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Preface

What is this book good for?

Imagine you are a computer scientist working in the bioinformatics area. Pro-
bably you will be a member of a highly interdisciplinary team consisting of
biologists, chemists, mathematicians, computer scientists ranging from pro-
grammers to algorithm engineers, and eventually people from various further
fields. A major problem within such interdisciplinary teams is always to find
some common language, and, for each member of some discipline, to have
profound knowledge of what are the notions, basic concepts and goals of the
other participating disciplines, as well as of what they can contribute to the
solution of ones own problems. This does, of course, not mean that a computer
scientist should do the job of the biologist. Nevertheless, a computer scientist
should be able to understand what a biologist deals with. On the other hand,
the biologist should not do the computer scientists job, but should know what
computer science and algorithm engineering might contribute to the solution
of her/his problems, and also how problems should be stated in order for the
computer scientist to understand them.

This book primarily aims to show the potential that algorithm enginee-
ring offers for the solution of core bioinformatics problems. In this sense, it
is oriented both towards biologists indicating them what computer science
might contribute to the solution of application problems, as well as to ma-
thematicians and algorithm designers teaching them a couple of fundamental
paradigms for the analysis of the complexity of problems and, following this
analysis, for the design of optimal solution algorithms. Thus the goal of the
book is neither to present a more or less complete survey of bioinformatics
themes, nor to do programming or introduce the usage of bioinformatics tools
or bioinformatics databases. It is a book on fundamental algorithm design
principles that are over and over again applied in bioinformatics, with a clear
formal presentation what an algorithm engineer should know about each of
these principles (omitting lots of things that are more intended for a theoreti-
cally complete treatment of themes), and lots of case studies illustrating these
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principles. The selection of case studies covers many of the milestones in the
development of bioinformatics, such as genome sequencing, string alignment,
suffix tree usage, and many more, but also some more special themes that are
usually omitted in textbooks as “being too complicated”1, for example, the
quite complicated derivation of the formula computing the directed reversal
distance between two signed genomes, as well as a few themes that recently
attracted attention, for example, analysis of molecular networks or prediction
of RNA pseudoknots.

Book Overview

Chapter 1 starts with an informal presentation of core bioinformatics pro-
blems. From this, a computer scientist or mathematician can draw some first
impression of what sort of problems bioinformatics deals with. Most of the
presented problems are milestones of the development of bioinformatics, and
a few are highly relevant problems that have attracted attention over the past
few years.

Chapter 2 sheds some light on what sort of formal algorithmic problems
evolve from the biological problems presented in Chap. 1. Here, a biologist
may learn about the basic notions and concepts a computer scientist uses.
For some of the presented algorithmic problems, solutions are given already
in this chapter or at least some preparations for their solution in later chapters.

Chapter 3 presents one of the most useful algorithm design techniques in
bioinformatics (but also in many other applications areas), dynamic program-
ming which is based on the fundamental divide-and-conquer paradigm of re-
cursive problem solving. Although being conceptually rather simple and easy
to use there are nevertheless several things to be stated about this approach.
First, a dynamic programming solution, though being recursively described, is
not implemented recursively on a computer, but in an iterative manner, com-
putation proceeding from solutions for smaller instances to solutions of larger
instances. Only by this there is a chance to avoid the combinatorial explosion
that would be the consequence of a direct top-down recursive implementati-
on. What one has to deal with when applying dynamic programming is the
question of how larger problem instances may be reduced to smaller problem
instances, and of how solutions of these smaller problem instances may be
assembled into a solution of the larger instance. This is most often rather
canonical, but can sometimes be more sophisticated. There are a couple of
further “tricks” a user should know, as for example building-in of constraints
into the functions to be optimized, or avoidance of multiple evaluation of
identical terms within function calls by computing and storing such terms in
advance (before evaluation of recursive subterms starts) or at parallel to the
main recursion.

Having seen dynamic programming as a design paradigm that leads to
efficient and exact algorithms in a highly uniform manner (“cooking recipe”),
1 for the reader...?
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Chap. 4 contains much more sophisticated approaches. Here, we highlight
the role that intelligent data structures and particularly well-chosen repre-
sentation and visualization of problems play; a phenomenon that is widely
known from, for example, mathematics, algorithm design, and artificial in-
telligence. We illustrate the enormous impact of proper representations on
problem solution by four examples: the quite elegant data structure of PQ-
trees that almost trivializes the CONSECUTIVE ONES problem occurring
in DNA mapping; the powerful data structure of suffix trees with so many
applications in bioinformatics that one is tempted to state “no suffix trees, no
bioinformatics”; the astonishing way to make least common ancestor queries
in arbitrarily large trees cost almost nothing by a clever single preprocessing
of the considered tree; the usage of reality-desire diagrams as a visualization
tool making the quite long, technical, and hard to read proof of the beau-
tiful Hannenhalli/Pevzner formula for the reversal distance between signed
permutations transparent and quite straight-forward.

Having thus presented more involved approaches in Chap. 4 that are by
no means as uniform as the “cooking recipe” of dynamic programming from
Chap. 3, this should remind us that we have to be aware that bioinformatics
problems may be quite hard, as it is usually the case for most scientific fields
dealing with algorithmic problems. Chapter 5 now turns to these hard to
solve problems. The formal concept expressing hardness is the concept of
NP-completeness that was independently introduced by Cook [22] and Karp
[38] in 1971 who proved a first problem, satisfiability problem 3SAT for a
restricted class of Boolean formulas, to be NP-hard. Showing that further
problems are NP-hard is done by polynomially reducing a known NP-hard
problem to the problems under consideration. Thus, in principle we obtain
longer and longer reduction paths from initial problem 3SAT to further NP-
hard problems. In the presentation of NP-hard problems in the literature there
are often considerable gaps in reduction paths that a reader must accept.
We completely avoid any such gaps by presenting for each NP-hard problem
a complete reduction path from 3SAT to the problem under consideration.
Chap. 5 also presents several NP-hardness proofs that are quite sophisticated,
and thus seldom treated in textbooks but only cited from original papers.

Having learned now that we must be aware of an overwhelming number of
NP-hard problems in bioinformatics that, as complexity theory tells us, can-
not be efficiently solved by exact algorithms (unless P = NP), the question
arises which sort of relaxed solution concepts could lead to efficient and prac-
tically useful algorithms also for the case of NP-complete problems. Here the
idea of approximation algorithms is central. Such algorithms deliver solutions
that deviate from an optimal one up to a certain constant degree, for exam-
ple, they may guarantee that a computed solution is at most 10% more costly
than a cheapest solution would be. Approximation algorithms are widely ap-
plied in bioinformatics to solve NP-hard problems, in particular in Holy Grail
areas like sequencing, multiple alignment, and structure prediction. Chapter
6 presents a selection of approximation algorithms and makes clear that the
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idea of lower bounding the costs of a minimal solution, respectively of upper
bounding the costs of a maximal solution, is at the heart of approximation
algorithms.

Having so far presented mathematically well-founded approaches that lead
to exact algorithms or at least to approximation algorithms with a prov-
able guarantee on approximation factor, the wide field of heuristic approaches
should not be completely omitted. It is often those surprising heuristic ap-
proaches which lead to the practically most useful solutions, seldom with an
explanation why this is so and where the limits of such approaches are. In that
sense, the theme of heuristics falls somehow outside the scope of a formally
based book. This is reflected by the fact that we present in Chap. 7 only a
small number of widely applied metaheuristics, and give only brief introduc-
tions (tutorials) to them. Having worked through these tutorials, the reader
should be well prepared to read original papers or special textbooks on such
heuristics - and she/he is encouraged to do so.

The book ends with a bibliography guiding the reader to a deeper study
of matter.

Bibliographic Remarks

This book is clearly not intended to compete with the huge amount of ex-
cellent standard textbooks on bioinformatics, but to supplement these from
the standpoint of formal problem analysis and algorithm design. Particular
nice (to the personal taste of the author) introductions to the field of algo-
rithmic bioinformatics are Clote & Backofen [20], Gusfield [31] (extensive and
written in a formal and mathematically very concise manner), Pevzner [64]
(a really fun to read book), Setubal & Meidanis [68], and Waterman [78] (the
latter two books being truly classical bioinformatics textbooks). As almost
all of the material treated in this textbook may also be found in any of the-
se mentioned books, though sometimes these books do not present proofs or
formal things up to the finest details, we almost completely omit to cite the
books mentioned above (the alternative would be to steadily have citations
from these books within the text). Concerning fields as complexity theory, ap-
proximation algorithms, Hidden Markov models, neural networks, or genetic
algorithms we postpone recommendations for further readings to the end to
the corresponding chapters. We cite original papers where the corresponding
particular themes are first treated.

Errata and Links

There will be a steadily actualized errata website which can be found under
www.inf.uos.de/theo/public. Further detected errors are always welcome under
email address sper@informatik.uni-osnabrueck.de. A growing toolbox website is
also available under www.inf.uos.de/theo/public. Here we provide for various
demo tools that may serve the purpose to support understanding of algorithms
presented in the book.
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1

Core Bioinformatics Problems

Bioinformatics deals with the analysis, storage, manipulation, and interpre-
tation of macromolecules such as DNA, RNA, or proteins. Rapidly improved
techniques in biotechnology made a flood of analysed molecules accessible.
Growing insight into the inner mechanisms of life allows for a meaningful
interpretation of the information contained within these molecules and the
explanation of the roles they play in the game of life. Conversely, the analysis
of macromolecules further enhances our understanding of what is going on in
cells on a molecular level. Progress in computer science makes it possible to
deal with this giant flood of data in an efficient manner, with bioinformatics
problems often triggering the development of new methods and algorithms.

We start with the description of a couple of core problems from bioinfor-
matics, which will be thoroughly analyzed with respect to algorithmic solv-
ability in later chapters: DNA mapping and sequencing; string storage and
string manipulation; pattern matching and string alignment; multiple align-
ment; gene finding; genome comparison; RNA structure prediction; protein
structure prediction; regulatory network analysis.

1.1 DNA Mapping and Sequencing

1.1.1 Size of Human DNA

Human genome consists of approximately 3.3 billion (i.e. 3.300.000.000) base
pairs. These are organized into 23 chromosome pairs of size ranging up to
a few 100 millions of base pairs. Let us make the naive assumption that
we could read out bases of a human genome base by base with a rate of 1
second per base. Working 8 hours a day and 200 days a year it would take
us 3.300.000.000/60 × 60 × 8 × 200 = 572 years to analyse a single human
DNA molecule. It is well known that the Human Genome Project took a few
years from its very beginning to the presentation of a successfully sequenced
human DNA. Thus it appears that there must be a more efficient method
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than sequential base reading. Rapid sequencing of long DNA molecules is
based on massive parallel processing of fragments of DNA along with the
usage of computation and storage power of modern computers. Furthermore,
the development of clever algorithms for the assembly of sequenced fragments
to obtain (hopefully) their correct ordering on the original DNA molecule was
essential. To understand this approach and the underlying algorithms we must
take a short look into methods for the manipulation of DNA molecules used
in biology laboratories.

1.1.2 Copying DNA: Polymerase Chain Reaction (PCR)

Working with DNA in laboratories requires lots of copies of the respec-
tive molecule. Fortunately, there is a clever process called Polymerase Chain
Reaction which produces identical copies of a single DNA molecule in a cheap
and fast manner. This reaction makes use of the built-in ability of DNA to re-
produce itself. Under careful heating, double-stranded DNA splits into its two
strands. With the presence of a sufficient amount of bases and the polymerase
enzyme, each of the strands is rapidly complemented to a double-stranded
copy of the original molecule. Repeating this process leads to an exponential
increase in the number of identical copies, 2n after the nth iteration.

1.1.3 Hybridization and Microarrays

Often one wants to know whether a certain string S occurs on either strand
of some DNA molecule T . This can be answered by using again the basic
property of DNA to complement a single strand, either as a whole as in PCR,
or in parts in a process called hybridization. Hybridization of S to one of the
strands of T can be detected as follows. Fix S onto a glass plate, then flood
this glass plate with a solution of fluorescent (or radioactively marked) copies
of T . After a while, wash out whatever has not hybridized to S and detect
via fluorescence whether S has hybridized to a copy of T . Without major
effort there may be some 10.000 test strings spotted onto a glass plate and
simultaneously tested for being present on DNA string T . The testing works
by making a photo of fluorescent spots which then is examined by automated
methods. As an example, by working with lots of expressed mRNA strings
one can obtain a complete snapshot of what is going on in a cell at a certain
moment.

1.1.4 Cutting DNA into Fragments

Whenever only random fragments of DNA molecule copies are required, one
may apply ultrasonic or press DNA through spray valves to achieve arbitrary
cutting into fragments. There is another way of cutting DNA into fragments
which works in a clearly controlled way, namely the use of restriction enzymes.
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Each restriction enzyme cuts the DNA at every position where a certain short
pattern, called restriction site, is present on either side of the DNA. In order
to ensure that both strands are cut, it is required that wherever the restriction
site occurs on one strand, it also has to occur on the other strand at the same
position, but in reversed direction. Expressing this in string terminology, it
means that restriction sites must be complementary palindromes, e.g. the
string CAATTG. Assuming that the corresponding restriction enzyme cuts
between the two bases A, the resulting DNA strings possess so-called sticky
ends. In case that cutting is performed in the middle of the restriction sites,
i.e. between the second base A and first base T, separation leaves so-called
blunt ends (Fig. 1.1).

AAC GT T

A A CG T T

AAC GT T

A A CG T

C A A T T G

G T T A A C

T

AAC

G T

T T G

T A A C

(a) (b) 

Fig. 1.1. DNA cleavage: (a) with sticky ends; (b) with blunt ends

1.1.5 Prefix Cutting

A special way of cutting DNA is to produce every initial segment ending with
a fixed base, for example base A. This can be done by letting polymerase
complement one strand of T from left to right in a solution of the four bases
A, C, G, T and a suitable amount of slightly modified bases A that have the
property to stop further extension1. Using a suitable proportion of modified
bases A and sufficiently many copies of T one can guarantee with high con-
fidence that the extension process will be stopped indeed at every position
where the base A occurs.

1.1.6 Unique Markers

There are special DNA strings called sequence tagged sites (STS) which are
known to occur exactly once on chromosomes. Sequence tagged sites can be
1 In the following sections, take care to not confuse ‘string’ T with ‘base’ T.
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retrieved from STS databases. Usually, they are hundreds of bases long and
appear approximately every 100.000 bases on DNA. They are particularly
helpful for getting a first rough orientation within a DNA molecule. In some
sense they are comparable to unique landmarks in a foreign environment.

1.1.7 Measuring the Length of DNA Molecules

This is an easy task.

1.1.8 Sequencing Short DNA Molecules

DNA molecules up to a length of approximately 700 base pairs may be rapidly
and automatically sequenced in the laboratory employing a method called gel
electrophoresis. First, copies of the molecule under consideration are gener-
ated. Second, all of its prefixes ending with base A are constructed (as de-
scribed before in Sect. 1.1.5). These prefixes are put onto a gel with an electric
field applied to it. Charged prefixes are drawn through the gel, the shorter ones
for a longer distance than the longer ones. This procedure is repeated three
times, for each of the remaining bases C, G, and T. On the gel we obtain a
pattern as in the example shown in Fig. 1.2. From this one can readily extract
the sequence of bases in the DNA to be TTTGCCTAGGCTAT. Certainly,
the approach is limited by the ability of gels to clearly separate strings up to
a certain length. At the moment, this limit applies to strings of approximately
700 base pairs in length.

fragments ending with A 
fragments ending with C 

direction of movement in gel 

fragments ending with G 
fragments ending with T 

Fig. 1.2. Gel electrophoresis experiment.

1.1.9 Mapping Long DNA Molecules

Let us consider whole chromosomes, i.e. DNA molecules consisting of several
hundreds of millions of base pairs. Usage of sequence tagged sites may help to
give a first orientation of the structure of such molecules (see [37] for a map
of human genome based on sequence tagged sites). For this purpose, we first
produce long enough fragments of numerous copies of a chromosome T . Using
hybridization, we then determine which subset of a given selection of sequence
tagged sites appears on each fragment. Note that we do not obtain the correct
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ordering of sequence tagged sites on each fragment and we certainly have no
knowledge about the correct ordering of fragments on the chromosome T .
Nevertheless, in case that there are lots of fragment pairs sharing sufficiently
many sequence tagged sites, we may use this redundancy to reconstruct both
the correct ordering of sequence tagged sites on T and the correct ordering of
fragments on T . We will discuss this approach in greater detail in the following
chapters. At the moment we should state that this approach is expected to
work only for rather long DNA molecules since it is required that a sufficient
number of sequence tagged sites appears on the used fragments. For example,
imagine we had exactly one sequence tagged site on every fragment. This
obviously would give us no information at all on the true ordering of sequence
tagged sites. We illustrate the idea of mapping DNA via sequence tagged sites
through a very small example.

Assume we consider five sequence tagged sites 1, 2, 3, 4, 5 and six fragments
F1, F2, . . . , F6. Remember that neither the ordering of sequence tagged sites
nor the ordering of fragments must correspond to their true ordering on DNA.
Let sts(F ) be the set of sequence tagged sites appearing on fragment F .
Assume that we observe the following scenario: sts(F1) = {4} , sts(F2) =
{1, 5} , sts(F3) = {1, 3} , sts(F4) = {2, 4} , sts(F5) = {2} , sts(F6) = {1, 3, 5}.
This can be visualized nicely with a matrix having a black entry in row i and
column j in case that sts(Fi) contains the number j (Fig. 1.3 (a)). This matrix
clearly shows that we are not dealing with the true ordering of sequence tagged
sites as there are rows containing gaps between black entries. The true ordering
would not lead to rows with gaps between black entries. Rearranging sequence
tagged sites into the ordering 2, 4, 5, 1, 3 returns a matrix with consecutive
black entries within each row (Fig. 1.3 (b)). Thus this scenario could possibly
be the true ordering of sequence tagged sites. The question arises of how to
find such an ordering, or even more, how to obtain all such orderings. Finally,
arranging fragments according to their leftmost black entries leads to the
matrix in Fig. 1.3 (c). Here, we have a plausible ordering of fragments, too.

1.1.10 Mapping by Single Digestion

The general principle behind mapping can be described as follows: produce
sufficiently many copies of the DNA molecule T to be mapped and cut them
into fragments. Afterwards, take a fingerprint from each fragment. For map-
ping using sequence tagged sites the fingerprint of a fragment F is the set of
sequence tagged sites occurring on it. In case that fingerprints contain enough
information about a fragment and there is sufficient redundancy within fin-
gerprints we may try to infer the true ordering of fragments. One can utilize
simpler fingerprints for the reconstruction of fragment ordering than sets of
sequence tagged sites, e.g. the length of fragments. This is the basis for an
approach called single digest mapping. In this approach, a single restriction
enzyme E is used to cut the copies (“digest DNA”). The trick is to let enzyme
E act on the copies of T only for a limited time such that it cannot cut off
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1 2 3 4 5 12 34 5 1 2 3 4 5

(a) (b) (c)

Fig. 1.3. Sequence tagged sites 1, 2, 3, 4, 5 appearing on six fragments: (a) wrong or-
dering of STS’s; (b) possible correct ordering of STS’s; (c) possible correct ordering
of fragments

every copy at every occurrence of its restriction site. By carefully controlling
this experiment one can guarantee with high confidence that all segments of T
are returned between any two occurrences of the restriction site of E. Clearly
note that it is actually intended to obtain not only all segments between con-
secutive occurrences of the restriction site, but between any two occurrences.
It is obvious why segments between consecutive restriction sites alone are
no help for the reconstruction of fragment ordering: they do not involve any
overlapping of fragments, thus do not contain any redundancy.

As an example, assume we have occurrences O1 < O2 < O3 of the restric-
tion site of E on a DNA molecule of length n. We obtain as fragments the
segments between 1 and O1, 1 and O2, 1 and O3, 1 and n (for a fragment that
completely survived digestion), O1 and O2, O1 and O3, O1 and n, O2 and O3,
O2 and n, O3 and n. In contrast, a complete digestion would have led only
to segments between 1 and O1, O1 and O2, O2 and O3, O3 and n. For each
obtained segment its length is taken as fingerprint.

1.1.11 Mapping by Double Digestion

Now we let enzyme E act on the copies of DNA molecule T for a time sufficient
to obtain all segments between consecutive occurrences of the restriction site
of E and their lengths as fingerprints. As discussed above, this is no basis for
the reconstruction of the true ordering of fragments. Things get better if we
perform a second complete digestion using another enzyme F . This leads to
a complete cutting of T at all occurrences of the restriction site of F . Again
we determine all fragment lengths. Finally, in a third experiment we let both
enzymes simultaneously cut the DNA at their corresponding restriction sites.
As an example, consider the situation shown in Fig. 1.4 with cutting positions
of enzymes E and F and fragment lengths indicated.
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E

F

5 10 7 16

8 4 13 13

E + F 5 3 4 3 7 3 13

Fig. 1.4. Double digest experiment

Observe that the cutting positions in the third experiment result from com-
bining cutting positions from the first two experiments. We look at the three
lists of fragments lengths, sorted in ascending order: L(E) = (5, 7, 10, 16),
L(F ) = (4, 8, 13, 13), L(E + F ) = (3, 3, 3, 4, 5, 7, 13). We discover that several
list rearrangements can be ruled out as being impossible. This raises hope that
redundancy within the three lists may help to significantly reduce the number
of admissible rearrangements. On the other hand, one gets the strong feeling
that in order to find one or all admissible rearrangements, nothing better can
be done than enumerating all permutations of L(E) and L(F ) and see which
of them leads to a permutation of L(E + F ). In case that L(E) consists of
n numbers we have to enumerate n! many permutations, a number consider-
ably greater than exponential 2n. In the chapter on NP-hard problems we will
indeed show that mapping by double digestion cannot be done faster (unless
P = NP).

So far we have discussed three approaches for mapping long-sized DNA
molecules with sufficiently long fragments (of at least a few hundred thousand
base pairs). Now, we must finally think about methods to sequence DNA
strings of mid-sized length. Note that for such sequences we can neither apply
mapping by hybridization since sequence tagged sites may no longer be densely
present on fragments. Nor can we use gel electrophoresis since we have not
yet reached the required sequence length of at most 700 base pairs.

1.1.12 Mid-sized DNA Molecules: Shotgun Sequencing

Several copies of DNA molecule T are randomly cut into fragments of length
up to 700 base pairs each. Fragments are automatically sequenced in the labo-
ratory as described before (Sect. 1.1.8). Fragment overlaps can be expected in
case we utilize sufficiently many copies and fragments that are not too short.
These can then be used to reconstruct the string T with high confidence. As
an example, Fig. 1.5 shows a couple of fragments that result from three copies
of a DNA string.

A good strategy for the reconstruction of string T from fragments would
surely be the following “greedy” strategy. We search for overlaps with maxi-
mum length between any two fragments and then melt these two fragments
into a single string. Finally, this leads to a string S that contains every frag-
ment string as a substring. Such a string is called a superstring for the frag-
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A A AA AC CC G G G T G C T G

CG G GT AG C A T G C A G

C A C A G G C A G G G G G C

AA AC GT AC CGT CG T G C

Fig. 1.5. Fragmentation of three copies of DNA into 9 fragments

ments. However, the string S obtained by this strategy must not necessarily
correspond to the shortest possible superstring for the fragments. Here an al-
gorithmic problem arises, namely to determine a shortest common superstring
for the set of fragment strings. The reader may try to find out whether there
is a common superstring for our example fragment set that is shorter than 16
bases. This constitutes the core problem in DNA sequencing. Indeed, one of
the two competing attempts for sequencing a complete human genome was
exclusively based on this approach (Celera Genomics, see [75]), whereas the
other one also used DNA mapping as a first step (HUGO, see [21]).

From a complexity theory point of view, it will turn out that the compu-
tation of a shortest common superstring is a rather hard problem to solve.
This will be shown in a later chapter. To demonstrate the dimension of this
task in a real life situation, imagine that 10 copies of a human genome of
size 3.3 billion base pairs are cut into fragments. Let us roughly estimate
the amount of space required to store these fragments. For example, imag-
ine DNA was printed in book form. Think of books of size 20 cm × 30 cm ×
5 cm with 500 pages, 50 lines per page, and 80 characters per line. We require
33.000.000.000/500 × 50 × 80 = 16.500 books. This leads to space require-
ments of about 50 m3, which corresponds to a box of size almost 4 m in each
dimension filled with fragments. Enjoy this task of sorting fragments.

1.2 String Storage and Pattern Matching

1.2.1 Complexity of Pattern Matching in Bioinformatics

Working with strings in bioinformatics, in particular with DNA strings, we
must be aware of the fact that huge numbers of strings have to be stored and
processed, each of tremendous size. As a first example, consider the task of
finding the maximum overlap (Fig. 1.6) between any two pairs of strings from a
list consisting of a number of f = 1000 strings of length n = 100.000 each. This
example drastically illustrates the complexity. There are f2 pairs of strings
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to be treated. To compute the maximum overlap between any two strings we
could naively test, for each k between 0 and n, by using k character compar-
isons whether there is a suffix-prefix match of length k in both strings. The
maximum k with a suffix-prefix match of length k is the desired overlap length.
For each string pair we thus have to perform 1 + 2 + . . . + n = n(n + 1)/2
character comparisons. Taking the actual sizes from our example, we are con-
fronted with 10.000.100.000.000.000/2 = 5 × 1015 character comparisons.

overlap

prefix  overlap 

suffix 

Fig. 1.6. Overlaps, prefixes, suffixes

1.2.2 First Look at Suffix Trees

We will later demonstrate that by using a very clever way to store strings
the complexity of computing all overlaps between any two of the f fragments
with length n can be reduced to the order of fn + f2 steps (Chap. 5). This
corresponds to O(100.000.000 + 1.000.000) = O(108) for our example. The
data structure that supports this task is called suffix tree. Given a string T of
length n, its suffix tree organizes and stores all suffixes of T in a particularly
efficient and intelligent manner. In some sense, it is comparable to an index of
string T seen as a text. An index of text T contains links to all occurrences of
important keywords, lexicographically and, to a certain degree, hierarchically
ordered. Part of an index might contain the following entries:

pattern
matching 211, 345, 346
recognition 33, 37, 88

This tells us that substrings ‘pattern matching’ and ‘pattern recognition’ occur
on pages 211, 345, 346 and pages 33, 37, 88, respectively. Both share the
prefix ‘pattern’, which leads to the tree-like organization. Of course, an index
contains only a couple of important keywords occurring in text T . Contrary
to this, a suffix tree contains all suffixes of text T and, for each such suffix,
information about its starting position in text T . Searching for substrings is
implicitly supported by a suffix tree, since arbitrary substrings of T can be
found as prefixes of suffixes.

We take as an example the suffix tree of text T = ‘ananas’ (Fig. 1.7). For
ease of presentation trees are drawn from left (root) to right (leaves). One can
identify every suffix of T as the path label of a path from the root down to
some leaf. Don’t worry about links occurring in the suffix tree at the moment.
Their role will be explained in Chap. 4.
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As the suffix tree of text T with length n contains n suffixes of T it is
no shorter than T itself. There could even be the problem that representing
suffixes with lengths ranging from 1 to n requires a tree of size O(n2). We
will later see that this is not the case. Still, the problem will remain how to
efficiently construct suffix trees. Despite of being a conceptually simple and
easy to use data structure, naive approaches lead to complexities of O(n2)
or even O(n3). Thus, the main focus in discussing suffix trees lies on efficient
construction in time O(n), whereas usage of suffix trees for lots of applications
is rather straightforward.

‚1’a na nas

‚3’s

‚5’s

‚2’na nas

‚4’

root

s

s ‚6’

Fig. 1.7. Suffix tree for string ‘ananas’

1.2.3 A Couple of Suffix Tree Applications

We mention a few applications of suffix trees together with a comparison of
running times for a naive approach and a suffix tree approach. For each of
the running times the reader may insert actual values for the parameters and
observe how drastically running times improve:

• Find all occurrences of k patterns, each of length m, in a text of length n.
A “very” naive approach has complexity O(kmn), the well-known Knuth-
Morris-Pratt algorithm that uses a preprocessing of the k patterns has
O(k(m + n)) complexity, a suffix tree approach that uses a preprocessing
of the text slightly improves complexity to O(n + km).

• Find all overlaps between any two pairs of k strings, each of length n. The
naive approach has complexity O(k2n2), the suffix tree approach consid-
erably improves this to O(kn + k2).

• For two strings of length n compute their longest common substring. The
naive approach requires O(n3) time - give an explanation for this running
time! Knuth conjectured that no linear time algorithm would be possible
[44]. However, a suffix tree approach drastically reduces running time to
O(n) under proper (natural) measuring of complexity.
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• Given the lower bound α and upper bound β determine all substrings with
at least α and at most β occurrences in text T . Note that by properly
setting α and β, this may return the interesting substrings occurring in T .
We assume that strings with only a few occurrences are not characteristic,
thus not interesting, for a text. Moreover, strings with overwhelmingly
many occurrences are not interesting either since these are words like ‘and’
or ‘to’ which surely occur within any natural language text in abundance.
Think of a naive approach and estimate complexity. It will surely not be
linear, whereas a suffix tree approach can achieve O(n) complexity.

Concluding this brief introduction of suffix trees we can state that they
are a main driving force within bioinformatics tools: “no suffix trees, no
bioinformatics.”

1.3 String Alignment

There are at least three reasons why exact string matching applications as
discussed in the section before are of secondary interest in bioinformatics.
Consider a long sequenced string of DNA. First, we have to expect that mea-
surements obtained in the laboratory are reliable only up to a certain degree.
Second, even the process of typing data into computer storage must be seen as
error prone up to a certain degree. Third, and of great importance is that na-
ture itself is a source of non-exact matching between e.g. homologous strings
in a sense that evolution may mutate bases, insert fresh bases, or delete ex-
isting bases. Thus it might be the case that we should not mainly look at the
following three strings with respect to dissimilarity, but try to “softly match”
them as best as we can.

T T A T G C A T A C C T C A T G G G T A C T
T A C G C G T A C C A T G T C A T T
T T A C G C G T A C T C A T G G T A C T T

This poses several questions. First question is what matching of strings might
mean in case that not only exact coincidence of characters counts. This will
lead us to the notion of a string alignment. For example, an alignment for the
first and third string might look as follows.

T T A T G C A T A C – C – T C A T G G G T A C T
T T A C G C G T A C T C A T G G T A C – T – – T

Here we have introduced as few spacing symbols as possible in order to let
as many characters as possible in both strings appear at the same position.
Note that the introduction of a spacing symbol in one of the strings might be
interpreted as a deletion of a formerly present character from this string, but
also as an insertion of a fresh character into the other string.

Second question is of how to exactly measure the quality of an alignment.
Here we must rely on a convention on how strongly to reward identities be-
tween characters and how to score mutations, insertions, and deletions. One
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usual way for scoring is to look at valid aligned sequences obtained from bio-
logical insight or plausibility and count the following frequencies for each pair
(x, y) of characters or spacing symbol:

• pxy = frequency of appearance of aligned pair (x, y)
• px = frequency of appearance of x

Now the relative frequency pxy of an appearance of pair (x, y) is set into
relation to the probability of randomly aligning x with y measured by product
px py. Quotient pxy/pxpy expresses how strongly nature attempts to align x
with y, provided that x and y are sufficiently present. Note that a high value of
pxy combined with an overwhelming presence of characters x and y (therefore
high values of px and py) may indicate muss less evolutionary pressure to align
x with y compared to a moderate value pxy in combination with small values
px and py. Thus the quotient defined above is indeed the correct measure of
evolutionary preference for an alignment of x with y. For numerical reasons
one uses logarithms. Thus we obtain the following standard form of a scoring
function:

σ(x, y) = log
pxy

px py
(1.1)

The closer quotient pxy/pxpy is to zero, the less probable it becomes to find
x aligned with y in regions with x and y being sufficiently present, and the
stronger pair (x, y) gets rewarded with a negative value. This is guidance
for alignment algorithms to avoid aligning x with y. Of course, a complete
alignment score consists of the sum of scores of its aligned character or spacing
symbol pairs. It can be easily shown that under mild and natural conditions
on a scoring function, they can always be written in the form above (1.1) -
at least after rescaling with a positive constant factor that does not influence
the quality of a scoring function. Of course, it is a delicate task to find enough
biologically reliable alignments as a basis for a plausible scoring function. As
an example, Fig. 1.8 shows the famous BLOSUM50 matrix for 20 amino acids
(each denoted by its 1-letter code). The spacing symbol does not occur within
this matrix as gaps are usually scored block-wise by a separate function, for
example by an affine function of block length.

Third question, finally, is how to efficiently compute alignments with maxi-
mum score. Simply enumerating alignments is not a good idea, since for strings
S and T of size O(n) there exist O(2n) ways to introduce spacing symbols
in either one of the strings. Also, plain visual inspection of strings does not
help, not even for relatively short strings like the ones shown above: choose
some natural scoring function and try to get a feeling whether the first string
better aligns to the second or the third one. Therefore, we must develop ef-
ficient algorithms that compute optimal alignments. Chapter 3 on dynamic
programming will show such algorithms.
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    A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V 

A    5 -2 -1 -2 -1 -1 -1  0 -2 -1 -2 -1 -1 -3 -1  1  0 -3 -2  0 
R  -2  7 -1 -2 -4  1  0 -3  0 -4 -3  3 -2 -3 -3 -1 -1 -3 -1 -3 
N  -1 -1  7  2 -2  0  0  0  1 -3 -4  0 -2 -4 -2  1  0 -4 -2 -3 
D  -2 -2  2  8 -4  0  2 -1 -1 -4 -4 -1 -4 -5 -1  0 -1 -5 -3 -4 
C  -1 -4 -2 -4 13 -3 -3 -3 -3 -2 -2 -3 -2 -2 -4 -1 -1 -5 -3 -1 
Q  -1  1  0  0 -3  7  2 -2  1 -3 -2  2  0 -4 -1  0 -1 -1 -1 -3 
E  -1  0  0  2 -3  2  6 -3  0 -4 -3  1 -2 -3 -1 -1 -1 -3 -2 -3 
G    0 -3  0 -1 -3 -2 -3  8 -2 -4 -4 -2 -3 -4 -2  0 -2 -3 -3 -4 
H  -2  0  1 -1 -3  1  0 -2 10 -4 -3  0 -1 -1 -2 -1 -2 -3  2 -4 
I  -1 -4 -3 -4 -2 -3 -4 -4 -4  5  2 -3  2  0 -3 -3 -1 -3 -1  4 
L  -2 -3 -4 -4 -2 -2 -3 -4 -3  2  5 -3  3  1 -4 -3 -1 -2 -1  1 
K  -1  3  0 -1 -3  2  1 -2  0 -3 -3  6 -2 -4 -1  0 -1 -3 -2 -3 
M  -1 -2 -2 -4 -2  0 -2 -3 -1  2  3 -2  7  0 -3 -2 -1 -1  0  1 
F  -3 -3 -4 -5 -2 -4 -3 -4 -1  0  1 -4  0  8 -4 -3 -2  1  4 -1 
P  -1 -3 -2 -1 -4 -1 -1 -2 -2 -3 -4 -1 -3 -4 10 -1 -1 -4 -3 -3 
S    1 -1  1  0 -1  0 -1  0 -1 -3 -3  0 -2 -3 -1  5  2 -4 -2 -2 
T    0 -1  0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1  2  5 -3 -2  0 
W  -3 -3 -4 -5 -5 -1 -3 -3 -3 -3 -2 -3 -1  1 -4 -4 -3 15  2 -3 
Y  -2 -1 -2 -3 -3 -1 -2 -3  2 -1 -1 -2  0  4 -3 -2 -2  2  8 -1 
V    0 -3 -3 -4 -1 -3 -3 -4 -4  4  1 -3  1 -1 -3 -2  0 -3 -1  5

Fig. 1.8. Blosum50 matrix

1.4 Multiple Alignment

Taking a protein family as an example, i.e. a set of related strings of amino
acids, a multiple alignment (see [16] for general information on multiple align-
ment in the context of bioinformatics) might look as in Fig. 1.9. Note that the
primary goal is not to obtain maximum similarity between pairs of strings,
but to identify subsections of the proteins that are strongly conserved within
all strings. Usually, such highly conserved subsections are those that define
the biological function of the proteins within the family. Conversely, the re-
maining sections are those that have experienced variation during evolution
without leading to an extinction of the species since they are not essential
for biological function. For example, observe a strongly conserved ‘CG’ pat-
tern at positions 7 and 8 of the alignment, as well as a strongly conserved
‘PNNLCCS’ pattern at positions 18 to 24. With a fixed scoring function, a
multiple alignment may be scored by summing up all scores of pairwise com-
binations of aligned strings. This way of scoring a multiple alignment is called
Sum-of-Pairs scoring (SP-score). It is not as obvious as for the case of pair-
wise alignment that this is a reasonable way for scoring a multiple alignment.
There are arguments indicating that SP-scoring is, in some sense, doubtful.

From a complexity theory point of view we will later show that finding a
multiple alignment with maximum SP-score is NP-hard, thus there is great
evidence that it is not solvable by an efficient algorithm. An alternative view
to multiple alignments is to say that a multiple alignment defines some sort
of consensus string , i.e. a string most similar to all aligned strings. Defining a
consensus string may be done by different approaches, which nevertheless will
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VAIAEQCGRQAGGKLC-PNNLCCSQWGWCGSTDEYCSPDHNCQSN-CK-
TAHAQRCGEQGSNMEC-PNNLCCSQYGYCGMGGDYCGKG--CQNGACYT
ATNAQTCGKQNDGMIC-PHNLCCSQFGYCGLGRDYCGTG--CQSGACCS
LVSAQRCGSQGGGGTC-PALWCCSIWGWCGDSEPYCGRT--CENK-CWS
TAQAQRCGEQGSNMEC-PNNLCCSQYGYCGMGGDYCGKG--CQNGACWT
TAQAQRCGEQGSNMEC-PNNLCCSQYGYCGMGGDYCGKG--CQNGACWT
----QRCGEQGSGMEC-PNNLCCSQYGYCGMGGDYCGKG--CQNGACWT
TVKSQNCG-------CAP-NLCCSQFGYCGSTDAYCGTG--CRSGPCRS
SAE--QCGRQAGDALC-PGGLCCSSYGWCGTTVDYCGIG--CQSQ-CDG
PAAAQNCG-------CQP-NFCCSKFGYCGTTDAYCGDG--CQSGPCRS
PAAAQNCG-------CQP-NVCCSKFGYCGTTDEYCGDG--CQSGPCRS
SAE--QCGQQAGDALC-PGGLCCSSYGWCGTTADYCGDG--CQSQ-CDG
SAE--QCGRQAGDALC-PGGLCCSFYGWCGTTVDYCGDG--CQSQ-CDG
----EQCGRQAGGKLC-PNNLCCSQYGWCGSSDDYCSPSKNCQSN-CK-

Fig. 1.9. Example multiple alignment exhibiting several strongly conserved subsec-
tions

be later shown to be equivalent. A first attempt is to look at an alignment
column by column and take for each column the character (or spacing symbol)
that has maximum summed score with all characters in the considered column.
In the example above, such a consensus line would probably be the string

TAAAQCGEQGAGGLC–PNNLCCSQYGYCTTDDCG–CQSACWT.

By deleting spacing symbols we obtain a string with maximum summed align-
ment score with all strings occurring in the lines of the alignment. Such a most
similar string is known in algorithm theory as Steiner string. Conversely, hav-
ing a Steiner string S for a set of strings S1, . . . , Sk we will later show how to
construct, guided by S, a multiple alignment T1, . . . , Tk for S1, . . . , Sk whose
consensus line coincides with S after deletion of all its spacing symbols. Thus
we observe that constructing a multiple alignment with maximum score con-
sensus line for strings S1, . . . , Sk is equivalent to finding a common ancestor
for strings S1, . . . , Sk with maximum similarity to all of the strings.

multiple alignment ↔ star-like phylogenetic tree with common ancestor

The tree structure associated with a Steiner string (though only a trivial star-
like tree is shown in Fig. 1.10) suggests the following generalization. Assume
we had knowledge about various ancestors that occurred during evolution
from a common root towards leaves S1, . . . , Sk. As an example consider the
tree structure shown in Fig. 1.11.

Now it makes sense to ask for an assignment of strings to the four ancestor
nodes a, b, c, d in the diagram such that the sum of all optimum alignment
scores between any two strings connected by a link is maximized. This problem
is called phylogenetic alignment problem in the bioinformatics literature; in
algorithm theory it is known as Steiner tree problem. All of the problems
treated here, i.e. multiple alignment with optimum consensus line or Steiner
string and Steiner tree problems, do not allow efficient algorithms (unless P =
NP). Two relaxations behave better. First, there are efficient algorithms that
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Fig. 1.10. (a) Multiple alignment with consensus line T ; (b) Steiner string S and
star-like tree
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Fig. 1.11. Steiner tree/Phylogenetic alignment

guarantee to deliver solutions which are at least half as good as the optimal
solution. Such methods are called 2-approximation algorithms [3]. Second,
by relaxing the notion of a multiple alignment to the notion of a profile of
an alignment, i.e. a distribution of frequencies for all characters within each
column of an alignment, there exist efficient algorithms that optimally align
a string to already obtained profiles (for example at node b), or an already
obtained profile to another one (that happens at node d of Fig. 1.11).

So far we have primarily discussed themes that look at DNA strings, that
is, the book of life as a sequence of characters. Books, of course, are struc-
tured into chapters, sections, sentences, and words. Guided by this analogy
we should ask what might be the words in the book of life. This leads us to the
discussion of algorithmic problems in the context of genes, i.e. protein-coding
subsections of DNA.

1.5 Gene Detection

Having sequenced DNA strings the next important task is to identify func-
tional units, primarily genes. Due to lack of knowledge of how to precisely
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recognize exons within a gene, or promoter regions of genes, gene detecting
systems do not work by fixed deterministic rules, but are usually based on
methods of statistics or adaptive systems such as neural networks. Such sys-
tems may automatically learn (more or less) good rules characterizing exons
from a sufficient number of known exons. We will discuss such methods in the
chapter on adaptive approaches. Here we concentrate on a different approach,
which utilizes that biology knows about several indications for a substring to
be part of an exon within a gene. For example, absence of a STOP codon
within at least one of the three reading frames is required for an exon. Introns
between exons exhibit the GT-AG motif at the beginning and end. Exons
show a considerably higher frequency of CpG pairs than non-exon regions do.
Using such indications (and further ones) we may predict exons with high
sensitivity (all true exons are predicted to be exons), however with low speci-
ficity (we must tolerate exon prediction for strings that are not true exons).
Nevertheless, such a sensitive list of exon candidates may be used to compu-
tationally assemble a selection of non-overlapping candidate exons with best
alignment score to a protein string T that is hypothesized to be the one ex-
pressed by the gene under consideration. By letting T range over a database
of protein strings one may find the one that can best be assembled by the
candidate exons. This situation is denoted in Fig. 1.12. A selection of non-
overlapping exon candidates is indicated by black shaded regions. As with all
computational tasks discussed so far, a naive approach is not feasible: for a
candidate list consisting of b strings one has to search through 2b many selec-
tions of candidates to find the one whose concatenation optimally aligns to
string T . A dynamic programming approach will perform considerably better,
in particular run in time linear in the number b of candidate exons.

G

candidate
exons

T

*

Fig. 1.12. A selection of non-overlapping candidate exons intended to best assemble
target string T

1.6 Gene Comparison

Having identified genes in DNA strings of various organisms a comparison of
DNA strings on basis of the ordering of genes (assuming that two organisms
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are equipped with the same genes) instead of single bases may be appropriate.
This is interesting, for example, in case organisms exhibit very few point
mutations and experience no loss or gain of genes at all. Variations of gene
ordering may be caused by reorganisation events in the recombination process.
The simplest such event, directed reversal , happens whenever a substring of
DNA is build into DNA in a 180◦ rotated order (Fig. 1.13). Note that genes
change their strand, whereas taking the mirror image of the strand does not
make sense since it violates the chemical orientation of strands.

5’ 3’

3’ 5’

5’ 3’

3’ 5’

5’ 3’

3’ 5’

5’ 3’

3’ 5’

Fig. 1.13. Directed Reversal

Besides directed rearrangements within single chromosomes there are fur-
ther known reorganisation events, e.g. translocations (treated in [40]) of genes
or fusion and fission between two chromosomes. Assuming a constant (and
known) rate of occurrence for such events, the minimum number of events
required to transform the genome of one species into the genome of another
one, the so-called reversal distance, would allow an estimation of how distant
in evolution two species are. At first sight, the determination of reversal dis-
tance between two species with n genes each is not an easy task. Of course,
there is a trivial upper bound on reversal distance, namely 2n. This can be
illustrated as follows: the first gene of the target genome can be put from
its position within the initial genome to its correct place with at most two
reversals: the first one bringing it to the front of the genome, the second one
eventually moving it from one strand to the complementary strand. Thus, 2n
reversals are sufficient to transform an initial order of n genes into a target
order. Theoretically, we might try all reversal sequences of length at most 2n
in order to find the shortest one that transforms initial order into target order.
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Since a single reversal is characterized by two gene positions (position of the
leftmost and rightmost gene within the reversed area), for every reversal step
we have to try O(n2) many choices. In summary, O((n2)2n) = O(n4n) reversal
sequences must be explored. Taking as a realistic example mitochondrial DNA
with 36 genes, e.g. in case of man and mouse, a search space of size O(36144)
has to be explored. This is approximately O(10220), a number that is con-
siderably greater than the estimated number of 1080 atoms in the universe.
Astonishingly, Hannenhalli & Pevzner found an efficient algorithm for com-
puting the reversal distance that works in time O(n2) (see [33] and [32]). Even
more astonishingly, if we discard the information that genes belong to one of
the complementary strands of DNA, the corresponding undirected reversal
distance problem that appears, at first sight, a little bit simpler than directed
reversal distance problem described above, turns out to be NP-hard, thus is
probably not efficiently solvable. This is quite a nice example of two rather
similar problems at the borderline between efficiently solvable and probably
not efficiently solvable which drastically demonstrates that only a solid theo-
retical competence offers a chance of obtaining valid estimations of problem
complexity and, on this basis, optimal algorithms.

1.7 RNA Structure Prediction

Contrary to DNA, which in the cycle of life plays a passive role as data storage
medium, RNA also exhibits active roles as an enzyme. For this, the ability of
RNA to fold into particular conformations plays a crucial role. As an example,
a cloverleaf-like structure is typical for tRNA, which acts as an intermediary
between codons of mRNA and corresponding amino acids according to the
genetic code. Folding of single-stranded RNA is governed by complementary
bases A-U and C-G, which form stable base pairs via hydrogen bonding. These
two base combinations are often referred to as Watson-Crick pairs2. Base pairs
are the foundation for secondary structure formation in single-stranded RNA.
Domains of base pairs form characteristic structure elements, which are called
stems or helical regions, hairpin loops, bulges, internal loops, and multiloops,
all shown in an artificial example in Fig. 1.14.

In our example, structure elements do not interleave, thus exist either side
by side or nested. Such “context-free” folds allow simple prediction algorithms
based on a local optimization strategy. They all use dynamic programming
and either attempt to maximize the number of base pairs or minimize the so-
called free energy of a fold. Interleaving structure elements are known under
the name of pseudoknots (Fig. 1.15). Pseudoknots play an important role
in nature but require a much more sophisticated attempt to reliably predict
them.

2 Additional base pairs are often considered in the literature, e.g. the so-called
Wobble pair G-U.
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Fig. 1.14. Typical structures in a pseudoknot-free fold. Structure elements shown
are stems (S), hairpin loops (H), bulges (B), internal loops (I), and multiloops (M)
(covalent bonds are indicated by solid lines, hydrogen bonds by shaded areas)

Fig. 1.15. Pseudoknot structure

1.8 Protein Structure Prediction

1.8.1 Holy Grail Protein Structure Prediction

Besides DNA as information storage medium and RNA with its various roles
in transcription and translation, as well as enzymatic roles, there exists a
third important group of macromolecules, namely proteins. As with RNA,
functionality of a protein is mainly defined by its 3D fold. However, other than
with RNA, protein folding is driven by a greater diversity of forces than mere
hydrogen bonding. Usually much longer than RNA molecules, a greater variety
and complexity of folds is observed for proteins. Predicting folds is thus much
more difficult for proteins than for RNA and requires more advanced methods
(see [23]). Due to its importance as well as its difficulties, obtaining good
protein structure prediction methods thus counts as one of the Holy Grails of
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bioinformatics. To get an overview of the enormous variability of protein 3D
structures the reader may try out protein structure presentation tools such as
‘Protein Explorer’ or others (use the internet to find an appropriate protein
explorer together with instructions for installation and usage). Looking at
proteins one observes typical substructures that take the form of helix-like
folds (alpha-helix regions), sheet-like folds (beta-sheet regions), and unfolded
regions between them (loop regions). Determining the exact 3D structure of
a protein (its tertiary structure) in the laboratory may be done by X-ray
crystallography. Drawbacks of this method are high costs, mainly due to time-
consuming procedures of producing proteins in crystalline form and difficulties
to crystallize some proteins at all. Thus one asks for computational methods
for the prediction of tertiary structures. There are a lot of methods that differ
in terms of the granularity of what they attempt to predict. Modelling all
known forces that influence the process of protein folding one might try to
simulate the complete folding of a protein with a computer starting with
the sequence of amino acids (its primary structure). Due to the enormous
complexity of the process this succeeded, up to date, only for very short time
intervals of the folding process.

1.8.2 Secondary Structure

Another attempt on the way towards determining the tertiary structure of a
protein is to first predict its secondary structure, i.e. its string of labels indi-
cating to which of the classes ‘alpha-helix’, ‘beta-sheet’, or ‘loop’ every amino
acid belongs. This is a good application area for adaptive systems such as neu-
ral networks since there is limited analytic knowledge on how folding works,
whereas there are lots of proteins with well-known secondary structure. There
are indeed neural network systems that attempt to predict the correct label
of an amino acid in the middle of a window of limited width 2k + 1 of known
amino acids. This may be done with a rather simple feedforward architecture
that uses 2k + 1 groups of 20 input neurons to encode 2k + 1 amino acids
(each of the 20 amino acids is encoded by 20 neurons in a unary manner), a
hidden layer of suitably many neurons, and three output neurons that encode
in unary manner the three classes ‘alpha-helix’, ‘beta-sheet’ and ‘loop’. Train-
ing it with sufficiently many input windows for which the correct class of its
middle amino acid is known usually gives goods results for unknown windows.
This approach requires a sufficient number of training instances whose correct
labelling is already known (for example from X-ray crystallography), thus it
may be called a comparative approach.

1.8.3 Tertiary Structure Prediction with Contact Maps

Behind comparative approaches lies the assumption that sequences with high
similarity as primary sequences also exhibit high similarity on higher levels of
description, up to the stage of biological function. An interesting comparative
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approach more closely related to tertiary structure is to predict the so-called
contact map of an amino acid sequence. Here, for any two of its amino acids
one wants to predict whether they are close in the native fold of the protein.
Thus, for an amino acid sequence of length n, its contact map is an n × n
binary matrix. The entries of the contact map of a protein up to a certain
confidence allow a rather good reconstruction of its 3D structure. Also, pre-
diction of contact maps with neural networks is easier and much better suited
than determination of the exact geometry of a fold is. Again, neural net-
works are applied to predict each entry of this matrix. As input information
one can make good usage of secondary structure information, as well as of
correlations in mutational events using databases of homologous proteins at
positions where contact/non-contact has to be predicted. Details are described
in a later chapter.

1.8.4 HP-Model Approach

A related method, though not being a comparative approach but a de novo
prediction of contacts, is the so-called HP-model approach. Here, amino
acids are divided into hydrophobic and polar (hydrophilic) ones. Then, a
fold of the protein into a square or cubic grid is searched that exhibits
many non-consecutive pairs of hydrophobic amino acids in direct contact.
Behind this is the imagination that in an aqueous environment hydropho-
bic amino acids tend to agglomerate in order to be as far away from water
molecules, which is the main driving force in protein folding. For the sequence
HHPHPHHPHPHHPHHHPPH, as an example, the left hand fold has 4 non-
consecutive H-H pairs, whereas the right hand one has 6 non-consecutive H-H-
pairs (Fig. 1.16). The question arises which is the maximum possible number
of H-H-pairs in a fold. It is known that this problem is NP-hard thus prob-
ably not efficiently solvable. A well-known efficient approximation algorithm
exists which determines the maximum number of H-H-pairs (as well as a fold
realizing this number) up to a constant factor [35].

Fig. 1.16. Two HP-model folds with hydrophobic nodes in black and polar nodes
in white
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1.8.5 Protein Threading

A completely different approach is followed in protein threading . Here, one
tries to map the amino acids of a novel protein to the helix, sheet, and loop
structures of a protein with known 3D structure such that it results in maxi-
mum similarity within helix and sheet regions, also called core segments. The
idea behind this approach is that core segments, which determine the biolog-
ical function of homologous proteins, exhibit much less mutational changes
than loop segments. Thus, whenever a novel protein can be nicely threaded
through the core segments of a known protein there are good reasons to assume
that both proteins exhibit similar 3D structures. Depending on how similarity
of core segments is measured, a solvable or an NP-hard problem arises. Let
S = S(1)S(2) . . . S(n) be the primary structure of a novel protein. Let a ref-
erence protein T = T (1)T (2) . . . T (k) be given with known tertiary structure
consisting of a sequence of core segments (alpha or beta) C1, . . . , Cm of fixed
lengths c1, . . . , cm that are separated by loop segments L0, L1, . . . , Lm−1, Lm

of lengths l0, l1, . . . , lm−1, lm (Fig. 1.17). Thus, reference protein T is seg-
mented into T = L0C1L1C2 . . . CmLm.

L2

Lm

L1

L0

C2C C C1 m3

Fig. 1.17. Loop-core structure of reference protein T

We do not assume any knowledge about the exact nature of core segments.
The only assumption made is that lengths of core segments are conserved in
evolution whereas mutational events are allowed. Concerning loop segments
we assume that their lengths are variable to a certain degree, which is ex-
pressed by an interval [λi . . . Λi] as admitted range for the length of the ith

loop segment. Now the task is to identify core segments C1, . . . , Cm of lengths
c1, . . . , cm within the novel protein S such that a certain distance measure be-
tween C1, . . . , Cm and C1, . . . , Cm is minimized and, of course, constraints on
the lengths of loop segments are respected. Note that, even if it is demanded
that Ci exactly matches Ci (for i = 1, . . . , m), one cannot simply look for the
left-most occurrence of C1 in T starting at a position within [λ1 . . . Λ1] since
this might make it impossible to realize the next loop constraint [λ2 . . . Λ2].
Thus, even for this special (and rather simple) case of exact matching be-
tween corresponding core segments we must look for more clever algorithms,
not to speak about more elaborated ways of measuring similarity between
core segments.
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1.9 Molecular Networks

Gene regulation is a difficult theme, both with respect to single gene regulation
and of course even more so for ensembles of interacting genes (pathways).
Finding such regulations may be supported by the availability of huge amounts
of microarray data. Fig. 1.18 shows a really small scenario of 24 measurements,
each with the expression of 40 genes measured. Can you recognize a partition
of the rows into two groups with similar expression behaviour inside each
group with respect to a selection of genes? It is probably hard to detect any
structure in the wild mixture of black and white entries. One might hope that
algorithmic approaches might help to shed some light on such collections of
data.

Fig. 1.18. Microarray measurements; 24 measurements (rows), 40 genes (columns)

The matrix in Fig. 1.18 has two submatrices (in Fig. 1.19 made visible
after a permutation of rows followed by a permutation of columns), one con-
sisting of 9 measurements and 16 genes expressed in all of them, the other
one consisting of 11 measurements and 6 genes expressed in all of them. Find-
ing such submatrices completely filled with black entries gives rise to saying,
for example, that there are two clearly separated groups of measurements
with associated genes in each group that explain what is different within both
groups. Finding such homogeneous submatrices is referred to as bi-clustering :
measurements are grouped into clusters, and at the same time genes are clus-
tered into groups to obtain a rule explaining the division of measurements
into clusters.
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Fig. 1.19. An example of bi-clustering

1.10 Bibliographic Remarks

For getting an overview on main bioinformatics themes we especially recom-
mend Setubal & Meidanis [68] and Pevzner [64].
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Turning to Algorithmic Problems

2.1 Presentation of Algorithmic Problems

Having introduced a couple of core bioinformatics problems in the first chapter
we now transform these problems into algorithmic problems using terminology
that is well-known to a computer scientist. Usually, algorithmic bioinformatics
problems are optimization problems. The following components characterize
any optimization problem:

• An alphabet Σ of characters.
• A set I of admissible character strings that may occur as input instances.
• A solution relation S defining what is to be found, given admissible

input x.
• An objective function c evaluating quality of solutions.
• A mode, min or max.

The role of these components and required properties of components are ex-
plained next. For being executable on a computer, all objects occurring within
an algorithmic problem must be encoded in computer readable format. This is
achieved by encoding data by strings over a suitable alphabet Σ. Usually only
a subset of strings represents admissible data. For example, ¬(x ∨ y) encodes
an admissible Boolean formula, whereas ∨¬x¬y is not admissible. This is ex-
pressed by defining an instance set I of admissible input strings x. Of course,
it should be possible to efficiently test whether strings x are members of I.
Given admissible string x one is interested in strings y serving as solutions
for x. What exactly solutions are is represented by a binary relation S(x, y)
on pairs of strings. As with instances, it should be possible to efficiently test
whether strings are solutions for admissible strings. Furthermore, any solution
y for x should be bounded in length by a polynomial in the length of x. This
makes sense since otherwise size of solutions would already prevent efficient
storing or printing of solutions. What a solution is for a concrete example
varies considerably: a solution for an equation or system of equations; a sat-
isfying truth value assignment for the variables of a Boolean formula; a path
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in a graph; and many more. Solutions are scored via an objective function
c(x, y) assigning a numerical value to any pair (x, y) consisting of admissible
string x and solution y for x. Of course, c(x, y) should be efficiently com-
putable. Finally, an optimization problem has a mode, either max or min. For
a minimization problem and admissible instance x define:

c opt(x) =

{
‘no solution’ if no solution exists for x

minall solutions y for x c(x, y) otherwise.
(2.1)

For a maximization problem, min is replaced by max. Minimization problems
are always introduced in the following schematic format:

NAME
Given admissible x, find a solution y for x with
minimum value c(x, y) = c opt(x).

Sometimes we concentrate on the following simplified problem version that
only computes the optimal value of a solution, but does not return an optimal
solution.

NAME
Given admissible x, compute value c opt(x).

Usually, an optimal solution y for x can be extracted from the computation
of minimum value c opt(x) with limited extra efforts. Sometimes there is no
objective function to be optimized, only the task to simply find a solution
provided one exists. This can be seen as a special form of optimization problem
with trivial objective function c(x, y) = 1, for every solution y for x.

2.2 DNA Mapping

2.2.1 Mapping by Hybridization

Usage of sequence tagged sites for hybridization with overlapping fragments
of the DNA molecule to be mapped was described in Sect. 1.1. The resulting
algorithmic problem is the problem of rearranging columns of a binary matrix
with the objective to make all bits ‘1’ appear in consecutive order within every
row.

CONSECUTIVE ONES
Given a binary matrix with n rows and m columns,
find all possible rearrangements of columns that
lead to a matrix with all bits ‘1’ occurring in con-
secutive order within each row.
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The algorithmic solution that will be presented in Chap. 4 uses the concept
of PQ-trees introduced by Booth and Lueker (see [13]) . To motivate this idea
with an example, assume that rows 1 and 2 of a binary matrix contain com-
mon bits ‘1’ in columns 1, 2, 3, row 1 contains additional bits ‘1’ in columns
4, 5, 6, and row 2 contains additional bits ‘1’ in columns 7, 8. Let 9, 10, 11 be
the remaining columns which thus contain common bits ‘0’ in rows 1, 2. To
put bits ‘1’ in columns 1, 2, 3, 4, 5, 6 of row 1, as well as bits ‘1’ in columns
1, 2, 3, 7, 8 of row 2 in consecutive order, we are forced to rearrange columns
as follows: take an arbitrary permutation of columns 4, 5, 6, followed by an
arbitrary permutation of columns 1, 2, 3, followed by an arbitrary permuta-
tion of columns 7, 8. Alternatively, an arbitrary permutation of columns 7,
8, followed by an arbitrary permutation of columns 1, 2, 3, followed by an
arbitrary permutation of columns 4, 5, 6 may be performed. In either variant,
columns 9, 10, 11 may be arbitrarily arranged besides one of the described
arrangements of 1, 2, 3, 4, 5, 6, 7, 8. The reader surely will have noticed
that this description is somehow difficult to read. The following concept of
a tree with two sorts of nodes, P-nodes and Q-nodes, simplifies descriptions
considerably. A P-node is used whenever we want to express that an arbitrary
permutation of its children is admitted, whereas a Q-node is used whenever we
want to express that only the indicated fixed or the completely reversed order
of its children is admitted. P-nodes are drawn as circles, whereas Q-nodes are
drawn as rectangles. Using this notion, the arrangements described above can
be visualized as shown in Fig. 2.1.

An algorithm described in Chap. 4 will successively integrate the require-
ments of consecutiveness, row by row, as long as this is possible. It starts with
the PQ-tree consisting of a single P-node as its root and n leaves that does not
constrain order of columns. Ideally, the algorithm ends with a maximally fixed
PQ-tree consisting of a single Q-node as root and a permutation of column
indices at its leaves. Note that a complete reversal of ordering is always possi-
ble in every PQ-tree. Thus, data may determine ordering of columns only up
to such a complete reversal. Whenever the algorithm returns a more complex
PQ-tree this indicates that the data was not informative enough to uniquely
fix (up to a complete reversal) ordering of columns.

2.2.2 Mapping by Single Digestion

Given a string of length n and ascending positions (including start and end
positions 1 and n) 1 = x1 < x2 < . . . < xm = n, define its single digest list
as the sorted list of all differences xp − xq, with indices p and q ranging from
1 to m and p > q. Note that for a list of m positions, its single digest list
consists of a number of m(m− 1)/2 entries (duplications allowed). The single
digest problem is just the computation of the inverse of the single digest list
function.
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1 2 34 5 6

9 10 11

7 8

Fig. 2.1. Example PQ-tree

SINGLE DIGEST
Given a sorted list L of m lengths (duplications
allowed) with maximum length n and minimum
length 1, find all possible ascending lists P of posi-
tions ranging from 1 to n, (always including 1 and
n) with single digest list of P identical to L.

We illustrate an algorithm solving the problem on the basis of a complete
backtracking search through all possible position lists P with a very sim-
ple example. After this, we summarize what is known at the moment about
the complexity theory status of the problem. As an example, consider the
list of lengths L = [2, 2, 3, 7, 8, 9, 10, 11, 12, 17, 18, 19, 21, 26, 29] consisting of
1/2 × 5 × 6 = 15 entries. A suitable list of positions P = [0, x1, x2, x3, x4, 29]
has to be found such that its single digest list coincides with L, provided such
a list exists.

