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Preface

There are several reasons to be interested in infectious disease informatics. First, it is 
of practical significance to understand how the technology revolution has been 
reshaping infectious disease research and management, as rapid advances in genome-
associated technologies have changed the very nature of the questions we can ask. 
Second, the emerging evidence has confirmed that the application of information 
technologies in healthcare enhances our ability to deal with infectious diseases. 
Finally, the implementation of electronic health records has created new and exciting 
opportunities for secure, reliable and ethically sound clinical decision support and 
biosurveillance guided by the genomics of pathogens with epidemic potential.

This volume addresses the growing need for the critical overview of recent 
developments in microbial genomics and biomedical informatics relevant to the 
control of infectious diseases. This field is rapidly expanding, and attracts a wide 
audience of clinicians, public health professionals, biomedical researchers and 
computer scientists who are fascinated by the complex puzzle of infectious disease. 
This book takes a multidisciplinary approach with a calculated move away from the 
traditional health informatics topics of computerized protocols for antibiotic pre-
scribing and pathology testing. Instead authors invite you to explore the emerging 
frontiers of bioinformatics-guided pathogen profiling, the system microbiology-
enabled intelligent design of new drugs and vaccines, and new ways of real-time 
biosurveillance and hospital infection control. Throughout the book, references are 
made to different products supplied by public sources and commercial vendors, but 
this is not an endorsement of these products or vendors.

I am deeply grateful to all of the contributors for the generous sharing of their knowl-
edge and expertise. Special thanks go to my good friends and colleagues at the Centre 
for Infectious Diseases and Microbiology at Westmead Hospital and The University of 
Sydney, and at the Centre for Health Informatics at the University of New South Wales 
for their encouragement and support. I would also like to thank Jeffrey Ciprioni, Jenny 
Wolkowicki and Rajesh Harini from Springer Life Science for their continual help  
during this book’s production.

I hope that this volume will be useful to those already working in the field but 
seeking to broaden their horizons. I also hope that it will encourage interest in 
infectious disease informatics among readers in general.

Sydney Vitali Sintchenko
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 1.1 Introduction

Infectious disease informatics has been defined as a new field that studies knowl-
edge creation, sharing, modeling and management in the domain of infectious 
diseases (Zeng et al. 2005). Its emergence has been fueled by rapid increases in the 
amount of biomedical and clinical data, and demands for data analyses. The result-
ing combinations of experimental and informatics evidence have reshaped the ways 
of conducting infectious disease research, raising the expectation of better control 
of infectious diseases. The authors of this book argue that informatics has not only 
changed the scale on which the infectious disease research is being done but has 
also conceptually opened up different ways of managing patients and making dis-
coveries in the field of infectious diseases.

The goals of infectious disease informatics are lofty and include the optimiza-
tion of the development of antimicrobials, the improved design of more effective 
vaccines, the identification of biomarkers for transmissibility and clinical outcomes 
of infectious diseases, and a better understanding of host-pathogen interactions. 
In the last two decades, the emergence of new informatics methods and integrated 
databases has facilitated the realization of these goals. This chapter outlines the 
major challenges and opportunities that infectious disease informatics faces in the 
twenty-first century.

V. Sintchenko 
Centre for Infectious Diseases and Microbiology, Syndey Medical School,  
The University of Sydney, Sydney, NSW 2006, Australia

Chapter 1
Informatics for Infectious Disease  
Research and Control

Vitali Sintchenko
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 1.2  Handling New Data Types

 1.2.1 Microbial Genome Assembly and Annotation

“New Age” infectious disease informatics rests on advances in microbial genomics, 
the sequencing and comparative study of the genomes of pathogens, and proteomics 
or the identification and characterization of their protein related properties and 
reconstruction of metabolic and regulatory pathways (Bansal 2005). The speed of 
microbial genome sequencing has been steadily accelerating since the introduction 
of modern DNA sequencing methods more than thirty years ago (Sanger et al. 1977). 
The accumulation of sequenced genomes of bacteria shows a good fit to exponential 
functions with a doubling time of approximately 20 months (Koonin and Wolf 
2008). Despite the historical bias towards the “working horses” of bacterial genom-
ics, such as commensals E. coli and B. subtilis (Collado-Vides et al. 2008), the depth 
and breadth of the coverage of sequences belonging to different species of viral, 
bacterial, fungal and protozoan pathogens has been rapidly expanding.

Microbial genomes are thousands or millions of base pairs in length, requiring 
both a global view of the genome and the ability to zoom in on details for the 
purpose of analysis and annotation. Annotation is the extraction of biological 
knowledge from raw nucleotide sequences (Médigue and Moszer 2007). Such 
decoding of the genomes allows the prediction of protein-coding genes and there-
fore, the proteins the organism is able to produce. Desktop computer sequence 
editors such as Chromas Lite (http://chromas-lite.software.informer.com/), Trace 
Edit (http://www.ridom.de/traceedit/) or commercial products like LaserGene 
(http://www.dnastar.com/products/lasergene.php) or Sequencher (http://www.
sequencher.com/) are helpful in the initial sequence assessment. The task of 
assembling of sequences from re-sequencing experiments, when a reference 
sequence is available, can be supported by tools like TraceEditpro (http://www3.
ridom.de/traceeditpro/) or SeqScape.

Different software pipelines have been developed to automate microbial genome 
annotation and assembly (Table 1.1). The Integrated Microbial Genome (IMG) 
system, hosted by the Joint Genome Institute (JGI), and the RAST (Rapid 
Annotation using Subsystem Technology) server are examples of open resources. 
Major sequencing centers offer genome viewers and browsers through their web-
sites (McNeil et al. 2007). For example, Manatee (J. Craig Venter Institute (JCVI)) 
has been developed to view and to alter initial automatic annotations of prokaryotic 
genomes. The Sanger Institute’s Pathogen Sequencing Unit has been maintaining 
freeware for sequence analysis, viewing and annotation, such as Artemis and the 
Artemis Comparison Tool (ACT) (Carver et al. 2008). The alignment of genomes 
of three strains of Staphylococcus aureus using ACT is shown in Fig. 1.1. 
Alternatively, multiple genome alignments in the presence of large-scale evolution-
ary events, such as rearrangement and inversion, can be efficiently constructed and 
visualized using the Mauve program (http://gel.ahabs.wisc.edu/mauve/download.
php) (Darling et al. 2004). These tools assist in the rapid identification of protein-coding 
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genes, as well as other features like non-coding RNA genes, repetitive sequences or 
recently acquired DNA.

Web servers like Integrated Microbial Genomes (Joint Genome Institute; http://
img.jgi.doe.gov) or the Bacterial Annotation System (BASys, http://wishart.biology.
ualberta.ca/basys/cgi/submit.pl) also support comparative analysis and the auto-
mated annotation of bacterial genomic (chromosomal and plasmid) sequences 
(Van Domselaar et al. 2005). They accept raw sequence data and gene identification 
information, and provide textual annotation and hyperlinked image output.

Strings of nucleotides are assembled into draft sequences that can be characterized 
by the following: (1) > 90% of genome in contigs, (2) average contig length > 5 kb, 
(3) >90% of a set of conserved genes present, (4) contig N90 length > 5 kb, (5) >90% 
of bases > 5× read coverage, (6) scaffold N90 length > 20 kb. The information used 
to annotate genomes comes from three types of analysis: (1) ab initio gene finding 
programs, which are run on the DNA sequence to predict protein coding genes; (2) 

Table 1.1 Bioinformatics analysis tools

Analysis tasks Tools URL

ORF or gene identification ORF Finder http://www.ncbi.nlm.nih.gov/gorf.
html

GeneMark http://opal.biology.gatech.edu/
GeneMark/genemarks.cgi

GLIMMER http://www.cbcb.umd.edu/software/
glimmer/

Sequence alignment ClustalW http://www.ebi.ac.uk/clustalw/
Tcoffee http://www.tcoffee.org/Projects_

home_page/
MUSCLE http://www.drive5.com/muscle/

Genome annotation RAST http://rast.nmpdr.org/
Artemis and ACT http://www.sanger.ac.uk/Software/
IMG http://rast.nmpdr.org/
MAUVE http://genome-alignment.org/mauve/

Phylogenetic analysis Phylogeny programs http://evolution.genetics.washington.
edu/phylis/software.html

SplitsTree http://www.splitstree.org
MEGA http://www.megasoftware.net

Microarray analysis Gene Expression 
Omnibus

http://www.ncbi.nih.gov/geo/
http://www.ebi.ac.uk/microarray

Microarray 
informatics EBI

Metabolic pathway analysis KEGG http://www.genome.ad.jp/kegg/kegg2.
html

UniPathway http://www.grenoble.prabi.fr/
obiwarehouse/unipathway

Whole genome visualization BacMap http://wishart.biology.ualberta.ca/
BacMap/index_2.html

GenomeAtlas http://www.cbs.dtu.dk/services/
GenomeAtlas/



4 V. Sintchenko

S.
au

re
us

M
R

SA
25

2 
 

S.
au

re
us

 U
SA

30
0 

 

S.
au

re
us

 C
O

L
  

Fig. 1.1 Alignment of genomes of three strains of Staphylococcus aureus. DNA sequences that 
find a perfect match are connected with red lines or blocks. Blue areas are inversions or transitions 
and white areas represent indels. The figure was produced using Artemis software (The Wellcome 
Trust Sanger Institute, UK)
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evidence-based gene calling or translating alignments of the DNA sequence to known 
proteins; and (3) aligning cDNAs from the same or related species. Gene finding has 
progressed far beyond the simple identification of open reading frames. The programs 
aligning cDNA and protein sequences to genomic DNA can locate the protein coding 
regions by searching the publicly available databases or by applying machine learning 
algorithms such as Hidden Markov Models (HMM). There is a long list of such pro-
grams including GeneMark, mORFind, PRODIGAL (Prokaryotic Dynamic pro-
gramming Genefinding Algorithm), Argon and GLIMMER (Gene Locator and 
Interpolated Markov Modeller) (Delcher et al. 1999; Suzek et al. 2001; Majoros 
2007). They differ in the time required for automated annotation as well as the quality 
of gene calling (Guigo et al. 2006). Problems with the accuracy of current gene find-
ers reflect not only the performance of their algorithms but also the quality of the 
primary resources and the abundance of non-coding DNA regions in microbial 
genomes. Genome assembly annotation methods and tools including new applica-
tions for RNA genes, were reviewed in detail elsewhere (Stothard and Wishart 2006; 
Médigue and Moszer 2007; Brent 2008; Pop and Salzberg 2008).

Recent breakthroughs in high-throughput sequencing technologies have posed 
new challenges for genome assembly, annotation and analysis. These technologies 
make it feasible to sequence not only static genomes but also entire transcriptomes 
expressed under different conditions (Shendure and Ji 2008). However, they can 
produce read lengths as short as 35–40 nucleotides, which cannot be analyzed with 
software developed for Sanger data as they are often non-unique, lack neighbor-
hood context and have a different distribution of errors. The task of linking such 
short-reads may be accomplished using a comparative assembly algorithm, in 
which new sequences are put together by mapping them onto close relatives or the 
“reference genomes.” Not surprisingly, the comparative assembly strategy works 
best when the two species are more than 90% identical. Alternatively, when no 
“reference genome” is available, the new cohort of assembly algorithms based on 
de Bruijn graphs – a way to transform sequence data into a network structure – has 
risen to the task (Chaisson and Pevzner 2008; MacLean et al. 2009). Strategies and 
systems that address these new challenges have recently been reviewed elsewhere 
(Pop and Salzberg 2008; MacLean et al. 2009; Ussery et al. 2009). Tables 1.1 and 
1.2 provide examples of informatics tools for pathogen annotation and analysis.

