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Foreword

The goal of protein bioinformatics is to assist experimental biology in assign-
ing a function or suggesting functional hypotheses for all known proteins.
The task is formidable. A simple calculation shows that we cannot possibly
study each and every biological molecule of the universe. Therefore, we need
fast and reliable computational methods to extrapolate the knowledge accu-
mulated on a subset of cases to the rest of the protein universe.

This book reviews available methods in protein bioinformatics, with a
special emphasis on their effectiveness in inferring the biological properties
and functional roles of proteins. It is organized around specific problems
that elicit the efforts of the community, and it focuses on the limitations of
current approaches and on future developments that are likely to improve
our understanding of the exquisitely specific and efficient mechanisms of
protein function.

Bioinformatics is an interdisciplinary science that synergistically utilizes the
contributions of informatics, physics, and mathematics, but, ultimately, the
objective is the solution of biological problems. Therefore, this book starts
with an overview of what we know about the structure and function of
proteins. Proteins are a product of evolution. Thus, the basic principles of
evolution must be kept in mind when new methods are devised or new routes
are explored for inferring the function of a biological macromolecule. This
book addresses the problem of detecting the existence of an evolutionary
relationship between proteins in Problem 1. The detection of local similarities
between protein sequences and the analysis of high-throughput experiments
can also be effectively exploited for functional assignment, as is shown in
Problems 2 and 3. Much more information can be derived from the knowledge
of the three-dimensional structures of proteins. These structures can be exper-
imentally determined or inferred from computational methods (Problems 4
and 5) and studied for insight into the roles of proteins (Problem 6). Proteins
interact with each other and with ligands, both physically and logically (Prob-
lems 7 and 8), as parts of complex regulative networks. Several methods are
being devised to explore these aspects of protein function. Finally, we discuss
the extent to which our understanding of proteins allows us to design com-
pletely new proteins tailored to specific tasks (Problem 9) or to rationally
modify the function and properties of existing proteins (Problem 10).

As we will see, many unsolved problems remain in each of these areas,
and new ideas are continuously being produced and tested. The pressure
on this relatively new discipline is strong because an understanding of life,
in all its beauty and complexity, finally seems within our reach, and our
astonishment at being so close to our goal is only equaled by our impatience
to reach it.






Introduction

Proteins are the major components of living organisms and constitute more
than 25% by weight of a typical cell. Even more impressive is the variety of
functions that they can perform: catalysis, immune recognition, cell adhe-
sion, signal transduction, sensory capabilities, transport, movement, and
cellular organization. From a chemical perspective, proteins are linearly-
oriented heteropolymers of amino acids (small organic molecules) whose
structures and properties are described in this book. The sequence of amino
acids in a protein is determined by the sequence of nucleotides, or bases, in
the corresponding gene. Each adjacent triplet of bases of a gene in the DNA
codes for one amino acid or for a codon that signals the end of the gene,
according to the practically universal genetic code shown in Table 1.

The nucleotide sequence of a genomic region is technically much easier
and faster to obtain than the sequence of the encoded protein, as is evidenced
by the pace at which the complete genomes of many organisms, including
Homo sapiens, are being deciphered. The large majority of known protein
sequences are in fact deduced from the corresponding sequences of the
genes, rather than from direct chemical sequencing of the proteins.

TABLE 1
The Genetic Code

Second Base
U C A G

Phe (F) Ser (S) | Tyr (Y) Cys (C)
U | Phe (F) Ser (S) Tyr (Y) Cys (C)
Leu (L) | Ser (S5) | Stop Stop
Leu (L) Ser (S) Stop Trp (W)
Leu (L) Pro (P) | His (H) Arg (R)
C | Leu(L) | Pro (P) | His (H) Arg (R)
. Leu (L) | Pro(P) | GIn (Q) Arg (R) .
First Leu (L) | Pro(P) | GIn(Q | Arg (R) Third
Base Base

Ile (I) Thr (T) | Asn (N) Ser (S)

A | Tle (I) Thr (T) | Asn (N) Ser (S)

Ile (I) Thr (T) | His (H) Arg (R)
Met M) | Thr (T) | His (H) Arg (R)
Val (V) Ala(A) | Asp (D) Gly (G)
G | Val (V) Ala(A) | Asp (D) Gly (G)
Val (V) Ala(A) | Glu (E) Gly (G)
Val (V) Ala (A) | Glu (E) Gly (G)
Note: Each triplet of bases in a gene codes for one of the 20 amino acids,

here listed in their three-letter and one-letter codes.

Q| 0|c|al>|njc|lo)>0lcial»| 0|




However, the genetic material not only contains genes, but also contains
regulatory regions and noncoding regions of unknown function, such as
long and short repeats; pseudogenes and retropseudogenes; satellite, mini-
satellite, and microsatellite regions; transposons and retrotransposons; viral
vestigials; and others. In higher organisms, the gene sequence is also inter-
rupted by noncoding fragments of variable length called introns.

Although the large body of available genetic information holds the prom-
ise of unraveling the meaning of life, we must decode this information; that
is, we must detect which regions are the gene-coding regions, translate these
regions into the corresponding protein sequence, and work out the protein’s
molecular function. The development of methods for finding the genes and
their corresponding proteins and for unraveling their function is essential.
It is the only route to utilizing our genomic knowledge for rationally inter-
fering with diseases and understanding, for example, the genetic basis of
individual pharmacological responses.

In this book, we do not discuss the problem of finding genes, which is a
major challenge that the genomic era is posing to bioinformatics. Rather, we
concentrate on the techniques that can be applied to derive functional knowl-
edge of a protein, once the complete sequence of its amino acids is known.

The Structure of Proteins

The function of a protein depends upon its “shape;” that is, upon the three-
dimensional structure that can be determined by X-ray crystallography or
nuclear magnetic resonance experiments. The resulting data are stored in a
data base called the Protein Data Bank (PDB). At present the PDB contains
a few thousand examples of protein structures, but it is rather redundant.
Often, different examples of the structure of a protein have the same amino
acid sequence but in different states, such as with different bound ligands,
in complex with different proteins, or determined under different experi-
mental conditions. The database contains more than 800 entries for the
protein lysozyme, for example.

A polymer does not necessarily assume a unique three-dimensional struc-
ture in solution, which is equivalent to saying that its energy landscape (the
value of the free energy for each possible arrangement of its atoms) does not
necessarily have a single, global free-energy minimum. However, a protein
is not just any polymer. It is a special polymer in that, in a given environment
and physiological conditions (pH, temperature, ionic strength, etc.), it
assumes one, and only one, specific three-dimensional structure. Some
important implications and limitations of this statement are discussed in
Problem 4.

Figure 1 shows the experimentally determined three-dimensional structure
of a protein in which each atom is depicted as a sphere (see color insert after
page 40). The protein is glycogen phosphorylase, one of the enzymes that
allow us to survive without feeding continuously, even though our cells need



FIGURE 1

An all-atom representation of a protein structure determined by X-ray crystallography. This
protein is an enzyme, glycogen phosphorylase from rabbit muscle, and its code in the Protein
Data Bank is 1ABB. Atoms are colored according to a commonly used scheme: carbon is black,
nitrogen is blue, oxygen is red, and sulfur is yellow.

a constant supply of sugars. The sugars that we consume are stored in our
muscles in the form of glycogen, a macromolecule that contains up to 10,000
glucose molecules. The glycogen granule is clipped into glucose, and this
chemical reaction is catalyzed by glycogen phosphorylase.

At first sight, the structure appears very complex, with no apparent reg-
ularities. Hopefully, though, by the end of this Introduction, the reader not
only will be fascinated by the beauty of this molecule and impressed by its
versatility, but also will have learned how to detect the underlying regular-
ities as well as some general properties of protein structures.



FIGURE 2
A different representation of the protein in Figure 1. This time, each amino acid is depicted as
a vertex of a broken line connecting the amino acid chain.

The remainder of this Introduction is devoted mainly to the structure of
proteins that spend their time in polar environment. Apolar proteins, which
are embedded in biological membranes, and their structural properties are
discussed in Problem 5.

Figure 2 shows the same protein as in Figure 1, but now, instead of every
atom, only one atom per amino acid is shown as a vertex of a broken line
that connects equivalent atoms in consecutive amino acids. The atom
selected in the figure is called Ca and, in amino acids, it is linked to four
different chemical groups: a carboxylic group, an amidic group, a hydrogen
atom, and a variable chemical group (the side chain). The amino acids that
occur in natural proteins number exactly 20 and differ by their side chains
(as shown in Figure 3). The side chain can be a single hydrogen atom, as in
the case of glycine, or can contain polar, neutral, and charged groups. Hydro-
gen atoms are usually not shown in protein—structure representations,
because their positions are difficult to detect by X-ray crystallography.

Amino acids are linked to each other by a chemical bond, the peptide
bond, between the carboxylic group of one amino acid and the amidic group
of the adjacent amino acid. The chemical chain formed by the amidic group,
the Co, and the carboxylic group is called the main chain, or backbone, of
the polypeptide. Different side chains protrude from the backbone, and their
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FIGURE 3
The 20 naturally occurring amino acids.
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FIGURE 4
Amino acids linked by a peptide bond. The thicker lines form the “backbone” of a protein.

sequence defines the properties of the protein. The sequence of amino acids
of a protein is called its primary structure.

The backbone of a polypeptide chain is quite flexible (as can be appreciated
by looking at Figure 2). However, only the two angles ¢ and y (Figure 4)
can assume several conformations in solution, the remaining angle, around
the peptide bond, is planar. Furthermore, not all combinations of the values
of ¢ and y are energetically favorable. Some are rarely observed, as is shown
in Figure 5.

The combinations ¢ —60 and y —50 and ¢ —110 and y 130 are energetically
favorable and observed very often. A consecutive stretch of residues with
¢ and y values in the first region, called the oy region, assumes a helicoidal
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FIGURE 5

On the left is a representation of the results of energetic calculations of all possible pairs of
¢ and y angles in a dipeptide formed by alanine residues. Some combinations are energetically
favorable (dark-gray areas) or allowed (light-gray areas), whereas others are unfavorable (white
areas). This arrangement is reflected by the frequency at which combinations are observed in
experimentally determined protein structures, as on the right side of the figure, where each
point represents a ¢ and y pair observed in glycogen phosphorylase. The region with @y angles
around (60, 60) is rarely observed, and it is generally unfavorable because it brings the first
carbon atom of the side chain too close to the carboxylic oxygen. The amino acid glycine does
not contain a carbon in its side chain and is often observed in this conformation. The graphs
shown in the figure are called Ramachandran plots.

shape. A stretch with values in the second region, the  region, becomes
elongated and forms hydrogen bonds with other regions with the same local
structure, as is shown in Figure 6 (see color insert after page 40).

Note that the polar atoms of the backbone (the carboxylic and amidic
group) of both the o-helix and the B-sheet form hydrogen bonds with other
main-chain atoms. This behavior is a result of the fact that, in the unfolded
state and in an aqueous environment, the polar atoms would form hydrogen
bonds with the surrounding water molecules. When the protein folds (i.e.,
when it assumes a compact shape), some of these atoms are shielded from
the solvent and unable to form hydrogen bonds with it. This energy loss has
to be compensated by the formation of hydrogen bonds within the protein
chain.

A protein chain, in general, contains both hydrophobic and hydrophilic
atoms. Exposure of the former to a polar solvent is energetically unfavorable,
because a loss of entropy results (Figure 7). During folding, an energy gain
is associated with the shielding of these groups from the solvent in addition
to an energy gain through internal interactions (vanderWaals, charge—charge,
and intrachain hydrogen bonds) established in the final structure. In pro-
teins, these interactions are sufficient to compensate for the loss of entropy



FIGURE 6
The backbone atoms of an o-helix and of two B-strands are depicted above. The strands, pairing
via hydrogen bonds (dotted lines), form a B-sheet.

associated with folding (an unfolded chain has practically an infinite number
of possible conformations and, therefore, a very high entropy), and a unique
three-dimensional structure (called tertiary structure) can be achieved.

In a protein structure, polar amino acids (i.e., amino acids whose atoms
can form hydrogen bonds with the water) are found more often at its surface,
while the hydrophobic amino acids are mostly buried inside (Figure 8) (see
color insert after page 40).

Most proteins contain regions in o and B conformations, collectively called
regions of repetitive secondary structure, and connecting regions called
loops. We can further modify our view of proteins by using cylinders and
arrows to depict the secondary structure elements, as is shown in Figure 9
(see color insert after page 40). The latter representation of our protein shows
its beautiful regularity. Two seemingly identical chains (a protein formed by
more than one amino acid chain has a quaternary structure) are formed by
two “lobes”; that is, structural regions that have more contacts between
themselves than with other regions of the protein. We call these “lobes”
domains. The two domains are not identical, but they show some topological
similarity and can be described as three-layered structures, two external
helical parts and a central B-sheet.

Cellular mechanisms can chemically modify a protein’s primary structure
after it has been synthesized. These modifications can be permanent or can



FIGURE 7

The hydrophobic effect. Polar molecules (water in the figure) form many energetically favored
hydrogen bonds. When an hydrophobic molecule is present, they organize themselves around
it in a more ordered way and therefore lose entropy.

vary according to the cellular state. For example, several proteins are glyc-
osylated; that is, sugar chains are covalently linked to their amino acids.
Another common protein modification is phosphorylation, which is often
used for regulation, signal transduction, and cell cycle regulation. These
modifications can affect the protein structure, often to a very considerable
extent, and their presence and precise localization can depend on specific
patterns of amino acids.

Glycogen phosphorylase is one such example. When a phosphate molecule
is added to a serine amino acid (serine 14), shown in Figure 10 as a green
sphere (see color insert after page 40), a shift occurs in the structural elements
of the enzyme. This conformational change activates the protein. Phospho-
rylation of this enzyme is performed by other enzymes that monitor the
concentration of sugar in the blood. The activity of the protein also has to
increase when the energy levels of the cell are low. AMP (adenosine mono-
phosphate) is a product of ATP (adenosine triphosphate) breakdown, an
energetically favorable chemical reaction that provides energy to the cell.
More AMP is created when energy levels are low and more sugar is needed.
Binding of AMP to a site on glycogen phosphorylase causes similar structural
changes as phosphorylation and activates the enzyme.

The Structure-Function Relationship in a Protein

The amino acid sequence of a protein contains amino acids selected for
shaping its energy landscape that specify the unique three-dimensional native



FIGURE 8

A section of the structure of SH3, a small module found in many proteins, where it acts as an
adapter to recruit other proteins. The green hydrophobic amino acids are more frequent in the
inside than on the outside of the molecule.

structure and do not allow chains to fold into undesired conformations or
not achieve a definite structure at all. The amino acid sequence also contains
the specific residues necessary for the protein’s function.

Without delving into the chemical details of the enzymatic activity of
glycogen phosphorylase, we mention that it needs the close proximity of four
amino acids (see the inset in Figure 10): two lysine residues at positions 568
and 574, one arginine at position 569, and one threonine at position 676. These
amino acids are distant in the linear amino acid chain, but are brought
together in the precise relative position needed for catalysis by the three-
dimensional structure of the protein in its active form (i.e., when the protein
is phosphorylated or when AMP is bound). The region of an enzyme where
action takes place is called its active site. The structure of the active site in the
inactive form of glycogen phosphorylase (i.e., the relative position of the
catalytic residues) has a somewhat different structure than in its active form.
The enzyme is, in fact, less efficient. Incidentally, the existence of two structures



FIGURE 9
The structure of glycogen phosphorylase once again. This time helices and strands are shown
as cylinders and arrows.

for the enzyme does not contradict what we said about the uniqueness of
the protein shape, because the two conformations are achieved with different
ligands and, therefore, are not in the same environmental conditions.

Another example of the importance of the three-dimensional structure for
function is illustrated in Figure 11 (see color insert after page 40). The reader
should now see that the depicted protein is mostly formed by [B-strands. It
has two domains and a quaternary structure. It is an enzyme encoded by
the virus responsible for hepatitis C. This virus enters the host cell and
synthesizes a single, long amino acid chain that is later broken into smaller
fragments, each of which encodes one of its functions. The enzyme shown
in the figure breaks up the long polyprotein. It is a protease; that is, an
enzyme that catalyzes the cleavage of peptide bonds.

We can now look at its active site. The atoms responsible for the catalytic
activity belong to three amino acids: a serine, a histidine, and an aspartic
acid. It also has a “pocket” ideally suited for accommodating the side chain
of one specific amino acid, cysteine, and, in this way, it recognizes the precise
location where cleavage should occur. In the figure is an enlarged view of
the region involved in recognition and catalysis. The involved amino acids
come from different parts of the amino acid chain and, once again, the three-
dimensional structure of the protein allows them to be correctly positioned.
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FIGURE 10
The active site of glycogen phosphorylase. The phosphorylation of serine 14, shown as a green
ball, triggers a conformational change in the protein.

One way to inhibit the activity of this enzyme and, thereby, interfere with
the function of the virus is to design a molecule that occupies and blocks
the site where the enzyme binds the target amino acid (a cysteine). Detailed
knowledge of the three-dimensional structure of the protein is fundamental
to designing such a molecule.

Detection of the residues responsible for function (e.g., those that form an
active site or an interaction surface) solely on the basis of a protein’s amino
acid sequence is practically impossible. These residues are no different from
other amino acids. Only their specific positioning in the context of the final
three-dimensional structure allows them to perform their function. Yet, the
goal we are pursuing is detection of the sites important for activity and the
understanding of how a function is performed, in the absence of an exper-
imental three-dimensional structure.



FIGURE 11
The structure of the protease of the hepatitis C virus (PDB code: 1NS3).
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Problem 1

Protein Sequence Alignment

Introduction to the Problem

The Evolution of Proteins

The sequences of amino acids in naturally occurring proteins have been
selected by evolution for their favorable thermodynamic, kinetic, and func-
tional properties. Variations in protein sequences are continuously generated
via several molecular mechanisms. When variations that do not impair
essential functions occur in germinal or replicating cells, they are transmitted
to the progeny and generate diversity in the population, whereas variations
that do impair essential functions disappear. Variations can be caused by
substitution of one DNA base with another, replication of whole regions of
a genome, and insertion and deletion of bases. In diploid organisms, which
have two chromosome sets and, therefore, two copies of the genetic material,
a mechanism known as crossing-over (i.e., the exchange of regions between
two homologous chromosomes) can also introduce diversity.

Because of the degeneracy of the genetic code, a single base substitution
in a protein-coding gene might or might not lead to an amino acid replace-
ment or to the replacement of one amino acid with one of the translation—ter-
mination codons. Insertions and deletions might cause a frame shift in the
gene, and this process can modify the downstream sequence of the encoded
protein (because each amino acid is coded by three bases, and no spacing
signal exists between coding triplets) or result in the addition or deletion of
amino acids in the protein (Figure 12).

Individuals of a population can diverge sufficiently to give rise to different
species. Speciation is an ill-defined concept in biology. Two individuals are
operationally defined as belonging to different species if they cannot produce
offspring when mating in the wild. This inability to reproduce is not strictly
dependent upon genetic difference; environmental or physical factors could
also account for inability to mate.
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FIGURE 12

The first panel shows the nucleotide sequence and the corresponding translation in amino acids
of human insulin, a protein that participates in the metabolism of fat and proteins. In the second
panel, a base is inserted in the gene (an A shown in uppercase and bold). Note that this insertion
affects the translation of the whole downstream region of the proteins.

If the modified protein allows survival of the progeny, the mutation is
accepted in the population, and it can become the most frequent variant if
it confers a selective advantage to the individual. This development implies
that we can observe only those variants of a protein sequence compatible
with the functionality of the organism and derived from a functional ancestor
via a set of functional, or at least nondeleterious, variations.

In Problem 4, we discuss in which cases and to what extent this observation
allows us to use the amino acid sequence of a protein to infer its three-
dimensional native structure and how the latter can be used to infer function.
Here, we state that this problem has no general solution, and, therefore, no
standard route leads from sequence to structure to function.

However, if the function performed by a protein has to be conserved and
function is brought about by specific amino acid residues and by their rela-
tive position in the three-dimensional structure, then residues responsible
for function and structure must be conserved during evolution. This obser-
vation immediately suggests a strategy for detecting these residues.
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Evolution-Based Inference of Protein Function

If we can identify an evolutionary relationship between two proteins from
different species and highlight conserved amino acids (i.e., amino acids that
could not be replaced in evolution without negatively affecting the protein’s
function), these amino acids are likely candidates for involvement in func-
tional mechanisms. Clearly, we need to distinguish between amino acids that
have been conserved because of their functional role and amino acids that
have been preserved because of their structural role. In general, the con-
straints on the former are more stringent. Similar amino acids can more easily
replace each other in a structural role than in a functional role; for example,
catalysis requires specific atoms and, therefore, specific amino acids.

Furthermore, if one of the two proteins has been biochemically character-
ized, and its functional residues are known, residues corresponding to them
(i.e., descending from the same amino acid of a parental ancestral protein)
in the other protein are likely to perform the same role, if conserved.

This finding implies that we must determine how likely two proteins are
to be evolutionarily related (homologous) (i.e., descending from a common
ancestor protein) and determine the correspondence between the amino
acids of the two proteins that most likely reflects their evolutionary history.

These two problems are known as “homology detection” and “protein
sequence alignment,” respectively, and can be formalized as follows:

1. Given two protein sequences Pa and Pb, calculate the probability
that they are homologous (i.e., that a common ancestor protein has
originated them via mutational events).

2. Given two protein sequences Pa and Pb, known to be homologous,
identify all pairs of amino acids of the two proteins that derive from
the same amino acid of the common ancestor.

In practice, the two problems are best reformulated as a single problem:
given two protein sequences Pa and Pb, identify the correspondence between
all pairs of their amino acids that maximizes the probability that they derive
from the same amino acid of a common ancestor, and calculate the proba-
bility that such an ancestor exists.

In other words, we hypothesize that the two proteins are related and,
therefore, that an evolutionary correspondence exists between their amino
acid sequences (what we call their sequence alignment). We generally
assume that the optimal correspondence is the one that requires the mini-
mum number of mutational events or, equivalently, the one that maximizes
the number of identical or similar amino acids. From this optimal alignment,
we can calculate the probability that the observed similarity is likely to be
statistically significant (i.e., unlikely to be observed by chance alone when
two unrelated sequences are aligned).



4 The Ten Most Wanted Solutions in Bioinformatics

If we were dealing with a merely statistical problem, we could simply
compare the observed similarity with that expected for two random strings
of the same length as our proteins and formed by a random combination of
20 characters. However, natural protein sequences are not random polymeric
sequences, and, therefore, we must compare the similarity with that expected
between two unrelated protein sequences, and these sequences are not ran-
domly generated amino acid sequences.

Orthology and Paralogy

Imagine the following two scenarios: in scenario 1 (Figure 13a), gene Ga
codes for protein Pa that performs the essential function Fa. After a speciation
event, the protein evolves independently in each species. The sequence of
the genes undergoes a series of mutation events that change the sequence
into Ga' in one species and into Ga" in the other. The two species have two
related proteins with sequence Pa' and Pa", both compatible with the essen-
tial function Fa because only mutations that do not impair it are accepted
and transmitted to the progeny. Pa' and Pa" might still share a sufficient
sequence similarity to allow their evolutionary relationship to be detected.

In scenario 2 (Figure 13b), gene Ga codes for protein Pa that performs the
essential function Fa. The region that contains Ga is duplicated, which gen-
erates an identical copy of the gene (Gb) that produces protein Pb. Pb is
initially identical to Pa. After a speciation event, both species evolve inde-
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FIGURE 13
Evolution of paralogous and orthologous genes.
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pendently, and Pa and Pb undergo a certain number of mutation events that
generate Pa' and Pb' in one species and Pa" and Pb" in the other species. In
each species, only one of the two proteins is subjected to the evolutionary
pressure of preserving the essential function Fa. The other copy is free to
evolve, and mutations that impair its function are accepted and transmitted
to the progeny, provided the mutations are not deleterious to the organism.

The proteins not subjected to the evolutionary pressure might evolve a
different function, not necessarily the same function and not necessarily
related to the function Fa, but they can all still share a sufficient similarity
between themselves and with the other two proteins that perform function
Fa to allow their relationship to be detected.

Pa' and Pa" are called orthologous proteins; all other pairs of evolutionarily
related proteins in the example are called paralogous proteins.

The issue should now be evident: the detection of an evolutionary rela-
tionship between two proteins does not guarantee that they share a common
function because of the possibility of paralogous relationships. Therefore,
we must distinguish which is the case in the problem at hand. If we are
looking for the function of Pa" or Pb", the discovery that they are evolution-
arily related to Pa' might mislead us to conclude that they perform the
function Fa.

Duplication, and subsequent divergence, is one of the biological mecha-
nisms by which proteins develop new functions. Another route is the mixing
and matching of domains. These compact protein substructures, assumed to
fold independently, often have a functional role. Most proteins are built of
several domains, and the function of a protein can be brought about by the
cooperation of “subfunctions” performed by the domains. For example, one
domain can recognize a specific region of the DNA and another domain can
activate transcription after binding, or one domain can recognize the pres-
ence of a ligand and transmit this information to a second domain that, in
turn, activates a different protein. The insertion of a functional domain into
an existing protein can, therefore, change or modify the protein’s biological
function. An evolutionary relationship between two proteins limited, for
example, to one domain does not guarantee that they have the same function.

Protein Families

As two protein sequences diverge, they accumulate changes, and the number
of conserved amino acids between them might decrease their similarity to
the level expected for two unrelated proteins. Nevertheless, detecting very
distant homologous relationships is of paramount importance for at least
three reasons.

First, detection of such relationships enlarges the number of proteins for
which functional inference can be made. Second, detection of functionally
important regions is made easier. If the divergence time has been very long,
the strong evolutionary pressure to preserve functional residues becomes



6 The Ten Most Wanted Solutions in Bioinformatics

Sequence 1 ALKTLNYDFDHLVEMESDAGLGNGGLGRLAACYLDSMATLAY

Sequence 2 VMKEFDLDLNEI| EQEPDPGLGNGGLGRLAACFLDSL ASLEY

Common residues K D E E D GLGNGGLGRLAAC LDS A L V

Sequence 1 ALKTLNYDFDHLVEMESDAGLGNGGLGRLAACYLDSMATLAV

Sequence 4 AYFSAEFGVHETLFI ¥8- GGL- - - - ~ GVLAGDHVKSA SDLNL

Common residues A 5 GL G LA S

Seguence 1 ALKTLNYDFDHLVYEMESDAGLGNGGLGRLAACYL DSMATLAV
Sequence 2 VMKEFDOLDLNEI | EQEPDPGLGNGGLGRLAACFL DSL ASLEV
Sequence 3 ALMDLGFKLEDLYDEERDAGLGNGGLGRLAAC- MDSL ATCNF
Sequence 4 AYF SAEFGVHETLPI Y8« == == - GGLGVLAGDHVKSASDLNL
Common residues GGLG LA s
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FIGURE 14

The first panel shows a pairwise alignment between two evolutionarily related sequences. The
two sequences are very similar and, therefore, easy to align. However, their similarity is such
that most of their residues are identical, and, therefore, a determination of which are really
important for function is difficult. The second panel shows the alignment of two distantly
related sequences. This alignment is more useful in highlighting important residues but is more
ambiguous. The third panel shows a multiple alignment between four sequences. This align-
ment is a better compromise because it is more reliable, and the conserved residues are easier
to detect. The last part of the figure shows a useful graphical representation of a multiple-
sequence alignment as a stack of symbols, one stack for each position in the sequence. The
height of symbols within the stack indicates the relative frequency of each amino acid at that
position.

more apparent against the background of the remaining positions that expe-
rienced a larger number of accepted mutational events, as illustrated by the
example in Figure 14 (see color insert after page 40). Third, the detection of
very distant relationships might reveal unexpected evolutionary links
between organisms, which can increase understanding of how life developed.

One strategy for identifying distantly related proteins is based on the
observation that homology is transitive: two proteins evolutionarily related
to a third protein are evolutionarily related to each other. We can proceed
by first identifying proteins likely to be homologous to our target sequence,
then by identifying other sequences similar to the former, and so on. This
process allows us to identify a larger number of proteins that share an
evolutionary relationship (i.e., a larger family of proteins), as is shown by
the simplified examples in Figure 14 and Figure 15 (see color insert after
page 40).

We can align a whole family of proteins together; that is, we can obtain a
correspondence table between the amino acids of all the proteins at the same
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“Hopping” in sequence space. (a) A partial alignment of a protein sequence with a set of
evolutionarily related proteins. (b) A matrix in which the percentage of different amino acids
between each pair of sequences is charted. If we make the simplifying assumption that a
difference lower than 0.4 is statistically significant, we can then conclude that sequences
2,3,7,10,11, 14, 15, and 16 are likely to be evolutionarily related to sequence 1. On the other
hand, because homology is transitive, proteins evolutionarily related to sequence 2 are also
related to sequence 1. We can highlight all sequences that are statistically more similar than
expected to sequence 2 and, thereby, add sequences 6, 8, 12, and 13 to the family.

time. This procedure can highlight important properties of the family
because each pair of sequences contains amino acid conserved for functional
reasons and amino acids conserved by chance, but the latter are different for
each of the pairs and, therefore, easier to identify.

Similarity Matrices

In the previous discussion, we assumed that two amino acids can be either
identical or different, but this assumption is clearly a simplification. Pairs of
amino acids can have more or less similar chemical properties. In two homol-
ogous proteins, a positively charged amino acid is more likely to be replaced
by another positively charged amino acid than by a large hydrophobic res-
idue, and this circumstance should be taken into account when one evaluates
the probability that a sequence alignment corresponds to a true evolutionary
relationship.

We must, therefore, estimate the probability that one amino acid is replaced
by another during evolution. These values are empirically derived and
reported in tables called similarity or substitution matrices. In these matrices,
each row and each column corresponds to 1 of the 20 amino acids, and each
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cell contains a measure of the probability that the amino acids in the column
and in the row can replace each other during evolution.

The method used to derive these probability values is straightforward: if
we are given a set of aligned evolutionarily related sequences, we can cal-
culate, for each pair of amino acids i and j, the frequency, f;;, with which the
two amino acids are found in corresponding positions in the alignments (i.e.,
have replaced each other during the evolution of the protein family). On the
other hand, the product ff; between the frequencies f; and f;, with which the
amino acids i and j occur in the sequences, is an estimate of the probability
that they are found in the same column by chance alone, given the compo-
sition of the sequences in the alignment. The ratio f;/ff; is an estimate of the
likelihood that the amino acids i and j are substituted by each other during
evolution. Similarity matrices usually report the log, of these numbers. We
need an initial alignment, or set of alignments, to derive the substitution
values, and the alignments should be unambiguous.

The set of matrices proposed in 1978 by M.O. Dayhoff is based on the
concept of PAM (point accepted mutation) and is called the PAM matrices.
PAM is a measure of evolutionary distance between two proteins. An
accepted point mutation is a single amino acid substitution that has been
transmitted to the progeny (i.e., evolutionarily accepted). Two sequences are
at 1 PAM distance if they can be converted into each other, assuming an
average of 1 PAM every 100 amino acids.

The PAM1 matrix is constructed by deriving the substitution frequencies
from alignments between pairs of proteins 1 PAM from each other, (i.e., very
similar and, therefore, easy to align manually). The PAM2 matrix can then
be obtained by multiplying the 1-PAM matrix by itself, the PAM3 by multi-
plying the PAM2 matrix by the PAM1 matrix, and so on, iteratively. The
larger the number of the matrix, the more suitable it is for detecting more
distant evolutionary relationships (Figure 16a).

The BLOSUM (blocks substitution matrix) matrices are derived by use of
local alignments of very conserved regions in homologous proteins. They
are also constructed as a series of matrices. A BLOSUM-N matrix is derived
from alignments such that all sequences sharing more than N% identity with
any other sequence in the alignment are averaged and represented as a single
sequence. Unlike the PAM, here a larger number indicates that a matrix is
more suitable for aligning closely related sequences (Figure 16b).

These matrices can be used to derive multiple-sequence alignments, which
can, in turn, be used to refine the substitution frequencies between pairs of
amino acids and derive new matrices. One example of this approach is
represented by the Gonnet matrices, in which PAM250 is initially used to
obtain the initial sequence alignments used to derive a new matrix that is
subsequently used to realign the sequences. The new alignments are then
used to derive another matrix, and so on, iteratively.
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FIGURE 16
(a) The PAM250 and (b) BLOSUMS62 matrices.

Indel Penalties

Both the PAM and the BLOSUM matrices are derived from alignments of
very similar protein sequences or of conserved regions of proteins and can
be effectively used to statistically model single amino acid replacements.
However, other evolutionary events are infrequent and are, therefore, rarely
observed in very similar sequences. The events are the insertions and dele-
tions of amino acids (also called indels or gaps).

As stated earlier, an alignment of two protein sequences is the correspon-
dence between their amino acids that most likely reflects their evolutionary
history. This history can include indel events, but these events should be
penalized with respect to identities or single-residue substitutions because
they are less frequently observed in homologous proteins. Proteins are very
compact structures, and the insertion or deletion of one or more amino acids
can be structurally destabilizing. Because substitution matrices are derived
from ungapped alignments, indels are penalized by application of empiri-
cally derived parameters. The simplest penalization model assigns a constant
penalty value to each inserted or deleted amino acid, but this model is not
a very good model of biological reality, because insertions and deletions can
be more easily accommodated in a protein structure if they occur near the
solvent-exposed surface (i.e., in a limited set of positions.) Therefore, more
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realistic models of gap penalization treat the initiation of a gap differently
from its continuation: increasing the length of a gap by one amino acid is
penalized less than inserting one amino acid in a different position.

In the linear penalty model, each gap has a penalty w, augmented by a
penalty w, lower than w, for each increase in the length of the indel. Alter-
natively, each inserted and deleted amino acid in an indel can be assigned
a penalty lower than the previous one; for example, log, w,, in which w, is
the penalty assigned to the first inserted or deleted amino acid, and the index
e runs from 2 for the adjacent inserted or deleted amino acid to I for the last
amino acid in the gap. If w, =5, the penalty for inserting four amino acids
is 5 + log,5 + logs5 + log,5 =5 + 2.32 + 1.46 + 1.16 = 9.95. Compare this result
with the value 5 x 4 = 20 that would be obtained by application of a linear
penalty scheme.

Local versus Global Alignment

The alignment between two protein sequences is global when it is aimed at
finding the optimal correspondence between all amino acids of both
sequences and local when it attempts to find local regions of similarity
between the two sequences. The latter is biologically relevant because it
might allow us to detect evolutionarily related domains present in proteins
whose remaining sequences have no evolutionary relationship or allow us
to highlight regions that contain functional units subject to stronger evolu-
tionary pressures. Local alignments are also useful for the detection of pro-
teins homologous to a target protein in a large data set of unrelated proteins.

How Do We Align Sequences?

Global Alignment of Two Protein Sequences: The Needleman and Wunsch
Algorithm

An alignment of two protein sequences is a correspondence between the
amino acids or appropriately inserted gaps of the first sequence and amino
acids or gaps of the second sequence. Clearly, a gap in the first sequence
cannot correspond to a gap in the second sequence, and the alignment can
be seen as a matrix with two rows, one corresponding to each sequence, and
each column corresponds to a pair of aligned amino acids or to an amino
acid and a gap.

We use a maximum-parsimony approach and assume that the best align-
ment (i.e., the one that best reflects the evolutionary relationship between
the two protein sequences) requires the minimum number of substitutions,
insertions, and deletions. If we use our substitution matrices to assign a score
to each pair of amino acids (a score that reflects the probability that the amino
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acids replaced each other during evolution) and a penalty value for indels,
we are looking for the alignment for which the sum of the scores of each
pair of aligned amino acids, diminished by the penalty values for the indels,
is maximum.

Thus, the problem of aligning two protein sequences is reduced to the
problem of finding the alignment between the two strings that represent
their sequences such that the global score is maximum, given a score function
and penalty values for indels.

The optimal alignment between two strings can be exactly computed, but
the optimal alignment is biologically correct only insofar as the score function
and the indel penalty values are biologically reasonable.

The Needleman and Wunsch algorithm finds the optimal alignment
between two sequences by calculating the optimal alignment between sub-
sequences of increasing length. It is based on two assumptions:

* Mutations in different sites of a sequence occur independently.
¢ The length of a gap does not depend on the elements aligned to the
&ap-

Both hypotheses are approximations of biological reality because different
positions in sequences are subject to different evolutionary pressure, and not
all sequences of amino acids can be accommodated in inserted regions. These
sequences are usually solvent exposed and, therefore, are more likely com-
posed of hydrophilic or flexible amino acids.

However, under these assumptions and given a scoring matrix and a gap
penalty scheme, the alignment problem can be exactly solved by dynamic
programming methods.

Let us write the two sequences in the first row and the first column of a
matrix (Figure 17). Each cell corresponds to the alignment of the amino acid
in the row with that in the column and contains a score reflecting the simi-
larity between the two amino acids. Our alignment problem can now be
reformulated as follows: what is the set of cells (that is, pairs of aligned
amino acids) that we should use to go from the upper left corner to the lower
right corner so that we “collect” the larger score?

We must build a new matrix (the so-called cumulative matrix) in which
each cell contains the maximum score achievable by any alignment that ends
in that cell. This score is not difficult to compute.

If we know the maximum score that can be achieved by any alignment
that ends in the cell {s_;t.;}, {s;y,t}, and {s;t.;}, then the maximum score
F(i,j) that can be achieved by any alignment that includes the pair {s;t;} can
be easily calculated. Only three “moves” allow extension of the alignment
to the i,j position: aligning s; and ¢, aligning s; with a gap, and aligning ¢
with a gap. We select the path that provides the maximum score:
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F(i-1,j-1)+0(s;, 1)
F(i,j)=max|  F(i—-1,j)-w; 1)
F(i,j—-1)—w

where (s, t) is the score value for the pair of amino acids x; and y;, and w,
and w; are the appropriate penalties for inserting a single amino acid gap in
the i and j positions, respectively.

We must now compute F(0,0), F(1,0), F(0,1). F(0,0) is equal to zero, as it
does not correspond to any pair of aligned residues. F(1,0), F(0,1) are the
maximum scores that can be achieved by aligning the first amino acid of
each sequence with a gap (Figure 17), and, therefore, we can set their values
to —w; and —w; or to 0, if we do not want to penalize gaps at the beginning
of either sequence. Similar considerations allow us to fill the complete first
row and first column. They correspond to further insertions in one of the
two sequences, so we can either assign an extra indel penalty for each of
them or set them to 0. Now we can completely fill the matrix, and the
maximum score of the global alignment is, by definition, the one reported
in the lower right cell (n,/m). We can achieve the maximum score if we include
in the alignment the (1,m) pair and one of the pairs (n-1,m), (n,m-1), or (n—
1,m-1), namely, the one that we used to obtain the maximum value in (1,m)
that we recorded during the matrix construction procedure. This step can
be iterated until a cell of the first column or of the first row is reached, which
generates a path though the matrix including the cells that contribute to the
alignment with maximum score.

Local Alignment of Two Protein Sequences: The Smith and Waterman
Algorithm

A modification of the Needleman and Wunsch algorithm can be used to
obtain local sequence alignments; that is, alignments that do not necessarily
include the whole length of the two sequences.The difference consists essen-
tially of not allowing negative scores, because a good local alignment is
unlikely to include gaps or rarely observed substitutions. From the algorith-
mic point of view, this assumption implies that equation (1) is replaced by

0
Do F(i_llj_l)_c(sirtj)
F(i,}) = max Fi-1,))-w, 2)
F(i,j—l)—wj

We assign a value of 0 to F(i,0) and F(j,0) for each i and j and construct the
matrix as in the previous case. The reconstruction of the alignment now



Protein Sequence Alignment 13

starts from the maximum value in the matrix and proceeds with the same
strategy as in global alignments, but it stops when a score of 0 is encountered.