We start with position list P = [0, 29] that realizes the difference length
29. Lengths 2, 2, 3, 7, 8, 9, 10, 11, 12, 17, 18, 19, 21, 26 remain to be produced by
setting further cut positions. From now on, we always concentrate on the
greatest number z amongst the remaining lengths which have not yet been
realized as a difference between positions. Obviously, z can only be realized
either relative to the left border as difference z = p − 0 or relative to the
right border as difference z = 29 − p with a further cut position p, since
any other way would result in a number greater than z. Thus we have to
search the binary tree of all options in order to set the next cutting position
either relative to the left or the right border. In Fig. 2.2, branches L represent
realization z = p− 0 relative to the left border, whereas branches R represent
realization z = 29 − p relative to the right border. This tree is traversed in a
depth-first manner for as long as the next cut position can be set consistently
with the actual list of remaining lengths. If the setting of the next position
is inconsistent with the actual list of remaining lengths, backtracking takes
decisions back and proceeds tree traversal at the next available unexplored
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branch of the tree. As we will see for the chosen example, lots of subtrees may
be pruned, i.e. they must not be visited in the traversal. Such pruned subtrees
are indicated in Fig. 2.2 by enclosing them in shaded rectangles.

L R

RL L R

L R L R L R L R

L R L R

L R

L R L R L R L R L R L R L R L R

L R

L R L R

L R

L R L RL R

Fig. 2.2. Tree of all settings of cut positions showing pruned sub-trees that represent
inconsistent settings

We show which positions are tried out at any stage of the traversal, which
lengths remain to be realized at any step, and which subtrees are pruned due
to leading to inconsistent lengths.

branch positions remaining lengths to be realized
root 0,29 2,2,3,7,8,9,10,11,12,17,18,19,21,26
L 0,26,29 2,2,7,8,9,10,11,12,17,18,19,21
LL 0,21,26,29 inconsistent due to 26 − 21 = 5
LR 0,8,26,29 2,2,7,9,10,11,12,17,19
LRL 0,8,19,26,29 2,2,9,12,17
LRLL 0,8,17,19,26,29 inconsistent due to 17 − 8 = 9 and 26 − 17 = 9
LRLR 0,8,12,19,26,29 inconsistent due to 12 − 8 = 4
LRR 0,8,10,26,29 inconsistent due to 26 − 10 = 16
R 0,3,29 2,2,7,8,9,10,11,12,17,18,19,21
RL 0,3,21,29 inconsistent due to 3 − 0 = 3
RR 0,3,8,29 inconsistent due to 8 − 3 = 5

We observe that list L cannot be represented as the single digest list of a
position list P . To discover this, considerable parts of the tree had not to be
visited. This massive pruning effect can also be observed in implementations.
It sheds some light on the first one of the following remarks on the complexity
theory status of the problem.
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• The backtracking procedure described above usually visits only rather lim-
ited parts of the complete search tree to either find a position list P with
single digest list L, or to find out that such a realization is not possible.
Informally stated, average running time is low. There are more precise es-
timations found in the literature on what is to be expected, on average, as
execution time for the backtracking procedure.

• No polynomial time algorithm solving the problem has been found so far.
• The problem has not been shown to be NP-hard so far.

Thus, a lot of work is left concerning the determination of the exact complexity
status of the problem.

2.2.3 Mapping by Double Digestion

Let three lists A, B, C (duplications allowed) of lengths be given having iden-
tical sum of elements, i.e. ∑

a∈A

a =
∑
b∈B

b =
∑
c∈C

c. (2.2)

We say that C is the superposition of A with B if drawing all lengths from A
and all lengths from B in the order given by A and B onto a single common
line and then taking all cut positions from both lists together, yields just the
cut positions of the lengths in C arranged in the order given by C.

DOUBLE DIGEST
Given three lists A, B, C of lengths, find all per-
mutations A∗, B∗, C∗ of A, B, C such that C∗ is a
superposition of A∗ with B∗.

Consider the following special case of the DOUBLE DIGEST problem. List
A contains lengths which sum up to an even number s, list B contains two
identical numbers s/2, and list C is the same as list A. Then permutations
A∗, B∗, C∗ exist such that C∗ is a superposition of A∗ with B∗ if and only if
the numbers in A can be separated into two sublists with identical summed
lengths s/2. Only under this condition it is guaranteed that the cut position
s/2 inserted from list B does not introduce a new number into C∗. As it is
well-known in complexity theory, this innocent looking problem of separating
a list into two sublists with identical sums is an NP-hard problem, known as
the PARTITION problem. Having thus reduced the PARTITION problem to
the DOUBLE DIGEST problem shows that the latter one must be NP-hard,
too. Arguments like these, i.e. reduction of a problem that is known to be
NP-hard to the problem under consideration, will be studied in Chap. 5 in
great detail.
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2.3 Shotgun Sequencing and Shortest Common
Superstrings

Shotgun sequencing leads to a set of overlapping fragments of an unknown
DNA string S. Thus S contains all fragments as substrings. We say that S is
a common superstring for the considered fragments. It seems to be plausible
to assume that S usually is a shortest common superstring for the fragments
under consideration. Of course, there are exceptions to this assumption. For
example, any string S that consists of repetitions of the same character, or
any string that exhibits strong periodicities leads to fragment sets having
considerably shorter common superstrings than S. For realistic chromosome
strings we expect the rule to hold.

Considering fragment sets, we can always delete any fragment that is a
substring of another fragment. Having simplified the fragment sets this way
we get so-called substring-free fragment sets. Thus we obtain the following
algorithmic problem (see [28], [1] and [39]).

SHORTEST COMMON SUPERSTRING
Given a substring-free set of strings, find a shortest
common superstring.

Consider strings AGGT, GGTC, GTGG. Their overlaps and overlaps lengths
are shown in Fig. 2.3.

AGGT

GGTC

GTGG

AGGT GGTC GTGG

GT

G

GGT

GG

AGGT GGTC GTGG

AGGT
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GTGG

0

0

0

23

00

2 1

Fig. 2.3. Pairwise overlaps and overlap lengths

The simplest idea for the construction of a common superstring is surely
a greedy approach which always replaces two fragments S = XY and T = YZ
having longest overlap Y with string XYZ. Let us see what happens for this
example. First, AGGT and GGTC are found having longest overlap of length
3. They are replaced by AGGTC. Now AGGTC and GTGG as well as GTGG
and AGGTC have only zero length overlap, thus the final common superstring
is AGGTCGTGG having length 9. A “less greedy” strategy works better: first
replace AGGT and GTGG having overlap of length 2 with AGGTGG, then
replace AGGTGG and GGTC having overlap of length 2 with AGGTGGTC.
Thus a shorter common superstring of length 8 is obtained.
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Failure of a greedy approach is often an indication of the hardness of
a problem. Indeed, in Chap. 5 we show that SHORTEST COMMON SU-
PERSTRING is an NP-hard problem, thus there is no polynomial time algo-
rithm solving it (unless P = NP). In Chap. 6, a polynomial time algorithm
is presented that returns a common superstring that is at most four times
longer than a shortest common superstring. Such an algorithm is called a
4-approximation algorithm.

Finally, let us compare SHORTEST COMMON SUPERSTRING with the
similar looking problem asking for a longest common substring for a given list
of strings.

LONGEST COMMON SUBSTRING
Given a set of strings, find a longest common
substring.

An application would be, for example, to find a longest common substring
for two doctoral theses (in order to detect plagiarism). As we will see, this
latter problem is efficiently solvable. It is rather obvious why both problems
differ so radically from a complexity theory point of view. Whereas the former
problem has to search in the unrestricted space of arbitrary superstrings, the
latter problem has a search space that is considerably restricted by the given
strings: only substrings are admitted. There is not a completely trivial solution
for this problem. The data structure of suffix trees will help to develop a
particularly efficient algorithm.

Returning to the former NP-complete problem we show how to embed
it into more familiar algorithmic fields, namely Hamiltonian circuit prob-
lems, which will also lead us to the announced 4-approximation algorithm in
Chap. 6. Let a substring-free list of strings F1, . . . , Fm be given. Imagine S is
a shortest common superstring for F1, . . . , Fm. We arrange strings F1, . . . , Fm

as a permutation Fπ(1), Fπ(2), . . . , Fπ(m) with increasing start positions within
S and get a situation that typically looks as in Fig. 2.4 (indicated for m = 5
strings).

Here, the following must be true:

• First string starts at the beginning of string S.
• Last strings ends at the end of string S.
• Next string starts within previous string or at the end of previous string,

i.e. there are no gaps between consecutive strings.
• Next string ends strictly right of the end of previous string (set is substring-

free).
• Any two consecutive strings have maximum overlap.

This is true since any deviation from these rules would allow us to construct a
shorter common superstring by shifting a couple of consecutive strings to the
left. Note that at the end of the permutations of strings the first used string
appears again (and ends strictly right of the end of S).
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Fig. 2.4. Arrangement of fragments according to increasing start position within a
common superstring S

Thus, any shortest superstring of F1, . . . , Fm gives rise to a permutation
Fπ(1), . . . , Fπ(m) of strings, and conversely, any permutation Fπ(1), . . . , Fπ(m)

of strings gives rise to a common superstring S(π) of F1, . . . , Fm (not neces-
sarily of minimal length).

S(π) = P (π)O(π) with
P (π) = prefix(Fπ(1), Fπ(2)) . . .prefix(Fπ(m−1), Fπ(m))prefix(Fπ(m), Fπ(1))
O(π) = overlap(Fπ(m), Fπ(1))

Here we used the notions of ‘prefix’ and ‘overlap’ defined as follows. Given
decompositions of strings S = XY and T = YZ such that Y is the longest
suffix of S that is different from S and also a prefix of T , we call Y the overlap
of S with T and denote it by overlap(S, T ). We refer to X as prefix(S, T ) and
to Z as suffix(S, T ) (see Fig. 2.5). Note that we require strict overlaps, i.e.
an overlap is not allowed to cover the complete string. This is automatically
true for different strings S and T since it was assumed that neither one is a
substring of the other, but must be explicitly demanded for the overlap of a
string S with itself. Thus, the overlap of string AAAA with AAAA is AAA,
but not AAAA. To define the overlap of a string with itself as a strict overlap
will prove to be important later.

prefix(S,T) overlap(S,T)

overlap(S,T) suffix(S,T)

always non-empty may be empty always non-empty 

Fig. 2.5. Prefix, overlap, suffix
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Besides overlaps, prefixes, and suffixes, we also consider corresponding
lengths o(S, T ), p(S, T ), and s(S, T ). These definitions give rise to two graphs,
called overlap graph and prefix graph, for a string list F1, . . . , Fm. Both are
directed graphs that have m nodes labelled F1, . . . , Fm and directed edges
between any two such nodes (thus also from every node back to itself). Fur-
thermore, the edge pointing from node Fi to node Fj is weighted by number
o(Fi, Fj) in the overlap graph, and p(Fi, Fj) in the prefix graph. Shortest
common superstrings are closely related to cheapest cycles in prefix graph.
Looking at the decomposition of string S(π) above, we infer:

|S| =
m−1∑
i=1

p(Fπ(i), Fπ(i+1)) + p(Fπ(m), Fπ(1)) + o(Fπ(m), Fπ(1))

= prefixlengths(π) + o(Fπ(m), Fπ(1)).

(2.3)

Here, the term prefixlengths(π) computes the costs of the cycle through prefix
graph defined by permutation π:

prefixlengths(π) =
m−1∑
i=1

p(Fπ(i), Fπ(i+1)) + p(Fπ(m), Fπ(1)). (2.4)

It is a lower bound for the length of a shortest common superstring. Note that
in realistic situations with chromosome length of some 100.000 base pairs and
fragments lengths of about 1000 base pairs, prefix costs of a permutation
deviate only by a small fraction from the length of the superstring defined by
the permutation. Thus, searching for a shortest common superstring might as
well be replaced with searching for a cheapest Hamiltonian cycle (closed path
visiting each node exactly once) through the prefix graph. Unfortunately, the
HAMILTONIAN CYCLE problem is NP-complete, as is shown in Chap. 5.
Nevertheless, it opens way for a further, computationally feasible relaxation of
the concept of shortest common superstrings. As it is known from algorithm
theory, computing a finite set of disjoint cycles (instead of a single cycle)
having minimum summed costs and covering every node in a weighted graph
is an efficiently solvable problem. Such a finite set of cycles is called a cycle
cover. We postpone the question of how to compute a cheapest cycle cover.

At the moment let us point to a possible misunderstanding of the concept
of cheapest cycle covers. Usually, weighted graphs do not have self-links from
a node back to itself, equivalently stated, self-links are usually weighted with a
value 0. As a consequence, in such graphs we could always consider the trivial
cycle cover consisting of 1-node cycles only. Obviously, summed costs would
be 0, thus minimal. Of course, such trivial cycle covers would be of no use for
anything. Things change whenever we have self-links that are more costly. It
could well be the case that some non-trivial path back to a node x is cheaper
than the 1-node cycle from x to itself. Indeed, prefix and overlap graphs never
have self-links with weight 0 (as overlaps were defined to be proper overlaps).
This requirement will later prove to be essential in the construction of an
approximation algorithm.
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2.4 Exact Pattern Matching

2.4.1 Naive Pattern Matching

One of the most frequently executed tasks in string processing is searching
for a pattern in a text. Let us start with string T = T [1 . . . n] of length n,
called text, and string P = P [1 . . . m] of length m, called pattern. The sim-
plest algorithm compares P with the substring of T starting at all possible
positions i with 1 ≤ i ≤ n−m+1. Whenever comparison was successful, start
position i is returned. Obviously, this procedure requires O(nm) comparisons
in the worst case.

for i = 1 to n − m + 1 do
a = 0
while P (a + 1) = T (i + a) and a < m do

a = a + 1
end while
if a = m then

print i
end if

end for

2.4.2 Knuth-Morris-Pratt Algorithm

There is a more clever algorithm, the so-called Knuth-Morris-Pratt algorithm
(described in [44]), which achieves running time of O(n + m) by suitably
preprocessing the pattern P . Preprocessing of P works as follows. For every
a = 1, . . . , m determine the length f(a) of the longest proper prefix of P [1 . . . a]
that is also a suffix of P [1 . . . a]. As an example, all values f(a) for pattern
P =‘ananas’ are shown in Fig. 2.6.

a 1 2 3 4 5 6

)(af 0 0 1 2 3 0

Fig. 2.6. Prefix-suffix match lengths computed for all prefixes of text ‘ananas’

With function f available, pattern searching within text T may be accel-
erated as follows: start searching for P at the beginning of text T . Whenever
comparison of P with T fails at some working position i of T after having
successfully matched the first a characters of P with the a characters of T
left of working position i, we need not fall back by a positions to start index
i− a + 1 within T and begin comparison with P from scratch. Instead we use
that P [1 . . . f(a)] is the longest proper prefix of P [1 . . . a] that appears left of
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position i within text T . Thus we may continue comparison of characters with
P (f(a)+1) and T (i). In the pseudo-code below, variables i and a maintain the
actual working position within T and the length of the actual prefix of P that
was found as a substring of T exactly left of working position i. Both working
position i within T as well as actual start position i−a of the matching prefix
of P of length a monotonically grow from 1 to at most n. Thus, we find one
or all occurrences of P in T in 2n steps.

a = 0
for i = 1 to n do

while a > 0 and P (a + 1) �= T (i) do
a = f(a)

end while
if P (a + 1) = T (i) then

a = a + 1
end if
if a = m then

print i − m + 1
a = f(m)

end if
end for

Figure 2.7 shows a run of the algorithm which requires two shifts to the right
of pattern P to find a match with actual character x.

T x

aP 1  x 

)(1 afP  x 

))((1 affP = x 

i-1 ii-a

Fig. 2.7. Shifting prefixes

It remains to be clarified how expensive the computation of all values of
function f is. This is done the same way by shifting prefixes of P over P , in-
stead of shifting prefixes of P over T . The reader may develop a corresponding
diagram as above.

f(1) = 0
a = 0
for j = 2 to m do
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while a > 0 and P (a + 1) �= P (j) do
a = f(a)

end while
if P (a + 1) = P (j) then

a = a + 1
f(j) = a

else
f(j) = 0

end if
end for

As with the former algorithm the whole procedure requires at most 2m moves
of start and end index of the actual prefix of P , thus requires O(m) steps.
All together, O(n + m) is the complexity of applying the Knuth-Morris-Pratt
algorithm to a text of length n and pattern of length m.

2.4.3 Multi-Text Search

Preprocessing of search patterns is particularly valuable in case of searching
for a fixed pattern of length m in several (say p) texts of length n each. Assume
that m < n. For this case we get a running time of O(m+pn) = O(pn) instead
of O(pnm) as for the naive algorithm. Thus we have achieved a speed-up factor
of m.

2.4.4 Multi-Pattern Search

Unfortunately, in bioinformatics one usually has a fixed text of length n (say a
human genome) and several (say p) patterns of length m. The Knuth-Morris-
Pratt algorithm requires p times a preprocessing of a pattern of length m,
followed by p times running through text T . This leads to a complexity of
O(pm + pn). Using suffix trees this can be done better. Construction of a
suffix tree can be performed in time O(n) (as shown in Chap. 4). Searching
for a pattern P of length m within a suffix tree can then be done in O(m)
steps by simply navigating into the tree along the characters of P (for as
long as possible). All together, searching for p patterns of length m each in a
text of length n can be completed in time O(n + pm). Applications of suffix
trees are usually straight-forward, whereas efficient construction of suffix trees
requires much more effort. A naive algorithm for the construction of the suffix
tree for a string T [1 . . . n] of length n would first create a single link labelled
with suffix T [1 . . . n], then integrate the next suffix T [2 . . . n] into the initial
tree by navigating along the characters of T [2 . . . n] and eventually splitting
an edge, then integrating suffix T [3 . . . n] by the same way, etc. In the worst
case, n + (n− 1) + (n− 2) + . . . + 2 + 1 comparisons of characters have to be
done leading to a quadratic time algorithm. It requires clever ideas to save a
lot of time such that a linear time algorithm results.
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2.4.5 Formal Definition of Suffix Trees

The reader may use the ‘ananas’ example from Sect. 1.2.2 as an illustration
for the formal concepts introduced here (see Fig. 1.7). Given string T of length
n, a suffix tree for T is a rooted tree with leaves each labelled with a certain
number, edges labelled with non-empty substrings of T in a certain way, ad-
ditional links between inner nodes called suffix links, and a distinguished link
to a node called working position, such that several properties are fulfilled. To
state these properties, we introduce the notion of a position in the tree and
the path label of a position. First, a position is a pointer pointing either to
a node of the tree or pointing between two consecutive characters of an edge
label. Given a position, its path label is the string obtained by concatenating
all characters occurring at edges on the path from the root to the position
under consideration. As a special case, the node label of some node is defined
to be the path label of the position pointing to that node. Now, properties of
a suffix tree can be defined as follows:

• Every inner node has at least two successor nodes.
• Edges leaving some node are labelled with substrings that have different

first characters.
• Every leaf has as node label of some suffix T [j . . . n] of T and, in that case,

is labelled with ‘j’.
• Every suffix appears as a path label of a position in the tree.
• Every inner node with path label xw, for a character x and string w, has

a so-called suffix link starting at that node and pointing to an inner node
with suffix link w in case that w is non-empty, and pointing to the root
otherwise.

For more extended trees, it is convenient to present them in a horizontal left-
to-right manner. The suffix tree shown in Fig. 1.7 for string T = ‘ananas’ is
special in the sense that all suffixes of T appear as path labels of leaves. The
following diagram shows a suffix tree1 for the string ’mama’ (Fig. 2.8).

Observe that two of its suffixes (‘ma’ and ‘a’) are represented as path
labels of non-leaf positions. The reason for this is that string ‘mama’ contains
suffixes that are at the same time prefixes of other suffixes. This is not the
case for the string ‘ananas’. By using an additional end marker symbol we can
always enforce that suffixes are represented as path labels of leaves. Figure
2.8 shows a suffix tree for string ‘mama’, as well as for ’mama$’.

1 In the literature, “suffix tree” for a string T is sometimes understood as suffix
tree (in our sense) for string T$ with additional end marker symbol, whereas a
suffix tree (in our sense) is called “implicit suffix tree”. Sometimes, suffix links
and actual working position are not introduced as explicit components of a suffix
tree. Since in the description of Ukkonen’s algorithm in Chap. 4 suffix trees for
prefixes of a string T$ play a central role, and such prefixes do not end with end
marker $, we prefer to use the definition of suffix trees as given above.
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‚2’

‚1’mama

ama

‚2’

ma ma$ ‚1’

$

‚3’ma$a

‚4’$

‚5’

(b)

(a)
$

Fig. 2.8. Suffix tree: (a) for string ‘mama’; (b) for string ’mama$’

Suffix trees represent all suffixes of a string T as labels of positions in
a maximally compressed manner. Note that an inner node with only one
successor is not allowed to occur within a suffix tree (Fig. 2.9 (a)). Instead
of this, substring AB must be the label of a single edge (Fig. 2.9 (b)). Also
note that a node is not allowed to have two or more edges to successors whose
labels have a common non-empty maximal prefix X (Fig. 2.9 (c)). Instead of
this, the situation must be represented as in Fig. 2.9 (d).

A B

A B 

A

X b Z 

X a Y 

A X 

b Z 

a Y 

(a)

(b)

(c)

(d)

Fig. 2.9. Non-redundant labelling of edges of a suffix tree

As a consequence, a suffix tree for string T = T [1 . . . n] is, up to the
actual working position (that can be chosen at an arbitrary position in the
tree), uniquely determined: start with a single edge with label T between a
root node and a leaf marked ‘1’. Next, navigate along the characters of the
suffix T = T [2 . . . n] into the tree constructed so far, starting at the root. The
restrictions on the structure of a suffix tree uniquely determine whether and
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where a new node must eventually be introduced. Proceeding this way with
all further suffixes of T , we build up the suffix tree for T in a unique manner.
Besides the nodes and edges constructed so far, the tree does not contain
further nodes since every leaf position in the tree must have a suffix of T as
its path label. So far, we have not talked about existence and uniqueness of
suffix links. This will soon be done.

As an example, consider string T = ‘abcdabda’. Figure 2.10 (a) shows
a suffix tree for T . Note that whereas the existence of suffix links can be
guaranteed for inner nodes, the same is not true for leaves: leaf marked ‘6’
has path label ‘bda’, but there is no node with path label ‘da’.

b

ab cdabda

da

cdabda

da

cdabda

dabd

1

‚5’

‚2’

‚6’

‚3’

‚4’

‚1’
1,2 3,8 1‚1’

7,8

2,2 3,8

7,8

3,8

4,8

‚5’

‚2’

‚6’

‚3’(a) (b)

‚4’

Fig. 2.10. (a) Strings as labels; (b) String limits as labels

Lemma 2.1.
For every inner node of a suffix tree with path label xw (with x being a single
character and w being a string) there is a unique inner node or root with label
w.

Proof. Let xw be the path label of inner node u. Each inner node has at least
two successor nodes. So we may choose two leaves below node u, one with
path label xwy, the other one with label xwz. We know that strings y and
z must have different first characters. By definition of a suffix tree, we know
that xwy and xwz are suffixes of string T . Hence, wy and wz are suffixes of
T , too. By definition of suffix trees, again, there must be positions in the tree
with path labels wy and wz. This means that on the path from the root down
to these positions there must be a node v with path label w (at node v, the
path splits into the two considered paths with labels wy and wz). Of course,
node v is uniquely determined. ��

At first sight, it seems to be impossible to have a linear time algorithm for
constructing suffix trees, since already the space requirements prevent this: for
a text T of length n, a suffix tree for T$ has n+1 leaves with concatenated la-
bels along the paths from the root to its leaves of length n+1, n, n−1, . . . , 2, 1.
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So the explicit insertion of these path labels already requires O(n2) time. This
problem is not too severe and can be overcome by representing an edge label
T [a . . . b] by its start and end positions a and b within T , instead of explicitly
writing the symbols of T [a . . . b] at the considered edge. In the example above,
the suffix tree would be drawn as in Fig. 2.10 (b). Nevertheless, for better
readability, in examples we prefer the string representations of edge labels.
But even with such sparse representation of edge labels, O(n2) time for a
naive construction of suffix trees that integrates more and more suffixes into a
growing tree seems to be unavoidable since for suffixes of length n−1, n−2, . . .
we must navigate in the growing tree in order to find the correct point of in-
sertion for the actual suffix, with each navigation requiring as many steps as
the number of symbols in the actual suffix.

The basic idea that will finally lead to a more efficient construction of
the suffix tree of a text T = T [1 . . . n] is to successively construct suffix trees
for growing strings T = T [1 . . . i]. As it will be shown in Chap. 4, a suffix
tree for T = T [1 . . . i + 1] can be simply obtained from a suffix tree for T =
T [1 . . . i] by inserting the next character T (i + 1) at all positions where it has
to be placed. Though at first sight is seems to be a procedure that requires
O(1+22 +32 + . . .+n2) = O(n3) steps (if being implemented in a comparable
naive manner as described above), we will show that most of the steps can
be saved by a clever analysis of the procedure. A linear time algorithm due
to Ukkonnen (see [71]) will be presented in Chap. 4. Previously published,
slightly different linear time algorithms constructing suffix-trees are due to
Weiner [79] and McCreight [55].

2.5 Soft Pattern Matching = Alignment

2.5.1 Alignments Restated

As introduced in Chap. 1, an alignment of string S with string T is obtained
by introducing spacing symbols at certain positions of S and T such that two
strings S∗ and T ∗ of the same length result and no position in S∗ and T ∗ is
filled with two spacing symbols. As an example,

A C – G A – G T T C – A C T
– C T G G C T – T G G A – T

is an alignment of ACGAGTTCACT with CTGGCTTGGAT.

2.5.2 Evaluating Alignments by Scoring Functions

Quality of an alignment is measured by a numerical value called the score that
depends on a scoring function σ. The scoring function expresses in terms of
numerical values σ(x, x), σ(x, y), σ(x,−), σ(−, y) for different letters x and y
how strongly matches x/x are rewarded and mutations x/y, deletes x/− and
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inserts −/y are punished. A typical example of a scoring function is shown in
Fig. 2.11. Here, matches are rewarded with value +2, mutations are punished
with value -1, inserts and deletes are even more strongly punished with value
-2.

A C G T -

2 -1 -1 -1 -2A

-1 2 -1 -1 -2C

-1 -1 2 -1 -2G

T -1 -1 -1 2 -2

- -2 -2 -2 -2 0

Fig. 2.11. Scoring matrix

The score of an alignment S∗, T ∗ of string S with string T is the sum
of scores of all pairs that occur at the same position in the alignment and is
denoted by σ∗(S∗, T ∗). In case that S∗ and T ∗ have common length n the
definition is:

σ∗(S∗, T ∗) =
n∑

i=1

σ(S∗(i), T ∗(i)). (2.5)

As discussed in Chap. 1, for practically used scoring functions based on log-
odds ratios of the frequencies of occurrence of character pairs and single char-
acters, a greater score represents a more favourable event. Thus the primary
goal in aligning strings is to find an alignment S∗, T ∗ for strings S, T having
maximum score denoted as in the definition below:

σopt(S, T ) = max
S∗,T∗

σ∗(S∗, T ∗). (2.6)

Summarizing, the alignment problem is stated as follows:

ALIGNMENT
Given strings S and T , find an alignment S∗, T ∗

with maximum score σopt(S, T ).

Having strings S and T of length n and m, there are more than O(2n) align-
ments since there are already O(2n) many choices where to introduce spacing
symbols into string S. The reader may think about a better lower bound for
the number of alignments and show that this number is considerably greater
than 2n. The reader may also give an upper bound for the number of align-
ments of S and T using the fact that alignments may be at most n + m pairs
long.
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2.6 Multiple Alignment

2.6.1 Sum-of-Pairs Maximization

Given strings S1, . . . , Sk, a multiple alignment consists of strings T1, . . . , Tk of
the same length that result from S1, . . . , Sk by insertion of spacing symbols
at certain positions, with the restriction that columns consisting of spacing
symbols only are not allowed. Given a multiple alignment T1, . . . , Tk of length
m and a scoring function σ for pairs of characters σ(a, b) and pairs of character
and spacing symbol σ(a,−) and σ(−, b), we define its sum-of-pairs score as
follows:

σ∗(T1, . . . , Tk) =
∑
i<j

m∑
p=1

σ(Ti(p), Tj(p)) =
∑
i<j

σ∗(Ti, Tj). (2.7)

SUM-OF-PAIRS MULTIPLE ALIGNMENT
Given a scoring function σ and strings S1, . . . , Sk,
compute a multiple alignment T1, . . . , Tk with max-
imum sum-of-pairs score.

Computing a multiple alignment is NP-hard (shown in Chap. 5). We present a
2-approximation algorithm in Chap. 6. In the literature one finds criticism of
the adequateness of scoring via sum-of-pairs. For example, from a statistical
point of view, it seems quite unnatural to score a column with entries a, b, c
by a sum of pairwise local log-odd values

log
pab

papb
+ log

pac

papc
+ log

pbc

pbpc
(2.8)

instead of taking a more integrated view expressed by common log-odds value

log
pabc

papbpc
. (2.9)

This motivates consideration of various “consensus approaches”.

2.6.2 Multiple Alignment Along a Guide Tree

The problem with sum-of-pairs alignment is that the sum of scores between
any two strings of an alignment must be maximized. The problem turns into
a solvable one if we consider a tree structure on the set of string indices and
look for an alignment that maximizes the sum of scores between any two
strings with indices connected by a link of the tree. Following the links of
the tree in arbitrary order we can incrementally build up an alignment by
locally maximizing scores between two linked strings. We discuss an example.
Consider the tree in Fig. 2.12.
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2

3

4 5 

1

Fig. 2.12. Simple example guide tree

Assume that we have already build up an alignment T1, T2, T3, T4 with
maximum sum σ(T1, T2)+σ(T2, T3)+σ(T3, T4). We have to integrate a string
T5 into this alignment and take care to maximize σ(T3, T5), letting the sum
obtained at the stage before unchanged. Thus we should simply take a max-
imum score alignment T 3, T5 of string S3 with string S5. The only problem
is that string T 3 may have spacing symbols at different positions than the
formerly computed string T3, though both are derived from the same string
S3 by insertion of spacing symbols. A simple adaptation of T3 and T 3 by
insertion of additional spacing symbols (“padding”) solves the problem. We
illustrate what has to be done with a simple example:

T1 C G G – T C – – G G T
T2 – G G T T – A A A G T
T4 C – – T T C – A A – G
T3 C G G T – C A A – G –

T 3 – C G G T C – A – A G
S5 A – – G T – C A T A –

The padded alignment adapts T3 and T 3 without changing scores. It looks as
follows.

R1 – C G G – T C – – – – G G T
R2 – – G G T T – – A – A A G T
R4 – C – – T T C – – – A A – G
R3 – C G G T – C – A – A – G –

R3 – C G G T – C – A – A – G –
R5 A – – G T – – C A T A – – –

We end with the following alignment:

R1 – C G G – T C – – – – G G T
R2 – – G G T T – – A – A A G T
R4 – C – – T T C – – – A A – G
R3 – C G G T – C – A – A – G –
R5 A – – G T – – C A T A – – –

There are various heuristics that propose a more or less plausible guide tree
and then align along the chosen tree. We soon discuss a few of them. Summa-
rizing, having a tree with a distribution of strings S1, . . . , Sk to its nodes (every
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node is labelled with one of the strings to be aligned) and seeking to maxi-
mize the sum of scores between strings linked in the tree makes things easy.
Things change towards NP-completeness as soon as tree structures are consid-
ered that also have nodes not labelled with any one of the strings S1, . . . , Sk.
This happens already for the simplest example of a tree with unlabelled root
(representing a common unknown ancestor) and strings S1, . . . , Sk attached
to the leaves. Situations like these will be discussed in the next sections.

2.6.3 Consensus Line Optimization

Given a multiple alignment T1, . . . , Tk of length m, its consensus line is the
string T such that the following consensus sum has maximum value:

consensus(T, T1, . . . , Tk) =
m∑

p=1

k∑
i=1

σ(T (p), Ti(p)) =
k∑

i=1

σ∗(T, Ti). (2.10)

If there are several choices for a character of T , fix one in an arbitrary manner.

CONSENSUS MULTIPLE ALIGNMENT
Given a scoring function σ and strings S1, . . . , Sk,
compute a multiple alignment T1, . . . , Tk such
that its consensus line T has maximum value
consensus(T, T1, . . . , Tk).

2.6.4 Steiner String

An equivalent formulation can be given exclusively in terms of strings. A
Steiner string for a list of strings S1, . . . , Sk is a string S that maximizes the
following Steiner sum:

steiner(S, S1, . . . , Sk) =
k∑

i=1

σopt(S, Si). (2.11)

STEINER STRING
Given a scoring function σ and strings S1, . . . , Sk,
compute a string S with maximum value
steiner(S, S1, . . . , Sk).

2.6.5 Equivalence of Consensus Lines and Steiner Strings

Theorem 2.2.
(a) From an arbitrary multiple alignment T1, . . . , Tk of S1, . . . , Sk with con-
sensus line T we may construct a string S with steiner(S, S1, . . . , Sk) ≥
consensus(T, T1, . . . , Tk).
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(b) From an arbitrary string S for S1, . . . , Sk we may construct a multiple
alignment T1, . . . , Tk for S1, . . . , Sk with consensus line T and
consensus(T, T1, . . . , Tk) ≥ steiner(S, S1, . . . , Sk).
(c) If the multiple alignment in (a) has maximum consensus value of its con-
sensus line, we obtain a Steiner string.
(d) If string S in (b) was a Steiner string, we obtain a multiple alignment
with maximum consensus value of its consensus line.

Proof. (a) Consider consensus line T . Delete all occurrences of the spacing
symbol from T obtaining string S. As T, Ti is an alignment (not necessarily
optimal) of S with Si we conclude that

σopt(S, Si) ≥ σ∗(T, Ti).

Thus we obtain

steiner(S, S1, . . . , Sk) =
k∑

i=1

σopt(S, Si)

≥
k∑

i=1

σ∗(T, Ti)

= consensus(T, T1, . . . , Tk).

(b) Consider an arbitrary string S. For each i take a maximum score alignment
T i, Ti of S with Si. Note that though each string T i is S with some spacing
symbols introduced, spacing symbols may be placed at different positions
within different strings T i. Nevertheless, we may construct a single alignment
R1, . . . , Rk, R of S1, . . . , Sk, S out of these local alignments by padding strings
with additional spacing symbols in such a way that a common string R instead
of k different strings T 1, . . . , T k is used to align S to the other strings. Scores
are not changed by such paddings. By construction, the consensus line C of
alignment R1, . . . , Rk has consensus value at least as good as R, thus

consensus(C, R1, . . . , Rk) ≥ consensus(R, R1, . . . , Rk)
= steiner(S, S1, . . . , Sk).

(c) Assume that we started in (a) with a multiple alignment T1, . . . , Tk of
S1, . . . , Sk with consensus line T and maximum value consensus(T, T1, . . . , Tk).
Let S be obtained by deleting all spacing symbols from T . We know that

steiner(S, S1, . . . , Sk) ≥ consensus(T, T1, . . . , Tk).

Now we also consider a Steiner string Ssteiner for S1, . . . , Sk. By definition we
know that

steiner(Ssteiner, S1, . . . , Sk) ≥ steiner(S, S1, . . . , Sk).
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Applying (b) to string Ssteiner we get a further multiple alignment R1, . . . , Rk

for S1, . . . , Sk with consensus line R and

consensus(R, R1, . . . , Rk) ≥ steiner(Ssteiner, S1, . . . , Sk).

As the initial multiple alignment was optimal we also know that

consensus(T, T1, . . . , Tk) ≥ consensus(R, R1, . . . , Rk).

Combining all inequalities we obtain

steiner(S, S1, . . . , Sk) ≥ consensus(T, T1, . . . , Tk)
≥ consensus(R, R1, . . . , Rk)
≥ steiner(Ssteiner, S1, . . . , Sk)
≥ steiner(S, S1, . . . , Sk).

Having equality in all states of the chain above, we conclude that S indeed is
a Steiner string.
(d) is shown in exactly the same manner as (c). ��

2.6.6 Generalization to Steiner Trees/Phylogenetic Alignment

Given a list of strings S1, . . . , Sk, a phylogenetic tree scheme ℘ for S1, . . . , Sk

is a rooted tree with k leaves to which S1, . . . , Sk are assigned in a one-to-
one manner. Note that in a phylogenetic tree scheme, non-leaf nodes are not
labelled, so far, with strings. Stated differently, a phylogenetic tree scheme
expresses some knowledge on the evolutionary history of species S1, . . . , Sk,
but without fixing how ancestors exactly looked like. Given a phylogenetic
tree scheme ℘ for strings S1, . . . , Sk, a ℘-alignment consists of an assignment
of strings to all non-leaf nodes of ℘. For every node u (including leaves) let
℘(u) denote the string attached to u. The score of a ℘-alignment is defined
as the sum of all optimal alignment scores taken over set E(℘) consisting of
all pairs u, v of nodes with a link between them.

score(℘) =
∑

(u,v)∈E(℘)

σopt(℘(u), ℘(v)) (2.12)

PHYLOGENETIC TREE ALIGNMENT
Given a scoring function σ and a phylogenetic
tree scheme ℘ for strings S1, . . . , Sk, compute a
℘-alignment having maximum value score(℘).

2.6.7 Profile Alignment

All of the problems associated with multiple alignments are NP-hard as will be
shown later (Chap. 5). For each of them a 2-approximation algorithm will be



48 2 Turning to Algorithmic Problems

presented (Chap. 6). There are other approaches to multiple alignments that
admit efficient algorithms. These are based on a statistical view to multiple
alignments. The simplest such approach works as follows. Given a multiple
alignment T1, . . . , Tk of length m, define its profile π as the string π1, . . . , πm

of length m consisting of the following frequency vectors.

πp(c) =
number of occurences of c in column p

m
(2.13)

Thus, “character” p of the profile of a multiple alignment is the probability
distribution of characters within column p of the multiple alignment. Being
a string of vector characters, the notion of an alignment of a profile with a
string S is well-defined. What has to be clarified is how such an alignment is
scored. This is done as follows, for all p and characters x:

σprofile,string(πp, x) =
∑

all characters y

πp(y)σ(y, x)

σprofile,string(πp,−) =
∑

all characters y

πp(y)σ(y,−)

σprofile,string(−, x) = σ(−, x).

(2.14)

STRING TO PROFILE ALIGNMENT
Given a scoring function σ, profile π, and string S,
compute a maximum score string-to-profile align-
ment of π with S.

We can also align a profile π to another profile ρ. Scores must obviously be
defined as follows.

σprofile,profile(πp, ρq) =
∑

all characters y,z

πp(y)ρq(z)σ(y, z)

σprofile,profile(πp,−) =
∑

all characters y

πp(y)σ(y,−)

σprofile,profile(−, ρq) =
∑

all characters z

ρq(z)σ(−, z).

(2.15)

PROFILE TO PROFILE ALIGNMENT
Given a scoring function σ and profiles π, ρ, com-
pute a maximum score profile-to-profile alignment
of π with ρ.

2.6.8 Hidden Markov Multiple Alignment

A profile of a multiple alignment can be seen as a statistical model that de-
scribes for each position (column of the alignment) the emission probabilities
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for all characters (including spacing symbol). Emission probabilities at dif-
ferent positions are independent from each other. A major generalization is
to consider statistical models with local interdependencies between adjacent
positions. This gives considerably more flexibility to model evolutionary rules
behind the generation of multiple alignments. Best suited are Hidden Markov
models. Local interdependencies between adjacent positions are modelled by
using internal states with transition probabilities between them and emission
probabilities for characters associated with each internal state. Thus sepa-
rating an internal behaviour of a Hidden Markov model from its observable
outer behaviour is the source of increased flexibility, and also opens way to fit
Hidden Markov models to data. Formal definitions of Hidden Markov models
will be presented in Chaps. 3 and 7.

Figure 2.13 presents a model used for the generation of multiple align-
ments. Only state transitions having probability greater than zero are de-
picted. Example values for emission probabilities are indicated within each
node of the graph. Node S indicates the start state.

D2 D3 D4D1

I1 A: 0.7 
C: 0.2 
G: 0.0 
T:  0.1 

I0 A: 0.4 
C: 0.2 
G: 0.3 
T:  0.1

I2 A: 0.4 
C: 0.2 
G: 0.2 
T:  0.2 

I3 A: 0.1 
C: 0.4 
G: 0.5 
T:  0.0 

I4 A: 0.3 
C: 0.2 
G: 0.3 
T:  0.2 

M1A: 0.3 
C: 0.4 
G: 0.2 
T:  0.1 

M2A: 0.6 
C: 0.1 
G: 0.1 
T:  0.2 

M3A: 0.0 
C: 0.4 
G: 0.6 
T:  0.0 

M4A: 0.3 
C: 0.3 
G: 0.3 
T:  0.1 

S

Fig. 2.13. Profile Hidden Markov model for the generation of multiple alignments

Having in mind an unknown common ancestor string of known length n
(n = 4 in the example in Fig. 2.13) for all strings that are to be aligned (re-
member that an alignment partially expresses the evolutionary history of each
string), the intended Hidden Markov model generates such “evolution proto-
cols” by walking through a sequence of internal states. Available states are
“match/mutate” states M1, . . . ,Mn, “insert” states I0, I1, . . . , In, and “delete”
states D1, . . . ,Dn. Walking through state Mk means to match or mutate (via
character emission) the kth ancestor character, walking through state Ik means
to insert fresh characters (via character emission) right of the position of the
kth ancestor symbol, walking through state Dk means to delete the kth ances-
tor character (here no character is emitted, i.e. delete states are “mute”).
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We illustrate how the model works with an example. Assume there are
a couple of strings to be aligned. The number of characters in the unknown
common ancestor string is usually estimated to be the arithmetical mean of
the lengths of the considered strings. In our example, let this be 4. Further
assume that for some of the strings there already exists a plausible multi-
ple alignment (obtained by one of the methods described before or proposed
by biologists on basis of plausibility). As an example, consider the following
multiple alignment.

1 2 3 4
– C – – G – – A –
– – – – G C A A A
– C – C – A – G –
– T – – T C C T –
A C G G G C – C –

Here, we have decided to interpret columns with a majority of characters over
spacing symbols to be derived from one of the conjectured four characters
of the unknown ancestor by either match, mutate, or delete events. On the
other hand, columns with a majority of spacing symbols are assumed to be
the result of insert events. On basis of these decisions we next introduce at all
positions of the multiple alignment the correct state that led to the entry.

1 2 3 4
– M1 – – M2 D3 – M4 –
– D1 – – M2 M3 I3 M4 I4
– M1 – I1 D2 M3 – M4 –
– M1 – – M2 M3 I3 M4 –
I0 M1 I1 I1 M2 M3 – M4 –

Now we estimate transition and emission probabilities of the Hidden Markov
model as relative frequencies. For example, there are two transitions from
state M1 to state M2, one transition to state D2, and one transition to state
I1. Thus, transition probabilities from state M1 to other states are estimated
as follows: 50% to M2, 25% to D2, 25% to I1. Emission probabilities are
estimated similarly, for example, for state M4 emission probability is estimated
for character A as 40%, for C as 20%, for G as 20%, and for T as 20%.

So far, parameters of the model have been fixed on basis of available aligned
strings. The general algorithmic problem behind parameter choice is training
a model or fitting a model to available data. Parameters are chosen in such a
way that the resulting model M has maximum probability of generating the
training data. This is called maximization of model likelihood. The required
formal concepts to make this precise are the probability that model M gen-
erates data D, briefly denoted PM (D), as well as the likelihood of model M
given data D1, . . . , Dk defined by

L (M |D1, . . . , Dk) =
k∏

i=1

PM (Dk). (2.16)
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Thus the following general problem is associated with every sort of adaptive
system with parameters that may be optimally fitted to training data.

HIDDEN MARKOV MODEL TRAINING
Given the structure of a Hidden Markov model
(i.e. number of states and connection structure,
but without having fixed parameters) and observed
data D1, . . . , Dk, compute model parameters such
that the resulting model has maximum likelihood
of generating the data.

In Chap. 3 we will discuss the Baum-Welch algorithm which achieves a local
maximization of model likelihood. Global maximization of model likelihood is
a hard to solve problem.

Proceeding with our example, assume now that a further string CACGCTC
has to be integrated into the alignment above. Referring to the chosen model,
a most probable state sequence can be computed by the so-called Viterbi
algorithm.

HIDDEN MARKOV MODEL DECODING
Given a Hidden Markov model and observed data
D, compute a most probable state sequence that
emits D.

Details of this algorithm are postponed to Chap. 3 on dynamic programming.
Assume here that as the most probable state sequence the algorithm pro-

poses M1I1I1M2M3I3D4I4. Note that there are seven match/insert states cor-
responding to the seven characters of the string, and four match/delete states
corresponding to the four characters of the unknown ancestor. The correct
extension of the alignment thus looks as follows.

1 2 3 4
– C – – G – – A –
– – – – G C A A A
– C – C – A – G –
– T – – T C C T –
A C G G G C – C –
– C A C G C T – C

One says that a further string “has been aligned to the Hidden Markov model”.

2.6.9 Example Heuristic for Obtaining Multiple Alignments

The following incremental construction of multiple alignments is plausible
and widely used. Given strings S1, . . . , Sk we first compute for every pair of
indices i < j value σopt(Si, Sj). Then we use these values to apply a standard
clustering procedure, as for example CLUSTALW, to group the most similar
strings Sa and Sb into a group Sab. We treat this new group Sab as a single
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new object, define scores σopt(Si, Sab) as arithmetical mean of σopt(Si, Sa)
and σopt(Si, Sb), thus obtaining a tree with strings S1, . . . , Sk attached to its
leaves. This is a rather plausible guide tree which can be used to efficiently
construct a multiple alignment.

2.7 Gene Detection

Having sequenced DNA strings the next important task is to identify func-
tional units, e.g. genes or regulatory regions. We concentrate on gene de-
tection. Biology contributes several indications for a substring to be part of
an exon that belongs to a gene, e.g. absence of a stop codon, certain short
strings that are characteristic for beginning or ending of an exon, or a higher
frequency of CpG pairs in exon regions when compared to non-exon regions.
Known frequencies of CpG pairs in exon versus non-exon regions, for example,
can be used to probabilistically classify on a likelihood basis strings into ex-
ons versus non-exons. Such approaches, as also the more sophisticated Hidden
Markov model approaches, for predicting CpG-islands are based on standard
methods of probability theory. However, they do not require sophisticated al-
gorithmic know-how and we do not further discuss them in this book. Instead
we concentrate on a different approach of gene assembly that will later be
solved by dynamic programming. In gene assembly one assumes that a new
strand G of DNA has been sequenced that is suspected to contain the exons
of a gene producing a certain protein T (for simplicity assuming that it is
given by its DNA code). We assume that well-known heuristics for predicting
exons give us an ensemble of substrings E1, . . . , Eb of G that are suspected
to be valid exons. We assume that indeed all true exons are covered by the
list of candidate exons E1, . . . , Eb, whereas also non-exons may occur among
this list. The task arises to select an ascending chain Γ of non-overlapping
candidate exons (black shaded areas) whose concatenation Γ∗ gives greater or
equal optimal alignment score with T than all other selections of ascending
chains (Fig. 2.14).

G

candidate
exons

T

*

Fig. 2.14. Optimal alignment of Γ∗ with T gives best value among all possible
chains.
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Letting T range over a database of known DNA codes of proteins, we
may find one string T which can best be aligned with a concatenation of an
ascending chain of candidate exons. Thus, with some confidence, we find out
which protein is probably synthesized by the expected gene within string G
and moreover, which substrings of G are the putative exons within that gene.
Of course, simply trying out all ascending chains one by one is no good idea
for obtaining an efficient algorithm. We will later see that clever usage of
dynamic programming leads to an efficient solution (Chap. 3).

2.8 Genome Rearrangement

In Chap. 1 we discussed as a particular case of genome reorganization the
operation of directed reversal. Encoding a sequence of n genes distributed
on both strands of a chromosome as a permutation of signed numbers, i.e.
numbers equipped with a sign (+ or −), a directed reversal takes a segment
of the sequence, inverts ordering of numbers, as well as inverts sign for each
number. As an example, signed permutation -4 +2 +6 -1 -3 +5 might be
transformed by a single signed reversal into -4 +3 +1 -6 -2 +5, but also
into +4 +2 +6 -1 -3 +5. Given two signed permutations of n numbers, one
is interested in computing the least number of directed reversals required
to transform one signed permutation into the other. This minimum number
is called the (directed) reversal distance between two signed permutations.
As can be easily verified, it defines a metric on signed permutations of n
numbers. By renumbering genes and exchanging signs one can always assume
that the target signed permutation is the sorted one +1 +2 . . . +n. Thus
the problem simplifies to the task to compute the least number of directed
reversals required to transform a given signed permutation into the sorted
one. The problem is therefore also called the problem of sorting a signed
permutation.

SIGNED PERMUTATION SORTING
Given a signed permutation π of n numbers, com-
pute the least number d(π) of directed reversals
required to sort permutation π.

A similar problem arises for unsigned permutations, i.e. permutations of n
numbers without + or − sign attached to them.

UNSIGNED PERMUTATION SORTING
Given an unsigned permutation π of n numbers,
compute the least number d(π) of undirected re-
versals required to sort permutation π.

It will turn out that these problems, though looking quite similar, are radically
different from a complexity point of view. One of them admits an efficient
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algorithm, the other one is NP-hard (see the series of papers [41, 42, 43] and
also [15]). To give the reader a first impression of how complex the problem of
sorting permutations is, sorting of a signed permutation of 36 signed numbers
as shown in Fig. 2.15 requires 26 directed reversals. In Chap. 4 we will see
that 26 is indeed the least number of directed reversals required for sorting
the presented signed permutation.

-12 +31 +34 -28 -26 +17 +29 +04 +09 -36 -18 +35 +19 +01 -16 +14 +32 +33 +22 +15 
-11 -27 -05 -20 +13 -30 -23 +10 +06 +03 +24 +21 +08 +25 +02 +07 
+20 +05 +27 +11 –15 –22 –33 –32 –14 +16 –01 –19 –35 +18 +36 –09 –04 –29 –17 +26 
+28 –34 –31 +12 +13 -30 -23 +10 +06 +03 +24 +21 +08 +25 +02 +07 
+01 -16 +14 +32 +33 +22 +15 -11 -27 -05 -20 –19 –35 +18 +36 –09 –04 –29 –17 +26 
+28 –34 –31 +12 +13 -30 -23 +10 +06 +03 +24 +21 +08 +25 +02 +07
+01 -16 –15 –22 –33 –32 –14 -11 -27 -05 -20 –19 –35 +18 +36 –09 –04 –29 –17 +26 
+28 –34 –31 +12 +13 -30 -23 +10 +06 +03 +24 +21 +08 +25 +02 +07 
+01 -16 –15 -36 -18 +35 +19 +20 +05 +27 +11 +14 +32 +33 +22 –09 –04 –29 –17 +26 
+28 –34 –31 +12 +13 -30 -23 +10 +06 +03 +24 +21 +08 +25 +02 +07 
+01 -16 –15 –14 -11 -27 -05 -20 –19 –35 +18 +36 +32 +33 +22 –09 –04 –29 –17 +26 
+28 –34 –31 +12 +13 -30 -23 +10 +06 +03 +24 +21 +08 +25 +02 +07 
+01 -16 –15 –14 +31 +34 -28 -26 +17 +29 +04 +09 –22 –33 –32 -36 -18 +35 +19 +20 
+05 +27 +11 +12 +13 -30 -23 +10 +06 +03 +24 +21 +08 +25 +02 +07 
+01 +26 +28 –34 –31 +14 +15 +16 +17 +29 +04 +09 –22 –33 –32 -36 -18 +35 +19 +20 
+05 +27 +11 +12 +13 -30 -23 +10 +06 +03 +24 +21 +08 +25 +02 +07 
+01 +26 +28 +18 +36 +32 +33 +22 –09 –04 –29 –17 -16 –15 –14 +31 +34 +35 +19 +20 
+05 +27 +11 +12 +13 -30 -23 +10 +06 +03 +24 +21 +08 +25 +02 +07 
+01 +26 +28 +29 +04 +09 –22 –33 –32 -36 -18 –17 -16 –15 –14 +31 +34 +35 +19 +20 
+05 +27 +11 +12 +13 -30 -23 +10 +06 +03 +24 +21 +08 +25 +02 +07 
+01 +26 +28 +29 +30 –13 -12 -11 -27 -05 -20 –19 –35 –34 –31 +14 +15 +16 +17 +18 
+36 +32 +33 +22 –09 –04 -23 +10 +06 +03 +24 +21 +08 +25 +02 +07
+01 +26 +11 +12 +13 -30 –29 -28 -27 -05 -20 –19 –35 –34 –31 +14 +15 +16 +17 +18 
+36 +32 +33 +22 –09 –04 -23 +10 +06 +03 +24 +21 +08 +25 +02 +07 
+01 +26 +27 +28 +29 +30 –13 -12 -11 -05 -20 –19 –35 –34 –31 +14 +15 +16 +17 
+18 +36 +32 +33 +22 –09 –04 -23 +10 +06 +03 +24 +21 +08 +25 +02 +07 
+01 +26 +27 +28 +29 +30 +31 +34 +35 +19 +20 +05 +11 +12 +13 +14 +15 +16 +17 +18 
+36 +32 +33 +22 –09 –04 -23 +10 +06 +03 +24 +21 +08 +25 +02 +07 
+01 +26 +27 +28 +29 +30 +31 +34 +35 +19 +20 +09 –22 –33 –32 -36 -18 –17 -16 -15 
–14 –13 -12 -11 -05 –04 -23 +10 +06 +03 +24 +21 +08 +25 +02 +07 
+01 +26 +27 +28 +29 +30 +31 +22 –09 -20 –19 –35 –34 –33 –32 -36 -18 –17 -16 –15 
–14 –13 -12 -11 -05 –04 -23 +10 +06 +03 +24 +21 +08 +25 +02 +07 
+01 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +19 +20 +09 –22 -36 -18 –17 -16 –15 
–14 –13 -12 -11 -05 –04 -23 +10 +06 +03 +24 +21 +08 +25 +02 +07 
+01 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +22 –09 -20 –19 -18 –17 -16 –15 
–14 –13 -12 -11 -05 –04 -23 +10 +06 +03 +24 +21 +08 +25 +02 +07 
+01 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +22 –09 –24 –03 –06 –10 +23 +04 
+05 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +08 +25 +02 +07 
+01 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +22 –09 –08 –21 -20 –19 -18 –17 
-16 –15 –14 –13 -12 -11 -05 –04 -23 +10 +06 +03 +24 +25 +02 +07 
+01 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +08 +09 –22 –21 -20 –19 -18 –17 
-16 –15 –14 –13 -12 -11 -05 –04 -23 +10 +06 +03 +24 +25 +02 +07 
+01 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +08 +09 –22 –21 -20 –19 -18 –17 
-16 –15 –14 –13 -12 -11 -05 –04 –03 –06 –10 +23 +24 +25 +02 +07 
+01 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +08 +09 –22 –21 -20 –19 -18 –17 
-16 –15 –14 –13 -12 -11 -05 –04 –03 –02 –25 –24 -23 +10 +06 +07 
+01 +02 +03 +04 +05 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 –09 –08 -36
–35 –34 –33 –32 –31 -30 –29 -28 -27 -26 –25 –24 -23 +10 +06 +07
+01 +02 +03 +04 +05 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 –09 –08 –07 
–06 –10 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36
+01 +02 +03 +04 +05 +06 +07 +08 +09 –22 –21 -20 –19 -18 –17 -16 –15 –14 –13 -12 
–11 –10 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 
+01 +02 +03 +04 +05 +06 +07 +08 +09 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 
+21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36

Fig. 2.15. Sorting an extended signed permutation
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2.9 RNA Structure Prediction

RNA macromolecules are versatile and have the ability to fold into diverse
structures. The common scaffold comprises base pairing between comple-
mentary bases. Formally speaking, a structure R over an RNA sequence
S = S[1 . . . n] is defined as a set of base pairs:

R = {(i, j) | 1 ≤ i < j ≤ n ∧ i and j form an admissible base pair}
such that ∀(i, j), (i′, j′) ∈ R : i = i′ ⇔ j = j′.

This definition demands that in an RNA structure R, a base can form a pair
with at most one other base. Additionally, one commonly asks for every base
pair (i, j) in R to be separated by at least one base, i.e. j − i ≥ 2. In more
advanced prediction methods, an even longer distance between paired bases i
and j is demanded to serve for naturally occuring RNA structures. Structure
R is called free of pseudoknots if there are no two pairs (i, j) and (k, l) in
P such that i < k < j < l. Allowing overlapping base pairs results in a
pseudoknot structure (Fig. 2.16).

l

k
j

i

Fig. 2.16. Pseudoknot structure with overlapping base pairs

A simple approach for RNA structure prediction from sequence is based
on maximizing the number of base pairs.

BASE PAIR MAXIMIZATION
Given an RNA sequence S, compute a structure R with
maximum number of base pairs.

More sophisticated optimization methods attempt to minimize the so-called
free energy of a fold. Out of the exponential number of possible structures,
an RNA molecule will fold into the one with minimum free energy. The state
of minimum free energy is always determined by both enthalpic and entropic
forces. It is clear that by considering only stable stems, RNA folding is very
much oversimplified. In RNA, enthalpic terms arise from base pairing (sta-
bilizing forces) and entropic terms from unstructured regions (destabilizing
forces). RNA comprises various structure elements, e.g. stems, hairpin loops,
bulges, internal loops, and multiloops, which we introduced in Sect. 1.6 (a
formal definition is postponed to Sect. 3.6). All these motifs contribute to the
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overall free energy and much experimental work has been done to determine
their free (positive or negative) energy parameters. Stems act as stabilizing
elements in folds, thus add a negative value to the free energy. Loop regions
act as destabilizing elements in folds, expressed by a positive contribution to
free energy. The result is a refined variant of the RNA structure prediction
problem with the goal to minimize the free energy.

FREE ENERGY MINIMIZATION
Given an RNA sequence S, compute a structure R
with minimum overall free energy.

Note that in a pseudoknot-free fold secondary structure elements occur either
nested or side by side, but not interleaving. If we ignore pseudoknots, an RNA
structure with maximum number of base pairs or minimum free energy can
be computed in polynomial time using dynamic programming. We will intro-
duce these successful and elegant approaches in Sect. 3.6. However, including
more complicated motifs such as pseudoknots dampens the optimism of solv-
ing the RNA structure prediction problem. The general pseudoknot structure
prediction problem is NP-complete and the proof for this based on [52] will
be delivered in Sect. 5.5.6.

2.10 Protein Structure Prediction

2.10.1 Comparative Approaches Using Neural Networks

Predicting whether an amino acid belongs to an alpha-helix, beta-sheet or coil
(loop) structure is a classical task for feedforward neural networks (also called
multi-layer perceptrons). These are supplied with a certain number of amino
acids surrounding the amino acid whose secondary structure class is to be
predicted. Having enough such windows with known class of its centre amino
acid, there is a good chance that a properly designed feedforward network
may be trained to these data - and also generalise well on so far unseen data.
Moving from secondary structures towards tertiary structure of proteins, an
intermediate problem is contact map prediction, i.e. to predict for every pair
of amino acids whether they are nearby in the natural fold of the protein.
Whenever there is a contact predicted between amino acids Ai and Aj , it is
reasonable to assume that both these amino acids belong to a core structure
which is usually highly conserved throughout all members of a family ℘ of
homologous proteins. This should be observable in a high positive covariance
with respect to mutations at sites i and j in protein family ℘. Moreover, char-
acteristic covariance patterns should also be observable between all pairs of
sites in the surroundings of sites i and j. This motivates an approach that
presents to a neural network, among other parameters as the above discussed
secondary structure class predictions, lots of standard covariance coefficients,
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taken from a multiple alignment of a protein family ℘. Having now consider-
ably more parameters as an input for a neural network than in the example
before, taking care of the notorious problem of overfitting in neural learning
becomes more urgent. Support vector machines are particularly well suited
to solve this problem. Indeed, there are successful approaches to contact map
prediction using support vector machines.

As the emphasis of this book lies more on traditional (exact) combinatorial
algorithms, we do not further develop neural network techniques in the main
chapters of this book, but postpone this theme to Chap. 7 on metaheuristics,
and now switch back to a more classical combinatorial problem.

2.10.2 Protein Threading

Let S be a string of n amino acids describing the primary structure of a
novel protein. Let a reference protein T of k amino acids be given with known
tertiary structure consisting of a sequence of core segments (alpha or beta)
C1, . . . , Cm of fixed lengths c1, . . . , cm that are separated by loop segments
L0, L1, . . . , Lm−1, Lm of lengths l0, l1, . . . , lm−1, lm. Thus, reference protein T
is segmented into a concatenation of substrings

T = L0C1L1C2 . . . CmLm (2.17)

with loop and core segments of known lengths occurring in alternation as
shown in Fig. 2.17.

L2

Lm

L1

L0

C2(a) C1 CC m3

4 6 8 10 9(b)

Fig. 2.17. (a) Core structure of reference protein; (b) Threading into reference
protein

Assume that length ci of core segment Ci is strongly conserved in evolu-
tion, whereas length li of loop segment Li varies within an interval [λi . . . Λi].
The task is to identify corresponding core segments C1, . . . , Cm of lengths
c1, . . . , cm within the novel protein S such that a certain distance measure
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between C1, . . . , Cm and C1, . . . , Cm is minimized and, of course, constraints
on the lengths of loop segments are respected. Let core segments C1, . . . , Cm

of fixed lengths c1, . . . , cm within protein S be defined by their start positions
t1, . . . , tm within reference protein T . Such a list of start positions is called a
threading of S into T . As an example, let core lengths 5, 4, 6, 3 and loop length
intervals [3 . . . 7],[3 . . . 6],[7 . . . 9],[6 . . . 12],[7 . . . 11] be given (Fig. 2.17). Then,
start positions 5, 16, 28, 44 of the shaded core segments define an admissible
threading of protein S into T . Admissibility of a threading may be expressed
by the following inequalities (i = 2, . . . , m − 1):

1 + λ0 ≤ t1 ≤ 1 + Λ0

ti + ci + λi ≤ ti+1 ≤ ti + ci + Λi

tm + cm + λm ≤ n + 1 ≤ tm + cm + Λm.

(2.18)

Using this notation, the quality of a threading is measured by a function
f(t1, . . . , tm).

f(t1, . . . , tm) =
m∑

i=1

g(ti) +
m−1∑
i=1

m∑
j=i+1

h(ti, tj) (2.19)

Here, term g(ti) is an abbreviation for some function depending on core seg-
ment Ci of T and substring Ci(ti) of S with length ci that starts at position
ti. Furthermore, h(ti, tj) is an abbreviation for some function depending on
corresponding substrings Ci, Ci(ti), Cj , and Cj(tj). Local term g(ti) may be
used as a measure of how good core segment Ci of S resembles core segment
Ci of T , whereas coupling term h(ti, tj) may be used to express interactions
between core segments. An example might be

g(ti) = dopt(Ci, C
i(ti)) with Ci(ti) = S[ti . . . ti + ci − 1]

with a distance function d. The protein threading problem now attempts to
compute a threading t1, . . . , tm of protein S into the loop and core structure
of reference protein T such that f(t1, . . . , tm) is minimized.

