotype technologies, genome wide association studies
hold great promise for systematically identifying genetic loci that determine
the etiology of complex diseases (5). Current efforts directed to the identifi-
cation of disease-causing genes have now shifted from Mendelian diseases to
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complex diseases. Although the search of Mendelian genes has always focused
predominantly on mutations that result from non-synonymous substitution of
amino acids, this does not have to be the case for SNPs that affect complex
diseases.

Single nucleotide polymorphisms (SNPs) may affect complex diseases
through their effects on gene expression, and some examples of this are provided
in several recent studies (6–8). Currently, there are more than 12 million SNPs
deposited in GenBank (http://www.ncbi.nih.gov/SNP/), 6.5 million of which
have been validated. To facilitate gene discovery, the HapMap project was
initiated to expedite the search for the genes that predispose individuals to
complex diseases (9,10). The genetic resources available from the HapMap
project provide information on allele frequency, Hardy–Weinberg equilibrium
(HWE), linkage disequilibrium (LD), and haplotype structure. They are useful
for selecting TagSNPs for association studies (11). Chapter 3 provides further
information on the use of HapMap as a resource.

Esophageal squamous cell carcinoma (ESCC) is one of the most common
malignancies in the Chinese population (12). ESCC showed familial aggre-
gation in the high-risk regions in northern China, indicating that a genetic
influence plays a role in the etiology of this cancer. Epidemiology studies
suggest that ESCC is a complex disease caused by multiple genetic loci. We
previously published a pilot ESCC case-control genome-wide association study
using the Affymetrix 10K SNP array (13). Here, we describe the experimental
design and statistical analysis that are important for a genome-wide associ-
ation study. We describe some of the special considerations concerning the
proper interpretation of a whole genome-wide association study, which include
multiple comparisons, gene–gene interactions, and generalization of predictive
models.

2. Experimental Design and Protocol
Patients and controls in this pilot case-control study of ESCC were described

previously (13). We had 50 ESCC patients and 50 neighborhood-matched
controls. Age-, sex-, and neighborhood-matched controls were selected and
evaluated within 6 months of the case being diagnosed. The “neighborhood”
in China refers to the residence blocks within communities. All individuals
and their ancestors lived in Shanxi Province. These individuals were selected
to ensure a more homogeneous population structure. Both gender and age are
known to affect ESCC. Since our primary goal was to identify genetic risk
factors, we selected only male individuals with matched age to remove these
confounding factors. The other potential confounding factors included diet,
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smoking, and alcohol use. Therefore, these were included in the generalized
linear model (GLM) as covariates. We found little evidence for any effect due
to diet or smoking for most of the SNPs in GLM analyses. These procedures
in sample selection and data analyses aim to reduce spurious associations due
to sample bias or non-genetic confounding factors so that we can enrich the
linkage disequilibrium due to a linked locus. More discussion can be found
below (see 3. Data Analysis and Note 1).

The Affymetrix 10K SNP chip (Affymetrix GeneChip® Mapping 10K Array
Set) was designed for simultaneous typing of 11,555 SNPs in the human
genome (14). The mean distance between SNPs is 210 kb and the average
heterozygosity for these SNPs is 0.37. The genotype call is determined by the
relative intensity from the two alleles, designated as A allele and B allele. More
recently, Affymetrix released higher-density SNP chips (15) including a 100K
chip and a 500K SNP chip (Affymetrix GeneChip® Mapping 100K and 500K
Array Sets respectively). The mean distance between SNPs is 23.6 kb and
5.8 kb for the 100K SNP chip and 500K SNP chip, respectively. The average
heterozygosity of the SNPs for both 100K and 500K chips is 0.30. Other high-
throughput genotyping platforms include Illumina Sentrix® Human-1 (109K),
HumanHap300 (317K), and HumanHap550 (555K) BeadChips (16,17). See
more discussion in Note 2.

The genotyping experiment using the Affymetrix 10K SNP chip was
described previously (13). Our more recent genotype data have been generated
on higher density SNP chips including Affymetrix 100K and 500K SNP chips.

3. Data Analysis
The 10K SNP chip experiment generated 11,555 genotype data for each

sample. We removed 1,291 SNPs because they failed in one of the following
quality control steps. The SNP

1. could not be mapped to the NCBI human genome assembly,
2. was homozygous in all cases or all controls, or
3. deviated from Hardy-Weinberg equilibrium (HWE) in the controls. see more

discussion on HWE criterion in Note 3.

Our data analysis strategy is illustrated in Fig. 1. We developed a two-
stage sequential selection protocol to identify systematically genetic loci that
influence an individual’s risk of developing disease. A two-stage method was
initially suggested as a more cost effective approach for the genomic screen
(18). In stage I, a large number of markers was genotyped on a subset of
the samples. In stage II, additional markers in the interesting regions spanning
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Fig. 1. Two-stage selection method for a whole genome association study. The
details of the two-stage method are described in the main text.

the markers selected from stage I exceeding a certain predefined significance
level were genotyped on the expanded set of the samples. Recently, the two-
stage method was applied to a whole-genome association study (19) and it
was proposed to have greater power to detect two-locus gene interactions that
influence complex diseases (20). More discussion on the two-stage method can
be found in Note 4.

Our two-stage method extends to multi-locus gene interactions. The strategy
is based on the premise that complex disease is caused by combining quanti-
tative effects from multiple genetic loci, each of which has a small effect, but
jointly they can account for a significant portion of the risk factors for the
disease (13). The stage I step intends to identify each genetic locus that may
contribute to the genetic etiology of the disease. We used a GLM to identify
SNPs that may affect disease. With the GLM approach, we modeled the proba-
bility of being a case based on each SNP plus other potential explanatory
variables, which include x1 (family history positive, yes/no); x2 (alcohol use,
yes/no); x3 (tobacco use, yes/no); x4 (pickled vegetable consumption, yes/no);
and x5 (age, continuous):

Prob = 1/�1+ exp�−f�� where f�x� = a +b∗SNP +b1∗x1+b2∗x2+b3∗x3+b4

∗ x4+b5∗x5�

The three variables, tobacco use, pickled vegetable and age, were insignificant
in the GLMs for nearly all SNPs and they were dropped in further analysis.
Using a GLM for each SNP plus the two covariates (family history and alcohol
use), we computed the P-value of the GLM based on the difference between the
null deviance D0 and residual deviance D1 using the chi-square goodness-of-fit
test. The chi-square statistic is D0–D1 with 3 degrees of freedom.

A whole genome-wide association study requires a correction for multiple
comparisons. One possible adjustment for multiple testing is the use of
Bonferroni adjustment, which was used in our original work. However, our
more recent studies suggested that Bonferroni adjustment may not be desirable
for the following reasons.
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1. The reduction of type I error associated with the Bonferroni adjustment increases
the type II error.

2. With the increase in SNP density such as the Affymetrix 500K SNP chip, it is
unlikely to attain significant P-values with Bonferroni adjustment given limited
sample sizes.

3. If we argue that each individual SNP has a small effect on disease, we should look
for SNPs with moderate effect instead of strong effect (extremely small P-value)
when analyzed for each SNP. More discussion can be found in Note 5.

Stage II in our method aims to identify interacting genetic loci, which affect
disease through the joint effect of multiple genes. If we look for joint effects
of genetic interactions among multiple genetic loci, each of which has a small
and quantitative effect, we would naturally seek a factor that can combine
these genetic loci. One solution comes from the statistical approach known as
principal components analysis (PCA). If the phenotypic variation (case versus
control) is primarily determined by the genetic factor, which is the result of
interaction among multiple genetic loci, we would expect to find interaction of
these loci affecting the likelihood of developing disease. In other words, we
will find co-variation among these genetic loci in determining disease state.
Such co-variation can be captured by PCA and results in clustering of samples
into cases and controls. This was exactly what we found in our previous study
(13) and in the current analysis (Fig. 3).

An effective way to evaluate this two-stage selection method is to use
the PCA model to develop a classifier, and to assess the performance of the
classifier. We used PCA to visualize sample distribution in a two-dimensional
space defined by PC1 and PC2. In our analysis, case and control samples
formed the two cluster structures by PC1, which can be used to construct a
classifier to separate cases from controls. Our classifier is defined here as case if
PC1 ≤ 0, but control if PC1 > 0. Performance of the classifier can be evaluated
for accuracy as defined by (Tp+Tn)/100, sensitivity defined Tp/(Tp+Fn), and
specificity defined by Tn/(Fp+Tn), where Tp and Tn are the numbers of true
positives and true negatives, Fp and Fn are the numbers of false positives and
false negatives.

We have discussed the need to have a moderate threshold in stage I for
selecting SNPs instead of an extremely stringent P-value cutoff in GLM
analysis to accommodate interactions among multiple genetic loci that affect the
complex disease. To find a proper threshold, we ordered the SNPs with P-values
from GLM and selected SNPs with P-values smaller than the cutoffs indicated
in Table 1. We carried out PCA analysis using the number of SNPs indicated in
Table 1. The performance of the classifier was shown in Fig. 2. Four examples
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Table 1
Performance of the classifier based on PCA models. The definition of the terms
can be found in the legend to Fig. 2. The P-value cutoffs used to select SNPs
from GLM are provided here along with the number of SNPs selected

Number of SNPs P-value cutoff Accuracy Sensitivity Specificity

15 4.87E-07 0.80 0.82 0.78
31 7.72E-07 0.86 0.88 0.84
51 1.22E-06 0.86 0.84 0.88
93 1.94E-06 0.91 0.90 0.92
161 3.07E-06 0.93 0.94 0.92
278* 4.87E-06 0.94 0.94 0.94
493 7.72E-06 0.98 0.98 0.98
788 1.22E-05 0.97 0.98 0.96
1,352 1.94E-05 0.98 1.00 0.96
2,459 3.07E-05 0.97 0.98 0.96
3,393 3.90E-05 0.96 0.98 0.94
3,912 4.30E-05 0.96 0.98 0.94
4,860 4.87E-05 0.94 0.94 0.94
6,225 6.00E-05 0.86 0.88 0.84
6,604 6.50E-05 0.85 0.86 0.84
6,950 7.00E-05 0.86 0.88 0.84
7,444 7.72E-05 0.78 0.80 0.76
8,621 0.000122376 0.56 0.58 0.54
9,226 0.000193953 0.59 0.56 0.62
9,545 0.000307394 0.56 0.58 0.54
9,739 0.000487187 0.54 0.54 0.54

* Bonferroni-adjusted significance level of 0.05.

of samples projected in the 2-dimension space defined by PC1 and PC2 are
shown in Fig. 3. When nearly all SNPs were used in PCA (Fig. 3A), controls
and cases intermingled with each other, indicating a homogenous population in
this study. With a progressive increase in stringency in selecting SNPs (smaller
P-value cutoff and fewer numbers of SNPs selected), we saw an increase in
discrimination of case versus control in PC1 and corresponding increases in
accuracy, sensitivity, and specificity (Fig. 2 and Table 1). The performance
reached maximum at the P-value cutoff of 7.72 × 10−6, which yielded 493
SNPs with P-values smaller than the cutoff (Fig. 3B and Table 1). Further
decrease in P-value cutoff resulted in less discrimination between case and
control, and reduction in the performance. This is also true for the P-value
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Fig. 2. Performance of the classifier based on PCA models. Three performance
indices—accuracy, specificity, and sensitivity, are evaluated for classification of
samples by the PC1 score. Samples are classified as control if PC1 > 0. Samples are
classified as case if PC1 ≤ 0. The same data are shown in Table 1 with more details.

cutoff that corresponded to a Bonferroni adjustment (Fig. 3C and Table 1).
The P-value cutoff at 4.87 × 10−6 (p=0.05 after Bonferroni adjustment) yielded
278 genes. Further decrease in the number of SNPs generated even poorer
performance (Fig. 3D and Table 1). The best performance with the P-value
cutoff of 7.72 × 10−5 included 493 genes, which appear to capture most of
the genes that are involved in the gene–gene interaction and contributing to
disease. More discussion of the performance of the classifier can be found in
Note 5. Furthermore, we can find the genetic risk loci from the SNPs with
high loading (coefficient) in the first principal component (PC1). The absolute
values of loading in PC1 are plotted in Fig. 4 with descending order of loading
on x-axis. The curve shows a steep drop in loadings and it levels off on the
right side of the tail. This pattern suggests that we should look for complex
disease genes in those SNPs with a large loading value (about 30 SNPs in this
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Fig. 3. Two clusters of case and control samples analyzed by PCA. A: 9,739 SNPs
selected by P-value cutoff of 4.87 × 10−4 in GLM were used for PCA analysis. B: 493
SNPs selected by P-value cutoff of 7.72X10−6 in GLM were used for PCA analysis.
This analysis has the best performance for accuracy, specificity, and sensitivity. C: 278
SNPs selected by P-value cutoff of 4.87X10−6 in GLM were used for PCA analysis,
which corresponds to a Bonferroni adjusted significance level of 0.05. D: 15 SNPs
selected by P-value cutoff of 4.87 × 10−7 in GLM were used for PCA analysis. E –
cases; N – controls.

analysis) (see more discussion on Note 6). In our previous study, we used the
permutation test to evaluate the performance of the PCA model (13). A more
effective validation test should be done on a different set of samples. We are
currently pursuing validation of selected SNPs in large numbers of external
samples.

In conclusion, our two-stage sequential selection method provides an
effective strategy systematically to identify susceptibility genes for complex
diseases through whole genome-wide association study.
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Fig. 4. Distribution of the loadings in PC1. The absolute value of the loading
(coefficient) for SNP in PC1 is plotted according to the descending order. Note that
decrease in the absolute value of the loadings is very steep initially and the curve
flattens gradually.

4. Notes
1. Our goal in this pilot case-control study was to identify genes important for the

genetic etiology of ESCC. We selected individuals with almost identical features
in environmental exposures as well as demographic measures. Although small
variations in those environmental effects can be controlled for in GLM analysis, it
is more powerful to identify genetic factors if variations in non-genetic factors are
kept minimal. If the purpose is to identify gene–environment interactions, we can
introduce variations in environmental exposures in cases and controls in a balanced
manner. We can identify gene–environment interactions with GLM, and require
small P-values for the model, and moderate to small P-values for the coefficients
of both SNP and environmental factor.

2. In addition to the standard arrays, both Affymetrix and Illumina offer custom
arrays for high-throughput genotyping of selected SNPs. For genotyping of large
number of samples with limited number of SNPs, it is more cost effective to use
genotyping platforms such as Applied Biosystems Taqman®, SNaPshotTM, and
SNPlexTM.
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3. We found that the majority of SNPs with deviation from HWE were due to either
low minor allele frequency or the fact that the SNP sequence was present in
multiple genomic loci or low signal for genotype call. We evaluated the signal of
the genotype call by t-test for the quantity of (PM-MM) across 20 probes for the
SNP. Here PM denotes perfect match probe and MM denotes mismatch probe.
The removal of those SNP with deviation from HWE reduces false positives. We
used a P-value of 0.01 as a cutoff in the chi-square test for HWE.

4. There are many different versions of the two-stage method. The general concept
is to perform genome-wide genotyping on high density SNP chips on moderate
numbers of samples, usually in the range of a few hundred. Stage II focuses
on interesting regions selected from stage I and involves denser genotyping with
higher-density SNPs in specific regions, and on a large set of samples. The concept
of a two-stage method is evolving to include selection of individual SNPs in stage
I, and selection of two-locus gene interactions in stage II in whole-genome-wide
association studies for complex diseases. In this paper, our two-stage approach is
related to the second definition of the two-stage method. Furthermore, our method
can also be applied to multi-locus gene interactions in stage II.

5. Our selection criteria in stage I rely on both a P-value from the GLM model and
a P-value for the coefficient of the SNP (13). However, in the current analysis,
we found that we could simply choose a moderate P-value from the GLM model
and achieve very good performance for the PCA classifier. If the primary interest
is in the genetic factor, we should pay more attention to the SNP coefficient. If
the primary interest is in the gene-environment interaction, we need to pay more
attention to both SNP coefficient and coefficient for the environmental factor. Case
and control samples will need to include variation in the environmental factor.
We recommend trying several different criteria by considering GML model and/or
coefficients at different P-value cutoffs. The performance of selection criteria can
be evaluated by the PCA classifier as described in this paper.

6. The curve shown in Fig. 4 indicates a fairly complex dataset. The loadings show
gradual decrease. The ideal situation would be a sharp drop in the absolute value
of the loading for ∼10–20 SNPs. Those SNPs can be further analyzed in the
follow-up validation experiment
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Utilizing HapMap and Tagging SNPs

Christopher A. Haiman and Daniel O. Stram

Summary

Advancements in our understanding of variation in the human genome and rapid
improvements in high-throughput genotyping technology have made it feasible to study most of
the human genetic diversity that is due to common variations in relation to observable pheno-
types. Over the past few years, public SNP databases have matured and empirical genome-wide
SNP data, such as that generated by the International HapMap Project, have shown the utility
and efficiency of selecting and testing informative markers (“tag SNPs”) that exploit redun-
dancies among nearby polymorphisms due to linkage disequilibrium (LD). In this chapter, we
will demonstrate how to use the HapMap resource and the Haploview program to process and
analyze genetic data from HapMap, to evaluate LD relations between SNPs, and to select tagging
SNPs to be examined in disease association studies.

Key Words: single nucleotide polymorphism, linkage disequilibrium, tagging (tag) SNPs,
HapMap, Haploview.

Abbreviations: D′ – dprime; HWE – Hardy Weinberg equilibrium; kb – kilobase; LD
– linkage disequilibrium; MAF – minor allele frequency; populations mapped in the HapMap
project include: Utah residents with Northern and Western European ancestry (CEU); Han
Chinese (CHB); Japanese (JPT); Yorubans from Nigeria (YRI); Mb – megabase; SNP – single
nucleotide polymorphism.

1. Introduction
Global efforts to characterize genetic sequence variation (1,2) and rapid

advances in genotyping technology provide researchers with the necessary
tools to decipher the contribution of inherited genetic variation to disease risk
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in the population. In contrast to rare, highly penetrant alleles, which have a
clear role in straightforward heritable forms of disease, common, less penetrant
alleles have been hypothesized and more recently been validated to play an
important role in many common diseases, such as diabetes (3), cancer (4), and
autoimmune diseases (5), among others.

Approaches to identifying common disease alleles include testing each
putative causal allele directly for association with disease risk, such as a non-
synonymous single nucleotide polymorphism (SNP), in a gene positioned in a
biological pathway that is closely linked with the pathogenesis of a disease. The
success of this approach relies on cataloguing these alleles by re-sequencing
functional domains of genes, a costly and impractical route based on the large
number of genes that could be implicated in the pathogenesis of any one
disease. Recently, empirical studies of human genetic variation have revealed
that nearby SNPs show strong correlation (called linkage disequilibrium, or LD)
that exist in long, yet highly variable, segments across the human genome (6).
The coinheritance between SNP alleles enables most of the common genetic
variation in a region to be captured by genotyping subsets of SNPs (termed
haplotype-tagging SNPs, or tag SNPs) across a candidate gene or region of
interest. These tagging SNPs are selected to predict the un-genotyped SNPs in
the region (such as causal alleles), with the goal being to efficiently extract as
much information about genetic variation in a region for the lowest possible
cost; allowing for a more comprehensive and efficient method to test human
genetic variation for association with disease risk.

This indirect genomic approach can be divided into the following steps:
(1) defining the candidate region of interest, (2) empirically characterizing LD
patterns across the region, (3) selecting tagging SNPs based on a defined set
of criteria that highly predict all common variation, and (4) genotyping these
markers in genetic studies to test for association with disease risk. Below we
review the first three steps of this procedure. As a practical example of this
approach, the genetic data from the HapMap database will be utilized as the
foundation for fine-mapping chromosome 8q24 in individuals of European
ancestry. This region is commonly amplified in prostate cancer tumors (7). We
(8) and others (4) have also recently provided strong evidence to suggest that
it harbors a susceptibility locus for prostate cancer.

2. The HapMap Project
To accelerate the identification of common disease alleles, the International

HapMap Project in 2002 initiated the construction of a genome-wide SNP
database of common variation (2). This publicly available resource has recently
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been completed and provides valuable information about LD patterns across the
genome in multiple population samples. In brief, the project has genotyped over
3 million SNPs in 269 samples from four populations (90 Utah Residents (30
parent-offspring trios) with Northern and Western European Ancestry (CEU),
45 Han Chinese from Beijing, China (CHB), 44 Japanese from Tokyo, Japan
(JPT), and 90 Yorubans (30 trios) from Ibadan, Nigeria (YRI)). The average
spacing of the map is 1 SNP per kb, and this vast resource is currently being
used globally as a template for both LD-based candidate gene and genome-wide
association studies. In this chapter, we will demonstrate how to use the HapMap
resource, and Haploview (9), a commonly utilized program that can process
and analyze genetic data from HapMap, to evaluate LD relations between SNPs
and to select tagging SNPs for disease research.

3. The HapMap Project Resource
3.1. Browsing the HapMap Project Database

1. The HapMap database is publicly available on the web at www.hapmap.org/. To
access the genetic data select “Browse Project Data,” listed under the heading
Project Data in the left hand column of the home page. Data from the various
phases of the HapMap Project are available and can be selected from the pull-down
menu under Data Source. For the analysis presented below, select “HapMap Data
Rel#21/phase II Jul 06, on NCBI assembly, dbSNP b125” (see Note 1).

2. To search the HapMap database, gene name (common name or NCBI RefSeq
accession number), dbSNP rs#, chromosome name or band, or genetic coordinates
of the candidate region of interest must be provided under Landmark or Region.
In this example, we will limit our investigation to a 500-kb area located within a
3.8-Mb region at chromosome 8q24, from 125.68 to 129.48 Mb in build 35 of the
human genome sequence (13.9 cM), a region that has recently being implicated in
contributing to prostate cancer susceptibility. To access data for this segment type
“chr8:127325000..127824999” under Landmark or Region. Select the tab “Search”
to execute the request (see Note 2).

3. Under Overview, summary information for chromosome 8 is provided, including
the cytogenetic chromosome bands, the density of genes in the NCBI Entrez Gene
database as well as the number of SNPs in dbSNP that were genotyped by the
HapMap Project per 500 kb window. The red rectangle designates the region
of interest which is magnified below under the heading Details. Here, the SNPs
genotyped by the HapMap Project in 20 kb windows are shown, as are LocusLink
genes and mRNA sequences (e.g., NM_ 174911), which indicate annotated genes
and putative functional regions featured in NCBI’s RefSeq database.

4. On the right of the page, the Scroll/Zoom arrows, buttons and drop-down menu
can be used to magnify or minimize the view and reposition the display window
along the chromosome. Select “Show 20 kbp” from the drop down menu. More
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detail is now provided for each SNP genotyped in this 20 kb window, including
the SNP rs#, and SNP frequency in each of the HapMap populations (CEU, CHB,
JPT and YRI), illustrated as colored pie charts with different colors (blue or red)
representing the two different alleles for each SNP. Clicking on a SNP provides
detailed information pertaining to counts and frequencies of genotypes and alleles
as well as assay information. For a broader view, select “Show 100 kbp” from the
drop down menu; each genotyped SNP is now shown as a triangle (see Note 3). To
reposition the display to the left, click on the double arrow “«”. This will re-center
the graphical viewer to a 100-kb region spanning 127,425,000 to 127,524,999 as
illustrated in Fig. 1 (Top).

Fig. 1. Genome browser displays in HapMap. Top: The SNPs genotyped by the
HapMap Project spanning a 100 kb region on chromosome 8q24 (127,425,000 -
127,524,999). (Middle) A linkage disequilibrium plot for these SNPs. Bottom: The
phased haplotypes estimated for the CEU population in this region.
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3.2. Defining Linkage Disequilibrium Patterns in HapMap

1. The categories listed under Tracks at the bottom of the page enable additional
features to be displayed in the Details section. Check the box “plugin:LD plot” in
the Analysis section to view a graphic representation of LD patterns between SNPs
in the region. Refresh the page by clicking any of the “Update Image” buttons.
A linkage disequilibrium (LD) plot of the association between SNPs (represented
as boxes) is now shown below, with the color intensity of each box depicting
the strength of these relationships; here the white boxes indicate recombination
has occurred and that there is little or no LD between SNP pairs. This plot is
shown for the CEU population, which is the default setting. Here we see multiple
regions of LD across this 100-kb segment, with the largest segment or “block” of
LD spanning ∼35 kb (127,470k–127,505k). A linkage disequilibrium plot for the
CEU population is shown in Fig. 1 (Middle).

2. To annotate the LD plot select “Annotate LD Plot” listed as one of the options
in the pull down menu under Reports & Analysis. Then click “Configure.” Here,
one has the option to adjust the display settings of the LD plot, based on the size
of the region examined, the number of SNPs genotyped, and whether the box size
in the plot is displayed in a uniform size or proportional to the genomic distance
between SNPs. Other parameters include which LD measure to apply (D′, r2 or
LOD score) (LD Properties) (see Note 4), the range of LD values to define strong
LD, and which population samples to display (Populations). The default color
scheme is based on the combination of D′ and LOD score and is the same as the
standard color scheme provided in Haploview (discussed below). As an example,
select “dprime” in the LD Properties pull-down menu and specify “greater than
0.8 and less than 1.0” in the adjacent pull down menu. Turn all populations
“on” and set all orientations to “normal.” Select “Configure” to process (see
Note 2). LD patterns for CEU, CHB, JPT and YRI populations are now shown
separately.

3.3. Haplotype Patterns in HapMap

Phased haplotypes can be displayed by checking the box “plugin:Phased
Haplotype Display” in the Analysis section. Refresh the page by clicking
“Update Image.” Phased haplotypes are estimated in each population using a
maximum likelihood algorithm (JPT and CHB populations are combined) (see
Note 5). Haplotypes shown are represented by two colors (blue or yellow) for
each SNP allele. Haplotypes are shown for each subject (horizontally), with
regions of high LD represented by long stretches of the same color. Phased
haplotypes for CEUs across this 100 kb region are shown as an example in
Fig. 1 (bottom).
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3.4. Selecting Tag SNPs in a 50-kb Region at 8q24

HapMap uses algorithms in the Tagger program (10) to select tag SNPs.
More information about this program is available at the Tagger website
(www.broad.mit.edu/mpg/tagger/).

1. To select tagging SNPs across the 500 kb region of interest first reposition the
display by typing “chr8:127325000..127824999” under Landmark or Region and
click ‘Search.” The graphical LD and haplotype displays are not needed for tag
SNP selection so unselect all of the boxes listed under “Analysis” in the Tracks
section below. The HapMap Project allows users to customize the settings used to
select tagging SNPs. This can be done by selecting “Download tag SNP data” in
the Reports & Analysis section and then “Configure.” Here one can set preferences
(Fig. 2) such as the population group (see Note 6), the tag SNP selection algorithm
to be implemented (see Note 7), the pairwise correlation threshold (r2 value) for
predicting SNPs (see Note 8), and the minor allele frequency (MAF) cutoff of
SNPs to predict (see Note 9). For the present analysis select, Population: CEU,
Pairwise Methods: Tagger Pairwise, Rsquare cutoff: 0.8, and MAF cut off: 0.05.
SNPs can also be included or excluded preferentially as tagging tags by uploading
additional .txt files (see Note 10). To generate a report that summarizes the tag SNP
selection procedure choose “Save to disk” and then click the “Go” button. The file
will be saved to your local computer as a text (.txt) file. Open the file just saved in
Microsoft Excel (recommended). Three pieces of information are provided in the
report. The first section is titled, “HapMap tag SNPs:127 tag SNPs picked out for

Fig. 2. Picking tagging SNPs in HapMap. The tag SNP configuration page is an
interactive page that allows users to select tagging SNPs, using the Tagger program,
based on a number of user defined criteria. These custom settings include the population
of interest, the tag SNP selection algorithm to be implemented, the pairwise correlation
threshold (r2value) for predicting SNPs and the minor allele frequency (MAF) cutoff
of SNPs to predict, among others.
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population CEU chr8:127325000..127824999 using the algorithm-Tagger-pairwise
Tagging.” This report lists the 127 tag SNPs selected to predict all genotyped SNPs
(MAF ≥ 0.05) in HapMap for the CEU population across this region as well as
their genome position and MAF frequency (see Note 11). In the second section, the
number of SNPs predicted by the tagging SNPs is indicated (n = 456) as well as the
mean r2 value for predicting all SNPs (0.956). What follows is the list of these 456
common SNPs (“Marker”), the best tag SNP predictor of each SNP (“Best Test”)
and the corresponding r2 value. The last section reports each tag SNP (“Test”) and
the SNPs that are predicted by the tag with an r2 ≥ 0.8 (“Alleles Captured”).

2. Using the information provided in this file one can calculate the density of common
SNPs (MAF ≥ 0.05) genotyped by the HapMap Project across any region for each
population sample. For whites, 1 common SNP was genotyped every 1,096 base
pairs on average (456 SNPs across 500 kb).

3.5. Evaluating HapMap Data Using Haploview

1. Haploview is a commonly used program for processing and analyzing genetic
data and has been adapted to handle data from the HapMap Project (9). This
program is publicly available at www.broad.mit.edu/mpg/haploview/. To download
the program, go to the website and click on “download” in the section Haploview
version 3.32 (a later version may also be available). Haploview uses the Java
Runtime Environment (JRE). If this has not been previously installed, click on
the link www.java.com/ and follow the instructions to download the newest
version of the software. Next, download the Haploview program for your operating
system and run the Haploview Executable Jar File (the .exe file) to install the
program.

2. To use Haploview, first download the genotype data from the HapMap database.
To do this, select “Browse Project Data,” listed under Project Data at the HapMap
home page. Enter “chr8:127325000..127824999” under Landmark or Region. Then
choose “Download SNP genotype data” in the Reports & Analysis menu and click
“Configure.” Here, one can select the genetic data to be downloaded for a specific
population and the strand on which the SNP alleles will be presented (rs, does
not specify strand; fwd, forward strand relative to latest NCBI genome build; rev,
reverse strand in build). Select the CEU population, rs strand and “Save to disk.”
Then click “Go.” The file will be saved as a .hmp file.

3. Open the Haploview program by clicking on the Haploview icon (located in the
directory in which the program was saved). Once opened, there will be three choices
for loading genetic data into Haploview. Select “Load HapMap Data” (the tutorial
provided in the Haploview home page presents the other two file format options). In
the “Genotype data” panel, one can Browse for or type the path where the HapMap
data (.hmp file) was saved. Below, enter “500” in first box and “50” in the second
box; these are the default settings for the distance over which pairwise relationships
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between SNPs will be evaluated, and the percentage of missing data allowed per
subject, respectively. Click “OK” to proceed.

3.6. SNP Descriptions and Quality Control Checks in Haploview

Description information about each SNP is presented in the tab “Check
Markers” (Fig. 3). Here, SNPs are numbered based on their position provided
in the uploaded file (as shown in the first column). This SNP numbering
scheme is used to identify the SNP in all subsequent Haploview routines.
This display also shows the rs#, genome position, p-value for Hardy Weinberg
equilibrium (HWE), genotyping percentage, and MAF for each SNP, as well as
other descriptive information. In the last column, the unchecked boxes indicate
those SNPs that will not be further analyzed based on quality control filtering,

Fig. 3. Check markers in Haploview. The Check Markers display in Haploview
allows users to filter out SNPs based on specified quality control criteria which
include threshold for deviation from Hardy Weinberg equilibrium (HWE), minimum
genotyping success rate, number of Mendelian inheritance errors, and minor allele
frequency.
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e.g., HWE p-value, number of Mendelian inheritance errors or missing data, or
minor allele frequency. These criteria can be specified below. Enter 0.001 for
“HW p-value cutoff”; 80 for “Min genotype %”; 1 for “Max # mendel errors”;
and 0.05 for “Minimum minor allele freq.” Then click “Rescore Markers.”
The data loaded into Haploview came directly from HapMap, so the first three
filters have already been applied to the data. Subject exclusion criteria differ
slightly between HapMap and Haploview which could affect SNP filtering at
this step (see Note 12 before proceeding). Information in the table presented
can be saved by selecting “Export current tab to text” under File on the toolbar
and provide a file name. To view, open the resulting file in Microsoft Excel.

3.7. Linkage Disequilibrium Plots in Haploview

LD relations between the 456 common SNPs (MAF ≥ 0.05) (see Note 12)
across this 500 kb region are displayed graphically in the first tab, “LD plot”
(Fig. 4). At the top of the page are the rs#‘s for each SNP, SNP #, and their
positions relative to one another; only those SNPs checked in the “Check
Markers” table are presented. The map in the lower left corner provides an
overview of the LD pattern for the region. Clicking different spots on this
map allows one to navigate quickly to different areas of the plot, with the
region enclosed by the black rectangle being magnified in the presentation
above. In the enlarged map, the color of each box signifies the strength of
the relationship between SNP alleles. Here, the LD color display is based on
the D′/LOD score ratio (“Standard (D′/LOD)”) which is the default setting in
Haploview. Alternative LD presentation/color schemes can be selected under
“LD color scheme” located in Display on the toolbar (see Note 4) and a key
for each color scheme can be found in the upper right corner of the screen.
Right click in any box in the LD plot to present a detailed summary of LD
relations between SNPs, including the distance between SNPs, D′ value, D′

confidence bounds, LOD score, and r2 value. Regions of strong LD, commonly
referred to as “LD Blocks” (6), can be defined in Haploview using a number
of algorithms, including the confidence interval of D′ (which is the default
setting (6)), the 4-gamete rule, the solid spline of LD, or based on user defined
criteria. To modify block definitions, select “Define Blocks” under the Analysis
tab on the toolbar. Blocks are shown on the LD plot as black triangles and
denote regions where there is little evidence of recombination. Block numbers
as shown above each block moving left to right across the region, with block
size being dependent on the number of SNPs typed and extent of LD. Blocks
can also be edited by hand by clicking on a SNP number (located below the
rs#), and while holding down, dragging the cursor to the right or left; this
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Fig. 4. LD display in Haploview. The LD plot display in Haploview shows a high-
resolution illustration of the LD relations between SNPs selected in the Check Markers
tab. The shade of each square indicates the strength of the LD relationship between
pairs of SNPs. A broad overview of the LD patterns is shown in the left-hand corner
of the screen.

redefines the boundaries of the block. In this 500 kb region at 8q24, 35 LD
blocks are noted.

3.8. Viewing Haplotypes in Haploview

Click on the “Haplotypes” tab to view the haplotypes within defined LD
blocks (Fig. 5). Haplotypes are estimated from the genotype data using an
estimation-maximization algorithm (11). This display shows the haplotypes in
each LD block and their estimated frequency. SNP # is provided above the
haplotypes and A, C, G and T indicates the nucleotides for each SNP allele.
Again, only those SNPs checked in the “Check Markers” table are presented.
The width of the black lines between blocks represents the strength of the
correlation between haplotypes while the number located between adjacent
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Fig. 5. Viewing haplotypes in Haploview. The haplotype display in Haploview
shows each haplotype within defined LD Blocks, their estimated population frequency,
and relations with haplotypes in adjacent Blocks.

blocks is a multiallelic D′ value (12) which is a measure of the level of
recombination between blocks. At the bottom of the screen, one can modify
the display to show only those haplotypes above a specified frequency, and,
the presentation of the inter-block haplotype relations and the SNP alleles (as
a letter, number or color).

3.9. Selecting Tagging SNPs in Haploview

1. Haploview, like HapMap, also utilizes the Tagger program for selecting tagging
SNPs. Select the tab “Tagger,” located at the top right of the screen (the fourth
tab from the right). This will present two additional tabs titles “Configuration” and
“Results.” In the “Configuration” display (Fig. 6) all SNPs checked in the “Check
Markers” tab will be listed. The table shows SNP#, rs#, and position of each SNP
as well as three checkbox options for each SNP: “Force Include” allows SNPs to be
forced in as a tag SNP, “Force Exclude” prohibits a SNP from being selected as a
tag SNP, and “Capture this Allele” designates which SNPs are to be predicted (this
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Fig. 6. The tagger configuration panel in Haploview. This panel shows the SNPs
that will be used in the tag SNP selection process. Here, the user can select SNPs to be
forced in as a tag SNP, force out SNPs from being selected as a tag, and designate which
of the SNPs are to be predicted. Tagging options including pairwise and aggressive
tagging strategies can be selected at the bottom of the screen.

feature is not provided in HapMap). At the bottom of the screen, tagging options
include pairwise and aggressive tagging (see Note 7) and the r2 and LOD score
(used for aggressive tagging) thresholds for selecting tag SNPs. Choose “pairwise
tagging only” and set “r2threshold” to 0.8 (see Note 8). Click “Run Tagger” to run
the program.

2. The “Results” panel will be displayed (Fig 7). On the right is a table that includes
all 456 SNPs listed by SNP#. The next columns show each SNP (or test) that
is the best predictor of each SNP and their r2 value, respectively. If a SNP was
left unchecked in the “Capture this Allele” column on the “Configuration” panel,
then it will appear grayed out, while SNPs will appear in red if they could not be
successfully tagged. There should be no SNPs highlighted in gray or red in the
current display. On the top left, the “Tests” section shows the tag SNPs selected by
the program. Clicking on any one of these SNPs provides a list in the lower half
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Fig. 7. The tagger results panel in Haploview. On the right is a table of the SNPs
listed in the Tagger Configuration panel, the best test, i.e, predictor, of each SNP and
their r2 value, respectively. On the top left, the “Tests” section shows the tag SNPs
selected by Tagger. Selecting one of these SNPs will show a list in the lower half
of the panel of the SNPs captured by that SNP. At the bottom left of the screen is a
summary of the tagging results.

of the panel of the SNPs captured by that SNP. At the bottom left of this panel a
summary of the tagging SNP picking procedure is provided. Here the number of
alleles captured by the tags was 456 and the mean r2 = 0.956. The fraction of the
alleles captured was 100% based on an r2 threshold of ≥ 0.8. In the last line, the
number of tag SNPs are indicated (n = 127) as are the number of association tests
required to study common variation in HapMap predicted by this set of tags.

3. At the bottom of the page, the “Dump Tests File” button exports a list of all
tests selected by Tagger for association testing while the “Dump Tags File” button
exports a list of all tag SNPs selected by Tagger. For pairwise tagging these files
are identical. Similar summary information as that provided in HapMap can be
retrieved by selecting “Export Tab to Text” in the File menu. Open the saved file
in Microsoft Excel. The first section provides a list of the 456 common SNPs
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(“Allele”) and the tag SNP selected to predict each SNP (“Best Test”). Below in
this report is a list of each tag SNP (“Test”) and the SNPs that are predicted by the
tag with an r2 ≥ 0.8 (“Alleles Captured”) (see Note 11).

4. Conclusions
We have shown how to use two important tools for analysis of LD structure
and tag SNP selection, and given as an example tag SNP selection for the
region of chromosome 8 (8q24) suspected to harbor one or more prostate
cancer-causing genetic variants. The goals of further genetic analyses that
follow the tag SNP selection is to (1) localize and (2) identify the specific
variants that affect risk of disease as well as (3) define their biological modes
of action. The immediate next step then is to perform case-control studies (here
of prostate cancer) in which the selected tag SNPs will be genotyped in cases
and controls that are well matched by ethnicity, age, and sometimes other risk
factors. Analyses range from simple allele counting (the frequency of each
SNP in cases versus controls) through to more elaborate SNP-based logistic
regression analysis (fitting various penetrance models, multi-SNP models, etc.)
and haplotype-based logistic regression (13). These “association based” genetic
studies generally will reduce the uncertainty about the location of a disease-
causing variant from approximately 1 to 10 Mb (with linkage studies), to regions
with an extent of 5–20 kb or sometimes even less. Once a specific tag SNP
or tag SNP haplotype with the largest “effect” on risk is identified the task of
identifying and characterizing the specific variants, e.g. through sequencing of
DNA from cases carrying the specific tag SNPs, and protein and RNA analysis,
etc., follows. These and other issues are treated in other contributions (see
Chapters 1, 11, 13).

5. Notes
1. The SNP data in HapMap was produced in multiple genotyping laboratories using

different analytic platforms and thus, quality control was of paramount concern.
Strict quality control filters were applied to the data prior to making it publicly
available. Each SNP must have achieved the following standards: a completion
rate ≥ 80%, a HWE P ≥ 0.001, ≤ 1 Mendelian error (for CEU and YRI trios) and
≤ 1 discrepancy across 5 duplicates (2). Additional information about genotyping
and quality control protocols can be found at: www.hapmap.org/downloads/data-
handling_protocols.html.

2. The information entered under Landmark or Region and when configuring the
settings under Reports & Analysis is stored in a browser cookie. Because this
information is stored these configurations do not need to be re-entered each time.
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3. The color of each triangle can be customized based on SNP properties (coding
SNPs: non-synonymous versus synonymous; non-coding SNPs: intronic). To
customize, select “Highlight SNP Properties” listed as one of the options in the
pull down menu under Reports & Analysis and then “Configure”.

4. Many different statistics have been developed to assess LD between SNPs (14)
and some of the more common measures include D′, r2, and LOD score. In both
HapMap and Haploview, LD can be shown graphically in many ways. The default
settings are the D′/LOD score ratio, where the different colors indicate the strength
of the relationship between SNPs.

5. Additional information about the measures employed by HapMap can be found
under the help link, www.hapmap.org/gbrowse_help.html#LD. Additional infor-
mation about the haplotype estimation procedures employed by HapMap can be
found at help link, www.hapmap.org/gbrowse_help.html#phased_haps.

6. Genetic studies often include multiple racial and ethnic population samples. In
such studies, iterative tag SNP selection procedures are recommended for selecting
an optimal set of tags to be tested across populations. For example, in a study
consisting of both African Americans and whites, tags should first be selected in
one population (such as the CEU samples). The selected tags could then be “forced
in” as tags in the second population (YRI samples), followed by the selection of
additional population-specific tags required for the second group. This procedure
eliminates genotyping redundant SNPs that may be selected if tags are chosen
separately for each population.

7. Different methods and a variety of software have been developed for selecting tag
SNPs (reviewed in (15)). These basically fall into pairwise tagging (Tagger, as we
have discussed, and also LDSelect, (16)), multi-SNP tagging, and haplotype-based
tagging. In multi-SNP tagging as implemented by Tagger and others. (17) two or
more SNPs are used to construct predictors of other SNPs; this is termed by Tagger
as “aggressive” tagging. In haplotype-based tagging (as in the program tagSNPs)
(13) the prediction of common haplotypes is formalized by defining a special
R2 statistic. This method is “block based”; it predicts the common haplotypes
seen within blocks of high LD and ignores SNPs falling into regions of low
LD. Generally either multi-SNP or haplotype based tagging is more efficient than
pairwise tagging in regions of high LD, although these methods introduce some
additional complications to the case-control analyses.

8. An r2 value of 0.8 is the pairwise threshold used in most studies. However, the
value applied depends on the size of the association study in which the tags will be
tested and available genotyping funds. The statistical power to detect an association
with an unknown causal allele depends on the correlation between the selected
tag SNP and the unknown variant, and the size of the study. Applying a lower
r2value must be compensated for by increasing the sample size by 1/r2 (considered
the sample size inflation factor). Thus, for smaller studies, it is recommended
to use a higher r2 cutoff for selecting tagging SNPs (to increase the effective
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sample size). However, this may result in selecting more tag SNPs to genotype in
the association study which increases the overall costs of the study. Thus, there
is a tradeoff between information/power and cost that must be considered with
planning LD-based studies.

9. The MAF should be set no lower than 0.05 because the HapMap Project did not
target SNPs with allele frequencies lower than 0.05. The HapMap resource was
established to address the hypothesis that common alleles that are shared across
populations underlie many common phenotypes including susceptibility to disease.
Rare alleles are also likely to be important, and other efforts will be needed to
find and catalogue them for study.

10. HapMap allows for the inclusion, exclusion or preferential selection of tagging
SNPs. In SNP tagging studies it is customary to “force in” SNPs that should be
tested directly. These SNPs may include non-synonymous coding SNPs (which
were prioritized for genotyping in HapMap) or SNPs in functional regions such as
in gene promoters or regions that are highly conserved across species. A SNP may
also be deselected (“forced out”) or preferentially selected as a tag based on other
criteria, such as the potential to be genotyped successfully. For example, some
genotyping platforms, i.e, Illumina, provide a design score for SNP genotyping
assays which can be used to prioritize SNPs to select during the tag selection
procedure. To use these additional features, an auxillary text file (.txt) must be
created that lists the SNP IDs (rs#) which can be uploaded on the tag SNP
configuration page.

11. The Tagger programs that appear both in Haploview and built into HapMap may
give different resulting sets of tags, even when using the same settings. This is
because the search algorithm used to pick the SNPs actually has some stochastic
(random) aspects to it, so that if there are two SNPs that would perform equally
well as tags, the version of Tagger in HapMap might pick one, and in Haploview
the other. These alternatives are generally speaking equal in terms of the number
of tag SNPs and the efficiency of the tags picked. In fact, the version of Tagger in
Haploview can even give different results when run more than once on the same
data, again because of the stochastic algorithm used, whereas in HapMap the same
random choices are always used by Tagger when running the same data.

12. Unlike in HapMap, in Haploview trios with Mendelian inheritance errors are
excluded from further analysis. This may result in differences in the MAFs and
genotyping success rates calculated for individual SNPs and thus, the number of
SNPs that pass the filtering criteria in each program. In this example, of the 671
SNPs dumped from HapMap and loaded into Haploview, 455 SNPs are estimated
to have a MAF ≥ 0.05 and a genotyping success rate ≥ 80%, corresponding to
455 boxes that will be checked. This is 1 less than the number of SNPs that
passed the filtering criteria in HapMap (n = 456); SNP rs11985629 was excluded
in Haploview because of the issue described above. A Mendelian error resulted in
a drop in the genotyping call rate to 76.7% (it was 80% in HapMap). To maintain
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consistency in the number of SNPs used in the analyses that follow (n = 456),
check the box in the “Rating” column to include this SNP.
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Measuring the Effects of Genes and Environment
on Complex Traits

Jennifer H. Barrett

Summary

Complex diseases and traits are influenced by a combination of genetic and environmental
risk factors, some of which may be known, and many of which are unknown. It is possible to
estimate the relative importance of the influence of genes and environment on a trait by studying
correlations in the trait in related individuals. Known risk factors can be measured and included
in the statistical models to understand disease etiology better. The joint effect of specific genes
and environmental exposures can be estimated by measuring these in individuals, not necessarily
related, with and without the disease of interest or with a range of trait values. These methods
are illustrated by considering two example analyses in detail. The first is an analysis of a study
of adolescent twins, quantifying the effect of genes and environment, including measured sun
exposure, on the density of nevi. The second is an analysis of a case-control study, examining
the joint effect of the GSTT1 gene and vegetable intake on risk of colorectal cancer.

Key Words: genes; environment; complex traits; variance components; gene-environment
interaction; twins; case-control study; statistical models.

Abbreviations: DZ – dizygotic, GST – glutathione S transferase, ICC – intraclass corre-
lation coefficient, MZ – monozygotic

1. Introduction
Most common diseases and clinically relevant traits are influenced by a large

number of genetic and environmental risk factors, most of which individually
have only a modest effect on the risk of disease or on the trait. Moreover, the
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manner in which these factors influence disease risk is likely to be complex, so
that the joint effect of multiple risk factors may not be predictable from their
individual marginal effects. In this chapter some epidemiological and statis-
tical methods for investigating the etiology of such complex or multifactorial
diseases or traits, and for furthering understanding of the joint effects of or
interaction between risk factors are presented.

Two types of clinically motivated questions in this general field of enquiry
are considered, and will be illustrated by one example of each. The first
question of interest concerns estimation of the relative contributions of genes
and environment on the trait or on disease risk. By measuring the binary
disease state or the quantitative trait (the “phenotype”) on a sample of related
individuals, it is possible to estimate the relative importance of genes and
environment, even though these may not have been measured. The second
question concerns estimation of the effect on phenotype of specific measured
genetic and environmental factors and investigation of their joint mode of
action. This can be addressed by measuring phenotype and the specific
environmental and genetic factors of interest in individuals, who may or may
not be biologically related.

Example 1: Quantifying the overall effects of genes and environment on a
quantitative trait—investigating nevus density and sun exposure by studying
twins.

A high density of benign melanocytic nevi is an important risk factor for
melanoma (1), and hence there is considerable interest in understanding what
determines nevus phenotype. To what extent are nevi determined by genetic
factors, and to what extent by environmental risk factors, in particular sun
exposure? This question can be addressed by studying twins, using only their
nevus phenotype and self-reported sun exposure (2–4).

Example 2: Investigating the joint effect of specific genotypes and
environmental factors on risk of disease—investigating the joint effect of
glutathione-S-transferase (GST) genes and dietary factors on risk of colorectal
cancer.

Diet is known to be an important influence on the risk of colorectal cancer.
High vegetable consumption has been associated with decreased risk (5),
although not consistently (6), and high consumption of red meat is associated
with increased risk (7). Many genes, including GSTs, have now been
identified that influence the metabolic pathways involved in processing dietary
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carcinogens or anti-carcinogens. Thus, a question of interest is whether or not
an individual’s genotype affects the extent to which different dietary factors
influence risk. The protective effect of cruciferous vegetables may in part be
due to isothiocyanates, an ingredient with a known anti-carcinogenic effect (6).
Here we investigate whether the protective effect afforded by high vegetable
consumption depends on GSTT1 genotype. This question can be addressed by
studying unrelated individuals with and without colorectal cancer (cases and
controls) from the same population, and measuring genotype and dietary intake
in the study participants.

2. Materials
Statistical software is needed for these analyses:

1. Stata Statistical Software Release 9 (College Station, TX: StataCorp, 2005) or a
similar general statistical software package is required for both types of analyses
presented here.

2. MX software is a matrix algebra interpreter and numerical optimizer suitable
for structural equation modelling and other types of statistical analyses. It is
written and maintained by Michael Neale and others from the Virginia Common-
wealth University, and is freely available to download from the webpage
www.vipbg.vcu.edu/∼mx/mxgui/. The web page also includes numerous example
scripts, including analyses of twin studies.

3. SOLAR (Sequential Oligogenic Linkage Analysis Routines) is software for genetic
variance components analysis. It is written and maintained by John Blangero and
colleagues from the Southwest Foundation for Biomedical Research and is freely
available to download from www.sfbr.org/solar/.

3. Methods
3.1. Quantifying the Overall Effects of Genes and Environment
on a Quantitative Trait—Investigating Nevus Density and Sun
Exposure by Studying Twins

Many traits, including nevus density, are correlated within families. By
modeling the pattern of correlations between different types of relative-pairs,
it is possible to distinguish between correlation due to shared genes and
correlation due to shared environment. Hence estimates can be made of the
“heritability” of the trait, i.e., the proportion of variability due to genes.

Although other family structures can be used, the twin design is very simple
and powerful for such studies. Twin pairs are ascertained from the population,
taking no account of trait values or zygosity status, i.e., there is no selection
for extreme traits, and both monozygotic (MZ) and dizygotic (DZ) twin pairs
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are included. The phenotype of interest is measured on each twin in the study
(see Note 1), along with any potential confounding factors, i.e., factors related
to both the trait and to potential environmental factors, such as age and sex.
If there is also interest in incorporating the effects of known environmental
factors (see 3.1.3), these exposures are also recorded for each study participant.

It is crucial to the success of this method that the relationship between the
twins is accurately known. Zygosity status can be obtained from the twins
themselves by self-report, although this is unlikely to have 100% accuracy.
If DNA is already being collected from study participants, it is advisable to
genotype a small number of highly polymorphic markers across the genome to
check zygosity status in same-sex twin pairs (see Note 2).

3.1.1. Preliminary Analysis

The method employed for the primary analysis of heritability assumes that the
phenotype is approximately normally distributed. It is also advisable to remove the
effect of any extraneous factors that have a major influence on phenotype (in this
case age and sex). Therefore, before addressing the main question it is important

0
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Fig. 1. Histogram showing distribution of nevus densities for 426 adolescent twins
from the UK.
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to have a proper understanding of the distribution of the trait and its relationship
with other variables. The following steps should be carried out:

1. Calculate summary statistics (mean, median, range, standard deviation) of the
phenotype for the overall sample.

2. Plot a histogram of the distribution of the phenotype. Figure 1 shows the distribution
of nevus density in 426 adolescent twins from the UK (3). It can be seen that the
distribution is highly skewed. As a result of this, the data were log-transformed
before further analysis, which resulted in an approximately normal distribution.

3. Regress phenotype on potential confounding variables, e.g., age and sex. This can be
done using any standard statistical software package such as Stata (see Materials).
For a continuous outcome such as nevus density, the regression equation is

yi = �+�xi +�i

where yi is the phenotype for individual i (in this case loge(nevus density)), xi is
a vector of covariates for individual i, �i is a normally distributed error term with
mean 0, and � and � are the coefficients to be estimated (see Note 3).

4. From the results of the regression model, examine the estimates of the parameters
� and their confidence intervals. Any covariates that significantly influence the
phenotype should be retained in the model. Other covariates can be included if
there is a good a priori reason for doing so. In our example sex was a significant
predictor of nevus density (estimated coefficient −0.19, 95% confidence interval
(CI) (−0.31, −0.08), P = 0.001), indicating that the log nevus density was on
average 0.19 units higher in boys than girls. Although age was not a significant
predictor of nevus density in this sample, where the age ranged from 10 to 18 years,
it was retained in the model, since it is known that nevus density does vary with
age (8).

5. Repeat the regression analysis with fewer covariates if necessary and examine the
distribution of residuals from the model (the residuals are the differences between
the observed phenotypes yi and the values that are predicted by the model on the
basis of the observed covariates xi and the parameter estimates). Since it is planned
to use the residuals from the model in the heritability analysis, it is necessary to
check their distribution. Since the raw phenotype data in our example were log-
transformed to achieve normality, the distribution of residuals would be likely to
be normal, and this was indeed the case. This results in a new “phenotype” suitable
for use in the heritability analysis.

3.1.2. Heritability Analysis

The main question posed—To what extent are nevi determined by genetic
and to what extent by environmental risk factors?—can now be addressed. The
idea is to examine the correlation in phenotype between twin pairs. In a twin
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study there are only two types of relative pairs—DZ twins and MZ twins. The
higher the correlations in phenotype are among MZ compared with DZ pairs,
the greater the genetic component must be.

1. This can first be explored visually by drawing scatterplots of the phenotypes of
one twin from each pair versus their co-twin, separately in DZ pairs and in MZ
pairs. Figure 2 illustrates this for the example dataset. By visual inspection it is
clear that the correlation is considerably stronger in MZ pairs.

2. A useful preliminary analysis is to estimate the intraclass correlation coefficient
(ICC), measuring the correlations in phenotype between co-twins in MZ and
DZ twin pairs, using one-way analysis of variance. The outcome measure is the
(transformed, adjusted) phenotype and the classes are defined by the twin-pairs.
More formally,

yij = �+ zi +�ij

where yij is the phenotype for the jth twin (j = 1 or 2) in twin pair i, zi is a random
effect for twin pair i representing systematic deviation of that twin-pair from the
population mean, and �ij represents individual-level variation. The random effect
zi is assumed to be normally distributed with mean 0 and variance �2

u , and �ij

is assumed to be normally distributed with mean 0 and variance �2
e . The ICC is

�2
u / (�2

u + �2
e ), i.e., the proportion of the total variance that is between, rather than

within, twin pairs. It can be seen that if there is very little variation within each
twin pair (the twins having very similar phenotypes) then �2

e will be small and the
ICC close to 1. Conversely, if twins are no more like each other than they are like
other individuals, then the twin variable zi does not explain any of the variance
and the ICC is close to 0. In the example study the estimated ICC for DZ twins
was 0.61 (95% CI (0.49, 0.72)) and for MZ twins was 0.94 (95% CI (0.91, 0.96)).
(see Note 4).

3. The ICCs for DZ and MZ twin pairs can be compared using a simple test based on
Fisher’s z-transformation, which transforms a correlation coefficient r to a normal
statistic:

z�r� = ½loge��1+ r�/�1− r�	

The test statistic for the difference in ICCs is

Z = �z�ICCM�− z�ICCD�	/
√

�1/�m −2�+1/�d −2��

where ICCM and ICCD are the ICCs for MZ and DZ twin pairs and m and d are the
numbers of MZ and DZ twin-pairs respectively (9). Under the null hypothesis of
equal ICCs, Z has an approximately standard normal distribution. In the example
study, Z = 7.4, so there is overwhelming evidence that the ICCs are indeed different.
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Fig. 2. a: Scatterplot demonstrating the correlation in phenotypes of DZ twins based
on 110 pairs. b: Scatterplot demonstrating higher correlation in phenotypes of MZ
twins based on 103 pairs.
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4. To estimate heritability, first calculate the variance-covariance matrices for the
phenotypes of DZ and MZ twin pairs separately. The matrix for DZ twin pairs
from the example data is shown below:

D =
(

0
3710 −
0
2285 0
3710

)

The diagonal entries represent the phenotypic variance and the estimates are based
on all 220 DZ twins (from 110 pairs) since there is nothing to distinguish the two
twins in a pair (10). The off-diagonal entry is the covariance between the two twins
in a pair. The corresponding matrix for the 103 MZ twin pairs in the example
data is

M =
(

0
3605 −
0
3386 0
3605

)

5. The final step in the analysis is to model the observed variance-covariance
matrices by considering the underlying components of variance. Conceptually the
phenotype Y, after standardization, can be modelled as a linear combination of three
standard normally distributed latent variables, representing additive genetic effects
(A), environmental effects shared by co-twins (C), and individual environmental
effects which include measurement error (E):

Y = aA + cC+ eE

The analysis is based on the fact that MZ twins share all their genes and DZ
twins share on average half their genes, and this contrast is exploited to estimate
the genetic component of variance. It is further assumed that MZ and DZ twin
pairs share environmental risk factors to the same extent (see Note 5). Then the
variance-covariance matrices for DZ and MZ twins are predicted (11) to be

D =
(

a2 + c2 + e2 −
1
2 a2 + c2 a2 + c2 + e2

)

M =
(

a2 + c2 + e2 −
a2 + c2 a2 + c2 + e2

)

Specialist software such as MX (see Materials) can then be used to fit this model to
the observed matrices. In the example data set the additive component of variance
a2 is estimated at 65.5% (95% CI (46.9, 89.9)), the environmental component
shared between co-twins c2 is estimated to be 28.5% (95% CI (4.0, 47.3)) and the
residual individual level component e2 6.0% (95% CI (4.4, 8.3)).
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3.1.3. Incorporating Measured Environmental Exposure
into Heritability Analysis

It is known that higher levels of sun exposure lead to an increase in
nevus density (12). By incorporating measurements of sun exposure into the
heritability analysis, the relative importance of the factors contributing to nevus
phenotype can be estimated in more detail.

1. In the example study various measures of sun exposure were used, based on
responses to questions about time spent on the beach, sunbathing and pursuing
other outdoor activities both in the UK and on holidays in hotter countries. A
clear relationship with nevus phenotype was found for sun exposure on holiday in
countries hotter than the UK (2). For example, those in the highest quartile of time
spent on the beach in hotter countries had a nevus density 15 per m2 higher than
those in the lowest quartile (after adjusting for age, sex, skin type, eye and hair
color).

2. How much of the variance due to environmental exposure (c2 + e2) is due to
(measured) sun exposure? This question can be addressed by including sun exposure
in the variance components model. Again specialist software is available for such
analyses and we illustrate this using SOLAR (see Materials), which allows flexible
inclusion of covariates. First, the heritability analysis (see 3.1.2) with no covariates
is run in SOLAR for comparability, this time using the log transformed nevus
densities. The estimates obtained are a2 = 71.3%, c2 = 22.6% and e2 = 6.1%,
differing slightly from the estimates in section 3.1.2 because the effects of age and
sex have not been removed.

3. Next a model is fitted including sun exposure (time spent on holiday in hot countries)
as a covariate. By comparing the results of these analyses, estimates can be derived
of the proportion of the variance due to environmental exposure that is explained
by measured sun exposure.

SOLAR reports the proportion of total variability in the trait that is explained
by the covariate(s), estimates of residual heritability, which is the heritability of the
trait after removing the variability explained by the covariate, and similar measures
for the shared and individual environmental components. In this model, it is found
that 8.4% of the variance is explained by this measure of sun exposure. The residual
heritability rises to over 79.5%, indicating that an even greater proportion of the
remaining variance is genetic. The residual estimates of common and individual
environment are 13.7% and 6.8% respectively. These can be expressed as the
proportion of the total variance by scaling as follows:

a2 = 79
5% × �100−8
4�/100 = 72
9%

c2 = 13
7% × �100−8
4�/100 = 12
5%

e2 = 6
8% × �100−8
4�/100 = 6
2%
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the remaining 8.4% being due to measured sun exposure. Inclusion of the sun
exposure measure has reduced the unaccounted for shared environmental exposure
from 22.6% to 12.5%, and had little impact on the estimates of genetic and individual
environmental components of variance. This is because sun exposure is an environ-
mental rather than genetic factor, and the time spent on holiday abroad is likely
to represent exposure shared by co-twins, all of whom were aged 10–18 years
and probably holiday together. In summary, between one third and one half of the
variance due to common environmental exposure has been explained by this simple
measure of sun exposure.

3.2. Investigating the Joint Effect of Specific Genotypes
and Environmental Factors on Risk of Disease—Investigating the Joint
Effect of GST Genes and Dietary Factors on Risk of Colorectal Cancer

There are many examples of known environmental risk (or protective) factors
for disease where it would be of value to know whether or not the associated
risk was influenced by the individual’s genotype. This could ultimately be
important for public health measures but it can also provide information about
the etiological process. For a specific environmental exposure E and genotype
G, such questions can be addressed by comparing the risk associated with E in
subjects with genotype G to the risk in subjects without the G genotype.

Other designs are possible, such as using unaffected family members as
controls, but a simple design is to conduct a case-control study. Cases with
the disease (preferably incident) are ascertained and compared with unrelated
controls from the same population, possibly matched for important potential
confounding factors such as age and sex. Both E and G are measured on
each study participant, along with any potential confounding factors i.e. factors
related to both the disease and to E.

3.2.1. Preliminary analysis

1. Environmental exposure may be measured on an interval scale or as a binary or
other categorical variable. In this example usual consumption of vegetables was
measured using a food frequency questionnaire and also a simple cross-check
question, which asked about average non-itemized vegetable consumption (13).
Such data are subject to considerable measurement error, but are nonetheless able
to distinguish between low and high consumers. A variable is often created based
on the quantiles of the distribution in controls, and in this example approximate
tertiles of the cross-check question were used, creating the categories of low,
medium and high vegetable consumption.

2. As a quality control measure, the genotype distribution in controls should be tested
for consistency with Hardy-Weinberg equilibrium. With data only available on
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unrelated individuals this is one of the only statistical checks for genotype error
that can be performed. Although other factors can also give rise to departure from
the expected distribution, genotype error should be investigated as one of the most
likely explanations (14).

3. The main effect of G on disease can be examined by drawing up a contingency table
of disease status by genotype. Odds ratios can be calculated comparing the risk of
disease in each of the other genotype categories compared with homozygotes for the
most common allele. Except in the case of single nucleotide polymorphisms, there
may be too many genotypes to consider in this way, but if prior knowledge permits
then it may be possible to combine genotypes into a small number of groups.
In this example, the GSTT1 polymorphism investigated is related to function, so
that homozygotes for the polymorphism are predicted to have deficient phenotype
(complete loss of enzyme function), those with no copy of the polymorphism have
fast/active phenotype and those with one copy have intermediate phenotype (15).
In the example study the cases and controls were matched for age and sex, so
the odds ratios were calculated from conditional logistic regression analysis of the
matched pairs. This can be done using any standard statistical software package
such as Stata (see Materials). No effect of GSTT1 genotype on colorectal cancer
risk was observed (odds ratio (OR) 0.7 (95% CI (0.5, 1.0)) for heterozygotes and
OR 1.1 (95% CI (0.7, 1.6)) for those with predicted deficient phenotype compared
with those with predicted fast phenotype).

4. The effect of E on disease risk can similarly be examined. In this case vegetable
consumption showed weak evidence of an effect on risk of colorectal cancer, with
reduced risk for those in the top two tertiles (OR 0.6, 95% CI (0.4, 0.9) for the
intermediate group and OR 0.7 (0.5, 1.0) for the high consumers) compared with
the low consumers (13).

5. Association between disease status and also E and G and any potential confounding
variables (such as age and sex) can be examined to decide what confounders should
be considered in the analysis. In this example, the study design included matching
for age and sex, but other potential confounders included smoking history, body
mass index, and other dietary risk factors.