1.2.2  Meta-Omics: Metagenomics and Metaproteomics

The metagenomics or the sequencing of genomes of complex mixed communities 
has emerged at the interface of genomics, microbiology and information technology. 
This field examines the interplay of hundreds of microbial species present at 
specific sites of potential infections in space and time (Hutchinson 2007; Smarr 
et al. 2009). Significantly, metagenomics has extended its focus from environmental 
microorganisms to microbial communities or “community whole genome sequences” 
of the human host (Field et al. 2006; Verberkmoes et al. 2009).
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Most of the 10–100 trillion microorganisms in the human gastrointestinal tract 
live in the colon (Turnbaigh et al. 2007). The genomes of these microbial symbionts 
have been collectively defined as the microbiome or ecosystem in which the number 
of microbial genes is estimated to be many folds higher than those present in the 
human genome. The Human Gut Microbiome Initiative, a logical conceptual exten-
sion of the Human Genome Project, aims to discover genomes of at least 100 new 
intestinal species. This approach has targeted the totality of genes involved in the 
gut biofilms, the mechanisms of horizontal gene transfer, and the role of the micro-
bial pan-genome (Field et al. 2006). The Microbiome project aims to address some 
of the most inspiring and fundamental scientific questions today in order to identify 
new ways to determine health and predisposition to diseases and define parameters 

Table 1.2 Examples of bioinformatics resources for pathogens with epidemic potential

Analysis Tools URL

Sequence databases 
and tools

GenBank http://www.ncbi.nlm.nih.gov/
sites/entrez

Protein Data Bank http://www.rcsb.org/pdb/
Microbial Genome Database http://mbgd.genome.ad.jp/

Workbenches Virology on the WWW http://www.virology.net
Viral Bioinformatics 
Research

http://www.biovirus.org
http://www.microbase.gr

Microbase http://xbase.bham.ac.uk/
xBASE
SEED http://www.theseed.org
Influenza Virus Resources http://www.ncbi.nih.gov/genomes/

FLU/FLU.html
http://www.biohealthbase.org
http://www.flu.lanl.gov/

Pathogen specific 
datasets

European Hepatitis C 
database

http://euhcvdb.ibcp.fr/euHCVdb/
http://hcv.lanl.gov/content/hcv-db/

index
Hepatitis C database http://www.hiv.lanl.gov/content/

indexHIV databases
Poxvirus Resource http://www.poxvirus.org
SARS Bioinformatics Suite http://athena.bioc.uvic.ca/database.

php?db = cooronaviridaeDengueInfo
http://www.dengueinfo.org

Neisseria.org http://neisseria.org/
TB Database http://www.tbdb.org/
Plasmodium Genome 

Resource
http://plasmodb.org/plasmo/

Antimicrobial resistance ARDB http://ardb.cbcb.umd.edu
ARGO http://www.argodb.org/

http://www.lahey.org/studiesCompendium of TEM genes
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needed to design, implement and monitor strategies for intentionally manipulating 
the human microflora (Turnbaigh et al. 2007).

1.2.3  Global Genome Analysis

In addition to conventional strings of nucleotides, large-scale sequencing can pro-
vide new types of data reflecting global genome architecture and the properties of 
pathogens. These data include the size of a genome and its nucleotide composition, 
the locations of genes and intergenic regions, GC percentage and gene density. 
Microbial genomes are compared by the number of particular sets of genes, gene 
order (synteny) and the presence or absence of important genes. Other metrics 
include gene set properties (the number of two component system regulatory 
genes) and nucleotide sequence-based measures (distance between paired two-
component system genes and consensus sequence) (Whitworth 2008; Ussery et al. 
2009). These metrics represent a global view of genomes but often have limited 
biological meaning. Thus, “signature” sequences have been suggested as a means 
of identifying organisms or genes with sequence profiles correlating with the 
pathogen phenotype or disease outcomes. Examples of genome characteristics that 
are more directly related to biologically important behavior are bacterial IQ (a 
measure of the number of signal transduction proteins as a function of genome 
size) and extrovertedness (the proportion of signaling proteins predicted to sense 
external stimuli) (Galperin 2005).

Analyses of genomics data challenge the traditional taxonomy of microbial 
species. Recent projects have focused on producing simple analytical diagnostic 
tools based on strong taxonomic knowledge collated in the DNA reference libraries 
such as the DNA Barcode of Life Data System (BOLD; http://www.boldsystems.
org). These types of data enable the acquisition, storage, analysis and publication 
of DNA barcode results, and provide clues about the global distribution of species. 
Their genetic diversity and structure is based on two postulates: first, that every 
species is represented by a unique DNA barcode (indeed there are 4650 possible 
ATGC combinations compared to an estimated 10 million species remaining to be 
discovered (Frézal and Leblois 2008)), and second, that the genetic variation 
between species exceeds the variation within species. DNA barcoding requires a 
minimum sequence length of 500 bp and more than three individual sequences per 
species. The initial Barcode of Life framework was based on the sequence of a 
single universal marker – the cytochrome c oxidase gene – but has evolved since 
then, giving rise to a flexible description of DNA barcoding, a larger range of appli-
cations and the broader use of the term “barcode” (Frézal and Leblois 2008). For 
example, the whole microbial genome’s barcodes were defined as frequency distri-
butions of periodic DNA sequences or k-mers across the whole genome (Zhou et al. 
2008). It has been postulated that such barcode similarities are proportional to the 
genomes’ phylogenetic closeness and could be utilized in metagenome analyses 
(Zhou et al. 2008).
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Microbial species diversity can be also estimated by the average nucleotide 
identity (ANI) using the list of orthologs and deriving the overall divergence of the 
core genome by averaging the percentages of identity at the nucleotide level 
(Konstantinidis and Tiedje 2005). Another approach to measure distances between 
genomes is based on estimating the proportion of common genes by calculating the 
ratio of orthologs to the total number of genes of the reference genome. More 
recently, similar methods such as DNA content, BLAST distance phylogeny and 
the MUM (maximal unique and exact matches) index have been suggested as more 
sensitive measures for intra-species comparisons (Deloger et al. 2009).

1.3  Changing the Way Discoveries Are Made

1.3.1  Knowledge Discovery from Comparative Genomics

The true power of large-scale comparative genomic studies lies in their ability to 
identify and characterize biological trends and rules that explain particular phenom-
ena (Field et al. 2006). Computational methods have become essential steps in 
formulating hypotheses about gene functions. The comparative approach has not 
only yielded fundamental insights into the function and evolution of microbial 
genomes, but has also led to practical results. Comparative genomics has allowed 
the accurate estimation of the structure of genomes and the speed of gene move-
ments, including the role of natural selection versus genetic drift, the origin of the 
pandemic strains, and the ecology of a pathogen in its natural reservoir (Chen et al. 
2005; Yang et al. 2008a). Computational studies identified unexpected relationships 
between genomic features and ecological niches, demonstrated diversity in the 
microbial world and helped to reconstruct evolutionary relationships among 
genomes (Binnewies et al. 2006; Field et al. 2006).

Comparisons made between different genomes can also generate new hypotheses 
for testing, usually relating to the unexpected presence or absence of particular 
genes with respect to other genomes (Whitworth 2008). The studies of three main 
forces shaping genome evolution – gene loss, gain and change – have been 
especially fruitful in this respect (Burrack et al. 2007; Whitworth 2008). Discoveries 
of gene duplication in many bacterial pathogens, resulting in increased numbers of 
key gene clusters or the expansion of important protein families have led to the 
development of new diagnostic methods. For example, the gene clusters encode a 
secreted protein called the early secretory antigenic target 6 or ESAT6, which was 
identified as one of the key virulence factors in Mycobacterium tuberculosis and 
was subsequently used in the interferon-gamma release assays for the diagnosis of 
tuberculosis (Pallen and Wren 2007; Behr 2008).

Comparative genomics has also revealed that pathogens undergo a process of 
genome decay or a reduction in the number of biosynthetic pathways, resulting in 
a dependence on the infected host for certain essential functions. The most surprising 
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snapshots of genome decay have come from relatively recently emerged pathogens 
that have changed their lifestyles by adopting a simpler host-associated niche. For 
example, the genomes of Yersinia pestis (Parkhill et al. 2001b) and Salmonella 
enterica serovar Typhi (Parkhill et al. 2001a) contain hundreds of pseudogenes. 
These findings challenge the traditional view that bacterial genomes never contain 
“junk” DNA and that every gene in a bacterial genome must have a function. 
Instead, every genome should be viewed as a work in progress, burdened with some 
non-functional “baggage of history” (Pallen and Wren 2007).

As the smallest-scale variation in microbial genomes occurs at the level of single-
nucleotide polymorphisms (SNPs), SNP detection has been applied extensively to 
many pathogens (Yao et al. 2008). While SNPs are generally considered rare, at one 
per several thousand base pairs, two genomes of M.tuberculosis of 4 Mb each may 
have some 1,0002008 SNPs between two isolates (Behr ). Whole-genome sequenc-
ing has been proven as an even more powerful tool to detect SNPs. It enabled the 
differentiation of Escherichia coli strains that had diverged for as few as 200 genera-
tions (Shendure and Ji 2005) and revealed genomic changes in pathogens in the 
process of human infection (Chen et al. 2006; Forst 2006; Pallen and Wren 2007).

1.3.2  Automatic Recognition of Functional Regions

In the pre-informatics era, virulence factors were typically identified either by 
biochemical studies or through genetic screens. Informatics has enabled innovative 
strategies for the recognition of virulence gene recognition through the analysis of 
genetic signatures (Pallen and Wren 2007). Despite the variety of microbial life 
styles and associated genomic and metabolic complexity, pathogen genomes share 
common architectural principles. As a result, computational techniques assist in 
exploring similarities between virulence factors and other genes with known functions. 
This association can then be tested using targeted genetic methods such as the 
inactivation of the putative virulence gene followed by the comparison of pheno-
types of the original and modified microorganisms (Chen et al. 2005; Raskin et al. 
2006). A strategy that does not rely on sequence similarity for identifying potential 
genes is the detection of coding sequences, which is based the gene context “grammars” 
supplemented with machine learning models (Garrido et al. 2008). For example, 
functional gene recognition tools GeneMark and GLIMMER employ Hidden 
Markov models, in which the preceding nucleotide bases are used to predict the 
next base in a coding region, and the algorithm is trained on a trusted set of 
sequences. Gene coding regions are then identified using probability estimates of 
the correct coding “grammar” in a region (Dougherty et al. 2002). Different statisti-
cal and machine learning methods for gene prediction have been reviewed 
elsewhere (Majoros 2007).

Gene-gene interactions specifically associated with a phenotype or a particular 
disease can be explored with or without a prior biological knowledge. Several 
techniques utilizing Bayesian networks, pair-wise mutual information and graphical 
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Gaussian models have been proposed for this purpose. Coupled with biological 
knowledge, the identification of such phenotype-specific interactions can shed light 
on the responsible pathways. The complexity of data handling and visualization has 
led to efforts to develop dedicated comparative genomics resources such as GenDB 
(Meyer et al. 2003), CMR, ACT, (Table 1.1) xBASE and Microbes OnLine as well 
as data management systems such as SEED (Table 1.2) (Chaudhuri et al. 2008).

1.3.3  Enabling the Dynamic View of Infectious Diseases

Informatics has been instrumental in the change from static to a dynamic view of the 
microbial world. In contrast to the static view of genome annotations focused on the 
gene or protein prediction, the dynamic view places information obtained into a 
biological context to identify interactions between the genomic components and the 
reconstruction of regulatory networks (Médigue and Moszer 2007; Sakata and 
Winzeler 2007). Under the network vision of the microbial world, microbial chro-
mosomes are not envisaged as strictly defined genotypes gradually changing in time 
but rather as islands of temporary, relative dynamic stability that form tightly con-
nected (vertically and horizontally) areas of the network (Koonin and Wolf 2008). 
The infection cycle should be considered as a whole and the links between growth, 
virulence, immune evasion and transmission should be assessed (Restif 2009).

Biological interactions vary in their nature and are spatially and temporally 
heterogeneous. One can abstract the actions of proteins and metabolites by repre-
senting genes acting on other genes as a gene network or as genetic regulatory, 
transcription or expression networks. Such networks can be constructed using 
computationally assigned functional linkages inferred by Rosetta Stone, Operon or 
similar methods (Rachman and Kaufmann 2007; Harrington et al. 2008), and often 
point to highly connected and central proteins frequently referred to as “hubs” 
(Wu et al. 2008). Biological interaction and communication networks share several 
commonalities: they are scale free (only a few nodes are highly connected) and are 
small world networks (highly clustered with short distances between any two 
nodes) (Kann 2008). Increasingly, disease pathogenesis and the mechanisms of 
drug action are viewed from a biological systems perspective (Wu et al. 2008). 
From this perspective, a deeper understanding of infectious diseases may rely on an 
exhaustive characterization of all potential interactions occurring between proteins 
encoded by viruses and those expressed in infected cells. Thus, the integration of 
all protein-protein interactions into an infected cellular network, or “infectome,” 
offers a powerful framework for the virtual modeling and analysis of infections 
(Navrati et al. 2009). The terms “interactome” and “phenomics” have been coined 
in this context (Lussier and Liu 2007).