Multiple-Sequence Alignments

A multiple-sequence alignment (MSA) between N protein sequences is again
a matrix, this time with N rows such that each row contains a protein
sequence, possibly with gaps inserted. Clearly, each column should contain
at least one element that is not a gap.

As for pairwise alignment, the problem is to find the MSA that maximizes
a predefined score. Unfortunately, the extension of the scoring scheme and
of the algorithms described for two sequences to multiple-sequence align-
ments presents a number of problems.

One possible scoring scheme, called SP-score (sum of pairs score), is cal-
culated by addition of all possible pairwise scores for each column and then
summation of the scores for all columns. The underlying assumptions for
the SP-score is that both the columns and the rows of the alignment matrix
are statistically independent. This assumption is clearly not valid, because
the protein sequences in the alignment are supposedly evolutionarily related.

Another problem of SP-scores can be better illustrated by the following
example. Let us calculate an SP-score for the alignment in Figure 18a. For
simplicity, we assign a score of 1 to identical amino acids and O for all other
amino acids. Each column has three amino acids. In the first column, they
are all different, and the score is 0. In the second and third columns, all three
pairs are formed by identical amino acids, and the score is 3 X 1 = 3. The
fourth column has again a score of 0. The last column contains one match
(F-F) and two mismatches (F-Y), and, therefore, the scoreis 1 x1+2x0=1.

The alignment in Figure 18b is biologically less convincing than the align-
ment in Figure 18a, because the third position contains one mismatch, and
the SP-score is indeed lower. The ratio between the score of the two align-
ments is 7/6 = 1.17.

Let us now assume that we add one more sequence to both alignments as
shown in Figure 18c and Figure 18d. From a biological point of view, the
addition of a fourth sequence where again a C appears in the third position
makes the first of the two alignments even more convincing, whereas it
decreases the relative likelihood of the second. The presence of the G (in
bold in Figure 18) in an otherwise very conserved position is more unlikely
here than in the alignment shown in Figure 18a and Figure 18b. We would
like our scoring system to recognize that the addition of the fourth sequence
shifts our confidence toward the first alignment, yet the ratio of the scores
of the two alignments is now 1.08 and erroneously points to a smaller
difference between the quality of the two alignments shown in Figure 18c
and Figure 18d with respect to those shown in Figure 18a and Figure 18b.
This problem and the fact that there is no statistical justification for its usage
notwithstanding the SP-score is often used because of its simplicity.
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L et usassumethat we need to align two sequences:
ACFFTGHILPRG and ADYTGHLMPKA
Wefirst build a substitution matrix: the two sequencesarein thefirst row and in thefirst column.

In each cell thereisthe score for the pair of amino acids corresponding to the column and the row
derived from the PAM 250 matrix shown in Table 2:
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Let’sdecide that we select a constant penalty value of 5 for indels. Now we need to build the
cumulative matrix. We will set the penalty for inserting at the beginning of each sequenceto zero.
Therefore,

A IC |... |G
0 0

A

We need to fill the shaded cell, and we can get there either from the cell on top of it, from the one at
itsleft or from the cell diagonally up. If we came from the cell on the top, we would effectively insert
oneresidue: the A of the horizontal sequence would not correspond to any amino acid of the vertical
sequence. I n this casethe scorein the cell should be-5, i.e. O (the content of the cell we are coming
from) minusthe penalty for an indel, which is 5. The second caseis similar (we would beinserting in
the other sequence) and the score would again be —5. In thethird case therewould be noinsertion
and the score would be 0 (the content of the cell we are coming from) plus 2 (the score of the A, A
pair) =2. The maximum value between (-5, -5, 2) is 2, therefore we write 2 in the cell and remember
that we obtained it using the cell diagonally up:
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A

FIGURE 17

The Needleman and Wunsch algorithm for pairwise sequence alignment. (continues)
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We can now fill another cell, shaded in the scheme. If we came from the cell aboveit, the score would
be 2 (the starting value) -5 (the insertion penalty) = -3. If we came from the cell on the left, we would
have a score of 0 -5 = -5, for the diagonal cell the scorewould be 0 +0 = 0. Therefore:
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The optimal alignments, given our substitution matrix and our indel penalty scheme, are:

AD-YTGHLMPKA
A CFFTGHI L PRG

ADY -TGHLMPKA
ACFFTGHI L PRG

A CF-FTGHILPRSG

FIGURE 17 (CONTINUED)
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a) b) Score ratio
F ACDF F A CDF
S A CE F S A CE F
Y ACAY Y AGDY
Column score 0 3 3 0 1 0 3 1 1 1
Total score 7 6 7/6=1.17
c) d) Score ratio
F A C D F F A C D F
S A C EF S A C E F
Y A CAY Y AG DY
S A CEY S A CEY
Column score 1 5 5 1 2 1 5 3 2 2
Total score 14 13 14/13=1.08

FIGURE 18
Ilustration of the problems connected with the SP-score in multiple sequence alignments.

Several alternative scoring schemes have been proposed, but they all
assume that each sequence is unrelated to any other sequence in the align-
ment; this assumption is not valid for sequences that belong to an evolu-
tionary family.

Another nontrivial problem is connected with multiple-sequence align-
ments. A simple calculation shows that the extension of the Needleman and
Wunsch algorithm to N sequences is technically unfeasible.

If we want to extend the algorithm to a multiple-sequence alignment of
N sequences of length L, each cell has 20"V neighboring cells, and the total
number of cells is LN. Therefore, the calculation of the optimal alignment
requires a number of steps of the order of LN x 2V, a number that becomes
quickly untreatable. An alignment of 50 sequences of length 150 amino acids
requires more than 10'® operations.

Interesting ideas have been presented to solve this problem. For example,
one can calculate the minimum of the alignment score for each pairwise
alignment and assume that this score is a lower bound for the overall score.
When we use our algorithm, we can reduce the number of cells that we have
to consider by discarding those that would make our score lower than the
lower bound. Even so, the problem can be solved in a reasonable time only
if the number of sequences is not more than a few, and their length is only
100 to 200 amino acids.

Another solution to the problem is the use of a progressive method; that
is, first align two sequences, then align a third sequence to the first alignment,
then align a fourth to the alignment, and so on, iteratively. To align a
sequence to an alignment, we can align the new sequence to each sequence
of the alignment and select the highest scoring pair. We can align two align-
ments by calculating each possible pairwise score between sequences of the
first alignment and sequences of the second, again using the highest scoring
pair to build the new alignment.
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We can also use a simple modification of the pairwise alignment algorithm.
Instead of writing a single sequence in the first row, we write a previously
calculated pairwise alignment. The score of each cell in the substitution
matrix is the average score of each amino acid of the alignment with the
corresponding amino acid of the vertical sequence:

A C F F T G H I L P R G
A D Y F S G S \' M P K A
20|-10|-30(-30| 10| 10| 00 |-05|-15| 10| -1.5* | 1.5
00|-05|-50|-60| 00| 10| 05|-20|-35|-10| -05| 05
-30(-20| 85| 70|-30|-50 |-15|-15|-15|-50| —4.0|-40
1.0|-10|-30|-30| 20| 00| 00| 00|-15| 00| 05| 05
1.0|-10|-50|-50| 05| 50 |-05|-20|-35| 00| 25| 3.0
-10|-10|-10|-20|-10|-20| 25|20 |-20]| 0.0 1.0 | -1.5
-20(-50| 05| 20|-25|-40|-25| 20| 50|-30| -3.0|-3.0
-10|{-40(-10| 00|-15|-3.0|-20| 20| 50 |-20 0.0 | -2.0
10|(-20|-50|-50| 05| 00| 05|-15|-25| 60| -05| 05
-10 |-25|-45|-50| 00|-20| 00|-20|-15|-1.0 40 |-15
20|-10{-30|-30| 10| 10| 00|05 |-15| 10| -15| 15

@ =1/ [score (R.A) + score (K.A)] = 1,(-2-1) = -1.5

> R®Rl = B e @ o 4 =| O] e

We must now decide the order in which to align the sequences. In other
words, which pair do we align first, and in which order do we select the
subsequent sequences? Aligning the most similar pair of sequences first
seems sensible because their correct alignment is likely to be easier and
might, therefore, aid in the more difficult subsequent alignments.

The strategy is as follows:

1. Calculate similarity values for each pair of sequences.
2. Select the pair with highest similarity and proceed to align them.

3. Recalculate the similarity between the aligned pair and each of the
other sequences.

4. Repeat steps 2 and 3 until all sequences have been aligned.

The result of the procedure can be visually represented as a binary tree,
in which each node is a sequence and each edge is proportional to the
“distance” between the nodes. The distance is inversely related to the sim-
ilarity between two sequences, between one sequence and one alignment,
or between two alignments. The tree is usually called the guide tree of the
alignment and approximates the evolutionary relationship between the
sequences.

Phylogenetic trees (i.e., trees representing true evolutionary relationships)
are rooted; they include one node that represents the original ancestor of all
sequences. Several algorithms are available for constructing trees, provided
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In thematrix, S1, S2, S3, $4 and S5 represent five sequences and the numbersin each cell arethe
“distance” between the sequences of therow and the column. This can be some function of the
similarity or identity value between the sequences. We select the two “ closest” sequences and draw
them as shown on theleft in such away that the vertical lineis half of their distance.

S1 S2 S3 S4 S5

st 0 2 5 4 7

S2 0 305

S3 0 3 6 h=1

S4 0 4

S5 0 S1 S2

We now calculate the distance of this group from each other sequence asthe average of their
distances from S1 and S2:

S12 S3 S4 S5
S12 0 4.5<4?56\
s3 0 3 6 =02 h=1.5
S4 0 4
S4 S3 S1 S2

S5 0
The closest pair isnow S3 and $4:

S12 S34 S5 -
S12 0 4 6
S34 0 5
S5 0
And finally s12 and S34: h=2.75 4
S1234 S5
S1234 0 5.5 L
85 0 S5 S4 S3 S1 S2
FIGURE 19

The UPMGA (unweighted pair-group average) method for building a tree.

that metrics between sequences have been defined. Some of the algorithms
provide hypotheses about the location of the roots, while others do not and
can be used to construct unrooted trees. The latter, although unable to give
information about the evolutionary events that have generated the family
of homologous proteins, are still very useful for simplifying the problem of
multiple-sequence alignments.

Several methods exist for reconstructing the most likely evolutionary tree
that has generated the observed differences between a given set of sequences.
The methods take into account several factors, such as the possibility that
different branches of the tree have different evolutionary rates. For the pur-
pose of multiple-sequence alignment, we do not need a very accurate evo-
lutionary reconstruction, and we can use less sophisticated methods, such
as the one described in Figure 19.

The multiple alignment protocol originally devised by Feng and Doolittle
consists of the following two steps:
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1. Calculate the distances between each pair of sequences and use them
to construct an approximate tree that will only be used to decide the
order of alignments and, therefore, does not need to be especially
accurate.

2. Align the pair of sequences, the pair of alignments, or one sequence
and one alignment, starting from the child nodes of the tree, so that
the most similar sequences are aligned first and the most dissimilar
ones are aligned last.

In the Feng and Doolittle implementation of this procedure, gaps are
penalized the first time they appear in an alignment but not when they are
inserted in the same position in the subsequent alignment step (once a gap,
always a gap). This practice is biologically sensible because all proteins in
the tree are assumed to be homologous, which implies that their three-
dimensional structures are topologically similar. Therefore, the position of a
gap is structurally equivalent in all proteins, and if allowed in one pair, it
also falls into an allowed region in the others.

Another reconstruction approach is to use the score of a column of the
alignment (e.g., the SP-score) as the score in the alignment procedure. We
only need to define the score for a gap-to-gap alignment (e.g., 0).

The widely used ClustalW method is essentially based on this last algo-
rithm, with some clever additions. The alignment of each pair of sequences
or alignments is built by use of a matrix appropriate for their evolutionary
distance. Gap penalties depend on the amino acids observed in the column,
so the presence of many hydrophilic or flexible residues in a column lowers
the gap penalty in that position. Furthermore, the gap penalty is increased
for columns that do not contain gaps, if gaps are present nearby in the
alignment. Finally, the guide tree can be adjusted at the alignment stage on
the basis of the scores of the alignments.

One problem with iterative multiple-sequence alignment is that the addi-
tion of a new sequence cannot modify the preexisting alignment. One solu-
tion, proposed by Barton and Sternberg, consists of taking out one sequence
at a time and realigning it to the multiple alignment.

Profiles

Given a multiple-sequence alignment, we can derive the probability that
each given amino acid is found in one of the aligned positions. We simply
count the number of times each of the 20 amino acids appears in each column
and divide the number of appearances by the number of aligned sequences.
If the number of sequences is sufficiently high, these frequency values
approximate the probability of finding any given amino acid in any position
of the alignment.

When a new sequence is available, we can align it to the multiple align-
ment, calculate the probability that each of its amino acids is found in each
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of the columns, and multiply these values to calculate the probability that
the sequence “fits” the profile.

Multiplying probabilities creates problems because they are always lower
than 1 and their product quickly becomes a very low number. The best way
to solve the problem is to calculate the logarithm of the values in the column.
Because the logarithm of a product is the sum of the logarithms of its factors,
our calculation of the “fitness” of the new sequence only requires additions.

One drawback of using logarithms is that if one amino acid never appears
in a column its frequency is 0, and we face a problem because the logarithm
of 0 is infinite. The most-used method of solving the problem is to add 1 to
each of the frequency values (method of the pseudocounts).

Hidden Markov Models

The classical example used for explaining Hidden Markov Models is that of
the “occasionally dishonest casino”: in a game in which a player can bet on
the rolling of a die, the player wins if the die lands on every side but the
“6.” If the die is fair, the player has 1/6 probability of losing and 5/6
probability of winning. A dishonest croupier could use a die that has a
higher probability of landing on a “6,” (e.g., 50%). To avoid being caught,
the croupier can switch from a fair die to a loaded die with a certain fre-
quency. For example, he can change the die from fair to loaded after 20 rolls
and from loaded to fair after 10 rolls. This process is represented graphically
in Figure 20.

Why is this model called a Hidden Markov Model? It is a Markov model
because the state of the system is only influenced by the previous state, and
itis hidden because, if we now see a series of rolls (e.g., 1, 3,2, 3, 6,6, 6,4, 3, 2),
we cannot know which states (fair, loaded, or a combination of both) pro-
duced the result.

0.90

FIGURE 20
A Hidden Markov Model for the occasionally dishonest casino.

We can ask three questions about Hidden Markov Models:

1. Given a series of rolls, what are the probability values of the state
transitions (i.e., how can the numbers associated with each of the
arrows in Figure 20 be deduced)?

2. Given a series of rolls, what is the probability that the results have
been generated by a scheme or model such as the one in Figure 20?
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3. Given a series of rolls, what is the most likely sequence of states that
generated it? In other words, which series of events (switching from
the loaded to the fair dice and vice versa) most likely generated the
observed results?

If we apply the scheme to a biological sequence alignment, we can envisage
an alignment as a Hidden Markov Model in which each column is a roll.
The outcome of the roll can be a match state (i.e., an amino acid is aligned
to the next column), a delete state (i.e., the column is skipped), or an insert
state (i.e., the amino acid does not correspond to any column). Our three
questions can now be reformulated as follows:

1. Given a set of homologous amino acid sequences, which are the
transition probability values (from match to insert, to delete and vice
versa) that best describe the family (i.e.,, which is their Hidden
Markov Model)?

2. Given an amino acid sequence, what is the probability that the
sequence has been generated by a Hidden Markov Model of a pro-
tein family (i.e., what is the probability that the new sequence
belongs to the previously aligned family)?

3. Given an amino acid sequence, what is the most likely sequence of
matches, insertions, and deletions that makes the sequence fit to the
Hidden Markov Model of a protein family? In other words, what is
the most likely alignment of the new sequence to the existing model?

The best way to understand a Hidden Markov Model is to build one
manually, as demonstrated below. The model is based on the alignment
shown in Figure 15. The first eight columns of the alignment are shown in
the matrix:

Position 1 2 3 4 5 6 7 8
Seql A — — — I \% Y 4
Seq2 A — I T I L F G
Seq3 A — I T I I S A
Seq4 A K v T \Y% I Y A
Seqb A — — T \% L Y A
Seq6 A K A T I L Y A
Seq7 A K A T I L Y G
Seq8 A K A T I L F A
Seq9 A K A T v L Y A
Seq10 A K C S I L F A
Seqll A N I 1 \% F Y G
Seql2 A N T L L L F G
Seq13 A — A A \% F F G
Seql4 A N Y L \% L Y A
Seql5 A K S L I \% Y G
Seql6 A K A L I \% Y G
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The first step is to count the frequency of each amino acid in each alignment
position. Because some amino acids might be absent in some positions, we
must add 1 to each of the values (pseudocounts):

Position 1 2 3 4 5 6 7 8
A 17 1 7 2 1 1 1 9
C 1 1 2 1 1 1 1 1
D 1 1 1 1 1 1 1 1
E 1 1 1 1 1 1 1 1
F 1 1 1 1 1 3 6 1
G 1 1 1 1 1 1 1 8
H 1 1 1 1 1 1 1 1
I 1 1 4 2 10 3 1 1
K 1 9 1 1 1 1 1 1
L 1 1 1 5 2 10 1 1
M 1 1 1 1 1 1 1 1
N 1 4 1 1 1 1 1 1
P 1 1 1 1 1 1 1 1
Q 1 1 1 1 1 1 1 1
R 1 1 1 1 1 1 1 1
S 1 1 2 2 1 1 2 1
T 1 1 2 9 1 1 1 1
Y 1 1 2 1 7 4 1 1
Y 1 1 2 1 1 1 11 1
4 1 1 1 1 1 1 1 2

By calculating the frequencies, we obtain
Position 1 2 3 4 5 6 7 8

0.47 0.03 0.21 0.06 0.03 0.03 0.03 0.25
0.03 0.03 0.06 0.03 0.03 0.03 0.03 0.03
0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.03 0.03 0.03 0.03 0.03 0.08 0.17 0.03
0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.22
0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.03 0.03 0.12 0.06 0.28 0.08 0.03 0.03
0.03 0.29 0.03 0.03 0.03 0.03 0.03 0.03
0.03 0.03 0.03 0.14 0.06 0.28 0.03 0.03
0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.03 0.13 0.03 0.03 0.03 0.03 0.03 0.03
0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.03 0.03 0.06 0.06 0.03 0.03 0.06 0.03
0.03 0.03 0.06 0.26 0.03 0.03 0.03 0.03
0.03 0.03 0.06 0.03 0.19 0.11 0.03 0.03
0.03 0.03 0.06 0.03 0.03 0.03 0.31 0.03
0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.06

SIXKI<|F3 L RO|7ZIZC| R T O =T 0] >
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Now, we must count the number of transitions between two match states,
a match and an insert, a match and a delete, and so on, on the assumption
that the begin state is a match.

We must always remember to add the pseudocounts:
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Finally, we must convert the counts into frequencies:

Position 1 2 3 4 5 6 7 8
Match-match 0.68 0.48 0.50 0.6 0.64 0.68 0.68 0.68
Match—delete 0.04 0.24 0.04 0.04 0.04 0.04 0.04 0.04
Match-insert 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Insert-match 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Insert—delete 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Insert-insert 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Delete-match 0.04 0.04 0.20 0.08 0.08 0.04 0.04 0.04
Delete-delete 0.04 0.04 0.10 0.08 0.04 0.04 0.04 0.04
Delete—insert 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

We can now build the graphical representation of our Hidden Markov
Model, in which the delete state is represented by a rhomboid, and the insert
is represented by a circle, as shown in Figure 21. For clarity, only some of
the probability values are indicated. The meaning of the Hidden Markov
Model should now be apparent. For example, starting from the BEGIN state,
we have a 68% probability of matching the first residue, and, if a match is
chosen, the table can tell us the probability of aligning each of the 20 amino
acids. After the first match, the probability of a deletion is 24%, and, if we
indeed delete a residue, we have a probability of 10% of deleting another
residue and a probability of 20% of matching it instead to a column of the
alignment. We cannot know in advance which route will be taken by our
sequence (which is why the model is called “hidden”), but we have methods
to calculate which path maximizes the overall probability of a given align-
ment of our target sequence to the model (i.e., to the family of proteins used
to generate it).



24 The Ten Most Wanted Solutions in Bioinformatics

FIGURE 21
Graphical representation of the Hidden Markov Model derived from the multiple alignment

shown in Figure 15.

Publicly available Hidden Markov Models have been built to represent
several protein families, and they can be used to assess the probability that
a newly determined sequence belongs to one of the families.

A major issue in computational biology is the identification of proteins
homologous to a given input or query protein in a database or known protein
sequence, and Hidden Markov Models are among the most powerful tools
that can be used to make such identifications. The models are especially
suitable for detecting distant relationships. Other methods are discussed

below.

Database Searching

All known protein sequences and their functional annotations, when avail-
able, are stored in biological databases. A newly determined sequence can
belong to a family of proteins of which one or more members have already
been identified, characterized, and stored in the databases. Therefore, we
must compare our protein sequence (the query) to each and every known
protein sequence (the targets) to detect potential evolutionary relationships.

From a computational point of view, the problem is to align the query
sequence to a very large collection of sequences and to sort them according
to the score of their alignment with the input sequence. The method has to
be fast and scalable because the number of available sequences is enormous
and grows at an impressive rate (Figure 22).



Protein Sequence Alignment 25

4 E407 1.20E+0€
AE07 / 1 1.00E+0€

3EH07
ﬂ 1 8.00E+0=

2EH07
6.00E+0E

2E+07
4.00E+08

1.E407
— 1 2.00E+0=
0.E+00 - =dd 0.00E+0C

hcié% »\q‘q\ \éﬁ »fgfg: rf{-é\ *\c-& q,és\ q'?gh

‘ —&— Nucleotide sequences —&— Protein sequences ‘

FIGURE 22

The growth of the nucleotide and protein sequence database. Note that the scales for the
nucleotide and protein sequences (shown on the left and on the right, respectively) are different.
(Data from http:/www.ncbi.nlm.nih.gov and http://www.ebi.ac.uk.)

From a biological point of view, however, the problem is much more
complex. What are we looking for? As we discuss in Problem 4, if our aim
is to infer the structure of the query protein, we must obtain realistic align-
ments with homologous proteins, but if our aim is function assignment, we
must distinguish between paralogous and orthologous sequences. We must
also make sensible functional inference; that is, we must understand how
much of what is known for an orthologous protein can be transferred to the
query protein and, especially, the reliability of the functional annotations of
the proteins in the databases.

The most commonly used methods for database searching are based on
heuristics, and we must know their underlying assumptions because these
assumptions have significant biological implications.

FASTA (Fast-All) is a sequence searching package that uses a multistep
approach. It first finds sequences sharing exact short matches with the query
protein by use of a lookup table. It then extracts sequences with a high
number of short exact matches that can be part of the same alignment. Finally,
it aligns the selected sequences with the query sequence by implementation
of a dynamic programming algorithm.

Blast is another sequence searching package that searches for short exact
matches between the query sequence and database sequences, which it tries
to extend in both directions. It stops when the score is likely to be maximum.

A modified version of Blast, Psi-Blast, first runs a database search by Blast,
collects and aligns the sequences likely to be homologous to the query, and
uses those sequences to build a profile. The profile can be used to calculate
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the probability that a new sequence belongs to the multiple-sequence align-
ment as described before, and, thereafter, Psi-Blast uses the profile to search
for other related sequences, collects new similar sequences, rebuilds a profile,
and proceeds iteratively until no new sequences are found or until a user-
defined number of iterations has been performed.

Any of the database search packages can provide a sorted list of matching
sequences that putatively includes all sequences in the database that are
homologous to the query. This list includes false positives (i.e., sequences
that are not homologous to the query) and false negatives (i.e., homologous
sequences that are identified as not homologous). These errors have different
impacts on biological research.

The appearance of false negatives can be attributed to the assumption that
homologous sequences necessarily include short exact matches and to the
statistics used to assess whether a given score is significant from a biological
point of view. The false negative problem is probably biologically less impor-
tant because a new database search that uses shorter match lengths or, at
worst, a brute-force approach that uses a full dynamic program algorithm
on the whole database could, at least in principle, detect false negatives. In
any case, the error does not propagate itself.

False positives are much more serious errors. They are related to the
complexity of biological systems and cannot be solved by brute force. False
positives not only can mislead biologists but also can, more importantly,
cause error propagation in database functional assignment. Because of the
speed at which new sequences are determined, the assignment of their
function is mostly based on sequence similarity and, therefore, on the results
of database searches, rather than on biochemical experiments. Thus, a false-
positive error can be propagated, as newly determined sequences similar to
the query sequence are assigned the same function on the basis of the
detected similarity.

To assess the significance of a match, we should compare the observed
score with the score expected by chance alone (i.e., with the background
random distribution). An observed score significantly higher than what we
expect by chance alone points to an evolutionary relationship. However, the
nonrandomness of protein sequences makes the choice of the background
distribution quite tricky. If we had a list of sequences certainly unrelated to
the query, the results of a database search on this set of sequences would
give us the background distribution, but such a list is very difficult to obtain.
Therefore, we use the background distribution obtained on the same data-
base by using as a query a sequence, or a set of sequences, unrelated to the
query.

Blast calculates the background distribution by using as a query a sequence
with the average composition of the database sequences. In other words,
Blast searches the database many times with sequences that are generated
randomly but have the average composition of the database and stores the
obtained distribution of scores. When the user searches the database with a
query sequence, each score obtained from the alignment with a database
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The Z-score is defined as the difference between the observed score and the average score of
the background distribution divided by its standard deviation. The higher the Z-score, the less
the likelihood that the match with SP-score is the result of chance alone. Here, we show the
Z-score for a Gaussian distribution.

protein sequence is compared with the random distribution of scores, and,
if it is statistically significantly higher (see Figure 23), the two sequences are
predicted to be homologous.

The advantage of this approach is that the expected random distribution
of scores can be calculated only once for a given database and a given scoring
system, but the significant drawback is that the composition of a query
sequence is not necessarily similar to the average sequence and, in some
cases, can be very different. Examples of the latter are sequences that contain
regions where a few amino acids are very frequent (i.e., the so-called low-
complexity regions). Especially if the very frequent amino acids are among
those that have a high score for exact matches, the risk is that any other
sequence that contains a large number of these amino acids will score very
high, even if unrelated to the query. Blast tries to solve the problem by
detecting and masking these regions (i.e., it does not use them to compute
the score). However, masking might increase the number of false negatives
because the presence of a low-complexity region in the query protein, which
is biologically relevant, is totally neglected in searching for homologs.

FASTA uses a different approach. It calculates the expected random dis-
tribution of scores by repeating the search on subsets of the original database
that are generated from the query by reshuffling its sequence. This approach is
costly in terms of computational time, but it decreases the risk of false
negatives for proteins containing low-complexity regions.

The other problem related to false negatives stems from the length of the
query and the database sequences. An exact match is more likely to be found
in a long sequence than in a short sequence. The background distribution
against which we compare our score depends upon the length of the
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sequences. Very long protein sequences are usually indicative of the presence
of more than one domain, and we would like to search the database with
each domain independently because they can be derived from different
ancestral sequences. However, detecting domain boundaries in a protein
sequence is not easy. Several methods are available that are described in
Problem 2, but we should mention here that their reliability is not yet satis-
factory.

Reliability of Present Methods and Promising Avenues

When discussing the reliability of bioinformatics tools, one must take into
account the biological question that the tools are trying to address. For
sequence alignment and database search, the first distinction that must be
made is whether these methods are used for the analysis of a single protein
of interest or for high-throughput assignment of function or structure.

For a single protein, the reliability can be improved by a careful analysis
of the results. A basic understanding of protein structure and function might
be sufficient to assess whether the result can be trusted or whether the case
at hand is borderline and more investigations are needed. For example, the
distinction between orthology and paralogy can be based upon the obser-
vation of which amino acids are conserved and whether they include resi-
dues known or likely to be part of the active or functional site. A similarity
limited to a domain can be immediately spotted and, for example, the align-
ment or database search can be repeated on fragments of the query protein.

High-throughput usage of the tools is much more complex. Ideally, one
would prefer, for the functional assignment, to give a heavier weight to
functionally important residues in the alignment. This preference is partially
addressed by scoring schemes that take into account the conservation pattern
of each residue in homologous families, but this approach is not always
sufficient.

An important aspect to be considered is that a large body of information
about specific proteins is available in the biochemical literature, and this
information might include the results of mutagenesis or residue modification
experiments on one of the proteins of the family. If these data could be taken
into account in the alighment procedure, results would be much more bio-
logically accurate.

We will return several times to the advantages of exploiting available
experimental information on the proteins of interest and will discuss current
techniques for doing so. Here, we mention only that a scoring system able
to take into account information automatically extracted from the literature
would be very helpful in this effort and with other bioinformatics problems
as well.
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Finally, if the three-dimensional structure of one of the members of the
protein family is known, this valuable information should be, but only in a
few methods is, used by the alignment algorithms. A position-dependent
gap penalty as well as a joint probability of residue substitution for neigh-
boring amino acids is expected to improve the results and also to help in
the paralogous versus orthologous detection problem.
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Problem 2

Predicting Protein Features from the Sequence

Introduction to the Problem

The pattern of secondary structure elements of a protein, the sites, if any,
where it is posttranslationally modified, the cellular compartments where it
resides, and many other functional features are specified by the amino acid
sequence. The methods that we describe in this problem all have in common
the idea of extracting rules from sets of proteins known to share a specific
feature and applying them to the set of unknown cases. The task is to infer
one or more rules from a training set composed of proteins sharing a given
property. If the rules are sufficiently general, they can be used to predict the
presence of the analyzed property in other proteins.

Function can be either deduced by the presence of a specific set of amino
acids (a deterministic pattern) or by estimating the probability that the given
sequence or subsequence belongs to the set of positive training examples
(stochastic methods). In either case, we have a conservation problem if we
only use a set of examples that share the property to be predicted (positive
examples) and a classification problem if we also have a set of negative
examples (i.e., proteins known not to share the property) available.

Deterministic Patterns

Protein function is often carried out by a limited set of specific conserved
amino acids, and the remaining amino acids are responsible for allowing
them to be properly positioned in three dimensions. This relation is, for
example, the case for residues forming active sites, binding specific ligands,
or being recognized by enzymes that catalyze posttranslational modifica-
tions. For these residues, the observed property might be attributed to the
presence of specific amino acids in a certain relative position in the sequence;

31
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that is, a diagnostic sequence pattern can be associated with a specific prop-
erty. These patterns are called deterministic patterns.

We discussed an enzyme of major pharmacological interest in the Intro-
duction, the protease from the hepatitis C virus. The identification of its
function was possible because of the observation that its sequence contains
a deterministic pattern, and this observation provided the impetus for years
of study directed toward inhibiting the activity of the hepatitis C virus, which
might, in the future, provide a cure for hepatitis C.

Proteases, as we mentioned, are enzymes that catalyze the cleavage of
peptide bonds. The hepatitis C virus NS3 protein belongs to a class of
proteases in which the amino acid that performs the catalysis is a serine;
they are collectively known as serine proteases. A large evolutionarily related
family of these enzymes is designated chymotrypsin-like, from the name of
one of its members, and is very well studied. Several sequences, structures,
and biochemical characterizations are available for members of this family.
They are distinguished by the presence of three amino acids that are essential
for catalysis: the serine that we already mentioned, a histidine, and an aspar-
tic acid. The analysis of the amino acid sequences of chymotrypsin-like serine
proteases shows that the relative order of these three amino acids in the
sequence is conserved (histidine before aspartic acid before serine), although
they are not necessarily in the same position with respect to the N- or the
C-terminus (beginning and end) of the protein. Catalysis is achieved by the
enzyme through the stabilization of a high-energy reaction intermediate that
contains a negatively charged oxygen atom. During the reaction, this atom
is positioned in a pocket of the protein formed by two glycine residues or
by a glycine and a serine immediately adjacent to the catalytic serine. Fur-
thermore, the catalytic serine is always preceded by a glutamic or aspartic
acid. These observations can be summarized by saying that chymotrypsyn-
like serine proteases contain the pattern [DE]-S-G-[GS].

The presence of this pattern in the sequence of the hepatitis C virus led to
the identification of the function shortly after the sequence was available
and prompted many efforts to inhibit its activity to obtain a drug against
the disease.

In general, we can say that a pattern such as the one shown above can be
defined as

P=pl,..pN;pie X (1)

where Xis the alphabet containing the 20 amino acid symbols. We can allow
the inclusion of regions with no definite constraints and of variable length
in the pattern. For example, the pattern D-X(1,4)-[L,I]-X-[D,E] describes a
subsequence formed by the amino acid aspartic acid (D), followed by
between 1 and 4 amino acids, followed by either a leucine (L) or an isoleucine
(I), followed by any amino acid, followed by either an aspartic acid (D) or
a glutamic acid (E).
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This pattern is equivalent to rewriting Equation (1) as
P=p,...p, pi € 2UX, where X = {x(nl,n2) | nl <n2 e N} (2)

and x is any amino acid symbol.

We can also include a notation to express the exclusion of 1 or more amino
acids; for example, {L,I} can indicate any amino acid, except a leucine (L) or
an isoleucine (I). This notation is used by a database of patterns called
PROSITE, which collects known deterministic sequence patterns for a variety
of functions.

Deterministic sequence patterns can be learned by analysis of the
sequence-structure-function relationship in a class of proteins, as in our
chymotrypsin-like serine protease example, or the patterns can be derived
by comparison of the sequences of a set of proteins that share the target
property.

If we have a set of sequences of proteins that are known to share a common
property, we can enumerate a set of possible patterns, calculate how well
each pattern fits the examples on the basis of a predefined fitness function,
and select the patterns with highest fitness. The most natural way to enu-
merate the patterns is to determine the length of the pattern and use as the
initial set all patterns of the given length present in the set of examples; that
is, all substrings of the predefined length present in the protein sequences
that share the property to be predicted. At the end of the procedure, more
than one pattern can be combined to obtain the optimal pattern, and this
method guarantees that, up to some limited size, the best patterns can be
found almost regardless of the total length of the examples.

Another possibility is to construct a multiple-sequence alignment of the
sequences, identify conserved amino acids, and cluster them together to
derive a pattern. For example, the alignment in Figure 14 can be used to
derive the pattern G-G-L-G-X-L-A-X(4,5)-S.

The observation that the optimal multiple sequence alignment cannot be
exactly computed, as we discussed, implies that these latter methods,
although able in principle to find patterns of any length, must be based on
heuristics and cannot be guaranteed to find the optimal solution. A natural
extension of the conservation problem (where we assumed to have only
positive examples) is to devise a score function that takes into account not
only the presence of the pattern in the set of positive examples but also its
absence in the set of negative examples.

Stochastic Patterns

A deterministic pattern lists the amino acids required in certain positions of
a protein sequence. A stochastic pattern reports the probability that one
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amino acid occupies a certain position. We have already seen an example of
a stochastic pattern in Problem 1, the profile that can be derived from a set
of aligned sequences. As we discussed, a profile is a matrix in which each
column represents a position in the sequence, and each row represents one
of the 20 amino acids. Each cell contains the probability that the position that
corresponds to the column is occupied by the amino acid that corresponds
to the row. The probability values are estimated from the observed frequen-
cies in the set of known examples. Given a protein sequence, this contingency
table can be used to calculate the probability that the sequence belongs to
the set of positive examples. The obtained value is then compared with that
expected by chance alone, which can be derived from the set of negative
examples or from an estimated background probability distribution. Let us
reiterate here that protein sequences are not random sequences of 20 equally
probable amino acids. Therefore, computing the background distribution is
not trivial and is the most common pitfall in prediction methods.

A profile is a rather simple statistic model that describes a set of aligned
sequences. As we mentioned previously, a more sophisticated probabilistic
method is the Hidden Markov Model. We can construct a Hidden Markov
Model from the alignment of functionally important regions of related
sequences and, given a new sequence, use the model to evaluate the prob-
ability that the new sequence fits the pattern. This feature is the basis of the
PFAM database that collects Hidden Markov Models for several functional
domains and that can be used to obtain an estimate of the probability that
anewly determined protein sequence belongs to one of the database families.

Other automatic learning methods, such as neural networks or support
vector machines, are equally popular for feature prediction. We briefly
describe the former because it forms the basis of several commonly used
methods.

A neural network is an assembly of neurons, which we represent as nodes,
with one or more incoming connections that we call input and an outgoing
connection that we call output (Figure 24).
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FIGURE 24
A neuron with three incoming connections (representing the input values) and one outgoing
connection, which is some function of the input values, from which we can collect our output.
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FIGURE 25

Connecting neurons. The output of three neurons becomes the input of other neurons, from
which we can collect the output that is a function of the input values and of all the weights
assigned to the input connections.

The output is connected to the input through some, usually simple, arith-
metic operations, and each node contributes to the output according to a
variable “weight.” In physiologic terms, we say that the neuron “fires” if the
output is above a given threshold and does not fire if the output is below
the threshold. We can connect several neurons, in an almost unlimited num-
ber of ways, so that the output of some neurons represents the input of others
(Figure 25).

The power of neural networks is that, during what we call the learning
phase, we can use examples for which we know the answer (i.e., whether
they share the feature to be predicted or not) as input, and the algorithm
modifies the values of the weights to maximize the probability that the
output matches the known answer. In the example shown in Figure 25, we
can optimize the weights so that the value in y, is higher than that in y;
when the positive examples are used as input and lower than that in y; when
the negative examples are used. The neural network with the weights
derived during the learning phase can subsequently be used to calculate the
answer for an unknown example. In other words, the network “maps” the
input values to one or more output values according to the rules that it has
learned from known examples.

Most neural network-based methods, even if their aim is to provide a
prediction on a single target amino acid, use as input a segment of the protein
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sequence that includes the target amino acid and a predefined number N of
amino acids before and after the target, to take into account context effects,
and use an input node for each of the amino acids of the input region. The
segment is moved along the protein sequence so that each amino acid, with
the exception of the first N and the last N, is used as the target.

The input subsequences of amino acids must be numerically encoded. If
we use a single sequence as input, we usually assign a different binary
code to each amino acid. We could use 5 bits to encode all 20 amino acids
(25 = 32), but this method would introduce a problem. The amino acid
encoded by 01111 would be at a greater “distance” from the amino acid
encoded by 00001 than from the amino acid encoded by 01010. Therefore,
we would be giving misleading information to our automatic learning
machinery. This problem can be easily avoided by the use of 20 bits and a
different bit set to 1 for each amino acid, while the other bits are set to 0
(sparse coding).

The output of the neural network is a set of numerical values that refer to
the central amino acid and are associated to the property that we want to
predict. For example, we can have three output numbers (or nodes as we
call them), each associated to a type of secondary structure (o, B, or other),
and the amino acid will be assigned to the secondary structure for which
the output node has the highest value or a value higher than a predefined
threshold.

If we know that the property we want to predict is conserved during
evolution—and secondary structure is one such property—we can take
advantage of this knowledge and use as input a profile derived from the
multiple-sequence alignment of members of the family. This method is
indeed the most commonly used method of encoding the input for protein
bioinformatics neural networks (Figure 26).

The set of examples used in the training phase is crucially important. They
should contain sufficient information to allow the parameters to be opti-
mized, but care should be taken in their selection to avoid the situation in
which the parameters merely reflect the input sequences and are, therefore,
unable to generalize. For example, if we want to predict secondary structure,
we should be very careful that no protein in the training set is clearly
homologous to any protein of the testing set because we know that homol-
ogous proteins have the same overall structure. If the network learns how
to “recognize” proteins that belong to the same family, the prediction for
proteins of the testing set homologous to proteins of the training set will be
more accurate than predictions for unrelated proteins, and we will overes-
timate the accuracy of our network.

Several widely used methods are based on neural networks. They are
used for prediction of specific signals for posttranslational modification,
cellular localization, secondary structure, accessibility to solvent, and other
features.
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FIGURE 26

A neural network for the prediction of secondary structure. The input is a profile derived from
a multiple-sequence alignment of homologous proteins shown here with each sequence running
to bottom, and the output is one of three states: a, B, or neither. The output refers to the central
amino acid of the input window.