PROTEIN THREADING
We refer to a fixed scoring f(t) for any thread-
ing t as described above. Given a novel protein S
of length n and a reference protein T of length k
with known core-loop structure, and also given in-
tervals for admissible core lengths, determine an
admissible threading t of S into the structure of T
with minimum value f(t).

In Chap. 3 we will see that this problem is efficiently solvable by a dynamic
programming approach provided the evaluation function f(t) does not contain
any coupling terms, whereas in Chap. 5 we show that the presence of simplest
coupling terms in f(t) immediately leads to NP-hardness of the problem (see
[50]).
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2.11 Bi-Clustering

We start with a matrix of binary entries with n rows corresponding, for ex-
ample, to n different microarray measurements, each involving the expression
of m genes (columns of the matrix). We assume that measurements are taken
in the context of a disease exhibiting a few different variants, each of them
characterized by a different gene expression background. What we would like
to have is a prediction algorithm telling us to which variant each measurement
(row) belongs and which gene expression pattern characterizes measurements
of a certain variant. Thus, this is on the one hand a problem of clustering
measurements and on the other hand, of finding gene expression rules that
characterize clusters. One can imagine various sorts of rules for the character-
ization of a cluster of measurements:

• Expression rule: characterize a cluster by a fixed subset of genes that must
be expressed in measurements of the cluster.

• Expression/suppression rule: characterize a cluster by a fixed subset of
genes that must be expressed and a fixed subset of genes that may not be
expressed in measurements of the cluster.

• Arbitrary Boolean rule: characterize a cluster by validity of a Boolean
formula on the expression/suppression states of the genes in a fixed set of
genes in all measurements of the cluster.

It is expected that number of clusters as well as size of each cluster have to
be restricted to make the result of clustering and characterization of clusters
meaningful, for example by expecting k clusters with at least K elements
within each cluster for suitably chosen numbers k, K. Also, admitted rules
should be somehow restricted. Admitting, for example, every Boolean formula
is surely no good idea, since it allows characterization of each cluster in an
arbitrary clustering of measurements by simply using as a rule characterizing
a considered cluster the Boolean formula in disjunctive normal form that
simply enumerates all measurements in the cluster. We thus fall back, as
an example, to the simplest sort of cluster rules by gene expression. Note
that we look at the same time for clusters and gene expression rules for each
cluster. This is different from the task to find, for example, for a partitioning
into two classes a decision tree that separates classes. For such a situation
with known clusters one could apply standard techniques of machine learning
(e.g. version space procedure or ID3) for the inference of decision trees. Here,
the different problem of simultaneously finding clusters and gene expression
characterizations for each cluster has to be solved. As a first problem variant
(the simplest one among lots of further ones) we discuss the following.

MAXIMUM SIZE ONLY-ONES SUBMATRIX
Given binary matrix M and lower bound b, is there sub-
matrix of size at least b (size of a matrix = number of
entries) that contains only entries ‘1’.
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As will be shown in Chap. 5, already this simply looking problem is NP-
complete (shown in [63]).

2.12 Bibliographic Remarks

The most comprehensive treatment of algorithmic problems resulting from
bioinformatics problems is surely Gusfield [31]. Various more special, and in
parts rather intricate problems are treated in Pevzner [64].
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Dynamic Programming

3.1 General Principle of Dynamic Programming

As numerous examples from algorithm theory show, a recursive solution of a
problem following the general principle of divide-and-conquer usually has the
advantage of being clear and understandable, and often leads to an efficient
algorithmic solution of a problem. In a recursive approach, any instance x
of a problem is reduced to smaller instances x1, . . . , xk that are solved sepa-
rately. Then, from solutions y1, . . . , yk of x1, . . . , xk a solution y of the original
instance x is assembled, usually in a rather simple and cheap manner. To par-
ticularly solve an optimization problem in a recursive manner depends on the
validity of the so-called Bellman principle (see [8], reprint [9]): assembly of
an optimal solution y of x requires optimal solutions y1, . . . , yk of instances
x1, . . . , xk.

Unfortunately, implementing a recursive solution strategy directly by us-
ing recursive procedures often leads to exponential running time (measured
in terms of input length), with the exact running time estimation depend-
ing on the number and size of the generated sub-instances and the costs for
assembling sub-solutions into a solution of the original call. For example, re-
placement of every instance x of length n by two instances x1 and x2, each of
length n − 1, obviously leads to an exponential number of recursive subcalls,
thus to execution time at least 2n, whereas replacement of every instance x of
length n by two instances x1 and x2, each of length n/2 as done in good sort-
ing algorithms, leads to the well-known execution time of O(n log n). Even in
case that a direct recursive implementation leads to an exponential number
of recursive subcalls, the game is not necessarily lost. It might well be the
case that there are only polynomially many different recursive subcalls, but
with multiple calls of each of them. This offers the opportunity to compute
all these subcalls in a bottom-up tabular manner, starting with the smallest
instances, storing computed solutions for all of them, and using these to com-
pute solutions for longer instances, too. Stated differently, top-down recursive
computation is replaced by a bottom-up iterative computation of solutions of
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all occurring instances, accompanied by storage of already computed solutions
for usage in the computation of further solutions.

The most prominent and simplest application of dynamic programming
is the computation of Fibonacci numbers. The ith Fibonacci number f(i) is
recursively defined by the following equations: f(0) = 1, f(1) = 1, f(i + 2) =
f(i) + f(i + 1). A top-down recursive execution of the recursion when calling
f(n) leads to at least 2n/2 many subcalls of the Fibonacci function though
there are only n − 1 different subcalls to be executed. If these are computed
iteratively in a bottom-up manner, only n− 1 calls of the Fibonacci function
must be evaluated. Contrasting this example, we next describe a situation
where dynamic programming is not applicable. Consider testing satisfiability
of Boolean formulas ϕ(x1, . . . , xn) having n Boolean variables. Such a for-
mula is satisfiable if and only if at least one of the formulas ϕ(‘true’, . . . , xn),
ϕ(‘false’, . . . , xn) is satisfiable. This is a recursive formulation of satisfiability.
Here, we end up with 2n different subcalls. Indeed, satisfiability is an NP-hard
problem so that a polynomial time solution is not possible, unless P = NP.

The main steps of any dynamic programming approach can be summarized
as follows:

• Parameterization: think about (usually natural and canonical) ways to
reduce any problem instance x to a couple of smaller sub-instances.

• Recursive solution: show how solutions of sub-instances may be assembled
into an overall solution.

• Bellman principle: show that an optimal solution of any instance x must
necessarily be assembled from optimal solutions of the sub-instances.

• Counting and overall complexity : count the number of different instances
of size at most the size of x. Show that this number is bounded by a
polynomial in the size of x. Estimate the costs of computing the solution
of an instance x from stored solutions of its sub-instances. Together with
the estimated number of sub-instances give an overall estimation of the
complexity of the procedure.

• Tabular (bottom-up) computation: organize the computation of solutions
of all sub-instances of x in a tabular manner, proceeding from smaller
instances to greater instances.

There will be a couple of further tricks that are often applied in dynamic pro-
gramming to improve complexity; these are illustrated in the following exam-
ples. To complete the listing above we now reveal them in advance. Sometimes,
recursion requires some sort of additional constraints to be maintained. In case
of a fixed (static) number of different constraints these may be incorporated
by treating several optimization functions in parallel instead of a single one.
In more complex cases of constraints dynamically depending on input, it may
be necessary to incorporate constraints into the definition of the optimization
function via additional parameters controlling the required constraints. So far,
for a recursively defined function f , the bottom-up evaluation of all subcalls of
f reduced running time by avoiding multiple calls of identical terms. Further
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reductions of running time may be achieved by treating functional terms that
frequently occur in these subcalls of function f in a more efficient manner. Let
us call terms without any occurrence of function f within them basic terms,
and terms with an occurrence of f within them recursive terms. Concerning
basic terms, computing and storing them before the main bottom-up compu-
tation of subcalls of f starts, always saves running time. Concerning recursive
terms, it may be advantageous to compute them within a separate recursive
procedure parallel to the main recursion, instead of nested within the main
recursion. Thus, the list above may be completed as follows:

• Conditioning : integrate constraints that are required for a successful for-
mulation of recursion into the definition of the optimization function by
either statically using several functions instead of a single one, or by ex-
pressing dynamically varying constraints by a further function parameter.

• Preprocessing of basic sub-terms: look for basic terms (without recursive
calls occurring within them) which may be computed in advance before
starting the recursion.

• Parallel processing of recursive sub-terms: look for recursive terms which
may be computed in parallel to the main recursion.

We illustrate these approaches by a couple of bioinformatics problems. The
simplest example is alignment of strings. Here, dynamic programming in its
basic and pure form can be studied. Integration of static constraints is required
to solve affine gap alignment, which modifies alignment in the sense that
spacing symbols (gaps) are scored in a block-wise manner instead of scoring
them additively in a pointwise fashion. Integration of dynamically varying
constraints is required for gene assembly, the computation of optimal RNA
folds, Viterbi algorithm for Hidden Markov models, optimal lifted phylogenetic
alignment, protein threading, and profile alignment.

3.2 Alignment

3.2.1 Problem Restated

Given scoring function σ and strings S, T of length n, m, we want to compute
an alignment S∗, T ∗ of S with T having maximum score. We concentrate here
on the computation of the maximum score σopt(S, T ) = maxS∗,T∗ σ∗(S∗, T ∗).
From this, an optimal alignment can be easily extracted by tracing back the
computation leading to this maximal score. Note that simply enumerating all
possible alignments results in exponential running time: although the lengths
of strings S∗ and T ∗ in an alignment of S with T can be bounded by n + m,
there are nevertheless O(2n+m) ways to introduce spacing symbols into strings
S and T .
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3.2.2 Parameterization

A natural way to define sub-instances for the optimal alignment of strings S
and T is to optimally align certain substrings of S and T . It turns out that
optimally aligning prefixes of S with prefixes of T is sufficient. Thus, for every
index i between 0 and n and every index j between 0 and m consider pre-
fixes S[0 . . . i] and T [0 . . . j] and let αi,j be the value of an optimal alignment
between strings S[0 . . . i] and T [0 . . . j].

3.2.3 Bellman Principle

If in an optimal alignment of strings S[1 . . . i] and T [1 . . . j] the last column
of aligned symbols is deleted, one obtains an optimal alignment of strings
S[1 . . . i−1] and T [1 . . . j−1] in case that S(i) was aligned to T (j), an optimal
alignment of strings S[1 . . . i] and T [1 . . . j−1] in case that the spacing symbol
was aligned to T (j), and an optimal alignment of strings S[1 . . . i − 1] and
T [1 . . . j] in case that S(i) was aligned to the spacing symbol.

3.2.4 Recursive Solution

Values α0,0, αi,0, α0,j , and αi,j , for 1 ≤ i ≤ n and 1 ≤ j ≤ m, must be
computed. We first treat the case of αi,j . Here we observe that at the right end
of an optimal alignment of S[0 . . . i] with T [0 . . . j] either S(i) is aligned with
T (j), or S(i) is aligned with spacing symbol – , or spacing symbol – is aligned
with T (j). We cannot predict which possibility gives the optimal scoring value,
thus we must take the maximum of the three values (using here that Bellman’s
principle may be applied) σ(S(i), T (j)) + αi−1,j−1, σ(S(i),−) + αi−1,j , and
σ(−, T (j)) + αi,j−1. For the computation of αi,0 we observe that there are no
symbols available in T [0 . . . 0], thus there is only a single alignment of S[0 . . . i]
with T [0 . . . 0] aligning spacing symbol to every symbol of S[0 . . . i] and having
score equal to the sum of all values σ(S(k),−), for 1 ≤ k ≤ i. Correspondingly,
α0,j equals the sum of all values σ(−, T (k)), for 1 ≤ k ≤ j. Finally we have
to define basic value α0,0. Looking at the recursive formula above we observe
that any occurrence of α0,0 must contribute value 0 to the overall score. This
was also to be expected since the computation of α0,0 intends to optimally
align empty string with empty string. Thus, we may summarize the recursive
computation scheme (usually attributed to Needleman and Wunsch [56] under
the name of “global pairwise alignment”) as follows:
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α0,0 = 0

αi,0 =
i∑

k=1

σ(S(k),−) = αi−1,0 + σ(S(i),−)

α0,j =
j∑

k=1

σ(−, T (k)) = α0,j−1 + σ(−, T (j))

αi,j = max

⎧⎨
⎩

αi,j−1 + σ(−, T (j))
αi−1,j + σ(S(i),−)
αi−1,j−1 + σ(S(i), T (j)).

(3.1)

3.2.5 Number of Different Subcalls and Overall Complexity

Given strings S and T of length n and m, respectively, there are (n + 1)(m + 1)
different sub-terms αi,j to be computed, a number polynomial in n and m.
Note that the computation of αi,0 requires a single call of an already com-
puted value plus a single addition. The computation of α0,j also requires a
single call of an already computed value plus a single addition. Finally, the
computation of αi,j requires three calls of already computed values together
with the computation of a maximum. In every case, a constant amount of
work has to be done when computing a new value from already computed
and stored values. Thus, the overall complexity of computing all sub-values is
O(nm). The final optimal score is found as value αn,m.

3.2.6 Tabular Organization of the Bottom-Up Computation

Whenever values αi,j are to computed by hand we best organize the com-
putation in a table as follows. The table has n + 1 rows that are labelled
with the spacing symbol and the symbols of string S, and m + 1 columns
that are labelled with the spacing symbol and the symbols of string T . First
row and first column are initialized with values according to the first three
of the equations (3.1) above. Inner field (i, j) receives its value using already
computed values from three neighbouring fields according to the fourth of the
equations (3.1) above. In addition, we use arrows indicating which of these
three neighbouring fields are responsible to obtain the maximum value in the
newly computed field; thus, there may be up to three arrows pointing to the
new field. After finishing all computations, the arrows will help us to not only
obtain the maximum value of an optimal alignment of S with T , but also an
optimal alignment itself. For this, simply trace back arrows in an arbitrary
manner from field (n, m) to field (0, 0); any diagonal step is interpreted as an
alignment of two characters, whereas a vertical or horizontal step corresponds
to the introduction of a spacing symbol in string T or S, respectively. We
illustrate this with some examples. Consider strings S =AAAC and T =AGC
with the scoring function that rewards matches by 1, penalizes mismatches by
−1, and even stronger penalizes inserts and deletes by −2. The optimal score
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is read out as −1. Three different optimal alignments all having score −1 are
obtained by three different traceback paths (Fig. 3.1).
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Fig. 3.1. Tabular computation of optimal alignment with traceback paths

Exercises

3.1. If instead mismatches are considerably stronger penalized than inserts
and deletes by value −5, there result other optimal alignments than before.
There are four different optimal alignments all having score −4. The reader
may carry out the corresponding tabular computation.

A G – – C A – G – C A – – G C – – A G C
A – A A C A A – A C A A A – C A A A – C

3.2. Sometimes it is interesting to find an optimal alignment between prefixes
and/or suffixes of one or both of strings S and T instead of the complete strings
S and T . Show how all possible combinations of taking a prefix and/or suffix
of one or both of the strings is treated computationally. Sometimes, the former
computation may be used, whereas sometimes a minor modification must be
built in (different initialization of fields with value 0).

3.3. Show how by a minor modification of the recursive formulas above an
optimally scoring alignment between a substring of S and a substring of T can
be found. Such an alignment is called an optimal local alignment (attributed
to Smith and Waterman [70]).
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3.3 Multiple Alignment

We show how the dynamic programming approach is generalized to more than
two strings. We treat the example of three strings S1, S2, S3 of lengths n1,
n2, n3. Define αi,j,k to be the maximum obtainable sum-of-pairs score of an
alignment of prefixes S1[1 . . . i], S2[1 . . . j], S3[1 . . . k]. We concentrate on the
case i > 0, j > 0, k > 0, and leave the correct definitions for base cases
with all or two or one of parameters i, j, k being 0 to the reader. As before,
we distinguish what may happen at the right end of an optimal alignment.
Obviously, there are 7 ways to introduce up to two spacing symbols. The
formula thus looks as follows:

αi,j,k = max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

αi−1,j−1,k−1 + σ(S1(i), S2(j)) + σ(S1(i), S3(k)) + σ(S2(j), S3(k))
αi,j−1,k−1 + σ(−, S2(j)) + σ(−, S3(k)) + σ(S2(j), S3(k))
αi−1,j,k−1 + σ(S1(i),−) + σ(S1(i), S3(k)) + σ(−, S3(k))
αi−1,j−1,k + σ(S1(i), S2(j)) + σ(S1(i),−) + σ(S2(j),−)
αi,j,k−1 + σ(−, S3(k)) + σ(−, S3(k))
αi,j−1,k + σ(−, S2(j)) + σ(S2(j),−)
αi−1,j,k + σ(S1(i),−) + σ(S1(i),−).

(3.2)

In the general case of k strings of length O(n) each, there are nk terms to
be computed, with max terms consisting of 2k − 1 sub-terms. This leads to
overall complexity of O(nk2k). This makes the approach impractical even for
small values of k and n.

3.4 Affine Gap Alignment

3.4.1 Problem Restated

In an alignment like the following it might be desirable to penalize the in-
sertion or deletion of blocks of length k not as strongly as k independent
insertions or deletions.

A A C – – – A A T T C C G A C T A C
A C T A C C T – – – – – – C G C – –

We divide an alignment in blocks as follows: a-blocks consist of a single pair
of characters both different from the spacing symbol; b-blocks are segments of
maximum length consisting of only spacing symbols in the first string; c-blocks
are segments of maximum length consisting of only spacing symbols in the
second string. In the example above we observe in consecution three a-blocks,
a single b-block of length 3, a single a-block, a single c-block of length 6,
three a-blocks, and a single c-block of length 2. We make the convention that
b-blocks and c-blocks must always be separated by at least one a-block. Any
a-block aligning characters x and y is scored as usual by σ(x, y), whereas any
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b-block or c-block of length k is scored as a whole by −f(k), where f(k) is a
function that usually is sublinear, that is f(k) ≤ k. Examples of gap scoring
functions are f(k) = log k, or any linear function f(k) = ck, or any affine
function f(k) = e(k−1)+d. We illustrate the modifications necessary to deal
with gaps for the case of affine gap scoring, though the approach also works
for an arbitrary function f(k).

AFFINE GAP ALIGNMENT
Given scoring function σ(x, y) for characters, affine
gap penalizing function for b-blocks and c-blocks
of length k, f(k) = −e(k−1)−d, and strings S, T
of length n and m, respectively, compute the score
of an optimal gap alignment σopt(S, T ).

3.4.2 Parameterization and Conditioning

Parameterization is obvious; for every i and j with 0 ≤ i ≤ n and 0 ≤ j ≤ m
optimally align prefixes S[1 . . . i] and T [1 . . . j]. The problem comes with the
way gaps are scored: if an alignment ends, for example, with a pair (x,−) it
may not be locally scored without taking into consideration what is left of
it. In case that left of it a further pair (y,−) is found, rightmost pair (x,−)
contributes −e to the affine score of the whole b-block. In case that left of it
an a-block (y, z) is found, rightmost pair (x,−) contributes −d to the affine
score of the whole b-block. Information on what is left of it may be controlled
by simultaneously optimizing three functions instead of a single one. These
are described as follows:

• ai,j = maximum value of a gap alignment of S[1 . . . i] and T [1 . . . j] ending
with an a-block

• bi,j = maximum value of a gap alignment of S[1 . . . i] and T [1 . . . j] ending
with a b-block

• ci,j = maximum value of a gap alignment of S[1 . . . i] and T [1 . . . j] ending
with a c-block

After having computed all of these values the problem is solved by taking as
optimal gap alignment value σopt(S, T ) = max {an,m, bn,m, cn,m}.

3.4.3 Bellman Principle

... is obviously fulfilled.

3.4.4 Recursive Solution

In the following recursive formulas we have i > 1 and j > 1. Non-admissible
parameter combinations are ruled out by using −∞ as value.
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a1,1 = σ(S(1), T (1))
ai,1 = σ(S(i), T (1)) + ci−1,0

a1,j = σ(S(1), T (j)) + b0,j−1

ai,j = σ(S(i), T (j)) + max {ai−1,j−1, bi−1,j−1, ci−1,j−1}

b0,1 = −d

b0,j = −e − b0,j−1

b1,1 = −∞ (impossible case)
bi,1 = −∞ (impossible case)
b1,j = max {−e + b1,j−1,−d + a1,j−1}
bi,j = max {−e + bi,j−1,−d + ai,j−1}

c1,0 = −d

ci,0 = −e − ci−1,0

c1,1 = −∞ (impossible case)
c1,j = −∞ (impossible case)
ci,1 = max {−e + ci−1,1,−d + ai−1,1}
ci,j = max {−e + ci−1,j ,−d + ai−1,j}

(3.3)

3.4.5 Number of Different Subcalls and Overall Complexity

Counting the steps that are required to compute all values ai,j , bi,j , and ci,j ,
we see that for the calculation of a further value we require at most three
already computed values. Thus, overall complexity to compute all required
values is again O(nm).

Exercises

3.4. What has to be modified if we allow b-blocks and c-blocks to occur side
by side?

3.5. Modify the equations above for the case of an arbitrary gap penalizing
function f(k) that depends on the length k of b-blocks and c-blocks. Show
that overall complexity increases to O(n2m + nm2).

3.5 Exon Assembly

3.5.1 Problem Restated

From a set of candidate exons a selection of non-overlapping ones is to be
found whose concatenation in ascending order best fits to a proposed target
string.
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EXON ASSEMBLY
Given scoring function σ with σ(x,−) ≤ 0 and
σ(−, x) ≤ 0 for all characters x (as it is usually
the case for standard scoring functions), genome
string G = G[1 . . . n], list of candidate exons,
i.e. substrings E1, . . . , Eb of G, and target string
T = T [1 . . . m], compute the best possible optimal
alignment score for any concatenation Γ∗ of a chain
Γ of candidate exons with T :

max
chains Γ

σopt(Γ∗, T ).

The following notions are used in the sections below. For a candidate exon
E = G [i . . . j] define first(E) = i and last(E) = j. For candidate exons E and
F let E < F stand for last(E) < first(F ).

3.5.2 Parameterization and Conditioning

As usual, parameterization is done via truncation of strings G and T . Con-
cerning target string T , we explicitly truncate it at some position j with
0 ≤ j ≤ m. Concerning genome string G, truncation is done indirectly by fix-
ing some exon candidate Ek as the last one to be used in any chain of candidate
exons, and truncating Ek at some position i with first(Ek) ≤ i ≤ last(Ek).
Note that truncation of T may lead to the empty string (in case j = 0),
whereas truncation of Ek always gives a non-empty string (containing at least
base G(i)). For a chain Γ of candidate exons F1 < F2 < . . . < Fp and index
i with first(Fp) ≤ i ≤ last(Fp), we use the suggestive notation Γ∗[. . . i] to de-
note the concatenation F1F2 . . . Fp−1G[first(Fp) . . . i], with the last candidate
exon truncated at absolute position i.

Now the parameterized and conditioned problem can be stated as follows:
for all combinations of parameters j, k, i with 0 ≤ j ≤ m, 1 ≤ k ≤ b, and
first(Ek) ≤ i ≤ last(Ek) compute the following value chain(j, k, i):

chain(j, k, i) = max
Γ ending with Ek

σopt(Γ∗[. . . i], T [1 . . . j]). (3.4)

After computation of all these values, the original problem is then solved by
returning

max
1≤k≤b

chain(m, k, last(Bk)). (3.5)

3.5.3 Bellman Principle

... is obviously fulfilled.
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3.5.4 Recursive Solution

The solution presented here is taken from [64]. For the computation of terms
chain(j, k, i) for any admissible combination of parameters j, k, i we distin-
guish several cases:

Case 1. j = 0
Case 2. j > 0, there is no index r with Er < Ek

Case 3. j > 0, first(Ek) < i, there is at least one index r with Er < Ek

Case 4. j > 0, first(Ek) = i, there is at least one index r with Er < Ek

In case 1, we have to optimally align a suitable string Γ∗[. . . i] with the empty
string T [1 . . . 0]. Since inserts and deletes are scored zero or negative, the
optimal alignment is achieved by using no other candidate exons than the
prescribed last Ek. We obtain:

chain(0, k, i) =
i∑

p=first(Bk)

σ(G(p),−). (3.6)

In case 2, there are no further candidate exons left of Ek that can be used in
Γ∗[. . . i]. Thus we obtain:

chain(j, k, i) = σopt(G[first(Ek) . . . i], T [1 . . . j]). (3.7)

In case 3, we look at what may happen at the right end of an optimal alignment
of Γ∗[. . . i] and T [1 . . . j]. As usual, either G(i) is aligned with T (j), or G(i) is
aligned with spacing symbol – , or spacing symbol – is aligned with T (j). In
any case, in the recursive step we do not leave Ek as last used exon candidate.
Thus we obtain:

chain(j, k, i) = max

⎧⎨
⎩

chain(j − 1, k, i − 1) + σ(G(i), T (j))
chain(j, k, i − 1) + σ(G(i),−)
chain(j − 1, k, i) + σ(−, T (j)).

(3.8)

In case 4, after aligning G(i) with T (j) or G(i) with spacing symbol – , we
have consumed the last available symbol of Ek. Every candidate exon Eq with
Eq < Ek may be the segment used in Γ left of Ek; alternatively Ek was the
only segment used in Γ. Thus we obtain:

chain(j, k, i) = max

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ(G(i), T (j)) + max
q with last(Bq)<i

chain(j − 1, q, last(Bq))

σ(G(i),−) + max
q with last(Bq)<i

chain(j, q, last(Bq))

σ(G(i), T (j)) +
∑

p<j σ(−, T (p))
σ(G(i),−) +

∑
p≤j σ(−, T (p))

σ(−, T (j)) + chain(j − 1, k, i).
(3.9)
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3.5.5 Number of Different Subcalls and Overall Complexity

There are O(bnm) terms chain(j, k, i) to be computed. Every computation of a
new such value using stored prior values requires the following efforts. To find
out which of the four cases above applies a run through the list of candidate
exons is required. This costs O(b) steps. In case 1, there are O(n) additions to
be done. In case 2, O(nm) steps are required to compute an optimal alignment.
Case 3 is cheapest, only O(1) steps lead to the desired result. Case 4 requires
O(b) already computed values to be used in the computation of the maxima,
and O(m) additions to be done in the computations of the sums. Altogether,
we have a complexity of O(bnm(b + n + nm + b + m)) = O(bn2m2 + b2nm).

3.5.6 Preprocessing of Simple Terms

There is some waste of time in the procedure described above. This concerns
a couple of terms that are computed in the calls of chain(j, k, i) in a multiple
manner. Doing the computation of these terms in advance saves execution
time. The terms are the following. If we compute for every i ≤ n the list
of all exon candidates Eq with last(Eq) < i, and also the list of all exon
candidates Eq with last(Eq) = i, the distinction of cases can be done in
O(1) time. The computation of these lists in advance requires O(bn) steps.
Sums occurring in case 1 can be computed in advance with O(bn) additions.
For a fixed value first(Ek), optimal alignment values for all combinations of
strings Ek[first(Ek) . . . i] and T [1 . . . j] occurring in case 2 can be computed
in O(nm) steps using the tabular computation of an optimal alignment of
Ek[first(Ek) . . . last(Ek)] and T [1 . . . m]. Thus, all values required for case 2
can be computed in O(bnm) steps. Finally, the sums occurring in case 4 are
all computed in O(m) steps. What cannot be treated this way are the maxima
in case 4 since these by themselves contain further recursive calls of function
chain, i.e. are not simple terms. Thus, O(b) steps are required to compute
chain(j, k, i) via case 4 from already computed values. We end with an overall
complexity of O(bn + bn + bnm + m + nmb2). This simplifies to O(b2nm) and
improves the former estimation.

3.5.7 Parallel Computation of Recursive Terms

To also get rid of the remaining extra factor b in the estimation above requires
the separate computation of just those terms in case 4 which caused this extra
factor. Let us abbreviate them as follows. For every combination of parameters
i and j such that there is at least one exon candidate Eq with last(Eq) < i
define

μ(i, j) = max
q with last(Eq)<i

chain(j, q, last(Eq)). (3.10)

Using this abbreviation, case 4 can now be restated as:
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chain(j, k, i) = max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ(G(i), T (j)) + μ(i, j − 1)
σ(G(i),−) + μ(i, j)
σ(G(i), T (j)) +

∑
p<j σ(−, T (p))

σ(G(i),−) +
∑

p≤j σ(−, T (p))
σ(−, T (j)) + chain(j − 1, k, i).

(3.11)

Now we see that a constant number of calls of stored values is required instead
of the O(b) amount before. But of course we must show how to recursively
compute also all fresh terms μ(i, j); simply introducing an abbreviation alone
is not a clever trick for saving execution time. The recursive computation of
μ(i, j) makes the following distinctions:

Case 1. There is no Eq with last(Eq) = i − 1.
Case 2. There is at least one Eq with last(Eq) = i − 1, and at least one Ep

with last(Ep) < i − 1.
Case 3. There is at least one Eq with last(Eq) = i − 1, but no Ep with

last(Ep) < i − 1.

In the first case we obtain:

μ(i, j) = μ(i − 1, j). (3.12)

In the second case we obtain:

μ(i, j) = max

{
μ(i − 1, j)

max
q with last(Eq)=i−1

chain(j, q, i − 1). (3.13)

Note that the first term in the outer max covers all Eq with last(Eq) < i− 1,
whereas the inner max term covers all Eq with last(Eq) = i − 1. In the third
case we obtain:

μ(i, j) = max
q with last(Eq)=i−1

chain(j, q, i − 1). (3.14)

The computation of all values μ(i, j) obviously requires O(bnm) steps with
factor b resulting from the max terms in cases 2 and 3. Summarizing the
complexity of computation of all values that are stored in advance is O(bn +
m + bnm + bn) = O(bnm), the computation of all values chain(i, j, k) and
μ(i, j) requires O(bnm)+O(bnm)+O(bnm) = O(bnm) steps. This is optimal
since there are bnm terms to be computed.

3.6 RNA Structure Prediction

3.6.1 Problem Restated

We want to start with the basic problem of computing the pseudoknot-free
structure with maximum number β(1, n) of base pairs for an RNA string
S = S[1 . . . n]. The more challenging task of computing the pseudoknot-free
structure with minimum free energy will be discussed in Sect. 3.6.5.
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3.6.2 Parameterization and Conditioning

Let β(i, j) be the maximum number of base pairs in a pseudoknot-free folding
of subsequence S[i . . . j]. As the following recursive solution shows, consider-
ation of all prefixes of S like in alignment or exon assembly would not be suf-
ficient here. We want to calculate the best structure for subsequence S[i . . . j]
from the previously calculated best structure for smaller subsequences.

3.6.3 Recursive Solution and Bellman Principle

The computation of β(i, j) distinguishes the following cases.

1. Add an unpaired base i to the best structure for smaller subsequence
S[i + 1 . . . j].

1i
i

j

2. Add an unpaired base j to the best structure for smaller subsequence
S[i . . . j − 1].

1ji
j

3. Add a base pair (i, j) with score δ(i, j) to the best structure for smaller
subsequence S[i + 1 . . . j − 1].

1j1i
ji

4. Combine two best structures for smaller subsequences S[i . . . k] and
S[k + 1 . . . j].

1kk
i j
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In case 1, β(i, j) obviously equals β(i+1, j). In case 2, β(i, j) obviously equals
β(i, j − 1). In case 3, binding of base i to base j contributes a score δ(i, j) to
β(i, j). Note that this score can either be defined as a constant or as a free
energy value reflecting how strong the bond between this specific base pair
is. In case 4, we construct a so-called bifurcation with two best structures on
each side. Summarizing all cases, we obtain the following equations called the
Nussinov algorithm [60], for 1 ≤ i ≤ n and i < j ≤ n:

β(i, i) = 0 for i = 1, . . . , n

β(i, i − 1) = 0 for i = 2, . . . , n

β(i, j) = max

⎧⎪⎪⎨
⎪⎪⎩

β(i + 1, j)
β(i, j − 1)
β(i + 1, j − 1) + δ(i, j)
maxi<k<j {β(i, k) + β(k + 1, j)} .

(3.15)

Note that the additive term δ(i, j) can rule out pairings that are not admis-
sible. For example, set

δ(i, j) =

{
1 if (i, j) = (A, U) or (C,G)
0 else.

In practice, a matrix will be filled along the diagonals and the solution can be
recovered through a traceback step. Figure 3.2 visualizes how a matrix entry
is computed recursively. Note that only the upper (or lower) half of the ma-
trix needs to be filled. Therefore, after initialization the recursion runs from
smaller to longer subsequences as follows:

for l = 1 to n do
for i = 1 to n + 1 − l do

j = i + l
compute β(i, j)

end for
end for

3.6.4 Number of Different Subcalls and Overall Complexity

There are O(n2) terms to be computed, each requiring calling of O(n) already
computed terms for the case of bifurcation. Thus overall complexity is O(n3)
time and O(n2) space.
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Fig. 3.2. Calculation of a matrix entry in the Nussinov algorithm

3.6.5 Variation: Free Energy Minimization

The base pair maximization approach neglects two main factors which in na-
ture strongly drive RNA folding. First, loop sizes (entropic terms) are not
taken into account. This is critical, as long unstructured loop regions destabi-
lize and are therefore unlikely to form in a structure which aims for the state
of minimum free energy. Second, helical stacking is ignored in the Nussinov
algorithm. The enthalpic term which stacked base pairs (i, j) and (i+1, j−1)
contribute to stabilize a structure varies considerably depending on which
bases are involved. For example, experimental work showed that helical stack-
ing of pairs (G,U) and (U,G) has free energy of around -0.2 kcal/mol, whereas
helical stacking of (U,G) and (G,U) is assigned free energy of around -1.5
kcal/mol. Note that helical stacking of pairs (i, j) and (i + 1, j − 1) is not a
symmetric relation.

In order to take into account global folding motifs such as stems, hairpin
loops, bulges, internal loops, and multiloops (Sects. 1.6 and 2.9) we need to
describe them in a formal notion. Thinking of loop regions, the most promising
way to identify a structure element is by its closing base pair , i.e. the bond
with largest distance. Let R be an RNA structure over a sequence S. We say
a base k is accessible from a closing base pair (i, j) ∈ R if there are no other
base pairs (i′, j′) ∈ R such that i < i′ < k < j′ < j. Informally stated, this
means that if we want to reach an accessible base from the closing base pair,
there is no other base pair in the way. Similarly, a base pair (k, l) ∈ R is
accessible from a closing base pair (i, j) if both k and l are. We call (k, l) an
interior base pair . Now, let us define a structure element by its closing bond
and interior base pairs as follows (Fig. 3.3):

• A loop with closing base pair (i, j) ∈ R and one interior base pair
(i + 1, j − 1) ∈ R is called a stem.
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• A loop with closing base pair (i, j) ∈ R and no interior base pairs is called
a hairpin loop.

• A loop with a closing base pair (i, j) ∈ R and one interior base pair
(i′, j′) ∈ R with (i′ − i) + (j − j′) > 2 is called an internal loop.

• An internal loop is called a bulge loop, if j′ = j − 1 or i′ = i + 1.
• A loop with interior base pairs (i1, j1) . . . (ik, ik) ∈ R together with a

closing base pair (i, j) ∈ R is called a k-multiloop.

(a) (b) (c)

i j

(d)

1i

i j 2j

(e)

1j

2i

1i 1j

i j

1' jj

 i j

'1 ii

'1 ii

 i j

1' jj

1i

1j

1i
1i

1i

1j

Fig. 3.3. Structure elements defined by their closing bond (i, j): (a) stem; (b) hair-
pin loop; (c) bulge; (d) internal loop; (e) multiloop (hydrogen bonding is indicated
by gray area)

For each of the structure elements, an energy function is defined which
depends on the closing bond (i, j) and interior base pairs:

• eS(i, j, i + 1, j − 1) is the energy of a stem closed by (i, j).
• eH(i, j) is the energy of a hairpin loop closed by (i, j).
• eL(i, j, i′, j′) is the energy of an internal loop or bulge loop closed by (i, j).
• eM(i, i1, j1, . . . , ik, jk, j) is the energy of a k-multiloop closed by (i, j) with

interior base pairs (i1, j1) . . . (ik, jk). To make the energy computation
tractable and avoid exponential runtime, the following k-multiloop energy
simplification is commonly made:

eM(i, i1, j1, . . . , ik, jk, j) = a + bk + ck′ (3.16)

with a, b, c = constants and k′ = number of unpaired bases in the loop.
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We fix the notation that every secondary structure element identified by its
closing bond (i, j) contributes an energy value ER

i,j (calculated from the un-
derlying energy function) to the overall free energy E(R). The free energy of
an RNA structure R can now be calculated as the additive sum:

E(R) =
∑

(i,j)∈R

ER
i,j . (3.17)

It is now clear that computing the minimum free energy structure for an
RNA sequence is much more sophisticated than the Nussinov approach we
discussed before. We simply maximized the number of base pairs (and pos-
sibly produced long unstructured loop regions). Here, we take the sum over
individual energy contributions from structure elements such as stems and
loops. Note that this free energy minimization approach fixes a certain energy
model , namely the sum over structure element energy values. Therefore, it
remains only an approximation of RNA folding. It allows an elegant frame-
work for computational methods, however there are surely more complicated
folding processes and factors hidden somewhere in the complex RNA world.

Zuker algorithm

The structure elements and corresponding energy model described above are
the scaffold for a clever dynamic programming algorithm, the so-called Zuker
algorithm [81]. It takes an RNA sequence S = S[1 . . . n] as input and computes
the structure R with minimum free energy according to the underlying energy
model. In the algorithm, three functions must be optimized simultaneously. In
practice, these correspond to matrices which we need to fill. First, we define
ε(i) to hold the minimum free energy of a structure on subsequence S[1 . . . i].
Second, we denote π(i, j) to hold the minimum free energy of a structure on
subsequence S[i . . . j] with i and j paired. Third, another conditioned function
is needed to account for multiloops. We define μ(i, j) to hold the minimum
free energy of a structure on subsequence S[i . . . j] that is part of a multiloop.

We start with the description of π(i, j), which demands that bases i and j
form a closing base pair for the structure element on S[i . . . j] with minimum
free energy. The following four cases have to be distinguished:

1. Base pair (i, j) closes a stem. We need to add the stacking energy
eS(i, j, i + 1, j − 1) and minimum free energy of a structure on smaller
subsequence S[i + 1 . . . j − 1] closed by base pair (i + 1, j − 1).

i 1 1j

ji
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2. Base pair (i, j) closes a hairpin loop. We need to add the hairpin loop
energy eH(i, j).

i j

3. Base pair (i, j) closes a bulge or internal loop. We need to add the loop
energy eL(i, j, i′, j′) and minimum free energy of a structure on smaller
subsequence S[i′ . . . j′] closed by base pair (i′, j′).

1' jj

i j

i '1 i i '1 i 1' jj

ji

1i1i 1j

bulge interior loop 

4. Base pair (i, j) closes a multiloop. We need to decompose the multiloop
into two smaller subsequences S[i+1 . . . k−1] and S[k . . . j−1] (described
in more detail below) and add the offset penalty a.

1i

i

1j

1k k

j
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If bases i and j cannot form an admissible base pair, we set π(i, j) = ∞. The
four cases lead to the following recurrence for all i, j with 1 ≤ i < j ≤ n:

π(i, j) = min {E(R)| R structure for S[i . . . j] ∧ (i, j) ∈ R}

= min

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

eS(i, j, i + 1, j − 1) + π(i + 1, j − 1)
eH(i, j)

min
i<i′<j′<i

i′−i+j−j′>2

{eL(i, j, i′, j′) + π(i′, j′)}

min
i+1<k≤j−1

{μ(i + 1, k − 1) + μ(k, j − 1) + a} .

(3.18)

We initialize π(i, i − 1) = π(i, i) = ∞, as these base pairs cannot form in a
structure. Now, let us take a further look at case 4, the multiloop calcula-
tion. We already treated the closing base pair (i, j) in the π(i, j) calculation.
Searching for the multiloop structure with minimum free energy amongst all
possible interior base pairs would lead to exponential runtime. Therefore, we
use a simple trick to make the computation feasible. We recursively cut the
two parts of a multiloop down to the interior base pairs by moving one base
at a time or by adding another bifurcation. We also have to include penalties
according to the underlying energy simplification (3.16). The following four
cases have to be distinguished for μ(i, j):

1. We move to base i + 1, add a penalty c for an unpaired base, and the
minimum free energy of a structure on smaller subsequence S[i + 1 . . . j]
that is part of a multiloop.

 i j

1i 1i

i j

2. We move to base j − 1, add a penalty c for an unpaired base, and the
minimum free energy of a structure on smaller subsequence S[i . . . j − 1]
that is part of a multiloop.

 i j

1j 1j

ji
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3. We perform another multiloop bifurcation at base k and add the minimum
free energy of two structures on smaller subsequences S[i . . . k − 1] and
S[k . . . j] that are part of a multiloop.

k k

 i

k 1

j

1k

i j

4. We discover an interior base pair (i, j) and obtain the minimum free energy
of a structure on subsequence S[i . . . j] closed by (i, j).

ji

The four cases lead to the following recurrence for all i, j with 1 ≤ i < j ≤ n:

μ(i, j) = min {E(R)| R structure for S[i . . . j] that is part of a multiloop}

= min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ(i + 1, j) + c
μ(i, j − 1) + c
min

i<k≤j
{μ(i, k − 1) + μ(k, j)}

π(i, j) + b.

(3.19)

In order to ensure that we really produce at least two interior base pairs in a
multiloop, we must initialize as follows: μ(i, i) = ∞.

So far we are able to produce structure elements with a spanning closing
base pair. However, there is no way to arrange structures in a consecutive
fashion. Therefore, a third function ε(i) is introduced in the Zuker algorithm,
which holds the minimum free energy of a structure on subsequence S[1 . . . i].
The computation of ε(i) distinguishes the following two cases:
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1. Add an unpaired base i to the best structure for smaller subsequence
S[1 . . . i − 1].

i1i1

2. Base i is paired to some base k. Add the minimum free energy of structures
on smaller subsequences S[1 . . . k − 1] and S[k . . . i] closed by (k, i).

k i1 1k

Taking together both cases, we obtain the following formula for ε(i) with
1 ≤ i ≤ n:

ε(i) = min {E(R)| R structure for S[1 . . . i]}

= min

{
ε(i − 1)
min

1≤k≤i
{ε(k − 1) + π(k, i)} .

(3.20)

We have to initialize as follows: ε(0) = 0.
Now we have completely described the Zuker algorithm for computing

an RNA structure with minimum free energy in the three equations (3.17),
(3.18), and (3.19). In practice, three matrices ε(i), π(i, j), and μ(i, j) are filled
using the principle of dynamic programming for all i, j with 1 ≤ i < j ≤ n.
When all entries are computed, ε(n) contains the minimum free energy for
an RNA sequence S = S[1 . . . n] and the corresponding best structure can be
recovered by a traceback path.

Let us analyze the time and space requirements. Obviously, the entries
for matrix ε(i) can be computed in O(n2) time and O(n) space. It takes
O(n3) time and O(n2) space to fill matrix μ(i, j). The most critical is matrix
π(i, j). Take a look at the case for bulges and internal loops. The minimum
calculation requires O(n4) time and O(n2) space, as we have to minimize over
two positions i′ and j′. However, with certain internal loop length restrictions,
the Zuker algorithm requires O(n3) time and O(n2) space to find the structure
with minimum free energy.
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It is easy to see that the Zuker algorithm excludes pseudoknots. The struc-
ture with lowest free energy for the subsequence S[i . . . j] is only allowed to
contain non-crossing interactions within this interval. Otherwise, the dynamic
programming principle is violated and efficient computation becomes impos-
sible. Pseudoknot interaction happens in a crossing fashion and therefore dy-
namic programming algorithms for RNA secondary structure prediction ne-
glect them.

3.7 Viterbi Algorithm

3.7.1 Problem Restated

Let M = (Q,Σ, q0, T, E) be a Hidden Markov model with set of states Q,
alphabet Σ of emitted characters, start state q0, state transition probabili-
ties T (p, q), and character emission probabilities E(q, x). Given an observed
sequence S ∈ Σn, the Viterbi algorithm computes the most probable state
sequence W ∈ Qn that might have emitted string S.

HMM DECODING
Given string S ∈ Σn, compute W ∈ Qn with
maximal value P (W, S).

3.7.2 Parameterization and Conditioning

For each q ∈ Q and i = 1, . . . , n define:

μi(q) = max
W∈Qi−1

P (Wq, S[1 . . . i]). (3.21)

Here, conditioning is on the last used state q in a state sequence that emitted
prefix S[1 . . . i].

3.7.3 Bellman Principle

... is obviously fulfilled.

3.7.4 Recursive Computation

μ1(q) = T (q0, q)E(q, S(1))
μi+1(q) = E(q, S(i + 1))max

r∈Q
{μi(r)T (r, q)} . (3.22)

Having computed these values the original task is solved by:

μS = max
q∈Q

μn(q). (3.23)
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3.7.5 Counting and Overall Complexity

Obviously, O(n|Q|2) steps are required to compute all these values μi(q).

3.8 Baum-Welch Algorithm

3.8.1 Problem Motivation

Next we discuss an often used way to fit parameters of a Hidden Markov
model M to observations consisting of strings S1, . . . , Sm. The Viterbi algo-
rithm computes the most likely state strings W1, . . . , Wm. Afterwards, these
together with S1, . . . , Sm are used to count transition and emission frequen-
cies which are used as fresh values for an updated model M∗. Though being
intuitive, the disadvantage of this approach is that state strings are used that
maximize joint probability, and working with maxima is notoriously difficult in
probability theory. It is much better to work with expectations. In our context
this means that we use all state sequences to update transition and emission
probabilities, however each state sequence is weighted with its probability of
occurrence. Thus, plausible sequences are preferred via their probability of
occurrence. For example, we thus have to compute the expected transition
frequency between any two states, the expectation taken over all state se-
quences. If this is done, one can indeed formally prove that for the updated
model M∗ likelihood of emitting S1, . . . , Sm is improved compared to model
M . This is an example of a more fundamental algorithm, called expectation
maximization (EM) algorithm.

3.8.2 A Couple of Important ‘Variables’

In probability theory, a function defined on a probability space usually is
called a ‘variable’. Given a Hidden Markov model M , the following variables
play an important role. For a fixed emitted string S ∈ Σn, 1 ≤ i ≤ n and
1 ≤ j < n we define them as follows:

• Forward variable αi(q) as the probability that M generates a state se-
quence with ith state q and emits a symbol sequence with prefix S[1 . . . i].

• Backward variable βi(q) as the probability that M emits a symbol sequence
with suffix S[i + 1 . . . n] provided it generated a state sequence with ith

state q.
• Transition variable ηi(q, r) as the probability that M generates a state

sequence with jth state q and (j + 1)th state r provided it emitted symbol
sequence S.

• State variable γi(q) as the probability that M generates a state sequence
with ith state q provided it emitted symbol sequence S.
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3.8.3 Computing Forward Variables

The forward variables are computed in O(|S||Q|2) steps as follows:

α1(q) = p(q)E(q, S(1))

αi+1(q) = E(q, S(i + 1))
∑
r∈Q

αi(r)T (r, q). (3.24)

As an application of forward variables, we see that emission probabilities P (S)
of string S of length n (original definition required an exponential summation)
can be computed efficiently:

P (S) =
∑
q∈Q

αn(q). (3.25)

3.8.4 Computing Backward Variables

The backward variables are computed similarly in O(|S||Q|2) steps as follows:

βn(q) = 1

βi−1(q) =
∑
r∈Q

T (q, r)E(r, S(i))βi(r). (3.26)

Exercise

3.6. Express P (S) using backward variable instead of forward variable as in
Sect. 3.8.3.

3.8.5 Computing Transition Variables

Now we can obtain the transition variables on basis of the following equation.
Its left-hand side is the probability of observing string S and having states
q and r at positions j and j + 1, whereas the right-hand side decomposes
this event into observing prefix S[1 . . . j] and having state q at position j,
then switching to state r at position j + 1 and emitting S(j + 1), and finally
observing suffix S[j + 1 . . . n] after starting with state r at position j + 1.

ηj(q, r)P (S) = αj(q)T (q, r)E(r, S(j + 1))βj+1(r) (3.27)

3.8.6 Computing State Variables

γ1(q) = P (q)

γi+1(q) =
∑
r∈Q

ηi(r, q) (3.28)

Exercise

3.7. Explain these equations.
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3.8.7 Model Improvement

Let string S of length n be observed as the emitted string. Based on S we com-
pute the variables as above and use them to update transition and emission
probabilities as follows, for states q and r different from initial state q0:

T update(q, r) =

∑n−1
j=1 ηj(q, r)∑n−1
j=1 γj(q)

T update(q0, q) = γ1(q)

Eupdate(q, x) =

∑
i≤n,S(i)=x γi(q)∑

i≤n γi(q)

(3.29)

It can be shown (see [4]) that this update is a particular case of expectation
maximization, and as such indeed leads to improvement of model likelihood.
Iterated application thus approaches a local maximum of the model likelihood
function.

3.9 Expressiveness of Viterbi Equations

The Viterbi algorithm was a simple application of the general principle of
dynamic programming. It is interesting to see that often applications of dy-
namic programming may be reinterpreted as Viterbi equations for a suitably
designed Hidden Markov model. This shows, in a certain sense, a certain gen-
erality of the Hidden Markov approach. We illustrate this by showing how
affine gap alignment treated in Sect. 3.3 may be reinterpreted as Viterbi algo-
rithms of a suitably designed Hidden Markov model (we follow the treatment
in [27]).

The application of the gap alignment equations described in Sect. 3.3 may
be visualized by the graph shown in Fig. 3.4 containing start node q0, and
three further nodes called ‘a’, ‘b’, and ‘c’ that correspond to the three func-
tions optimized. Index pair (i, j) maintains which one of the characters of the
strings S and T , namely S(i) and T (j), are the actual characters that are
next to be aligned or aligned with a spacing symbol. Each node ‘a’, ‘b’, and
‘c’ contains information on how these indices are to be updated whenever the
corresponding node is visited. Links contain scores that are to be added onto
a growing score whenever the corresponding link is traversed. Note that there
are no links between nodes ‘b’ and ‘c’; this expresses our convention that any
two b- and c-blocks must be separated by at least one a-block.
This graph gives rise to a similar structure of a Hidden Markov model (HMM)
designed for the emission of an alignment (Fig. 3.5). First, the proposed HMM
has states q0, A, B, and C. State A emits pairs (x, y), state B emits pairs
(−, y), and state C emits pairs (x,−), with characters x and y from alpha-
bet Σ. Correspondingly, emission probabilities are called P (x, y), P (x), and
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c

(+1,0)

q0

(1,1)

b

(0,+1)

a

(+1,+1)(S(i),T(j))

(S(i),T(j))
-d

-d

(S(i),T(j))

(S(i),T(j))

-d
-e

-e
-d

Fig. 3.4. Gap alignment modelled by a graph

P (y). Assume they are taken from known sequence alignments by extracting
frequencies. There are state transition probabilities ε and δ that occur at cor-
responding positions where numbers −e and −e occurred in Fig. 3.4. Note
that some of the transition probabilities are thus fixed because all probabili-
ties at outgoing links of a node must sum up to value 1. So far, there is only
a somehow superfluous similarity between both diagrams.

C

P

q0

B

P(y)

(x)

A

P(x,y)1 - 2

1 - 

1 - 2

1 - 

Fig. 3.5. Hidden Markov model for gap alignment
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Looking at Viterbi equations will soon show that there is a deeper relation
between both approaches. Given fixed observed strings S[1 . . . n] and T [1 . . . m]
let us denote the probabilities computed by Viterbi equations as follows:

Qij =maximum probability of a state sequence starting with state q0,

ending with state Q ∈ {A, B, C} , and emitting an alignment of
S[1 . . . i] with T [1 . . . j].

Viterbi equations now look as follows, with i > 1 and j > 1:

A1,1 = P (S(1), T (1))(1 − 2δ)
Ai,1 = P (S(i), T (1))(1 − ε)Ci−1,0

A1,j = P (S(1), T (j))(1 − ε)B0,j−1

Ai,j = P (S(i), T (j))max

⎧⎨
⎩

(1 − 2δ)Ai−1,j−1

(1 − ε)Bi−1,j−1

(1 − ε)Ci−1,j−1

B0,1 = P (T (1))δ
B0,j = P (T (j))εB0,j−1

B1,1 = 0
Bi,1 = 0
B1,j = P (T (j))max {δA1,j−1, εB1,j−1}
Bi,j = P (T (j))max {δAi,j−1, εBi,j−1}

C1,0 = P (S(1))δ
Ci,0 = P (S(i))εCi−1,0

C1,1 = 0
C1,j = 0
Ci,1 = P (S(i))max {δAi−1,1, εCi−1,1}
Ci,j = P (S(i))max {δAi−1,j , εCi−1,j}

(3.30)

Note that probabilities with value 0 express the convention that b-blocks and
c-blocks must be separated by at least one a-block. Next we take care that
the terms within the max in the equation for Ai,j get the same factor (1−2δ).
This is done by replacing factor (1 − ε) from terms Bi−1,j−1 and Ci−1,j−1

with factor (1− 2δ) and observing that in the execution of equations defining
Bi−1,j−1 and Ci−1,j−1, we must sooner or later switch back to an A-term again
(otherwise we would end with one of the impossible cases having probability
0). When this happens we introduce the missing factor (1 − ε)/(1 − 2δ). By
the same way we replace factor (1− ε) in the second and third equation with
(1− 2δ) and compensate this by introducing a further factor (1− ε)/(1− 2δ)
in the definition of C1,0 and B0,1 (note that computations of Ai,1 and B1,j -
and only these - finally end with these terms).
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A1,1 = P (S(1), T (1))(1 − 2δ)
Ai,1 = P (S(i), T (1))(1 − 2δ)Ci−1,0

A1,j = P (S(1), T (j))(1 − 2δ)B0,j−1

Ai,j = P (S(i), T (j))(1 − 2δ)max {Ai−1,j−1, Bi−1,j−1, Ci−1,j−1}

B0,1 = P (T (1))δ
(1 − ε)
(1 − 2δ)

B0,j = P (T (j))εB0,j−1

B1,1 = 0
Bi,1 = 0

B1,j = P (T (j))max
{

δ
(1 − ε)
(1 − 2δ)

A1,j−1, εB1,j−1

}

Bi,j = P (T (j))max
{

δ
(1 − ε)
(1 − 2δ)

Ai,j−1, εBi,j−1

}

C1,0 = P (S(1))δ
(1 − ε)
(1 − 2δ)

Ci,0 = P (S(i))εCi−1,0

C1,1 = 0
C1,j = 0

Ci,1 = P (S(i))max
{

δ
(1 − ε)
(1 − 2δ)

Ai−1,1, εCi−1,1

}

Ci,j = P (S(i))max
{

δ
(1 − ε)
(1 − 2δ)

Ai−1,j , εCi−1,j

}
.

(3.31)

The next adaptation to the equations of gap alignment concerns division by
the following constant value that (as a constant) does not influence optimiza-
tion on state sequences:

n∏
i=1

P (S(i))
m∏

j=1

P (T (j)). (3.32)

Note that this value measures probability of independent occurrence of strings
S and T . Division by these values is not at the end of the complete recursion,
but “on the fly” at suitably chosen moments of the computation. This leads
to the following formulas:
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A1,1 =
P (S(1), T (1))

P (S(1))P (T (1))
(1 − 2δ)

Ai,1 =
P (S(i), T (1))

P (S(i))P (T (1))
(1 − 2δ)Ci−1,0

A1,j =
P (S(1), T (j))

P (S(1))P (T (j))
(1 − 2δ)B0,j−1

Ai,j =
P (S(i), T (j))

P (S(i))P (T (j))
(1 − 2δ)max

⎧⎨
⎩

Ai−1,j−1

Bi−1,j−1

Ci−1,j−1

B0,1 = δ
(1 − ε)
(1 − 2δ)

B0,j = εB0,j−1

B1,1 = 0
Bi,1 = 0

B1,j = max
{

δ
(1 − ε)
(1 − 2δ)

A1,j−1, εB1,j−1

}

Bi,j = max
{

δ
(1 − ε)
(1 − 2δ)

Ai,j−1, εBi,j−1

}

C1,0 = δ
(1 − ε)
(1 − 2δ)

Ci,0 = εCi−1,0

C1,1 = 0
C1,j = 0

Ci,1 = max
{

δ
(1 − ε)
(1 − 2δ)

Ai−1,1, εCi−1,1

}

Ci,j = max
{

δ
(1 − ε)
(1 − 2δ)

Ai−1,j , εCi−1,j

}
.

(3.33)

Finally, we replace the value with their logarithms. This does not influence
optimization as the logarithm is a monotone function. Products simply turn
into sums. Also note that the logarithm of a max is, of course, equal to the max
of logarithms. Defining ai,j = log(Ai,j), bi,j = log(Bi,j), ci,j = log(Ci,j), the
equations below are obtained. Within these equations we used the following
abbreviations:

σ(x, y) = log
P (x, y)

P (x)P (y)
+ log(1 − 2δ)

d = − log
δ(1 − ε)
(1 − 2δ)

e = − log ε.

(3.34)
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Note that σ(x, y) exactly corresponds (up to a constant additive shift that does
not influence quality of a scoring function) to the sort of scoring functions used
in practice. Gap parameters are plausible, too. Consider value e. The smaller
the probability ε for running into gap generating state B or C, the stronger is
a prolongation of a gap penalized. Interpretation of gap opening term −d is
not as clear since it is a more complicate mixture of probabilities.

a1,1 = σ(S(1), T (1))
ai,1 = σ(S(i), T (1)) + ai−1,0

a1,j = σ(S(1), T (j)) + b0,j−1

ai,j = σ(S(i), T (j)) + max {ai−1,j−1, bi−1,j−1, ci−1,j−1}
b0,1 = −d

b0,j = −e + b0,j−1

b1,1 = −∞
bi,1 = −∞
b1,j = max {−d + a1,j−1,−e + b1,j−1}
bi,j = max {−d + ai,j−1,−e + bi,j−1}
c1,0 = −d

ci,0 = −e + ci−1,0

c1,1 = −∞
c1,j = −∞
ci,1 = max {−d + ai−1,1,−e + ci−1,1}
ci,j = max {−d + ai−1,j ,−e + ci−1,j}

(3.35)

These are exactly the equations describing affine gap alignment with scoring
function σ(x, y) and gap function f(k) = −d− (k − 1)e. Thus we have shown
that letting run the HMM designed above can indeed be interpreted as ex-
ecuting the dynamic programming equations of affine gap alignment with a
natural definition of scoring and gap penalizing. Conversely, every affine gap
alignment approach with a scoring function that can be written as log-odds
ratio of a suitable distribution on character pairs is realized by a HMM of the
sort described above.

3.10 Lifted Phylogenetic Alignment

3.10.1 Problem Restated

Given a list of present species S1, S2, . . . , Sn together with a tree struc-
ture T expressing evolutionary history of these species from ancestors (thus
S1, S2, . . . , Sn appear at the leaves of the tree), we search for an assignment
of strings to inner nodes such that the sum of alignment scores of connected
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pairs of strings is maximized. Such an assignment would thus be an opti-
mal guess of how the ancestors of S1, S2, . . . , Sn looked like. As Chap. 5 will
show, this problem is NP-hard even for the simple looking special case of a
tree consisting only of a root and n leaves (also called a “star”). The chap-
ter on approximation algorithms will demonstrate that there is always an
assignment of strings to inner nodes of the tree which uses only the given
leaf strings S1, S2, . . . , Sn as ancestors. Such an assignment will be called a
“lifted assignment”. Stated in biological terms, a lifted assignment makes the
(surely unrealistic) assumption that there was no extinction of species during
evolution. A dynamic programming approach readily computes an optimal
lifted assignment (see [31]). Let us denote by πT (S1, . . . , Sn) the maximum
possible sum of alignment scores between connected strings, taken over all
lifted phylogenetic alignments of tree T .

LIFTED PHYLOGENETIC ALIGNMENT
Given rooted tree with an assignment of
strings S1, S2, . . . , Sn to its leaves, compute
πT (S1, . . . , Sn).

3.10.2 Parameterization and Conditioning

For an arbitrary node v of tree T (v may also be a leaf) consider the subtree
T (v) below (and including as root) node v. For a fixed string L occurring as
the assignment to a leaf of subtree T (v), we consider all lifted phylogenetic
assignments for subtree T (v) with the additional constraint that string L is
assigned to root v. Thus the conditioning associated with string L expresses
which of the leaf strings of T (v) is the common ancestor of all other leaf
strings. Denote by π(v, L) the optimal value of a phylogenetic alignment of
subtree T (v) with the restriction that root v is assigned string L. Having
computed all values π(v, L) the original problem is solved as follows with r
being the root of tree T :

πT (S1, . . . , Sn) = max
1≤k≤n

π(r, Sk). (3.36)

3.10.3 Bellman Principle

In an optimal lifted phylogenetic alignment of a tree T with assignment of
string L to the root of T , all of its subtrees must obviously also be optimal
lifted phylogenetic alignments, though eventually with assignments to their
root nodes with strings different from string L.

3.10.4 Recursive Solution

For a leaf node v with leaf inscription L we obviously have π(v, L) = 0. Now
consider a non-leaf node v with successor nodes v1, v2, . . . , vm. Assume that



3.11 Protein Threading 93

numbering is such that L occurred as leaf description within subtree T (v1).
subtree T (v1) thus must contribute to an optimal phylogenetic alignment value
π(v1, L) and value 0 for the link between nodes v and v1 (note that we assigned
the same string L to both), whereas subtree T (vi), for i > 1, contributes
the maximum possible value π(vi, Li) + σopt(S, Li), with Li ranging over all
inscriptions at leaves from subtree T (vi).

π(v, L) = π(v1, L) +
m∑

i=2

max
Li

π(vi, Li) + σopt(L, Li) (3.37)

3.10.5 Counting and Overall Complexity

Tree T possesses at most n inner nodes (usually much less than the number
n of leaves). Thus there are O(n2) terms π(v, L) to be computed. Assume
that strings S1, S2, . . . , Sn are bounded in length by k. Every computation of
a new value from already computed ones according to the recursive equation
above requires O(n2k2) steps due to summation over at most n successor
nodes, within each sum a max computation over at most n leaf strings, and
within each max computation the calculation of an optimal alignment between
strings of length k. Thus, overall complexity is O(n4k2).

3.10.6 Preprocessing of Simple Terms

Preprocessing optimal alignments between any two leaf strings in time O(n2k2)
saves execution time since we can simply call within each max term those
preprocessed optimal alignment values leading to an improvement of overall
complexity to O(n4 + n2k2).