Numerous resources have been developed to explore host-pathogen interactions 
(PHI) (Table 1.3). Specifically, PHI-base (Winnenburg et al. 2006), PHIDIAS (Xiang 
et al. 2007), BioHealthBase (Squires et al. 2008), PIG (Driscoll et al. 2009) VirusMINT 
(Chatr-aryamontri et al. 2009) and VirHostNet (Navrati et al. 2009) have been 
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suggested to study and visualize pathogen-related pathways. For example, the 
VirHostNet is a knowledge base for the management and analysis of proteome-wide 
virus-host interaction networks and a resource of manually curated interactions defined 
for a wide range of viral species (Navrati et al. 2009). Genomic and proteomic data is 
often informationally synergistic, allowing for the reconstruction of known pathways 
from the first principles. The combination of these forms of data have been used to 
identify libraries of recurring motifs, where the mixed semantics of the pattern prom-
ises to be more informative than any single data source taken in isolation in building 
biological networks (Michael et al. 2008; Stavrinides et al. 2008).

Systems biology has arisen from various attempts to move away from the reduc-
tionist approach, which is hindered by the difficulty of breaking a system into sepa-
rable and meaningful parts. It encompasses several high-throughput analytic 
technologies, including genomics, transcriptomics to measure gene expression and 
its regulation at the level of messenger RNA and microRNA production, proteom-
ics to measure changes in protein production, and computational biology, which 
depends on analytic software packages for analyzing, organizing, and interpreting 
those data (Sakata and Winzeler 2007). Such an approach treats pathogens and their 
environments as a series of hierarchical levels or networks from gene products to 
whole organisms and integrates the time dimension in order to structure knowledge 
and to determine rules that would allow navigation between levels (Lisacek et al. 
2006). This approach demands new tools for data management, the integration of 
which offers the opportunity to correlate multiple lines of evidence and to reduce 
uncorrelated noise.

1.3.4  Cross-Validating the Knowledge Sources

The major difference between the pre- and post-genomics eras is that one can now 
potentially account for and keep track of all components at once. However, the 
gathering of a large collection of data does not guarantee that we can make sense 
of it or that new knowledge will emerge (Collado-Vides et al. 2009). The chance 
for enriching biomedical knowledge can be increased by mixing various streams of 
data and gaining robustness from the “cross-validation” of the knowledge sources 
(Guyet et al. 2007). Public websites like Galaxy (http://galaxy.psu.edu) and InterPro 
(http://www.ebi.ac.uk/interpro/) offer integration toolsets for genomics and 
proteomics analyses.

As generating data remains a costly undertaking, computational models have a 
pivotal role to play in the integrative science. They help researchers to illuminate 
the underlying processes and identify the key questions that need to be addressed 
experimentally (Restif 2009). Compared to conventional, small-scale experimental 
approaches, they give a wider, often more relevant view of host responses to infec-
tions or other health insults. These computational models have the capacity to 
guide and direct wet lab experimental efforts complimenting traditional in vivo, in 
situ, and in vitro testing with the emerging in silico approach (Lengauer et al. 2007; 
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Raman et al. 2008). Some impressive starts have been made on bacterial models in 
the form of simulation tools. For example, the reconstruction of metabolic networks 
gave birth to the first examples of in silico strains that can be utilized to explore 
alternative ways of identifying new drug targets (Jamshidi and Palsson 2007). 
The end result of these simulations may be the genomic bioengineering of microor-
ganisms based on knowledge of interacting systems and networks of genes and gene 
products.

Text mining tools are being created to query the PubMed literature database and 
to integrate the available genomic and proteomic information to map the genes and 
their interrelationship with particular networks of a disease (Korbel et al. 2005; 
Jelier et al. 2008; Rzhetsky et al. 2008; Zaremba et al. 2009). An unsupervised, 
systematic approach for associating genes and phenotypic characteristics (G2P) 
that combines literature mining with comparative genome analysis has been 
successfully applied and has uncovered clusters of unsuspected G2P associations 
(Korbel et al. 2005).

1.4  Enabling Knowledge Communities: eScience

The phase of history in which biomedical science could be significantly 
advanced by individual researchers without data sharing has come to a close. 
The global, collaborative analyses of data and the exchange of the results 
across social, political and technological boundaries have created the demand 
for new cyber-infrastructures for research. There has been a major effort, in the 
form of e-Science, to develop technologies to fulfill these demands (Craddock 
et al. 2008).

1.4.1  Novel Infrastructures Support Knowledge Communities

The chance of making a discovery or replicating the finding is greatly increased if 
there are effective mechanisms for different groups to share data and thereby 
enlarge the number of samples that are studied. This paradigm has been successful 
in both human genomics and infectious disease research (e.g., including the rapid 
discovery and identification of emerged pathogens such as the Nipah virus and the 
novel coronavirus that caused the SARS epidemic). Post-genomic era solutions 
such as federated databases and other technologies that enhance connectivity and 
data retrieval have created a new knowledge environment (Birkholtz et al. 2006; 
Thorisson et al. 2009). The level of technical competence required of the users is 
being reduced by the provision of “off-the-shelf” solutions. For example, the 
GEN2PHEN project offers “database-in-a-box” installation packages, which 
include an open-source complete genetic association database system with the 
option for federation (Thorisson et al. 2009).
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Alternative infrastructures for e-Science with significant advantages over 
conventional Internet technologies are offered by grid and cloud computing and the 
Semantic Web (Numann and Prusak 2007; Craddock et al. 2008). First, grids 
provide unique access to high performance computing power, distributed applica-
tions and sources (see Chap. 14 for examples). Second, grids increase data storage 
spaces, and allow data and tools to be shared by geographically dispersed users. 
However, developing and maintaining grid or cloud architectures remains a complex 
task and requires further advances in security and privacy models before they can 
be embraced by diagnostic laboratories (Lisacek et al. 2006).

1.4.2  Data Aggregation

Tasks that require an e-Science approach or global science that is performed in 
silico are typically computationally intensive and use heterogeneous resources that 
must be integrated across distributed networks (Craddock et al. 2008). Increasingly, 
the genomic, proteomic and metabolomic data have to be integrated with tradi-
tional literature in a machine-readable way. Typical sets of experimental data yield 
component lists with quantitative content data and a catalog of interactions and 
networks. This requires the establishment of a middleware to convert experimental 
data into a format suitable for manipulation and viewing by end-users. For example, 
the Generic Model Organism Database project (GMOD; http://gmod.org) aims to 
link experimental data with corresponding contextual meta-data about experimental 
conditions and protocols in a multi-user, multi-center environment. It offers a 
collection of open source tools for creating and managing genome-scale biological 
databases ranging from a small database of genome annotations to a large 
web-accessible community database. Another approach is to trade off the width of 
integration for more depth with regard to a particular analysis task, and to employ 
workflow systems such as InforSense (http://www.inforsense.com) or Taverna 
(http://taverna.sf.net). These act as glue layers between various data sources and 
analysis packages and are also often referred to as pipelines, in silico protocols or 
e-experiments (Turnbaigh et al. 2007). “Pipeline” is mostly used to describe 
executable workflows, while the other terms are dedicated to abstract workflows 
(Lisacek et al. 2006).

Many innovative solutions for the multi-dimensional integration of data 
produced by experimental laboratories have been introduced by Bioinformatics 
Resource Centers for Biodefense and Emerging/Re-Emerging Infectious Diseases 
through regional Biodefense Centers of Excellence (McNeal et al 2007; Greene 
et al. 2007). Sets of task- and domain-specific online query and display tools are 
being developed to allow the end-user to view data in a number of different formats 
and to run informative comparisons of data with existing libraries (Louie et al. 
2007; Glassner et al. 2008). The most striking change in data collection and repre-
sentation is expressed by the move from flat databases to atlases or collections of 
interconnected maps (Lisacek et al. 2006).
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The uneven content and quality of data and the constant evolution of biomedical 
knowledge remain the main obstacles to data integration (Lisacek et al. 2006). The 
quality of data is affected by a number of factors including the accuracy of the mapping 
algorithms and reference datasets, the standardization of data formats and the level 
of detail of the experiment description (Stead et al. 2008). In addition, an increasing 
number of genomes are being released in “draft” form, before the finishing stage of 
a sequencing project, with high sequencing error rates (De Keersmaesher et al. 
2006; Médigue and Moszer 2007). Recent developments in databases and browsers 
for genomics have been summarized by Schattner (2008).

There is an urgent need for data structures suitable for infectious disease space 
that can be applied to emerging “omics” data sets. The Pathogen Information 
Markup Language (PIML) has also recently been introduced to enhance the interop-
erability of microbiology datasets for pathogens with epidemic potential (He et al. 
2005) by capturing the data elements that describe determinants of pathogen pro-
files. However, the jury is still out on the question of which data integration archi-
tectures are best suited to assembling large scale and highly diverse genomic data.

Integrating high-throughput techniques with other analytic tools brings a new 
understanding of infectious processes and introduces an era of personalized strate-
gies for managing infectious diseases. In this way, informatics becomes an irre-
placeable platform for the constant cross-fertilization and interplay between 
focused and genome-wide studies.

1.5  Translating “Omics” into Clinical Practice

1.5.1  Rapid Identification of Pathogens

Rapid and standardizable molecular identification systems have emerged during the 
last decade, with the development of sequence based species identification and 
sub-typing as the alternative to slow, labor-intensive and underpowered phenotypic 
techniques. Molecular identification usually relies on the detection of a single gene 
or multiple gene targets, or requires the comparison of whole microbial genomes. 
For example, in the pragmatic world of diagnostic bacteriology, conserved house- 
keeping genes such as the 16S rRNA gene, rpoB gene and others have been 
accepted as reliable targets. They are found in all microorganisms and show enough 
sequence conservation for accurate alignment as well as enough variation for 
phylogenetic analyses (Christen 2008). Furthermore, the 16S rRNA gene based 
phylogeny is sufficiently congruent with those based on whole genome approaches. 
Sequencing of six to eight genes or loci, as it typically done in multilocus sequence 
typing analysis, may constitute a reasonable compromise between single gene-
based and whole genome-based methods for species diversity studies.

To streamline the process of the translation of sequencing-based identification into 
clinical practice, the concept of the pathogen profile has been introduced (Sintchenko 



16 V. Sintchenko

et al. 2007). A pathogen profile is a single, multivariate observation or set of observa-
tions, comprised of classes of specific attributes (e.g., genome, transcriptome, proteome 
or metabolome data), which are designed to allow the interrogation of existing or future 
databases, and the integration of genomics and post-genomics data with clinical observa-
tions and patient outcomes. The profile may indicate the probability that a specific 
marker is associated with a clinically relevant phenotype such as in vivo antimicrobial 
resistance or high transmissibility. This information allows the classification of strains 
into “risk groups” for treatment failure or a propensity to cause outbreaks of infections. 
It is often important to capture the quantitative information about a pathogen, in vivo, i.e. 
viral or bacterial loads and their units of measurement. In contrast to traditional subtyp-
ing, which is based on phenotypic characteristics such as serotype, biotype, phage type 
or antimicrobial susceptibility, genetic profiling describes the phenotypic potential in the 
nucleic acid sequence. A pathogen profile is a synthesis of various markers and clinical 
end-points, which can be extracted from medical charts that characterize an individual 
patient’s clinical and public health outcomes. The profile may be heuristic, when only a 
single genetic marker is associated with a specific patient outcome, while more insights 
can be achieved when attributes from different levels of the biological hierarchy (i.e. gene 
detection, gene expression, metabolite profiles etc) corroborate and complement each 
other. Machine learning algorithms, such as E-Predict (Urisman et al. 2005), are being 
developed to identify viruses and bacteria present in clinical samples. These profiles are 
based on the microarray hybridization patterns or DNA sequences of pathogens.