Specificity and Sensitivity of a Feature Prediction

How good is a feature prediction method? Intuitively, we would like our
method to detect all cases that share the analyzed property and none of the
others. In other words, we would like the method to have as few false
negatives (i.e., cases in which the method fails to detect an existing feature)
and false positives (i.e., cases in which the method predicts a nonexistent
feature) as possible. Clearly, the two values are correlated: reducing the
stringency of the method reduces the number of false positives but is likely
to increase the number of false negatives.

The diagnostic power of a method can be expressed in terms of its speci-
ficity and sensitivity. These two parameters are defined as

sensitivity = F*/(F* +f,)
specificity = F~/(F~ +f,)
where F*, F-, f,, and f, are the number of correctly identified positive cases,

the number of correctly identified negative cases, the number of false neg-
atives, and the number of false positives, respectively.
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The correlation coefficient is one of the measures of the diagnostic power
of the method that combines both concepts:

C= F+.F__fp.fn
JE +f)e(f, +F)o(E +f)o(f, +F")

®)

If the number of false positives and false negatives is zero (that is, if the
method is infinitely sensitive and specific) we have

F*eF
C=
J(E ) e (F)e(F)e(F)

=1 (4)

The value of C decreases towards 0 as the number of f, and f, increase.

The ROC Curve

Another very commonly used description of the reliability of a method is
the so-called ROC (receiver-operating characteristic) curve. It was developed
during World War II as a way to measure the ability of radar operators to
distinguish between noise and real radar signals. The problem this approach
is designed to solve is that sensitivity and specificity are correlated. Suppose
we have two methods of predicting whether or not a site is a serine phos-
phorylation site, and the predictions are based on some stringency value
that is differently defined in the two cases. How can we compare the accuracy
of the methods?

Presumably, increasing the stringency in each method reduces the number
of false positives and increases the number of false negatives. The most
natural solution is to evaluate the methods on a known data set and see how
many times they correctly predict a phosphorylation site, while predicting
the same fraction of false negatives, or vice versa. The best way to visualize
this approach is to plot the true-positive fraction as a function of the false-
positive fraction.

Another important advantage of the ROC curve is that the area under the
curve is related to the accuracy of the method (see Figure 27). Two methods
are commonly used for computing the area: a nonparametric method based
on constructing trapezoids under the curve and a parametric method that
utilizes a maximume-likelihood estimator to fit a curve to the data points.

The Prediction of Protein Domain Boundaries

The definition of a domain is rather fuzzy. When we study a protein struc-
ture, the detection of the presence of several domains is quite intuitive. As
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ROC curves for three hypothetical prediction methods. The accuracy of a method depends on
how well the test separates positives and negatives and is measured by the area under the ROC
curve. An area of 1 represents a perfect test; an area of 0.5 represents the results for a random
separation.

we discussed in Problem 1, they represent globular, compact regions of the
protein structure with relatively more contacts within themselves than with
the rest of the structure, but the precise boundaries are often difficult to
calculate even when the structure is available because methods differ and,
often, manual inspection is required (Figure 28) (see color insert after page
40). This observation means that we do not have a clean and reliable set of
positive examples on which we can train our methods, which makes the
identification of domain boundaries from the sequence of a protein even
more complex. Nevertheless, methods are continually being developed
because they are of paramount importance for sequence analysis and for
three-dimensional structure modeling, as we will see in Problem 3.

By and large, methods can be subdivided into two groups: those that only
use the amino acid sequence of the target protein and those that take advan-
tage of the similarity of its sequence with other proteins on the database.

The domain guess by size (DGS) method is based on a probability distri-
bution derived from an analysis of the length and distribution of domains
in known protein structures. Its reliability is not very high, but it is a useful
guide for human expert assignment. Another method relies on the assump-
tion that the larger contribution to entropy loss that occurs during protein
folding is the result of the restriction of the degrees of freedom of protein
side chains, and that this loss must be compensated by interresidue favorable
interactions. Amino acids with a high number of possible conformations
(and, therefore, “in need” of more interactions) are more likely to be found
within domains than between them.
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FIGURE 28

The structure of the elongation factor—1 from Sulfolobus solfataricus, a protein involved in mRNA
translation. The three domains are connected by long stretches of amino acids, and some regions
are not clearly packing against one or the other domain. Consequently, precisely defining the
domain boundaries within the regions colored in black is difficult.

The SnapDRAGON tool produces several hundred putative, three-
dimensional models of the target protein and detects its domains by aver-
aging the results of the predictions. This method is very computationally
intensive and not very useful for large-scale analysis. A less computation-
ally intensive method, DomSSEA, predicts the secondary structure of the
target protein and maps the predicted sequence of helices and sheets with
those observed in known protein domains. It thereby evaluates the prob-
ability that a given set of secondary structure elements is sufficient to fold
into a domain.

Unfortunately, none of these methods is sufficiently reliable to predict the
domain structure of an unknown protein in a completely automatic fashion,
and this shortcoming is a serious obstacle to solving many computational
biology problems.

Methods based on database searches are generally less applicable, but
more reliable. The detection of matches that only span a region of the protein
under examination is obviously a strong indication of the presence of a
domain, as is the detection of a match to a known domain, for example, one
of those stored in domain databases such as PFAM.

Domains in proteins are not necessarily contiguous in sequence. The amino
acid chain can start folding into a domain, make an excursion and form
another domain, and then come back to complete the first domain (Figure 29)
(see color insert opposite this page). These cases are difficult to handle, and,
indeed, no satisfactory method is available to detect these cases on the basis
of the protein amino acid sequence alone.

The field of bioinformatics is evolving, and, although several attempts to
combine existing prediction methods to achieve more satisfactory results
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FIGURE 29
A discontinuous domain in the RNA 3'-terminal phosphate cyclase enzyme from yeast.

have been made, new ideas are needed in this area. This need is also
indicated by the establishment of community-wide initiatives for blind eval-
uation of the reliability of domain detection methods, in which domain
boundary predictions for proteins of unknown structure are collected and
stored. Subsequently, when the protein structure is experimentally deter-
mined, the sequence-based predictions are compared with the structure-
based assignment of the domain boundaries.

Reliability of Present Methods and Promising Avenues

Atleast in principle, the more sequences we collect and store in our databases,
the more likely that we can detect regularities associated with their sequence
features. Unfortunately, many of the entries in our collections come with no
or only partial functional assignment, and, therefore, instead of contributing
to a better definition of features, they only increase the gap between the
known examples and those for which our knowledge must be extrapolated.
This issue is not trivial. Accurate manual functional assignments such as
those provided by curated databases lag behind because they are time- and
labor-consuming and cannot keep pace with the speed at which new
sequences are determined. As we mentioned, functional assignment of newly
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determined protein sequences is often made on the basis of their similarity
with known cases, most of which have been assigned via the same route. In
practice, the proteins that have been experimentally analyzed are but a very
tiny fraction of our collection, and we must, therefore, be aware of the meth-
ods used to assign the functional annotations and of their reliability.

Databases such as PROSITE report the number of false negatives and false
positives detected by each of the patterns, and the results of automatic
learning methods on a properly selected test set can be used to assess their
reliability. However, a problem we should not underevaluate is how repre-
sentative of the biological diversity is the set of our known examples.

The proteins that have been experimentally annotated were not chosen at
random. They are proteins of specific pharmacological interest, proteins that
are easy to handle in the laboratory, or proteins from organisms that can be
grown in culture or that represent suitable model systems. These proteins are
most likely not representative of the menu of possibilities. We may discover
that our methods have been optimized for the limited, nonrandomly selected
set of examples available today and will in the future need to be reoptimized.

Programs are underway for sequencing nucleic acids found in different
environments, such as the Sargasso Sea, and they will be instrumental in
determining how much of our knowledge can be extrapolated to a com-
pletely different set of data, which is likely to be disjoint from what we have
analyzed so far. A reassessment must be done of our knowledge. Have we
really already catalogued about 60% of the known protein families? Is our
estimate of the different types of protein architectures present in nature
correct?
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Problem 3

Function Prediction

Introduction to the Problem

The objective of protein bioinformatics is function prediction. Thus, all we
have said so far and all we will discuss in the next problems is about function
prediction. Yet, some specific aspects must be discussed separately, and they
are the subject of this problem.

We described several methods of obtaining information about protein
function. The detection of evolutionary relationships is one method, as is
finding characteristic sequence patterns. As we will see in subsequent prob-
lems, the experimental determination or the prediction of a protein structure
can also be very powerful. However, experimental techniques, made possible
by the knowledge of the genomic sequences, produce a vast amount of data,
the analysis of which requires the development of bioinformatics tools.
Before we describe the state of the art of these tools, we must address a very
complex problem: how do we define and catalog the complex concept of
biological function?

The Definition of Biological Function

Biological function has several “dimensions.” For example, the functional
attributes of the protease of the hepatitis C virus can be any of the following:

* An enzyme catalyzing a chemical reaction
¢ A protein involved in HCV infection

* A protein expressed in liver cells

45
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All three descriptions are accurate. However, they reflect different catego-
ries of functional attributes: molecular, biological, and cellular, respectively.

Furthermore, molecular function can be defined at several levels of detail.
The protein is an enzyme, in particular, a hydrolase (it breaks a chemical
bond), a peptidase (the specific bond cleaved is a peptide bond), an endopep-
tidase (because it cleaves an internal bond in a peptide chain), a serine-type
endopeptidase, or a chymotrypsin-like serine-type endopeptidase. We can
go even more in depth by saying that the protein performs its function by
utilizing the OH group of a serine, with the amino group of a histidine acting
as a general base and a general acid, which, in turn, is oriented by the
presence of a charged aspartic acid. We could continue by describing how
the reaction intermediate is stabilized by the protein and how the substrate
is recognized. How we define function is important because when our pro-
tein sequence is deposited in the database, the experimentalist or the data-
base expert will add functional annotation. Which functional attributes will
he or she assign, and at what level of detail?

Another aspect is lack of standardization, which can create serious prob-
lems for automatic tools. Biologists are not fond of standard nomenclature,
and most of the terms they use have a historical justification. This practice
significantly affects the assignment of specific names to specific proteins, as
we will discuss later.

The situation is somewhat clearer for enzymes, where a standard nomen-
clature, the so-called enzyme classification or EC scheme, has been devised
as described in Figure 30. Some databases, such as SwissProt, use a controlled
vocabulary to provide functional annotations. A scientific consortium, the
Gene Ontology, or GO, Consortium, has begun a commendable effort to
define a standard vocabulary for function. This effort has already had ben-
eficial effects.

The Function Vocabulary

Protein sequence databases contain both the amino acid sequence of the
protein and some annotations, including definitions of its function. In some
cases, the annotations are free-text entries. The structure of the SwissProt
database is more controlled, and, therefore, it has a higher added value. The
annotation data of SwissProt include the function (based on a controlled key-
word vocabulary), the location and type of posttranslational modifications,
the location of domains and specific binding sites, the secondary and qua-
ternary structure of the protein, a list of proteins similar to the entry, a list
of diseases associated with malfunction of the protein, and links to related
entries in other databases. Perhaps more importantly, SwissProt annotations
are periodically reviewed and updated by experts on specific groups of
proteins. Manual verification is clearly the ideal way to ensure correctness
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FIGURE 30

The EC nomenclature. It is based on the recommendations of the Nomenclature Committee of
the International Union of Biochemistry and Molecular Biology, and is a hierarchical classifica-
tion based on a four-digit scheme.

of the annotations, but we cannot ignore the fact that the approach is not
scalable. The number of proteins for which annotations are available lags
behind the number of proteins of known sequence by orders of magnitude,
and the situation will become worse as time passes.

The GO tool is not a database of gene sequences or a catalog of gene
products. Its goal is to give consistent descriptions of gene products in
different databases. The descriptions are based on three structured,
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FIGURE 31
An example of the Gene Ontology structure.

controlled vocabularies (ontologies) that describe biological processes, cell-
ular components, and molecular functions in a species-independent manner.
GO terms are now used by other databases, and this acceptance facilitates
their uniform usage.

Molecular function describes activities, such as catalytic or binding activ-
ities, at the molecular level, performed by individual gene products or by
complexes of proteins. A biological process is a process with more than one
distinct step and is the result of the action of one or more ordered assemblies
of molecular functions. A cellular component is a component of a cell that
is part of some larger entity, which may be an anatomical structure or a gene
product group. A gene product can have more than one molecular function,
can be used in more than one biological process, and can be associated with
one or more cellular components. Therefore, GO terms represent activities
rather than the molecules that perform the functions, and the structure
cannot be hierarchical because a “child” (more specialized term) can have
many “parents” (less specialized terms). In this case, the topology of the
organization is called a directed acyclic graph (Figure 31).

Protein Names

Giving a protein a name that has something to do with its function and with
the organism it belongs to would be convenient, but as we mentioned,
biologists are not fond of standards. Sometimes proteins are named after
their molecular weight (p53, a very important protein involved in DNA
repair and whose malfunction is among the most common causes of cancer,
weights about 53 kDa), after the scientists who discovered them (Huntington
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disease is named after its discoverer, and the protein later found to be
involved in the disease has been named huntingtin). In some cases, the name
of a protein reveals the mood of its discoverer (the YAKK protein is the
acronym for Yet Another Kinase Kinase). Perhaps the most uninformative
protein names can be found among the Drosophila (the fruit fly) ones. A blind
mutant has an impaired cell function listed as the seventh function. The gene
was, therefore, named sevenless, which is in itself not very informative, and
other genes have been named after it: dos (daughter of sevenless), sos (son
of sevenless), and bos (bride of sevenless). The eag gene owes its name to the
abnormal behavior of anesthetized flies; it comes from “Ether A Go-Go.”
The same behavior can derive from mutations in other genes: Shaker (Sh)
and Hyperkinetic (Hk). A gene responsible for difficulty in generating off-
spring has been named Tudor. A gene that causes defects in structures called
poles in the fly has been named “Scott of the Antarctic.” Sometimes a new
additional function is discovered for a known protein, and the protein is
endowed with more than one name, often equally uninformative.

Some of the stories behind these names are interesting and reveal fasci-
nating aspects of the scientific process that led to the discovery of the pro-
teins’ function, but these names are not useful for designing automatic tools
to correlate the function of different proteins. They also have disastrous
effects on attempts to retrieve information from the scientific literature.

Text Mining

Whether the route to function discovery is computational or experimental,
the end result is, by and large, a scientific publication. These publications
are stored and indexed in systems such as PubMed, and at least the abstracts
of the scientific contributions are available in computer-readable form. All
that is needed is some automatic system for extracting the functional infor-
mation from the enormous amount of scientific literature. Not surprisingly,
efforts to this end are flourishing. Many systems are already available, some
of which focus on interactions or on the reconstruction of pathways, whereas
others try to extract functional information on proteins or, in general, gene
products.

The first problem to be faced in developing these systems is the identifi-
cation of protein and gene names. These names can be long, compound
names, and often, a different name for the same protein is used even within
the same article. These names can also be common English words, as we
discussed earlier. One solution is to use a dictionary extracted from one or
more of the databases. Another solution is to look for properties such as the
occurrence of uppercase letters, numbers, or special endings. These
approaches can reach specificity and sensitivity of 70% to 80% (i.e., systems
are able to recover 70% to 80% of the protein names present in the set of
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data, and 70% to 80% of the recovered names are correct). Hopefully, the
increasing popularity of these methods and the exceptional advantages they
confer will prompt experimentalists to be more careful in selecting naming
schemes.

Once the names have been identified, the task is to determine the meaning
of the sentence in which the names appear. This determination can be made
by use of domain-specific grammar; that is, words and phrases that are
commonly used in specific fields. In protein science, for example, such words
and phrases could be “substrate is,” “activity is,” “interacts with,” “is phos-
phorylated by,” “is involved in,” and “binds to.”

Alternatively, methods can be used that were developed in the computa-
tional linguistics (or natural language processing) field. Workers in this field
are making substantial progress in designing systems to perform such tasks
as text analysis. For example, extracted phrases from an article or book, when
shown to a human reader, seem to summarize the content.

The following is an abstract of a paper that describes the assessment of
the results of a large-scale evaluation of methods for protein structure
prediction:

ABSTRACT — This report describes the assessment of the homology-
based predictions submitted to the 5th edition of the Critical Assessment
of Methods for Protein Structure Prediction (CASP5) experiment. We
assessed the ability of the methods to predict the overall fold, the portions
of the structure that differ substantially between the target protein and
its closest structural homologue and the conformation of the side-chains.
We also compared the results with those obtained in previous editions
of the experiment and derived some general conclusions about the state
of the art of comparative modeling methods and their usefulness for
experimentalists.

The average frequency of each word in the abstract is about 1.5. The
standard deviation is about 2.2. The words that appear more frequently than
the average but not more than the average plus 1 standard deviation (to
eliminate common words such as “and” and “of”) are “we,” “to,” “struc-
ture,” “protein,” “for,” “assessment,” and “methods.” We can easily elimi-
nate the words “we,” “to,” and “for” on the basis of some dictionary of very
common noninformative words or by taking into account the length of the
words to obtain “structure protein assessment methods,” which is not a bad
summary, given the shortness of the abstract and the lack of sophistication
of our algorithm.

Computational linguistics techniques can be quite effective. On the other
hand, a domain-based grammar is very promising in the biosciences because
of the nature of the text itself, which is less ambiguous than general text.
The two approaches can, therefore, be combined, and such a combination is
being applied extensively to the discovery of protein—protein relationships.
Worldwide initiatives are underway to blindly evaluate the performance of
these methods and provide an updated assessment of their reliability.
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Transferring Functional Annotations by Similarity

What is the level of identity, or similarity, between two sequences that guar-
antees that they have the same function at some level of detail? If we had a
precise answer to this question, a large number of proteins in our database
could be automatically and correctly associated with a functional annotation.
However, we do not have the answer, or, to be more precise, nature does
not behave in such a simple way.

Sequence identity, or similarity, can, at most, guarantee the existence of an
evolutionary relationship between two proteins. We have already discussed
the problem of orthology and paralogy: if a gene has undergone both dupli-
cation and speciation, the existence of an evolutionary relationship does not
guarantee an evolutionary pressure for maintaining a common function. We
have also discussed another major problem: domain-boundary detection. If
the evolutionary relationship is limited to a domain, transferring function
might be seriously misleading. A schematic example of the disastrous effects
such a transfer can have is shown in Figure 32.

For single-domain proteins, we can estimate our ability to detect function
on the basis of evolutionary relationships by analyzing function conservation
between pairs of known evolutionarily related proteins as a function of their
evolutionary distance, which, for the sake of this discussion, we will approx-
imate with their sequence identity after optimal alignment. Structural con-
servation, as we will discuss at length, is strictly related to homology, and,
indeed, more than 80% of proteins that share at least 25% sequence identity
have very similar structures. All pairs of proteins that share more than 45%
sequence identity have very similar structure. The EC classification scheme
allows us to analyze the extent of functional conservation between pairs of

Biological function Database annotation

Function A (exp)

Function A (by sirmilarily}

Function A (by similarity)

FIGURE 32

Schematic example of the danger associated with similarity-based annotation of proteins. A
multidomain protein carries out two functions, A and B. Only function A is detected by the
experimentalist, who annotates the entire protein as performing function A. Later a new se-
quence, sharing a similarity with the original protein, is incorrectly annotated as having function
A. The error can be propagated to another sequence that shares essentially no similarity with
the original experimentally annotated protein.
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evolutionarily related enzymes, and here things become more problematic.
Only proteins that share more than 85% sequence identity have strictly
conserved function (up to the fourth digit of the classification scheme). The
third digit is shared by proteins that have at least 55% sequence identity. At
25% sequence identity, not more than 60% of protein pairs have the same
EC code, an additional 20% only share the first three digits of the classifica-
tion, and a few percent of pairs have no common EC digit at all. If we
compare SwissProt key words and, therefore, can also include nonenzymes,
matters become even less hopeful. Not even 95% sequence identity guaran-
tees strict conservation of annotation and, at a level of sequence identity of
25%, no more than 45% of the pairs have the same key words. Clearly, the
numbers listed here are bound to change as methods and databases change,
but they are useful as reference points.

A careful analysis of the alignment that takes into account which residues
are conserved rather than how many are conserved can most likely improve
matters quite a bit. However, in the genomic era, we cannot afford to assign
function by carefully and manually analyzing every case. The world is wait-
ing for results on tens of thousands of proteins, and our methods need to
be fast and automatic.

Transcriptomics

The genome provides us with a static picture of the cell. It tells us which
genes can be present, but it does not offer any information about which
genes are translated into proteins in any given cell at any given time. Yet,
this information is the crucial information: a liver cell and a brain cell contain
the same genetic material, but they are very different morphologically and
functionally because they express different proteins in different conditions.
The knowledge of the genomic sequences of many organisms presents the
possibility of also investigating these aspects by performing genome-wide
experiments that can provide data, not on single genes and proteins, but on
the whole set of genes and proteins of a cell. We can get a dynamic picture
of what is happening in a cell at different times or in response to different
stimuli or when a damaged cell is transforming itself, for example, into a
cancer cell.

If we want to exploit the large body of information made available by the
genomic efforts, we must grasp the experimental techniques that are being
developed. Theoreticians must realize the importance of understanding the
experimental methods and their limitations and reliability as much as exper-
imentalists must have an idea of the underlying assumptions of the many
computational tools at their disposal. For these reasons, we briefly outline
the basics of transcriptomics and proteomics techniques without the exper-
imental details. This simplification necessarily leads to imprecision, so we
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urge the readers who desire a more thorough understanding of these tech-
niques not to rely solely on the explanations given here.

The idea behind transcriptomics experiments is the following: genes are
copied (transcribed) into an RNA molecule before being translated into
proteins, and the number of copies of the mRNA molecules roughly corre-
lates with the amount of protein the cell will produce. This observation
implies that a measure of the amount of mRNA coding for a given protein
will tell us whether and approximately in what amount a protein is produced
and whether perturbations of the system change its abundance.

However, the picture arising from the analysis of gene expression level
can be very complex. A human has about 50,000 genes. Even if genes could
only be on or off, the possible states would be 250%°. However genes are not
just switched on or off; expression levels can vary from 1 to 10® molecules
per cell.

Assume that we have a sample of RNA molecules with a given sequence
(probe) on a surface over which we deposit a complex mixture of RNA in
which each molecule is labeled radioactively or with a fluorescent dye. If
we wash away all molecules that do not bind (hybridize) to our surface, only
the RNA molecules with a sequence complementary to our original molecule
will be left, and, therefore, the presence of radioactivity or fluorescence will
indicate their presence and the amount of radioactivity or the intensity of
the color will reveal their concentration.

RNA is not a very stable molecule, whereas DNA is. Therefore, in these
experiments, the extracted RNA is “copied” (retrotranscribed) into DNA by
use of enzymes that catalyze this reaction. DNA obtained by retrotranscrib-
ing an RNA molecule is called cDNA. We can deposit on our surface, in
different positions, different probe sequences and hybridize all of them at
the same time with a mixture of cDNA extracted from a cell. The pattern of
fluorescence will tell us which molecules (cDNAs and, therefore, with
approximation, mRNAs) are present in our sample and at what concentra-
tion. This process is the general idea behind transcriptomic experiments.

We must deposit the probe molecules and obtain our sample. In one
technique, a ¢cDNA library is used: the total mRNA from a cell clone is
collected, retrotranscribed into cDNA, and cloned into an appropriate host
cell. The host cells are grown, and each of them will produce a clone that
contains one of the original cDNA sequences. The DNA from each clone is
extracted and “spotted” on the surface. The resulting “microarray” will
contain, in each position, many cDNA molecules with the same sequence,
complementary to a gene of the original cell.

A different technique (GeneChip® from Affymetrix) takes direct advantage
of the knowledge of the sequence of the genes of an organism. Regions of
DNA contained in each gene are chemically synthesized directly on the
microarray. Usually each segment is 25 nucleotides long and 15 to 20 seg-
ments are selected for each gene. The desired molecules are synthesized
directly on the surface of the microarray. For each segment of each gene, a
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Scheme of transcriptomics experiments. cDNA molecules derived from different samples are
treated with two different dyes, mixed, and made to hybridize with a previously prepared
microarray. If the cDNA complementary to that contained in one of the microarray spots is
present in both samples, the spot will be yellow. Red or green indicates that the molecule is
only present in one of the two samples, and black indicates that it is absent in both.

sequence, differing from the original sequence by a single base change, is
also synthesized and used as a control.

The RNA sample we want to investigate is extracted from the cells, ret-
rotranscribed into cDNA, labeled with a dye, and hybridized to the micro-
array. The array is scanned with a laser, and the image is analyzed to extract
numerical values for the dye intensities at each spot that allow us to estimate
the presence and concentration of cDNA molecules in our sample (Figure 33)
(see color insert after page 40).

If we have two samples (for example, a normal cell and a cancer cell), we
can extract the RNA from both samples, retrotranscribe the RNAs, and label
each RNA separately with a different dye. The two samples are subsequently
mixed and hybridized to the microarray. If one sample is labeled with a red
dye and the other sample is labeled with a green one, a yellow spot on the
microarray will indicate equal amounts of the corresponding molecule in
both samples, a reddish or a greenish spot will indicate overexpression of
that molecule in one of the two samples, and a black spot will indicate that
the specific RNA is not present in either cell.

The two techniques have advantages and disadvantages. In the cDNA
library, we do not need to know the sequence of all the genes of the organism
or cell we are analyzing. In the other technique (GeneChip®), we have a
better statistical handle on the data because we have several spots for each
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gene and a negative (not supposed to hybridize) spot for each segment,
namely the one with a mismatched nucleotide.

Both methods, however, are based on several important assumptions. RNA
is not a very stable molecule and, therefore, we cannot be sure that all the
molecules present in our sample will be retrotranscribed to the same extent.
We must also assume that labeling is uniformly efficient in our molecules.
Most importantly, we must assume that the amount of a protein in a cell is
proportional to the amount of mRNA, a rather crude assumption because
other mechanisms, such as the stability of the protein or of the mRNA itself,
can regulate the concentration of the protein. Another disadvantage is that
regulation of protein activities via posttranslational modification cannot be
detected by these techniques.

Even with these limitations, these methods allow us to “see” what is
happening to the transcription of genes at any moment in the life of a cell
and to appreciate different transcriptional activities in different cells. This
feature is a rather impressive tool for studying life at a system level rather
than at an individual gene level.

Expression data can be used to understand not only which gene is
expressed in a given condition but also whether different genes are activated
in a coordinated manner. For example, genes that are all activated in response
to a stimulus might cooperate in performing the required cellular function
and, therefore, share some level of common functionality. We can analyze
the expression of all genes of a single sample at different times or compare
the variations in gene expression level between two differently treated sam-
ples. This use of expression data can be effective in detecting which genes
are characteristic of a cell type with respect to others. For example, we can
determine which genes are activated in a cancer cell with respect to a normal
cell to understand what caused the cancer and what its molecular effects
are, as well as to highlight specific proteins that are expressed solely in the
cancer cell and target them for therapy. We can also use transciptomics data
to detect patterns that are diagnostic of abnormal tissues. Furthermore, the
cellular response to pharmacological treatments can be determined by
observing the changes they induce in the expression patterns of the genes
and correlating these to the efficacy of the treatment, thus presenting the
possibility of personalized medicine.

The analysis of microarray data requires image analysis and background
subtraction software, as well as statistical methods to obtain a biological
interpretation of the data. We will not discuss the details of what can be
done to eliminate the background noise and to normalize the spot intensity
between different experiments. Although both are very serious problems,
their solutions are common to many sciences and are nonbioinformatics-
specific. We will focus on the problem of using the data to formulate sensible
and testable biological hypotheses.

After a preliminary image and data analysis (i.e., background subtraction
and intensity normalization), we can store the data in a matrix. Each row
represents a gene, and each column represents a different experiment,
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Exp. 1 |Exp. 2 |Exp. 3 |Exp. 4 |Exp. 5

Gene 1 0.73| 0.92| 0.20/ 0.67| 0.18
Gene 2 0.99| 0.60| 0.48| 0.10] 0.56
Gene 3 0.70/ 0.85| 0.15| 0.70] 0.20
Gene 4 0.44| 0.84] 042| 0.84| 0.86
Gene 5 0.50/ 0.90| 0.60| 0.80| 0.86
Gene 6 0.40/ 0.50| 0.00/ 0.32] 0.01
Gene 7 0.78/ 0.22| 0.32] 0.87| 0.50
Gene 8 0.72| 0.51| 0.35| 0.54| 0.81
Gene 9 0.34| 0.83| 0.62| 0.15] 0.71
Gene10 | 0.58| 0.74| 0.16] 0.60] 0.14
Gene 11 | 0.56| 0.70| 0.58| 0.70| 0.14
Gene 12 | 0.51] 0.62| 0.40| 0.51] 0.15
Gene 13 | 008 035 045 026, 000

FIGURE 34
A data matrix for a microarray experiment.

timepoint, or cell type. In each cell of the matrix, we report, in arbitrary
units, the relative expression level of the gene in the sample (Figure 34). This
data matrix can be used to address several questions of interest, and we
must use the appropriate tools to make the best use of our data matrix. We
might ask several important questions: Which genes are differently
expressed in different samples or conditions after different drug treatment?
Which genes are responsible for a disease? Which gene expression levels can
be used to characterize a given condition? Which genes belong to a network
of activities that defines a general cell function, such as cell differentiation,
or a particular metabolic pathway?

To detect which genes are similar (have similar behavior across samples)
or which samples are similar (for example, which cell lines have the same
set of genes highly expressed) we must define a measure of “distance”
between the expression levels of genes, devise an algorithm for grouping
(clustering) them according to their similarity, and evaluate the distance
between groups (clusters) of genes.

A distance function d is called a semimetric measure if it satisfies the
following requirements: d(A,B) is always positive for A # B, equal to 0 for
A =B, and independent on the order of the objects; that is, d(A,B) = d(B,A).
If the inequality d(A,B) < d(B,C) + d(C,A) is also satisfied, then the distance
function is called metric.
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We can apply Euclidean distance to our expression measurements:

2 2 2
d(genel’ g3n€2) = \/(egenel,l - egeneZ,l) +..+ (egenel,p - egeneZ,p) +..+ (egenel,n - egeneZ,n)

where ¢, is the expression level of genel in the p-th experiment. This possi-
bility is only one of the several available to us. We can use the Manhattan
distance (a semimetric function):

egmez,p‘+...+‘e e

genel,il — egeneZ,l genel,p — genel,n — Cgene2,n

d(genel, gene2) = ‘e ‘+ ot ‘e

We can also compute the Pearson correlation coefficient:

Z(egenel,i - egenel,i) ' (ege;wZ,i - egeneZ,i)
C(genel, gene2) = —=L

— —
\/ (egenel,i - egenel,i) ' (egeneZ,i - egeneZ,i)
i

2

where e, is the average expression value for genel over all the experi-
ments.

Other measures are available, and they are not equivalent, as we will
illustrate with an example. In Figure 35, we show the Euclidean distance
between pairs of genes on the basis of the data matrix in Figure 34.

We will focus on the first six genes, the expression levels of which are
plotted in Figure 35. The gene with the shortest distance from gene 1 is gene 3,

Gene [Gene [Gene [Gene
Gene 1|Gene 2|Gene 3|Gene 4/Gene 5Gene 6/Gene 7|Gene 8Gene 9 |10 11 12 13

Gene 1

Gene 2 | 0.72
Gene 3 | 0.01] 0.75
Gene 4 | 0.63] 1.00/ 0.60
Gene 5 | 0.69 0.92] 0.69 0.04
Gene 6 | 0.48 0.94] 0.42] 1.29 1.48
Gene 7 | 0.65 0.81] 0.55 0.64| 0.75 0.87]
Gene 8 | 0.60] 0.35 0.55 0.28 0.33 0.91] 0.29
Gene9 | 0.89 0.52] 0.91] 0.55 0.48 1.02] 1.22| 0.48
Gene 10| 0.06] 0.71| 0.04 0.67| 0.78 0.21 0.53] 0.55 0.80Q
Gene 11| 0.22| 0.74] 0.23 0.60] 0.57| 0.56] 0.50] 0.59] 0.69 0.19
Gene 12| 0.20] 0.58 0.19 0.67| 0.71] 0.24] 0.49 0.50, 0.57] 0.08 0.08
Gene 13| 1.01] 1.23| 0.96] 1.45 1.53 0.33] 1.15 1.18 0.84 0.62] 0.58 0.35

FIGURE 35
Euclidean distance between the expression level of the 13 genes in Figure 34.
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FIGURE 36
Graphical representation of the level of expression of the first six genes shown in Figure 34.

Genel Gene2 Gene3 Gened4 Geneb5
Gene 1

Gene 2 0.15

Gene 3 0.99 0.09

Gene 4 0.2 -0.5 0.26

Gene 5 0.12 -0.5 0.15 095

Gene 6 1 021 099 0.09 0.09

FIGURE 37
Pearson correlation coefficient for the expression level of the first six genes of Figure 34.

and the one with the longest distance is gene 2. This arrangement is intu-
itively correct, as seen in Figure 36 (see color insert after page 40).

However, gene 1 and gene 6 have a large Euclidian distance, but they
clearly behave in a correlated fashion. Their expression level increases in
Experiment 2 with respect to Experiment 1, decreases in Experiment 3,
increases in Experiment 4, and decreases again in Experiment 5 (Figure 34).
One gene might drive the transcription of the other. This relationship does
not necessarily imply a similar expression level, but, rather, causes a similar
trend in the modulation of their expression levels. If we use the Pearson
correlation coefficient (Figure 37), the correlated behavior of gene 1, gene 3,
and gene 6 becomes apparent.

Once we have selected the distance measure appropriate for the question
we want to ask, we can cluster our genes (or experiments) to highlight
similarities and reorganize our data matrix in a more informative way. The
final display has a permutation of the rows or columns of the matrix so that
adjacent rows or columns are similar. We can cluster our data by application
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Exp. 1 Exp. 2
Gene 1 0.73 0.92
Gene 2 0.99 0.60
Gene 3 0.70 0.85
Gene 4 0.44 0.84
Gene 5 0.50 0.90
Gene 6 0.40 0.50
Gene 7 0.78 0.22
Gene 8 0.72 0.51
Gene 9 0.34 0.83
Gene 10 0.58 0.74
Gene 11 0.56 0.70
Gene 12 0.51 0.62

FIGURE 38
A data matrix for 12 genes and two experiments.

Gene 1 Gene 2 Gene 3Gene 4 Gene 5Gene 6 Gene 7Gene 8 Gene 9Gene 10Gene 11

Gene 1

Gene2 041

Gene3 0.08 0.38
Gene4 030 0.60
Gene5 023 0.57
Gene6  0.53 0.60
Gene7 0.70 0.43
Gene8 041 0.28
Gene9 040 0.69
Gene 10 0.23 0.43
Gene 11 028 0.44
Gene 12 037 0.48

FIGURE 39

Euclidean distance derived from the data matrix in Figure 38.

0.26
0.21
0.46
0.64
0.34
0.36
0.16
0.21
0.30

0.08
0.34
0.71
0.43
0.10
0.18
0.18
0.23

0.41
0.74
0.45
0.17
0.18
0.21
0.28

0.47

032 030
034 0.75
0.30 0.55
026 0.53
0.16 0.48

0.50
0.26
0.25
0.24

0.26
026  0.04
027 0.14  0.09

of a hierarchical strategy that employs the same methodology we described
for the construction of sequence phylogenetic trees, as illustrated by the data
matrix in Figure 38. The Euclidean distance matrix is shown in Figure 39
and plotted in Figure 40.
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Plot of the data points of Figure 38.
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FIGURE 41

A tree representing the distances in Figure 39.

As we discussed in Problem 1, we can represent our data as a tree in which
the length of the branches is proportional to the distance between the points.
We can “trim” the tree at different levels. Each choice will provide us with
a different number of clusters, as shown in Figure 41.
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Another commonly used clustering method is the K-means clustering, in
which the number of clusters is decided a priori. The procedure consists in
randomly assigning each gene to a cluster and calculating the centroid of
the cluster. The distances between the centroid and each gene are measured,
and each gene is assigned (or reassigned) to the closest cluster. The procedure
is repeated until convergence; that is, until each gene belongs to the closest
cluster. A modification of the procedure is to change the assignment of each
gene to a cluster randomly rather than on the basis of its distance from the
clusters’ centroids. The distance between different gene (or experiment) clus-
ters can be defined as the distance between the closest or farthest pairs among
all genes belonging to the two clusters, their average distance, or the distance
between the centers of the clusters.

The grouping of our data and the corresponding reorganization of the
rows and columns of the data matrix can highlight biologically relevant
relationships between the data, but the results depend, among other things,
on our choice of distance definition and cluster methodology. It is difficult
to assess the reliability of the different analysis methods, as we do not yet
have a large set of data with known properties. This problem is the major
shortcoming in the analysis of correlation of microarray data.

Another problem is that the expression of each gene is often regulated by
more than one protein, which might be active in different conditions. Distinct
groups of genes may be coregulated in different samples, and, therefore,
more complex methods are needed.

Whatever the analysis method, we end up with several sets of genes
grouped together and deemed to have something in common. The next step
is the evaluation of the biological significance of the results, which is espe-
cially difficult. Everything we learned about classification of functions should
be applied here to determine whether genes clustered together by our data
analysis are likely to share a function or to be part of a given pathway.

What we described above is useful if we want to detect relationships in
our gene expression levels without any prior information. In some cases, we
may have knowledge of the existence of groups of data and would like to
know whether a new object (a gene or an experiment) belongs to one of our
groups. For example, we might have collected expression data on normal
and cancer cell lines and would like to know whether a new sample should
be classified as derived from normal or cancer cells.

The problem becomes a classification problem, and we have already seen
some techniques that can be used for this purpose, such as neural networks.
The support vector machine (SVM) is another technique often used in this
application. The idea is to represent our data as points in a multidimensional
space and ask whether a hyperplane (i.e., a plane in a high dimensional
space) exists that separates positive and negative examples with the largest
margin.

The detection of diagnostic patterns in different microarrays has already
found useful applications in clinical practice, such as classifying tumor types
to create “fingerprints.” However, the significance of the clusters in terms of
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diagnosis and prognosis of the tumor must be validated on a case-by-case
basis. Similarly, gene expression patterns can be related to response to a
given treatment, survival times, or activation of specific metabolic pathways.

Microarray data have a high dimensionality. Although we have a few
measurements of the expression level of each gene under a limited set of
conditions, we have thousands of genes to analyze at the same time. Thus,
despite the advantages of high-throughput data collection, it presents a
major challenge for data storage, visualization, and statistical interpretation.
If we want to determine which of the thousands of genes change expression
in two different conditions, the problem of multiple comparisons becomes
quite severe.

In non-high-throughput experiments, we can measure the expression level
of a single gene in different conditions several times and test whether the
differences are statistically significant for a given confidence level. In array
experiments, the number of repetitions is generally low. Furthermore, the
chances of observing a spurious difference, which is nonbiologically signif-
icant, increase with the number of genes. The low number of repetitions and
the large number of variables pose serious problems to the statistical analysis
of microarray data.

The problem of the high dimensionality of the data is serious, and tech-
niques to reduce the number of variables are continuously being developed.
The adopted solutions range from excluding from the analysis genes that
are known to have a quasiconstant level of expression across cells to the
application of standard dimensionality reduction techniques, such as prin-
cipal components analysis (PCA). PCA is a mathematical procedure that is
used to transform a number of correlated variables into a smaller number
of uncorrelated variables called principal components. The extraction of the
first principal component corresponds to a rotation of the original variable
space, such that the variance of the data is maximal when it is projected on
the axis. The second principal component is the principal component of the
residuals, and so on.