3.11 Protein Threading

3.11.1 Problem Restated

The ingredients of protein threading as introduced in Sect. 2.10.2 are: a protein
S of length n with unknown tertiary structure, a known protein T with loop-
core segmentation T = L0, C1, L1, C2, . . . , Cm−1, Lm−1, Lm, strongly con-
served core segments lengths c1, c2, . . . , cm, loop segments lengths that are
assumed to be variable within certain limits given by λi ≤ li ≤ Λi, and a
scoring function for threadings t1, . . . , tn of the simple form:

f(t1, . . . , tn) =
m∑

p=1

g(tp). (3.38)

Here, term g(tp) is an abbreviation for some function g(Cp, C
p(tp)) of the core

segment Cp in T and substring Cp(tp) of S of length cp starting at position
tp. An example might be
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g(tp) = dopt(Cp, C
p(tp)) with Cp(tp) = S[tp . . . tp + cp − 1] (3.39)

with a distance function d. The main point is that we discard any interactions
between different core segments.

3.11.2 Parameterization and Conditioning

Instead of looking at the whole string S of length n, we consider prefixes
S[1 . . . j]. Moreover, instead of considering the whole string T we take prefix
T 〈i〉 = L0, C1, L1, C2, . . . , Ci, Li with loop-core segmentation up to Ci, Li. We
compute the following terms F (i, j) that are defined as the minimum value

f(t1, . . . , ti) =
m∑

p=1

g(tp). (3.40)

taken over all threadings t1, . . . , ti of S[1 . . . j] into the loop-core structure of
T 〈i〉 up to loop segment Li.

3.11.3 Bellman Principle

... is obviously fulfilled.

3.11.4 Recursive Solution

We start with the case i = 0 and j ∈ [λ0 . . . Λ0]. This means that only loop
segment L0 is available for mapping S[1 . . . j]. Since j ∈ [λ0 . . . Λ0] was as-
sumed mapping can be done. Costs are zero, as nothing is summed up. Thus
F (0, j) = 0.

Next we treat the case i = 0 and j /∈ [λ0 . . . Λ0]. Here no threading exists
that fulfils the length constraints. We express this by defining F (0, j) = ∞.

Now we treat the case i > 0 and 1 ≤ j − ci − λi + 1. Whatever we choose
as start position ti for core segment of length ci in S[1 . . . j], there must be at
least ci + λi characters between positions ti and j available for a realization
of ith core segment of length ci and ith loop segment of length at least λi.
This constrains ti to ti ≤ λ(i, j) = j − ci − λi + 1. As 1 ≤ j − ci − λi + 1
was assumed there is at least one choice for ti possible. As conversely loop
segment numbered i must have length at most Λi this constrains ti to ti ≥
Λ(i, j) = j − ci − λi + 1. This leads to the following formula.

F (i, j) = min
Λ(i,j)≤ti≤λ(i,j)

g(ti) + F (i − 1, ti − 1) (3.41)

Finally we treat the case i > 0 and 1 > j − ci − λi + 1. Here, no admissible
threadings are possible, thus F (i, j) = +∞.
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3.11.5 Counting and Overall Complexity

There are mn terms F (i, j) to be computed. Each min computation takes
O(m) steps. This leads to an overall complexity of O(mn2).

3.12 Bibliographic Remarks

The principle of dynamic programming is attributed to Bellman [8, 9]. Any
of the standard textbooks Clote & Backofen [20], Gusfield [31], Pevzner [64],
Setubal & Meidanis [68], and Waterman [78] are full of applications of dynamic
programming.
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Intelligent Data Structures

4.1 Representation Matters

We start the chapter on intelligent data structures and the enormous impact
suitably chosen representations have on transparency and efficiency of solu-
tions with a couple of examples that indicate what is intended within this
chapter.

4.1.1 Intelligent Data Structures Used in Computer Science

Computer Science is full of properly designed data structures that support
important applications, sometimes in a rather astonishing extend going far
beyond what is achievable with more naive approaches. Prominent key words
are sorted arrays, various sorts of balanced trees, Fast Fourier Transform, to
name only a few. The value of properly designed data structures and represen-
tations is already observed on much simpler levels, for example with respect to
integer arithmetic. As it is well known, Arabic numerals support equally well
operations of addition and multiplication, whereas integer notation used by
ancient Romans is not comparably useful. Not only a proper representation of
operating data may considerably influence complexity, proper representations
also play an important role in making complex constructions and mathemat-
ical proofs readable. Numerous examples can be found in every mathematics
textbook. Finally, suitable visualizations often make things from daily life
understandable, whereas improper representations may hinder understanding
or even may lead to erroneous imaginations. This latter phenomenon will be
illustrated with a few examples in the following sections.

4.1.2 Covering a Truncated Board

Consider an 8×8 board with the upper-left and lower-right field cut. Can you
cover it using 31 dominos? Dominos may be placed horizontally and vertically,
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but are not allowed to overlap. Look at the diagrams in Fig. 4.1 and see which
of the drawings immediately shows the answer to the posed questions, whereas
the other one misleads the reader to try out lots of placing variants for the
dominos.

Fig. 4.1. Covering a truncated chess board

4.1.3 Choose Three Bits and Win

Two players A and B play the following game. They sit in front of a bit
generator that will soon be started and will generate a stream of random bits
with bits being independently drawn having equal probability for bit 0 as for
bit 1. Player A has to choose a sequence of three bits. Player B can see what
A has chosen and has to react with a different sequence of three bits (thus
player B is not allowed to choose the same three bits that player A selected,
though one or two of the chosen bits may coincide). Starting and watching
the random bit generator, the player whose three bits are drawn in succession
wins the game. For example, let A choose 001 and B choose 111. Observing bit
stream 0101010000001 . . . lets player A win. Which player has better chances
to win? One might argue that A has eight choices for his sequence whereas B
has only seven, what seems to favour player A. One might argue that every bit
string is as good as every other, thus players A and B have identical winning
chance. One might argue that player B reacts to what player A has chosen
thus could select a somehow more favourable bit string than A did. But if this
were the case one could argue that player A could then choose in advance this
more favourable bit string himself, and in case that player B could further
improve this choice, could again choose the more favourable string. Finally, A
had chosen the most favourable string at all.

The visualization of the working of the random bit generator shown in Fig.
4.2 makes the game transparent. Here, we use a graphical representation with
four nodes labelled 00, 01, 10, 11, and eight directed links each labelled either
0 or 1. Each node represents what were the last two generated bits, whereas
outgoing link represents the next generated bit. Note that links always point



4.1 Representation Matters 99

0

00 011

10 11

0
1

1

0

0 1

Fig. 4.2. Random bit generator

to the intended target node. Now the working of the random bit generator can
be seen as choosing a particular edge (that edge corresponds to the first three
generated bits), and then walking through the graph. By the same way, the
selection of three bits each player did can be seen as selection of a particular
edge by each player. The following graphs immediately show how B must react
to any choice of A in order to have a better chance to win. Furthermore, it is
easy to estimate how much higher chances are for B to win than for A. We
indicate three qualitatively different choices A can make and a corresponding
better choice for B. The possibility for player B to outperform every selection
player A makes is no contradiction to the fact that there are only eight possible
choices for A as the relation of “being better” is not a linear ordering though
its naming suggests exactly this.

In the diagrams of Fig. 4.3, labels of nodes and edges do not play any role,
thus they are omitted. Bold links indicate which drawings of the first three
bits with certainty lead to a win of player B, and by broken links we indicate
which drawings of the first three bits lead to at least 50% winning chance
for player B. The remaining links either favour player A or do not uniquely
favour one of the players (thus these are ambivalent links). For simplicity we
assume that there are no infinite bit streams generated with neither a win for
A nor B.

4.1.4 Check a Proof

All of the algorithmic problems treated within this book are search prob-
lems that draw their complexity from exponential size of their solution search
spaces. For some of them a complete search for a solution through the search
space with exponential size can be avoided using clever algorithms, while oth-
ers are shown to be NP-hard leaving no chance (unless P = NP) to find an
efficient algorithm. Whereas searching for a solution is the algorithmic core
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7 : 1 6 : 2 at least 4,5 : 3,5 = 9 : 7 

Fig. 4.3. Estimating winning chance of B over A

of these problems, checking a proposed solution for correctness is the simple
part requiring “only” polynomial time (in most cases quadratic time or even
better). Nevertheless, checking correctness of a solution normally requires at
least reading of the complete solution, thus time linear in the length of the
solution. Only for special cases considerable parts of a solution have no influ-
ence on their correctness and thus can be left out. As an example, checking
if a bit string of length n is a satisfying truth-value assignment for a Boolean
formula with n variables, in general requires reading of the whole bit string.
If we relax certainty of the outcome of a correctness test to high confidence of
the outcome, things radically change. Let us first fix what is expected with re-
spect to confidence of correctness checks. In case that a satisfying truth-value
assignment is checked we expect with certainty a positive answer “satisfies the
formula”. In case that a non-satisfying assignment is checked we expect with
some fixed confidence δ < 1 (for example 99%) a negative answer “does not
satisfy the formula”. Tolerating such almost correct answers, checking solu-
tions may be dramatically accelerated. Assuming that solutions are not given
as bit strings, but represented in a certain algebraic format based on linear
function, primes, and polynomials, we must only randomly draw a (small)
constant number c of bits of such a represented solution, then do a simple
check of how these drawn bits are related to the Boolean formula which is to
be tested for being satisfiable, and return the answer which with confidence
δ is the correct one. The astonishing point is that the number of bits to be
randomly drawn is fixed, i.e. a constant, independent of how long the Boolean
formula or the proposed solution is. Metaphorically expressed, fixing a cer-
tain format for doctoral theses you might evaluate correctness of arbitrary
such theses with, say 99% confidence, by always reading only, say 104 random
drawn bits and checking these, regardless of how long the theses are. This is
the content of one of the most beautiful and astonishing recent theorems of
theoretical computer science with enormous applications concerning optimal-
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ity of approximation algorithms, called the PCP theorem (“probabilistically
checkable proofs”) that was proved in the 1990s (see [2]). One is tempted to
speculate about the question whether nature might also have invented such
advantageous codes in the regulation of molecular processes.

4.2 PQ-Trees

4.2.1 Basic Notions

We described genome mapping based on hybridization experiments using se-
quence tagged sites as a fundamental task in genome analysis, leading to
the CONSECUTIVE ONES problem (Sect. 2.2.1). Given a binary matrix M
with n rows and m columns, we attempt to determine all permutations of
the columns of M that lead to a matrix with consecutive bits 1 in every row.
The process of successively working towards this goal by suitable rearrange-
ments of columns is best presented using PQ-trees which were introduced in
Sect. 2.2.1. We now describe the details of this rearrangement process. We
start with a tree T0 consisting of a P-node as root and m leaves (Fig. 4.4).
Note that T0 is the most liberal tree representing arbitrary orderings of the
columns.

1 2 m

Fig. 4.4. Initial PQ-tree

Now we successively reorganize this tree as moderate as possible such that
for every row consecutiveness of its bits 1 is enforced. Assume this has been
done for rows 1, . . . , i leading to tree Ti. Next we consider row i + 1.

• Unmark all nodes of tree Ti (markings left over from iteration before).
• Mark every leaf that corresponds to a column with bit 1 in row i + 1.
• Determine the deepest node r with all marked leaves below node r.

Note that the goal of the actual iteration is to make all marked leaves consecu-
tive. This is done in a recursive manner using certain rules that appropriately
reorganize the tree below the actual working node assuming that all of its
subtrees have already been successfully reorganized. Note that ”subtree of
some node” is always understood as subtree immediately below that node. In
the following rules it will be important to distinguish whether we are actually
working at node r or at a node q different from node r. Working at node r
means that there will be no further marked leaves other than those below r
that must be considered, whereas working at a different node q means that
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further marked leaves come up later. This influences the process of restruc-
turing Ti+1 at the actual working node. In the description of this process we
use the following notational conventions.

• A subtree is called “full” if all of its leaves are marked.
• A subtree is called “empty” if none of its leaves are marked.
• A subtree is called “partial” if it is neither full nor empty.

We always indicate full trees by black, empty trees by white, and partial trees
by a mixed black-and-white shading. In the diagrams below, two full resp.
empty subtrees drawn side by side always stand for a finite number (possibly
zero) of subtrees. Whenever a minimum number of subtrees of a certain sort
is required for a case, this is explicitely indicated by a lower bound written
below the subtrees of that sort.

(b) (c)(a)  (d) (e) (f) (g)

kk

Fig. 4.5. Tree: (a) full; (b) empty; (c) partial. Finite number of (d) full or (e)
empty trees; at least k (f) full or (g) empty trees

After having processed any node q �= r by one of the rules described below
the following invariant properties will be fulfilled (see Fig. 4.6); note that for
root node r this does not necessarily hold:

• If q is a P-node then the subtree with root q is either full or empty.
• If q is a Q-node then q has only full and empty subtrees, but no partial

subtrees. Furthermore, all of its full subtrees, as well as all of its empty
subtrees are arranged consecutively.

qq q 

 2  2 11

q

2

q

2

Fig. 4.6. Only trees like the ones shown occur in the execution of the algorithm

In the description of the rules below we assume that before rule application
invariance properties hold, and easily verify that after rule application invari-
ance properties again hold. We may always assume that the actually processed
node has at most two partial subtrees as otherwise the marked leaves could
not be made consecutive (see Fig. 4.7).
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Fig. 4.7. More than two partial subtrees below Q-node cannot be made consecutive

4.2.2 Transformation rules for marked PQ-Trees

The rules to be described next distinguish whether actual working node

• is a P-node or a Q-node,
• coincides with node r or is a node q different from r,
• has zero or one or two partial subtrees,
• has zero or one or more than one full resp. empty subtrees.

The requirement for the second distinction stems from the fact that outside
the subtree with root r no further marked leaves are to be considered; that
means that subtrees may be arranged more liberally, whereas strictly below
r subtrees may be arranged only at the left or right border of Q-nodes. Note
that in the drawings below any tree stands for a whole collection of equivalent
trees (arbitrary permutation of subtrees below a P-node, inversion of order of
subtrees below a Q-node). We begin with the cases that the actual working
node is a P-node.

r r

 1  2 1

Fig. 4.8. Working at P-node r: no partial subtrees, at least one empty subtree, at
least two resp. exactly one full subtree

r r

 2 2

Fig. 4.9. Working at P-node r: no partial subtrees, only empty subtrees resp. only
full subtrees
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q q

 2  2 2

Fig. 4.10. Working at P-node q: no partial subtrees, at least two resp. exactly one
empty subtree, at least two full subtrees

q

 2 

q

Fig. 4.11. Working at P-node q: no partial subtrees, at least two resp. exactly one
empty subtree, exactly one full subtree

q q

 2 2

Fig. 4.12. Working at P-node q: no partial subtrees, only empty subtrees resp. only
full subtrees

r

 1 2

Fig. 4.13. Working at P-node r: exactly one partial subtree, at least one empty
subtree, at least two full subtrees
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r

 2 

Fig. 4.14. Working at P-node r: exactly one partial subtree, no empty subtrees, at
least two full subtrees

r

 1 

Fig. 4.15. Working at P-node r: exactly one partial subtree, at least one empty
subtree, exactly one full subtree

r

Fig. 4.16. Working at P-node r: exactly one partial subtree, no empty subtrees,
exactly one full subtree

r

 1 

Fig. 4.17. Working at P-node r: exactly one partial subtree, at least one empty
subtree, no full subtrees
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q

 2 2

Fig. 4.18. Working at P-node q: exactly one partial subtree, at least two empty
subtrees, at least two full subtrees

q

2

Fig. 4.19. Working at P-node q: exactly one partial subtree, exactly one empty
subtree, at least two full subtrees

q

 2 

Fig. 4.20. Working at P-node q: exactly one partial subtree, at least two empty
subtrees, exactly one full subtree

q

Fig. 4.21. Working at P-node q: exactly one partial subtree, exactly one empty
subtree, exactly one full subtree
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q

Fig. 4.22. Working at P-node q: exactly one partial subtree, no empty subtrees,
exactly one full subtree

q

Fig. 4.23. Working at P-node q: exactly one partial subtree, exactly one empty
subtree, no full subtrees

r

 1  2 

Fig. 4.24. Working at P-node r: exactly two partial subtrees, at least one empty
subtree, at least two full subtrees

Note that in Fig. 4.24 as well as in the following four figures we are working
at a node with two partial subtrees. We assume that we are working at node
r since under the presence of two partial subtrees below some node q �= r
marked leaves cannot be made consecutive.
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r

 2 

Fig. 4.25. Working at P-node r: exactly two partial subtrees, no empty subtrees,
at least two full subtrees

r

 1 

Fig. 4.26. Working at P-node r: exactly two partial subtrees, at least one empty
subtree, exactly one full subtree

r

Fig. 4.27. Working at P-node r: exactly two partial subtrees, no empty subtree,
exactly one full subtree

r

 1 

Fig. 4.28. Working at P-node r: exactly two partial subtrees, at least one empty
subtree, no full subtrees
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Next we treat the cases that occur when working node is a Q-node.

r

mixed

Fig. 4.29. Working at Q-node r: no partial subtrees, at least one empty subtree,
at least one full subtree, full subtrees occurring consecutively

r r

 2 2

Fig. 4.30. Working at Q-node r: no partial subtrees, only full resp. only empty
subtrees

q

mixed

Fig. 4.31. Working at Q-node q: no partial subtrees, at least one empty subtree, at
least one full subtree, full subtrees occurring consecutively either at the left or right
border

q q

 2 2

Fig. 4.32. Working at Q-node q: no partial subtrees, only full subtrees resp. only
empty subtrees
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r

Fig. 4.33. Working at Q-node r: exactly one partial subtree, full subtrees occurring
consecutively as shown

q

Fig. 4.34. Working at Q-node q: exactly one partial subtree, full subtrees occurring
consecutively as shown

r

Fig. 4.35. Working at Q-node r: exactly two partial subtrees, full subtrees occurring
consecutively as shown

Arriving at node r, the returned tree ideally looks as in Fig. 4.36 with
a permutation i1, i2, . . . , im. In that case, ordering of columns is uniquely
determined up to complete inversion. In any other case we know that data
either are inconsistent thus preventing an ordering of columns with consecutive
ones, or are to less informative to fix a unique ordering of columns.

i2 imi1

Fig. 4.36. “Almost” unique permutation
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4.3 Suffix Trees

4.3.1 Outline of Ukkonen’s Algorithm and Basic Procedures

Given string T = T [1 . . . n] of length n, Ukkonen’s algorithm successively con-
structs suffix tree Ti for prefix string T [1 . . . i], with i increasing from 1 to n.
Having constructed Ti−1, the construction of Ti is done by successively nav-
igating to all positions in Ti−1 that have as path label a suffix T [j . . . i − 1]
of T [1 . . . i − 1], and then extending at this position suffix T [j . . . i − 1] in a
suitable manner by next character T (i). This is done with j increasing from 1
to i. In particular, for j = i, navigation is to the root and thus the fresh suffix
T [i . . . i] is realized as path label immediately below the root. Thus a rough
description of the algorithm is as follows.

initialize tree consisting only of a root node;
for i = 1 to n do

for j = 1 to i do
set actual working position to the root;
navigate to position with path label T [j . . . i − 1];
at that position insert next character T (i);

end for
end for

The process of navigating from the actual working position into a suffix tree
along the characters of pattern P is abbreviated by navigate(P ). Details of an
implementation are as follows. In case that P is the empty string we are done.
Otherwise, we consider the first character c of P and check whether there is an
edge starting at actual working node whose path label Q has first character c.
If no such link is found, navigate(P ) returns “failure”. If such an (unique) edge
is found we further check whether Q is a prefix of P . If this is not the case,
we again return “failure”. If Q is found as prefix of P , say P = QR, we set
actual working position to the target node of the edge with edge label Q and
recursively proceed with navigate(R). Obviously, calling navigate(P ) requires
as many steps as P has characters. Knowing that P indeed is present in the
considered suffix tree as the path label of a position allows a considerable
acceleration of navigation. Having found the edge whose edge label Q has
first character c (thus Q is a prefix of P = QR) we may readily jump without
further checks to the target node of that edge and recursively proceed with
navigate(R). Thus, under knowledge that P indeed is present as path label,
navigation along P requires only as many steps as nodes are visited along the
path with path label P .

Besides navigate there will be two further procedures, called skip and
suffix , which play an important role in the implementation of Ukkonen’s al-
gorithm. Having actual working position not at the root of the tree, skip
goes upwards in the tree towards the next available node. Thus, sitting at a
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node that is not the root node, skip walks to its immediate predecessor node,
whereas sitting between two characters of an edge label, skip walks to the
source node of that edge label. Procedure suffix is applied only in case that
actual working position is at a node that is neither the root nor a leaf, and
then follows the unique suffix link (whose existence was proved in Chap. 2)
starting at the actual working position, setting working position to the target
node of this suffix link. Figure 4.37 summarizes and visualizes what happens
when calling one of the procedures navigate(P ), skip, or suffix.

navigate(P)

P

P

skip
suffix

Fig. 4.37. Effect of procedures navigate(P ), skip, suffix

4.3.2 Insertion Procedure

Now we describe in detail how the insertion of next character T (i) at the
position of insertion found by navigation takes place. Here we distinguish
between four cases.

(1) Actual working position is at a leaf. Thus we know that actual suffix
T [j . . . i−1] that is to be extended by next character T (i) ends at the end
of the path label of the edge leading to this leaf. Thus we simply have to
append T (i) to the edge label γ of the edge leading to the leaf. Setting
new working position between γ and T (i) will prove to be advantageous
for later use (Fig. 4.38).

(2) Actual working position is at a node u that is not a leaf and next character
T (i) is not the first character of any edge label starting at node u. Then
create a new leaf below u, mark it ‘j ’ and label its edge with character
T (i) (Fig. 4.39). Actual working position is not changed.

(3) Actual working position is not at a node and character T (i) is not the next
symbol immediately right of the actual working position. Then create a
new inner node u at the actual working position and a new leaf marked
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leafleaf
T(i)

Fig. 4.38. Insertion at an already constructed leaf

T(i) ‘j’

Fig. 4.39. Creation of a new leaf

‘j ’ below this inner node, and label the edge between the two new nodes
with T (i). Furthermore, if u is not the root then initialize a dangling suffix
link with source node u that will receive its target node in the next step
when appending same character T (i) to next prefix T [j + 1 . . . i − 1]. In
case that j > 1 there was a dangling suffix link created one step before
appending same character T (i) to previous prefix T [j − 1 . . . i− 1]; take u
as target node for this dangling suffix link. Actual working position is not
changed, i.e. it now points to the fresh generated inner node (Fig. 4.40).

create new dangling suffix link 

‘j’T(i)

close previous dangling suffix link 

Fig. 4.40. Creation of a new inner node, new leaf, and new dangling suffix link

(4) Next character T (i) is already present as the character immediately right
of the actual working position. Then shift actual working position right
to this occurrence of T (i) (Fig. 4.41).

T(i-1) T(i) T(i-1)T(i)

Fig. 4.41. Character already present
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Note that only in case (4) the actual working position is changed. Letting
actual working position in cases (1) - (3) unchanged will prove to be advan-
tageous with respect to determining the next actual working position. The
presence or creation of a suitable target node for each dangling suffix link at
the step following the creation of a fresh dangling suffix link is shown next.

Lemma 4.1. Dangling Suffix Links
Whenever some new inner node u is created during insertion of next character
T (i) at the position with path label T [j . . . i−1], then j < i holds, and insertion
of same character T (i) at the position with path label of the next suffix T [j +
1 . . . i−1] either finds or creates a node v having path label T [j +1 . . . i]. Node
v thus is the correct target node for the dangling suffix link with source node
u that was created in the step before.

Proof. A new inner node is created only in case (3). For i = 1 or j = i
there is no inner node created, thus j < i holds. Case (3) applies whenever
procedure navigate(T [j . . . i − 1]) found a position between two characters b
and c of an edge label, with symbol c being different from T (i). This means
that T [j . . . i−1]c is a suffix of T [1 . . . i−1]. Thus, T [j +1 . . . i−1]c is a suffix
of T [1 . . . i − 1], too. Thus, procedure navigate(T [j . . . i − 1]) finds a position
with path label T [j + 1 . . . i − 1] such that symbol c also occurs immediately
right of this position. If the position found is a node v, we are done. If the
position found is not at a node, insertion procedure now creates according to
case (3) a fresh node v with path label T [j + 1 . . . i]. ��

At this stage of discussion let us give a first estimation of how expensive the
described algorithm is. Figure 4.42 indicates, for the case n = 4, all substrings
of T that are successively traversed by the navigation procedure during de-
velopment of the growing suffix tree.

T 1..1

T 1..2 T 2..2

T 1..3 T 2..3 T 3..3

1 2 3 4

1

2

3

4 T 1..4 T 2..4 T 3..4 T 4..4

Fig. 4.42. Outer and inner loop

For the case of arbitrary string length n, we navigate along one string of
length n, along two strings of length n−1, along three strings of length n−2,
and so on. This gives a rough estimation of running time by 1n2 +2(n−1)2 +
3(n−2)2+ . . .+n = O(n3). That is even worse than the naive O(n2) approach
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described in Chap. 2 for the construction of a suffix tree. Nevertheless, the
algorithm introduced here offers several ways to improve running time.

4.3.3 Saving Single Character Insertions

Two observations show that only at most 2n of the n(n + 1)/2 many entries
of the table in Fig. 4.42 (for the case of arbitrary length n instead of length
4) must explicitly be visited during execution of the algorithm.

Lemma 4.2.
Whenever character T (i) is inserted as edge label of a new created leaf imme-
diately right of the position with label T [j . . . i− 1], then all further characters
T (i + 1), T (i + 2), . . . , T (n) will be appended via case (1) to the end of that
same fresh leaf label.

Proof. This is obvious since, after having created leaf ‘j ’ with path label
T [j . . . i], further navigations to positions with path labels T [j . . . i], T [j . . . i+
1], . . . , T [j . . . n − 1] always follow the same path towards just this new leaf
‘j ’. ��

This allows us to append in a single step the whole string T [i . . . n] as label
of the leaf marked ‘j ’ at the time that leaf is created (with actual working
position remaining immediately left of symbol T (i)) (Fig. 4.43).

T j..i  by (2) or (3) 

T j..i+1  by (1) 

… Can be saved by appending T i..n   in one step. 

T j..n  by (1) 

leafleaf
T(i) T i+1..nT(i)

Fig. 4.43. Explicit insertion of all further characters can be saved

Lemma 4.3.
Whenever character T (i) is found via case (4) to be already present imme-
diately right of the working position with label T [j . . . i − 1] = xα (with a
character x and string α), character T (i) will be also found via case (4) to be
present immediately right of working position with label T [j + 1 . . . i− 1] = α.
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Proof. This is clear for the following reason. Under the assumptions above,
successful navigation along xαT (i) means that xαT (i) occurs as prefix of a
suffix of T [1 . . . i−1], hence αT (i) occurs as a prefix of a suffix of T [1 . . . i−1],
too. Therefore, navigating along αT (i) also leads to a working position with
label αT (i). ��

…T j..i  by (4) T j+1..i  by (4) T i..i  by (4) 

Steps can be saved since there is nothing to be done. 

Fig. 4.44. No further suffixes must be visited

A typical run through the program above with the savings described looks
as shown in Fig. 4.45 with saved entries indicated by shading (cases (2) and (3)
in an entry lead to savings via case (1) in all entries below, case (4) in an entry
leads to saving via case (4) right from the entry). What can be seen is that a
linear trail through the table remains instead of the former quadratic traversal.
Nevertheless, linear execution time is still not achieved. We are left with the
problem to have at most 2n calls of procedure navigate, each with costs O(n)
to find the actual working position where next character has to be inserted.
Instead of navigating at each step from scratch (i.e. starting at the root) to
next actual working position, suffix links will help us to efficiently determine
next actual working position from the previous one without necessarily having
to go back to the root, thus speeding up navigation to constant time. Details
are described in the next section.

4.3.4 Saving Navigation Steps

After having inserted or found the next character at a certain position in the
diagram above, we show how to rapidly find the position of next insertion
without doing unnecessary and costly navigation steps. There are a couple of
simple situations. To understand what is done take a short look back to the
construction above and see where actual working position was placed in cases
(1) - (4).

(a) If we are working at the lower row i = n with case (4) or at the lower-right
corner i = j = n with one of the cases (2), (3), or (4), the algorithm halts.

(b) If we are working at an inner row i < n with case (4), actual working
position just shifts one character to the right.

(c) If we are working at the rightmost field j = i of an inner row i < n
with one of the cases (2) or (3), we know that insertion has been done
immediately below the root, and again has to be done immediately below
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2

1 2, 3 

1

1

1

1

1

1

1

1 2, 3 

1

1

1

1

1

1

1 4

1

1

1

1

1

4 4

4

2, 3 

1

1

4 4

2, 3 

1

1

4 4

4

2, 3 

4 4

4 4

Fig. 4.45. Typical run with lots of savings

the root in the next step which works in the rightmost field j + 1 = i + 1
of the next row i + 1. Thus, actual working position is not altered.

(d) The only non-trivial situation is that we are working at an inner field with
case (2) or (3). Assume that the path label of the former actual working
position was xα, with a single character x and some string α. What has to
be found is the position with next suffix α as path label. This can be done
without performing a complete navigation along α as follows (shown in
Fig. 4.46). Calling procedure skip, we walk back to the next node strictly
left of the actual working position. If we arrive at the root we must indeed
navigate from scratch along suffix α to the next actual working position.
Now assume that we arrived at some inner node u. Its path label is thus a
prefix of xα. Let us decompose xα into xβγ, with xβ being the path label
of node u and γ being the label between node u and the former actual
working position. Note that while skipping we have stored this label γ.
Now following the suffix link that starts at node u leads us in one step
to some node v with path label β. From node v we then navigate along
remaining string γ. This finally leads us to the desired new actual working
position with path label βγ.

4.3.5 Estimation of the Overall Number of Visited Nodes

Whereas execution of procedures skip and suffix requires constant time, the
O(n) many executions of procedures navigate(γ) seem to cause problems
again. Though we always call procedure navigate(γ) only with a string γ that
occurs right of the actual working position, and thus execution of navigate(γ)
takes only as many steps as nodes are visited, and not as many as there are
characters in γ, we must exclude the possibility that O(n) nodes are visited
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 start here 

 (1) skip

xroot

 

end here 

 (2) navigate( )

 root 

v

start here 
 (1) skip

u

(2) suffix

 (3) navigate( )

end here 

 xβ

β 

Fig. 4.46. Using suffix links for rapid navigation to next suffix

by the first navigate operation, that skip and suffix bring us back towards
the root such that the second navigate operation again visits O(n) nodes, and
so on. This would, in summary, again lead to an overall estimation of O(n2)
visited nodes for the complete algorithm execution, therefore nothing would
be gained. Fortunately we can show that operation suffix will take us at most
one node closer to the root, as it is trivially the case for operation skip.

Lemma 4.4.
Consider a suffix link leading from node u to node v. Then the path from the
root down to u possesses at most one more node than the path from the root
down to v. Thus, node v is at most one node closer to the root than node u is
(measured in terms of nodes between the root and u and v, respectively).

Proof. Let the path label of node u be xα and the path label of node v be α,
with a single character x. Consider a node w between the root and node u that
is not the root. It has as path label a string xβ with a prefix β of α. Its suffix
link thus points to a node f(w) with path label β. Node f(w) occurs on the
path from the root to node v (and may be identical to the root). Obviously,
function f is an injective function on the set of inner nodes occurring on the
path from the root down to node u: different inner nodes w between the root
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and node u have different path labels, so do their images f(w)1. Hence, on
the path between the root and node v there are at least as many nodes as
there are inner nodes on the path between the root and node u. ��

In the examples shown in Fig. 4.47, there are five nodes on the path from the
root down to node u, showing that the path from the root down to node v
must have at least four nodes. It might well be that it possesses more than
four nodes.

As a consequence, prior to each navigate step the preceding skip and suffix
steps lead us at most two nodes closer to the root. This severely limits the
possibility for too many node visits during navigate steps.

u

v v

root

u

root

Fig. 4.47. Injective mappings on a path defined by suffix links

To estimate more precisely the overall number of visited nodes, define g(i)
to be the number of nodes that are visited by the algorithm in step i. After
step i we have walked downwards over g(1) + . . .+ g(i) nodes, and backwards
over at most 2i nodes. There are least g(1)+ . . .+ g(i)−2i nodes between the
root and the actually visited node, thus after a further skip and suffix step
at most n − g(1) − . . . − g(i) + 2i + 2 many nodes available for the navigate
step at stage i + 1. Hence, we obtain the following estimation:

g(i + 1) ≤ n − g(1) − . . . − g(i) + 2(i + 1) . (4.1)

Stated differently, this leads to:

g(1) + . . . + g(i) + g(i + 1) ≤ n + 2(i + 1) . (4.2)

Applying this with i = n − 1 gives the desired result:

g(1) + . . . + g(n) ≤ 3n . (4.3)
1 Note that the function f , as a function on the set of all inner nodes of a suffix

tree, need not be injective. This can be seen in the example presented at the end
of the chapter.
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4.3.6 Ukkonen’s Theorem

Theorem 4.5.
The suffix tree for a string of length n can be constructed in O(n) steps.

We illustrate the working of the algorithm described above with the ananas$
example. We start with the single-root tree shown in Fig. 4.48.

Fig. 4.48. Step 0

Figures 4.49 to 4.57 show the evolution of the suffix tree. Characters that
are explicitly placed without any savings are written in bold face.

‘1’ananas$

Fig. 4.49. Step 1

ananas$

nanas$

‘1’

‘2’

Fig. 4.50. Step 2

‚1’a nanas$

‚2’nanas$

Fig. 4.51. Step 3
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an  anas$ 

nanas$

‚1’

‚2’

Fig. 4.52. Step 4

ana  nas$ 

nanas$

‚1’

‚2’

Fig. 4.53. Step 5

ana nas$

nanas$

s$

‚1’

‚2’

‚3’

Fig. 4.54. Step 6

ana nas$

na nas$

s$

s$

‚1’

‚2’

‚3’

‚4’

Fig. 4.55. Step 7
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a na nas$

s$

s$

na nas$

s$

‚1’

‚3’

‚5’

‚2’

‚4’

Fig. 4.56. Step 8

na nas$ ‚1’a

‚3’s$

‚5’s$

‚2’na nas$

‚4’s$

‚6’s$

Fig. 4.57. Step 9

Figure 4.58 shows the final suffix tree. Figure 4.59 displays where savings
took place and which cases occurred.

a na nas$

$

s$

s$

s$

na nas$

s$

‚1’

‚3’

‚2’

‚5’

‚4’

‚6’

‚7’

Fig. 4.58. Step 10 with final suffix tree
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3

1

3 2

1 1 2

Fig. 4.59. Savings for the case of the ananas$ example

The example string T = ananas$ is too simple to lead to suffix link traver-
sals during construction of the tree. Indeed, taking advantage of suffix links
requires considerably longer and more involved strings as they typically occur
in bioinformatics applications. As an example, containing suffix links that are
indeed used during execution of Ukkonen’s algorithm, the reader may build up
the suffix tree for string T = abcdbcabcaacaaabaaaaabcda. The intermediate
state after having arrived at a suffix tree for prefix abcdbcabcaacaaabaaaa is
shown in Fig. 4.60. The reader may complete the construction by inserting
the last 5 characters a, b, c, d, a, and see how often suffix links are traversed.

4.3.7 Common Suffix Tree for Several Strings

Having defined the notion of a suffix tree for single strings there are also
applications requiring the common suffix tree for several strings. How to define
such a common suffix tree is rather obvious. It should have all suffixes of all
considered strings represented as path label of unique positions, ideally as
path label of leaves that are also equipped with labels indicating which suffix
of which strings is represented at that leaf. As the example below shows there
may exist leaves whose path label is a suffix of several strings. The example
considers two strings T = ananas$ and S = knasts$. Their common suffix tree
is shown in Fig. 4.61 (markers ‘T ’, ‘S’, and ‘TS’ at inner nodes are explained
below). Ukkonen’s algorithm is easily generalized to the case of more than
one string. In a first run, construct the suffix tree for the first string T . In
addition, mark all leaves with ‘T ’ indicating that these represent suffixes of T .
In a second run of Ukkonnen’s algorithm also integrate all suffixes of S into
a further growing tree and mark leaves that represent suffixes of S by ‘S’. In
addition, lift markings to inner nodes by marking inner node u with ‘S’ or ‘T ’
or ‘TS’, in case that below u there are only leaves marked ‘S’ or only leaves
marked ‘T ’ or leaves marks ‘S’ as well as leaves marked ‘T ’, respectively. It
is obvious how to generalize definition and construction to the case of finitely
many strings.
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Fig. 4.60. The benefit of suffix links

4.3.8 Applications of Suffix Trees

The most complete collection of suffix tree applications is surely Gusfield [31].
We present here four examples of applications that drastically demonstrate
the usefulness of suffix trees. It is not wrong to state that without suffix trees
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Fig. 4.61. Common suffix tree for strings ananas$ and knasts$

bioinformatics would not exists, at least not in the deeply established state it
is today. The applications are:

(a) Multiple pattern searching
(b) Longest common substring detection
(c) Frequent substring identification
(d) Pairwise overlaps computation

(a) Starting point and motivation for the concept of suffix trees was to
search for several patterns in a fixed text. Assume we have k patterns of
length O(m) each, and a fixed text T of length O(n). Building the suffix tree
of T in time O(n) and searching for each pattern as a substring of T , that
is a prefix of a suffix of T , we may simply navigate along each pattern into
the suffix tree and find all occurrences of the pattern. For each pattern, nav-
igation into the suffix tree requires O(m) steps. Thus the overall complexity
of multiple pattern searching is O(n + km), which considerably improves, for
example, the Knuth-Morris-Pratt approach that requires O(k(n + m)) steps.
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(b) Concerning the detection of a longest common substring within two
strings S and T of length O(n) each, a naive algorithm obviously requires
O(n3) steps. Knuth conjectured that no linear time algorithm would be pos-
sible [44]. Using suffix trees this can be done in O(n) steps. Again, note here
the surely realistic (concerning sizes of problems in bioinformatics) assumption
made with Ukkonen’s results that all used numbers can be processed in con-
stant time. Using logarithmic instead of uniform measure changes complexity
estimation (and was eventually understood this way in Knuth’s conjecture).
The proceeding is as follows. First construct a common suffix tree for S$1 and
T$2 in time O(n). We use two different end markers in order to prevent a
common end marker to count for a longest common substring. Then look for
nodes labelled ‘ST ’. Note that below any such node there is always at least
one leaf presenting a suffix of T$1, and at least one leaf representing a suffix
of S$2. Thus any such node has as path label a string that is both a substring
of S and a substring of T . Now simply look for a node labelled ‘ST ’ with
longest path label. To find such a node requires a further linear time traversal
through the suffix tree. Thus the overall complexity is O(n).

(c) Looking for all substrings with at least α and at most β occurrences
in a text T of length n is an interesting problem. By choosing an appropriate
value for α we can exclude substrings that occur too seldom to be character-
istic for text T , and by choosing an appropriate value for β we can exclude
trivial strings like ‘and’ that occur in great number within any long enough
text. Though there might be O(n2) substrings within T , application of the
suffix tree for T gives a compact representation of all desired strings which
allows a linear time solution. This representation is some sort of interval rep-
resentation. By this we mean that for a decomposition of a substring into
XY such that, for all proper prefixes Y ’ of Y , substring XY ’ has at least α
and at most β occurrences, whereas XY has less than α occurrences, we may
represent the whole ensemble of substrings XY ’ for all proper prefixes Y ’ of
Y by the “string interval” between X (included) and XY (excluded). What
we do with the suffix tree of T is the following. In a bottom-up traversal we
compute for every node u the number f(u) of leaves below this node. In a pre-
order traversal we determine nodes u closest to the root such that f(u) ≥ α
and below such a node u for all nodes v closest to the root with f(v) > β. Let
w be the predecessor node of node u. Then the string interval between the
path label of node w and the path label of node v defines a whole ensemble
of substrings with at least α and at most β occurrences in a text T .

(d) Having k strings of length O(n) each, the computations of pairwise
overlaps, that is of the overlap matrix required for the sequencing of DNA
strings by the shotgun procedure, requires in a naive approach O(k2n2) steps.
Using suffix trees this may be considerable improved to O(kn + k2). The
procedure is as follows. Given k strings S1, S2, . . . , Sk of length O(n) each,
such that no string occurs as a substring of another one, first construct the
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common suffix tree of S1, S2, . . . , Sk in time O(kn). Given two strings Si and
Sj , note that the overlap Oij between Si and Sj can be recovered from the
common suffix tree as follows (Fig. 4.62).

position p in string Si

Sj

Si

Sij

Oij

Oij

position 1 in string Sj

Fig. 4.62. How to detect overlaps in a common suffix tree

String Oij is a suffix of Si starting at position p, whereas string Oij is a
prefix of a suffix of Sj starting at position 1. Navigating to the position with
path label Oij in the common suffix tree we arrive at a node u (and not at a
position between two consecutive characters of an edge label). The reason is
that Sj is not a substring of Si, thus in string Sj the considered prefix Oij is
followed by a character different from $, whereas in string Si the considered
substring Oij is followed by end marker $. Thus there must be a node u at
the position with path label Oij splitting into an edge labelled $ and leading
to a leaf labelled ‘Sj 1’, and into a path leading to a leaf labelled ‘Si p’ (Fig.
4.63).

‚Si p’

‚Sj 1’

$

root
Sij

u
Oij

Fig. 4.63. How to detect overlaps in a common suffix tree (continued)

Thus leaf labelled ‘Sj 1’ tells us that we can read out, along the path
πj between the root and that leaf, all overlaps between any string Si (note
that i = j is allowed) and Sj . Reading out overlaps with Sj on the detected
path πj requires detection of nodes u with a direct $-link to a leaf labelled
‘Si’. Also note that there may exist, for a fixed index i, several such $-links
leading to a leaf labelled ‘Si’. The reason is that there may be different suffix-
prefix matches between Si and Sj . Being interested in the overlap, that is, the
longest suffix-prefix match between Si and Sj we must take the deepest node
u with an edge labelled ‘$’ leading to a leaf labelled ‘Si’. Summarizing, there
are two events that are of interest:
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(1) Arriving at a leaf labelled ‘Sj 1’ for some j.
(2) Finding a deepest node on the path to the leaf found in (1) with edge

labelled ‘$’ and leading to a leaf labelled ‘Si p’, for some i, p.

Simply waiting for events (1) and, for each such, going back to the root and
detecting on the path from the root down to the found leaf all events (2) is
not the most efficient implementation extracting all overlaps. The reason is
that we visit for each of the n leaves labelled ‘1’ a complete path from the
root to each such leaf, leading in the worst case to an O(k2) running time as
different such paths may be visited (at least in parts) in a multiple manner.
A better idea is to manage for each i = 1, . . . , k a separate stack that stores
during a preorder traversal through the common suffix tree all nodes u so far
found to have a $-link to a leaf labelled ‘Si’. Whenever a leaf labelled ‘Sj 1’
is found, all top-elements of stacks allow to read out the overlaps of strings
with Sj .

‘S3’

‚S3’

‚S1 1’

‚S3 1’

a

‘S1’$

$

$

$

$

$

$

$

$

b d e

f g

ki j

‘S2’

‚S1’

‚S3’

‚S1’

‚S2’

‘S2’

‘S2’

c

$

h

$ ‚S1 S3’

‚S2 1’

Fig. 4.64. Traversal through common suffix tree to compute all overlaps

Backtracking through the tree leads to the deletion of top-elements of
the stacks whenever corresponding nodes are passed, whereas forth-tracking
again fills the stacks. We illustrate the evolution of stacks and the read-out of
overlaps with strings S1, S2, S3. Assume that parts of a common suffix tree are
shown in Fig. 4.64. The evolution of stacks (forth going one node deeper, back
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going one node back) and the read-out of overlaps during preorder traversal
are as follows (Figs. 4.65 and 4.66). Instead of writing down an overlap in the
overlap matrix we indicate it by the node having the overlap as path label.

S1 S2 S3 S1 S2 S3 S1 S2

a a b

S3

forth forth forth

dd

S1 S2 S3 S1 S2 S3

ba

c

ba

c

forth forth

S1 S2 S3

b

c

a e

forth

S1 S2 S3 d

a

d

e

S1

S2

S3 S1 S2 S3

b

S1 S2 S3

ba

cc

a

backread out overlaps back

f g
f

S1 S2 S3

a b

S1 S2 S3

ba

S1 S2

a b

S3

forthback forth

Fig. 4.65. Stack management during tree traversal

Now O(kn) is the complexity of constructing the common suffix tree, an-
other O(kn) is for a preorder traversal through the common suffix tree, O(k2)
is for reading out k2 overlaps as top-elements of the stacks at particular stages
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Fig. 4.66. Stack management during tree traversal (continued)

of the traversal. Term O(k2) deserves some explanation: one could argue that
reading out overlaps happens during the preorder traversal and thus should
also require O(kn). However, note that it may happen that at some leaves
several entries are pushed onto various stacks (see leaf below node k), and it
might happen that the same node defines various different overlaps (see node
b).
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4.4 Least Common Ancestor

4.4.1 Motivation

Assume an operation f is to be executed on a data structure D rather fre-
quently. Then it might be advantageous to preprocess D in advance yielding
a data structure D∗ on which execution of f is much less expensive than on
D. This could even be an advantage if the transformation of D into D∗ is
more expensive than a single execution of f . A situation like this occurs for
the operation of determining the least common ancestor of two nodes in a
tree. Having a tree D with n nodes, starting at nodes x and y we may find
the least common ancestor z of x and y in D in linear time 3n as follows. If
x = y then z = x. If x �= y proceed as follows: starting at x, walk towards the
root r thereby collecting all visited nodes in a stack S(x). Starting at y, walk
towards the root thereby collecting all visited nodes in a stack S(y). Succes-
sively delete from S(x) and S(y) identical top elements until for the first time
both lists have different top elements. The last deleted common top element
is the least common ancestor of x and y. For special trees, e.g. balanced trees,
execution time may be even better, e.g. 3 log n. With a suitable preprocessing
of D that requires linear time we may even arrive at a constant execution time
c for every least common ancestor computation, regardless of how many nodes
the tree has (shown in [34]; see also [67]). Expecting a large number k of com-
putations of least common ancestors, even linear preprocessing costs may be
advantageous. Such possible advantages of preprocessing are well known from
other applications, e.g. for searching in arrays. Assume we expect k lookups
for elements in an array A of length n. Without any preprocessing this can
be done in kn steps. After sorting the array in time O(n log n) the same task
can be done in O(k log n) steps.

4.4.2 Least Common Ancestor in Full Binary Trees

As a preparation for the case of arbitrary trees we treat the problem of com-
puting least common ancestors in full binary trees. The problem will be much
easier solved than for the general case, nevertheless it shows the general prin-
ciple and the notions introduced here will be required later, too. So let a full
binary tree with n nodes be given. First do an inorder traversal through the
tree D:

• For a tree consisting of only one node, simply visit this node.
• For a tree consisting of more than a single node, recursively traverse its

left subtree, then visit its root, finally recursively traverse its right subtree.

Attach to each node its inorder number written as a binary number with d bits
(leading zeroes are admissible). In this section we always refer to nodes by their
inorder numbers. In the example shown in Fig. 4.67 we obtain the following
inorder numbers (binary code written inside the boxes that represent nodes).
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Particular useful information is contained within a certain prefix of inorder
numbers (in the diagram in Fig. 4.67 indicated by bold face prefix of each
number). This is defined using the decomposition of every non-zero binary
number z having d bits into z = π(z)10right(z) with a suffix block of right(z)
many zeroes, preceded by rightmost bit 1, and preceded by a prefix string
π(z). Later we will also make use of the similar composition z = 0left(z)1σ(z)
into a prefix block of left(z) many zeroes, followed by leftmost bit 1, followed
by remaining suffix string σ(z).

8
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Fig. 4.67. (a) inorder traversal and inorder numbers; (b) decomposition according
to rightmost 1; (c) decomposition according to leftmost 1

Prefix string π(x) always encodes the path from the root of D to the node
z in the usual sense that bit 0 encodes going to the left subtree and bit 1 going
to the right subtree. The reader may check this for the example above, and
also convince himself that this statement is true for an arbitrary binary tree
(argue recursively). We require a second numbering of the nodes, namely the
one resulting from a preorder traversal through the tree:

• For a tree consisting of only one node, simply visit this node.
• For a tree consisting of more than a single node, first visit its root, then

recursively traverse its left subtree, finally recursively traverse its right
subtree.

Attach to each node x binary number pre(x) that corresponds to the step at
which node x is visited in a preorder traversal; call pre(x) the preorder number
of x. In Fig. 4.68 we obtain the following preorder numbers (written inside the
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node boxes). Finally, we make a third traversal through the tree and attach
to each node x the number f(x) of nodes in the subtree with root x. To equip
each node with these numbers requires O(n) steps (three tree traversals).

1
0001

15

13

14

92
0010 1001

3 6 10
0011 0110 1010 1101

12118754
0100 0101 0111 1000 1011 1100 1110 1111

Fig. 4.68. Preorder traversal and preorder numbers

Having available these numbers we may now compute the least common
ancestor z (strictly speaking, its inorder number) for arbitrary nodes x and
y in constant time, regardless of how great the number of nodes in the tree
is. Using x = π(x)10right(x) and y = π(y)10right(y), we have to compute z =
π(z)10right(z). Since π(x) and π(y) encode the path from the root down to x
and y, respectively, we conclude that their longest common prefix encodes the
path from the root down to the least common ancestor z of x and y. Thus the
longest common prefix of strings π(x) and π(y) equals π(z). For the moment,
denote the length of π(z) by q. The computation of z now proceeds as follows:

• If x = y then z = x = y is returned.
• If x �= y and pre(x) < pre(y) < pre(x) + f(x) then x is a predecessor2 of

y, thus z = x and z = x is returned.
• If x �= y and pre(y) < pre(x) < pre(y) + f(y) then y is a predecessor of x,

thus z = y and z = y is returned.
• In any other case we know that neither x is an ancestor of y, nor is y an

ancestor of x. This means that common prefix p of π(x) and π(y) is strictly
shorter than each of π(x) and π(y). Now we compute z as shown in Fig.
4.69. Here, we use standard bit string operations: arithmetic operations;
Boolean operations, shifting a bit string a predefined number of bits to the
left or to the right; determining position of left-most resp. right-most bit
1. Availablilty of these operations on a computer and execution time are
discussed below.

2 The preorder numbers of all nodes in the subtree with root x are pre(x), pre(x)+
1,. . . , pre(x) + f(x) − 1.
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compute result returned 
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Fig. 4.69. Computation of least common ancestor

In this computation we make the assumption that the length d = O(log n)
of the binary numbers under consideration is small enough3 such that certain
bit string operations are available on the underlying machine and can thus be
executed in constant time. Usually, on a machine arithmetical operations as
addition, subtraction, multiplication, division, and comparison are available,
as are logical operations like AND, OR and XOR. Operation shift-left(z, i)
can be simulated by multiplying z with 2i, shift-right(z, i) can be simulated
by division of z by 2i. Numbers 2i can be created by an operation setting a
single bit 1 at a specified position.

The computation of operations left(z) and right(z) is not necessarily
present in an arbitrary programming language. So we treat these operations
separately in more detail and show how to make them being computable in
constant time. First we consider the operation right(z) computing the number
of zeroes at the right end of z. Instead of trying to simulate right(z) by other
available operations executable in constant time, we simply make a further
preprocessing step (in linear time) that provides us with all the information
necessary for the computation of right(z), for all binary numbers from 1 to
2d. First we walk through all powers of 2 (successively multiplying with 2)
and always increase right(z) by 1. This gives the correct numbers right(z) for
all powers of 2. For all numbers z between 2i and 2i+1 we obtain right(z) in
a second walk by simply copying all already computed numbers right(1), . . . ,
right(2i − 1). The complete procedure requires linear time. The computation
of left(z) for all numbers z = 1, . . . , 2d is even simpler: For powers of 2, left(1)
begins with d − 1, and decreases one by one down to left(2d) = 0. For all
numbers z between 2i and 2i+1 − 1, left(z) equals left(2i). Figure 4.70 shows
computations for d = 4.

3 For example, length d = 64 allows consideration of trees up to 264 nodes. This is
much more than is ever needed in practical applications.
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Fig. 4.70. Computation of values left(z) and right(z), for all d-bit numbers

4.4.3 Least Common Ancestor in Arbitrary Trees

Now we generalize the ideas above to the case of arbitrary trees. Two difficul-
ties must be overcome:

• Nodes may have more than two successor nodes.
• Binary trees must not be full binary trees.

Whereas preorder numbers are still defined in arbitrary trees, inorder numbers
make sense only for binary trees. We make again use of the preorder numbers
of the nodes of an arbitrary tree with n nodes. For simplicity of presentation, in
this section we identify nodes with their preorder numbers. Again we assume
that all these numbers are of the same length d and achieve this by eventually
adding leading zeroes. Note that the decomposition x = π(x)10right(x) intro-
duced for arbitrary binary strings in the section before is applicable also for
preorder numbers.

Lemma 4.6.
For every node u, the subtree with root u contains exactly one node v having
maximum value right(v) among all nodes within subtree below u. Call this
unique node I(u).

Proof. Assume, the subtree with root u contains two different nodes v and w
having maximum value right(v) = right(w) = i. Hence, both v and w have the
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common suffix 10i. Since v and w are different nodes there is a position in v
and w with different bits. We consider the leftmost such position. Thus we may
decompose, without loss of generality, v and w as follows: v = Z1V 10i and
w = Z0W10i with common prefix Z. Now consider node z = Z100 . . . 0 with
sufficient zeroes at the right end to give a string of length d. Thus w < z < v is
true. Hence, z also is located within the subtree with root u. However, right(z)
is greater than i, contradicting maximality of i. ��

For each node u we compute node I(u) and attach it to node u by a bottom-up
traversal through the tree in linear time as follows.

• For every leaf u, obviously I(u) = u.
• For every inner node u we distinguish two cases.

(a) If right(u) ≤ right(I(v)) for at least one child node v of u, choose the
unique child node v of u with maximum value right(I(v)) and define
I(u) = I(v).

(b) If right(u) > right(I(v)) holds for every child node v of u, then
I(u) = u.

Since every inner node u has at most one child v with I(u) = I(v), the nodes
u with identical value I(u) form a path in the tree, called the component of u.
The deepest node of the component of u is obviously I(u), its highest node is
called the head of the component. When computing the values I(u) for every
node u, we assume that a pointer from the deepest node of each component
to its head is provided. This is simply achieved by starting with a pointer for
each leaf pointing to the corresponding leaf. Then the pointer is lifted to the
parent node in case (a) of the computation of I(u), whereas in case (b) node
u receives a fresh link pointing to himself (Fig. 4.71).

(b)
u

v

  I(v)

u

v

I(v)

(a)

Fig. 4.71. Lifting of pointers versus creation of a new pointer

Finally, some further information is required at each node u, namely the
following bit string

Au = Au(d − 1) . . . Au(1)Au(0) (4.4)

with ith bit defined as follows: Au(i) = 1 if there is an ancestor v of u (even-
tually u itself) with right(I(v)) = i, and Au(i) = 0 if there is no ancestor v
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of u with right(I(v)) = i. By a further preorder traversal through the tree we
may easily attach bit string Au to each node u:

• If u is the root then Au = 0i−11d−i−1 with i = right(I(u)).
• If u is not the root take its parent v with already computed bit string Av.

Then we obtain Au = Av OR 0i−11d−i−1 with i = right(I(u)).

Correctness of the first case is clear, the latter case is correct since ancestors
of v are just v itself as well as all ancestors of u.

In Fig. 4.72, components consisting of two or more nodes are indicated
by a shadowed area. Each of the nodes outside these areas forms a separate
component consisting of this single node. Furthermore, Fig. 4.73 shows all bit
strings Au.

000001

000010 000101 001101

000110

001011

000011 000100 001110 010100

000111 001100

001111 010000 010011

001001001000 001010 010001 010010

Fig. 4.72. (a) Components having identical I-value

Lemma 4.7. Representation Lemma
If x is an ancestor of y, then π(I(x)) is a prefix of π(I(y)), and thus
right(I(x)) ≥ right(I(y)). If x is an ancestor of y and I(x) �= I(y), then
π(I(x)) is a proper prefix of π(I(y)), and thus right(I(x)) > right(I(y)).

The meaning of the Representation Lemma is that function I can be seen as
an ancestor relationship conserving embedding of an arbitrary tree into a full
binary tree. After application of I, ancestor information for nodes x and y
can be extracted almost the same way as it was done for full binary trees.

Proof. If x and y are nodes within the same component then I(x) = I(y)
and the assertion of the lemma is trivial. So assume x and y are located
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010100 011000 010000

011000

011001

010101 010100 

010000

010000 010100

011000 011100

010000010001 010001

011001 011000 011001 010001 010010

Fig. 4.73. (b) Bit strings Au attached to nodes

within different components. Thus the situation is as shown in Fig. 4.74 (only
segments between x and I(x), and y and I(y) of the components of x and y
are drawn as shaded areas).

I(x)

x

I(y)

y

Fig. 4.74. Different components of x and y

Decompose I(x) = π(I(x))10right(I(x)) and I(y) = π(I(y))10right(I(y)).
Since x and y are located in different components we know that right(I(x)) >
right(I(y)). Now assume that π(I(x)) is not a prefix of π(I(y)). Let P be
longest common prefix of π(I(x)) and π(I(y)), and let p be its length. Thus
P is followed by different bits in I(x) and I(y). Consider w = P10d−p−1.
If I(x) = P1U10right(I(x)) and I(y) = P0V 10right(I(y)) then I(y) < w < I(x)
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holds. If I(x) = P0U10right(I(x)) and I(y) = P1V 10right(I(y)) then I(x) < w <
I(y) holds. As I(x) and I(y) are both located within the subtree below node
x, we conclude for both cases that w is located within the subtree below node
x, too. Furthermore right(w) > right(I(x)). This contradicts maximality of
right(I(x)). ��

Lemma 4.8.
For nodes x and y let z be their least common ancestor. Then k = right(I(z))
can be computed from x and y in constant time having available all the in-
formation provided so far at each node of the considered tree, as well as the
information necessary to do all the operations discussed in the section before
for a full binary tree with inorder numbers of bit length d.

Proof. Since z is an ancestor of both x and y, Representation Lemma tells us
that decompositions of I(x), I(y), and I(z) must be related as follows, with
strings P , X, and Y :

I(z) = π(I(z))10right(I(z))

I(x) = π(I(x))10right(I(x)) = π(I(z))PX10right(I(x))

I(y) = π(I(y))10right(I(y)) = π(I(z))PY 10right(I(y)) .

Thus P is the maximum common substring of π(I(x)) and π(I(y)) starting
right of π(I(z)). Note that one or both of strings X, Y may be empty (for
example in case that I(x) = I(y)). In case that both X, Y are non-empty
strings X, Y have different leftmost characters. From preorder numbers I(x)
and I(y) available at nodes x and y we compute as done in Sect. 4.4.2 string
g defined as follows:

g = π(I(z))P10right(g)

(g and right(g) are computed in constant time) .

Comparing decompositions of I(z) and g we infer that right(g) ≤ right(I(z))
holds. We know that z is an ancestor of x, therefore the definition of string Ax

tells us that Ax(right(I(z))) = 1. By the same way, as z is also an ancestor
of y, definition of string Ay tells us that Ay(right(I(z))) = 1. So far, we
have shown that right(I(z)) (the number that is to be computed) fulfils the
following constraints:

right(I(z)) ≥ right(g)
Ax(right(I(z))) = 1
Ay(right(I(z))) = 1 .

At this stage consider the least number k that fulfils these constraints:

k ≥ right(g)
Ax(k) = 1
Ay(k) = 1 .



140 4 Intelligent Data Structures

Remembering the numbering of indices of Ax and Ay from left to right, namely
from d − 1 down to 0 as shown in Fig. 4.75, and using abbreviation m =
right(g), number k is computed in constant time using available bit strings
Ax, Ay, g and number m = right(g) as shown in Fig. 4.76.

d – 1 ... k m – 1 ... ... 0

... ... ... ......0 0 ... 0 0 1

search here for right-most common 1 

... ...Ax 1 0 0 ... 0 0 ... ... ...

Ay

Fig. 4.75. Where to search for k

compute result returned 

)1,( mArightshift x U

)1,( mArightshift y V

WU AND V

)(Wright mk

kadd m

Fig. 4.76. Computation of k = right(I(z))

Finally we show that number k just computed and desired number
right(I(z)) coincide. Since numbers k and right(I(z)) share the three con-
straints above and k was defined as the least such number we conclude that
k ≤ right(I(z)). Conversely, we again interpret the definitions of Ax(k) =
Ay(k) = 1 and obtain that node x has an ancestor u such that right(I(u)) = k,
and node y has an ancestor v such that right(I(v)) = k. A further application
of the Representation Lemma allows us to infer decompositions of I(u) and
I(v) from the formerly derived decompositions of I(x) and I(y).

I(x) = π(I(x))10right(I(x)) = π(I(z))PX10right(I(x))

I(y) = π(I(y))10right(I(y)) = π(I(z))PY 10right(I(y))

I(u) = π(I(u))10k with π(I(u)) being a prefix of π(I(z))PX

I(v) = π(I(v))10k with π(I(v)) being a prefix of π(I(z))PY
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From k ≥ right(g) and the decomposition g = π(I(z))P10right(g) we conclude
that π(I(u)) and π(I(v)) do not have greater length than π(I(z))P has. As
π(I(u)) is a prefix of π(I(z))PX and π(I(v)) is a prefix of π(I(z))PY , we
conclude that π(I(u)) = π(I(v)), thus I(u) = I(v). This means that nodes
u and v are located within the same component. This means that one of u,
v is an ancestor of the other one. Assume that u is an ancestor of v. Since
u is also an ancestor of x and v is an ancestor of y we know that u is a
common ancestor of x and y. Thus u is an ancestor of the least common
ancestor z of x and y. A final application of the Representation Lemma tells
us that π(I(u)) is a prefix of π(I(z)). A further look at the decompositions
I(u) = π(I(u))10k and I(z) = π(I(z))10right(I(z)) then yields k ≥ right(I(z)),
the converse estimation. ��

Lemma 4.9.
Given nodes x and y, their least common ancestor z can be computed in con-
stant time.

Proof. Given x and y with least common ancestor z and using Lemma 4.8,
we first compute right(I(z)). Now we consider the component of z. Since z is
a predecessor of x and y we conclude from the Representation Lemma that
right(I(z)) ≥ right(I(x)) and right(I(z)) ≥ right(I(y)). Now we walk down
along the path from z to x and also walk down along the path from z to y
until when we eventually leave the component of z. If we do so we look for the
first node outside the component of z. Several cases must be distinguished.

(1) We did not leave the component of z, thus I(x) = I(y) = I(z) and
right(I(x)) = right(I(y)) = right(I(z)). So, either x is an ancestor of y
(Fig. 4.77 (1)), or x = y, or y is an ancestor of x. In any case, z is obtained
as the smaller one of x and y.