1.5.2  Guiding Antibiotic Prescribing Decisions

Many computerized evidence-based guidelines and decision support systems (DSS) 
have been designed to improve the effectiveness and efficiency of antibiotic prescribing 
(Samore et al. 2005; Buising et al. 2008). The most frequently utilized are electronic 
guidelines and protocols, especially for the empirical selection of antibiotics. The 
majority of DSS result in improvement in clinical performance and, in at least half of the 
published trials, in improved patient outcomes (Finch and Low 2002; Sintchenko et al. 
2007; Sintchenko et al. 2008a). The revival of interest in prescribing-decision-support 
reflects the recent change in emphasis from support for diagnostic decisions towards 
support for patient management, and the changing focus from systems targeting a broad 
range of clinical diagnoses to task- and condition-specific decision aids. Despite reported 
successes of individual applications, the safety of electronic prescribing systems in 
routine practice has recently been identified as an issue of potential concern.

Bioinformatics assisted prescribing has become a new frontier in reducing the com-
plexities of prescribing combinations of antimicrobials in the era of multidrug resis-
tance. The great diversity of mutational patterns contributing to antimicrobial resistance 
complicates the choice of optimal therapies. A range of bioinformatics tools to predict 
drug resistance or response to therapy from a genotype, have been developed to support 
clinical decision-making (Beerenwinkel et al. 2003; Lengauer and Singh 2006). These 
tools use either a statistical approach, in which the inferred model and prediction are 
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treated as regression problems, or machine learning algorithms, in which the model is 
addressed as a classification problem (Sintchenko et al. 2008a). A statistical learning 
approach to the ranking of therapeutic choices often relies on a direct correlation 
between the baseline microbial profiles, the therapeutic decision and the patient’s 
response to treatment (e.g., expected reduction in viral load resulting from anti-HIV 
combination therapy). For example, several susceptibility scores have been used for 
combination antiretroviral therapy. These take into account specific resistance muta-
tions and add up the activities of individual drugs in the regimen (Lengauer and Singh 
2006). Computer-assisted therapy depends on the availability of widely shared data-
bases that can correlate quality-controlled data from genotypic resistance assays and 
treatment regimens with short- and long-term clinical outcomes. Databases such ARDB 
(Liu and Pop 2009) capture differences in antimicrobial sensitivities and reflect varia-
tion in the amino acid composition of resistant microbes, but simply counting mutations 
may not be enough to predict functional differences, which affect treatment outcomes.

1.5.3  Linking Genomics to Clinical Outcomes

The molecular profiling of pathogens is based on the concept that various pathogens 
can be associated with different clinical outcomes. It brings together the pathogen 
and host factors as the pathogenesis and natural history of infection are determined 
by both the pathogen and human genetic susceptibility. The effectiveness of 
combining host and pathogen genetics in a single system or “genetics-squared” has 
been proven in studies of viral infections (Persson and Vance 2007). Investigations 
of the impact of host genetics on the susceptibility to HIV infection and the rate of 
disease progression have mainly used a candidate gene approach to reveal associa-
tions with a number of different genes. The genome-wide association studies look 
at the genetic variation across the human genome in order to uncover factors not 
previously suspected of influencing infection outcomes. For example, this strategy 
identified variants of the HIV virus associated with differences in the control of 
viral load at set points and in disease progression. However, unraveling the interaction 
between the host and microbial genetic factors requires large clinical trials, 
reinforcing the role of collaborative networks and data repositories.

Informatics methods have become critical for data mining to decipher links between 
genetic variation and disease pathogenesis in order to define markers of disease pro-
gression, to guide the optimum use of therapeutics and to refine the drug and vaccine 
development (Mansmann 2005). A better understanding of the function of genes and 
other parts of the genome has enabled the reverse engineering approach, which may 
lead to the characterization and discovery of potential drug targets, vaccine candidates 
and diagnostic or prognostic markers (Davies and Flower 2007; Yang et al. 2008b). 
Proteins with essential biological functions present in multiple pathogens could be the 
best drug targets. Once the target genes essential for pathogen survival are identified, 
their susceptibility to specific compounds derived from large chemical libraries is 
examined in silico and in vitro (Muzzi et al. 2007; Biswas et al. 2008).
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1.5.4  Tracing Pathogens with Epidemic Potential

Increases in the use of electronic medical records and the availability of information 
technology tools have created opportunities for the automation of surveillance and 
facilitation of surveillance based on either syndromic or disease-specific signals 
(Amadoz and Gonzales-Candelas 2007; M’ikanatha et al. 2007). The automation of 
data collection improves the time and completeness of surveillance and allows 
infection control professionals to focus on interventions (Hota et al. 2008; Young 
and Stevenson 2008).

The comparison of chromosomal sequences allows the identification of the 
unique genomic signatures of pathogens for the purposes of infection control and 
“microbial forensics.” Molecular typing methodologies, in contrast to classical 
phenotypic methods, allow the discrimination of variations among strains within a 
species, the elucidation of the route of contamination, the identification of the 
source of infection as well as the analysis of epidemics. The identification of the 
natural reservoir and any possible intermediate hosts of pathogens is critical for 
understanding the transmission modes, designing a long-term disease control strat-
egy, and preventing future reintroduction (Sintchenko and Gallego 2009). 
Bioinformatics assisted biosurveillance addresses the inefficiencies of traditional 
surveillance, as well as the need for a more timely and comprehensive infectious 
disease monitoring and control. It leverages on recent breakthroughs in the rapid, 
high-throughput molecular profiling of microorganisms and text mining, as well as 
on the growing electronic body of knowledge about the molecular epidemiology of 
pathogens with epidemic potential. Such a framework combines the genetic and 
geographic data of a pathogen to reconstruct its history and to identify the migra-
tion routes through which the strains spread regionally and internationally (Cantón 
2005; Sintchenko et al. 2008b). Computer-based geographic information systems 
(GIS) have offered an efficient way to visualize the dynamics of the transmission of 
infections, especially in the setting of a community outbreak (McKee et al. 2000; 
Schreiber et al. 2007).

Another way to track infectious diseases of public health concern is to monitor 
health-seeking behavior in the form of queries to online search engines used by the 
general public or health professionals. Epidemics of seasonal influenza in areas 
with a large population of Internet users have been successfully detected using 
Google search data and then correlated with visits to a doctor (Ginsberg et al. 2009; 
Brownstein et al. 2009). The advent of news aggregators has led to the development 
of new disease surveillance tools that can continuously mine, categorize, filter, and 
visualize multilingual online information about epidemics. The Global Public 
Health Intelligence Network (GPHIN), developed almost a decade ago by Health 
Canada in collaboration with WHO, HealthMap (http://www.healthmap.org/en) 
(Fig. 1.2) or Geosentinel (http://www.istm.org/geosentinel/main.html) among 
many others are examples of such early warning systems. Resources for infection 
prevention and control on the World Wide Web have been recently reviewed else-
where (Brownstein et al. 2009; Johnson et al. 2009)
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1.6  Conclusions

The reductionist approach to biomedical research focusing on the study of cells and 
molecules has peaked with the sequencing of the human genome. However, it is 
becoming increasingly clear that “taking apart” analyses have reached their limit, 
and the time has perhaps come for integrative science (An and Faeder 2009). 
Developments in informatics have been critical in supporting and engaging with 
both reductionist and integrative paradigms. On one hand, informatics has equipped 
comparative genomics with tools to scrutinize genes and explore genetic polymor-
phisms. On the other hand, informatics has enabled the generation of integrative and 
testable hypotheses through the discovery of knowledge in databases and through 
the study of gene-phenotype connections between a pathogen and its host environ-
ment. A variety of data sets can be integrated, including the patient’s demographic 
and clinical presentation, the laboratory results, the pathogen’s gene regulation and 
expression, and metabolic maps with different parameters reflecting the phenotypic 
behavior of a pathogen and host factors. In early years some skeptics saw informat-
ics-assisted research as a distraction of effort and funding away from traditional 
hypothesis-driven inquiry. Since then, infectious disease informatics has verified its 
status as a platform for hypothesis generation and testing (Sintchenko et al. 2007).

New breakthroughs in infectious disease informatics (IDI) are the result of 
cross-pollination between different disciplines that use technologies to gather and 
disseminate knowledge (Fig. 1.3). Microbial genome sequence analysis and 
metagenomics have contributed intriguing new data types and data sources to IDI. 
Bioinformatics has brought to the IDI a range of analytic tools, databases and data 
standards. Conventional health informatics and computer science has provided high 
performance solutions for the data storage, sharing, analysis and visualization as 
well as clinical terminology libraries, data standards, decision support and technology 
evaluation frameworks. Importantly, the infectious disease informatics community 
has fed the lessons learnt from the implementation of clinical and public health 
systems back to the broader audience.

As the subsequent chapters of this volume testify, infectious disease informatics 
is set to lead to the more targeted and effective prevention, diagnosis and treatment 
of infections through a comprehensive review of the genetic repertoire and meta-
bolic profiles of pathogens. The post-genomic era offers new opportunities for the 
efficient discovery of safe and efficacious subunit vaccines by shortcutting the 
enormous economic burden of the experimental process. Our analytical capacity 
has already become the rate-limiting step in biomedical research. At the same time, 
it provides an opportunity to apply the engineering paradigm to biomedical 
research, thereby mandating the development of tools that can dynamically repre-
sent a body of current knowledge. However, the simplistic application of brute 
force computational power to massive reams of biomedical data is unlikely to result 
in meaningful mechanistic insight. It cannot be overstressed that informatics initia-
tives should compliment “wet laboratory” practices. An iterative loop of discovery 
and validation between the two methodologies remains the best way forward.
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2.1  Overview of Prokaryotic Microorganisms

Pathogenic Prokaryotes are cells that are defined by a lack of membrane-bound 
organelles. It is now clear that this is not an acquired characteristic, and the most 
recent common ancestor of all life on earth was probably a prokaryote. As a result, 
prokaryotes do not form a natural group in any meaningful sense, and are generally 
divided into two fundamental taxonomic units or domains: the Bacteria and the 
Archaea, with the divergence of these domains being the most ancient bifurcation 
in ribosomal RNA sequence-based phylogenetic trees. However, despite the pro-
found phylogenetic gulf between the Bacteria and the Archaea, it appears that these 
domains have much in common regarding genome organisation and population 
structures. Therefore, for the sake of simplicity and clarity, in this discussion the 
lower case “bacteria” will be used to refer to prokaryotes in general.

2.1.1  Nature of the Bacterial Genome

The last 50 years have seen enormous advances in the understanding of the nature 
of the microbial world, with important milestones being the determination of the 
structure of DNA (Watson and Crick 1953), the unraveling of the genetic code 
(Crick 1962), the physical characterization of the bacterial chromosome (Cairns 
1963), the development of dideoxy DNA sequencing (Sanger et al. 1977), the real-
ization that evolutionary distances between microbial taxa could be inferred from 
biological sequences and the subsequent inference of a universal phylogenetic tree 
(Woese and Fox 1977; Woese 1987), the development of non culture-dependent 
DNA-based approaches to environmental sampling and analysis (Relman 1993), 
the advent of full genome sequencing (Fleischmann et al. 1995), and the development 
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of “next generation” high throughput DNA sequencing methods (Margulies et al. 
2005; Mardis 2008). This has led to the sequence determination of more than 700 
complete microbial genomes, and the discovery of many uncultured microbial taxa. 
Consequently, a considerable degree of insight into the genetic and evolutionary 
structure of the microbial world has been gained.

The genomics of bacteria has recently been reviewed by Koonin and Wolf 
(Koonin and Wolf 2008). Bacterial genomes range from approximately 0.5 Mb to 
13 Mb in size, with the lower level being difficult to define because of the grey area 
between endosymbionts and organelles. The genome is usually organized into a 
single circular chromosome, and a small number of autonomously replicating plas-
mids. The protein coding sequences are almost entirely devoid of introns, and the 
distances between the genes are, in general, short. As a result, there is a very strong 
correlation between genome size and gene number in bacteria, with close to 1,000 
genes per Mb. This correlation is much weaker in more complex multicellular 
organisms, because of their large and variable intronic and other non-coding DNA 
content. Larger genomes in bacteria are associated with metabolic and morphologi-
cal versatility, and adaptation to nutritionally sparse and variable environments, 
such as fresh water and soil. Conversely, small genomes are associated with para-
sitic lifestyles, which provide a nutritionally enriched and stable environment. 
Unsurprisingly, the smallest genomes are possessed by obligate intracellular para-
sites that can access many host-derived molecules.