In a scatterplot, the first principal component is a new x-axis, rotated so
that it approximates the regression line. An illustration of a simple case of
PCA is shown in Figure 42.

Proteomics

Transcriptomics experiments allow us to have a dynamic picture of the level
of transcription of each gene in a cell, but this picture is still insufficient to
define the state of the cell. The mRNA is translated into proteins, and proteins
have different life times, they interact with each other, and their activity is
often regulated by posttranslational modifications, as we discussed in the
case of glycogen phosphorylase.
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FIGURE 42
Principal component analysis for a set of artificially generated data. The projection on the first
principal component (indicated with PC1) is the one with maximum variance.

Analysis of the protein content of a cell, rather than the content of the
mRNA molecules that will be translated, is more informative. Unfortunately,
proteins are much less easy to identify than nucleic acids. We can deduce
the presence of a nucleotide sequence by its ability to bind (hybridization)
with a complementary probe, but we have no hybridization mechanism to
detect protein sequences.

The possibility of identifying and quantifying every protein in a cell was
unthinkable until a few years ago. The major stumbling blocks were sepa-
rating the large number of different proteins present in a cell at any given
time and, especially, identifying them. One way to separate different proteins
in a sample is to use a sodium dodecyl sulfate (SDS) gel. The charged SDS
molecules bind to a protein in a number proportional to the size of the
protein. If SDS-bound proteins are subjected to an electrical field, larger
proteins will have more charged bound molecules and, therefore, will move
faster than smaller proteins. At the end of the electrophoretic experiment,
the gel can be stained with dyes that specifically bind to proteins so that
proteins migrating at different speed, and, hence, with different mass, will
cause spots located at different distances from the start of the run. The
portion of the gel that contains the spot that corresponds to the protein of
interest can be (literally) cut from the gel to recover the protein. Depending
on the experimental setup, SDS gels can separate up to a few dozen proteins,
but not more than 100 in most cases. SDS gels are, therefore, unsuitable for
analyzing the full protein content of a cell.

Proteins can also be separated according to their isoelectric point (pI). The
pl of a protein is the value of pH at which a protein is electrically neutral.
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FIGURE 43
Two-dimensional gel for human liver (from the 2DWG meta-database of 2D-PAGE protein gel
images: http://www.lecb.ncifcrf.gov/2dwgDB).

This value clearly depends upon the number of charged atoms in the protein
and is different for different proteins. The protein can be run in a gel in
which a stable pH gradient has been established and subjected to an electrical
field. The protein will stop at the position in the gel where the pH value is
identical to the pI of the protein (i.e., the protein will become neutral).

Isoelectric point and size are unrelated to each other. Therefore, these
values can be used to separate protein in two different dimensions, as shown
in Figure 43. These so-called bidimensional gels are able to separate up to
10,000 proteins, and, thus, can be used to investigate the protein content of
a cell. Not every protein will be easily separated by two-dimensional electro-
phoresis. Membrane proteins, for example, are very hydrophobic and diffi-
cult to analyze. Similarly, proteins with very high pl (very acidic or
hyperphosphorylated proteins) present a problem.
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Moreover, direct quantification can be a problem because intensity of stain-
ing is linear, with concentration only over a very narrow range (0.04 to 2
ng/mm?). A solution to this problem is not to rely on staining intensity for
quantification, but on mass spectrometry. This technique is extremely sen-
sitive and has a very high dynamic range. It can detect posttranslational
modifications and can deal with different proteins in the same spot. Perhaps
more importantly, it provides a way to unambiguously identify each protein
in a sample.

Mass spectrometry detects and measures the number of ions with given
mass-to-charge ratio, and it has traditionally been applied to volatile com-
pounds. However, two relatively recent protein ionization techniques, matrix
assisted laser desorbation/ionization (MALDI) and electrospray ionization
(ESI), have revolutionized the field. In MALDI, a nonvolatile sample (e.g.,
a protein mixture) is embedded in a matrix and irradiated by a short laser
pulse. The energy of the pulse is converted into heat that produces “evapo-
ration” of the sample, which becomes ionized by a single proton. The ionized
protein is then analyzed by mass spectrometry. In ESI, the sample is embed-
ded in a ionized solvent drop, electrospray causes concentration of the sol-
vent in the drop by evaporation and, thereby, increases the charge of the
drop. The sample in the drop becomes highly charged, and its mass-to-charge
ratio can be measured by mass spectrometry. Techniques to separate proteins
before analysis can be used in conjunction with mass spectrometry.

How we can identify which protein corresponds to each spectrometry
peak? Clearly, the molecular mass is not sufficient. Many proteins have the
same molecular mass, and, therefore, we need to add further steps to our
procedure. For example, we can let our sample pass through a collision
chamber where it is broken into pieces, and we can use the mass-to-charge
ratio of each peak as additional information to identify our protein. We can
also specifically cleave our sample by use of a protease. Several enzymes
that hydrolyze peptide bonds adjacent to specific amino acids are known,
and the characterization of the mass of each fragment, together with the
knowledge of the type of amino acid that is adjacent to the cleavage site,
can aid in the search of our database of protein sequences for a protein likely
to be the one under analysis.

When a database search is based on a short sequence fragment as query,
use of more than one fragment from the same protein is essential to avoid
misassignment of proteins to peaks. We can also use mass spectrometry to
obtain the actual amino acid sequence of our fragments.

Promising Avenues

We conclude this problem by noting that, although here we surveyed dif-
ferent approaches to the function detection problem, from homology to data
extraction from the literature, from microarray data to proteomics experi-
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ment, all of the approaches would greatly benefit if a good standard defini-
tion of function were agreed upon and rationalized, if different data types
were synergistically combined in interpreting the results, and if a sound
treatment of error propagation in databases were developed. For example,
although GO ontologies allow us to annotate genes and their products, they
do not include annotation related to which cells or tissues express the genes
and their products, at which developmental stages they are functional, or
whether they are involved in disease. Other ontologies are devoted to these
aspects. The challenge is to create tools that maximize the utility of each
ontology while avoiding redundancy. Analogously, functional annotations
derived from databases such as SwissProt or from the literature itself could
be used as starting data together with the experimental data in clustering
techniques for genomics experiments.

The keywords here are integration and error minimization. Integration
should be achieved with scalable and user-friendly tools. It cannot be done
independently by several groups in different areas, but should rely upon
standards devised from consortia of experts. GO consortium and other ontol-
ogies are good models for this development.

A very serious problem is error propagation. A network of correlations
and interactions is behind our data. Each protein interacts with many others,
is controlled by many others, and, more importantly, has been assigned an
annotation mostly on the basis of its evolutionary relationships with other
molecules. What happens if one of our annotations is wrong? How does this
propagate to other elements of our network?

As in many areas, the network of annotations in the database, that is, the
network that describes which protein function has been annotated on the
basis of which other function, seems to be a “scale-free” network. Scale-free
networks are those in which the distribution of the connections is very
uneven. Some nodes have many more connections than others. In general,
scale-free networks can be described by a simple relationship: the probability
P(k) that a node has k connections is proportional to k. Scale-free networks
describe several systems, from collaboration in scientific papers, to protein
interactions, to the World Wide Web (for which the value of A is about 2.2).
Scale-free networks are safer than randomly connected networks. Random
network failures are more likely to happen in less connected nodes because
more of them exist, but the highly connected nodes are very sensitive spots
of the whole system.

How does an error propagate in a scale-free network? In other words, if
one computer in the network fails, how many other computers are affected?
The answer depends upon which site goes down. If the site is a node with
many connections, the error will propagate quickly and the effect can be
very relevant. The same is the case for protein functional annotations: the
wrong annotation of a very popular protein (i.e., a protein belonging to a
large evolutionary family) will produce much more damage to the consis-
tency of the data than an error in the annotation of a protein only present
in a very specialized cell type or one organism. A formal treatment of error
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propagation in scale-free networks is not available as of today, yet it would
be invaluable for allowing a more controlled and effective verification of the
level of errors in our databases.
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Problem 4

Protein Structure Prediction

Introduction to the Problem

The biochemical function of a protein is determined largely by its three-
dimensional structure. In turn, the structure of a protein is mainly dictated
by the specific linear sequence of its amino acids, as first demonstrated by
Anfinsen in a historical experiment. He showed that a protein (in that par-
ticular case, ribonuclease A) once denatured—that is, unfolded—in wvitro
recovers its “native” conformation when the denaturing agents are removed
from the test tube. The same experiment can be conducted with a chemically
synthesized protein, which implies that the information about the three-
dimensional structure of a protein is contained in its amino acid sequence.
Subsequently, cellular mechanisms were discovered that catalyze folding of
some proteins. These systems accelerate the folding process, but do not affect
the structure of the final native state.

The structure of a protein can be experimentally determined by use of
techniques such as X-ray crystallography and nuclear magnetic resonance,
but these techniques are time and labor consuming, and not all the proteins
of the universe can be experimentally determined. Therefore, we would like
to infer the three-dimensional structure of a protein, given its amino acid
sequence.

Energetic Calculations of Protein Structures
Energy Calculation

The observation that a protein, in appropriate conditions, folds into the same
stable structure implies that this native structure is the global free-energy
minimum among the states that the proteins can explore. The existence of a
free-energy minimum is not guaranteed by general physical properties of

69
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polymers, but by evolution. In other words, almost every native protein
sequence has been selected by evolution to fold into a single, stable structure.

A protein achieves a stable structure if the energy lost upon folding is
compensated by the energy gained in the folded state. During folding, a
protein loses entropy because entropy is related to the number of states
available to a system, and an unfolded chain has a practically infinite number
of possible conformations. The protein chain also loses the energy associated
with the hydrogen bonds that its polar atoms form with the solvent.

Upon folding, a protein gains both entropy and enthalpy. Entropy is gained
because of the burial of hydrophobic side chains of amino acids. When these
side chains are exposed to a polar solvent in the unfolded state, they cause
ordering (i.e., loss of entropy) of the surrounding polar solvent, and this
condition is energetically unfavorable. This effect explains the tendency of
nonpolar solutes, such as oil, to form drops in polar solvents, such as water.
The sphere has the minimum surface for a given volume, and, therefore, a
sphere causes the ordering of the lowest possible number of polar atoms. In
a protein, apolar groups are shielded from the solvent and buried within the
core of the molecule, which results in an energetic gain as the molecule
reduces the loss of entropy with respect to the unfolded state of the protein.
A protein gains enthalpy because of the many, generally weak, interactions
that are established in a protein structure. These interactions include intra-
chain hydrogen bonding, as well as VanderWaals and electrostatic interac-
tions. A protein can assume a unique energetically favorable structure
because it contains both polar and hydrophobic atoms. The latter make
unfavorable interactions with a polar solvent and must be buried in an apolar
environment. (Membrane proteins, that is, proteins embedded in apolar
membranes, are discussed separately.)

Proteins are only marginally stable. Therefore, although the free-energy
values of the unfolded state and of the native state are rather high, the
difference between them is very small. To estimate the free-energy values
with a reasonable accuracy, we must estimate the energy of the folded and
unfolded state with a level of precision that is not currently achievable.
Therefore, calculating the energy of every possible conformation of a protein
chain to select the native low-energy state is impossible not only because of
the enormous number of conformations but also because of the more fun-
damental problem of the lack of precision of our calculations. However,
methods are available by which to obtain approximate estimates of the
energy associated with a given protein conformation, and although they are
too inaccurate to allow us to predict the structure of a protein a priori, they
are useful in many applications.

The problem of exploring the conformational space is equally complex. As
pointed out by Cyrus Levinthal in 1969, the conformational space available
to a protein is enormous. We not only lack the ability to evaluate the energy
of each of the possible conformations but also face the problem of under-
standing how nature does it. Statistically, the average time of the folding
process should be comparable to the time needed to try every possible
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conformation. A simple calculation shows that if this condition were appli-
cable, the lifetime of the universe would not have been sufficiently long to
allow even a single protein to fold. Recent theories propose possible solutions
to this problem, which is usually referred to as the Levinthal paradox. We
are, thus, beginning to understand, at least in principle, how a protein can
achieve its structure in a matter of milliseconds to seconds.

Molecular Mechanics

The interactions between protein atoms are governed by quantum mechan-
ics. A precise treatment of the problem is currently impossible and will
remain so for some time. Therefore, a classical mechanical approximation
must be applied. For example, two covalently bound atoms can be seen as
two classical particles, with a mass, linked by a spring whose elastic constant
is proportional to the strength of the covalent bond. According to Hooke’s
law,

P‘r = Kr(”_ro)

The equilibrium distance r, between every pair of atom types (for example,
two carbon atoms linked by a double bond) can be derived by a statistical
analysis of the distances observed between the two atoms in experimentally
determined protein structures or by precise quantum-mechanical calcula-
tions on smaller, and, therefore, more tractable, model systems. The same
holds for the set of parameters K.

A similar procedure can be applied to estimate the energy associated with
other bonded interactions, such as the angle 6 between each possible triplet
of atoms or the dihedral angles ¢ between each possible quadruplet. Com-
monly used approximations are

K(0-0,)? and '/, K,(1+cos no)

in which the same strategies outlined for the covalent bond interactions are
used to derive the parameters.

Nonbonded interactions are more difficult to model. A widely used
approximation for VanderWaals interactions is

Ajr'? = Byry® 1)

where 7;; is the distance between the two atoms, and A; and Bj; are again
empirically parameterized. Incidentally, the VanderWaals interaction is bet-
ter modeled by different functions; the one used was historically selected
because it could be easily computed.

A major problem is the treatment of charge—charge interactions. We can
apply the Coulomb law, but we must take into account all charged and
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partially charged atoms, including the solvent, and we must model multi-
charge systems, which is very difficult.

Hydrogen bonds are electrostatic interactions and, therefore, should not
require a separate treatment, but the approximations introduced in our cal-
culation of charge interactions makes introduction of an ad hoc term to take
them into account, which is, in some cases, convenient:

Cyri'2 = Dyry'° (2)

In general, the formula we use to calculate the energy of a given arrange-
ments of atoms in a protein is of the following type:

E=Y KO-+ Y K(—-r+ >, IK(1—+cos no))

bonds angles dihedral
angles
+ z z (Ainflz - Binij()) + Z Z (Cinjflz - Dinijim) 3
i j<i i j<i

The parameters in Equation (3) are collectively called “force field,” and
different sets are publicly available.

If Equation (3) were sufficiently accurate to correctly evaluate the energy
of a given protein structure, we could search for the protein conformation
that minimizes the value of the energy and this conformation should corre-
spond to the native protein structure. As we said, the computation of the
energy is not precise because of the unavoidable approximations introduced
by our classical treatment of a quanto-mechanical problem. The energy val-
ues derived by equations of this type can only be used to distinguish between
correct and incorrect protein arrangements when the incorrect arrangement
is very different from the correct one. These values are, in general, unable
to consistently distinguish between a correctly folded and an incorrectly
folded protein if the latter is not very different from the former.

Equation (3) can be used in combination with optimization techniques to
search the conformational space more efficiently. Algorithms such as Monte
Carlo simulations, simulated annealing, molecular dynamics, and genetic
algorithms have been tried and also applied in combination with different
methods for evaluating the energy and with other heuristic methods.

Potentials of Mean Force

The Boltzmann equation states that the probability of a microstate with
energy E in equilibrium with a thermal bath at temperature T is proportional
to e Ei/KT. The probability of the various states must add to 1. Therefore, the
probability of a microstate i with energy E, is
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where Z is called the partition function. In simpler terms, states with higher
energy are more unlikely to be populated. The equation can be inverted:

E,=—KTIn(p)+KTInZ ()

Z cannot be computed, but we can get rid of it if we compute the energy
difference with respect to a reference state:

AE, =E,~E, =KTl " ©6)
p ref

We can deduce the energy of a state from its occupancy, provided we know
the occupancy of the reference or ground state.

The Boltzmann equation holds when fluctuations occur between the states;
that is, when the particles can move freely from one state to the other. This
allows the particles to distribute themselves in such a way that the proba-
bility that a state 7 is occupied is proportional to exp(AE,;/KT), and AE, is the
difference in free energy between the state i and the ground state.

The energy and the probability of occurrence of a given interaction in a
protein structure are also linked by the inverse Boltzmann equation; that is,
the probability of occurrence of an interaction between two amino acid side
chains at a given distance can be used to calculate the strength of their
interaction. In other words, very common interactions in protein structures
are energetically more favorable than rarely observed interactions. This
observation might seem surprising, because amino acids are not free to
fluctuate from one state to another (i.e., to change their position in the
protein). However, the number of sequences able to stabilize a given fold
decreases with the energy of the fold, and, therefore, the most frequently
observed sequence combinations are likely to be the most energetically favor-
able.

Because we know a large number of protein structures, we can estimate
the probability of an interaction from its frequency of occurrence in known
protein structures and, consequently, derive its energy. We can compute the
ratio between the observed frequency of an interaction in the large collection
of available protein structures and the frequency with which that interaction
is expected to occur by chance alone. This method can be used to estimate
the energy of the interactions that occur in a given protein conformation.
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This approach has several advantages, such as the speed at which the energy
can be calculated and its relative effectiveness, but it also has a number of
complications.

First, protein atoms are not independent, because they are covalently
bound to each other (e.g., two linked amino acids are close to each other
because they cannot be otherwise). The frequency distribution for each pair
of amino acids must be computed for different sequence separations (e.g.,
two alanine residues separated by three, four, five, or more intervening
amino acids in the protein sequence). Second, we must answer the following
questions: What do we compare our distribution with? What is the expected
distribution of the distance between pairs of alanine residues separated by
the given number of intervening amino acids in the unfolded protein struc-
ture? Which structure is the unfolded conformation? These questions are not
trivial. The unfolded state cannot be easily studied, because it is an ensemble
of states, and our experimental methods cannot be used to study the details
of the conformations. We can use decoy structures; that is, build a compu-
tational model of the ground state. The choice of the ground state has an
effect on our results. For example, if we use randomly generated amino acid
chains, they might not contain secondary structure elements, and we will
note that our distribution of distances in real protein structures will have a
maximum at distances of around 5 A. This distance corresponds to two
residues in subsequent turns of a-helices, a structure that is observed more
frequently in a protein structure than in an ensemble of random polymers.
If we use shuffled protein structures as our ground state (i.e., if we randomly
exchange the position of amino acids in real protein structures), our random
distribution will contain a sizeable number of amino acids in o-helices, and,
therefore, the peak at 5 A will be above the background only for pairs of
amino acids that are more frequently in helices than expected by chance
alone. Third, we limit ourselves to pairwise interactions, which are a rather
crude approximation of physical reality. Fortunately, pairwise potentials
have proved to be extremely useful in several applications, and they appear
able to capture general structure-related properties of a protein sequence.

Searching the Protein Conformational Space
Molecular Dynamics

Given an energy function, be it a statistical potential or a molecular mechan-
ics one, we must search the conformational space of a protein to find the
minimum of our energy function. A simple minimization algorithm changes
the coordinates of our atoms, and, generally, a new conformation is accepted
only if its energy is lower than the previous one. Therefore, it finds the local
minimum closer to the initial conformation. Our global energy minimum
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FIGURE 44
A sphere on a surface.

might be separated from our starting position by a potential barrier, and we
will never explore it.

One solution is to endow our system with some initial energy that can
allow potential barriers to be overcome. In mechanical terms, a ball deposited
on a surface reaches the closer local minimum and overcomes local barriers
if they are lower than the initial potential energy of the ball (Figure 44). In
the absence of dissipative forces (i.e., with no friction in the example), the
ball explores the conformation space confined between barriers with energy
equal to its initial energy (the shaded area in the Figure 44). The higher the
initial energy, the higher the potential barriers that can be overcome and,
therefore, statistically, the larger the conformational space that can be
explored. This idea is the basic concept of molecular dynamics.

If each of the atoms of our protein is provided with some “reasonable”
kinetic energy, we can increase the size of the conformational space that can
be explored. The velocity of the atoms is determined by a random sampling
of velocities from a Maxwell-Boltzmann distribution that corresponds to a
desired target temperature T. The fraction f(v) of atoms having a specific
velocity v is

2

4 m 2 > —mo
f(v):\/E(ZkBTJ v exp(ZKbTJ @)
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where K, is the Boltzmann constant, m is the mass of the particle, and T is
the absolute temperature.

We can select an initial temperature and attribute an initial velocity (i.e.,
kinetic energy) to each atom in such a way that the overall distribution of
velocities follows the Maxwell-Boltzmann distribution: the higher the tem-
perature, the higher the proportion of atoms with a large velocity.

In this hypothesis, the atoms of our protein follow, in each instant of time,
the Newton equation:

;=;0+;0At+%;<w ®)

We know the initial position of the protein (the coordinates of the atoms
in our starting conformation), its velocity at time 0, calculated according to
the Boltzmann-Maxwell equation and dependent upon our choice of the
temperature T, and its instant acceleration, given by @=F/m where F is
the force acting on the atom that can be calculated from its potential energy
calculated according to Equation (3). The subsequent position of each atom
can be calculated by integrating the Newton equation, provided that the
acceleration remains constant during the integration step; that is, provided
that the integration step is very small. The requirement of a very small
integration step limits the total time of our simulation, and, therefore, molec-
ular dynamics can be used for exploring conformations reasonably close to
the initial one, but molecular dynamics calculations are not very useful for
exploring the large conformational space of a protein.

Monte Carlo Methods

Stochastic methods for the exploration of conformational space do not try
to simulate a physical process, but rather to randomly explore the confor-
mational space. The search is biased towards areas where the global mini-
mum is more likely to be found. Monte Carlo methods use random moves;
for example, one angle in the protein structure is randomly changed and the
energy of the resulting conformation is calculated. Applied to our example
of the ball, this method makes the ball disappear from its initial position and
reappear randomly in a different position. If the new state has a lower energy
than the previous one, we keep the move. However, conformations with
higher energy are not necessarily discarded. They can be accepted with a
probability dependent upon a preselected parameter, called temperature,
and upon the difference between their energy and the energy of the previous
state. The lower the increase in energy is, the higher the probability of
accepting the move (Figure 45). In practice:

(Enew —-E

P:min(l,eXp_k—YW) ©)
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FIGURE 45
Scheme of the Metropolis Monte Carlo procedure.

If the new conformation has an energy E,,, lower than the energy of the
starting state E,, o4 then —(E,.,, = E,e0i0us) 18 positive, and the exponential is
higher than 1. Therefore, the probability that the new conformation will be
accepted is 1 (i.e., we always accept it). In the opposite case, the exponential
is less than 1. The higher the difference in energy is, the lower the value of
the exponential, and the lower the probability of accepting the new confor-
mation.

Simulated Annealing

Both in molecular dynamics and in Monte Carlo methods, the parameter T
does not necessarily represent a physical temperature. In both techniques,
higher T values allow a wider exploration of the conformational space; lower
T values ensure that the explored conformations have reasonably low energy.
We, therefore, can start with a high temperature to allow the atoms to
overcome larger barriers in molecular dynamics or to allow states with
higher energy to be used for exploring new conformations in Monte Carlo
methods. We then slowly decrease the temperature as the simulation pro-
ceeds, to progressively focus on areas with lower energy. The protocol used
for decreasing the temperature (linear, stepwise, or a combination of both)
depends on the specific method, but all are known under the name of
simulated annealing.

Genetic Algorithms

Genetic algorithms are optimization algorithms based on the concepts of
evolution. They start from an ensemble of possible solutions, such as a set
of conformations of a protein structure. Similarly to what happens in molec-
ular evolution, each element of the ensemble has a certain probability of
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being mutated (for example, by randomly changing a dihedral angle) or
“crossed” with another element of the ensemble (for example, joining the
first part of one conformation with the second of another, and vice versa).
A fitness value is evaluated for each of the members of the population, and
a new ensemble (generation) is constructed. The distribution of possible
solutions in this new ensemble depends upon the fitness of each member.
Members with higher fitness will be more represented than those with lower
fitness, and the process will be repeated. The fitness function depends on
what we want to optimize. In the case of protein structures, it can be the
molecular mechanics energy of each conformation or, much more commonly,
the mean field potential.

Knowledge-Based Methods

None of the methods described above is able to deduce the three-dimen-
sional structure of a protein from its sequence, both because of the intrinsic
limitations of our approximate energy calculation and because our ability to
explore the conformational space is currently inadequate. However, the large
set of available protein structures gives us a way to find a solution to the
problem on the basis of heuristic rules that we can learn from the set of
available solved examples (i.e., of proteins for which both the sequence and
the structure are known). Although, even if we could use these heuristic
methods to predict with satisfactory accuracy the structure of every protein
in the universe, they would not necessarily help us understand the nature
of the folding process. Nevertheless, we must exploit every possible route
to find answers to our questions.

Evolution-Based Methods

The structure of a protein is determined by its amino acid sequence, and,
therefore, the substitution of one amino acid with another affects the struc-
ture. In principle, the effect can be that the protein no longer folds (as is too
often observed in random mutagenesis experiments in the laboratory),
because the newly introduced interactions shift the energy balance toward
the unfolded rather than the folded state. Alternatively, the substitution
might not destabilize the protein structure and either be accommodated into
the structure with only local minor rearrangements or cause the protein to
assume a completely new unrelated structure. Because a protein structure is
only marginally stable and this stabilization is mediated by a large number
of weak interactions, and because the number of “foldable” sequences is a
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small set of all possible protein sequences, the last possibility is extremely
unlikely and, indeed, has never observed. Therefore, a mutation either desta-
bilizes a protein or is accommodated in a structure quite similar to the
original one.

Evolution provides us with many examples of proteins that descend from
a common ancestral protein whose sequence has been modified via a process
of residue substitutions or, albeit less frequently, of insertions and deletions
of amino acids. We know that these proteins are functional, or at least not
deleterious, because they have been accepted in the population. Therefore,
they are expected to have a stable native structure and also a similar struc-
ture. Clearly as mutations accumulate, local rearrangements also accumulate,
so that the longer the evolutionary distance between the two proteins, the
less conserved their structures.

As discussed in Problem 1, we have methods to detect evolutionarily
related proteins from their sequences, and this ability implies that we can
detect proteins very likely to have similar structures. The structure of one
protein, therefore, can represent an approximate model for the structure of
all the proteins of its evolutionary family. The closer the evolutionary dis-
tance is, the better the approximation. This concept is the basis of the most
used method for protein structure prediction: homology, or comparative
modeling.

The procedure is conceptually simple. If we assume that the sequence
alignment between two protein sequences, one of unknown (the target) and
one of known (the template) structure, obtained by one of the methods
described in Problem 1, reflects the evolutionary relationship between their
amino acids, we can assume that most of them have preserved the same
relative position in the structure and use the coordinates of the backbone
of the template as first approximations of the coordinates of the backbone
of the target. We must model the conformation of the side chains and the
local rearrangements of the structure brought about by the amino acid
substitutions.

The assumption that we can find a correspondence between each amino
acid of our target protein with one of the template is an oversimplification.
First, if sequence changes have accumulated in less constrained parts of the
protein structure (i.e., at its periphery rather than in the closely packed core),
they might have produced substantial local rearrangements of the chain that
must be modeled. Second, no region of the template corresponds to inserted
amino acids, and the regions that surround deletions have necessarily
changed their conformation to accommodate the new local sequence. These
observations imply that we must identify the regions that can be modeled
directly from the template (the conserved core) and, subsequently, model
the remaining parts of the structure without the possibility of taking advan-
tage of the template structure.

Templates for a comparative model can be found by searching the database
of known protein structures for proteins putatively homologous to the target
protein. If we find more than one, we have several possibilities. We can use
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only the template with the highest similarity to our target protein; we can
select different templates for different regions of the target, taking into
account the local sequence similarity; or we can “average” the structures of
the templates. All these approaches are commonly used with quite similar
results.

The orthologous/paralogous classification is less relevant here because the
considerations that we made about structure conservation do not rely on the
assumption that the evolutionarily related proteins perform the same func-
tion. Conversely, the problem of identifying the correct alignment is
extremely relevant because an incorrect alignment can have disastrous con-
sequences on the whole model. All that we said in Problem 1 about the
importance of using reliable methods and multiple sequences is at least as
important here as in function assignment.

As far as the conserved core is concerned, the quality of our model depends
essentially on how correctly we have aligned the two sequences and on how
much the two structures have diverged, or, in other words, on the extent of
the local rearrangements required for accommodating replaced amino acids.
We can easily learn how much the structures have diverged by an analysis
of known protein structures, as demonstrated in a pioneering work by Lesk
and Chothia. We can select pairs of evolutionarily related proteins, optimally
superimpose them, and measure their structural divergence as a function of
their evolutionary distance, estimated from their sequence difference. We
define the structural divergence between two protein structures as their root
mean square deviation (rmsd) defined as

e = \/111 3 [0 xR+ -y + e 207 10

where (x;, y;, z) and (x;, y;, z/) are the coordinates of corresponding atoms.

Figure 46 shows the rmsd of the backbone of the core of pairs of evolu-
tionarily related proteins as a function of the percent of identity between
their amino acid sequences. The definition of the “core” of the structure
differs in different methods. It can be intuitively seen as the internal, closely
packed, conserved part of the structure that contains most of the repetitive
secondary structure elements.

We can use the plot in Figure 46, for example, to estimate that, given a
target protein and a model built from a template that shares 50% sequence
identity with it, if we are able to correctly align the sequences of the two
proteins, the average error that we expect for the coordinates of the backbone
atoms of the core of our model is around 1 A. Modeling of the regions that
do not belong to the common core of the proteins is much more difficult
because they can be structurally divergent as a result of local rearrangements,
insertions, or deletions.

Regions in which local rearrangements are likely to have occurred can be
recognized by their low local sequence similarity with the template and by
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FIGURE 46

The relationship between sequence difference and structural divergence. The plot shows the
value of the rmsd for the superposition of the core of seventy pairs of homologous proteins as
a function of their sequence identity.

their localization near the surface of the template protein. Often, they can
also be identified by use of different methods of sequence alignment and
recognizing which regions of the alignment are less stable; that is, regions
for which the alignment changes when we change the alignment parameters
even slightly (indel penalties and similarity matrices)

Modeling of these regions is a continuing problem, although several meth-
ods have been explored. One method is to use energy-based strategies to
predict structure, such as building all possible stereochemically reasonable
conformations of the target protein backbone and evaluating their energy.
Methods recently developed for proteins not sharing any sequence or struc-
tural similarities with known proteins have also been used (see below).

A very commonly used method is to search the protein structure database
for regions that might constitute good local templates for the loop regions.
Usually, these methods search for loops of the appropriate length in known
proteins, the flanking regions of which fit well in the regions before and after
the loop to be modeled. In some cases, these methods provide a reasonably
good answer, but estimating their accuracy a priori is quite difficult. One
important exception to the uncertain outcome of a loop prediction is seen
in the case of immunoglobulin antigen-binding loops, as we discuss in Prob-
lem 7.

Once the backbone has been modeled, we must build the conformation of
the side chains. We can model them by use of a packing or energy-optimi-
zation procedure, or we can use the known examples available, for example,
by positioning each side chain in the conformation most often observed in
the database of protein structures. Given the experimental backbone struc-
ture, several methods can reconstruct the side chains correctly, and, therefore,
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any improvement in modeling the backbone allows us to obtain reasonable
results for the modeling of side chains.

One very successful optimization technique for side-chain conformation
is an application of the dead-end elimination theorem, which is based on
the assumption that the protein consists of a fixed backbone and a set of
interacting side chains that can only assume a number of discrete conforma-
tions (rotamers). Given the backbone structure, the potential energy E,,, of
a protein conformation can be written as

Etotal = Ebuckbone + EE(lr) + 2 ZE(Zr ’js) i <j (11)
i i j

where E,, 0 15 the energy of the backbone template, E(i,) is the energy of
side chain i in the conformation #, and E(i,j,) is the interaction energy between
the amino acids i and j with rotamers r and s, respectively.

The dead-end elimination theorem states that some values of the rotamers
are incompatible with the global energy minimum conformation, and these
values are the rotamers 7, such that

EG)+ Y minE(ij.) > EG)+ Y maxE(ij); i#] (12)
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In other words, a rotamer can be excluded if its most favorable interactions
have higher energy than the sum of the less favorable pairwise interactions
that the same amino acid can make in any alternative conformation. In real
cases, excluding these rotamers reduces the search space for side-chain con-
formations by many orders of magnitude.

At the end of the modeling procedure, we have an approximate structure
for our protein, mainly obtained by use of the coordinates of other, evolu-
tionarily related but not identical, proteins, and, ideally, we want to optimize
the structure, taking into account the actual sequence of our target protein.

Unfortunately, none of the available energy-based optimization methods
improves upon the starting model. If a method were able to optimize the
starting model, then, given the model, the template structure used to build
it, and the subsequently determined target structure, the model should be
closer to the real structure than to the template used to build it. So far, no
method has convincingly achieved this result because no modification of the
template backbone structure has succeeded in obtaining coordinates signif-
icantly and consistently closer to the experimentally determined protein
structure.

Arecently developed technique is to generate, for each target protein, more
than one model; for example, by use of different templates, by use of sub-
optimal as well as optimal alignments, and by use of diverse methods for
predicting structurally divergent regions and for modeling the side chains.
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After a large set of models has been obtained, they are ranked according to
some fitness function (e.g., pairwise potentials) to select the putatively best
one. These approaches appear more promising than the construction of a
single model obtained by separately optimizing every step of the procedure.

Fold Recognition

Our survey of known protein structures has allowed us to conclude that
evolutionarily related proteins have similar structure. Does this observation
mean that evolutionarily unrelated proteins always have different struc-
tures? The answer is no, because, very often, apparently unrelated proteins
share a similar topology (Figure 47).

The explanation of this experimental observation can be that apparently
unrelated proteins have diverged so much that our sequence-based methods
are not sensitive enough to detect their true evolutionary relationship, or the
specific topologies observed are energetically favored or easier to reach
kinetically, and, therefore, more often used by nature. Whatever the reason,
this observation implies that, even if our target protein does not seem to be

FIGURE 47

Two (probably) unrelated protein structures sharing a similar topology, a calcium /phospholipid
binding protein (PDB id: 1RSY) from rat and the human growth hormone receptor (PDB id:
3HHR). These two proteins share less than 5% sequence identity, and yet their topology is
extremely similar.
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related to any known structure, a finite chance exists that it has a topology
already present in our database of known protein structures. The most
straightforward way to verify this possibility is to build several models for
our protein by using as template every known structure, on the basis of
every possible alignment, and then estimate whether one or more of our
models seem “reasonable”; that is, whether they have a high sequence-struc-
ture fitness score that we need to define.

The search for an appropriate, and easy to compute, fitness function for
this case is what prompted the development of the pairwise potentials dis-
cussed above. An extension of the dynamic programming algorithm, the
double dynamic programming, can be used to obtain the optimal
sequence-structure alignment. In the sequence alignment problem, we
needed to optimize the sequence similarity score; here, we must optimize
the overall pairwise potential. The algorithms must be more complex. In the
sequence alignment problem, the score in each cell only depends on the
amino acids in the two proteins and not on the path that we select at the
end, whereas, here, the value of the function depends on the distance
between all pairs of amino acids in the protein and, therefore, on which path
we take. Indeed, double dynamic programming methods are quite slow and
memory intensive. Thus, approximations are often used to simplify the task.

Another alternative method for recognizing a known fold that can fit a
given protein sequence is based on the profile. We replace each amino acid
of our target sequence with a symbol that indicates its propensity to be
observed in a given structural environment. Usually, we take into account
the propensity of the amino acid for being in one of the secondary structure
types, for being in a hydrophobic or a hydrophilic environment, and for
being more or less exposed to a polar solvent. This procedure recasts our
sequence into a new sequence composed of a different set of characters.
Whenever possible, we can use a multiple alignment of members of the same
family of our target sequence because we know they share the same
(although yet unknown) structure. Next, we can analyze each of the proteins
of known structure. For every position, we do not take into account which
amino acid happens to be present, but rather examine the property of the
position (i.e., its secondary structure, its environment, and its exposition to
the solvent) and assign a character that describes the observed combination
of properties. Thus, our database of protein structures is represented by a
set of strings.

The string that represents the query sequence, or its multiple-sequence
alignment, can now be compared, by use of the same techniques described
for the detection of evolutionary relationships, with each of the strings that
represent the structures. As for sequence-based database searching methods,
we need a background distribution to evaluate the significance of the scores
that we obtain, and this distribution can be obtained by reshuffling our
sequence or by creating reasonable “decoy” structures.
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Fragment-Based Methods

What can we do if our protein does not seem to share any evolutionary
relationship with a protein of known structure and if no significant score
can be obtained by running the available fold recognition methods? We can
try to predict specific features from the sequence and, for example, try to
predict its secondary structure. However, recent developments in protein
structure prediction might allow us to attempt the construction of a full-
fledged, three-dimensional model of our protein, even in these difficult cases.

The “new-fold predicting methods” are usually fragment based; that is,
they combine fragments of known structures, taken from our database of
known protein structures, to construct a model of the target protein. Frag-
ments with identical sequence can assume different conformations in differ-
ent structures, so we cannot just search for fragments of known structure
that have a sequence identical, or similar, to some fragment of the target
protein and join them together. However, the innovative idea behind the
new fold methods is that the distribution of conformations in which we find
a fragment with a given sequence can be related to the propensity of that
sequence to assume each of these conformations. We can retrieve all frag-
ments sharing some local sequence similarity with each of the fragments of
our target protein and join them in many combinations. This procedure
generates a large but finite set of putative models that we can optimize by
application of genetic algorithms, for example. The problem is reduced to a
search for the “best” model among a given finite set of conformations, and
we can use a sequence—structure fitness score to rank our models.

These methods have raised an enormous interest because they seem to be
the only current way to obtain (although not always) a full, three-dimen-
sional model of a protein that has no sequence or structure relationship with
the set of known proteins. These methods can also be used to design new
protein structures.

Natively Unfolded Proteins

The assumption that protein function requires structural organization does
not necessarily mean that all proteins in a cell have a defined structure at
all times. In X-ray crystallography, often no electron density can be observed
for some regions of the analyzed protein, and these anomalies may corre-
spond to disordered regions. Analogously, nuclear magnetic resonance
experiments can indicate that regions of a protein fluctuate in the solvent
rather than remaining fixed in a unique conformation. Spectroscopic tech-
niques can highlight a protein that lacks a defined secondary structure or,
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although the secondary structure is present, that does not show the asym-
metric interactions characteristic of a folded protein. The hydrodynamic
dimension of a protein can be measured and compared with that of typical
native globular proteins with corresponding molecular mass.

With the use of these techniques, a growing number of proteins have been
found to share the intriguing property of being partially or completely
unfolded. The proteins are called “natively unfolded,” “intrinsically unstruc-
tured,” or “intrinsically disordered.”

The “disorder” property is conserved through evolution, which suggests
that it has a functional significance. Intrinsic flexibility seems to be an impor-
tant prerequisite for molecular recognition, and intrinsically disordered pro-
teins are involved in a number of important biological processes, such as
cell cycle control, transcriptional and translational regulation, modulation of
activity, and assembly of other proteins. Most of these proteins undergo a
disorder-to-order transition to perform their function, and this property is
advantageous for several reasons.

An intrinsically flexible protein might bind several targets, or it can provide
a larger interacting surface in big complexes. Such proteins might also have
been optimized to bind their targets with low affinity (as they have to
“spend” energy for folding before binding). Moreover, the lifetime of an
unfolded protein in a cell is probably shorter, which can serve as a regulatory
mechanism.

Most likely, all these effects, and possibly others, are responsible for the
existence of natively unfolded protein, but in any case, detecting which
proteins or regions of proteins are intrinsically disordered has quite impor-
tant implications, not only for functional assignment but also because
natively unfolded proteins or proteins containing unfolded regions do not
crystallize. Therefore, detecting them in advance can prevent structural biol-
ogists from wasting time and effort.