(2) Only the path from z down to y leaves the component of z. In this case
right(I(x)) = right(I(z)) and right(I(z)) > right(I(y)). Let w be the first
node outside the component of z on the path from z down to y (Fig. 4.77
(2)). We show below how to compute w in constant time. From w we
obtain z as the immediate predecessor of w.

(3) A symmetric situation as in (2) is that only the path from z down to
x leaves the component of z. In this case right(I(y)) = right(I(z)) and
right(I(z)) > right(I(x)). As in (2) let w be the first node outside the
component of z on the path from z down to x. We show below how
to compute w in constant time. From w we obtain z as the immediate
predecessor of w.

(4) Both paths from z down to x and from z down to y leave the component
of z. In this case right(I(z)) > right(I(x)) and right(I(z)) > right(I(y)).
Let v be the first node outside the component of z on the path from z
down to x, and w be the first node outside the component of z on the path
from z down to y. We show below how to compute v and w in constant
time. From v and w we obtain z as the smaller one of the immediate
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y

x

I(z)

(1)

y

z

w
x

I(z)

(2)

Fig. 4.77. (1) x, y within component of z; (2) x within, y outside component of z

predecessors of v and w (in Fig. 4.78, the smaller one of the predecessors
is the predecessor of w).

y

w

z

v
I(z)

x

Fig. 4.78. x, y outside component of z

First note that the distinction into these four cases can be computed in con-
stant time as follows:

• right(I(z)) = right(I(x)) and right(I(z)) = right(I(y)) for case (1)
• right(I(z)) = right(I(x)) and right(I(z)) > right(I(y)) for case (2)
• right(I(z)) > right(I(x)) and right(I(z)) = right(I(y)) for case (3)
• right(I(z)) > right(I(x)) and right(I(z)) > right(I(y)) for case (4)

Next we consider node v, for example in case (4), and first show how to
compute number right(I(v)) in constant time. The treatment of node v in
cases (2) and (3), and of node w in case (4) is done exactly the same way.
Since v is an ancestor of x, the values right(I(. . .)) occurring along the path
from z down to x are constant within components and decreasing when leaving
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a component. As v is the first node on that path leaving the component of
z we know that right(I(v)) can be found in Ax as the greatest index j <
right(I(z)) = k with Ax(j) = 1 (Fig. 4.79). This unique index j can thus be
computed in constant time as shown in Fig. 4.80.

d –1 ... k j... ... 0

search here for leftmost 1 

... ...Ax 1 0 0 ... 0 0 1 ... ...

Fig. 4.79. Where to search for j

compute result returned 

),( kdAleftshift x W

)(Wleft kj

jadd k

Fig. 4.80. Compute j

Having computed number j = right(I(v)), we finally compute nodes I(v)
and v. To see how this can be done make a final use of decomposition
I(v) = π(I(v))10right(I(v)). Since v is an ancestor of x we know from the
Representation Lemma that π(I(v)) is a prefix of π(I(x)), in particular a pre-
fix of I(x). Knowing j = right(I(x)) we may thus extract π(I(x)) as prefix of
I(x) of length d − 1 − j and compute I(v) as in Fig. 4.81. Finally compute v

compute result returned 

)1),(( jxIrightshift ))((0 1 xIj

10))((0))((0 111 djj xIxI 1))((0 xIj

),1))(0( jxI(leftshift j )(10))(( vIxI j

Fig. 4.81. Compute I(v)

as the head of its component by following the extra pointer from I(v) to the
head of the component of v. ��
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Exercise

4.1. Verify bit strings Au computed for the example in Fig. 4.73. Why is Au

identical for all nodes u within one component? Why is the number of bits
1 in Au identical to the number of components that are visited on the path
between u and the root of the tree?

4.5 Signed Genome Rearrangement

4.5.1 Reality-Desire Diagrams of Signed Permutations

A signed permutation of n numbers is a sequence δ1π(1)δ2π(2) . . . δnπ(n)
with a permutation π of numbers 1, 2, . . . , n, and algebraic signs (+ or -)
δ1, δ2, . . . , δn. To execute a reversal between positions i and j of a signed per-
mutation means to invert order and change signs of all entries between entry
i and entry j. Sorting a signed permutation means transforming it by a se-
quence of reversals into the sorted permutation +1 + 2 . . . + n. The minimum
number of reversals required to sort a signed permutation is called its reversal
distance. In Setubal & Meidanis ([68]) a visualization of signed permutations
is proposed that turns out to be particularly helpful in the explanation of the
working of the algorithm of Hannenhalli & Pevzner for the determination of
reversal distance. It is the so-called Reality-Desire diagram (RD-diagram) of a
signed permutation δ1π(1)δ2π(2) . . . δnπ(n). In a RD-diagram signed number
+g is represented by a succession of two nodes +g,−g, whereas signed num-
ber −g is represented by the reversed succession of nodes −g, +g. For signed
number δg let −δg be the same number, but with reversed sign.

Using two additional nodes L and R we arrange counter-clockwise around
a circle in succession node pair L, R and all node pairs corresponding to
signed numbers δ1π(1)δ2π(2) . . . δnπ(n). Starting with node L and proceeding
counter-clockwise we connect every second node with its successor node by
reality links (R-links): L with δ1π(1), −δ1π(1) with δ2π(2),. . . , −δn−1π(n −
1) with δnπ(n), −δnπ(n) with R. Reality links are thus arranged along the
borderline of the circle according to the order of signed numbers as it is at
the beginning (“reality”). Similarly, desire links (D-links) are introduced to
reflect the ordering +1+2 . . .+n of genes as it should be in the end (“desire”).
We connect L with +1, −1 with +2,. . . , −(n − 1) with +n, −n with R. The
resulting diagram with 2n + 2 nodes, n + 1 R-links and n + 1 D-links is called
the RD-diagram of the signed permutation under consideration. Figures 4.82
and 4.83 present examples to clarify the construction. For better visibility, we
sometimes draw D-links as curves (though they are, strictly speaking, lines;
being lines will indeed be important in later constructions).

After having introduced R-links and D-links into the RD-diagram, the
labeling of nodes, with the exception of nodes L and R, does not play a role
any more, thus we omit it in all of the following examples. Take a look at
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-4

+4

+1

-1

+3
-3

+5(b)
-5

-2

+2

L
RR

+1

+2-2

+3

-3

L

-1

(a)

Fig. 4.82. Signed permutations: (a) -3 -2 -1; (b) +2 -5 -3 -1 +4

a more complex example with 36 signed numbers. Its RD-diagram is shown
in Fig. 4.83. As within the example diagrams above, we again observe that
R-links and D-links form alternating cycles consisting of an alternation of R-
links and D-links. This is true in general for the following reason: each node
has exactly one adjacent R-link and one adjacent D-link. So, following links
always proceeds in an alternation of R-links and D-links, and must end up
with the start node. In Fig. 4.83 try to detect all 11 cycles4.

In the following it is important to have a clear imagination of how rever-
sals affect RD-diagrams. First, the reversed area corresponds to a segment
of the RD-diagram between any two R-links. Note that R-links correspond
to the cutting points between consecutive genes. Of course, the segment that
corresponds to the reversed area may not contain nodes L and R. Reversing
now means to mirror all nodes in the reversed area (this corresponds to an
inversion of the order of genes together with an inversion of signs) and let the
D-links of the nodes in the reversed area walk with the nodes to their new
position (D-links represent the unchanged target permutation). We illustrate
the effect of reversals on RD-diagrams by two examples in Fig. 4.84 (the re-
versed area is always indicated by a shadowed segment). What can be seen is
that both reversals split a cycle into two cycles. This is advantageous having
in mind what is finally to be achieved, namely the sorted permutation that
corresponds to the trivial RD-diagram shown below having only trivial cycles
(consisting of two nodes). Nevertheless, we will later see that reversal (a) has
serious disadvantages compared to reversal (b).

What finally results after having sorted the initial permutation is shown
in Fig. 4.85.

Unfortunately, not every reversal splits a cycle into two. For example,
inverting one of the reversals in Fig. 4.84 has the effect of melting two cycles
into a single one. There are also examples of reversals leaving the number of
cycles unchanged (Fig. 4.86).

4 A useful tool for displaying RD-diagrams may be found under
www.inf.uos.de/theo/public.
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L   R 

Fig. 4.83. Signed permutation: -12 +31 +34 -28 -26 +17 +29 +4 +9 -36 -18 +35
+19 +1 -16 +14 +32 +33 +22 +15 -11 -27 -5 -20 +13 -30 -23 +10 +6 +3 +24 +21
+8 +25 +2 +7

How a reversal affects the number of cycles can be easily characterized.
Given two different R-links within the same cycle, we call them convergent in
case that in a traversal of the cycle both links are traversed clockwise or both
links are traversed counter-clockwise (as links occuring on the circle defining
the RD-diagram). Otherwise we call them divergent . Note that in Fig. 4.84,
(a) and (b) the reversed area was between two divergent R-links, whereas in
Fig. 4.86 it was between two convergent R-links.

Lemma 4.10.
A reversal changes number of cycles by +1 in case it acts on divergent R-links
of the same cycle, by 0 in case it acts on convergent R-links of the same cycle,
and by −1 in case it acts on R-links of different cycles.

Proof. The generic diagrams in Fig. 4.87 make clear what happens to cycles
after reversals. Broken lines always indicate paths (that may, of course, be
much more complicated that the diagrams suggest; nevertheless, arguments
can be made clear even with these rather simple drawings). Figure 4.87 con-
tains reversals acting on (a) divergent R-links of a single cycle; (b) convergent
R-links of a single cycle; (c) R-links of two cycles. ��
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(a)

R R

(b)

L L

R R
L L

Fig. 4.84. Reversals splitting a cycle

R
L

Fig. 4.85. RD-diagram after sorting

L
R R

L

Fig. 4.86. Reversal that leaves number of cycles unchanged
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(a) (b) (c)

Fig. 4.87. (a) splitting; (b) conserving; (c) melting of cycles

4.5.2 ”‘Ping-Pong”’ of Lower and Upper Bounds

The lemma above leads to a first lower bound for the reversal distance d of a
signed permutation of n genes having an RD-diagram with k cycles. Since we
start with k cycles and each reversal increases this number by at most 1, we
require at least n + 1− k reversals to achieve the desired RD-diagram having
n + 1 (trivial) cycles.

Lemma 4.11. Simple lower bound

n + 1 − k ≤ d.

It rapidly turns out that n + 1− k is by no means also an upper bound, that
is, we cannot always achieve the trivial RD-diagram within n+1−k reversals.
In the following, we study under which conditions n+1−k reversals suffice to
sort an RD-diagram, and under which conditions extra reversals are required.
As long as an RD-diagram contains at least one cycle with a pair of divergent
R-links we can apply a reversal splitting this cycle into two cycles. Since such
a reversal makes good progress towards the desired trivial RD-diagram, we
call a cycle containing a pair of divergent R-links a good cycle. A non-trivial
cycle containing only pairs of convergent R-links is called a bad cycle. Thus,
a bad cycle is a cycle that has all of its R-links traversed clockwise or all of
its R-links counter-clockwise.

Two observations shed more light on “how good” good cycles and “how
bad” bad cycles really are. First, bad cycles not necessarily force us to intro-
duce extra reversals. Second, good cycles with an uncritical choice of divergent
R-links may create bad cycles. The latter was already demonstrated with the
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example in Fig. 4.84 (a). The former can be seen in the example in Fig. 4.88.
The bad 4-cycle starting at node R is transformed (“twisted”) by the reversal
into a good cycle.

L
R R

L

Fig. 4.88. Bad cycle is twisted into a good cycle

Twisting of a bad cycle and thus transforming it into a good cycle happens
if and only if the bad cycle has nodes within the reversed area as well as nodes
outside the reversed area. This shows that interleaving of cycles will play a
central role in sorting RD-diagrams. We fix some notation. Two non-trivial
cycles C and C ′ are interleaving if C contains a D-link d and C ′ a D-link d′

such that d and d′, drawn as lines, intersect themselves. Interleaving defines
a graph structure on the set of non-trivial cycles. Connected components of
this graph are simply called components of the RD-diagram. A component
containing at least one good cycle is itself called a good component . A com-
ponent consisting solely of bad cycles is called a bad component . Clearly note
the difference between good and bad components: good components contain
at least one good cycle, bad components contain only bad cycles. Also note
that a component consisting of a trivial cycle is neither called good nor bad.
Concerning good components the following result holds; its proof will be post-
poned to a later section.

Lemma 4.12. Main Lemma
Within every good component there exists at least one good cycle with a pair of
suitably chosen divergent R-links such that the reversal between these R-links
does not produce any bad components.

Remember the example showing that divergent R-links must indeed be cho-
sen very carefully. The following example in Fig. 4.89 (a) gives an indication
why proof of the Main Lemma is to be expected to be non-trivial. It shows
a “diagram” which seemingly is a counter-example to the Main Lemma. The
“diagram” exclusively consists of good cycles. Consider the good component
consisting of two interleaving good cycles. Regardless which of these inter-
leaving cycles we choose, the reversal between its divergent R-links always
transforms the other of the two cycles into a bad cycle (Fig. 4.89 (b) and (c)).
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(c)(b)R
L

R
L

R
L(a)

Fig. 4.89. (a) Two interleaving good cycles; (b) and (c) bad cycles generated

Does this mean that the Main Lemma is false? Fortunately this is not the
case, since the considered “diagrams” are not RD-diagrams as can be seen
in Fig. 4.90 by following the D-links, starting at node L. To correctly follow
D-links means that after entering some node δg by a D-link, we must next
switch to −δg (not to the node linked with δg by an R-link) and follow the
D-link starting at node −δg. The resulting D-link traversal is shown in Fig.
4.90 by a sequence of arrows. We observe that not all nodes and D-links have
been traversed when ending at node R.

R
L

Fig. 4.90. Following D-links, omitting nodes

Thus, in order to prove the Main Lemma we must clarify what “diagrams”
occur as true RD-diagrams of signed permutations. This is not easily done,
but fortunately a rather simple necessary condition for a “diagram” to be a
true RD-diagram is available - and suffices to prove the Main Lemma.

Lemma 4.13. Necessary condition of RD-diagrams
In RD-diagrams, every D-link with convergent adjacent R-links interleaves
with at least two D-links (not necessarily belonging to the same cycle).

Proof. We consider a traversal of D-links, starting with link d (Fig. 4.91 (a)).
As long as we stay within the region of the cycle above line d and do not come
back to start node x, there will always be unvisited nodes (at least one) above
line d. Since there are also unvisited nodes below line d, we must at least once
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traverse a D-link that intersects D-link d, and must again return to the area
above d in order to visit the so far unvisited nodes above d. This forces us to
traverse a second time across D-link d (Fig. 4.91 (b)). ��

(b)

d

(a)

x

Fig. 4.91. (a) D-link traversal starting; (b) crossing link d

Looking at the “counter-example” in Fig. 4.89 we see that the necessary
condition is violated for the diagrams in (b) and (c), thus these cannot be
RD-diagrams. Resulting from the diagram in (a) by applying reversals, this
diagram cannot be a RD-diagram either.

Iterated application of the Main Lemma now allows us to steadily increase
by 1 the number of cycles within a good component without running into bad
components. Thus we get the following conclusion.

Corollary 4.14.
The cycles of a good component consisting of 2n nodes and k cycles can be
transformed into trivial cycles by n − k suitably chosen reversals.

Having bad components, the situation is not comparably good. Whatever re-
versal we apply R-links of a bad cycle (that are thus convergent), the number
of cycles does not increase. Thus, we need extra reversals to cope with bad
components. Indeed, if we had one extra reversal available for each bad com-
ponent, an RD-diagram could be sorted as the following statement shows.

Lemma 4.15. Bad component destruction
Any reversal acting on two arbitrarily chosen R-links of an arbitrary cycle C
in a bad component K turns K into a good component (though cycle C might
stay to be a bad cycle).

For the proof as well as for later use we require further notions concerning
cycles that are affected by a reversal (in that either their quality changes
from good to bad, or vice versa, or in that interleaving with other cycles
may change). A cycle C is called critical cycle for a reversal in case that C
has nodes both within and outside the reversed area. The following lemma
summarizes why critical cycles deserve special attention.
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Lemma 4.16. Effects of reversals on being good or bad and on in-
terleaving
Every good cycle that is uncritical for a reversal remains good after the re-
versal. Every bad cycle that is uncritical for a reversal remains bad after the
reversal. Every bad cycle that is critical for a reversal turns into a good cycle
after the reversal. Note that a good cycle that is critical for a reversal may still
be a good cycle after the reversal. For two cycles which are not both critical
for a reversal, interleaving or non-interleaving is not affected by the reversal.

Proof. Easy exercise.

Corollary 4.17.
Execution of a reversal acting on two R-links of a cycle C of a bad component
K does not lead to a loss or gain of cycles within K.

Now we can prove Lemma 4.15.

Proof. Consider some reversal acting on two R-links r and s of cycle C. We
distinguish two cases. First, assume that the reversed area contains at least a
further R-link t of C. The reversal changes orientation of t whereas orientations
of r and s remain unchanged. Thus a good cycle results from C. Second,
assume that the reversed area does not contain further R-links of C. Hence,
r and s are the two adjacent R-links of a D-link d. By Lemma 4.23, d must
be intersected by a further D-link d’ belonging to a cycle C ′ in the same
component as C. Thus C ′ is a bad cycle with some of its R-links within and
some outside the reversed area. Thus, the reversal turns C ′ into a good cycle.
Finally, we must show that the component of C is preserved. This follows
from the following observations: interleaving of cycles is not changed by the
reversal in case that we consider pairs of cycles that are not both critical for
the reversal. Circles that are critical for the reversal interleave with C before
and after the reversal since there is in any case a path between the border
nodes of the reversed area. Thus, though interleaving between critical cycles
may be changed by the reversal this does not affect membership of such cycles
to K. ��

Lemma 4.15 leads to a first upper bound for the reversal distance d of a
signed permutation, namely n + 1 − k + b with n being the number of signed
numbers, k the number of cycles, and b the number of bad components in the
RD-diagram.

Lemma 4.18. Simple upper bound

d ≤ n + 1 − k + b.

Interestingly, using as many extra reversals as there are bad components is not
always necessary. To see under what conditions we can sort an RD-diagram
with fewer extra reversals we need some further notion. What shall be defined
is the area of a component . Areas of an RD-diagram are regions that are
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RL

(a) (b)

Fig. 4.92. (a) fine-structure of components; (b) shows components as “black box”
areas

bounded by an alternating sequence of circle segments and lines. The example
in Fig. 4.92 gives a first impression of what we mean by “areas”.

The formal definition of the area of a component simply is as follows. Take
the segments of the circle constituting the RD-diagram that exactly cover
all nodes of the component. Traverse these segments counter-clockwise and
always draw a line from the end node of each segment to the start node of the
next segment. As a further example, consider an arrangement of four areas in
Fig. 4.93. Assume that all of these four areas correspond to bad components.
The indicated single extra reversal is sufficient to turn all bad components
into good ones.

Fig. 4.93. Twisting all separating bad components at once into a good component

What happens in this example is that bad components which separate
others may take advantage of applying any reversal acting on the separated
components. Formally defined, we say that a component K separates two com-
ponents K1 and K2 in case that K contains a D-link d such that the areas
of K1 and K2 are on different sides of d. In the example above we had two
components that separated others. Application of the indicated reversal melts
the outer components and at the same time twists the separating components.
Thus a common good component is generated by a single reversal. Of course,
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the number of cycles has decreased by 1. Spending a second extra reversal
could restore the number of cycles. Taking everything together, we required
only two reversals to transform four bad components into a single good com-
ponent without changing the number of cycles. What obviously counts is the
number of bad components that do not separate other two bad components.
Such bad components are called hurdles. Clearly note that hurdles are defined
to not separate bad components, whereas it is admitted that a hurdle sepa-
rates a bad and a good component, or two good components. What has been
observed for the example above can also be proved in general.

Lemma 4.19. Component merging
Consider two bad components K and K ′, cycle C in K and cycle C ′ in K ′.
Then, any reversal between an arbitrary R-link of C and an arbitrary R-link
of C ′ turns K, K ′ and all components that separated K and K ′ into a single
good component.

Proof. First, a reversal between an R-link of C and an R-link of C ′ melts cycles
C and C ′ into a single good cycle. Since after the reversal the border nodes
of the reversed area are joined by a path P , every component that separates
K and K ′ belongs to the created common good component. Interleaving of
cycles may change only for pairs of cycles that are critical for the reversal.
Anyhow, such critical cycles interleave with P and thus belong to the new
created component. Hence, the new created component contains nothing else
than the components K and K ′ as well as all components that separated K
and K ′. ��

We next show that hurdles indeed deserve their name: every hurdle inevitably
requires an extra reversal for getting it sorted.

Lemma 4.20.
Any reversal decreases the number of hurdles by at most 2.

Proof. There are two reasons for a hurdle H to loose the property of being a
hurdle. First, it might be the case that H contains a cycle C that is critical for
the reversal. Then the reversal turns C into a good cycle and H becomes part
of a good component. We say that H looses its hurdle property by twisting.
The diagrams in Fig. 4.94 show that at most two hurdles can be twisted by a
reversal (given three bad components that are twisted by the reversal, one of
them must separate the other two).

Second, it might be the case that hurdle H is not critical for the reversal,
but after the reversal, component H separates two bad components. Since H
did not separate bad components before the reversal, a new bad component
must have been created by the reversal. Thus the location of H must be as in
Fig. 4.95 (it must necessarily be located outside the reversed area; the reader
may explain why H cannot be located within the reversed area).

We say that H looses its hurdle property by separation. As Fig. 4.95 shows
there can be at most one hurdle that looses its hurdle property by separation.
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Fig. 4.94. At most two hurdles are twisted into good components.

hurdle.
no longer
a hurdle 

(b)(a)

Good component that is critical. A new bad component is created. 

Fig. 4.95. Loosing a hurdle by separation: critical good component in (a) creates
a new bad component in (b)

In addition, it cannot happen that hurdles are destroyed by twisting, and at
the same time a further hurdle is lost by separation since in the former case
there is no new bad component created. ��

Lemma 4.20 allows us to state an improved lower bound for the reversal
distance d of a RD-diagram of n signed numbers with k cycles and h hurdles.

Lemma 4.21. Improved lower bound

n + 1 − k + h ≤ d.

Proof. We show that number n + 1 − k + h decreases after a reversal by at
most value 1. In case two hurdles H1 and H2 are destroyed by twisting, the
executed reversal necessarily took place between R-links of different cycles.
Thus, k decreases by 1. Hence n + 1 − k + h decreases by 1. In case that
exactly one hurdle H is lost by twisting, either the reversal took place between
R-links of two different cycles or between R-links of a single cycle that must
be a member of H, thus is a bad cycle. In the former case, k decreases by 1,
hence n + 1 − k + h is unchanged, in the latter case k is unchanged, hence
n + 1 − k + h decreases by 1. In case that exactly one hurdle is destroyed by
separation it might be the case that the number of cycles decreases by 1. Fig.
4.95 shows that in case of separation at least one new hurdle is created. Thus
the number of hurdles is not decreased at all and n + 1 − k + h decreases at
most by 1. ��
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We switch back to upper bounds and ask whether n + 1 − k + h is sufficient
to sort a RD-diagram of n signed numbers with k cycles and h hurdles. For
this we recapitulate what procedures are available so far to transform hurdles
into parts of good components.

• Single hurdle destruction: one extra reversal applied between two R-
links of a cycle of a hurdle turns the hurdle into a good component and
lets the number of cycles unchanged.

• Hurdle merging: one extra reversal applied to R-links of cycles in two
different hurdles merges these hurdles as well as all components that sep-
arate them into a good component, but decreases the number of cycles by
1. A further extra reversal restores the number of cycles. Thus, two extra
reversals removed two hurdles.

So far, both of these procedures sound good with respect to the required
number of extra reversals. However, there is a final little obstacle in proving
n + 1 − k + h to be an upper bound for reversal distance d, namely that
destruction of hurdles may lead to the creation of new hurdles. To see how
this may happen look at the example in Fig. 4.96 with six bad components,
three of them being hurdles (black shaded). Destroying either one of them
or merging either two of them turns a non-hurdle (grey shaded) into a new
hurdle.

Fig. 4.96. Whatever is done, a non-hurdle turns into a hurdle

This motivates the following definition. A hurdle is called super-hurdle if
removing it from the RD-diagram turns a former non-hurdle into a hurdle.
Fortunately, as long as there are at least four hurdles in a RD-diagram, we
can easily avoid creation of new hurdles: always apply hurdle merging to
non-neighbouring hurdles H1 and H2, i.e. hurdles having the property that
between H1 and H2 as well as between H2 and H1 (counter-clockwise along
the RD-diagram) there are further hurdles located (Fig. 4.97).

Whatever bad component H separated hurdles H1 and H2 before the re-
versal, H will either become part of the new generated good component or it
will separate H3 and H4. Thus H either vanishes as a bad component or still
remains a bad component that is not a hurdle. Things get critical if we are left
with exactly three hurdles all of them being super-hurdles (Fig. 4.95). What-
ever hurdles we destroy, a new hurdle is created. In such a situation that is
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H4

H3

H2H1

Fig. 4.97. Hurdle merging between non-neighbouring hurdles

called a 3-fortress one additional extra reversal is required. RD-diagrams that
finally lead to a 3-fortress after iterated hurdle merging can be characterized
as follows: a RD-diagram is called a fortress if it contains an odd number of
at least 3 hurdles, and all of its hurdles are super-hurdles. Indeed, under the
presence of a fortress a further extra reversal is inevitably required to sort
the diagram. For an RD-diagram define its fortress number f to be 1 if the
diagram is a fortress, and 0 otherwise. Later it will be important to know that
hurdle merging does not destroy fortresses, unless a 3-fortress is present.

Lemma 4.22. Fortress preservation
Hurdle merging of two non-neighbouring hurdles in a fortress with at least 5
hurdles preserves the fortress property.

Proof. This is obvious, as an odd number of hurdles is still present after
application of such a reversal, and each of the non-merged super-hurdles is
still a super-hurdle after the reversal. ��

Lemma 4.23. Best lower bound

n + 1 − k + h + f ≤ d.

Proof. The lemma is proved by showing that any reversal decreases number
n+1−k+h+f by at most 1. In case f = 0 nothing has to be shown since we
already know that number n + 1 − k + h decreases by at most value 1. Now
consider the case f = 1. Thus the RD-diagram has an odd number of at least
3 hurdles, and all of its hurdles are super-hurdles. If no hurdles are destroyed,
we also know that the fortress is preserved, thus n + 1 − k + h + f decreases
by at most 1 (in case that k increases by 1). If a single hurdle is destroyed
by twisting, a new hurdle is generated (by the super-hurdle property) and
thus the presence of a fortress is preserved. Thus, n + 1 − k + h + f will not
decrease at all. The same applies if a single hurdle is destroyed by separation.
If two hurdles are destroyed by twisting and we had at least five hurdles, the
fortress property is preserved, thus again n+1−k+h+f decreases by at most
1. If two hurdles are destroyed by hurdle merging in a 3-fortress we have no
longer a fortress, thus f decreases by 1. Since for a 3-fortress hurdle merging
creates a further hurdle (note that this is not the case for greater fortresses),
n + 1 − k + h + f again decreases by at most 1. ��
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Now we arrived at a lower bound that will turn out to be an upper bound for
the minimum number of reversals required to sort a RD-diagram.

Lemma 4.24. Best upper bound

d ≤ n + 1 − k + h + f.

Proof. Whenever there are good components these are sorted first. This does
not affect hurdles and the fortress property. In case of a fortress, the number
of hurdles is iteratively decreased by always applying hurdle merging between
non-neighbouring hurdles. This preserves the fortress property until we arrive
at a 3-fortress. Then we use the extra reversal provided by f = 1 and finish
sorting by a hurdle merging with the available number of reversals. In case
of a non-fortress we must take care not to generate a fortress (note that by
f = 0 we have not available the extra reversal necessary for the destruction
of a fortress). There are indeed RD-diagrams that are somehow critical. Look
at the example shown in Fig. 4.98. There are five hurdles, two of them being
super-hurdles. Thus the diagram is not a fortress. Though using the formerly
safe strategy of merging two non-neighbouring hurdles, the reversal leads to
a diagram with three hurdles all of which are super-hurdles, thus creates a
fortress.

Fig. 4.98. Generation of a fortress

In case of an odd number of at least five hurdles, not all of which are super-
hurdles, it is thus better to not merge two hurdles but instead to destroy (turn
into a good component) a single hurdle that is not a super-hurdle. Turning
a bad component into a good one is the same as removing it from the RD-
diagram. As a non-super-hurdle is removed, there is no new hurdle created.
The result is a diagram with an even number of hurdles, definitively not a
fortress. Thus, f = 0 has been preserved. ��

Corollary 4.25. Hannenhalli/Pevzner

d = n + 1 − k + h + f.



4.5 Signed Genome Rearrangement 159

All what is left is to finally show how to sort good components with the
available number of reversals.

Exercise

4.2. The reader may treat all cases of 3 or less hurdles and show, for each
case, how to sort with the available number of reversals.

4.5.3 Padding RD-Diagrams

As Fig. 4.83 shows, RD-diagrams may be rather complicated. Sorting good
components is in addition complicated by the fact that not every reversal
between R-links of a single good cycle of a good component G produces again
good components from G. To show how a proper choice of the applied reversal
is done producing again only good components, we must first simplify RD-
diagrams considerably. The simplification is towards cycles with only 4 or 2
nodes by a process called interleaved padding . We describe this process first.
Consider a cycle C having more than 4 nodes in a RD-diagram. We distinguish
two cases.
Case 1
C has at least one pair of intersecting D-links d1 and d2. On cycle C we
choose a D-link d different from d1 and d2 and an R-link r such that d1 and
d2 separate d and r on cycle C (see Fig. 4.99). Then a pair of new nodes is
introduced, R-link r is split into two R-links, and D-link d is distributed to
the new nodes in such a way that two cycles of shorter length result, one with
D-link d1, the other one with D-link d2. Note that a bad cycle C splits into
two intersecting bad cycles, and a good cycle C splits two intersecting (due to
D-links d1 and d2 being distributed to both new cycles) cycles with at least
one of them being good. Thus, component and hurdle structure of an RD-
diagram is left invariant by this process (the reader should convince himself
at this point that further cycles interleaving with C either interleave with one
of the new cycles, and interleaving between any other cycles than C does not
change at all). What changes is number n of node pairs which increases by 1,
number of cycles which also increases by 1, and length of cycles which gets
shorter for the cycle C.
Case 2
There are no interleaving D-links on cycle C (Fig. 4.100). This means that
C must be a bad cycle. Consider an arbitrary D-link d1 on C. Applying
the necessary condition on RD-diagrams that was proved above, d1 must be
intersected by some further D-link d’, that thus belongs to another cycle C ′.
As C goes from on side of d’ to the other (via D-link d1), there must be a
further D-link d2 on C intersecting d’. As in the case before, choose some
D-link d and R-link r on C which are located on different sides of line d’. As
before, R-link r is split into two R-links using a pair of fresh nodes, and D-link
d is distributed in a suitable manner to these new nodes such that two shorter
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r

d1

d2

d

d1

d2

Fig. 4.99. Padding of a cycle with interleaving D-links

cycles result which both intersect D-link d’. The effect of the construction is
that a common component results with bad cycle C being split into two shorter
bad cycles. Thus quality of the component (being good or bad) is preserved.
Again, component and hurdle structure of the RD-diagram is unchanged.

d’

r

d2

d1

d

d2d’

d1

Fig. 4.100. Padding of a cycle without interleaving D-links

Lemma 4.26.
Number n+1−k+h+f is not affected by an interleaved padding. For the RD-
diagram obtained after application of an interleaved padding, reversal distance
has not got smaller.

Proof. As n grows by the same value as k, n − k is unchanged. Parameters
h and f are not altered since no new components are created and quality of
existing components is not altered. To show that original reversal distance d
is not greater then reversal distance dpadd after padding, it is useful to reinter-
pret RD-diagrams as representation of signed permutations. In the example
diagram in Fig. 4.101 we consider the RD-diagram of signed permutation +2
-5 -3 -1 +4. The diagram resulting after the executed padding can be inter-
preted as RD-diagram of the extended signed permutation +2 -5 +11

2 -3 -1
+4. Here we made use of signed rational numbers which does not cause any
problems. The reader being fixed on the usage of signed integers may renum-
ber rational numbers and work with signed permutation +3 -6 +2 -4 -1 +5.
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Fig. 4.101. Padding is insertion of new signed numbers

Consider a sorting of the padded sequence of signed numbers using dpadd

reversals. Deleting any occurrence of +11
2 and -1 1

2 , we get a sorting of the
original sequence of signed numbers using at most dpadd reversals (“at most”
since there may be reversals working only on +11

2 and -1 1
2 ; after deletion of

+11
2 and -11

2 there result ”dummy” steps without any effect). As d is the least
required number of reversals, we get d ≤ dpadd. ��

Note that we finally must prove the Main Lemma only for padded diagrams
with cycles of length 2 or 4. After having shown dpadd ≤ n + 1 − k + h + f ,
we infer d ≤ n + 1 − k + h + f using the estimation d ≤ dpadd shown before.
The converse estimation n + 1− k + h + f ≤ d has been shown already in the
sections before, even for arbitrary (also non-padded) diagrams.

4.5.4 Sorting Padded Good Components

From now on we assume that we deal with RD-diagrams consisting of cycles
of length 2 or 4 only. To simplify presentation of diagrams trivial cycles of
length 2 are never drawn.

Lemma 4.27. Main Lemma
Every good component K contains at least one good cycle such that the
(unique) reversal between its two R-links splits it into two trivial cycles, as we
already know, and does not generate any bad components from K.

Proof. Choose an arbitrary good cycle C within K. The reversal between its
two R-links is briefly called C-reversal. For any cycle X that is different from
C we denote by XC the cycle resulting from X by the C-reversal. Likewise,
for any set of cycles K not containing C we denote by KC the set of cycles XC

with X in K. A cycle interleaving with C is briefly called a C-critical cycle.
The following is easily verified. C-critical cycles, and only these, change their
character (being good or bad) after application of the C-reversal. For pairs of
C-critical cycles interleaving or non-interleaving changes after application of
the C-reversal, whereas for pairs of cycles with at most one C-critical inter-
leaving or non-interleaving is not altered. Executing the C-reversal splits cycle
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C into two trivial cycles. Now assume that the C-reversal generated at least
one bad component KC from the component of C. Thus KC must contain at
least one cycle DC such that D is C-critical. Since KC was assumed to be a
bad component, we know that DC is a bad cycle. Thus, D is a good cycle.
By the necessary condition on RD-diagrams, bad cycle DC interleaves with a
further bad cycle EC . Now we distinguish whether E is C-critical.

Case (1) is that E is C-critical (Fig. 4.102). Thus E is a good cycle. Fur-
thermore, D and E do not interleave.

CE

CD

C
E

D

Fig. 4.102. E is C-critical

Case (2) is that E is not C-critical (Fig. 4.103). Thus E is a bad cycle.
Furthermore, D and E interleave.

CE

CD

E

D

C

Fig. 4.103. E is not C-critical

Instead of C-reversal we execute D-reversal and show that the number of
cycles in all bad components it produces is less than the number of cycles in
all bad components that are produced by the C-reversal. As above, we use
the notion XD to denote the cycle resulting from cycle X by the D-reversal
(for a cycle X that is different from D). The result is shown for both cases in
Fig. 4.104, (1) for the first case, and (2) for the second case.

In both cases we observe that after D-reversal cycles CD and ED are part
of a good component whereas after C-reversal cycles DC and EC were part
of a bad component. Thus, concerning cycles C, D, E, D-reversal outper-
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DC
DE

D

C
E

(1)

DE
DC

E

D

C
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Fig. 4.104. Effect of D-reversal instead of C-reversal

forms C-reversal with respect to the number of cycles in freshly generated
bad components.

But we must also consider bad components that are eventually freshly
generated by D-reversal and show that these also are part of bad components
after C-reversal. We show this in Fig. 4.105 for the first case (second case is
to be treated similarly and left to the reader). A bad component BD that
is freshly generated by D-reversal does not interleave with ED or CD, since
the latter cycles are part of a good component. Thus, it is located within one
of the 4 sectors (upper left, upper right, lower right, lower left) into which
the RD-diagram is partitioned by cycles ED or CD. We concentrate on the
upper left sector and leave it to the reader to draw corresponding diagrams
for the other three sectors. Now also consider cycle D and B as it was before
D-reversal. A simple case is that B does not interleave cycle D. In that case
neither D-reversal nor C-reversal affects component B. Thus, BC contributes
as many bad cycles to the diagram after C-reversal as BD contributed to the
diagram after D-reversal. A more critical case is when B interleaves cycle D.
Then all cycles in BD that interleave D correspond to good cycles in B that
interleave cycle C. Thus, B may consist of a mixture of good and bad cycles.
After C-reversal all good cycles of B are twisted back again into bad cycles
of BC . Also, for every pair of cycles in BD for which interleaving was altered
in B, interleaving is altered again in BC . This means that BC again is a
connected set of bad cycles that is part of a bad component freshly generated
by C-reversal. Summarizing, whatever cycles in fresh bad components are
generated by C-reversal, they are also generated in bad components by D-
reversal. Thus, C-reversal indeed performs strictly better than D-reversal with
respect to freshly generated bad cycles.
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 D-reversal C-reversal
(a) (b) (c)

Fig. 4.105. (a) Bad component BD generated by D-reversal; (b) mixed set B
of cycles before application of D-reversal; (c) connected set BC as part of a bad
component after C-reversal

Having shown how to improve a reversal with respect to the number of
cycles in freshly generated bad components we may iterate this process until
we finally arrive at a reversal between R-links of a good cycle which does not
create any fresh bad components at all. ��

4.5.5 Summary of the Sorting Procedure

Before sorting starts, we transform the considered RD-diagram into a simpli-
fied one containing only cycles of length 2 and 4. There is one step described in
the sections before that must be slightly modified in order to preserve lengths
2 and 4 of cycles in the diagram. It is the step of hurdle merging. Here, two
bad cycles of length 4 are merged into a single good cycle of length 8. Imme-
diately applying two interleaved paddings produces three interleaving good
cycles of length 4 (Fig. 4.106). The complete procedure runs as follows.

Pad the RD-diagram into one with cycles of length 2 or 4;
while there are non-trivial cycles do

if there are good components then
sort these according to Main Lemma

else if there is an even number of at least 4 hurdles then
apply hurdle merging on non-neighbouring hurdles

else if there is a fortress with at least 5 hurdles then
apply hurdle merging on non-neighbouring hurdles

else if there is an odd number of at least 5 hurdles then
destroy a single non-super-hurdle

else
sort the diagram with at least 3 hurdles

end if
end while
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selected for padding 

selected for padding 

Fig. 4.106. Two paddings applied after hurdle merging

Choosing in every step a reversal that decreases the value of n+1−k +h+ f
requires some efforts: paddings must be used; sorting good components is
rather involved. As a consequence, an estimation of the time complexity of
this algorithm is not easy. We may alternatively proceed as follows. As we
know that a given RD-diagram (not necessarily padded) with k cycles, h
hurdles and fortress number f can be sorted in n + 1 − h + k + f reversals,
we know that in every step there always exists a reversal that decreases this
value by 1. We simply may try out each possible reversal and calculate for
each such reversal the updated value of n + 1 − k + h + f , until one is found
that decreases this value by 1. Since at most 2n reversals are sufficient to sort
a signed permutation of n numbers, at every step there at most n2 reversals
to be tried out, and computation of term n+1−k+h+f requires O(n2) time
- the reader may work out details of the computation of cycles, being good
or bad, interleaving of cycles, components, hurdles, super-hurdles, fortresses,
and estimate time required to compute all these things - we arrive at an O(n5)
algorithm.
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We conclude this section with a look at the example of a sorting in 26 steps
presented in Chap. 2 in Fig. 2.15. The corresponding RD-diagram developed
at the beginning of this section showed 11 cycles, no hurdles, and thus no
fortress. Thus, the reversal distance evaluates to

36 + 1 − 11 + 0 + 0 = 26

showing that the executed sorting indeed was optimal.

4.6 Bibliographic Remarks

PQ-trees were introduced in Booth & Lueker [13]. An extended presentation
of various algorithms for the construction of suffix trees, and also a huge col-
lection of applications of suffix trees, in particular combined with the least
common ancestor algorithms described in Sect. 4.4 can be found in Gus-
field [31]. Genome rearrangement is covered by Pevzner [64] and Setubal &
Meidanis [68]. The idea of using reality-desire diagrams to visualize genome
rearrangement problems was proposed in Setubal & Meidanis [68] as an alter-
native to the less easy to grasp diagrammatic presentations in Pevzner [64],
though the former book leaves out proofs of the main combinatorial parts of
the correctness proof of the Hannenhalli/Pevzner formula.
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NP-Hardness of Core Bioinformatics Problems

The reader familiar with basic notions of complexity theory, in particular
with the concept of NP-completeness, may skip over Sect. 5.1 (or consult
this section whenever necessary). By the same way, being well experienced
in reduction techniques the reader may also skip over Sects. 5.2 and 5.3. To
obtain a self-contained presentation of NP-complete bioinformatics problems
we have indeed shown NP-completeness of all intermediate problem that are
used in reductions of this chapter, starting from Cook’s famous 3SAT problem.

5.1 Getting Familiar with Basic Notions of Complexity
Theory

What is an “algorithmic problem” and what does it mean to efficiently solve
an algorithmic problem?

Most algorithmic problems occurring in bioinformatics are optimization prob-
lems. Such consist of the following ingredients:

• Alphabet of characters Σ
• Instance subset I: a polynomially decidable subset of Σ∗

• Solution relation S: a polynomially decidable and polynomially balanced
relation1 over Σ∗ × Σ∗; for simplicity we assume within this chapter that
for every instance x ∈ I there exists at least one y with (x, y) ∈ S.

• Cost function c that assign to each pair (x, y) ∈ S an integer (or rational)
value c(x, y)

• Mode min or max

To solve such a minimization (maximization) problem means to develop an
algorithm A that computes for every instance x a solution y = A(x) for x with

1 This means that for all (x, y) ∈ S, the length of y is bounded by a polynomial in
the length of x.



168 5 NP-Hardness of Core Bioinformatics Problems

minimum (maximum) costs c(x, y). To efficiently solve a problem requires in
addition that the computing time on input x is bounded by some polynomial
in the length of input instance x.

The meaning of the components of an optimization problem is as follows:
usually, among all strings over alphabet Σ there are lots of strings that do not
encode meaningful or admissible input instances. For example, ∧ ∧ ¬x does
not encode a Boolean formula, 0001402 usually is not allowed as representing
an integer due to leading zeroes, 0 is not admissible in case of integer division,
-325 is not admissible for computing square roots. Instance set I expresses
which strings over Σ represent meaningful or interesting input instances of
a problem. Of course it should be efficiently testable whether a given string
fulfils the requirements of instance set I. Given instance x, we are interested
in computing so-called optimal solutions, that is, strings y with (x, y) ∈ S
and minimal or maximal value c(x, y). In order for solutions to be efficiently
constructible, their lengths should necessarily be bounded by a polynomial in
the length of input x (otherwise already writing down a solution would require
exponential space and time, not to speak about the complexity of finding it).
For every proposed string y it should be efficiently testable whether it is a
solution for x. Thus, the “only” problem with an optimization problem is that
although simple browsing through the space of all solution for an instance x is
possible, this leads to exponential running time. The main theme of complexity
theory is to find out for a concrete optimization problem whether there is a
more intelligent, thus efficient, algorithm, or whether exponential execution
time is inherent to the problem and thus (with high confidence) unavoidable.

How did we show so far that an algorithmic problem is efficiently solvable?

In theory, this is easy: simply develop an algorithm that solves the problem
and runs in time polynomial in input length. Practically, it may be rather
intricate to find an efficient algorithm, provided such an algorithm exists at
all. One goal of this book is to present and illustrate with selected examples
a few general principles (paradigms) that often guide us towards efficient
algorithms.

How can we show that an algorithmic problem is not efficiently solvable?

This requires deeper theoretical preparations. First, optimization problems
are transformed into languages which are used in complexity theory to en-
code problems. This simplification proceeds in several steps. First, an optimal
solution y for a given problem instance x usually can be obtained on basis of
an algorithm which only computes the optimal value of the cost function that
can be achieved with any solution for problem instance x. The strategy is to
successively fix the bits of solution y by suitably modifying parts of instance
x and asking whether the former optimal value is unaltered; depending on the
obtained answer we usually may infer knowledge about one or more bits of y.
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As an example, consider TSP, the travelling salesman problem. Let c be
the minimum possible cost of a Hamiltonian cycle. Now start with an arbitrary
node v. For a proposed successor node w of v, set the cost of edge (v, w) to
infinity (thus suppressing this edge) and compute the optimal value c′ after
this suppression. If c′ = c holds we know that edge (v, w) is not required for
an optimal Hamiltonian cycle, so we may suppress it forever and try out the
next successor node of v. If c′ > c holds we know that edge (v, w) necessarily
must be part in any possible optimal Hamiltonian cycle. So we restore cost
of edge (v, w) to its original value and proceed to determine the successor of
node w in an optimal Hamiltonian cycle by the same way as the successor of
node v was determined. Thus, if the given graph has n nodes, at most n2 calls
of an algorithm computing optimal values leads us to a cheapest Hamiltonian
cycle.

Next, computing optimal values could be done if we had an algorithm
that gives, for an instance x and integer bound b, the answer to the question
whether a solution y exists with cost c(x, y) at most b in case of mode = min,
or a solution exists with cost c(x, y) at least b in case of mode = max. Having
such a decision algorithm and observing that the lengths of solutions are
polynomially bounded in the length of the input, binary search allows efficient
navigation towards the optimal value of the cost function.

Finally, questions whether a solution y exists with costs at most or at least
b could be answered if we had an algorithm which decides whether pair (x, b)
consisting of instance x and bound b belong to the following language:

L = {(x, b) | x ∈ I ∧ ∃ y with (x, y) ∈ S ∧ c(x, y) ≤ b resp. c(x, y) ≥ b} .

Here, we only have to note that, given input string x, a preprocessing test
whether x belongs to I, must be incorporated into an algorithm.

So we end with a language L that encodes the original optimization prob-
lem. Showing that the original optimization problem does not admit an ef-
ficient (polynomial time) algorithm is thus reduced to showing that the en-
coding language L does not admit an efficient algorithm. For this latter task
the notion of polynomial reductions between languages and the notion of NP-
completeness is established.

How are complexity class NP and NP-completeness defined, and what is the
meaning of NP-completeness?

Complexity class NP consists of all languages L that are definable in existen-
tially quantified form

L = {x | ∃ some y such that (x, y) ∈ S}

with a polynomially decidable and polynomially balanced relation S. Note
that the language used above to represent an optimization problem is a lan-
guage in NP. Informally stated, complexity class NP reflects the well-known
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generate-test problem-solving paradigm with a search space of exponential
size and a polynomial time test. Almost all practically relevant problems with
the exception of a few undecidable problems occurring in mathematics belong
to class NP.

Languages L1 and L2 may be compared with respect to their inherent
complexity by polynomially reducing L1 to L2, formally noted L1 ≤pol L2,
meaning that a polynomial time computable function f exists such that for
all strings x, x ∈ L1 is equivalent to f(x) ∈ L2. Thus, reducing L1 to L2 means
that we may transform questions x ∈ L1 into equivalent questions f(x) ∈ L2,
or that L1 is in some sense contained within L2 as shown in Fig. 5.1.

))(( 21 LxfLxx

1* L

1L

2L

)( 1Lf

2* L

)*( 1Lf

Fig. 5.1. The meaning of reductions

A more general sort of reduction, called truth-table reduction, allows a single
question x ∈ L1 to be reduced to a Boolean combination of several questions
f1(x) ∈ L2, . . . , fm(x) ∈ L2. The following statement holds for both reduction
concepts and follows immediately from the definitions.

Lemma 5.1.
If L1 ≤pol L2 and L2 is polynomially solvable, then L1 is polynomially solvable,
too. In this sense, L1 is at most as difficult to solve as L2 is. Stated the other
way around, if L1 is not polynomially solvable, then L2 is not polynomially
solvable, either. If L1 ≤pol L2 and L2 ≤pol L3, then L1 ≤pol L3.

Proof. Let L1 be reduced to L2 via reduction function f . Having a polynomial
algorithm for L2, we must simply preprocess input x to L1 by computing f(x)
and then invoke a polynomial algorithm for L2 on f(x) to obtain a polynomial
algorithm for L1. It is to be used here that the length of f(x) is bounded by
a polynomial in the length of x whenever computation time of e.g. a Turing
machine (see next section for a description of Turing machines) computing
f(x) is bounded by a polynomial in the length of x. Transitivity of relation
≤pol requires two reductions to be executed consecutively. ��
Now a language L is called NP-complete if it is an NP-language and every NP-
language L′ may be polynomially reduced to L. Thus, NP-complete languages
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are greatest elements of NP with respect to the partial ordering ≤pol, thus
they are the most difficult languages in NP.

Theorem 5.2.
Let L be an NP-complete language. If L is polynomially solvable then P = NP
follows.

Proof. Every NP-language L′ is polynomially reducible to NP-complete lan-
guage L. Polynomial solvability of L thus would give polynomial solvability
of every NP-problem, thus P = NP. ��

Remark 5.3.
At least 50 years (or more) of work on thousands of NP-complete problems
by ten thousands (or more) researchers have not resulted in a polynomial
algorithm for any of these problems. Many people take this as strong evidence
that P 	= NP, though there are also a few people expecting P = NP, and some
expecting the P = NP question to be a question that, like the axiom of choice
in axiomatic set theory, cannot be decided on basis of usual foundations of
computer science (Peano’s axioms, or axioms of set theory). Showing that
a language is NP-complete is thus, for most people, strong evidence that L
cannot be polynomially solved.

What can be done in case a problem is NP-complete?

Most often we will develop approximation algorithms in case of optimization
problems whose underlying language is shown to be NP-complete. Such re-
turn solutions that are at most a predefined constant factor worse than an
optimal solution. A different relaxation would be to use probabilistic algo-
rithms which return a correct solution with some predefined confidence. The
examples presented in this book do not make use of probabilistic algorithms.
A further option is to use adaptive algorithms, e.g. neural networks or hid-
den Markov models, both being able to solve a problem by being trained to
training instances. We will present a couple of problems that are “solved” this
way. Adaptive algorithms are particularly suitable in domains with some lack
of theoretical insights or by the presence of error within data, as it is often
the case in bioinformatics problems. Finally, various heuristics play a role in
bioinformatics problem solving.

5.2 Cook’s Theorem: Primer NP-Complete Problem

Are there any NP-complete languages at all? Cook and Karp (1971) showed
that the satisfiability problem SAT for Boolean logic is NP-complete [22, 38].
SAT is the language of all Boolean formulas which can be made ‘true’ by a
suitable assignment of truth values to its Boolean variables. Being in NP is
obvious for SAT. To establish NP-completeness forces us to get a little bit
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more formal with respect to the notion of an algorithm. It is most recom-
mendable to use Turing machines as abstract machine for the implementation
of algorithms. Turing machines are state controlled machines that work on
a tape containing cells numbered . . . -2, -1, 0, +1, +2, . . . . Cells may con-
tain characters from the alphabet of the Turing machine. At every moment
of work, a Turing machine is in a certain inner state q and its head is placed
at a certain cell containing some character a (see Fig. 5.2), empty cells being
indicated by using the dummy symbol ∅. As long as the inner state is differ-
ent from one of the final states ‘yes’ or ‘no’, a well-defined action takes place
which is controlled by the transition function δ of the Turing machine. Given
δ(q, a) = (a′, m′, q′) with character a′, move m′ (which may be ’L’, ’S’ or ’R’),
and next state q′, the Turing machine prints character a′ onto the actually
scanned cell, moves left to the next cell in case m′ = ’L’, remains at the actual
cell in case m′ = ’S’, or moves right to the next cell in case m′ = ’R’. Input
string x of length n is initially written into cells 1 to n, control starts in initial
state s, cells other than 1, . . . , n are empty in the beginning.

Now let an arbitrary NP-problem L over alphabet Σ be given. Fix an
enumeration of characters a(1), . . . , a(k) of alphabet Σ. Let L be given as

L = {x | ∃ y such that (x, y) ∈ S} .

Assume that Turing machine M as described above decides relation S in
polynomial time p(n), with n being the length of input (x, y). We may modify
Turing machine M in such a way that after reaching one of the final states,
‘yes’ or ‘no’, M does not halt but remains in the reached final state without
altering the tape. This can be achieved by introducing instructions δ(yes, a) =
(a, S, yes) and δ(no, a) = (a, S,no). Assume that S is polynomially balanced,
that is, for each x of length n and y with (x, y) ∈ S the length of y is bounded
by polynomial q(n). We may even demand that for every (x, y) ∈ S with x
having length n, the length of y exactly equals q(n). To achieve this, replace
in the representation of language L solution relation S by

S′ = { (x, z) | length of z is exactly q(n) with n being the length of x

and for some prefix y of z we have (x, y) ∈ S } .

Using S′ instead of S defines the same language L and furthermore fulfils the
desired stronger length requirement.

Now we may describe the polynomial reduction of L to SAT. For this, let be
given string x of length n, say x = x(1)x(2) . . . x(n). By definition, x ∈ L if and
only if there is a string y of length q(n) such that Turing machine M starting
in state s on tape description x∅y arrives after exactly T (n) = p(n+1+ q(n))
steps in state ‘yes’ and thus visits at most cells in the range of -T (n) and
+T (n). This can be expressed as satisfiability of a certain Boolean formula
ϕx depending on x which we construct next. For this, we simply describe in
logical terms all what happens on tape cells -T (n) . . . +T (n) within T (n) time
steps. Initial situation is as shown in Fig. 5.3. We use the following Boolean
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tape inscription tape inscription a

state q

Fig. 5.2. “Architecture” of Turing machines
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Fig. 5.3. Initial Turing machine configuration

variables that are in a suggestive manner denoted as follows.

St,q “after step t machine M is in state q”
Pt,i “after step t working position of machine M is at cell i”
Ct,i,a “after step t cell i contains character a”

Initial situation is described by:

S0,s

P0,0

C0,i,∅ for i ∈ {−T (n), . . . ,−1, 0, n + 1, n + 2 + q(n), . . . , T (n)}
C0,i,x(i) for i ∈ {1, . . . , n}
(C0,i,a(1) ∨ C0,i,a(2) ∨ . . . ∨ C0,i,a(k)) for i ∈ {n + 2, . . . , n + 1 + q(n)}

The latter disjunctive formulas express that cells n + 2, . . . , n + 1 + q(n) con-
tain arbitrary characters; this is the equivalent to the phrase “there exists a
string y of length q(n)” in the representation of language L. Proceeding of
the computation from step t < T (n) to step t + 1 is described by taking for
every entry δ(q, a) = (a′, m′, q′) of the transition function of M the following
logical implications, for all i and j between -T (n) and +T (n) with i 	= j and
all characters b from alphabet Σ:

(St,q ∧ Pt,i ∧ Ct,i,a) → St+1,q′ next state is q′

(St,q ∧ Pt,i ∧ Ct,i,a) → Ct+1,i,a′ character a′ is written on cell i
(Pt,i ∧ Ct,j,b) → Ct+1,j,b no further changes on tape
(St,q ∧ Pt,i ∧ Ct,i,a) → Pt+1,i−1 if m′ = L and thus -T (n) < i
(St,q ∧ Pt,i ∧ Ct,i,a) → Pt+1,i if m′ = S
(St,q ∧ Pt,i ∧ Ct,i,a) → Pt+1,i+1 if m′ = R and thus i < T (n)

Halting in final state and uniqueness of final state are described by literals
ST (n),yes and ¬ST (n),no.
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The reader who wonders why we did not demand uniqueness of states, working
position and content of every cell at every time step, may think of this question
while reading the proofs below. The desired formula ϕx is the conjunction
of all formulas constructed above. Note that ϕx consists of O(T (n)3) many
sub-formulas, T (n)3 resulting from the combination of any time t with any
combination of working positions i and j.

Lemma 5.4.
If x belongs to language L then Boolean formula ϕx is satisfiable.

Proof. Assume that x is element of L. Choose some string y of length q(n),
say y = y(1)y(2) . . . y(q(n)), such that Turing machine M when started in
state s on tape inscription x∅y ends with state ‘yes’ after T (n) steps. For
every time t between 0 and T (n), every working position i between -T (n)
and +T (n), every Turing machine state q, and every character a ∈ Σ assign
truth values as follows: Boolean variable St,q is assigned ‘true’ in case that
M , when started in state s on tape inscription x∅y, is in state q after time t,
otherwise St,q is assigned truth value ‘false’. Boolean variable Pt,i is assigned
‘true’ in case that M , when started in state s on tape inscription x∅y, has
working position i after time t, otherwise Pt,i is assigned truth value ‘false’.
Boolean variable Ct,i,a is assigned ‘true’ in case that, starting in state s on
tape inscription x∅y, cell i carries character a after time t, otherwise Ct,i,a

is assigned truth value ‘false’. Call this the truth value assignment describing
M’s computation on x∅y and denote it by x,y. It is obvious that x,y makes
all formulas constructed above ‘true’, since these formulas correctly describe
what is going on during computation of M on initial tape inscription x∅y.
Thus, formula ϕx is satisfiable. ��

Lemma 5.5.
If formula ϕx is satisfiable then string x belongs to language L.

Proof. Take a truth-value assignment  that satisfies all formulas constructed
above. Interpreting the disjunctions used in the first group, fix for every i be-
tween n+2 and n+1+q(n) some character y(i) such that  assigns truth-value
‘true’ to y(i). This defines a string y of length q(n). Now consider the compu-
tation of length M that Turing machine M executes when started in state s on
tape inscription x∅y and the truth value assignment x,y constructed in the
proof of the former lemma. For every time t the following inclusion relation
between  and x,y is easily shown: every Boolean variable that is satisfied
by x,y is satisfied by , too. This is clear for t = 0. Having shown this as-
sertion for some t, it immediately follows for t + 1 since the formulas in the
second group correctly describe what happens with state, working position,
and tape content when going from time t to time t + 1. Note that so far we
cannot exclude that  satisfies more Boolean variables than x,y does since
there were no constraints other than the one on the uniqueness of final state
arrived at time T (n). This does not matter since the latter is all we require.



5.3 “Zoo” of NP-Complete Problems 175

We know that  satisfies Boolean variable ST (n),yes, thus, by the uniqueness
constraint, does not satisfy Boolean variable ST (n),no, thus, by the inclusion
relation shown above, x,y does not satisfy Boolean variable ST (n),no, thus
Turing machine M started on x∅y does not end with state ‘no’, thus Turing
machine M started on x∅y ends with state ‘yes’, thus x belongs to language
L. ��

5.3 “Zoo” of NP-Complete Problems

How is NP-completeness established for further NP-problems? This is simply
done by reducing a known NP-complete language L to the actual problem L′

under consideration. Immediately from the definitions it then follows that L′

is NP-complete, too. Concrete reductions L1 ≤pol L2 may range from rather
trivial to very sophisticated depending on whether languages L1 and L2 are
conceptually similar or complete dissimilar. A reduction L1 ≤pol L2 is usually
simple in case that L2 provides a lot of structure that can be used to embed
the concepts of L1. Language SAT that was shown to be NP-complete in Sect.
5.2 is an example of a problem from a highly structured domain, Boolean logic.

SAT
Given Boolean formula ϕ, decide whether it is sat-
isfiable, that is, whether there is an assignment of
truth values to its variables that makes ϕ ‘true’.

As Boolean logic can be seen as a formalization of a fragment of natural
language, it is not astonishing that any natural language problem specification
may be easily expressed in Boolean logic, as it was done in the proof of Cook’s
theorem. This, on the other side, tells us that using SAT to derive further NP-
completeness results requires more efforts. Having a problem L in a rather
weakly structured environment, any attempt to reduce SAT to L is expected
to be more complicated. Nevertheless, in the beginning, nothing else can be
done than reducing SAT to further NP-problems. But on the long run we
will have a zoo of various NP-complete problems such that, given a further
NP-problem L that is to be proved to be NP-complete, there is a good chance
to find a similar problem L′ within that zoo with a simple reduction from L′

to L.
Starting with SAT, lots of further NP-completeness results are derived

next. 3SAT is the following sublanguage of SAT consisting of all satisfiable
Boolean formulas of the form

(L11 ∨ L12 ∨ L13) ∧ (L21 ∨ L22 ∨ L23) ∧ . . . ∧ (Ln1 ∨ Ln2 ∨ Ln3)

called formulas in 3-conjunctive normal form, or formulas in 3-clausal form,
with so-called literals Lij , that is Boolean variables (positive literals) or
negated Boolean variables (negative literals).
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3SAT
Given Boolean formula ϕ in 3-clausel form, decide
whether it is satisfiable.

Note that the structure of formulas in conjunctive normal form is a con-
junction of disjunctions of three literals each. Each disjunction is also called a
3-clause. Also note that literals in a 3-clause need not be different. Admitting,
at the moment, more than 3 literals within clauses, it is easily shown (using
standard transformation rules for Boolean logic known as de Morgan’s rules)
that every Boolean formula can be transformed into an equivalent Boolean
formula in conjunctive normal form. By the same way, every Boolean formula
can be transformed into an equivalent Boolean formula in so-called disjunctive
normal form, which for the case of 3 literals per disjunction are of the form

(L11 ∧ L12 ∧ L13) ∨ (L21 ∧ L22 ∧ L23) ∨ . . . ∨ (Ln1 ∧ Ln2 ∧ Ln3) .

From a complexity theory point of view, disjunctive and conjunctive normal
forms are radically different: whereas we will soon show that satisfiability for
formulas in conjunctive normal form is NP-complete, it is easily shown that
satisfiability for disjunctive normal forms is polynomial solvable (in quadratic
time or even time O(n log n) if we make use of fast sorting algorithms; the
reader may think about details). This is in no contradiction to the before
stated possibility to transform any formula either in conjunctive or disjunctive
normal form; the reason is that transforming via de Morgan’s rules conjunctive
to disjunctive normal form (or vice versa) requires exponential time (even
expands formula to exponential size).

Theorem 5.6.
3SAT is NP-complete.