One insight of immense significance that has resulted from the complete genome 
sequencing of multiple strains within bacterial species is that many of the latter 
possess what is now termed a “pan-genome” (Tettelin et al. 2008). Contrary to 
expectations, it has been found that every new genome sequence contains large 
numbers of previously unknown genes; so, the total number of genes within a spe-
cies is much greater than the total number of genes within any individual isolate. 
The sizes of the pan-genomes are currently an enigma, as for some species; the 
number of new genes discovered per genome shows no sign of reducing as the total 
number of known genomes increases. This suggests that the pan-genome may be a 
very deep well of genetic information. Also, the evolutionary and adaptive signifi-
cance of pan-genomes is not understood. For instance, it is unknown whether the 
pan-genome represents an adaptation that adds to the fitness of the community and 
may be regarded as evidence for group selection, or whether it is the contingent 
result of the activities of large numbers of mobile genetic elements that are essen-
tially parasites. It may very well be a mixture of both.

2.1.2  Bacterial Evolution and the Universal Tree

Until the second half of the twentieth century, microbiology was a hostage of 
historically complicated taxonomy, which was based upon insufficient information. 
A hierarchical taxonomy implied knowledge of phylogeny. Unfortunately, the 
inference of evolutionary relationships between prokaryotic taxa was at that time 



292 Bioinformatics of Microbial Sequences

virtually impossible, and many of the evolutionary relationships implied by the 
taxonomic structures of the early to mid twentieth century have since been shown 
to be incorrect. The basis for this difficulty was the morphological and metabolic 
simplicity of most prokaryotes. For example, rod shapes and heterotrophic metabo-
lisms are now known to have evolved in diverse lineages; so, these characters are 
highly homoplastic (i.e. the products of convergent or parallel evolution) and so, 
evolutionarily uninformative. What was needed was information contained within 
the prokaryotic cell that was sufficiently complex to make homoplasy highly 
improbable. Woese and co-workers realized that biological sequences are suffi-
ciently information-rich to be used to reliably infer evolutionary relationships 
(Woese and Fox 1977; Woese 1987). For many years, the molecules of greatest 
interest were ribosomal RNA (rRNA). This is because they perform the same func-
tion in every cell, and so changes in sequences are not biased by differing functional 
selection in different taxa. Also, rRNA has domains that evolve at very different 
speeds. This occurs because the structure of rRNA is maintained by base pairing. 
The base paired regions evolve extremely slowly because a single base change will 
disrupt base pairing, and this disrupts the function of the molecule. Therefore only 
very rare simultaneous double mutations that do not disrupt base pairing are likely 
to be fixed by evolution. Conversely, the regions of rRNA molecules that are not 
base-paired evolve much more rapidly. Therefore, a comparison of rRNA sequences 
can reveal evolutionary relationships over greatly different time scales. The particu-
lar value of the rRNA is its ability to reveal the nature of very distant evolutionary 
relationships and so provide insight into the universal evolutionary tree of life on 
earth. A landmark review published 21 years ago contained a 16S/18S RNA-based 
universal phylogenetic tree that clearly demonstrated that from an evolutionary 
point of view, the great bulk of the earth’s biodiversity is composed of unicellular 
prokaryotes (Woese 1987). Animals and land plants occupied two twigs on the tree, 
thus eliminating the concept that all life on earth falls into either the animal or plant 
kingdoms. The 16S/18S RNA-derived universal tree supports the concept of three 
domains of life – the Bacteria, Archaea and Eukarya, with the Bacteria and Archeae 
being composed entirely of prokaryotes, and the Bacteria diverging from the 
Archaea and Eukarya, before the Archaea-Eukarya divergence (Fig. 2.1). An inevi-
table and counter-intuitive consequence of this model is that Bacteria and Archaea 
are as evolutionarily unrelated as it is possible for cellular life forms on this planet 
to be, despite extensive similarities in morphology and physiology. In the last two 
decades, the universal tree has been considerably expanded. This has been primar-
ily because of the discovery of numerous uncultivated taxa in the course of studies 
that involve the extraction of rRNA encoding genes directly from environmental 
samples. The great bulk of these taxa are either Bacteria or Archaea so this work 
has greatly increased the proportion of known biodiversity that is composed of 
prokaryotic microorganisms (Fig. 2.2).

Although there is a consensus that the assembly of rRNA sequence-based phy-
logenies represents an enormous step forward, these studies contain an inherent 
assumption that is certainly not entirely correct. This assumption is that the evolu-
tionary histories of the rRNA genes used as evolutionary markers are identical to 
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Fig. 2.2 A 16S ribosomal RNA tree illustrating divisions within the domain Bacteria. Divisions 
are broad taxonomic groupings conceptually similar to phyla in multicellular organisms. A large 
proportion of these divisions were discovered as a result of direct environmental sampling for 
rRNA, and have not been cultured (Hugenholtz et al. 1998)

Bacteria Archaea Eucarya

Crenarchaeota

Euryarchaeota

Animals

Fungi

Plants

Fig. 2.1 The universal phylogenetic tree as deduced from rRNA sequences. This illustrates that 
from a phylogenetic viewpoint, the great majority of biodiversity is microbial (Reproduced from 
Woese (2000) with permission)
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the evolutionary histories of all the other genes on the chromosomes in which they 
reside. This question has been a subject of considerable debate for more than a 
decade. The central issue is lateral gene transfer (LGT). LGT (sometimes known as 
horizontal gene transfer) is the transfer of a gene(s) from one microbial cell to 
another cell. If LGT occurs between cells that are separated by any significant 
evolutionary distance, then the event creates a chimeric genome in which not all 
genes have the same evolutionary history. The worst-case scenario for the validity 
of an rRNA-based universal tree is that LGT is so common that an rRNA tree sim-
ply represents the phylogeny of rRNA genes and says nothing concerning the 
phylogeny of the cells within which they are found.

2.2  Classification of Prokaryotic Microorganisms

Given that the species remains the fundamental taxonomic unit, it has proven sur-
prisingly difficult to arrive at a consensus as to what defines a bacterial species. In 
diploid organisms that always reproduce sexually, the accepted definition of a spe-
cies is a group of organisms in which there is reasonably unimpeded gene flow i.e. 
the species represents a pool of DNA that is subject to recombination during the 
production of every new individual or set of identical siblings. However, this defini-
tion is difficult to apply consistently to bacteria. This is because there are no known 
bacteria in which there is genome-wide genetic recombination between individuals 
at every generation. In multi-cellular diploid organisms that do undergo complete 
recombination at every generation, the rate of gene flow is purely a function of 
ecological or geographic factors, with ecological or geographic boundaries leading 
to speciation. In prokaryotes, the rate and extent of gene flow is a function of the 
inherent rate of LGT, as well as of ecological or geographic factors. The inherent 
rate of LGT is highly variable from taxon to taxon, which makes it essentially 
impossible to delineate species using hard and fast rules regarding gene flow. The 
current practice is to delineate prokaryotic species on the basis of a combination of 
phylogeny, as defined by levels of sequence similarity, and phenotype. Phenotype 
is still given considerable weight, particularly when it involves virulence properties 
and host range, or in some other way impacts directly upon the interests of humans. 
A consequence of this is a tendency towards taxonomic splitting where human and 
livestock pathogens are concerned and taxonomic lumping for everything else. 
Genetic methods for defining species have long required whole genome hybridiza-
tion studies, with 70% hybridization being the usual cut-off for delineating a spe-
cies. This technique is now regarded as outdated, primarily because it is difficult to 
perform and interpret. There is no current consensus regarding a clear definition of 
a bacterial species, although there does appear to be some agreement that species 
should be defined in relation to the population structure as delineated by the 
sequencing of multiple genes, and the existence of cohesive ecological groups 
(Hanage et al. 2006; Staley 2006; Fraser et al. 2007; Achtman and Wagner 2008; 
Fraser et al. 2009).
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2.3  Revealing Phylogenies and Population Structures

In groups of organisms that are closely related to each other, LGT may be sufficiently 
frequent to decouple the evolution of any one gene from the evolution of the 
genome, and so render a single gene-based classification as an inadequate and 
misleading depiction of evolutionary relationships within the group. However, an 
apparent paradox is that in groups of organisms that are extremely closely related, 
a tree can once again become the appropriate phylogenetic model. This is because 
in such groups, there may have simply been insufficient time to erase the phyloge-
netic signal since the existence of the most recent common ancestor for LGT 
events. Therefore, it is possible to generalize that LGT has the greatest disruptive 
effect on the phylogenies of groups of organisms that are distantly related enough 
for many LGT events to have taken place, but not so distantly related that mecha-
nistic and/or ecological barriers to LGT have arisen. It should be recognized that 
there are some bacterial species in which LGT is so rapid that any position on the 
genome is more likely to be changed by an LGT event than by point mutation. In 
such species, the phylogenetic signal is largely erased, no matter what evolutionary 
time scale is being examined.

The purpose of this section is to describe methods for revealing the population 
structures and phylogenies of prokaryotes. This discussion incorporates case stud-
ies of different species and genera of bacteria, demonstrating that the population 
structures and extents of LGT differ so much across evolutionary space that there 
is no standard work flow for understanding the population structure of a species or 
group of species, and that there may be little choice but to maintain considerable 
case by case flexibility regarding the general principals of taxonomy.

2.3.1  Methods for Revealing the Extent and Frequency of LGT

At this point, it is important to state that LGT can be divided into two categories. 
Firstly, it is now clear that that the majority of bacterial species harbor genetic ele-
ments that encode functions that mediate or contribute to their own horizontal 
transfer. Examples of these include temperate bacteriophage, conjugative plasmids, 
transposable elements, and “islands” that apparently integrate into the genome by 
site-specific recombination. These elements are by definition evolutionarily 
homoplastic unless they are completely inactive. However, in the following para-
graphs, the focus is upon mechanisms that render all genes in the genome prone to 
LGT. Mechanisms that can mediate the horizontal transfer of any gene in the 
genome include the uptake by transformation of DNA released from lysed cells, 
bacteriophage mediated generalized transduction, and the transfer of DNA by chro-
mosomally integrated conjugative plasmids. A common feature of these mecha-
nisms is that transferred DNA is integrated into the recipient cell by homologous 
recombination, and this results in the replacement of the recipient alleles with the 
donor alleles.
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The essential principle behind most methods for revealing LGT within groups 
of bacteria is that LGT results in the phylogenetic signals derived from different 
genes being inconsistent i.e. it results in homoplasy. One of most useful resources 
for the study of LGT is multilocus sequence typing (MLST) data. MLST is an 
approach to microbial typing based upon the sequences of multiple genes, and was 
first described a decade ago (Maiden et al. 1998). Setting up an MLST scheme for 
a bacterial species requires the identification of seven widely spaced housekeeping 
genes. Housekeeping genes are used because they are expected to evolve at a slow 
and constant rate. Primer sets that may be used for PCR amplification and sequenc-
ing of approximately 450 bp fragments of each gene are developed. The method is 
then published and supported by a web site that stores all the data, and assigns 
numbers to each variant (allele) of each sequence, and to every unique combination 
of alleles (sequence type [ST]) that is found within an isolate. MLST web sites are 
now heavily used for the great majority of main bacterial pathogens (http://www.
mlst.net/), with more than 3,800 known STs for Campylobacter jejuni and Neisseria 
meningitidis. MLST is explicitly designed to reveal the population structures of 
bacterial species, and the MLST databases certainly provide great insight into the 
contribution of LGT to evolution in different bacterial species.

The most straightforward approach to determining the extent of LGT is to take 
a group of isolates and construct trees on the basis of sequence variation in different 
genes. Obviously, MLST data is ideal for this purpose. In a non-recombining 
“clonal” population, the trees will be similar, and in a recombining “non-clonal” 
population they will be dissimilar (Spratt et al. 2001; Feil et al. 2003).

Although this approach is very useful, it is essentially qualitative in that it does 
not indicate the relative probabilities that any given nucleotide will undergo an 
evolutionary change as a result of an LGT event or point mutation. Also, in com-
mon with all phylogenetic tree-based methods, variations in the branching order 
from gene to gene can be due to stochastic effects.