The prediction of disorder is a binary classification problem. It is perfectly
suitable for automatic learning methods but is also approachable by use of
statistical classifications based on sequence composition. Several publicly
available methods reach respectable accuracy when tested on data sets
derived from the PDB protein structure database. These methods provide
estimates that more than 40% of the proteins from high organisms contain
disordered segments longer than 50 amino acids and that more than 15% of
the proteins are completely disordered. These estimates are based on pre-
dictions, and we cannot be sure that they do not contain systematic errors
because of the data set used for training. In any case, these intriguing proteins
seem to represent more than a negligible fraction of the proteome. Thus,
predicting their characteristics and experimentally studying their properties
is important.
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Promising Avenues

Clearly, efforts should be focused on the ability to correctly rank a set of
models for the same protein. Estimating their quality a priori would
improve comparative modeling, fold recognition, and fragment-based
techniques.

How do we accomplish this objective? We certainly cannot use very
detailed energy calculations. In the case of comparative modeling based on
close evolutionary relationships, the calculations would fail because they are
not sufficiently precise to evaluate the energetic contribution of small devi-
ations from the real protein structure. In all other cases, the calculations
would not work for the opposite reason: the models are too far away from
the real structure, and this distance would mask their relative differences.
Less detailed energy terms, such as pairwise potentials, are more likely
candidates, but we know experimentally that they are also not very good
for ranking different models. Often visual inspection of protein models
allows an expert to discriminate, at least to some extent, between good and
bad models. Therefore, the problem is to encode the pattern recognition of
the expert into an automatic method. This task is not easy. One should take
into account several factors, which include the packing of the interior of the
protein, the absence of unusual structural features and, certainly, the corre-
lation of the model with known experimental data on the analyzed protein.
Once again we stress how valuable the ability to automatically check the
consistency of our predictions with known and experimental information
embedded in the large body of available biological literature would be.

The prediction community has established a worldwide experiment (Crit-
ical Assessment of Techniques for Protein Structure Prediction, CASP) to
evaluate the effectiveness of methods for protein structure prediction and
highlight the bottlenecks of present methods. Every 2 years, crystallographers
and nuclear magnetic resonance spectroscopists who are about to solve a
protein structure are asked to make the sequence of the protein available,
together with a tentative date for the release of the final coordinates. Predic-
tors produce and deposit models for these proteins before the structures are
made available, and, finally, a panel of assessors compares the models with
the structures as soon as they are available, evaluates the quality of the
models, and draws some conclusions about the state of the art of the different
methods. The results are discussed in a meeting of assessors and predictors,
and the conclusions are made available to the whole scientific community
via the World Wide Web and the publication of a special issue of the journal
Proteins: Structure, Function, and Genetics. CASP experiments have been
ongoing since 1994. Their results are based on a very large number of sub-
mitted models (thousands in each edition) and represent an invaluable data
set for assessing the performance not only of structure prediction methods
but also of methods for differentiating and ranking models of different quality.
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Problem 5

Membrane Proteins

Introduction to the Problem

Membranes separate cells or cellular compartments from the environment.
However, characterizing a membrane simply as a passive barrier is mislead-
ing. On the contrary, membranes are complex dynamic structures whose
components are continuously synthesized and degraded. All biological
membranes are made of lipids and protein molecules held together by non-
covalent interactions. The relative abundance of the components varies,
depending on function. The plasma membranes of animal cells are approx-
imately 50% protein in weight. The inner mitochondrial membrane, which
is involved in energy transduction, is about 75% protein, whereas myelin,
which functions as an insulator, only contains roughly 25% protein.

Membrane proteins perform many extremely important functions. As
transporters, they carry molecules and ions into and out of cells. As recep-
tors, they recognize external stimuli. They have enzymatic activity and are
responsible for cell-to-cell communication. The enormous interest in these
proteins, especially for therapeutic purposes, is, therefore, not surprising.

Unfortunately, the structure and function of membrane proteins is
extremely difficult to predict, at least as difficult as predicting the structure
of globular proteins. This difficulty might seem surprising because the mem-
brane environment limits the possible conformations a protein can assume.
However, this potential advantage is more than counterbalanced by at least
two properties. First, membrane proteins interact with the membrane hydro-
phobically, and these interactions are nonspecific and, therefore, difficult to
model. Second, the experimental determination of the structure of membrane
proteins is much more difficult than determination of the structure of soluble
proteins, and, as a result, the available number of solved membrane protein
structures is very low (less than 1% of the total number of solved protein
structures, although 20% to 25% of all proteins are estimated to be membrane
proteins), and this low number limits the possibility of extracting useful rules
about their sequence-structure relationship.

89
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The Structure of the Membrane

The peculiar properties of membrane proteins are dictated by the environ-
ment in which they exist. Therefore, we must discuss the general features
of a membrane. The most abundant lipids in the membrane are phospho-
lipids (Figure 48), which are made up of a hydrophilic head and a hydro-
phobic tail. In a hydrophilic environment, phospholipids spontaneously
arrange into a double layer, with the heads pointing towards the solvent and
the tails packing against each other (Figure 49). The energetic reason is
always the same: exposing a hydrophobic molecule to a polar environment
is entropically unfavorable.
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FIGURE 48
The general structure of a phospholipid.

FIGURE 49
Schematic representation of a double layer of phospholipids.
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FIGURE 50
Schematic illustration of a membrane that contains peripheral and integral proteins.

The head group, designated by X in Figure 48, is different in different
phospholipids and is attached to two fatty acid tails that can also differ in
different membranes. However, in general, one tail does not contain double
bonds and the other does. This difference is important because the rigidity
of a double bond keeps the two tails from tightly packing against each other
and, thus, maintains the membrane sufficiently fluid at body temperature.
Individual lipid molecules are able to diffuse freely within the bilayer, and
the embedded proteins are also able to move around. The membrane also
contains another lipid, cholesterol, whose concentration may vary signifi-
cantly. The cholesterol molecule inserts itself in the membrane with the same
orientation as the phospholipid molecules. In this way, it immobilizes the
first few hydrocarbon groups of the phospholipid molecules, which makes
the lipid bilayer less deformable and permeable to small water-soluble mol-
ecules. Glycolipids are also found in membranes, with their sugar groups
projecting into the extracellular space. Glycolipids can be protectors, insula-
tors, and sites of receptor binding.

The Structure of Membrane Proteins

Some membrane proteins are partially inserted into the membrane, with a
domain where hydrophobic residues are exposed on the surface in contact
with the inner, hydrophobic part of the lipid bilayer and a polar domain
interacting with the solvent. Others have a hydrophilic domain at each end
of the protein and a single hydrophobic domain that spans the whole
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FIGURE 51
Examples of integral membrane proteins: a channel protein, a porin, and the photoreaction
center.

membrane. In the latter case, the polypeptide chain may traverse the mem-
brane one or more times.

Another class of membrane proteins, the peripheral membrane proteins,
is not inserted into the membrane and has no well-defined hydrophobic
surface. These proteins are bound to the membrane principally by ionic
associations with the polar phospholipid heads, by other membrane pro-
teins, or by covalent links to glycolipids (Figure 50).

Three integral membrane proteins are shown in Figure 51 (see color insert
after page 40): a bacterial potassium channel, the OmpF porin from Escher-
ichia coli, and the photoreaction center I from a cyanobacterium. We will use
these three as paradigms for highlighting the properties of this class of
proteins.

The bacterial potassium channel has a rather simple architecture, and its
role is to selectively allow ions to go through the membrane and, thereby,
facilitate rapid signaling to every part of the cell. This mechanism forms the
basis of muscle contraction, in which the signal is given by a flow of calcium
ions, and of nerve signaling, in which the potassium channel is involved. A
resting nerve cell has a high concentration of internal potassium, built up
by selectively letting potassium in and calcium out, which creates an elec-
trical potential difference. When the cell needs to signal other cells, the
sodium channels open, and the influx of sodium depolarizes the cell. Later,
the potassium channel re-establishes the potential difference. When a chan-
nel opens, the message is immediately felt by other channels of the same
type, which also open. Thus, the signal is quickly transmitted.

The channel has to distinguish a potassium ion from a sodium ion. There-
fore, the channel is formed by a selectivity filter that recognizes the two
different ions and a gate that opens or closes according to the need. The filter
is efficient: only one molecule of sodium escapes the selection mechanism
for every ten-thousand potassium ions that pass through the channel.

Structurally, the channel consists of four chains that span the membrane
and create an internal pore. Each chain is formed by o-helices that are
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roughly perpendicular to the plane of the membrane. The a-helices tilt at
different angles and have different lengths.

The OmpF porin is a member of the B-barrel membrane protein class.
These molecules are found in the outer membrane of gram-negative bacteria,
where they either mediate nonspecific transport of ions and small molecules
that passively diffuse though the pore or selectively allow the passage of
molecules such as maltose and sucrose. The porin shown in Figure 51 trans-
ports nutrients and waste products across the outer E. coli membrane. Note
that, as with the o-helices of the potassium channel, the strands are not
exactly perpendicular to the membrane plane and have different lengths.

Higher organisms have internal organelles—the mitochondria in animals
and the chloroplasts in plants—that are the energy factory of the cell. These
organelles are surrounded by two membranes, the inner one of which is
impermeable. The energy gained by the passage of electrons along a chain
of electron acceptors, the last of which is oxygen, has the effect of accumu-
lating protons on one side of the internal membrane, and the proton gradient
“drives” a motor whose rotation is responsible for the formation of adenosine
triphosphate (ATP), an energy-rich molecule that fuels many biochemical
reactions.

B-barrel membrane proteins are also present in the external membrane of
mitochondria. Evidence suggests that these organelles are derived from an
early symbiotic event between an ATP-producing bacterium and a higher
organism cell. In the mitochondria membrane of higher organisms, $-barrel
membrane proteins appear to be involved in voltage-dependent channels.

The membrane-spanning region is formed by o-helices in the potassium
channel synthetase and by B-strands in porins. Yet, the two structural orga-
nizations have a common feature that is directly related to a property of
membranes. The surface of the membrane proteins is in contact with the
apolar part of the lipid bilayer, and the side chains of hydrophobic amino
acids can provide favorable interactions with this environment. However,
the main chain contains polar atoms that cannot form hydrogen bonds with
the surrounding hydrocarbon atoms and must bond with other atoms of the
protein chain. (In the unfolded state, the polar backbone atoms form hydro-
gen bonds with the polar cellular environment, and folding is energetically
unfavorable if they cannot form approximately the same number of hydro-
gen bonds in the folded state.) The backbone polar atoms of an o-helix form
hydrogen bonds with other backbone atoms. Therefore, if a region of a
protein traverses the membrane as an o-helix, all its polar atoms can satisfy
their hydrogen bond potential. Another way of saturating potential hydro-
gen bond donors and acceptors of the backbone is to form a B-sheet, so that
the last strand pairs with the first, forming a barrel, as in the case of the porin.

The photosystem I from a cyanobacterium is a multimeric protein that
provides the machinery for converting the energy from sunlight into the
chemical energy organisms need to perform mechanical, chemical, and
osmotic work. It captures the photons and uses their energy to build sugar.
The protein complex contains more than 100 cofactors; that is, small, organic
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molecules exposed around the edges or buried inside. Our photosystem I
protein contains many small molecules, such as chlorophyll and carotenoids.
Chlorophyll absorbs blue and red light, and this characteristic explains the
green color that we see all around us in plants, whereas carotenoids are
orange and mainly absorb in the blue region.

Prediction of the Structure of Membrane Proteins

Many methods of detecting transmembrane segments involve looking for
stretches of hydrophobic residues that have a high tendency to form helices.
However, membrane proteins can be made by helices or sheets and can form
channels. Therefore, they can contain hydrophilic residues that can be accom-
modated on the surface of the protein that faces the channel. Furthermore,
even if we detect helical transmembrane regions, we still face the problem
of predicting their precise orientation and inclination with respect to the
lipid bilayer.

We can separate the membrane protein structure prediction problem into
three steps: (1) the prediction of their topography (i.e., the type and location
of secondary structure elements), (2) the prediction of their topology (i.e., of
the relative orientation of each of the elements with respect to the interior
and exterior of the compartment enclosed by the membrane), and (3) pre-
diction of their complete three-dimensional structure.

Prediction of the Topography of Membrane Proteins

The location of transmembrane helices can be predicted by searching the
sequence of the target protein for stretches of 12 to 35 prevalently apolar
amino acids that are connected by hydrophilic regions (the extracellular and
intracellular regions) and that have a relatively high propensity to form
helices. From a survey of the few known membrane protein structures and
their homolog, we also know that the regions connecting the helices are
usually shorter than 60 amino acids.

We must now define both the helical propensity and the hydrophobicity
of each of the 20 amino acids. The helical propensity can be estimated by a
statistical analysis of helix-forming residues in known protein structures,
and various schemes give the amino acids numerical weights or rankings
for their preferences. The simplest such scheme was devised by Chou and
Fasman on the basis of the statistical distribution of amino acids in o-helices,
B-sheets, and turns or loops in a set of known protein structures from the
protein databank.
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The quantitative measure of the propensity of an amino acid to be in an
apolar environment is less straightforward. The hydrophobicity of each
amino acid side chain can be experimentally determined by measurement
(in cal/mol) of the change in free energy associated with the transfer of the
molecule from water to an apolar solvent. However, the answer is not unique
and depends upon the chemical form of the amino acid used in the experi-
ments and upon the chosen apolar solvent. Do we use a peptide or a single
amino acid? How do we take into account the contribution of the polar atoms
of the main chain?

The first hydrophobicity scale, based on the relative solubility of amino
acids in water and ethanol, was proposed by Nozaki and Tanford more than
30 years ago. They used isolated amino acids, which are not equivalent to
residues in a peptide chain (the carbon and nitrogen main-chain atoms are
free in an amino acid but not in a polypeptide chain). Furthermore, ethanol
is not a very apolar solvent. Later, other investigators used octanol as solvent
and blocked the amino acid termini with acetyl (CH;C=0) and amide (NH,)
groups to mimic the situation of the residue within a protein or replaced the
Ca with a hydrogen atom, thereby using only the side chain. These
approaches have a major drawback: if a polar atom of the side chain forms
a hydrogen bond with an atom of the main chain, the hydrophobicity of
both atoms increases, and this increase cannot be taken into account when
modified amino acids are used.

Another way to estimate the hydrophobicity of an amino acid is to statis-
tically analyze where it is found in protein structures. On average, hydro-
philic amino acids are found more often on the surface of globular proteins,
where they are accessible to solvent, than in the apolar interior of the pro-
teins. To measure the extent of accessibility of an amino acid, we generally
use the “accessible surface area,” or ASA. ASA is the surface traced by the
center of a water molecule as it rolls over the surface of the protein. The
rationale behind using such a measure is that parts of the protein surface
are not “buried” by other atoms, but are located in clefts of the protein that
are too narrow to be contacted by the solvent (Figure 52).

Alinear correlation exists between the extent of surface area that a residue
or an atom exposes to solvent and its hydrophobicity. However, the propor-
tionality constant is different for nonpolar, polar, and charged amino acids.
We must, therefore, critically evaluate the likelihood of the hypotheses on
which the ASA method is based. In this case, we assume that a protein
interior is similar to a membrane environment. This assumption, however,
is a rather crude approximation.

Attempts have been made to derive scales based on experimental and
theoretical considerations about how well each amino acid would enter the
lipid bilayer from an aqueous environment, and these scales work reasonably
well for membrane proteins. The most commonly use scale is the one devel-
oped by Goldman, Engelman, and Steitz (called the GES scale).

Because of the difficulties in defining a reliable measure of hydrophobicity,
many hydrophobicity scales can be found in the literature. These scales can
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FIGURE 52

The solvent accessible area. Note the regions indicated by arrows. Although not buried by other,
more external, parts of the structure, they cannot interact with a water molecule because they
are located in nonaccessible clefts.

differ quite substantially (Table 5.1). Once we select a hydrophobic scale, we
can identify membrane regions. Usually, we use a moving window (a concept
described in the discussion of secondary structure prediction methods). The
purpose is to average the hydrophobicity values of N adjacent residues. We
must define the length of the window and a threshold value above which a
stretch of residues will be predicted as transmembrane. Usually, N is around
20, and the threshold depends upon the selected hydrophobicity scale. Our
confidence in the prediction can be increased by a high propensity of the
region to be in a helical conformation (if we expect our protein to be helical)
and by the observed length of the regions outside the membrane, which are
usually shorter than 60 amino acids.

The detection of the likelihood that a stretch of residues is in a helical
conformation can be based on the “moment analysis,” defined as

1/2

N 2 N 2
quﬁ [ZHnsin(Sn)] + ZHn cos(Sn):l 1)
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TABLE 5.1
Some Commonly Used Hydrophobicity Scales

Kyte and Hopp and

Doolittle Woods GES
Alanine 1.8 -0.5 -1.6
Arginine —4.5 3.0 12.3
Asparagine -3.5 0.2 4.8
Aspartic acid -3.5 3.0 9.2
Cysteine 2.5 -1.0 2.0
Glutamine -35 0.2 4.1
Glutamic acid -3.5 3.0 8.2
Glycine -0.4 0.0 -1.0
Histidine -3.2 -0.5 3.0
Isoleucine 45 -1.8 -3.1
Leucine 3.8 -1.8 -2.8
Lysine -39 3.0 8.8
Methionine 1.9 -1.3 -34
Phenylalanine 2.8 -2.5 -3.7
Proline -1.6 0.0 0.2
Serine -0.8 0.3 -0.6
Threonine -0.7 -0.4 -1.2
Tryptophan -0.9 -3.4 -1.9
Tyrosine -1.3 -2.3 0.7
Valine 4.2 -1.5 -2.6

where H, is the hydrophobicity of residue n, N is the number of residues in
the segment, and the period can be either 100° (for a-helices) or 180° (for
B-strands).

Because of the periodicity of the sine and cosine functions, a high hydro-
phobic moment is indicative of a periodicity of 360°/8 in the value of H (i.e.,
of the hydrophobicity of the amino acids). A helix has a period of 3.6 and a
strand of 2, which accounts for the values of 8. Therefore, if the amino acids
on one face of the helix or on one side of the strand, respectively, are on
average more hydrophobic than those on the other face, the computed
moment will be high. Globular proteins contain several examples of
amphiphilic helices, which are helices with one side facing the interior hydro-
phobic environment of the protein and one side facing the solvent. The
hydrophobic moments of such helices are high, and this characteristic is
sometimes useful in detecting their presence. The sequences of transmem-
brane helices are expected to have a high average hydrophobicity and helical
propensity but a small moment because hydrophobic amino acids are
expected to be present on every face of the helix. Unfortunately, the hydro-
phobicity pattern in bundles of transmembrane helices does not necessarily
follow this rule. One side of a helix can face other helices of the bundle such
that polar residues stabilize each other, which results in a higher hydrophobic
moment.

The detection of secondary structure elements in B-barrel membrane pro-
teins is even more complex. These proteins have a central pore that can
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accommodate polar residues. Some detection methods utilize hydro-
phobicity plots that only count every other residue, often in conjunction with
algorithms that predict the location of turns (i.e., of the regions between the
strands) to define their boundaries.

In many cases, the prediction of the topography of a transmembrane
protein can be simplified if the whole topology of the protein is considered,
rather than just isolated secondary structure elements. For example, loops
inside the compartment are more often positively charged than are loops
outside (positive-inside rule), and this feature might aid in the location of
helices. Other methods for predicting the topology of a membrane protein
are discussed below.

Prediction of the Topology of Membrane Proteins

Although the extraction of rules from known examples of membrane pro-
teins is made difficult by the paucity of available examples, automatic learn-
ing methods have been applied to these cases and have yielded respectfully
accurate results. The limitation of the data seems to be counterbalanced by
the limited number of possible topologies.

Recent methods for predicting the topology of membrane proteins are
based on Hidden Markov Models with five states (inside loop, inside helix
tail, helix, outside helix tail, and outside loop) that are used to estimate the
preference for each residue of the protein sequence to be in a transmembrane
helix or in a loop. In some cases, dynamic-programming algorithms (similar
to those we described for sequence alignment) are subsequently used to
optimize the number and location of secondary structure elements. The
positive-inside rule can be applied at the end of the procedure to select
between the two possible orientations of the protein in the membrane.

Another approach to the prediction of membrane proteins is based on
neural networks. Neural networks cannot be used directly for three-dimen-
sional structure prediction. In the training phase, we must provide the neural
network with both input and output data to derive the weights of the
connections. For three-dimensional structure prediction, the input should be
the sequence and the output should be the coordinates, but the coordinates
of each of our training set examples depend on the specific frame of reference
used. Similar three-dimensional motifs in two proteins have a completely
unrelated set of coordinates, and, therefore, our network has no chance to
generalize the rules relating one to the other. However, in the case of mem-
brane proteins, we can utilize the plane of the membrane to predict the
displacement of a residue along the axis of the barrel with respect to the
membrane boundary. This procedure might help position the secondary
structure elements in the correct orientation.
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As in the case for secondary structure prediction, the exploitation of evo-
lutionary information has been very beneficial for membrane topology pre-
diction. Predicting the topology of a family of evolutionarily related
membrane proteins is more effective than predicting the structure of a single
sequence.

Prediction of the Three-Dimensional Structure of Membrane
Proteins

No simple experiments provide even low-resolution data on the structure
of membrane proteins, and this lack of data has constrained the possibility
of devising methods for the prediction of the three-dimensional structure of
these proteins. Here, we can only extrapolate from preliminary efforts.

After predicting the topography and topology of a protein, we can assem-
ble the secondary structure elements by use of one of the arrangements of
membrane proteins of known structure as template, but this approach is
often misleading (like looking for the keys under a lamppost, not because
we lost them there, but because it is the only place where there is enough
light).

For B-barrel membrane proteins, prediction is even more complex. The
large variety of functions that these proteins can perform is only matched
by their very high structural variation. They can contain from 6 to 22 strands
(apparently only an even number of strands is possible), and they can have
different quaternary structure.

Techniques that we already described, such as fold recognition and molec-
ular dynamics, have provided useful results in predicting membrane protein
structures, more so than for globular proteins. We can impose more con-
straints for membrane proteins and, therefore, more effectively limit the
search space. However, a word of caution is necessary: no accurate perfor-
mance estimate is possible, given the low number of available structures.
Therefore, we have very few clues about the appropriate methods to use
and their reliability. This lack of data is probably the most serious obstacle
to the improvement of methods.

Promising Avenues

Although a very limited number of examples of membrane protein structures
are available, sequences are accumulating at a high rate. We must exploit
this information even more than in the case of globular proteins. Surprisingly,
however, very few attempts to develop homology detection methods specific



100 The Ten Most Wanted Solutions in Bioinformatics

for membrane proteins have been made. Very often, the substitution matrices
derived from the alignment of globular proteins are used to search in data-
bases for members of a membrane protein family, and they cannot represent
a good model for the evolution of membrane proteins, because the structural
constraints are different. The approach of combining several methods has
been very beneficial in the search for globular protein structures. Preliminary
attempts to use the same strategy for membrane proteins are encouraging.
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Problem 6

Functional Site Identification

Introduction to the Problem

In previous problems, we discussed some of the methods that can be used
to identify protein residues that play functional roles. The evolutionary
conservation of a sequence pattern is indicative of selective pressure, and,
because natural selection acts on function, conserved residues are either
directly responsible for function or essential for maintaining the structure
that allows the correct positioning of functionally important residues. The
analysis of conservation in protein sequences can be used to detect the
functional sites of a protein. In this problem, we address the problem of how
to detect functionally relevant residues when we know the three-dimensional
structure of the protein.

Proteins perform a multiplicity of functions. Thus, when we say “func-
tional residues,” we refer to a variety of roles. In an enzyme, functional
residues correspond to the active or to the recognition site. In other mole-
cules, they form the binding surface for another macromolecule. In proteins
involved in selective uptake of atoms or small molecules, they can be gating
residues that open or close the entrance. In molecules involved in signal
transduction, they modulate transmission of the signal. In this and the next
problem, we describe methods to identify the role of these residues by
analyzing a protein’s three-dimensional structure.

The structural determination of a protein once represented the final step
of its characterization, after it had been isolated on the basis of its function
and extensively characterized. X-ray diffraction experiments were used to
gain insight into the detailed mechanism of the catalyzed reaction or of the
specific recognition pattern between the molecule under study and its cog-
nate molecules. Now, structural genomics projects, aimed at determining the
structure of as many proteins as possible, are producing structures of pro-
teins whose functions remain to be discovered. We can be presented with
cases in which the function of the protein is known and use the three-
dimensional structure to deduce details about the role and interaction of
specific atoms of the residues. We can also have cases of “structures without
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a history”; that is, we can be given a structure of a protein but no clue about
the function. Such proteins are the ones we discuss here.

Structural Genomics

In Problem 4, we learned that an approximate model of a protein can be
obtained on the basis of its evolutionary relationship with a protein of known
structure. Every time we solve the three-dimensional structure of a protein,
we provide information on the architecture of all the other proteins of the
evolutionary family. The closely related proteins can be modeled with rela-
tively good accuracy, but we also gain information about even the most
distantly related proteins, albeit less detailed.

Thus, priority should be given determination of the structure of members
of evolutionary families for which no structure is available, so that we can
produce models for several other proteins, with the goal of compiling a menu
of the possible protein architectures. Because we cannot solve the structure
of every protein in the universe, this strategy is an effective use of resources.
Worldwide projects that sample the structure space by determining the struc-
ture of proteins that belong to families for which no structural information
is available are known as structural genomics projects. Structural genomics
also include community-wide projects that focus on the structure determi-
nation of as many proteins as possible from the same organism, pathway,
or biological process to use the information to derive a more complete view
of the system.

The first step in a structural genomics project is the selection of the target
proteins. Most of the computational biology techniques that we have
described in the previous problems play a major role in this initial phase.
The protein to be studied can be selected on the basis of its lack of similarity
to proteins of known structure, so that it will provide us with the structural
organization of a new evolutionary family, or it can be selected because it is
predicted or known to be part of the target biological process.

The protein-coding gene first must be cloned in an appropriate vector,
expressed, purified, and crystallized. The X-ray diffraction pattern of the
crystal of the protein can then be used to solve its structure. The process
should be as automated as possible. However, some of the steps are very
difficult to standardize. The appropriate expression systems are different for
different proteins, purification techniques are protein-specific, and the con-
ditions in which different proteins crystallize are widely different. Therefore,
not all the desirable protein structures can be determined with such an
approach. Some still require focused and nonautomated efforts that are time
consuming and labor intensive.
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In projects designed to cover the structure space, the experimental com-
plications are compounded by the bioinformatics difficulties of accurately
detecting which proteins are unrelated to proteins of known structure. These
projects rely on sequence identity measures in which any protein that shares
less than a given percentage of identical amino acids with a protein of known
structure, usually around 30%, is considered a good candidate and sent
through the cloning, purification, and crystallization procedures. This pro-
cess is too crude an approximation.

Pairwise sequence similarity can be used to deduce the expected similarity
between the structure of the two proteins, but it is not the most effective
way to detect evolutionary relationships. The transitive properties of evolu-
tionary relationships allow us to use much more sensitive methods based
on multiple-sequence alignments. Furthermore, we must estimate how
appropriate the protein structure is as a template for constructing models of
the other proteins of its family; that is, the expected reliability of the models
we can build by using it as a template.

The quality of a comparative model depends upon the extent of structural
divergence between the target and the template and upon the quality of the
sequence alignment between the two protein sequences. The latter is usually
derived from a multiple-sequence alignment of as many proteins of the
family as possible, and its accuracy depends upon the number and similarity
distribution of the sequences of the protein family. Furthermore, the quality
of an alignment is not constant throughout the whole sequence, and different
regions have different reliability. Both of these aspects are under extensive
study at present and will certainly result in target selection strategies that
will be more effective in sampling the “fold space” available to proteins.

Even if experimental difficulties prevent the structural determination of
all our target proteins, many of them will appear in the database, often
without being attributed a function and requiring analysis by computational
techniques. Because structure is better conserved than sequence in evolution,
we can hope that the comparison of the protein structure with that of all the
other proteins of known structure might reveal evolutionary relationships
that allow us to deduce function, much in the same way as we described in
Problem 3.

Even if our protein is not evolutionarily related to any other protein for
which we have functional information, its functional site might locally
resemble a functional site of a protein of known function as a result of
convergent evolution. Convergent evolution, the independent evolution of
the same property in different species, is often observed both in organs and
in specific protein structural features. Examples of the former are the devel-
opment of a long, sticky tongue, few teeth, a rugged stomach, and large
salivary glands in anteaters all over the world. These features evolved inde-
pendently, like the wings of bats and birds and the eyes of invertebrates and
vertebrates.
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FIGURE 53
Comparison of the active sites of a protease and a lipase. The topology of the two proteins is
very different (top), but the residues in their active site can be almost perfectly superimposed.

Arctic and Antarctic fish provide an example of convergent evolution at
the protein level. These fish have developed a glycoprotein that circulates
in the blood and lowers the temperature at which it freezes. The proteins
evolved after the two groups separated.

Proteases are hydrolyzing enzymes that cleave a peptide bond. A class of
these proteins uses a triad of amino acids: a serine, an aspartic acid, and a
histidine. A completely different class of enzymes, the lipases, cleaves lipids,
but has developed a strikingly similar active site, formed by the same three
amino acids in the same relative position and playing the same chemical
role as in serine protease (Figure 53) (see color insert after page 40), although
they appear in two completely different protein architectures. This finding
implies that, even in the absence of a global sequence or structural similarity
between two proteins, local similarities can allow function to be detected.

Given the structure of a protein of unknown function, our first task is to
compare it with all known protein structures to see whether any evolutionary
relationship can be detected and, in this case, whether residues that corre-
spond to known functional residues are conserved between the homologous
proteins. Should this strategy fail, we can search for local similarities of
functional patterns. In either case, we must solve the problem of measuring
structural similarity, both local and global, between two protein structures
and of searching the structure database for proteins that share a significant
structural similarity with the target protein.

The database of known structures contains several redundant similar
structures. We should first calculate an all-against-all structural alignment
of the known structures and cluster them so that the query protein can be
compared against representative structures of each cluster.
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Structural Superposition
Root Mean Square Deviation

We previously introduced the definition of root mean square deviation:

rmsd = \/;z:[(xi —x) + (s —y,) + —z;-)z]

where (x;, y;, z) and (x;, y;, z) are the coordinates of the atoms that we want
to superimpose to each other.

If the correspondence between the pairs of atoms we want to superimpose
is known, we can easily measure their rmsd and also calculate how to
optimally superimpose them. We apply the rigid-body translation T = (T,
T, T.) and rotation R = (R,, R, R.) to one of the proteins that minimize the
rmsd between the given set of atom pairs:

s 1 N ' 2 ' 2 ' 2
rde(T’R)_r?,an\/NZiﬂ[(x" -Rx;+T,)" +(y; —R,y;+T,)" +(z, —R.z;+T) :|

Usually, however, we do not know which are the corresponding pairs of
atoms. When we compare two protein structures with identical sequences,
such as a structure and a model or two different structural determinations
of the same protein in different conditions, we can superimpose each pair
of equivalent atoms, but the result can be misleading. If one region of the
model is incorrectly positioned with respect to the rest of the structure, the
rmsd can be very high and a superposition might fail to highlight the sim-
ilarity of the other regions of the structure. Exclusion of some regions of the
protein that are locally different might be warranted to obtain a more infor-
mative superposition. In other words, we must decide whether we prefer to
have more equivalent points at the expense of a lower rmsd and how much
“quality” we are prepared to lose to achieve a superimposition that includes
more atoms of our proteins. The optimal superposition of two protein struc-
tures can only be defined if we decide either the minimum number of atoms
that we want to superimpose on each other or the maximum value of rmsd
that we are prepared to accept.

Figure 54 shows a hypothetical plot for the superposition of two different
models of the same protein with the experimental structure. The rmsd values
are plotted as a function of the number of atoms included in the super-
position, and they vary according to the superimposed fraction. The model
that corresponds to the thick line has a lower rmsd deviation from the
structure than does the model that corresponds to the thinner line when
about three fourths of the structure is considered. The situation is reverted
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FIGURE 54

Comparison of the structure of two hypothetical models for the same protein. The percentage
of superimposed Co. is shown on the x-axis, and the resulting rmsd is shown on the y-axis.
Notice that one model (thick line) is closer to the experimental structure for 75% of the structure,
whereas the other (thin line) provides an overall better model if the whole structure is taken
into account.

if the entire structure is considered. The second model has an overall lower
rmsd, and indeed the two lines cross each other.

This observation illustrates the problem of unambiguously defined struc-
tural similarity, even between three-dimensional structures with the same
sequence (and also highlights the problems that result from assessing models
in the worldwide CASP experiment). The issue becomes even more relevant
when we address the problem of measuring similarities between two differ-
ent protein structures.

Although rmsd is a very commonly used measure of distance, it is not the
only one and, in some cases, might not be the most suitable to highlight
common regions of two proteins. One alternative is to count the number of
atoms within a certain distance threshold after superposition of the two
structures. This strategy is often used to compare models with their respec-
tive experimental structures. If a region of the protein is grossly incorrect in
two different models, the rmsd value will take into account how distant from
the experimental structure each model is, although this information is not
necessarily useful from a biological point of view.

Structural Superposition between Two Different Proteins

To measure the structural distance between two different proteins, we must
decide the pairwise correspondence between their atoms. Paired atoms
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FIGURE 55
Different superpositions of evolutionarily related proteins: both superpositions have an rmsd
of about 3 A, but the one on the right includes 64 residues and the other includes only 36.

should be chemically equivalent (e.g., Co. carbons of one protein should
correspond to Co. carbons of the other protein). Therefore, when we super-
impose the structures of proteins with different amino acid sequences, we
can only refer to Ca, to main-chain atoms, or, in some cases, to main-chain
atoms plus the first carbon atoms of the side chain (CB) in nonglycine
residues. The last possibility is useful because it takes into account the
direction of the side chains.

As for sequence alignment, ideally the superposition should be such that
corresponding residues (i.e., pair of residues close to each other in the two
structures) are those that have evolved from the same residue of an ancestral
protein. We must make sensible choices that will increase the likelihood that
our structural alignment is biologically significant.

Given the complexity of the problem, ambiguities are expected to arise.
Figure 55 (see color insert after page 40) shows different structural superpo-
sitions of C atoms between two evolutionarily related proteins, a cutinase
(PDB id:1CUT) and a low-molecular-weight phosphotyrosine protein phos-
phatase (PDB id:1PNT). Cutinase catalyzes the hydrolysis of cutin, a polyester
that forms the structure of plant cuticle and allows pathogenic fungi to
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penetrate into the host plant during the initial stage of the fungal infection,
whereas the phosphatase might play a role in the function of synapsis. Even
when the rmsd values are the same, the optimal superposition can be different.

Some methods that compute the corresponding superposition between two
protein structures start from an initial list of pairs of “seed residues” and
iteratively refine the list to maximize the number of pairs and minimize their
distance. The seed residues can be superimposed by calculating the transla-
tion and rotation matrix needed to minimize their rmsd. The resulting struc-
tural superposition can be used to derive a larger set of equivalent residues.
We associate each residue of one protein with the closest residue in the other
protein after the initial superposition, repeat the superposition step, and
obtain a new list of equivalent residues. The procedure can be iterated until
the total rmsd does not decrease and the number of matched residues in the
two proteins does not increase. The results of this type of procedures are
dependent upon the choice of the seed residues. Therefore, typical approaches
start from more than one initial set, optimize the corresponding final align-
ment, and choose the best one at the end of the procedure.

If the two proteins share some similarity in sequence, the sequence align-
ment of conserved regions can be used as a starting approximation of the
pairing (we need at least three pairs of residues to start). Alternatively, one
can choose pairs of short fragments that have an easily detectable structural
similarity, or, if none of the above applies, one can start from a set of
randomly selected pairs of residues.

The genetic algorithms we described in Problem 4 are also suitable for
solving the optimization problem of structural superposition. They construct
an initial population composed of a large number of random superpositions
between the two proteins (i.e., a large set of randomly assigned residue pairs)
and evolve it via mutations and crossing-over by use of the rmsd as fitness
function.

Distance Matrices

Other very commonly used techniques for structural superposition utilize the
distance or contact matrix, a concept that is also useful in several other
applications. In a distance matrix, each column and each row of the matrix
represents an amino acid of a protein, and each cell contains the intermolec-
ular distance between the amino acid of the row and the amino acid of the
column. The distance can be calculated between Cos or Cfs, depending on
the specific application. Selection of a cutoff distance value allows the matrix
to be visualized as in Figure 56 (see color insert after page 40), in which
every cell that contains a distance lower than the cutoff is filled. The contact
matrix for an SH3 domain (PDB id:1RUN) is shown in the figure using a
cutoff of 8 A. Amino acids close in the sequence are in contact and, hence,
the diagonal of the matrix is surrounded by filled cells. The geometry of
o-helices places amino acids three or four positions apart in contact. Therefore,
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The distance matrix for an SH3 domain (extracted from the PDB entry 1RUN), the structure of
which is shown on the right. Cells containing distances lower than 8 A are filled. The secondary

structure of the protein is shown as gray (helices) and black (strands) bars in the first column
and in the first row.

regions of a-helices show up as diagonal lines. A pair of parallel strands has
contacts between consecutive residues and also appears in the matrix as
regions parallel to the main diagonal. In antiparallel pairs of strands, residues
are in contact in reverse order (e.g., residues 4, 5, 6, 7, and 8 are in contact
with residues 18, 17, 16, 15, and 14, respectively) and are represented by
diagonals orthogonal to the main diagonal. Long-range contacts between
different parts of the molecule show as off-diagonal patches of filled cells.

Proteins with similar three-dimensional structures have similar sets of
interresidue distances and, hence, similar distance matrices. If they share a
local structural similarity, this feature is reflected in the presence of a similar
pattern in the distance matrix, and the detection of similar submatrices in
the two matrices can provide the starting point for the structural super-
position. This strategy is used in the very popular DALI method.

The first step of the algorithm splits the distance matrices into overlapping
submatrices of fixed size (six consecutive residues on each protein) and
searches for matching contact patterns within a given threshold; that is, for
regions of the first protein that are similar to regions of the second protein.
The second step consists in finding pairs of submatrices in the first protein
that are similar to pairs of submatrices in the second protein. Assume that
the submatrices M, ; and M, , of the first protein match the submatrices M, ,
and M,, of the second protein, respectively. DALI calculates the rmsd
between the fragments corresponding to M, ; and M,  in the first protein and
those corresponding to M, , and M, , in the second. If the rmsd is within an
allowed threshold, the superposition is accepted. From this list of “pairs of
pairs,” the algorithm can construct a chain of connected contact patterns by
joining pairs that share a submatrix. If the regions that correspond to the
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pairs M, , and M, of the first protein can be superimposed on the regions
that correspond to M, , and M, in the second protein, then the regions that
correspond to M, ;, M, and M, in the first protein will be superimposed
on those that correspond to M,, M,, and M, in the second.

DALI uses a Monte Carlo simulation to search for the best combination of
matches among mutually exclusive sets of matching regions. In practice,
DALI also uses clustering techniques to reduce the number of pairs of sub-
matrices. This method is the basis for the database of structurally related
proteins named FSSP (Families of Structurally Similar Proteins).

CATH is another database of structurally similar proteins, based on a
different algorithm for structural comparison called SSAP. The general idea
in this case is to generate a matrix that contains the vectorial distance
between every pair of amino acids. For each pair of rows of the two matrices
(i.e., for each pair of residues), SSAP computes a difference matrix. The
difference matrix for row h of the first protein and row k of the second
contains, in the cell ij, the difference between the vectors that connect resi-
dues h and i of the first protein and residues k and j of the second, converted
to a scalar similarity value. The best path through each of these matrices is
computed by a dynamic-programming algorithm similar to that used for
sequence alignment to construct a “summed scoring matrix.” The best path
in this final matrix is used to determine the structural alignment.

Other structural superposition methods are based on matching secondary
structure elements between two proteins to find the best superposition
between these elements and on subsequent refinement of the superposition
(VAST, PrISM) or are based on the identification of locally similar fragments
(MAMMOTH).