Proof. Looking at the formulas we have used in Sect. 5.2 in the proof of NP-
completeness of SAT we see that these are either positive literals, or disjunc-
tions, or implications of the form (L1∧. . .∧Ln) → L with literals L1, . . . , Ln, L,
the latter formula being equivalent to the disjunction (¬L1 ∨ . . . ∨ ¬Ln ∨ L).
What remains to be done is to replace disjunctions with less or more than
3 literals by 3-disjunctions without affecting satisfiability. Disjunctions with
less than 3 literals are simple expanded to disjunctions with 3 literals by
simply repeating literals one or two times. A disjunction with more than 3
literals, say (L1 ∨ L2 ∨ L3 ∨ L4 ∨ . . . ∨ Ln) is processed as follows: introduce
a new Boolean variable L that serves as an abbreviation for (L1 ∨ L2) thus
reducing the formula above to (L ∨ L3 ∨ L4 ∨ . . . ∨ Ln) containing one literal
fewer than the formula before. Of course, it must be logically encoded that L
stands for (L1 ∨ L2), meaning that we have to incorporate the implications
(L1 ∨ L2) → L and L → (L1 ∨ L2). Transforming implications into disjunc-
tions leads to ¬(L1 ∨ L2) ∨ L and (¬L ∨ L1 ∨ L2), thus to (¬L1 ∧ ¬L2) ∨ L
and (¬L∨L1 ∨L2), thus finally to 3 extra clauses (¬L1 ∨L), (¬L2 ∨L), and
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(¬L∨L1 ∨L2). The latter disjunction also makes clear why it is not possible
to reduce the number of literals in clauses below 3. ��

Our next NP-complete languages come from the field of graph theory. Graphs
(V, E) are either undirected graphs with node set V and set E consisting of
undirected edges (links) between certain pairs of nodes, or directed graphs with
directed edges (arrows) between certain pairs of nodes. Edges of an undirected
graph (V, E) with node set V = {v1, . . . , vn} are usually encoded in form of
an adjacency matrix which contains for every row i and column j bit 1 in
case that there is an edge between nodes vi and vj , and bit 0 otherwise (the
definition for directed graphs is similar). Alternatively, edges may be encoded
for undirected graphs by listing, for every node v all nodes w with an edge
between v and w (so-called adjacency list). A clique C in an undirected graph
(V, E) is a subset of V such that any two different nodes in C are connected by
an edge. Problem CLIQUE is the problem of finding a clique of maximum size.
Formulated as a decision problem, CLIQUE is the language of all undirected
graphs (V, E) together with an integer bound b such that (V, E) has a clique
of size at least b.

CLIQUE
Given an undirected graph (V, E) and lower bound
b, is there a clique of size at least b.

Theorem 5.7.
CLIQUE is NP-complete.

Proof. 3SAT is polynomially reduced to CLIQUE as follows. First we in-
troduce the notion of two literals L and L′ being complementary. This
means that either L is a positive literal x and L′ is the corresponding
negative literal ¬x (with the same x), or vice versa. Given an instance
ϕ = (L11 ∨ L12 ∨ L13) ∧ . . . ∧ (Ln1 ∨ Ln2 ∨ Ln3) of 3SAT, we transform it
to an instance of CLIQUE by considering graph (V, E) with 3n nodes that
stand for the 3n literal positions in ϕ and edges between any two nodes repre-
senting non-complementary literals within different clauses, and integer bound
n. We show that formula ϕ is satisfiable if and only if (V, E) has a clique of
size at least n. In one direction, if we have a truth-value assignment  that
satisfies ϕ we may choose from each clause of ϕ a literal that is satisfied by
. The chosen literals thus are non-complementary, hence the corresponding
nodes form a clique of size n. In the other direction, having a clique of size
n it must consist of nodes that represent n non-complementary literals taken
from different clauses. Such a literal set is obviously satisfiable, thus ϕ is sat-
isfiable. ��

A further, frequently used graph problem is VERTEX COVER. For an undi-
rected graph (V, E), a subset C of V is called a vertex cover in case that
for every edge in E at least one of its adjacent nodes belongs to C. Vertex
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cover problem VERTEX COVER is the problem of finding a vertex cover C
of minimal size for an undirected graph (V,E). Stated as a decision problem
it is to be answered whether an undirected graph (V,E) has a vertex cover of
size at most b, for a given integer bound b.

VERTEX COVER
Given an undirected graph (V,E) and upper bound
b, is there a vertex cover of size at most b.

Theorem 5.8.
VERTEX COVER is NP-complete.

Proof. 3SAT is polynomially reduced to VERTEX COVER as follows. Given
instance ϕ = (L11 ∨ L12 ∨ L13) ∧ . . . ∧ (Ln1 ∨ Ln2 ∨ Ln3) of 3SAT contain-
ing Boolean variables x1, . . . , xm, we transform it to an instance of VER-
TEX COVER by considering graph (V,E) with a triangle sub-graph for every
clause, and a line sub-graph for every Boolean variable, and integer bound
2n + m as shown in Fig. 5.4.
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Fig. 5.4. (a) triangle representing ith clause; (b) line representing kth variable

Besides inner edges that occur within triangles and lines there are also edges
between every triangle node and every line node that carry identical labels,
that is, there is an edge from node labelled xk to every node labelled Lij with
Lij = xk, and the same for ¬xk. We show that formula ϕ is satisfiable if and
only if (V,E) has a vertex cover of size at most 2n + m. In one direction,
let  be a truth-value assignment that satisfies ϕ. From each line put that
node into node set V C whose label evaluates ‘true’ in . So far, every line
edge is covered by node set V C. Furthermore, all edges between line nodes
that are set to ‘true’ and corresponding triangle nodes are covered by node
set V C. To also cover all inner triangle edges as well as all edges between line
nodes that are set to ‘false’ and corresponding triangle nodes we simply put
all triangle nodes into V C with the exception of a single, arbitrarily chosen
literal that evaluates ‘true’ in . Having two nodes from each triangle within
V C, all inner triangle edges are covered by V C. As all triangle nodes that
evaluate ‘false’ under  are put into V C, all edges between line nodes set to
‘false’ and corresponding triangle nodes are covered by V C, too. Since every
clause contains at most two literals that evaluate ‘false’ under , V C is a
vertex cover of size at most 2n + m.
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In the other direction, assume that V C is a vertex cover of size at most
2n + m. Since line edges must be covered by node set V C, there must be
at least one node from each line within V C. Thus, V C contains at least m
line nodes. Since inner triangle edges must be covered by node set V C, there
must be at least two nodes from each triangle within V C. Thus, V C contains
at least 2n triangle nodes. Having at most 2n + m nodes, V C must contain
exactly m line nodes (one from each line) and exactly 2n triangle nodes (two
from each triangle). This opens way to define a truth-value assignment  that
evaluates variable xk ‘true’ if and only if line node labelled xk belongs to node
set V C. For a triangle consider its single node u that does not belong to V C
with literal xk resp. ¬xk as label. The corresponding line node v with label
xk resp. ¬xk must be element of V C since otherwise we had an uncovered
edge between u and v. This means that  satisfies the literal associated with
node u, thus  also satisfies the clause represented by the triangle with node
u. Thus  satisfies all clauses. ��

Next we deal with a couple of number problems. To obtain NP-completeness
results requires some efforts since we must reduce from strongly structured
domains (Boolean logic or graphs) to weakly structured domains of num-
bers. Our first problem is KNAPSACK which asks for finding a selection
from a given list of numbers w1, . . . , wn that exactly sums to a given value
W . Alternatively, it may be represented by the language of all number lists
w1, . . . , wn, W such that a sub-list of w1, . . . , wn sums up to value exactly W .

KNAPSACK
Given list of numbers w1, . . . , wn, W , is there a
sub-collection of numbers w1, . . . , wn which sums
up to exactly W .

Theorem 5.9.
3SAT is polynomially reducible to KNAPSACK, thus KNAPSACK is NP-
complete.

Proof. 3SAT is polynomially reduced to KNAPSACK as follows. Given in-
stance ϕ = (L11 ∨ L12 ∨ L13) ∧ . . . ∧ (Ln1 ∨ Ln2 ∨ Ln3) of 3SAT containing
Boolean variables x1, . . . , xm, we transform it to an instance of KNAPSACK
by considering decimal numbers

a1, . . . , am, b1, . . . , bm, c1, . . . , cn, d1, . . . , dn, G

each having n + m digits as indicated in Fig. 5.5.

• The first n digits ai1ai2 . . . ain of ai encode which of the clauses contains
positive literal xi by defining aij = 1 if clause (Lj1 ∨ Lj2 ∨ Lj3) contains
xi, and aij = 0 otherwise.

• The first n digits bi1bi2 . . . bin of bi encode which of the clauses contains
negative literal ¬xi by defining bij = 1 if clause (Lj1 ∨Lj2 ∨Lj3) contains
¬xi, and bij = 0 otherwise.
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• The other areas of the table form diagonal matrices with decimals 1 or 2
in the diagonals, or matrices consisting of decimals 0 only.

Note that jth column contains between one and three digits 1 representing
literals Lj1, Lj2, Lj3 of the jth clause, a further digit 1 in line cj and a further
digit 2 in line dj .

a1 = a11 a12 a1n...

a2 = a21 a22 a2n...

am = am1 am2 amn...

...

b1 = b11 b12 b1n...

b2 = b21 b22 b2n...

bm = 

...

1 0 0...

0 1 0...

...

0 0 1...

1 0 0...

0 1 0...

...

c1 = 

c2 = 

cn =

d1 = 

d2 = 

dn = 

bm1 bm2 bmn... 0 0 1...

1 0 0...

0 1 0...

...

0 0 1...

2 0 0...

0 2 0...

...

0 0 2...

0 0 0...

0 0 0...

...

0 0 0...

0 0 0...

0 0 0...

...

0 0 0...

G = 4 4 4... 1 1 1

       first n digits       last m digits 

decimal
numbers

...

Fig. 5.5. Reducing 3SAT to KNAPSACK

Now assume that formula ϕ is satisfied by a truth-value assignment . Sum
up all numbers ai such that (xi) = ‘true’ as well as all numbers bi such that
(xi) = ‘false’. Thus the first n decimals of the sum constructed so far range
between 1 and 3 and hence can be suitably supplemented by additional value
1 and/or additional value 2 to give final decimals 4. The last m decimals of
the sum constructed so far are 1’s since exactly one of ai or bi was taken into
the sum. This shows that final sum G = 44 . . . 411 . . . 1 can be achieved by
summing up a suitable selection of the numbers in the table. Conversely, given
a selection of numbers that sum up to exactly G, the diagonal unit matrices
enforce that exactly one of ai or bi must have been taken into the sum. Thus,



5.3 “Zoo” of NP-Complete Problems 181

(xi) = ‘true’ if ai was summed up, and (xi) = ‘false’ if bi was summed
up, defines a truth-value assignment. As decimal 4 in jth column can only
be achieved by supplementary 1 and/or 2 in case that at least one ai with
aij = 1 or at least one bi with bij = 1 was summed up, this means that clause
(Lj1 ∨ Lj2 ∨ Lj3) contains at least one xi with (xi) = ‘true’ or at least one
¬xi with (xi) = ‘false’, thus clause (Lj1 ∨ Lj2 ∨ Lj3) is satisfied by . ��

Our second number problem is PARTITION. Here, a list of numbers w1, . . . , wn

is to be partitioned into two non-empty sub-lists with identical sums. Formu-
lated as a decision problem, it is asked whether a list of numbers w1, . . . , wn

can be partitioned into two non-empty sub-lists with identical sums.

PARTITION
Given list of numbers w1, . . . , wn, can it be par-
titioned into two sub-collections having identical
sums.

Theorem 5.10.
KNAPSACK is polynomially reducible to PARTITION, thus PARTITION is
NP-complete, too.

Proof. Let w1, . . . , wn, G be an instance of KNAPSACK. For the case that
w1 + . . . + wn < G (instance without a solution) reduce this instance to
the list consisting of numbers 1 and 2 as an instance (without solution) of
PARTITION. In case that w1 + . . . + wn ≥ G reduce this instance to list
consisting of numbers w1, . . . , wn, a, b as an instance of PARTITION, with
two extra numbers a = G + 1 and b = w1 + . . . + wn + 1 − G. Assume that I
is a subset of index set {1, . . . , n} such that

∑
i∈I wi = G. Then compute

∑
i∈I

wi + b = G + b =
n∑

i=1

wi + 1

∑
i/∈I

wi + a =
n∑

i=1

wi −
∑
i∈I

wi + a =
n∑

i=1

wi − G + a =
n∑

i=1

wi + 1 .

Conversely assume that w1, . . . , wn, a, b is partitioned into two sub-lists with
identical sums. Since a+b = w1+ . . .+wn+2 we know that the extra numbers
a, b must be located within different sub-lists. Hence there is an index subset
I ⊆ {1, . . . , n} such that

∑
i∈I

wi + b =
∑
i/∈I

wi + a =
n∑

i=1

wi −
∑
i∈I

wi + a .

Introducing the definitions of a and b this means that

2
∑
i∈I

wi =
n∑

i=1

wi + a − b = 2G .
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Thus we obtain ∑
i∈I

wi = G .

��

Coming back to graph problems we treat, as an example of a more complicated
reduction, the problem HAMILTONIAN-PATH which is defined as follows:
given an undirected graph with two distinguished nodes, start node x and
goal node y, find out whether there exists a path starting at x and ending at
y that visits each node in V exactly once (a so-called Hamiltonian path).

HP
Given an undirected graph (V,E) and two nodes
x, y, decide whether there exists a Hamiltonian
path from x to y.

Theorem 5.11.
3SAT is polynomially reducible to HP, thus HP is NP-complete, too.

Proof. Given a formula ϕ = (L11∨L12∨L13)∧. . .∧(Ln1∨Ln2∨Ln3) containing
Boolean variables x1, . . . , xm, we use a triangle sub-graph for every clause and
a split sub-graph for every variable in the construction of graph (V,E). These
are shown in Fig. 5.6. Nodes are either black or white. Black nodes will be,
in addition to the links that are drawn in the diagrams below, completely
connected, thus form a clique. In order not to overload graphs, these clique
edges are not explicitly drawn. Note that colouring nodes and labelling edges
serve the only purpose to simplify the description of the construction; colours
and labels are not part of the graph, of course. Also keep in mind that later
on, the “double edge” occurring at the moment in a split will vanish.

true
3iL 1iL

2iL

split
jxtriangle

false

Fig. 5.6. Triangle and split subgraphs used in the reduction of 3SAT to HP

In the complete graph, splits x1, . . . , xm will be consecutively connected
via their dangling edges. A further white start node is connected to the first
split, the last split is connected to a further black node. Finally there is a
further black goal node. Thus the arrangement of splits and start and goal
nodes is presented in Fig. 5.7.

So far we have defined triangles and splits without any connections between
them. Connections between triangles and splits are established by so-called
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start
1x 2x kx goal........

Fig. 5.7. Connecting split subgraphs

bridges which are defined to be sub-graphs with 4 “dangling edges” that re-
ceive target nodes later on in the construction of the complete graph. Bridges
are used since they exhibit the following “zigzag” property: whenever in a
Hamiltonian path a bridge is entered at one of its dangling edges, its nodes
must necessarily be traversed in a “zigzag” manner as shown in Fig. 5.8 thus
exiting the bridge on the same side as it was entered. The reader may try out
some other of the numerous possible paths through a bridge and note that
in all these cases some unvisited nodes are left that cannot be visited by a
Hamiltonian path at a later time.

leave

enter

left side right side

Fig. 5.8. “Zigzag” traversal through bridge subgraph

The graph that we are going to construct contains a bridge between each tri-
angle edge labelled with positive literal xj and the ‘true’ edge of split labelled
xj , and each triangle edge labelled with negative literal ¬xj and the ‘false’
edge of split labelled xj . There are a few peculiarities of the connections to
be clarified. The two dangling edges on one side of a bridge are connected
to the nodes of the triangle edge that the bridge is connected with. Thus,
every triangle edge is connected to exactly one split edge by a bridge. Split
edges may be connected to more than one triangle edge in case that a literal
has more than one occurrence in formula ϕ. In that case, dangling edges of
consecutive bridges connected to the same split edge are melted into a single
edge. One dangling edge of the first bridge is connected with the entry node
of the split, one dangling edge of the last bridge is connected with the exit
node of the split. Situation with two bridges thus looks as shown in Fig. 5.9.
Also note that some split edge may not be connected to any triangle edge.
This happens in case that either xj or ¬xj has no occurrence in formula ϕ.
Nevertheless, for every split, at least one of its edges is connected to a triangle
edge by a bridge, since otherwise neither xj nor ¬xj would occur in formula ϕ.
This guarantees that splits do not possess multiple edges between its nodes.

In Fig. 5.9, imagine that a Hamiltonian path enters the left node of the
split. The only way to visit all white nodes is traversing the first bridge in a
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zigzag manner, then entering the second bridge and traversing it in a zigzag
manner, too, thus finally exiting at the right node of the split. Note that we
have visited so far all white nodes, but no black node along this path. This
brings us to the role of the black nodes. Any two of them are connected by
an edge, thus black nodes form a clique. This opens way to visit black nodes
and bridges not traversed so far.

jx

false

jx

true

enter here leave here 
jx

Fig. 5.9. Connecting splits to triangles via bridges with unique “zigzag” traversal

Lemma 5.12.
If formula ϕ is satisfiable the graph constructed above admits a Hamiltonian
path from its start to its goal node.

Proof. Assume that truth-value assignment  satisfies at least one literal
within each clause of formula ϕ. Starting with the initial node traverse the
arrangement of splits, using edge ‘true’ of split xj in case that  assigns value
‘true’ to xj , and edge ‘false’ otherwise. Take care that on this traversal through
the arrangement of splits every adjacent bridge is traversed in a zigzag man-
ner. Note that for every triangle at least one of its adjacent bridges has been
traversed since  satisfied at least one literal within each clause. This traversal
ends with the rightmost black node at the end of the arrangements of splits.



5.3 “Zoo” of NP-Complete Problems 185

Up to now, all of the three black nodes of each triangle, as well as at most two
adjacent bridges of each triangle are still unvisited. Since black nodes form a
clique this allows us to visit all so far unvisited nodes as shown in Fig. 5.10,
jumping from triangle to triangle and traversing so far unvisited bridges in
the well-known “zigzag” manner. ��

leave

two unvisited bridges 

enter

leave

one unvisited bridge 

enter

leave

enter

no unvisited bridges 

Fig. 5.10. Visiting so far unvisited triangle nodes and bridges, depending on the
number of so far unvisited adjacent bridges

Lemma 5.13.
Assume that the graph constructed above admits a Hamiltonian path from start
to goal node. Then a truth-value assignment can be constructed that satisfies
formula ϕ.

Proof. A Hamiltonian path starting at the initial node must necessarily tra-
verse splits x1, . . . , xm in that order, for each split using either its ‘true’ or its
‘false’ path, and on this way must traverse all bridges that are connected to
the traversed split edges (this is enforced by the zigzag property of bridges).
Having arrived at the first black node at the end of the split arrangement, the
remaining Hamiltonian path must visit all nodes belonging to triangles and
all nodes of so far unvisited bridges. It can be easily seen that a Hamiltonian
path cannot visit all nodes of a triangle if there are still three unvisited adja-
cent bridges. So, every triangle must have an adjacent bridge that has been
already visited during the traversal through the arrangement of splits. Setting
(xj) = ‘true’ in case that the Hamiltonian path used the ‘true’ path in split
xj , and (xj) = ‘false’ otherwise, thus defines a truth-value assignment that
satisfies at least one literal (one that corresponds to an edge adjacent to an
already visited bridge) in each clause. ��

With Lemma 5.12 and 5.13 the proof of Theorem 5.11 is complete. ��

The Hamiltonian path problem also arises for directed graphs. We refer to
this as directed Hamiltonian path problem, DHP.
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DHP
Given directed graph (V, E) and two nodes x, y,
decide whether there exists a Hamiltonian path
from x to y.

Theorem 5.14.
HP is polynomially reducible to DHP, thus DHP is NP-complete, too.

Proof. Replace an undirected graph by a directed one with two directed edges
(with opposite directions) for every undirected edge of the undirected graph.

��

As a final NP-complete problem that we use in a bioinformatics reduction we
treat MAX-CUT which is defined as follows: given an undirected graph (V, E)
and an assignment of non-negative numbers to its edges, partition nodes into
two disjoint and non-empty sets A and B such that the sum of numbers
assigned to edges between nodes in A and nodes in B is a big as possible.

MAX-CUT
Given undirected graph (V, E) with weights as-
signed to edges, and a lower bound b, decide
whether there is a partition of V into subsets A, B
with at least b edges between nodes of A and nodes
of B.

As a preparation, we consider the following problem 4NAESAT with ‘NAE’
standing for “not all equal”. Problem 4NAESAT has as instances formulas of
the form (L11 ∨L12 ∨L13 ∨L14)∧ . . .∧ (Ln1 ∨Ln2 ∨Ln3 ∨Ln4) with exactly
four literals per clause. It is to be answered whether a truth-value assignment
exists that makes at least one literal, but not all literals, within every clause
‘true’.

4NAESAT
Given a Boolean formula in 4-clausal form, is there
a truth-value assignment that makes at least one
literal per clause ‘true’, and at least one literal per
clause ‘false’.

Theorem 5.15.
3SAT is polynomially reducible to 4NAESAT, thus 4NAESAT is NP-complete,
too.

Proof. Let an instance ϕ = (L11∨L12∨L13)∧ . . .∧ (Ln1∨Ln2∨Ln3) of 3SAT
be given. Expand it to an instance of 4NAESAT by introducing in each clause
the same new Boolean variable z obtaining formula

ψ = (L11 ∨ L12 ∨ L13 ∨ z) ∧ . . . ∧ (Ln1 ∨ Ln2 ∨ Ln3 ∨ z) .
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Assume that truth-value assignment  satisfies ϕ. Setting variable z to ‘false’
defines a truth-value assignment which satisfies between 1 and 3 literals within
each clause of ψ . Conversely, let  be a truth-value assignment that satisfies
between 1 and 3 literals within each clause of ψ. Then the modified truth-
value assignment ¬ with ¬(x) = ‘true’ if (x) = ‘false’, and ¬(x) =
‘false’ if (x) = ‘true’ also satisfies between 1 and 3 literals per clause of ψ.
Choose among  and ¬ the truth-value assignment which assigns ‘false’ to
z. Obviously, this truth-value assignment satisfies every clause of ϕ. ��

It is known that the corresponding problem 3NAESAT for formulas with ex-
actly three literals per clause is NP-complete, too. To show its NP-completeness
is more complicated than for the problem 4NAESAT treated above. Since
4NAESAT is suitable to obtain NP-completeness of the last problem presented
in this chapter, MAX-CUT, we have omitted a proof of the NP-completeness
of 3NAESAT.

Theorem 5.16.
4NAESAT is polynomially reducible to MAX-CUT, thus MAX-CUT is NP-
complete, too.

Proof. Let a 4SAT-formula

ϕ = (L11 ∨ L12 ∨ L13 ∨ L14) ∧ . . . ∧ (Ln1 ∨ Ln2 ∨ Ln3 ∨ Ln4)

containing Boolean variables x1, . . . , xm be given. Let aj be the number of
occurrences of xj in ϕ, bj the number of occurrences of ¬xj in ϕ, and nj be
aj + bj . Thus, n1 + . . .+nm = 4n. Components of the graph we use are shown
in Fig. 5.11. We are looking for a cut of size at least 6n.

1iL

4iL

2iL

jx

jn

1
jx

1

1 1

3iL

Fig. 5.11. Reducing 4NAESET to MAX-CUT

Lemma 5.17.
Assume that truth-value assignment  satisfies between 1 and 3 literals within
each clause. Then the weighted graph constructed above admits a cut of size
at least 6n.

Proof. Put into node set A of the cut all nodes that correspond to literals
that are evaluated ‘true’ by , and put into node set B of the cut all nodes
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that correspond to literals that are evaluated ‘false’ by . Thus, edges between
nodes that correspond to complementary literals contribute n1+. . .+nm = 4n
to the size of the cut. Since every rectangle representing a clause has nodes in
both parts of the cut, it contributes 2 or 4 to the size of the cut. (Question:
Which distribution of nodes contributes 4 to the size of the cut?) Thus, all
rectangles together contribute at least 2n to the size of the cut. All together,
size of the cut is at least 6n. ��

Lemma 5.18.
Assume that the weighted graph constructed above admits a cut of size at least
6n. Then there exists a truth-value assignment  that satisfies between 1 and
3 literals within each clause of formula ϕ.

Proof. Consider a cut of size at least 6n. If there is a variable xj such that
both nodes corresponding to xj and ¬xj are within the same part of the cut,
then these nodes contribute at most 2aj + 2bj = 2nj to the size of the cut
(remember that each node of a rectangle has exactly 2 adjacent edges that
are weighted 1). By putting nodes corresponding to xj and ¬xj into different
parts of the cut we would gain nj in size, but loose at most 2nj in size, thus
obtain a new cut with size that is still at least 6n. Thus we may assume that
for each variable xj , nodes corresponding to xj and ¬xj occur in different
parts of the cut. Taken together, these nodes contribute exactly 4n to the size
of the cut. Thus at least a value of 2n must be contributed to the size of the
cut by rectangle edges. This only happens if each rectangle has nodes in both
parts of the cut. Thus we have exactly the situation as in the proof of the
lemma before. Defining truth-value assignment  in such a way that exactly
the literals corresponding to nodes in one part of the cut are set ‘true’ we
enforce that in every clause between 1 and 3 literals are set ‘true’ by . ��

With Lemma 5.17 and 5.18 the proof of Theorem 5.16 is complete. ��

5.4 Bridge to Bioinformatics: Shortest Common
Super-Sequence

As an intermediate problem on the way towards NP-completeness of the sum-
of-pairs multiple alignment problem MA, the shortest common super-sequence
problem SSSEQ (see [53]) is shown to be NP-complete. This is done by re-
ducing VERTEX COVER to SSSEQ. Later SSSEQ is further reduced to MA.

We fix some notations. We call string T = T [1 . . . n] a super-sequence for
string S = S[1 . . . m] if the characters of S can be embedded under preser-
vation of ordering into T , that is if there are indices i1, . . . , im such that
1 ≤ i1 < . . . < im ≤ n and S(1) = T (i1), . . . , S(m) = T (im). Thus the char-
acters of S occur in a super-sequence T in the same order as they occur in
S, though they need not occur contiguously in the super-sequence T . SSSEQ
is the problem of finding a shortest common super-sequence for given strings
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S1, . . . , Sk. Formulated as a decision problem, SSSEQ asks whether a com-
mon super-sequence T of length at most b exists, given strings S1, . . . , Sk and
upper bound b.

SSSEQ
Given strings S1, . . . , Sk and upper bound b, is
there a string T of length at most b that is a com-
mon super-sequence for S1, . . . , Sk.

Though SSSEQ may seem to be a not too complicated problem, it will turn
out to be NP-complete. The following very simple example that is central to
the reduction presented in this section gives some first indication that SSSEQ
is more complex than one would expect at first sight. For a given number
k = 9n2 consider the following binary strings.

B0 = 10k . . . Bi = 0i10k−i . . . Bk = 0k1

Thus Bi consists of a left group of i bits 0, followed by its single bit 1, followed
by a right group of k − i bits 0. It might seem that a shortest super-sequence
for the collection of these strings B0, . . . , Bk must be 0k10k with the first
block of k bits 0 serving the purpose of embedding the varying number of bits
0 of the left groups (in particular the k bits 0 of the left group of string Bk),
and the last block of k bits 0 serving the purpose of embedding the varying
number of bits 0 of the right groups (in particular the k bits 0 of the right
group of string B0). String 0k10k consists of 2k + 1 many bits. Astonishingly,
there is a considerably shorter super-sequence. Consider the following string.

T = (03n1)3n03n

String T is a super-sequence for the collection of strings B0, . . . , Bk, too. This
can be seen as follows. Consider Bi. Embed the first i bits 0 of Bi into the
first i bits 0 of T , and the single bit 1 in Bi to the next available bit 1 of T .
By this, at most 3n bits 0 of T are omitted. Since T has 3n more bits 0 than
Bi has, sufficiently many bits 0 are still available in T into which the last k− i
bits 0 of Bi may be embedded. Length of T is 9n2 +6n, which is considerably
shorter than 2k + 1 = 18n2 + 1. Interestingly, string T indeed is a shortest
super-sequence for the collection of strings B0, . . . , Bk. To prove this requires
some efforts.

Lemma 5.19.
Assume that R is a super-sequence for the collection of strings B0, . . . , Bk

defined above. Assume that R has x bits 1. Then R must possess at least
k − 1 + (k + 1)/x many bits 0. In particular, (03n1)3n03n is a shortest super-
sequence for the collection of strings B0, . . . , Bk.

Proof. For simplicity assume that k+1 is a multiple of x. (As an easy exercise,
adapt the following proof to the case that k+1 is not a multiple of x.) Embed
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each of the strings B0, . . . , Bk into super-sequence R. As there are k+1 bits 1
mapped to bits 1 in R and R contains exactly x bits 1, there must be at least
one bit 1 of R onto which (k +1)/x or more of the bits 1 of strings B0, . . . , Bk

are mapped. Fix such a bit 1 in R. Let imin be the smallest index of a string
Bj whose bit 1 is mapped onto that fixed bit 1 of R, and imax be the greatest
index of a string Bj whose bit 1 is mapped onto that fixed bit 1 of R (Fig.
5.12). By choice of the fixed bit 1 of R, we know that imax−imin+1 ≥ (k+1)/x.

1R

1 minik  bits 0 
miniB

1maxi  bits 0 
maxiB

Fig. 5.12. First and last string whose bit 1 is mapped to the fixed bit 1 of string R

Furthermore, left of the fixed bit 1 in R there must exist at least imax many
bits 0 serving as targets for the imax many bits 0 occurring left of bit 1
in Bimax . Likewise, right of the fixed bit 1 in R there must exist at least
k − imin many bits 0 serving as targets for the k − imin many bits 0 occurring
right of bit 1 in Bimin . Thus, the number of bits 0 in string R is at least
k + imax − imin ≥ k − 1 + (k + 1)/x. Therefore the length of R is at least
x+k−1+(k +1)/x. We prove x+k−1+(k +1)/x ≥ 9n2 +6n thus showing
that (03n1)3n03n is a shortest super-sequence.

x + k − 1 +
k + 1

x
≥ 9n2 + 6n ⇔ x + 9n2 − 1 +

9n2 + 1
x

≥ 9n2 + 6n

⇔ x − 1 +
9n2 + 1

x
≥ 6n ⇔ x +

9n2 + 1
x

> 6n ⇔ x2 + 9n2 + 1 > 6nx

⇔ x2 − 6nx + 9n2 + 1 > 0 ⇔ (x − 3n)2 + 1 > 0

The last inequality is of course true. ��

Lemma 5.20.
Assume that R is a super-sequence for strings B0, . . . , Bk defined above. As-
sume that R has k − 1 + y bits 0. Then the number of bits 1 in R must be at
least (k + 1)/y.

Proof. Follows immediately from the previous lemma. ��
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Theorem 5.21.
VERTEX COVER is polynomially reducible to SSSEQ. Thus SSSEQ is NP-
complete.

Proof. The reduction runs as follows. As an instance of VERTEX COVER let
be given an undirected graph (V, E) with V = {v1, . . . , vn}, E = {e1, . . . , em},
and upper bound k ≤ n for the size of a vertex cover. Edges are always written
as sets consisting of two nodes el = {va, vb} with a < b. We transform the
given instance of VERTEX COVER into the instance of SSSEQ defined below.
It consists of upper bound K for the length of a super-sequence, and strings
AiBj and Tl, with 1 ≤ i ≤ n, 1 ≤ j ≤ 9n2, 1 ≤ l ≤ m with el = {va, vb} and
a < b in the definition of string Tl below:

K = 15n2 + 10n + k

Ai = 06n(i−1)+3n106n(n+1−i)

Bj = 0j109n2−j

Tl = 06n(a−1)106n(b−a)−3n106n(n+2−b)09n2

For later use, we count the number of bits 0 and 1 in each of these strings.
Each of strings Ai consists of 6n2 + 3n bits 0 and a single bit 1, each of the
strings Bj consists of 9n2 bits 0 and a single bit 1, thus each of strings AiBj

and Tl consists of 15n2 + 3n bits 0 and two bits 1.
First we show how a super-sequence of length K for the collection of strings

AiBj and Tl is obtained from a vertex cover of size k.

Lemma 5.22.
Let a vertex cover V C =

{
vσ(1), . . . , vσ(k)

}
of size k with σ(1) < . . . < σ(k) of

graph (V, E) be given. Then the following string S = S′S′′ is a super-sequence
of length K for the collection of strings AiBj and Tl defined above. In the
definition of S we repeatedly use substring C = 03n103n:

S′ = Cσ(1)−11Cσ(2)−σ(1)1 . . . 1Cσ(k)−σ(k−1)1Cn+1−σ(k)03n

S′′ = (03n1)3n03n

Proof. We collect several properties of strings S′ and S′′ that are easily veri-
fied.

(1) S′ consists of 6n2 + 3n bits 0 and n + k bits 1.
(2) S′′ consists of 9n2 + 3n bits 0 and 3n bits 1.
(3) S consists of 15n2 + 6n bits 0 and 4n + k bits 1.
(4) S has length K = 15n2 + 10n + k.
(5) Substring Cσ(d)−σ(d−1) of S′ consists of a left block 03n, a right block

03n, and several inner blocks 03n03n, all of these blocks being separated
by a bit 1. Consecutive substrings Cσ(d)−σ(d−1) and Cσ(d+1)−σ(d) are also
separated by a bit 1.



192 5 NP-Hardness of Core Bioinformatics Problems

S′ = 03n106n106n1 . . . 106n103n︸ ︷︷ ︸
Cσ(1)−1

1 . . .

1 03n106n106n1 . . . 106n103n︸ ︷︷ ︸
Cσ(d)−σ(d−1)

1 03n106n106n1 . . . 106n103n︸ ︷︷ ︸
Cσ(d+1)−σ(d)

. . .

(6) String S has exactly 3n more bits 0 than each of the strings AiBj and Tl

has.
(7) The (3n + 6n(i − 1))th bit 0 of S′ is followed by a bit 1 (middle of some

string C).
(8) If node vi belongs to vertex cover V C, say i = σ(d), then the 6n(i − 1)th

bit 0 of S′ is followed by a bit 1 (end of block Cσ(d)−σ(d−1)).
(9) If node vi does not belong to vertex cover V C then the 6n(i − 1)th bit 0

of S′ is followed by a block 03n.
��

Lemma 5.23.
String AiBj can be embedded into string S.

Proof. Figure 5.13 takes a closer look at the strings occurring in the lemma.
First, walking into S′ from its left end, prefix 06n(i−1)+3n of string AiBj is

ji BA jnjinnnin 29)1(63)1(6 010010

S no bit 0 omitted 1 enough bits 0 1 at most  bits 0 of  omittedn3 ''S

Fig. 5.13. Embedding AiBj into S

embedded into the first 2(i − 1) + 1 blocks 03n of S′. Onto the then reached
bit 1 in S′ (see property (7) above), we map the left one of the two bits 1
of AiBj . Second, walking into S′′ from its right end, suffix 09n2−j of AiBj is
embedded into the last 9n2 − j bits 0 of S′′, and the second of the two bits
1 in AiBj is mapped to the next available (walking further to the left) bit
1 in S′′. Since j need not be a multiple of 3n, mapping of this latter bit 1
eventually omits some bits 0 of S′′. Nevertheless, the number of omitted bits
0 within S′′ is obviously bounded by 3n. Third, having so far mapped both
bits 1 of AiBj onto bits 1 of S and omitted at most 3n bits 0 of S, there are
still sufficiently many bits 0 available in the middle of string S for embedding
the remaining bits 0 of AiBj (remember property (6) saying that S contains
3n more bits 0 than AiBj does). ��

Lemma 5.24.
String Tl with l = {va, vb} and a < b can be embedded into string S.
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Proof. First we consider the case that node va belongs to vertex cover V C,
say a = σ(d) for some d between 1 and k. Walking into S from its left end,
prefix 06n(a−1) of Tl is embedded into the first 2(a− 1) blocks 03n of S′. Onto
the then arrived bit 1 immediately right of block Cσ(d)−σ(d−1) we map the
first of the two bits 1 of Tl. So far we have not omitted any bit 0 of S′. Walking
further to the right in S, we next embed substring 06n(b−a)−3n of Tl into S.
Either we immediately arrive at a bit 1 in S (Fig. 5.14 (a)) that is used to
map the second of the two bits 1 of Tl, or after omitting 3n bits 0 of S we
arrive at a bit 1 in S (Fig. 5.14 (b)) that is used to map the second of the two
bits 1 of Tl. Having so far omitted at most 3n bits 0 of S, property (6) stated
above tells us there are sufficiently many bits 0 left in S as target bits for the
remaining bits 0 of Tl.

(a)
lT

S no bit 0 omitted enough bits 0 no bit 0 omitted1 1

Tl (b)

S no bit 0 omitted 1 no bit 0 omitted 1 enough bits 0 

Tl (c)

29)2(63)(6)1(6 001010 nbnnnabnan

29)2(63)(6)1(6 001010 nbnnnabnan

29)2(63)(6)1(6 001010 nbnnnabnan

n30

S no bit 0 omitted 1 no bit 0 omitted 1n30 enough bits 0 

Fig. 5.14. Embedding Tl into S

Second we consider the case that node vb belongs to vertex cover V C, say
b = σ(d) for some d between 1 and k. Walking into S from its left end, prefix
06n(a−1) of Tl is embedded into the first 2(a − 1) blocks 03n of S′. Now we
need not necessarily arrive at a bit 1 in S′. If we indeed did not arrive at a bit
1, omitting at most 3n bits 0 in S′ leads us to a bit 1 onto which the first one
of the two bits 1 of Tl can be mapped (Fig. 5.14 (c)). Walking further to the
right in S, we next embed substring 06n(b−a)−3n of Tl into S. Here we arrive at
the bit 1 immediately right of block Cσ(d)−σ(d−1). This allows us to map the
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second of the two bits 1 of Tl onto this 1 of S′ without omitting further bits 0
of S′. Having so far omitted at most 3n bits 0, property (6) stated above tells
us there are sufficiently many bits 0 left in S as target bits for the remaining
bits 0 of Tl. ��

Next we show how a vertex cover of size at most k is obtained from a super-
sequence of length K for the collection of strings AiBj and Tl.

Lemma 5.25.
Let S be a super-sequence of length K = 15n2 + 10n + k for the collection of
strings AiBj and Tl. From this a vertex cover

{
vσ(1), . . . , vσ(q)

}
with σ(1) <

. . . < σ(q) of size q ≤ k can be obtained.

Proof. Since each of the strings Ai contains 6n2 + 3n bits 0, super-sequence
S must contain at least 6n2 + 3n bits 0, too. Let S be partitioned into

S = S′S′′

with S′ being the shortest prefix of S containing exactly 6n2 + 3n bits 0. We
require three further lemmas showing that string S′ has similar structure as
the string S′ used in Lemma 5.22. ��

Lemma 5.26.
Strings Bj can be embedded into string S′′, thus S′′ has length at least 9n2+6n.

Proof. Looking at Fig. 5.15 shows that Bj can be embedded into string S′′,
thus Lemma 5.19 proves that S′′ has length at least 9n2 + 6n. ��

ji BA

S

nn 36 2  bits 0 

'S  with nn 36 2  bits 0 

jB

jnjinnnin 29)1(63)1(6 010010

''S

Fig. 5.15. Bj is embedded into S′′

Lemma 5.27.
String S′ contains between its (6n(i − 1) + 3n)th and 6nith bit 0 at least one
bit 1. In particular, S′ contains at least n bits 1. (Compare this with property
(7) from the proof of Lemma 5.22.)
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Proof. Assume that S′ does not contain any bit 1 between its (6n(i−1)+3n)th

and 6nith bit 0. Since 06n(i−1)+3n1 is a prefix of string Ai we conclude that
the first bit 1 of Ai must be mapped onto some bit 1 right of the 6nith

bit 0 of S′. Thus at least 3n bits 0 of S′ are omitted when embedding Ai

into S (Fig. 5.16). Now consider an arbitrary one of the strings Bj . Prefix
string 06n(i−1)+3n106n(n+1−i) of AiBj contains 6n2 + 3n bits 0, and string S′

contains 6n2+3n bits 0, too. Since at least 3n of bits 0 of S′ are omitted when
embedding Ai into S′, we conclude that in an embedding of AiBj into S the
remaining suffix 03n0j109n2−j of AiBj must be embedded into S′′. Deleting
the shortest prefix from S′′ that contains exactly 3n bits 0 we obtain a string
into which all of the strings Bj = 0j109n2−j may be embedded. Since by
Lemma 5.19 the shortest super-sequence for the collection of strings Bj has
length 9n2+6n we know that S′′ has length at least 9n2+9n. Since S′ contains
by definition 6n2 + 3n bits 0 we conclude that S = S′S′′ has length at least
15n2 +12n. This contradicts the fact that S has length K = 15n2 +10n+k ≤
15n2 + 10n + n = 15n2 + 11n. ��

bits 0 nn 36 2

S

n3  bits 0 omitted 

0 n30 0

thnin )3)1(6( thni6

1 1

jB

jnjinnnin 29)1(63)1(6 010010ji BA

Fig. 5.16. Mapping the two bits 1 of AiBj to bits 1 of S

Lemma 5.28.
For all edges el = {va, vb} with a < b, string S′ has at least one bit 1 either
between its 6n(a− 1)th and (6na− 3n)th bit 0, or between its 6n(b− 1)th and
(6nb − 3n)th bit 0. (Compare property (8) of the proof of Lemma 5.22 with
this assertion.)

Proof. Assume that S′ neither contains a bit 1 between its 6n(a − 1)th and
(6na − 3n)th bit 0, nor between its 6n(b − 1)th and (6nb − 3n)th bit 0 (see
Fig. 5.17). Thus, bit 1 in prefix 06n(a−1)1 of string Tl must be mapped to
some bit 1 of S right of the (6na− 3n)th bit 0. This means that in embedding
prefix 06n(a−1)1 of Tl we omit at least 3n bits 0 of S. Second bit 1 in Tl occurs
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0 n30 0 0 n30 0

at least 3n bits 0 omitted 

11

lT

at least 6n bits 0 omitted 

29)2(63)(6)1(6 001010 nbnnnabnan

S

than )1(6 thnna )36(   
thbn )1(6 thnnb )36(

Fig. 5.17. Mapping the two bits 1 of Tl to bits 1 of S

immediately right of the (6nb− 9n)th bit 0. Since already 3n bits 0 of S have
been omitted and right of the 6n(b− 1)th bit 0 of S′ there are further 3n bits
0, we know that again at least 3n bits 0 of S′ are omitted when embedding Tl

into S. Since Tl has 15n2 + 3n bits 0, S′ has 6n2 + 3n bits 0, and 6n bits 0 of
S are not used when embedding Tl into S, we know that the remaining suffix
of Tl must be embedded into S′′. Thus S′′ contains at least 6n + 9n2 bits 0.
Denote the exact number of bits 0 in S′′ by p + 9n2 with some number p ≥ 6.
Since each of the strings Ai and S′ contain the same number 6n2+3n of bits 0
we know that all of the strings Bj must be embedded into S′′. By Lemma 5.20
we know that S′′ must contain at least (9n2 + 1)/(p + 1) many bits 1. Thus
S′′ has length at least p + 9n2 + (9n2 + 1)/(p + 1). Since K = 15n2 + 10n + k
was the length of S and S′ contained 6n2 +3n bits 0 and at least n bits 1, we
conversely know that the length of S′′ can be at most 9n2+6n+k. This results
in the following inequality which we lead to a contradiction (using k ≤ n) by
a sequence of transformation steps:

p + 9n2 +
9n2 + 1
p + 1

≤ 9n2 + 6n + k ≤ 9n2 + 7n

⇔ p +
9n2 + 1
p + 1

≤ 7n . (i)

Now we show

6n +
9n2 + 1
6n + 1

≤ p +
9n2 + 1
p + 1

(ii)

by the following equivalence transformations.
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6n +
9n2 + 1
6n + 1

≤ p +
9n2 + 1
p + 1

⇔ p +
9n2 + 1
p + 1

− 6n − 9n2 + 1
6n + 1

≥ 0

⇔ p(p + 1)(6n + 1) + (9n2 + 1)(6n + 1)

− 6n(p + 1)(6n + 1) − (9n2 + 1)(p + 1) ≥ 0

⇔ (p − 6n)(p + 1)(6n + 1) + (9n2 + 1)(6n − p) ≥ 0

⇔ (p − 6n)((p + 1)(6n + 1) − 9n2 − 1) ≥ 0

⇔ (p − 6n)(6np + 6n + p + 1 − 9n2 − 1) ≥ 0

The latter inequality is true since p ≥ 6n holds, thus also 6np ≥ 9n2 holds
within the second of the factors above. From (i) and (ii) we conclude:

6n +
9n2 + 1
6n + 1

≤ 7n

⇔ 9n2 + 1
6n + 1

≤ n

⇔ 9n2 + 1 ≤ (6n + 1)n = 6n2 + n

⇔ 3n2 ≤ n − 1 .

We arrive at a contradiction. ��
Remark 5.29.
The reader may point out why using the period string C = 03n103n was
essential and why, for example, C = 02n102n or C = 0n10n would not lead to
a contradiction as above.

Now we can finish the construction of a vertex cover of size at most k. We
collect some facts on S′ and S′′:

• S′′ has length at least 9n2 + 6n (Lemma 5.26).
• S has length K = 15n2 + 10n + k (assumption on S).
• S′ has length at most 6n2 + 4n + k (combine last two assertions).
• S′ contains 6n2 + 3n bits 0 (definition of S′).
• S′ has at most n + k bits 1 (combine last two assertions).
• For all of the indices 1 ≤ i ≤ n, between the (6n(i − 1) + 3n)th and 6nith

bit 0 of S′ there is at least one bit 1 (Lemma 5.27).
• For at most k of the indices i = 1, . . . , n, there is a bit 1 within the interval

between the 6n(i − 1)th and the (6n(i − 1) + 3n)th bit 0 of S′ (combine
last two assertions). Let σ(1) < σ(2) < . . . < σ(q) with q ≤ k be an
enumeration of these intervals containing at least one bit 1.

• For every edge el = {va, vb} with a < b at least one of indices a, b must
belong to index set {σ(1), . . . , σ(q)} (combine last assertion and Lemma
5.28).

• Node set
{
vσ(1), . . . , vσ(q)

}
is a vertex cover of (V, E) of size at most k.

��
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5.5 NP-Completeness of Core Bioinformatics Problems

5.5.1 Multiple Alignment

The MULTIPLE ALIGNMENT problem under sum-of-pairs scoring (MA)
is the problem of finding a multiple alignment T1, . . . , Tk having maximum
SP-score for given strings S1, . . . , Sk and scoring function σ. Formulated as a
decision problem it is to be decided whether a multiple alignment T1, . . . , Tk

with SP-score at least M exists for given strings S1, . . . , Sk, scoring function
σ and lower bound M . Using the specific scoring function σ shown in Fig.
5.18 and strings over the 4-letter alphabet Σ = {0, 1, a, b}, we show that
SSSEQ can be polynomially reduced to this specialization of SP-Align. Thus
SP-Align with this specific scoring function, as well as SP-Align in general is
NP-complete (see [77]). Values of the used scoring function σ are chosen in
such a way that reduction of SSSEQ to MA and numerical computations are
as easy as possible.

0 ba1 -

0

b

a

1

-

-4 -4 -1 -2 -2

-4 -4 -2 -1 -2

-1 -2 0 -2-

-2 -1 0 -2-

-2 -2 -2 -2 0

Fig. 5.18. Scoring matrix used in the reduction of SSSEQ to MA

Consider now an instance of SSSEQ consisting of binary strings S1, . . . , Sk

and upper bound m for the length of a common super-sequence. Define

s = |S1| + . . . + |Sk| . (5.1)

For both directions of the reduction defined below we require the following
lemma.

Lemma 5.30.
Each multiple alignment T1, . . . , Tk of S1, . . . , Sk has the same SP-score
−2s(k − 1).

Proof. Consider a fixed column of an alignment T1, . . . , Tk. Assume that it
contains x bits 0 or 1, and k − x spacing symbols. Comparisons between bits
and spacing symbols contribute to SP-score the following value:

x(k − x)(−2) = −2xk + 2x2 .
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Comparisons among any two bits contribute to SP-score the following value:

1
2
(x − 1)x(−4) = −2x2 + 2x .

Comparisons among any two spacing symbols contribute 0 to the SP-score.
Thus, any column containing x bits contributes −2x(k−1) to SP-score. Sum-
marizing over all columns leads to SP-score −2s(k− 1) as s was defined to be
the number of bits 0 and 1 occurring in T1, . . . , Tk. ��

We now truth-table reduce (see Sect. 5.1 for an explanation of this notion) the
considered instance consisting of binary strings S1, . . . , Sk and upper bound
m to m+1 different instances of SP-Align, (i), for i = 0, 1, . . . , m, and lower
bound M as follows, with ai, bm−i denoting strings that consist of i resp. m−i
repetitions of characters ‘a’ resp. ‘b’:

(i) = S1, . . . , Sk, ai, bm−i

M = −2s(k − 1) − 3s − m .

Lemma 5.31.
Assume that strings S1, . . . , Sk have a super-sequence T of length m consisting
of i bits 0 and j = m − i bits 1. Then from T a multiple alignment of strings
S1, . . . , Sk, ai, bm−i with SP-score M can be obtained.

Proof.

• Write the characters of Sp below identical characters of T corresponding
to an embedding of Sp into super-sequence T , for p = 1, . . . , k.

• Write the characters of string ai below the i bits 0 of T .
• Write the characters of string bm−i below the m − i bits 1 of T .
• At all positions not filled so far with a character, write a spacing symbol.
• Call the resulting strings T1, . . . , Tk, A, B. These form a multiple alignment

of S1, . . . , Sk, ai, bm−i.

As an example, Fig. 5.19 shows the multiple alignment constructed this way
for strings S1 = 01011001, S2 = 101111, S3 = 00000011, and super-sequence
T = 00010110111011. Here, there are i = 6 bits 0, and j = 8 bits 1 in T .

We compute the score of the constructed multiple alignment. The contri-
bution of T1, . . . , Tk to SP-score was shown above to be −2s(k − 1). Since
every 0 in T1, . . . , Tk is aligned in A and B to ‘a’ and -, and every 1 is aligned
to - and ‘b’, the contribution to SP-score that results from comparisons be-
tween all of T1, . . . , Tk and all of A, B is −s − 2s = −3s. Finally, comparison
of A and B leads to a further contribution of −m to SP-score. Summarizing
all contributions leads to a contribution of

M = −2s(k − 1) − 3s − m .

��
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0 0 0 1 0 1 1 0 1 1 1 0 1 1T

- 0 - 1 0 1 1 0 - - - 0 1 -1T

- - - 1 0 1 - - 1 1 - - 1 -2T

0 0 -0 - 0 - - 0 - - 0 1 13T

A a a a - a - - a - - - a - -

B - - - b - b b - b b b - b b

Fig. 5.19. Example multiple alignment

Lemma 5.32.
Let i be any number between 0 and m. From a multiple alignment of strings
S1, . . . , Sk, ai, bm−i with SP-score Γ ≥ M , a super-sequence T of length m for
S1, . . . , Sk can be obtained.

Proof. Let T1, . . . , Tk, A, B be a multiple alignment of S1, . . . , Sk, ai, bm−i

with SP-score
Γ ≥ M = −2s(k − 1) − 3s − m .

Let n be the length of each of the strings T1, . . . , Tk, A, B. As was already
computed in the lemma above, the contribution of strings T1, . . . , Tk to Γ is

= −2s(k − 1) .

In order for Γ ≥ M to hold, comparison of all of strings A, B to all of strings
T1, . . . , Tk, as well as comparison of A with B must further contribute to Γ a
value

≥ −3s − m .

As a consequence, there cannot be any alignment of ‘a’ with ‘b’ since this
would contribute value −∞ to the SP-score. Thus we conclude that n ≥ m
holds. As A, B contain no other alignments than ‘a’ with -, - with ‘b’, and -
with -, comparison of A with B contributes to SP-score the value

= −m .

This finally means that the contribution to SP-score which results from com-
parisons of all of strings T1, . . . , Tk and all of A, B must be

≥ −3s .

Note that every alignment of a bit within one of T1, . . . , Tk and a character
or spacing symbol within A, B contributes a value as shown in Fig. 5.20 to
the overall SP-score. In order for all contributions to sum up to some value
≥ −3s, each of the s bits of T1, . . . , Tk must contribute exactly -3 to Γ. Thus
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character in A Bcharacter in contributionbit in kTT ,,1
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0
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-4
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Fig. 5.20. Contributions to SP-score

each bit 0 must be aligned with ‘a’ and -, and each bit 1 must be aligned with
- and ‘b’. As a consequence, there is no pairing of - with - in the alignment
of A and B, thus n ≤ m. We have now shown that the alignment exactly
looks like the alignment constructed in the proof of the lemma before. Taking
as string T the string that has bits 0 at all positions where string A has a
character ‘a’, and bits 1 at all positions where string B has a character ‘b’,
defines a string of length m into which every string Si is embedded. ��

Thus we have shown the following theorem.

Theorem 5.33.
SSSEQ can be truth-table reduced in polynomial time to MA, thus MA cannot
be solved in polynomial time (unless P = NP).

5.5.2 Shortest Common Superstring

The shortest common super-string problem SSSTR is the problem of finding
a shortest string S that contains each of a given list of strings S1, . . . , Sk

as a sub-string. Formulated as a decision problem, SSSTR asks whether a
superstring T of length at most b exists, given strings S1, . . . , Sk and number
b.

Theorem 5.34.
DIRECTED HAMILTONIAN PATH is polynomially reducible to SSSTR.
Thus, SSSTR is NP-complete, too.

Proof. Let a directed graph with n nodes v1, . . . , vn and m edges be given
with distinguished source node v1 and distinguished target node vn. Let edges
be given in form of an adjacency list L(v), for every node v. The following
characters are used:

α,β,# (initializing, finalizing, and separating character)
v1, . . . , vn (corresponding to the nodes of the considered graph)
V1, . . . , Vn (copies of the characters introduced before)
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Thus for every node v there are two characters, v and V . Now we consider
the following strings each being of length 3: for every adjacency list L(v) =
[w1, . . . , wk]

{V wiV | i = 1, . . . , k} ∪ {wiV wi+1 | i = 1, . . . , k − 1} ∪ {wkV w1}

(“scroll terms”)

as well as the following strings:

{v#V | v ∈ V, v 	= v1 and v 	= vn}

(“coupling terms”)

α#v1

(“initializing term”)

vn#β

(“finalizing term”)

For every i = 1, . . . , k, the following string is a shortest common super-string
for the scroll terms associated with adjacency list L(v) = [w1, . . . , wk]:

scroll(L(v), wi) = V wiV wi+1V . . . wk−1V wkV w1V w2 . . . V wi−1V wi

This is clear as always a maximum possible overlap of 2 characters between
consecutive strings is achieved. Note that any string scroll(L(v), wi) contains
twice as many characters as there are outgoing edges at node v, plus two
further characters, as initial node wi is repeated at the end.

As an example, consider node v with adjacency list L(v) = [a, b, w, c, d]
and node w occurring in L(v) with adjacency list L(w) = [e, f, g, h]. Selecting
node w as initial node in the first scroll string, and, for example, node e as
initial node in the second scroll string, we obtain:

scroll(L(v), w) = V wV cV dV aV bV w

scroll(L(w), e) = WeWfWgWhWe .

Using coupling string w#W , we may join these two strings in such a way that
maximum overlap of one character left and one character right of w#W is
achieved. Note that this maximum overlap between any two such scroll strings
and coupling string is possible if and only if node w appears in L(v), and we
used scroll(L(v), w) with w as start node.

scroll(L(v), w)#scroll(L(w), e) = V wV cV dV aV bV w#WeWfWgWhWe
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Lemma 5.35.
Assume that w1, w2, . . . , wn is a Hamiltonian path from node v1 to node vn in
the considered graph. Then the following string S is a common super-string
(even a shortest one, but this does not matter here) for the scroll, coupling,
initializing, and finalizing terms associated with the graph.

S = α#scroll(L(w1), w2)#scroll(L(w2), w3)# . . . #scroll(L(wn−1), wn)#β

It length is 2m + 3n (note that n was the number of nodes, and m was the
number of edges).

Proof. Scroll terms appear as sub-strings within their associated scroll strings.
Every coupling term is used in the string defined above, since a Hamiltonian
path covers all nodes. Initializing and finalizing terms also appear at the be-
ginning and end of the string. Within the n − 1 scroll strings there are 2m
characters (distributed among the different scroll strings) plus 2(n− 1) char-
acters as within every scroll string the initial node is repeated at the end.
Right of any of the n− 1 scroll strings there appears the separating character
#. On the left there are the characters α# at the beginning and β at the end.
All together, the constructed super-string has length

|S| = 2m + 2(n − 1) + (n − 1) + 3 = 2m + 3n .

��

Lemma 5.36.
Assume that T is a common super-string of length at most 2m + 3n for the
scroll, coupling, initializing, and finalizing terms associated with the graph.
This constrains T to look exactly like the string S constructed in the lemma
before. In particular, a Hamilton path w1, w2, . . . , wn from node v1 to node vn

can be extracted from T .

Proof. First two characters α# of initializing term, last two characters #β of
finalizing term, and n − 2 characters # in coupling terms cannot occur in an
overlapping manner within super-string T . Thus there are exactly 2m + 3n−
2− 2−n + 2 = 2m + 2n− 2 = 2m + 2(n− 1) characters left for embedding as
substrings all scroll terms. As all scroll terms together contain 2m + 2(n− 1)
characters this is possible only by using for every adjacency list L(wi) some
string scroll(L(wi), wi+1) with wi+1 taken from L(wi) and wi+1 being the
node that defines the next term scroll(L(wi+1), wi+2). This means that the
consecution of used sub-strings scroll(L(wi), wi+1) defines a Hamiltonian path
from node v1 to node vn. ��

With Lemma 5.36 and 5.37 the proof of Theorem 5.35 is complete. ��

Remark 5.37. In the reduction of DHP to SSSTR we used an alphabet that
dynamically depends on the instance of DHP. Alternatively, we may always
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reduce to an instance of SSSTR consisting of strings over a fixed alpha-
bet, for example {L, R, 0}. For this, simulate characters a1, . . . , ap by strings
L0R, L00R, . . . , L0pR. The number of bits 0 encodes which one of the former
characters is meant, brackets L and R prevent overlaps of non-zero length
between different strings. Using binary alphabet would require more involved
string encodings of characters.

5.5.3 Double Digest

Theorem 5.38.
PARTITION is polynomially reducible to DDP, thus DDP is NP-complete,
too.

Proof. Here we will see an example of an almost trivial reduction showing
how valuable a rich zoo of known NP-complete problems is, in particular if
that zoo also contains rather simply defined problems coming from weakly
structured domains (e.g. number problems). Consider an instance w1, . . . , wn

of PARTITION. In case that W = w1 + . . . + wn is odd, hence the instance is
an unsolvable instance of PARTITION, we reduce it to an arbitrary instance
of DDP that is unsolvable, too. The reader may construct such an instance.
In case that W = w1 + . . .+wn is even, we reduce to the following three lists:

A = w1, . . . , wn B = 1
2W, 1

2W C = w1, . . . , wn

Then permutations A∗, B∗, C∗ of A, B, C exist such that the superimposition
of A∗ with B∗ gives C∗ if and only w1, . . . , wn can be partitioned into two
disjoint and non-empty sub-lists with identical sums (use that B∗ contributes
a single cut exactly at position 1

2M). ��

5.5.4 Protein Threading

Given the primary structure of a new protein S = S [1 . . . n] and the loop-
core structure of a known protein T = L0C1L1C2 . . . CmLm with strongly
conserved core segment lengths c1, . . . , cm and intervals [λ0, Λ0] , . . . , [λm, Λm]
restricting the loop segment lengths, let PT be the problem of computing the
maximum value f(t1, . . . , tm) of a scoring function for threadings t1, . . . , tm
of S into the loop-core structure of T of the form length

f(t1, . . . , tm) =
m∑

i=1

g(ti) +
m−1∑
i=1

m∑
j=i+1

h(ti, tj) . (5.2)

Theorem 5.39.
MAX-CUT is polynomially reducible to PT , thus PT is NP-complete, too.
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Proof. Let an instance of MAX-CUT, that is set of nodes V = {v1, . . . , vm},
set of undirected edges E, and a lower bound b for the desired size of a cut,
be given. It is asked whether there is a cut V = V1 ∪ V2 with at least b many
edges of E between V1 and V2. We reduce this to the following instance of PT,
where we mainly encode the task of maximizing the number of edges between
the components of a cut into the coupling part

m−1∑
i=1

m∑
j=i+1

h(ti, tj)

of the scoring function. This is not surprising in sight of the fact that without
this coupling term PT would be a polynomially solvable problem (as was
shown in Chap. 3). Details of the reduction are as follows.

• S = (01)m

• c1 = c2 = . . . = cm = 1
• λ0 = λ1 = . . . = λm = 0 and Λ0 = Λ1 = . . . = Λm = ∞

• h(ti, tj) =

{
1 if {vi, vj} ∈ E and S(ti) 	= S(tj)
0 otherwise

• b as lower bound for the value of
∑m−1

i=1

∑m
j=i+1 h(ti, tj)

Lemma 5.40.
Assume that parameters are fixed as above.
(a) From a cut V = V1 ∪ V2 with at least b many edges from E between V1

and V2 we obtain a threading t1, . . . , tm with score at least b.
(b) From a threading t1, . . . , tm with score at least b we obtain a cut V = V1 ∪ V2

with at least b many edges from E between V1 and V2.
Thus, (V, E) has a cut with at least b many edges between its parts if and only
if the constructed instance of PT has a threading with score at least b. This is
the desired polynomial reduction from MAX-CUT to PT.

Proof. (a) Consider cut V = V1 ∪ V2 with at least b many edges from E
between V1 and V2. To thread the ith core segment into S = (01)m consider
node vi. In case that vi ∈ V1 choose bit 0 of the ith substring (01) of S as
start position for the ith core segment. In case that vi ∈ V2 choose bit 1 of
the ith substring (01) of S as start position for the ith core segment. For each
edge {vi, vj} in E with nodes in different parts of the cut, that is with either
vi ∈ V1 and vj ∈ V2, or with vi ∈ V2 and vj ∈ V1, we obtain a contribution
of 1 to the scoring function as different bits are selected for S(ti) and S(tj).
Thus the threading also has score at least b.
(b) Let a threading t1, . . . , tm with score at least b be given. By definition of
the scoring function there must be at least b contributions 1. Contribution
1 occurs only for pairs ti and tj with an edge {vi, vj ∈ E} and different bits
S(ti) and S(tj). Defining V1 = {vi | S(ti) = 0} and V2 = {vi | S(ti) = 1} thus
defines a cut with at least b edges between V1 and V2. ��
With Lemma 5.41 the proof of Theorem 5.40 is complete. ��
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5.5.5 Bi-Clustering

Let (V,W,F ) be a bipartite graph with node sets V and W , and set of edges
{v, w} between certain node pairs v ∈ V and w ∈ W . A bi-clique consists of
subsets A ⊆ V and B ⊆ W such that for all a ∈ A and b ∈ B there is an edge
{a, b} in F . Visualizing bipartite graphs and bi-cliques in a rectangular dia-
gram (Fig. 5.21) makes clear that finding a bi-clique with maximum number
of edges |A| |B| is exactly the formal problem behind finding a maximum size
sub-matrix (after permutations of rows and columns) of a microarray data
matrix that consists of entries 1 only.