3.2.2. Joint Effect on Risk of Genetic and Environmental Risk Factors

On the basis of the analysis of main effects, it may be decided to group
categorical variables into smaller numbers of categories to evaluate joint effects.
In this case vegetable intake was categorized into just two groups, low versus
intermediate or high, since the last two groups show a similar reduction in risk.
The GSTT1 genotype is still considered as three categories.

1. One way to look at combined effects is to compare individuals with each
combination of risk factors with the same baseline category. Here we take the
baseline category of GSTT1-deficient genotype and low vegetable consumption,
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and estimate the relative risk associated with each other combination of risk factors
by including these as a 6-level factor in a logistic regression model (Table 1).
Because the data consist of case-control pairs, matched for age and sex, conditional
logistic regression was used. It can be seen that compared with this baseline all
other categories are at lower risk of colorectal cancer, with similar estimated odds
ratios of around 0.3. Those at highest risk of colorectal cancer are thus individuals
with the combination of deficient genotype and low vegetable intake.

2. Does the effect on risk of E differ depending on the presence/absence or value
of G? To examine this, the data can be stratified by genotype and within each
stratum disease status regressed on the environmental exposure. In this example,
the OR for high/intermediate vegetable consumption compared with low is 0.26
(95% CI (0.12, 0.58)) in the deficient genotype group, 0.62 (0.40, 0.96) in the
intermediate group and 1.39 (0.81, 2.37) in the fast group. Thus, the protective
effect of vegetable consumption is seen most strongly in those with deficient
genotype and not at all in those with the fast genotype.

3. To test whether these differences are statistically significant, a model can be
estimated including G, E, and the interaction between them (see Note 6). This
additional term or terms allow the effect of E to differ across levels of G. Signifi-
cance of the interaction is assessed by carrying out a likelihood ratio test comparing
the model with interaction with the model excluding interaction. In the example
data there is clear evidence for interaction (P = 0.006) (see Note 7).

In summary, the analysis shows that the protective effect of vegetable intake
on risk depends on genotype. In those with fast genotype, low vegetable
consumption is not associated with increased risk, whereas those with low
intake and deficient genotype are at the greatest risk.

Table 1
Combined effect of G (GSTT1 genotype) and E (vegetable consumption) on risk
of colorectal cancer

GSTT1 Genotype Vegetable Consumption OR (95% CI)

Deficient Low 1 (baseline)
Intermediate Low 0.37 (0.15, 0.87)
Fast Low 0.26 (0.10, 0.66)
Deficient Intermediate or high 0.25 (0.10, 0.62)
Intermediate Intermediate or high 0.23 (0.10, 0.53)
Fast Intermediate or high 0.34 (0.15, 0.78)
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4. Notes
1. There are many important ethical and methodological considerations in conducting

epidemiological studies that are beyond the scope of this chapter. Here we assume
for example that variables are measured as accurately as possible and that care is
taken to minimize potential sources of bias.

2. Twin pairs of opposite sex are clearly DZ. For all same-sex twin pairs with alleles
identical (by state) at each genotyped marker, the probability of dizygosity can
be calculated based on the observed genotype using estimated population allele
frequencies. If sufficiently polymorphic, only a small number of markers (6–10) are
needed to classify twins concordant at these markers as MZ with high probability
(P > 0.999). Any twin pair discordant at any genotyped marker would be classed
as DZ by definition, but it is important to bear in mind the possibility of genotype
error. It is thus better to use a small set of highly reliable markers than to include
any less reliable markers in this calculation. If twins seem to be discordant at one
marker only this should be checked carefully.

3. This is a simplified model in that, if all twins are used, it ignores the correlations
between twins in a family. This will lead to an underestimate of the standard errors
of the estimated coefficients. However, for the purposes of this analysis (adjusting
for covariates) the model is adequate. Alternatives, which would produce similar
adjusted values, would be to assess statistical significance using a random effects
model allowing for clustering within families, or to analyse one twin selected at
random from each pair.

4. It might have been expected that correlation would be measured using the standard
Pearson correlation coefficient. However, twins within a pair are not distin-
guishable in any natural way. If we labeled the twins twin1 and twin2, the labelling
would be entirely arbitrary (with respect to phenotype). Hence ICCs, which do not
impose this ordering, provide a preferable measure.

5. The assumption that DZ twins share environmental exposures to the same extent
as MZ pairs is of course open to question, but it is reasonable to assume that
differences will generally be small, certainly compared with the difference in the
proportion of genes shared.

6. Statistical interaction is not equivalent to biological interaction. One important
point is that statistical interaction is model and scale dependent. With simple
binary risk factors G and E, statistical interaction means that the data are not
consistent with a particular model that predicts the joint effects on risk of G
and E. Most commonly, models are used based on multiplicative effects, as has
been done here by using a logistic regression model. Statistical interaction simply
indicates that the data are not consistent with a multiplicative joint effect. Lack
of statistical interaction is still consistent with a higher risk to those with both G
and E and certainly does not rule out biological interaction. For example, if G
alone doubles disease risk and E alone trebles risk, then under a multiplicative
model with no interaction the combined effect would be to increase risk 6-fold.
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Statistical interaction simply implies the risk is greater than (or alternatively less
than) this. Particular care must be taken in interpreting evidence of interaction
when E is measured on a continuous scale, since whether or not there is statistical
interaction may depend on the scale of measurement, e.g., whether or not the data
are log-transformed.

7. A P-value has been quoted here, but in practice the interpretation of results
depends very much on the context, since studies of gene-environment interaction
are often conducted in the context of multiple testing. Bonferroni correction is
usually inappropriate, both because the tests may not be independent and because
the number of tests is not well specified (even if 10 hypotheses are tested in one
study, another 10 equally likely hypotheses may be tested later). The interpretation
of results depends on the prior probability of the hypothesis being true and on the
study power. These considerations have been put into a more formal framework,
from which estimates can be derived of the probability that the result is a true
finding (16).
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Microarrays—Planning Your Experiment

Jean Yee Hwa Yang

Summary

The rapid increase in the use of microarray studies has generated many questions on how
to plan and design experiments that will effectively utilize this technology. Investigators often
require answers to questions relating to microarray platforms, RNA samples, options for repli-
cation, allocation of samples to arrays, sample sizes, appropriate downstream analysis, and many
others. Careful consideration of these issues is critical to ensure the efficiency and reliability of
the actual microarray experiments, and will assist in enhancing interpretability of the experimental
results.

Key Words: Experimental design; microarray; gene expression; probe design; replication;
randomization.

1. Introduction
Good experimental design in microarray studies simplifies analysis and

enhances interpretation of data. Various considerations go into the planning
of an effective experiment. In the last few years, many of the publications on
experimental strategies have focused on the identification of an efficient design.
While this is still an important component, there are broader considerations. In
this chapter, the various aspects involved in planning a successful microarray
experiment will be described.
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2. Materials
When planning an experiment, a number of general issues need to be

identified to help translate the overall biological questions into a more defined
and appropriate statistical framework. Some of these include

1. Aim of the experiments: This refers to the biological question of interest. Given
that microarrays are utilized in a wide variety of contexts, this consideration can be
very specific or general. For example, a researcher can study a focused hypothesis
such as identifying differences between wild-type and mutant mice. Alternatively,
a research can perform an experiment with a very general aim in mind, such as
profiling gene expression from a collection of clinical patients and then attempt
to generate a possible hypothesis from the data. Regardless of the type of aim, it
is important to consider how these aims will contribute to understanding further
the long-term goal of the research (see Note 1 and Chapters 6–9 for examples of
different microarray studies including experimental designs).

2. Main comparison: Researchers often wish to investigate multiple questions in a
single experiment. Given that each question has implications for experimental design
and downstream analysis, researchers need to clarify the specific questions being
asked and subsequently, the most important question or comparisons. One such
example is the intention to derive simultaneously a classification rule that best
predicts survival outcome of cancer patients as well as to identify a collection of
biomarkers that best distinguish the survival outcome.

3. Resources: This determines the size and scale of the experiment and is predomi-
nantly dependent on the number of samples available, the amount of mRNA and
ultimately funding for the experiment.

4. Previous experiments: It is not always clear whether changes between mRNA are
detectable by microarray experiments with many of the genome-wide profiling
studies. For such situations pilot studies to determine the feasibility of a larger study
should be considered.

5. Verification method: It is possible to overlook the limitation of the arrays and the
way in which these data contribute to the overall research goal as researchers get
caught up in the novelty of a technology. As microarray is still a relatively new
experimental approach, large variability in results can be expected. Consideration
needs to be given to methods required to verify results obtained from microarrays.

3. Methods
There are two main aspects to planning a successful microarray experiment.

The first concerns the actual design or selection of the microarray. This refers
to the choice of DNA probes to print onto the solid substrate, e.g., a membrane,
glass slide, or silicon chip, and where they are to be printed. The second aspect
concerns the planning and design of the actual hybridizations. This often refers
to the allocation of target samples to the microarrays, the nature, and the number
of replications required (see Note 2).
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3.1. Selection of Microarray

Selection of an appropriate microarray platform is an essential component in
planning microarray experiments. There are many recent publications on exper-
imental designs and downstream analysis of gene expression data. However,
the actual design and the effects of the microarray platform are often ignored or
not considered. As scientists propose more complex array based experiments,
it is essential that serious consideration is given to this aspect of experimental
design during planning.

The first question that any investigator faces when selecting a microarray
platform is whether to invest in designing in-house arrays or to purchase pre-
fabricated arrays. The purchase of pre-fabricated arrays refers to purchasing
arrays produced by commercial companies and non-commercial facilities.
Naturally, this will depend on the availability of an appropriate and satisfactory
platform and the size of the experiment. Pre-fabricated arrays are generally
preferred for genome-wide scans of popular genomes such as human, mouse
or rat. Section 3.1.2 will discuss the selection of an appropriate platform and
libraries from the many choices available. The demand for in-house design and
production of boutique and custom arrays often comes from investigators who
wish to focus on specific biological processes and are not as interested in a
global genetic perspective. For a study of vasculogenesis, for example, a few
hundred genes related to vasculogenesis can be selected with a boutique array
produced with just those clones. Alternatively, there remain many genomes
that are not fully sequenced or have no pre-manufactured arrays available. In
these cases, the investigator will need to plan and design in-house arrays.

3.1.1. In-house Probe Design

The two most widely used custom build microarrays are spotted cDNA
and spotted long oligonucleotide (oligo) arrays. A summary of key issues to
consider during the design of oligo probes will be discussed in this section.

1. Selection of gene-representative sequences from a given gene collection.
The determination of the probe sequences to be printed is an important and
specialized bioinformatics task that attempts to identify optimal exon probes (the
best 60–70 base pairs) that characterize the genes of interest. Properties that make
a good oligo-probe are

a. Sensitive: referring to a strong signal for the complementary target. These probes
will have no secondary structure in the probe or target and are located near the
3’ end as preferred by oligo dT.

b. Specific: implies a probe that returns weak signals for non-targets. This means
there is no cross-hybridization to other targets.
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c. Isothermal: the probe behaves similarly under the hybridization conditions of the
microarray experiment such as temperature, salt, and formamide concentration.

Examples of algorithms that perform the selections of sequences include OligoPicker
(1), ArrayOligoSelector (2), and OligoArray (3). The reader is referred to these
articles for more details on probe selection.

2. Location and number of the probes.
Randomization is often needed to avoid systematic spatial biases of the probes.

3. Control probes.
A well-designed set of controls allows detailed assessment of the performance of
any given hybridization, including sensitivity, specificity, dynamic range, normal-
ization, linearity, and allows various biases to be explored. A recently developed
open-source oligonucleotide set “Exonic Evidence-Based Oligonucleotide Chip
(MEEBO and HEEBO)” as a collaborative effort between researchers at University
of California at San Francisco (UCSF), Stanford, Rockefeller, Basel, and the Stowers
Institute has produced an unprecedented large number of controls probes. Some
examples from the Mouse EEBO are

a. positive controls that show a strong signal able to be used as “landing lights” to
assist in the image analysis.

b. negative controls, such as blank spots or spots with cDNA from very different
species that provide an estimate of background signal.

c. doped controls are probes that recognize non-mouse sequences that can be spiked
into RNA samples. These can be used as normalization controls with appropriate
spiked-in mixture.

d. tiling controls to assess effects between observed hybridization intensities and
distance from the 3’ end.

e. mismatch controls—used to help fine tune hybridization conditions.

3.1.2. Which platform to purchase?

In this section, we will discuss issues to consider when selecting pre-
fabricated array platforms. As mentioned before, arrays are available from
commercial companies as well as various core facilities set up by research and
academic institutes. We will refer to all of these as “array providers” regardless
of whether they are providing commercial or non-commercial platforms.
Broadly speaking there are four main types of microarray platforms. These are

1. Short oligonucleotide (with 25 base pairs) arrays, e.g., Affymetrix.
2. Two-color cDNA spotted arrays.
3. Two-color long-oligonucleotide spotted arrays. The production of this platform is

very similar to the two-color cDNA arrays the main differences is in the length of
the sequence (60–75 bp) spotted on the arrays.

4. Beaded arrays, e.g., Illumina.



Planning Your Microarray 75

When selecting a pre-fabricated array, the probe design decision is generally
pre-determined by the array provider. Considerations include

1. Probe of interest. A key consideration is whether the genes or gene sets of interest are
included in the arrays. For two-color cDNA and long-oligonucleotide arrays, there
are collections of different libraries and probe sets that can be selected. Examples
from the cDNA arrays include libraries generated by the Riken consortium, the NIA
group. Examples from the long-oligo librarys include array-ready oligo sets designed
and produced by commercial companies such as Operon, Agilent, and Illumina.

For users who are interested in comparing the similarities and differences
between these libraries, a useful web tool is Resourcerer (4) (http://compbio.dfci.
harvard.edu/tgi/cgi-bin/magic/r1.pl), which provides annotations based on the TIGR
Gene Indices for commonly available microarray resources, including widely used
clone sets. This tool also allows comparisons between resources from the same
species. A recent study also provides a detailed comparison of gene coverage of
mouse oligonucleotide microarray platforms (5).

2. Controls. Companies that produce short-oligonucleotide and beaded arrays have
built-in a series of quality and normalization controls lists of which are available
to researchers. For two color array technologies, the number and types of quality
and normalization controls varies greatly between array providers. It is important to
obtain similar information on control probes from the array providers. Furthermore,
one needs to bear in mind the downstream analysis when evaluating whether these
controls are adequate for the experiment. For example, many commonly used normal-
ization methods such as print-tip loess rely on the assumption that the majority
of genes are not differentially expressed between mRNA samples. However, if
the researcher expects a large number of changes in the experiment, alternative
normalization methods based on external controls will be required. In this situation,
it is important to ensure that normalization controls such as spike in controls or
microarray sample pool (6) are included in the array design (see Notes 3, 4).

3. Print-run quality. Just like any chemical reagent or paint, there are potential differ-
ences between batches of arrays from different print-runs. Researchers could enquire
from individual array providers any print-run quality controls that are performed
routinely at the facilities and any supplementary print-run information that could aid
in the downstream analysis. For example, the UCSF Shared Microarray Facilities
routinely perform 9mer hybridizations on selected arrays in every print-run. This
allows them to estimate the number of probes (often very small) that failed to print
and are able to provide downstream users a list of probe IDs that are problematic on
every print-run. This information will facilitate the identification that a low observed
intensity of a particular probe is due to problematic print rather than low expressed
transcript levels.

4. Cost of hybridization. While the cost of the arrays typically refers to the actual
cost of purchasing the arrays, the real cost is determined by the cost involved in
producing successful array hybridizations. The reproducibility of hybridization and
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the cost of all the failed hybridizations should be considered in project costing. For
many clinical studies, requirements for recruiting large, clinically well-characterized
subject cohorts in addition to difficulties inherent in obtaining suitable tissues for
the study translate into a higher sample cost compared to the cost of an array. In
these situations, the platform of choice should be primarily the most reproducible
platforms and the cost of array is less relevant.

5. Extensibility. Changes in platforms between different stages of experiments are best
avoided, highlighting the importance of the continued availability of the platform of
choice. In addition, thought should be given to potential batch effect, e.g., between
different print-runs, the changes in the probes between print-runs. This information
should be obtained from the array provider prior to the experiment.

6. Data integration. The availability of many public data repositories such as
ArrayExpress (7) and NCBI’s Gene Expression Omnibus (8,9) makes it possible to
identify other studies that might complement the proposed research. Many statistical
methods are currently under development to integrate experiments from different
protocols obtained by multiple groups (10,11). Individual researchers may want
to increase their research capacity by considering integrating external studies with
their own. To assist in data integration by reducing the potential variation due to
combining data from different platforms, the investigator may decide to use the
same platform as that in the external studies.

3.2. Planning Hybridizations

Raw data extracted from various array technologies can be broadly split
into two groups; single color and two-color arrays. Single color arrays refer
to array technologies where only one sample is hybridized on each array, e.g.,
Affymetrix Gene Chip. Two-color arrays refer to technologies where two or
more mRNA samples are hybridized on each. Examples of these include two-
color cDNA and two-color long-oligo arrays. Both these technologies share
many similar experimental design issues. Readers are referred to the extensive
classical literature on experimental design (12–15). These books discuss the
general principal behind randomization, replication and local control based on
agricultural and scientific experimentation. In sections 3.2.1–3.2.3 a summary
of these issues in microarray experiments will be provided. Most of these
discussions apply equally to both single color and two-color technologies.

3.2.1. Randomization

The primary objective of randomization is the avoidance of bias or systematic
error. The following experimental design could be carried out to identify differ-
ential expression between long and short term cancer survivors:
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a. tissues for long-term survivors arrive in the laboratory in January and the tissues
for short term survivor are sent from the hospital in July; and

b. arrays are run on the tissues samples as they arrive.

Notice there is a complete confounding between survival status and
“hybridization time.” It is often observed that microarray experimental condi-
tions can leave a strong “global signature” in the resulting expression data.
That is, we can easily observe or distinguish, e.g., via cluster analysis, arrays
processed or hybridized on different days or batches. Therefore, in the example
just described, it will be difficult to distinguish whether observed changes are
due to different processing time or the survival status. Proper randomization is
required to avoid this type of situation.

3.2.2. Replications

As an individual microarray generates expression values for tens and
thousands of genes, it is easy to forget that there is no replication associated
with any individual array. That is, there is only one measurement per gene.
So why is it essential to replicate slides? The simple answer is that replication
reduces variability in summary statistics and permits the use of formal statistical
methods.

In essence, replication permits averaging, and averages of independent and
identically distributed quantities have less variability than their individual
components. For example, at an individual gene level, a gene which seems
to be 4-fold differentially expressed in one hybridization experiment may
appear to have a 2.3-fold change in a second independent hybridization and
3-fold in a third. To verify that differentially expressed genes between two
samples of mRNA are real observations requires replication (16). This will
allow the estimate of the variance of the log-ratios across slides to be calcu-
lated. Figure 1 shows three scatter plots of M = log2 (beta7+/beta7–) and
A= (log2

√
�beta7+� · �beta7–� values averaged across replicate slides. The data

are from a study (17) aimed to identify differentially expressed genes between
the beta7+ and beta7– memory T-helper cells. Each of the replicate slides
involves mRNA from different patients, co-hybridized with beta7+ and beta 7–
mRNA samples. The figure shows that as the sample size increases (from one to
six), the cloud of points about the horizontal axis shrinks. This makes it easier
to distinguish real changes from the random variation about zero and demon-
strates that replication is a highly desirable feature in planning a microarray
experiment. The next question is to determine the number and types of
replication.
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Fig. 1. MA-plot. Scatter plots of average log-ratios M = log2 (beta7+/ beta7–)
averaged across replicate slides, against overall intensities A = log2

√
�beta7+� · �beta7–�.

The blue spots correspond to probes that are found to be differentially expressed between
the two mRNA sources. The number of replicate slides shown are n = 1, 3, and 6. See
Chapter 6 for further discussion on MA-plots.

3.2.2.1. Types of Replication

There are many different types or levels of replication. These will ultimately
determine the degree of generalization or conclusions that can be made from
the experiment. We can broadly classify the types of replicate into two classes:
technical and biological replicates.

1. Technical replicates. The term technical replicate is used to denote replicate slides
made with target RNA from the same preparation. For example, mRNA from the
same mouse is taken and then processed, labeled, and finally hybridized on two
different arrays (chips). The results from these two arrays are known as technical
replicates as the data are based on the same mouse. There are different degrees of
technical replications. For example, an extreme form of replication will be having
the mRNA undergo the same level of processing at all different stages and only
separate the mixture just prior to hybridization. A less extreme form of technical
replication could be obtaining mRNA from the same mouse, letting it undergo
different amplifications, and processing steps before hybridizing on different chips.

2. Biological replicates. The term biological replicate refers to hybridizations
involving RNA from independent preparations of different samples from the same
tissue or cell line. The term biological replicate may also refer to replicate slides
using target RNA from preparations from different organisms or different versions
of a cell line. This illustrates that there are many different levels of biological
replicates and these impact of the generality of the experimental results obtained.
For example, if a conclusion applicable to all mice of a certain inbred strain is
sought, experiments involving multiple mice, preferably random samples of such
mice must be performed. Extrapolating to all mice of that strain from results on
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a single mouse, even using multiple mRNA extractions, has well-known dangers
associated with it (18).

In general, an experimenter will want to use biological replicates to validate
the generality of conclusions and technical replicates to reduce the variability
in these conclusions. However, this also needs to be weighted against the
cost of the arrays. For example, if you are considering more costly platform
such as Affymetrix and using these to perform experiments involves humans,
biological replicates are more relevant to the experimental aims than the
technical replicates.

3.2.2.2. Number of Replicates (Sample Size)

Given the importance of replication, and having chosen a form of replication
suited to the experiment under consideration, an important practical issue is
to determine the sample size, or the number of slides to use. A tradition
power calculation requires the experimenter to state the variance of individual
measurement - the magnitude of the effect to be detected, the acceptable false
positive rate and the desired power or the probability of detecting an effect
of the specified magnitude (or greater). For microarray studies, the calculation
of power is considerably more complex as there are tens of thousands or
probe sets and the signal and variance of these probe sets are varied. This is
still an active field of statistical research and there have recently been a few
proposed methods for samples size determination using statistics to deal with
the problem of multiple testing or drawing on pre-existing data for variability
estimation (19–21). The reader is also referred to (22) for a more detailed
discussion on what can be done for sample sizes determination in the microarray
context.

3.2.2.3. Pooled mRNA Versus Unpooled mRNA

An issue closely associated with replication is the discussion on pros and
cons relating to pooling mRNA samples before hybridization. We will discuss
this issues in two contexts, the first where pooling is not necessary and the
second where pooling is necessary.

If one assumes that pooling of mRNA is not necessary, is it nevertheless
desirable? Let us suppose that four treated mice and four control mice are
to be used in an experiment, and that each mouse would provide sufficient
mRNA for a single hybridization. Should the experimenter pool RNA from the
four treated mice, do likewise with the control mice, and then carry out the
experiment four times using sub-samples of the pooled mRNA? Alternatively,
should the experimenter make four separate treatment-control comparisons,
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and then average the resulting log-ratios? The main argument for pooling
mRNA samples is the ability to obtain more precise results with fewer chips
and therefore reduce the cost of the experiment. This assumes that the cost
of the chips is much greater than the cost per sample, which is often the
case in animal studies but may not be so in human studies. Many human
or clinical studies involve very high costs in patient recruitment; therefore
researchers may need to trade off the cost of arrays versus the cost of mRNA
samples. Recently, an experimental study (23,24) was designed to evaluate
the utility of pooling and the impact on identifying differentially expressed
genes. The study recommended pooling for small experiments with fewer than
three arrays in each condition. However, this study did not find any significant
improvement for large experiments and concluded that the “potential benefits
from pooling do not outweigh the price paid for loss of individual specific
information” (24).

In other situations it is necessary to pool mRNA from a number of similar
sources, e.g., mouse embryos, in order to have sufficient amounts to carry out a
single hybridization. In such cases, one needs to assess the possible drawback
against possible alternatives, e.g., amplification.

3.2.3. Local Controls (Blocking)

Local controls or blocking refers to arranging experimental units into
clusters or blocks in an attempt to improve the comparison of treatments.
In the microarray context, we refer to arrangement of the mRNA samples
in relationship to various hybridization conditions such as: time of labeling
and time of hybridization amongst others. For example, we have discussed
in section 3.2.1 that it is not appropriate to hybridize tissues for long-term
survivors during the month of January and then samples for the short-term
survivors in July. If we know the total number of samples, say, 50, with 25
in each survival group and that the facilities can process 10 samples a day, a
better design becomes possible. For example, five samples from the long-term
survival group and five samples from the short-term survival group could be
processed on the same day. The principal behind this type of experimental
design is to group the tissues materials in such a way that unique features
associated with the day-to-day processing of arrays are shared equally among
the long and short term survivors. This is another way to avoid confounding
between hybridization day and survivor status. One can see that this can be
extended to different stages of mRNA processing such as tissue extraction,
amplification and labeling. For more complex experimental design options, we
refer readers to the classical references on experimental design (12–15).
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3.2.4. Variability Associated with Design Choices for Two-Color Arrays

Most of the discussion so far has applied to all the most widely used types
of microarrays. However, the choice of direct versus indirect hybridization is
unique to two-color arrays, and so there is some difference to classical experi-
mental design. This is because the two-color arrays are inherently comparative
in nature and that actual gene expressions of interest are never measured
directly. Therefore, a key component of design issue with two-color spotted
microarrays is the decision between using direct rather than indirect compar-
isons; that is, comparisons within slides rather between the slides.

In many cases, given the nature of the experiment and the material available,
one design would stand out as an obvious choice. For example, if cells treated
with different drugs are to be compared with untreated cells then the appropriate
design is clearly one where the untreated cells become a de facto reference,
and all hybridizations involve comparison between treated and untreated cells.
In another example, suppose that we have collected a large number of tumor
samples from patients. If the scientific focus of the experiment is on discovering
tumor subtypes (25), then the design involving comparisons between all the
different tumor samples and a common reference RNA is a natural choice.
In both cases, the choice follows from the aim of the study, with statistical
efficiency considerations playing only a small role. However, with many other
experiments, there are a number of suitable choices and some criteria are needed
to select one from the set of possibilities. Many of these design choices are
discussed in (22,26–29) where ideas from optimal experimental design are used
to select the most efficient approach from a collection of possibilities.

The main ideas presented in these papers are comparing variability associated
with different types of experimental design. The simplest case involves
treatment T versus control C. The terms treatment and control are used
broadly to include comparisons between the cells or tissues under study and
the normal or untreated cells or tissues, e.g., drug versus untreated, wild-type
versus mutant (including knock-out or transgenic), or two different tissues
(tumor versus normal). Let us compare two simple designs involving two
microarrays comparing mRNA T and C. The first involves a direct comparison
and the second involves an indirect comparison with a common reference.
In a direct comparison, the two samples are co-hybridized together on two
slides. For a typical gene, we obtain two independent estimates of the log-ratios
(M = log(T/C)). If the variance associated with one measurement is �2, then
the variance of the average of two independent measurements is �2/2. On
the other hand, in an indirect comparison, the two samples will be hybridized
on two different slides with a common reference Ref and the log-ratios for
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a typical genes would be log(T/C) = log(T/Ref) – log(C/Ref). In this case,
the variance of the difference of two independent log-ratios is 2�2. Therefore,
when comparing these two experimental choices holding the number of arrays
equal, one would prefer the direct comparison, which has a smaller variability,
i.e., higher precision. In practice, there are other factors to consider that will
affect these design choices and readers are referred to the previously mentioned
publications for more detailed discussions on optimal and efficient designs.

4. Notes
1. As more complex experiments are designed, it is important to keep in mind how

the gene expression studies fit into the overall research goal, and the limitations of
gene expression studies. Consider, for example, that the long-term goal of an inves-
tigator is to understand the regulatory frame work behind the trans-differentiation
between Type I and Type II cells in rat alveolar epithelium. If the investigator
had simply performed a gene expression studies comparing these two cell types at
a given point in time, the gene-expression analysis will be able to provide a list
of differentially expressed genes at a given point in time. However, it will not be
able to study or identify coordinated changes or co-expressed genes as there are
only two conditions. A more thoughtful time-course experiment will be needed.
Furthermore, more complex analysis involving integrating sequences and other
biological meta-data will be needed to answer these types of questions.

2. The term probe refers to the DNA sequences that are spotted onto arrays. The
cDNA or oligonucleotide probes are also called spots. Target refers to the samples
that are hybridized to the arrays. Control samples are also called reference samples.

3. The purpose of normalization is to identify and remove systematic variation that
occurs from the microarray experiment rather than real biological differences
between the mRNA samples. The commonly used normalization for two-color
microarray attempts to adjust for bias between the two dyes. It is often observed
that the variation between red and green channels is not always constant i.e. bias
can occur as a function of the intensity of the signal. Intensity-dependant variation
can be corrected by generating a best-fit curve known as the “loess” line through
the middle of an MA-plot (Fig. 1), and this becomes the new zero line for the
vertical axis. In addition, intensity-dependent variation, spatial or print-tip bias
could be a significant source of variation. Fitting a series of best-fit curves to
different spatial or print-tip regions of the microarray is one method for adjusting
spatial and intensity bias simultaneously. This commonly used method is known
as the “print-tip loess” normalization.

4. Many normalization methods, such as global median and print-tip loess, rely
on the assumption that majority of genes are not differentially expressed. In
circumstances where there are large numbers of differentially expressed genes,
normalization control probes are needed to be incorporated into the procedure to
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ensure that the adjusted observed intensity indeed reflects the differential gene
expression and not artefictual bias from the microarray experiment. Typically,
housekeeping genes with a constant level of gene expression are the controls of
choice in conventional quantitative PCR-based studies. However, these controls
are not ideal for microarray studies because there may be tissue differences in the
level of expression, and the housekeeping gene expression is at the upper range
(and so not necessarily good controls for low expressing genes in the microarray).
Thus, housekeeping genes are not representative of all intensity values expected
in the microarray. To get around this problem a set of controls called microarray
sample pool (MSP) has been designed (6). This control comprises the genomic
DNA (minus intervening sequences) for all genes present in the microarray. DNA
species making up the MSP are pooled and titrated at different concentrations.
Thus, the MSP is potentially a control for all labeled cDNA sequences. As it is
titrated at different concentrations, the MSP titration series will also allow for
intensity-dependent normalization.
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Clinical Uses of Microarrays in Cancer Research

Carl Virtanen and James Woodgett

Summary

Perturbations in genes play a key role in the pathogenesis of cancer. Microarray-based
technology is an ideal way in which to study the effects and interactions of multiple genes
in cancer. There are many technologic challenges in running a microarray study, including
annotation of genes likely to be involved, designing the appropriate experiment, and ensuring
adequate quality assurance steps are implemented. Once data are normalized, they need to be
analyzed; and for this, there are numerous software packages and approaches.

Key Words: cancer, microarray, annotation, experimental design, quality metrics, normal-
ization, filtering, analysis.

Abbreviations: GO – gene ontology; RT-PCR – reverse transcriptase PCR

1. Introduction
Cancer is a genetic disease. Though this seems hardly worth mentioning

nowadays, it is, in fact, a relatively new idea. Until the 19th century, cancer
was believed (due to Hippocrates) to be a disease caused by an excess of
black bile. At the beginning of the 20th century, the developmental biologist
Theodor Boveri first suggested a linkage between tumor formation and improper
chromosome segregation based on observations he made in sea urchins (1).
Since then, the discovery of the structure of DNA in the 1950s (2), combined
with genetic evidence of inheritance of cancer and the discoveries of oncogenes
[via the Rous sarcoma virus and the src gene in the 1970’s (3)] and tumor
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suppressor genes, e.g., retinoblastoma in the early 1980s (4), led the way to a
more general understanding of the causal processes involved in neoplasia.

That cancers are caused by changes at the DNA level is now a given.
However, few cancers, especially those of epithelial origin (so-called solid
tumors), make it to an advanced stage by the mutation of a single gene.
Instead, current thinking is that tumorigenesis is a haphazard, stepwise process
involving multiple short circuits of regulatory pathways, adaptation, avoidance
of immune surveillance, and finally emergence of properties that allow dissem-
inated growth—metastasis—typically the ultimate cause of death (5). Indeed,
most cancers initiate with a single mutation, conferring a growth advantage
compared to neighboring cells (6). The act of clonal expansion becomes
associated with further mutations, which endow subsequent cell populations
with invasive and metastatic potential. The path is often convoluted and is
also associated with cul-de-sacs and cell death. Unfortunately, the selective
pressures and numbers of events that accrue over the many years of tumor
development are statistically high enough that cancer is a leading cause of
death. While many of the key contributors and cellular pathways that push a
cell into neoplasia have been determined, there are clearly many more that are
unknown.

Identification of all the factors involved in cancer should provide not only
greater understanding of the biology of this collection of diseases, but also
new therapeutic targets and diagnostic markers. A critical milestone on the
road to this understanding (and this is true for many other diseases) was the
completion of the rough and final drafts of the human genome (7). Indeed,
one of the most important findings by the genome sequencing project was that
the actual number of genes that are present in humans, roughly 25,000 by last
estimate (8), is far less than the previously anticipated number of ∼100,000 (9).

With ∼25,000 defined genes in the human genome, there is now a hard
limit on the space through which biological causation for neoplasia has
to be searched. This is not to say the task will not be formidable, since
the relative paucity of human genes (compared with plants, for example)
is countered by the complex processing of these genes through differential
splicing, post-translational modifications, and exquisite control of function.
There are probably at least 10-fold the number of human proteins compared to
genes due to splice variants. For some proteins, there is already a plethora of
knowledge as to their biological effect, either directly determined or gathered
using a whole organism or systems biology approach. Unfortunately, for most
genes and proteins, very little information exists regarding their biological
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activity. Also, each of the levels of information about a gene enriches our
knowledge base but adds a level of complexity to any analysis, promoting
informatics to the forefront if there is to be any hope of interpreting this deluge
of data. Integrating all of this information in a cohesive and meaningful way is
one of the goals of bioinformatics (10). The Cancer Genome Anatomy Project,
the Human Cancer Genome Project, and the Cancer Genome Project represent
three large-scale programs attempting to coalesce a wide range of cancer related
genomic data into a single resource (11) (see Note 1).

2. Microarray Technology
Microarrays leverage biological information with bioinformatics knowledge

to bring new insights to many biological systems. They have been applied
most intensively to the field of cancer research. The basic premise behind
a microarray is that thousands of fragments of DNA (the probes) repre-
senting various genes are attached to the surface of an inert material. Reverse
transcribed messenger RNA labeled with a fluorescent dye from an exper-
imental sample (the target) is then co-hybridized on the microarray. After
removal of non-selectively bound fluorescent material, the microarray is
scanned at a high resolution to quantify the amount of fluorescent signal over
the surface. Since the locations of the gene probes are pre-determined, the
relative or absolute amount of RNA for each of the genes on the array can be
calculated. A microarray therefore measures the levels of mRNA transcripts in
a sample. Since thousands of gene fragments can be located on an array, it can
provide a genome-wide view of gene expression in cancer.

The two most popular microarray technologies employ the use of either
double-stranded cDNA probes spotted onto slide surfaces, pioneered by the
work of Pat Brown’s laboratory (12), or single stranded oligonucleotide
probes. Oligonucleotide microarrays are made either by depositing pre-
synthesized oligonucleotides directly onto a slide surface mechanically, e.g.,
using ink jet technology (www.agilent.com), or assembled base by base using
photolithography in a process somewhat analogous to semiconductor etching
using photoactivatable nucleotides and multiple masks. The photolithographic
technique was developed by Stephen Fodor in the early 1990s (13,14) and is
the basis behind the microarray platform used in the Affymetrix GeneChips
(www.affymetrix.com).

A comparative approach is typically taken to identify genes important in
neoplasia. For example, tumorous tissue may be compared to normal tissue,
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or tumors of different pathological types or grades may be looked at (for an
example of the latter see Chapter 8). The relative fold difference between
the categories is determined for each particular gene being measured on the
microarrays, and significant groups of genes can be aggregated based on similar
behavior and looked at either as a whole or individually. Morphologically
indistinct tumors may actually belong to clinically and biologically distinctive
categories. For example, Her2/neu/ERBB2 positive status in breast cancer is
widely used to assess trastuzumab (Herceptin) treatment, which is, in fact, the
target of the drug (15). Microarrays are now routinely used in the hope of
finding such biomarkers.

Microarray expression profiling of cancers has now been used in a wide
variety of settings. Correlation to pathological subtype was first shown by Golub
et al. (16) in comparing acute myelogenous leukemia and acute lymphocytic
leukemia. In malignant lymphomas, Alizadeh et al. (17) were the first group
to show a correlation to therapeutic outcome with gene expression profiles
in B-cell lymphoma. A distinct signature for metastatic tumors was found by
Ramaswamy et al. (18) in primary lung adenocarcinomas. Meta-analysis of
gene expression datasets has been used to find a generalized signature for
proliferation (19). Prediction of patient outcome was demonstrated success-
fully in breast cancer by grouping genes together into “meta” genes (20)
(see Note 2). A commercially available diagnostic based on microarray data
for the recurrence of breast cancer in tamoxifen-treated patients is now
available (21). Extending the concept of finding gene signatures, grouping genes
according to the pathways they are involved in has also proved successful (22).
In a recent study, Glinsky et al (23) combined data from mouse and human
prostate tumor samples to derive an 11-gene signature that consistently holds
a stem-cell type expression profile predicting poor outcome across a variety of
cancer types. Microarrays have also been used extensively to profile cancers of
the prostate (24,25), ovaries (26), kidney (27), breast (28,29), and lung (30,31),
along with a number of other neoplasms (32–34).

For the remainder of this chapter, we discuss the various factors involved
in the design and interpretation of a typical microarray project focused
on a clinical application. Figure 1 illustrates a general flow chart of the
process. The approach will necessarily be a general one, and the merits of
various options at each stage will be discussed. We will focus on techniques
specific to cDNA arrays, though comparable methodologies exist for oligonu-
cleotide arrays. The “Tumor Analysis Best Practices Working Group” has
published an extensive review of microarray techniques focused on Affymetrix
arrays (35).
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Fig. 1. Generalized process flowchart for analyzing microarray data.
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3. Design and Interpretation
3.1. Annotation

One of the most important informatic steps that needs to be done before a
single microarray has even been hybridized is annotation of the array platform.
Out-of-date annotation can severely impact interpretation of the dataset, as
Dai et al. (36) have shown. The basic information as to what a spot on an
array is, either EST accession ID or sequence information, is the first starting
point. However, this information is somewhat meaningless unless placed in an
appropriate context with higher levels of meta-annotation. Unfortunately, all of
the meta-annotations one might need to use are in disparate public and private
databases. These databases are themselves dynamic in nature and therefore
constantly changing at different rates, making contemporary annotation a non-
trivial task (10). The SOURCE database attempts to pull together various
annotations for users of microarrays, and is also updated on a regular basis (37);
however, the information it contains is only basic. As a consequence many
producers of microarrays now invest substantial effort in maintaining array
annotation. At the University Health Network Microarray Centre in Toronto,
for example, all databases and annotations on arrays are fully re-annotated
quarterly and this seems to be a reasonable schedule.

A database such as mySQL (www.mysql.org), installed on a server running
Linux (http://distrocenter.linux.com/platforms), is a good starting point for
pulling data annotations together. There is no “one size fits all” approach to
annotation, and much will depend on a researchers’ particular interest. The
starting point usually involves retrieving sequence for each of the elements
on an array and finding their genomic position using BLAT (38). For cDNA
probes, searching for repeats in sequences using REPEATMASKER (39) is
important, since these can confound results if not taken into account. This
should not be an issue for oligonucleotide arrays as the design of the represen-
tative oligonucleotide includes avoidance of non-unique sequences.

Once a gene’s position in the genome is known, further annotation can
usually be derived by searching through the UCSC “knowngene” data table,
available as a free download (http://hgdownload.cse.ucsc.edu/goldenPath/hg18/
database/knownGene.txt.gz). From this table a reference to kgXref (known
gene cross-references table, also available at UCSC) can be used to find
UNIPROT (40) and NCBI REFSEQ protein ids (41). With the REFSEQ id,
a link can be made to the UNIGENE (42) database, available for free by
downloading and searching directly (ftp://ftp.ncbi.nih.gov/repository/UniGene).
Unigene is a database of non-redundant gene ids assembled by clustering
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GenBank sequences. Although commonly used, it can be unreliable (43) and
it is therefore recommended that links to ENTREZ Gene ids (44) be made.
This can be done by downloading and searching the table gene2accession
found at NCBI (ftp://ftp.ncbi.nih.gov/gene/DATA/gene2accession.gz). With
ENTREZ Gene ids, links to OMIM can be made through the table
mim2gene (ftp://ftp.ncbi.nih.gov/gene/DATA/mim2gene.gz). OMIM (45) is
a curated catalog of human genes related to genetic disorders. Linking
genes to actual published data found in PubMed (42) can be made using
the gene2pubmed table (ftp://ftp.ncbi.nih.gov/gene/DATA/gene2pubmed.gz).
Finally, Gene Ontology (46) annotations can be derived using the gene2go table
(ftp://ftp.ncbi.nih.gov/gene/DATA/gene2go.gz). Gene Ontology (GO) classifi-
cations are quite useful in pulling together higher level concepts surrounding
a gene product. For example, a gene product may be part of the parent GO
term “signal transduction.” Further annotation is limited only by how deep a
researcher wants to go, as many hundreds of specialized databases exist. The
journal Nucleic Acids Research (http://nar.oxfordjournals.org) publishes yearly
an issue devoted to the most popular online molecular biology related databases
(see also Chapter 17 for a summary of web-based resources of relevance).

3.2. Experimental Design

3.2.1. General Considerations

Suffice to say the experimental design is the most important stage for any
scientist wishing to use microarrays in their clinical research (see Chapter 5 for
more details on this aspect of a microarray experiment). A good experimental
design relies on a good hypothesis and appropriate scaling of the power of
the experiment to the type and availability of the samples to be profiled. For
example, one hypothesis might be that there is a difference in gene expression
between normal and tumor samples from the same group of patients. Or,
that there is a difference between two types of cancer present in the same
tissue types in different patients (lung squamous cell carcinoma versus lung
adenocarcinoma). The experimental conditions should then be set up according
to the general statistical principles which all experiments are guided by. Care
must be taken to balance the sample population for extraneous factors: smokers
and non-smokers, age, sex, tumor stage, and so on. These types of factors
may all effect gene expression and an obvious bias in one of the experiment’s
hypothesis driven categories will be confounded if not balanced correctly.
Furthermore, it is now well known that variation between studies of the same
type of sample are influenced by the samples themselves and by human related
factors (47–49). Therefore, one must balance between experimental groups
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the technicians responsible for processing and handling samples, the slide lots
used during the experiment, and possibly even the days during which RNA
extraction and hybridization are being performed.

In two-color experiments in which two RNA samples are labeled with two
fluorescent dyes with distinct emission spectra, one channel is usually desig-
nated for the experimental channel and one for a suitable control channel. There
are two generally accepted methodologies for choice of control channel. In
the first, the control channel is not a control per se, but is instead one of the
experimental samples from one of the classes being examined, e.g., tumor type
A versus tumor type B. In the “balanced block design” (50) each sample from
the two classes is matched up to a member of the other class and the two are
hybridized on the same array. In the “loop design” (51), each sample is split
into two sub-samples and each sub-sample is used to connect arrays together in
a loop pattern. In the other methodology, a reference sample is used as a control
on each chip and comparisons between classes is accomplished by comparing
ratios of experimental to control. This is by far the most common design for
two-color cDNA experiments. It has the disadvantage that more microarray
chips are needed compared to a block design since each sample has to be run
on a separate chip. But one advantage is that multiple experiments (such as
future studies that are done as follow up) using the same reference sample can
be compared directly. Also, in cases where the object is to find novel classes
based on expression patterns, only the reference design can be used. Finally,
a reference design reduces the need to perform dye-flips (52) to some extent,
because the reference samples are all labeled with the same dye between which
comparisons are being made. Dye-specific bias is also less of an issue when
using indirect labeling (53).

It is worth mentioning the value of profiling normal tissue types when
deciding on an experimental setup. It is quite easy to find groups of genes which
vary across normal tissue types (31,54). This is likely due to the heterogeneous
nature of pathological samples, where a bias in tissue type, cells at a particular
phase of the cell cycle or hormonal status, or even inter-individual expression
signatures may cause certain genes to change between samples. Obviously it
is of value to remove such genes from further analysis during the filtering
stage.

3.2.2. Sample Numbers

Once a general experimental design has been decided upon, the next
important choice will be the number of samples to be profiled. Unfortunately,
there is no easy answer for determining sample size. The multiplex nature of
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microarray studies, many thousands of genes versus small numbers of samples,
makes power calculations that are traditionally used in setting up clinical trials
difficult to apply, and often dependent on the final analysis regimen. A point
worth mentioning is that choosing a sample size based on traditional estimates
of statistical power is fine when all that is necessary it to make an estimate
on the confidence of the error term, but this can yield different numbers than
what is necessary for assessing the power of a classification algorithm. Unfor-
tunately, all of this is compounded by the fact that final analysis of microarray
data is usually more exploratory and unknown at the start of a study. More
often than not, the choice of sample size will be governed by the amount
of pathological samples that are actually available, or the cost limitations.
Still, there are some methods available for determining appropriate sample size
(50,55–57).

Tibshirani’s method (56) of sample size estimation is a good choice and does
not assume equal variances or independence of genes on an array. The fact
that it is based on estimating false discovery rates, a common methodology for
finding genes that vary between groups, makes it even more suitable for use.
The basic premise behind Tibshirani’s method is to start with the output from
a typical permutation based analysis routine and then estimate false discovery
and false negative rates for different sample sizes. By way of example, to find
a two-fold difference between two groups of 10 samples, e.g., normal versus
tumor, each on an array with 1,000 genes, the sample size must be increased
to roughly 30 samples in each group to get optimal results.

3.3. Quality Metrics

Measuring the quality of slides after hybridization and scanning is an
important part of analysis. Visually inspecting images for gross defects should
always be done. However, more robust methods are recommended. The best
software for assessing data quality is found in the LIMMA package which is
part of the Bioconductor (58) framework for the R (www.R-project.org) statis-
tical language. We currently use Bioconductor version 1.8 with R version 2.3.1.
Although there is not one particular number or function which will definitively
point to a chip being of “pass” or “fail” quality, the joint use of these functions
allows for an overall assessment to be made and for outliers, i.e., bad slides, to
be identified.

Listing 1 shows a typical R script that can be used to assess raw data files
after quantification. The script will output a series of quality related graphs
into the working directory. The data files in this case were all quantified in
ArrayVision (www.imagingresearch.com/products/ARV.asp).
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Listing 1: An R script for assessing the quality of microarray slides in an
experiment.

1 Library(limma)
2 files<-dir(pattern="∧[1-9].*.txt”)
3 RG<-read.maimages(files,source=“arrayvision”)
4 RG$genes<-readGAL()
5 RG$printer<-getLayout(RG$genes)
6 spottypes<-readSpotTypes()
7 RG$genes$Status<-controlStatus(spottypes,RG)
8 MA<-normalizeWithinArrays(RG,method=“none”,

bc.method=“none”))
9 fnc<-file.path(“.”,paste(“F-RGdensities”,”.png”,sep=”))
10 png(filename = fnc, width = 6.5 * 140, height = 10 *

140,pointsize=20)
11 plotDensities(MA)
12 imageplot3by2(RG,z=“R”,low=“white”, high=“red”)
13 imageplot3by2(RG,z=“Rb”,low=“white”, high=“red”)
14 imageplot3by2(RG,z=“G”,low=“white”, high=“green”)
15 imageplot3by2(RG,z=“Gb”,low=“white”, high=“green”)
16 fnc<-file.path(“.”,paste(“F-boxplot”,”.png”,sep=”))
17 png(filename = fnc, width = 6.5 * 140, height = 10 *

140,pointsize=20)
18 par(ps=8,las=2)
19 boxplot(MA$M∼col(MA$M),names=colnames(MA$M),

main=“boxplot”)
20 numarrays <- ncol(RG)
21 numpages <- ceiling(narrays/6)
22 for (ipage in 1:numpages)
23 {
24 i1 <- ipage * 6 - 5
25 i2 <- min(ipage * 6, numarrays)
26 fnc <- file.path(“.”, paste(“MA plot”, “-”, i1, “-”, i2,

“.png”, sep = “))
27 png(filename = fnc, width = 6.5 * 140, height = 10 *

140,pointsize = 20)
28 par(mfrow = c(3,2))
29 for (i in i1:i2)
30 {
31 plotMA(MA[, i])
32 }
33 }
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Line 1 Loads the appropriate LIMMA module from Bioconductor into R.
Lines 2–7 Load the data (files ending in “.txt” and starting with a number from

1 to 9) in the current working directory and associate the correct
layout of the array with the data itself.

Line 8 Copies the data into a new matrix called “MA” and can be used
to change normalization method (method=“none” in this case) or
background subtraction choice (bc.method=“none”). The choice of
performing background subtraction is not always obvious. The under-
lying hypothesis of background subtraction is that the intensity of
a spot on a microarray is the combined value of the background
intensity around the DNA spot plus the foreground measurement
of intensity within the limits of the actual spot. This hypothesis is
somewhat flawed though, as negative control spots, i.e., water or
DMSO spots with no DNA in them, often are of lower intensity than
the surrounding background (an effect termed “ghosting”). As such,
background subtraction can often introduce rather serious artifacts in the
data. However, it can be useful if the slide surface consistencies are non-
uniform, e.g., if fluid was not distributed evenly during hybridization. If
considering background subtraction, it is recommended that the proce-
dures in this section be repeated with background subtraction applied to
see what effect it may have on the data.

Lines 9,10 Are used to set a filename and size of graph that will serve as the
output from the next line.

Line 11 Shows a density histogram is generated. Figure 2A shows a typical
density histogram for a series of 20 slides. The red and green lines both
overlap substantially and the curves are roughly symmetrical around
the peaks. Compare this to a series of slides (Fig. 2B) where there
was a problem during RNA extraction and labeling. The histograms
are very inconsistent and a problem is immediately assessed. In this
case the entire experiment should be repeated.

Lines 12–15 Plot pseudo-colored spatial images of the data for both channels.
Separate files for both channels and the foreground (spot) and
background intensities are generated. Figures 3A and 3B show a
typical output for the green channel foreground and background signal
of two slides with acceptable quality.
Notice that there is a lot of consistency across the slide surface.
Contrast these two images with Figures 3C and 3D, which obviously
display a problem that occurred during hybridization. These slides
will probably need to be repeated.

Lines 16–19 Setup and output a boxplot of all the current slides into a file. A
boxplot shows the overall mean (horizontal line in the centre of the
box) along with the interquartile range (the box) and outliers (circles).
Once again, relative consistency is appropriate, and a box plot can
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Fig. 2. A: A typical density histogram for a series of 20 slides. The lines represent
density measurements from individual slides on both channels. B: A series of slides
where there was a problem during RNA extraction and labeling.

allow for an outlier slide to be easily determined. In Fig. 4 it is easy
to see that slide number 5 is different from the other slides, and closer
examination of this slide would be necessary to determine if it should
be accepted or rejected for the study.

Lines 20–33 Iterate through all the arrays loaded into the dataset and output
MA plots (6 plots per page as determined on line 28). An MA
plot shows any intensity dependant effects in the raw data where
M = log2(R/G) and A = (0.5)*log2(R*G). The x-axis represents a log
ratio of equal intensities in both channels. The majority of data in a
typical microarray dataset should spread out roughly along this line.
Figure 5A shows an MA plot from a slide with a good distribution of
data. Figure 5B, on the other hand, clearly has an intensity-dependant
issue that goes beyond that which can be corrected later by normal-
ization.
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Fig. 3. Foreground (A) and background (B) signal intensities for a slide with a
suitable degree of quality. Foreground (C) and background (D) signal intensities for a
slide with a problem that occurred during hybridization.

3.4. Normalization and Filtering

3.4.1. Normalizing Data

Once assured of some measure of slide quality, the data will first need to be
normalized before valid comparisons between sample subjects are made. This is
because differences in labeling efficiencies, amounts of starting RNA materials,
fluctuating hybridization conditions and other biases may be present from slide
to slide. The box plots in Fig. 4 (aside from the problem slide) show that the
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Fig. 4. Boxplot diagram for eight slides with varying degrees of scatter and quality.
A boxplot displays summary statistics such as central tendency and variability for each
slide.

distribution for individual slides is not quite the same, even though they are
expected to be. This platform related variation should be accounted for before
looking for biological variation. The most commonly applied normalization is
a “per-chip” normalization that balances out systematic biases within a slide
itself. It is well known that there are intensity-dependant issues in microarray
ratio measurements (with low intensity measured log ratios typically deviating
from zero) and that these furthermore vary across pin groups on spotted slides
(59,60). Therefore, typically a locally weighted linear regression curve (loess)
is fit on a pin-to-pin basis to an MA plot of the data and values in the
control channel are adjusted up or down to correct for deviation from this
line. Figure 6A shows an MA plot of a slide before loess normalization and
Figure 6B shows the data after normalization. Further normalization usually
consists of normalizing each genes’ log ratio to zero across chips to account
for genes that are either highly or lowly expressed across all samples. It is
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Fig. 5. M (log intensity ratios) versus A (log total intensity) plots showing scatter
from a typical slide of (A) good quality and (B) poor quality. An MA (intensity scatter)
plot compares intensity on two colors (or two chips).
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Fig. 6. MA plot of a slide (A) before loess normalization and (B) after loess
normalization.
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usually easier to visualize genes that are changing between samples after such
a normalization. Normalization is a standard procedure and can be performed
in any microarray data analysis package. For example, to loess normalize data
in R, simply change line 8 in Listing 1 to:MA<-normalizeWithinArrays(RG,
method=“loess”, bc.method=“none”)).

3.4.2. Filtering Unwanted Genes

Filtering is usually the next step in microarray data analysis. Filtering is
an important step because it removes genes from further examination that are
not of interest. Genes with very low intensity are typically removed because
there tends to be much higher variability with their measurements. A good
rule of thumb is to flag or remove those genes with intensities that are less
than two times the average background intensity before normalization. Ranking
genes in percentiles is another way to determine an appropriate cutoff. For
example one might wish to remove those genes in the lower 10th percentile
of overall intensity measure. Filtering of genes can also be done when there
is a priori information of spots which may be problematic. On spotted cDNA
slides, there are sometimes problems related to production e.g. during ampli-
fication of spotted material, which may warrant some spots being removed. It
is recommended to remove spots which have a high percentage of repetitive
elements in them. Repeat elements such as the human ALU repeat are present
in upwards of 10% of the human genome (61), and these are frequently present
in the non-coding ends of spotted cDNA’s on microarrays. Since we would
expect an inordinate amount of cross hybridization in sequences containing a
large amount of repeat (say, greater than 33%) they should be filtered out.
Finally, as mentioned earlier, there are many genes which vary naturally to
a great extent between individuals or samples. If a study is done with an
appropriate number of normal samples, one can first look for genes that vary
between individuals and filter them out from subsequent analysis when looking
at differences between tumor types.

3.5. Analysis

3.5.1. Differentially Expressed Genes

Analyzing microarray data usually first takes the form of finding genes
which are differentially expressed, either between experimental and control
channels on chips or between samples. Finding differentially expressed genes is
usually done first, both to find genes of interest and to further filter data before
application of more sophisticated data mining techniques such as clustering.
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When attempting to find genes that are over or under expressed one typically
chooses a threshold, such as a twofold difference. This number was originally
determined by concordance analysis for one dataset (62) but has become a
guideline criteria now used in many different analyses. More sophisticated
measures, such as using a Z-score (63) to estimate fold changes in an intensity
dependant manner can also be used. A one-sided t-test can be performed if
replicates were done for each sample. This must be multiple-test corrected (see
next section 3.5.3). Once a threshold is decided on, the usual course is to apply
that threshold to being found across a percentage of the samples. For example,
if 100 samples were obtained and profiled, one might choose to look only
at genes that have at least a twofold difference in 33% of them. Choosing a
twofold change level will undoubtedly lead to removal of true differences that
are lower, but it will still allow for finding the less conservative changers. This
is a testament to microarrays being a screening technology where one is usually
looking for the “low hanging fruit.”

3.5.2. Categorizing Samples

Attempting to categorize samples can be done in one of two (or both) ways.
Unsupervised methods are exploratory in nature. Agglomerative hierarchical
clustering is one such technique. In this method, two genes that have the most
similar expression profiles across experiments, based on a similarity measure
such as their Pearson Correlation, are found. The average is taken between
these two genes and then a new gene most similar to this “average gene” is
found in the rest of the set. The process is iterated and a tree type diagram
can be built up (Fig. 7). The length of tree branches is related to the degree of
similarity between adjoining groups. Individuals sample are similarly clustered
according to their nearest neighbors. A cluster diagram allows one to explore
those categories of genes or samples which are nearest to one another and
hypothesis regarding biological meaning can be generated. For example, it is
often hypothesized that genes that are closely clustered together are related to
one another in some manner, such as belonging to the same molecular pathway.
Care should be exercised in interpreting clusters since clustered genes can rotate
around a branch and hence distance between genes on the edges of neighboring
clusters is much larger than genes within a cluster. Cluster diagrams were first
applied by Eisen (64) to microarray data and are now very common. Some
clustering methods, such as those with bootstrapping, aim to assess the statistical
significance of tree branch locations (65). Principal components analysis is
another unsupervised method to attempt to find biologically meaningful groups
in microarray results (66). By projecting the multiple dimensioned space of
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Fig. 7. A typical dendogram obtained after performing a two-way hierarchical
clustering Branches on the left indicate genes which cluster together according to
similarity of expression. Likewise, branches across the top indicate the degree of
similarity of individual samples. In this case, it is evident that there are two distinct
groupings of samples according to their expression across a wide number of genes.

a microarray dataset onto axis in lower dimensional space, those samples or
genes most closely related will be grouped together (see Chapter 2 for more
discussion on principal component analysis).

3.5.3. Data Mining

Supervised methods of data mining are used when a priori information
regarding categories in the data exist. The most common method is simply to
perform a t-test or an ANOVA (67). However, when performing such tests it is
necessary to correct for multiple testing of hypothesis. With very many genes
on an array, performing multiple t-tests or ANOVA’s will result in many false
positive results. For example, at the 5% significance level for an array with
10,000 genes, one would expect 500 genes to be falsely identified as varying.
Therefore, a correction to the test statistics must be made. The simplest is a
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Bonferonni correction, where the significance p-value is simply weighted by
dividing its value by the number of tests. This is usually too strict though, and
typically something such as a Benjamini and Hochberg (68) false discovery
rate multiple test correction is used.

A popular supervised mining technique is “significance analysis of
microarrays” (SAM), first developed by Tibshirani (69). SAM is similar to a
t-test but uses a term called a “d-value” instead. If there are two categories of
samples, I and U, then let xI and xU be the mean expression measurements of
gene i in the two categories, respectively. The test statistic is then:

d�i� = x̄I �i�− x̄U �i�

s�i�+ so

where

s�i� =
[(

1/n1 +1/n2

n1 +n2 −2

){∑
m
�xm�i�− x̄I �i��

2 +∑
m
�xn�i�− x̄U �i��2

}]2

n1 and n2 are the numbers of expression values in each category, and �m and�n

are summations of the differences of expression measurements from the mean
expression measurement in categories I and U, respectively. The idea is then to
estimate for each gene an expected value of d by randomly shuffling across all
samples the expression values, recalculating d and then taking the average value
after a fixed number of iterations. When plotting the observed d-values versus
the expected d-values, any gene that deviates far from the “observed=expected”
line is likely to be significant. A tuning parameter can be chosen which sets the
upper and lower bounds on how far a deviation has to be before being called
significant.

Other popular supervised data mining techniques include “gene-shaving”
(70), which can be also used in an unsupervised fashion, and “weighted-voting,”
which was first introduced by Golub (16). Of course, there are many more
methods for mining data and it is often overwhelming trying to decide on a
course of analysis. A good approach is to run multiple analyses and look for
common pools of genes that are significant across all methods.

3.5.4. Validation

Validation is crucial at the end of the analysis pipeline. Although every
attempt is made to control for extraneous factors affecting gene expression
measurements, including statistical techniques to minimize false positive
results, nevertheless there will be mistakes. Currently the best methodology
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to validate results is RT-PCR (71). Microarrays have a low dynamic range of
measured gene expression and tend to underestimate changes, whereas RT-PCR
has a high dynamic range. Hence, validation is used to assess overall observed
trends rather than duplicate results.

3.6. Higher-Level Analysis

With lists of significantly co-regulated genes in hand, the next step is to
place them into a biologically meaningful context. Comparing GO annotations
in lists of genes is a good starting place. The basic premise here is that there
may be over-representations of particular traits in one list of genes compared
to another and this may represent unique biological features. To do this, an
appropriate statistical measure to compare gene lists must be used, such as a
chi-square or Fisher’s exact test. Of course, as with previous statistical tests,
a correction for multiple hypothesis testing must be made, and methodologies
for this exist (72,73). One can also combine GO annotation with expression
data during the data mining phase of analysis (22).

It is well known that genomic instability, a distinctive trait of cancer, leads
to increased or decreased copy numbers of certain genes. That this will have
some effect on gene expression is probable; whether this effect is linear is
unknown. However, by integrating expression data with array comparative
genomic hybridization (CGH) data, this question can be at least partially
answered. Bussey et al. (74) looked at copy number and expression in the NCI-
60 panel of human cancer cell lines and found a positive correlation between the
two. Somewhat related to this, integrating genomic information for a particular
region with mRNA expression and protein data allowed Mootha et al. (75) to
find a candidate gene for cytochrome c oxidase deficiency.

Reconstructing genetic networks is another area that has been well explored.
The underlying hypothesis is that correlation in expression can be related to
co-regulation and hence involvement in similar pathways. The representational
analysis presented earlier using GO functional categories is one way to dissect
out these interactions. Combining protein-protein interaction data with gene
expression measurements is another method that has been used (76). Expression
data combined with phylogenetic conservation has also proven successful (77).
Indeed, there is some evidence that genes that are co-expressed are often
clustered together on the genome, hence bringing issues of selective pressure
into play (78).
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4. Conclusions
There is no single approach in using microarrays to study neoplasia. Instead,

there are a number of methodologies that can be chosen depending on the
questions being asked. Here, we have presented a general methodology for the
design and analysis of experiments using microarrays. With careful selection
and appropriate controls, new insight into the functional underpinnings of
cancer can be studied leading to better diagnostics and possible future treat-
ments. The most critical element in employing microarray technology is
selection of the most appropriate experimental design that complements the
sample set available. It is far simpler to alter analysis strategies of a good
dataset than to try to remediate deficiencies in a poor one.

5. Notes
1. The three cancer-related programs described involve centers in the UK, USA, and

Brazil (11). The extensive molecular analysis of various cancers from the programs
has DNA sequencing as the common link. The output from this work involves
the sequencing of cDNA libraries, SAGE libraries (SAGE—Serial Analysis of
Gene Expression is another form of microarrays), and mutation testing of genomic
DNA from various tumors. Without a planned and informatics-based approach
the accumulated data would not be available to the wider research community,
and without this integrated approach the effectiveness of data mining would be
diminished.

2. Meta analysis is a well-accepted approach in evidence based medical practices
and works through statistically combining the results of previous experiments or
studies. In the analysis of microarray studies, it is proposed in (20) to optimize
the data generated by combining through metagenes, i.e., the aggregate patterns of
variation of subsets of potentially related genes. The example given is breast cancer.
Predicting prognosis in this cancer is a major clinical challenge. Although staging
through assessment of lymph node involvement, estrogen receptor status, age and
tumor size are major prognostic factors, it still is not possible to predict consis-
tently the outcomes. Using various statistical approaches a combination of clinical
and genomic (metagene) data is likely to be used increasingly to guide decision
making.
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Microarrays—Analysis of Signaling Pathways

Anassuya Ramachandran, Michael A. Black, Andrew N. Shelling,
and Donald R. Love

Summary

Microarrays provide a powerful means of analyzing the expression level of multiple transcripts
in two sample populations. In this study, we have used microarray technology to identify genes
that are differentially regulated in response to activin-treated ovarian cancer cells. We find a
number of biologically relevant genes that are involved in regulating activin signaling and genes
potentially contributing to activin-mediated growth arrest appear to be differentially regulated.
Thus, microarrays are an important tool for dissecting gene expression changes in normal
physiological processes and disease.

Key Words: Activin; Affymetrix; bioconductor; microarrays; quantitative real-time RT
PCR; signaling pathways.