Some methods are based on graphic representation of protein structures
in which each residue corresponds to a node, and the edges represent con-
tacts between different residues that are within a predefined threshold. The
superposition is obtained by finding subgraphs (i.e., subsets of the vertices
and edges) of the original graphs that represent the two proteins that are
isomorphous to each other (i.e., have the same number of nodes connected
in the same way). These types of algorithms are usually slow and can only
be used for pairwise comparisons.

The methods we described are useful for detecting a global structural
similarity between two proteins, and they can provide a list of equivalent
residues between two apparently evolutionarily unrelated proteins. The
analysis of the conservation of these equivalent residues, as well as the
presence of rarely observed structural features shared by the two proteins,
can highlight an evolutionary relationship, and the extent of conservation
of residues known to be involved in function can help determine the likeli-
hood that the two proteins share the same function.

The complexity of the superposition problem leads to the development of
algorithms that are very time consuming. Therefore, the community has
precompiled classifications of similar protein structures that are extremely
useful and widely consulted.
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Structural Classification of Proteins

Along with the two databases for structural classification of proteins we have
already mentioned, FSSP (based on the DALI algorithm) and CATH (based
on the SSAP method), is a third widely used database called SCOP. All these
structural classification systems are domain based because different domains
of the same protein can belong to different structural classes.

SCOP has a hierarchical organization that includes class, fold, superfamily,
and family. The main class types in SCOP are all @, all B, o plus B, and /.
The distinction between the last two classes depends upon the relative
arrangement of the a-helices and the B-strands. In the o plus B class, the
two regions of secondary structure are somewhat separated in the protein,
whereas in the 0./ class, they pack against each other. A protein is assigned
to one of the classes according to the predominant type of its secondary
structure. The other classes include multidomain, membrane and cell surface
proteins and peptides, small proteins, peptides, designed proteins, and low-
resolution structures. The fold classification includes proteins with similar
topological arrangements in which an evolutionary relationship cannot be
identified. The superfamily includes proteins that are believed to share a
common ancestor. If the sequence similarity between two or more proteins
clearly points to an unambiguous evolutionary relationship, they are
grouped in the same family. The classification in SCOP is essentially manual,
although some automatic preprocessing is employed to cluster clearly sim-
ilar proteins.

CATH is also hierarchical but, as we mentioned, is based on an automatic
classification that utilizes the SSAP method. Classification levels in CATH
are class, architecture, topology, and homology. The class is defined, as in
SCOP, on the basis of the predominant type of secondary structure: all o,
all B, and af}, and domains with little or no secondary structure. SSAP is
used to define proteins that belong to the same topology on the basis of their
structural distance, and the homology grouping is based on sequence com-
parison. The architecture classification is assigned on the basis of visual
inspection of the proteins and on the basis of literature data.

As we mentioned, FSSP is completely automatic and does not directly
assign hierarchical levels to protein structures. A pairwise comparison of the
structures of proteins sharing less than 25% sequence identity with any other
in the PDB database is computed. Next, for each protein, the average and
standard deviation of its similarity value distribution with all other proteins
is calculated. The final score for a similarity is given as a Z-score (this score
is the difference between the observed value and the average value in the
total distribution divided by the standard deviation). Protein pairs that have
a Z-score higher than 2.0 are deemed to be structurally similar, and they are
arranged in a tree that uses the Z-score as a measure of distance.
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None of these methods appear to be intrinsically better than the others,
and they mostly agree with each other, although a precise comparison is not
straightforward because of, among other things, the uncertainty in the pre-
cise definition of domains. The manual assignment in SCOP has the draw-
back that its updates are less frequent than one might wish. On the other
hand, automatic methods all have limitations and fail in some cases, espe-
cially in difficult borderline cases. Therefore, the user has to exercise some
judgment and, as always, assess which method is most appropriate for the
specific task.

Detecting the Active Site

Perhaps the most general way to define functional regions in proteins is that
they bind other molecules, they are the substrates in active sites of enzymes,
and they are macromolecules in antibodies and regulatory proteins. Can we
detect active sites on the basis of the knowledge of a three-dimensional
structure? Enzyme substrates are relatively small molecules, and the protein
is expected to present a cleft for binding them. On the basis of a few exper-
imental observations, we know that in multidomain or multichain enzymes,
the active site is often located between the domains or the chains, whereas
in single-chain enzymes, the largest cleft is often the one that binds the
ligand, more than 70% of the time. These observations are difficult to validate
because of the difficulty in obtaining statistically significant and unbiased
data sets.

In any case, we want to accurately and quantitatively describe a protein
surface, to find “interesting” shapes or shapes that we have already observed
in other enzymes. We also want to characterize physicochemical properties,
such as electrostatic potential and hydrophobicity, of the protein surface.

The solvent-accessible surface described in Problem 5 is the most popular
and effective method of describing a molecular surface. The majority of
surface description and comparison techniques either use it directly or are
based on some clever approximation of it that selects “significant” points of
the surface that still retain the relevant shape information.

The calculated surfaces of proteins have been studied by an impressive
variety of methods to detect depressions and knobs. Scientists have looked
at the area-to-volume ratio and at the possibility of fitting the shape of the
protein to dodecahedrons or spheres, and they have used Fourier analysis,
spherical harmonics, and contour maps.

Some methods of identifying local surface similarities have been based on
vectors normal to the surface that are subsequently clustered to derive a set
of significant vectors that can be compared between two proteins. Other
methods embed the protein in a three-dimensional grid with each cube of
the grid marked as internal or external to the protein and often labeled with
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a property such as hydrophobicity or charge. Subgraph similarity detection
and geometric hashing techniques have also been used. In all these methods,
we have a combinatorial explosion. The active site is usually formed by a
few amino acids, generally fewer than five, and, therefore, the number of
different residue combinations in the protein structure database that we need
to compare with each other is enormous, and remains so even if we limit
ourselves to only those combinations of residues “likely” to be part of active
sites (i.e., that contain putatively reacting groups).

A different approach is to accurately survey known active sites and prepare
a catalog of their features. These features can be the shape of the surface or
the relative location and type of atoms involved in the enzymatic mechanism.
The data are stored in databases and can be used to search for matches in a
newly determined protein structure. This approach is probably the most
effective, although it does require a large amount of manual inspection, and
it can only recognize already known arrangements of functional chemical
groups.

Despite all the efforts, the problem of identifying where action takes place
in a protein structure is not yet solved and the reason, as so often happens
in bioinformatics, should not be attributed to inadequacy of the algorithms
themselves, but to the complexity of biological molecules. Protein surfaces
are formed by exposed side chains that are intrinsically flexible, so any static
description of a surface will fail to detect the details, which is where the
action occurs.

Another relevant problem impairs our ability to detect function on the
basis of the shape of the surface of the active site and is also relevant to
predicting macromolecular interactions. Trypsin, a digestive enzyme of the
serine protease family, can cleave a peptide bond after both lysine and
arginine. Their side chains are recognized by the same pocket formed by the
protein structure. How does the protein accommodate two different side
chains in the same pocket? When lysine is bound, the enzyme recruits a
water molecule that fills the space of the pocket that would otherwise be left
empty, and, therefore, lead to a less energetically favorable interaction. Inter-
faces between molecules often contain buried water molecules, which chal-
lenges the seemingly reasonable hypothesis that a similar function requires
a similar shape.

The problems affecting our ability to detect functional sites are, in practice,
caused by the extreme versatility of protein structures. Their ability to finely
modulate their activity is the result of their flexibility and ability to take
advantage of the environment, which is what gets in the way of many
automatic methods.
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Moonlight Proteins

Evolution uses whatever is available. Therefore, the fact that several proteins
are endowed with more than one function should not come as a surprise. A
protein has a large solvent-exposed surface that is not under a strong selec-
tive pressure and can, thus, evolve and form pockets or sites that can be
used for additional functions. These proteins are called moonlight proteins,
and undoubtedly many more will be discovered also among those to which
a function has already been attributed.

Both phosphoglucose isomerase and phosphoglycerate kinase, two
enzymes involved in the metabolic conversion of glucose, have additional
functions. Phosphoglucose isomerase binds to cell surface receptors and
increases tumor cell mobility. Phosphoglycerate kinase reduces the disulfide
bridges in a protein called plasmin and, in doing so, activates a cascade that
leads to the production of angiostatin, a protein that inhibits angiogenesis
(i.e., formation of new blood vessels). Neurophilin is a receptor present in
both endothelial cells and in neurons. In endothelial cells, it senses the need
for new blood cells. In neurons, it helps direct the axons in the right direction.
The enzyme prostaglandin H, synthase has two active sites and catalyses
two consecutive reactions in the conversion of arachidonic acid to prostag-
landin, a mediator of inflammation. In birds, the same protein acts as crys-
talline in the eye and as lactate dehydrogenase.

The combination of functions found in moonlight proteins is very diverse
and often part of different cellular processes. The factors that determine
which of the functions the protein exhibits are also highly variable. They can
include cellular localization, presence of a ligand and quaternary structure,
or combinations of individual factors.

Moonlight proteins can provide advantages to the cell, such as coordinat-
ing related cellular activities. However, they are an additional headache for
protein bioinformaticians, as well as for medical professionals, because cor-
recting or inhibiting a target function of a moonlight protein can have unde-
sirable and unexpected effects on other unrelated functions.

Promising Avenues

Structural genomics projects have changed our way of looking at the problem
of function assignment. Previously, we concentrated on the possibility of
detecting function from the amino acid sequence and the evolutionary rela-
tionships of a given protein or of all the proteins of a genome, in the unver-
ified and unexpressed hypothesis that the difficulty laid in doing so without
the availability of a detailed structure characterization. Structural genomics
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projects challenged this view and have indeed proved that the task of detect-
ing function is difficult, even when the structure is known.

A combination of heuristic and chemical knowledge is required. The num-
ber of known examples will increase and provide us with more solved
instances of the problem, but at the same time, we must develop smarter
algorithms to make the computational problem tractable. Searching all the
proteins of known structure for similar clusters of amino acids to detect
common subsites potentially involved in function is computationally pro-
hibitive. Therefore, we must use our chemical knowledge to reduce the
number of patterns to be compared, and we can do so by only considering
residues that are likely to be involved in chemical reactions because of their
chemicophysical properties. Alternatively, we can use evolutionary informa-
tion to discard nonconserved residues. Some methods are indeed following
this route, but how effective they will be is still unclear. As usual, the problem
lies in the functional flexibility of proteins. Enzymes from the same super-
family do not necessarily preserve specificity. Most often, they do not: only
25% of the known superfamilies share a common function. Even the reaction
chemistry in evolutionarily related enzymes is not necessarily conserved,
and, even when it is, different residue types can play the same role in
different enzymes.

This problem will occupy protein bioinformaticians for some time. This
forecast is supported by the fact that worldwide initiatives for testing blind
predictions of function are being initiated. In particular, the very popular
CASP experiment, initially only devoted to structure prediction, is now
challenging the participants to also attempt function prediction of the avail-
able targets. The results will be particularly instructive, as the experimental
structure of the target proteins will be available and we will be in the position
of estimating to what extent their knowledge will change, improve, or dis-
prove the predictions.
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Problem 7

Protein—Protein Interaction

Introduction to the Problem

Most biological functions are mediated by protein interactions. These inter-
actions can be physical, such as when two proteins form a complex, or
“logical,” such as when one or more proteins control the behavior of one or
more other proteins without physical interaction. Examples of physical
interactions are stable complexes, in which the functional unit is formed by
more than one protein chain, as in the case of the glycogen phosphorylase
enzyme, and transient associations, in which the protein chains are stable
by themselves but can also interact to transmit a signal or as a response to
external conditions. In logical interactions, one protein affects another pro-
tein by, for example, regulating its expression or changing the concentration
of a factor that, in turn, is sensed by the target protein. The two modes of
interaction are not exclusive. The same proteins can interact both physically
and logically.

Detecting which proteins interact, how they do so, and what function is
performed by their complex is at least as important as predicting the three-
dimensional structure of individual proteins. Historically, the problem of
detecting the site where two proteins (or a protein and a nucleic acid mole-
cule) interact has been treated separately from the problem of finding where
a small molecule such as an inhibitor or a substrate binds to a macromolecule.
The two cases are similar only at a first glance; they differ quite substantially
in the details of the techniques. Here, we discuss the macromolecular inter-
action problem. In the next problem, we briefly describe some aspects of the
problem of docking small molecules to a macromolecule.

Protein Interactions

Metabolic pathways provide us with many examples of logical interactions.
The concentration of a product is often “sensed” by other proteins in its
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synthetic cascade and modulates their activity. The presence of hormones is
detected by cell surface receptors and transmitted to other proteins in the
cell that can interact with the genetic material to activate or repress genes.
External stimuli, such as the presence of food or poison, is sensed by a
bacterium and transmitted to its flagella to direct the cell towards or away
from the region of highest concentration of the sensed substance. These
logical interactions can coexist with physical interactions. For example,
hemoglobin senses the binding of oxygen and transmits the information
from one of its subunits to the others via physical interaction. Other examples
can be found in cell surface receptors. These molecules have an extracellular
domain, a membrane domain, and an intracellular domain. Binding of a
ligand to the extracellular domain can cause these molecules to form dimers
(i.e., to associate with another receptor chain). The association of the corre-
sponding intracellular domains allows the molecule to transmit the signal
inside the cell (Figure 57).

Physical interactions can be stable or transient. The association of the two
chains in alcohol dehydrogenase is stable; the chains act together to perform
the protein’s function. Hemoglobin also forms a stable complex made up of
four chains (two identical a-chains and two identical B-chains). Hemoglobin
is an a-helical protein and contains four heme groups, one for each chain
(Figure 58) (see color insert after page 40). Each heme contains one iron atom
at the center. The task of this protein is to transport oxygen from the lungs
to the tissues; that is, from a region where the concentration of oxygen is
high to a region where the concentration is low. None of the amino acid side
chains is able to bind oxygen reversibly. Therefore, the protein uses an iron
atom (Figure 59). The iron can form six chemical bonds: four with heme
nitrogen atoms, one with the side chain of a histidine of the protein, and one
with oxygen, when present. Hemoglobin quaternary structure allows it to
regulate oxygen activity. When the first oxygen binds, it changes the local
structure of the corresponding protein chain, which affects the position of
the histidine. The binding of oxygen stimulates movement of the iron atom
within the plane of the heme, which pulls the histidine. This movement is
propagated to the other chains through their intermolecular interfaces, caus-
ing a relatively large motion of the subunits, after which the neighboring
chains bind oxygen more easily. Thus, binding the first, second, third, and
fourth oxygen is progressively easier, which implies the more oxygen
present, the better hemoglobin binds it. Release of oxygen follows the inverse
path. Release of the first oxygen is more difficult than release of the second,
third, and fourth oxygen; and release of oxygen is easier when little oxygen
is present. When the blood is in the lungs, where oxygen is abundant, the
protein is loaded with oxygen. In the rest of the body, the lower the amount
of free oxygen, the more easily it is released. Hemoglobin picks up oxygen
in the lungs and delivers it where needed.

This machinery is so finely tuned that single amino acid changes can lead
to major diseases. For example, the replacement of one glutamic acid with
a valine in the B-chain causes hemoglobin to form aggregates under
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FIGURE 57

The binding of a ligand to the extracellular domain of a transmembrane receptor might cause
its binding to a coreceptor (which can be the same or a different protein). The subsequent
interaction between the intracellular domains can trigger signaling, for example, by activating
a transcription factor that, in turn, activates the required genes.

low-oxygen conditions. This problem causes a distortion of the red blood
cells and a loss of elasticity. At the onset of the disease, called sickle cell
anemia, red blood cells are capable of regaining their original shape and
elasticity when enough oxygen is present. However, with time, the cells
permanently lose their elasticity and the ability to flow through narrow
capillaries. Although those with the disease die young, the mutation is still
frequently found in malaria-infested regions. Individuals who have the
mutation in one of their two copies of the hemoglobin gene have a few
distorted red cells and are, in general, asymptomatic. However, the parasites
that cause malaria spend part of their life cycle in red blood cells, and they
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FIGURE 58

Hemoglobin is the oxygen transporter. The protein is o-helical and is formed by four chains,
two o-chains and two B-chains bound by noncovalent interactions. It contains one heme group
per chain.

cannot survive in cells that contain the mutated hemoglobin. Consequently,
carriers of the mutation are relatively less susceptible to malaria.

During pregnancy, the hemoglobin of the fetus takes oxygen from the
maternal hemoglobin. The fetal hemoglobin is able to bind oxygen better
than its maternal counterpart because the two proteins are different. Fetal
hemoglobin is formed by four chains, but the two -chains are replaced by
v-chains. This chain combination has a higher affinity for oxygen, and, there-
fore, it can easily accept oxygen from the maternal protein.

What can we learn from the hemoglobin example? Chains can form dif-
ferent interfaces in different conditions, and the same chains (the o-chains)
can interact with different chains (the B-chains in adults and the y-chains in
fetuses).

We said that protein chains autonomously fold into their native structure,
driven by the enthalpic and entropic gain of the process. However, folding
of large proteins with several domains and a quaternary structure can be
problematic, and the proteins might not reach their native structure in a
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FIGURE 59
The heme molecule. The central iron is bound to four nitrogen atoms, to a histidine side chain
(not shown here) and, when present, to an oxygen atom.

reasonable amount of time. What is worse, during the process, they might
become stuck in a structure that corresponds to a local energetic minimum
and expose large hydrophobic surfaces. This situation is dangerous because
it can lead to irreversible aggregation, as is the case of the mutated hemo-
globin and of several other proteins responsible for a large number of dis-
eases, such as mad cow disease, Alzheimer disease, and Parkinson disease.

The protein shown in Figure 60 (see color insert after page 40) is used to
help the folding process and prevents misfolding. In no way does it alter
the final structure that the substrate proteins achieve; it just protects them
during the disaster-prone process of folding. Proteins performing this role
are called “heat-shock proteins” because their production increases when
cells are heated. Heat destabilizes proteins, and when temperature rises, cells
need help to fold their proteins.

The GroEL complex is formed by two stacked rings of seven identical
protein chains each. The boxes can be closed by a “cap” provided by the
GroES protein. The mechanism is simple and, at the same time, elegant. The
rings expose a hydrophobic surface at their entrance that binds proteins that
expose hydrophobic surfaces and are, therefore, not properly folded. The
substrate protein chain enters the box, and GroEL undergoes a conforma-
tional change (the energy is provided by the hydrolysis of ATP) that increases
the size of the cavity, hides the hydrophobic patch at its entrance, and allows
the GroES cap to close it. The misfolded protein is now in a confined,
hydrophilic environment, separated by the rest of the cell and in an ideal
condition for proper folding. How does the complex “sense” that the process
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FIGURE 60
GroEL and GroES. The chains of GroEL are shown in different colors. GroES is the “cap” shown
in black. The two images on the left are the same protein seen from top and bottom, respectively.

is completed? Apparently, it does not. The opening of the cup and the release
of the substrate protein, folded or not, is triggered by another misfolded
protein binding to the opposite ring. In other words, the GroEL-GroES
complex allows a misfolded protein only until the time when another protein
needs assistance.

GroEL and GroES teach us that proteins can use conformational changes
to trigger binding and release of other components, which allows the com-
position of a complex to be regulated by external conditions.

Viruses exploit the biological machinery of their host cells and force them
to make new viruses, often killing the cells in the process. Picornaviruses
(little RNA viruses) are formed by protein shells that enclose RNA. The
viruses that cause polio and the common cold are picornaviruses.

The shells of picornaviruses have an icosahedral shape and are composed
of 12 identical pentagonal substructures. In polioviruses and rhinoviruses,
each of the icosahedral “pentagons” is made of three different proteins. A
fourth protein is in the interior of the shell and ensures that the pentagonal
units are properly oriented. The complex has to be stable to survive in the
environment (rhinovirus can survive for days on our hands and still be
infectious), but they must also be able to disassemble to release the nucleic
acid once they have entered the host cell.
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FIGURE 61

The structure of a portion of the rhinovirus coat bound to an inhibitor (left) and to an antibody
(right). The virus has an icosahedral shape. Each of the triangular faces is formed by three
protein chains shown in different colors.

Vaccination is a defense against viral infections. It is a process by which
one artificially teaches (primes) an immune system to recognize a virus by
injecting a portion of an inactivated form of the virus in an organism. The
injection elicits the production of antibodies that bind to the virus and clear
the infection. For viruses that mutate often, such as rhinovirus, vaccination
is less effective, and one has to resort to drug therapy. Some drugs act by
blocking the sites at which viruses gain entrance to cells. Other drugs are
designed to stabilize the viral structure, which makes the virus unable to
open and deliver its nucleic acid.

Knowledge of the quaternary structure of the target virus is essential for
both drug design and the development of vaccines. Figure 61 (see color insert
after page 40) shows the structure of a portion of the rhinovirus coat with a
bound drug molecule and the complex between a rhinovirus particle and
an antibody fragment.

Antibodies are our first defense line against infections. They circulate in
the blood and bind to the surface of foreign molecules. In some cases, such
as in rhinovirus or poliovirus infections, the action of antibodies can be
enough to block infection. In other cases, such as in bacterial infections,
binding of antibodies constitutes a signal that triggers other defensive mech-
anisms of the immune system. Antibodies are paradigmatic examples of
proteins that form transient complexes. Although stable by themselves, they
are able to form very tight complexes with foreign molecules.

The human body contains up to 100,000,000 different types of antibodies,
and each recognizes a different target molecule. Antibodies are pre-existent
to the infection, and their ability to bind almost any foreign molecule is the
result of their structural properties and their amazing variability. So many
different kinds of antibodies are available that the probability that at least
some are the right ones to fight an infection is very high. Each antibody is
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FIGURE 62

The structure of a fragment of an antibody (PDB id: 3HFL) bound to an antigen. The contact
region of the antibody is shown in green dots, and that of the antigen (lysozyme) is shown by
a solid blue surface.

formed by two heavy chains and two light chains, which comprise about
450 amino acids and about 220 amino acids, respectively (Figure 62) (see
color insert after page 40).

If we have this many antibodies, do we not need billions of nucleotides
to code for them? In reality, this big collection is created by recombination
(rearrangement) of a relatively small number of genes in lymphocytes, the
blood cells that make antibodies. Each lymphocyte recombines its antibody
genes in a different way and makes a different type of antibody. If a specific
antibody binds a foreign agent (antigen), the lymphocyte that produced it
multiplies, and more antibodies that are able to recognize the foreign mol-
ecule are produced. In the daughter cells, the antibody sequences undergo
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some small changes, thus increasing the probability that some of them will
bind the antigen more tightly and specifically.

Antibodies are one of the best examples of how much can be learned about
a protein by comparing its sequence with other members of the same class.
The antibody sequence contains regions with similar sequences, which sug-
gests that they correspond to domains that share a similar fold, two in the
light chains and four in the heavy chain. One of the four domains of the
heavy chain and one of the two domains of the light chain are relatively
more variable among different antibodies than the others, which suggests
that these variable domains are deputed to binding the antigen. Within each
variable domain, three regions show an even higher variability, possibly
because they are exposed to the solvent and directly involved in antigen
binding. All these earlier observations based on sequence analysis were
confirmed upon determination of the structure of the first antibody.

How can a single architecture be used to bind so many different molecules?
Each antibody has a different sequence obtained by genetic recombination
of several segments. How does nature avoid having most of the combina-
tions result in unfolded proteins? An antibody is formed by B-sheets packed
against each other, and the antigen-binding regions correspond to loops that
connect the strands. These loops can only assume a limited set of conforma-
tions (called canonical structures) of their main chain. The specific confor-
mation depends upon the presence of a few specific residues in key positions;
all other amino acids are free to vary and generate surfaces with different
topographies (Figure 63). In this way, by maintaining only a few fixed main
chain—determining residues, antibodies can generate different binding sur-
faces, which minimizes the risk of destabilizing their overall structure.
Indeed, antibodies are the only proteins for which we can predict the con-
formation of loops on the basis of their sequence alone. We only need to
know which ones are the key residues to predict the main-chain structure
of the loop. This finding holds for five of the six loops and for a portion of
the sixth.

The impressive variety of binding modes of antibodies and their limited
possibility of changing the main-chain structure of the binding regions
teaches a very important lesson: recognition is mainly mediated by side
chains. This statement is not good news for us, because exposed side chains
are very flexible, and, therefore, their conformation is difficult to predict.
This observation has several implications for the prediction of macromolec-
ular complexes.

Sequence-Based Methods for Predicting Interactions

The number of available protein sequences is by far larger than the number
of known structures. Therefore, the ability to detect which proteins interact
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FIGURE 63

The canonical structures of immunoglobulins. The loop shown is called L3 (it is the third loop
of the light [L] chain of antibodies and is part of the antigen-binding site). When the length of
the loop is six amino acids, as in the figure, only two main-chain conformations are observed.
The one on the left occurs when the amino acid in position 95 is a proline and the amino acid
in position 90 is a glutamine. The conformation shown on the right occurs when the proline is
in position 94. All other residues are free to vary and contribute to shape the antigen-binding
region.

with each other, and with which regions, from their amino acid sequences
alone would be extraordinarily more useful than a structure-based method.
How can we achieve this goal? How can the amino acid sequence of a protein
be used to infer which, if any, of the tens of thousands of other proteins it
will bind to?

One possibility is to search for cases in which two interacting proteins are
separated in one species but are present as two domains of the same protein
in another species. This occurrence is a strong indication that the two proteins
interact, either physically or logically. This method has a very high accuracy,
but, as expected, its coverage is not very high. In other words, when we find
such a case, confidence is high that it is indicative of a true interaction, but
the number of such cases we can find is not very high.

Another possibility is to look at comparative genome analyses. Now that
many genomes are available, we can try to detect the proteins that co-occur
in different genomes. Two proteins that are either always both present or
always both absent are likely to interact with each other. However, with this
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method, we would not be able to discriminate between a physical and a
logical interaction. One protein might, for example, modulate the production
of the other by binding to regions of the DNA that control the expression of
its gene.

Conserved proximity of two genes in genomes has been also used to detect
proteins likely to be part of the same biological process. Unfortunately, the
correlation between genomic localization and function is high in prokaryotes
(simple-celled organisms that lack a defined nucleus) but much less strong
in higher organisms.

Another strategy is based on the consideration that the evolution of dif-
ferent protein families might be dissimilar. When we use sequence similarity
to build phylogenetic trees for different protein families, the length of the
branches reflects the rate of evolution. If we assume that the rate is constant,
then we can associate it with evolutionary time. However, different proteins
can be subjected to different evolutionary pressures and, therefore, might
appear as more or less recently diverged with respect to other proteins in
the same organisms. If two protein families show the same rate of evolution
(i.e., if the trees built on the basis of their sequences are similar), this simi-
larity might be the result of coevolution brought about by the presence of a
physical interaction between the two proteins. Similar conclusions can be
derived from searching scientific publications for statistically significant co-
occurrences of two protein names.

If we know, or have been able to predict with some reliability, that two
proteins form a complex, we need to know where they interact; that is, which
residues of one interact with which residues of the other. We can use the
structures or models of the two proteins and look for geometrical comple-
mentarity or energetically favorable interactions. Another strategy, also used
for the prediction of structural features of single proteins, is correlated muta-
tions. In this method, we analyze the variations of each of the positions in
a multiple-sequence alignment to detect positions that change in a correlated
fashion. For example, if two positions are always occupied by charged amino
acids, different in different sequences but always of opposite charge, we can
hypothesize that they are in contact in the structure. Similarly, if two hydro-
phobic residues are in two different positions, and every time one of them
is relatively big the other is small and vice versa, the possibility is strong
that this circumstance is caused by the fact that they are close in space and
have to fill an equivalent hydrophobic pocket in the proteins. Only rarely
can these methods reliably predict a large set of interactions, but sometimes
they can provide a few sufficiently reliable pairs, and these pairs can be used
to discriminate between different alternative folds for a protein sequence.

If we know that two proteins interact, and we have many sequences of
members of their evolutionary family, we can detect correlations between
positions in the two alignments. This idea is impaired by the (presently) low
probability of having large families of two proteins spanning the same spe-
cies so as to allow detection of correlated mutations by use of corresponding
pairs.



128 The Ten Most Wanted Solutions in Bioinformatics

All these methods have been used to derive maps of putative protein
interaction networks in organisms. In general, the results are intricate, hard
to understand graphs in which each protein is associated to a node and each
predicted interaction is depicted as an edge that connects the interacting
proteins. This static representation is far from being realistic because some
interactions can be mutually exclusive. A protein might bind either one or
the other partner in different conditions in the same physical locus, and,
therefore, the two interactions cannot occur at the same time for the same
molecules. This problem is also common to interaction maps drawn on the
basis of experimental results.

How do we evaluate the efficacy of methods for predicting interactions?
Only a small set of proteins have been biochemically characterized, and we
need large experimental data sets to validate our methods. Far from being
purely theoretical, this question is the central point to be addressed. The
genomic era made possible high-throughput experimental techniques for
detecting interactions, but their accuracy is not very satisfactory at present,
and this inadequacy impairs our ability to test and improve the computa-
tional methods.

Experimental Methods for Detecting Protein-Protein
Interactions

Affinity chromatography is a classical method of detecting whether a protein
interacting with a ligand is present in a mixture of proteins. The ligand is
immobilized on a matrix, and the mixture is added to this “functionalized”
matrix. A protein of the mixture is retained on the matrix if it interacts with
the ligand. After eliminating the unbound components of the mixture by
washing, the bound proteins can be eluted (e.g., by adding an excess of the
ligand) and characterized (Figure 64).

This methodology can be tailored to the detection of which proteins
present in a cell bind to a protein of interest. The protein is cloned and its
gene is fused with the gene of, for example, glutathione S-transferase or
LacZ, two proteins that tightly bind to a molecule called glutathione or to a
region of DNA that codes for a stretch of histidines that bind zinc. The fusion
protein binds to immobilized glutathione or zinc through the artificially
added binding domain. At this stage, a protein extract from the cells under
investigation is made to interact with the matrix, and unbound proteins are
washed away. Proteins that bind to the protein of interest are retained and
can be subsequently eluted and characterized by, for example, mass spec-
trometry.

Another technique is the so-called yeast two-hybrid system. Yeast has a
protein called gal4 formed by two domains. The first domain is responsible
for binding specific DNA sequences upstream of the galactosidase gene. The
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FIGURE 64

Scheme of an affinity chromatography experiment. The scheme on the left can be used to select
a protein binding to an immobilized ligand. On the right, the target protein is fused to a ligand-
binding domain through which it binds the matrix. A protein interacting with it can be isolated
from a mixture of other proteins.

second domain is responsible for activating the transcription of the gene.
The system works only if the two domains are physically close. If the gene
coding for gal4 is split into two parts, each of which codes for one of the
domains, no activation of transcription occurs. The gal4 domains can each
be fused to two different proteins. If the proteins form a complex, their
interaction brings the two gal4 domains close in space, and transcription of
the downstream gene is activated. The galactosidase gene can be replaced
by a gene that confers the ability to survive in conditions that are specifically
lethal to yeast, so that a cell survives only if the two proteins under inves-
tigation interact with each other (Figure 65) (see color insert after page 40).

A high-throughput version of this assay consists of constructing one yeast
plasmid (i.e., a small, circular DNA molecule, separate from the bacterial
chromosome, capable of independent replication) that contains the gal4
DNA-binding domain fused to the protein of interest (bait) and a library of
yeast plasmids, each of which contains a different gene fused to the tran-
scription-activation domain gene. The first plasmid is inserted (more cor-
rectly, “transfected”) in each cell of a yeast population. The same population
is also transfected with the library of plasmids that contain genes fused to
the transcription-activation domain gene. Only the cells transfected with a
gene whose product interacts with the bait will survive. The plasmids con-
tained in these yeast cells can be sequenced to identify the interacting
proteins.
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FIGURE 65

A simplified view of the rationale of a yeast two-hybrid experiment. The gal4 system is shown
in (a). The gal4 protein, composed of a DNA-binding domain and an activation domain,
activates the transcription of the downstream gene. Two genes coding for two interacting
proteins are cloned and fused to each of these domains as shown in (b) and (c). The plasmids
are transfected into a yeast cell population. Only in cells that contain both fusion proteins, the
spatial proximity between the DNA-binding domain and activation domain is reconstituted,
which leads to transcription of the downstream gene. If the original gene is replaced by a gene
essential for cell survival, only cells that contain both fusion proteins can survive. This system
can, therefore, be used to determine whether two proteins interact. Moreover, if the protein of
interest is fused to one of the domains and a population of proteins is fused to the other domain,
the method allows the identification of which proteins in the population, if any, interact with
the protein of interest.

Phage library display is a method of detecting interactions that is also
suitable for identifying amino acid sequences able to interact with a ligand
(see Problem 10). Another technique is chromatin immunoprecipitation
(ChIP), which is used to detect DNA sequences recognized by particular
proteins, such as transcription factors.

All these techniques detect interactions of different strength, but they all
have drawbacks and problems, of which the most serious is the fact that the
ability of two proteins, or a protein and a nucleic acid fragment, to physically
interact does not necessarily mean that they do so physiologically. They
might never meet each other, because they are in different compartments,
or because the concentration of one or both of them in vivo is not high
enough for them to form a complex. Furthermore, previously known inter-
actions are not all detected by these techniques. Not surprisingly, the overlap
between the interactions detected by different experimental and computa-
tional techniques is rather small, and we still face the serious problem of
how to validate them.
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Structure-Based Methods for Predicting Interactions

The problem of protein docking involves finding the coordinates of the com-
plex of two molecules, given the coordinates of each molecule separately. We
must make a distinction between what we call “bound” and “unbound”
docking. The distinction is based on whether we use as input the coordinates
of the two molecules as they are in the bound complex or in the unbound
complex. In other words, we can reconstruct the relative position of two
molecules in a complex starting from the experimentally determined coordi-
nates of the components of the complex, or we can start from the experimental
or modeled structure of the two unbound proteins. Clearly, the former is an
exercise, whereas the latter is a biologically relevant problem. However, the
latter is also a much more difficult challenge because of the aforementioned
problem of flexibility. In the “unbound” docking experiment, the position of
the exposed side chains, and, therefore, the shape of the surface, is not the
same as in the complex. Thus, the detection of complementary surfaces is
not enough. We must also search for potentially complementary surfaces,
take into account how the structure of the two interacting partners is affected
by binding, and evaluate the likelihood of the presence of water molecules
buried in the interface between the two proteins. The only reason the results
of “bound” docking are often presented for a given method is that the number
of cases in which we know both the structures of the unbound components
and the structure of their complex is rather low.

Successful “docking” depends on three things: how we represent the pro-
tein structures, taking into account their flexibility; how we search the con-
formational space of the possible solutions; and how we evaluate and rank
the solutions.

Representation of Protein Structures for Docking

The methods we used for surface description in the context of finding similar
surfaces in different proteins are also applicable to the docking problem. As
illustrated in Figure 66, a protein surface can be represented by its normal
vectors, by a set of spheres, by equally spaced vectors radiating from the
center of the molecule, or by embedded vectors in a three-dimensional grid.

Computational Approaches to Include Protein Flexibility in Docking
Procedures

In principle, any algorithm that is applicable to surface structural comparison
can be applied to docking and vice versa. However, if we are attempting to



132 The Ten Most Wanted Solutions in Bioinformatics

Radial projection: each point on the
sphere contains a feature of the
respective protein point (for example
its distance from the center)

Sphere with the center on the surface normal
and a radius such that it touches a surface
point but does not intersect the surface

\\

Grid representation: each element can
Surface normal contain a logical value (occupied or
free), but it can also contain values
related to the properties of the grid
elements (hydrophobicity, charge,
evolutionary conservation, etc.)

FIGURE 66
Examples of representation of protein surfaces (in two dimensions).

detect common arrangements of functional residues, we can hypothesize
that their conformation is well-conserved. Conversely, in docking, flexibility
plays an important role. A protein structure, and especially the side chains
involved in binding, can undergo quite substantial rearrangements upon
formation of the complex. Furthermore, buried water molecules are often
found in the interfaces.

One possible approach is to generate many different conformations of the
two target proteins and use each of them as input of a docking procedure.
The different conformations can be a set of different structures determined
by X-ray crystallography in different conditions, or the structures can be
generated by an NMR experiment. (The result of an NMR experiment is, by
and large, a set of intramolecular distances that are used to derive a set of
three-dimensional structures that satisfy the measured distance constraints.)
We can also generate an ensemble of different structures for the two proteins
by running a molecular-dynamics experiment and collecting structures dur-
ing the simulation, or we can use genetic algorithms or Monte Carlo simu-
lations. These simulations can be tailored to our problem if we only allow
motion or variation of exposed side chains.

The more numerous our structure set, the more likely that one of the
structures resembles the bound conformation of our target protein. However,
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the calculation is more expensive, and the likelihood of each of our long list
of putative solutions is more difficult to evaluate. The search procedure for
docking two molecules is computationally intensive, and it cannot be applied
to large sets of pairs of initial structures. Some methods superimpose the
structures of the initial conformational ensemble and define an average
structure in which each atom is assigned a variability dependent upon how
different its position is in the various members of the ensemble.

Side-chain rotamer libraries are compilations of the most observed side
chain conformations for each amino acid chain, and they can be general or
backbone-specific; that is, we can derive a frequency table for each possible
conformation of amino acids collectively or separate each one on the basis
of the type of secondary structure in which it is observed. Some docking
methods take advantage of these compilations and assign a variability to
each amino side chain on the basis of the repertoire of its side-chain rotamers.
In some cases, the observation of the protein structure might suggest specific
regions that are likely to modify their conformation upon binding. For exam-
ple, regions between domains can be specifically allowed to assume a dis-
crete set of conformations.

Another possibility is to use a single-protein structure conformation and
introduce the treatment of flexibility later in the procedure, by not penalizing
limited overlap between the two proteins” atoms; that is, to treat each atom
as a soft rather than a hard sphere so that limited interpenetration of the
atoms of the two proteins is allowed in the final docked conformation.

Searching Conformational Space for Docking

Protein docking is one of the most imaginative research areas in protein
bioinformatics, and enumerating all the methods and algorithms that have
been tried is very difficult. In all cases, however, the procedure is computa-
tionally intensive. We are looking for patches of the proteins’ surface that
match each other, so we must explore the complementarity of every pair of
surface patches of reasonable size in the two proteins for each rotation and
translation of one of the proteins with respect to the other. To this end, we
must estimate the average dimension of complementary patches; that is, the
interaction surface in a complex. Given two interacting proteins, A and B,
the strength of their interaction can be measured by their dissociation con-
stant K, defined by

[A][B]/[AB] = 1/K,

where [A], [B] and [AB] are the concentration of the two proteins and of
their complex at the equilibrium, respectively.

In known protein complexes, the value of K, ranges from 10~ to 10-%. The
strength of interaction is very variable, and this characteristic is reflected
by the physical parameters of the complex. For example, the surface of
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interaction, defined as the decrease in solvent accessible surface upon bind-
ing, can vary between 1,000 and 5,000 A2 and represent 6% to 30% of the
total protein surface. The majority of the interface areas for complexes of
known structure measure around 1,600 A2 +400 A2, and most algorithms
are tailored for searching complementary regions of this size, but the size
can be as small as 1,000 A2.

To detect these interacting regions, we can either perform a full search of
the conformational space, which involves trying every possible relative ori-
entation of the two proteins, or we can use stochastic methods such as Monte
Carlo, simulated annealing, molecular dynamics, and genetic algorithms,
which can guide the search toward the best solution.

Exhaustive search of the space is computationally very expensive. Even if
we assume that the two molecules are rigid, we still must explore six degrees
of freedom, three for the translation and three for the rotation of one molecule
with respect to the other. Thus, the number of comparisons can be as high
as several billion. Such was the case for one experiment that successfully
docked the electron transfer complex between bovine cytochrome ¢ oxidase
and horse cytochrome c (more than 30 billion configurations were tested and
scored). In that case, no alternative conformation of the two protein struc-
tures was used. In other cases, in which binding induces larger movements,
even such a high number of trials might not be sufficient.