A quantitative variant of this approach is the calculation of the index of associa-
tion (I

A
S) between MLST loci (Smith et al. 1993; Enright et al. 2001). In a clonal 

bacterial population, a single gene can serve as the evolutionary marker for the 
genome, so different genes in the genome are in linkage disequilibrium. It therefore 
follows that if two isolates from a clonal population differ at one gene, they would 
likely differ at other genes as well. Conversely, in a completely non-clonal popula-
tion, different genes are in linkage equilibrium, and whether or not two isolates are 
different at one gene has no bearing on whether they differ at other genes as well. 
In consequence, STs from clonal populations will, on average, differ at more loci 
than STs from non-clonal populations. The LIAN software package (Haubold and 
Hudson 2000) computes the I

A
S by comparing the variance of actual MLST data 

with randomized MLST data. The extent to which the variance from the actual data 
is greater than the variance of randomized data is a measure of linkage, and there-
fore a measure of the inverse of the extent of LGT.

A remarkably simple and effective approach to assessing the relative frequencies 
of point mutation and LGT is through the examination of single locus variants of 
clonal complex (CC) founders in MLST databases (Feil et al. 2000a, b; Feil et al. 2001; 



34 P. Giffard

Spratt et al. 2001). It is now apparent that most if not all bacterial species encompass 
successful clones that become numerically dominant. This numerical dominance 
makes it possible to detect derivatives of these successful clones that differ at just 
one MLST locus. These are known as single locus variants (SLVs). The successful 
clone plus SLVs (and sometimes double locus variants) is known as a CC, and the 
successful clone is termed a CC founder. In a non-recombining population, the only 
way that SLVs can arise is by de novo point mutation. In the great majority of 
instances, this will generate a new single nucleotide polymorphism (SNP), and in 
so doing will generate a new allele for that locus. Conversely, in a rapidly recom-
bining population, a large proportion of SLVs will be SLVs by virtue of LGT events 
that have introduced an allele that already exists elsewhere within the species into 
the CC progenitor. Therefore, an indication of the ratio of LGT and point mutation 
can be obtained by examining all the known SLVs of a CC progenitor, and deter-
mining which variations are due to probable point mutation and which are due to 
probable LGT events. A possible confounder of such analyses is that MLST alleles 
may be undiscovered rather than new. However, assuming that the MLST database 
in question represents a substantial sample of the actual population, this will be a 
rare event. This is because it can only be concluded that an SLV has arisen by point 
mutation when the allele that discriminates the SLV from the CC founder is unique 
in the MLST database, the SNP is not polymorphic anywhere in the species except 
between the CC founder and the SLV in question, and that the new allele differs 
from the previous allele at only that SNP. Even if there is a certain percentage of 
instances in which LGT events are misclassified as point mutation events, and vice 
versa, this type of analysis can place reliable boundaries upon LGT frequencies. 
For instance, if the majority of SLVs of a CC progenitor harbors alleles that are 
common throughout the species, then it can only be concluded that more SLVs arise 
by LGT than by point mutation.

2.3.2  Methods for Depicting Population Structures  
and Phylogenies

Phylogenetic Trees. Tree-like diagrams have been used to depict evolutionary rela-
tionships for more than a century. A phylogenetic tree displays a single pattern of 
evolutionary relationships between the taxa concerned. Therefore, an inherent 
assumption is a lack of homoplasy, although this assumption is rarely completely 
met. The development and comparison of computational methods for transforming 
aligned sequences into phylogenetic trees is an enormous field of research and on-
going debate (Nei 1996; Brocchieri 2001), and a comprehensive description of 
extant methods and their merits is beyond the scope of this discussion.

There are four basic approaches to constructing trees. Distance based methods 
involve the conversion of the sequence alignment into a matrix of numerical evolu-
tionary distances, and the inference of the tree from that data. There are a number 
of algorithms for inferring a tree from a distance matrix, of which the most commonly 
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used, is probably the neighbor-joining method (Saitou and Nei 1987). Its popularity 
is a result of its computational speed, a general acceptance that it produces reason-
ably good results, the fact that it produces a single tree as the “answer”, and its 
incorporation into popular alignment construction software packages such as the 
Clustal family (Larkin et al. 2007) and Mega (Kumar et al. 2008).

The parsimony approach to tree inference is the simplest method that directly 
analyses the actual sequences, rather than numerical values for sequence similari-
ties. Parsimony analyses search for the tree(s) that can account for the observed 
sequences in the minimum number of evolutionary steps from a hypothetical com-
mon ancestor. This method has been used extensively. However, the manner in 
which it searches evolutionary space is often regarded as oversimplified in that the 
number of optimal evolutionary pathways that can lead to a given tree is not taken 
into account. This can lead to a tree that defines a single short evolutionary pathway 
being preferred over a tree that defines multiple pathways that are only marginally 
longer. In such a situation, the second tree is probably a better “answer”.

Maximum Likelihood methods are regarded as being rigorous and tolerant of 
wide ranges of sequence divergence, and are also computationally expensive. 
Likelihood is conditional probability. In this context, it is the probability of observ-
ing the actual sequence alignment, given a particular tree topology. The likelihood 
can be calculated using any plausible model for the evolutionary process. The tree 
topology that maximizes the likelihood is arrived at by the empirical testing of 
many different topologies. It is commonplace to incorporate the testing of varia-
tions of the parameters for the evolutionary model into machine learning analyses, 
with the assumption that parameters that maximize the likelihood are preferred.

Bayesian methods for phylogenetic inference have similarities to machine learn-
ing methods, but also some subtle but important differences (Yang and Rannala 
1997; Holder and Lewis 2003; Ronquist and Huelsenbeck 2003). The basis for 
these methods is the use of Bayes theorem to convert the likelihood of a particular 
sequence alignment, given a particular tree topology, into the probability of a given 
tree topology (the posterior probability), given a particular sequence alignment (the 
evidence). The calculation of the post-test probability takes into account the prob-
ability of that tree topology in the absence of any alignment data (the prior proba-
bility), and the probability of the sequence alignment itself, which in general can 
be regarded as a constant. This allows a search to be made for tree topologies that 
maximize the post-test probability. The Bayes theorem allows the incorporation of 
unlimited numbers of parameters of “evidence” and this makes it possible to simul-
taneously search tree topology space and evolutionary model space in a computa-
tionally efficient manner. Essentially all Bayesian methods use the Markov Chain 
Monte Carlo (MCMC) search algorithm. This entails defining a starting point of a 
particular tree topology and evolutionary model, and then perturbing this in a ran-
dom step-wise fashion. New points within the tree and parameter space are accepted 
if they provide a higher posterior probability than the previous point. There is also 
a probability that they will be accepted if the posterior probability is less than at the 
previous point, and this probability is inversely proportional to the reduction in 
posterior probability from the previous point to the new point. This is an approximation 
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that allows the regions of tree and parameter space with high posterior probabilities 
to be identified efficiently, while at the same time avoiding becoming stranded in 
local minima. A very clever and valuable aspect of the MCMC method is that it 
calculates a probability distribution in the tree and parameter space by determining 
how often points within that space are visited during the course of the search. The 
premise is that points visited more frequently represent a higher probability density. 
This allows trees to be assessed not on the basis of which one provides the highest 
peak of posterior probability, but on the basis of which one provides the greatest 
area under the multidimensional curve of the relationship between the posterior 
probability and parameter space. This therefore takes into account the fact that a 
tree that can be reached by many reasonable evolutionary pathways from the 
sequence alignment is preferred over one that can be reached by fewer reasonable 
evolutionary pathways, even if the peak posterior probability for the second tree is 
higher. Therefore, Bayesian analysis combines, in a computationally efficient man-
ner, the determinations of the preferred tree, the tree’s robustness, and the preferred 
evolutionary model.

As stated above, an inherent assumption in the inference of a phylogenetic tree 
is a lack of homoplasy. It is important to bear in mind that a tree can be inferred 
from essentially any data set, no matter how homoplastic. For example, a tree 
inferred from MLST data derived from a highly non-clonal species will look like a 
plausible tree, but will represent the average of the different trees that would have 
been derived from each locus. It is commonplace to infer trees from non sequence-
based genetic data such as the electrophoretic banding patterns derived from pulse 
field electrophoresis or fluorescent amplified fragment length polymorphism 
 analysis. If this is carried out on isolates from a non-clonal species, it provides 
some insight regarding the population structure. However, it is difficult to define 
exactly what this insight is; therefore, these relationships cannot really be termed a 
phylogeny. Trees from multilocus sequence data or genome-wide electrophoretic 
analysis of non-clonal species are best regarded as similarity trees rather than 
 phylogenetic trees. There are a number of strategies for calculating and depicting 
the networks defined by conflicting or homoplastic phyogenetic signals, with split 
decomposition analysis being the best known (Huson 1998).

eBURST and related algorithms. Feil and co-workers have developed a means 
of depicting bacterial population structures that is very different to a conventional 
phylogenetic tree (Feil et al. 2004). It is designed to accommodate two phenomena 
that are handled poorly by phylogenetic trees: high levels of LGT, and the co-
existence of ancestors and descendents. The eBURST software is designed to ana-
lyze MLST allele profile data rather than the actual sequence data, and as a result 
does not take the degree of divergence between different alleles into account. The 
core of the algorithm is a parsimony-based search for founders of CCs. The premise 
is that the ancestral ST of a group of closely related STs (i.e. STs that differ at a 
maximum of two of the seven MLST loci) will be the one that differs at only one 
locus from maximum number of STs. In this way, CCs can be depicted as founders 
surrounded by descendents, or SLVs. Elaborations of the algorithm accommodate 
SLVs themselves being CC founders, with the concomitant linking together of CCs 
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into “super complexes”. Also, the reliability of the identification of CC founders 
can be tested through bootstrapping analysis. An eBURST diagram depicts each ST 
as a circle, and the size of this can be scaled in proportion to the number of isolates 
of that ST in the database. CC founders and their SLVs are connected by lines. 
These lines depict only a subset of the SLV relationships, and it is possible to select 
an option that turns on the depiction of all SLV relationships, or all double locus 
variants (DLV).

The obvious disadvantage of eBURST analysis is that it operates over a narrow 
dynamic range and provides no information regarding the relationships between 
STs that are not connected to each other, and also says nothing about the similari-
ties between alleles. In addition, whether an isolate is classified as a CC founder or 
an SLV is subject to strong stochastic effects, with the assignments likely to be very 
different if, for example, a different seven gene fragments were chosen for MLST 
analysis. However, there is no doubt that eBURST is a very effective means of gain-
ing an understanding of the general characteristics of the population structures of 
bacterial species. This is particularly the case when an entire MLST database is 
depicted in a single diagram, known as the population snapshot. This has consider-
able power to reveal the extent of LGT, and the extent to which the species has been 
sampled (Fig. 2.3).

In recent years, there has been considerable interest in the use of sequence repeat 
containing loci for high-resolution bacterial genotyping and the inference of bacte-
rial population structures. DNA sequence repeats evolve rapidly in essentially all 
life forms, with the principal mechanisms being slipped strand mis-pairing during 
DNA replication, and homologous recombination. These methods are known as 
variable number tandem repeat (VNTR) analysis or multi-locus VNTR analysis 
(MLVA) (Grissa et al. 2008). A technique with close similarity to eBURST analysis 
is the inference of minimum spanning trees (MSTs), and this is increasingly being 
used to analyze MLVA data (Melles et al. 2009). MSTs are well known in graph 
theory and are the most efficient means of connecting all points on a graph. 
Efficiency is calculated using weightings of all the possible connections between 
the points, and these weightings would normally equate to the length of the line. 
The inference of an MST is in essence an exercise in parsimony. MSTs are similar 
to the output from eBURST analyses, but with the important difference that all 
genotypes are connected. Thus MSTs depict a greater range of evolutionary dis-
tances than eBURST analyses. In most MLVA methods, the VNTR loci have highly 
conserved repeating units. In consequence, most of the information from the loci 
can be extracted by simply sizing the loci by means of capillary electrophoresis of 
PCR products, rather than by sequence determination, and this is what is usually 
done. In order to infer an MST from MLVA data of this nature, the similarities 
between genotypes are determined solely on the basis of how many loci are the 
same and how many are different. It is not usual to attempt to deduce degrees of 
similarity at individual loci, because an assumption that similar sized loci are more 
closely related than more differently sized loci may not be warranted. Elements of 
the eBURST algorithm may be included in the analysis in order to discriminate 
between equivalent trees e.g., to decide which are major CC progenitors that should 



38 P. Giffard

be directly connected together (Ghosh et al. 2008; Melles et al. 2009) (Fig. 2.4). In 
the case of the electrophoresis-based methods, the data are encoded in a binary fash-
ion such that each genotype is defined on the basis of which electrophoretic bands it 
includes, and which it does not include (Melles et al. 2009). The recent popularity 
of MST analysis is a likely consequence of its inclusion as a function in the 
Bionumerics software (http://www.applied-maths.com/bionumerics/bionumerics.
htm), which is extensively used by microbiologists.