Abbreviations: cDNA/cRNA – copy or complementary cDNA/RNA; ds DNA – double
stranded DNA; GO – gene ontology; qRT-PCR – quantitative real-time RT PCR; SL – signal
log ratio

1. Introduction
Gene transcription plays a central role in biology, which is highlighted

by the fact that the homeotic genes that are indispensable for initial embryo
patterning are transcription factors. Indeed, deregulated transcription is a feature
of all cancers, a message that is reinforced by the observation that many
transcription factors are altered in cancer. For example, activation of the
C-MYC proto-oncogenic transcription factor occurs in approximately 70% of all
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human cancers (1). Furthermore, the most frequently mutated gene in cancer is
TP53, which is a well documented transcription factor with tumour suppressive
abilities (2). It is therefore important to invest in technologies that allow the
simultaneous and large scale detection of gene transcripts in order to understand
normal biological pathways and how they are affected in disease.

The importance of transcriptional control is also highlighted by the number of
signaling pathways that ultimately regulate the activity of transcription factors.
One such pathway is that mediated by the TGF� superfamily of secreted
ligands. These molecules act via cell surface serine/threonine kinase receptors
to initiate a signaling cascade from the cell membrane to the nucleus via SMAD
proteins. The SMADs thus act as both signal transducers and activators of gene
expression. It is well documented that the activation of the SMAD cascade
by TGF� leads to a potent anti-mitogenic effect on a variety of cells (3). We
have recently found a similar role for the related molecule activin on ovarian
cancer cell proliferation (Ramachandran A. et.al., manuscript in preparation).
Therefore, microarray analysis was undertaken to identify global changes in
gene expression mediated by activin.

2. Materials
2.1. Cell Culture

1. Alpha Minimal Essential Media (�-MEM) (Invitrogen, Carlsbad, USA).
2. Fetal calf serum (FCS, Invitrogen, Carlsbad, USA).
3. Trypsin (Invitrogen, Carlsbad, USA).
4. Activin A (R&D Systems, Minneapolis, USA) was reconstituted in phosphate-

buffered saline supplemented with 0.1% bovine serum albumin to give a final
concentration of 10 �g/mL. This solution was stored in 25�L aliquots at –80�C.

2.2. Sample Preparation and RNA Extraction

1. Qiagen QIAShredders (Qiagen, Hilden, Germany)
2. Qiagen RNeasy columns (Qiagen, Hilden, Germany)
3. Beta mercaptoethanol (�-mercaptoethanol) (Riedel-de Haën, Seelze, Germany)

2.3. RNA Quality Assurance

1. Bioanalyzer Lab-on-a-chip assay (Agilent, Palo Alto, USA)
2. Standards for the Lab-on-a-chip assay (Agilent, Palo Alto, USA)

2.4. Microarray Reagents

1. cRNA Labelling Kit (Affymetrix, Santa Clara, USA)
2. GeneAmp® 9700 thermal cycler (Applied Biosystems, Foster City, USA)
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3. GeneChip® Hybridization Oven 640 (Affymetrix, Santa Clara, USA)
4. Human HG-Focus Arrays (Affymetrix, Santa Clara, USA)
5. GeneChip® Fluidics Station 450 (Affymetrix, Santa Clara, USA)
6. GeneChip® Scanner 3000 (Affymetrix, Santa Clara, USA)

2.5. cDNA Synthesis and Quantitative RT-PCR

1. Thermoscript Reverse Transcription Kit (Invitrogen, Carlsbad, USA)
2. MJ-Research PTC-100 Thermal Cycler (Bio-Rad, Hercules, USA)
3. Sybr Green PCR MasterMix (Applied Biosystems, Foster City, USA)
4. SDS7700 Sequence Detection System (Applied Biosystems, Foster City, USA)

3. Methods
3.1. Cell Culture for RNA Extraction

1. The epithelial ovarian cancer cell line OVCAR3 was cultured in �-MEM supple-
mented with 5% FCS in 100-mm tissue culture dishes. Cells were passaged at
approximately 80% visual confluence with trypsin.

2. Prior to seeding for activin treatment and RNA extraction, cells were serum starved
for 24 h in �-MEM supplemented with 0.2% FCS.

3. For activin treatment and RNA extraction, cells were seeded at a density of 225,000
cells/10-mm dish in �-MEM supplemented with 2.5% FCS (see Note 1).

4. Recombinant human activin was added to a final concentration of 10 ng/mL.
5. Ten milliliters of culture were used for each dish.
6. Four 10-mm dishes per treatment were pooled at each time point (see Note 2). At 0

h, one million cells were lysed using Buffer RLT:�-mercaptoethanol (see Note 3)
from the Qiagen RNeasy Kit. The lysate was homogenized by centrifugation
through a QIAShredder at maximum speed in a benchtop centrifuge for 2 min.

7. At the other two time points investigated (12 h and 121 h), cells were lysed by
adding 650 �L of Buffer RLT:�-mercaptoethanol to one 10-mm culture dish and
transferring the lysate sequentially through the remaining three dishes. The lysates
were homogenized by centrifugation through a QIAShredder at maximum speed
in a benchtop centrifuge for 2 min.

8. After homogenization, total RNA was extracted using the Qiagen RNeasy Kit
according to the manufacturer’s instructions.

9. Total RNA was eluted in 40�L of RNAse free water, and 1�L of 1U/�L
RNAseOUT RNAse Inhibitor (Invitrogen) was added to each eluate.

10. RNA was stored at –80�C.

3.2. Assessment of RNA Quality

1. The integrity of the total RNA was verified using the RNA 6000 Nano Assay
from Agilent according to the manufacturer’s instructions. The Agilent RNA 6000
Nano Assay uses microfluidic capillary electrophoresis to separate total RNA in a
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A        B 

Fig. 1. Agilent RNA 6000 Nano Assay data. A: A representative trace of an RNA
sample. The trace can be analyzed for a number of features that indicate good quality
undegraded RNA, including a uniform and low baseline and the presence of distinct
18S and 28S rRNA peaks at a ratio close to 2. In some instances, the 5S rRNA may also
be visible. The Agilent Bioanalyzer software also generates a virtual gel representing
predicted band intensities of the 18S and 28S rRNA species (see B, indicated by
arrows), and any RNA degradation, which offers a simple visual representation of the
data. A marker for sizing is also shown.

packed gel matrix according to molecular weight. A representative resultant trace is
presented in Fig. 1.

2. An additional feature of the Agilent 2100 Expert Software is the generation of
an RNA Integrity Number (RIN) as an indicator of RNA integrity. The RIN is
based on an analysis of all areas of the electropherogram; a RIN of 10 represents
a non- degraded RNA sample, while a RIN of 1 represents a sample that is likely
to have undergone extensive degradation. All samples used for these microarray
experiments had RIN values of at least 9.0.

3.3. RNA Labelling and Array Hybridization

The choice of One Cycle cDNA synthesis or Two Cycle cDNA synthesis
is dependent on the amount of starting material. In the case of total RNA
concentrations in the range of 1–10 �g, the One Cycle cDNA synthesis can be
performed. In the case of lower total RNA concentrations (10–100ng), the Two
Cycle cDNA synthesis protocol should be used, as it would lead to sufficient
material for further analysis. For the experiments described here, 2.5 �g of
total RNA were used as starting material. The One Cycle cDNA synthesis was
therefore performed as described in the Eukaryotic Target Preparation guide
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published by Affymetrix. As such, the entire protocol will not be repeated here,
rather attention will be drawn to points of interest in the procedure.

1. The first step in the One Cycle cDNA synthesis involves the preparation of poly-A
RNA spike-in controls (see Note 4). The Poly-A Control Stock must be serially
diluted such that the final copy number ratios are 1:100,000, 1:50,000, 1:25,000,
and 1:7,500 for lys, phe, thr, and dap, respectively.

2. The dilution series for the Poly-A spike in controls are dependent on the amount
of starting RNA. For example, 1 �g of total RNA requires a dilution of the stock
by 1:20 followed by two serial dilutions of 1:50; 5 μg of total RNA requires a
dilution of the stock by 1:20 followed by two serial dilutions of 1:50 and then
1:10. For 2.5 �g of total RNA, the stock is diluted 1:20 followed by two serial
dilutions of 1:50 and then 1:35.

3. The second step of the One Cycle cDNA Synthesis involves reverse transcription
of the total RNA to single stranded cDNA using a modified oligo(dT) primer
(T7-oligo(dT) primer; see Note 5). All components are assembled on ice and
amplified as described by Affymetrix.

4. The third step of the One Cycle cDNA Synthesis involves generating a double-
stranded (ds) cDNA molecule with the use of E.coli DNA ligase, E.coli DNA
polymerase I, and RNase H. The ds cDNA is made blunt ended with T4 DNA
polymerase. All components are assembled on ice and amplified as described by
Affymetrix. The ds cDNA is then cleaned up with the Sample Cleanup Module
from Affymetrix according to the manufacturer’s instructions.

5. The next step in the protocol involves the generation of biotin-labeled cRNA from
the ds cDNA template. This is performed using the in vitro transcription (IVT)
labeling kit from Affymetrix, according to the manufacturer’s instructions. This
reaction is assembled at room temperature as the spermidine in the buffer can
lead to precipitation of ds cDNA. The principle behind this step is that the T7
RNA polymerase generates a cRNA molecule that is labelled with a biotinylated
pseudouridine molecule.

6. The labeled cRNA is then cleaned with the Sample Cleanup Module from
Affymetrix according to the manufacturer’s instructions.

7. The labeled cRNA is quantified by diluting 1:100 with RNAse free water and
analyzed by spectrophotometric analysis using a Nanodrop.

8. The amount of cRNA produced from the in vitro transcription is calculated by
subtracting the amount of RNA added to the IVT labeling reaction (based on the
amount of input ds DNA) from the final yield of nucleic acid as assayed by the
Nanodrop.

9. Fifteen micrograms of labeled cRNA (see Note 6) are then fragmented using
the Fragmentation buffer from Affymetrix according to the manufacturer’s
instructions.

10. Ten micrograms of the fragmented cRNA are used to prepare the target
hybridization cocktail (see Note 7). This cocktail also contains the control
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B2 oligonucleotide for grid alignment, and the eukaryotic hybridization control
(see Note 8). The cRNA is hybridized onto HG-FOCUS arrays as described by
Affymetrix in a Hybridization Oven 640, for 16 h (overnight) at 45�C.

11. After overnight hybridization, the arrays are washed using the GeneChip® Fluidics
Station 450 and read on a GeneChip® Scanner 3000.

3.4. Microarrays

Most small-scale microarray experiments are concerned with detecting genes
that undergo significant changes in expression between two experimental condi-
tions. In terms of experimental design, Affymetrix covers many of the technical
aspects in their “Data Analysis Fundamentals” manual, in particular, technical
versus biological replication, and RNA pooling. Here we focus on a simple
comparison between two experimental conditions (treated and untreated), at
two post-treatment time points (12 h and 121 h). A single biological replicate
was available from each condition-time point combination, giving a total of four
arrays. The HG-FOCUS arrays described here were produced by Affymetrix.

3.4.1. Quality control

The first step in analyzing microarrays involves a quality control assessment
using the controls that are introduced at various stages during the target prepa-
ration.

1. Proper grid alignment of the array is undertaken by using the hybridization signal
of the B2 oligonucleotide in order to ensure accurate probe set assignment.

2. If an accurate grid alignment is not achieved, manual alignment of the grid must
be undertaken. Upon hybridization, the B2 oligonucleotide should allow the identi-
fication of the chip name on the array.

3. Additional eukaryotic hybridization controls are the bioB, bioC, bioD, and cre
genes that are added in the hybridization cocktail. These controls are present at
final concentrations of 1.5pM, 5pM, 25pM, and 100pM, respectively. At 1.5pM,
the bioB transcript is present at the limit of assay sensitivity. The 3’ probe set
for the bioB transcript was called as present in 2 of 4 arrays, marginal in 1 of 4
arrays and absent in 1 of 4 arrays; these calls were in the accepted range suggested
by Affymetrix. All other transcripts were called as present with increasing signal
intensities reflecting the increasing molar concentrations of the transcripts.

4. Hybridization of the poly-A spike-in mRNA is also inspected. The 3’ end of all the
four spike-in controls are detected on the arrays, and in order of increasing signal
intensity; lys, phe, thr, and dap were called as present.

5. The HG-FOCUS arrays also have internal controls genes (�-actin and GAPDH)
that allow the assessment of data quality. The ratio of the 3’ probe set signal to the
5’ probe set signal for these genes should not be more than three, for a one cycle
cDNA synthesis.
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3.4.2. Microarray data analysis

We undertook the analysis of microarray data using two different statis-
tical software packages. The first was the open-source software, Bioconductor
(4), and the second used the MAS5 suite within GCOS (Affymetrix). The
MAS5 software is convenient (in that it is bundled with the software for the
Affymetrix system) and a relatively user-friendly option for data analysis, but
the methodology is somewhat outdated, and does not take advantage of many
of the advances in microarray data analysis that have been made over the
past few years. In this respect, use of the Bioconductor software provides
researchers with access to data analysis tools that are constantly being improved
and updated by an international group of developers.

3.4.2.1. Microarray Data Analysis Using R

Bioconductor is an open source software project designed to develop tools for
the analysis of genomic data (4). Bioconductor extends the functionally of the
R computing environment (5) by providing packages that contain functions for
the analysis of specific types of data. Although these packages are not limited
to the analysis of data from microarray experiments, the current popularity of
this technology has meant that a large number of the available Bioconductor
packages are devoted to microarrays. The Bioconductor packages available
for the analysis of Affymetrix microarray data provide users with extremely
powerful statistical methods, many of which have become the de facto standard
for Affymetrix data analysis.

1. In order to utilize the functionality offered by the Bioconductor project, it is necessary
to download and install the R software package. This is available for download
from the main CRAN (Comprehensive R Archive Network) website (www.cran.
r-project.org). Pre-built versions of the R software are available for all major
computing platforms, including Windows, Mac OS X, and specific Linux distribu-
tions, with source code available for building on Unix-based systems. Once installed,
R provides access to detailed html-based help documentation via a web browser.

2. Once R has been successfully set up, the necessary Bioconductor packages can
be installed by running a simple script which is available from the Bioconductor
website (www.bioconductor.org). This allows users to choose either a full (very
large) installation of Bioconductor (see Note 9), or one tailored to their specific
needs. An option provides the ability to download a subset of packages which are
suitable for the analysis of Affymetrix data.

3. Data from the CEL files are read into R using the Affy package (see Note 10).
4. Quality control reports are produced using the AffyQCreport and AffyPLM

packages (see Note 11).
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5. Probe set summaries are produced using the Robust Multi-chip Analysis (RMA)
method (6) (see Note 12).

6. In order to detect probe sets undergoing significant changes in expression between
the two experimental conditions at each time point, the EBarrays package (7) is
used to produce estimates of the probability of differential expression for each
gene (see Note 13).

7. Genes with probabilities of differential expression at either time point of greater
than 0.5 are considered to have undergone significant changes (Fig. 2).

8. The lists of significant genes from each time point are then used as inputs into
the hypergeometric testing functions geneGoHyperGeoTest and geneKeggHyper-
GeoTest in the Category package in order to investigate over-representation of
specific Gene Ontology categories and KEGG pathways, respectively.

9. Within each of these tests, the resultant p-values are adjusted for multiple
hypothesis testing using the false discovery rate controlling method (8).

Fig. 2. Activin-treated versus -untreated RMA transformed log intensities for 12-h
and 121-h samples. The EBarrays package showed a total of 309 probe sets that were
found to be differentially expressed at either time point, with 54 only detected at
12 h, 200 only detected at 121 h, and 55 detected at both time points; significantly
differentially expressed genes are marked in black. At both time points, more probe
sets are up-regulated in response to activin treatment than are down-regulated (80 up
and 29 down at 12 h, 171 up, and 84 down at 121 h). Of the 55 significant probe sets
in common between the two time points, 51 were up-regulated at both time points,
and 4 were down-regulated. The dotted lines indicate the boundaries for differentially
expressed probe sets.
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10. In our study, the analysis of Gene Ontology annotation via the geneGoHyper-
GeoTest function reported significant (after adjustment for multiple hypotheses
testing) over-representation of the “Development” GO term among the probe sets
found to be differentially expressed at 12 h (P = 0.015). This was also seen at
121 h (P = 0.002), with the “DNA replication” GO term also found to be over-
represented in the differentially expressed probe sets (P = 0.08) (see Note 14).

11. The Analysis of KEGG annotation information via the geneKeggHyperGeoTest
command indicated that probe sets from both the TGF-� and Hedgehog signaling
pathways were significantly over-represented at 12 h (P = 0.012 and P = 0.052,
respectively) (see Note 15).

12. Genes from the TGF-� signaling pathway were again found to be over-represented
at 121 h (P = 0.039), with 6 of the 11 differentially genes expressed up-regulated,
and five down-regulated (total pathway size, 73 genes).

13. Genes from the intracellular matrix (ECM) receptor interaction pathway were also
found to be over-represented at 121 h (P = 0.0439), with all 10 differentially
expressed genes up-regulated (total pathway size, 60 genes).

3.4.2.2. Microarray Data Analysis Using MAS5

Detailed information about Affymetrix software (GCOS) is provided
on their website (www.affymetrix.com/support/technical/manual/
expression_manual.affx), along with a supplementary manual relating
to data analysis (www.affymetrix.com/Auth/support/downloads/manuals/
data_analysis_fundamentals_manual.pdf) (see Note 16).

1. The background of all slides assayed here was under 55 (arbitrary fluorescent units).
2. Prior to the comparison of pairs of arrays, global scaling to an average target

intensity of 150 can be applied to all slides, resulting in scaling factors ranging
from 1.78 to 2.23 (see Note 17).

3. For comparative analysis, untreated samples were used as baseline chips against
which the activin-treated samples at each time point were compared. All tunable
parameters were left at default values.

4. Two algorithms are used to compute the significance of the comparative changes
in gene expression.

5. The first algorithm, termed the change algorithm, generates a change P-value and
an associated change call (increased, marginally increased, no change, marginally
decreased or decreased). The change P-value is calculated using the Wilcoxon
signed rank test.

6. The second algorithm, termed the signal log ratio (SLR) algorithm, calculates the
magnitude of the change, and independently generates the direction of change (that
is, positive or negative corresponding to increased or decreased, respectively).
The magnitude of the change is calculated using the one-step Tukey’s Biweight
method, and is presented on a log scale to the base 2 (Fig. 3A). Thus, an SLR of
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A.

B.        C. 

Fig. 3. MAS 5 generated signal log ratios (SLRs) of selected transcripts from
activin-treated cells. SLRs of some biologically relevant targets that were identified as
differentially regulated by microarray analysis of OVCAR3 cells after treatment with
activin are shown in A. The integrins �5 and �6 (ITGAV and ITGB6, respectively)
are extracellular matrix interacting genes that are involved in the activation of latent
TGF� to its active form. They may be important in establishing a positive feed-forward
loop of TGF�/activin signaling in these cells. BMP which competes activin for some
intracellular SMAD targets is down-regulated in response to activin in OVCAR3,
potentially allowing enhanced activin signaling to occur. SMAD7 is known to be
induced in response to activin treatment in other cell types and is likely to regulate
the extent of activin signaling in these cells. The induction of the cell cycle inhibitor
p15INK4B is likely to contribute to activin-mediated growth arrest in OVCAR3 cells.
The fold changes in expression levels of ITGB6 (B) and BMP7 (C) were assayed by
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1 represents a two fold increase in transcript and an SLR of –1 represents a two
fold decline in transcript abundance.

7. Probe sets that gave absent calls for both activin-treated and untreated samples
were not analyzed. If untreated samples had an absent call, but treated samples
had a present call, these data were included as they demonstrated an increase in
gene expression in response to activin treatment (and vice versa).

8. Data are first sorted based on the change algorithm call; only data that are called
as increased or decreased are analyzed further. Of these, only probe sets with a
SLR of ≥1 (twofold induction) or ≤ −1 (twofold suppression) were included in
this study.

9. Genes identified as differentially regulated can be uploaded into the NetAffx
analysis centre from Affymetrix, and genes are analyzed based on GO-Browser
annotation and literature searches.

10. In our study, 192 genes were identified as differentially regulated in response to
activin; 88 of these genes were detected at both time points, 12 genes were detected
at 12 h and 92 genes were detected at 121 h. Of the genes that were differentially
regulated, the majority were up-regulated in response to activin treatment (152
up-regulated genes versus 40 down-regulated genes).

3.5. Validation of Transcript Level Changes

To ensure accurate validation of the microarray data, RNA samples that are
hybridized onto the arrays are used for the subsequent quantitative real-time
RT PCR (qRT-PCR) validation of target genes.

3.5.1. Isolation of RNA and Reverse Transcription

1. Six micrograms of RNA are pre-treated with 1.5 units of DNAse I (Invitrogen)
according to manufacturer’s instructions.

2. The DNAse I-treated RNA is then divided equally into three aliquots: two of which
are reverse transcribed with a reverse transcriptase (RT+) and one of which is not

�
Fig. 3. (Continued) qRT-PCR (open circles) and MAS 5 (closed squares). Fold

changes at 12 h and 121 h represent the expression level of the transcripts in response
to activin treatment relative to the expression in the untreated sample at that time
point. Fold changes obtained by qRT-PCR correlate well with fold changes of these
transcripts identified by MAS 5. Note that the 0-h sample represents RNA from cells
at the beginning of the experiment; therefore SLRs and fold changes do not apply as
there is only one sample at this time point. It is depicted in these graphs to demonstrate
the magnitude and direction of changes in gene expression that occur over time in
response to activin treatment.
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reverse transcribed (RT−) (see Note 18). To each aliquot, a mixture containing
oligo(dT)20 primers (2.5 �M), dNTPs (1 mM of each dNTP) and RNAse free water
to a final volume of 12 �L is added.

3. The mixture is heated to 65�C for 10 min and then immediately placed on ice.
4. A cDNA synthesis master mix is then assembled and added to the

RNA/primer/dNTP mix to a final volume of 19 �L. The cDNA synthesis master
mix contains the cDNA Synthesis Buffer (final concentration of 1×), DTT (final
concentration of 5 mM) and RNAseOUT RNAse inhibitor (2 units).

5. This mixture is incubated at 55�C for 5 min and then placed on ice.
6. To the RT+ reactions, 1 μL Thermoscript RT (15U/μL) (see Note 19) is added,

while to the RT- reaction, 1 μL DEPC water is added.
7. This reaction is incubated on a preheated block at 55�C for 1.5 h. The reaction is

then terminated by incubating at 85�C for 5 min.
8. Finally the RNA template in the RNA:cDNA hybrid is degraded by incubating at

37�C for 20 min.
9. This cDNA is diluted by adding 80 �L of sterile, milliQ water.

3.5.2. Quantitative Real-Time RT PCR (qRT-PCR)

The expression of biologically relevant genes chosen from the arrays was
analyzed in OVCAR3 at the transcript level by quantitative real-time reverse
transcription PCR (qRT-PCR) (Fig. 3B,C). The data analysis for normalization
and relative quantification of gene expression across the samples (that is,
OVCAR3 +/− activin at various time points) was performed essentially as
described earlier (9), and is outlined below.

1. PCR primers are designed using Primer Express software (Applied Biosystems),
with all products being less than 150 base pairs (bp) (see Note 20).

2. All the samples for a given primer pair are analyzed on the same plate, with each
sample analyzed in triplicate.

3. Each qRT-PCR is performed in a final volume of 10 �L, with 1× Sybr Green
Master Mix (Applied Biosystems), 0.1 U uracil DNA glycosylase (Invitrogen),
300 nM of each primer and 2 �L of diluted cDNA (above).

4. The amplification efficiency, designated E, of each primer pair is calculated in the
linear phase of amplification of each qRT-PCR using the LinRegPCR applet for
Excel (10), and averaged across the plate.

5. The average amplification efficiency is used to calculate the “raw” quantity of
each transcript across the samples based on their CT values, which corresponds
to the fractional cycle number at which a given amplification reaction crosses
a defined threshold (E�MinCT−CT�X�, where CT�X represents the CT value of each
qRT-PCR; Applied Biosystems SDS Chemistry Guide).
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6. The two most stable housekeeping genes, beta actin (ACTB) and the TATA box
binding protein gene (TBP), were used to calculate the normalization factor (NF)
for each sample using the geNorm Excel VBA applet (9).

7. The mean raw quantities for each sample are divided by the NFs to generate the
relative abundance of each transcript in that sample.

8. Standard deviations are calculated using the error propagation rules for independent
variables as described in the geNorm User Manual (9)

9. The abundance of each transcript in the untreated sample at each time point was
used as the calibrator (that is, expression level = 1), and expression levels in the
activin-treated samples are represented by reference to this value.

10. Statistical analyses are performed using the student t-test, 2-tailed.

4. Notes
1. Confluence of cells can alter their responsiveness to secreted cytokines. For

OVCAR3, plating 225,000 cells/10-mm dish in 2.5% FCS ensures that they are
still actively proliferating after 5 days in culture. However, the appropriate plating
density has to be determined for each individual cell line.

2. The decision to pool samples is one that requires careful consideration before
undertaking a microarray experiment. In many studies, pooling of samples will
lead to a loss of data due to target dilution and variability in gene expression from
different samples. However, in vitro cell culture tends to generate a relatively
homogenous cell population compared to in vivo tissues; thus, the decision was
made to pool four 10-mm culture dishes for each treatment point for OVCAR3 to
increase the concentration of starting total RNA.

3. �-Mercaptoethanol is a potent reducing agent that disrupts disulphide bonds
in RNAses, thereby inhibiting their activity. However, �-mercaptoethanol
can be oxidised and once this occurs RNAses regain their activity. Thus,
�-mercaptoethanol must be added to fresh buffer RLT and this should be used
within 24 h.

4. The Poly-A spike in RNA are in vitro synthesized lys, phe, thr, and dap polyadeny-
lated gene transcripts from the bacterium Bacillus subtilis that are absent in all
eukaryotic samples. These serve as a quality control to determine the efficiency of
the in vitro transcription and labelling procedures as they are added to the sample
RNA and handled along with it.

5. The modified T7-oligo(dT) primer possesses a T7 RNA polymerase binding site
at the 5’ end of the primer that is subsequently used in the generation of cRNA.

6. The amount of cRNA to be fragmented depends on the format of the Affymetrix
array format. The HG-FOCUS arrays are 100 format arrays (midi-format arrays);
thus, 15 �g of cRNA are fragmented. For 49/64 format arrays (standard arrays),
20 �g of cRNA are fragmented.

7. The amount of cRNA hybridized onto an array also depends on the array format.
For the HG-FOCUS arrays (midi-format arrays), 10 �g of fragmented cRNA are
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hybridized. For the 49/64 format arrays (standard arrays), 15 �g of fragmented
cRNA should be hybridized.

8. The eukaryotic hybridization controls added after the in vitro transcription and
fragmentation of the cRNA controls for hybridization efficiency of the samples
onto the arrays.

9. The Bioconductor packages contain documentation (including example commands
for the analysis of data) in the style of a tutorial, which can be viewed as a PDF,
or used to load example commands directly into R. There is a need to have a
chip-specific annotation package installed before trying to normalize Affymetrix
data using the Affy package from Bioconductor.

10. The CEL file contains intensity information for each probe on the array. Sequences
are represented by multiple perfect-match (PM) and mis-match (MM) probes
(probe sets), and genes can be represented by more than one probe set.

11. These reports are used to identify problematic arrays, and the investigator can use
this information to decide whether questionable arrays should be included in the
analysis.

12. When performing statistical analysis, it is important to take the number of probe
sets representing each gene into account. In the over-representation analysis this
can be most easily accomplished by merging the data across all probe sets which
represent the same gene; for example, by taking the median value across the probe
sets for that gene.

13. To use most statistical methods (and obtain meaningful results), biological repli-
cation is required, as replicates are necessary for the estimation of per-gene
variability. If replicate data are not available, then methods which assume a
constant coefficient of variation, i.e., constant variance on the log scale, such
as those available in the EBarrays package, can be used to obtain information
about differential expression. If technical replicates are to be used in conjunction
with biological replications, then the correlation between the technically replicated
arrays e.g. a pair of arrays to which the same sample was hybridized, needs to
be accounted for in the statistical analysis. Currently the limma package (11) in
Bioconductor is one of the few methods able to do this correctly.

14. Many of the methods for investigating over-representation of function categories
can also be accessed via web interfaces. In some cases this approach may be
preferable to using the Bioconductor annotation packages, as results are generally
formatted as HTML tables, and annotation information is likely to be updated
more regularly. Examples of such resources include DAVID at NCBI, and the
NetAffx service provided by Affymetrix.

15. While five of the 73 genes in the TGF-� signaling pathway were differentially
expressed (three up, two down), only two (one up, one down) of the 38 genes in
the Hedgehog signaling pathway were differentially expressed. It should be noted
that while entire pathways may not be significantly altered, individual components
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of the pathway may be biologically relevant and, thus, differentially regulated as
seen here.

16. Although the Affymetrix GCOS software provides a number of methods for the
analysis of data from both single and multiple array experiments, these methods
are relatively simple, and do not reflect the extensive range available for the
analysis of data from microarray experiments.

17. Prior to the comparison of two arrays with MAS5, scaling or normalization must
be applied to the arrays. With global scaling, the signal intensity of each array is
scaled to reach a user-defined threshold either using all probe sets or a defined
probe set determined in the mask file. In the case of normalization, the signal
intensity of one array (the experimental array) is normalized to the signal intensity
on the other array (the baseline array). For experiments where the majority of
the transcripts are expected to be unchanged, Affymetrix recommend the use of
global scaling, and as such this was carried out for these experiments. Scaling
factors should be within three orders of magnitude of each other; greater than this
suggests technical errors in the analysis.

18. RT+ reactions represent the cDNA synthesis reactions while the RT- reactions
control for genomic DNA contamination in the RNA samples.

19. If less than 1 ng of RNA is used as starting material, 7.5U of Thermoscript should
be used for each reaction.

20. Primers for qRT-PCR were designed against the target sequences covered by the
Affymetrix probe sets on the HG-FOCUS arrays.
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Microarrays—Identifying Molecular Portraits
for Prostate Tumors with Different Gleason Patterns

Alexandre Mendes, Rodney J. Scott, and Pablo Moscato

Summary

We present in this chapter the combined use of several recently introduced methodologies for
the analysis of microarray datasets. These computational techniques are varied in type and very
powerful when combined. We have selected a prostate cancer dataset which is available in the
public domain to allow for further comparisons with existing methods. The task is to identify
biomarkers that correlate with the clinical phenotype of interest, i.e., Gleason patterns 3, 4, and 5.
A supervised method, based on the mathematical formalism of (�,�)–k–feature sets (1), is used
to select differentially expressed genes. After these “molecular signatures” are identified, we
applied an unsupervised method (a memetic algorithm) to order the samples (2). The objective is
to maximize a global measure of correlation in the two-dimensional display of gene expression
profiles. With the resulting ordering and taxonomy we are able to identify samples that have
been assigned a certain Gleason pattern, and have gene expression patterns different from most
of the other samples in the group. We reiterate the approach to obtain molecular signatures that
produce coherent patterns of gene expression in each of the three Gleason pattern groups, and
we analyze the statistically significant patterns of gene expression that seem to be implicated in
these different stages of disease.

Key Words: microarray data analysis, prostate cancer, pathway analysis, Gleason score,
memetic algorithm, (�,�)–k–feature set.

1. Introduction
For the diagnosis and treatment of prostate cancer the Gleason scoring system

(3) is used as a standard approach for clinical decision-making. It takes into
account the heterogeneous nature of prostate cancer by combining in a score the
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two most prevalent features of the tumour. The most common pattern/feature
is first given an individual score on a scale from 1 to 5, and to that is added
the score of the second most common feature, resulting in a total score that
ranges between 2 and 10. Several studies support the thesis that there is a clear
relationship between the score and clinical outcomes (see Note 1).

Recently, gene expression changes have been associated with Gleason scores
(4) and suggest that there are specific changes associated with the different
stages of prostate cancer. There are, however, clear difficulties encountered
in discriminating between a Gleason score of 4 and 5, signaling that the data
analysis was not precise enough to differentiate higher grades of disease. To
define prostate cancer more effectively gene expression changes need to be
assigned to the apposite Gleason score. However, using some bioinformatic
approaches this has proved very difficult to achieve due to the heterogeneity
of prostate tumors.

True and colleagues (4) have noticed how difficult it is to find good gene
sets that can act as biomarkers to identify samples as being either Gleason
pattern 4 or 5. In their own words: “We were unable to identify a cohort of
genes that could distinguish between patterns 4 and 5 cancers with sufficient
accuracy to be useful, suggesting a high degree of similarity between these
cancer histologies or substantial molecular heterogeneity in one or both of
these groups”. As our approach to the identification of molecular signatures
will try to maximize the similarity of the groups, our methods may help to
classify more adequately subsets of this disease into their respective Gleason
scores, and thereby provide an accurate gene feature set that can be used to
distinguish between the different Gleason grades.

The categorization of molecular events that underlie prostate cancer devel-
opment and progression has been difficult. This is a direct result of the hetero-
geneous nature of the tumors themselves. Nevertheless, prior to gene expression
analysis there were a number of consistent observations made about some of
the molecular changes associated with disease development. These included
the large number of somatic mutations identified in the tumors, as well as
recognition that growth factors and the hormonal milieu significantly contribute
not only to disease development but also its progression. Two factors are of
particular relevance to disease risk and these are testosterone and insulin-like-
growth factor 1 (IGF-1).

Alterations in the androgen receptor have been linked to a worse prognosis
of disease [for review of the role of androgens and the androgen receptor,
see (5)]. Androgen action results in a series of gene expression changes that
affect cellular proliferation by directly increasing expression of genes such
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as TMPRSS2:ETV1 fusion gene, TMPRSS2, ERG, WISP-2 and indirectly via
Src/Raf-1/MEK1 and IGF-1. Androgens are also intimately involved in cell
survival as they have been shown to influence the expression of caspase-2,
c-FLIP, P53, MDM2, Hox5a and Egr-1.

The IGF signaling pathway appears to be significant as it orchestrates a
variety of responses in concert with the androgen receptor. Higher circulating
levels of IGF-1 have been associated with an increased risk of prostate cancer
(6,7) via, at least in part, trans-activation of the androgen receptor pathway
through the IGF-1 receptor, which results in the potentiation of AR signaling
(for review see 8).

Studies aimed at identifying other molecular changes associated with prostate
cancer have revealed a number of genes that are either lost or have altered gene
expression compared to normal tissue. These include genes such as NKX3-1, a
homeobox gene with prostate specific expression (9); PTEN, a lipid phosphatase
that dephosphorylates phosphatidylinositol-3,4,5-tri phosphate, which results in
perturbation of the AKT pathway (10); CDKN1B (p27) a cell cycle inhibitor
that interacts with the AKT pathway and potentiates loss of PTEN (11); ATFB1,
a protein that cooperates with MYB (12); KLF6, a Kruppel-like zinc finger
transcription factor (13); ERG and ETV, ETS transcription family members that
form fusion proteins with TMPR22S (14).

2. Mathematical Methodology and Approaches
We have described elsewhere the mathematical models and algorithms

employed for the identification of the molecular signatures to be discussed
below. We consider this work the last in a trilogy of chapters we have published
with Humana Press. The previous two chapters in this series (15,16) explain in
full detail the mathematical models and their application in finding molecular
signatures in Alzheimer’s and Parkinson’s disease studies. Our approaches rely
on the application of combinatorial optimization models and algorithms for
their solution (1,2,17–19).

Our objective in this chapter is to be complementary to that presented
previously and give emphasis to the discussion of the application of these
methods for a case study in clinical bioinformatics. We refer the reader to
these references for an introduction to these methods. More details of other
publications related to our work can be found at the Newcastle Bioinformatics
Initiative’s website (http://www.cs.newcastle.edu.au/∼nbi).

The selection of the problem dataset has allowed us to point to some of
the current best practices in microarray experimental design, pre-processing
and analysis with statistical methods. We refer to (4) for the discussion of
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these important steps and relevant literature. This “shortcut” allowed us to
concentrate on the outcomes of our methodologies and their application in the
clinical bioinformatics arena.

Initially, we verified the results reported in (4) and replicated the molecular
signature for Gleason pattern 3. This was achieved by selecting the most
representative expression patterns of the probes in their gene set (Fig. 1). For
creating the molecular signatures we have undertaken some very simple pre-
processing. We have used 31 samples from the dataset in (4) that had been
assayed with the GPL3834 (FHCRC Human Prostate PEDB cDNA Array v4)
platform (with 15,488 probes) and which originally consisted of 32 samples.
We disregarded sample 02-209C from our analysis as the data were acquired
using a different gene expression analysis platform and contained fewer probes.
After removal of probes that have six or more missing values, there were 14,499
probes and 31 samples to analyze.

2.1. Analysis of Differentially Expressed Genes

True and colleagues (4) highlighted the problems their classifier had on an
independent set. In their own words: “Of the 12 cancers histologically called
Gleason pattern 3, all but one was correctly classified. Of the cancers with a
histological classification of 4 or 4+5, 6 of 11 were correctly classified. As
expected, microdissected samples recognized to contain mixed grades of 3+4
were divided between pattern 3 or pattern 4 molecular categories. These results
suggest that pattern 3 cancer exhibit relatively consistent molecular alterations,
whereas cancers with histological features of patterns 4 and 5 are more diverse
and, in some cases exhibit molecular features common to pattern 3 cancers.”

It seems that, in part, the problems are related to a direct consequence of
the approach described in (4) since tumors of patterns 4 and 5 had to be
grouped to produce their statistically based molecular signature for Gleason
pattern 3. To compare our combinatorial optimization approach, we have
created three molecular signatures that we denote as Gleason-3-versus-(4+5),

�
Fig. 1. True and colleagues (4) have recently reported that the expression of 86

genes help to distinguish Gleason pattern 3 (in white) from Gleason pattern 4 (gray)
and 5 (black). Here we depict the values corresponding to those genes, which are in
closer agreement with their reported signature. Grayscale intensities have been selected
to make a clear picture of individual gene variation and we have used the same settings
in the other figures. Columns correspond to samples, presented here in the same order
as they appeared in their figure (4).



Microarrays in Medical Genetics 135

GLEASON 3 GLEASON 4

LOW GRADE HIGH GRADE 

E300-20
F510-30
F120-30
B920-30
A060-30
A360-30
C660-30
D860-30
D911-30
A831-30
B041-30
C350-20
H550-30
C660-30
D390-30
E511-30
C531-30
C141-30
C551-30
F851-30

951-30
C702-30
A030-40
D860-30
D980-30
E511-30
C611-30
C341-30
A251-30
C481-30
C320-40

GLEASON 5 



136 Mendes et al.

Gleason-4-versus-(3+5), and Gleason-5-versus-(3+4). As expected, the samples
of Gleason 3 are more coherent than the other two groups. In Gleason-3-
versus-(4+5), each pair of samples belonging to different target groups, e.g.,
one in Gleason 3 and the other that is not, have at least 267 genes differ-
entially expressed, while the within-class similarity is also high (for any pair
of samples belonging to the same class we have at least 197 genes with a
similar expression). The total number of genes in the signature is 522. We refer
to such a signature as an (267,197)-522-feature set. Analogously, molecular
signatures for Gleason-4-versus-(3+5) and Gleason-5-versus-(3+4) correspond
to (82,92)-187 and (122,99)-223 feature sets (Fig. 2).

2.2. Biomarkers of Interest—Gleason Pattern 3

Our genetic signature for Gleason-3-versus-(4+5) has revealed a number of
differentially expressed genes in concordance with (4). In particular, MAOA
(Monoamine oxidase A) and DAD1 (Defender against cell death 1) are in
general down-regulated in tumors corresponding to Gleason pattern 3. Immuno-
histochemical analysis was also performed by True and colleagues (4), which
confirmed their array analysis; MAOA protein levels were assessed by immuno-
histochemical analysis on panels of tissue microarrays (889 cancerous and 469
benign samples). They found that protein expression was elevated in cancerous
epithelium relative to benign secretory epithelium and that MAOA expression is
significantly higher in Gleason 4 and 5 samples in comparison with Gleason 3.
In both cases the P-value was lower than 0.0001 (proportional odds-regression
analysis). Our analysis has also revealed that to define more accurately Gleason
3 we need to include three other genes. Two of them should be highly expressed
KLF6 (Kruppel-like factor 6) and MYBPC1 (Myosin binding protein C, slow
type), while the other gene, SPON2 (Spondin 2, extracellular matrix protein)
(20,21) is down-regulated. We will return to these markers after we discuss the
biomarkers for the other two patterns.

2.3. Biomarkers of Interest—Gleason Pattern 4

As expected, it is a real challenge to find markers for this group for the
reasons discussed above. We concentrated our attention on four genes that seem
to be notoriously down-regulated in most, but not all the samples in the group
labelled Gleason 4. The genes are CRABP2 (cellular retinoic acid binding
protein), TPM2 (tropomyosin 2 beta), EDNRA (endothelin receptor type A),
and CTGF (connective tissue growth factor).

CRABP2 is a regulator of anti-carcinogenic activities of retinoic acid and
it has been suggested previously that CRABP2 is down-regulated in prostate
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Fig. 2. Molecular signatures that distinguish, in each case, one of the Gleason
patterns from the other two. Rows represent genes and columns represent samples
(white for Gleason 3, gray for Gleason 4, and black for Gleason 5, as in Fig. 1). We have
used the memetic algorithm of Moscato et al. (2006) to find optimal orders of samples
and genes. a: Samples with Gleason pattern 3 have more than 60 genes up regulated in
comparison with the samples of other patterns (upper left corner). Sample 02-003E,
the only one that expresses MAOA and Death-associated protein (DAP, BM910328),
seems an outlier in the Gleason 3 pattern group. b: A molecular signature to identify
samples of Gleason pattern 4 (in gray); samples 03-060A, 02-003E, and 03-115E appear
to belong to Gleason 4. c: Sample 03-135C in this molecular signature for Gleason
pattern 5 indicates that its profile is very similar to others of Gleason 5.
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cancer (22). In a study on MCF-7 mammary carcinoma cells (23) it was
observed that retinoic acid treatment of MCF-7 triggered pronounced apoptosis
and that CRABP2 has pro-apoptotic activities (over-expression of CRABP2 up-
regulated APAF1 and triggered Caspase 7 and Caspase 9 cleavage). CRAB2
undergoes nuclear localization upon binding of retinoic acid, interacts with
the retinoic acid receptor in a ligand dependent fashion, raising the possi-
bility that these prostate tumors (similar to MCF-7) may be retinoic acid
resistant (24).

In this dataset, CRABP2 is co-regulated with CTGF. In stromal tissue,
expression of CTGF has been linked to the promotion of angiogenesis and
prostate cancer tumorigenesis and is a powerful mediator of TGF-�1 action.
In tumor-reactive stroma, CTGF expression induced an increase in microvessel
density and xenograft tumor growth, suggesting that CTGF is a downstream
mediator of TGF-�1 action in cancer-associated reactive stroma, and is likely
to be one of the key regulators of angiogenesis in the tumor-reactive stromal
microenvironment (25). Blockage of CTGF has been suggested as a therapeutic
target against benign prostatic hyperplasia (26).

Endothelins and their receptors are related to angiogenesis, tumor growth and
proliferation, bone metastasis and apoptosis (27). Gleason 4 samples that over-
express CRABP2 and CTGF also have EDNRA up-regulated. Over-expression
of Endothelin A (ET-A) receptor is known to increase with tumor progression.
Clinical trials with selective ET-A receptor antagonists, such as Atrasentan
(ABT-627) are showing promising results (28). Another study indicated that
a combination of ET-A antagonists and apoptosis-inducing therapies could be
beneficial for prostate cancer (29) (see also 30).

TPM2 is also down-regulated in a subset of Gleason pattern 4 tumors. It
has recently been shown that TPM2 may have a role in the loss of actin stress
fibers, which in turn is associated with cell transformation and metastasis.
Epigenetic suppression of TPM1 may affect TGF-� inducing stress fibers and
inhibit cell migration in metastatic cells (31). As TGF-� induction of stress
fibers in epithelial cells requires the tropomyosins TPM1 and TPM2 genes, it
remains to be understood what the effects of TPM2 down-regulation are in
prostate cancer.

2.4. Biomarkers of Interest—Gleason Pattern 5

Analysis of the results produced by our signature for Gleason-5-versus-
(3+4) has resulted in an identification of two types of samples within this
group. We will centre the discussion on three genes: CXCR4 (chemokine (C-
X-C motif) receptor 4/CD 184 antigen/Fusin), DPP4 (Dipeptidyl-peptidase
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4 / CD26, adenosine deaminase complexing protein 2), and SPP1 (Secreted
phosphoprotein 1 (osteopontin, bone sialoprotein I, early T-lymphocyte
activation 1).

The marked over-expression of CXCR4 is only present in four samples
of Gleason type 5. There are also samples with high (but more moderate)
expression in three or four samples labeled Gleason 4 and one in the Gleason 3
groups. These samples also over express ITGB2 (Integrin, beta 2 (complement
component 3 receptor 3 and 4 subunit)). CXCR4 is involved in angiogenesis (32)
during tumor invasion and metastasis (33–38) and a CXCL12-triggered chemo-
attractive mechanism implicated in tumor cell binding has been uncovered,
which has established a connection between chemokine receptor expression and
integrin-triggered tumor dissemination (39,40). CD164, CXCR4, and CXCL12
participate together in the localization of prostate cancer cells to bone marrow
(41–43), and new targeted therapies are being developed to block this process
(44–46). Kukreja and colleagues (47) have shown that CXCL12 induced
expression of CXCR4 in PC-3 cells is dependent on the MEK/ERK signaling
cascade and NF-kappa B activation. It has been recently suggested that the shift
of CXCR4 (and CXCR3) from the cell surface to the cytoplasm might indicate
progression from a low to a highly aggressive phenotype (48).

DPP4 is specific for luminal secretory cell types of the prostate (49),
and it has been reported to be expressed in prostate cancers and adjacent
benign prostatic hyperplastic tissue (50). DPP4 is a serine protease with
tumor suppressor function, regulating the activities of mitogenic peptides impli-
cated in cancer development. Wesley and colleagues (51) have shown, via
silencing DPP4 with siRNA, an increase in bFGF levels and restoration of
mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase
(ERK)1/2, suggesting that DPP4 blocks the fibroblast growth factor signaling
pathway. A prostate tumor cell line (1-LN) has been reported to be invasion
resistant by blocking plasminogen binding to DPP4 (52).

SPP1/OPN (osteopontin) is an integrin-binding glycoprotein of the extracel-
lular matrix with many functions (53). It is a proven mediator of tumorigenesis
in several cancers, and has previously been proposed to be a potential predictor
of malignancy in prostate tumors (54,55). The highly malignant carcinoma
tissue had an SPP1/OPN increase of up to sixfold in comparison with normal
tissue. Strong OPN expression was observed in the normal human endometrium
in 80% of the samples analyzed in (56); in endometriod carcinoma SPP1/OPN
expression levels were low or not observed, whereas serous tumors displayed
over-expression. It appears that SPP1/OPN enhances cell proliferation (57) via
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the epidermal growth factor pathway, at least in the LNCaP prostate cancer
cell line (58).

2.5. Analysis of Differentially Expressed Genes and Pathways

2.5.1. PDGF Signaling and Gleason Pattern 3

Currently, the relationship of MAOA and prostate cancer is not clear.
However, in our signature we have also identified PDGFB (Platelet-derived
growth factor � polypeptide (simian sarcoma viral (v-sis) oncogene homolog)
as part of our genetic signature. This is important since we have identified the
Platelet-Derived Growth Factor Signaling Pathway as the most significantly
differentiated pathway (using as input the genes that best discriminate between
samples with Gleason pattern 3 and other types). Using Bonferroni correction
for multiple testing from the Panther Classification Gene Expression tool, the
PDGF Signaling Pathway has a P-value lower than 0.000176 (see Fig. 4). In the
molecular signatures of Gleason-3-versus-(4+5), Gleason-4-versus-(3+5) and
Gleason-5-versus-(3+4), we have identified a number of genes differentially
expressed in this pathway. We highlight STAT1 and STAT6 (signal transducer
and activator of transcription 6, interleukin-4 induced). STAT6 has not been
identified previously (4), but it is well-correlated across all samples with IL-4
(interleukin 4, M13982), IRF4 (Interferon regulatory factor 4) and GSTM1
(glutathione S-transferase M1) which is part of the authors’ 86 most discrim-
inatory gene set. While STAT6 is up-regulated in most Gleason 3 samples,
STAT1 is down-regulated. STAT6 was previously implicated in prostate cancer
by Ni and colleagues (59) where significant levels of activated STAT6 and
STAT4 were detected in primary prostate tissues but no significant expression
of active STAT1, STAT2, or STAT5 had been detected. A novel statistical
method used to integrate microarray data also points at STAT6 involvement
in prostate cancer (60). STAT6 (CR606877) is also highly correlated with the
expression of PIK3R1 (phosphoinositide-3-kinase, regulatory subunit 1 (p85
alpha), CR977491), but the latter has a non-uniform expression in Gleason 3
samples and might not be useful as a biomarker.

Other genes in the PDGF signaling pathway, which are differentially
expressed in Gleason 3 samples in comparison with other sample types
include PIK3C3 (phosphoinositide-3-kinase, class 3), ARHGAP4 (Rho GTPase
activating protein 4,CD359532), USF2 (upstream transcription factor 2, c-fos
interacting, S50537), and MAPK3 (mitogen-activated protein kinase 3). Inter-
estingly, MAPK3 and USF2 appear to co-express across the whole sample set
(both Gleason 3 and those that are not), while ARHGAP4 correlates well with
MYC (V-myc myelocytomatosis viral oncogene homolog (avian) BT019768) in
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almost all samples but not those with a Gleason pattern 3. ARHGAP4 appears
to have a conspicuously similar expression value in normal and cancer tissue,
while MYC shows marked differences (in Gleason 3 samples).

2.5.2. Other Pathways

There are other pathways that appear to be having a significantly
higher number of genes differentially expressed in them, including integrin
signaling, inflammation mediated by chemokine and cytokine signaling,
androgen/estrogen/progesterone biosynthesis, p53 pathway feedback loops 2,
and endothelin signaling. The genetic signature of Gleason-4-versus-(3+5)
seems to indicate that Gleason 4 appears to be linked to inflammation (P-value
< 1.42E-02) and Gleason-5-versus-(3+4) points to integrin signaling (P-value
< 1.42E-02).

2.5.3. Pathway Analysis from the Union of all the Signatures

Aside from individual gene lists where each one is associated with one of
the patterns, we can have a single list that represents the union of all genes
present in at least one of the molecular signatures. Mapping them to pathways
should provide a better understanding of the most significant patterns involved
in prostate cancer that is less biased by individual subtypes. This approach
has revealed FGF signaling, oxidative stress response, RAS, B cell activation,
hypoxia response via HIF activation, and VEGF signaling as putative pathways
of interest for a more comprehensive genome-wide study (Table 1).

2.5.4. A Critical Analysis of the Labeling Produces more Coherent
Molecular Signatures

We have identified four samples that do not seem to have a profile that is
similar to the ones that have been categorized using the same labeling in our
signatures. They are 03-060A, 02-003E, and 03-115E (that appear to have a
Gleason pattern 4 profile) and 03-135C (which exhibits an apparent Gleason
pattern 5 profile). This is relatively clear from detailed inspection of Fig. 2 (we
discussed how we reached these conclusions in the caption for this figure).

With these modifications, we have computed new molecular signatures. As a
consequence, the Gleason-3-versus-(4+5) is now the (289,254)-571-feature set
(Fig. 3a) and is a more coherent signature for this pattern with a slight increase
in the total number of probes used (from 522 to 571). Analogously, molecular
signatures for Gleason-4-versus-(3+5) and Gleason-5-versus-(3+4) correspond
to (114,124)-243 and (165,151)-262 feature sets respectively (Figs. 3b and 3c,
respectively).
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Table 1
The pathways differentially expressed identified using the union of all the genes
present in at least one of the molecular signatures for Gleason patterns 3, 4
and 5 (see Fig. 2). The first column (total) indicates the number of genes in the
pathway; the second (labelled #genes) indicates the number of genes of that
pathway present in the union of the molecular signature. The third column
(# expected) indicates the expected number of genes to appear in the pathway
and finally a P-value is associated to the pathway taking into account
Bonferroni correction for multiple testing. Data generated using a public
domain tool available from (http://www.pantherdb.org) (61).

Pathway Total # genes # expected P-value

Integrin signaling pathway 236 20 4.19 2.07E-06
PDGF signaling pathway 180 17 3.19 5.46E-06
Inflammation 314 22 5.57 1.08E-05
p53 pathway feedback loops 2 65 8 1.15 3.48E-03
EGF receptor signaling pathway 136 11 2.41 5.43E-03
Angiogenesis 219 14 3.88 6.55E-03
Endothelin signaling pathway 98 9 1.74 1.05E-02
Androgen/estrogen/progesterone

biosynthesis 18 4 0.32 4.34E-02
p53 pathway 120 9 2.13 4.62E-02
T cell activation 120 9 2.13 4.62E-02
Huntington disease 177 11 3.14 5.20E-02
FGF signaling pathway 135 9 2.39 1.06E-01
Oxidative stress response 67 6 1.19 1.83E-01
Ras Pathway 92 7 1.63 1.90E-01
B cell activation 99 7 1.76 2.85E-01
Hypoxia response via HIF activation 33 4 0.59 3.99E-01
VEGF signaling pathway 79 6 1.4 4.12E-01

3. Conclusions
Overall, there seems to be very distinct phenotypic types of tumors within

the histopathologically classified group labelled Gleason pattern 4 as well as
in Gleason pattern 5. Nevertheless, we have been able to identify similarities
between these Gleason patterns where other methods have failed. This is now
more evident from the inspection of the profiles of samples for the gene subset
composed of CRABP2, TPM2, EDNRA, CTGF, CXCR4, DPP4, SPP1, MAOA,
DAD1, KL6, MYBPC1, SPON2 (as well as other closely co-expressed genes
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 (a) Gleason 3 vs. 4 + 5 (c) Gleason 5 vs. 3 + 4 (b) Gleason 4 vs. 3 + 5
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Fig. 3. Molecular signatures for Gleason 3, 4, and 5, in that order from left to
right. After modifying the labels of the four samples, which in the previous figure
appear to belong to different groups, new molecular signatures for the three groups can
be observed. This has produced a more coherent molecular signature for the groups
Gleason pattern 3, 4, and 5 (now slightly modified).

like CABIN1, to be discussed below), can lead to a different classification
of prostate tumors. Validation of this molecular taxonomy with immunohisto-
chemical methods and RT-PCR would be required for the application and study
of its relevance in the clinical setting, both necessary steps for translational
medical research.

In a study where a number of genes associated with aggressiveness in
androgen-independent metastatic tumors were up-regulated, the putative tumor
suppressor gene KLF6 (62,63) was decreased (64). The over-expression of
MYBPC1 in Gleason 3 is a significant finding since MYBPC1 has been
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Fig. 4. Platelet-derived growth factor signaling (above) is one of the most discrimi-
nated pathways for Gleason pattern 3 in our analysis (P-value < 8.12E-03). In gray we
highlight genes (e.g., RasGAP, STAT) which are differentially expressed in the signature
for Gleason-3-versus-(4+5) (in light gray if they appear in more than one signature of
Fig. 3, e.g., PKC, Ras, etc). After our change of labeling of four samples and subsequent
reanalysis, inflammation mediated by cytokines and chemokines and integrin signaling
are still the most statistically significant pathways for Gleason patterns 4 and 5, respec-
tively. However, the RAS pathway is now the most discriminatory one for Gleason
pattern 3 with a P-value < 7.66E-03, and following PDGF signaling we have now
have for Gleason 3: T-cell activation (P-value < 4.58E-02), interleukin signaling and
endothelin signaling (both with P-values < 7.13E-02).
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implicated in severe myopathies and in laryngeal squamous cell carcinoma
(65). Recent analyses have shown that it is a short-lived proteasomal substrate;
and that over expression of USPm (the longer ubiquitin-specific protease
isoform) prevents its degradation (66). This has opened a number of interesting
scenarios with new working hypotheses, which are starting to be explored.
Those include USP25, which has an essential role in protein degradation via
the 26S proteasome and thus regulates several cellular pathways. The down-
regulation of CABIN1 (calcineurin binding protein 1) in the samples which are
not Gleason 3, (and up-regulation in our one-sample-modified Gleason 3) is
also worth of note. Calcineurin is a phosphoprotein phosphatase that channels
intracellular calcium signals into several biological pathways (67). Calcineurin-
NFAT signaling has a critical role in T-cell activation and CABIN1 plays
a major role as transcriptional co-repressor of myocyte enhancer 2 (MEF2)
(68,69).

We have presented the application of a number of new mathematical models
and algorithms developed during the past years that allows a molecular classi-
fication of subtypes of a given disease via interrogation of gene expression
profiles. The methods involve the categorization of numerical data for a
posterior analysis with combinatorial optimization methods for gene selection.
We have proven the adequacy of the tandem of methodologies in the very
difficult problem of finding biomarkers of interest in prostate cancer. Our
approach challenges the clinical identification of tumor subtypes and as a conse-
quence may have a great impact on translational studies. It is also clear to us
that current large-scale clinical trials and studies require similar tools to allow
them to deal with the unquestionable intrinsic diversity and similarity of the
human transcriptome in both health and disease.

4. Note
1. Although the Gleason system for grading prostate cancer has withstood the test of

time, it can still be associated with discrepancies. The most important is sampling
error since only small amounts of tissue are removed with the thin needle core
biopsies. Because the grading is based entirely on the histologic pattern of the
tumor cells in stained sections, another possible source of error is the experience
of the person examining the tissue and making the report. Finally, it should be
noted that prostate cancer is a complex disease and the Gleason score alone cannot
predict the outcome, e.g., some with low scores end up with a poor clinical
result and vice versa. Hence, the continued interest in enhancing the Gleason
grading with additional and more objective parameters such as gene expression via
microarray.
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Microarrays for the Study of Viral Gene Expression
During Human Cytomegalovirus Latent Infection

Barry Slobedman and Allen K. L. Cheung

Summary

Human cytomegalovirus (HCMV) is one of the largest known DNA viruses. It is ubiquitous,
and following resolution of primary productive infection, it persists in the human host by
establishing a lifelong latent infection in myeloid lineage cells such as monocytes and their
progenitors. Most adults with HCMV infection are healthy but it can cause neurologic deficits
in infants, and remains an important cause of morbidity and mortality in the immunosuppressed
patient. Microarray-based studies of HCMV have provided useful information about genes that
are transcriptionally active during both productive and latent phases of infection. This chapter
describes how to study genes in HCMV using microarrays and two cell types (productively
infected human foreskin fibroblasts, and latently infected primary human myeloid progenitor
cells).

Key Words: microarray, herpesvirus human cytomegalovirus latent infection, myeloid
progenitor cell, viral gene transcription.

Abbreviations: aRNA – amplified RNA; HCMV – human cytomegalovirus; HFF – human
foreskin fibroblast; ORF – open reading frame; RT-PCR – reverse transcriptase PCR

1. Introduction
Human cytomegalovirus (HCMV) is a species-specific �-herpesvirus and is

one of the largest known DNA viruses, with a double-stranded linear genome
of approximately 230 kb (1). The genome consists of a long (L) and a short (S)
segment, each of which is flanked by inverted repeat sequences. The prototype
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HCMV strain AD169 has been fully sequenced, and its original annotation
identified no fewer than 208 potential open reading frames (ORFs) (2). Other
laboratory strains of HCMV, such as the Towne strain, have approximately
5 kb of DNA sequence not found in AD169, and the low passage strain, Toledo,
contains 15 kb of sequence not found in either AD169 or Towne strains.
The extra sequences present in the Towne and Toledo strains are predicted to
encode 4 and 19 additional ORFs, respectively (3). In recent years, the protein-
coding potential across these strains has been reassessed, with current estimates
ranging from 165–192 protein-encoding ORFs, depending on the criteria used
for sequence analysis (4,5). Additional analyses including a broader range of
clinical HCMV clinical isolates have identified a total of no fewer than 252
potential protein encoding ORFs (6).

HCMV is ubiquitous, with infection rates approaching 90% in some commu-
nities. Following immune-mediated resolution of a primary productive HCMV
infection, the virus is able to persist in the host by establishing a lifelong latent
infection that is not cleared by the immune response (1,7,8). Latency is charac-
terized by maintenance of the viral genome in the absence of infectious virus
production and with restricted viral gene expression, although the full repertoire
of genes expressed during the latent phase has not been defined. Periodically,
virus may reactivate from latency, resulting in the production of new, infec-
tious virus. The virus is extremely well adapted to its host with the majority
of productive HCMV infections being mild or asymptomatic in healthy adults.
However, HCMV is the most common congenitally acquired infection in infants
where it is the leading viral cause of neurological defects (9–12). Reactivation
of virus from latency is a major clinical concern to those undergoing immuno-
suppressive therapies such as bone marrow and solid organ allogeneic transplant
recipients, where serious, frequently life-threatening HCMV-associated disease
is common during the post-transplant period (12).

HCMV DNA can be detected in myeloid cells from peripheral blood of
healthy seropositive individuals in the absence of detectable infectious virus
(13–15). In addition, virus has been reactivated from terminally differentiated
monocyte-derived macrophages (16) or differentiated dendritic cell precursors
(17), implicating myeloid lineage cells as an important site of latent infection.
Despite the importance of the latent phase of infection to the success of this
virus as a human pathogen, little is known about viral gene expression during
the establishment and maintenance of latency, and the global assessment of
HCMV gene expression has been complicated by the large number of potential
viral ORFs that may be expressed.
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The use of microarray technologies has provided a unique opportunity to
screen rapidly large viruses such as herpesviruses for transcriptional activity
during infection of a variety of cell types (18–24). The procedure can be divided
into five main steps: (1) amplification of viral gene sequences; (2) gener-
ation of viral gene microarrays bearing almost all known HCMV genes; (3)
extraction, amplification, and labeling of cDNAs; (4) detection of global HCMV
gene transcription following hybridization of labeled infected cell cDNAs to
viral gene microarrays; (5) confirmation of viral gene expression by reverse
transcription PCR (RT-PCR).

2. Materials
2.1. Amplification of Viral Gene Sequences

1. HCMV gene-specific PCR primers
2. Cell lysis buffer (25): 50 mM KCl (ICN Biomedicals, Aurora, OH), 10 mM Tris-

HCl pH 8.5, 2 mM MgCl2, 0.45% Nonidet P-40, 0.45% Tween 20, Proteinase K
(100 μg/mL) (Invitrogen, Carisbad, CA).