The grid representation of two putatively interacting molecules can be
Fourier transformed so that the translation operations can be performed in
Fourier space by convoluting the Fourier spectra. This process saves consid-
erable computer time. This approach is shown in Figure 67. The computa-
tional time depends upon the number of grid points and on the angle by
which the second molecule is rotated at each iteration. A typical value of the
latter is around 15°. Therefore, the cycle has to be repeated a few thousand
times.

If information on the rough location of the binding surface is available
(e.g., we know where the antigen binds in the case of antibodies), the search
space can be reduced. However, when we discuss the results of the CAPRI
experiment, a blind assessment of methods for protein docking, we will see
that sometimes our assumptions might be misleading.

Scoring Docking Solutions

Although docking procedures differ widely, they all generate a large number
of putative solutions, generally ranked according to some approximate
energy-based score. The correct solution, if present in the list, might rank
among the top 10 or 100, according to the method used, and false positives
are a serious problem in each method. As it is often the case, nature does
not behave in an easily predictable fashion. The “true” answer does not
necessarily have the largest interaction surface or the more hydrophobic one.
It does not always contain the highest number of hydrogen bonds or the
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FIGURE 67

Schematic representation of the application of Fourier transforms to docking. The cycle is
repeated until the rotational space of one of the two molecules has been sampled. The level of
detail depends upon the size of the grid spacing and of the rotational angle.

smallest number of buried polar groups. The problem of detecting which
among the many solutions is the correct one is, therefore, far from trivial.

Available methods often use a two-stage ranking. The first stage, with an
approximate and fast-to-compute function, is used to eliminate very unlikely
solutions. The second, more accurate, stage is then applied to select the best
among the remaining solutions.

A combination of several parameters is commonly used. Some parameters
contribute positively to the score, whereas others decrease it (penalizing the
solutions). In some methods, the presence of many similar solutions is taken
as an indication of correctness, so investigators cluster all their solutions and
use the size of each cluster as one of the scoring parameters.

The analysis of known protein complexes reveals that the surfaces of the
two components are a nearly perfect match, so measures of geometric com-
plementarity are virtually always present among the scoring parameters. For
example, we can check for nearly opposite surface normals or for matches
between edges of a graph that represents the surfaces. Surface complemen-
tarity is very effective in selecting the correct solution in “bound” docking
experiments, but in real cases, the flexibility of the protein surface and the
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putative presence of water molecules at the interface limit their accuracy in
discriminating between different solutions. To increase the effectiveness of
scoring on the basis of surface complementarity, we should tolerate some
clashes, or interpenetration, of surfaces, the extent of which depends on the
type of side chains. A greater extent of overlap can be allowed for large
flexible amino acids such as lysine, arginine, aspartic acid, glutamic acid,
and methionine. In some cases, the allowed tolerance is calculated on the
basis of an experimental measure, the B factor. This measure is a parameter
calculated for each atom of a protein structure determined by X-ray crystal-
lography and is related to the mobility of the atom in the protein.

Another parameter that is included in most scoring functions is a measure
of the number of hydrogen bonds formed between the two protein compo-
nents. Often, methods also take into account the number of atoms that could
form hydrogen bonds but do not. An atom that does not form a hydrogen
bond in the complex but does so when the protein component is free in
solution negatively contributes to the free energy of the complex. Given a
putative docking solution, we should compute the extent of the contact area
composed by hydrophobic atoms, as well as the percentage of cases in which
a hydrophilic residue is in contact with a hydrophobic residue and vice versa.

Known protein complexes can be used to calculate the expected frequency
of each pairwise interaction, either atom based or residue based, and to
derive an approximate free-energy charge AG for their interaction, similar
to what we described for the prediction of protein structure.

Electrostatics and solvation are two important scoring parameters. They
are usually taken into account by use of some rather crude approximations.
However, these effects are not simply related to Coulomb interactions
between charged atom pairs of the two interacting proteins or to the loss of
hydrogen bonds between water and the interacting proteins, as is shown in
Figure 68.

The CAPRI Experiment

How well do the many methods of predicting interactions work? The Critical
Assessment of Predicted Interactions (CAPRI) experiment is designed to
answer this question. CAPRI is a worldwide effort modeled on the CASP
experiment described in Problem 4. Its purpose is to evaluate predictions
for the structure of a soon-to-be-known complex of two proteins, the struc-
tures of which have already been solved independently. Not surprisingly,
targets for the CAPRI experiment are quite difficult to find. Therefore, targets
are collected and predicted when they become available, rather than at
specific, predetermined periods, as in CASP, and the assessment is carried
out when a sufficient number of targets (and predictions) has been collected.
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FIGURE 68

The energy of the electrostatic interaction between the two opposed charges in the darker
protein can be modulated by docking of another protein. The dieletric constant for the confor-
mation shown on the left is roughly 80, as the space between the two charges is mainly filled
by water. On the right, the dieletric constant depends upon the atom distribution of the inter-
acting protein. At the same time, bound water molecules are released into the bulk solvent,
which causes them to gain entropy.

To increase the set of possible targets, in some cases, the structure of one of
the two proteins is taken from the complex. These cases are regarded as
intermediate between a “bound” and “unbound” docking. Nevertheless, the
number of targets is never very large, and an accurate evaluation of the state
of the art, as well as an estimate of how much progress is made with respect
to previous editions, is still difficult.

A prediction is considered successful if the rmsd between the predicted
position of the atoms at the interface and their real position in the complex
is lower than 4 A and if more than 10% of interacting amino acid pairs in
contact have been identified. These thresholds can seem rather generous, but
in the first and second edition of CAPRI, no group correctly identified more
than 33% of the interacting surface pairs.

The conclusions that can be derived from CAPRI, because of the limited
number of targets, should be taken with even more care than other statistical
assessments of methods. However, in 60% of the cases, at least one docking
method was able to correctly identify the binding site, and different search
algorithms and score functions achieved a similar rate of success (or failure).
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The results of CAPRI are instructive. Camelids have the classic mammalian
antibodies, formed by light and heavy chains, but they also produce anti-
bodies formed only by a heavy chain. The complexes of one of these anti-
bodies with three different ligands were targets in CAPRI and, for two of
them, the binding region did not include only the classical antigen-binding
regions. None of the methods identified the correct solution, probably
because all predictors assumed that they would behave as regular antibodies.
This failure shows that, in some cases, predefinition of the binding site can
be seriously misleading.

Another target was the complex between a protein kinase (an enzyme that
phosphorylates other proteins) and its substrate. Both the site of phospho-
rylation of the substrate and the location of the active site of the enzyme
were experimentally known, so this case should have been an easy one.
However, the kinase undergoes a substantial conformational change upon
binding (rmsd between the bound and unbound form was 2 A), and, there-
fore, the quality of the predictions was not very satisfactory. Only 8 out of
63 predictions (each group can submit more than one prediction) identified
more than 10% of the correct residue pairs and had an rmsd of the interface
atoms lower than 10 A. The subsequently determined free structure of a
protein homologous to the kinase is more similar to the bound form of the
target enzyme than that of its unbound form. This finding might suggest
that an analysis of structural divergence between proteins of the same family
can be useful to model flexibility.

Promising Avenues

The two routes for detecting sequenced-based and structure-based interac-
tion would both benefit from a larger data set of examples and from a more
reliable data set of experimental results. These data sets will most likely
become available in the near future. High-throughput methods are bound
to achieve a better accuracy, and this improvement will, by itself, allow
computational methods to achieve a higher reliability.

Clearly, a major problem is how to treat flexibility. The continuous increase
in computer power might help, but understanding the basic principles that
govern the motion of a protein upon binding its partners is also important.
The large number of structures that are becoming available, and the advances
in protein structure prediction methods, will certainly contribute to our
understanding.

Whereas structure-based methods have been around for some time,
sequence-based methods are rather recent because we only now have a
sufficiently larger set of examples. A test to determine whether the combi-
nation of the two approaches can lead to better results would be useful. The
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docking problem is complex, and we must exploit all available information,
in terms of both sequence and structure data.
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Problem 8

Protein—Small Molecule Interaction

Introduction to the Problem

The number of algorithms available for protein—protein docking is large, but
the number of possible methods for docking a small ligand and a protein is
even larger. This observation is not surprising, given the centrality of this
problem to many biological processes and, even more so, to pharmacological
applications.

Docking of a small ligand to a protein receptor is performed to answer the
question of where the molecule binds, in which orientation, and with which
affinity. When successful, this docking can give invaluable information about
how to modify the molecule to increase its affinity and its specificity. This
process is related to the problem of designing a ligand for a given receptor
(de novo ligand design). The methods are not very different and are not
discussed separately here.

Search Strategies and Scoring Functions

As in the case of protein—protein interaction, we need a search strategy to
explore the various modes of binding of a small molecule to the target protein
and a scoring function to assess the likelihood of the proposed docking
solution. Exhaustive search of the complete space available to a ligand
around a protein of average size is computationally impractical here, as in
the cases described in the previous problem. Early methods treated both the
protein and the ligand as rigid bodies and did not allow any flexibility of
either molecule. However, the limitations introduced by treating the protein
as a rigid body are as serious as those caused by the treatment of a small
ligand as rigid. Although some methods still consider the receptor as rigid,
all widely used methods take into account the flexibility of the ligand.
Commonly used techniques for small molecule docking are based on meth-
ods we have already described, such as molecular dynamics, Monte Carlo,

141
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and genetic algorithms. Other domain-specific methods include fragment-
based methods, point complementarity, distance geometry, and systematic
searches. These methods are often combined in a two-stage approach in
which a fast, computationally inexpensive method is used for prescreening
of ligand positions that are later optimized by a more computationally exten-
sive method.

Fragment-Based and Point-Complementarity Methods

Fragment-based methods select a “relevant” fragment of the ligand, exhaus-
tively search for its best docking position, and grow the rest of the molecules
around it. The choice of the base fragments is clearly very important in these
techniques. Ideally, they should represent important functional groups with
limited internal degrees of freedom, so that their flexibility is less of an issue.
A modification of this procedure is widely used in the design of new ligands.
We can select a subset of important functional groups, optimize their position
in the selected binding region, and subsequently try to design a molecule
that contains them in the correct relative position.

A very commonly used program based on this rationale is FlexX. Its first
step is the selection of one base fragment, either manually or automatically.
The program searches for the optimal relative position with respect to the
receptor by fitting three sites of the fragment to three sites of the receptor.
The fit takes into account hydrogen bonds and hydrophobicity, and the
fragment is considered rigid. All placements of the ligand are clustered and
scored by application of an energy-based function. The next fragment is
added to the optimized base fragment in all possible positions and confor-
mations. Cases of intramolecular or intermolecular overlap are removed. The
best solution for each step is used in the next iteration until the complete
ligand is built. Finally, the resulting solutions are scored. Recent modifica-
tions of the algorithm precalculate putative favorable locations of water
molecules in the binding site that are then included in the calculation.

Another very popular program, LUDI, uses a three-stage protocol. In the
first stage, it calculates the positions in space that can make favorable inter-
actions with the receptor; for example, the ideal location for a hydrogen
donor group or for a hydrophobic atom. In the second stage, fragments of
the ligand are fitted to the favorable interaction points. In the third stage,
fragments are joined, with a protocol similar to that described for FlexX. The
favorable sites of interactions are computed by one of these three strategies:
(1) on the basis of a statistical analysis of a database of small molecule
structures (the most used small molecule database is called Cambridge Crys-
tallographic Database), (2) from geometrical considerations, or (3) from the
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output of the program GRID. The latter program embeds the receptor into
a three-dimensional grid and calculates the binding energy for a set of probes
(e.g., amide, aromatic carbon, and oxygen) located at each point of the grid.
Some methods, such as FLOG, use similar approaches but consider more
than one conformation of each fragment to address the flexibility problem.

Distance Geometry-Based Methods

Distance geometry was originally developed to solve experimental NMR
structures. As we mentioned, the result of an NMR experiment includes a
set of distance constraints between pairs of atoms. The objective of distance
geometry is to find a solution that satisfies as many distance constraints as
possible.

If we have a molecule composed of N atoms, the number of distances is
N*(N-1)/2, and the number of coordinates is 3N. Therefore, if we had all
the distances between every pair of atoms, and they had infinite precision,
we could reconstruct the structure. The problem is to reconstruct the three-
dimensional object on the basis of an incomplete and approximate set of
distances. The basic idea is to construct the matrix g; = x;x;; that is, the matrix
that contains the scalar products of the vectors x; representing the atom
coordinates. The element of the matrix can be written as

i = XX = Yo (o + o — %)

If the origin O is chosen as the centroid of all the atoms, the distances from
the center can be computed from the distances alone. This implies that we
can calculate the values of g; and, consequently, the coordinates of x; The
mathematics are beyond the scope of this text. Therefore we mention only
that the solution is

_ 12
Xy = N Wy

where A, and w;, are the eigenvectors and eigenvalues of the matrix g. For
the distances to correspond to a three-dimensional object, only the first three
eigenvalues of the matrix should be positive and all the others should be
equal to 0.

If the input distances are not exact, more than three eigenvalues will be
different from 0, but the method can still be applied by use of the three
largest eigenvalues. If the matrix is incomplete, we can approximate the
unfilled values by use of the three-dimensional inequalities (d ¢ < dap + dpc
and dyc > |dap—dpc|).-
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Distance geometry can be applied to docking problems by selecting dif-
ferent sets of distances between, for example, potential hydrogen bond
donors and acceptors of the two molecules. In one approach (DockIT), the
binding site is represented as a set of spheres, and several ligand conforma-
tions are generated within the site by use of distance geometry.

Virtual Screening

Every large pharmaceutical company has a huge collection of compounds,
synthesized for different projects, bought from chemistry labs, collected as
reaction intermediates in synthetic processes, or derived from natural
sources. In a typical drug discovery process, each of these compounds is
screened for activity against the selected target molecule or process so that
potentially active molecules can be selected. These molecules are subse-
quently characterized and optimized, if endowed with favorable properties.
The process is usually automated, and, if the activity assay for screening can
be properly designed, millions of compounds can be tested in a matter of
weeks. Nevertheless, some interest exists in preselecting a set of molecules
with a higher probability of having a high activity against the selected target
and, possibly, a low binding affinity for other similar molecules. The setup
of a suitable experimental screening assay that can be automated and run
in high-throughput mode is not necessarily straightforward and, in some
cases, the only assay available is time- and labor-consuming. Furthermore,
smaller enterprises have limited access to large compound collections.

The development of fast docking methods and the parallel evolution of
computers has created the possibility of testing large collections of com-
pounds in silico, with the objective of reducing their number to a manage-
able subset. This process is called virtual screening, and most of the methods
previously described have been or can be used in virtual screening appli-
cations.

The problem is ideally suited for parallelization, as each compound can
be screened and evaluated independently of any other on the target struc-
ture. A recent development is to use distributed computing, which takes
advantage of a technology originally developed for searching for extrater-
restrial life. Desktop computers are provided with a program, a target pro-
tein, and a set of compounds. Whenever the computer is idling, its CPU is
used to run the docking program. This strategy has been applied to a virtual
screening experiment designed to find inhibitors of a protein of the anthrax
virus. In less than a month, 3.5 billion compounds were tested by more than
1.5 million computers in more than 200 countries. Computer power is not a
problem anymore for problems that are intrinsically parallel.
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The Properties of a Drug

Docking methods can find molecules that bind a given receptor and, in many
cases, block its activity. Binding to the appropriate target receptor with a
good affinity is but a first step toward the development of a drug and
probably the least important one for pharmaceutical companies, as any
failure in the development of a drug is more expensive the later it occurs
during the development process. Identifying which properties of a com-
pound make it a “good” drug is of enormous interest.

Certainly, a drug must have a high affinity for the receptor. This feature
decreases the necessary dosage and reduces the probability of spurious
binding to other molecules and the occurrence of side effects. However, other
very important parameters are its synthetic accessibility, its lack of reactivity,
oral bioavailability, favorable pharmacokinetics, and appropriate elimina-
tion pathways.

Oral availability correlates with low molecular weight (it should be lower
than 500 Da), low number of hydrogen bond donors (fewer than 5) and
acceptors (fewer than 10), and low lipophilicity. For other properties much
less is known, but we have a set of drugs in the market, and they represent
solved examples of the problem of obtaining an effective molecule. In fact,
automatic classification methods such as neural networks that identify
“druglike” molecules are receiving much attention.

Promising Avenues

We cannot escape the question of whether protein bioinformatics is relevant
to human health and whether it can effectively accelerate the drug discovery
process. We can try to answer the question. A drug discovery process consists
in several steps:

¢ Identification of the target
¢ Finding of suitable inhibitors

* Selection, among the potential inhibitors, of molecules with suitable
druglike properties (lead compounds)

¢ Optimization of the lead compounds
e Laboratory testing of safety and efficacy
¢ C(Clinical trials
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Phase 1 clinical trials involve healthy volunteers and attempt to determine
whether the metabolic and safety parameters obtained in laboratory testing
can be extrapolated to humans. Phase 2 trials involve a few hundred patients
and attempt to establish the dosage regimen and provide a better under-
standing of the pharmacokinetic properties of the drug. During phase 3 trials,
compounds are tested on a few thousand patients and their efficacy is eval-
uated and compared with that of similar products on the market, if any.
Often, this phase includes blind testing. Patients are divided into test and
control groups. The latter are administered placebos or previously available
drugs for the same pathology. A positive evaluation of the results of Phase
3 trials allows the drug to be marketed. During phase 4 trials, the efficacy
and safety of drugs are monitored after their introduction to the market.

The average time for the development of a drug ranges between 12 and
15 years and involves a cost of several hundred million dollars. The rate of
expenditure increases during the process. A failure late in the process can
have disastrous economical consequences. Late failure is not at all unlikely;
only 1% of the drugs that enter clinical trials are estimated to end up on the
market.

Where can bioinformatics intervene and accelerate or ameliorate the pro-
cess? Certainly it can in target identification. Whether or not more targets
are really needed is still debated in pharmaceutical companies. The overall
number of targets for pharmacological intervention is very limited, and, in
this case, some argue, more is not necessarily better. However, even if the
biological processes that are being targeted by current drugs are sufficient
and no need exists, at least from an economical point of view, to expand
their repertoire, the question remains as to whether the specific molecules
that are being targeted are the best ones. More “moonlighting” proteins are
being discovered. This aspect of bioinformatics can be of invaluable help,
especially if we can draw the complete, or semicomplete, scheme of the
molecules involved in every biological process. In this case, we can select
target molecules that are the most suitable to specifically interfere with the
process, rather than randomly select them, as has been previously done.

The possibility of predicting the occurrence of undesirable effects that can
manifest themselves later in the drug discovery process is of enormous
interest and is being addressed by methods such as transcriptomics and
proteomics, as well as by more recently developed automatic learning meth-
odologies. Often, the discussion centers on whether or not any of the avail-
able drugs has been identified solely by computational methods, but posing
the problem in such terms is not useful. Drugs must target biological pro-
cesses, by and large mediated by proteins, and the understanding of the
sequence-structure-function relationship in these molecules must form the
basis of any modern discovery. Personalized medicine will no doubt be
common in the future, and this future will only be made possible by the
availability of a large set of data annotated in a detailed, accurate, and robust
manner.
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Problem 9

Protein Design

Introduction to the Problem

In protein structure prediction, we infer the three-dimensional structure of
a protein from its amino acid sequence. Chemical and molecular biology
techniques can also be used to synthesize proteins that do not exist in nature.
Therefore, we can “design” an amino acid sequence, produce the correspond-
ing protein, and test its properties (Figure 69).

Why is this issue important? Several biotechnological applications require
specific properties, and a natural protein that has all the desired character-
istics might not exist. However, this problem has attracted much attention
for a more fundamental reason, namely, the need to gain a better under-
standing of the sequence-structure relationship in proteins. The proteins we
observe today are products of evolution, and, therefore, we can only observe
those sequence—structure combinations that happened to arise during the
development of life. In addition, several constraints act on the proteins we
can observe in nature, because of their function, because of compartmental-
ization, and, in general, because of all those properties required for the
survival of a cell. If we design an amino acid sequence and analyze its
structure, we can derive rules genuinely related to the ability of a polypep-
tide to assume a given three-dimensional arrangement in space, not super-
imposed to any other constraint. Such knowledge can improve our ability
to predict the structure of natural proteins.

Is designing a protein technically feasible? We have seen that evolution-
arily related proteins preserve their structure during evolution and also that,
in many cases, apparently unrelated protein sequences can give rise to sim-
ilar structure. This observation implies that the structure—sequence code is
degenerate: many sequences seem to be able to fit a given topology.

What is our chance of selecting a sequence that can fold into a given
structure? For a protein of 100 amino acids, 20'® or 10" possible amino acid
sequences are possible. Approximately 1 out of 10* sequences is able to fold
(i.e., has an energy landscape with a single global minimum). Therefore, we
might have 10'?¢ foldable sequences. From the statistical analysis of known
protein structures, the number of different possible folds is estimated on the
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The direct and inverse folding problem.

order of 1,000; 10'2 sequences should be able to adopt any given fold. Even
if this figure were grossly overestimated, we should still be left with a large
number of suitable sequences for each given fold. The conclusion can be
drawn that the inverse folding problem (i.e., the problem of designing a
sequence that fits into a given structure) should be easier to solve than the
direct folding problem (i.e., inferring the structure of a given sequence).

This optimistic view generated a flurry of attempts, from as early as the
beginning of the 1980s, to design novel proteins. These activities were
directed towards both the redesign of the sequence of a known protein and
the design of sequences able to adopt a novel, not yet observed, topology
or fold. Some of the attempts in the former category met with considerable
success, but realization came quickly that the problem was far from trivial.
We have at least two hurdles in our path to protein design. One hurdle is
the problem of precisely calculating the energy of a given protein conforma-
tion. For a successful design, we need a sequence that can stabilize the
desired fold but none of the possible alternative folds. The other hurdle is
the problem of evaluation of our results. Given the target experimental
structure, we can relatively easily measure the correctness of a structure
prediction, and, therefore, methods can be compared, combined, and
improved in a stepwise approach. However, evaluating the extent of success
of a protein design experiment is much harder. If the design is completely
successful, the protein will be stable, soluble, and amenable to experimental
structural analysis by X-ray crystallography or nuclear magnetic resonance.
If the design is not perfect, the protein will not assume a nativelike structure
and, even if the design is almost correct, we might not be able to characterize
the result, learn about the mistakes, and improve the design.

Protein design must be based on what we know about protein structures,
and the driving force of protein folding is mainly the entropic contribution
of hydrophobic interactions. In fact, the core hydrophobic residues are the
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most conserved in protein evolution, and this condition highlights the rele-
vance of their role in specifying the final structure. Not surprisingly, there-
fore, protein design attempts have paid special attention to the pattern of
hydrophobic residues in the core of the model structure. Evidence from
several experiments underscores the very important finding that at least the
approximate fold a sequence will assume is dictated by its hydrophobicity
pattern.

Other interactions, such as hydrogen bonds, play important roles. Potential
donor and acceptor atoms form hydrogen bonds with the solvent in the
unfolded structure. If left unpaired in the folded structure, the atoms would
create energetically unfavorable conditions. Electrostatic interactions do not
seem to substantially contribute to folding stability, as burying and, there-
fore, desolvation (removal of interactions with the polar solvent) of charged
residues is destabilizing, but they can have a role in destabilizing the many
alternative conformations accessible to a sequence with a given pattern of
hydrophobic residues. The topology (i.e., the arrangements of the secondary
structure elements) can depend on the sequence and propensity of the con-
necting elements, the loops whose prediction is a great challenge in protein
structure prediction.

A simple binary pattern of hydrophobic and hydrophilic residues can be
used to specify, for example, the conformation of an o-helix. In several
successful designs of helix bundles, the sequence of each helix was created
by the imposition of a periodicity of 3.6 on the hydrophobicity of its
sequence. In this case, a stepwise approach can be used. Helices can be
designed separately and their intramolecular interaction analyzed and joined
into a single sequence in which helices form a two-helix, three-helix, or four-
helix bundle. The specific topology depends upon the details of the interface
between the helices and, therefore, on the specific amino acids rather than
only on their hydrophobicity. The design of -strand proteins is more com-
plex. In this case, isolated B-strands are not stable (the hydrogen bond pattern
of a B-sheet involves residues on different strands and is, therefore, nonlocal),
and the stepwise approach is not feasible.

All these considerations should be taken into account in the protein-design
process, both when it is based on biochemical intuition and when it is
obtained via automatic algorithms.

Intuitive Design

The many attempts at designing novel proteins based on educated guesses
and biochemical intuition are impossible to describe. Several research
groups dedicated their efforts to the problem for several years. These often
specialized in one of the many flavors of protein design, such as approaching
the stepwise design of o-helical proteins, trying to obtain new topological
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arrangement of B-strands in B-sheet proteins, or reshuffling and rewriting
the amino acid sequence of known proteins.

In 1986, Chris Sander organized a course on protein design, a rather novel
idea at the time. The participants, including several renowned scientists,
were divided in groups. Each group worked on a different design project.
The experiment was repeated twice, in 1990 and in 1994. Only rarely was
the ability to fold the designed proteins tested experimentally. Nevertheless,
a mention of which projects were selected in these occasions is instructive
because they are representative of what was being tried in this area.

Several attempts were made to obtain idealized folds (i.e., optimized archi-
tectures without the asymmetries and local distortions present in natural
protein structures), as well as to create designs that would “minimize” the
size of known proteins to verify the extent to which the peripheral parts of
the structure play a role in function and stability. Many protein structures
contain repetitions of basic folding units, and several attempts were made
to design them by using blocks with the same sequence.

The most popular architectures used as starting points for protein-design
projects were the antiparallel four-helix bundle and the so-called TIM (trio-
sophosphate isomerase) barrel. An o-helical bundle is an arrangement of
two, three, four, or more helices that can be parallel or antiparallel. All these
topologies are observed in natural proteins, and protein design has been
especially useful in helping us understand their sequence structure relation-
ship in detail.

The prototype of the a-helical bundle is the protein Rop (repressor of
primer). This protein is formed by two identical chains, each formed by two
antiparallel o-helices that spontaneously assemble to form the bundle. The
self-assembly of the two chains and the rather simple architecture of each
of them prompted several attempts to redesign the protein as a single chain,
as a bundle of identical helices, as a protein with different connectivity
between the helices, and with loops of different length. As mentioned before,
most of these attempts took advantage of the possibility of designing the
proteins in a modular way, starting from helices, then continuing to two
chains of two helices and finally to the full four-helix bundle. The results of
these experiments and others like them led to a better understanding of the
geometry of amino acid helices and highlighted some interesting aspects of
the sequence-structure relationship. The examples described below illustrate
how useful these experiments have been in revealing that the quaternary
structure of helical proteins can be modulated by small sequence variations,
which are achieved in nature not only by the stabilization of the “desired”
topology but also by the destabilization of the alternative ones.

First, we introduce the “helical wheel” representation of a helix. The wheel
is a schematic projection of the Cas on a plane perpendicular to the helix
axis. The residues will be indicated with the letters a to g. The relative
position of two parallel and antiparallel helices is shown in Figure 70.

The amino acids in positions 2 and d should be hydrophobic, because they
are buried within the structure. However, the pattern of their interaction in
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the two cases is different, and this difference can be used to differentiate
between the two topologies. An intriguing problem arises when the expected
patterns of interaction between parallel two- and three-helix bundles are
compared. Also, in this case (Figure 71), the amino acids in positions 2 and
d should be hydrophobic. How does nature specify the correct arrangement?
A combination of protein-design experiments and analysis of known struc-
tures showed that a solution to the problem can be achieved by destabilizing
one of the two architectures. If a polar residue is in position g, its presence
in the interior of the protein destabilizes both arrangements. However, in
the three-helix bundle, position a forms more interactions with hydrophobic
residues than in the two-helix bundle, so it is comparatively more destabi-
lized by this “imperfection” than the paired helix architecture. In other
words, nature trades stability for specificity.

Protein-design experiments also showed that, in parallel helix bundles, if
position a is an isoleucine and position d is a leucine, the helices tend to form
dimers, whereas in the reciprocal situation (position 4 is a leucine and posi-
tion d is an isoleucine), the tetrameric assembly is favored. This apparently
puzzling observation can be explained by the simplified representation of
the helices (Figure 72). In a dimer, position d of one helix interacts with



154 The Ten Most Wanted Solutions in Bioinformatics

f

< B
f f
FIGURE 71
A three-helix bundle.

position d of the other helix, and the two amino acids are rather close in
space. The presence of two bulky isoleucines disfavors such an arrangement,
whereas leucine residues can be accommodated more easily. Once again, a
specified quaternary structure interaction can be favored by destabilizing
alternative arrangements. These results, and many more described in scien-
tific reports, illustrate how protein design can highlight properties of amino
acid sequences related to fundamental properties of proteins.

Another popular protein architecture repeatedly used in protein-design
experiments is the TIM barrel (Figure 73) (see color insert after page 40). It
is formed by a central barrel of eight f-strands surrounded by eight external
o-helices. Proteins with this fold usually show some deviation from the basic
architecture. For example, they can contain excursions of the chain to form
other secondary structure elements, the helices and the strands can have
different length, or the connecting loops can be different. However, they are
all formed by a repetition of the basic fof folding unit, formed by two parallel
B-strands connected by an o-helix packing against the strands, a very tempt-
ing modular arrangement for protein design. Indeed, idealized TIM barrels,
with the same sequence in each of the units, have been designed, as have
“reduced TIM barrels,” formed by only four strands and four helices. Circular
permutation of the unit sequences (moving the sequence of the first unit at
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A four-helix antiparallel bundle.

the end or the sequence of the last unit at the beginning), as well as attempts
to add extra units at the beginning or the end of the protein, have been tried.

This flurry of design projects slowed after a few years. Possibly, scientists
were becoming frustrated by the difficulties of the problem. Although the
design of helix bundles and, in some cases, the successful redesign of the
sequence of existing folds were possible, the challenging result of a com-
pletely novel fold entirely designed de novo seemed to be still far beyond
our reach.

Lattice Models and Automatic Methods

An intrinsic limitation of intuitive design is that the reasons an experiment
is successful might be difficult to pin down, and, therefore, intuitive design
does not necessarily teach us sufficiently general rules. We might understand
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FIGURE 73
A TIM barrel (PDB id: 8TIM).

some underlying principle, as in the case of helix bundles, but not always.
Conversely, if we could devise an automatic method, its effectiveness could
be tested and evaluated and this method could be more effective in teaching
us the underlying rules governing protein folding.

Some fundamental aspects of protein folding and design have indeed been
captured by automatic, extremely simplified, and apparently completely
unrealistic models: the lattice models. The idea is to analyze sequence—struc-
ture relationships in a simplified and ideal case in which the sequence is
made of very few “symbols” endowed with some property, and the “struc-
ture” is a path in a two-dimensional or three-dimensional grid. The aim is
to optimize some simplified “energy” function that describes the interaction
between the symbols. The purpose of the approach is not to obtain a designed
protein, but rather to answer more general questions: Which properties
should the sequence of symbols have to be “designable,” that is, have a
single energy minimum? If we have an energy function, and we generate a
set of arrangements for which the energy is known to be minimum, under
which conditions can the arrangements be used to recover the input energy
function? This question relates to the problem of how useful is the set of
known protein structures for extracting the parameters of a force field. Some
of the results obtained in this area are quite interesting.
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Six self-avoiding paths in a three-dimensional lattice for four elements.

The general idea is shown by the following simplified example: We have
two types of “amino acids,” one polar (P) and the other hydrophobic (H),
and an energy function such that two Hs interact favorably if they are in
adjacent positions in the grid but nonconsecutive in the sequence, whereas
the H-P and P-P interaction is neutral. Is there a sequence of length four
such that it can assume at least one structure in the grid that has an energy
lower than any of the other structures?

If the dimension of the grid is small, we can enumerate all the possible
“structures” in the grid, calculate their energy, and derive some conclusions.
If we consider only non-symmetry-related, self-avoiding paths allowed for
four residues, we obtain the six possibilities in Figure 74.

We can use sixteen possible combinations of P and H symbols, but six
(shown in italics in Table 9.1) can be eliminated because, in this simplified
case, we do not distinguish between the two possible directions of the chain.
The conformation designated with (d) is the only one with a contact (between
the first and last position), so we can compute the energy of this conformation
for all possible sequences, assuming that a favorable contact (H-H) has an
energy of -1 and all other pairs have an energy of 0. The conclusion here is
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TABLE 9.1

All Possible Sequences of Hs and Ps for a Four-Element String and Their
Energy When Folded As in (d) of Figure 74.

Position 1  Position 2  Position 3  Position 4 Energy in Conformation e
p p p p 0
p p p h 0
P P h P 0
P P h h 0
P h P h 0
) h h ) 0
p h h h 0
h P P h -1
h p h h -1
h h h h -1
p h p p 0
h P p P 0
h p h p 0
h h P P 0
h h P h -1
h h h P 0

that the structure indicated with (d) is “designable” and that more than one
sequence can be used to obtain it.

This simple example shows that, given an energy function, if we can
enumerate all the possible patterns for a sequence of a certain length, we
can compute which sequence path has the optimal energy and also whether
the combination is unique or, as in our example, degenerate in the sense that
more sequences can fit the same structure.

The number of possible paths and sequences increases with the length of
the sequence (Table 9.2), and the brute-force approach depicted here cannot
be used. Three-dimensional grids have been, therefore, coupled with opti-
mization algorithms, such as simulated annealing or Monte Carlo, and have
been extensively used to derive patterns of Hs and Ps able to specify, for
example, structures similar to o-helices or to bundles of o-helices. The result-
ing hydrophobicity pattern can be compared with the hydrophobic and
hydrophilic pattern observed in real protein structures, and, in general and
for most of the methods, the computed and observed patterns do not differ
substantially. Lattice models with increasing complexity have been imple-
mented and even extended to real Ca protein coordinates.

Lattice models can also be used to answer the inverse question. For exam-
ple we can select a “sequence” (i.e., a string of Hs and Ps), try all possible
conformations in a lattice, and rank their energy. This process can tell us
whether the given sequence stabilizes more than one structure and, therefore,
is not suitable for a design experiment (because its energy landscape contains
more than one energy minimum). Calculations of this type have been used,
for example, to estimate the number of foldable sequences and also to
conclude that some “structures” represent the minimum energy for many
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TABLE 9.2

H and P Element Sequences and Possible Conformations in a
Three-Dimensional Grid for Different Sequence Lengths

Number of Number of Sequences Number of Possible Paths
Elements 2N in a 3D Grid

4 16 10
5 32 20
6 64 36
7 128 72
8 256 136
9 512 272

10 1024 528

50 >1015 >101

sequences, whereas others are stabilized by a small number of sequences.
The sequence should contain as many Ps as possible, with Hs in points of
the grid that make multiple interactions and without internal (“buried”) Ps.
These conclusions sound very sensible and not very dissimilar from what is
observed for real protein structures, although the limitation of their very low
level of detail is obvious.

Nature uses subtle differences between amino acids to specify the final
native structure. Therefore, these methods can only provide a first-level
solution to the problem and highlight trends rather than properties, but they
have proved useful in helping us understand some basic rules of the overall
architectural space available to protein structures and, together with the
results of intuitive design projects, in highlighting some of the properties
that any automatic method for protein design should take into account. In
general, the following conclusions should be considered:

* The hydrophobic pattern of the designed sequence
e The solvent accessibility preference for each amino acid
¢ The amino acid preferences for secondary structure elements

¢ The specific interactions able to generate asymmetry and destabilize
alternative folds

The final goal is to optimize an energy function. Here, as in protein struc-
ture prediction, both molecular mechanics and pairwise potential can be
used, together with optimization techniques such as Monte Carlo, genetic
algorithm, and dead-end elimination.

The most difficult aspects to be taken into account, here as in intuitive
design, are the destabilization of alternate folds and the capability of the
designed sequence not only to stabilize the desired fold but also to have a
folding pathway that leads to it. The second aspect is beyond our present
capabilities because of our limited understanding of the actual process of
folding. As far as the first aspect is concerned, we can take advantage of fold
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recognition methods to verify whether the final selected sequence is likely
to fit other folds present in our protein structure database.

The cross-fertilization between protein structure prediction and protein
design is not limited to the use of fold-recognition methods at the last stage
of the procedure. For example, methods for the prediction of protein struc-
tures that do not share any sequence or structural similarity with known
proteins have been successfully applied to protein design by cycles of the
following protocol:

* Selection of an initial topology for the target structure
¢ Definition of a set of distance constraints that define the desired fold

* Generation of several initial conformations from fragments of pro-
teins of known structure on the basis of the distance constraints

* Sequence optimization for each of the starting structures by appli-
cation of Monte Carlo simulations

* Prediction of the structure of the selected sequence by use of frag-
ment-based methods

Baker et al. used this strategy to produce a soluble, monomeric, stable
protein with a novel fold, the X-ray structure of which showed an impressive
similarity with the designed model. Interestingly, in this successful case, no
attempt was made to destabilize alternative putative folds, and the kinetics
of folding were not taken into account in the design. Also, the similarity
between the designed and experimentally determined structure is much
higher than the accuracy achieved by the same method when it is used to
predict protein structures. One possible reason for this difference is that the
designed protein does not have any functional constraints and, therefore, it
is more “regular” than a real natural protein, in which the need for a func-
tional site can make the relationship between sequence and structure more
complex. Protein active sites are most likely suboptimal in terms of their
structure because they need to satisfy functional and dynamic constraints.
Therefore, predicting their conformation on the basis of energy optimization
can be more difficult. However, in several cases, active sites have been
successfully inserted into known proteins, as we will see in the next problem,
and nothing, at least in principle, prevents the same from being done in a
designed protein. Such an accomplishment could lead to the engineering of
tailored molecular machines.

Promising Avenues

The fields of protein structure prediction and protein design have crossed
paths at different times, with beneficial effect. Pairwise potentials, as well as
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methods to evaluate sequence-structure fitness, initially developed for struc-
ture prediction, have found useful applications in protein design. More
recently, fragment-based methodologies have been shown to be equally
“portable” from one field to the other. This cross-fertilization can be expected
to continue, and protein design will profit by innovative ideas in protein
structure prediction. At the same time, successful protein-design experi-
ments will be of invaluable help in understanding the nature of the relation-
ship between protein sequence and structure.

The understanding of protein evolution is one of the most powerful tools
for assigning structure and function to unknown proteins, but the problem
of distinguishing regions that are conserved because of functional constraints
from those required for function persists. In design, the problems of struc-
tural stability and function can be separated, which can highlight important
features of protein sequences. Therefore, in the future, one can expect that
the boundaries between the two fields will become increasingly less clear,
at least from the point of view of the methods employed.

We now have a handle on the design of novel stable proteins on one hand
and on the redesign of functional sites on the other hand (see next problem).
Combination of the two aspects will allow us to specify our requirements
and design and produce nanomachines that perform predetermined func-
tions.

Probably more in this field than in most of the areas we have described
so far, a collaborative effort between theory and experiment is needed, as is
evidenced by the fact that the successful cases of protein design have all
arisen from a close interplay between computational, structural, and molec-
ular biology.

Another aspect that is already receiving attention but should be further
pursued is the large-scale design of molecular partners. Can we exploit what
we understand about molecular interactions to design molecules that interact
with a target protein? Such a technology would be instrumental in many
fields and have an impact on both human health and biotechnology.
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Problem 10

Protein Engineering

Introduction to the Problem

Can we modify a native protein sequence and endow it with novel proper-
ties? The solution to this problem requires a combination of the tools we
described for both protein-structure prediction and protein design. We must
first design a modified protein sequence that is able to carry out the desired
function, and then we must predict the structural effect of the mutations we
introduced in the protein.