A

V

B

W

Fig. 5.21. A bi-clique

Lemma 5.41.
Given 3SAT-formula

ϕ = (L11 ∨ L12 ∨ L13) ∧ (L21 ∨ L22 ∨ L23) ∧ . . . ∧ (Ln1 ∨ Ln2 ∨ Ln3)

with n clauses (Li1 ∨Li2 ∨Li3) each containing three literals Li1, Li2, Li3, an
undirected graph (V,E) consisting of 4n nodes can be constructed such that ϕ
is satisfiable if and only if (V,E) has a clique of size exactly 2n (thus this is a
reduction to the variant of CLIQUE where we ask for a clique having exactly
half as many nodes as the graph has, called 1

2 -CLIQUE).

1
2 -CLIQUE
Given undirected graph with 4n nodes, does it pos-
sess a clique with 2n nodes.

Proof. Take a look at the reduction of 3SAT to CLIQUE that was used in
Theorem 5.7. There, a graph consisting of 3n nodes was used and the clique
that occurred had exactly size n. Inserting further n nodes that are completely
connected to all of the former 3n nodes establishes the assertion of the lemma.

��
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Theorem 5.42.
1
2 -CLIQUE is polynomially reducible to BI-CLIQUE, thus BI-CLIQUE is NP-
complete, too.

Proof. Given an undirected graph (V, E) with node set V = {v1, . . . , vn} of
size n = 2k ≥ 16 with even number k and edge set E = {e1, . . . , em}, it can
be transformed into a bipartite graph (V, W, F ) (first node set of the bipartite
graph is indeed the same as the node set from (V, E)) such that (V, E) has
a clique C with |C| ≥ k if and only if (V, W, F ) has a bi-clique consisting of
subsets A and B such that |A| |B| ≥ k3 − 1

23k2 (note that k ≥ 3 and k is an
even number).

We define node set W and edge set F as follows using (somehow unusual,
nevertheless admissible) the edges of E as nodes in the second component W
together with a number of 1

2k2 − k fresh nodes in W .

V = {v1, . . . , vn}

W =
{

e1, . . . , em, f1, . . . , f 1
2 k2−k

}
F = {{vi, ej} | 1 ≤ i ≤ n, 1 ≤ j ≤ m, vi /∈ ej}

∪
{
{vi, fj} | 1 ≤ i ≤ n, 1 ≤ j ≤ 1

2
k2 − k

}

We show that the desired reduction property holds. In one direction, assume
that (V, E) has a clique of size at least k. Take a clique C of size exactly k.
Define bi-clique A, B as follows:

A = V − C

B =
{

f1, . . . , f 1
2 k2−k

}
∪ {ej | 1 ≤ j ≤ m, ej ⊆ C} .

Thus, B contains all fresh nodes as well as all edges from E that connect
nodes of clique C. As C is a clique, there is an edge {a, b} in E for any two
different nodes a, b in C. Size of the defined bi-clique is thus calculated as
follows:

|A| =
k

2
= |C|

|B| =
1
2
k2 − k +

1
2
k(k − 1)

|A| |B| = k

(
1
2
k2 − k +

1
2
k(k − 1)

)
= k3 − 1

3
k2 .

In the converse direction, assume that (V, W, F ) has a bi-clique consisting of
subsets A ⊆ V and B ⊆ W such that |A| |B| ≥ k3− 3

2k2 holds. We may assume
that B contains all of the fresh nodes (otherwise simply put the missing nodes
into B, obtaining again a bi-clique of even larger size) as well as b many of
the edges from E as nodes. By definition of edge set F we know that edges ej
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occurring in B do not contain any nodes from A. Thus they consist of nodes
from V −A only. By renumbering edges in E we may assume without loss of
generality that B looks as follows:

B =
{

f1, . . . , f 1
2 k2−k

}
∪ {ej | 1 ≤ j ≤ b} with ej ⊆ (V − A) × (V − A) .

Now consider node set C = V − A. Define a = |A|. Thus, the considered
bi-clique is located as shown in Fig. 5.22. As C consists of 2k−a many nodes,
the number of edges connecting nodes from C, and thus also number b can be
bounded as follows:

b ≤ 1
2
(2k − a)(2k − a − 1) .

We show that a ≤ k follows from this. Assume that a > k holds. It is conve-
nient to further compute with x = a − k. By definition of x and from a ≤ 2k
we conclude that 0 < x ≤ k holds. Furthermore, 2k − a = k − x holds. We
obtain a contradiction as follows (the last estimation uses x ≤ k):

0 ≤ |A| |B| − k3 +
3
2
k2

≤ (k + x)
(

1
2
k2 − k +

1
2
(k − x)(k − x − 1)

)
− k3 +

3
2
k2

=
1
2
k3 − k2 +

1
2
xk2 − xk +

1
2

(
k2 − x2

)
(k − x − 1) − k3 +

3
2
k2

=
1
2
k3 − k2 +

1
2
xk2 − xk +

1
2
k3 − 1

2
xk2 − 1

2
k2 − 1

2
x2k +

1
2
x3 +

1
2
x2

− k3 +
3
2
k2

= −xk − 1
2
x2k +

1
2
x3 +

1
2
x2

=
1
2
x(x2 − xk + x − 2k)

=
1
2
x(x2 − x(k − 1) − 2k)

< 0 .

So far we know that a ≤ k holds. In the following it is convenient to compute
with y = k − a. By definition of y we conclude that 0 ≤ y ≤ k. Now we
argue by contradiction. Assume that (V,E) does not contain a clique of size
k. Using that C has 2k−a = k +y many elements, we may successively select
nodes pairs (p1, q1), . . . , (py+1, qy+1) such that the following properties holds
(remember the assumption that there is no clique of size k):

• p1, q1 ∈ C, p1 	= q1, {p1, q1} /∈ E
• p2, q2 ∈ C − {p1} , p2 	= q2, {p2, q2} /∈ E

...
• py, qy ∈ C − {p1, . . . , py−1} , py 	= qy, {py, qy} /∈ E
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B

kk
ff

2

2
11 ,...,  bee ,...,1 mb ee ,...,1

A

C

Fig. 5.22. Extracting clique C from bi-clique A, B

This tells us that there are at least y +1 different pairs of nodes in C without
an edge connecting them. Thus, number b defined above can be estimated
more strictly than in the former case as follows:

b ≤ 1
2
(2k − a)(2k − a − 1) − (y + 1) <

1
2
(2k − a)(2k − a − 1) − y .

From this we obtain a contradiction as follows (the first step uses a = k−y > 0,
the last step uses k ≥ 4, thus −k − y + 3 < 0):

0 ≤ |A| |B| − k3 +
3
2
k2

< (k − y)
(

1
2
k2 − k +

1
2
(k + y)(k + y − 1) − y

)
− k3 +

3
2
k2

=
1
2
k3 − k2 − 1

2
yk2 + yk +

1
2

(
k2 − y2

)
(k + y − 1) − (k − y)y − k3 +

3
2
k2

=
1
2
k3 − k2 − 1

2
yk2 + yk +

1
2
k3 +

1
2
yk2 − 1

2
k2 − 1

2
y2k − 1

2
y3 +

1
2
y2

− ky + y2 − k3 +
3
2
k2

= −1
2
y2k − 1

2
y3 +

3
2
y2

=
1
2
y2(−k − y + 3)

≤ 0 .

Thus the assumption that no clique of size k exists cannot be maintained.
This proves the desired conclusion. ��

5.5.6 Pseudoknot Prediction

Pseudoknot prediction is an optimization problem. Given an RNA sequence,
we want to compute a possibly pseudoknotted structure with minimum free
energy in regards to a certain energy model. Stated as a decision problem,
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pseudoknot prediction PK asks if a structure with free energy lower than a
certain threshold exists.

PK
Given RNA sequence S and an energy model,
is there a structure with free energy lower than
some value Elow.

Let us fix a simple (and certainly unrealistic) energy model. This makes sense,
as complexity results achieved in a restricted model will hold also in the corre-
sponding more complex (and more realistic) model. Let R be an RNA struc-
ture over S = [1 . . . n], where pseudoknots are allowed. The nearest neighbour
pseudoknot model defines energy E(R) as the independent sum of base pair
energies

E(R) =
∑

(i,j)∈R

E(i, j, i + 1, j − 1) ,

where the energy of a base pair (i, j) depends on the types of the four bases
i, j, i+1, j−1 and furthermore, if (i+1, j′) ∈ R (or (i′, j−1) ∈ R), also possibly
on base j′ (or base i′). We will prove complexity of pseudoknot prediction in
the nearest neighbour pseudoknot model and refer to this problem as PKNN.

PKNN
Given RNA sequence S and the nearest neigh-
bour pseudoknot model, is there a structure
with free energy lower than some value Elow.

For proving complexity of PKNN, a restriction of the well-known 3SAT prob-
lem is used. 3SAT remains NP-complete if it is required that each variable
appears exactly two times positively and one or two times negatively. We re-
fer to this restricted problem as 3SATrestricted and show its NP-completeness
within the proof of the following theorem.

Theorem 5.43.
3SATrestricted is polynomially reducible to PKNN, thus PKNN is NP-complete,
too.

Proof. We follow the proof presented in [52] with some minor modifications
to enhance understanding.

First, we start with introducing the energy function for the underlying
nearest neighbour pseudoknot model. Broadly speaking, negative (favourable)
energy is assigned to complementary symbols forming base pairs if and only
if there is no pseudoknotted interaction with a base pair involving a neigh-
bouring symbol. This can be formalized as follows:

E(i, j, i + 1, j − 1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−1 if i and j are complementary symbols and for

k /∈ {i + 1, . . . , j − 1} there are no base pairs
(i + 1, k), (j − 1, k), (k, i + 1), (k, j − 1).

0 otherwise.
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Figure 5.23 displays examples for different cases we can distinguish in the
nearest neighbour pseudoknot model using the described energy function.

i

1i1i 1j

 i j

1i 1j

 i j

1j

j

k

i 1i 1j j i 1i k 1j j i 1i 1j j k

k

(a)   (b)    (c)       (d) 

i

1i 1j

j

k

'k

i 1i 'k 1j j k

Fig. 5.23. Energy contribution of base pair (i, j) according to the underlying energy
function: (a) stem with energy -1; (b) bulge with energy -1; (c) pseudoknot struc-
ture involving the neighbouring base i + 1 penalized with energy 0; (d) pseudoknot
structure not involving a neighbouring base, therefore no penalty and energy -1

We proceed with the reduction. First, we reduce 3SAT to 3SATrestricted

where we demand that for every variable x there are exactly two occurrences of
positive literal x and one or two occurrences of negative literal ¬x. Reduction
to this restricted problem is done in an easy manner as follows. For example,
assume that a variable x has four positive and three negative occurrences in
ϕ. Replace these occurrences by fresh literals y1, y2, y3, y4,¬z1,¬z2,¬z3 and
enforce that y1, y2, y3, y4, z1, z2, z3 are representatives for the same x by the
following implications, using a further auxiliary Boolean variable w.

y1 → y2 → y3 → y4 → z1 → z2 → z3 → w → y1

Now implications are transformed into disjunctions as follows.

¬y1 ∨ ¬y1 ∨ y2 ¬y2 ∨ ¬y2 ∨ y3 ¬y3 ∨ ¬y3 ∨ y4 ¬y4 ∨ ¬y4 ∨ z1

¬z1 ∨ z2 ∨ z2 ¬z2 ∨ z3 ∨ z3 ¬z3 ∨ w ∨ w ¬w ∨ ¬w ∨ y1

Note that z1 occurs two times as a positive literal and only once as a negative
literal, whereas all other variables occur two times as a positive literal and
two times as a negative literal. Next we reduce 3SATrestricted to PKNN. Let
an instance

ϕ = (L11 ∨ L12 ∨ L13) ∧ . . . ∧ (Ln1 ∨ Ln2 ∨ Ln3)

of 3SATrestricted be given with m clauses and k variables x1, . . . , xk. In the
reduction we use some sort of “generalized RNA folding problem” where more
complementary pairs of characters are available than only the standard com-
plementary RNA bases forming pairs (A,U) and (C,G). This considerably
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simplifies reduction. Reduction using the 4-character alphabet A, C, G, U re-
quires some additional efforts (see [52]). In this proof, complementary charac-
ter pairs are always denoted by x, x. The following complementary characters
pairs are used:

• For every i = 1, . . . , m (m the number of clauses) two pairs Ai, Ai and
Bi, Bi

• For every j = 1, . . . , k (k the number of variables) one pair Vj , V j

• For every variable xj two pairs xj , xj and ¬xj ,¬xj

Now we encode ith clause (Li1 ∨ Li2 ∨ Li3) by the following clause substring :

Ci = AiLi1AiBiLi2AiBiLi3Bi.

Observe the alternation of characters Ai, Ai, Ai and correspondingly Bi, Bi, Bi.
Variable xj is encoded by the following variable substring :

Xj = VjxjxjV j¬xj¬xjVj .

Finally we form clause string C = C1 . . . Cm, variable string X = X1 . . . Xk,
and their concatenation S = CX.

Lemma 5.44. If ϕ is satisfiable, then S has a fold with free energy −3m− k.

Proof. Consider a truth-value assignment that satisfies ϕ. Within each clause
choose an arbitrary literal L that evaluates to ‘true’ under the chosen assign-
ment. If the chosen literal L is the first occurrence of L within clause string
C, let it be paired with the second occurrence of complementary literal L
within variable string X. If the chosen L is the second occurrence of L within
clause string C, let it be paired with the first occurrence of complementary
literal L within variable string X. This “first-second rule” guarantees that
for the fixed literals within each clause their occurrence in string C and cor-
responding complementary occurrence in string X do not form unfavourable
pseudoknots according to the energy function. Note that there might well be
pairs that form a pseudoknot, but only favourable ones as the pairs forming
a pseudoknot cannot be in contact.

So far, we have formed m pairs that contribute −m to overall free energy.
Within each string Ci there is the possibility to form two further favourable
pairs between the pairs Ai,Ai and Bi,Bi, respectively. These additional pairs
contribute −2 to overall free energy for each clause substring. So far, free
energy of the fold corresponding to a truth-value assignment that satisfies ϕ
has value −3m. Finally, we introduce one further favourable pair within each
variable substring Xj as follows. If literal xj becomes ‘true’ by our truth-value
assignment, a pair between symbol V j and second occurrence of complemen-
tary symbol Vj in variable substring Xj is formed. If literal ¬xj becomes
‘true’ by our truth-value assignment, a pair between symbol V j and first oc-
currence of complementary symbol Vj in variable substring Xj is formed. As
a consequence, we prevent that favourable pairs are formed involving literals
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that become ‘false’ by our truth-value assignment. Note that each of these
additional pairs contributes -1 to overall free energy. Summarizing, the con-
structed pairs lead to an overall free energy for the fold of −3m − k. ��

As an example, consider the 3SATrestricted formula

ϕ = (x ∨ ¬y ∨ ¬x) ∧ (z ∨ ¬y ∨ y) ∧ (¬x ∨ y ∨ x) ∧ (¬z ∨ z ∨ ¬z)

with four clauses and three variables. As requested, each literal appears at
most twice. Corresponding clause and variable substrings and construction of
the fold with energy −3m − k for ϕ are shown in Fig. 5.24.

Lemma 5.45. If S has a fold with free energy −3m− k, then ϕ is satisfiable.

Proof. The fold constructed as described by the rules above is the only one
that achieves a free energy of 3m − k. This can be shown as follows. What-
ever pairings we form, every clause substring Ci contributes at most three
favourable pairs. Besides the three variants used in Lemma 5.44, other fur-
ther pairings are possible (see Fig. 5.25). Whichever one we choose, it never
results in more than three favourable pairs. Furthermore, in case that a clause
substring exhibits three bonds, at least one of the links must lead out of the
substring Ci. In order to achieve free energy value −3m− k there must be at
least one further favourable pair forming within each variable substring Xj .
Looking at Xj we observe that the one remaining possible internal pairing
Vj , V j is favourable only in case that there are no links leading both to char-
acters xj as well as to ¬xj . This induces a truth-value assignment as follows:
set xj to ‘true’ if there is no link leading to ¬xj , otherwise set xj to ‘false’.

Thus we end with a fold exactly as constructed in Lemma 5.44. Since
each clause substring Cj contains a link from some occurrence of literal L
to some occurrence of L in the corresponding variable substring, we have
defined a truth-value assignment that makes at least one literal within each
clause ‘true’. Consequently, ϕ is satisfiable. ��

Taking together the proofs for Lemma 5.44 and 5.45, we have shown that
PKNN is NP-complete. ��

5.5.7 The Picture of Presented Reductions

... is shown in Fig. 5.26.

5.5.8 Further NP-Complete Bioinformatics Problems

We end with a short listing of a few NP-complete problems which are closely
related to problems that we have treated in former chapters and give some
bibliographic links. The reader who has got some familiarity with reductions
and NP-completeness proofs after reading this chapter should have no problem
to work through further such proofs in the literature.



214 5 NP-Hardness of Core Bioinformatics Problems

1A1A1B1A1B 1B xyx
2A

2A

2B

2A

2B

2B

z

y

x

y

3A

3A
3B

3A

3B

3B

x

z

y

4A 4A 4B 4A 4B4Bz z

2V

2V

2V

y

y

y

y

1V
x

x
(a) 1V

1V
x

x

3V

(a)

(b)

(b)

(c)

(c) (c) (c) 

(c)

(c)

(c)

(c)

(d)

(d)

(d)

z

z

3V

3V

z

z

Fig. 5.24. Representative example fold illustrating proof of Lemma 5.44: literals
x, ¬y and z are set to ‘true’; within each clause substring one ‘true’ literal is cho-
sen (grey shaded); (a) “first-second rule” avoids unfavourable bonds; (b) pseudo-
knots may arise, but always consisting of favourable bonds; (c) within each clause
substring two additional favourable bonds are possible; (d) within each variable
substring one additional favourable bond is possible.

• Consensus (Steiner) String (for any metric as distance function) [51, 69]
• Undirected Genome Rearrangement [15]
• HP-model fold optimization [11]
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Fig. 5.25. Representative example fold illustrating proof of Lemma 5.45: every
clause substring contributes at most three favourable bonds (some further situations
besides the ones shown in Fig. 5.24 are exhibited); a clause substring cannot contain
three favourable inner bonds; using bonds to complementary literals within some
variable substring prevents formation of further favourable inner bonds within that
variable substring

5.6 Bibliographic Remarks

To the personal opinion of the author, the best introductory textbook to the
field of complexity theory, and in particular to the concept NP-completeness
is Papadimitriou [61]. Of course, any treatment of NP-completeness must
mention the absolutely classical textbook (nice to read and informative up to
the present time) Garey & Johnson [29].
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Approximation Algorithms

6.1 Basics of Approximation Algorithms

6.1.1 What is an Approximation Algorithm?

The standard form of algorithmic problems studied in this book so far was
a minimization or maximization problem. In the following we concentrate on
minimization, knowing that maximization can be treated completely similar.
Given an admissible instance x, a solution y is to be found having minimum
value c(x, y) among all solutions for x. As we did in Chap. 5 we also assume
here that for every instance x ∈ I there exists at least one y with (x, y) ∈ S.
An exact algorithm A returns for every instance x a solution y = A(x) for x
with c(x, A(x)) = cmin(x) with

cmin(x) = min
all solutions y
for instance x

c(x, y) . (6.1)

For a fixed parameter α ≥ 1, an α-approximation algorithm B computing a
solution y = B(x) for every admissible instance x relaxes this requirement to

c(x, B(x)) ≤ αcmin(x) . (6.2)

The closer α to 1 is, the better is the approximation solution B(x). In the
extreme case of α = 1 we even have an exact algorithm.

6.1.2 First Example: Metric Travelling Salesman

Consider an undirected weighted graph consisting of n completely intercon-
nected nodes with a positive distance value duv = dvu assigned to each
edge {u, v}. Assume that the distance values satisfy the triangle inequality
duv ≤ duw + dwv. Then, a closed tour, that is, a cycle through the graph
having costs not greater that two times the minimum possible distance sum
can be efficiently constructed as follows:



218 6 Approximation Algorithms

• Compute a subset of edges that forms a tree, covers every node of the
graph, and has minimum costs (sum of distances assigned to the edges
of the tree) among all such trees. Trees with these properties are well-
known under the name of minimum spanning trees. They can be easily
constructed by a rather trivial greedy approach that extends a growing
tree at every stage by a fresh edge with minimum edge costs. Figure 6.1
shows a graph and a minimum spanning tree (its edges shown by bold
lines). Imagine this example to be a computer network with varying com-
munication costs between computers; messages may pass forever through
the network due to the presence of lots of cycles; a spanning tree guarantees
that every message send by any computer arrives at each other computer
without passing forever through the network; a minimum spanning tree
does this at cheapest costs.

• Given a cheapest Hamiltonian cycle with cost ccycle, the deletion of an
arbitrary edge from the cycle leads to a (special sort of non-branching)
spanning tree with costs less than ccycle. Thus the minimum costs of any
spanning tree cspanning is also less than ccycle.

• Now make a pre-order traversal through the computed spanning tree that
starts at some arbitrary node and ends at that node. This traversal uses
every edge of the spanning tree exactly twice (one time forth, and one
time back), thus its costs are at most two times cspanning. Unfortunately,
it is not a Hamiltonian cycle since nodes are visited in a multiple manner.
(Question: How often are nodes visited?). A Hamiltonian cycle is easily
obtained from the pre-order traversal by avoiding multiple node visits by
using shortcuts to the actually next so far unvisited node. Triangle in-
equality guarantees that this does not lead to increased costs.

• Taken together, the Hamiltonian cycle that is computed this way has costs
no greater that 2cspanning, that is, no greater than 2ccycle.

Exercises

6.1. Apply a greedy algorithm and show how the minimum spanning tree
from Fig. 6.1 evolves.

6.2. Try to find out how a simple improvement of the construction above
leads to a 3/2-approximation algorithm. Use a more clever way to make a
tree traversal through the graph.

6.1.3 Lower and Upper Bounding

As the example above showed, the 2-approximation algorithm centers around
the concept of a feasible, that is efficiently computable lower bound cspanning

for the desired, but unfeasible minimum value ccycle. Instead of the desired
estimation c(x,A(x)) ≤ 2ccycle(x) we even show c(x,A(x)) ≤ 2cspanning(x).
To define, in the general case, an appropriate feasible lower bound clower(x)
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Fig. 6.1. Minimal costs spanning tree

for cmin(x) is a delicate task. First note that, for example for the case of a
2-approximation algorithm any lower bound must necessarily be located in
the interval between 1/2 cmin(x) and cmin(x). Being not less than 1/2 cmin(x)
is necessary since otherwise the intended estimation c(x,A(x)) ≤ 2clower(x)
would not be possible. Both extreme values 1/2 cmin(x) and cmin(x) cause
difficulties. If clower(x) is too close to cmin(x), it might be as hard to compute
as cmin(x) is. If clower(x) is too close to 1/2 cmin(x) the computed solutions
are almost optimal, thus eventually not efficiently computable. Summarizing,
relaxation of cmin to some lower bound clower as basis for an approximation
algorithm must be strong enough to lead to an efficiently computable bound,
but must not be so strong that computed solutions are too close to optimal
solutions, thus eventually not efficiently computable.

6.1.4 What are Approximation Algorithms good for?

Having an approximation algorithm that delivers solutions at most 1% worse
than optimum solutions, that is a 1.01-approximation algorithm, usually is
welcome as an approximation algorithm. For the travelling salesman prob-
lem we have presented a 3-approximation algorithm, and in Sect. 6.2 we will
present a 4-approximation algorithm for the shortest common superstring
problem. Can you really imagine that a bus driver would be happy about a
computed tour through town that is at most 3 times as long as a shortest pos-
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sible tour? We try to give some reasons why even a 4-approximation algorithm
might be welcome.

(1) Concerning approximation algorithms, the world of NP-complete prob-
lems that presents itself from the standpoint of exact solutions as a world
of completely equivalent problems, splits into various subclasses of quali-
tatively different problems. Some of them do not admit efficient approx-
imation algorithms at all (unless P = NP). An example for such prob-
lems is the general travelling salesman problem. Other problems admit α-
approximation algorithms, but only with parameters up to some smallest
such parameter αmin > 1. An example is 3SAT, the well-known satisfiabil-
ity problem for Boolean formulas in clausal form with exactly three liter-
als per clause. The provably best α-approximation algorithm has α = 7/8
(unless P = NP). Other problems admit α-approximation algorithms for
every fixed parameter α > 1, some even in the strong manner that α is
a parameter of the algorithm and its running time scales with 1/α. An
example for such problems is the well-known knapsack problem. Thus hav-
ing an α-approximation algorithm shows that the considered problem does
not belong to the class of most difficult problem with no approximation
algorithm at all.

(2) Having an α-approximation algorithm often opens way to find also a
β-approximation algorithm with improved parameter β < α. As an exam-
ple, the 4-approximation algorithm that will be presented in Sect. 6.2 can
easily be improved to a 3-approximation algorithm, and with some effort
even to a 2.75-approximation algorithm.

(3) For the 4-approximation algorithm that will be presented in Sect. 6.2,
estimation of the costs of computed solutions by four times the minimal
costs is only an upper bound. Computed solutions may often be much
closer to minimum cost solutions. Having computed a solution A(x) its
costs might be, in extreme cases, close to cmin(x) (that might seem to
be preferable), or close to 4cmin(x) (that might seem not to be prefer-
able). Unfortunately, how good a computed solution A(x) really is cannot
be detected, since we have no knowledge on cmin(x). There are reasons
that even computed solutions of bad quality may be of some value. To
explain why imagine that we had two solutions A(x) and B(x) for the
same instance x. Now consider the case that A(x) is rather bad having
worst costs 4cmin(x). Though we cannot detect this, this might help to
detect that B(x) is a much better solution, for example if we observe that
c(x,B(x)) < 1/3 c(x,A(x)) holds. Together with the guaranteed estima-
tion c(x,A(x)) ≤ 4cmin(x) we then obtain c(x,B(x)) < 4/3 cmin(x). This
is considerably closer to optimum - and has been detected.
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6.2 Shortest Common Superstring Problem

6.2.1 Feasible Lower Bound

The SHORTEST COMMON SUPERSTRING problem was introduced and
illustrated in Sect. 2.3. We refer to the concepts and notions introduced there.
Having a shortest superstring S for a substring-free string set F , this defines
a unique ordering F1, F2, . . . , Fm of strings from F according to their start
position within S. Appending first string F1 to the end of this sequence, we
obtain a situation as shown in Fig. 6.2 for the case of four fragments. In
general, S can be decomposed as follows, with length l being the sum of m
prefix lengths and a single overlap length:

S = prefix(F1, F2) . . .prefix(Fm−1, Fm)prefix(Fm, F1)overlap(Fm, F1)
l = p(F1, F2) + . . . + p(Fm−1, Fm) + p(Fm, F1) + o(Fm, F1) .

(6.3)

Conversely, any cycle F1, F2, . . . , Fm, F1 induces a string S as defined above
to which we refer as the string defined by cycle F1, F2, . . . , Fm, F1. Note that
costs c of cycle F1, F2, . . . , Fm, F1 in prefix graph are given by the slightly
smaller value than length l

c = p(F1, F2) + . . . + p(Fm−1, Fm) + p(Fm, F1) . (6.4)

shortest superstring S

Fig. 6.2. Cycle of prefixes

This immediately gives us the following lower bound.

Lemma 6.1. Lower Bound
For a substring-free string set F let π(F ) be the minimum costs of any cycle in
prefix graph PF , and σ(F ) be the minimum length of any common superstring
for set F . Then π(F ) ≤ σ(F ).

Unfortunately, lower bound π(F ) is as difficult to compute as σ(F ) because its
computation corresponds to the well-known NP-complete travelling salesman
problem. An explanation for this might be, that π(F ) is a too strong lower
bound, that is, too close to σ(F ). Fortunately, there is a weaker well-known
lower bound. This is based on a relaxation of the travelling salesman problem
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that admits covering nodes by several disjoint local cycles instead by a single
one. A finite set of disjoint cycles that contains every node of a weighted graph
is called a cycle cover of the graph. Costs of a cycle cover is defined to be the
sum of costs of each cycle in the cycle cover. For a substring-free string set F
denote by γ(F ) the minimum costs of any cycle cover in prefix graph PF .

Lemma 6.2. Feasible Lower Bound
For a substring-free string set F the following holds: γ(F ) ≤ π(F ) ≤ σ(F ).

Proof. γ(F ) ≤ π(F ) follows from the fact that a single cycles is a special case
of a cycle cover. ��

6.2.2 Cycle Covers Related to Perfect Matchings Problem

Here we treat the problem of computing a cycle cover with minimum costs
in prefix graph. As for any cycle F1, F2, . . . , Fm, F1 the sum of prefix lengths
p(F1, F2) + . . . + p(Fm−1, Fm) + p(Fm, F1) and the sum of overlap lengths
o(F1, F2) + . . . + o(Fm−1, Fm) + o(Fm, F1) sum up to the sum of lengths of
strings F1, . . . , Fm (a constant value independent of the considered cycle),
we may equivalently consider the problem of computing a cycle cover with
maximum costs in overlap graph. Using overlap graph instead of prefix graph
will prove to be more convenient in the following.

Next we transform the cycle cover problem for overlap graph into a perfect
matching problem in a bipartite version of overlap graph. The latter is defined
as follows. Create for every node Fi in overlap graph a copy node called Gi.
Thus the new graph consists of two parts, a left part with all the nodes from
the original graph, and a right part that is a copy of the left part. Every
directed edge from node Fi to node Fj in overlap graph with weight oij is
simulated by an undirected edge between node Fi and copy node Gj with
same weight oij . Now consider an arbitrary local cycle with costs c in overlap
graph.

F1 → F2 → F3 → . . . → Fm−1 → Fm → F1

Its directed edges correspond to undirected edges of the bipartite version as
follows:

F1 F2 F3 . . . Fm−1 Fm

| | | | |
G2 G3 G4 . . . Gm G1

Such a one-to-one relation between node sets {F1, . . . , Fm} and {G1, . . . , Gm}
with an undirected edge between any two related nodes is called a matching .
The costs of a matching are defined as the summed weights of its undirected
edges. We observe that the costs of the constructed matching coincide with
the costs c of the considered local cycle. Conversely, having a matching with
costs c between node sets {F1, . . . , Fm} and {G1, . . . , Gm} we may always
arrange matches pairs in an ordering as above, thus we obtain a local cycle
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with costs c through node set {F1, . . . , Fm}. Now let us consider an arbitrary
cycle cover with costs c in overlap graph. Its cycles lead to a collection of
(local) matchings that together form a matching with costs c, called a perfect
matching (“perfect” since all nodes participate in the matching).

6.2.3 Computing Maximum Cost Perfect Matchings

Reduction of the minimum costs cycle cover problem for prefix graphs to
the maximum costs perfect matching problem in bipartite versions of over-
lap graphs has the advantage that there are well-known efficient (quadratic)
algorithms solving perfect matching problems in arbitrary bipartite graphs.
We must not rely on such algorithms since situation here is even better. For
an overlap graph we show that its bipartite version fulfils a certain prop-
erty called Monge property . This property will be the basis for a most simple
greedy algorithm for the construction of a maximum costs perfect matching.

Lemma 6.3. Monge Property
Consider in the bipartite overlap graph four different nodes, two Fa and Fb on
the left part of the graph, and two Gc and Gd on the right part of the graph.
Assume that o(Fa, Gc) is maximum among o(Fa, Gc), o(Fa, Gd), o(Fb, Gc) and
o(Fb, Gd). Then the following holds:

o(Fa, Gc) + o(Fb, Gd) ≥ o(Fa, Gd) + o(Fb, Gc)

Proof. Since o(Fa, Gc) ≥ o(Fa, Gd) and o(Fa, Gc) ≥ o(Fb, Gc) hold, the di-
agram in Fig. 6.3 correctly indicates relative locations of overlaps (overlap
between Fa and Gc is shown as black shaded area, the shorter overlaps be-
tween Fb and Gc and between Fa and Gd are shown as grey shaded area). Now
the desired inequality o(Fa, Gc) + o(Fb, Gd) ≥ o(Fa, Gd) + o(Fb, Gc) can be
easily extracted from the diagram (already the guaranteed minimum overlaps
between Fb and Gd suffices to give the inequality). ��

bF

aF
cG

dG

Fig. 6.3. Fb and Gd overlap at least that much.
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As a consequence we next show that the following greedy algorithm indeed
computes a maximal matching. The algorithm uses a growing set of already
matched node pairs, and decreasing sets of still unmatched nodes for both
parts of the bipartite overlap graph.

M = ∅
V = all nodes in left part of the bipartite graph
W = all nodes in right part of the bipartite graph
while V 	= ∅ do

choose F in V and G in W having maximal value o(F,G)
V = V − {F}
W = W − {G}
M = M ∪ {{F,G}}

end while

Lemma 6.4.
For an arbitrary bipartite graph with 2n nodes that fulfils the Monge property
the greedy algorithm above always returns a maximal matching in O(n2 log n)
steps.

Proof. We compare the matching M that is computed by the algorithm and
an arbitrary maximal weight matching M∗. Following the order in which node
pairs are placed into M by the greedy algorithm, we show how to successively
reorganize the maximum matching M∗ into a maximum matching M∗∗ in
such a way that optimality is always preserved and finally the same node pairs
appear in M and in M∗∗. Thus, at the end of this reorganization process, M
is shown to coincide with optimal matching M∗∗, that is M itself is shown to
be optimal.

Consider some pair {Fa, Gc} at the moment it was placed into M by the
greedy algorithm. Assume that M and M∗∗ coincide on all pairs that were
placed into M before this moment. Also assume that the actually chosen
pair {Fa, Gc} is not present in M∗∗. Thus M∗∗ must contain different pairs
{Fa, Gd} and {Fb, Gc}. Now also consider node pair {Fb, Gd} (see Fig. 6.4).

aF

bF

cGlongest  overlap 

dG

Fig. 6.4. Exchange construction

Since M and M∗∗ coincide on all pairs placed into M before the moment
of insertion of {Fa, Gc}, all of these four pairings were available for the greedy



6.2 Shortest Common Superstring Problem 225

algorithm at the moment of insertion of {Fa, Gc}. As {Fa, Gc} had maximum
weight among these four pairs by the way the algorithm worked, we know that
o(Fa, Gc) + o(Fb, Gd) ≥ o(Fa, Gd) + o(Fb, Gc) holds by the Monge property.
Replacing pairs {Fa, Gd} and {Fb, Gc} in M∗∗ by pairs {Fa, Gc} and {Fb, Gd},
overall weight of M∗∗ does not decrease, and of course cannot increase by
optimality of M∗∗. Thus optimality of M∗∗ is preserved. In addition, M and
M∗∗ now share the node pair {Fa, Gc} actually placed into M . Execution time
O(n2 log n) for the algorithm results by first sorting the n2 weights of edges
in time O(n2 log n2) = O(n2 log n). Then the process of building matching M
requires a linear walk through at most O(n2) edges. ��

6.2.4 Cycle Cover Versus Cyclic Covering by Strings

The concatenation of prefix strings introduced above (in Fig. 6.2 shown for the
case of a cycle F1, F2, F3, F4, F1 of length 4 by black coloured areas, whereas
the final overlap string is indicated by a grey coloured area) plays an important
role in the following discussion. This string is called the prefix string P defined
by the considered local cycle.

P = prefix(F1, F2)prefix(F2, F3) . . .prefix(Fm−1, Fm)prefix(Fm, F1) (6.5)

Lemma 6.5.
Prefix string P of a local cycle F1, . . . , Fm, F1 is a non-empty string. Strings
F1, . . . , Fm occur as substrings of the m-fold concatenation Pm of P , for a
sufficiently great number m. It is said that string P cyclically covers a string
set in case that all strings in the covered string set occurs as substrings of the
m-fold concatenation Pm of P , for a sufficiently great number m.

Proof. Take a look at the situation shown in Fig. 6.5. We observe that prefix
string P , i.e. the concatenation of the four black coloured areas forms a non-
empty string (remember that overlaps were defined as proper overlaps, also
for the case of an overlap of a string with itself). Also P occurs as a prefix
of F1. Thus, P occurs a second time in the diagram as prefix of the second
occurrence of F1 shown as grey coloured area. Switching to the first occurrence
of F1 entails that concatenation PP occurs as a prefix F1. Switching back to
the second occurrence of F1 we also find PP as prefix of the grey coloured area.
When applying these back-and-forth switches sufficiently often the conclusion
of the lemma follows. ��

Having shown that for a local cycle F1, . . . , Fm, F1 its prefix string P cyclically
covers every strings within string set {F1, . . . , Fm}, we conversely show that
any string Q that cyclically covers a string set leads to an ordering F1, . . . , Fm

of the strings in the covered string set with prefix string P that is no longer
than Q. This can be seen as follows. Assume that strings within the considered
string set occur as substrings of Qm, for some number m. Arrange strings from
the considered string set according to their start position within the left-most
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P P P P P

Fig. 6.5. Prefix string P cyclically covers strings from a local cycle

copy Q. We obtain a permutation F1, . . . , Fm of the strings. Denote by p the
start position of string F1 in the first copy of Q. Now note that the second
use of string F1 as end string in cycle F1, . . . , Fm, F1 starts before or at the
same position p in the second copy of Q. The prefix string P defined by this
ordering is thus located between position p in the first copy of Q and some
position q left of or equal to position p in the second copy of Q. Thus, P is
no longer than Q is.

This observation opens way for a different interpretation of a minimum
cycle cover for a string set. Given a minimum cycle cover of size σ for string set
F that consists of k local cycles with prefixes P1, . . . , Pk of lengths p1, . . . , pk

fulfilling σ = p1 + . . .+pk, we obtain the string set C = {P1, . . . , Pk} of overall
size σ = p1 + . . . + pk such that every string in F is cyclically covered by at
least one of the strings from C. We briefly say that C cyclically covers F .
Thus the minimum overall size of a string set that cyclically covers F is less
or equal to σ. Conversely, having a string set C of minimum overall size σ
that cyclically covers F , we may construct from this a finite set of local cycles
that forms a cycle cover for F with prefixes P1, . . . , Pk of lengths p1, . . . , pk

fulfilling σ ≤ p1 + . . .+ pk. Thus the minimum sum of lengths in a cycle cover
for F is less or equal to p1 + . . . + pk.

Summary

For a substring-free string set F, there is a one-to-one correspondence between
minimum size cycle covers in the prefix graph of F, and minimum size strings
sets that cyclically cover all strings of F. Thus we may freely use the model
that is best suited in every of the forth-coming constructions.

6.2.5 Some Combinatorial Statements on Cyclic Covering

We say that string S has period p if for all i such that 1 ≤ i ≤ |S| and
1 ≤ i+ p ≤ |S|, character S(i) coincides with character S(i+ p). Let gcd(p, q)
denote the greatest common divisor of two positive integers p and q.

Lemma 6.6. Greatest Common Divisor Property
If string S of length at least p+ q has period p as well as period q, then S also
has gcd(p, q) as period.
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Proof. If p = q then gcd(p, q) = p and the assertion of the lemma is triv-
ial. Now assume q < p. Since Euklid’s algorithm computes gcd(p, q) by suc-
cessively subtracting the smaller number from the greater one, it suffices to
show that S also has period p − q. Consider i such that 1 ≤ i ≤ |S| and
1 ≤ i + p − q ≤ |S|. If i ≤ q then 1 ≤ i + p ≤ q + p ≤ |S| holds. As S
has period p and also period q we obtain S(i) = S(i + p) = S(i + p − q). If
i > q then 1 ≤ i − q ≤ |S| holds. As S has period q and also period p we
obtain S(i − q) = S(i) = S(i − q + p). In both cases we have shown that
S(i) = S(i + p − q) holds. ��

Lemma 6.7. Cyclic Shift Property
Let string S be decomposed as S = AB. Then string T = BA is called a cyclic
shift of S. Strings S and T cyclically cover the same strings.

Proof. Note that (AB)m is a substring of (BA)m+1, and (BA)m is a substring
of (AB)m+1. ��

Lemma 6.8. Overlap Property
Consider a minimum size cyclic cover C for a substring-free string set F . Let
P and P ′ be different strings in C. Let S be cyclically covered by P and S′ be
cyclically covered by P ′. Then the following estimation holds:

o(S, S′) < |P | + |P ′|

Proof. Assume that o(S, S′) ≥ |P |+ |P ′| holds. We treat the case that |P ′| ≤
|P | holds. Since overlap(S, S′) is a substring of both S and S′, and since S and
S′ are cyclically covered by P and P ′, respectively, we know that overlap(S, S′)
has period |P | as well as period |P ′|.

We show that |P | 	= |P ′| holds. Assume that |P | = |P ′| holds. Since
o(S, S′) ≥ |P |+ |P ′| holds, we may assume that some cyclic shift Q of P starts
at the first character of overlap(S, S′) and is completely contained within
overlap(S, S′). Similarly, we may assume that some cyclic shift Q′ of P ′ starts
at the first character of overlap(S, S′) and is completely contained within
overlap(S, S′). Thus Q = Q′. Replacing P and P ′ in cyclic cover C by the
single string Q would give us a cyclic cover of string set F of lower size. This
contradicts minimality of C.

Thus we have shown that |P ′| < |P | holds. Now we apply the Great-
est Common Divisor Lemma and conclude that overlap(S, S′) also has the
greatest common divisor r of |P | and |P ′| as period. Being a substring of
overlap(S, S′) we conclude that also P has period r. Consider the prefix R of
P with length r. R is strictly shorter than P , and every string that is cyclically
covered by P is also cyclically covered by R. Replacing string P by string R
in the cyclic cover C leads to a new cyclic cover of smaller size. Again, this
contradicts minimality of the given cyclic cover. ��
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6.2.6 4-Approximation Algorithm

Let be given a substring-free set of strings F .

• Compute its overlap graph (using suffix trees as presented in Sect. 4.3 to
achieve maximum efficiency).

• Compute a maximum weight perfect matching in overlap graph by the
greedy algorithm presented above.

• Transform this maximum weight perfect matching into a minimum cost
cycle cover in prefix graph. Let there be k local cycles Ci = Ai, . . . , Bi, Ai

with initial string Ai and final string Bi (for i = 1, . . . , k).
• Let Pi be the prefix string for cycle Ci, and Oi = overlap(Bi, Ai). Return

as common superstring S the concatenation of local common superstrings
PiOi (in arbitrary order).

As PiOi is a local superstring for the strings in Ci, it follows that S is a su-
perstring for all strings in F . Denote by c the costs of the computed minimum
cost cycle cover.

c = |P1| + |P1| + . . . + |Pm| (6.6)

Let Sopt be a shortest superstring for F . We know that c ≤ |Sopt| holds.
Furthermore we obtain:

|S| = |P1| + o(B1, A1) + . . . + |Pm| + o(Bm, Am)
≤ c + |B1| + . . . + |Bm|

(6.7)

Now we also need a shortest superstring Topt for the set of end strings
{B1, . . . , Bm} of the computed local cycles. Since Sopt is also a superstring
for {B1, . . . , Bm}, we conclude that

|Topt| ≤ |Sopt| . (6.8)

Arrange strings in {B1, . . . , Bm} according to their start position in Topt ob-
taining a permutation Bπ(1), Bπ(2), . . . , Bπ(m). We thus know that:

|Topt| = p(Bπ(1), Bπ(2)) + . . . + p(Bπ(m−1), Bπ(m)) +
∣∣Bπ(m)

∣∣
=

∣∣Bπ(1)

∣∣ − o(Bπ(1), Bπ(2)) + . . . +
∣∣Bπ(m−1)

∣∣
− o(Bπ(m−1), Bπ(m)) +

∣∣Bπ(m)

∣∣ .

(6.9)

From the Overlap Lemma we know that:

o(Bπ(i), Bπ(i+1)) ≤
∣∣Pπ(i)

∣∣ +
∣∣Pπ(i+1)

∣∣ . (6.10)

Taking all these observations together we obtain:
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|S| ≤ c + |B1| + . . . + |Bm|
= c +

∣∣Bπ(1)

∣∣ + . . . +
∣∣Bπ(m−1)

∣∣ +
∣∣Bπ(m)

∣∣
= c + |Topt| + o(Bπ(1), Bπ(2)) + . . . + o(Bπ(m−1), Bπ(m))

≤ c + |Topt| +
∣∣Pπ(1)

∣∣ +
∣∣Pπ(2)

∣∣ +
∣∣Pπ(2)

∣∣ +
∣∣Pπ(3)

∣∣
+ . . . +

∣∣Pπ(m−1)

∣∣ +
∣∣Pπ(m)

∣∣
≤ c + |Topt| + c + c

≤ 3c + |Sopt|
≤ 4 |Sopt| .

(6.11)

6.2.7 Putting Things Together

The central idea in the 4-approximation algorithm is to let local cycles (cor-
responding to growing local matchings) grow according to a greedy strategy
in an overlap graph. Whenever it happens that in such a growing local cycle
F1, . . . , Fm first string F1 has greater overlap with last string Fm than any
other not yet used string has with Fm, the local cycle must be closed. Instead
of managing growing local cycles we may alternatively maintain the growing
superstring S finally resulting from such cycles by concatenation. Note that
the overlap between Fm and another string T is the same as the overlap be-
tween S and T , and the overlap between Fm and F1 is also the same as the
overlap between S and S itself. This leads to the following final formulation
of the approximation algorithm, given a substring-free string set F . It uses
variable Open to maintain concatenated strings corresponding to still growing
local cycles, and variable Closed to store concatenated strings corresponding
to closed local cycles.

Open = F
Closed = ∅
while Open 	= ∅ do

choose S and T in Open with maximal value o(S, T )
if S 	= T then

merge S and T to obtain string merge(S, T )
Open = (Open − {S, T}) ∪ {merge(S, T )}

else
Open = Open − {S}
Closed = Closed ∪ {S}

end if
end while
return arbitrary concatenation of all strings in Closed

Compare this pseudocode with the corresponding code for the originally dis-
cussed simple greedy algorithm for the shortest common superstring problem.
It is astonishing to see that both codes differ only in a minor part. Nev-
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ertheless, the difference makes it possible to formally prove 4-approximation
quality of the algorithm discussed here, whereas the exact status of the greedy
algorithm is still unknown.

6.3 Steiner String

6.3.1 Problem Restated

The Steiner string problem is the task of finding a string S for given strings
S1, . . . , Sk which minimizes the pairwise alignment distance sum (using dis-
tance minimization instead of score maximization)

k∑
i=1

dopt(Si, S) . (6.12)

As was noted in Chap. 5, it is an NP-hard problem.

6.3.2 Feasible Lower Bound

Lemma 6.9.
Let S be a Steiner string for S1, . . . , Sk. Then there exists a string Snext among
S1, . . . , Sk such that the following estimation holds:

k∑
i=1

dopt(Si, Snext) ≤
2(k − 1)

k

k∑
i=1

dopt(Si, S) .

This shows that we obtain a feasible lower bound for the Steiner sum 6.12 by
taking a minimum:

min
a=1,...,k

k

2(k − 1)

k∑
i=1

dopt(Si, Sa) ≤
k∑

i=1

dopt(Si, S) .

Proof. For arbitrary index a, we estimate:

k∑
i=1

dopt(Si, Sa) =
k∑

i=1,i �=a

dopt(Si, Sa)

≤
k∑

i=1,i �=a

(dopt(Si, S) + dopt(S, Sa))

=
k∑

i=1

dopt(Si, S) − dopt(Sa, S) + (k − 1)dopt(S, Sa)

=
k∑

i=1

dopt(Si, S) − (k − 2)dopt(S, Sa) .
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Now consider string Snext among S1, . . . , Sk next to Steiner string S:

dopt(Snext, S) = min
i=1,...,k

dopt(Si, S) .

Note that Snext exits, whereas we cannot feasibly compute its distance to S.
This will thus not be the lower bound we are looking for. By choice of Snext

we know that
k∑

i=1

dopt(S, Si) ≥ kdopt(S, Snext) .

Former estimation for a = next and the latter estimation together yield:

∑k
i=1 dopt(Si, Snext)∑k

i=1 dopt(Si, S)
≤

∑k
i=1 dopt(Si, S) − (k − 2)dopt(S, Snext)∑k

i=1 dopt(Si, S)

= 1 +
(k − 2)dopt(S, Snext)∑k

i=1 dopt(Si, S)

≤ 1 +
(k − 2)dopt(S, Snext)

kdopt(Snext, S)

= 1 +
k − 2

k
=

2(k − 1)
k

.

Thus we have shown:

k∑
i=1

dopt(Si, Snext) ≤
2(k − 1)

k

k∑
i=1

dopt(Si, S) .

��

6.3.3 2-Approximation Algorithm

A center string of S1, . . . , Sk is a string Scenter taken from S1, . . . , Sk which
minimizes summed alignment distances to all other strings.

k∑
i=1

dopt(Scenter, Si) = min
a=1,...,n

k∑
i=1

dopt(Sa, Si)

Lemma 6.10.
The algorithm returning a center string Scenter for S1, . . . , Sk is a 2-approxima-
tion algorithm.
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Proof.

k∑
i=1

dopt(Si, Scenter) ≤ min
a=1,...,k

k∑
i=1

dopt(Si, Sa)

≤ 2(k − 1)
k

k∑
i=1

dopt(Si, S)

≤ 2
k∑

i=1

dopt(Si, S)

��

6.4 Phylogenetic Alignment

The construction presented above can be readily generalized to the phyloge-
netic alignment problem. Let a rooted tree be given with strings S1, . . . , Sk

distributed to its leafs. We call an assignment of strings to its non-leaf nodes a
lifted phylogenetic alignment if at every non-leaf node u some string attached
to one of its sons is attached to u. This can also be described as follows: for
every node u with attached string Su there is a path from node u down to
some leaf f such that the same string Su is attached to all nodes along this
path (and thus Su coincides with the string Sf attached to the arrived leaf
f).

Theorem 6.11. Given a rooted tree with strings S1, . . . , Sk distributed to its
leaves, there is a lifted phylogenetic alignment whose summed distance value is
at most 2 times the minimum possible summed distance value of an arbitrary
phylogenetic alignment.

Proof. Let Tu be the string attached to non-leaf node u in a minimum distance
phylogenetic alignment. In a bottom-up traversal through the tree we lift a
certain string Su ∈ {S1, . . . , Sk} to each non-leaf node u in such a way that
the resulting attachment maximally resembles the optimal one. More precisely,
working at non-leaf node u with successor nodes u(1), . . . , u(k) which already
got their lifted attachments Su(1), . . . , Su(k), we replace Tu with the string
Snext(u) among Su(1), . . . , Su(k) that has least difference dopt(Snext(u), Tu). Re-
member that such a choice of string Snext(u) also appeared in the proof for the
Steiner approximation algorithm having approximation factor 2. Also note
that here we only prove the existence of a lifted phylogenetic alignment of
summed distance at most 2 times the minimum summed distance, the com-
putation of such a lifted phylogenetic alignment was already performed in
Chap. 3 using dynamic programming. Now we estimate the summed distance
values within the lifted tree. For each leaf string Sa consider the path from Sa

towards the root whose nodes are all labelled with the string Sa up to the last
node v that is labelled with Sa. Consider also the immediate predecessor node
u of v labelled with a string Snext(u) that is thus different from Sa. Note that
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the lifted phylogenetic tree is partitioned into these disjoint paths. Of course,
only term dopt(Snext(a), Sa) from each such path contributes to the summed
distance value (all other distances have value 0). Thus situation is as shown
in Fig. 6.6.

u u )(unextSuT (a) (b)

v vvT
aS

f aSf aS

Fig. 6.6. (a) Minimum distance alignment; (b) one of the paths of the lifted align-
ment

The following estimations hold by choice of Tnext(u) and the triangle inequality:

dopt(Snext(u), Tu) ≤ dopt(Sa, Tu)
dopt(Snext(u), Sa) ≤ dopt(Snext(u), Tu) + dopt(Tu, Sa) .

Both together yield:

dopt(Snext(u), Sa) ≤ 2dopt(Tu, Sa) .

Now we apply a cascade of triangle inequalities in the T-tree and obtain:

dopt(Tu, Sa) ≤ dopt(Tu, Tv) + dopt(Tv, Sa) ≤ dopt(Πu→leaf )

where Πu→f denotes the path from node u to leaf f and dopt(Πu→f ) the
summed alignment distances along this path in the tree labelled with string
Tu.
Taking all together we have shown:

dopt(Snext(u), Sa) ≤ 2dopt(Πu→f ) .

As we considered only pairs u, v with Su 	= Sv, the occurring paths Πu→f do
not overlap. Summing over set X of all node pairs u, v in S with an edge from
u to v and Su 	= Sv thus reduces to twice summing over set Y of all node
pairs a, b in T with an edge from a to b:∑

(u,v)∈X

dopt(Snext(u), Sv) ≤ 2
∑

(a,b)∈Y

dopt(Ta, Tb) .

��
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6.5 Multiple Alignment

6.5.1 Feasible Lower Bound

Consider strings S1, . . . , Sk. As we have seen in Chap. 2, multiple alignment
becomes easy whenever we have a tree structure on string set S1, . . . , Sk at
hand such that only pairs of string connected in the tree count for overall
score (instead of all pairs as in sum-of-pairs scoring).

For this section, let us switch from score maximization to distance min-
imization. This is only a minor modification, but has the advantage that in
terms of distance functions notions such as the triangle inequality make sense,
which would be rather unusual for scoring functions. Thus we assume that we
have a symmetric distance measure d(x, y) = d(y, x) on pairs of characters,
and d(x,−) = d(−, x) on pairs of characters and spacing symbol. Further
assume that d(x, x) = 0. Usually we also assume triangle inequality, that is
d(u, v) ≤ d(u,w) + d(w, v). If in addition d(u, v) > 0 for any two different
objects u and v holds, we call d a metric.

Given a distance measure d on pairs of characters and spacing symbol, we
define the distance for an alignment T1, T2 of common length n as follows.

d∗(T1, T2) =
n∑

p=1

d(T1(p), T2(p)) (6.13)

Given strings S1 and S2 we define their minimum distance value taken over
all alignments T1, T2 of S1 with S2.

dopt(S1, S2) = min
alignments T1,T2

d∗(T1, T2) (6.14)

As in Sect. 6.3.3 we make use of center string Scenter for string set S1, . . . , Sk

defined by the following equation:

k∑
i=1

dopt(Scenter, Si) = min
a=1,...,n

k∑
i=1

dopt(Sa, Si) (6.15)

Lemma 6.12. Feasible Lower Bound
Let T1, . . . , Tk be an optimal alignment of S1, . . . , Sk, and Scenter be a center
string for S1, . . . , Sk. Then the following holds.

k

2

k∑
i=1

dopt(Si, Scenter) ≤ d∗(T1, . . . , Tk)
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Proof.

k

2

k∑
i=1

dopt(Si, Scenter)

≤ 1
2

(
k∑

i=1

dopt(Si, S1) +
k∑

i=1

dopt(Si, S2) + . . . +
k∑

i=1

dopt(Si, Sk)

)

=
1
2

k∑
i=1

k∑
j=1

dopt(Si, Sj) ≤
1
2

k∑
i=1

k∑
j=1

d∗(Ti, Tj) = d∗(T1, . . . , Tk)

��

6.5.2 2-Approximation Algorithm

Lemma 6.13.
Let T1, . . . , Tk be an optimal alignment of S1, . . . , Sk, and C1, . . . , Ck be the
alignment of S1, . . . , Sk constructed with the tree with center string Scenter at
its root and the other strings distributed to k− 1 leaves as guide tree, thus for
all i:

d∗(Ci, Ccenter) = dopt(Si, Scenter) .

Then the following holds:

d∗(Ci, . . . , Ck) ≤ 2(k − 1)
k

d∗(T1, . . . , Tk) .

Proof.

d∗(Ci, . . . , Ck) =
1
2

k∑
i=1

∑
j �=i

d∗(Ci, Cj)

≤ 1
2

k∑
i=1

∑
j �=i

(d∗(Ci, Ccenter) + d∗(Ccenter, Cj))

=
1
2
(k − 1)

k∑
i=1

d∗(Ci, Ccenter) +
1
2
(k − 1)

k∑
j=1

d∗(Ccenter, Cj)

= (k − 1)
k∑

i=1

d∗(Ci, Ccenter)

= (k − 1)
k∑

i=1

dopt(Si, Scenter)

≤ 2(k − 1)
k

d∗(T1, . . . , Tk)

��
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6.6 Sorting Unsigned Genomes

Given a permutation π(1), . . . , π(n) of numbers 1, . . . , n, undirected reversal
between indices i, j with i ≤ j inverts order of numbers π(i), . . . , π(j). The
least number d(π) required to lead to the sorted permutation 1, . . . , n is called
the undirected reversal distance of permutation π. As was mentioned in Chap.
5, computation of the undirected reversal distance for arbitrary permutations
is NP-hard.

The introduction of boundary numbers 0 and n + 1 (comparable to node
L and R in an RD-diagram) simplifies some definitions (which without these
numbers would lead to a steadily distinction of whether we are working inside
a permutation, or at the left or right border). Thus we are from now on
working with 0, π(1), . . . , π(n), n + 1 as initial and 0, 1, . . . , n, n + 1 as final
permutation. However, note that reversals always take place between some
left position > 0 and right position < n + 1 (thus 0 and n + 1 are never
moved).

6.6.1 Feasible Lower Bound

If in a permutation 0, π(1), . . . , π(n), n+1 two numbers a and b with |a − b| = 1
occur as neighbours, there is no urgent necessity to execute a reversal sepa-
rating them. The reason is that “locally” at that position the permutation
is already sorted. Of course, it might nevertheless be advantageous to let a
reversal temporarily separate both numbers. Situation is different at all posi-
tions between two neighbouring numbers a and b for which |a − b| > 1 holds.
Any such position is called a breakpoint of permutation 0, π(1), . . . , π(n), n+1.
At any breakpoint we are forced to apply a reversal that separates the num-
ber immediately left of the breakpoint from the number immediately right of
the breakpoint. We denote by b(π) the number of breakpoints of permutation
0, π(1), . . . , π(n), n + 1. As an example, permutation 0, 7, 2, 3, 9, 6, 5, 4, 1, 8,
10 has 10 positions, 7 of them being breakpoints.

We require some more notions. Given a permutation 0, π(1), . . . , π(n), n+1,
we call a contiguous segment of maximum length that does not contain a
breakpoint a block. Blocks that do not contain 0 or n + 1 are called inner
blocks. Every block either consists of a monotonically increasing sequence of
numbers, called an increasing block, or of a monotonically decreasing sequence
of numbers, called a decreasing block. As an example, the permutation in Fig.
6.7 is segmented into increasing (arrow upwards) and decreasing (arrow down-
wards) blocks as follows (blocks of length 1 are at the same time increasing
and decreasing).

Lemma 6.14. Feasible Lower Bound

1
2
b(π) ≤ d(π)
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0 6 37 5 2 1 9 10 11 12 4 13 14 8 15

Fig. 6.7. Increasing and decreasing blocks

Proof. Any reversal may reduce at most two breakpoints (at its borders).
Thus, at least 1/2 b(π) reversals are required to sort the permutation. ��

6.6.2 4-Approximation Algorithm

Lemma 6.15.
Whenever there is an inner decreasing block, there exists a reversal that de-
creases b(π) by 1.

Proof. Assume that there is at least one inner decreasing block. Let m be the
minimum of all numbers within inner decreasing blocks, and i be its position
within the permutation. Thus we know that 1 ≤ m ≤ n and 1 ≤ i ≤ n, as
only inner blocks are considered. Now we also look at number m − 1 and its
position j within the permutation. Note that m−1 = 0 is possible. We collect
some information about numbers m and m − 1.

• Number m is the rightmost number of its inner decreasing blocks since
otherwise m − 1 would be a smaller number within an inner decreasing
block.

• As number m − 1 is not located within an inner decreasing block, m − 1
must be located either within an inner increasing block, or in the (al-
ways increasing) block of number 0, or in the (always increasing) block of
number n + 1. Either way, m − 1 is located within an increasing block.

• Numbers m and m−1 cannot occur immediately consecutive in that order
since otherwise also m − 1 would be part of the inner decreasing block of
m.

• Numbers m−1 and m cannot occur immediately consecutive in that order
since otherwise m would not be part of an inner increasing block.

• Numbers m − 1 and m are separated by at least one number.
• Number m − 1 is the rightmost number within its increasing block since

otherwise next number m would follow immediately right of m − 1.

Now we consider the positions i and j of number m and m−1. First look at the
case i < j. The situation is as shown in Fig. 6.8 with breakpoints indicated by
arrows. A broken arrow indicates a position that might still be a breakpoint
after the reversal, but also might have been removed as a breakpoint. Number
m − 1 cannot be n + 1, thus the reversal between positions i + 1 and j is
admissible. It removes at least one breakpoint. Second consider the case j < i.
Situation is as shown in Fig. 6.9. Number m cannot be n+1, thus the reversal
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between numbers positions j + 1 and i is admissible. It removes at least one
breakpoint.

incr m - 1 

…

mdecr …

decrm m - 1decr

Fig. 6.8. Removal of a breakpoint

incr

incr

m - 1 

m - 1 incrm

m… decr

…

Fig. 6.9. Removal of a breakpoint

��

Lemma 6.16.
If 0, π(1), . . . , π(n), n + 1 is a permutation different from the identity permu-
tation and without an inner decreasing block, then there exists at least one
inner increasing block. Application of a reversal that inverts such an inner
increasing block generates an inner decreasing block and does not increase the
number of breakpoints.

Proof. Consider the block B that contains number 0. This cannot be all of
0, π(1), . . . , π(n), n + 1 since otherwise we had the identity permutation. Also
consider block B′ that contains number n + 1. B and B′ are different blocks,
and both are increasing blocks (eventually at the same time also decreasing
blocks). Between B and B′ there must exist at least one further block B′′

since otherwise the permutation would be the identity permutation. B′′ is an
inner block, thus by assumption increasing. The rest of the lemma is clear. ��
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Theorem 6.17.
Below we present an efficient algorithm which reverses an arbitrary inner de-
creasing block if present, and thus reduces b(π) by 1 (Lemma 6.15), or inverts
an arbitrary inner increasing block otherwise (Lemma 6.16). As in every sec-
ond step or earlier number b(π) is decreased by 1, the algorithm requires at
most 2b(π) reversals to sort a given permutation with b(π) breakpoints. Using
the already shown estimation 1/2 b(π) ≤ d(π) we conclude that the algorithm
uses at most 4 times as many reversals as possible in the optimum case. Thus
we have a 4-approximation algorithm.

while π 	= identity permutation do
if there is no inner decreasing block then

invert an arbitrary inner increasing block
else

m = minimum number in all inner decreasing blocks
let i be the position of m
let j be the position of m − 1
if i < j then

reverse between i + 1 and j
else

reverse between j + 1 and i
end if

end if
end while

6.6.3 2-Approximation Algorithm

A slightly more careful analysis improves the approximation factor from 4 to
2.

Lemma 6.18.
Assume that 0, π(1), . . . , π(n), n + 1 contains an inner decreasing block. Then
a reversal can be chosen that either decreases b(π) by 1 and leads to a per-
mutation which again contains an inner decreasing block, or decreases b(π) by
2.

In the former case, we may proceed to decrease b(π) without need to provide
for an inner decreasing block by an extra reversal. In the latter case, reduction
of b(π) by 2 allows to execute a required extra reversal that creates an inner
decreasing block. Thus we obtain the following conclusion.