‘The Based Upon Repeat Pattern’ (BURP) algorithm is also closely related to 
the eBURST algorithm and is specifically designed to deduce S. aureus population 
structures from variation in the VNTR-containing spa gene. In effect, spa typing is 
a single locus VNTR typing method (Mellmann et al. 2007, 2008). The spa gene 
encodes protein A, which is a hypervariable cell surface attached immunoglobulin 
binding protein. In effect, the spa molecular clock has both a minute hand and an 
hour hand, with the minute hand being the rapid re-arrangement and alteration of 
the number of repeats, and the hour hand being the generation of novel repeating 
units by point mutation. The BURP algorithm divides spa sequences into CCs on 

a
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Fig. 2.3 (a) An eBURST derived population snapshot of S. aureus. Each filled circle represents 
an ST, with the size proportional to the number of isolates of that ST in the MLST database. Large 
CCs are conspicuous. (b) The same diagram as in (a), but with all pairs of STs that differ at a 
single locus connected by pink lines. The lack of links between the CCs is evidence for slow gene 
flow between the CCs. (c) An eBURST derived population snapshot of Burkholderia  pseudomallei, 
the causative agent of the tropical disease melioidosis The central portion of the diagram consists 
of a highly linked complex of STs, dissimilar in its structure to anything seen with S. aureus. (d) 
The same diagram as in C. but with all pairs of STs that differ at a single locus connected by pink 
lines. It can be seen that the number of linkages within the central complex is very high, suggest-
ing a high rate of LGT. There are numerous instances in which STs that differ at only one locus 
are located far from each other in the diagram, indicating that the defining of a reliable  evolutionary 
pathway with a rapidly recombining population is very difficult
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the basis of the sequences of the repeating units, and uses an eBURST like analysis 
of the number and arrangement of the repeat units to infer the CC founders. A 
related and more sophisticated examination of the evolutionary informative power 
of the spa locus has been reported (Agius et al. 2007). This analysis involved test-
ing different alignment algorithms of spa sequences so as to determine which 
generates a distance matrix that is most consistent with MLST data, and it was 
found that an algorithm that searches for subsequences in common, and corrects for 
the distance between these subsequences performs best. An interesting aspect of 
this analysis was the use of multidimensional scaling (MDS) to depict the relation-
ships between multiple spa sequences. MDS is in principle very similar to MST 
construction, but does not involve linking different sequences. Rather, the sequences 
are placed on a two or three-dimensional chart in such a way that consistency with 
the distance matrix is maximized.

Fig. 2.4 Minimum spanning trees demonstrating that S. aureus carriage, blood and impetigo 
isolates do not fall into different phyogenetic groups. (a) The tree is derived from AFLP data.  
(b) The tree is derived from MLVA data (Adapted from Melles et al. 2009)
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2.3.3  Comparisons of Entire Genomes

The last five years have seen the emergence of new ultra-rapid methods for genome 
sequence determination, and these are proving to be a disruptive technology. It is 
becoming possible to reveal the evolution and population structures within and 
between bacterial species by comparing complete genomes, rather than genome 
samples. An example of an application for inferring whole gene phylogenies is 
OGtree (Jiang et al. 2008). This only requires the GenBank accession numbers of 
entire genomes, and it will identify a set of orthologous genes that are present in all 
the genomes, concatenate these, and infer a tree. However, it is currently an open 
question as to how much more information will be derived from whole genome stud-
ies as opposed to genome sampling-based phylogenetic studies. If LGT is not a 
significant confounding factor, then the analysis of ever more genes rapidly enters a 
region of diminishing returns, because even a single gene can perform very well as 
a marker of the whole genome. When LGT is significant, analyzing whole genomes 
does not result in convergence to the correct tree, because there is no single phylog-
eny to define a single tree. Rather, analyzing whole genomes will simply add to the 
complexity of a “network” result. If the data are forced to define a tree, then the tree 
will be a similarity tree rather than a phylogenetic tree. One way of at least partly 
circumventing this problem has been developed as a tree inference approach with 
software named “ClonalFrame” (Didelot and Falush 2007). It appears to be a power-
ful method for comparing complete genomes, between which there is significant, but 
not overwhelming LGT. Recently, this research group has introduced a method for 
mapping LGT using whole genome sequences (Didelot et al. 2009).

2.4  Impact of Advances in Microbial Evolution on the Practice 
of Microbiology

The task of an analytical microbiologist may be summarized as (1) the determina-
tion of what micro-organism(s) are present within an analytical sample, and (2) the 
derivation of information that that serves the clinical, public health, food safety, 
environmental or other anthropocentric interest from such microorganisms. The 
tools that are central to these tasks are diagnostic targets with high sensitivity and 
specificity for relevant taxonomic groups, marker sets for genetic fingerprinting 
methods that allow the tracking of significant clones or CCs, and marker sets that 
allow the inference of clinical or other significant aspects of the phenotype. It is self 
evident that there are conceptual and practical overlaps between these tools, and 
that an understanding of the comparative genomics, population biology and gene 
function are central to their development. The following sections outline current 
research into the population structures of four species of bacterial pathogens and 
illustrate the considerable differences between bacterial species, both in terms of 
the actual population structures, and the clinical and public health imperatives.
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2.4.1  Bacillus anthracis

Anthrax is a severe disease that primarily affects grazing animals. The causative 
organism, B. anthracis, is a Gram-positive endospore forming bacterium that can 
remain dormant in the environment for long periods of time. The primary mode of 
transmission amongst grazing animals is the ingestion of soil that is contaminated 
with endospores derived from the carcass of an animal that has died of anthrax. 
Humans can contract anthrax as a result of inhalation, ingestion or cutaneous inocu-
lation of endospores. All three modes of disease are extremely dangerous, although 
cutaneous anthrax has a lower fatality rate than either gastrointestinal or inhala-
tional anthrax.

B. anthracis has long been seen as a potential bio-weapon. This potential was 
realized in 2001 with well-known anthrax attacks using endospores in letters 
mailed to the victims. Because of the enormous imperative to determine the source 
of the strain used in the attacks, large financial resources were made available to 
rapidly determine the population structure of B. anthracis and to develop appropri-
ate genotyping methodologies. In the course of these studies, the term “microbial 
forensics” was coined (Keim et al. 2008). The principal underpinning this is that 
for a genotyping method to provide reliable information in identifying the origin 
of a point source outbreak, the performance of the genotyping method has to be 
understood in relation to the population structure of the species. This allows the 
estimation of the probability of epidemiologically unconnected isolates being of 
the same genotype.

Early studies of the population structure and diversity of B. anthracis quickly 
revealed that mutational diversity (i.e. the number of SNPs) is extremely low com-
pared with other bacterial species. The lack of diversity is so extreme that there is 
no MLST scheme for B. anthracis – there are simply too few SNPs to make MLST 
useful. Accordingly, in order to identify more diversity, which could be used to 
develop genotyping methods, six genomes were completely sequenced and the 
SNPs defined by these sequences were identified (Read et al. 2002; Keim et al. 
2004; Pearson et al. 2004). Analysis of the SNPs revealed that they were not 
homoplastic and so could be used to infer a single phylogenetic tree. Therefore, 
LGT does not occur. In order to streamline the SNP-based genotyping, a small 
subset of the SNPs that defined the tree branch points were identified and named 
canonical SNPs (canSNPs). Concurrently with this, VNTR loci were identified and 
methods to interrogate these were developed. A combinatorial typing strategy using 
both SNPs and VNTRs was developed and named Phylogenetic Hierarchical 
Resolving Assays using Nucleic Acids (PHRANA) (pronounced “piranha”) was 
developed (Keim et al. 2004). The rationale for this was that the canSNPs divide 
the species into phylogenetically valid groups, but have insufficient resolving 
power for most genotyping applications. Conversely, the VNTR loci provide much 
higher resolution on their own but are also highly homoplastic because of the fre-
quency of events such as gaining one repeating unit by slipped strand mispairing, 
and then losing it again so as to yield the original sequence. In other words, with 
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VNTRs, evolution is frequently reversible. A potential serious problem with the use 
of the SNPs was identified when it was realized that the tree defined by the SNPs 
is a function of the genome sequences chosen to identify the SNPs in the first place. 
More specifically, it was reasoned that the strains used would not define all the 
SNPs in the species, and that if even one un-sequenced strain had diverged from the 
sequenced strains relatively early in the life of the species, then all of the tree struc-
ture in the diverged lineage(s) defined by the un-sequenced strain would be invisi-
ble to the SNPs defined by the sequenced strains. This is because the “invisible” 
structure of the tree is defined by SNPs that are not polymorphic amongst the 
sequenced strains and so are not identified as SNPs at all. The consequence is that 
the invisible structure collapses to a point on the tree. This is known as “SNP dis-
covery bias leading to branch collapse”. Notwithstanding this issue, the population 
biology and evolutionary history of B. anthracis are now well understood (Van Ert 
et al. 2007a). The extremely low level of diversity in B. anthracis indicates that the 
species is approximately 20,000 old, which is much younger than other bacterial 
species. There are three major lineages that are termed A, B and C. Lineages B and 
C are rare and found in a small number of locations in Africa and Europe. In con-
trast, lineage A is widely distributed and abundant and appears to have undergone 
a rapid radiation through Africa/Eurasia between three and six thousand years ago. 
It is hypothesized that this was connected with the emergence of animal husbandry 
by humans. Dispersion to the Americas appears to be the result of European colo-
nization, while introduction into Australia may have been the result of the import 
of a batch of contaminated fertilizer in the mid nineteenth century. Interestingly, 
this work led to the conclusion that the “Ames” strain of B. anthracis was used in 
the 2001 bioterrorism attacks, and a SNP-based diagnostic for this strain was devel-
oped (Van Ert et al. 2007b).

The natural history and evolution of B. anthracis provides an excellent illustra-
tion of the inherent difficulties in developing a consistent definition of a bacterial 
species. B. anthracis is very closely related to the species Bacillus cereus and 
Bacillus thuringiensis. In general terms, B. anthracis is defined as the causative 
agent of anthrax, B. thuringiensis is defined as being pathogenic to insects, and B. 
cereus is a food contaminant and agent of food-borne disease. All three are com-
monly found in soil. The virulence of B. anthracis is dependent upon two plasmids. 
pXO1 encodes the virulence factors: lethal factor, protective antigen and edema 
factor. pXO2 confers the ability to synthesize a capsule, which also contributes to 
virulence. As stated in the previous paragraph, B. anthracis has very low genetic 
diversity. MLST studies of the three above species have confirmed that B. anthracis 
is monophyletic (Tourasse et al. 2006). However, B. cereus is much more diverse 
than B. anthracis. Therefore, from a phylogenetic point of view, the only “valid” 
species may be B. cereus, with B. anthracis being a recently evolved clone or CC 
within this species, and B. thuringiensis being several disparate clones (Kim et al. 
2005; Tourasse et al. 2006; Vilas-Boas et al. 2007). The acquisition of a suite of 
virulence factors has given B. anthracis distinctive ecological, epidemiological and 
virulence properties that seriously impact mankind, and this is the obvious reason 
for its status as a separate species, despite its recent origin.
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2.4.2  Staphylococcus aureus

S. aureus is a Gram-positive nonsporulating coccus with a facultative metabolism. It 
is a major human pathogen that can cause a wide variety of disease states including 
skin and soft tissue infections, sepsis and pneumonia (Deurenberg and Stobberingh 
2008). A significant proportion of S. aureus carry the large mobile genetic element 
SCCmec (Katayama et al. 2000). This contains the mecA gene which encodes a vari-
ant of Penicillin Binding Protein 2 that is refractory to inhibition by b-lactam anti-
biotics. Strains carrying this element are known as methicillin resistant S. aureus 
(MRSA), and MRSA is regarded as a more serious clinical issue than methicillin 
sensitive S. aureus (MSSA), primarily because of the constrained treatment options. 
S. aureus is a commonly found inhabitant of the human skin and nasal passages, and 
was for many years regarded primarily as an agent of nosocomial infections. 
However, the last ten years have seen the emergence of the so-called “community 
acquired MRSA” (CA-MRSA) (Deurenberg and Stobberingh 2008). CA-MRSA is 
able to cause infections in individuals who are not associated with health care facili-
ties. CA-MRSA transmission is by skin to skin contact, or practices such as sharing 
towels, so CA-MRSA can be associated with body contact sports such as rugby and 
wrestling, the military, prisons, and poor living conditions.