Similar protein sequences have similar structures, but this knowledge is
not very helpful in protein engineering, because it only applies to naturally
evolved proteins; that is, proteins containing mutations that have been
accepted by evolution because they are not deleterious and, therefore, not
expected to substantially affect the protein structure. On the contrary, if we
artificially modify even a single amino acid of a protein sequence, we cannot
be sure that the structure will be preserved.

In general, we should solve the folding problem for the new sequence and
compute the conformation that corresponds to its global free-energy mini-
mum, without even being certain that such a conformation exists. In other
words, predicting the structure of a mutant can be even more difficult than
predicting the structure of a native protein. Furthermore, if we want to
endow the protein with a specific biochemical function, we must be aware
that function is often mediated by clusters of residues that must be in a very
precise relative location to be functional. Therefore, our prediction of the
details of the protein structure must be very accurate.

One more hurdle in the process is that functional residues are not neces-
sarily optimal for structural stability. In a number of cases, mutations of
active site residues reduce activity but increase stability of the protein. This
finding suggests that the requirement of having specific residues in active
sites might introduce “energetic defects” into a protein. Therefore, our ener-
getic calculations can be completely inappropriate for this task.

Nevertheless, engineering novel properties in natural proteins has a num-
ber of important applications, such as testing our understanding of the
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functional site properties, creating diagnostic tools, and producing biotech-
nologically useful proteins.

Combining Functions

Existing functions can be combined by fusing two or more proteins or protein
domains together to obtain a new function. An application of this approach
is the yeast two-hybrid method that we used to fuse our proteins to the
binding and activation domains of the Gal4 gene product.

In general, combining functions requires the design of a linker sequence
that joins the domains without altering their structure and function. If we
are dealing with one or more proteins of known structure, an inspection of
the three-dimensional arrangements can help us decide the length of the
linker and whether to insert the extra domain at the amino or the carboxy
terminus of the protein. We want the linker to be flexible and hydrophilic.
The most flexible amino acid is glycine. It does not have a side chain and,
therefore, has fewer limitations on the values its ¢ and y angles can assume.
Surveys of long connecting regions between domains of known proteins
suggest that sequences of glycines and serines (the smallest hydrophilic
amino acids) are ideally suited for this task.

This procedure is commonly applied to antibodies. Only one light-chain
domain and one heavy-chain domain are involved in antigen binding, and
these domains are conveniently fused into a single chain to eliminate concern
about their quaternary assembly to obtain the complete binding site. This
fusion is achieved by cloning the heavy-chain variable domain, followed by
a long stretch of serine and glycine amino acids, followed by the light-chain
variable domain.

Global Properties

Often, proteins of biotechnological or pharmacological interest are not opti-
mal. They might be too unstable or insoluble, or they can be too labile at
higher temperature. For example, an enzymatic activity is often used in
powdered laundry detergents. However, we do most of our laundry at a
temperature higher than room temperature, at which most enzymes do not
function efficiently or do not function at all. The problem can sometimes be
solved by addition of a protein with the desired stability at high temperature.
The protein may be found in thermophilic organisms such as bacteria that
live in volcanic areas. When a natural protein with the desired stability cannot
be found, the sequence of an existing mesophilic (i.e., nonthermophilic)
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enzyme can be modified to achieve higher thermal stability. The obvious
procedure is to analyze families of proteins that contain both thermophilic
and mesophilic members and derive rules that distinguish the former from
the latter. This approach is less successful than we would expect. Some rules
have been derived, but the specific sequence features that confer thermal
stability to a protein are extremely difficult to identify. This difficult is prob-
ably caused by the fact that thermal stability has evolved independently in
different protein families, and, therefore, different proteins rely on different
evolutionary strategies.

However, stability is usually correlated with thermophilicity. In other
words, proteins in which the difference in energy between the unfolded and
folded state is higher tend to be more thermally stable. Therefore, we can
attempt to increase the thermodynamic stability of the protein under exam-
ination. One way to do so stems from the concept of pairwise potentials:
sequence patterns that are observed more often are likely to be more stable.
Thus, if we have a family of protein sequences, the most observed amino
acid in each position can be assumed to be the most stabilizing one, and the
proteins that contain the most observed amino acids are expected to be the
most stable proteins. This strategy relies on the hypothesis that the effect of
each mutation is independent (i.e., that amino acids do not contribute to
stability in a cooperative manner) and on the availability of a good multiple
alignment of the protein family.

Another possibility is to highlight less than optimal interactions in the
protein structure, either by simulating every possible substitution in a set of
candidate positions and evaluating the energy of the resulting structure or,
as in “intuitive design,” by application of biochemical intuition.

Increasing solubility in aqueous solvent is another important goal of many
protein-engineering projects. Once again, an examination of the variability
in the sequences of a family or simulated replacements of hydrophobic
amino acids with hydrophilic amino acids and computing the energy can
identify positions that can accept more hydrophilic substitutions.

Another way to increase the stability of a protein is to introduce covalent
bonds between different parts of the molecule. The side chains of the amino
acid cysteine can form covalent bonds with each other, as shown in Figure 75
(see color insert after page 40), and this bonding can increase the stability
of a protein. A protein structure database analysis can be used to evaluate
the optimal values of the angles and distances between the cysteine atoms
in experimentally observed disulfide bridges. Subsequently, the protein
structure can be scanned for positions that, once replaced with cysteines,
could form disulfide bridges.

The favorable positions must be accurately selected because the stability
that we gain depends upon the difference in the energetic contribution of
the disulfide bridge in the folded versus the unfolded state. Therefore, we
increase the stability of the engineered protein only if the geometrical con-
straints provided by the three-dimensional structure allow an arrangement
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FIGURE 75
A disulfide bridge.

of atoms involved in the bridge that is more energetically favorable than in
the unstructured state.

Some methods take into account the local environment of each of the
cysteines. They are usually based on neural networks trained on a data set
of sequences that contain cysteines known to form disulfide bridges.

Active and Binding Sites

The most ambitious goal of protein engineering is the design of novel cata-
lytic or binding functions in proteins of known structure. The difficulty arises
from the fact that, in general, catalysis is brought about by the cooperation
of a few amino acid side chains, exactly positioned to perform their function.
Not much room is allowed for mistakes.

Many important biochemical reactions involve metal atoms such as zinc,
calcium, iron, and magnesium, and several structural motifs can bind these
elements. A first step in designing an enzyme-active site is to learn how to
modify an existing protein to create a metal-binding site in its structure. This
type of experiment has met with success in several cases. The obvious method
is to locate in the target protein residues whose backbones can be superim-
posed with residues that coordinate a metal in a known metal-binding site.
The electrostatic properties of protein atoms that do not directly coordinate
the metal, but surround the binding site, can play a role, and some methods
take them into account. Automatic learning methods can be applied to this
process by the use of interresidue distances of atoms that surround the exper-
imentally determined metal-binding site to train the system.

Perhaps the most studied case in the engineering of active sites is that of
serine protease. The triad of amino acids that perform the catalysis can be
regarded, on first approximation, as an independent motif. We find these
amino acids in proteins with architectures as diverse as those of serine
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FIGURE 76
The nomenclature for serine proteases. The amino acids of the substrate are indicated by S, and
the corresponding recognition sites on the surface of the enzyme are indicated by P.

proteases and lipases. Furthermore, we know the structure of several
enzymes of the family, and this knowledge has led to a deep understanding
of the sequence-structure—function relationship. Not only the geometry of
the catalytic triad is well known, but the surrounding regions, which bring
about the specificity of the enzymes, have also been thoroughly analyzed.

The nomenclature used in this field is shown in Figure 76. Both the residues
and the sites are numbered starting from the cleavable bond and working
outward. Primed letters refer to the carboxy-terminal part of the substrate
and to the corresponding sites. The S1 residue is the major determinant of
specificity, and it is recognized by the P1 site (or pocket) of the enzyme. A
change of one or more of the residues lining the P1 pocket can change the
specificity of the enzyme. This strategy has been successful in many cases.

In the case of the hepatitis C virus protease that we have described before,
the structure of the enzyme was predicted by comparative modeling on the
basis of a very weak sequence similarity with other proteases and a not
necessarily reliable sequence alignment. Protein engineering was used to test
the model by verifying whether it was able to predict the effect of specific
mutations in the protein (Figure 77).

The authors designed a two—amino acid mutant that, if the model was
correct, would switch the specificity of the protease from P1 = cysteine to
P1 = phenylalanine. The success of the experiment provided a validation of
the model, at least in the region of the active site. This work shows that
successful protein-engineering experiments can also be designed on the basis
of a comparative model (i.e., even in the absence of an experimentally deter-
mined structure).

Catalytic Antibodies

Another more general and very interesting strategy has been applied to the
design of enzymatic activities. To understand the method, we must recall
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The engineering of the hepatitis C protease specificity. The model (left) suggested that the
presence of a bulky phenylalanine was responsible for a small S1 pocket. The enzyme indeed
recognizes a small amino acid (cysteine). By replacing the phenylalanine and an alanine just
below it with a threonine and a glycine, the enzyme acquired the ability to accommodate, and,
therefore, recognize, a phenylalanine in its P1 pocket.

that an enzyme catalyses a reaction by lowering the energy of the transition
state, which is a high-energy intermediate of the reaction. This concept can
be understood by considering the very simple reaction

H+H,eH,+H
Let us rewrite the reaction as
H, + H—H: & H,—H; + H¢

In this reaction, the reagents (H, and Hz—H,) have the same energy of
the products (H,—Hj and H¢). We can now visualize the course of the
reaction if we imagine the proton and the hydrogen molecule coming pro-
gressively closer to each other. The energy of the system increases as the
molecules approach each other and becomes maximal when the Hy proton
is equidistant from H, and Hc. The course of the reaction is depicted in
Figure 78.

In general, in a biochemical reaction, reagents and products can have
different energy, but one high-energy intermediate always occurs along the
course of a reaction. The job of an enzyme is to lower the energy of this high-
energy intermediate and, thereby, accelerate the rate of the reaction, as can
be seen in Figure 79. The enzyme lowers the transition barrier by binding
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G Hy—Hg— He

H,— Hg+H¢ H, + Hy—H

B

Distance between Hg and H-

FIGURE 78
The reaction H, + H—H < H,—H; + Hc.

and stabilizing the high-energy intermediate. One very imaginative way to
achieve this effect is to raise an antibody against a chemical structure that
mimics the transition state. One of the first attempts to do so had as its target
the hydrolyzing reaction of serine proteases which was achieved by injecting
a mouse with a molecule resembling the reaction transition state. The anti-
bodies extracted from the mouse were able to catalyze the hydrolysis reac-
tion.

Many abzymes (antibodies endowed with catalytic activity) have been
generated for many biochemical reactions by use of more sophisticated tech-
niques than mouse immunization to obtain the desired molecule and, espe-
cially, by subsequently optimizing the antibody via rational redesign. The
resolution of an increasing number of three-dimensional structures of
abzymes has also brought a better understanding of the appearance and
evolution of catalytic functions, not only in antibody binding-sites, but also
in enzyme active-sites.

A further step in this direction is the so-called anti-idiotypic approach.
Suppose we have an antibody A, against a protein antigen, and we generate
a set of antibodies A, against this antibody. Then the assumption is that some
of the A, antibodies will resemble the original antigen. In other words, the
antibody A; will represent a negative image of the antigen, and some of the
A, antibodies will have a binding site similar to the surface of the original
antigen.

This idea can be exploited to generate abzymes. The A, antibody is raised
against the active site of an enzyme, so that the structure of the binding site
of some of the A, antibodies might resemble the active site of the original
antigen and be able to carry on the same enzymatic reaction. This strategy
has been successful in a few cases, and it has also been applied to the design
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FIGURE 79
A catalyzed and a noncatalyzed biochemical reaction.

of metal-binding sites. The range of applications of antibodies has been made
wider by the use of combinatorial systems that generate antibodies in vitro.

Combinatorial Design

The availability of designed proteins able to carry out a given function is
important, not only because of their technological applications, but also
because their analysis allows us to improve our understanding of the basis
of enzymatic activity. This reasoning implies that we are not only interested
in rational redesign of proteins, but also in observing the various ways in
which a protein sequence can specify a given function. This goal can be
achieved rather effectively by the use of combinatorial strategies. We describe
only one of the many experimental approaches that have been devised,
phage libraries, and as usual, we trade precision for simplicity.
Filamentous phages are viruses that infect a bacterial host cell. They exploit
the cellular machinery to replicate their DNA and synthesize their proteins,
after which they reassemble and exit the host. They are composed of a DNA
genome surrounded by several proteins, as shown in Figure 80 (see color
insert after page 40). The important features of the system that make it ideal
for combinatorial display is the fact that foreign sequences can be cloned at
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FIGURE 80

Phage display experiments. An oligonucleotide cloned upstream of the gene for the pV protein
of the bacteriophage (shown as a gray oval) is exposed on the surface of the phage. If the cloned
sequence is random, each phage will display a different peptide sequence. The phage population
can be made to interact with a target protein. Only phage that contain a peptide that binds to
the target protein will be retained, whereas the others can be washed away. The DNA sequence
of the selected phage will directly reveal the sequence of the interacting peptide. The pVIII
protein, shown as a gray cylinder, is also suitable for displaying foreign peptides on the surface.

the end of two of their genes, and the respective translated amino acid
sequences are exposed on the surface of the complete phage particle.

The cloned segment can have a predefined sequence, but it can also be a
randomly assembled subsequence of nucleotides. In this case, each phage
colony displays a different fused peptide on its surface. A molecule of interest
can be immobilized on a matrix or on a plate and made to interact with a
population of phage. Only phage that display a sequence that binds to the
selector molecule will be retained. These viruses can be collected, amplified
by reinfecting host cells, and, finally, their DNA sequence can be obtained
(Figure 80). The translation of the DNA sequence of the selected phage
provides the sequence of the peptide sequence that binds to the selector
molecule. Clearly, any protein-design experiment to introduce a binding
property can take advantage of this methodology.

This technique is extremely powerful. For example, by using an antibody
as selector, we can identify which oligopeptides it binds to, and these oli-
gopeptides can be compared with the database of known sequences to identify
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the natural cognate antigen of the antibody. In principle, the method can be
used to detect oligopeptides that bind any protein. In some cases, this tech-
nique can be used to find which of the known proteins, if any, binds to the
target molecule. Unfortunately, rarely are interaction surfaces between pro-
teins composed by linear segments. More often, a protein recognizes residues
that are close to each other in the protein structure but not necessarily in the
protein sequence. If the structure of the natural binding protein is known,
an inspection of its surface can highlight regions that can be mimicked by
the selected linear sequences. This inspection can help identify the location
of the binding site.

An even more powerful application of phage libraries is the generation of
antibodies. Single-chain antibodies, described previously, can be cloned at
the end of the appropriate phage proteins, but, more importantly, a variety
of different antibodies, each with different randomly generated sequences
for their antigen-binding regions, can be cloned and selected for their ability
to bind a given protein molecule. This process is a rapid way to generate
antibodies that bind any given protein, and it has a wide range of diagnostic
and biotechnology applications. The knowledge of the sequence-structure
relationship in antibody-binding sites has been instrumental in the design
of more effective libraries. The rational design of libraries to increase the
likelihood of obtaining better binding molecules is a field of analysis that
bridges protein bioinformatics (to select the target molecules and the sites
to be randomized) with nucleic acids analysis (to design the best combination
of nucleotides that gives the highest probability to obtain the desired set of
sequences).

Dissecting the Folding Pathway of Proteins

The introduction of mutations into a native protein can also be used to
improve our understanding of the folding process. We can envisage the
folding of a protein as a reaction in which the reagent is the unfolded state
and the product the native state. For many small proteins, the process is a
simple two-state folding, with a single high-energy barrier that represents
the transition state of the process. The speed at which a protein folds depends
upon the height of the energy barrier, which is analogous to what occurs in
a biochemical reaction.

Let us assume that we can introduce a mutation in our protein without
perturbing its structure and without affecting the energy of the unfolded
state. The mutation affects the stability of our protein, and we can measure
the extent of the stability change. However, if the mutated residue is involved
in early interactions in the folding process (i.e., if it is involved in interactions
in the transition state) its mutation also affects the height of the barrier and,
therefore, the folding rate of the process.



Protein Engineering 173

T
s AAGi N
G
AAG;
F=
Folding coordinate Folding coordinate

AAG AAG

AAGy AAG;
FIGURE 81

The definition of the ¢ value.

We can experimentally measure the change in the free-energy difference
of the transition state (related to the folding rate) and the free-energy differ-
ence of the folded state (related to the stability of the protein). As shown in
Figure 81, if the free-energy differences are similar, the mutated residue is
involved in the transition state. The ratio between these two values is called
the ¢ value for the mutated residue. A ¢ value of approximately 1 indicates
that the residue is involved in interactions established early in the folding
process, whereas a ¢ value of approximately 0 indicates that the amino acid
only establishes interactions late in the folding process.

If we generate several single-residue mutants of a protein and compute
their ¢ values, we can obtain a map of the residues that are involved in
stabilizing interactions early in the folding process and try to understand
this mechanism. Once a sufficiently large set of data has been collected, a
number of questions can be posed: Is the transition state conserved through
evolution? Do nonnative interactions occur in the transition state; that is, do
interactions form early in the folding process that are not present in the final
structure? Can we optimize the folding rate of a given protein? How do
designed proteins fold?

Promising Avenues

Only in the past two decades have we been able to rationally modify proteins
(i.e., to specifically mutagenize selected amino acids), but the technology has
already pervaded our lives. The impact has been enormous. We can not only
observe nature, but we can also perform experiments to test its mechanisms.
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The role of specific amino acids or regions of proteins could be assessed by
rationally modifying them and verifying the results. Historically, the first
reported protein modification experiment involved a cysteine amino acid in
the active site of a protein called tyrosil transfer RNA synthase, an enzyme
that constructs the adaptor molecule that recognizes a base triplet on the
RNA and adds the appropriate amino acid to the nascent protein chain. The
experiment proved the specific role of the mutated amino acid in catalysis.
This experiment was but the beginning. Most of what is written in biochem-
istry books about the role of specific amino acids in catalysis, for example,
directly derives from mutagenesis experiments. Furthermore, the role of
specific interactions in stability and folding has been tested with the same
technique.

Things are not always so easy, however. Local interactions are not solely
responsible for catalysis, and in many cases, the results were difficult to
interpret, and very detailed studies about the effect of the cooperation of
several sites were required.

The possibility of combinatorial selection for desired properties was
another milestone in the field. It created the possibility of testing several
sites at once. The results have already been exploited in a number of bio-
technological applications. Modified enzymes are often present in powdered
laundry detergents and cloned into microorganisms that industries use as
factories to produce molecules that are difficult to synthesize.

The process still relies on (educated) trial and error, and we certainly do
not have the same confidence in our redesign that, for example, a mechanical
engineer does, but advances in chemistry, physics, and molecular and com-
putational biology are converging to give us the ability to control, and
predict, the functional roles of molecular sites. This development is having
a strong impact on nanotechnology.

Another recently achieved result is the modification of proteins such that
the cell that contains them “learns” how to incorporate unnatural amino
acids into newly synthesized molecules, which creates the possibility of a
much wider chemical repertoire.

In this rapidly evolving field, we cannot predict what will happen next
and which computational tools will become necessary. However, we need
methods to dissect the role of specific amino acids or regions within protein
molecules, and we must also develop computational methods to optimize
the design of combinatorial experiments, which are still rather limited.
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Conclusions

The list of problems discussed in this book is only partial. Not even all the
classical aspects of protein bioinformatics have been treated at a sufficient
level of detail. Still, none of these problems is completely and satisfactorily
solved. In some cases, the robustness of existing methods is challenged by
the deluge of data. In other cases, the complexity of the task is increasing,
rather than decreasing, with time. These challenges and complexities are
providing an explosion of opportunities in bioinformatics.

The emergence of genomics and postgenomics, coupled with the rise in
computing capabilities, has produced a shift of paradigm in biology from
hypothesis-driven to data-driven approaches. In hypothesis-driven research,
the goal is to understand the properties of a particular state of a particular
system by successively decomposing it into subsystems until its behavior
can be appropriately understood. Data-driven research relies on the study
of a set, as complete as possible, of basic components of complex biological
systems and integration of the basic components into a system-wide model.

The power of modern biology lies in the combination of these two
approaches, but such a combination requires a high level of integration of
the data and of sophistication of the tools. This requirement is the challenge
that computational biologists and bioinformaticians must meet. They do not
have an easy task, because they must blend computer science, software
engineering, statistics, and biology. On the other hand, the strength of this
discipline is exactly its ability to attract investigators from several fields and
incorporate innovative ideas developed in different areas of science.

The purpose of this book is to provide newcomers to the field, as well as
students, with a roadmap of the techniques that have been proposed to solve
many problems, and the strengths and weaknesses of these techniques are
highlighted.

Many more problems are not treated or are only hinted at in this book.
They include, for example, the reconstruction of metabolic networks and of
protein interaction maps, as well as the modeling of entire cells. Undoubt-
edly, more such problems will appear in the near future. However, I am
confident that some of the aspects emphasized in this book will remain of
paramount importance, such as the evaluation of the appropriateness of the
approximations, the accurate testing of the reliability of methods, and the
importance of being aware of the limitations of the data produced by exper-
imental methods.
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function prediction, 50

Growth of protein databases, 25

H

Hepatitis C protease specificity,
engineering of, 168
Hepatitis C virus, protease, functional
attributes, 4546
Hidden Markov Model, 20-24
protein sequence alignment based
on, 20-24
graphical representation of, 23
Histidine, hydrophobicity scale use, 97
Homologous relationship detection,
protein alignment, 5-7
Homology detection problems,
formulation of, 3
Hopping, in sequence space, protein
alignment and, 7
Hydrophobicity scales, 97

I

Immunoglobulins, canonical structures
of, 126
Indel, protein alignment and, 9
Indel penalties, 9-10
Insulin
amino acid translation, 2
nucleotide sequence, 2
Intuitive protein design, 151-155

Inverse folding problem, protein design,
150
Isoleucine, hydrophobicity scale use, 97
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K

Knowledge-based methods, in protein
structure prediction, 78

L

Language processing techniques, in
protein function prediction,
50
Lattice models in protein design,
155-160
Leucine, hydrophobicity scale use, 97
Levinthal, Cyrus, 70
Ligand binding, to extracellular domain,
protein—protein interaction,
119
Linguistics techniques, computational,
in protein function
prediction, 50
Lipase, protease, active sites compared,
104
Local protein alignment
global protein alignment, contrasted,
10
protein sequences, 12-13, 15-16
two protein sequences, 12-13, 15-16
Lysine, hydrophobicity scale use, 97

M

MALDI. See Matrix assisted laser
desorbation/ionization
Markov Model, Hidden, 20-24
protein sequence alignment based
on, 20-24
graphical representation of, 23
Matrix assisted laser desorbation/
ionization, protein ionization
technique, 65
Membrane proteins, 89-100
channel protein, 92
double layer of phospholipids, 90
examples of, 92
future investigation, 99-100
hydrophobicity scales, 97
membrane structure, 90-91

peripheral protein and integral
protein, membrane
containing, 91
phospholipid, structure, 90
photoreaction center, 92
porin, 92
structure of, 91-94
structure prediction, 94
three-dimensional structure,
prediction, 99
topography prediction, 94-98
topology prediction, 98-99
Membrane structure, 90-91
Methionine, hydrophobicity scale use,
97
Microarray data analysis, in protein
function prediction, 55
Molecular weight, oral availability,
correlation, in protein-small
molecule interaction, 145
Monte Carlo methods, protein
conformational space search,
76-77
Moonlight proteins, functional site
identification, 114
Multiple-sequence protein alignments,
13-19

N

Names of proteins, genes, identification
of, in protein function
prediction, 49

Natively unfolded proteins, in protein
structure prediction, 85-86

Natural language processing
techniques, in protein
function prediction, 50

Needleman and Wunsch algorithm,
protein sequence alignment,
10-12, 15-16

Neural network, for prediction of
secondary structure, in
protein feature prediction
from sequence, 37

Nomenclature, in protein function
prediction, 47

Noncatalyzed biochemical reaction, 170

in protein engineering, 170
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Oral availability, molecular weight,
correlation, in protein—small
molecule interaction, 145
Orthologous gene, evolution of, 4
Orthology, 4-5

P

Pairwise alignment, evolutionarily
related sequences, 6

Parallel helices, antiparallel helices,
packing against each other,
protein design, 153

Paralogous gene, evolution of, 4

Paralogy, 4-5

Pearson correlation coefficient for
expression level of genes, in
protein function prediction,
58

Peripheral protein, membrane
containing, 91

Phage display experiments, in protein
engineering, 171

Phenylalanine, hydrophobicity scale
use, 97

Phosphate cyclase enzyme, RNA
3’-terminal, yeast,
discontinuous domain, 41

Phospholipids

double layer, 90
structure, membrane protein, 90

Photoreaction center, membrane
protein, 92

Phylogenetic trees, protein sequence
alignment, configuration of,
17-18

Point-complementarity methods in
protein—small molecule
interaction study, 142-143

Porin, 92

Principal components analysis, in
protein function prediction,
62-63

Proline, hydrophobicity scale use, 97

PROSITE database, 33, 42

Protease, lipase, active sites compared,
104
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Protein bioinformatics solutions

design of protein, 149-162
engineering of protein, 163-177
feature prediction, from protein
sequence alignment, 31-44
functional site identification, 101-116
function prediction, 45-68
membrane proteins, 89-100
protein—protein interaction, 117-140
protein-small molecule interaction,
141-148
sequence alignment, protein, 1-30
structure prediction, 69-88

Protein conformational space search in

structure prediction, 74-78
genetic algorithms, 77-78
molecular dynamics, 74-76
Monte Carlo methods, 76-77
simulated annealing, 77

Protein design, 149-162

direct/inverse folding problem, 150

intuitive, 151-155

three-dimensional lattice, four
elements, self-avoiding paths
in, 157

TIM barrel, 156

Protein engineering, 163-177

active sites, 166-167

binding sites, 166-167

catalytic antibodies, 167-170

catalyzed biochemical reaction, 170

combinatorial design, 170-172

combining functions, 164

disulfide bridge, 166

folding pathway of proteins,
dissecting, 172-173

future investigation, 172-174

global properties, 164-166

hepatitis C protease specificity,
engineering of, 168

phage display experiments, 171

serine proteases, nomenclature for,
167

Protein families, 5-7
Protein feature prediction from

sequence
future investigation, 4142
PROSITE database, 42
sensitivity /specificity, 37-38
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Protein function, evolution-based
inference, 3—4
Protein ionization technique
electrospray ionization, 65
matrix assisted laser desorbation/
ionization, 65
Protein—protein interaction, 117-140
affinity chromatography experiment,
129
antigen, antibody bound to, structure
of, 124
CAPRI experiment, 136-138
detection, experimental methods,
128-130
docking, representation of protein
structures for, 131-136
computational approaches,
131-133
conformational space search,
133-134
scoring docking solutions,
134-136
electrostatic interaction energy,
opposed charges in protein,
137
Fourier transforms, application to
docking, 135
future investigation, 138-139
heme molecule, 121
hemoglobin, oxygen transporter, 120
immunoglobulins, canonical
structures of, 126
ligand binding, to extracellular
domain, 119
protein surfaces, representation of,
132
rhinovirus coat, bound portion,
structure, 123
sequence-based methods, predicting
interactions, 125-128
structure-based methods, predicting
interactions, 131
yeast two-hybrid experiment, 130
Protein sequence alignment, 1-30
based on Hidden Markov Model,
20-24
graphical representation of, 23
publicly available, 24
biological databases, searching of,
24-28

database, nucleotide/protein
sequence, growth of, 25
evolution of proteins, 1-10
false negatives, 26
false positives, 26
future investigation, 28-29
gaps, 9
global alignment, 10-12, 15-16
local alignment, contrasted, 10
two protein sequences, 10-12,
15-16
homologous relationship detection,
importance of, 5-7
homology detection problems,
formulation of, 3
hopping, in sequence space, 7
indel penalties, 9-10
indels, 9
insulin
amino acid translation, 2
nucleotide sequence, 2
local alignment
global alignment, contrasted, 10
two protein sequences, 12-13,
15-16
multiple-sequence alignments, 13-19
multiple-sequence alignments,
SP-score, problems, 16
Needleman and Wunsch algorithm,
10-12, 15-16
orthologous gene, evolution of, 4
orthology, 4-5
pairwise alignment, evolutionarily
related sequences, 6
paralogous gene, evolution of, 4
paralogy, 4-5
phylogenetic trees, configuration of,
17-18
problem formulation, 3
profiles, 19-20
protein families, 5-7
protein function, evolution-based
inference, 3—4
query protein sequence, target
protein sequence, comparing,
24
reliability of present methods, 28-29
scoring scheme, 13
similarity matrices, 7-8
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Smith and Waterman algorithm,
12-13,15-16
speciation, concept of in biology, 1
SP-scores, 13
problems with, 13
UPMGA method, for building
phylogenetic trees, 18
Z-score, defined, 27
Protein—small molecule interaction,
141-148
distance geometry-based methods,
143-144
drug properties, 145
fragment-based, 142-143
future investigation, 145-146
oral availability, molecular weight,
correlation, 145
point-complementarity methods,
142-143
scoring functions, 141-142
search strategies, 141-142
virtual screening, 144
Proteomics techniques, in protein
function prediction, 62-65
PubMed, in protein function prediction,
49

Q

Query protein sequence, target protein
sequence, comparing, protein
sequence alignment, 24

R

Receiver-operating characteristic curve,
in protein feature prediction
from sequence, 38-39

Rhinovirus coat, bound portion,
structure, protein—protein
interaction, 123

S

Scientific publication mining, in protein
function prediction, 49

Secondary structure, neural network for
prediction of, in protein
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feature prediction from
sequence, 37
Self-avoiding paths, protein design and,
157
Sequence-based methods for predicting
protein—protein interaction,
125-128
Sequence difference, structural
divergence, relationship, 81
Serine, hydrophobicity scale use, 97
Serine proteases, nomenclature for, 167
Similarity-based annotation of proteins,
in protein function
prediction, 51-52
Similarity matrices in protein alignment,
7-8
Simulated annealing, in protein
conformational space search
in structure prediction, 77
Smith and Waterman algorithm, protein
sequence alignment, 12-13,
15-16
Sodium dodecyl sulfate gel, for
separation of proteins, 63
Speciation, concept of, in biology, 1
SP-scores, in protein sequence
alignment, 13
problems, 13, 16
SSAP algorithm, 110-111
Stochastic patterns, in protein feature
prediction from sequence,
33-37
Structure-based methods for predicting
protein—protein interactions,
131
Structure prediction, 69-88
energetic calculations, 69-74
Boltzmann equation, 72-76
energy calculation, 69-71
molecular mechanics, 71-72
potential of mean force, 72-74
evolution-based methods, 78-83
fold recognition, 83-84
fragment-based methods, 85
future investigation, 87
knowledge-based methods, 78
membrane protein, 94
natively unfolded proteins, 85-86
protein conformational space search,
74-78
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genetic algorithms, 77-78
molecular dynamics, 74-76
Monte Carlo methods, 76-77
simulated annealing, 77
sequence difference, structural
divergence, relationship, 81
Sulfolobus solfataricus protein, mRNA
translation, elongation
factor-1 structure, 40
Sum of pairs score. See SP-scores
Superposition, structural, in functional
site identification, 105-111
distance matrices, 108-111
root mean square deviation, 105-106

between two different proteins,
106-108

T

Target protein sequence, query protein
sequence, comparing, protein
sequence alignment, 24

Text mining, in protein function
prediction, 49-50

Three-dimensional structure,
membrane protein,
prediction, 99

Three-helix bundle, in protein design,
154

Threonine, hydrophobicity scale use, 97

Transcriptomics techniques, in protein
function prediction, 5262

Tryptophan, hydrophobicity scale use,
97

Tumor types, classification of, 61-62
Tyrosine, hydrophobicity scale use, 97

U

Unfolded proteins, natively unfolded, in
protein structure prediction,
85-86

UPMGA method of phylogenetic tree
building, 18

\%

Valine, hydrophobicity scale use, 97

Virtual screening in protein—small
molecule interaction study,
144

W

Waterman algorithm. See Smith and
Waterman algorithm

Wunsch algorithm. See Needleman and
Wunsch algorithm

Y

Yeast
RNA 3’-terminal phosphate cyclase
enzyme, discontinuous
domain, 41
two-hybrid experiment,
protein—protein interaction,
130

zZ

Z-score, defined, 27



COLOR FIGURE 1

An all-atom representation of a protein structure determined by X-ray crystallography. This protein is an enzyme, glycogen
phosphorylase from rabbit muscle, and its code in the Protein Data Bank is 1ABB. Atoms are colored according to a commonly
used scheme: carbon is black, nitrogen is blue, oxygen is red, and sulfur is yellow.

COLOR FIGURE 6

The backbone atoms of an a-helix and of two B-strands are depicted above. The strands, pairing via hydrogen bonds (dotted
lines) form a B-sheet.

COLOR FIGURE 8
A section of the structure of SH3, a small module found in many proteins, where it acts as an adapter to recruit other proteins.
The green hydrophobic amino acids are more frequent in the inside than on the outside of the molecule.



COLOR FIGURE 9

The structure of glycogen phosphorylase once again. This time helices and strands are shown as cylinders and arrows.

COLOR FIGURE 10
The active site of glycogen phosphorylase. The phosphorylation of serine 14, shown as a green ball, triggers a conformational
change in the protein.

COLOR FIGURE 11
The structure of the protease of the hepatitis C virus (PDB code: 1NS3).



Sequence 1 ALKTLNYDFDHLVEMESDAGLGNGGLGRLAACYLDSMATLAV

Sequence 2 VMKEFDLDLNEI| EQEPDPGLGNGGLGRLAACFLDSL ASLEV

Common residues K D E E D GLGNGGLGRLAAC LDS A L V

Sequence 1 ALKTLNYDFDHLVEMESDAGLGNGGLGRLAACYLDSMATLAV

Sequence 4 AYFSAEFGVHETLP| ¥YS- GGL- - - - - GVLAGDHVKSASDLNL

Common residues A s GL G LA s

Sequence 1 ALKTLNYDFDHLVEMESDAGLGNGGLGRLAACYL DSMATL AV
Sequence 2 VMKEFDLDLNEI | EQEPDPGLGNGGLGRLAACFL DSL ASLEV
Sequence 3 AL MDLGFKLEDLYDEERDAGLGNGGLGRLAAC- MDSL ATCNF
Sequence 4 AYF SAEFGVHETLPI ¥S- -~ -- - GGLGVLAGDHVKSASDLNL
Common residues GGLG LA k-]

The first panel shows a pairwise alignment between two evolutionarily related sequences. The two sequences are very similar
and, therefore, easy to align. However, their similarity is such that most of their residues are identical, and, therefore, a determi-
nation of which are really important for function is difficult. The second panel shows the alignment of two distantly related
sequences. This alignment is more useful in highlighting important residues but is more ambiguous. The third panel shows a
multiple alignment between four sequences. This alignment is a better compromise because it is more reliable, and the conserved
residues are easier to detect. The last part of the figure shows a useful graphical representation of a multiple-sequence alignment
as a stack of symbols, one stack for each position in the sequence. The height of symbols within the stack indicates the relative
frequency of each amino acid at that position.
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COLOR FIGURE 15

“Hopping” in sequence space. (a) A partial alignment of a protein sequence with a set of evolutionarily related proteins. (b) A
matrix in which the percentage of different amino acids between each pair of sequences is charted. If we make the simplifying
assumption that a difference lower than 0.4 is statistically significant, we can then conclude that sequences 2, 3, 7, 10, 11, 14, 15,
and 16 are likely to be evolutionarily related to sequence 1. On the other hand, because homology is transitive, proteins evolu-
tionarily related to sequence 2 are also related to sequence 1. We can highlight all sequences that are statistically more similar
than expected to sequence 2 and, thereby, add sequences 6, 8, 12, and 13 to the family.



COLOR FIGURE 28 COLOR FIGURE 29

The structure of the elongation factor-1 from Sulfolobus solfataricus, a A discontinuous domain in the RNA 3'-termi-
protein involved in mRNA translation. The three domains are connected nal phosphate cyclase enzyme from yeast.

by long stretches of amino acids, and some regions are not clearly pack-

ing against one or the other domain. Consequently, precisely defining

the domain boundaries within the regions colored in black is difficult.
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COLOR FIGURE 33

Scheme of transcriptomics experiments. cDNA molecules derived from different samples are treated with two different dyes,
mixed, and made to hybridize with a previously prepared microarray. If the cDNA complementary to that contained in one of
the microarray spots is present in both samples, the spot will be yellow. Red or green indicates that the molecule is only present
in one of the two samples, and black indicates that it is absent in both.
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COLOR FIGURE 36

Graphical representation of the level of expression of the first six genes shown in Figure 34.



COLOR FIGURE 51
Examples of integral membrane proteins: a channel protein, a porin, and the photoreaction center.

COLOR FIGURE 53
Comparison of the active sites of a protease and a lipase. The topology of the two proteins is very different (top), but the residues
in their active site can be almost perfectly superimposed.

COLOR FIGURE 55
Different superpositions of evolutionarily related proteins: both superpositions have an rmsd of about 3 A, but the one on the
right includes 64 residues and the other includes only 36.
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COLOR FIGURE 56
The distance matrix for an SH3 domain (extracted from the PDB entry 1RUN), the structure of which is shown on the right. Cells
containing distances lower than 8 A are filled. The secondary structure of the protein is shown as gray (helices) and black (strands)
bars in the first column and in the first row.

COLOR FIGURE 58
Hemoglobin is the oxygen transporter. The protein is o-helical and is formed by four chains, two o-chains and two B-chains
bound by noncovalent interactions. It contains one heme group per chain.

COLOR FIGURE 60
GroEL and GroES. The chains of GroEL are shown in different colors. GroES is the “cap” shown in black. The two images on
the left are the same protein seen from top and bottom, respectively.



COLOR FIGURE 61
The structure of a portion of the rhinovirus coat bound to an inhibitor (left) and to an antibody (right). The virus has an icosahedral
shape. Each of the triangular faces is formed by three protein chains shown in different colors.

COLOR FIGURE 62
The structure of a fragment of an antibody (PDB id: 3HFL) bound to an antigen. The contact region of the antibody is shown in
green dots, and that of the antigen (lysozyme) is shown by a solid blue surface.
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COLOR FIGURE 65

A simplified view of the rationale of a yeast two-hybrid experiment. The gal4 system is shown in (a). The gal4 protein, composed
of a DNA-binding domain and an activation domain, activates the transcription of the downstream gene. Two genes coding for
two interacting proteins are cloned and fused to each of these domains as shown in (b) and (c). The plasmids are transfected into
a yeast cell population. Only in cells that contain both fusion proteins, the spatial proximity between the DNA-binding domain
and activation domain is reconstituted, which leads to transcription of the downstream gene. If the original gene is replaced by a
gene essential for cell survival, only cells that contain both fusion proteins can survive. This system can, therefore, be used to
determine whether two proteins interact. Moreover, if the protein of interest is fused to one of the domains and a population of
proteins is fused to the other domain, the method allows the identification of which proteins in the population, if any, interact
with the protein of interest.



COLOR FIGURE 73
A TIM barrel (PDB id: 8TIM).

COLOR FIGURE 75
A disulfide bridge.
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COLOR FIGURE 80

Phage display experiments. An oligonucleotide cloned upstream of the gene for the pV protein of the bacteriophage (shown as
a gray oval) is exposed on the surface of the phage. If the cloned sequence is random, each phage will display a different peptide
sequence. The phage population can be made to interact with a target protein. Only phage that contain a peptide that binds to
the target protein will be retained, whereas the others can be washed away. The DNA sequence of the selected phage will directly
reveal the sequence of the interacting peptide. The pVIII protein, shown as a gray cylinder, is also suitable for displaying foreign
peptides on the surface.