3. PCR Supermix (Invitrogen)
4. MultiScreen PCR96 filter plates (Millipore, Billerica, MA)
5. MultiScreen vacuum manifold (Millipore)

2.2. Purification and Spotting of Viral Gene Sequences
onto Glass Slides

1. Poly-L-lysine coated glass microscope slides
2. Microarrayer Robot (ESI Inc, Toronto, Ontario, Canada)
3. SSC (20×, Sigma)
4. SDS (10% (w/v), GIBCO, Invitrogen)
5. UV Stratalinker 1800 (Stratagene, La Jolla, CA)
6. Succinic anhydride (Sigma)
7. 1-methyl-2-pyrrolidinone (Sigma)
8. 1M sodium borate (pH 8.0, filtered; Sigma)
9. MWG Spotting Buffer (MWG Biotech Inc, Highpoint, NC)

2.3. RNA Extraction, Amplification, and Labeling of cDNAs

1. RNAqueous kit, 50 purifications (Ambion, Austin, TX)

a. Lysis/Binding Solution
b. 64% ethanol
c. Wash Solution #1
d. Wash Solution #2/3
e. Elution Tubes
f. Filter Cartridge
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2. 5M Ammonium acetate (Ambion)
3. 0.1 μg/μL linear acrylamide (Ambion)
4. MessageAmp II aRNA amplification kit (Ambion):

a. T7 Oligo(dT) primer
b. 10× First Strand Buffer
c. dNTP Mix
d. RNase inhibitor
e. ArrayScript
f. 10× Second Strand Buffer
g. DNA Polymerase
h. RNase H
i. Binding Buffer
j. 10X Reaction Buffer
k. T7 NTP solution
l. T7 Enzyme Mix

m. cDNA Elution Tube + Filter Cartridge
n. aRNA Filter Cartridge
o. Collection Tube

5. Reverse Transcription and Labeling of cDNA

a. Oligo-dT primers (3 μg/μL stock, Invitrogen)
b. Random primers (3 μg/μL stock, Invitrogen)
c. 5× First Strand Buffer (supplied with Superscript II, Invitrogen)
d. 0.1M DTT (supplied with Superscript II, Invitrogen)
e. Un-labeled dNTP mix (10 mM stock, Invitrogen)
f. Superscript II (200 U/μL stock, Invitrogen)
g. Cya-3-dUTP (0.1 mM, Promega, Madison, WI)
h. Cya-5-dUTP (0.1 mM, Promega)
i. NaOH (0.1N, Sigma)
j. HCl (0.1N, Sigma)
k. TE buffer (100× stock; 10 mM Tris-HCl, 1 mM EDTA, pH∼8.0, 0.2 μm-

filtered, Sigma)

6. Microcon YM-30 filters (Millipore)
7. Cot-1 human DNA (1mg/mL, Invitrogen)
8. poly-A RNA (10mg/mL, Invitrogen)
9. tRNA (10mg/ml, Invitrogen)

2.4. Microarray Hybridization and Washing

1. TE buffer
2. 20× SSC
3. 10% (w/v) SDS
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4. 22 × 50-mm glass coverslips (Menzel Glaser GmbH, Fisher Scientific, Braunschweig,
Germany)

5. Glass Array Hybridization Cassette (Ambion)
6. 350-ml glass slide chambers (Shandon Lipshaw, Pittsburgh, PA)
7. Slide rack (holds 30 slides) (Shandon Lipshaw)

2.5. Validation of Microarray Results using RT-PCR

1. RQ1 DNase (Promega)
2. RQ1 Buffer (Promega)
3. RQ1 Stop buffer (Promega)
4. Superscript II reverse transcriptase (Invitrogen)—includes 5× First Strand Buffer,

0.1M DTT
5. 25 mM dNTPs mix (dATP, dTTP, dGTP, dCTP, Invitrogen)
6. Random Primers (3 mg/mL stock, Invitrogen)
7. RNaseOUT (40 U/μL, Invitrogen)
8. PCR Platinum Taq (Invitrogen)—includes 10× PCR Buffer, 2 mM MgCl2

9. Gene specific primers (Proligos, Sigma)

3. Methods
3.1. Amplification of Viral Gene Sequences

1. Viral genomic DNA template for subsequent PCR amplification of individual viral
gene sequences was generated from human foreskin fibroblast (HFFs) infected
with 3 strains of HCMV—AD169, Toledo, and Towne (see Note 1)

2. Harvest and wash cells three times in PBS
3. Add 500 μL of Cell Lysis Buffer to 5 × 106 washed cells and overlay with mineral

oil (Sigma) in a 1.5-mL centrifuge tube
4. Incubate at 65°C in a heating block overnight
5. Incubate at 98°C for 10 min and transfer lysate to a new 1.5mL tube (see

Note 2)
6. Set up 50-μL PCR reactions with 45 μL of PCR Supermix, 2 μL of viral template,

1 μL of forward, and 1 μL of reverse primers (each at a concentration of 100 μM)
for the specific viral gene to be amplified, and 1 μL of nuclease-free water (see
Note 3)

7. Set up PCR thermal cycling with 1 cycle of 94°C for 3 min; and 30 cycles of
94°C for 1 min, 58°C for 1 min and 72°C for 2 min (see Note 4)

8. Load 20% of PCR products on 3% agarose gels for electrophoresis
9. Stain gel with ethidium bromide for 10 min on a rocking platform, destain for

15 min with dH2O and photograph under an ultraviolet light trans-illuminator
10. Carefully check for successful amplification of each viral gene based on the size

of the product on the agarose gel before continuing to the next step (Fig. 1)
(see Note 5)
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Fig. 1. Confirmation of successful amplification of specific HCMV gene sequences
by agarose gel electrophoresis. Ethidium bromide-stained agarose gel showing PCR
products from nine HCMV genes in the UL region of the HCMV genome. A positive
control for the presence of amplifiable HCMV DNA (Pos) using well-characterized
primers HCMV ie1/ie2 region gene primers IEP3C/IEP4BII (band size 387 bp) and a
negative control (Neg) containing no DNA template were included. 100-bp molecular
weight markers were included on both sides of the gel to aid in sizing of bands. Arrows
indicate the molecular size markers between 100 and 600 bp. The nine products show
strong, discrete bands on the gel, which are ideal for spotting down onto microarray
slides.

3.2. Purification and Spotting of Viral Gene Sequences
onto Glass Slides

1. Transfer PCR products to Multiscreen PCR96 filter plates and place on a Multi-
Screen vacuum manifold
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2. Apply vacuum suction at 20 inches Hg for 5 min until dried
3. Resuspend the products with 100 μL of milli-Q H2O to wash the products
4. Repeat vacuum until dried
5. Resuspend products with 40 μL of milli-Q H2O
6. Transfer products to fresh 96-well round-bottom plates and store at –80°C
7. When ready for printing, thaw PCR products at room temperature, and air dry

under vacuum
8. Resuspend in 12 μL of MWG Spotting Buffer (MWG Biotech) and transfer to a

384-well plate (Millipore)
9. Set up program for printing and place in the ESI Microarrayer Robot hood

for printing. Follow manufacturer’s instructions for printing of microarrays
(see Note 6)

10. Store microarrays in a dust free, dry container at room temp (see Note 7)

3.2.1. Post-Processing of Viral Gene Microarrays

Prior to hybridization, microarrays need to be processed to remove unbound
nucleic acids and printing buffer salts.

1. Use a diamond pen to mark the boundaries of the printed area on the microarray
(see Note 8)

2. Place array inverted over warm 2× SSC for a few seconds to rehydrate the spots
and immediately place onto the surface of a clean heating block at 90°C for
5 sec

3. Fix DNA onto glass slides by placing microarray slides into a UV Stratalinker
with 600 μJ UV light applied

4. Place slides in a slide rack and wash slides in 1× SSC/0.05% SDS for 30 sec in a
glass slide chamber by plunging up and down, and then in 0.06× SSC for 30 sec
in another slide chamber

5. Have 6.0 g of succinic anhydride dissolved in 335 mL 1-methyl-2-pyrrolidinone
in a slide chamber, and add in 15 mL of sodium borate as soon as the succinic
anhydride dissolves (see Note 9)

6. Immerse microarrays immediately into solution in step 5 and plunge vigorously
for 60 sec, and then place on a rocking platform for 10–15 min

7. Place microarrays in boiling water (turn off heat prior to adding microarrays to
avoid bubbles) in a 1-liter glass beaker for 2 min, and then transfer into 95%
ethanol solution in a slide chamber (see Note 10)

8. Wash slides in 95% ethanol solution for 15 sec
9. Centrifuge microarrays in a plate centrifuge for 2 min at 75 × g to dry the

microarray slides
10. Proceed with hybridization (section 3.4) or store dried microarrays in dust-free

slide boxes at room temperature (see Note 11).
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3.3. RNA Extraction, Amplification, and Labeling of cDNAs

3.3.1. RNA Extraction

Total RNA is extracted from cells using the RNAqueous kit (Ambion).

1. Lyse mock- and HCMV-infected cell pellets with 700 μL of Lysis/Binding Solution
and vortex (see Note 12)

2. Add an equal volume of 64% ethanol and mix by inverting 5 times
3. Transfer 700 μL of the mix to a Filter Cartridge inserted in an Elution Tube and

microcentrifuge at maximum speed (20,800 × g) for 1 min
4. Discard the flow-through
5. Transfer the remaining mixture to the same filter and centrifuge for 1 min at

maximum speed
6. Add 500 μL of Washing Solution #1 to the cartridge and centrifuge for maximum

speed for 1 min
7. Discard flow through and repeat step 5, then centrifuge an additional minute to

allow residues to flow through
8. Transfer Filter Cartridge to a new Elution Tube
9. Apply 50 μL of Elution Buffer heated to 100°C (see Note 13) to the center of the

filter and centrifuge for 30 sec
10. Repeat step 9 for a second elution
11. Add 10 μL of ammonium acetate, and add 1 μL linear acrylamide and mix

gently
12. Add 200 μL of ice-cold 100% ethanol and mix well
13. Precipitate RNA overnight by placing into a –80°C freezer
14. Next day, thaw and centrifuge RNA samples in a pre-cooled 4°C microcentrifuge

at maximum speed for 20 min
15. Carefully remove supernatant with fine tip pipettes (see Note 14) and wash pellet

with 500 μL of ice-cold 70% ethanol and microcentrifuge for 15 min at maximum
speed at 4°C

16. Remove supernatant and allow to air dry for 10–15 min (see Note 15)
17. Resuspend RNA pellet in nuclease-free water and store at –80°C

3.3.2. Assessment of RNA Quantity and Quality

1. Dilute 1 μL of RNA sample in 49 μL of nuclease-free water and acquire absorbance
readings for 260nm and 280nm using a Eppendorf Biophotometer (Eppendorf,
Hamburg, Germany) (see Note 16)

2. Make up a 1% (w/v) MOPS agarose gel (see Note 17) and electrophorese using
1 μL of RNA sample with loading dye, at 100 V for 30 min

3. Stain gel with ethidium bromide for 10 min and de-stain in dH2O for 15 min
4. Photograph gel under UV trans-illumination (see Note 18)
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3.3.3. Labeling of RNA by Reverse Transcription by Direct Labeling

If total RNA yields of 25 μg or more are obtained for both mock- and
HCMV-infected samples, labeling can proceed as described in this section.
However, linear amplification of RNA is required prior to labeling if total RNA
yields are low, i.e., 1–5 μg. Linear amplification is described in section 3.3.4.

1. Combine 13.4 μL of total RNA (25 μg) with 2 μL of 3 μg/μL oligo-dT primers
2. Heat to 65°C for 10 min, and then quench on ice for 2 min
3. Prepare reverse transcription master mix, containing for each sample: 6 μL of 5×

First Strand Buffer, 3 μL of 0.1M DTT, 0.6 μL of 10 mM unlabeled dNTP mix,
and 2 μL of 200 U/μL Superscript II

4. Add 3 μL of Cya-3-dUTP to the mock infected RNA sample reaction and 3 μL of
Cya-5-dUTP to the virus infected RNA sample reaction

5. Incubate at room temperature wrapped in aluminium foil for 2 h (see Note 19)
6. Add 15 μL of 0.1N NaOH and incubate at 70°C for 10 min to degrade any

remaining RNA
7. Add 7.5 μL of 0.1N HCl to neutralize the reaction mixture
8. Add 400 μL 1× TE to each sample and transfer to Microcon YM-30 filter
9. Microcentrifuge samples at maximum speed for 11–15 min at room temperature

until 10–20-μL volume remains on the filter (see Note 20)
10. Discard flow-through and add 450 μL 1× TE buffer to the filter and repeat step 9
11. Invert filter into a new collection tube and microcentrifuge at maximum speed for

1 min to collect the labeled probes
12. Combine the 2 samples (mock and infected) in a single Microcon YM-30 filter,

and add 450 μL 1× TE buffer to the labeled mixtures together with 20 μL of Cot-1
Human DNA, 2 μL of poly-A RNA, and 2 μL of tRNA (see Note 21)

13. Microcentrifuge for 11–15 min at maximum speed to bring the volume of the
labeled mixture to less than 20 μL

14. Recover labeled mixture by repeating step 11
15. The labeled mixture is now ready for hybridization to a microarray (see section 3.4)

3.3.4. Linear Amplification of RNA by in Vitro Transcription

If total RNA yields are low, i.e., 1–5 μg, linear RNA amplification needs to
be performed before labeling and hybridization. This is carried out using the
MessageAmp II aRNA amplification kit from Ambion:

3.3.4.1. Double-Stranded cDNA Synthesis

1. Mix 1–5 μg of total RNA from mock- and HCMV-infected cells in 10 μL nuclease-
free water with 1 μL of T7 Oligo(dT) primer and incubate for 10 min at 70°C in
a thermal cycler
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2. Add 8 μL of reverse transcription master mix (2 μL 10× First Strand Buffer, 4 μL
dNTP Mix, 1 μL RNase inhibitor, 1 μL ArrayScript) to each reaction

3. Incubate at 42°C in a thermal cycler for 2 h
4. Add 80 μL of Second Strand Master Mix to each sample (63 μL nuclease-free

water, 10 μL 10× Second Strand Buffer, 4 μL dNTP Mix, 2 μL DNA Polymerase,
1 μL RNase H)

5. Incubate at 16°C in a thermal cycler for 2 h

3.3.4.2. Double-Stranded cDNA Purification

6. Transfer reaction mixture into 1.5-mL eppendorf tubes and add 250 μL cDNA
Binding Buffer to each sample and mix well

7. Place sample mix into a cDNA Filter Cartridge and microcentrifuge for 1 min at
10,000 × g

8. After flow-through is discarded, add 500 μL of Wash Buffer and microcentrifuge
for 1 min at 10,000 × g

9. Discard flow-through and microcentrifuge for an additional minute at 10,000 × g
to remove traces of Wash Buffer

10. Transfer filter into fresh cDNA Collection tubes
11. Elute cDNA with 10 μL nuclease-free water at 50°C applied to the center of the

filter, and microcentrifuge at 10,000 × g for 1 min (see Note 22)
12. Perform a second elution by repeating step 11

3.3.4.3. Generation of Amplified RNA (aRNA) by in Vitro Transcription

The in vitro transcription step results in linear amplification, generating
amplified RNA (aRNA).

13. To the purified cDNA samples, add 24 μL of IVT Master Mix (4 μL each of
75 mM T7 ATP, CTP, GTP, TTP Solutions, 4 μL of T7 10× Reaction Buffer,
4 μL of T7 Enzyme Mix)

14. Incubate overnight at 37°C for 8–12 h (see Note 23)
15. Add 60 μL of nuclease-free water after the 8–12 h incubation
16. Mix aRNA sample with 350 μL of aRNA Binding Buffer, and then mix with

250 μL of 100% ethanol
17. Transfer mixture to aRNA Filter Cartridge and microcentrifuge at 10,000 × g for

1 min
18. Discard flow-through and add 650 μL Wash Buffer to the Filter Cartridge, and

microcentrifuge at 10,000 × g for 1 min
19. Discard the flow-through, and microcentrifuge an additional minute at 10,000 × g
20. Transfer Filter Cartridge into a fresh aRNA Collection Tube, apply 100 μL of

nuclease-free water preheated at 50°C
21. Leave at room temperature for 2 min, and microcentrifuge for 2 min at 10,000 × g
22. Precipitate the aRNA by adding 10 μL of 5M ammonium acetate, 275 μL of 100%

ethanol, mix well and incubate overnight at –80°C
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23. Next day, centrifuge RNA samples in a pre-cooled 4°C microcentrifuge at
maximum speed for 20 min

24. Carefully remove supernatant with fine tip pipettes and wash pellet with 500 μL
of ice-cold 70% ethanol and microcentrifuge for 15 min at maximum speed at 4°C

25. Remove supernatant and allow to air dry for 10–15 min (see Note 15)
26. Resuspend RNA pellet in nuclease-free water and store at –80°C
27. Assess aRNA quality by 1% agarose gel electrophoresis (see Note 24) (Fig. 2).

3.3.5. Labeling of Amplified RNA

1. Prepare 1–3 μg of aRNA in 13.4 μL nuclease-free water
2. Mix with 2 μL of random primers, heat to 65°C for 10 min and quench on ice for

2 min
3. Follow step 3 onward in section 3.3.3 to complete the labeling procedure
4. Samples are now ready for hybridization to a microarray
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Fig. 2. Generation of aRNA by linear amplification. Ethidium bromide-stained 1%
agarose gel showing separation under denaturing conditions of aRNA samples from
mock infected and HCMV strain Towne infected myeloid progenitor cells at 24 and
48 h post infection (P.I.). Successful generation of aRNA is indicated by the presence
of a characteristic nucleic acid smear representing a large range of amplified poly-A-
containing mRNAs, with the majority of aRNAs ranging in size from 200 bp to 1,800
bp.
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3.4. Microarray Hybridization and Washing

1. Combine labeled cDNAs mixture from mock- and HCMV-infected samples
generated from either total RNA (section 3.3.3) or amplified RNA (section 3.3.4)
and adjust to 20 μL with 1× TE buffer

2. Add 4.25 μL of 20× SSC and 0.75 μL of 10% SDS to the labeled mixture
3. Denature by heating for 2 min at 100°C
4. Incubate at room temperature for 15 min covered in aluminium foil
5. Carefully pipette labeled cDNAs mixture to the centre of a HCMV gene microarray

printed area and cover it with a 22 × 50-mm coverslip (see Note 25)
6. Place microarray in a Glass Array Hybridization Cassette, and carefully place a 6

μL spot of nuclease-free water each in the two insets inside the cassette. Seal the
cassette (see Note 26)

7. Place the cassette in a water bath overnight at 65°C (see Note 27)
8. After hybridization, remove microarrays from the cassette
9. Gently wash in a slide chamber filled with 2× SSC/0.1% SDS until the cover

slip falls off (use fine forceps to assist removing the cover slip), and agitate for a
further 15 sec

10. Transfer to a fresh staining dish and wash by gentle agitation in 1× SSC for 30 sec,
and then transfer to 0.2× SSC and wash for another 30 sec

11. Dry microarrays by centrifugation in a plate centrifuge for 5 min at 75 × g
12. Place in a dust-free slide box in the dark until scanning (see Note 28)

3.4.1. Scanning and Data Analysis

1. Place microarray face down into a GenePixTM 4000B scanner (Axon Instruments
Inc.)

2. Using the GenePix Pro software, adjust laser power for 635nm and 532nm lasers
to a PMT gain setting of 600 (see Note 29)

3. Perform a low-resolution preview scan at 40 μm
4. Using the “scan area” function, draw a box around the printed area where the gene

quadrants are located (see Note 30)
5. Perform a high-resolution scan at 5 μm
6. Zoom in so that only the 94 assorted human genes are visible on the screen
7. Observe overall 635-nm and 532-nm intensities in the histogram tab of the main

window
8. Adjust laser voltages so that the overall intensity for the assorted 94 human genes

quadrant for the 2 lasers to match each other (see Note 31)
9. Overlay the template grid (.GAL file) onto the scanned microarray image and

align over the gene spots (see Note 32)
10. The align feature will find and flag gene spots automatically. Flagged spots are

defined as Bad (–100), Absent (–75), and Not Found (–50) or Unflagged (0) by
the GenePix Pro software (see Note 33)

11. Once spots are aligned, utilize the integrated GenePix Pro software “Analyse tool”
to extract the numerical values for each gene spot. The median foreground pixel
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intensity and morphological opening background estimation are the recommended
analysis options.

12. Save the image file (.TIFF and .JPEG), the settings (layout) file (.GPS), and the
results file (.GPR)

13. Import the results files (.GPR) into the program R (version 1.9.1 was used for
the following steps) (26) and install the additional bioconductor packages. An in-
house Graphical User Interface to simplify access to the tools within Bioconductor
and automate the analysis procedure was used for the processing of the data. A
simplified outline of the basic tools and steps are described below (see Note 34).

14. Input .GPR data files into R workspace using the marray package together with the
details of the layout of microarrays used, including the foreground (F635, F532)
and background (B635, B532) intensities, the number of gene spots per row (12)
and column (16), and the number of quadrants (2 × 2)

15. Define gene type on the microarray: viral genes are labeled VIRAL, human genes
as HUMAN, and salt spots as BUFFER (see Note 35)

16. After the data has been inputted into R, use the threshold filtering function to
convert any intensity values less than 0 to a value of 1.0, although the morpho-
logical opening function now available in GenePix Pro means that negative inten-
sities are no longer an issue and so do not need to be converted. Confirm the
quality of each array using diagnostic plots and remove low quality arrays (see
Note 36)

17. Filter out gene spots that have a flag value less than 0 (see Note 37)
18. Normalize the data with the marray package for all replicates within one timepoint

using the loess normalization method (27) using the subset “HUMAN,” i.e., the
set of 94 assorted human genes

21. To calculate the mean (M), standard deviation (s), and the 90th percentile (a)
values of the normalized data (in log2 values) for each viral gene across the
replicates, export the normalized data using the export function command in the
program R into Microsoft Excel. Alternatively, these calculations can be calculated
and ranked in R.

22. Using the limma package calculate the penalized t-statistic value for each gene
across the number (n) of replicates using the formula described by Efron and
colleagues (28) and Smyth and colleagues (29) (see Note 38):

t = M

�a+ s�/
√

n

23. Rank viral genes that has a penalized t-statistic, i.e., a log2 value of greater than
or equal to 1.0 is considered to be expressed (see Note 39).

3.5. Validation of Microarray Results using RT-PCR

1. Using 1 μg of total RNA in 7 μL of nuclease-free water, add 1 μL of RQ1 Buffer,
and 1 μL of RQ1 DNase enzyme

2. Mix well and incubate at 37°C for 30 min
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3. Stop the DNase treatment by adding 1 μL of RQ1 Stop buffer and incubate at
65°C for 10 min (see Note 40)

4. Set up 20-μL reverse transcription reactions in 1.5-mL nuclease-free tubes by
adding the following:

a. 4 μL of 5× First Strand Buffer
b. 2 μL of 0.1M DTT
c. 1 μL RNaseOUT (40U/μL)
d. 0.4 μL of 25 mM dNTPs
e. 0.3 μL of 3 μg/μL Random Primers
f. 8.8 μL of nuclease-free water

5. Add 2.5 μL DNase-treated RNA to each reaction
6. For each RNA sample, include 2 reactions: +RT or –RT (see Note 41)

a. +RT: add 1 μL of Superscript II reverse transcriptase
b. –RT: add 1 μL of nuclease-free water

7. For each RT setup, include a positive (using cDNA from productively infected
HFFs with HCMV as template) and negative control (nuclease-free water as
template)

8. Incubate reactions at room temperature for 15 min, then on a heating block for
42°C for 1 h

9. Stop the RT reactions by incubating at 70°C for 15 min (see Note 42)
10. Set up 50 μL PCR reactions for each RT reaction as follows: 5 μL of 10× PCR

Reaction Buffer

a. 2 μL of 50 mM MgCl2

b. 0.4 μL of 25 mM dNTPs
c. 1 μL each of gene-specific forward and reverse primers
d. 37.1 μL of nuclease-free water
e. 2.5 μL of RT reaction
f. 1 μL of Platinum Taq (5U/μL)

11. Perform PCR thermal cycling using the conditions: 94°C for 3 min, 40 cycles ×
[94°C for 1 min, Y°C for 1 min, 72°C for 1 min], followed by 72°C for 10 min
(where Y is the annealing temperature for the gene primer pair in interest)

12. Load 20% of PCR products with loading dye onto 2% agarose gels and
electrophorese at 100V for 30 min

13. Stain the gel with ethidium bromide for 10 min, destain for 15 min, and photograph
the gel under UV-transillumination

14. Check for the correct sized band on the gel

Data to confirm the presence or absence of HCMV gene expression in
myeloid progenitors by RT-PCR are shown in Table 1. In this experiment,
RNA was extracted from latently infected myeloid progenitors on days 1, 2,
3, 5, and 11 after infection was examined by RT-PCR for the expression of
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Table 1
Confirmation of the presence or absence of HCMV gene expression in myeloid
progenitors by RT-PCR

Day after infection

HCMV 1 2 3 5 11
GENE

RT– RT+ RT– RT+ RT– RT+ RT– RT+ RT– RT+
UL68 − + − + − + − + − +
UL50 − − − − − − − − − −
UL120 − − − − − − − − − −

HCMV UL68, UL50, and UL120 transcripts for 40 cycles of amplification.
Consistent with the microarray-based analysis of viral gene expression, UL68
transcripts, but not UL50 or UL120 transcripts were detected in the presence
of reverse transcriptase (RT+). Omission of reverse transcriptase (RT–) did not
yield amplified products, confirming that amplification was derived from an
RNA template rather than any contaminating viral DNA.

3.6. Results and Conclusions

This report has described the construction and application of HCMV gene-
specific microarrays to interrogate the HCMV transcriptome during experi-
mental productive infection of HFFs and also during the establishment phase of
latent infection in myeloid progenitor cells. In Fig. 3 microarray-based detection
of HCMV gene transcription during productive infection of human foreskin
fibroblast cells is shown. RNAs from either mock infected or HCMV-infected
fibroblasts were labeled with either Cya-3 (mock) of Cya-5 (infected) by
reverse transcription and hybridized HCMV gene microarrays. After washing,
microarrays were scanned with a dual laser scanner to simultaneously excite
both Cya-3 (532 nm) and Cya-5 (635nm) and an overlaid image was generated.
Top panel: As early as 2 hours post infection, viral gene expression was
detected from the UL122/UL123 gene region (box), which encodes the first
genes expressed by HCMV upon initiation of a productive infection. Bottom
panel: At 3 days post-infection, expression from a majority of genes was
detected. The positions of HCMV gene spots and human gene control spots are
indicated.

Fig. 4 provides a summary of the microarray-based detection of HCMV gene
transcription during the establishment of a non-productive, latent infection in
primary human myeloid progenitor cells. CD34+/CD33+ myeloid progenitors
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UL122
UL123

Viral Genes

Viral Genes

Human Genes

Human Genes

Fig. 3. Microarray-based detection of HCMV gene transcription during productive
infection of human foreskin fibroblast cells (HFFs).
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Time post infection 
HCMV gene Day 1 Day 2 Day 3 Day 5 Day 11 

RL2 
RL3 
RL4 
RL5 
RL6 
RL7 
RL11 
UL5 
UL23 
UL30 
UL39 
UL53 
UL56 
UL62 
UL64 
UL66 
UL67 
UL68 
UL71 
UL81 
UL89 
UL90 
UL93 
UL99 
UL108 
UL110 
UL111 

UL111A 
UL115 
UL123 
UL132 
UL147 
UL153 
UL154 
US12
US28
US32

Fig. 4. Summary of the microarray-based detection of HCMV gene transcription
during the establishment of a non-productive, latent infection in primary human myeloid
progenitor cells.
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were infected with HCMV and RNAs extracted over an 11 day time course
to identify HCMV gene expression as the virus established a latent infection
within these cells. Due to low cell numbers and RNA yields, RNAs were
amplified by linear amplification prior to labeling and hybridization to HCMV
gene microarrays. Expression of a subset of 37 HCMV genes represented on
the microarrays was detected and these are listed, with shaded boxes indicating
the time point(s) post-infection at which expression was detected.

4. Notes
1. HFFs cultured in Dulbecco’s modified Eagle’s medium supplemented with 10%

FCS (DMEM) at 80–90% confluency in a T75 cm2 culture flask (Beckon
Dickinson, San Jose, CA) were washed with phosphate buffered saline, infected
with HCMV at a multiplicity of infection (MOI) of 1 and infection allowed to
proceed for 5 days.

2. This treated lysate, containing viral DNA can now be used as the template for
PCR amplification of individual HCMV genes.

3. Positive control used primers - IEP3C and IEP4BII (25), while negative control
contains the same primers with 2 μL nuclease-free water added instead of DNA
template.

4. If these cycle parameters do not produce a successful amplification of any
particular gene, optimization of cycling conditions is required, including varying
the number of cycles (30-40 cycles) and the annealing temperature (55–65°C).

5. Strong amplification of a single gene product at the correct size is required for a
gene product to be acceptable for printing onto the microarray. Multiple bands or
bands at the incorrect size usually indicate non-specific amplification.

6. Briefly, the 384-well plate containing all amplified HCMV genes together with 94
assorted human genes was placed in a dust-free hood containing the microarrayer
robot. The printing program was setup such that duplicate spots are deposited
adjacent to each other.

7. Dried microarrays can be stored for approximately 12 months in a dust-free
container, in a dark, dry environment.

8. It is important to mark the boundaries of the spots on printed microarray because
although at this stage the spots will be visible due to the presence of salts, they
will not be visible after post-processing.

9. The succinic anhydride solution needs to be made fresh and ready by the end of
step 4: the 1× SSC/0.05% SDS wash.

10. Have the boiling water bath and 95% ethanol prepared before step 7, so that the
microarrays can be immediately washed in these solutions.

11. After microarrays are dried from centrifugation, immediately place them into a
dust-free slide box. Care needs to be taken to avoid any dust particles landing on
the microarrays, which may lead to increase background after hybridization and
scanning.
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12. Vortex until clear, if there is still cell debris or cloudiness, add more Lysis/Binding
solution until clear.

13. Heat up Elution Buffer before starting RNA extraction.
14. Use a 1,000-μL pipette to remove as much supernatant as possible, then switch

to a 200 μL pipette and remove more of the residue supernatant, followed by a
quick spin, and then removal of the remaining liquid using a 20 μL pipette.

15. Leave Elution (or Collection) tube lid(s) open and create a “tent” with aluminium
foil to allow air drying whilst minimizing dust particles from entering the tubes.

16. Use the same nuclease-free water used to resuspend RNA as blank for spectropho-
tometric analysis. An A260:A280 ratio of 1.8–2.0 indicates good quality RNA.

17. Cast a 1% agarose gel in the presence of 1× MOPS (3-[N-Morpholino] propane-
sulfonic acid, Sigma).

18. Well-defined 28S and 18S ribosomal RNAs present on the gel in a 2:1 ratio are
indicative of high-quality RNA.

19. Adding an additional 1 μL of Superscript II enzyme after 1 h of incubation may
sometimes improve labeling/cDNA synthesis.

20. Approximately 10–20 μL would appear as a “crescent moon” shape of labeled
mixture along one side on top of the filter .

21. Cot-1 DNA, poly-A RNA and tRNA are used to block non-specific binding of
probes.

22. Pre-heat nuclease-free water before starting the purification procedures.
23. According to manufacturer’s notes, optimal amplification occurs after 10–12 h of

in vitro transcription.
24. Successful generation of aRNA is indicated by the presence of a characteristic

nucleic acid smear representing a large range of amplified poly-A-containing
mRNAs (Fig. 2).

25. Hold coverslip on ends with gloved fingertips, applying very slight pressure
towards the middle to bend the cover slip, and place onto labeled mixture on the
microarray. If there are air bubbles, gently use a pipette tip to push them out by
applying pressure to the upper side of the cover slip.

26. Water added to the insets is used to maintain humidity during hybridization.
Tighten each screw on the cassette evenly.

27. Pre-heat water bath to 65°C before labeling reactions are completed. If any leaking
occurs in the cassette after immersed in the water bath (indicated by release of air
bubbles), be prepared to immediately remove the cassette and fix leak.

28. For optimal results, scan immediately, although slides can be left in the slide box,
in the dark for up to a week before scanning. Signals will deteriorate over time.

29. A PMT gain setting of 600 is the default for the Axon scanner and generally
accepted setting for both lasers for an initial scan.

30. The boxed area defines where the scan will be performed. The box function may
differ between different types of scanners.

31. The assumption here is that on average, the human gene will not be significantly
altered in their expression between mock and HCMV-infected samples. Using the
histogram option in the associated GenePix Pro software, increase or decrease
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the 2 laser PMT settings so that the red and green lines are aligned (representing
the range, 635nm and 532nm laser intensities, respectively). Also, ensure that the
whole x-axis scale is used, i.e. both lines extend almost all the way to the right
end of the x-axis to make use of the full dynamic range of the scanner. Repeated
preview scans maybe required to match the two laser settings.

32. Once roughly aligned, use the “auto-align, auto find” features option to allow the
program to align accurately each spot.

33. An “absent” spot is defined in the .GAL file when no gene was printed. A spot is
assigned a “not found” flag when the alignment fails to find the spot. The user can
manually re-center the spot and re-align the feature. “Good” and “bad” flags are
set manually by the user. Normal gene spots are unflagged and have a value of 0.
The user will need to screen the microarray to ensure all the spots are distinctly
segmented with the grid for each spot.

34. R software is freely available at www.r-project.org, as documented in Gentleman
et. al. (26). Bioconductor packages to expand the functionality of R can be
downloaded at freely available at www.bioconductor.org (Fred Hutchinson Cancer
Research Centre, Seattle, WA). A generally available graphical user interface to
simplify access to some of the Bioconductor tools used in the analysis is available
through the limmaGUI package.

35. This allows the division of the gene spots into three different groups that will
aid further analysis. The gene types can be defined manually by modifying the
.GAL file to include an additional column called “Control” and entering VIRAL,
HUMAN or BUFFER for each gene. An automated function in the marray package
can also be used to define the control types.

36. Arrays may be of low quality as a result of a failed hybridization, low quality RNA,
high background or scanning problems. Diagnostic plots are available through the
marray package.

37. A flag less than 0 indicate genes that are flagged “bad,” “absent,” or “not found,”
which may contain high background or irrational values that could influence the
outcome of the analysis and are therefore replaced with an NA

38. Smyth and colleagues (29) argued that the ordinary t-statistic for microarray data
analysis is not ideal because a large t-statistic can be the result of an unrealisti-
cally small standard deviation. Thus, genes that have a small variance but not a
high mean value could be defined as being expressed. Therefore, a compromise
between the mean value and the standard deviation is needed. Efron’s study (28)
illustrated that using a non-parametric Empirical Bayesian approach to microarray
data analysis for the t-statistic, using an “a” value as the 90th percentile represents
higher values, which there will be less information loss from the full data to the
summarized statistic value. This approach leads to an estimated “log-odds” that
each gene is defined as being differentially expressed.

39. This converts to a ratio of intensities between 635- and 532-nm channels as 2.0,
and has been used in our publication (30). This falls into the general criteria of
2.0–3.0 defining a viral gene to be expressed from previous studies (18,20,23,31).

40. This now contains DNase-treated RNA.
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41. Adding or omitting reverse transcriptase can determine if any DNA contamination
is present in the RNA sample.

42. The reactions now contain cDNA.
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Computer-Assisted Reading of DNA Sequences

Huong Le, Marcus Hinchcliffe, Bing Yu, and Ronald J. A. Trent

Summary

DNA sequencing is increasingly used in a range of medical activities involving DNA
diagnostics and research. This is the result of improving technology and cheaper costs. Paradoxi-
cally, a greater demand for DNA sequencing has placed additional work on the laboratory because
sequencing profiles must be checked visually despite the availability of informatics-based tools in
interpreting DNA sequence traces. In this environment it is essential to have more sophisticated
software that will allow the sites of known and unknown DNA variants to be quickly identified,
as well as providing an objective assessment of quality for the DNA sequence generated. This
chapter describes the Applied Biosystems SeqScape® software program (version 2.5) and how
it has assisted in the interpretation of DNA sequencing in a DNA diagnostic laboratory.

Key Words: DNA sequencing, computer-assisted reading, mutation.

Abbreviations: kb – kilobase; QV – quality value; RDG – reference data group; ROI –
regions of interest; IUB – international union of biochemistry

1. Introduction
One of the successful goals of the Human Genome Project was to develop

new platforms and technologies to make DNA sequencing faster and cheaper
(1). This has now produced rapidly expanding datasets containing DNA
sequence information that have accelerated disease-causing mutation detection,
as well as SNP discovery.

There are many DNA-based strategies to detect DNA variants, but the
gold standard remains DNA sequencing (2). As such it provides complete

From: Methods in Molecular Medicine, Vol. 141: Clinical Bioinformatics
Edited by: R. J. A. Trent © Humana Press, Totowa, NJ

177



178 Le et al.

information about the location and nature of all DNA variants (3). Improve-
ments in DNA sequencing technologies have meant longer read lengths.
Genes can now be sequenced routinely with more accurate base calls and
higher quality traces. Reads involving 800 bases of DNA sequence can be
routinely obtained using capillary electrophoresis. This has led to a significant
improvement in SNP discovery (4). However, high-throughput DNA analytic
techniques generate a lot of raw data that need to be interrogated. Many
computer software technologies for assembling and analyzing raw data have
been developed but despite this, manual visual inspection of DNA sequence
traces is still required, particularly if these are to be used for diagnostic or
clinical purposes. Furthermore, to ensure reliable results particularly when
heterozygous mutations or DNA variants are being sought, both strands of the
DNA sequence must be analyzed (5).

Manual comparisons of unknown samples with positive control and wild-
type sequences are increasingly taking more time in the diagnostic or research
laboratories as the length and number of DNA sequences increase. There are
few reliable informatics-based tools for variant identification, result viewing,
data tracking, and result reporting. Therefore, to improve the efficiency of DNA
sequencing and analysis, more effort is needed to develop better software. As
an example of what is needed, we describe the Applied Biosystems SeqScape®

software (version 2.5) for automated rapid mutation identification and result
reporting.

SeqScape software is a computer-assisted sequencing analysis tool that
supports the new KBTM Basecaller (version 1.2) that supports sample files
generated from Applied Biosystems instruments. It is a Windows-based
program that integrates base calling, sequence assembly, alignment and
comparison tools. It can accurately call bases, and assign a quality value per
base call thereby allowing the poorer quality segments to be trimmed from the
analysis. This enhances the identification process of any mismatched or mixed
base, and provides an efficient approach to detecting DNA variants. Hence,
SeqScape reduces the time taken for sequence analysis as well as facilitating
interpretation. Once mastered, limitations in using SeqScape are few and with
each new version different capabilities are added (see Note 1).

2. Features of Seqscape Software
SeqScape software is designed to provide an improved level of accuracy

with the identification of DNA and amino acid variants as well as identifying
genotypes, alleles or haplotypes from an available library.

A popular sequencing technique utilizes dye terminator chemistry that allows
four reactions to be performed in a single tube and links this to a laser-activated
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fluorescence detection system. DNA fragments are electrophoresed in capil-
laries and data are collected as chromatogram or electropherogram files that
function as input files for SeqScape software analysis.

SeqScape software contains a number of features that are useful for sequence
analysis. These include (1) base-calling, (2) quality value assessment, (3) quality
trimming, (4) filtering out poor sequence, (5) sequence assembly, (6) sequence
alignment, (7) library match search if there is a link with a known library, (8)
identification of pure and mixed bases, and (9) generation of different formats
for reporting the results.

Base calling is an essential part of sequencing analysis. It involves an
algorithm used to translate the fluorescence signal spectra into the four
nucleotide bases associated with the DNA sequence (4). The current version
of SeqScape software uses KB Basecaller, an improved algorithm responsible
for more accurate base calling and increasing the read length. KB Basecaller
is designed to produce quality values (QV) for every base it calls. The QV
is used for the identification of pure and mixed bases contrasting with the
original Applied Biosystems base calling algorithm, which only identified pure
bases (6). The KB Basecaller uses equations that are standardized by the
Phred base calling software to provide a quality prediction for each base.
The accuracy of base calls are calculated from the following parameters: peak
spacing, uncalled/called peak ratio and peak resolution (7) and so provide a
quality assessment value per base.

Measuring the error probability of a base call is essential for assuring
sequence quality. QV is an estimation of the certainty for a base call (6) and is
derived from the equation QV= −10 log10(Pe), where Pe is the error probability
of base call (7). A QV of 20 means a predictive sequencing error rate per base
of 1.00% (Table 1).

Table 1
Illustrating the link between the QV and Pe*

QV Pe % QV Pe % QV Pe %

1 79 21 0.79 41 0�008
5 32 25 0.32 45 0�003
10 10 30 0.10 50 0�001
15 3�2 35 0.03 60 < 0�001
20 1�0 40 0.01 99 < 0�001

*Pe = probability that a basecall is erroneous (6).
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Typically good quality values for pure bases should be 20 or higher. Much
lower QVs are tolerated for mixed bases, with values >30 being rare (6). The
Q20 rule has been used in many sequencing projects to measure the effective
length of a DNA read. A pure base QV <20 will identify the low quality
regions (8).

The KB basecaller, as well as trimming poor quality sequence, allows
more correct calls at the 5’ end when compared with the more conventional
sequencing analysis software programs (6).

3. Methods
From the toolbar, click Tools for SeqScape Manager or File to open

a New Project (for new projects) or Open Project (for previously set up
ones). The SeqScape Manager window is used for setting up most of the
parameters, reference sequences and project template. The Project window is
used for importing samples for analyzing, data viewing and result generation
(Fig. 1).

Project

Genotyping

Amino acid variants

Mutation variants

Specimen statistic,
Sequence confirmation,
Base frequency, 
Library search, RDG, 
Audit trail, Electronic 
signature history

Viewing data

Viewing report

Export / Print report

Project view

Specimen view

Segment view

Sample view

Analysing

Review
QC

ABI instrument
Sequencing reaction

Sequencing data:
Raw data /

Electropherogram

Analysis Protocol
Analysis Default
Display SettingReference Data Group

Project template

SeqScape
manager
window

Reset parameters

unsuccessed - 
review error messages

Project window

Fig. 1. A summary of Seqscape software procedure. Solid arrows indicate the main
steps of analyzing while dotted lines represent steps for re-analyzing.
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3.1. Manager Window

3.1.1. Setting up the Parameters

1. Analysis Protocol tab: Open New Analysis Protocol window and enter name.
Parameters for Base Calling, Mixed Bases, Clear Range, and Filter are set as in
Fig. 2. Click the Basecalling tab. Then select from the drop-down menu KB.bcp for
Basecaller. If a sequencing reaction was set up using the AB BigDye Terminator Kit
(v3.1) and run on the AB 3730 DNA analyzer, the corresponding DyeSet/Primer file
on the drop down menu is selected, i.e., KB_3730_POP7_BDTv3.mob file. True
Profile is selected for processed data. Ending bases at PCR stop or stopping base
calls after a number of ambiguities can be chosen as an option. Either can be used
for quality threshold with the QV set at <15. Click Mixed Bases tab. Mixed Bases
identification is selected and the IUB (International Union of Biochemistry) code is
assigned to the position of any mixed base (Table 2) which has the second highest
peak ≥ 25% of the main peak. Click Clear Range tab. The Clear Range method
can be defined by selecting Use Quality Values and Use Reference Trimming as
seen in Fig. 3. This will remove bases from both ends until there are fewer than
4 bases out of 20 with QVs ≤ 20. Click Filter tab. The Filter Settings contains

Fig. 2. Detail of Analysis Protocol setup.



182 Le et al.

Table 2
The IUB nucleotide code (see http://biocorp.ca/IUB.php).

Code Definition Mnemonic

A Adenine A
C Cytosine C
G Guanine G
T Thymine T
R AG puRine
Y CT pYrimidine
K GT Keto
M AC aMino
S GC Strong
W AT Weak
B CGT Not A
D AGT Not C
H ACT Not G
V ACG Not T
N AGCT aNy

information for rejecting sequences from the assembly. Default values for this
setting are recommended (Fig. 4).

2. Analysis Defaults tab: Open New Analysis Setting window and enter name. In
Project or Specimen tabs there will be two parameters used for setting the gap
penalty. They are Gap (opening) Penalty and (gap) Extension Penalty (5). Their
recommended values are shown in Fig. 5. An analysis protocol created earlier can
be selected from Sample tab and saved.

3. Display Settings tab: Electropherogram characteristics such as color, type, font of
bases as well as QV barcode color can be set for easier recognition of errors in
base calling. Default values are recommended.

3.1.2. Reference Sequences

1. Obtaining reference sequence(s): This can be obtained directly from GenBank (10)
as a GenBank format (.gb) file (Pane 1, Fig. 6) (see Note 2). Seqscape software
also recognizes FastA (.fsta), plain text (.txt) and the sequencing chromatogram
(.ab1) files. Reference fragments can be pasted into the program.

2. Reference Data Group tab: A reference sequence entry is required as the input file
for the Reference Data Group (RDG) set up. Other steps such as setting regions of
interest (ROIs) are arranged through this particular window (Panes 2, 3 of Fig. 6).



Reading DNA Sequences 183

Fig. 3. Setting of Clear Range Methods.

Click New Layer to add a selected ROI. This is graphed as shown in Pane 4 of
Fig. 6. Information on known nucleotide variants, amino acid variants or a known
allele library can be imported or added into the RDG for analysis. Depending on
the project plan, more than one reference sequence can be inputted.

Fig. 4. Default setting value for filtering process. This value can be changed if
necessary e.g. obtaining a pass result from a failed analysis sample.
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Fig. 5. Default setting values for gap and extension penalties for project, specimen
and sample.

3.1.3. Project Template

After defining analysis parameters and creating the RDG, a project template,
which is the collection of the three previous settings (Analysis Defaults, Display
Settings and RDG Settings), is set up. The project template can be used
as a “common template” and then modified for use with different reference
sequences without having to repeat the parameter set up process. Open new
project template, enter name and select the three required settings.

3.2. Project Window

3.2.1. Create a New Project

1. Open New Project from file menu: Enter project name then select the appropriate
project template containing the analysis strategy which was created previously. A
blank project is opened.



Reading DNA Sequences 185

Fig. 6. General view of all steps involved in setting up the Reference Data Group.

2. Input samples: Click Import Sample to Project icon on the toolbar to open the
Import Sample window. From the drop down menu, search for AB trace data files
of interest to import into the project. Samples can be automatically or manually
added to the project. Automatic loading of contiguous related fragments is only
possible if the samples are given the same prefix. Otherwise, samples are selected
manually. For automatic loading go to Start and End and type in the samples
required according to instructions on the screen. Highlight required samples and
then press Auto Add followed by OK. For manual loading click New Specimen
and then highlight sample(s) and click Add Sample followed by OK. A project
can have one or more specimens with each specimen comprising various samples.
The latter usually represent PCR fragments that make up the entire region being
sequenced. A specimen refers to one individual.

3. Data analysis: Once specimens containing samples are imported, a red diagonal line
across the specimen name and a green colored � on the menu bar appears. These
indicate the sequence needs to be analyzed. Execute the green colored � to start
analysis. Following on from the above set up in the project template, SeqScape will
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automatically convert raw data image into sequence bases. A QV will be calculated
and assigned to each base of the sequence. Mixed bases are identified and assigned
by IUB code as described previously. The software will search for sequences with
low QV and trimming is carried out to exclude the low quality sequences at both
ends of the fragment. Samples with low quality are filtered out, and only good
quality sequences remain for the next process of assembly. Specimen consensus
sequence is then generated from associated sequences. The next step is to align
and compare sample sequences to reference sequences and consensus sequences to
reference sequence. The software also automatically searches for matches in the
consensus sequence if there is a known variant table or a known allele library table
to the project. A summary of the software performance process is shown in Fig. 7.

Base calls made, QV assigned to each
base and mixed bases identified

Trimming of low quality sequence &
filtering of poor quality samples

from analysis

Assembly of good quality samples against
reference sequence & specimen
consensus sequence generated

Identify variants by aligning and comparing
specimen sequences to the reference
sequence and specimen consensus
sequence to the reference sequence

Report generation

Fig. 7. Flow chart of software algorithm.
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3.2.2. Open a Previously Analyzed Project

To re-examine a previously completed project that has been analyzed click
on Open Project from the file menu and select the relevant file.

3.3. Applications of Seqscape Software

Thalassemias are important blood disorders characterized by a reduced
synthesisofoneormore theglobinchains. Interactions involving the thalassemias,
including �- and �-thalassemia can give rise to complex genotypes which
manifest as interesting clinical and hematological phenotypes (11). In these
difficult cases, mutation detection by DNA sequencing of a large fragment or
a number of overlapping smaller fragments to cover all codon regions, exon–
intron boundaries, the promoter and poly A tail regions has become an essential
part of the diagnostic work-up. However, after sequencing, manual analysis
of data is tedious, time-consuming, and a possible source of error especially
when dealing with heterozygotes particularly if sequence quality is marginal.
To avoid this we will use the example of � thalassemia to show how rapid
analysis of a DNA sequence is possible. An additional benefit is that SeqScape
analyzes the data quality and automatically excludes error-prone sequence.

3.3.1. �-Globin Gene Sequence Analysis

Prior to setting up the RDG, reference sequence for the �-globin gene
cluster (HUMHBA4) is obtained from GenBank (10). Find the locus of interest
(HUMHBA4) under Search Nucleotide, set Display as GenBank then select
Send to File. The setting for downloading a GenBank file is shown in Fig. 8. The
file is downloaded and then saved under a gb extension, e.g., HUMHBA4.gb,
to a specified location ready to be imported into the RDG

3.3.2. The Thalassemia RDG

1. Add reference sequence: Launch SeqScape. Open SeqScape Manager window from
Tool menu. Select RDG tab, click New to open the RDG properties. Enter RDG
name e.g. HUMHBA4-RDG, then click ROI tab. The following steps allow the
user to import the reference sequence.

Click on Add Ref. Segment tab at the bottom left of the window to open
the Import Reference Sequence window. Look for the file of interest, select file
name e.g. HUMHBA4.gb, then click Import button. This will import the reference
sequence into the Reference Segment Pane. Click OK.

2. Define ROI and Layer: Layers are generated for the purpose of narrowing the
analysis stage to a particular region of interest. More than one ROI can be set into
one layer but they cannot overlap. From Layer Pane (Fig. 6), notice that Layers
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Fig. 8. Obtaining reference sequence (HUMHBA4) from GenBank.

1–4 are automatically generated by the software. Layer 1 is always the reference
sequence and is locked. Layers 2–4 locate the exons of the different genes within
the � globin locus, with a different gene in each layer. Click on New Layer to
create the next Layer which is Layer 5 and enter Layer Name in the Layer name
field, e.g., HBA2-PCR.

In the Reference Segment Pane, select that part of the sequence representing the
ROI of interest which has been named HBA2-PCR. This might represent the regions
of the �2-globin gene which cover all codon regions, exon–intron boundaries, the
promoter, and poly A tail. Note that the nucleotide starting and nucleotide ending
numbers highlight the region between these two points. Then click Add ROI. From
ROI Pane, the new ROI can be seen as ROI_1. This name can be kept or re-named,
e.g., HBA2-PCR as above. Check that the correct information has been added to
Segment Start, Segment End for ROI_1, and ROI_1 Start and then tick the check box
on Layer 5 column. Figure 9 illustrates the above setting for the thalassemia RDG.

3. Add known Nucleotide Variants (NT): To add manually, click Add Variant tab. The
New NT Variant dialog box will open for manually entering the variant attributes
such as variant type, ROI, position (bp), reference base, variant base, description
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1.  Click to add Ref. Sequence

2.  Click to select New Layer

3.  Select ROI

4.  Click to add ROI

5.  Add ROI information

6.  Add ROI to Layer 5
     by checking the box

Fig. 9. Steps for setting up the reference sequence/Layer and ROI in the Reference
Data Group.

and display style etc. Click OK. It is also possible to import automatically from
a table of known nucleotide variants into the RDG properties. A table of known
variants can be created using Microsoft Excel. The table display must map to the
NT Variant table requirements as seen in Fig. 10. The table of variants must be
saved in the tab-delimited text file format (e.g., at-variant1.txt) for incorporation
into the RDG.

Go to NT Variant tab window and click Import to open the Import NT Variant
window. Select the at-variant1.txt under file name field then click Import. An Import
Result dialog box appears showing the number of variants imported. Click OK to
close the dialog box. Click OK to save the imported variant table.

3.3.3. The Thalassemia Project Template

Click on Project Templates tab, select a previously reported project template
and save it under a different name i.e. HUMHBA4-PT. Click OK. Click on

Fig. 10. A known variant table can be inserted into the RDG for sequence
comparison.
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Properties tab to open Project Template Editor window then select HUMHBA4-
RDG from the drop down menu of Template Elements. Leave the Analysis
Defaults and Display Settings the same as before then click OK to save the
Project Template. Click close.

Alternatively one can create a new Project Template and select all required
Template Elements as described previously.

3.3.4. Creating the Thalassemia Project Using Project Template

Open a New Project from File, name the project and select the Project
Template i.e. HUMHBA4-PT, then click New to open the Project Navigator.
Click the Import Sample to Project icon in the toolbar to open Import Sample
window. Select folder containing data files that have originated from the
sequencing platform e.g. AB 3730 DNA Analyzer. These files are in the form
of AB1 Sequence files. Click New Specimen to create a specimen. Enter
the specimen name (i.e. 05-640) then select and click Add all related sample
data i.e. 05-640-A1C1/ 05-640-A1C7 or all amplicons, into the specimen.
Repeat the same procedure for each specimen to be analyzed. At least one
additional specimen will be needed – the reference normal sequence for control
purposes. Click OK to import specimens and samples into the project as seen in
Fig. 11.

3.3.5. Thalassemia Data Analysis

The specimen(s) and their related samples are now imported into the project.
Click the analysis button � from the toolbar to execute the analysis. The red

specimen

sample files

Fig. 11. Importing of thalassemia samples into the project.
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Project name

Specimen name

Segment name

Sample name

Consensus
sequence

ROIs

Reference
sequence

Fig. 12. An example of project view as one of the four different formats for viewing
all processed data. Click on Project name to open project view. Other formats such as
specimen view, segment view, or sample view can also be seen by clicking to open
specimen name, segment, or sample name, etc.

diagonal line across the specimen icon disappears and samples are assembled
indicating the analysis process is finished.

From the Active Layer drop down menu select the ROI to view e.g. HBA2-
PCR. Processed data can be viewed under four different formats (Fig. 12),but
before viewing the processed data, one needs to check the analysis performance
from the QC report.

3.3.6. QC Report Analysis

Open the Report Manager window under the Analysis icon from the toolbar.
The Analysis QC Report is highlighted as the default. This report displays a
summary of the project history, particularly the analysis status that indicates
how well the system performed. There are four basecalling status indicators
that describe the analysis status of specimens. These are: Success; Success with
warning; Failed analysis; System error (Fig. 13).

To correct this error, click on hyperlink (blue text) of the failed sample
(#4250_EO9_05_1216_5R in Fig. 13), this will also provide a link to sample
data in the project window. Click Electropherogram tab of the sample to view
the sequence trace which allows the user to inspect visually and confirm the
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System error tag

Error messageClick on hyperlinked text

Fig. 13. The top pane displays the status of the specimen analysis result represented
by the basecalling status indicator (System Error). The error message and sample
hyperlinked text (when clicked) in the sample analysis part allows the user to investigate
or correct sample data in the project view (bottom pane).

problem. In this case the sample has failed to assemble due to the filter criteria
setting for maximum mixed bases (%) value being set at 20, but the actual
percentage of mixed bases was 40.9%. Therefore, no result is generated. Once
the problem is resolved, the sample can be re-analyzed and a report will be
released.

3.3.7. Re-analyzing Project/Data

Analysis parameters such as incorrect selection of Basecaller or
DyeSet/Primer, poor base spacing, incorrect start/stop point selection can
all generate suboptimal project results. A heterozygous insertion or deletion
mutation (HIM) present in a sample will also produce an analysis failure
in the Analysis QC Report. These problems can be improved or corrected
by the following two steps, thereby allowing the failed sample to be re-analyzed
and passed.

1. Modifying Analysis Parameters in Sample Manager: Open project of interest, select
Sample Manager from Analysis menu to open Sample Manager Window. Select
the failed sample(s) (indicated by red circle). Depending on error type e.g. incorrect
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Basecaller, select the correct Basecaller from the drop down menu, then click OK
to go back to the project window. Execute the analysis button � to re-analyze the
sample.

2. Modify Analysis Parameter in an Analysis Protocol: Finding a HIM can also lead
to an analysis failure report. In this case, open project of interest, select Sample
Manager from Analysis menu of the toolbar. Select sample(s) for re-analysis, click
Edit Analysis Protocol , click Filter tab then select the check box to “Skip Filtering
if sample HIM is detected”. Alternatively, change the default value setting for
Maximum Mixed Base (%) from 20 to 50, then click OK. On return to the Sample
Manager Window, click Apply, then click OK to go back to the project window.
Execute the analysis button � to re-analyze sample.

3.3.8. Viewing Data

Click Open Project from file menu, select project of interest. Click Open
project. Project view can be displayed in many different ways by clicking
the following icons (Expanded Nucleotide View, Collapsed Nucleotide View,
Expanded Amino Acid View, or Characters/Dots). Processed data are usually
analyzed and verified from the project view.

1. Viewing variants in DNA sequence: In Project Navigator, click project name to
open project view and observe the known (red vertical lines) and unknown variants
(blue vertical lines) across the ROI in the top window. Click the � next to the
specimen name to view the electropherogram. Click on any base of the sample
consensus sequence then use the tab key to move the cursor from one variant to
the next variant. The user can inspect each variant for: 1. QV – Click the QV icon
on the main toolbar. The QV is represented by the blue bars on top of each base.
Placing the cursor on a blue bar will give its QV. 2. Mixed bases - the IUB code
replacement (Table 2) is given, and mixed variants that might be overlooked on the
original sequence trace are more easily detectable in SeqScape.

2. Adding variants into the genotype table: Variants found can be added to the
Genotype table by right clicking the base for the relevant specimen. Then select
Add Genotype. Viewing all data from the project at various levels or formats has
facilitated mutation detection. Figure 14 displays a project view of a heterozygous
mutation called Hb Constant Spring (CD142 TAA>CAA) in the �2 globin gene.
The mutation was confirmed and viewed by reverse and forward strands and by
comparison with a control wild-type DNA sequence.

3.3.9. Viewing Report

Open project of interest, and select project icon. Open Report Manager
window from the Analysis menu. Select the report type you wish to view.
There are many report formats available. For our purpose, we use the Mutation
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Consensus sequence

Reference sequence

IUB
code

Unknown /
Known variants

Triangle

Reverse
sequence

Forward
sequence

Hb Constant
Spring heterozygote

Fig. 14. Variant(s) were detected and shown at the top of the window. Moving
the Tab key allows the variant(s) to be viewed for assessment. QVs were used for
identifying the mixed bases. The variant detected in this example was consistent with
a heterozygous point mutation in the �2 globin gene (Hb Constant Spring). The IUB
code here (Y) for the mixed bases indicates C/T. Variants detected can be added to the
genotype result table.

Forward sequence

Reverse sequence

Wild-type sequence

Consensus
sequence Deletion

location

Heterozygous
pentanucleotide

deletion

Fig. 15. An example of a heterozygous pentanucleotide deletion in the �2 globin
gene. Traces from the first panel (reverse sequence) and the second panel (forward
sequence) reveal the heterozygous pentanucleotide deletion compared with the wild-
type sequence.
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Forward sequence

Reverse sequence

Wild-type sequence

Homozygous
pentanucleotide

deletion

Fig. 16. An example of a homozygous pentanucleotide deletion in the �2 globin
gene. A gap of 5 deleted bases was present in the consensus sequence indicating a
homozygous deletion.

report or the Genotyping report. In the Mutation report, the base change is also
hyperlinked to data in project view which allows for mutation verification.

Although we have described how to detect missense changes in a DNA
sequence, SeqScape is an excellent software package allowing accurate
detection of both small deletions and insertions. Figures 15 and 16 show a

Table 3
An example of a genotype table displaying multiple variants found in the alpha
2 globin gene. The variants’ QVs and base locations are shown. Mixed bases
are identified with an IUB code.

Genotype Table

Specimen c / 6679/
�2gene

t / 6799/
�2gene

c / 6824/
�2gene

c / 7017/
�2gene

t / 7174/
�2gene

� / 7423/
�2gene

005798 C (46) T (44) Y (19) G (46) K (11) C (50)
008055 S (23) T (42) C (45) G (46) T (42) C (50)
008057 C (50) Y (7) C (23) G (50) T (29) C (50)
008375 C (46) T (44) C (42) G (46) T (46) C (32)
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heterozygous and a homozygous deletion of TGAGG nucleotides respectively
in the �2 globin gene producing another type of � thalassemia.

SNPs and mutations can be identified and any ambiguities quickly resolved.
In terms of DNA diagnostic testing, this means greater accuracy and a shorter
turnaround time. A Genotyping report result is provided in Table 3. A summary
of base changes associated with nucleotide positions and their quality values
for each sample is displayed.

4. Conclusions
SeqScape software is useful as a high-throughput informatics tool for

automated sequence analysis, automated variant identification and for gener-
ating reports. It provides accurate and high quality sequence with compre-
hensive annotation from raw data to result identification in a user-friendly
fashion. The analyzed data can be saved, exported, printed and reviewed at any
time. The software is expensive to purchase but this is offset by the time saved
in analyzing a DNA sequence trace. Further enhancements will allow it to be
used in a wider range of DNA based applications (see Note 3).

Notes
1. Although SeqScape software provides excellent and high-quality analysis of DNA

sequence, it cannot do this without prior knowledge of a reference sequence. If
the known reference sequence is large (say, about 180 kb) and the computer has
inadequate memory or capacity, the program has a tendency to be slow or even
freeze. Other limitations of the software are its inability to detect large deletions,
and it does not support all sequencing files.

2. For inter-laboratory consistency in reporting, it is necessary to use reference
sequences, and the recommended one is RefSeq from the NCBI (see Chapter 11
for more discussion on the importance of reference sequences). Officially approved
names for genes can be obtained from the HUGO Gene Nomenclature Committee
database (www.gene.ucl.ac.uk/nomenclature/). From the NCBI home page (under
Search) select “nucleotide” and type the name for the gene of interest. The
search should be limited by selecting RefSeq from the “Only From” in the
Limits tag. Accession No. NG_000006 is a 43 kb RefSeq that contains the entire
� globin gene cluster on chromosome 16. In this chapter, we have used the
smaller non-RefSeq GenBank HUMHBA4 sequence (Accession No. J000153)
which contains both � globin genes.

3. Sequencing reagent costs have reduced over the past few years, and the numbers
of samples with longer sequence reads have significantly increased along with
the increasing number of reference sequences in various databases. More compre-
hensively integrated software with blast function linked directly to the relevant
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databases without the need for entering reference sequence prior to analysis would
be a further improvement. More advanced software packages that can call and
detect large deletions would also be very beneficial for mutation detection.
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Evaluating DNA Sequence Variants of Unknown
Biological Significance

Scott A. Grist, Andrew Dubowsky, and Graeme Suthers

Summary

Increasingly, the molecular genetics laboratory has to assess the biological significance of
changes (variants) in a DNA sequence. Using the large genes BRCA1 and BRCA2 as examples,
some approaches used to determine the biological significance of DNA variants are described.
These include the characterization of the variant through a review of the literature and the various
databases to assess if it has previously been described. Potential difficulties with the various
databases that are available are described. Other considerations include the co-inheritance of the
variant with other DNA changes, and its evolutionary conservation. Determining the possible
effect of the variant on protein function is described in terms of the Grantham assessment as
well as identifying functional domains. Studies looking at the distribution of the variant in both
the population and the family can also help in assessing its significance. Loss of the variant in
a tumor sample would imply that it is not deleterious. Ultimately, it is not any single parameter
that helps determine the DNA variants biological significance. Usually this requires multiple
lines of evidence.

Key Words: variants, mutations, databases, BRCA1, BRCA2.

Abbreviations: ESE – exonic splicing enhancer, HGVS – Human Genome Variation
Society; OMIM – Online Mendelian Inheritance in Man; LSDB – Locus Specific Data Base;
UTR – untranslated region

1. Introduction
With the advent of rapid, low-cost DNA sequencing and other mutation

detection strategies in medical laboratories, the primary challenge has shifted
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from finding variants (see Chapter 10) to determining if a variant is delete-
rious. Some genes are highly conserved and any deviation from the accepted
“normal sequence” is likely to represent a deleterious variant. However, in
outbred populations most genes exhibit a spectrum of variants, ranging from
advantageous (reducing the risk of disease), neutral (having no phenotypic
significance), low-penetrance (carrying only a modest risk of disease), to
deleterious (carrying a high risk of disease). Furthermore, it is clear that the
type of variant is not necessarily an accurate guide to whether a variant is
deleterious.

In the past, the biological significance of a variant was principally deter-
mined by clinical segregation studies and by in vitro functional studies of the
variant gene and protein. But the deluge of variants being identified in medical
laboratories usually precludes this type of investigative approach. In addition,
testing in the medical setting demands a more stringent interpretation than
might be required in a research study, and this interpretation must be provided
within a limited timeframe.

In this chapter, we provide a framework for the bioinformatics assessment
of variants in a diagnostic setting, using the BRCA1 and BRCA2 genes as
examples. Here we illustrate that in silico investigation has the advantage of
not requiring additional laboratory time and capitalizes on the growing resource
that variant catalogues provide. However, we caution the reader that utilizing
information that has not been verified experimentally also carries risks. While
an individual factor may provide compelling evidence in isolation, it is essential
that clinical decisions be based on an investigation in which multiple strands
of evidence provide a concordant answer.

Throughout this chapter, we refer to the assessment of the “biological signif-
icance” of a variant. We use this term to refer to the functional impact of the
variant on the usual operation of the gene. This is distinct from an assessment
of “clinical significance” or “pathogenicity” which involves an integration of
the biological significance and a wide range of clinical information (personal
history, histology, family history, etc.). Such an assessment lies well beyond
the scope of this chapter. We reserve the term mutation for a deleterious
variant.

2. Describing a Variant
The unambiguous description used to identify the nature and location of a

sequence variant is an essential element in communication between molecular
geneticists and health professionals. The reader should be cautioned that there
are a number of nomenclature “standards” in existence, some of which are
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outdated or misused, but are nonetheless still in widespread use. This situation
has great potential to introduce errors, both in analysis and clinical testing, and
vigilance must be exercised.