Corollary 6.19.
There is a 2-approximation algorithm for the unsigned genome rearrangement
problem.

Proof. Assume that 0, π(1), . . . , π(n), n+1 contains an inner decreasing block.
As before, we consider the minimum number m occurring in inner decreasing
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blocks, as well as number m − 1; let i be the position of m and j be the
position of m− 1. In case i < j (see Fig. 6.8) the considered reversal between
i + 1 and j again produced an inner decreasing block, namely the block that
contains m (observe that this is indeed an inner block). In case that j < i
holds, things get more difficult. In particular, Fig. 6.9 does not immediately
show, after the reversal between j+1 and i, an inner decreasing block. Assume
that there is no reversal that decreases b(π) by 1 and leads to a permutation
which again contains an inner decreasing block. Now we also consider the
maximum number M occurring in inner decreasing blocks, and let r be its
position. Finally consider number M + 1, and let s be its position. We collect
what we know about numbers m, m − 1, M , M + 1, and their positions:

• Number m is the rightmost element within its inner decreasing block.
• Number m − 1 is the rightmost element within its increasing block.
• Number M is the leftmost element within its inner decreasing block.
• M < n + 1 as n + 1 does not belong to an inner block.
• Number M + 1 is the leftmost element within its increasing block.
• Numbers m and m − 1 are not at neighbouring positions in the permuta-

tion.
• Number M cannot be immediately left of M + 1 since then M would be

part of an increasing block.
• Number M + 1 cannot be immediately left of M since then M would not

be the maximum number within inner decreasing blocks.
• Positions i and r are between 1 and n, position j may be 0, position s may

be n + 1.

In the following, positions i, j, r, s are more precisely determined. In the figures
shown below, breakpoints are always indicated by arrows. A broken arrow
always indicates a position where a breakpoint may still be present, but also
may have disappeared after the reversal.

• r < s

In case that s < r, the reversal between s and r − 1 would decrease b(π) by
1 and lead again to an inner decreasing block (the block containing number
M ; see Fig. 6.10), contrary to our assumption.

• r ≤ i

In case that i < r, the reversal between j + 1 and i would decrease b(π) by
1 and lead again to an inner decreasing block (the inner block containing
number M ; see Fig. 6.11), contrary to our assumption.

• j < r

In case that r ≤ j, the reversal between j + 1 and i would decrease b(π)
by 1 and lead again to an inner decreasing block (the inner block containing
number M ; see Fig. 6.12), contrary to our assumption.

Thus, at the moment we know that r < s und j < r ≤ i (Fig. 6.13).
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MM + 1 n + 1 … incr … decr …0

0 n + 1 … MM + 1 … decr decr …

Fig. 6.10. Breakpoint removal

m Mm - 1 incr … decr … decr

incr m - 1 m Mincr … … decr

Fig. 6.11. Breakpoint removal

M mm - 1 decr … incr … decr

M decr … incr m - 1 m incr …

Fig. 6.12. Breakpoint removal

M mm - 1 incr … decr … decr

Fig. 6.13. Interim result

• i ≤ s

In case that s < i we had r < s < i, thus the reversal between r and s − 1
would decrease b(π) by 1 and lead again to an inner decreasing block (the
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inner block containing number m; see Fig. 6.14), contrary to our assumption.

M mm - 1 M + 1 incr … decr … incr … decr

incr m - 1 … M mM + 1 … incr incr … decr

Fig. 6.14. Breakpoint removal

Thus the situation is further clarified as shown in Fig. 6.15.

M mm - 1 M + 1 incr … decr … decr … incr

Fig. 6.15. Refined interim result

• i < s

This is obvious, as m is the minimum element within all inner decreasing
blocks, thus less or equal to the maximum element M within all inner de-
creasing blocks, thus less than M + 1.

• i + 1 = s

Assume that i + 1 < s holds. Then there would be a further inner block B
between the block of m and the block of M + 1. In case that B is decreasing,
the reversal between j + 1 (right of m − 1) and i (position of m) would re-
move one breakpoint and let B invariant as inner decreasing block, contrary
to our general assumption. In case that B is increasing, the reversal between
r (position of M) and s− 1 (left of M + 1) would remove one breakpoint and
create an inner decreasing block from B, contrary to our general assumption.

Thus situation is further clarified as shown in Fig. 6.16.

• j + 1 = r

Assume that j + 1 < r holds. Then there would be a further inner block B
between the block of m− 1 and the block of M . In case that B is decreasing,
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incr m - 1 … decrM … m M + 1 decr incr

Fig. 6.16. Refined interim result

the reversal between r (position of M) and s−1 (left of M −1) would remove
one breakpoint and let B invariant as inner decreasing block, contrary to our
general assumption. In case that B is increasing, the reversal between j + 1
(right of m−1) and i (position of m) would remove one breakpoint and create
an inner decreasing block from B, contrary to our general assumption.

Thus situation is further clarified as shown in Fig. 6.17. Application of the
reversal between r (position of M) and i (position of m) at once removes two
breakpoints. ��

M mm - 1 M + 1 incr decr … decr incr

incr m - 1 incr Mm M + 1 incr … incr

Fig. 6.17. Removal of two breakpoints

6.7 HP-Model Protein Structure Prediction

6.7.1 Feasible Upper Bound

Lemma 6.20.
Whenever in an HP-fold of string S two bits are in contact then there must
be an even number of bits between them.

Proof. Obvious? If not, take a look at the fold in Fig. 6.19. ��

As we are interested in contacts between bits 1, it plays a role whether two
occurrences of bit 1 are separated by an even or odd number of zeroes. This
leads to a certain decomposition of any bit string that plays a crucial role in
the following. Following the conventions with regular expressions we denote
by:

• (00)∗ an even number of zeroes
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• (00)∗0 an odd number of at least one zero
• 0∗ an arbitrary number of zeroes

We call any string of the form 1(00)∗01(00)∗01 . . . 1(00)∗01 a block. Note that
a block starts and ends with bit 1, each of its bits 1 is separated from the next
bit 1 through an odd number of bits 0. A block may consist of bit 1 alone.
Now any bit string S can be uniquely decomposed into:

• a prefix consisting of an arbitrary number of bits 0
• blocks that are separated from the next block by an even number (can be

zero) of bits 0
• a suffix consisting of an arbitrary number of bits 0

We denote in an alternating manner blocks as X-blocks Xi and Y-blocks Yi.
The sense of this alternation will soon become clear.

S = 0∗X1(00)∗Y1(00)∗X2(00)∗Y2(00)∗X3(00)∗Y3(00)∗ . . . (00)∗Xk/Yk0∗

As an example consider the string in Fig. 6.18. Block structure is indicated
by shadowed areas.

000 101010101 00 00000010101000001 1 1 1 1 1

X1 Y1 X2 Y2 X3 Y3 X4

Fig. 6.18. X- and Y-blocks

Lemma 6.21.
Given two bits 1 in the same or in different X-blocks, there is an odd number
of bits between them. The same holds for bits 1 within the same or different Y-
blocks. Thus, in an HP-fold, there can be contacts between bits 1 only in case
that one is located in an X-block, and the other one is located in a Y-block.

Proof. Convince yourself from the correctness of the lemma by inspecting
various combinations of two bits 1 in the example of Fig. 6.18. Alternatively,
give a formal proof. ��

For an arbitrary string S consider its unique block structure as defined above
and count the number x(S) of bits 1 in its X-blocks, and the number y(S) of
bits 1 in its Y-blocks. For simplicity, assume from now on that x(S) and y(S)
are even numbers (and think about necessary modifications in the following
for the case that one or two of these numbers are odd).

Lemma 6.22.
For a string of length n with numbers x(S) and y(S) as defined above, any
HP-fold of S can contain at most 2 min {x(S), y(S)}+2 contacts between two
bits 1.
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Proof. Assume that x(S) ≤ y(S). In every contact between two bits 1 there
must be exactly one bit used from an X-block. Every node occupied by bit
Si in the HP-model can make at most two contacts with other bits as one of
its four neighbour nodes is occupied by the immediate predecessor bit Si−1,
and another one of its four neighbour nodes is occupied by the immediate
successor bit Si+1 (these both do not count as HP-contacts). This rule has
two exceptions: nodes that are occupied by S1 and Sn may have at most three
contacts. In summary, there are at most 2x(S) + 2 many contacts in any HP-
fold of S. ��

6.7.2 Asymptotic 4-Approximation Algorithm

Lemma 6.23. Split Lemma
Every string S can be decomposed into S = S′S′′ such that either S′ contains
at least 50% of all bits 1 occurring in X-blocks of S and S′′ contains at least
50% of all bits 1 in Y-blocks of S, or conversely S′′ contains at least 50% of
all bits 1 occurring in X-blocks of S and S′ contains at least 50% of all bits 1
occurring in Y-blocks of S (it does not matter where string S is separated; split
position might as well be within an X- or Y-block without causing problems in
the construction of a fold below).

Proof. Traverse S from left to right and determine the leftmost position p in
S such that left of position p there are exactly 50% of the bits 1 occurring
in X-blocks of S. By the same way, determine the rightmost position q in S
such that right of q there are exactly 50% of the bits 1 occurring in Y-blocks
of S (think about what has to be modified in case that x(S) and/or y(S) are
not even). In case that p ≤ q we may split S anywhere between p and q and
obtain the first variant of the conclusion of the lemma, in case that q < p
we split S anywhere between q and p and obtain the second variant of the
conclusion of the lemma. ��
From now on let us treat the case S = S′S′′ with S′ containing at least 50%
of the bits 1 occurring in X-blocks of S, and S′′ containing at least 50% of
bits 1 occurring in X-blocks of S. We now fold S′ and S′′ in a very special
manner, placing all of the bits 1 in S′ that belong to an X-block of S above
a ”borderline”, and all bits 1 in S′′ that belong to a Y-block of S below
this borderline such that as many as possible of them are in contact. Details
are first made clear with an chosen example, and then the construction is
described more generally.

As an extended example, we treat S = S′S′′ decomposed as shown below.
Note that x(S) = 12 and y(S) = 14. S′ contains 6 of the 12 bits 1 of X-blocks
in S, and S′′ contains 10 of the 14 bits 1 in Y-blocks of S.

S′ = 000 1010000010001︸ ︷︷ ︸
X1

00 1010001︸ ︷︷ ︸
Y1

1︸︷︷︸
X2

1︸︷︷︸
Y2

1︸︷︷︸
X3

0000

S′′ = 10000010100010001︸ ︷︷ ︸
Y3

0000 1000101010000010001︸ ︷︷ ︸
X4

00 10100000101000001︸ ︷︷ ︸
Y4
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The constructed fold is shown in Fig. 6.19. Bits 1 in X-blocks are drawn as
black dots, bits 1 in Y-blocks as grey dots, and bits 0 as white dots. Note
that black dots from S′ occur above the borderline at every second position,
with a white or grey dot separating successive black dots. At the right end
of the borderline we bend the fold in such a way that the leftmost 1 from
S′′ is below the rightmost 1 from S′. Now the same is done for S′′ below
the borderline that was done for S′ above the borderline: grey dots from S′′

occur below the borderline at every second position, with a white or black dot
separating successive grey dots. By this way, at least 1/2 min {x(S), y(S)}
pairings between black and grey dots are realized.

border-line

Fig. 6.19. Special fold along borderline used by the 4-approximation algorithm

Figure 6.20 again explains the construction for the general case. The num-
ber of nodes between any two consecutive bits 1 in an X-block is odd. Also,
the number of nodes between last bit 1 of an X-block and first bit 1 of the
next X-block is odd as the Y-block between has an odd number of nodes.
This makes it possible to place all bits 1 of X-blocks of S′ at every second
position of the indicated borderline. As the number of nodes between last 1 in
S′ belonging to an X-block and first 1 in S′′ belonging to an Y-block is even,
it is possible to place this first 1 of S′′ on the borderline exactly below this
last 1 of S′. Now the game proceeds with Y-blocks of S′′ below the borderline
exactly the same way as with X-blocks of S′ above the borderline. As a result,
a number of 1/2 min {x(S), y(S)} many pairs of black and grey nodes can be
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placed on the borderline side-by-side (though eventually one of these pairs of
black and grey nodes does not count as a contact, as is made clear below).

(b)

(a)(a)(a) (a) (a)

first X-block
next X-block

  first bit 1 in 

Y-blocks of S’’

(c)

(a)(a)

(a)
       last bit 1 in 

X-blocks of S’

first Y-block 

Fig. 6.20. Black nodes represent all bits 1 of X-blocks of string S′. Each of the
paths starting above a black node on the borderline consists of an odd number of
nodes and ends with a node on the borderline. Bold lines (a) indicate blocks of all
zeroes that separate consecutive bits 1 within X-blocks; broken lines (b) indicate
blocks consisting of all zeroes between an X-block and next Y-block together with
the complete next Y-block; “turn around” (c) consists of an even number of nodes
between black and grey dot. Below borderline the same picture results with Y-blocks
of string S′′ (bits 1 of Y-blocks within S′′ are represented by grey dots).

As Fig. 6.19 for the particular example shows, and Fig. 6.20 makes clear
for the general case, we manage to create a fold with a number of contacts
of bits 1 that is at least min {1/2 x(S), 1/2 x(S)} − 1. Note where the ‘-1’
comes from. It might be the case that the last 1 in the last X-block of S′ is
immediately followed by the first 1 in the first Y-block of S′′ (for example,
think of strings consisting only of bits 1). In that case, this single pair of
immediately consecutive bits 1 does not count as a contact. Now we put this
number in relation to the maximum possible number max of folds as follows:

max ≤ 2 min {x(S), y(S)} + 2

min {x(S), y(S)} ≥ 1
2

(max−2)

folds ≥ 1
2

min {x(S), y(S)} − 1 ≥ 1
2

1
2

(max−2) − 1 =
1
4

max−3
2

(6.16)

This looks almost as expected for a 4-approximation algorithm, if we ignore
the constant additive term −1 1

2 . Indeed, it is an example of a 4-approximation
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algorithm in the asymptotic sense. We omit a formal definition of what
“asymptotic sense” precisely means (it is easy and can be found in every
textbook on complexity theory), but explain it informally: as string S gets
larger and larger and, related to this, also the maximum number of contacts
in any HP-fold of S grows, constant additive term −1 1

2 becomes more and
more negligible. Suppressing it at all gives the estimation for the case of a-
approximation (note that factor 1/4 for maximization corresponds to factor
4 for minimization problems).

folds ≥ 1
4

max (6.17)

6.8 Bibliographic Remarks

Good introductions to the theory of approximation algorithms can be found in
Papadimitriou [61], a more extended treatment can be found in the textbook
of Vazirani [74].



7

A Selection of Metaheuristics and Various
Projects

Besides the algorithm design paradigms presented in the preceding chapters
that have a clear theoretical foundation, various more or less well understood
heuristics are applied to solve bioinformatics problems, often with astonish-
ing good results. Though emphasis of this textbook is clearly on strict formal
methods, these heuristics should not be completely omitted. Instead of talk-
ing of “heuristics” we use the term “metaheuristics” here, as the presented
methods are more universal frameworks for the solution of various problems,
and not so much single heuristics suited for the solution of one, and only one
problem. Without any attempts to be complete, the following metaheuristics
are presented and illustrated with the aid of some projects. The reader in-
terested in getting a deeper understanding of one of these methods may then
consult one of the recommended textbooks. Each of these attempts is briefly
presented only as far as it is required for the understanding of the treated
applications.

• Multi-layer perceptrons [4, 12]
• Support vector machines [24]
• Hidden Markov models [4, 46]
• Ant colony optimization [25]
• Genetic algorithms [54, 72]

7.1 Multi-Layer Perceptron

We might take the standpoint that we use neural networks as black boxes with-
out asking what happens inside the box. Up to some extend, one may indeed
hope that an efficient neural network simulator does a good job and we only
have to take care of the proper design of the interface between the application
problem and the black box. As it is well known from many projects, proper
design of interfaces is at the heart of a successful project implementation on
basis of neural networks. This is often stated as the problem of selecting fea-
tures that appropriately encode problem input. To get some feeling why this
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is so, and to also get some indication of what proper feature selection might
mean, it is helpful to have some (fortunately limited) insights into the inner
machinery of neural networks. The following sections try to present such a
very comprehensive crash course in neural network machinery.

7.1.1 Architecture of Multi-Layer Perceptrons

A single neuron is a device that receives real valued signals x1, . . . , xn, either
from predecessor neurons or from input interface, over wires that have at-
tached weights w1, . . . , wn. It integrates weighted input signals together with
its bias b into a sum called net input . An activation function f then deter-
mines what value y = f(net) is returned as output signal (either as input
signal for further neurons or returned as output signal).

x1 w1

wn

y

xn

Fig. 7.1. Signal neuron receiving weighted inputs

Various activation functions are common as, for example, sigmoid function
or thresholds function. Formal details are as follows.

net = net(w1, . . . , wn, x1, . . . , xn, b) =
n∑

i=1

wixi + b

y = f(net)

sigmoid funtion f(net) =
1

1 + e−net

thresholds function f(net) =

{
1 net > 0
0 net ≤ 0

Now a multi-layer perceptron consists of an ensemble of neurons that are
arranged into several layers such that there are only connections from each
layer to the next one right of it. Leftmost layer is called the input layer ,
rightmost layer is called the output layer , and any further layer between these
two layers is called a hidden layer . Figure 7.2 shows an example of a multi-
layer perceptron with 6 neurons in its input layer, 4 neurons in its first and 2
neurons in its second hidden layer, and a single output neuron.



7.1 Multi-Layer Perceptron 251

Fig. 7.2. Example multi-layer perceptron

7.1.2 Forward Propagation of Input Signals

Given input signals x1, . . . , xn, these are propagated through the layers of a
network from left to right according to the following formula which defines for
each neuron i its activation value yi assuming that yj is already computed for
all predecessor neurons j of neuron i (in the formula, wji denotes the weight
of the link leading from predecessor neuron j to neuron i):

yi =

⎧⎪⎨
⎪⎩

xi for input neuron i,

f(
∑

∀j with
j→i

wjiyj + bi) otherwise.

Thus, any multi-layer perceptron with n input neurons and m output neurons
defines a real-valued vector-function f : R

n → [0, 1]m such that f(x1, . . . , xn)
are returned as activation values y1, . . . , ym which occur at the output neurons
after propagation of input through the net. For the case of thresholds network
we obtain a bit-valued vector-function f : R

n → {0, 1}m.

7.1.3 Input and Output Encoding

In case of binary classification problems the design of input and output inter-
faces of a multi-layer perceptron is obvious. In case that we have to deal with
strings over more complex alphabets, for example the 20 amino acid alpha-
bet of proteins, there are various ways of encoding characters as signals for a
multi-layer perceptron. For the example of 20 characters, one way is to use
a single input neuron for each character that gets a real valued signal from
interval [0, 1] partitioned into 20 segments of equal size, or to use 5 neurons
for each character with a binary encoding expressing which one of the 20
characters is presented as input, or to use 20 neurons with an unary encoding
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(exactly one neuron gets value 1, the other ones get value 0) expressing which
one of the 20 characters is presented as input. Most often, unary encoding give
best results, as the multi-layer perceptron is not forced to learn, in addition to
the proper task, also the peculiarities of binary numbers. All what has been
said about input interface design also applies to output interface design.

7.1.4 Backpropagation of Error Signals

Multi-layer perceptrons attracted attention and experienced a renaissance in
the 1980s, when the famous backpropagation algorithm was invented that
provided the field with a mathematically well-founded and particularly sim-
ple to implement learning rule. We consider multi-layer perceptrons with the
sigmoid function as activation function (as a differentiable activation function
is required for the gradient descent based backpropagation procedure). Being
a gradient descent procedure that attempts to minimize quadratic error ob-
served at the output layer, its formula structure is particularly simple (and
particularly easily derived using the chain rule for partial derivatives of differ-
entiable functions of several variables) and is almost perfectly similar to the
forward propagation of activation values. After presenting an input vector x
to the network, propagating it through the network with a computation of
net inputs neti and output values yi for every neuron i, and expecting output
vector d at the output layer, weights wij are updated on basis of a quadratic
error function gradient descent procedure by values Δwij that are computed
in a backward propagation from the output layer back to the input layer (with
a learning rate η > 0). Though defined as partial derivatives, by the use of
the chain rule for partial derivatives formulas reduce to simple sums. This
simple structure of backpropagation makes it particularly attractive. Formal
details are as follows, with w being the vector of all weights (to make the
formulas easy to read, dependence on w, x, and d are not explicitly indicated
as variables in the functions occurring below).

error =
1
2

∑
output

neuron i

(yi − di)2

∂error
∂wij

=
∂error
∂netj

∂netj

∂wij
= δjyi

Here, we used the abbreviation δj = ∂error
∂netj

. Terms δj are computed from
output layer back to input layer using a second time chain rule. For output
neuron j we obtain1:

δj =
∂error
∂yj

∂yj

∂netj
= (yj − dj)f ′(netj) = (yj − dj)yj(1 − yj).

1 Derivative of sigmoid function f is computed as f ′(net) = f(net)(1 − f(net))
(easy exercise).
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For neuron j that is not an output neuron we assume that δk is already
computed for all successor neurons k of neuron j. Then we obtain:

δj =
∑

neurons k
with j→k

∂error
∂netk

∂netk

∂yj

∂yj

∂netj

=
∑

neurons k
with j→k

δkwjkf ′(netj)

= yj(1 − yj)
∑

neurons k
with j→k

wjkδk

Summarizing, backpropagation comprises the following gradient descent up-
date rule for weights Δwij = −ηyiδj with:

δj =

{
(yj − dj)yj(1 − yj) for output neuron j,

yj(1 − yj)
∑

j→k wjkδk otherwise.

7.1.5 Tuning Backpropagation

To turn backpropagation into a practically working learning rule requires some
more effort; we mention a few key words: avoiding stagnation of error mini-
mization within flat plateaus of error landscape; avoiding oscillation in narrow
valleys; momentum term; dynamic learning rate adaptation; flat spot elimi-
nation; early stopping; weight decay; optimal brain damage; architecture op-
timization by genetic algorithms; presentation schedule for training examples.
The reader interested in details may consult any standard textbook on neural
networks.

7.1.6 Generalization and Overfitting

Looking at multi-layer perceptrons as black boxes, we must not so much worry
about such technical details: hopefully an intelligent simulator does this job
for us. Much more important is to be aware of the steady danger of overfitting
due to too many degrees of freedom within a network, and the importance for
a very clever selection of features that are presented as input to a network.
As an example, learning to classify photographic images of human faces into
“male” or “female” does not make sense with a pixel representation of faces.
Instead one should think of features as hair style, lip colouring, and the like,
as input signals for the network. In statistical learning theory, we attempt to
achieve the following situation. With 99% probability (as an example value)
over a randomly drawn (with respect to an arbitrary, unknown distribution
of training data) training set T of size m, we want to have an upper bound
for the generalization error that may occur in the worst case after having
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chosen a classification function h from some function (hypothesis) space H
that classifies training data correctly. Only for restricted such function spaces
one may hope to get such an estimation for the generalization error. Using as
function space the set of all functions realized by a multi-layer perceptron with
a number W of adjustable parameters (weights and biases), and a number N
of neurons, the following rough estimations (omitting any constants, as well as
some minor factors) for generalization error are known in statistical learning
theory:

1. In case of threshold neurons, generalization error roughly scales with
1
mW log(W ).

2. In case of sigmoid neurons, generalization error roughly scales with
1
mW 2N2.

Though being rather imprecisely stated, these estimations nevertheless shed
light on generalization ability of neural networks: on the one side, the more
training data is available the higher is the chance of good generalization. On
the other side, with increasing size of the network, expected generalization er-
ror increases too. In particular, input dimension influences generalization error
for a multi-layer perceptron. This explains why it is so essential to properly
design input interface to a neural network: using appropriate features is at the
heart for obtaining a well-working network. Besides careful (and sparse) usage
of input features, pruning techniques that reduce the number of weights and
neurons as much as possible (without compromising training success) support
generalization ability.

7.1.7 Application to Secondary Structure Prediction

In Sect. 2.10.1 we discussed the problem of predicting the secondary structure
class of an amino acid in the middle of a window of width 13 amino acids.
Having available a large number of classified such windows, the problem is
ideally suited for a multi-layer perceptron approach. Use 13×20 input neurons
to represent a window of 13 amino acids in unary manner, and 3 output
neurons to represent the class ‘alpha helix’, ‘beta sheet’, or ‘loop’ of the centre
amino acid in a unary manner. With a limited number of hidden neurons
within two hidden layers it is possible to obtain good prediction results (see
[65]). Using, for example, 20 neurons in the first hidden layer, and 5 neurons
in the second hidden layer, we obtain a neural network with an overall number
of 260× 20+20× 5+5× 3 = 5215 weights. Thus architecture of a multi-layer
perceptron looks as shown in Fig. 7.3.

7.1.8 Further Applications

The most comprehensive overview of neural network applications to bioinfor-
matics is surely Baldi & Brunak [4]. We mention a few applications that are
treated in this book, but do not go into more details of the problems as the
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…20 neurons 
for amino 
acid 6iA

…20 neurons 
for amino 
acid iA

…20 neurons 
for amino 
acid 6iA

…
20 hidden 
neurons

Fig. 7.3. Standard architecture of a multi-layer perceptron for secondary structure
prediction

principled way to apply multi-layer perceptrons is always the same along the
lines presented with the example above. What differs and is problem-specific
is the proper design of interfaces to some neural network architecture and, of
course, the selection of suitable network architecture. Applications deal with
the identification and prediction of, for example:

• Intron splice sites [14]
• Signal peptides [57]
• Cleavage sites [57]
• Beta-sheet prediction [49]

7.2 Support Vector Machines

7.2.1 Architecture of Support Vector Machines

A training set T consists of m labelled points p located in a ball of radius
R (radius R is required later in an estimation of generalization error) in
n-dimensional real space, and associated labels d ∈ {+1,−1}. Support vector
machines aim to linearly separate positive points, that is points labelled +1,
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from negative points, that is points labelled -1, by a hyperplane such that
there is a corridor parallel to the hyperplane of maximal width 2μ that is free
of training points.

R

Fig. 7.4. Corridor separating positive from negative points

Any hyperplane in n-dimensional real space is defined by an n-dimensional
direction vector w (perpendicular to hyperplane) and a bias (offset) b as fol-
lows:

H(w, b) = {x ∈ R
n | 〈w, x〉 + b = 0}

Here 〈w, x〉 denotes inner product of vector w with vector x. Decomposing
any vector p into its component p≡ parallel to vector w, and p⊥ orthogonal
to w, we easily compute that H(w, b) has signed distance (positive, zero,
or negative) b‖w‖−1 to point (0,0), and signed distance (positive, zero, or
negative) (〈w, p〉 + b)‖w‖−1 to an arbitrary point p.

Exercise

7.1. Verify the formulas above.

7.2.2 Margin Maximization

Consider training set T = (x1, d1), . . . , (xm, dm). Separation of positive and
negative points by hyperplane H(w, b) means:

di = +1 → 〈w, xi〉 + b > 0

di = −1 → 〈w, xi〉 + b < 0.
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w
p

p

p

H(w,b)

Fig. 7.5. Computation of distance of point p from hyperplane H(w, b)

By rescaling weight vector w and bias b (that does not alter the hyperplane
considered) we may normalize the requirements above always as follows:

di = +1 → 〈w, xi〉 + b ≥ +1

di = −1 → 〈w, xi〉 + b ≤ −1.

Both requirements can be subsumed by the following single one:

di(〈w, xi〉 + b) − 1 ≥ 0.

Now one is interested in a hyperplane H(w, b) that maximizes the distance of
training points from the hyperplane, called margin:

μT (w, b) = min
i=1,...,m

|〈w, xi〉 + b|
‖w‖ .

7.2.3 Primal Problem

The discussion in Sect. 7.2.3 leads to the following primal margin maximiza-
tion problem:

MARGIN (primal form)
Given training set T = (x1, d1), . . . , (xm, dm),
minimize ‖w‖ subject to di(〈w, xi〉+b)−1 ≥ 0.

Note that weight vector as well as bias has to be found. The margin maxi-
mization problem is a quadratic optimization problem with linear constraints.
As for every real valued optimization problem with real valued constraints,
the general technique of Lagrange multipliers tells how to solve such a prob-
lem. We do not introduce here to the theory of Lagrange multipliers, but
directly present what sort of problem finally results from the margin maxi-
mization problem. For the following function depending on w1, . . . , wn, b, and
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non-negative Lagrange multipliers α1, . . . , αm a so-called saddle-point has to
be found:

L(w1, . . . , wn, α1, . . . , αm, b) =
1
2
〈w, w〉 −

m∑
i=1

αi(di(〈w, xi〉 + b) − 1).

This means that the term Q(α1, . . . , αm) below has to be maximized over
α1 ≥ 0, . . . , αm ≥ 0:

Q(α1, . . . , αm) = inf
w1,...,wn,b

L(w1, . . . , wn, α1, . . . , αm, b).

7.2.4 Dual Problem

To compute Q(α1, . . . , αm), for fixed values of α1, . . . , αm, partial derivatives
of function L with respect to wk and b have to be computed and set to zero:

0 =
∂L

∂wk
= wk −

m∑
i=1

αid
ixi

k

0 =
∂L

∂b
= −

m∑
i=1

αid
i.

Thus we get representations:

w =
m∑

i=1

αid
ixi

m∑
i=1

αid
i = 0.

Introducing the w obtained into the definition of function L yields:

L(w1, . . . , wn, α1, . . . , αm, b)

=
1
2

m∑
i=1

m∑
j=1

αiαjd
idj〈xi, xj〉 −

n∑
i=1

n∑
j=1

αid
iαjd

j〈xi, xj〉 +
n∑

i=1

αi

= −1
2

m∑
i=1

m∑
j=1

αiαjd
idj〈xi, xj〉 +

n∑
i=1

αi.

Thus we arrive at the following, so-called dual optimization problem to the
former primal problem:

MARGIN (dual version)
Maximize

−1
2

m∑
i=1

m∑
j=1

αiαjd
idj〈xi, xj〉 +

m∑
i=1

αi

subject to α1 ≥ 0, . . . , αm ≥ 0 and
∑m

i=1 αid
i = 0.
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As the function to be maximized is a quadratic, thus convex function, and
constraints are linear, this is a simple standard task for numerical mathe-
matics. What is remarkable is the fact that training vectors xi always occur
encapsulated within an inner product 〈xi, xj〉 . This will soon turn out to be
one of the main advantages of support vector machines.

7.2.5 Kernel Function Trick

Remember the starting point of this section, a training set of positive and
negative points in n-dimensional real space for which we seek for a separating
hyperplane. Most often, training sets are not linearly separable, but canonical
embeddings in higher-dimensional spaces make them linearly separable. The
simplest such problem is logical XOR. Drawing positive points (1, 0) and (0, 1),
and negative points (0, 0) and (1, 1) into the plane, we immediately see that
the problem is not linearly separable (Fig. 7.6 (a)).

z

x

y

(a) (b)

x

y

Fig. 7.6. XOR: (a) not linearly separable in 2 dimensions; (b) linearly separable
after being suitably embedded into 3 dimensions

Embedding this 2-dimensional problem into 3-dimensional space by intro-
ducing as a third component z = AND(x, y), leads to a linearly separable
problem (Fig. 7.6 (b)) with positive points (1, 0, 0) and (0, 1, 0), and nega-
tive points (0, 0, 0) and (1, 1, 1). Embedding into higher dimensional spaces
obviously improves the chance of obtaining a linearly separable problem, and
it does not lead to efficiency problems in the dynamics of a support vector
machine if one uses embeddings into higher dimensional spaces (even Hilbert
spaces of infinite dimension) based on so-called kernel functions. By this it is
meant that for an embedding Φ : R

n → R
N , inner products in N -dimensional

space for embedded points 〈Φ(x),Φ(y)〉 can be computed from inner product
in n-dimensional space by applying a kernel function k:

〈Φ(x),Φ(y)〉 = k(〈x, y〉).

As a simple example, consider the embedding function Φ that maps an
n-dimensional vector to all products of coordinates (this might make sense
if correlations between coordinates play a role in a problem).
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Φ
(
(xi)i=1,...,n

)
= (xixj)i,j=1,...,n

For n = 2 this looks as follows:

Φ(x1, x2) =
(
x2

1, x1x2, x2x1, x
2
2

)
.

We reduce computation of inner products of embedded vectors in 4-dimensional
space to inner products in 2-dimensional space as follows:

〈Φ(x1, x2), Φ(y1, y2)〉 = x2
1y

2
1 + x1x2y1y2 + x2x1y2y1 + x2

2y
2
2

= 〈(x1, x2), (y1, y2)〉2

Here we used kernel function k(z) = z2.

Exercise

7.2. Develop kernel functions for the embedding that forms all products con-
sisting of exactly d of the coordinates of an n-dimensional input vector, and
for the embedding that forms all products consisting of at most d of the co-
ordinates of an n-dimensional input vector (for d ≤ n).

7.2.6 Generalization and Over-Fitting

Contrary to the situation with multi-layer perceptrons, where generalization
error estimations depends on the number of adjustable parameters of a net-
work (in particular on input dimension), generalization error for an optimal
support vector machine trained on a set of m training points taken from a
ball of radius R and having maximum margin μ can be shown to scale with

1
m

R2

μ2
.

Note that the quotient Rμ−1 must be considered, since scaling of training data
does not alter the problem, of course, but leads also to a scaling of margin.
Only by using quotient Rμ−1 we are invariant with respect to scaling.

This result shows the remarkable fact that input dimension does not play
any role with respect to generalization ability of a support vector machine.
This allows us to introduce more liberally problem-specific input features. But
note that introduction of additional features must not be done in a completely
uncritical manner. Though maximum margin is expected to increase after
introduction of additional features, also radius R of the ball where data are
taken from will increase. Thus we must take care of a certain balance between
increase of margin and of radius.
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7.2.7 Application to Contact Map Prediction

The problem of contact map prediction for proteins was described in Sect.
2.10.1. Between predicting secondary structure of a protein P consisting of
n amino acids P = P (1) . . . P (n) and predicting its precise 3D structure lies
prediction of the so-called contact map. Contact map of a protein of n amino
acids is a symmetric n × n matrix consisting of entries 0 and 1. If the entry
in row i and column j is 1 this expresses that amino acids P (i) and P (j)
are nearby up to a certain extend in the natural fold of the protein. We
describe a support vector machine approach. As in Sect. 7.1, we focus on the
design of the interface to a network. To predict an eventual contact between
amino acids P (i) and P (j) of protein P , one again uses a certain number
of neighbouring amino acids, for example the two neighbours to the left and
the two neighbours to the right of each of P (i) and P (j). Besides certain
static chemical information, for example polarities of P (i) and P (j), it is
also convenient to use the above treated alpha-beta-coil prediction for each
of these 10 considered amino acids. A further source of valuable information
concerning contact behaviour within protein P comes from the analysis of
mutational covariance at sites i and j within a multiple alignment of a family
P = P1, ..., Pm of homologous proteins to which protein P belongs (see Fig.
7.7). In case that P (i) and P (j) are in contact this usually means that P (i)
and P (j) are part of a core structure of the protein that, being functionally
relevant, is strongly conserved through all proteins of protein family P. This
should be observable by a positive covariance of mutational behaviour at sites
i and j in the following sense.

Consider fixed sites i and j. We are interested in determining whether
there is a significant covariance of mutational events at sites i and j through
protein family P. We assume that for any two pairs of amino acids A and
B there is some numerical measure d(A, B) that expresses how strongly A
deviates from B. Considering at site i all pairs Pp(i) and Pq(i) of amino acids,
for p < q, we compute the expected value of these pairwise distances at site i
and j:

Ei[d] =
2

m(m − 1)

∑
p<q

d (Pp(i), Pq(i))

Ej [d] =
2

m(m − 1)

∑
p<q

d (Pp(j), Pq(j)) .

We now look whether being above-average or below-average for pairs of amino
acids at site i co-occurs with being above-average or below-average for the
corresponding pairs of amino acids at site j. Such a covariance is measured
by the following sum:∑

p<q

(d(Pp(i), Pq(i)) − Ei[d])(d(Pp(j), Pq(j)) − Ej [d]).

Usually this sum is normalized by division by variances at sites i and j
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σ2
i = Ei[d(A, B)2] − Ei[d(A, B)]2

σ2
j = Ej [d(A, B)2] − Ej [d(A, B)]2

to finally obtain the following covariance coefficient:

1
σ2

i σ2
j

∑
p<q

(d(Pp(i), Pq(i)) − Ei[d(A, B)])(d(Pp(j), Pq(j)) − Ej [d(A, B)]).

1 … i … j … k

P1

…

Pp

…

Pq

…

Pm

Pp(i) Pp(j)

Pq(i) Pq(j)

protein

site

Fig. 7.7. Multiple alignment of a family of homologous proteins

Now we consider sites i−2, i−1, i, i+1, i+2 and j − 2, j − 1, j, j + 1, j + 2
and compute 25 pairwise covariance coefficients. These are presented to the
support vector machine as additional features. This makes sense as, for ex-
ample, for a parallel beta-sheet high positive values are expected in the main
diagonal of the covariance matrix, and for an anti-parallel beta-sheet high pos-
itive values are expected in the main anti-diagonal of the covariance matrix
(see Fig. 7.8).

i

i + 1 

i + 2 

i - 1 
i - 2 

j
j + 1 

j + 2 

j - 1 

j - 2 i

i + 1 

i + 2 

i - 1 
i - 2 

j
j - 1 

j - 2 

j + 1 

j + 2 

Fig. 7.8. Expected higher covariances between sites in parallel and anti-parallel
beta-sheet
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7.2.8 Soft Margin Maximization

In case of training points that are not linearly separable one attempts to
separate them “as good as possible”, with least classification error. This can be
integrated in the formalism of quadratic minimization in a canonical manner
as follows. Replace the strict constraints

di(〈w, xi〉 + b) − 1 ≥ 0

by the more liberal “soft constraints”

di(〈w, xi〉 + b) − 1 + ηi ≥ 0

with values ηi ≥ 0 chosen as small as possible. It seems reasonable to minimize
the sum of all extra values ηi, and also to control priority between minimizing
‖w‖2 and minimizing sum of extra values by a suitable selected constant C.
Thus we arrive at the following generalized minimization problem:

SOFT MARGIN (1)
Given training set T = (x1, d1), . . . , (xm, dm)
minimize (over w, b, η, with suitably chosen
constant C)

1
2
‖w‖2 + C

m∑
i=1

ηi

subject to ηi ≥ 0 and di(〈w, xi〉+b)−1+ηi ≥ 0.

This can be transformed into dual form such that again the “kernel trick”
gets applicable. Replacing quadratic vector norm ‖w‖2 by linear norm ‖w‖1 =∑n

k=1 |wk| allows a further simplification of the problem towards linearity as
a so-called “linear program”:

SOFT MARGIN (2)
Given training set T = (x1, d1), . . . , (xm, dm),
minimize (over w, b, η, β, with suitably chosen
constant C)

1
2

n∑
k=1

βk + C
m∑

i=1

ηi

subject to ηi ≥ 0, βk ≥ 0, −βk ≤ wk, wk ≤ βk

and di(〈w, xi〉 + b) − 1 + ηi ≥ 0.
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7.2.9 Semi-Supervised Support Vector Machines

In bioinformatics classification problems there are often labelled data, as well
as a couple of unlabelled data. Stated in terms of statistical learning theory, we
have the situation where the distribution of data is not completely unknown,
but to some extend a-priori known. In such a situation one is tempted to try
to incorporate such knowledge into training algorithms. In case of support
vector machines, this is easily achievable (we refer to [10, 18, 17]). We make
the assumption that unseen data will probably group more or less close around
labelled data such that is makes sense to look for an assignment of labels to
unseen data in a such a way that still a margin as large as possible is achievable
with a support vector machine. Counting point yj as a positive point, some
minimal value ξj ≥ 0 should assist (〈w, yj〉+b)−1 to get non-negative, that is
(〈w, yj〉+ b)−1+ ξj ≥ 0, whereas counting point yj as a negative point, some
minimal value ζj ≥ 0 should assist −(〈w, yj〉 + b) − 1 to get positive, that is
−(〈w, yj〉+ b)− 1 + ζj ≥ 0. We should prefer the counting of yj as a positive
or negative point that is cheaper, measured by min{ξj , ζj}. In summary, we
end with the following minimization problem:

SEMI-SUPERVISED SOFT MARGIN (1)
Given labelled training data (x1, d1), . . . , (xm, dm)
and unlabelled training data y1, . . . , yM , minimize
(over w, b, η, ξ, ζ, with suitably chosen constant C)

1
2
‖w‖2 + C

⎛
⎝ m∑

i=1

ηi +
M∑

j=1

min{ξj , ζj}

⎞
⎠

subject to ηi ≥ 0, ξj ≥ 0, ζj ≥ 0 and

di(〈w, xi〉 + b) − 1 + ηi ≥ 0,

〈w, xj〉 + b − 1 + ξj ≥ 0,

−(〈w, xj〉 + b) − 1 + ζj ≥ 0.

The unusual min-term may be replaced by a linear term by using a binary
decision variable bj that expresses whether point yj is counted positive or
negative.
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SEMI-SUPERVISED SOFT MARGIN (2)
Given labelled training data (x1, d1), . . . , (xm, dm)
and unlabelled training data y1, . . . , yM , minimize
(over w, b, η, d, with suitably chosen constants C
and D)

1
2
‖w‖2 + C

⎛
⎝ m∑

i=1

ηi +
M∑

j=1

(ξj + ζj)

⎞
⎠

subject to ηi ≥ 0, ξj ≥ 0, ζj ≥ 0, dj ∈ {0, 1} and

di(〈w, xi〉 + b) − 1 + ηi ≥ 0,

〈w, xj〉 + b − 1 + ξj + D(1 − dj) ≥ 0,

−(〈w, xj〉 + b) − 1 + ζj + Ddj ≥ 0.

Look what happens for the case dj = 1. In this case, yj is counted as a positive
point. Constraint 〈w, xj〉 + b − 1 + ξj + D(1 − dj) ≥ 0 reduces to the former
one that is required for any positive point, 〈w, xj〉+ b− 1 + ξj ≥ 0. Choosing
D sufficiently large guarantees that the second constraint −(〈w, xj〉+ b)−1+
ζj + Ddj ≥ 0 does not lead to a further extra term ζj ≥ 0 by being satisfiable
already with the least possible value ζj = 0. Similarly, look what happens for
the case dj = 0. In this case, yj is counted as a negative point. Now constraint
−(〈w, xj〉 + b) − 1 + ζj + Ddj ≥ 0 reduces to the former one that is required
for any negative point, 〈w, xj〉+ b− 1 + ξj ≥ 0. Choosing D sufficiently large
guarantees that the first constraint 〈w, xj〉 + b − 1 + ξj + D(1 − dj) ≥ 0 does
not lead to a further extra term ξj ≥ 0 by being satisfiable already with the
least possible value ξj = 0.

However, note that we did not end with a linear program (that would
allow an efficient solution), but with an integer program due to the fact that
variable dj takes binary values. Nevertheless, one might apply heuristics or
approximation algorithms known to be applicable to integer programming
problems. In that sense, the problem formulation obtained above as an integer
program is preferable over a plain full search through all 2M possibilities to
partition the unlabelled points into two classes, positive and negative.

7.3 Hidden Markov Models

Hidden Markov models have been already applied in former chapters. We
introduce here the formal details of what Hidden Markov models are, and
discuss further applications.
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7.3.1 Architecture of Hidden Markov Models

One best thinks of Hidden Markov models as directed graphs whose nodes
represent hidden states with a probability distribution of emission probabili-
ties over characters x of a finite alphabet attached to each state, and directed
edges between nodes labelled with non-zero transition probabilities. Denote
the transition probability from state p to state q by Tpq, and the emission
probability for character x in state q by Eq(x). There is a distinguished start
node q(0) (and sometimes also a distinguished final node).

7.3.2 Causes and Effects

The goal of a Hidden Markov model is to probabilistically generate strings of
emitted characters by starting at node q(0), and then walking through nodes
(hidden states) according to the transition probabilities. Separating between
the inner world of hidden states and outer world of observed characters is
the main source of flexibility that Hidden Markov models offer to a user.
Besides this, the option of modelling local interdependencies between adjacent
positions in an emitted string is the second source of model flexibility. But
note that the option to model long range interdependencies is not available in
Hidden Markov models. There are five basic probability distributions that play
a central role in Hidden Markov model usage. Calling hidden state sequences
“causes” and emitted character sequences “effects”, these distributions aim
to measure with which probability

• a cause occurs together with an effect (joint probability)
• a given cause produces effects (conditional probability of effects, given a

cause)
• a cause occurs (marginal probability)
• an effect occurs (marginal probability)
• a cause occurs, given an effect (conditional probability of causes, given an

effect)

Formal notation and definitions are as follows, for any state sequence Q =
q(0)q(1) . . . q(n) starting with initial state q(0) and character sequence S =
x1 . . . xn (we assume, for simplicity, that all occurring values in denominators
are greater than zero).

P (Q) =
n−1∏
i=0

Tq(i)q(i+1)

marginal distribution of causes

P (S | Q) =
n∏

i=1

Eq(i)(xi)

conditional distribution of effects, given cause
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P (Q, S) = P (Q)P (S|Q)

joint distribution

P (S) =
∑
Q

P (S, Q)

marginal distribution of effects

P (Q | S) =
P (Q, S)
P (S)

conditional distribution of causes, given effect

The conditional distribution of effects, given causes, describes the model. It
can be estimated by simply let the model run and sample data. The marginal
distribution describes a priori, that is before an observation is made, know-
ledge about the occurrence of causes. The conditional distribution of causes,
given effects, describes a posteriori, that is after having made an observation,
knowledge about the presence of a certain cause. The latter is what one is
interested in. For example, observing strings, a most probable state sequence
in the Hidden Markov model discussed in Sect. 3.7 might define a plausible
multiple alignment of strings, or observing an DNA string, a most probable
state sequence in a properly designed and trained Hidden Markov model might
define which parts of the string are exons of a gene.

Conditional probabilities are related by Bayes rule:

P (Q | S) =
P (S | Q)P (Q)

P (S)
.

Given observation sequence S, the Viterbi algorithm allows efficient compu-
tation of a most probable state sequence Q, that is, state sequence Q such
that the following holds:

P (Q | S) = max
Q′

P (Q′ | S).

Whereas the definitions of the probabilities above immediately can be used
for an efficient computation for the cases of P (Q, S), P (S | Q), and P (Q), the
definition of P (S), and thus also the definition of P (Q | S), involve a sum of
exponential many terms. Using the forward variable introduced in Sect. 3.8
allows replacement of this inefficient computation by an efficient one:

P (S) =
∑
q∈Q

αn(q).
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Table 7.1. CG island: transition probabilities inside and outside

+ A C G T

A 0.180 0.274 0.426 0.120
C 0.171 0.368 0.274 0.187
G 0.161 0.339 0.375 0.125
T 0.079 0.355 0.384 0.182

- A C G T

A 0.300 0.205 0.285 0.210
C 0.322 0.298 0.078 0.302
G 0.248 0.246 0.298 0.208
T 0.177 0.239 0.292 0.292

7.3.3 Bioinformatics Application: CG Islands

In genomes, substring CG occurs more frequently in promoter or start regions
of genes than in non-coding regions. Regions with a high proportion of CG
occurrences are called CG islands. Table 7.1 shows for each base X the prob-
ability that it is followed by base Y in CG islands (+) and non CG islands
(-).

Besides these conditional probabilities that we denote with P (Y |X, +)
and P (Y |X,−) we also use information about the probabilites of occurrence
of a single base X in CG islands and non CG islands and denote these by
P (X|+) and P (Y |−). The difference in the frequency of occurrence of CG in
CG islands and non CG islands can be used to predict genes. Simply let a
window of length k, for a certain number k, walk over a given DNA string and
for any such window string S of length k compute the probability P (S|+) that
it is generated by the CG island process, and compare it to the corresponding
probability for the non CG island process. These probabilities, which are also
called likelihood of the corresponding models given S, are calculated by

L(+|S) = P (S|+) = P (S(1)|+)
k−1∏
i=1

P (S(i + 1)|S(i),+)

L(−|S) = P (S|−) = P (S(1)|−)
k−1∏
i=1

P (S(i + 1)|S(i),−).

The model with higher likelihood is chosen. There are two problems with
this attempt to predict CG islands. First, there must be a choice of window
length k. It is not clear how to best choose k. Furthermore, a variable window
length could be better than a fixed length over the whole genome string.
Second, when letting the window walk along the genome string, likelihood
of CG island or non CG island may change gradually. We are left with the
decision where to set start and end points for expected genes. Both problems
do not occur when using Hidden Markov model prediction instead of likelihood
comparison. In our example, a suitable Hidden Markov model has internal
states that are denoted X(+) and X(−), with X ranging over A, C, G, T.
There are probabilities for an initial occurrence of any of these states, as well
as transition probabilities between states. Finally there are symbols that are
emitted by the states with certain probabilities. In our example, the emission
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probabilities are very special in the sense that X(+) emits symbol X with
certainty, as does X(−). In general, emission of symbols is more complex than
in this example. Note that internal states are not visible to the user, whereas
emitted symbols can be observed. In our example, state X(+) represents the
generation of symbol X within a CG island, and state X(−) the generation
of symbol X in a non CG island.

7.3.4 Further Applications

As was already the case for neural networks, the most comprehensive overview
of Hidden Markov model applications to bioinformatics is again Baldi &
Brunak [4]. Applications deal with the identification and prediction of, for
example:

• Signal peptides and signal anchors [58]
• Promoter regions [62]
• Periodic patterns in exons and introns [6]
• G-protein-coupled receptors [7]
• Genes in E.coli [48]
• Human genes [5]
• Protein modelling [47]

7.4 Genetic Algorithms

Genetic algorithms attempt to solve optimization problems by mimicking the
process of adapting a population of organisms to its environment by the op-
erations of mutation, recombination of genetic material (DNA), and selection
of fittest members of a population.

7.4.1 Basic Characteristics of Genetic Algorithms

The first step in solving an optimization problem by a genetic algorithm is
to encode problem solutions as bit strings (sometimes also strings over more
extended alphabets are used). Whereas bit string encoding of solutions usu-
ally is a rather canonical process, sometimes it may be more sophisticated.
Some care has to be taken to ensure that mutations and recombinations al-
ways lead to bit strings that again encode admissible solutions. Next step is
to define fitness of bit strings. Here is the point where the function to be
optimized in an optimization problem finds its expression. Having done this,
the algorithm is rather simple. An initial population of strings is generated.
Its size is variable and depends on the problem instance. It serves as parental
population for the next step of the algorithm. Typically, the initial popula-
tion is generated randomly, but it is also possible to place bit strings of the
initial population in areas where optimal solutions are expected. After having
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generated the parental population one ranks individuals according to their
fitness and selects those that are allowed to propagate their characteristics to
the next generation. The fitter an individual is, the bigger are its chances to
give the genetic material to its descendants. The expectation is that individ-
uals who are closer to an optimal solution will finally be preferred over those
that are less optimal. Most selection functions are stochastic so that also a
small proportion of less optimal individuals are selected. This keeps diversity
of the population large and prevents early convergence. It guarantees that the
algorithm does not get stuck in local optima at an early stage. The simplest
and most often used selection function is roulette wheel selection: if fi is the
fitness of individual i, its probability of being selected is

pi =
fi∑N

j=1 fj

where N is the number of individuals in the population. For producing new
solutions, pairs of selected solutions are modified by the processes of recom-
bination and mutation. This leads to a propagation of characteristics from
parents to their descendants, but also to the formation of new characteristics.
Recombination is the counterpart of sexual reproduction: in nature, chromo-
somes pair up during meiosis and exchange parts of its genetic material; in a
genetic algorithm, new solutions are formed by cutting two selected strings at
the same randomly chosen position and exchanging suffixes, a process called
one-point crossover (see Fig. 7.9). Often, genetic algorithms use variants of
this process, like two-point crossover or “cut and splice”.

Fig. 7.9. The scheme of one-point crossover

The process of mutation is analogous to biological mutation. It is the source
for new genetic material. In biological evolution there are different kinds of
mutations, but genetic algorithm only use single-bit substitution as shown in
Fig. 7.10.

Whereas the processes of recombination and mutation are strongly affected
by chance, the selection of the next population gives the genetic algorithm a
direction towards optimality of solutions. Recombination/mutation loop is
repeated until some termination condition is satisfied. Some possible termi-
nation conditions are:
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Fig. 7.10. The scheme of one-point mutation

• A solution which is close enough to the optimum is found.
• A fixed number of generations has been computed.
• There is no progress within a fixed number of generations.
• A manual check shows good solutions.

7.4.2 Application to HP-Fold Optimization

The problem of protein structure prediction was described in Sect. 1.7. A com-
mon approach uses the HP-model. Amino acids are divided into hydrophobic
(H) and polar (P) amino acids. In the process of forming a tertiary structure,
the hydrophobic amino acids tend to form non-covalent bonds since these lead
to stable conformations of low free energy. The HP-model is a lattice model.
The amino acids of a protein are placed on the vertices of a grid such that
consecutive amino acids are placed on the grid side by side. Figure 7.11 shows
several grids the model can work on. A non-covalent binding occurs between
two hydrophobic amino acids in case that they are not consecutive in the
protein and are placed side by side on the grid.

Fig. 7.11. The structure of three different grids the HP-model can use is shown.
Starting on the left hand side we see a quadratic, a triangular, and a cubic confor-
mation.

A genetic algorithm may be used to find favourable HP-model conforma-
tions. In the following presentation a 2-dimensional rectangular grid is used.
A standard way to represent a protein conformation on the grid is the use of a
string of moves on the grid, with moves being represented in an obvious man-
ner as directions ’U’ (up), ’D’ (down), ’L’ (left), and ’R’ (right). Besides this
“absolute representation” of moves, alternatively a “relative representation”
of moves may be used: here ’U’ means to move the same direction as in the
step before, ’L’ means to change formerly used direction to the left, and ’R’ to
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change formerly used direction to the right. Figure 7.12 shows a HP-sequence
on a grid and its moves sequence using absolute and relative representation.

PHHPPHPHPHHHHP

UULUURRRDLDDR 

UULRURUURRLUL 

Fig. 7.12. A protein conformation on a lattice model is displayed. On the right side
the HP-sequence, the absolute moving step sequence, and the relative moving step
for this protein is shown.

Depending on the choice of absolute or relative encoding the operations of
the genetic algorithm are different. For example, a one-point mutation under
absolute encoding of move sequences requires a two-point mutation under
relative encoding of move sequences to achieve the same effect. Next we have
to define a fitness function on protein conformations. Following the discussion
above on the effect of H-H pairs on free energy minimization we simply count
the number of adjacent, but non-consecutive H-H pairs. After we have encoded
the HP-model this way, a genetic algorithm as described in Sect. 7.4.1 can be
applied.

7.4.3 Further Applications

Genetic algorithms became popular in the early 1970s thanks to the work
of John Holland [36]. They have been successfully applied to solve problems
from lots of fields. Applications in bioinformatics cover, for example:

• Multiple sequence alignment [30, 59]
• Building phylogenetic trees [66]
• Molecular docking [80]

7.5 Ant Colony Optimization

Like genetic algorithms, ant algorithms are heuristic search algorithms. They
mimic the behaviour of ants. In ant colonies one observes that ants rapidly
find the shortest path between the colony and some food source. Whereas a
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single ant would not be able to do so, the cooperation of the whole colony of
ants solves the task. This is an example of swarm intelligence. The Ant Colony
Optimization algorithm (ACO) is the most famous among such algorithms.

7.5.1 Basic Characteristics of Ant Colony Algorithms

Whenever several individuals work together there has to be some form of
communication. Communication among ants is done by placing scents called
pheromones on trails that ants use. Whenever an ant finds a food source it
walks back to the colony and alarms the other ants. These then follow the
pheromone marked trail towards the food source and, by this way, strengthen
the trail by putting further pheromone onto it. By this simple process it is
possible that the whole colony helps to exploit the found food source. Look
what happens if a trail is destroyed by placing a barrier on it. Now the ants
are forced to find a new path to the food source, and they usually find the
shortest one. First, they try to find a way around the barrier without any
orientation until a few of them recover the pheromone trail onto the other
side of the barrier, thus following the existing scents to the food source. As
soon as the first ant comes back, lots of pheromone trails leading back to the
colony have been randomly generated. While some ants found their way to
the food source and walked back probably more ants have passed the shorter
path around the barrier than the longer one. So the ants returning from the
food source prefer the shorter path back to the colony. Again, that increases
the amount of pheromone placed on the shorter trail, and more and more ants
are going to choose that shorter path. This process is illustrated in Fig. 7.13.
As pheromone disappears the longer one of the trails gets more and more
unattractive. This also happens when the food source runs dry.

This episode shows that a single ant may well find the food source and
back to the colony. But only a huge number of ants is able to find, with
high probability, the shortest path between some food source and the colony.
Communication among the individuals of a colony proceeds by modifications
of the environment: marking trails by pheromone in natural ant colonies,
and modifying certain globally available numeric parameters in artificial ant
colony algorithms. Pheromone evaporation is responsible for the deletion of
suboptimal solutions in the course of time. Unlike ants in nature, artificial
ants can have additional characteristics (simplifying the handling of the ACO
algorithm), as for example:

• A memory for storing paths
• Different pheromones depending on the quality of the found solution
• Additional functions like local optimization or backtracking

Formally, artificial ACO is a search technique working on a graph structure. It
starts with a colony of artificial ants. Each ant follows a trail (generates a so-
lution) depending on global information and random processes. Furthermore,
it modifies global memory depending on the quality of the found solution.
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(b)(a)

(c) (d)

Fig. 7.13. The behavior of ants is shown. (a) Ants form trails to exploit food
sources using scents to mark the way. (b) When a barrier is placed on their trail
they are unoriented. (c) The ants start trying to round the balk until they recover
the pheromone trail. In a fixed time slice more ants make their way on the shorter
trail than on the longer one. So more pheromones will be set there. (d) Because
ants prefer the trail with the most pheromones, the shorter trail will be preferred
more and more.

Other ants following explored trails include this global information in their
selection of alternative trails and modifications of the environment.

Q
Q

i i

i
Q

Fig. 7.14. Computation of a solution is shown step by step. Starting at vertex i,
the probability for choosing the next vertex out of all relevant vertices q ∈ Q will be
computed. By means of this probability the following vertex is chosen. Thereafter,
the procedure is repeated with the chosen vertex as the new start point i until the
solution is complete.
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The probability for walking from actual vertex i to next vertex j is given
by some value pij . It depends on two parameters. The first one is the called
attractiveness ηij of the step; it represents some a priori preference for selecting
the step. This parameter can be appreciated as environmental impact on the
behaviour of the ants. The second one is the trail level τij . It represents the a
posteriori preference of the step expressing how profitable the step from vertex
i to vertex j was in the past. This parameter corresponds to the pheromone
rate on the trail. Probability pij is then defined as follows:

pij =
τα
ijη

β
ij∑

q∈Q

(
τα
iqη

β
iq

) .

Here, exponent parameters α and β control how strong a priori and a posteri-
ori preferences of steps influence the decision. Q denotes the set of all relevant
vertices that are accessible from vertex i. After all ants have, based on these
probablitites, generated their solutions the trail levels will be updated as fol-
lows:

τij = ρτij + Δτij .

Here, ρ is a user-defined coefficient that represents evaporation of pheromone,
whereas Δτij expresses how strongly preference of the move from vertex i
to vertex j increases. Computing solutions and updating trail levels proceeds
until a termination condition is satisfied. Some possible termination conditions
are:

• Solution which is close enough to the optimum is found
• Fixed number of iterations is computed
• There is no progress during a fixed number of iterations
• Manual check shows good solutions

7.5.2 Application to HP-Fold Optimization

Protein folding is mainly the process of taking a conformation of minimum
free energy. As an algorithmic problem, protein tertiary structure predic-
tion is NP-hard. The HP-model established in Sect. 1.7 and described in
detail in Sect. 7.4.2 is one method for minimizing the free energy. The amino
acids are divided into hydrophobic (H) and polar (P) amino acids. Tertiary
structure formation is mainly driven by the forming of non-covalent bind-
ings between hydrophobic amino acids. This kind of binding is energetically
favourable. Thus we are looking for a conformation with as many as possi-
ble non-covalent bindings between hydrophobic amino acids. The Ant Colony
Optimization algorithm (ACO) can be used to solve the problem of protein ter-
tiary structure prediction. We describe an ACO working on the 2-dimensional
grid of the HP-model. The artificial ants construct possible folds of a given
sequence. Each ant starts the folding process at a randomly chosen start point



276 7 A Selection of Metaheuristics and Various Projects

ix

1ix

1ix 1ix

ix
1ix

1ix

ix 1ix

(a) (b) (c)

Fig. 7.15. The possible conformations of an amino acid triple (xi−1, xi, xi+1) are
shown. You can see the three (relative) move directions (a) ’U’ (up), (b) ’L’ (left)
and (c) ’R’ (right).

within the protein. A fold is then extended into both directions of the pro-
tein. Actually sitting at a grid position i, the extension of the conformation
to grid position j is done with probability that is dependent on the attrac-
tiveness ηi,j and the trail level τi,j of the move. The heuristic function ηi,j

guarantees that high quality solutions are preferred. The attractiveness ηi,j

depends on the number of non-covalent bindings between two hydrophobic
amino acids that are generated by the move. The more non-covalent bind-
ings occur by moving to j the more attractive will this move be. A difficulty
of this simple approach is that some agents may not find solutions because
they achieved a position in the grid where all neighbouring vertices are al-
ready occupied. To deal with this may be done by a backtracking mecha-
nism.

7.5.3 Further Applications

Ant Colony Optimization was introduced in 1992 by Marco Dorigo. One of
the benchmarks of Ant Colony Optimization is described in [26]. Like ge-
netic algorithms, ACO’s found application in various fields. Applications in
bioinformatics cover, for example:

• Multiple sequence alignment [19]
• Protein/ligand docking [45]

7.6 Bibliographic Remarks

Among lots of good books introducing the theory of neural networks we men-
tion only one, Bishop & Hinton [12]. The classical introduction to support
vector machines is Cristianini & Shawe-Taylor [24]. The most comprehensive
textbook on machine learning approaches with an emphasis on neural net-
works and Hidden Markov models is clearly Baldi & Brunak [4]. An extended
introduction to formal foundations of statistical learning theory can be found



7.6 Bibliographic Remarks 277

in Vapnik [73] and Vidyasagar [76], as well as Cristianini & Shawe-Taylor [24].
Focus on Hidden Markov models applied to bioinformatics is laid in Koski [46].
A good introduction to ant algorithms is Dorigo et al. [25], a classical textbook
on genetic algorithms is Mitchell [54].
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[45] Oliver Korb, Thomas Stützle, and Thomas E. Exner. An ant colony opti-
mization approach to flexible protein–ligand docking. Swarm Intelligence,
1(2):115–134, 2007.

[46] Timo Koski. Hidden Markov Models for Bioinformatics (Computational
Biology). Kluwer Academic Publishers, 2001.

[47] Anders Krogh, Michael Brown, I. Saira Mian, K. Sjölander, and David
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