Currently, the most accurate and unambiguous nomenclature system gaining
international recognition is that endorsed by the Human Genome Variation
Society (HGVS). A discussion of this nomenclature system is outside the scope
of this chapter, and can be found in detail at the HGVS website (www.hgvs.org).
This system provides for description of a variant at the three levels of biological
sequence: as genomic DNA, as mRNA (or coding sequence, usually as cDNA),
and as peptide. To avoid confusion with other standards, the nomenclature used
to describe a variant should always be stated.

The description of a variant must also be precisely located on a specified
reference DNA sequence. The usual practice is to use the coding sequence
of the gene as the reference sequence, counting the nucleotides from the
first nucleotide of the initiation codon. The coding sequence, plus 5’- and
3’-untranslated regions (UTR), are available as cDNA sequences through
public reference sequence databases such as those hosted by the US National
Centre for Biotechnology Information (NCBI) (www.ncbi.nlm.nih.gov) and
ENSEMBL (www.ensembl.org). It is important to note that many sequences
contain undeclared variants, alternate splicing, missing segments, or errors.
By combining sequence data from the human genome project, GenBank, and
unpublished data, the NCBI has constructed a series of reference sequences
(www.ncbi.nlm.nih.gov/RefSeq/) that have been subjected to curatorial review
and provide a higher level of accuracy and consistency than may be found
with other sources. In every case, the sequence used to describe a variant
should always be stated. Published reports and databases do not necessarily
state the nomenclature system or sequence being used to describe variants, and
the correct identity of the variant may not be clear.

3. Categorizing a Variant
The first step is to determine the impact of the DNA sequence change on the

derived RNA (or cDNA) and protein, describing these changes in the format
used by other workers (as detailed above). A full description of the genetic
basis of mutations lies beyond the scope of this article, but an overview of
variant types is provided in Box 1.

The coding sequence of a gene, the exon/intron boundaries, intron sequences,
and (if required) genomic sequence can be readily accessed at the NCBI and
ENSEMBL sites (among others). For example, the BRCA1 cDNA (ENSEMBL
reference ENST00000309486) can be displayed with separate numbering for
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Box 1: Types and effects of DNA sequence variants

Large scale re-arrangements involve disruption of the large scale structure of the
gene (deletion, insertion, or inversion of exons or the whole gene) and are usually
pathogenic.

Nonsense variants introduce a premature termination codon and result in an mRNA
which codes for a truncated protein. Such mRNAs are typically unstable and subject
to rapid degradation by the transcriptional machinery. A premature stop codon is
generally considered to be pathogenic, but some genes (including BRCA2) display
alternate or polymorphic stop codons.

Frameshifts typically introduce a stop codon a short distance downstream with
the same consequences (and caution) as noted for nonsense variants. However, a
frameshift close to the 3’ end of the gene may yield an intact protein with an incorrect
COOH-domain.

Missense variants are frequently difficult to interpret because it is not necessarily
clear whether the change in peptide sequence affects protein function.

In-frame deletion or insertion yields a protein that is similar in size to the wild-type
and it is not necessarily clear if the change is pathogenic.

Silent substitutions in an exon (i.e., same amino acid coded despite the change
in codon) are frequently benign polymorphisms. However, some substitutions may
activate a cryptic splice site or modulate splicing by affecting an exonic splice
enhancer (ESE).

Splice site mutations are usually commonly confined to the critical conserved
nucleotides around splice donor and acceptor sites. But it should be noted that variants
distant from these splice sites can also affect splicing (as noted above).

Promoter variants may impair transcription or produce an alternate start of
transcription. Point mutations can have a profound effect on the promoter efficiency
but this can be difficult to predict. Large genomic deletions involving the promoter
are likely to be pathogenic.

5’ UTR variants may produce an alternate translation start-site by creating a new
AUG upstream of the usual initiation codon.

Intronic variants are usually polymorphisms but may cause mis-splicing or other
abnormalities in RNA processing. Conserved intronic regions may encode small
interfering RNAs (siRNA) that play a major role in such processing.

3’ UTR variants may also interfere with siRNAs, but this is currently difficult to
predict.
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the cDNA, coding, and peptide sequences; exon boundaries can be displayed
with 25 or more nucleotides at each end of each intron; the display includes
common single nucleotide polymorphisms (SNPs). Careful assessment of this
display will allow the reader to identify exactly where the variant is located in
the functional structure of the gene.

If the variant occurs within the coding region of the gene, examine the
cDNA sequence and derived peptide sequence of both the reference sequence
and the variant sequence. This may be performed manually, but can be greatly
assisted by the use of alignment software, e.g., the utilities freely available at
http://au.expasy.org/tools/. Establish the reading frame of the coding sequence
and refer to a codon usage table to determine the change to the amino acid
sequence predicted from the nucleotide sequence (or use tools such as those
listed above). Determine the type of variant (see Box 1) but do not jump to a
conclusion regarding the significance of the variant.

If the variant occurs in a non-coding region, it may be more difficult to
determine the biological significance. However, by addressing a systematic
series of questions the effect of the change may be revealed: Is the variant
located close to or within the gene promoter region? Is the variant predicted to
encode an alternate transcription start site? Does the variant introduce a new
initiation codon (AUG) in the 5’ UTR? Does the alternate start codon predict
a different reading frame? Does the variant disrupt the highly conserved bases
in the first or second position at the start or end of an intron, resulting in an
alternately spliced transcript? Would such a splice variant result in a frameshift
downstream from the variant? Is the variant in the 3’ UTR?

Prediction algorithms are available that can assist in identifying splice
donor/acceptor sites (NetGene2: www.cbs.dtu.dk/services/NetGene2/) and
exonic splice enhancers (ESE) (ESEfinder: http://rulai.cshl.edu/tools/ESE/).
Both normal and variant sequences should be assessed and compared. The
output indicates putative candidate ESE and splice sites, usually with an
indication of relative efficiency or probability of splicing. It should be remem-
bered that these algorithms are only theoretical predictions and are far from
definitive. Nonetheless, they do provide a useful starting point for categorizing
such variants. When the mRNA sequence resulting from the splice variant has
been determined, consider the following questions: Does the variant mRNA
lose or gain coding sequence? Is the correct reading frame retained? Is a new
stop codon introduced? Note that a mutation may cause both a frameshift and
alter splicing such that the variant splicing restores the reading frame.

Many genes can yield multiple transcripts which are derived from different
splicing patterns, each encoding unique functional products. There is usually
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one predominant transcript that is the basis for assessing variants in the liter-
ature. But the reader needs to be mindful that a variant may affect some
transcripts but not others arising from the one gene. The ENSEMBL site lists the
various transcripts that have been described for a gene in which all are aligned
in an overlapping manner to a single genomic framework. This provides an
illustration from which an assessment can be made of the potential involvement
of a variant in each functional transcript.

4. Obtaining the Evidence
Variant sequences that are predicted to yield a substantially truncated protein

i.e. large deletions, nonsense, and frameshift mutations, are usually biologically
significant and can be classified as deleterious. However, there are exceptions.
Truncating variants in the COOH-domain of BRCA2 can be neutral polymor-
phisms (1). Conversely, a silent variant may not cause any alteration in the
predicted protein but can disrupt an ESE resulting in variant splicing in the
mRNA (2). So it is essential that assumptions are not made in interpreting the
biological significance of a variant.

On the other hand, variants that retain the reading frame, including missense
variants, are much harder to classify. This section presents some principles to
assist in the classification of these variants.

4.1. Checking the Literature and Databases

If you can find a detailed assessment of the variant in the biomedical liter-
ature or database, this may be the quickest way of determining the biological
or clinical significance of a variant. But we caution the reader that both
the literature and on-line databases are replete with inconsistencies regarding
the significance of gene variants. Before utilizing an interpretation to guide
clinical management, ensure that multiple lines of evidence point to the same
conclusion.

4.1.1. Searching the Literature

Search the biomedical literature using tools such as PubMed
(www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed), or Google Scholar
(http://scholar.google.com/) for papers which describe the variant. These search
tools use text matching to identify abstracts and titles of interest, and a
successful search demands that you use the same character string as the
authors to describe the gene, variant, and location, and that this character string
appears in the abstract or title. If different gene names, reference sequences,
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or nomenclatures are in common use, you may need to search using different
descriptions of the variant. You may also need to repeat the searches using
genomic, cDNA, and protein descriptions of the variant.

The arbitrariness of variant descriptions in the literature, as well as the
possibility that the variant may not be described in the abstract, limits the
usefulness of literature searches. However, this disadvantage is offset by a
number of key advantages. First, the published assessment may have been peer
reviewed (depending on the publication), thereby providing some authority
to the assessment. Second, if the details of the assessment are included in
the article, the primary data can be reviewed. Third, the authors will have
(hopefully) placed the assessment of the variant in a broad context, noting prior
references and the assessment of similar variants.

4.1.2. Locus-Specific Databases

There are many on-line databases of variants in individual genes (locus-
specific databases, or LSDBs) currently available. These have often been
developed as a tool to facilitate research between collaborating laboratories, and
address some of the shortcomings of the biomedical literature as a repository
for variant reports. In particular, many more variant reports are usually cited in
LSDBs than are in the medical literature. But the utility of many LSDBs has
been compromised by a lack of consistency in the type of information collected,
nomenclature, variant interpretation (even in the same LSDB), curatorial quality
and maintenance (3). To complicate matters further, in the case of many genes
there are multiple LSDBs. The one report of a variant may have been replicated
in multiple databases, giving the misleading impression that the one interpre-
tation has been endorsed on multiple occasions (see Chapter 12 for further
discussion on DNA variant databases).

In addition to LSDBs, there are a number of databases that collate the variants
identified from a number of genes using consistent gene names, reference
sequences, and nomenclature. With growing recognition of the need for a
consistent and comprehensive data repository, this is a welcome move toward
having a single central repository of variants that is linked to individual LSDBs
(4). But databases can only be as good as the quantity and quality of the
submitted data. Increasing volumes of variant data generated by busy diagnostic
laboratories are often not released to LSDBs or a central repository due to time
and resource limitations. Hence the reader must be aware that the information
held by online databases represents only a subset of the information that is
potentially available (see Note 1).
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4.1.3. Central Databases

Three central databases are currently available, each with advantages and
limitations.

1. The Cardiff Human Gene Mutation Database (www.hgmd.cf.ac.uk) has the
advantage of being more comprehensive than other central databases because the
variant reports were sourced from LSDBs, publications, and conference reports.
The database is part-funded by a commercial partner, and some resources are only
available to subscribers. The accrual of variants in the last decade has fluctuated
according to the source and level of funding.

2. Online Mendelian Inheritance in Man (OMIM) (www.ncbi.nlm.nih.gov) is an
annotated list of Mendelian traits and genes in humans, with references to relevant
literature and other websites. The quality and comprehensiveness of the annotations
varies. There are separate entries for genes and traits (diseases), with the gene entries
generally being restricted to the biology of the gene. The disease entry includes
a section on the underlying molecular genetics (if known), and lists key variants
that inform the clinical discussion. Hence OMIM includes a highly selected and
idiosyncratic list of variants that are usually regarded as unequivocally deleterious.
It does not provide a commentary on variants of uncertain biological or clinical
significance.

3. The Waystation (www.centralmutations.org) is a recent endeavor to provide a single
point of reference for all human gene variants. It has the advantage of consistency
but has a limited volume of data.

4.1.4. Searching for a Variant in LSDBs

The first step is to find the relevant LSDBs. Two of the central databases,
the Cardiff Human Gene Mutation Databases and the Waystation, provide links
to the LSDBs that were used to source the central database. However, there
may be LSDBs for new genes or additional LSDBs for established genes that
are not listed. The HGVS also maintains a list of LSDBs for different genes
(www.hgvs.org).

Some LSDBs are open to the public. Others require registration via the
curator, and some are restricted to certain users. Readers must also bear in
mind that LSDBs vary widely in scope, quality, and intent. Some are focused
on research issues, while others are designed to assist clinical decision-making.
If there are multiple LSDBs for the one gene, it is important to check each
LSDB, bearing in mind the possibility that the one report of a variant may be
cited in multiple databases.

For example, the largest repository of variant data for the BRCA1 and BRCA2
genes is the Breast Information Core (BIC) (http://research.nhgri.nih.gov/bic/).
Users must register (no charge) to access the database and can search for a
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variant using a variety of search parameters. BIC uses the GenBank sequence
U14680.1 for BRCA1 rather than the NCBI-specified reference sequence, i.e.,
NM_007294.2. It is at this point that an example of the differences between
nomenclature systems is clearly demonstrated. BIC nomenclature numbers from
the first base of the U14680.1 sequence rather than the usual convention of
starting numbering at the first base of the initiation codon (which is at position
+120 in U14680.1). There are also differences in the 5’ UTR of exon 1:

1. U14680.1 lacks the leading 82 nucleotides at the 5’ end of exon 1 present in the
NCBI sequence (NM_007294.2).

2. Bases 105-7 and 109 of the NCBI sequence are discordant with the aligned
U14680.1 sequence.

3. U14680.1 has an insertion between bases 111 and 112 of the NCBI sequence. This
alters the subsequent base numbering in the gene.

4. U14680.1 lacks the entire 3’ UTR specified in the NCBI sequence.

With regard to BRCA2, BIC uses the GenBank sequence U43746 rather than the
NCBI-specified reference sequence, i.e., NM_000059.2. As with the BRCA1
sequence, BIC numbers the BRCA2 sequence from the first base rather than
using the first nucleotide of the initiation codon, which is at position +229
in U43746. The GenBank and NCBI sequences also differ at a number of
non-coding positions in the gene.

1. U43746 has an additional base at the beginning of the 5’ UTR of exon 1.
2. The base at 10,854 in U43746 is G rather than A. This is in the 3’ UTR.
3. In the 3’ UTR, the base at 10,858 in U43746 is not included in the NCBI sequence,

thereby altering the numbering for the remainder of the gene.
4. Significant differences exist between the two sequences in the 3’ UTR downstream

of base 10,926 in sequence U43746.

Further problems arise when a lack of consistency is applied to nomenclature.
For example, a deletion of two nucleotides in the BRCA1 gene which is a
common founder mutation in people of Ashkenazi Jewish descent is variously
described in the literature as BRCA1 185delAG or BRCA1 187delAG (both
based on the BIC numbering system). The root cause of this inconsistency
is that the deletion occurs at a nucleotide sequence of “AGAG” where it is
impossible to know whether the first or second “AG” is deleted. In this case,
the difference is functionally irrelevant, but unless a standard i.e. assign the
change to the most 3’ position possible, as recommended by the HGVS, is
universally used, difficulties arise when using the nomenclature to search for
literature relating to a specific variation. The equivalent HGVS nomenclature
for this same mutation is BRCA1 c.68_69delAG (based on reference sequence
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U14680.1) where the lowercase “c” indicates the numbering is based on coding
sequence and the more 3’ of the repeated AG nucleotides is deleted.

A conversion may often be required to ensure that user and database curator
are addressing the same variant. Information held within BIC lists the number
of times that the variant has been reported to BIC, noting the laboratory, publi-
cation (if any), and a consensus conclusion regarding its biological significance.
The consensus reflects the considered opinion of the curator and colleagues
(experts in the field). The great majority of BIC variant reports come from one
commercial diagnostic laboratory that provides BRCA1 and BRCA2 testing in
America. Although this has the advantage of providing a consistent clinical
perspective on variant interpretation, it also means that variants detected by
methods other than those used by that laboratory, or in ethnic groups outside
America, are under-represented in BIC.

4.2. Co-occurrence with a Mutation

An understanding of the clinical and genetic features of the disorder in
question can assist in assessing the biological significance of the variant. In
the absence of consanguinity (and in an outbred population), it would be
unusual to observe homozygosity for a mutation in a patient with an autosomal
dominant disorder. Hence homozygosity for the variant would suggest that it
is unlikely to be deleterious. Similarly, compound heterozygosity involving a
documented mutation and the variant (on different alleles) or co-occurrence of
the mutation and the variant on the same allele would argue against the variant
being deleterious.

This assessment can gain much greater weight if heterozygous and
homozygous (or compound heterozygous) mutations in the gene cause different
clinical disorders. For example, constitutional loss-of-function mutations in
both alleles of BRCA1 are lethal in the embryo (5). Similarly, loss-of-function
in both alleles of BRCA2 is often embryonic lethal, but some homozygous
or compound heterozygous mutations cause Fanconi anemia, a condition with
characteristic clinical and cytogenetic features (6). Note however, that this
assessment depends on the variant and the mutation being on different alleles
i.e. occurring in trans, and this may not be easy to prove. For a number
of reasons it is unlikely that two mutations would be physically present on
the same allele i.e. occurring in cis. However, if this were the case, the two
mutations would not constitute functional homozygosity and would not result
in the homozygous phenotypes. It is also possible that the combination of a
mutation and a low penetrance variant may be developmentally tolerated.
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These observations can be quantified. As discussed by Goldgar and
colleagues (7), the likelihood ratio of observing the variant n times, with k
events being in conjunction with a mutation, is

�P2�
k�1−P2�

n−k

Pk
1�1−P1�

n−k

where p1 is the probability that a patient with a neutral variant carries a mutation
on the other allele, and p2 is the probability that a patient carries two mutations
(on different alleles). For analyzing the co-occurrence of BRCA1 variants,
Goldgar and colleagues (7) set p1 as 4% (the approximate frequency of BRCA1
mutations in a large data set) and p2 as 10−4 (reflecting the embryonic lethality
of homozygous mutations in BRCA1).

This analysis is usually less helpful in assessing variants in genes responsible
for autosomal recessive disorders. The presence of a variant and two mutations
(on different alleles) would argue against the variant being deleterious. The
presence of the variant and one mutation (on different alleles) suggests that
the variant may be deleterious but the possibility of their being another cryptic
mutation (and the variant being neutral) cannot be excluded. The occurrence
of a variant without an associated mutation provides no information regarding
the variant’s significance. In a further twist to the challenges of interpreting
recessive variants, a combination of two or more neutral variants in cis can
result in the allele being deleterious (8).

These analyses usually rely on access to a large and comprehensive dataset
which links mutations, variants of uncertain significance, and neutral variants
to individual patients, as well as documenting the associated phenotype. Most
variants of uncertain significance are rare, and it is the occasional patient
with both a mutation and the variant who provides the essential clue to the
significance of the variant.

4.3. Evolutionary Conservation

If the amino acid at a specific point in the peptide sequence is conserved
among different species, it suggests that the amino acid plays a key role
in the function of that protein. Thus, the nucleotide variant encoding the
variant amino acid is likely to be deleterious. Multiple sequence alignments
of the same gene from different species can be found in NCBI Homologene
(www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=homologene) and the ENSEMBL
website.

Alignments may also be performed directly by using Basic Local Alignment
Search Tool (BLAST) algorithms (9). This is a widely implemented algorithm
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which forms the basis of many analytical packages, many of which are open
sources, e.g. www.ncbi.nlm.nih.gov/BLAST/. A number of variants of this tool
exist, the two most commonly used are BLASTp for alignment of protein
sequences and BLASTn for alignment of nucleotide sequences. Query sequence
data may be submitted in a number of formats, including plain text, and are
used to search for matches against appropriate databases. This can be selected
for all species or narrowed to relevant phyla. The resulting matched sequences
are aligned relative to the query sequence and ranked in order of conservation
(see Chapter 13 for more discussion on BLAST).

Interpretation of these alignments should be viewed with care. A lack
of conservation at a site is suggestive that the variant amino acids may be
neutral. However, this can be misleading if the variant amino acid has different
biophysical properties compared with the amino acids tolerated at that position
in other species (see next section). Conversely, conservation of the same amino
acid suggests that a variant amino acid would represent a deleterious mutation,
but this can be misleading if the conservation is due to chance rather than
to selection for that amino acid. It is also important to confirm, especially
when comparing widely diverged species, that the sequences found by the
matching algorithm belong to a biologically relevant protein and are not merely
short sections of random homology or similar functional motifs in an unrelated
gene. A further confounding factor is that closely related proteins could have
different roles in different species, with different regions of the gene being
under different selective pressures in the two organisms.

Mathematical models have been developed that allow quantification of these
evolutionary differences. The development and use of such models lies beyond
the scope of this chapter, and the reader interested in the application of such
models to the BRCA1 gene is referred to (10).

4.4. Biophysical Consequences

In assessing a missense variant, a key issue is the extent to which the
variant amino acid might alter the biophysical attributes of the variant protein.
The first element of this assessment is determining the degree to which the
variant amino acid differs from the usual amino acid. The substitution of a new
amino acid with similar properties to the normal type (termed a conservative
substitution) would be less likely to produce a structural or functional change
than a substitution involving an amino acid with very different properties
(termed a non-conservative change).

There are a number of indices for amino acid properties in use, but one of
the earliest described and most widely applied is the Grantham score derived
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from volume (V), polarity (P) and side chain composition (C) of the amino
acid (11). Each component parameter is a continuous variable, with side-chain
composition being the ratio of the atomic weight ratio of non-carbon elements
in end groups or rings to carbons in the side chain. The three parameters are
combined in a formula that yields the best fit with the relative frequencies with
which amino acids can substitute for each other in multiple proteins in different
species. The pairwise differences in Grantham score are listed in Table 1. The
greater the deviation from 0, the greater is the biophysical “distance” between
the two amino acids.

But it is also essential to know what degree of difference is tolerated at this
specific point in this specific gene. At a specified point in an alignment of
multiple reference peptide sequences from different species, each amino acid
is plotted as a point in three-dimensional space (corresponding to the three
components of the Grantham Score). The length of the longest diagonal of the
box bounding these points is a measure of the variability tolerated at this point,
and is termed the Grantham Variation (12). The distance between the point
plotted for a variant amino acid and the closest surface of the box bounding
the reference points is termed the Grantham Deviation. The quantification of
this assessment allows the measure to be incorporated with other parameters to
provide a numerical measure of the probability that a variant is deleterious (12).

4.5. Functional Consequences

There is increasing information available about the presence of specific
functional domains in proteins. Domains are defined on the basis of conserved
amino acid sequence in different proteins and species, and usually represent
the key functional components of elements of a protein. Hence a variant which
results in the disruption of a domain, either due to an in-frame deletion or
to the presence of a variant amino acid that is markedly different from the
usual amino acid, would normally be considered to have a high likelihood of
producing a structural or functional change in the mature peptide and is therefore
likely to be deleterious. Knowledge of the biological function ascribed to the
domain carrying the variant can also assist in deciding what type of further
supporting evidence or laboratory testing might be sought to help confirm the
bioinformatics prediction.

The catalogue of domains, and the functions associated with them, is
growing. Lists of protein domains are available at a number of sites, including
the NCBI (www.ncbi.nlm.nih.gov) and ENSEMBL (www.ensembl.org). For
example, the ENSEMBL entry for BRCA1 (reference ENSG00000012048)
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includes links to the SwissProt database which lists the relevant domains and
locations on the peptide sequence derived from the BRCA1 gene.

This type of analysis is, by definition, limited to what has been previously
observed and entered into the sequence databases. Not all functional domains
are mapped and the individual roles of the regions between the functional
domains are not fully understood. Computer predictions of protein folding
based directly on an input sequence may be one way around this limitation,
and indeed a number of algorithms for the prediction of protein folding are
becoming available, e.g., http://swissmodel.expasy.org//SWISS-MODEL.html
and http://predictor.scripps.edu/. Programs such as these can provide useful
insight into the likely effects of amino acid changes, but in the main these
computations are still highly developmental and should be regarded cautiously
at this time (see Chapter 13 for further information on predicting protein
function).

4.6. Occurrence in Normal Populations

A deleterious variant would be expected to occur more frequently in affected
patients than in unaffected people. If the variant is found in unaffected popula-
tions, this can provide clear evidence that a variant is not deleterious. However,
this information is rarely available. Variants of uncertain significance are
usually rare and the failure to identify the variation in an unaffected sample
provides no information. If the disorder has incomplete penetrance (for whatever
reason), the presence of the variant in unaffected relatives also provides little
information. For the same reason, population-based studies may identify the
variant in a proportion of unaffected people, albeit at a lower frequency than
among affected patients.

In assessing information about the frequency of the variant in unaffected
people, it is important to assess the statistical significance of population figures
that are quoted and the nature of the “control” population. For example,
three founder mutations in BRCA1 and BRCA2 occur with a combined carrier
frequency of more than 2%, and with individual frequencies as high as 1.5%,
in unaffected members of the Ashkenazi Jewish community (13,14). Similar
frequencies of mutations for other disorders have also been documented in other
ethnic groups. Hence the presence of the variant in the unaffected population
is not necessarily a robust indication that the variant is neutral.

LSDBs are a potential source of information about the frequency of variants
in an unaffected sample. There are also genome-wide databases that can provide
this information, and some of these data are usefully collated for each gene at
the ENSEMBL site (www.ensembl.org).
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4.7. Segregation in Affected Families

In a family with multiple affected members, the causative mutation would
be expected to segregate with disease. Co-segregation suggests that the variant
is deleterious, while failure to co-segregate would suggest that it is neutral.
Within a small kindred (and assuming the disease (phenotype) and variant are
rare), it is simple to calculate the probability of a variant and the disease co-
segregating by chance. For example, if two first-degree relatives of the proband
have the same dominant disease and variant as the proband, the chance of them
having both disease and variant by chance is (½)2. By combining data from
multiple families, the likelihood of co-segregation occurring by chance alone
can decrease very rapidly and provide strong evidence in favor of the variant
being associated with the disease.

However, there are a number of important cautions. First, in diseases with
incomplete penetrance, the presence of the variant in an unaffected relative does
not necessarily indicate a lack of co-segregation with disease. In such cases, it
is best to limit the assessment to the segregation of the variant among affected
relatives. Second, some common diseases (such as breast cancer) do also occur
as a chance event in kindreds with familial disease. These phenocopies will
confound a segregation study. Third, if the variant is common, two relatives
may have the same variant without this being inherited from a recent common
ancestor.

For these reasons, it is often preferable to utilize a Bayesian analysis that
incorporates these possibilities. This discussion goes beyond the scope of this
chapter, but a general statistical approach has been proposed by Thompson
and colleagues (15) and can be readily implemented in the linkage analysis
program, LINKAGE (16).

It is important to remember that a segregation study in one family (or among
related families) cannot prove a causal association between variant and disease.
It is also possible that the underlying mutation is elsewhere in the gene and
the variant is merely linked to it. This likelihood is greatly reduced if the
segregation study incorporates unrelated families.

4.8. Loss of Normal Allele in Tumor

In interpreting reports, LSDB entries, and segregation studies when assessing
a variant, there is an aspect of cancer biology that can provide useful infor-
mation. Most familial cancer syndromes are due to inheritance of a loss-of-
function mutation in one allele of a tumor suppressor gene. The principle
underlying tumorigenesis in these disorders is that a cancer then arises because
of a somatic mutation resulting in loss of function of the remaining normal
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allele. This principle provides an opportunity to assess the significance of a
variant in a tumor suppressor gene. If the allele with the variant is retained
in the tumor, this provides some evidence that the variant is deleterious. Loss
of the variant allele in a tumor would argue strongly against the variant being
deleterious. If the variant can be studied in multiple cancers from one or more
patients with the variant and is shown to be consistently retained, a relatively
small number of analyses can push up the odds in favor of the variant being
deleterious quite rapidly (17). The main caveats to this analysis are that the
variant allele may be retained by chance alone and that the variant allele being
tested may in fact only be linked with the actual mutation and not deleterious
per se. Such analyses can also be integrated into segregation studies of a variant.

5. Weighing the Evidence
As emphasized at the outset, evaluation of the biological significance of a

variant in a clinical setting requires a more stringent approach than may be
required in other settings. For this reason, it is essential that a conclusion be
based on multiple lines of evidence. Ideally the various lines of evidence will
be congruent, with each item either pointing to the same conclusion or (at least)
providing limited evidence either way.

At a number of points in the preceding discussion, we have highlighted that
various measures of significance can be quantified. This paves the way for
combining the various assessments and calculating the odds that the variant
under consideration is causally associated with the disease. This approach has
been successfully applied to variants in the BRCA1 gene (7,10,12,17). The
consensus in these publications has been that odds of 1,000:1 in favor of a
causal relationship are sufficient to categorize the variant as deleterious; odds
of 100:1 against a causal relationship are sufficient to categorize the variant
as neutral; the variant is otherwise classified as being of uncertain biological
significance.

We strongly support this approach as it promotes an objective and quantified
process for the evaluation of variants, while explicitly recognizing that the
assessment is based on limited data. As more data are accumulated, the odds for
or against causality will change and it is possible that the biological significance
of a variant will need to be re-considered.

There may be additional clinical or pathological data that can inform
decisions regarding the significance of a variant. The assessment of such data
goes beyond the scope of this chapter, but we caution the reader that each
component of the analysis should be explicit, objective, and conservative. The
decision regarding the significance of a variant may be translated into medical
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decision-making with irreversible consequences. In the case of BRCA1 analyses,
the conclusion that a variant is deleterious may lead to presymptomatic testing
of relatives and consideration of prophylactic surgery.

6. Note
1. The fact that a variant has been reported elsewhere does not relieve the reader

of the need for due diligence in assessing a variant. Always verify the reported
interpretation by checking citations and satisfying yourself of its scientific veracity.
In cases of uncertainty, it is frequently valuable to communicate directly with
the reporting laboratory. It is not unknown for the interpretation of a variant to
have been changed and not immediately updated on the LSDB. Also note that
some LSDBs focus on heritable (germline) variants while others deal with somatic
variants. The interpretation of a somatic variant does not necessarily apply to the
germline equivalent.
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Developing a DNA Variant Database

David C. Y. Fung

Summary

Disease- and locus-specific variant databases have been a valuable resource to clinical and
research geneticists. With the recent rapid developments in technologies, the number of DNA
variants detected in a typical molecular genetics laboratory easily exceeds 1,000. To keep track
of the growing inventory of DNA variants, many laboratories employ information technology
to store the data as well as distributing the data and its associated information to clinicians
and researchers via the Web. While it is a valuable resource, the hosting of a web-accessible
database requires collaboration between bioinformaticians and biologists and careful planning
to ensure its usability and availability. In this chapter, a series of tutorials on building a local
DNA variant database out of a sample dataset will be provided. However, this tutorial will not
include programming details on building a web interface and on constructing the web application
necessary for web hosting. Instead, an introduction to the two commonly used methods for
hosting web-accessible variant databases will be described. Apart from the tutorials, this chapter
will also consider the resources and planning required for making a variant database project
successful.
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Disclaimer: The sample data listed in Fig. 8 are fictitious and should only
be used for educational purposes. They should not be used for studying the
genetic epidemiology of either cutaneous malignant melanoma or pancreatic
carcinoma or for diagnostic purposes

1. Introduction
Variant databases are proving to be an increasingly valuable information

resource in both the clinical and research genetic environments. At the time
of writing, the total number of published disease-associated variants curated
by the Human Gene Mutation Database, Cardiff (HGMD®) exceeded 60,000
(1). To keep track of the growing inventory of DNA variants, many labora-
tories employ information technology to store and to distribute the data and
its associated information to clinicians and researchers via the Web. To date,
there are as many as 970 locus-specific, 8 disease-centered, 4 mitochon-
drial, and 19 central variant databases listed on the Human Genome Variation
Society (HGVS) web site (2). Locus- and disease-specific variant databases
co-exist in a symbiotic relationship with the central databases. Because of
the expert knowledge contained in a specific range of loci or diseases, locus-
and disease-specific variant databases built by specialists’ laboratories often
add value to the central databases. On the other hand, the user volume of
central databases is much larger than that of any individual variant database.
Hence, specialist databases rely on their association with the central databases
to increase visibility to the user community.

The hosting of a web-accessible database requires collaboration between
bioinformaticians and biologists and careful planning to ensure its usability and
availability. In this chapter, the reader will learn about the resources required
for hosting a web accessible variant database.

2. Methods
The process of developing a DNA variant database can be divided into four

stages: inception, elaboration, construction, and transition (3) (see Note 1).

1. Inception: The stage when the functionality of the database and scope of the data
curation are being defined. It is also the stage when the availability of human,
financial, and computing resources is being assessed. If the database is going to be
developed by a third-party consultancy, its functionality must be clearly defined by
the project leader at this stage. Most project failures can be attributed to ill-defined
functional requirements.

2. Elaboration: The stage when operational scenarios are being modeled as use cases.
The purpose is to model possible interactions between users and the database.
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A suitable software design for the web application will also be decided at this stage
(see Note 2).

3. Construction: The stage when use cases are being converted to a series of
engineering diagrams which will collectively serve as a guide to the programming
process. Programming will be done at this stage.

4. Transition: The stage when the service is being made available to users. Activities
include software testing, code optimization, and deployment.

2.1. Inception

2.1.1. Human Resources Requirement

There are three roles required for the planning and building of a DNA variant
database: project leader, programmer, and curator. The project leader is the
person who initiates the project. His/her tasks include assessing the feasibility
and practicality of the database project, budgeting for the project, and recruiting
one or more programmers and curators. The project leader is often the chief
investigator for the research project. The programmer is the person who designs
and implements the database. His/her task includes assessing the availability of
computing and human resources, and resolving any technical issues encountered
during the construction and transition stages of the project. The curator is the
person who collects the data on DNA variation and populates the database. In
some laboratories, the same person may play the dual roles of a programmer
and a curator.

2.1.2. Computing Resource Requirement

2.1.2.1. Hardware and Software.

Unless one is attempting to build a central database like the HGMD®,
locus-specific and disease-centre variant databases tend to store less than 2
megabytes of data. As such, a workstation equipped with the latest Pentium
processor should be sufficient for a typical database project. Because a database
is basically an implementation of a data structure, software that can automati-
cally build a database according to a pre-defined schema and can read and write
data into the database is required. This type of software is known as a database
management system (DBMS). Many DNA variant databases in service have
been implemented on either of the two open-source DBMSes, i.e., PostgreSQL
or MySQL. Enterprise-level commercial DBMSes, e.g., Oracle® and Sybase®,
are often used for implementing institutional data warehouses that store not
only DNA variation data but also genome-wide sequence data, microarray
data, protein- protein interaction data, and even gene and medical ontologies.
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Unless an on-site installation is already available to the reader, the size of a
locus-specific or disease-centre DNA variant database is usually too small to
call for the service of an enterprise-level DBMS. For the purpose of writing a
database schema, a text editor is also required.

2.1.2.2. Service Provider

A more important issue to decide on is who will be the service provider?
This depends on the operating environment of the organization within which
the project leader is working, the availability of skilled personnel, and the
budget allocation for the project.

2.1.2.2.1. In-House Hosting. The biggest advantage of in-house hosting is
that the curator has full control of data auditing and web hosting. The curator
can make the latest data accessible on the web soon after a novel variant
has been detected or published. However, this approach requires a curator
skilled in both database administration and web hosting. Therefore in-house
hosting is most suitable for laboratories that have the personnel with the appro-
priate skill available or a research institute equipped with an in-house bioin-
formatics team. In the latter case, the project leader will need to negotiate
with the bioinformaticians on the separation of roles i.e. the data curation
part will be handled by the appointed laboratory staff whereas information
technology-related issues, such as data security, database administration and
web hosting, will be the responsibilities of the bioinformatics team. If it is a
research laboratory, e.g., a university teaching hospital research group, the project
leader may have to consult with the institution’s information technology service.

2.1.2.2.2. External Provider. The alternative to in-house hosting is to assign
the task to a commercial internet service provider or to a not-for-profit organi-
zation such as the HGVS. Unless they are in the business of providing bioin-
formatics services, few commercial providers have the experience of hosting
web accessible databases for scientific use. They usually charge a regular fee
for their service. Hence, readers are recommended to submit their data to the
WayStation/Central Database administered by the HGVS if their laboratories
do not have the resources to host their own database (2).

2.2. Elaboration

2.2.1. Functional Requirements

The functional requirements of a database are the written description of its
functionality. As shown in Fig. 1, the functional requirements of a variant
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Web Accessible Variant Database

A. Query data

B. Return data

D. Notify users

C. Process data

E. Submit data

User

Curator

Contributor

Fig. 1. Use case diagram depicting the functional requirements of a typical variant
database.

database include (1) querying data through a web interface, (2) returning queried
data to the web interface, (3) processing the curated data, (4) notifying users,
and (5) submitting data. While it may not be necessary to have the functions
of steps 4 and 5 automated, the provision of functions 1–3 is essential.

2.2.2. Data Requirements

2.2.2.1. Scope of Data Curation

According to the HGVS recommendations, a variant database should store as
minimal core data the gene symbols of the disease loci, gDNA variants, RNA or
cDNA changes, residue changes, and citations. Variations should be curated in
the form of HUGO nomenclatures. The simplest form is single base substitution.
For example, a gDNA change of guanosine to adenosine at nucleotide position
1,000 of a disease locus should be annotated as g.1,000G>A. For more details
about HGVS-recommended nomenclatures, the reader is referred to (4) and (5).
Auxiliary data are supplementary to the core data. These include geographical
distribution, population occurrence, detection method, kindred, and citation.
There is no minimum requirement as to how detailed auxiliary data should be
curated. It depends on the complexity of the disease and the extensiveness of
the data curation.
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2.3. Construction

2.3.1. Mapping Domain Knowledge to Database Schema

The definition of the term domain knowledge in the current context means
knowledge about human genetic variations. There are two methods for mapping
knowledge to database schema, namely fine-grain mapping and coarse-grain
mapping. In the former, every datum would be mapped to a unique attribute of
a certain class (see Note 3). In a relational database, data are being stored in
a tabular form with each class being a table. It was called fine grain because
the value of every attribute is atomic. In coarse-grain mapping, every set of
contextually related data would be mapped to an attribute. Thus the value of
each attribute can be a composite of several pieces of data (6). The decision as
to which method to be used would depend on a number of factors:

1. Complexity of the disease which can be viewed as

a. Genetic heterogeneity: Is the disease monogenic or multigenic for the same
phenotype? For example, hereditary cardiomyopathies (7,8) and familial malig-
nancies (9) are often multigenic. Classic examples of monogenic diseases are
cystic fibrosis and hereditary fructose intolerance.

b. Clinical heterogeneity: Does the locus variant associate with more than one
disease phenotype for the same spectrum? For example, CACNA1A gene variants
have been found in patients afflicted with episodic ataxia and also in those
with hemiplegic migraine (10). Do carriers of the same variant but of different
ethnicities differ in their clinical manifestation such as a disease onset age or
mortality rate within a particular age group? Does the locus variant associate
with cross-spectrum phenotypes? For example, SCN5A gene variants have been
known to associate causally with the Long QT Syndrome but may also associate
with gastrointestinal ailments (11).

c. Occurrence: Is the locus variant found in diverse ethnicities? For example,
variants associated with familial hypertrophic cardiomyopathy have been found
in Asian (12,13) and Caucasian populations (7,8), but variants associated with
cystic fibrosis have been found predominantly in the Caucasian population (14).

Generally speaking, coarse-grain mapping is most suited to locus-specific
databases of monogenic diseases that manifest little clinical heterogeneity. This
is because the curated data on monogenic diseases tend to be structurally
simpler than their multigenic counterparts. The entries of many attributes such
as gene symbol, variant type, ethnicity, and clinical phenotype tend to be more
homogenous in monogenic diseases (see Note 4). For multigenic diseases, flexi-
bility in data querying is uppermost because of the heterogeneity of the under-
lying data and this is where the strength of fine-grain mapping lies.
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2. Programming skill available
Coarse grain database can be queried with simpler Structured Query Language

(SQL) commands since the curated data are likely to be stored in fewer tables
and fewer attributes than its fine grain counterpart. A fine grain database can be a
collection of more than 10 tables and over 50 attributes. Hence, it will demand a
higher level of proficiency in SQL commands.

2.3.1.1. Tutorials on Developing a DNA Variant Database

In the following tutorials, the reader will learn step-by-step the process of
designing a database schema on paper before implementing it on a DBMS, and
then populate the resulting database with some sample data. The aim is to give
the reader an idea on how to build a database using one of the most popular
open-source DBMS, MySQL, on Windows® XP. Designing a web interface
for user query and programming the web application required for making the
database web accessible are beyond the scope of this tutorial.

2.3.1.1.1. Tutorial 1: Mapping Domain Knowledge to Class-Responsibility-
Collaboration (CRC) cards. In this section, a hypothetical case will be used
to illustrate the process of mapping domain knowledge on a locus specific
disease to a series of CRC cards on paper. CRC cards have previously been
used for modeling the property, e.g., protein name, gene symbol, cytogenetic
location, etc., and functionality, e.g., known pathways, type of biochemical
reactions, etc., of an individual protein, and its interactions with other proteins
(15). Here, the purpose of CRC cards is to model the properties of each
class, its functionality in the database, and its relationship with other classes.

1. Determine what the classes are and what will be the relationship between classes.
For example, the statement “Gene X carries DNA variants” describes a relationship
between the classes Locus and DNA variant. Generally speaking, the core and
auxiliary data mentioned in section 2.2.2.1 can be mapped to the classes Locus,
DNA variant, Citation, Population, and Kindred.

2. Determine what are the attributes of each class. The attributes should describe the
property of the class. Each datum should map to an attribute unique to a particular
class.

3. The CRC card for the class Locus is as follows:
Class: Locus
Attributes: OMIM identifier, GenBank identifier, gene symbol, gene name, cytoge-
netic position, locus type (see Note 5)
Responsibility: This class stores the identifiers of a genetic locus. A locus may
carry more than one DNA variant (see Note 6).
Collaboration: DNA variant
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4. The CRC card for the class DNA variant is as follows:
Class: DNA variant
Attributes: intragenic position, gDNA change, cDNA change, residue change,
variant type (see Note 7)
Responsibility: This class stores the position and the type of nucleotide changes on
the gDNA and cDNA levels and the corresponding residue change. The data in this
class are annotated in HUGO nomenclatures (4,5).
Collaboration: Citation, Locus, Population

5. The CRC card for the class Population is as follows:
Class: Population
Attributes: continent, nation, ethnicity (see Note 8)
Responsibility: This class stores data on the geographical location and the ethnicity
of the human populations known to carry a set of DNA variants. A population may
carry more than one DNA variant and the reverse may also be true (see Note 9).
Collaboration: DNA variant, Kindred

6. The CRC card for the class Kindred is as follows:
Class: Kindred
Attributes: phenotype, number of afflicted subjects, number of asymptomatic
carriers
Responsibility: This class stores the kindred data associated with a DNA variant
(see Note 10). A DNA variant may be found in one or more kindreds and a kindred
may carry more than one variant.
Collaboration: Population

7. The CRC card for the class Citation is as follows:
Class: Citation
Attributes: PubMed ID, author, publication
Responsibility: This class stores the bibliographic data of a DNA variant. A DNA
variant carried by several populations is usually reported in one or more publications.
If the DNA variant is associated with multiple kindreds, both are usually reported
together in the same publication (see Note 11).
Collaboration: DNA Variant

2.3.1.2. Implementing the Database Schema

The procedure introduced in tutorial 2 can be used with both open-source,
e.g., PostgreSQL, and commercial DBMSes e.g. Oracle® and Microsoft SQL
Server®, other than MySQL with some modifications on step 4. It should be
noted that the syntax of Data Definition Language (DDL) often differs slightly
from one DBMS to another. It is recommended that the user should check
the reference manual of other DBMSes for details. The reference manual for
MySQL DBMS can be found in (16).
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2.3.1.2.1. Tutorial 2: Mapping the CRC Cards to a Database Schema.
Using the CRC cards built in the last section, one can build the database schema
in DDL as follows:

1. Add primary key to each class. This primary key will become the identifier for each
record of a particular class. The primary key and its sample entry for each class are
shown in Table 1.

2. Determine the data type of every attribute in each class (Table 2).
3. Convert CRC card into a conceptual schema of a sample database named Locus-

Variants as shown in Fig. 2 (see Note 12).
4. Convert the conceptual schema to a MySQL database schema in DDL clauses as

shown in Fig. 3 (see Note 13). Each class serves as a template for building a table.
All database-reserved keywords are in uppercase.

5. Save the above DDL clauses in a text file named locusvariants.sql. (see Note 14)

2.3.1.2.2. Tutorial 3: Implement Database Schema in MySQL DBMS. After
building the database schema in Data Definition Language, the next step will
be to implement the schema in MySQL DBMS. The procedure is as follows:

1. Open the MySQL Query Browser under the MySQL menu (Fig. 4)
2. Login as root and enter the appropriate password. Leave the Default Schema box

in the Login dialog blank (Fig. 5) (see Note 15).
3. Load the schema into the database by choosing the Open Script item under the File

menu (Fig. 6).
4. Then choose the locusvariants.sql from the stored directory path in Windows. For

example, if locusvariants.sql is being stored under the directory My Documents,
then the directory path should be C:/my documents.

5. Execute the script by clicking on the button Execute once in the Menu bar (Fig. 7a).
The reader should immediately see the database locusvariants and the various tables
appearing in the Schemata sub-window (Fig. 7b).

Table 1
Primary classes and primary keys of each class

Classes Primary Keys Data Types

Locus mim_id long integer, e.g., 144241
DNA_variant dno Text of 7 characters (alphanumerics), e.g., DVR0001
Population pno Text of 4 characters (alphanumerics), e.g., P001
Kindred cno Text of 3 characters (alphanumerics), e.g., C01
Citation pubmed_id long integer, e.g., 562890
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Table 2
Attributes in each class and their definitions

Classes Attributes Definitions Data Types

Locus gb_id GenBank identifier for
the genomic sequence
of the locus.

Text of up to 15
characters, e.g.,
NM_100034

Locus gene_symbol HUGO-assigned gene
symbol of the locus.

Text of up to 10
characters, e.g., CDK4

Locus genename The full name of the
gene.

Text of up to 50 characters
e.g. cyclin-dependent
kinase 4

Locus chr_no The chromosome at
which the locus is.

Text of up to 2 characters
e.g. 11

Locus cytoband The chromosomal
location of the locus.

Text of up to 12 characters
e.g. 12q14.1

Locus locus_type The classification of the
locus according to the
type of gene product
expressed.

Text of up to 15 characters
e.g. protein-coding

DNA_variant gene_element The region within the
open reading frame
where the DNA variant
is being located.

Text of up to 8 characters,
e.g., exon 10

DNA_variant gdna_change A nucleotide change in
the genomic DNA in
reference to the
GenBank sequence.

Text of up to 20
characters, e.g.,
g. 247C>T

DNA_variant cdna change A nucleotide change in
the complementary
DNA as a result of the
gDNA change

Text of up to 40
characters, e.g.,
c.143C>T

DNA variant residue_change An residual change in the
polypeptide as a result
of the cDNA change.

Text of up to 20
characters, e.g., p.P48L

DNA variant variant_type The type of gDNA
change concerned

Text of up to 30
characters, e.g., point
transition

Population continent The name of the
continent where the
gDNA variant was
discovered

Text of up to 15
characters, e.g.,
Australasia
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Population nation The name of the nation or
country where the gDNA
variant was discovered

Text of up to 15
characters, e.g.,
New Zealand

Population ethnicity The anthropological
classification of the
affected population

Text of up to 30
characters, e.g.,
Caucasoid,
Anglo-Celtic

Kindred phenotype The clinical condition
observed in the affected
population

Text of up to 40
characters, e.g.,
pancreatic carcinoma

Kindred nr_afflicted The number of subjects
expressing the clinical
phenotype

short integer, e.g., 12

Kindred nr_carriers The number of
asymptomatic carriers

short integer, e.g., 12

Citation pubmed_id The PubMed identifier of
the publication

long integer, e.g.,
530342

Citation authors The authors’ names on the
publication

Text of up to 100
characters, e.g.,
Smith J

Citation publication The journal title, year,
volume No, page No.

Text of up to 50
characters, e.g., Am
J Hum Genet 2004,
100:90–95

2.3.1.2.3. Tutorial 4: Populating the Database with Curated Data. Now
that the database has been created, the next step is to populate it with data. The
easiest approach is to store input data for each table as a tab-delimited text file
and then use SQL commands to load data into the appropriate table.
1. Create nine text files using Wordpad in Windows and save each as locus.txt,

variant.txt, population.txt, kindred.txt, citation.txt, loc2var.txt, var2popl.txt,
popl2kin.txt, and var2cit.txt, respectively.

2. Enter sample data shown in Fig. 8 to an appropriate text file and save it. In each file,
the number of columns should match the exact number of attributes of a particular
table. For example, the file locus.txt contains seven tab-delimited columns that map
to the attributes mim_id, gb_id, gene_symbol, genename, chr_no, cytoband, and
locus_type. There should be a tab space between every pair of data in the same row.

3. Create another text file using Wordpad in Windows and save it as loaddata.sql.
4. Type in a list of commands that will automatically load data from the appropriate

text file to the appropriate table. Each command has the following syntax:
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Database LocusVariants {
Class Locus {

Attribute: mim_id long integer primary key
Attribute: gb_id text
Attribute: gene_symbol text
Attribute: genename text
Attribute: chr_no text
Attribute: cytoband text
Attribute: locus_type text

}
Class DNA_variant {

Attribute: dno text primary key
Attribute: gene_element text
Attribute: gdna_change text
Attribute: cdna_change text
Attribute: residue_change text
Attribute: variant_type text

}
Class Population {

Attribute: pno text primary key
Attribute: continent text
Attribute: nation text
Attribute: ethnicity text

}
Class Kindred {

Attribute: cno text primary key
Attribute: phenotype text
Attribute: nr_afflicted short integer
Attribute: nr_carriers short integer

}
Class Citation {

Attribute: pubmed_id long integer primary key
Attribute: authors text
Attribute: publication text

}
Class Locus_2_Variant {

Attribute: mim_ref foreign key→ Locus.mim_id
Attribute: dno_ref foreign key→ DNA_variant.dno

}
Class Variant_2_Population {

Attribute: dno_ref foreign key→ DNA_variant.dno
Attribute: pno_ref foreign key→ Population.pno

}
Class Population_2_Kindred {

Attribute: pno_ref foreign key→ population.pno
Attribute: cno_ref foreign key→ kindred.cno

}
Class Variant_2_Citation {

Attribute: dno_ref foreign key→ DNA_variant.dno
Attribute: pubmed_ref foreign key→ Citation.pubmed_id

}
}

Fig. 2. The conceptual schema for the database LocusVariants.
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CREATE DATABASE IF NOT EXISTS locusvariants;
USE locusvariants;
CREATE TABLE locus (

mim_id INT(8) PRIMARY KEY,
gb_id VARCHAR(15) NOT NULL,
gene_symbol VARCHAR(10),
genename VARCHAR(50),
chr_no VARCHAR(2),
cytoband VARCHAR(12),
locus_type VARCHAR(15),
UNIQUE(mim_id, gene_symbol)

);
CREATE TABLE dna_variant (

dno VARCHAR(7) PRIMARY KEY,
gene_element VARCHAR(8),
gdna_change VARCHAR(20) NOT NULL,
cdna_change VARCHAR(40) NOT NULL,
residue_change VARCHAR(20),
variant_type VARCHAR(30) NOT NULL,
UNIQUE(dno)

);
CREATE TABLE population (

pno VARCHAR(4) PRIMARY KEY,
continent VARCHAR(15),
nation VARCHAR(15),
ethnicity VARCHAR(30),
UNIQUE(pno)

);
CREATE TABLE kindred (

cno VARCHAR(3) PRIMARY KEY,
phenotype VARCHAR(40),
nr_afflicted INT(2),
nr_carriers INT(2),
UNIQUE(cno)

);
CREATE TABLE citation (

pubmed_id INT(8) PRIMARY KEY,
authors VARCHAR(100) NOT NULL,
publication VARCHAR(50) NOT NULL,
UNIQUE (pubmed_id)

);
CREATE TABLE locus2variant (

mim_ref INT(8) NOT NULL,
dno_ref VARCHAR(7) NOT NULL,
FOREIGN KEY (mim_ref) REFERENCES locus(mim_id),
FOREIGN KEY (dno_ref) REFERENCES dna_variant(dno)

);

Fig. 3. (Continued)
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CREATE TABLE variant2population (
dno_ref VARCHAR(7) NOT NULL,
pno_ref VARCHAR(4) NOT NULL,
FOREIGN KEY (dno_ref) REFERENCES dna_variant(dno),
FOREIGN KEY (pno_ref) REFERENCES population(pno)

);
CREATE TABLE population2kindred (

pno_ref VARCHAR(4) NOT NULL,
cno_ref VARCHAR(3) NOT NULL,
FOREIGN KEY(pno_ref) REFERENCES population(pno),
FOREIGN KEY(cno_ref) REFERENCES kindred(cno)

);
CREATE TABLE variant2citation (

dno_ref VARCHAR(7) NOT NULL,
pubmed_ref INT(8) NOT NULL,
FOREIGN KEY(dno_ref) REFERENCES dna_variant(dno),
FOREIGN KEY(pubmed_ref) REFERENCES citation(pubmed_id)

);

Fig. 3. The DDL schema for the database LocusVariants.

LOAD DATA INFILE ‘c:\\path\\<filename.txt>’ INTO TABLE <table_name>
LINES TERMINATED BY ‘\n’;
The path is any directory path in Windows, the <filename.txt> is the name of the
text file, and the <table_name> is the name of the target table. For example, if
locus.txt is being stored in the directory My Documents and its target table is locus,
the above command line will be
LOAD DATA INFILE ‘c:\\my documents\\locus.txt’ INTO TABLE LOCUS LINES
TERMINATED BY ‘\n’;

5. Using Table 3 as a guide, repeat step 4 for each of the text files (see Note 16).
Eventually, the loaddata.sql file should contain a list of commands like:
USE locusvariants;
LOAD DATA INFILE ‘c:\\my documents\\locus.txt’ INTO TABLE locus LINES
TERMINATED BY ‘\n’;
LOAD DATA INFILE ‘c:\\my documents\\variant.txt’ INTO TABLE dna_variant
LINES TERMINATED BY ‘\n’;
LOAD DATA INFILE ‘c:\\my documents\\kindred.txt’ INTO TABLE KINDRED
LINES TERMINATED BY ‘\n’;

6. Load the file loaddata.sql into the database by repeating steps 3–5 in tutorial 3.

2.3.1.2.4. Tutorial 5: Searching Data from the Database. With the database
populated, one has to know how to search the database and piece the extracted data
together in order to give an informative view about the variants of a locus. This
tutorial will equip the readers with some basic skills in formulating SQL queries.
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Fig. 4. Screenshot of MySQL menu in Windows® XP.

The formulation of an SQL query involves three basic steps: (1) determine
the list of tables that will be joined together, (2) determine the list of attributes
to be queried from the tables, and (3) determine the attributes that will serve as
the search criteria (optional). In this tutorial, the author will use two examples
as an illustration.
Example 1: Find all the gDNA variants carried in the CDKN2A gene.

1. The tables needed for this example are locus, locus2variant, and dna_variant.
2. The attributes needed are mim_id, gene_symbol, genename, cytoband, locus_type,

gene_element, gdna_change, and variant_type. There is no need to define
gene_symbol as a search criterion because CDKN2A is the only entry stored as
gene_symbol in the locus table.
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Fig. 5. Screenshot of MySQL login dialog.

3. To perform the required database search, the SQL command SELECT…FROM is
required. This command has the following syntax:
SELECT <list of attributes>
FROM <list of tables>
WHERE <attribute1 = attribute2 OR attribute1 = ‘value1’>
AND <attribute1 = attribute2 OR attribute2 = ‘value2’>
Thus the appropriate SELECT…FROM command should be
SELECT l.mim_id, l.gene_symbol, l.genename, l.cytoband, l.locus_type, v.dno,
v.gene_element, v.gdna_change, v.cdna_change, v.residue_change, v.variant_type
FROM locus l, locus2variant lv, dna_variant v
WHERE l.mim_id = lv.mim_ref
AND v.dno = lv.dno_ref;

4. Type the above command into the box next to the Execute button in the Menu bar
(Fig. 9).

5. Click on the Execute button to execute the command and the reader should see the
result in the Resultset sub-window (Fig. 9).

Example 2: Find the auxiliary data related to all the gDNA variants found in
the country Australia.

1. The tables needed for this example are dna_variant, population, kindred, citation,
variant2population, population2kindred, and variant2citation.

2. The attributes needed are dno, gene_element, gdna_change, continent, nation,
ethnicity, cno, nr_afflicted, nr_carriers, phenotype, pubmed_id and publication.

3. The search criterion is the attribute nation that has an entry equal to Australia.
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Fig. 6. Screenshot of the File menu in MySQL Query Browser window.

4. The SQL command should therefore be: SELECT d.dno, d.gene_element,
d.gdna_change, p.continent, p.nation, p.ethnicity,k.cno,k.nr_afflicted,k.nr_carriers,
k.phenotype,c.pubmed_id, c.publication
FROM dna_variant d,population p,kindred k,citation c,variant2population
vp,variant2citation vc, population2kindred pk
WHERE p.nation = ‘Australia’
AND vp.dno_ref = d.dno
AND vp.pno_ref = p.pno
AND vc.dno_ref = d.dno
AND vc.pubmed_ref = c.pubmed_id
AND pk.pno_ref = p.pno
AND pk.cno_ref = k.cno;
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(a)

(b)

Fig. 7. Screenshot (a) before executing and (b) after executing the locusvariants.txt
file.
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(a) 600160 AF527803 CDKN2A cyclin-dependent kinase 9 9p21 protein-
inhibitor 2A coding

(b) DVR0001 exon 1 g.1247C>T c.143C>T p.P48L point
transition

DVR0002 exon 1 g.1253A>G c.149A>G p.Q50R point
transition

DVR0003 exon 2 g.1269- c.167-197del p.G67fsX145 indel deletion
1289del

(c) P001 Australasia Australia Caucasoid Anglo-Celtic
P002 Europe Italy Caucasoid Italian
P003 Europe France Caucasoid French

(d) C01 pancreatic carcinoma 20 0
C02 cutaneous malignant melanoma 16 1
C03 cutaneous malignant melanoma 39 4
C04 cutaneous malignant melanoma 7 1

(e) 93521 Henderson L, Waters J, Lanting F, Intl J Cancer Genet 1994.
Meydon DE 100:1002–1004

405685 Frizzi C, Carlos M Oncogene 2003. 20:917–920
562890 Pierre J, Fromm P, Ascome M J Cancer Res 2006.

120:10002–10006

(f) 600160 DVR0001
600160 DVR0002
600160 DVR0003

(g) DVR0001 P002
DVR0001 P003
DVR0002 P001
DVR0003 P001

(h) P001 C01
P001 C02
P002 C03
P003 C04

(i) DVR0001 405685
DVR0001 562890
DVR0002 93521
DVR0003 93521

Fig. 8. Sample data input for the nine tab-delimited files: (a) locus.txt, (b) variant.txt,
(c) loc2var.txt, (d) population.txt, (e) kindred.txt, (f) var2popl.txt, (g) popl2kin.txt,
(h) citation.txt, and (i) var2cit.txt. Each text file corresponds to one of the nine tables
in the database (Table 3).
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Fig. 9. Screenshot after executing the SQL query for example 1.

5. Type the above command into the box next to the Execute button in the Menu bar
(Fig. 10).

6. Click on the Execute button to execute the command and the reader should see the
result in the Resultset sub-window (Fig. 10).

2.3.1.3. Hosting the Database Online

To make the database web accessible, it has to be connected to a web server
via a web application. Examples of commonly used open-source web servers

Table 3
Schema for mapping the text files to the
database tables

Text Files Tables

locus.txt locus
variant.txt dna_variant
population.txt population
kindred.txt kindred
citation.txt citation
loc2var.txt locus2variant
var2popl.txt variant2population
popl2kin.txt population2kindred
var2cit.txt variant2citation
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Fig. 10. Screenshot after executing the SQL query for example 2.

include JBoss (17), Apache (18) and Tomcat-Jakarta (19). Although it is beyond
the scope of this tutorial to teach Web programming, it will be helpful for the
reader to know what the two most common types of web application are, so
that one can appreciate the programming skill required.

The most established implementation of web application is the common
gateway interface (CGI). A CGI application is a module that receives the user’s
request from the Web server (see Note 17). The CGI then forwards SQL queries
to the database and sends the result back to the server, typically in Hypertext
Text Markup Language (HTML). In turn the server sends the HTML back to
the user’s browser which displays the HTML as a Web page on the fly.

Although CGI can be written in any language, most have been written in
Perl. It is an interpreted language designed for processing text data. As such, the
Web server has to execute the Perl interpreter and reload the CGI application
into memory for handling every user’s request. For this reason, CGI is a single
thread single process method.

A more efficient alternative to CGI is server-side Java. In place of the CGI, a
Java application receives the user’s request from the Web server and forwards
SQL queries to the database, but that is where their similarity ends. Java is a
compiled language. Any Java application has to be compiled into the bytecode
form to make it executable by the Java Virtual Machine (JVM). Once compiled,
the application is loaded into memory upon the first user’s request. It persists
in memory, handling more users’ requests, until it becomes idle for a limited
time span. Then it will be deleted from memory by the JVM, a process known
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as garbage collection. This multi-thread single process is much more efficient
than its CGI counterpart (20). As to which hosting method should be used,
the decision depends largely on the (1) complexity of the data, as discussed in
section 2.3.1, and (2) functionalities of the web interface, e.g., the provision
of data filtering by multiple criteria and the provision of web interface for data
curation. An example for each implementation can be found in (21,22).

2.4. Transition

2.4.1. Deploying the DNA Variant Database

One method of deploying a web accessible database is the two-tier master/slave
configuration. This requires two computers that have been installed with the
same DBMS and web server. The internal tier located behind the firewall has
been installed with the master copy of the database and is accessible only to
the curator. The tier outside the firewall has been installed with the slave copy
of the database which is accessible to the public. The firewall that separates
the two tiers is configured to allow data streaming from the internal tier to
the public tier but not vice versa. If the slave copy in the public tier is being
corrupted, it will be replaced with another copy duplicated from the master.
Hence, the biggest advantage of the master/slave configuration is data security.
However, the CPU power and memory capacity in each tier has to be shared
between the DBMS and the Web server on board. This is a disadvantage to
the public tier since it may have to handle increasing volume of users’ requests
during its service lifetime. In other words, the configuration lacks scalability.

Amodificationof theabovemethodofdeployment is the three-tiermaster/slave
configuration in which each tier will specialize in providing a single service.
The slave and the master copy of the database will be running on two internal
tiers respectively but the Web server will be running on the public tier.
This configuration resolves the limitation of its two-tier counterpart, but at a
higher cost of maintenance since it now requires three computers instead of two.

2.4.2. Promoting the Web Accessible Variant Database to the User
Community

It is highly recommended that the HGVS be notified on any newly hosted
variant database so that the organization can add the web address of the new
database to its catalogue. It will also be useful to contact the administrators of
HGMD® to see if they are interested in creating hyperlinks to one’s variant
database. Finally, one should publish the course and results of the project in a
peer-reviewed journal as a form of recognition.
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3. Notes
1. In this chapter, the term “DNA variant” stands for any intragenic nucleotide variant.
2. A web application is a collection of programs that connects the database to the

Web server. See section 2.3.1.3 for further elaboration.
3. A class is a data structure designed for modeling a real world object such as a

locus, a gDNA variant, or a population. The basic element of a class is an attribute
and the property of a class is represented by a collection of attributes.

4. While this statement is generally true, certain monogenic diseases can express very
broad clinical heterogeneity while genetically very homogenous. Cystic fibrosis
is one example with over two-thirds of the affected being homozygous carriers
of F508del in the CFTR gene but with no fewer than six clinical phenotypes
being observed. It has recently been suggested that TNF� receptor and certain
sodium channel genes could be modifiers (23). If the reader wants to include
variants of modifier loci to a monogenic disease-centred database, the data may
eventually exhibit the heterogeneity seen with multigenic disease data and coarse-
grain mapping may not be the best approach.

5. Although a majority of loci stored in published variant databases are protein-
coding, a minority could be RNA-coding.

6. Since a single locus can carry multiple DNA variants, the cardinality is 1:n. The
same does not necessarily hold in the reverse which is usually in a cardinality of
1:1 because each DNA variant should map to one distinct locus.

7. In the case of RNAi and small RNA genes, the attribute residue change can be
omitted. The entries for the variant type can be found in the EBI mutation event
keyword schema (24).

8. The classification of ethnicity can be found in the EBI Mutation Database (24).
Recommendations and the naming of countries can be found in the US Central
Intelligence Agency’s World Factbook (25).

9. The cardinality of the relationship Population-to-DNA variant is 1:n. The reverse
would also be true. This type of relationship is known as bidirectional.

10. One would argue that Kindred should be merged with Population. Whether it
is necessary to store data relating to kindred in a separate table depends on the
complexity of the disease. If the Population-to-Kindred is a 1:1 relationship, the
two tables can be merged into one.

11. The more frequently a particular DNA variant is being published, the more likely
that it is a mutation hotspot. Furthermore, multiple reporting of a particular DNA
variant inevitably increases its authenticity.

12. The problem with mapping 1:n relationships to the tabular format of a relational
database schema is the generation of data redundancy. For example, if Locus A
carries six DNA variants, this will mean that the only variable in the Locus class
will be the foreign key dno_ref that maps to the primary key dno of the DNA
variant class and the same entry for the rest of the attributes in Locus will be
stored repeatedly for six times. The solution is to store the primary keys of the two
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classes in a separate class called Locus_2_DNA_variant. Tables resulting from
classes of this type are known as intermediate tables (Fig. 2).

13. Each CREATE TABLE clause must end with a semi-colon.
14. All the text files created in these tutorials should be saved as the file type Text

Document, which is a plain ASCII format readable by MySQL DBMS.
15. If the MySQL DBMS has been installed on the reader’s own computer, the

password for the root account should have already been decided during the instal-
lation process.

16. It is important to load the data tables, e.g., dna_variant, population, and
etc., into the database before the intermediate tables e.g. variant2population,
in order to avoid the following type of errors: Cannot add or update a
child row: a foreign key constraint fails (‘locusvariants/variant2population’,
CONSTRAINT ‘variant2population_ibfk_2’ FOREIGN KEY(‘pno_ref’) REFER-
ENCES ‘population’ (‘pno’)) In the example above, the MySQL database engine
failed to match the foreign key pno_ref in the intermediate table variant2population
to the primary key in the population table simply because the latter has yet to be
populated.

17. An application is a collection of programs with each typically performing a single
function.
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Protein Comparative Sequence Analysis
and Computer Modeling

Brett D. Hambly, Cecily E. Oakley, and Piotr G. Fajer

Summary

A problem frequently encountered by the biological scientist is the identification of a
previously unknown gene or protein sequence, where there are few or no clues as to the
biochemical function, ligand specificity, gene regulation, protein–protein interactions, tissue
specificity, cellular localization, developmental phase of activity, or biological role. Through the
process of bioinformatics there are now many approaches for predicting answers to at least some
of these questions, often then allowing the design of more insightful experiments to characterize
more definitively the new protein.

Key Words: protein structure prediction; protein homology; BLAST; protein secondary
structure; protein evolutionary relationships; protein function prediction.

Abbreviations: BLAST – basic local alignment search tool, E – expectation (value)

1. Introduction
Our starting point in protein characterization is the amino acid sequence,

which has frequently been determined from a DNA sequence, but occasionally
from direct protein sequencing. Importantly, sequence comparison is generally
most effective when comparing the amino acid sequence, rather than the DNA
sequence, since there is redundancy in the latter, i.e., for 20 amino acids and
the stop signal there are 64 codons. Degeneracy in the DNA sequence comes
from the codons’ third bases and multiple codons coding for the same amino
acid.
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Comparison of protein sequence and/or structure is at present the most
powerful approach for predicting the function of a protein. Interestingly, protein
structure is frequently preserved more effectively than is sequence within
protein families during evolution, although at present, sequence is generally
more readily available than structure.

A plethora of online programs are available to assist in the analysis of protein
sequences and structures. The two primary portals to these tools are either
through the European-based Expasy site, or through the USA-sponsored NCBI
Entrez site. However, many of the relevant programs that can be used at these
sites are available in a range of pre-packaged programs, where multiple levels
of analysis can be undertaken following a single data entry operation. Indeed
the web-based services currently available are often ahead of the commer-
cially produced individual computer packages. Many scientists are making
their latest developments available to the wider scientific community prior

Secondary
structure
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Strong homology
No homology

Structural 
predictions

Solvent 
accessibility
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Tertiary structure by 
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Physico-chemical 
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Transmembrane
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Fig. 1. Summary of the elements that may be involved in the prediction of possible
structural content and function of a protein product from its corresponding sequence.
If strongly homologous proteins of known structure are readily found by sequence
comparison, then tertiary structure, hence function, of the protein is likely to be readily
predicted. Weaker or absent homology may require intermediate structural prediction,
that may provide clues to the function of the protein.
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to their commercialization, which usually targets the biotechnology and pharma-
ceutical industries.

Although many of the various analyses that can be undertaken are often
able to be sourced in a pre-packaged form, allowing the work to be undertaken
in a single operation, the individual elements of the analysis should still be
considered (Fig. 1). Broadly these operations can be divided into a number of
stages:

1. Primary sequence similarity and alignment.
2. From sequence to protein secondary structure, protein topology and prediction of

post-translation modifications.
3. Protein tertiary structure prediction.
4. Protein “functional” analysis.

2. Materials
2.1. Primary Sequence Similarity and Alignment

1. Input sequence is usually required in FASTA format. A sequence in FASTA format
consists of an optional single-line description, followed by lines of sequence data.
The first character of the description line is a greater-than (“>”) symbol in the first
column. All lines should be shorter than 80 characters (ASCI file of single letter
amino acids or nucleotides).

2. Access to BLAST online program:

a. NCBI-BLAST website (www.ncbi.nlm.nih.gov/BLAST/)
b. NCBI-BLAST tutorial

(www.ncbi.nlm.nih.gov/Education/BLASTinfo/tut1.html)

2.2. From Sequence to Protein Secondary Structure, Protein Topology
and Prediction of Post-Translation Modifications

1. The user can execute the required programs at a number of sites and web-accessible
servers. Since the links and addresses of the hosting sites keep changing, the safest
approach is to Google the names of the programs discussed below. There are also
“super-sites” that provide services and links to most of the steps, e.g.,

a. NCBI and Expasy servers (www.expasy.org),
b. PredictProtein at Columbia University, (http://predictprotein.org/).
c. Bioinfobank Institute in Poznan, Poland, (http://bioinfo.pl/meta/)
d. BCM at Baylor College of Medicine (http://searchlauncher.bcm.tmc.edu/seq-

search/struc-predict.html)
e. CMS Molecular Biology Resource at University of California San Diego

(http://restools.sdsc.edu/)
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2. These servers are continually updated and provide useful links to new programs
and literature. Some of these servers will also act as Meta-servers and will submit
the jobs to other relevant servers, translate the standard input into server-specific
input and pass on the information from one stage to the next.

3. Structural domain databases can be found at

a. ProDom (http://prodom.prabi.fr),
b. SCOP (http://supfam.mrc-lmb.cam.ac.uk/superfamily/),
c. Pfam (www.sanger.ac.uk/software/Pfam/)

4. Atomic level protein structures at PDB (www.rcsb.org).
5. Popular and reliable secondary structure prediction programs can be found at:

a. PROF (http://predictprotein.org/)
b. NNSSP (http://searchlauncher.bcm.tmc.edu/seq-search/struc-predict.html)
c. PREDATOR (http://bioweb.pasteur.fr/seqanal/interfaces/predator-

simple.html)

6. A functional motifs database is found at PROSITE (www.expasy.org/prosite/).
7. Prediction of solvent accessibility, phosphorylation and glycosylation sites, signal

peptides and transmembrane segments can be accomplished using links at the
PredictProtein Meta-server.

2.3. Protein Tertiary Structure Prediction

Access to tertiary structure prediction programs are currently available at:

1. Modeller (http://salilab.org/modeller/)
2. 3D-JIGSAW (http://predicprotein.org/)
3. Swiss-model (http://predicprotein.org/)
4. PROCHECK (www. biochem.ucl.ac.uk/r̃oman/procheck/procheck.html)
5. 3DPSSM (www.sbg.bio.ic.ac.uk/∼3dpssm/index2.html)
6. Threader (http://bioinf.cs.ucl.ac.uk/threader/)
7. Rosetta (http://robetta.bakerlab.org/)

3. Methods
3.1. Primary Sequence Similarity and Alignment

Proteins with similar sequences are likely to have diverged from common
ancestral genes, and are therefore likely to have similar structures and functions.
While this is usually the case, there are exceptions, e.g., where structure may
have been substantially preserved, but the sequences have diverged beyond
recognition, or alternately, a sequence and/or structure may be substantially
similar, but the function of the protein has evolved into something completely
different.
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To determine the degree of sequence homology, a database of known
sequences is searched. The technology required to do this can reach a substantial
level of complexity, but web-based programs can yield excellent results very
rapidly. Sequence divergence results from single accumulated nitrogenous base
changes, insertions or deletions. Generally, approximately 35% identity between
sequences constitutes homology, but clear structural homology may exist with
less than 5% sequence identity.

The basic local alignment search tool (BLAST) finds regions of local
similarity between sequences and is the most popular bioinformatics program
for this purpose. The program compares nucleotide or protein sequences to
sequence databases and calculates the statistical significance of matches (1).
BLAST can be used to infer functional and evolutionary relationships between
sequences as well as help identify members of gene families. The BLAST
algorithm emphasizes speed over sensitivity. Speed is vital to making the
algorithm practical for use on the huge genome databases that are available.
BLAST is also often used as part of other algorithms that require approximate
sequence matching.

1. Choose the program to use and the database to search: The program to be used
will depend on the input sequence (nucleotide — blastn or protein — blastp)
and the database will depend on the biological source of the sequence. Generally,
the non-redundant (nr) database is the best starting point, since it covers almost
all known sequences. Additional more specialized programs and databases are
available, and are comprehensively listed and explained at the BLAST website. In
particular, two programs may improve your detection of low homology, distantly
related sequences: PSI-BLAST (Position Specific Iterative BLAST) detects weak
homologs by building a profile from a multiple alignment of the highest scoring
hits in an initial BLAST search, and PHI-BLAST (Pattern-Hit Initiated BLAST)
combines matching of regular expressions with local alignments surrounding the
match (see Note 1 for further details of BLAST).

2. Input the data in FASTA format. Alternatively, a database accession number can
be used if the sequence is already available in a database.

3. Set the program options or choose defaults. Some parameters worth considering are

a. Generally gapped alignments are preferable since gaps frequently exist, even
in relatively homologous sequences.

b. If a previous search has yielded very large numbers of hits, then limiting
the search to specific organisms may be helpful.

c. The E (expectation) value measures the significance of particular hits. Values
<0.1 generally represent significant hits, but values between 0.1 and 10, while
not significant overall, may contain short segments of significant sequence
homology, which may allow the tentative assignment of biochemical activ-
ities to the query sequence. The significance of any such regions must be
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assessed on a case by case basis. Thus, an E value between 0.1 to 10 is
usually appropriate, depending on the number of results generated.

d. Low-complexity regions, e.g., stretches of cysteine, hydrophobic regions in
membrane proteins or coiled coils, tend to produce spurious, insignificant
matches with sequences in the database which have the same kind of low-
complexity regions, but are unrelated biologically. Checking this option will
analyze the query sequence using the SEG program, and all amino acids in
low-complexity regions will be replaced by X’s which will appear in the
alignment.

e. A key element in evaluating the quality of a pairwise sequence alignment is
the “substitution matrix,” which assigns a score for aligning any possible pair
of residues. In general, different substitution matrices are tailored to detecting
similarities among sequences that are diverged by differing degrees. The
BLOSUM matrix assigns a probability score for each position in an alignment
that is based on the frequency with which that substitution is known to occur
among consensus blocks within related proteins. The BLOSUM-62 matrix is
among the best for detecting most weak protein similarities. For particularly
long and weak alignments, the BLOSUM-45 matrix may be superior.

4. Set the output formatting options. These options may limit the number of hit
sequences you obtain if set too low, but prevent excessive results if the search
yields large numbers of homologues. The default options are a good start.

5. Perform the search. The results of the search are made available to you in several
useful formats, either online or as an email.

3.2. From Sequence to Protein Secondary Structure, Protein Topology
and Prediction of Post-Translation Modifications

Although evolutionary pressure to preserve protein function leads to a higher
structural conservation than sequence conservation, sequence similarities can
still be used to search for structural similarities, e.g., 25% residue identity
for long sequences (>80 residues) will result in a similar structure (Sander-
Schneider relationship) (2). To date, the structures of 36,000 proteins have been
determined experimentally at atomic level resolution, mainly by either X-ray
diffraction or NMR. The resulting library can be used to predict the structure
of unknown proteins that share similar sequences. Since there are three basic
secondary structures (� helices, � strands and loops of random coil) and a finite
number of structural super families (approximately 1,500) our ability to make
a structural prediction becomes a reasonable one.

Historically, the first generation of secondary structure predictions was based
on single residue statistics, i.e., the propensity of a given amino acid to form an
� helix, � strand or a loop (3). These methods resulted in an average accuracy
of 55%. Second generation methods (4) introduced segment comparisons, i.e.,
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the propensity of the central residue to form a particular secondary structure,
taking into account the 8 adjacent residues, and an expanded database of
protein structures, increasing the accuracy to about 60%. State-of-the-art, third-
generation methods use evolutionary information contained in aligned multiple
sequences of known structures (5). Currently these methods achieve an accuracy
of 72%. If a given sequence shows a conformational preference in a number
of structures, then it is likely to show a similar preference in the unknown
sequence.

One of the most popular programs is PHD, and it is based on artificial
neural networks (6). This method has dramatically improved the evaluation of
� strands, which were a weak point with the previous approaches. Additionally,
PHD evaluates the reliability of the prediction for any given residue, where
the top third of “reliable” residues is predicted with 90% accuracy. Other
programs of the third generation use a nearest-neighbor approach or long range
interactions.

3.2.1. Overall Prediction Strategy

Irrespective of the algorithm used and differences in scoring functions, the
basic strategy is to

1. Identify proteins with sequences that are similar, and align the unknown sequence
with known sequences.

2. Predict the secondary structure.
3. Many physico-chemical and functional properties can be predicted at this stage:

a. transmembrane fragments of the proteins,
b. solvent accessibility of the residues,
c. fortuitously in some cases, the function of the protein.

To achieve these predictions, open one of the Meta-servers, e.g., the Predict-
Protein portal, and then select the MetaPP option to allow choice of programs
that are available.

3.2.2. Identify Proteins with Sequences that are Similar and Align
the Unknown Sequence with Known Sequences.

The most popular database containing sequences is Swiss-Prot and TrEMBL.
These sequence databases can be searched and aligned for homologous
sequences using BLASTp or PSI-Blast, as described above. The PredictProtein
site combines these databases into BIG, and uses the program MaxHOM to
identify and align multiple sequences.
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3.2.3. Predict Secondary Structure

Popular and reliable (>70%) third generation prediction programs are

a. PROF (7) (neural networks, improved PHD),
b. NNSSP (nearest neighbor approach) (8), and
c. PREDATOR (9) (long range interactions, hydrogen bonds).

3.2.4. Physico-Chemical and Functional Characterization of Proteins:

A functional motifs database is found at PROSITE. Prediction of solvent
accessibility, phosphorylation and glycosylation sites, signal peptides and trans-
membrane segments can be accomplished using links at the PredictProtein
Meta-server.

3.3. Protein Tertiary Structure Prediction

Predicting the tertiary structure is far from a routine task. In a sense, we are
trying to fold a polypeptide chain in silico, a very daunting challenge when one
considers the number of possible conformations, and when this process occurs
in cells it can often only be undertaken with the assistance of many proteins
that help with folding. The approach to predicting tertiary structure is highly
dependent on the extent to which homologous proteins of known structure can
be identified.

3.3.1. Significant Sequence Identity—Homology Building

The process of tertiary structure prediction is simplified when the sequence
identity is high. For example, if greater than 30% sequence identity exists then
the structure of homologues differs in most cases by an average of less than 3 Å
along the polypeptide chain. For these proteins, the new sequence is threaded
into the polypeptide backbone of the known structure, the R-groups rotamers
are chosen to minimize steric clashes and the overall energy. This process is
called “homology” building. Popular homology programs are Modeller, 3D-
JIGSAW and Swiss-model. Homology building is aided by the identification
of structurally conserved regions in the family of homologous proteins, and
multiple sequence alignment that identifies the gaps in the alignment to be
filled by loops. Loops of 4 or 5 residues are modeled by either finding a
template in the database or by energy minimization. Longer loops are more
problematic. Often, the homology built models need to be energy optimized
by Monte Carlo or molecular dynamics (simulated annealing) methods. The
evaluation of the model is a must for any tertiary structure modeling attempts.
The program PROCHECK evaluates dihedral angles of each residue and maps
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onto Ramachandran plots of commonly observed angles. For densely packed
proteins, the accuracy is very high but one needs to be careful about the
extended proteins where large rearrangements of the independent domains are
difficult to predict.

3.3.2. Lower Sequence Identity

Lower sequence identity, e.g., 10–25%, calls for finding structurally
conserved regions across proteins that are not homologous. There is a finite
number of folds (600–1500) observed in proteins (the databases SCOP, CATH,
and FFSP) and one can scan easily enough through all of them to fit a given
sequence and its physical properties. For example, polar residues should match
polar residues. If buried, the small side chains should substitute for other
small side chains when they occur in the protein interior and so on. Threading
programs, e.g. 3DPSSM or Threader, use a variety of scoring functions to
evaluate whether or not the scanned sequence is likely to be occupying a given
fold. The accuracy of the threading-based methods is around 3–10 Å.

3.3.3. No Sequence Identity—ab Initio Modeling

Ab initio modeling has to be used in cases when there are no recognizable
sequence identities (<5%) or no recognizable folds in the databases. The evolu-
tionary information is not detectable, and the structure prediction follows the
physical folding pathway of a linear chain. Replicating the process in silico
has many problems–a good analogy is that of finding an exit out of an inclined
labyrinth. Following the path (energy) to guide the solution is only justified
if the labyrinth is monotonously inclined, which is not the case in real life.
Folding intermediates are not always of lower energy than their predecessors.
If we cannot rely on the energy to guide each step we need the ability to sample
all the possibilities, using both downwards and upwards steps, referred to as
exhaustive sampling. Unfortunately, we do not have the means of assuring that
sufficient sampling has taken place, nor can we be absolutely certain about the
assumed energy functions. The problem with the latter is that even the smallest
errors compound during folding. Nevertheless, a combination of folding with
short segment patterns (ROSETTA, (10)) or modeling of the folding on the
lattice to constrain the number of possibilities shows considerable promise
(see Note 2).

3.4. Protein Functional Analysis

Programs have been developed to determine the function of uncharac-
terized proteins directly from their sequence. An example of such a program
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is PROSITE, which utilizes a database of biologically significant sequences
and sequence patterns associated with specific functional properties. From
this, the program can rapidly identify to which known family of proteins (if
any) the new sequence may belong. Frequently, the sequence of an unknown
protein is too distantly related to any protein of known structure to detect
its resemblance by overall sequence alignment, but a section of the sequence
may contain a particular cluster of residue types (a pattern or motif). These
motifs arise because of particular requirements on the structure of specific
region(s) of a protein which are important, e.g., for their binding properties
or for their enzymatic activity. These requirements impose tight constraints on
the evolution of those limited (in size) but important portion(s) of a protein
sequence. Chapter 16 provides further discussion of how protein function is
assessed.

4. Notes
1. BLAST is actually a family of programs (all included in the blastall executable)

including

Nucleotide-nucleotide BLAST (blastn): The input sequence is a DNA query,
which returns the most similar DNA sequences from the DNA database.

Protein-protein BLAST (blastp): The input sequence is a protein query, which
returns the most similar protein sequences from the protein database.

Position-Specific Iterative BLAST (PSI-BLAST): One of the more recent BLAST
programs, this program is used for finding distant relatives of a protein. First,
a list of all closely related proteins is created, which are then combined into a
“profile” or “average” sequence. A query against the protein database is then
run using this profile, and a larger group of proteins found. The process is then
repeated through several iterations.

Nucleotide 6-frame translation-protein (blastx): This compares the six-frame
conceptual translation products of a nucleotide query sequence (both strands)
against a protein sequence database.

Nucleotide 6-frame translation-nucleotide 6-frame translation (tblastx): It
translates the query nucleotide sequence in all six possible frames and compares it
against the six-frame translations of a nucleotide sequence database. The purpose
of tblastx is to find very distant relationships between nucleotide sequences.

Protein-nucleotide 6-frame translation (tblastn): This program compares a protein
query against the six-frame translations of a nucleotide sequence database.

Megablast: For large numbers of queries Megablast speeds up the analysis of
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multiple sequences by concatenating many input sequences together to form a
large sequence before searching the BLAST database, then post-analyzes the
search results to glean individual alignments and statistical values.

2. The optimism surrounding tertiary structure prediction is to a large extent a
consequence of the “blind” testing of the 3D prediction algorithms using struc-
tures (targets) whose conformation has been experimentally determined but not
released to the scientific community. In a type of competition, every two years
competing scientists submit their predictions of what these structures should look
like, and an independent jury evaluates the agreement between the prediction and
the actual structures (CASP competition (http://predictioncenter.org/casp7/)). The
best predictions in the current competition, CASP7 (2006), are only a few Å root
mean square deviation (rmsd) away from the actual structures. We should mention
that one popular approach in this competition is to use automatic servers that will
predict the secondary structure, determine the folds, align the sequences and model
3D structure by a variety of the above mentioned methods.
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Identification and Characterization of Microbial
Proteins Using Peptide Mass Fingerprinting Strategies

Jonathan W. Arthur

Summary

Peptide mass fingerprinting is a simple, quick, cheap, and relatively effective method of
identifying proteins from mass spectrometry data. Proteins extracted from the complex mixture
comprising the proteome of a sample are individually digested with a proteolytic enzyme into a
series of peptide fragments. The set of masses of these peptides, determined by mass spectrometry,
form a peptide mass fingerprint of the protein. Comparison of this experimental fingerprint
with the theoretical fingerprints of all known protein sequences for this organism, derived
computationally from a protein sequence database, allows the identification of the particular
protein. In this chapter, I discuss the technique including preparation for the peptide mass
fingerprinting analysis, the appropriate selection of computational search parameters, and the
analysis and interpretation of search results in the context of identifying proteins from microbial
samples.

Key Words: peptide mass fingerprinting; proteomics; mass spectrometry; bioinformatics;
data analysis.

Abbreviations: EST – expressed sequence tag; m/z – mass/charge; PMF – peptide mass
fingerprinting

1. Introduction
Proteomics is rapidly emerging as an important discipline in life science

research. The proteome is defined as the protein complement of the genome or,
in other words, the entire set of proteins expressed by a genome. Proteomics,

From: Methods in Molecular Medicine, Vol. 141: Clinical Bioinformatics
Edited by: R. J. A. Trent © Humana Press, Totowa, NJ

257



258 Arthur

it follows, is simply the study of proteomes. In the last few years, significant
developments in proteomics technology have created the opportunity to rapidly
and effectively separate, identify, and characterize hundreds or thousands of
proteins expressed by a particular organism, in a particular tissue, at a particular
time.

Proteomics is a broad discipline, incorporating a wide range of technologies
and techniques in all aspects of the proteomic process. Despite this wide
range of techniques, the method involving two-dimensional polyacrylamide
gel electrophoresis (2D PAGE) coupled with matrix assisted laser desorption
ionization mass spectrometry (MALDI-MS) and followed by peptide mass
fingerprinting (PMF) for protein identification is still a very common technique.
This is possibly due to this particular method of proteomic analysis involving
relatively simple techniques while also being relatively inexpensive. Details of
the 2D PAGE proteomic process can be found in many places including the
seminal reference on proteomics edited by Wilkins et al. (1). Here, our focus
is on PMF and how it can be used to identify and characterize proteins from
microbial samples.

PMF was first described in 1993 by five separate research groups (2–6). As
a result of the wet-laboratory part of the proteomic experiment prior to PMF,
each spot on the gel, representing a unique protein derived from the original
sample, has been digested with an enzyme such as trypsin to produce a series
of peptides. The mass of each of these peptides has been measured on a mass
spectrometer to produce a mass spectrum where each peak in the spectrum
corresponds to the mass of one of the peptides derived from the protein being
studied. This spectrum is thus a peptide mass fingerprint of the protein because
the set of peptides, and thus spectral peaks, derived from each protein is
expected to be unique.

The completion of various genome projects has resulted in knowledge of
the complete genome sequence of various organisms and the identification of
the entire set of open reading frames, and thus protein sequences, for particular
organisms. In August 2006, there were 354 complete microbial genomes in the
Entrez Genome resource provided by the National Centre for Biotechnology
Information in the United States. Thus, it is possible to determine a theoretical
peptide mass fingerprint for every protein potentially expressed by a particular
organism. This is done by computationally searching the protein sequence for
cleavage sites and cleaving the protein at this point to produce a peptide. The
mass of the peptide is then calculated by adding the masses of the various
residues, a N-terminal H atom, a C-terminal OH residue, and an additional
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Fig. 1. Schematic drawing of the peptide mass fingerprinting process. The left
hand side of the figure outlines the process for obtaining an experimental peptide
mass fingerprint via enzymatic digestion of the protein and mass spectrometry. The
right hand side of the figure outlines the process for obtaining a series of theoretical
peptide mass fingerprints for each protein in the protein sequence database using
computational methods. The protein is identified by comparing the experimental peptide
mass fingerprint to each of the theoretical peptide mass fingerprints in order to find the
best match.

H atom representing the charge attached to the peptide to match with the
experimentally charged peptides.

Each of the theoretical peptide mass fingerprints is compared in turn to
the experimental peptide mass fingerprint until a match is found. The match
identifies the protein contained in this particular spot. The whole process can
then be repeated for every spot on the gel. Figure 1 shows an overview of the
peptide mass fingerprinting process.

2. Materials
Before commencing a peptide mass fingerprinting analysis it is critical to

prepare for the analysis by obtaining the requisite software, data, and associated
information required for the analysis.
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2.1. Choice of PMF Software Application

A range of software applications exist and are freely available for use
over the internet in PMF. Most of the software applications are produced by
companies who also sell versions of the software application, other related
software packages, or services and support in the use of the software appli-
cation. In many cases, the free, online version of the application is sufficient.
It is usually only necessary to purchase the software if you have a specialized
application, highly sensitive data you do not wish to transfer over the internet,
or you wish to automate the process of identifying many proteins.

The most commonly used and freely available software applications for
peptide mass fingerprinting are (1) Mascot, by MatrixScience (7), (2) Profound,
by Genomic Solutions (8), (3) Phenyx, by GeneBio (9), and (4) Protein-
Prospector, by University of California, San Francisco (10). The choice of PMF
software is largely one of personal preference (see Note 1).

2.2. Species of Origin of the Sample

Identify, if possible, the species of origin of the sample. This is usually well
known. PMF is not a particularly good technique for identifying the origin of an
unknown sample. Also, clarify whether the sample is likely to be contaminated
with proteins from another species. For instance, infected sputum may contain
bacterial as well as human proteins.

2.3. Enzyme used to Digest the Proteins

Identify the enzyme used in the proteolytic cleavage of the proteins separated
from the complex mixture of proteins comprising the proteome of the sample.
In most cases this will be trypsin.

2.4. Artefactual Modifications

Identify all chemical treatments of the sample during the sample prepa-
ration process prior to the separation and array of proteins using 2D gel
electrophoresis. Also identify whether the chemical treatments would have
potentially modified certain amino acids in the proteins. For example, protein
samples are usually reduced and alkylated to break disulphide bonds between
cysteine residues in the protein and prevent these bonds from re-forming. This
results in the addition of an alkyl chain to the cysteine residues, changing the
mass of the cysteine residue, and thus the mass of the peptide containing this
residue. This potential mass difference must be allowed for when identifying
and characterizing the protein.
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It is also necessary to identify the nature of the resultant modified residues.
The two most common artefactual modifications are

1. The reduction and alkylation of cysteine residues with either acrylamide, resulting
in cysteine residues with a propionamide modification, or iodoacetamide, resulting
in cysteine modifications with a carbamidomethyl modification

2. Oxidation of methionine residues through exposure of the sample to air during the
sample preparation process

2.5. Query Peak List

Finally, the most critical material for the analysis is the mass spectrum
itself. Different mass spectrometers report the mass spectrum acquired from a
gel spot in a variety of different data formats. In many cases, these formats
are proprietary and often readable only by the software associated with the
operation of the mass spectrometer. Even where the mass spectrum is produced
in a human readable (often ASCII) data format (or can be converted to this
format by the mass spectrometer software), the result is a pattern of changing
signal intensity as a function of mass/charge (m/z) ratio. In contrast, most PMF
software applications require a list of single m/z values for each peak in the
spectrum, optionally with paired signal intensity information.

The process of converting a mass spectrum into a “processed spectrum”,
“stick spectrum”, or “peak list” is called “peak picking” or “peak harvesting.”
Breen et al. (11,12) provide an example of one method of peak picking. Many
mass spectrometers have associated software that will perform this operation.

The exact format of the data required will depend on the particular PMF
software application. However, a single-column list of the m/z values for each
peak in a regular text file allowing the list to be cut and pasted into the PMF
software application will usually suffice. Some applications will accept comma
or space separated data with two columns, the first containing the m/z value of
each peak and the second containing the intensity of signal of the corresponding
peak.

3. Methods
The methods described below outline the process of

1. undertaking a basic peptide mass fingerprinting search resulting in a list of potential
identities for the protein (“hits”), and

2. interpreting the results of the search to identify the hit most likely to be the correct
identity of this protein.
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3.1. Identification of the Protein

This section describes the process of identifying a protein using PMF. In
general, the process requires the user to input data in the form of a peak list
derived from a mass spectrum produced from an enzymatic digest of a protein.
This peak list will serve as input data to a PMF software application. A number
of other user determined parameters are used to refine the search. The results
of the analysis are then reported and interpreted by the user. Typically, a list
of potential identifications (“hits”) will be found and the user will interpret
the information presented about each hit in order to determine which ones
(if any) can confidently be chosen and thus determine the identity of the
protein.

The method of entering data into the PMF software application, as well as
the nature, extent, and use of the various user-defined parameters will vary
between different applications. This section aims to be as specific as possible
while maintaining a discussion that is generic enough to allow the steps to be
applied to a variety of different PMF software applications.

3.1.1. Generic User Data

Some software applications require the user to submit a number of pieces of
generic information such as your name, email address, a title for the search, a
name for the sample being analyzed, etc. This information should be entered
as required or desired.

3.1.2. Data Source

The data source or database indicates the repository of sequence information
to be used during the PMF search. If a nucleotide database is chosen, the
nucleotide sequences will be first translated to protein sequences. All the protein
sequences in the database are then digested to provide theoretical PMFs to
compare to the experimental data. The PMF software application will usually
offer a selection of possible databases and the user chooses a single database
from the list.

The selection of a database is largely a matter of personal preference.
UniProt (13) is a good choice because it strikes a balance between completeness
and quality (see Note 2). It provides a relatively non-redundant set of
sequences about 10% of which form the SwissProt database and thus come
with an extremely high quality manual annotation making characterization and
biological interpretation of the role of the protein much easier.
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3.1.3. Species and Taxonomy

Most PMF software applications allow the user to restrict the PMF search
to a particular species or taxonomic grouping. Normally, the user will choose
a species or taxonomic grouping from a list. To identify microbial proteins,
choose the species of the organism you are working with. For example, if
you are working with Mycobacterium tuberculosis then you would choose this
option from the list of species. If your species is not specifically listed, choose
the most relevant taxonomic grouping containing your species (see Note 3).
Restricting the search to a particular species reduces the time taken to complete
the search and eliminates false positive hits to proteins in other genomes through
random matching of peptides.

3.1.4. Enzyme

It is necessary to indicate to the PMF software application the enzyme used
to digest the protein in the wet-laboratory experiment. The software application
will use cleavage rules corresponding to the chosen enzyme to determine the
theoretical peptide masses. Trypsin is perhaps the most commonly used enzyme
in preparing proteins for PMF.

3.1.5. Missed Cleavages

The user selects the number of missed cleavages the PMF software appli-
cation should make allowance for. Missed cleavages result from incomplete
digestion of the protein during the enzymatic digestion. This may occur because
of inadequate time for digestion or amount of enzyme. More usually it repre-
sents cleavage points in regions of the protein poorly accessible by the enzyme.
A value of zero or one is usually the most appropriate choice (see Note 4).

3.1.6. Modifications

There are two types of modifications to make allowance for: real modifica-
tions and artefactual modifications.

3.1.6.1. Artefactual

Artefactual modifications are post-translational modifications resulting from
chemical treatment of the protein as part of the sample preparation process.
These modifications must be allowed for in the PMF search.

Artefactual modifications are allowed for by selecting one or more modifi-
cations from the list provided in the software application. Some software
applications provide two different ways of searching for modifications. The
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modifications can be applied to every potential site of modification (“fixed”
modifications) or in a combinatorial fashion, checking for the possibility of
zero, one, or more modifications on a peptide with multiple potential sites
of modification (“variable” modifications). In this case, “fixed” modifications
should be used in searching for the artefactual modifications (see Note 5).

Commonly, it is necessary to allow for the alkylation of cysteine residues
and the oxidation of methionine residues.

3.1.6.2. Real

Real modifications are those post-translational modifications resulting
naturally from the co- or post-translational processing of the protein in the
organism from which it is derived. These include acetylation, deamidation,
methylation, phosphorylation, and many others. These usually affect only
a small number of peptides and potential modification sites in the protein
sequence. As such, they are best searched for using the “variable” modifications
option if available, preferably after the main search (see Note 5).

3.1.7. Mass and Isoelectric Point Filters

Some PMF software applications allow you to restrict the search to proteins
in the database whose theoretical molecular weight and isoelectric point lie
within a user-determined range. To do this, the user identifies the position of
the protein spot on the gel and determines an experimental molecular weight
and isoelectric point based on the location of the spot in the gel, often with
reference to marker proteins or well-known proteins found elsewhere on the
gel. An appropriate range containing this experimental location is then selected
in the PMF software application. The experimental peak list is then compared
only to the theoretical PMFs derived from proteins whose theoretical molecular
weight and isoelectric point fall within this range. In general, an initial search
should not be restricted by molecular weight or isoelectric point (see Note 6).

3.1.8. Error Tolerance

The error tolerance is the allowance made for experimental error in the
measurement of the peptide masses on the mass spectrometer. It defines a
range around the theoretical mass of a peptide where any experimental peak
whose mass value falls within this range is determined to match the theoretical
mass. The appropriate value of the error tolerance depends on the accuracy
and precision of the mass spectrometer. A lower value reduces the number of
false positive matches, so this value should be set as low as the quality of mass
spectrum will allow. Typically, this should be less than 0.1 Da (see Note 7).
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3.1.9. Minimum to Match

Some software applications allow you to specify a minimum number of
matching peptides. This requires a potential protein hit to have at least this
number of matching peptides before it will be considered as a potential hit.
A typical value for an initial search is four, although many modern scoring
systems make this parameter obsolete.

3.2. Interpreting the Result

Once the PMF search is completed, the PMF software application will
generally return a set of results. These results usually need to be interpreted to
identify the protein or proteins whose presence is indicated by the data in the
mass spectrum. Different applications will present the results in different ways
and make available different bioinformatic tools for visualizing and interpreting
the results. In general, however, the results of a PMF search centre around a
list of proteins (or “hits”) that have one or more peptides with a mass matching
one of the peaks in the experimental spectrum.

The following section describes a general method for interpreting the results
of a PMF search.

3.2.1. Score

Most PMF search applications will calculate and assign a score to each hit.
The score is usually the most reliable indicator for identifying the protein.
Various different scoring mechanisms exist including MOWSE (3), probability
based MOWSE (14), Bayesian posterior probability (15–17), and randomization
distribution (18,19). In general, when using the score to identify a protein from
a list of hits, a hit is selected as the most likely identification of the protein if
the score is

1. Numerically high. Each different scoring mechanism will present a different range
of scores. Thus the numerical value classed as “high” is determined from experience
with a particular PMF software application. In general, it is not possible to compare
raw scores between two different scoring mechanisms. For some scoring systems,
it is not possible to compare raw scores between searches against two different
databases and thus “high” must be interpreted according to what is high for other
searches against the chosen database.

2. Noticeably higher than the score for other hits. Once again, “noticeably higher”
depends on the range of scores generally given by the particular scoring algorithm

3. Statistically significant. Some scoring algorithms use statistical methods to define
a score threshold separating statistically significant scores from those that are
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insignificant. This makes it possible to separate those hits likely to be real hits from
those resulting from random peptide matches.

3.2.2. Number of Matching Peptides

The number of matching peptides for a particular hit is also a useful guide
for selecting a protein hit. In most cases, a high number of matching peptides
corresponds to a real hit (see Note 8).

3.2.3. Coverage

Coverage is the percentage of residues in the protein hit amino acid sequence
that was found in one of the matching peptides in the protein hit. For example,
in the artificial case of a 10 amino acid protein with two tryptic peptides, one
of length 6 amino acids and the other of length 4, one match to the longer
peptide would result in 60% coverage.

The higher the coverage, the more confidence we can have in the hit being
real. As a rule of thumb, a coverage greater than 1/n where n is the number
of matching peptides provides strong evidence of a real hit. For example, with
four matching peptides, coverage of 25% is a rough minimum required to
accept a hit as real. As the number of matching peptides increases the estimated
minimum coverage required decreases (see Note 9).

3.2.4. Intensity of Matching Peaks

In any mass spectrum there are usually high intensity peaks and low intensity
peaks. A hit whose peptides match many of the high intensity peaks is stronger
than one that does not. Matching high intensity peaks adds confidence to a
protein identification. In contrast, a hit matching only low intensity peaks
cannot be ruled out.

3.2.5. Gel Region Matching

The experimental molecular weight and isoelectric point for the protein can
be determined from the position of the spot in the image of the gel. These
values can be compared to the theoretical molecular weight and isoelectric
point for the protein hit. A correlation between the two adds confidence to the
identity. However, a mismatch does not necessarily detract from a particular
identity. Post-translational modifications, truncations, and polymerizations can
all change the experimental molecular weight and isoelectric point, leading to
a mismatch with the theoretical values.
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4. Notes
1. Most PMF software applications function in a relatively similar manner. The user

enters a list of m/z values derived from the mass spectrum and selects a series of
user-determined options. The most commonly used options are usually the same in
all software applications. The user then examines the results, often with a set of
small applications (tools) to aid in the interpretation of the result. Each software
application does, however, have some unique features. These unique features may
appeal to particular individuals or be useful in different situations, leading to a
personal preference for a certain software application. It is, of course, possible to
use more than one software application to undertake the peptide mass fingerprinting
analysis. This is commonly practised in some laboratories as a way of bringing
added confidence to the results.

2. For completeness, GenBank (20), or the regional equivalents, EMBL or DDBJ, may
be the best option although redundancy in the database can make interpretation
of the results more difficult. In some cases, the PMF software application will
offer specialized databases for use in particular situations. For example, some PMF
software applications allow you to search expressed sequence tag (EST) information
(see Chapter 17 for more discussion on ESTs). This can be useful if the species
you are working with does not have many full gene or protein sequences in the
database. A hit to an open reading frame in an EST sequence allows the user to
use BLAST (21) or similar applications to identify a sequence homologue of the
EST in another species, thus potentially identifying novel proteins during the PMF
search (see Chapter 13 for more discussion on BLAST).

3. There are two situations where you may want to search in a less specific taxonomic
grouping. First, if you are working with tissue from another organism infected
with bacteria, and it is important to identify both the bacterial proteins and the
proteins from the other organism, you may wish to choose a taxonomic grouping
broad enough to cover both organisms. For example, to identify proteins expressed
in human sputum from individuals infected with M. tuberculosis you may wish
to search against all species. Some PMF applications allow you to search two or
more specific species enabling you to search Homo sapiens and M. tuberculosis
simultaneously. You can also achieve the same results by conducting two separate
searches. Second, if the species you are working with does not have many
protein or nucleotide sequences in the database it may be necessary to search a
broader taxonomic grouping containing one or more related species with completely
sequenced genomes. For example, Mycobacterium acapulcensis has, at the time of
writing, no sequences in UniProt. Thus, it will be impossible to identify proteins
derived from this species using a search against UniProt and restricting the search
to this species. However, by expanding the search to include all Mycobacterium
species, it may be possible to identify homologues in the M. tuberculosis genome
for M. acapulcensis proteins. Cross-species matching is of limited usefulness (22)
because a single amino acid change (other than leucine to isoleucine or vice versa)
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will change the mass of the peptide containing the residue and thus reduce the
number of matching peptides. For this reason, the chosen taxonomic grouping
should always be as specific as possible to the sample being analyzed.

4. In general, assuming good experimental technique, a value of zero should be used
first. Once the identity of the protein is confirmed based on a search with zero
missed cleavages, or at least there is good tentative evidence for a hit, the search
can be repeated with one or more missed cleavages to see if the identification can
be further confirmed or unmatched masses explained by the presence of missed
cleaved peptides.

5. As artefactual modifications result from a chemical treatment they will usually
affect most, if not all, potential modification sites in each peptide. By using “fixed”
modifications, the time taken for the search is dramatically reduced because the
software application only has to search for a mass matching the completely modified
version of each peptide. The number of false positive matches is also dramatically
reduced because the software application only considers the fully modified version
of each peptide in the database and not all possible combinations. For example,
the peptide MECAHCK would have an unmodified mass of 821.3103 Da. If the
protein giving rise to this peptide was reduced and alkylated with acrylamide
and exposed to oxidation, it could exist in up to six different forms (unmodified,
methionine modified only, one cysteine modified only, two cysteines modified only,
methionine and one cysteine modified only, methionine and two cysteines [i.e.,
fully] modified). Thus, searching with “variable” modifications greatly increases
the chance of finding a matching peptide by chance leading to false positives.
“Variable” modifications are most useful in secondary searches. Once the identity
of the protein is confirmed based on a search with “fixed” modifications, or at least
there is good tentative evidence for a hit, the search can be repeated with one or
more “variable” modifications to see if the identification can be further confirmed or
unmatched masses explained by the presence of modified peptides. Of course, this
can also be done using alternative bioinformatics tools such as FindMod (23,24).

6. Restricting the search based on molecular weight and isoelectric point both improves
the search speed (by reducing the number of theoretical peptide mass fingerprints
needing to be checked) and reduces the number of false positives hits. On the other
hand, it increases the possibility of a false negative. The form of the protein on
the gel may have a distinctly different molecular weight or isoelectric point from
the theoretical values calculated from the protein sequence in the database due to
polymerization, truncation, splice variation, or post-translational modification. A
restricted search is sometimes useful if you suspect you have a large number of
false positives in the search results making it difficult to identify the protein. In this
case, restricting the search may eliminate many of these false positives allowing a
tentative true positive to be more easily detected.

7. Many software applications allow you to specify the error tolerance two ways. The
first is a single value applied to the whole spectrum e.g. 0.1 Da. The second is
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an error tolerance specified on a parts per million basis e.g. 100 ppm. The latter
is more accurate as it allows for a larger error at larger mass values reflecting the
way the mass spectrometer operates. A value of 100 ppm is equivalent to searching
with an error tolerance of 0.1 Da in peptides with a mass of 1000 Da but an error
tolerance of 0.05 Da in peptides with a mass of 500 Da.

8. The number of matching peptides needs to be interpreted with care. Large proteins
generate a huge range of peptides of varying masses. As such, there is a much
larger chance of finding matches to the experimental data by sheer chance in a
large protein. For this reason, a large number of peptide matches in a large protein
hit may not be indicative of a real hit.

9. In long proteins, it is also useful to examine the portions of the protein sequence
covered by matching peptides. If the matching peptides are clustered at the start
or the end of the sequence, it may indicate the protein whose identity is being
determined has had a C- or N-terminal truncation leading to a modified version
of the protein. Most PMF software applications have visualization tools for the
coverage (“coverage maps”) allowing easy visualization of any clustering of the
peptide hits.
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Statistical Analysis of Image Data Provided
by Two-Dimensional Gel Electrophoresis
for Discovery Proteomics
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Summary

Standardized methods for the solubilization of proteins prior to proteomics analyses incorpo-
rating two-dimensional gel electrophoresis (2-DE) are essential for providing reproducible data
that can be subjected to rigorous statistical interrogation for comparative studies investigating
disease-genesis. In this chapter, we discuss the imaging and image analysis of proteins separated
by 2-DE, in the context of determining protein abundance alterations related to a change in
biochemical or biophysical conditions. We then describe the principles behind 2-DE gel statis-
tical analysis, including subtraction of background noise, spot detection, gel matching, spot
quantitation for data comparison, and statistical requirements to create meaningful gel data sets.
We also emphasize the need to develop reproducible and robust protocols for protein sample
preparation and 2-DE itself.

Key Words: Image analysis, two-dimensional gel electrophoresis, data analysis,
proteomics.

Abbreviation: 2-DE – two-dimensional gel electrophoresis

1. Introduction
Two-dimensional gel electrophoresis (2-DE) remains a technology of choice

in the proteomics era (1), despite having recently celebrated its 30th birthday (2).
The method is based on the separation of complex, or pre-fractionated, mixtures

From: Methods in Molecular Medicine, Vol. 141: Clinical Bioinformatics
Edited by: R. J. A. Trent © Humana Press, Totowa, NJ

271



272 Crossett et al.

of proteins using isoelectric focusing in the first dimension and sodium-dodecyl
sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) in the second. The
resulting gels contain a profile of proteins represented as individual, or multiple,
“spots” on the stained image. 2-DE remains a powerful technology since it
provides a visual tool for monitoring global changes in protein expression or
abundance. Many hundreds to thousands of individual proteins can be separated
simultaneously on the two-dimensional gel matrix. Even more importantly,
2-DE provides a means of discerning post-translational modifications, that result
in the alteration of the x,y-co-ordinates of a protein-of-interest. Alternative
technologies, including multi-dimensional liquid chromatography coupled to
tandem mass spectrometry of complex peptide mixtures (3), even with the
advent of highly sensitive mass tags for comparative quantitation (4,5), are
still unable to discern readily subtle changes in protein modification without
the use of specialized affinity approaches, while protein cleavage remains only
detectable using 2-DE (6).

The proteomics approach is generally used to determine how cells respond
to a change in their environment, both surroundings (chemical and nutrient)
and genetic (gene knock-out or over-expression). The use of 2-DE to under-
stand these changes relies on two major factors to provide confidence in the
acquired data (7): (1) biological replicates and (2) gel replicates. Typically, a
large number of 2-DE gels are required to satisfy statistical criteria for protein
“spot” changes between data sets. These overcome the issue of gel-gel varia-
tions (both a result of protein sample preparation discrepancies and of the
2-DE gel-running process) and limit non-specific biological differences caused
by variation between individuals (particularly where animal tissue samples
are used) (8–10). Furthermore, the use of large gel data sets allows rigorous
statistical analysis of spot changes to be undertaken. Standard deviation on
normalized spot densities should be considered prior to calculation of the n-fold
change between gels produced from the separation of proteins expressed under
varied conditions.

The question remains as to what 2-DE gel data actually represent? Many
published manuscripts discuss the changes seen in 2-DE gel comparisons using
terms such as “expression” and / or “up or down-regulation.” Such termi-
nology is not strictly correct. Visible e.g. silver stains or Coomassie blue,
and fluorescent dyes actually measure protein “abundance” at a given point
in time. Abundance is a function not only of the expression of a gene/protein
at the transcriptional/translational level, but is also dependent on the protein
life-span, or half-life. Therefore, a protein that is the product of a gene that
is being actively transcribed (and therefore is well-expressed), but has a very
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short half-life, would not be an abundant, heavily stained protein on 2-DE
gels. Expression of proteins is best measured using radiolabeling of actively
translated protein. The use of radiolabels and fluorescent dyes in a combined
approach to overcome this problem has been undertaken by the group of
Michael Hecker and colleagues in Greifswald, Germany. This group has termed
the phrase “dual-channel color imaging” of 2-DE gels. Two gels are analyzed;
the first is generated by pulse radiolabeling using 35S methionine (expression
measurement), while the second gel is stained with a visible or fluorescent dye
(abundance measurement). The spots on each gel are then given a color specific
to the method of spot visualization, and the images are overlaid to determine
which proteins are highly expressed under a given condition versus those that
are abundant. The gel imaging software that is used to perform the analysis of
these gel sets has been commercialized by DeCodon (11).

Since large amounts of data are acquired over multiple 2-DE gel replicates,
data analysis by computer software is inevitable. Visual inspection of gels,
however, remains an important and often under-rated first method for several
reasons—first, such inspection allows the user to make a judgment on the
quality of the gel images and whether any meaningful data can be achieved
by using them; second, the eye remains a powerful imaging tool capable of
detecting both very obvious and more subtle changes in protein abundance.
Large replicate gel sets make visual inspection for the production of statis-
tical analysis impossible, however, and many groups have developed computer
algorithms to assist in 2-DE gel analysis (12–14). These algorithms are now
almost all commercially available – e.g. PD-Quest, Progenesis, z3, DeCodon
and Melanie, among others (see Note 1).

This chapter describes how 2-DE gel data sets are analyzed to achieve
statistically meaningful data. This incorporates some discussion of how to
choose a data set as well as some opinions on how to utilize the data. We
discuss the use of image analysis software to compare 2-DE gel sets. Although
the principles of image analysis are practically identical between software
packages, we illustrate our discussions with basic methods compared using
PD-Quest software.

2. Materials
Many commercial software packages are currently available. An excellent

summary of the types of image supported, relative costs of purchase and
compatible platforms is given by Raman and colleagues (12) (see Note 2).
Choice of software package must be made in consideration of the number of
gels that are expected to be run over the lifetime of the product, the relative cost
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of the software and the customer support available. Our view is that laboratories
interested in image analysis packages should generate a high quality series of
gels (3 control and 3 test) and use these to trial several programs prior to
purchase.

3. Methods
3.1. Gel Quality

The ability to acquire meaningful data from comparisons using 2-DE relies
on the use of high quality gel data to begin with. The expression “rubbish in,
rubbish out” holds true for 2-DE image analysis (see Note 3). Undertaking
a laborious computer-intensive analysis on poor quality data will only result
in false positives (allocation of protein spots as being significantly altered
following a change in environment that does not actually reflect a real change,
including artifacts of the gel running process).

3.1.1. How Many Gels?

The experiment needs to be sufficiently powered such that the number of
biological replicates is statistically viable. More samples are needed for studies
involving individual-to-individual variation, e.g., animal tissue studies, than are
needed for batch cultured cells, e.g., cell culture or microbiological species.
To some extent, the number of biological replicates will dictate the number of
gel replicates. For each protein sample preparation, it is preferable to run at
least 3 gels, to account for gel-to-gel irreproducibility. A generally acceptable
“rule-of-thumb” is that the more high-quality replicate 2-DE gels that are run
(see Note 4), the more accurate and robust the resulting statistical data (see
Notes 3–5).

3.2. Manual Analysis of 2-DE Gel Images

Visual inspection of 2-DE gel images from “control” and “test” groups is
important to detect gross differences in spot patterns (Fig. 1) associated with
the test conditions under study (see Note 6). This step serves two real purposes;
first, to determine whether each individual gel is of sufficient quality to merit
inclusion in the image analysis gel set; and second, to determine whether
there are obvious differences in the gel patterns, and therefore that the “test”
conditions have influenced gene / protein expression or protein abundance.
A fair rule of thumb should be that if no very obvious differences can be
detected by eye then the “test” may not be sufficient to induce changes, or that
2-DE technology is of insufficient sub-cellular specificity and/or sensitivity to
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A

B

A

B

 

Fig. 1. Visual comparison of 2-DE gels (A) and (B). High-quality, reproducible gels
allow easy detection of protein spot appearances or disappearances (arrows), as well
as even subtle changes in protein abundance (broken arrows).

detect meaningful changes in lower abundance proteins outside the scope of
gel analysis.

3.3. Spot Detection

Image analysis of 2-DE gels for comparative purposes relies on the detection
of spots (16). This generally means determining the outlines of the separated
spots such that spot densities (based on staining intensities) can be calculated.
This task is not as immediately obvious as it appears. The first consideration
is to remove any artifacts of the staining process. These appear as “speckles”
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A B

Fig. 2. Removal of artifacts from 2-DE gel images. Panel (A) shows 2-DE gel with
“speckles” resulting from fluorescent staining. Panel (B) shows the same 2-DE gel
image after filtering. Lower panels show 3-D Viewer representation, before and after
filtration.

on the gel image and can be removed by setting the minimum spot diameter
to a level greater than the diameter of the speckles (Fig. 2). Many packages
include a “3-D Viewer” (Fig. 2), and these allow for the ready detection of
spot artifacts. Other considerations include cropping the gel image so that the
edges of the gels are removed and other artifacts, such as the sample application
point, are removed. The second aspect to spot detection is far more complex –
detecting those that do not separate into discrete spots. Proteins that separate
into heavily staining “streaks” or lightly staining smears (especially where this
is reproducible rather than a result of the 2-DE process itself) remain difficult
to detect correctly (17).
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The process of detecting spots is generally automated, but requires significant
user input to register the spots correctly. Initially, the user selects lightly stained,
small spots and heavily stained, large spots to provide the limits of detection
(Fig. 3a). The software then takes these criteria and attempts to detect the
remaining spots on the gel (Fig. 3b). The user can then add additional spots
to update the criteria. It is likely that several spots will need to be manually
defined.

For large 2-DE gel data sets, some programs use “master” and “slave” gels.
These are composites of all the individual gels within each set. To create the
composite gel requires a decision on the reproducibility quality of the individual
gels. That is, how many times should a spot appear on individual gels to be
counted on the “master” gel. The more stringent this value, the higher the gel
quality, but at the expense of the number of spots that can be compared between
gel sets.

1. Gels should be scanned in high resolution and formatted as .tiff files (.gsc files
for PD-Quest where using Quantity One software and a Bio-Rad imager such as a
Molecular Imager Fx).

2. Crop the gel by removing the area above the highest mass marker, and the area
below the lowest mass marker, as well as the areas on the left and right hand sides
of the gel, including the molecular mass marker lane. Use the “Advanced crop”
tool to ensure all cropped gels are the same.

3. Filter the image using the “Filter Wizard” to remove gel stain artifacts (check “salt”
and “pepper” and set to 3 × 3. If there are still speckles on the resulting filtered
image, re-check the setting to 5 × 5) (see Note 7).

4. Detect spots using the “Spot Detection Wizard.” Use the normal settings as a
default and then select the following: “Gaussian” distribution, remove vertical and
horizontal streaks. After the first round of detection the values can be manually
adjusted to optimize spot detection. Once optimized, the settings can be used for a
series of gels, if they are similar enough, or re-optimized for each individual gel.

3.4. Gel–Gel Matching

Once the spots are detected, the next and final task is to “match” the
corresponding spots between the gels, so that comparison of the data can be
performed. The gel matching process can also be a laborious task, since gels
become warped (expansion and contraction caused by the various stains and
washes, and the length of time spent in each solution) and therefore the “master”
and “slave” images cannot simply be overlapped (Fig. 4) (18). In the matching
process, the user may stipulate some landmarks on each gel and then allow
the software to match the corresponding spots in that particular region (see
Note 8). The more landmarks that are added, the better the spot matching, as
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A

B

Fig. 3. Spot detection on 2-DE gels. A: User selected criteria for spot definition in
PD-Quest. B: Spots detected based on those criteria (white circles).
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Fig. 4. Spot matching between gels from two different data sets (control and test).
Upper panel shows 4 gels (master on the left and three individual gels) comprising
the control set; lower panel of 3 gels comprises the test set. Grey shows spots that are
matched; black shows spots that have not yet been matched. This process, even with
high-quality 2-DE gels can be time-intensive.

much of the warping may be regional, particularly at the extremes of the gel
where expansion and contraction may be most noticeable (see Note 9).

5. Gel-gel comparisons are performed in “Matched sets.” These can either be created
during the batch processing of gels or afterwards by clicking on Match > New
Match Set.

6. To assess the quality of the matching it is possible to switch between various
overlays which each display different useful information. Place the mouse over the
gel of interest and press the following keys:

a. Spot crosshairs—F5
b. Show ellipses—AltF5
c. Vector offset—shift F7
d. Matched (green letters) and unmatched spots—F8
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e. Only unmatched spots—Shift + F8
f. Remove all—Esc.

It can also be useful to look at other parameters such as the “Image Stack
Tool” (which allows the user to flick between multiple gel images) or the
“Scatter Plot Tool”, both of which are on the “Analyze” menu.

3.5. Spot Quantitation and Comparison

Spots that are least conserved between gels (compared via spot density
alone) tend to be those at the extremes of abundance—the very large, dense
proteins spots and the very low level, faint spots. This is because these spots
are most sensitive to the irreproducibilities associated with 2-DE gels. Large
spots tend to focus poorly and may have both vertical and horizontal streaks
associated with them, furthermore, the image analysis programs will often
detect them as multiple smaller spots, rather than as a single, large spot. When
very abundant, intensely staining spots are measured they may “saturate” the
density reading, again providing a lack of reproducibility. Very faint spots
may appear to be altered under test conditions, simply because even minor
differences in the concentration of protein added to the first dimension gel
will lead to sizable quantitative differences. Therefore, nearly all programs use
some type of “normalization”—the use of protein spots that do not change as
internal controls to calibrate all the remaining data. The choice of spots that
normalize is itself problematic as it must be certain that the spot actually does
not change under the test conditions, even subtly, and thus bias the remaining
data. Amongst a large gel set, however, the spots of “least change” are generally
employed.

7. For comparison of groups of gels, gels need to be assigned to replicate groups
by using the “Create Replicate Groups” tool available through the Analyze menu.
All the individual gels within each group should undergo spot detection prior to
inclusion in the group.

8. When all the gels have been assigned to a replicate group, the “Group Consensus”
tool (from within the “Analyze” menu) can be used to check that as many of the
spots have been matched as possible (see Note 10). This tool can determine whether
there is consensus within a group, or between control and test groups, thus allowing
for quantitation and comparison.

9. Once as many spots have been matched as possible, the “Analysis Set Manager”
(accessed via the “Analyze” menu) to highlight the similarities and differences.
Using this tool it is possible to build up a set of quantitative and qualitative
comparisons, which can then be grouped further using Boolean analysis to add or
subtract members of each group from each other.
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Fig. 5. Comparison of spot quantities between 2-DE gel sets. Spots elevated in
abundance are shown by broken arrows, those decreased in abundance by full arrows.
Spot comparisons on each of six individual gels are shown on master gel (top left).
Statistical analyses are shown in the table on the right side of the image; SSP, spot
number; Ratio, up- or down- n-fold change.

3.6. Statistical Analysis

2-DE gel data must be statistically analyzed (Fig. 5). Each individual spot
change should be represented by three statistics: (1) mean spot density of each
individual spot averaged over the number of gels analyzed; (2) standard error
(standard error of the mean or standard deviation) of those mean spot densities
(see Note 11); (3) Students’ t-test to determine the statistical significance of
the change; and (4) the n-fold change – a + or – change determined by dividing
the mean spot density for a spot of interest from the “test” conditions divided
by the mean spot density for the same spot from the “control” conditions (see
Notes 6 and 12).

4. Notes
1. Several authors have attempted to compare software packages (12,14). Most

conclude that some features are better in one program versus another, but that no
single program is consistently better in every aspect than all the others. Therefore,
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choice of software will be based on price, technical support, and user prefer-
ences. It should be noted that at least one study has suggested that variance in the
analysis of 2-DE gel sets may be due to subtleties in the image analysis algorithm
employed (15).

2. There are many commercially available image analysis options. Most vendors
provide 21–30-day trials of “limited” or “fully functional” versions of their
software, often available through the vendor website.

3. Many 2-DE gel users have difficulty in defining “good” from “bad” gels. This tends
to be a highly subjective process. However, proceeding to image analysis on poor
quality gels will only result in poor quality assumptions about protein differences
between control and test conditions. There are some rules about defining gel
quality: (1.) Discard gels where the majority of spots appear as streaks (either
horizontal or vertical)—streaks provide very poor quality data for image analysis.
(2.) Discard gels where the spots are hazy or poorly focused. (3.) Discard gels
where the distribution of spots is not even in the SDS-PAGE dimension.

4. Under no circumstances should data from a single gel set ever be considered for
publication. Many journals, including Proteomics, now set minimum standards for
the publication of 2-DE gel data which should be considered (19).

5. Gels of “lower” quality, but not discarded gels, need much greater statistical
analysis; that is, an increase in both biological and gel replicates to provide a
meaningful data set. We have found that for bacterial samples (where gel quality
is generally high), replicate biological preparations run on triplicate gels (6 high-
quality gels per control or test group) is generally sufficient (20). However, for
complex mammalian tissue samples (21), where gel quality is often poorer we
have used up to 18 biological replicates and triplicate gels (54 good-quality gels).
This also reflects the need to account statistically for individual variation between
human or animal tissues. Finally, the use of more biological and gel replicates
allows the user to work with lower statistically significant n-fold changes (for
example, ±1.5-fold, rather than 2.0-fold).

6. Spot differences between control and test groups measured by 2-DE gels are
generally defined by their n-fold change. This literally means the fold difference
between the spot volume/density/pixel value (often in ppm) averaged across all
the gels of the control group and all the gels of the test group. The generally
accepted, minimum fold difference value is ±2.0-fold, which means an increase or
decrease of 100% of the control spot quantity. This is clearly biased towards lower
abundance proteins, which have a lower spot density and hence any change may
be viewed as significant. Therefore, we often suggest that in any test condition, at
least some major spots should be altered to consider the test biologically relevant.
Increased numbers of biological and gel replicates may allow this value to go as
low as ±1.5-fold change (50% increase or decrease in the mean spot density in
test compared to control gels). Lower n-fold difference values may be based on
gel-gel variance, particularly where few replicates have been performed.
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7. Use of the “Filter Wizard” is optional, but should be used where gels have
been stained with fluorescent dyes, such as Sypro Ruby (22), which leave small
“speckles” on the surface of the gel. The manufacturers of Deep Purple™ Stain
(23), suggest that no speckles remain on the surface of gels stained with this dye.

8. Some algorithms require the user to determine spot landmarks between “reference”
and “test” gels. These “landmarks” define a spot viewed in the reference gel as
the same x,y-coordinates as a spot in the test gel. The region of the two gel sets
surrounding that landmark will then be warped to fit the best image match. More
landmarks that are chosen between the two gels provide better accuracy in the
spot matching process, particularly where the gels themselves are warped due to
osmotic effects, or idiosyncrasies of the gel pouring and IEF gel positioning.

9. The use of very strict settings in the gel matching process require that a spot is in
exactly the same location relative to its land-marked neighbors and will provide
less matches, whereas less exact criteria provide more tolerance with the problem
that false positive matches may occur.

10. No two gels sets will ever have 100% of spot matches correct. There is always a
trade-off between a large number of correct matches and false positives. Generally,
the higher the number of correct matches, the higher the number of false positives.
Only manual data interpretation will overcome these issues. In real terms, most
researchers will identify the “most” significant matches by visual inspection of
the gels, and use the image analysis to determine statistical data on those spot
differences.

11. Standard error of the mean for spot densities should be within the range
of ±10–20%. Wider variances than this suggest irreproducibility of the 2-DE gel
data.

12. It is wise to employ a spot volume cut-off when considering the results from
spot matching and quantitation. Otherwise, a bias toward very low abundance
spots being detected as statistically significantly altered between control and test
conditions may occur.
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Online Resources for the Molecular Contextualization
of Disease

Chi N. I. Pang and Marc R. Wilkins

Summary

Searching online resources can provide medical researchers with an efficient means of
gathering existing knowledge on the molecular causes of disease. The researcher may choose
to explore the following areas, e.g., genetic mutations associated with the disease, function and
cellular sub-localization of the associated protein(s) and their protein interaction partners. Using
a small case study, examining the disease retinoblastoma, this chapter guides the reader through
the relevant information contained within relevant databases. It is shown that the integration of
online biological knowledge with genomic and proteomic experimental data provides insights
into the understanding of diseases in their molecular context.

Key Words: protein–protein interactions, disease, gene ontology, subcellular localization.

Abbreviations: GO – gene ontology; HPRD – Human Protein Reference Database; PTM
– post-translational modification; RB1 – retinoblastoma

1. Introduction
Functional genomics and proteomics approaches are becoming increasingly

widely used for the investigation, and understanding of disease. Microarray or
proteomic techniques are frequently used for the comparison of gene or protein
expression between diseased and control tissues, resulting in the identification
of genes or proteins that are aberrantly expressed. At this point, investigators
typically ask a series of fundamental questions. These include
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1. Is the function of the protein known?
2. Is the protein known to be associated with disease?
3. Are mutations already described for this gene or protein?
4. Is the subcellular location and/or tissue distribution of the protein known? With

increasing studies of protein-protein interactions and their association with disease,
the researcher may also wish to ask:

5. Does the protein interact with any others?

This chapter will introduce a number of online resources which the
medical researcher can use to contextualize their results from microarray and
proteomics experiments. For the sake of clarity, we will write this chapter
as a small case study, examining the RB1 gene and protein, associated with
the disease retinoblastoma. Whilst this protein was not discovered using
microarray or proteomics experiments, instead having been discovered through
classical genetics and molecular biology (1), we note that the application of
proteomics/microarray experiments have shown the RB1 protein to be under-
expressed in association with the disease (2).

2. Methods
There are two starting points that are useful for the contextualization of a gene

or protein of interest. These are either with the name of the gene or protein,
or with the name of the disease itself. Here we assume that the starting point
will be with a gene or protein of interest. Each section is organized under a
subheading, being a question or questions which researchers may choose to ask.

2.1. Is the Function of the RB1 Protein Known? Is the Protein
Associated with Disease? What Mutations are Known?

2.1.1. Searching the Swiss-Prot Database

Swiss-Prot is a curated protein sequence database. It provides useful
annotation, such as the protein’s function, cellular sub-localization, post-
translational modifications and amino acid sequence variants. The entry for
each protein provides hypertext links to a comprehensive diversity of useful
biological databases (3,4).

The Expasy website (http://ca.expasy.org/) allows the user to search for a
protein by entering the protein or gene name. For the retinoblastoma-associated
protein, the user would need to type “retinoblastoma-associated” into the search
field on the top of the Expasy home page. It then provides the user a list of
proteins to select from. Selecting the appropriate protein name from the results
list leads the user to the full Swiss-Prot entry for the retinoblastoma-associated
protein, accession number P06400, entry name RB_HUMAN.
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There are several parts of the database that are of interest to the reader,
notably the comments field and the feature table. The comments field (Fig. 1)
provides the reader with information on the protein’s function, subunit
information if part of a complex, protein-protein interactions, cellular sub-
localization, tissue specificity, post-translational modification (PTM) and any
diseases associated with the protein. The feature table (Fig. 2) provides infor-
mation on amino acid variants of the protein. The “VARIANTS” field gives the
position of the amino acid variant in a protein, what amino acid it is mutated
to, and the associated disease. The feature table also contains information on
the location and type of PTM in the “MOD_RES” field. Information on the
enzyme that catalyses the addition of a PTM may also be found here. Note,
however that fatty acid modifications are not recorded as “MOD_RES” but
“LIPID,” glycosylation is recorded as “CARBOHYD,” molecular cross-linking
as “CROSSLNK” and disulfide bonds as “DISULFID.”

There are four classes of PTM reliability in Swiss-Prot. The first and
most reliable class concerns modifications that have strong experimental

Fig. 1. Comments field for the retinoblastoma-associated protein from the Swiss-Prot
database. The accession number for the RB1 protein is P06400.
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Fig. 2. Excerpt of the feature table for the retinoblastoma-associated from the Swiss-
Prot database. The accession number for the RB1 protein is P06400.

evidence. A further three classes concern PTMs which have not been exper-
imentally verified. The most reliable of these are modifications inferred by
taxonomic similarity, and are labeled “by similarity.” PTM information labeled
as “probable” have some experimental evidence and should be found in the
native protein. Modifications that have been predicted only by protein sequence
analysis tools are denoted as “potential.”

In the case of RB1, the protein is annotated in Swiss-Prot as a tumor
suppressor, which interacts preferentially with transcription factor E2F1. It is
also known to interact with CDK2 and TAF1 proteins. The protein is localized
in the nucleus, and may be phosphorylated in five different amino acid positions.
The RB1 protein is associated with diseases such as the childhood cancer
retinoblastoma, bladder cancer and osteogenic cancer. RB1 is also involved in
pinealoma; this is described in the OMIM database discussed later.

2.1.2. Searching the Online Mendelian Inheritance in Man Database

The Online Mendelian Inheritance in Man (OMIM) is a database of genetic
disorders. It provides links to literature in the PubMed literature database, to
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gene sequences in the NCBI database and other data sources. It is a resource
used primarily by physicians and medical practitioners concerned with genetic
disorders and genetics researchers (5).

The OMIM website allows the user to search for a disease by
typing multiple keywords in the search box at top of the home page
(www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM). In the case of RB1, the
keyword “retinoblastoma” is sufficient. The identification number for the
retinoblastoma database entry in OMIM is 180200. There are a number of
sections of each OMIM entry that are of particular interest. They include the
brief description of the disease, its gene map locus, molecular genetics, patho-
genesis, gene function and allelic variants.

For RB1, it is recorded in the gene function section that RB1 is modulated
by phosphorylation and dephosphorylation during different stages of the cell
cycle. The RB1 protein is unphosphorylated in the G0/G1 phases, but it is
mostly phosphorylated during S and G2 phases (6–8). The allelic variant entries
include information on how the nucleic acid mutations affect the gene product.

2.2. Where is the Protein Found in the Body and Inside the Cell?

2.2.1. Searching the Human Protein Atlas

The human protein atlas (www.proteinatlas.org) is an ongoing project that
aims to map the localization and expression of every human protein in all
tissues of the body. The protein atlas database includes a large number of
images of normal tissues and a variety of disease states (see Note 1). These are
taken from immunohistochemically stained tissue sections, generated by use of
specific antibodies generated against different antigens in the body. A brown-
black color in an image highlights the location where the antibody has bound
to its corresponding antigen. A blue stain is used for visualizing microscopic
features in the same tissue samples. It may stain both cellular and extracellular
materials. Each tissue type is represented by three images from unique patients.
For most cancer tissue types, duplicate samples from 12 or more patients have
been recorded, although some only have duplicate samples from 4 patients.
All images have been analyzed by specialized image analysis software and
validated by expert histopathologists. The reliability of each image is recorded
in the database (see Note 2) (9).

To search for the retinoblastoma-associated protein in the human protein
atlas, “RB1” or “retinoblastoma” is typed into the search field on the atlas home
page (www.proteinatlas.org). In the search results page, click on the link under
the “Antibody ID” column corresponding to the RB1 gene name. This brings
up an overview of RB1 localization throughout the body (Fig. 3). The overview
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Fig. 3. Tissue distribution of the RB1 protein from the human protein atlas. The
top panel shows where the protein is found in normal tissues, and the bottom panel
shows where the tissue is found in cancer tissues. The page can be accessed at
www.proteinatlas.org/tissue_profile.php?antibody_id=95

includes an “annotation summary”, describing the cellular sub-localization
information for different tissues. For RB1, it showed strong and distinct staining
in the nucleus of all tissue types, whether they were normal or malignant
tissues. Fibroblasts, inflammatory cells and neuronal cells were also stained in
the nuclei. In the protein atlas, users have to select images for tissue types most
relevant to the disease under investigation. For example (Fig. 4), mutation in
the retinoblastoma protein would cause urothelial carcinoma, commonly called
bladder cancer. Normal bladder tissue and urothelial cancer tissue would be
appropriate to view for this investigation.
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Fig. 4. Histological view of RB1 protein expression in uorthelial cancer. The
expanded view can be accessed by clicking on the lower resolution image. This
page can be accessed at www.hpr.se/cancer_unit.php?antibody_id=95&mainannotation
_id=29007.

2.2.2. Searching a Repository of Gene Expression Data

SymAtlas (symatlas.gnf.org/SymAtlas/) is a database of results from
microarray experiments. It contains expression levels for genes of interest from
a wide selection of tissue types. Results are collated from human and mouse
tissues. Expression levels of genes with no previously known function are
included in this database (10).

To search SymAtlas, enter one or more accession numbers, gene names or
gene ontology (GO) identifiers, separated by a space (see Note 3). The resulting
histogram of gene expression levels is of most interest to the user, as they
show which tissues or cell lines are expressing a gene and in which quantity
(Fig. 5). The database actually contains expression information from a number
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Fig. 5. Expression of the RB1 gene in different tissues, as documented in the
SymAtlas database (symatlas.gnf.org/SymAtlas/). Here the expression levels are shown
from the Human GeneAtlas GNF1H MAS5 dataset using the 203132_at reporter.

of experiments and sources, and the user may select what is appropriate by
using the dataset selection panel on the top of the page. The gene expression
is measured by using Affymetrix microarrays. The different gene expression
levels may be viewed as separate histograms by selecting from the panel on
the top of the page.

A brief browse through the RB1 gene expression level in the Human
GeneAtlas GNF1H, MAS5 dataset shows that it is under-expressed in normal
bone marrow, as compared to other tissue types. RB1 was under-expressed,
albeit detectably, for both the mRNA reporters 203132_at (HG-U133A) and
211540_s_at (HG-U133A). Expression of the RB1 gene was not detectable
in retinoblastomas, osteosarcomas or soft tissue sarcomas (2). Therefore, the
expression level of the RB1 gene could be used to help determine the exact
cause of these cancer types.
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2.2.3. Understanding Subcellular Protein Localization

The human protein atlas project, above, is generating some information on
the subcellular localization of proteins. For example, it is described in the
annotation summary section for the RB1 protein, that RB1 is localized in
the nucleus for almost all tissues, whether they are normal and malignant.
However, there is no large-scale experiment which has been undertaken to
date to accurately determine the precise sub-cellular localization of all human
proteins. As an alternative, subcellular protein localization data can be obtained
from studies on individual proteins. This is available in the Swiss-Prot database,
and is systematized by the Gene Ontology.

The Swiss-Prot database can be queried for RB1_HUMAN. The GO terms in
the Swiss-Prot database, under the cross-reference field, indicate that the protein
is localized in the nucleus and the chromatin. The comments field of Swiss-Prot
will sometimes also provide a description of the sub-cellular localization.

2.3. Where is the Protein Found in Biochemical Pathways, Cellular
Reactions or the Reactome?

2.3.1. The Reactome Project

The reactome project (www.reactome.org) is a curated resource of pathways
and reactions. It represents these pathways in graphical as well as tabular
format. It draws on information from, and is hypertext linked to, other resources
including KEGG (Kyoto Encyclopedia of Genes and Genomes), the Gene
Ontology (GO) and the metabolite database (Chemical Entities of Biological
Interest; ChEBI) (11,12).

The user may search for the context of a protein in the reactome by typing
the gene name in the text box at the top of the front page. From the summary
results page, click through to reaction section (see Note 4). The name RB1 can
be used to search for the reactions described on that results page (see Note 5).

Searches of the reactome database pinpoint the exact reactions in which a
protein participates. The reaction is described with a flow chart figure and is
also described in text. The inputs of the reaction are described as well as the
products: these include small molecules that may be substrates or products in
enzyme-mediated reactions. The hypertext links to databases like KEGG and
GO help the researcher to learn more about the reaction pathway(s) of interest.

For RB1, the reaction the protein is described as “Replication initiation
regulation by Rb1/E2F1” (see Fig. 6) and the detail of the reaction is described:
“Rb1 is normally hyperphosphorylated by CycD/CDK4/CDK6 and Cyclin
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Fig. 6. Summary results page from the reactome project for protein RB1. Note that
this page immediately contextualizes the protein into a pathway, and gives details on
the reaction inputs and outputs.

E/CDK2 for transition into S-phase. PP2A can then reverse this reaction, in
this case, in response to DNA damage induced checkpoint.”

2.3.2. The Gene Ontology

Gene ontology (GO) (www.geneontology.org) is a project aimed at providing
controlled and consistent vocabulary for the description of gene and protein
function, and a means to classify these into biologically meaningful categories.
It is a global system and is applicable to all species. There are three categories
in GO. They are cellular component, biological process and molecular function.
For any gene or gene product, cellular component describes the part of a
cell where the entity is found, for example, rough endoplasmic reticulum or
proteasome. A biological process is a series of molecular functions or processes
performed by assemblies of biomolecular entities, for example, signal trans-
duction or pyrimidine metabolism. A molecular function describes an activity at
a molecular level, for example, a catalytic activity, a type of binding, and more
specifically, Toll receptor binding. The GO definitions are like a hierarchy,
with the exception that a child GO term may have more than one parent. For
instance, the term hexose biosynthesis has two parents: hexose metabolism and
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monosaccharide biosynthesis. If the child GO definition is annotated to a gene,
the annotation automatically cascades to the parental GO term in a recursive
manner (13).

Gene ontology is not a database of gene product names, or a database
recording the attributes of sequences such as gene introns and exons. It does
not describe protein tertiary structures or protein-protein interactions. Terms
unrelated to the normal function of any gene, for example oncogenesis, are also
not included. In addition, any descriptors that are above the level of cellular
component, such as anatomical or histological features and cell types are not
described. Other broad categories such as gene evolution and gene expression
are similarly not addressed.

A useful web-based tool for browsing GO is quickGO (www.ebi.ac.uk/
ego/index.html). A general method of searching is to type in the UniProt
accession number of the gene (see Note 6). For the retinoblastoma protein, the
UniProt accession number is P06400.

GO can provide insights into the molecular functions of a protein in one or
more cellular processes. This helps the researcher find genes that are involved
in similar molecular processes and functions, or are of the same cellular
component. Genes with common GO terms also have a high chance of associ-
ation through protein-protein interactions, or may be found in the same diseases
or pathways. It is noteworthy that GO provides synonyms to terms of interest.
This can provide researchers with appropriate keywords to effectively search
other databases which do not use the GO vocabulary.

A search of the Swiss-Prot database for the RB1-associated GO terms reveals
a set of classifications for RB1 cellular component, molecular function and
biological process (see Table 1). Each of these classifications has an associated
acyclic graph with the name of the GO term, all the GO terms’ parents and
the “ancestral” GO terms associated with them. These graphs can be accessed
from quickGO (see Fig. 7), give a clear view of the hierarchy of the ontology
for RB1 and illustrate the assigned function(s). In the case of RB1, this is
“regulation of progression through the cell cycle.” Note that it is common for
one protein to map to more than one part of the gene ontology. In part, this is
because proteins can be multifunctional, but also because a single protein can
be involved in more than one process.

2.3.3. Searching BioCarta

BioCarta is a curated database of biological pathways. Its particular strength
is that it visualizes the pathway of interest and has legends that are easy to
interpret. The icons for the protein provide links to other databases, such as
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Table 1
Gene ontology (GO) terms assigned to the RB1 retinoblastoma-associated
protein

GO Classification Description

Cellular component
• chromatin
• nucleus

Molecular function
• androgen receptor binding
• protein binding
• transcription coactivator activity
• transcription factor activity

Biological process
• androgen receptor signaling pathway
• cell cycle checkpoint
• G1 phase
• M phase
• negative regulation of cell growth
• negative regulation of protein kinase activity
• negative regulation of transcription from

RNA polymerase II promoter
• positive regulation of transcription, DNA-dependent

OMIM and Swiss-Prot. It is different to the Gene Ontology as it does not seek
to provide a global context for a particular gene or protein, instead focusing on
the local environment and pathways in which a protein participates. For each
pathway, a detailed textual description is given, as well as contact details for a
“pathway expert”.

To use BioCarta, the user first needs to access the main page at
www.biocarta.com. Click on the “Pathways” tab at the top of the index page,
and in the subsequent page, search by using the “gene name” text box under
the section “search pathways by title”. For example, the gene name “RB1”
would be used for the retinoblastoma protein. This produces a list of pathways
in which the protein of interest is involved. Choose the pathway of interest for
investigation, by clicking on the pathway name. For the retinoblastoma tumour
pathway, the pathway of most relevance is “RB Tumor Suppressor/Checkpoint
Signaling in response to DNA damage.” This is shown in Fig. 8.
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Fig. 7. Acyclic graph showing how the RB1 protein maps onto the gene ontology (GO).
This page can be accessed at www.ebi.ac.uk/ego/DisplayGoTerm?id=GO:0000074. Note
that there are six levels to this part of the ontology (biological process). The lowest
level of the ontology here is “regulation of progression through the cell cycle”.

2.4. Are Any Protein-Protein Interactions Known?

Broadly speaking, there are two types of protein–protein interaction data.
There are those from high throughput studies using techniques such as yeast
two-hybrid or affinity purification of protein complexes and those that result
from the study of individual proteins. For the latter, curation of literature can be
used to generate a large dataset of interactions. For humans, there are two large,
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Fig. 8. The BioCarta illustration for the “RB Tumor Suppressor/Checkpoint
Signalling in response to DNA damage” pathway, accessible from page www.biocarta.
com/pathfiles/h_rbPathway.asp. Note that this pathway figure is accompanied by a
detailed description.

high throughput studies to date (see Note 7) (14,15). Whilst extensive, these
studies together represent less than a few percent of the human interactome.
Accordingly, when searching for interaction partners of human proteins, it
is necessary to use resources that consider interactions documented in small
and large-scale studies. Databases such the HPRD (www.hprd.org) and IntAct
contain such information. The IntAct database will be discussed here, because
of the extensive cross-linking with other EBI resources (16).

2.4.1. The IntAct Database of Protein–Protein Interactions

IntAct (www.ebi.ac.uk/intact/site/) is a database for protein-protein inter-
action data. The interaction data result from user submission or by the curation
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of published literature. IntAct allows the user to search for interaction partners
for human proteins.

The user can search the IntAct database by entering a Swiss-Prot identifi-
cation number in the search box on the front page. For retinoblastoma-associated
protein, the RB_HUMAN identifier is used. The results of this type of search
are the proteins which are known to directly interact with the protein of interest.
In the case of RB_HUMAN, these are proteins Cdk2, Taf1, and Pa2g4 (see
Fig. 9).

It is usually of interest to visualize the interactions that a protein participates
in and how this fits into a local or global interaction network. IntAct allows
interactions to be visualized as scale-free graphs with the Hierarch viewer.
Proteins of interest are selected from the list of interacting proteins (Fig. 9)
and the graph button then selected (see Note 8). The resulting scale-free graphs
display the proteins as nodes (protein names) and the interactions between
proteins as edges (lines). The protein of interest appears in the center of the
graph. Figure 10 shows the local interaction network for the retinoblastoma-
associated protein.

The Hierarch viewer, as described above, also provides additional contextual
information for a protein and its interactors. A list of GO terms and protein

Fig. 9. Search results from the IntAct database for the retinoblastoma-associated
protein. This shows that the protein directly interacts with three other proteins.
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Fig. 10. Contextualization of the retinoblastoma-associated protein in the local
protein-protein interaction network. The RB_HUMAN protein is at the center of the
view, and other proteins up to two interactions away from it are shown. The right-
hand side of the viewer provides access to links to the gene ontology and domain-based
information.

functional domains from InterPro (see Note 9) (17) is given on the right hand
side of the viewer web page (see Note 10). Neighboring proteins are likely to
be involved in similar functions to the protein of interest and may contribute
to the molecular basis for the development of the disease. The importance of
a protein may be related to the number of interactions in the protein-protein
interaction network. Highly connected proteins are thought to be more highly
associated with disease.

2.5. What Types of Post-Translational Modifications does the Protein
Carry?

2.5.1. The Swiss-Prot Database

As a final consideration, it can be of interest to understand the post-
translational modifications that are known to be carried by a protein. This can
provide clues to protein localization and function. The Swiss-Prot database



Contextualization of Disease 303

is an excellent source of post-translational modification information, where
all modifications are collated from the literature. To find post-translational
modifications in Swiss-Prot, the user needs to refer to relevant MOD_RES
annotations in the feature table of each database entry. Various modifications
are described therein, including fatty acids, glycosylation and reversible modifi-
cations, including phosphorylation, methylation, and acetylation. Disulfide
bridges of proteins are also documented in this part of the database. For
the retinoblastoma-associated protein, Swiss-Prot documents phosphorylation
at amino acid positions 249, 252, 373, 807, and 811. It also notes that this
phosphorylation is mediated by the kinase CDC2 (see Note 11). Figure 11A
shows the relevant portion of the feature table for the retinoblastoma-associated
protein.

A

B

Fig. 11. Post-translational modifications documented for the retinoblastoma-
associated protein: (A) Portion of the Swiss-Prot feature table for entry RB_HUMAN,
detailing which amino acids are phosphorylated. (B) Similar entry from the HPRD
database. See text for details.
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2.5.2. The Human Protein Reference Database

The Human Protein Reference Database (HPRD) (www.hprd.org) is a
database which centralizes protein annotation. It contains information such as
functional domains, co- and post-translational modifications, protein-protein
interactions and associations with mutations and disease. The information is
curated by experts that mine literature references and published data. These
information are accessible via a web-based interface (18).

Unlike the Swiss-Prot database, the HPRD database only provides annotation
and sequence information for human proteins. As a result of this focus, HPRD
may provide more post-translational modification data than Swiss-Prot for
human proteins. It also provides detailed information on the enzyme which
catalyses the addition of the post-translational modification (PTM) on a protein,
and useful links to the literature reference(s) that discovered the modification.
This latter feature is not available in the Swiss-Prot database. Hypertext link
to literature references for information such as tissue distribution, subcellular
localization and disease association of proteins are also provided (18).

To access modification information in HPRD, the user first needs to access
the query interface via the databases front page (www.hprd.org). This is done
by selecting the query button on the top left-hand corner of the page. The
user may then search HPRD for the protein of interest by using a Swiss-Prot
accession number, in this case P06400 for the retinoblastoma-associated protein
(see Note 12). At the results page, click on the tab for “PTMs and Substrates.”

A small cartoon in the PTM annotation page illustrates approximately where
each post-translational modification is found on the protein. The upstream
enzymes thought to be responsible for the addition of the PTM are noted for
each modified amino acid. Each modification is linked to a literature resource,
which can be seen by clicking on the amino acid position number in the table.
The RB1 protein is phosphorylated at 16 positions in the HPRD database
(Fig. 11B), as compared to five positions as annotated in Swiss-Prot. It is mainly
phosphorylated by proteins that regulate cell division cycles: cell division cycle
2 (CDC2 or CDK1), Cyclin D2, and two cyclin dependent kinases CDK2 and
CDK4.

2.5.3. Predicted Post-Translational Modifications

Databases of predicted post-translational modifications may be relevant
and of interest to the researcher. Predictions in these databases must,
however, be used with caution as the predictions may be of low quality.
They may provide false predictions and also neglect real modification
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sites. Databases containing predicted modifications include the dbPTM
(http://dbptm.mbc.nctu.edu.tw/index.html), which contains predicted modifica-
tions for many proteins, including the retinoblastoma-associated protein (19).

3. Notes
1. Human Protein Atlas—Normal tissue: It is often difficult to obtain normal human

tissues, since they are derived from surgical material. Therefore, normal is defined
in this context as close to normal and samples would include alterations due to
inflammation, degeneration and tissue remodeling.

2. Human Protein Atlas—How to interpret reliability of results? A number of colored
circles are found beside the name of the tissue type, whether they are normal
or malignant tissues. Each colored circle represents the specific tissue type from
one individual. A different color code is assigned to annotate the intensity and
abundance of immunoreactivity (red = strong, orange = moderate, yellow = weak,
white = no staining, and black = missing tissue). The circle is divided evenly such
that each section represents replicate samples from the same tissue type.

3. Usage of SymAtlas—Wildcard characters ? and *, which represent one and any
number of characters correspondingly, may be used. The search results list appears
on the side panel of the webpage. Click on the little picture icon next to the
appropriate gene name, under the Homo sapiens section. This will link to the gene
expression chart. Clicking on the gene name will lead to a list of annotations and
hyperlinks to other databases. The gene expression histogram may be accessed by
selecting a dataset under the functional data section.

4. Usage of Reactome—Upon searching using the gene name, the results page will
be shown. The matches would be classified into categories, for example: physical
entity, reference entity, summation, reaction coordinates and reaction.

5. Reactome’s page for RB1—The search for RB1 should get to this page: http://
www.reactome.org/cgi-bin/eventbrowser?DB=gk_current&ID=113643& (20)

6. QuickGO search result list—The search result will show every match to the
query within the categories of biological process, molecular function and cellular
component. Each GO term is attached to an identification number in the format
GO: 7 digit number. An example GO ID number for the RB1 protein is: “regulation
of progression through cell cycle, GO:0000074.”

7. Protein-protein interactions—RB1 protein is part of the Rual et al. yeast-two-
hybrid study on human proteins (14). However, it is not present in Stelzl et al.
human yeast two-hybrid study (15).

8. IntAct search result list—You may need to select a number of interactor proteins
to see the context of a protein in its interaction network. The “Select All” or “Clear
All” button may be used to select and deselect the whole list of proteins. The
“Path” button will show the minimal number of protein-protein interactions, or the
minimally connecting network, for the selected set of proteins.
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9. Interpreting IntAct results—A protein domain is a polypeptide chain that can fold
autonomously into a structural unit. Some domains have a common evolutionary
origin and molecular function (21).

10. Interpreting IntAct results—The list of GO terms can assist in understanding the
biological function of the protein-protein interaction sub-network. The “show”
button beside each GO and InterPro entry on the right-hand side of the web-page
allows the user to highlight proteins with that annotation in the graph. The count
indicates the number of proteins in the graph to which the GO or InterPro entry
applies. The user can click the hypertext links to browse the details of the relevant
GO terms or access biological information about protein domains of interest.

11. Protein phosphorylation—CDC2 is shown to interact indirectly with RB1 through
CDK2 in Figure 10. This may be due to a missing interaction not documented
in IntAct. Another explanation would be that phosphorylation of RB1 by CDC2
is dependent on CDK2, such that phosphorylation would only occur if the three
proteins are in a complex.

12. Using the HPRD database—There are many other methods of searching the
database, for example, searching by PTMs, molecular class and cellular component.
The user may browse the database by clicking the “Browse” button on the top
left-hand corner of the web page, and accessing the browsing interface. This would
give the list of all possible searches available for each category, for instance,
functional domains, PTMs and cellular sub-localization.
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Web-Based Resources for Clinical Bioinformatics

Anthony M. Joshua and Paul C. Boutros

Summary

In the post-Human Genome Project era, awareness of the resources available through the
internet is essential to both molecular biologists and clinicians. An overview of the main databases
and analytical tools described in this chapter is important to understand the principles upon
which hypotheses are generated, experiments are based and conclusions reached. Similarly, an
introduction to the terminology of these resources often facilitates their use and adoption into
practice. This chapter covers database resources such as NCBI/ Entrez, Ensembl and UCSC as
well as analytical tools for sequence alignment, promoter analysis and molecular interactions.

Key Words: internet, database, bioinformatics, web servers, biological sequences, genome-
browser, sequence-alignments.

Abbreviations: BLAST – Basic Local Alignment Search Tool; DDBJ –DNA Data Bank
of Japan; EMBL – European Molecular Biology Laboratory; EST – Expressed Sequence Tag;
NCBI – National Centre for Biotechnology Information; UCSC – University of California, Santa
Cruz

1. Introduction
It is an oft-repeated truism that the last three decades has seen an unparalleled

expansion in biological data gathering. Managing and analyzing this infor-
mation was impossible before the advent of the internet. Putting the collated and
organized information of the previous decades at the fingertips of researchers
has had a significant impact on both the pace and depth of our understanding
of biological processes both at the bench and the bedside.
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The history of biological databases began in the early 1960s, with the publi-
cation of the Atlas of Protein Sequence and Structure by Margaret Dayhoff and
colleagues (1). By 1972 the contents of this volume were too large to be printed
and were distributed electronically on magnetic tape. Following the arrival of
DNA sequence databases in the early 1980s, the formation of the Interna-
tional Nucleotide Sequences Database Collaboration (GenBank, The National
Institutes of Health genetic sequence database; EMBL, European Molecular
Biology Laboratory; and DDBJ, DNA Data Bank of Japan) and agreement upon
a common sequence-annotation format allowed for the simultaneous synchro-
nization of these three databases.

In parallel to the nucleotide databases, protein databases were formed,
initially under the guidance of Amos Bairoch at the University of Geneva. This
eventually led to the formation of Swiss-Prot in 1986 (see Chapter 16 for more
discussion on Swiss-Prot).

Today, both the original primary (archival) and evolving secondary (curated)
databases with their associated analytical tools are indispensable in the modern
laboratory. Learning how to use the web-based databases is a hands-on
experience. While we will try to emphasize issues of overall relevance, the
purpose of this chapter is to give the reader an overview of the main sequence
databases and analytical tools on the web. A detailed description or exhaustive
list is beyond the scope of this chapter but exists in well-known bioinfor-
matics textbooks (2) and yearly supplements to Nucleic Acid Research (3),
respectively.

The reader is encouraged to review the websites in Table 1 and attempt
worked examples to form a greater appreciation of the various database’s utility
in their field of research. A brief overview of the databases in Table 1 follows.
If a particular area of interest is not represented at all or in sparse detail, web
pages such as the ExPASy Life Science Directory offer a good overview of
database resources available.

1.1. Sequence Databases—Introduction and Principles

The sequence databases of the International Nucleotide Sequences Database
Collaboration are organized into divisions, which traditionally were based
on taxonomies. Whilst the majority of these are consistent across all three
databases, i.e., PRI for primate and PLN for plant, there are a few notable
exceptions. For example, ORG (organelle) and PRO (prokaryotic) are only
present in EMBL, while the HUM (human) division in DDBJ and EMBL are
included in the PRI (primate) division in GenBank.
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Table 1
Useful web sites for databases

URL Name

www.ncbi.nih.gov NCBI
www.ensembl.org Ensembl
genome.ucsc.edu UCSC Genome Browser
www.genecards.org GeneCards
http://bioinfo2.weizmann.ac.il/geneloc/index.shtml GeneLoc
www.genelynx.org GeneLynx
eugenes.org EuGenes
ca.expasy.org/links.html ExPASy LifeScience Directory
www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene Entrez Gene

Fortunately, the functional divisions are more consistent across the databases.
These include ESTs (expressed sequence tags; short 300–500-bp single reads
from mRNAs, which may not all be coding sequences), STS (sequence tagged
sites; short 200–500-bp unique sequences that identify the combination of
primer pairs used in a PCR assay, generating a reagent that is located to a single
position in the genome), GSS (genome survey sequences which are similar
to the EST division, except the sequences are genomic in origin), HTG (high
throughput genomic sequences which are unfinished DNA genomic sequences
generated by high-throughput sequencing centres), PAT (patent sequences),
CON (constructed records of chromosomes, genomes and other long DNA
sequences which include instructions on how to assemble pieces present in
other divisions into a larger piece).

For cross-platform portability, the sequence information in all databases is
stored in “flat-files”—plain text files—rather than proprietary database formats.
These flat-files can be separated into three main parts: the header (contains the
information or descriptors that apply to the record), the features (annotations
of the record), and the nucleotide sequence itself. Important features of the
header are the identification tags of the sequence. The accession number of a
sequence is the number that is always linked to a particular record. The number
is usually a combination of a letter(s) and numbers, such as a single letter
followed by five digits, e.g., U12345, or two letters followed by six digits e.g.,
AF123456. The version tag is made of the accession number of the database
record followed by a dot and a version number (and is therefore sometimes
referred to as “accession.version”). It is now the preferred method to refer to
a particular sequence across all three databases. The GI (GenInfo) number is a
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series of digits that are assigned consecutively to each sequence record, and is
processed by NCBI only. The GI number has no relationship to the Accession
number of the sequence record.

All of the major sequence databases contain core features such as detailed
gene information, a genomic-mapping interface, and associated analytical tools.
However, it is important to remember that each of the databases and browsers
discussed below presents a particular view of the human genome. In some cases
it may be worthwhile to look at the same region with different web interfaces
because there are some tools unique to each site. For example, GenBank does
not allow researchers to display their own data in the context of a genome
assembly, but it does provide other mapping resources such as the Mitelman
chromosomal aberration database and the Stanford human hybrid cells map.
Additionally, because the three sites discussed below use different methods to
align mRNAs and ESTs to the genome, as well as different gene prediction
algorithms, the positions and characteristics of the genes often vary.

1.2. Database Browsers

1.2.1. NCBI (National Center for Biotechnology Information)

The key to accessing information through the NCBI website is the Entrez
system (Fig. 1). The existence of relationships between a gene and its various
annotations—such as alternative transcripts, genetic locus, protein structure,
mutations or pathology—lead to the formation of an integrated search interface.
The Entrez system uses an easy to absorb interface and exploits simple searches
with Boolean operators (such as and or not) for queries. The Entrez search
result also briefly describes the nature of each database should the user require
more information (4).

An alternative way to conceptualize collating genetic data is to organize it
through genetic loci. NCBI’s “Entrez Gene” (5) provides this facility allowing
an overview of key connections in the map, sequence, expression, structure,
function, citation, and homology data.

Building up from GenBank, which is a very redundant database of unordered
sequences, an important advance to eliminate the redundancy in this led to
the introduction of the RefSeq collection (6). In RefSeq, each biological
entity (DNA, mRNA or protein) is represented once and only once (it is a
non-redundant dataset). Their distinct accession numbers distinguish RefSeq
entries from other entries at NCBI; “NT_” indicating genomic contigs, “NM_”
indicating mRNA and “NP_” representing protein sequences. There are also
computational predictions, which start with either “XM_” or “XP_” for model
mRNAs and proteins respectively.



Internet-Based Resources 313

An important interface for scientists is often visualizing the genomic context
of a gene in question. NCBI’s viewing interface is called “MapViewer” and
offers a tight integration with other NCBI resources allowing users to examine
features in depth without leaving the site.

1.2.2. Ensembl

Certainly the most visually attractive of all the web-based interfaces, Ensembl
is rather intuitive to use (Fig. 2a). There is a thorough annotation pipeline and
a strong emphasis at EBI (European Bioinformatics Institute) on producing
genome annotations in a timely manner with a high specificity (7) , in order
not to over predict genome features.

By default, Ensembl displays four types of transcripts: (1) Ensembl
transcripts (predicted by Ensemble), (2) Vega transcripts (from the Vertebrate

(a)

Fig. 1. (Continued)
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(b)

Fig. 1. a: An overview of the databases linked together through the Entrez system.
b: An example of a search for the gene PTEN.

Genome Annotation (VEGA) consortium (a manually curated database)), (3)
EST transcripts (based on EST evidence), and (4) GenScan Genes (gene predic-
tions based on the gene prediction program GENSCAN). Along with the UCSC
browser (described below) Ensembl allows for DAS (distributed annotation
system) integration, which enables a researcher to gather genome annotation
information from multiple distant web sites and display them in a single view.
DAS is also currently used by the Ensembl browser to cover proteomic annota-
tions and annotation of non-positional features.

A nice feature of the Ensembl site is the BioMart data-mining feature that
allows the export of answers to complex, potentially genome wide queries
just by filling in three pages on the web site (START—to define the dataset;
FILTER—to apply combinations of various properties and OUTPUT—to
choose properties of the filtered data set to be exported).

There are two features that make Ensembl particularly useful for high-
level analysis. First, the software and underlying databases are available for
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download, enabling a scientist to run searches and analysis on their own
computer, clearly facilitating access issues. Second, there are both Java and Perl
“Application Programming Interfaces” or “APIs” which to external users may
be useful to automate the extraction of particular data, to customize Ensembl
to fulfill a particular purpose.

1.2.3. UCSC (University of California, Santa Cruz)

The UCSC genome browser (8) is based on annotating the genomic backbone
with various levels of information in layers called “tracks.” Each track repre-
sents a different feature such as known genes, evolutionary conservation or
single nucleotide polymorphisms (SNPs) and can be submitted by outside
researchers (Fig. 2b). Additionally, the “Table browser” feature allows all the
data to be downloaded in text form and offers the possibility of combining
unions or intersections of tracks, which is a very useful tool. These features
offer a powerful way to display rapidly a wide range of genomic data. For
example, a particularly useful aspect of the UCSC interface is the ability to
assess graphically multiple EST alignments or likely real transcripts using the

(a)

Fig. 2. (Continued)
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(b)

Fig. 2. a: A snapshot of the Ensembl browser. b: A snapshot of the UCSC genome
browser interface demonstrating the “tracks” of information under the gene PTEN on
Chromosome 21q22.2.

“Alt-Splicing” track which summarizes splicing information by showing only
exons and splice junctions that have an orthologous exons or splice junctions in
the mouse, or that are present three or more times. Other aspects that researchers
may find of use are the FTP site where sequences and their annotations can be
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downloaded for desktop analysis or the excellent online training available to
explore its many features (9).

Finally, a minor but important point to understand is that the naming conven-
tions for the human gene assemblies differs between UCSC and NCBI so for
example, build 36.1 happens to be the 36th assembly of the genome entered at
NCBI but corresponds to the March 2006 or hg18 UCSC assembly.

1.3. Gene Integration Resources

Similar to the concept behind “Entrez Gene” there are now a number of web-
based resources that provide hyperlinked summaries of gene-related information
so that a researcher can initially get a quick overview before choosing to
go into greater depth on a particular issue. Only four are mentioned here
but there are many others available. (1) GeneCards (10) provides a succinct
summary of various gene attributes organized in an ease to read manner. (2)
GeneLoc (11) provides useful summaries of a gene’s genomic geography. (3)
GyneLynx is another useful resource (12). There are two types of queries
possible; a standard search term and a DNA sequence search that can accept raw
sequences, accession IDs, or sequence files that can be uploaded. The breadth
of information presented and collated on one page makes it a useful starting
point for gathering information about a gene. (4) euGenes (13) (Genomic
Information for Eurkaryotic Organisms) has a multi-species search interface
and also provides integration of gene ontology (GO) selection criteria with
other gene attributes.

2. Analytical Tools
Bioinformatics researchers have developed a wide range of tools for

analyzing biological sequence data. Often different groups will develop
very similar tools—just as broadly comparable genome browsers have been
developed. Because these tools are so similar, often it is less important which
tool is selected and more important what “parameters” are used for the analysis.
These parameters can control many different aspects of the analysis, such as
sensitivity/specificity trade-offs, computational efficiency, and output charac-
teristics. In this section, we overview both the major approaches used for
standard sequence-analysis tasks and the key parameter choices that a user must
make.

2.1. Nucleotide-Level Analysis Techniques

Because there are four nucleotide bases (A,T,C,G), the analysis of nucleotide
sequences is generally much less complex than that of protein sequences.



318 Joshua and Boutros

2.1.1. DNA Sequence Alignment

The development of robust algorithms for the alignment of DNA sequences
to one another might be considered the origin of bioinformatics. Although
work on modeling metabolic networks predates sequence-alignment research,
sequence-alignment algorithms have become integral components of molecular
biology research. Table 2 provides a listing of some key online resources for
sequence alignment.

Sequence alignment refers to the matching of two sequences, letter-by-letter,
with one another. This is commonly done by using a quantitative measure of
“sequence-similarity” that is encoded in a “substitution matrix”. This matrix
indicates the scoring penalty to be assigned when two non-identical bases are
aligned together, and the reward to be assigned when two identical bases are
matched. An algorithm is then used to find “optimal scoring regions”, which
contain many alignments of identical bases and few alignments of dissimilar
ones. Sequence alignment algorithms have been reviewed in a very accessible
manner in several texts (14,15). Sequence alignments can either handle pairs of
sequences, or many sequences simultaneously (Fig. 3). Here, we only discuss
the simpler case of pair-wise-sequence alignments, but note that several reviews
of multiple sequence-alignment algorithms exist (16–18).

Table 2
Selected tools for sequence alignment

URL Notes

www.ncbi.nlm.nih.gov/BLAST Gateway to NCBI’s comprehensive
BLAST resources. Suitable for all
types of alignments.

genome.ucsc.edu/cgi-bin/hgBlat UCSC’s BLAT server is ideal for
aligning ESTs/mRNAs onto
genomic assemblies.

www.ebi.ac.uk/Tools/similarity.html Gateway to ENSEMBL’s
comprehensive sequence-alignment
resources. Similar to those offered
by NCBI.

www.ebi.ac.uk/embl_services/index.html Gateway to EMBL’s
sequence-analysis options, which
include many more tools than NCBI
or ENSEMBL.
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Fig. 3. Sequence-alignments can be divided into two groups based on the number of
sequences in the alignment. Pair-wise alignments involve only two sequences, and are
much less computationally demanding than multiple sequence-alignments. In general,
conserved bases are highlighted by shading in multiple-alignments.

Pair-wise sequence alignments can be divided into two basic classes:
global alignments, which attempt to align complete sequences, and local
alignments, which look for short, well-matched regions (Fig. 4). By far the
most common sequence-alignment program is BLAST (basic local alignment
search tool), which, as its name indicates, performs local alignments. The
popularity of BLAST is largely a result of two factors. First, it is a very rapid
algorithm, capable of finding relevant matches in minutes. Second, because

Fig. 4. Sequence alignments can be divided into two groups based on the extent to
which the alignment covers the sequence. If an alignment covers the entire extent of a
sequence, the alignment is called a “global” one, whereas if it is broken up into local
regions of higher similarity, often called “hits,” this would be a local alignment.
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NCBI researchers developed BLAST, it has been extensively integrated into
the NCBI web site, and has been given a very user-friendly interface. Indeed,
BLAST is actively developed and has undergone several improvements since
its original publication (19), such as adding the ability to seamlessly handle
gaps within a sequence (20), more accurate statistical estimation (21,22), and
addition of versions of BLAST specialized for specific tasks (23).

While many other sequence-alignment algorithms outside of BLAST (24,
25) exist, the major parameter-selection choices for all pair-wise alignment
algorithms are similar. First, and most critically, the user must select a database
to query for this alignment. The default database options are typically very
liberal, and often include sequences from multiple species. For many gene-
search queries, for example, a species-specific EST database is more appropriate
than a database containing genomic and non-genomic sequences from multiple
organisms. Selecting an appropriate database reduces the number of spurious
matches, improves statistical significance, and thus reduces execution time.
Second, and equally important, a user often needs to select a “sensitivity”
parameter – this is called “word-size” for BLAST algorithms, and “ktup” for
FASTA algorithms. In general, lower values of these parameters ensure that
fewer hits are missed by the algorithms at the cost of increased execution time.
Detailed guidelines for choosing BLAST parameters are also available (26,27).
See Chapter 13 for more discussion on BLAST.

2.1.2. DNA Promoter Analysis

While experimental techniques to determine the genomic binding-sites
of transcription-factors are now becoming available (28–30), computational
approaches remain a common way of developing hypotheses about the
regulation of a given gene. In particular, lists of genes found to be co-expressed
in microarray experiments are commonly subjected to word-search or word-
enrichment analyses to identify novel or known transcription factors that might
be contributing to this regulation (31,32). For a listing of some key online tools
for promoter analysis see Table 3.

These tools generally follow one of three major approaches: (1) Phyloge-
netic footprinting, (2) word-frequency analysis, and (3) library-based motif-
searching. Phylogenetic footprinting exploits evolutionarily relationships to
identify well-conserved regions of DNA – such regions have been demon-
strated to be enriched for transcription-factor binding-sites (33,34). By contrast,
motif-searching analyses look for the over-representation of short DNA strings
in a series of genes, such as those identified by microarray analysis (35–39).
While word-enrichment searches can often identify novel transcription-factor
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Table 3
Selected tools for promoter analysis

URL Notes

bioportal.bic.nus.edu.sg/tres/ The TRES* database promoter search site offers
multiple analysis tools through a single interface.

www.cisreg.ca Listing of software tools from the Wasserman
laboratory—one of the leaders in prediction and
analysis of TFBS** data. Includes detailed
presentation slides.

jaspar.cgb.ki.se The JASPAR database is a free listing of known TFBS
sequences.

∗ Transcription regulatory element search.
∗∗ Transcription factor binding site.

binding-sites, library-based searches exploit databases of known transcription-
factor specificities (40). As such, library-searches are generally computationally
rapid, although sometimes less useful for knowledge-discovery processes.

Parameter choice for promoter-analysis is generally straightforward as
selection of a stringency score or a P-value threshold is typically sufficient. This
single parameter will often be the primary control for the sensitivity/specificity
trade-off for a given analysis.

2.1.3. DNA Primer Design

Polymerase chain reaction (PCR) analysis is another key component of
modern molecular biology. Because a large fraction of PCR specificity and
sensitivity is dependent on the primer sequences, an array of different compu-
tational approaches have been developed to help improve selection of optimal
primers. One of the most common programs, Primer3, provides detailed
biophysical modeling of primer characteristics (41). In addition, databases of
primer sequences have been developed (42) to allow users to leverage already-
tested PCR data more efficiently. See Table 4 for a listing of some key online
resources for primer-design.

More recently a number of groups have developed BLAST-based techniques
for validating primer-accuracy, particularly in the context of validating mRNA
expression microarray data. These programs, such as VPCR (43) and PUNS
(44) allow the user to determine rapidly if their primer pair will amplify multiple
products at various stringency levels. This ability to simulate the results of a
PCR reaction can be very powerful. For example, when reverse transcriptase
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Table 4
Selected tools for primer design

URL Notes

frodo.wi.mit.edu Primer3 is one of the most sophisticated,
flexible primer-design tools available.

okeylabimac.med.utoronto.ca/PUNS/ PUNS provides a flexible, multi-species
method for assessing primer-specificity.

PCR is used for assessing mRNA levels it is important to rule out the possibility
of genomic contamination. This is typically done by selecting primers that span
intron-exon boundaries. PCR simulation tools allow this to be done in a rapid
fashion, allowing genomic contamination to be ruled out for specific pairs of
primers.

2.1.4. RNA Analysis

Although DNA can be considered as primarily a linear chain, RNA can fold
into complex three-dimensional shapes—shapes which often have functional
roles (45). As a result RNA analysis can be considered as a hybrid between
three-dimensional protein analysis and linear DNA analysis. For example, an
extensive study of the 3’ and 5’ untranslated regions (UTRs) of human mRNAs
revealed a variety of novel sequences that appear to be associated with RNA
binding proteins, and may be functionally relevant (46). For a listing of some
key tools for RNA analysis, see Table 5.

Table 5
Selected tools for RNA analysis

URL Notes

www.bioinfo.rpi.edu/˜zukerm/rna/ Home-page for the Zuker lab – a leading
group in the study of RNA folding, and
developers of the popular mfold program.

www.tbi.univie.ac.at/˜ivo/RNA/ The Vienna package of RNA structure
prediction and comparison tools is a
comprehensive, but advanced, set of tools.
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2.1.5. RNA Folding

RNA folding can be assessed by a variety of different techniques, but
in general is much simpler to estimate than is protein folding. The RNA
folding problem can be simplified to that of determining which base-pairs are
“paired,” and which are “unpaired” (47). Groups of paired bases form “beads”
of structure surrounded by flexible, unordered single-stranded RNA. These
beads fall into four general secondary-structure classes: helices, loops, bulges,
and functions (48).

While prediction can be computationally demanding, the tractability of
this problem is apparent in the diversity of approaches, each of which can
achieve relatively high (e.g., ∼70%) accuracies. The four major classes of
algorithms used to predict the three-dimensional shape of RNAs are called
the “naïve,” “empirical,” “homology-based,” and “thermodynamic” algorithms.
These algorithms are mainly distinguished by their simplifying assumptions. For
example, naïve approaches exploit statistics from known structures to predict
new structures. By contrast, thermodynamic approaches assume that the process
of folding involves a descent down a free energy well, to a maximally stable
conformation. A variety of web-servers exist for exploiting these algorithms,
each with their own specific parameters. Naïve algorithms generally take a
probability threshold; while thermodynamic algorithms require determination
of how “quickly” the structure might be expected to reach its most stable
state i.e. cooling temperature. In general these methods are highly sensitive to
parameter choice, and careful review of each individual program is necessary
to obtain accurate results (49).

2.2. Protein-Level Analysis Techniques

Analysis of proteins is generally much more complex than the analysis
of nucleotide sequences. This is not only a result of the folding of proteins
into complex three-dimensional shapes, but also from the greater complexity
of the 20-letter amino-acid alphabet relative to the simpler, more chemically
homogeneous nucleotide alphabets. While proteins can be analyzed with motif-
searches, much like those used in promoter-analysis (50), the focus here will
be on the analysis of protein structure and protein-protein interactions.

2.2.1. Protein Structure

The prediction of protein structures de novo, from the primary structure
amino-acid sequence alone, remains an active area of investigation. One of the
major problems in predicting protein structure is the immense computational
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complexity involved in estimating the structure of even a short peptide. Each
individual side-chain to side-chain or side-chain to backbone interaction must
be modeled, and can have effects that propagate to spatially distant regions of
the protein. Indeed, it is just this physical flexibility that gives proteins much
of their biological versatility, but it makes computational analysis intractable
with brute-force algorithms. A listing of some key tools for the analysis and
visualization of protein structures is found in Table 6.

For protein structure analysis, three sophisticated approaches are employed.
The first uses so-called “comparative” algorithms to generate complete struc-
tural models based on sequence-similarity to a protein with an experimentally
known structure. Unfortunately, a sequence-similarity of at least 30%, and
possibly as high as 50%, is thought to be needed for accurate application of
this method, making it inappropriate for most proteins (51).

The second approach involves de novo analysis to avoid this problem
entirely, and predict three-dimensional structure directly from primary
sequence. These methods are based on the assumption that proteins will
generally fold into maximally stable states, and are thus related to “thermody-
namic” RNA folding algorithms. The ROSETTA web-server is a major resource
for this type of analysis (52).

The last approach for predicting protein structures involves “threading”
algorithms. Like the comparative algorithms, threading methods exploit
databases of solved structures. In this case, the sequence of the protein under
investigation is “threaded” through known crystal structures. The energetic
stability of the resulting alignments is calculated, and used to determine the

Table 6
Selected tools for protein structure analysis

URL Notes

bmerc-www.bu.edu/psa/ The Protein Sequence Analysis server predicts
secondary structure based on primary
sequence.

www.ebi.ac.uk/Tools/structural.html EBI provides an extensive of structural-analysis
tools

www.rcsb.org/pdb/ The Protein Data Bank is the standard
repository for solved three-dimensional
structures.

ca.expasy.org/spdbv/ The Swiss PDB Viewer is an outstanding tool
for working with three-dimensional structures.
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accuracy of the threading (51). With increasing numbers of structures being
solved, threading methods are gaining in popularity.

2.2.2. Protein–Protein Interactions

An emerging area of research is the prediction, characterization, and
integration of protein-protein interactions. These interactions have been deter-
mined by a variety of high-throughput experimental techniques, such as mass
spectroscopy (53) and yeast-two-hybrid approaches (54). A variety of compu-
tational approaches have been developed to identify novel protein-protein inter-
actions. These range from phylogenetically-based techniques like gene-fusion
analysis (55) and cross-species extrapolations (56), to techniques exploiting
other sources of data like co-expression analysis (57), co-localization (58), or
co-essentiality (59). See Table 7 for a listing of some key online resources for
protein-protein interaction analysis.

With such a diverse array of methods for predicting protein-protein
interactions computationally or discovering them experimentally in high-
throughput approaches, the organization and analysis of protein-protein inter-
action networks has become a major field of research. A series of databases
have been developed to store known or predicted protein interactions (60),
some of which include annotation to computational sources of support for these
interactions (61). Similarly, several groups have looked at motifs within these
networks (62) in an effort to determine whether there are broad classes of
functional regulation that can be identified and investigated using a similar
battery of experimental techniques.

While this type of work on validating and storing of protein-protein interac-
tions is ongoing, effort is now underway to exploit these interaction networks
and to use them in the context of broader biological investigations. For example,
an extensive integration of ChIP-chip (transcription-factor binding), mRNA

Table 7
Selected tools for protein-protein interactions (PPIs)

URL Notes

ophid.utoronto.ca OPHID is a comprehensive database of both known and
predicted human protein-protein interactions. It combines
these interactions with sources of computational evidence.

www.hprd.org The Human Protein Reference Database is an extensive
listing of literature-curated human PPIs.
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expression, and protein-interaction data was recently published (63). Similarly,
genes whose expression is perturbed in lung cancer have been shown to occupy
central, well-connected positions in protein-protein interaction networks (64).
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Developing Decision Support Systems in Clinical
Bioinformatics

Vitali Sintchenko and Enrico Coiera

Summary

There is a growing demand for tools to support clinicians utilize genomic results generated
by molecular diagnostic and cytogenetic methods in support of their decision-making. This
chapter reviews existing experience and methods for the design, implementation and evaluation
of clinical bioinformatics electronic decision support systems (EDSS). It provides a roadmap for
identifying decision tasks for automation and selecting optimal tools for building task-specific
systems. Key success factors for EDSS implementation and evaluation are also outlined.

Key Words: decision support systems, decision-making, clinical bioinformatics; genomics;
artificial intelligence; risk assessment.

Abbreviations: EDSS – electronic decision support systems; LOINC – Logical Observation
Identifier Names and Codes; ROC – receiver-operating characteristic curve; SNOMED® —
Systematized Nomenclature of Medicine; UMLS – United Medical Language System

1. Introduction
Computerized decision support systems have become an essential part of

the vision of evidence-based decision-making, aimed at enhancing the quality
and effectiveness of clinical decisions (1,2). The clinical decision process is
challenged by the amount of clinical data now available, and the expanding
knowledge base generated by new technologies and clinical trials. For example,
there are estimates that in just a few years, primary care practitioners will have
to know how to employ as many as 100,000 new genetic screening tests (3).
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Decision aids can significantly reduce human error and have been advocated
as a mechanism for the translation of genomics, proteomics, transcriptomics,
and metabolomics into new clinical decision models, leading to more person-
alized medical approaches (3). Decision aids with a clinical bioinformatics focus
have been recently developed including patient-specific risk assessment tools
with potential for early warning, risk prediction and assessment, and treatment
follow-up (5–7). They target the range of monogenic inherited disorders,
somatic mutations and gene expression profiling as well as complex multifac-
torial disorders (8). For example, personalized risk calculators for breast cancer
(see Note 1) and preoperative complications based on genomic data have been
developed (5,9,10) (see Note 2). They also notify clinicians when their patients
might be eligible for a pertinent clinical trial based on either their genotypic or
phenotypic patient characteristics (3).

We define electronic decision support systems (EDSS) as tools that provide
access to knowledge stored electronically, and that aid clinicians in making
decisions. They encompass a variety of systems and interventions such as
computerized alerts and reminders, expert systems, electronic clinical guide-
lines, practice protocols, pathology order sets, and clinical workflow tools.
Software designed to support biomedical research tasks such as sequence
similarityandalignmentassessment, geneorproteindiscoveryandprediction, and
genetic classification and automated sub-typing algorithms have been reviewed
elsewhere (11,12) and will not be considered here (see also Chapter 17).

EDSS in clinical bioinformatics do differ from traditional decision aids
in some ways, usually because they focus either on new clinical tasks or
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Fig. 1. Risk assessment decision support.
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new types of information. Specifically, they may address decisions related to
early detection and prognosis of diseases at the pre-symptomatic stage (Fig. 1)
and utilize risk calculations based on genomic, proteomic or transcriptomic
data. Such decisions are often bound by significant uncertainty, they are time-
consuming, and clinicians are unlikely to be familiar with these tasks.

Clinical bioinformatics EDSS, in contrast to conventional EDSS, can enhance
our capacity for early detection and treatment allowing time for preventative
interventions. For example, the assessment of alternatives is assisted by calcu-
lation of patient-specific risks of diseases with a large genetic component
or outcomes associated with the carriage of genes with high penetrance and
processing complex molecular typing patterns and issuing clonal alerts when
matching genotypes are detected.

Examples of task-specific clinical decision support systems in use are listed
in Table 1. Cancer prognostics has been one of the first test cases for bioinfor-
matics EDSS, given the fact that cancer is caused by genomic instability, and

Table 1
Task-specific decision support systems in clinical bioinformatics

Task Information Support Examples of Systems

Provision of
information relevant
to the decision to
assess alternatives

Evidence-based information
about options and chances
of different outcomes
occurring with these
options

Education and decision
counseling

Risk Assessment in
Genetics (RAG) (5)
Breast cancer
management decision
aid (13)

Help with
the structuring
of a decision
and preference
clarification

Information about diagnostic
biomarkers and
biomarkers of disease
progression
Information about
personal risk levels

AdjuvantOnline
www.adjuvantonline.com

Processing of the
information

Calculation and/visualization
of patient- or
population-specific risks
Choice of the ‘best’
option e.g., the most
cost-effective one

HIV genotypic resistance
test interpretation
systems (7)
Biosurveillance alerts
(identification of
molecular clusters) (14)
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microarrays potentially allow assessment of patients’ entire expressed genomes.
Analysis of breast cancer patients’ expression patterns can already be highly
correlated with recurrence risks (15). Family breast cancer risk assessment
tools to estimate patient susceptibility, survivability and recurrence have been
employed to identify individuals at high risk of cancer who may benefit
from targeted screening or prophylaxis, e.g., tamoxifen chemoprevention for
women aged 35 or older with a 1.67% or higher 5-year breast cancer risk
cutoff calculated on the Gail model (9). Evidence suggests that EDSS can
successfully support tasks related to clinical decisions associated with genomic
medicine by providing relevant information at the point of decision-making
(13,16).

2. System Design
2.1. Choice of Tasks Suitable for Automation

The design of a clinical EDSS begins with the characterization of a decision
task, and includes identifying the available data, the available knowledge to
guide the decision process, the setting in which the decision is made, the
decision maker’s specific needs and resources, the task’s informational structure
and the specific information needs of defined subtasks such as data input.
Failure to adequately characterize the task to be supported is a common cause
of poor system performance once deployed in a working setting, independent of
the quality of the software system itself. Indeed more than half the errors which
occur during systems development may be due to requirements errors (where
the requirements specification does not match actual user requirements) (3).

Practitioners with different training and clinical roles may prefer quite
different tools to optimize their decisions. For example, a primary care practi-
tioner (also called general practitioner, or family physician—see Chapter 19)
dealing with a patient anxious about her breast cancer family risks will
probably need a very different tool compared to that required by a specialist
surgeon advising the same patient about her treatment options. The uptake of
EDSS is also influenced by the attitudes of decision-makers. There is signif-
icant variability in personal beliefs and preferences for evidence seeking and
decision support between different clinical professional groups and individual
clinicians.

Decision support is especially relevant for tasks that are cognitively
demanding, routine and high volume, or are error-prone or infrequent but have
important outcomes. Increasing complexity of a decision process is likely to be
associated with an increased risk of human error, either because the decision
task exceeds inbuilt human cognitive limits such as short term memory, or
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because of work-arounds or heuristics which attempt to simplify the task but
result in poorer decision outcomes. A corollary is that EDSS are unlikely to
be adopted in situations in which they impose additional workload but deliver
minimal additional benefit, e.g., for routine clinical decision processes which
are well understood, are of minimal complexity and impose little cognitive
load. Traditionally areas of high adoption for EDSS include clinical labora-
tories, where decision volumes are high, or in medication prescription support,
where the complexity and risk of drug-drug interactions is such that unassisted
prescribing becomes an unacceptable and unsafe clinical practice.

If decision support does not reduce a complex task into a simple one, without
loss of decision quality, then the performance of the task is unlikely to benefit from
automation. Complexity of a task is thus a central feature in determining EDSS
success (16,17). From the perspective of information theory, task complexity
measures the amount and structure of the information that needs to be processed.
Complex tasks may have a large number of subtasks, inputs and products with
elements that are probabilistic in their behavior and may evolve over time. The
process of decision-making and flow of associated data are often represented in
functional specifications as Data-Flow Diagrams (see Fig. 2 for an example).
Decision complexity can be assessed by one or a combination of approaches,
e.g., minimum length of the message (18), evaluation of cognitive effort (19),
and Clinical Algorithm Score (20). To decide whether automation will benefit
a task, the following stages have been suggested as a good filtering process:

Validity 
check

Compare 
to 

previous 
patterns

Issue a
clonal
alert

Matching 
pattern

Valid new 
result

Previous
result

New test 
result

Valid test 
result

New outbreak 
result

No match

Patient
database

Infection control 
database

Fig. 2. A data-flow diagram that graphically represents the process and data flows
within a biosurveillance system. Bubbles depict processes, vectors depict data flows,
and straight lines depict databases.
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1. Select the domain and decision tasks
2. Evaluate the complexity of knowledge required for the clinical tasks selected
3. Select the (potentially) most cognitively demanding tasks based upon the

comparison of their complexity
4. Assess unaided and EDSS-aided cognitive effort for the selected tasks, to determine

if complexity reduction is possible with the use of an EDSS
5. Select computational tools to achieve reduction of task complexity for the user

Sintchenko and Coiera (17) provide more details on the specific methods for
task complexity assessment.

2.2. Building the EDSS

2.2.1. Components of an EDSS

A decision support system at its most abstract encodes one or more decision
procedures within a knowledgebase, and based upon data presented to it by a
database, draws inferences based upon a predefined set of decision rules. The
knowledgebase is essentially a store of decision procedures, which is used to
generate the EDSS recommendations (Fig. 3). For example, a set of if-then
rules might be used to encode which diagnosis is most likely based upon the
presence or absence of patient data.

The decision rules are the methods used to match the knowledgebase to the
database, and are typically either the laws of probability, e.g., when the EDSS
is required to make suggestions based upon likelihoods, or the rules of logic
as might occur when knowledge is encoded as a set of if-then rules. Other
well-known decision methods include neural nets and decision trees (see (8) for
more details). The level of accuracy needed for a prediction rule to be clinically

x=3

y=4

z=102x + y =  z

database

knowledge base

Fig. 3. A decision support system encodes one or more decision procedures within
a knowledge base, and based upon data presented to it by a database, draws inferences
based upon a predefined set of decision rules (8).
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useful is more stringent that necessary for determining that gene expression
profiles significantly differ between two groups. For example, a predicted 70%
recurrence probability should be treated quite differently by clinicians if the
associated uncertainty is 30%, than if it were 2%.

The challenge for most EDSS is the process of building the knowledge
base. Traditionally there have been two separate processes available. In well-
understood domains, where human experts are available to articulate the
decision procedures, the knowledge base can be hand crafted using one of
several different knowledge elicitation procedures. Perhaps the most widely
used and robust approach to hand crafted knowledge based development is the
ripple down rule (RDR) approach in which experts provide rules to classify
data sets such as laboratory results, and refine the knowledge base only when
the initial rule set fails (21). In domains where knowledge is less explicitly
modeled, then automated methods for knowledge base construction are favored.

2.2.2. Automated Knowledge Base Development

Machine learning or data mining methods are of particular interest in clinical
bioinformatics, where explicit knowledge is scarce or rapidly evolving, but
where there are large data sets which can be processed to discover likely
relationships between clinical conditions and biological markers. A wealth of
literature describes computational techniques to discover and explore quanti-
tative associations between classes or clusters and to generate semantic descrip-
tions of clinical categories, such as types of disease or prognostic conditions
(6,22–24). Most such methods include a training phase run on samples whose
classes are already known, and a testing phase, in which algorithm gener-
alizes from the training data to predict classification of new samples (Fig. 4).
Because of this directed training phase, prediction methods are referred to as
“supervised” classification methods.

For genomic or proteomic data, prediction generally refers to the classi-
fication of patients’ samples by characteristics such as disease subtype or
response to treatment (24,25). Choosing a prediction method requires selecting
from a vast range of techniques. Conventional linear discriminant methods
have been extended to include weighted voting (26), shrunken centroids (27),
and compound covariates (28). Powerful machine learning approaches are also
k-nearest neighbor prediction and neural networks (24). Two other classes of
algorithms are of growing interest for multidimensional learning problems:
support vector machines and decision tree classifiers (29,30). The number of
classes in the prediction problem and small sample size may impose additional
constraints on the choice of algorithms. Whereas decision trees, neural networks
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Decision support 
for pattern recognition

Decision support system:
Diagnostic pattern discovered

from training set

A
(e.g., non-virulent)

Diagnostic pattern that 
discriminates A from B

Results from test 
sample for diagnosis

Statistical or machine learning methods

B
(e.g., virulent)

A
(e.g., non-virulent)

NewB
(e.g., virulent)

Training set  input

Classification output

InputOutput

Fig. 4. Classification of data using machine learning approaches.

and k-nearest neighbors can, in principle, separate any number of output classes,
support vector machines and linear methods are inherently binary.

There is no universal pattern recognition or classification model to predict
molecular profiles across different data sets and medical domains. Many classi-
fication and knowledge discovery problems may require the combination of
multiple techniques not only to improve the accuracy and efficiency of the
analysis task (Table 2), but also to support evaluation procedures (24). There
are several tools that integrate open and scalable research platforms, e.g.,
WEKA—Waikato Environment for Knowledge Analysis (40).

Table 2 outlines the main stages in preparation of a training data set for use
by a machine learning algorithm. Data invariably require some preprocessing
to “clean” it of noise, ensure that classification labels are applied consistently to
all examples within the data set, and often will require some attempt to identify
the features within the data set most likely to be associated with the biological
phenomenon of interest. Whilst some algorithms will look for the most useful
features, others will benefit from the use of human domain expertise in selecting
a useful subset of the full feature set for learning. Simultaneous consideration
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Table 2
Machine learning scheme

Step 1. Preprocessing
Objectives Removal of irrelevant or redundant data, noise reduction and

normalization of the data from different samples
Methods 1. Heuristic noise reduction, e.g., smoothing filters, the wavelet

transform
2. Model-based noise reduction

Comments 1. Heuristic noise reduction - Adding irrelevant attributes reduces
the performance of decision trees and rules, linear regression
and clustering methods (31,32,40).

2. Model-based noise reduction —essential if the task involves
numerical attributes but the chosen method can only handle
categorical ones (33)

Step 2. Feature Extraction
Objectives Extraction of attributes corresponding to distinct pathological

states
Methods 1. Attributes from original space (31)

2. Projecting signals into a lower-dimensional space using linear
transformation, e.g., principal component analysis

Comments 1. Projecting signals—Principal component analysis (PCA)
identifies the orthogonal directions in which data vary
maximally. Very sensitive to the choice of vectors thus criteria
for selecting vectors should be determined prior to feature
extraction (34,35,40).

Step 3. Feature Selection
Objectives Reduction of dimensionality of the data and increase the

likelihood of successful classification
Methods 1. Filter method

2. Wrapper method
3. Embedded methods

Comments 1. Filter method —Independent assessment based on general
characteristics of data. Determine the subset for classification
by ranking individual features based on selection criteria, e.g.,
t statistics (36).

2. Wrapper method—The learning algorithm is wrapped into the
selection method. Determine the subset for classification by
evaluating the relevancy based on metrics of a classifier trained
using the subset of features. ROC analysis can be used to
measure the relevancy of individual attributes (31,37).

(Continued)
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Table 2
(Continued)

3. Embedded method—Implicitly perform feature
selection as a part of the classifier training process,
e.g., decision trees (35,36).

Step 4 Classifier Training
Objectives Distinguish classes based on selected features
Methods 1. Unsupervised machine learning or clustering

2. Supervised machine learning
Comments 1. Unsupervised machine learning or clustering—Natural

groupings are identified based without predefined
“correct” class membership examples, e.g., hierachical
clustering algorithms, self-organizing maps (36).

2. Supervised machine learning—Classifier is developed
using a subset of data with predetermined classes, e.g.,
artificial neural networks, k nearest neighbor, linear
discriminant analysis, support vector machine, Naïve
Bayes, rule induction etc (32,38–40).

Step 5 Classifier Evaluation
Objectives Assess the performance of a classifier
Comments Ideally, separate data sets should be used for stages

4 and 5. In practice, however, data partitioning of a
single data set, such as 10-fold cross-validation or
bootstrap sampling are employed for small size
datasets. Over-sampling the minority class and
under-sampling the majority class have been common
methods to resolve biased classification due to
imbalanced data (31,35).

of features, e.g., a composite medical index or panel of markers, may provide
more information than individual indicators because the predictability of an
outcome is based not on presence or absence of several biomarkers or their
linear summation, but on a complex, non-linear relationship between them.

2.2.3. Standards for Data Integration

Information which is relevant to genomic profiling exists in a variety
of sources and formats. For EDSS which are “home grown” using local
data, and which will only have local institutional use, there may be no
compelling reason to adopt a standardized approach to representing data.
However, there is an increasing focus on linking disparate databases, disease
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Table 3
Standards for data representation and storing

Standards Examples URL / Reference

Knowledge
engineering
standards

CommonKADS www.commonkads.uva.nl
OIL www.ontoknowledge.org
OML www.ontologos.org/oml
Knowledge Query and

Manipulation Language
www.cs.umbc.edu/kqml

Software
engineering
standards

Case Data Interchange
Format

(44,45)

Information Resource
Dictionary System

(44)

Open Information Model Microsoft
Unified Modeling

Language
(41)

WWW standards XML www.w3.org/XML
Document Content

Description
www.w3.org/tr/note-dcd

Resource Description
Framework

Web Ontology Language www.w3.org/2001/sw/WebOnt

Bioinformatics
standards

MAGE-ML Microarray
and Gene Expression
Markup Language

www.geml.org

Clinical Bioinformatics
Ontology

www.clinbioinformatics.org

BioPathways Consortium www.biopathways.org
Gene Ontology Consortium www.geneontology.org

Medical
terminology

SNOMED-CT www.snomed.org
UMLS 41

registries, and clinical repositories, and for this to occur the task is substan-
tially simplified if all data are represented in as uniform and standard a
way as possible (Table 3). For example, databases of microbial genotyping
results and clinical observations relating phenotype to genotype form an
important part of the genetic variation data landscape. A compilation of
microbial reference sequences (RefSeq) specifying gene name and DNA
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sequences can be found at http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi
(bacterial RefSeq), http://www.ncbi.nlm.nih.gov/genomes/FUNGI/funtab.html
(fungal RefSeq) and http://www.ncbi.nlm.nih.gov/genomes/static/vis.html
(viral RefSeq).

The ability to capture and share profiling data depends on shared use of a vocab-
ulary (the words), syntax (the “sentence” structure), and messaging protocols.
The most developed health care vocabularies are the United Medical Language
System (UMLS, National Library of Medicine), LOINC (Logical Observation
Identifier Names and Codes; Regenstrief Institute) and SNOMED® (Systematized
Nomenclature of Medicine; College of American Pathologists) (42).

LOINC is an exhaustive catalogue of laboratory tests distinguished by source,
e.g., serum or tissue, method, e.g., microscopy, PCR, or immunoassay, and the
format in which the result is represented (ordinal, nominal or quantitative). The
LOINC number describes a test, but does not provide the result of a specific
test (42). In contrast, SNOMED® is a concept-oriented electronic vocab-
ulary pioneered by the College of American Pathologists. SNOMED-Clinical
Terminology (SNOMED-CT) contains around 364,000 concepts, 984,000 terms
and 1.45 million defined relationships between concepts (43). It distinguishes
concepts for a condition, e.g., haemochromatosis, the causative mutation, e.g.,
BRCA1, and diagnostic test, e.g., PCR. The UMLS maps the many different
source terminologies available, and is a kind of terminological rosetta stone.
It models individual systems, identifying for example the information about a
laboratory test term, the source terminologies it comes from, which terms it is
related to in the hierarchies of those source terminologies, what its synonyms
and lexical forms are, and which other terms it is related to in some source
terminology (43). It does not, however, strive to provide definitional infor-
mation (such as what the test measures are or what its specimen is). However,
synergistically, these vocabularies can support the integration of the high-level
terms used in decision rules, e.g., “Haemochromatosis,” with the relatively
low-level terms used in the clinical records, e.g., “Blood test.”

2.2.4. Socio-Technical Aspects of EDSS Implementation

The effective introduction and integration of new technology into
existing processes requires user participation in design and interdisciplinary
collaboration for iterative development. Decision making in healthcare is often
more related to agreement with social expectations and the caretakers’ percep-
tions of the clinicians’ role than to standard biomedical rules. Therefore, a
systematic approach to EDSS implementation, addressing characteristics of
users, tasks as well as organizational context is usually fruitful. Specifically,
implementation should take into account the differing needs of users with the
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variety of experience, training and clinical roles. System context also needs
consideration, focusing on the situated conditions of use with explicit organi-
zational goals, missions, control structures and communication modes. It is
important to keep in mind potential professional, technical and personal barriers
to uptake of EDSS (Table 4).

The implementation of EDSS faces the same barriers as the near-term
diffusion of genomic medicine. Enthusiasm for the promise of genetic medicine
on the part of medical geneticists contrasts markedly with the lack of relevant
knowledge on the part of decision makers (2).

3. Choice of Appropriate Evaluation Methodology
3.1. Evaluation Methodologies

Evaluation is central to any successful EDSS deployment, and should be
conducted throughout the system development, starting at the planning and
requirements stage and into implementation and the post release stages. Taking
an iterative view of information system development, we can conceptually think
of all these steps occurring within two different development cycles (Fig. 5):

1. Formative development cycle: The form that a system takes is iteratively determined
by assessing user needs, designing prototypes, and then getting user feedback on
system performance.

2. Summative assessment cycle: Once a system is robust enough for an outcomes
assessment, it is put on trial and the summation of system performance results are
used to drive the design of the next version of the system.

3.2. Formative Evaluation

At the formative stage of EDSS evaluation, performance of the system
is assessed including accuracy of predictions, quality of sources, currency
of knowledge and safety of recommendations. Iterative prototyping exposes
small samples of prospective users and/or designers to a succession of evalu-
ation protocols using simple models, storyboards, and interactive prototypes.
Prototype evaluation uses qualitative methods such as cognitive walkthroughs,
questionnaires, structured and informal interviews, focus group analyses,
heuristic inspections, and verbal probes. Such evaluation should also include
knowledge content evaluation with assessment of accuracy, sensitivity and
specificity of classification methods, and estimating the optimum number of
clusters to train genomic classifiers and learning parameters, as well as the
selection of data sets, relevant features and classification models.
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Table 4
Professional, technical, and personal barriers to usage of EDSS

Barriers Examples References

Barriers related to characteristics of EDSS

Rule validity 1. Opinion-based recommendations
2. Insufficient cross-validation
3. Unproven cost-effectiveness

(46,47)

System relevance 1. Limited applicability to clinical practice,
e.g., difference in patient mix.

2. Uncertainty about the “shelf-life“of EDSS

(48,49)

System practicality 1. Ambiguous output
2. Disruption to routine practice
3. Low uptake and clinical impact
4. Increase in consultation times

(8,50)

Barriers related to characteristics of EDSS implementation

IT support 1. Lack of integration into existing systems
2. Lack of IT infrastructure

(47)

Insufficient evaluation 1. Lack of pre-implementation evaluation
2. Lack of post-implementation evaluation

(51)

Medico-legal concerns No system for EDSS accreditation (50)

Barriers related to characteristics of EDSS users

Knowledge 1. Lack of awareness that quality of clinical
decisions may be poor

2. Over-estimation of self-reported
performance

(8,15)

Skills and abilities 1. Lack of IT skills
2. Belief that he/she cannot perform the task

of EDSS use

(47)

Attitudes and beliefs 1. Low outcome expectations
2. Doubts about EDSS credibility
3. Uncertainty about medico-legal

implications of EDSS use

(52,53)

Barriers related to characteristics of the organization or decision environment

Established practices 1. Over-reliance on passive methods
2. Inertia of larger organizations

(47)

Culture 1. Resistance to change
2. Little or no history of EDSS use

(52)

Resources 1. Limited resources (8)
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Knowledge of
organizational
performance

1. Poor quality of clinical audit
2. Difficulty in measuring of outcomes
3. Short-term outlook rather than appreciation of

long-term nature of EDSS impact and sustaining
change

(47,51)

Patient factors 1. Preference over choices in clinical management (51)

3.3. Summative Evaluation

A randomized, controlled trial is the ideal design for clinical impact analysis.
Alternatives to a randomized trial include a “before-after” impact analysis
(measures outcomes before, during and after using the EDSS) and an “on-off”
impact analysis or interrupted time-series (measures outcomes in alternating
time periods when the EDSS is or is not available). However, these designs are
weaker, subject to temporal and “wash-over” confounding.

Assessment of outcome measures for EDSS should be blinded to patients’
risk stratification and the decisions recommended by the EDSS. Ideally, this
means that one group of clinicians use the DSS to make clinical decisions and
a different group, unaware of the EDSS recommendations, assesses patients’
clinical outcomes and impact measures. The potential for bias is significant
when outcome events have subjective components.

Although a multi-institutional randomized study is the preferred trial design,
the risk of contaminating intervention and control groups is high and the logistic
and economic challenges of multicenter studies are formidable, especially
without previous strong evidence of impact. Therefore, single-site impact
analysis is important because it measures the actual effects of using the EDSS

Formative
Assessment

System
Design

Summative
Assessment

Fig. 5. The process of building an EDSS is an iterative cycle of forming the system
around user needs, designing appropriate interactions between the system and users,
and then evaluating the true impact of the system using quantitative studies (8).
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in clinical practice, which is critical for planning of successful multi-site
studies (4).

An important objective of EDSS evaluation is quantitative assessment of
potential impact of EDSS on patient outcomes, work practices and the intro-
duction of new errors. The potential benefits of EDSS can be summarized into
three groups:

1. Improved patient safety

a. Reduction of medical errors
b. Enhancement of clinical decisions and resource utilization

2. Improved quality of care

a. Improved compliance with guidelines and clinical protocols
b. Improved access to and use of evidence
c. Improvements in the patient satisfaction and the patient consent process

3. Improved efficiency of healthcare delivery

a. Reductions in costs and in physician time spent on administrative tasks

4. Optimization of resource allocation because of:

a. The individualized selection of procedure types and post-procedure follow-up
b. Optimization of personalized therapeutic modalities based on individual

molecular risk profiles
c. Cross-disciplinary treatment paradigm

Outcome measures for DSS should include predictive values, as well as
safety and efficiency. For clinicians, negative predictive value and safety
are most important because their primary concern is to minimize “missed”
patients who have the targeted outcomes. For insurers, positive predictive value
and efficiency are the most important because their major concern is cost-
effectiveness. Accuracy and other measures (sensitivity, specificity, and area
under the receiver-operating characteristic curve (ROC)) may be misleading
because they assume equivalent social value for true-positive and true-negative
results and may vary with the overall prevalence of outcomes.

Current evidence on the impact of bioinformatics EDSS is limited. It has
been documented that they can serve as an educational tool for low-risk patients
or can be a useful adjunct to genetic counseling for those at high risk. For
example, evidence from randomized controlled trials suggests that an inter-
active decision support is more effective than standard genetic counseling for
increasing knowledge of breast cancer and genetic testing among women at
low risk of carrying a mutation (13). The beneficial impact is more likely
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when an EDSS provides specific recommendations, or provides them automat-
ically as part of clinicians’ routine workflow. However, beneficial impact in
a research study (efficacy) does not guarantee beneficial impact in clinical
practice (effectiveness).

4. Conclusions
Successful decision support system design should be task-specific and

address situational response requirements and environmental characteristics
such as complexity and information overload. Electronic decision aids can
reduce decision errors (4) and also enhance what has become the shared and
collaborative process of the use of “omics” technologies for the diagnosis and
management of diseases. The dichotomy between the proliferation of evidence
such as clinical practice guidelines, and its low uptake, indicates that clinicians
are already struggling with information over-supply and concomitant compe-
tition for their attention (44,49). This has lead to the suggestion that the notion
of the “best evidence” should be replaced with a more complex notion of the
“most effective evidence delivery,” which takes into account both the inherent
potential of evidence to improve clinical decisions, as well as the likelihood
that its mode of delivery will be adopted (8).

There is a growing demand for tools to support the capture of genomic results
as generated by molecular diagnostic and cytogenetic methods, appropriate
controlled vocabularies, and applications enabling clinicians to utilize these
results to support their decision-making. Success of EDSS in clinical bioinfor-
matics will require planning robust prospective trials, analysis of health care
outcome and economic data, and developing new healthcare delivery models.
Indeed it is unlikely that the vision for personalized medicine will not be fully
realized without workflow integrated, and genomics based, clinical decision
support systems.

5. Notes
1. A straightforward electronic risk assessment tool for breast cancer developed by

scientists at the US National Cancer Institute and the National Surgical Adjuvant
Breast and Bowel Project allows a risk to be calculated for invasive breast cancer
www.cancer.gov/bcrisktool/. However, this tool demonstrates some the complex-
ities involved in electronic decision support. For example, the tool is not useful
in difficult cases such as ones with a known BRCA1 or BRC2 mutation or cases
with an earlier cancer or locular carcinoma in situ or ductal carcinoma in situ.
One of the seven questions used to assess risk asks for the woman’s race/ethnicity.
The five ethnic groups given include: White, Black, Hispanic, Asian or Pacific
and American Indian. However, responding to any of these groups except for
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“White” will provoke a disclaimer indicating that data on non-White ethnicities
are uncertain and so may not be accurate until more information is generated.

2. Data provided in reference (10) indicate that surgery in the USA costs $450
billion per year. On top of this there are additional costs related to complications
which total $25 billion. The latter costs will only increase as more surgery is
conducted on an increasingly ageing population. Pre-operative risk assessment
tools to guide perioperative management of high-risk patients are available but
their predictive value is very poor. Hence, a new and alternative approach is
“perioperative genomics” which is being used to determine why patients respond
so differently to a surgical intervention. The first step is to identify what genes
might contribute to post-operative complications, e.g., genes for inflammation,
thrombosis, cardiac arrhythmias, wound healing, infection, shock and so on. A
genetic “fingerprint” of these genes is then obtained pre-operatively so that an
individual’s particular risks can be identified early, and appropriate preventative
measures put into place. Getting this genetic profile will only the beginning. The
assimilation of the results as well as their overall interpretation for the clinician will
require informatics-based decision algorithms. A start along the approach described
has already been made to predict graft rejection. It is called the AlloMapTM in
which the expression of 20 genes is measured by quantitative PCR and then
translated into a clinically actionable score that can be used to diagnose cardiac
allograft rejection early and non-invasively (10, www.allomap.com/). However,
more sophisticated genomics and informatics will be required to predict those at
risk of post-operative complications.
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Summary

eConsulting, in all its contexts, can promote and improve the amount and quality of services
and knowledge transferred to and among the community of health care providers and consumers.
It can also improve the efficiency and effectiveness of the specialist and generalist workforce
and accessibility to the services provided. This chapter defines eConsulting, provides the context,
and introduces a conceptual framework to describe its current practice and future possibilities.
A clinical scenario of a patient with a breast lump is used to ground the molecular, clinical,
organizational, and social, legal, and ethical issues in real world practice. The approach/method
used is based on the clinical process, evidence-based practice, and appraising the quality, validity,
relevance, and usefulness of the information. The practicalities and utility of current eConsulting
tools are discussed with a view to future ubiquitous use. Working through this chapter should
assist readers to understand and describe (1) how eConsultations can link and translate scientific
research into clinical practice, (2) the current implications of eConsultations, (3) the future
potential of eConsultations.
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1. Introduction
1.1. The Context for eConsulting

The broadest context for eConsulting is eCommerce, which covers everything
we do as a society. This chapter focuses on eHealth, eLearning and eResearch,
which addresses the applications within an academic community to facilitate the
research, creation and sharing of knowledge to improve clinical practice and
health outcomes. eHealth involves the combined use of electronic information
and communication technology (ICT) to transmit, store and retrieve digital data
electronically for health and administrative purposes, locally and at a distance. It
can improve access to health services and information by all citizens.

eHealth services include electronic health records and information networks,
telehealth and online services, personal and portable communication systems,
health portals, and decision support tools to assist prevention, diagnosis,
treatment, health monitoring, and personal lifestyle management. The ubiquity
of access and low cost of distribution of information using ICT suggest
that eHealth services can promote cost-efficiencies, facilitate coordination and
integration in the health system, and improve equity of access to health services,
education and information by patients, healthcare professionals, healthcare
managers and authorities (1). eHealth can underpin and strengthen the organi-
zational relationships and behaviour within the health care team as a focus for
inter-sectoral and inter-professional service integration, research and knowledge
transfer among universities, health services and the community.

The Royal Flying Doctor Service (2), the first eHealth project in Australia,
is a precursor of more recent eHealth projects in this community (3,4).
Likewise, the Australian School of the Air has evolved to more sophisticated
eLearning programs such as Rural and Remote Medical Education Online
(www.rrmeo.org.au) and the Royal Australian College of General Practitioners
Online (www.racgp.org.au). eLearning and knowledge transfer can improve
the therapeutic and educational relationships and interactions among all the
“actors” in the network where health care and health education occur: health
care providers, consumers, managers, administrators, scientists/researchers,
educators, legislators and policy makers. The generic information sharing
process in this actor network (5) is the “consultation”.

1.2. eConsulting Defined

According to the Oxford English Dictionary, a consultation involves two or
more parties taking counsel, conferring about, deliberating upon, considering,
meditating, planning, and contriving. The exchange of knowledge, information
and data among the “actors” (people and systems) in a consultation is the
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information flow. eConsulting is the use of electronic data transfer in cyberspace
(Internet) for information exchange and financial transactions, using voice,
video, and/or data transmission systems, between two or more actors at two or
more sites. The eConsultation may be

1. Synchronous, where the “actors” are present and interacting at the same time, e.g.,
teleconferencing

2. Asynchronous, where the “actors” do not have to be present and interacting at the
same time, e.g., discussion forums as well as more sophisticated programs like
knowledge-based online health advisors.

1.3. Models of eConsulting

There are two models for eConsultations:

1. Consulting model: a style of interaction in which an electronic decision support
(EDS) program serves as an adviser, accepting patient-specific data, asking
questions, and generating advice for the user about diagnosis and management. A
consulting system develops and suggests problem-specific recommendations based
on user input.

2. Critiquing model: a style of interaction in which an EDS program serves as a
sounding board for the user’s ideas, expressing agreement or suggesting reasoned
alternatives. A critiquing system evaluates and suggests modifications for plans or
data analyses already formed by a user.

A combination of consulting and critiquing approaches is usual in practice.

1.4. Tools for eConsulting

eConsulting tools, which can be web-based or desktop applications, may
focus on communication, conferencing or collaborative management or co-
ordination of activities or resources. Electronic communication tools send
messages, files, data, or documents between “actors”, facilitating infor-
mation sharing. Examples include fax, e-mail, listservs, voice mail and web
publishing. Electronic conferencing tools such as audio/video conferencing,
Internet forums or chat rooms facilitate the interactive sharing of information
and real-time text messages. More sophisticated examples are data confer-
encing using networked PCs with a common “whiteboard,” and electronic
meeting systems (EMS) in rooms equipped with a screen projector and
networked PCs. Collaborative management tools (or groupware) include time
management software to schedule and remind group members about events;
project management systems to schedule, track, and chart group tasks and
activities; workflow systems to manage tasks and documents within a business
process; knowledge management systems to collect, organize, manage, and
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share various forms of information such as “online health advisors” (6); and
social software systems to organize social relations of groups of “actors”
(www.darwinmag.com/read/050103/social.html).

1.5. “Actors” in eConsulting

The Actor-Network Theory (ANT) is a widely used approach to describe
and explain the complex relationships and interactions in human communities
and health service organizations (5). Developed originally to study scientific
practices (7), the ANT has become a generic framework to understand social
phenomena in health services and systems research. ANT defines society as
networks of heterogeneous actors, both human and non-human. It maps relations
that are simultaneously material (between things) and “semiotic” (between
concepts), e.g., the personal and professional interactions in a bank or laboratory
involve both people and their ideas, their equipment and their computers –
together, these form a single network. Society, the economy, organizations,
families, agents, computing systems and machines are all effects generated
through the material-semiotic interactions of actor-networks (5). A person is not
an isolated entity but is always linked to a heterogeneous network of resources
and agents that define him or her. Such actor-networks are not intrinsically
coherent and may contain conflicts, e.g. poor labor relations or incompatible
computer software.

Consider a human genetics agency which provides advisory, support and
training services to the community. The straightforward aspects of the service
can be provided directly to the consumer as a consumer-oriented online
genomics health advisor, with support by an automated frequently-asked-
question (FAQ) set-up and a “help desk”. Provider-oriented online resources
can support trained clinicians to conduct more complex genomic consulta-
tions and specialists and genomic counselors who support them. The system
can support the actors in the eHealth and eLearning actor-network. The ANT
approach can facilitate a more actor-centric clarification of the extent to which
the agency interacts with, shapes and is shaped by people, other technologies,
and institutions. This enables more actor-specific technology assessment,
budgets, professional development, consumer engagement and rigorous public
debate and analysis about the social, ethical and policy implications of genomic
knowledge and services (8). A possible model is the US National Institutes
of Health-sponsored GeneTests Web site (http://genetests.org/), a free medical
genetics information resource developed for clinicians, teachers and researchers.

The “actors” in an eConsultation can be the community, government, organi-
zations, clinicians, academics, managers, and software applications (Table 1).
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While the most widely documented form of eConsulting is online consulting by
government and in eCommerce (www.wikipedia.org), our focus will be clinical
eConsulting as represented in the following scenario.

2. Scenario: Sally has Breast Cancer
The process and impacts of eConsultations will be described and demon-

strated in the clinical context of Sally, a patient with a breast lump:

Sally, 50 years old, presents with a small breast lump. The family doctor (GP) who
examines her is uncertain if it is benign or malignant, and suggests a mammogram
as the next step. The patient questions whether she should have a mammogram as
there is radiation involved. If the doctor is not sure whether there is a lump or not,
shouldn’t she get a specialist opinion first?

The GP, recognizing that a normal mammogram in the presence of a breast lump
is almost invariably an indication for a biopsy, refers her to the local breast cancer
specialist. The appointment is made using email. The specialist’s examination and
subsequent mammogram and biopsy confirm breast cancer.

The management choices are surgery, radiotherapy, and chemotherapy or hormone
manipulation, depending on the stage of the cancer. A diagnosis of stage 2 breast
cancer (tumor is more than 2 cm but less than 5 cm) is made and Sally starts on
radiation with adjuvant chemotherapy (see Note 1).

Martha is Sally’s first cousin on her father’s side. She is aged 57 years and has
been taking hormone replacement therapy for the past 4 years. She consults the GP as
she is concerned about the risk of breast cancer. She has gone to her computer at home
and “Googled” “breast cancer and screening,” which has added to her confusion.
How should the GP advise Martha?

Sally’s mother also consults the GP. She was born in Poland and emigrated from
there via Israel in the 1950s. She had been a smoker and had used some form of oral
contraception and, perhaps, hormone replacement therapy as well. What advice should
the GP give Sally’s mother who is particularly worried how this family susceptibility
might affect her family in their environment and workplace.

Sally has nearly completed her therapy and her family is planning a holiday in Bali
to celebrate. She seeks travel advice. How would her chemotherapy be affected by
any immunisations, e.g., Hepatitis A? How should she deal with “travelers’ diarrhea”?
Does Sally’s family history of breast cancer means she is susceptible to other cancers
or modalities of treatment? The GP looks for information related to these questions
on the Internet.

This typical clinical scenario indicates that eConsulting, defined as consulting
involving the electronic transfer of data, is not routine clinical practice. The
tools are available and occasionally used as demonstrated by appointments
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being made by email, results and referral documents communicated via the
Internet, and online health advisors’ being used for travel medicine.

Based on the above scenario, the following aspects of eConsulting will
be described: evidence-based practice in screening, diagnosis, management,
monitoring and review, social, workplace, ethical and legal issues.

2.1. Clinician’s Use of Online Health Information in eConsultations

Searching the Cochrane Collaboration Database of Systematic Reviews for
screening and management options resulted in a number of reviews by the
Cochrane Breast Cancer Group. The focus was specific treatments. Never-
theless, a review on breast screening (9) and follow-up protocols (10) caught
the clinician’s interest. Medline was also searched for breast screening but the
list was too long to review during the consultation. Two promising references
were flagged for further reading: (1) Kriege M, Brekelmans C, Obdeijn I, et al.
Factors Affecting Sensitivity and Specificity of Screening Mammography and
MRI in Women with an Inherited Risk for Breast Cancer. Breast Cancer Res
Treat 2006. (2) Advisory Committee on Breast Cancer Screening. Screening
for breast cancer in England: past and future. J Med Screen 2006;13:59–61.
The clinician also undertook to examine the UK NHS and OncoLink sites later.
For more generic genetic information, the clinician also found the Australasian
Genetics Resource Book at www.genetics.com.au.

2.2. Consumers Use of Online Health Information in eConsultations

Martha’s “Googling” resulted in a range of hits of variable quality and
purposes, which added to her level of confusion (Table 2). This experience is
consistent with that reported by the 20% of the population who use the Internet
for online health information (11).

The ordered list of “hits” was (1) “breastcancer.org,” a HON endorsed
non-profit organization dedicated to providing information and community to
those affected by breast cancer; (2) a site, with a similar name, advertising
Faslodex (fulvestrant), a hormonal treatment for hormone receptor-positive
metastatic breast cancer in postmenopausal women; (3) a news site about
breast cancer screening; (4) a breast cancer genetic screening site hosted by
the Lawrence Berkeley National Laboratory; (5 and 6) the comprehensive
UK NHS Breast Screening site with the latest research information about
the NHS Breast Screening Programme; (7 and 8) the comprehensive US
National Cancer Institute site; (9) the American Cancer Society, which provided
good explanations of the change in breast screening guidelines; (10) the U.S.
Preventive Services Task Force guidelines; (11) Oncolink, a product of the
University of Pennsylvania Abramson Cancer Centre, which also had some very
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comprehensive information for patients and clinicians; (12) the CDC Cancer
Prevention and Control Program, which “provides access to critical breast and
cervical cancer screening services for underserved women in the United States,
the District of Columbia, 4 U.S. territories, and 13 American Indian/Alaska
Native organizations”; and (13) the American College of Preventive Medicine
Practice Policy Statement in Screening Mammography, a comprehensive and
referenced paper.

The Google algorithm for ranking the sites by the number of links allowed
a commercial site to come out with the search term “breast cancer screening.”
That only one site had HON endorsement warrants further examination (see
section 3.3 below for a more comprehensive description of the HON code). The
Wikipedia had a very comprehensive entry for “breast cancer screening,” with
a range of credible links. Consumers use online health information to find out
more about the cause or description of their disease, as a second opinion, or to
enable them to discuss it with their doctor or pharmacist, or change their health
care management. General search engines like Google are probably just as good
as specialized ones when searching for health information for consumers (12).
While the use is increasing, we know very little about any health effects of
consumer use of online health information (13)

2.3. Screening and Diagnostic DNA Tests

In assessing online information, Sally needs to be aware of the differences
between diagnostic and screening tests. We test an individual to diagnose a
condition that other evidence suggests may be present. In contrast, we screen
all members or groups of a community or family for a condition where there
is no prior evidence of its presence in the individual. The “odds” of a positive
test when someone has the disease are different in the two situations. In Sally’s
case, a diagnosis was made by examining the anatomy of her breasts with a
mammogram, and the histology of her “lump” with direct microscopy. Sally’s
relatives are also screened with mammograms to try to detect breast lumps
early as well as with genetic (DNA) tests to detect the presence of mutations in
BRCA1 or BRCA2, which indicates genetic susceptibility to breast (and ovarian)
cancer before the onset of any symptoms. If there is genetic susceptibility, the
evidence suggests that Magnetic Resonance Imaging (MRI) is a better screening
modality than mammography (14).
In general, genetic tests are done to

1. Screen for common hereditary disorders in the population, e.g., phenylketonuria
2. Screen for genetic abnormalities in people at risk, e.g., relatives of people with

hereditary disorders and certain ethnic groups
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3. Assist the diagnosis for difficult-to-diagnose illnesses
4. Identify paternity and other important relationships when uncertain.

Insurance companies claim genetic testing could add to the array of health
and lifestyle information they use to set premiums. However, opinion is divided
as to whether customers should be encouraged or required (by regulation or
policy) to be genetically tested. This is important in an environment where home
testing kits for genetic predispositions are becoming increasingly available
in the market place. The social, economic, legislative, technical and behav-
ioral complexity underpinning the current status of genetic screening can be
explained using Actor-Network Theory with the genetic test as an active partic-
ipant (an actor) in the socio-technical network. It clarifies the extent to which
the test interacts with, shapes and is shaped by people, other technologies,
businesses, institutions and government (15). In Sally’s case, her fears about
cancer and radiation influenced the clinician’s decision, along with his relation-
ships and interactions with other actors such as the imaging and breast cancer
specialists, Sally’s family network, medico-legal conditions, defensive practice,
and so on. The material-semiotic approach will invoke an understanding of
Sally and her doctor’s confidence in the evidence as well as the quality of the
equipment and the practitioners.

2.4. Pharmacogenetics to Guide Drug Treatment

To support Sally in her quest for information about the best treatments for
breast cancer, clinicians, clinical geneticists, and genetic counselors should have
a functional knowledge of the rapidly emerging field of pharmacogenetics (it is
also called pharmacogenomics). This is the study of the variability in the infor-
mation in a gene and its gene product observed in a population that is associated
with susceptibility to develop a condition, as well as determining drug response.
Pharmacogenetics looks for genetic differences within a population that explain
certain observed responses to a drug or susceptibility to a health problem.
Pharmacogenetic-based studies are rapidly elucidating the inherited nature
of these differences in drug disposition and effects, thereby enhancing drug
discovery and providing a stronger scientific basis for optimizing drug therapy
on the basis of each patient’s genetic constitution (16–18). Herceptin may be
useful for Sally if her HER2 (human epidermal growth factor receptor-2) gene
is being over-expressed (19). In the context of drug design and clinical research
and development, a measurable and unequivocal definition of a phenotype,
such as drug efficacy or toxicity, is essential. The mechanisms of phenotypic
expression has evolved to include “modifier genes,” such as those involved
with drug metabolizing enzymes, their receptors and drug transporter genes,
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when describing disorders as diverse as risk of cancer, bone marrow toxicity
resulting from occupational exposure, and Parkinson’s disease.

A current challenge is to elucidate the multi-gene determinants of drug
response. Genetic polymorphisms in drug-metabolizing enzymes, transporters,
receptors, and other drug targets have been linked to inter-individual differences
in the efficacy and toxicity of many medications. A further level of complexity is
added by the increasing admixture amongst most ethnic groups; it is important to
include ethnic information about DNA samples in all molecular epidemiologic
studies. For instance, the clinician will want to explore if Sally’s mother is
Jewish.

2.5. Online Health Advisors

Online health advisors can provide specialist advice and support to generalist
clinicians; the same could be said for consumers as in Sally’s case. The US
NIH-sponsored GeneTests Web site is an online health advisor with information
about genetics services available. Sally would like a “second opinion” about the
advice she has received. She visited the GeneTests website, located a genetic
counselor and sought a second opinion for her advice as well as the role of
genetic counseling for her cousin Martha.

The clinician replied that in these circumstances Martha would benefit from
genetic counseling. However, because of a lack of genetic counselors in the
region, arrangements were made for Martha to consult with one from the city
teaching hospital, using videoconferencing.

2.6. Clinical Monitoring and Review

Clinical monitoring systems can be set up with remote clinician feedback
loops. During her chemotherapy, Sally’s white blood cell count was monitored
and her GP automatically informed when it fell outside a predetermined range.
This is analogous to a similar program with blood glucose monitoring that
Sally’s mother is using. Other remote monitoring systems, such as blood
pressure measuring devices, can also be linked with web-based applications
that can help patients care for their own conditions, with clinician guidance.
This is particularly useful for chronic disease management in which patient
self-care is of the utmost importance.

2.7. Security, Privacy, Confidentiality, and Medico-Legal Issues

eConsulting has introduced a new set of concerns about the privacy and
security of health information. With genetic information, there are two other
dimensions to consider: the family dimension and the likelihood that a genotype
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may express itself as a “disease”. This expands the actor-network to include the
employer, insurance industry and the extended family, among others. Like most
members of the public, Sally perceives that making her information electronic
would make her information less secure and her life less private. The reality
is that electronic records are more secure and private than paper-based ones.
However, the increased access makes the loss of privacy more significant
should security breaches occur. Anybody in the actor-network can be involved
should a hacker or an employee circulate her health information intentionally
or unintentionally, e.g. “reply all” option. There are technical safeguards to
minimize these risks, including the use of passwords and encryption. Unfor-
tunately, many clinicians view these solutions as cumbersome, and their use
seems to be resisted at present.

An issue related to privacy and confidentiality is the use of Sally’s
health information for other than clinical care e.g. research, quality
assurance or professional development. Most countries have legislation and
processes to cover information privacy. Examples of these include the
USA Health Insurance Portability and Accountability Act of 1996 (http://
www.hhs.gov/ocr/hipaa/), the Australian Privacy Act and Privacy Commis-
sioner (http://www.privacy.gov.au/) and the UK Data Protection Act and Infor-
mation Commissioner (http://www.ico.gov.uk/).

Other medico-legal issues can arise when doctors fail to respond to patients’
electronic questions in either a timely or clinically appropriate manner. For
example, current clinical software for GPs allows pathology results to be
downloaded into a holding file where they can be viewed by the GP and
comments can be typed in for someone else to act upon. A practice nurse might
be given the task of responding to patient phone calls about test results, and
will be expected to relay the information provided by the GP. But what if the
nurse’s interpretation of brief written advice is not completely correct? To what
extent is the nurse, the GP or even the patient responsible for misunderstandings
that can arise in these circumstances?

Another untested area concerns the quality and safety of electronic decision
support, health advisors and other knowledge-based eConsulting tools available
within desktop clinical software or online (20). How should they be regulated to
ensure quality and safety? Should the clinical software or the knowledge-base
sponsor or the clinician be responsible when errors of omission or commission
occur? Who should be responsible for the accuracy and currency of the pharma-
cogenomic knowledge base underpinning a clinical information system? Who
pays when eConsulting goes awry?
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3. Methods: Evidence-based eConsulting
3.1. A Process for Evidence-based eConsulting

Figure 1 highlights the evidence-based clinical practice process and the
information required to assist the decision-making by the various actors at
different phases of the consultation. The consultation and eConsultation process
can be divided into three broad phases:

1. To make an informed diagnostic decision, the clinician needs to know the validity,
reliability and likelihood ratio of a symptom, sign, or diagnostic test

2. For management decisions, the clinician needs the secondary literature to inform
him/her about the numbers needed to treat, numbers needed to harm and optimum
follow-up, monitoring, and evaluation protocols

3. The clinician then reflects on his/her clinical practice, with input from the patient,
to formulate further clinical questions specific to a clinical problem, the patient or
the population s/he deals with. The reflection and its outcomes then feed back into
the clinical practice process, starting the cycle again

All decisions will use reasonable patient preferences as a core factor for
choices.

Pre-Test
probability

Likelihood ratio

Reflection and

reflection and review

Evidence-based 
management

History and 
examination

Diagnostic 
imaging

Diagnostic 
tests

Diagnosis 
(Post-test 

probability)

Colleagues and 
consultants

Primary & 
secondary 
lIterature

Monitor and 
evaluate

(prognosis)

Patients

The EBM Clinical Process

Narrative evidence
and pretest probability Likelihood ratios NNT, NNH Patient values Patient values

Fig. 1. The evidence-based clinical consultation. (Copyright ST Liaw)
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3.2. Assessing Usefulness, Validity and Relevance

Online information must be presented such that it will be used in clinical
practice. The evidence-based clinical consultation must be time efficient, i.e.
quick and rewarding in terms of answers to the clinical questions at point of
care. Slawson et al. (21) have conceptualized a “usefulness” equation for the
answers to clinical questions (Fig. 2).

Usefulness   = Relevance x Validity

Work i.e. effort required

Fig. 2. “Quantitating” usefulness (adapted from Slawson et al.)

Secondary sources of evidence, e.g., the Cochrane Database of Systematic
Reviews, include structured reviews by experts in critical appraisal of primary
evidence as found in original bibliographic citations, e.g., in Medline. Struc-
tured reviews, e.g., Critically Appraised Topics (22,23) and Patient-Oriented
Evidence that Matters (24) are particularly useful for busy clinicians as they
have been appraised for relevance and rigor by experts. Not all clinicians need
to appraise primary evidence, but all clinicians need some skills in critical
appraisal, especially of the secondary sources of evidence (25). Knowing what
is best practice is not enough—the best practice must be relevant, practical and
sustainable! Searching for “evidence” can be undertaken by either the clinician
or the patient, as explained earlier (see 2.1, 2.2).

3.3. Assessing Quality of Information in eConsulting

The quality of online information is usually assessed according to consensus
criteria for credibility, content, links, design and interactivity. The credibility
criteria include source of information, disclosure of biases and errors, currency
of information, relevance and utility of the information, and the credibility
of the editorial review process. The content must be accurate, be transparent
about the quality of evidence, state the original source of information, have
an appropriate disclaimer, be logically organized with user-friendly navigation,
and recognize the omissions. There should be back linkages, mechanisms for
feedback, and an internal search engine. The quality of the links selected, in
terms of the architecture and content, should be explicit and objective. The
design is important. The interactivity should include comment options, chat
rooms, and user-profiling.
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While the rating of websites is highly variable and difficult at present (26),
an approach for assessing the quality of health websites is the Health on the
Net Code of Conduct (HONcode) (www.hon.ch/Conduct.html ). This is a self-
policing approach by groups that wish to abide by the HONcode principles;
conforming organisations can display the HONcode logo on their site (27). The
code’s principles are as follows: (1) Medical advice is provided by qualified
professionals. (2) The site supports (not replaces) physician-visitor relationship.
(3) Confidentiality is respected. (4) Information is referenced to source data. 5
Claims are supported by evidence. (6) Information is provided in the clearest
manner. (7) e-mail support is available. (8) Caveats are made explicit.

If the principles are violated and not corrected when requested, the HONcode
symbol is removed from the website. There is debate about the effectiveness
of the HONcode (28). There is some evidence that this coding is associated
with accuracy of websites, although possible exceptions have been raised (29),
including questions about fever in children (30) and patient asthma education
(31) where the accessibility and quality are variable and the information needs
of patients are often not met.

4. Encouraging eConsultation into the Future
How can we encourage eConsulting into the future? The enablers of and

barriers to eConsulting may be personal, organizational, knowledge-related,
or systemic/environmental. At the government and policy level, a proactive
national eHealth policy is essential. However, many countries, especially those
without a nationalized health service like Australia and the United States, lack
an explicit national eHealth policy and an adequately funded implementation
plan. There are no recommended benchmarks for bandwidth and standards to
enable cost-efficient and effective sharing of information. The costs and afford-
ability of ICT also varies across the country. The overall result is inadequate
and inconsistent eHealth infrastructure. Along with the lack of coordination
and cooperation between the federal and state/provincial governments, there is
often unsustainable duplication of activities like online information resources
and telehealth programs. In Australia, there are more than 360 eHealth projects,
many of which are “…fragmented and uncoordinated, leading to problems
of accessibility, scalability, duplication and lack of integration with existing
systems” (3).

Confidence in eHealth, its impact on work processes, lack of skills in using
EDS, and concerns about medico-legal issues have been recognized as key
factors influencing user acceptance and adoption of EDS (3). Clinicians will
use eConsulting tools and applications if they are useful and relevant to their
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professional practice, easily incorporated into workflow and improve patient
care, such as prescribing systems and decision support such as drug-drug inter-
action prompts (33,34). It is expected that the knowledge-base and information
exchanged is evidence-based, valid and reliable.

The organization, e.g. hospital or general practice, must provide the
supportive environment and tools for prompt and timely eConsulting. The
effective use of eConsulting tools requires new and different skills, and the
confidence to use them at point of care, require skilled and reliable technical
training and professional support programs. The direct and indirect costs,
especially in terms of investment of time and money, should also be supported
by government as the ultimate outcome of eConsulting is to promote evidence-
based practice and improve the safety and quality of care.

Consumers should also be similarly encouraged and supported to use
eConsulting applications like “online health advisors” and other self-help appli-
cations. These tools should enhance the patient-clinician relationship, not detract
from it. Issues associated with privacy, security and duty of care across state and
national boundaries must be addressed. These issues are increasingly important
as more sensitive genetic information become available and used in health
care. User friendliness, accessibility and affordability of eHealth are especially
important in order to avoid further marginalizing existing socio-economically
disadvantaged groups with a digital divide (see Note 2).

To promote the use of eConsulting, the strategy must be multi-pronged and
targeted at government, organizations, learning institutions and the community.

5. Notes
1. Staging of Breast Cancer: Stage I—The cancer is no wider than 2 cm (about 1 inch)

and has not spread outside the breast. Stage II—The tumor is more than 2 cm but
less than 5 cm in the greatest dimension. Stage III —Tumor is more than 5cm in
the greatest dimension. Stage IV—Tumor of any size with growth extending to
the chest wall or skin.

2. How might Sally be managed in the future? The clinician begins his day with a cup
of coffee pre-ordered by his computerized ordering system. He settles at his desk and
checks his emails and results from requests done the previous day. Among the 50 or
more emails, there is an appointment for Sally’s session with the Clinical Genetics
Advisory Service in the nearby capital city. Her genetic test results show a mutation
in her BRCA1 gene and the clinician is advised to counsel Sally, using the Clinical
Genetics Advisory Service website as a support tool. Sally and the clinician explore
the website and download information about the genetic risks of breast cancer. She
also requests a videoconferencing session with her GP and oncologist, to discuss
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further treatment, having first checked with www.quackwatch.com about alternative
therapies for which there is no evidence of efficacy.

At a later routine follow-up consultation, the oncologist orders a telemammogram
to check for new cancers. The radiological image is uploaded to Sally’s Internet-based
electronic health record. There is some calcium speckling on one of the films, and the
radiologist and oncologist use radiological decision support software to help decide
on the probability of the pattern signifying further neoplasia. The expert opinion,
backed by calculations of electronic image patterns, suggests that the mammographic
appearance is benign.

Sally continues with chemotherapy for her initial breast cancer. The drugs regimen
used are being guided by the levels of the liver enzyme produced by the CYP2D6 gene,
which controls the metabolism of codeine to morphine (32) as well as the variant of the
geneassociatedwithslowercaffeinemetabolism(*1F).Formonitoring,Sally testsher
blood at home using a device that only requires a drop of blood. The blood is analyzed
by a program configured to alert the oncologist if certain parameters are outside a pre-
determined range. Sally suffers mild nausea and notifies her oncologist about this side
effect of her chemotherapy. He prescribes an anti-nausea drug in the electronic health
record, which automatically notifies the nearest Internet pharmacy. The medication
arrives by courier 6 hours later and Sally’s nausea settles. Sally remains in good health
under long-term review by her GP and oncologist.

Sally realizes that she still has some concerns about some unusual breast symptoms
on the previously healthy side. She has some discomfort, and in spite of a negative
telemammogram, she wishes to make further enquiries. Sally sends an email to the
specialist asking about the likelihood of a mammogram missing a cancer when there
is no lump but there is some localised pain and tenderness. She wonders whether the
area should be biopsied “just to make sure.” The oncologist believes that Sally has
become overanxious, and refers her to a breast cancer listserv so that Sally can discuss
her feelings with others who have been in a similar situation. Sally is not reassured
and insists on a biopsy. Images of the histopathology slides are sent electronically to
the foremost breast cancer unit in Washington. Finally, Sally is reassured, and from
then on, continues in good health.

Sally joins an online self-help discussion group, the Breast Cancer Online
Community, to discuss with other breast cancer sufferers how to manage their
issues, including the handling of sensitive genetic information with members of the
family. This self-help group is linked to a government-sponsored site which regularly
consults the community about issues related to cancer and cancer genetics. Sally
has contributed to both groups and feels that she may be able to mobilize her group
to influence public opinion and government policy on genetic screening for breast
cancer. She begins by doing online research.
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“Analysis Set Manager” tool, 280
ANOVA, 105
“Application Programming Interfaces” (APIs), 315
Applied Biosystems Taqman®, 32
ARHGAP4 (Rho GTPase activating

protein 4,CD359532), 140–141
ArrayExpress, 76
ArrayOligoSelector, 74
Artefactual modifications., 263–264; see also

Peptide mass fingerprinting (PMF)
Atlas, human protein, searching of, 291–293

B
“Balanced block design,” microarrays, 94
Basic Local Alignment Search Tool, 209–210,

247, 249, 319–321
Bayesian approach, 4, 12, 265; see also Gene

discovery
B-cell lymphoma, 90
BeadChips, 26
Beta actin (ACTB) genes, 127
bioB/C/D genes, 120
BioCarta database, 297–299
BioMart data-mining, 314
BLAST, see Basic Local Alignment Search Tool
BLOSUM-45 matrix, 250

Bonferroni correction, 27, 28, 30, 106, 140
Boxplot diagram, 100
BRCA1 and BRCA2 genes, 200, 208, 210, 213, 363

in BIC, 206–207
Breast cancer, 332, 334, 359

eConsultations (see eConsulting)
Her2/neu/ERBB2 positive status in, 90

Breast Information Core (BIC), 208
BRCA1 and BRCA2 genes in, 206–207

C
CACNA1A gene, 224
Cancer Genome Anatomy Project, 89
Cancer, microarrays clinical uses in, 87

analysis, 103–107
design and interpretation, 92–107
factors involved in, 88
neoplasia, 88
normalization and filtering, 99–103
technology, 89–91
two-color experiments, 94

CDKN2A gene, 233
CDKN1B (p27), cell cycle inhibitor, 133
cDNA arrays, 90, 103; see also Microarrays
Cellular retinoic acid binding protein, see CRABP2
“Check Markers,” 45, 47

in Haploview, 44
Chemical Entities of Biological Interest

(ChEBI), 295
Class-responsibility- collaboration (CRC) cards,

mapping domain knowledge and, 225–227
C-MYC, proto-oncogenic transcription factor, 115
Coarse-grain mapping, 224
Common gateway interface (CGI) application,

239–240
Comparative genomic hybridization (CGH)

data, 107
Complex diseases, in human, 24
Comprehensive R Archive Network (CRAN), 121
Connective tissue growth factor, see CTGF
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CRABP2, 136, 138
“Create Replicate Groups” tool, 280
CTGF, 136, 138
CXCR4, 138–139
Cystic fibrosis, 2

D
DAD1 (Defender against cell death 1), 136
Database browsers

Ensembl, 313–315
NCBI (see National Center for Biotechnology

Information (NCBI))
UCSC, 315–317

Database LocusVariants
conceptual schema for, 230

Data Definition Language (DDL), 226
Data mining process, 105–106; see also Gene

discovery
DNA markers selection, 8–9
gene annotation, 9
tracking new knowledge, 9–10

Decision support systems, task-specific, 333;
see also Electronic decision support
systems (EDSS)

DHPLC analysis, 13
Differentially expressed genes analysis of,

134–136
PDGF signaling and Gleason pattern 3, 140–141

Distributed annotation system (DAS), 314
DNA markers selection, in locus mapping, 8–9
DNA primer design, 321–322
DNA promoter analysis, 320–321
DNA sequence alignment, 318–320
DNA sequences, computer-assisted reading, see

SeqScape software
DNA sequence variants, evaluation, 199

biophysical consequences, 210–211
BRCA1 and BRCA2 genes, 200
categorization, 201–204
co-occurrence with mutation, 208–209
evolutionary conservation, 209–210
functional consequences, 211–213
literature and databases checking, 204–208
normal populations, occurrence in, 213
segregation in affected families, 214
tumor, normal allele loss in, 214–215
types and effects of, 202

DNA variant database development, 219
construction, 224–240
elaboration, 222–223

inception, 221–222
transition, 240

DNA variant identification
DNA scanning, in silico support for, 13
mutational effects, in silico prediction of, 14
in silico differentiation of, 14–16

Domain knowledge, mapping, 224
to CRC cards, 225–227
data searching from database, 232–238
MySQL DBMS, database schema in, 227–229
populating database with curated data, 229–232

DPP4 (Dipeptidyl-peptidase 4), 138–139
Dual-channel color imaging, 273

E
EBarrays, 122
E.coli DNA ligase, 119
eConsulting, 353
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clinical monitoring systems, 365
context for, 354
definition, 354–355
DNA tests, screening and diagnostic, 363–364
evidence-based, 367–369
health information, privacy and security of,

365–366
models of, 355
online health information in, 360–363
tools for, 355–356

EDNRA (endothelin receptor type A), 136
E2F1, transcription factor, 290
eHealth project, 354; see also eConsulting
Electronic communication tools, for

eConsulting, 355
Electronic decision support systems (EDSS),

332–334, 355
building, 345

automated knowledge base development,
337–340

components, 336–337
data integration standards, 340–342
implementation, socio-technical aspects,

342–343
data-flow diagram, 335
design of, 334
evaluation methodologies, 343
formative evaluation, 343–345
risk assessment decision support, 332
summative evaluation, 345–347
task complexity and, 335
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Electronic meeting systems (EMS), 355
Endothelin A (ET-A) receptor, 138
ENSEMBL, 14–15, 201, 211, 313–315
ENTREZ Gene ids, 93
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European Bioinformatics Institute (EBI), 313
“Exonic Evidence-Based Oligonucleotide Chip

(MEEBO and HEEBO)”, 74
Exonic splice enhancers (ESE), 202–203
ExPASy Life Science Directory, 310
Expasy website, 288
Expressed sequence tag (EST), 18–19,

267, 311

F
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Gene discovery
FASTA format, 247, 249
Fine-grain mapping, 224
Fisher’s exact test, 107

G
Gel-gel matching, 277–280
Gel region matching, 266; see also Peptide mass

fingerprinting (PMF)
GenBank, 15, 25, 182, 207
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Gene discovery, in silico, 1

DNA variant identification, 13–16
gene search, 10–13
history of, 2
locus mapping, 3–10
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Gene integration resources, 317
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Gene ontology (GO), 10, 296–297
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differentially expressed genes analysis, 134–136
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PDGF signaling, Gleason pattern 3 and, 140–141
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syndrome, 2; see also Gene discovery
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HapMap data evaluation by, 43–44
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database browsing, 39–40
defining linkage disequilibrium patterns in, 41
haplotype patterns in, 41
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data evaluation by, 43–44
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Human Cancer Genome Project, 89
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microarrays and 153–155
amplification, 157–158
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164–165
post-processing of, 159
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cDNAs, 160–163
RT-PCR and, 165–167
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Human Gene Mutation Database, Cardiff

(HGMD®�, 206, 220
Human Genome Project, 1, 7, 177
Human Genome Variation Society (HGVS),

201, 207, 220, 222–223, 240
HumanHap300 (317K), 26
Human Protein Reference Database

(HPRD), 304
HUMHBA4-PT, 189–190
Huntington disease, 2
“HW p-value cutoff,” 45
Hybridizations, planning; see also Microarrays
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randomization, 76–77
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two-color arrays, variability associated with

design choices for, 81–82
Hypertext Text Markup Language (HTML), 239

I
IGF-1 receptor, 133
IL-4, interleukin 4 (M13982), 140
Illumina Sentrix® Human-1 (109K), 26
In-house probe design, 73–74; see also Microarrays
Insulin-like-growth factor 1 (IGF-1), 132
IntAct database, of protein–protein interactions,

300–302
International Union of Biochemistry (IUB),

181–182
Intraclass correlation coefficient (ICC), 60
IRF4, interferon regulatory factor

4, 140
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2, 139

J
Java Runtime Environment (JRE), 43
Java Virtual Machine (JVM), 239
3D-JIGSAW, homology program, 252

K
kgXref, gene cross-references table, 92
KLF6, Kruppel-like factor 6, 136
Kyoto Encyclopedia of Genes and Genomes

(KEGG), 295

L
LIMMA package, 95
Linkage disequilibrium (LD), 7–9, 12, 25

in HapMap, 41
plots in Haploview, 45–46

LINKAGE, linkage analysis program, 214
“LIPID,” glycosylation, 289
Locus mapping

data mining
DNA markers selection, 8–9
retrieving available genes, 9
tracking new knowledge, 9–10

locus information, 7–8
phenotyping, 7
power prediction, 2–7

Locus specific databases (LSDBs), 205, 213
variant searching in, 206–208

LOINC, Logical Observation Identifier Names and
Codes, 342

“Loop design,” microarrays, 94

M
Machine learning, data classification, 338
Malignant lymphomas, 90
MAOA, monoamine oxidase A, 136
MAPK3, mitogen-activated protein

kinase 3, 140
MA-plot, 78, 98, 100–102
Mascot, by MatrixScience, 260
MAS5, microarray data analysis by, 123–125
Matrix assisted laser desorption ionization mass

spectrometry (MALDI-MS), 258
MaxHOM program, 251
MCF-7, mammary carcinoma cells, 138
MEK/ERK signaling, 139
Mendelian genes, 25
�–Mercaptoethanol, 127
Meta-analysis, of gene expression datasets, 90
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in cancer research, clinical uses, 87

analysis, 103–107
design and interpretation, 92–107
normalization and filtering, 99–103
technology, 89–91

human cytomegalovirus (HCMV) gene sequence
and, 153–173

planning hybridizations, 76–82
platform, 74–76
prostate cancer, Gleason scoring system and (see

Prostate cancer, Gleason scoring
system and)

selection, 73–76
signaling pathways analysis (see Signaling

pathways, microarrays)
Microarray sample pool (MSP), 83
Microbial proteins, using PMF

strategies, 257
artefactual modifications, 260–261
enzyme, to digest proteins, 260
identification of, 262–265
query peak list, 261
result interpreting, 265–266
software application, 260, 262–263, 265
species of origin of sample, 260

Microsoft SQL Server®, 226
Minor allele frequency (MAF) cutoff, of SNPs,

42–44
Modeller, homology program, 252
“MOD_RES” field, 289
MOWSE, 265
MX software, 57
MYBPC1, myosin binding protein C, 136
Mycobacterium tuberculosis, 263
Myelogenous leukemia, 90
mySQL, 92

in DDL, 227
login dialog, 234
menu, in Windows® XP, 233
Query Browser window, 235

N
National Center for Biotechnology Information

(NCBI), 201, 207, 211, 258, 312–313
Entrez Gene database, 39
human genome assembly, 26

NCBI-BLAST tutorial, 247
NCBI REFSEQ protein, 92
Neoplasia, 88

Nevus density, 57
distribution, 426 adolescent twins, 58
heritability analysis, 59–64
preliminary analysis, 58–59

NKX3-1, homeobox gene, 133
Nucleotide-level analysis techniques,

317–323
DNA primer design, 321–322
DNA promoter analysis, 320–321
DNA sequence alignment, 318–320
RNA analysis, 322
RNA folding, 323

O
OligoArray, 74
Oligonucleotide microarrays, 89, 92; see also

Microarrays
One Cycle cDNA synthesis, 118–119
Online Mendelian Inheritance in Animals

(OMIA), 11
Online Mendelian Inheritance in Man (OMIM), 10,

206, 290–291, 298
Open reading frames (ORFs), 154
OVCAR3, 126–127

P
Panther Classification Gene Expression tool, 140
Parkinson’s disease, 133
Pat Brown’s laboratory, 89
Pattern-Hit Initiated BLAST (PHI-BLAST), 249
PD-Quest software, 273
Peak picking method, 261; see also Peptide mass

fingerprinting (PMF)
Pearson Correlation, 104
Peptide mass fingerprinting (PMF), microbial

proteins and, 257
artefactual modifications, 260–261
enzyme, to digest proteins, 260
identification of, 262–265
query peak list, 261
result interpreting, 265–266
software application, 260, 262–263, 265
species of origin of sample, 260

“Per-chip” normalization, 100
Phenyx, by GeneBio, 260
Photolithographic technique, 89
Platelet-Derived Growth Factor Signaling Pathway

(PDGF), 140
for Gleason pattern 3, 144

Polymerase chain reaction (PCR) analysis, 321–322
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Position Specific Iterative BLAST (PSI-BLAST),

249, 251
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Post-translational modification (PTM), 289,

304–305
Primer Express software, 126
Principal components analysis (PCA), 28–31

GLM and, 31
“Print-tip loess” normalization, 82
PROCHECK program, 252
Profound, by Genomic Solutions, 260
PROSITE, 248, 252
Prospectr program, gene search and, 11
Prostate cancer, Gleason scoring system and,

131–133
differentially expressed genes analysis, 134–136
Gleason pattern 3/4/5, 136–140
other pathways, 141
PDGF signaling, Gleason pattern 3

and, 140–141
Protein comparative sequence analysis, computer

modeling and, 245
functional analysis, 253–254
post-translation modifications, 247–248,

250–252
primary sequence similarity and alignment,

247–250
tertiary structure prediction, 248,

252–253
Protein-level analysis techniques

protein–protein interactions, 325–326
protein structure, 323–325

Protein- Prospector, 260
Protein–protein interaction (PPIs) data, 299–302,

325–326
IntAct database of, 300–302
tools for, 325

Protein tertiary structure prediction
lower sequence identity, 253
no sequence identity, ab initio modeling, 253
significant sequence identity, homology building,

252–253
3DPSSM, threading programs, 253
PTEN gene, 133, 314
PubMed literature database, 204, 290
PUNS program, 321
PupaSNP Finder tool, 16

Q
Quantitative real-time RT PCR (qRT-PCR)

validation, 126–127
QUANTO program, 4–5, 19; see also Gene

discovery

R
RB1 gene expression, 294
RB_HUMAN identifier, 295, 301–302
“RB Tumor Suppressor/Checkpoint Signaling in

response to DNA damage” pathway, 300
Reactome project, 295–296
Real modifications, 264; see also Peptide mass

fingerprinting (PMF)
Receiver-operating characteristic curve

(ROC), 346
Reference Data Group (RDG), 182–184
REPEATMASKER, 92
Replications, 77; see also Microarrays

biological replicates, 78–79
pooled mRNA versus unpooled mRNA, 79–80
sample size, 79
technical replicates, 78

RESCUE-ESE program, 15
Restriction fragment length polymorphisms

(RFLP), 8
Retinoblastoma-associated protein, 288

comments field, from Swiss-Prot database,
289–290

Ripple down rule (RDR), 337
RNA folding, 323
RNA Integrity Number (RIN), 118
Robust Multi-chip Analysis (RMA) method, 122
ROSETTA web-server, 253, 324
Royal Australian College of General Practitioners

Online, 354
Royal Flying Doctor Service, 354
R script, for microarray quality assessement, 96–98
rSNP_Guide, 16
Rural and Remote Medical Education Online, 354

S
SCN5A gene, 224
SeqScape software, 178

data report and view, 193–196
features, 178
�-globin gene sequence analysis, 187
KB Basecaller, 179–180
manager window, 181–184
project window, 184–187
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re-analyzing project/data, 192–193
thalassemia data analysis, 190–191
thalassemia project template, 189–190
thalassemia RDG, 187–189

Sequence databases, 310–312
Sequence tagged sites (STS), 311
Sequential Oligogenic Linkage Analysis Routines

(SOLAR), 57, 63
Serial Analysis of Gene Expression (SAGE), 108
Serine/threonine kinase receptors, 116
SIFT program, 15
Signaling pathways, microarrays, 115–116

data analysis, 121–125
quality control, 120
RNA extraction, 117
RNA labelling and array hybridization, 118–120
RNA quality assessment, 117–118
transcript level changes validation, 125–127

Signal log ratio (SLR) algorithm, 123–124
“Significance analysis of microarrays” (SAM), 106
Single color arrays, 76
Single nucleotide polymorphisms, 8–9, 12, 14, 25,

196, 203, 315
GLM approach and, 26–27
Haploview, descriptions and quality control

checks in, 44–45
HapMap Project (see HapMap project)
tagging, 42–43, 47–50

SMAD proteins, 116
SNaPshotTM, 32
SNOMED-Clinical terminology

(SNOMED-CT), 342
SNOMED® (Systematized nomenclature of

Medicine), 342
SNPlexTM, 32
SNPs, see Single nucleotide polymorphisms
Sodium-dodecyl sulfate – polyacrylamide gel

electrophoresis (SDS-PAGE), 272
Software application, PMF, 260
SOURCE database, 92
SPON2 (Spondin 2, extracellular matrix

protein), 136
SPP1/OPN (osteopontin), 139
Src/Raf-1/MEK1, 133
STAT6, 140
Stata Statistical Software Release 9, 57
Structured Query Language (SQL) commands, 225,

229, 235
Survival of Motor Neuron (SMN) gene, 15

Swiss-model, homology program, 252
SwissProt database, 262, 288–290, 295, 298,

302–303
SymAtlas database, 293–294

T
TagSNPs, 25
TATA box binding protein gene (TBP), 127
TGF-� signaling pathway, 123
Thalassemia

data analysis, 190–191
project template, 189
RDG, 187–189

T-helper cells, 77
Tibshirani’s method, 95
TMPRSS2:ETV1 fusion gene, 133
TP53, frequently mutated gene in cancer, 116
TPM2 (tropomyosin 2 beta), 136, 138
Trastuzumab (Herceptin) treatment, 90
Tukey’s Biweight method, 123
Tumor, normal allele loss in, 214–215
Tumour necrosis factor superfamily, member 4

(Tnfsf4), 11
Two-color arrays, 76

variability associated with design choices for,
81–82

Two-color cDNA experiments, microarrays, 94
Two Cycle cDNA synthesis, 118
Two-dimensional gel electrophoresis (2-DE),

271–273
gel–gel matching, 277–280
gel quality, 274
manual analysis of, 274–275
spot detection, 275–277
spot quantitation and comparison, 280–281
statistical analysis, 281

Two-dimensional polyacrylamide gel
electrophoresis (2D PAGE), 258

Two-way hierarchical clustering, 105; see also
Microarrays

U
UNIGENE database, 92–93
UniProt, 262
United Medical Language System (UMLS), 342
University Health Network Microarray

Centre, 92
University of California, Santa Cruz (UCSC)

Genome Browser, 14, 92, 315–317
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USA-sponsored NCBI Entrez site, 246
USF2 (upstream transcription factor 2), 140

V
“VARIANTS” field, 289
Vertebrate Genome Annotation (VEGA), 314
VPCR program, 321

W
Waikato Environment for Knowledge Analysis

(WEKA), 338
Waystation, 206
Web sites for databases, 311
Whole genome association study

data analysis, 26–32
experimental design and protocol, 25–26
two-stage selection method, 27–28
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