S. aureus was one of the first species to be studied intensively by MLST, and this 
provided several valuable insights (Enright et al. 2000). Firstly, it was determined 
that LGT in S. aureus is less frequent than in some other bacterial species, but still 
frequent enough to have a considerable impact on the population structure (Feil et al. 
2003). A population snapshot using eBURST yields a highly structured diagram in 
which the dominant features are large CCs composed of progenitors and significant 
numbers of SLVs (Feil et al. 2004; Huygens et al. 2006). Approximately 90% of the 
SLVs appear to exist by virtue of unique alleles, thus indicating that SLVs are 
formed by mutation in approximately 90% of cases and LGT in approximately 10% 
of cases. While CCs within a subset of major CCs are linked to each other, most are 
not. This demonstrates that there is a significant degree of genetic isolation between 
the CCs. It has been suggested that the major CCs deserve subspecies status (Turner 
and Feil 2007). MRSA isolates are found in essentially all the major CCs, and also 
within minor CCs and singletons. This shows that S. aureus has either acquired 
SCCmec on many separate occasions, or that SCCmec has undergone frequent LGT 
within S. aureus. SCCmec displays a very high degree of diversity, especially with 
respect to gene content (Lina et al. 2006; Kondo et al. 2007), which suggests that 
separate acquisitions of SCCmec are at least partly responsible for the wide distribu-
tion of this element within S. aureus. MLST analysis of MRSA clinical isolates from 
hospital acquired infections has shown that in the majority of cases major CCs are 
internationally distributed (Deurenberg et al. 2007). These in effect represent epi-
demics or pandemics of strains that are highly effective at colonizing health care 
facilities and are probably transmitted via the international movement of health care 
workers. The presence of different SCCmea allotypes within the same CC shows 
that a given CC can contain more than one hospital acquired MRSA clone.
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MLST and SCCmec allotype analysis has shown that CA-MRSA isolates do not 
belong to the major hospital acquired clones. Remarkably, multiple clones of 
CA-MRSA appear to have emerged simultaneously in the last decade (Tristan et al. 
2007). The STs of CA-MRSA show no particular relationship to each other, but 
most CA-MRSA isolates harbor a prophage that encodes the Panton-Valentin leu-
kocidin (PVL toxin), and also a particular truncated SCCmec allotype known as 
SCCmec IV. There is evidence that the PVL toxin facilitates the causation of infec-
tion in lungs and healthy skin (Gillet et al. 2002; Yamasaki et al. 2005; Labandeira-
Rey et al. 2007). However, there has been some debate regarding the reproducibility 
of animal experiments, and the role of PVL toxin in CA-MRSA infections remains 
controversial (Diep et al. 2008). While these findings could be regarded as evidence 
for a current rapid radiation of the PVL toxin encoding prophage into preexisting 
populations of MRSA, this is probably incorrect. PVL – positive CA-MRSA and 
CA-MSSA belonging to ST93 have been found to co-exist in the same geographical 
locations (Huygens et al. 2006), which suggests that in this instance at least, 
SCCmec is in the process of radiating into a preexisting population of PVL-positive 
MSSA. Interestingly, once established, at least some CA-MRSA clones are capable 
of explosive intercontinental spread, with the USA300 (ST8) CA-MRSA clone 
being an excellent example of this (Kennedy et al. 2008). In summary, S. aureus 
may be considered a species in which the dissemination of clinically relevant 
mobile genes and the dissemination of clones are not congruent. Rather, they con-
stitute a complex counterpoint that underpins the ever-changing nature of the inter-
action between humans and this species.

Because of the clinical importance of S. aureus, and the need to monitor its dis-
semination at all scales from intercontinental to within health care facilities, this 
species has been the test bed for a number of new approaches to genotyping. MLST 
has been extensively used, as have the electrophoresis-based methods and VNTR 
analyses (Deurenberg and Stobberingh 2008; Melles et al. 2009). Very recently, 
micro-array based methods targeting mobile genes have shown considerable prom-
ise (Monecke et al. 2007). My research group developed a computerized approach 
to deriving resolution optimized SNP sets from DNA sequence alignments. The 
measure of resolution is the Simpson’s index of Diversity (D), which in this case is 
the probability that any two STs chosen at random will be discriminated by the 
SNPs. Therefore, D optimized SNPs are in effect optimized for discriminating all 
STs from all STs. It was found that it was possible to derive from the S. aureus 
MLST database a set of eight SNPs that resolved the major S. aureus CCs (Huygens 
et al. 2006; Stephens et al. 2006). Forty-seven genotypes were defined by the SNPs, 
which is considerably more than nine, the maximum number of genotypes that 
could be defined by the eight two-state SNPs in a population with no homoplasy. 
This confirms that S. aureus housekeeping genes are indeed subject to LGT. In 
contrast, it was impossible to identify a SNP set that would efficiently resolve the 
STs within CCs. It was determined that this was a direct result of the low frequency 
of LGT. As the majority of SLVs are separated from the CC progenitor by virtue of 
a unique MLST allele (which by definition will contain a unique SNP allele), each 
SNP will normally resolve one SLV from the progenitor, but will provide no resolving 
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power elsewhere in the species. This graphically demonstrates that SNPs can be 
young or old. Very old SNPs have been in existence long enough for both alleles to 
reach appreciable frequencies, and to be distributed through the species by LGT. 
They have good resolving power, especially in combination, because with highly 
homoplastic SNPs the resolving power may potentially increase as the exponential 
of the number of SNPs. Conversely, young SNPs have a highly skewed allele dis-
tribution and have not been subjected to appreciable LGT. They therefore have little 
resolving power. A search for SNPs that maximize D is in effect a search for the 
very oldest SNPs, and it provides a very small set of SNPs that very efficiently 
discriminates the major CCs. It may be concluded from this that if the S. aureus 
CCs are regarded as single entities, then they comprise a non-clonal population that 
is more like a network than a tree.

A recent and significant study examined microevolution within ST5 (Nubel 
et al. 2008). This was done by identifying SNPs by sequencing large portions of the 
genome from a number of ST5 isolates, and using this information to define a large 
SNP set which was then used to genotype many more ST5 isolates. One unexpected 
finding was a strong association between particular genotypes or lineages, and 
particular geographical regions. This suggests that international dissemination may 
not be as rapid as has previously been assumed. It was also found that the SCCmec 
allotype data was highly homoplastic in relation to the SNP data, thus indicating 
that the number of introductions of SCCmec was much higher than previously 
thought. Finally, the spa locus was also shown to be highly homoplastic, thus rais-
ing doubts as to its usefulness as the basis for a stand-alone typing method.

2.4.3  Campylobacter jejuni and Campylobacter coli

Campylobacter jejuni and Campylobacter coli are closely related species that are 
the most common cause of bacterial gastroenteritis in developed countries. They 
are small Gram-negative rods that are gastro-intestinal tract commensals found in a 
wide variety of birds and mammals. It is highly likely that the majority of human 
disease caused by these species is food-borne and associated with chicken meat or 
beef. Complete genome analyses have shown that Campylobacer jejuni/coli 
genomes are small (~1.8 megabases), very AT rich, and remarkably deficient in 
mobile genetic elements of any sort.

There is a combined MLST database for C. jejuni and C.coli (http://pubmlst.org/
campylobacter/) (Dingle et al. 2001a; Dingle et al. 2005b). This now contains in 
excess of 3,800 STs. eBURST analysis assigns the majority of these to a small num-
ber of large CCs that display complex internal structures (Feil et al. 2004). It is 
becoming apparent that there are some associations between CC and the primary host 
species (French et al. 2009). It appears that the frequency of LGT is comparable to or 
greater than the frequency of point mutation (Dingle et al. 2001a, c; Fearnhead et al. 
2005). Since an LGT event typically introduces more than one SNP, this means that 
any given position in a gene is more likely to evolve by LGT than by mutation.
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The relationship between C. jejuni and C. coli has unusual aspects. Housekeeping 
gene homologs, including the MLST loci, from C. jejuni and C. coli are approxi-
mately 85% identical. This is not unusual for different species in the same genus, 
and provides ample justification for the existence of two species. However, the 
MLST database contains examples of hybrid isolates that contain some alleles typi-
cal of C. jejuni and some typical of C. coli. Therefore, interspecies LGT events take 
place. More remarkably, there appears to be a particularly frequent LGT from  
C. jejuni to C. coli clade one, which is one of three major C. coli clades. The pres-
ence in C. coli of many exact copies of C. jejuni alleles, together with the lack, in 
C. coli of variant C. jejuni alleles, indicates that this rapid LGT is a recent phenom-
enon. It has been concluded that C. jejuni and C. coli are in the process of converg-
ing or “de-speciating”, and it has been postulated that this is because of changes in 
the ecology of the species (Sheppard et al. 2008; Wilson et al. 2009). A straightfor-
ward explanation for the data is that C. coli has recently colonized a niche that is 
already heavily populated by C. jejuni. It is tempting to link this to the development 
of animal husbandry in recent pre-history.

Calibrating the molecular clocks that define the trees or other diagrams that used 
to describe bacterial evolution is an inherently difficult task. This is because the 
only really direct means of calibration involves correlating a speciation event with 
the fossil record, or directly measuring the rate of evolution in the laboratory. The 
former is inherently speculative, and the latter may be confounded by differences 
in evolution speeds between laboratory grown cells and cells in the wild. A rule of 
thumb that has been extant in this field for the last two decades is that the diver-
gence of Salmonella and Escherichia coincided with the appearance of mammals, 
approximately 150 million years ago (Ochman and Wilson 1987). By extrapolation 
from relative sequence divergences, that would place the divergence of C. jejuni 
and C. coli at 10 million years ago. However, a recent and highly provocative analy-
sis by Wilson and co-workers arrives at the conclusion that the Campylobacter 
evolutionary clock runs 1,0002009 times faster than this (Wilson et al. ). The basis 
for this was MLST data from 1,205 isolates obtained over three years at a single 
health service. The key aspect of the analysis was an “importance sampler” 
approach to determine if evolution was occurring during those three years. It was 
concluded that evolution was indeed occurring, and this is what was used to cali-
brate the evolutionary clock.

2.4.4  Streptococcus agalactiae

Streptococcus agalactiae (group B Streptococcus (GBS)) is a Gram-positive coccus 
that is the predominant cause of neonatal sepsis in developed countries, and can 
also cause a variety of other pathologies. GBS is of particular interest from a popu-
lation biology and epidemiology point of view because there is strong evidence that 
it is primarily a cause of mastitis in cattle, and at least some lineages have switched 
hosts from cattle to humans within the last century. GBS is not a classical zoonosis 



472 Bioinformatics of Microbial Sequences

in which each instance of disease in humans results from a cross species transmission 
event. Rather, it appears that there have been a small number of cross species 
transmission events, and these have been followed by dissemination within the 
human population to the point that GBS carriage by humans is now endemic.

GBS have long been classified into serotypes, on the basis of capsular polysac-
charides. More recently, DNA-based methods for revealing the serotype on the 
basis of the presence or absence of capsule synthesis genes have been developed. 
This approach has been enhanced through the addition of genetic assays for the 
presence of mobile genetic elements and genes encoding surface proteins. These 
methods make use of an efficient “reverse line blot” technique which is in essence 
a membrane based array, in which the probes are anchored to the membrane, and 
the labeled analyte DNA is hybridized to the probes (Kong et al. 2005; Sun et al. 
2005; Kong and Gilbert 2006).

An MLST scheme for GBS has been constructed (Jones et al. 2003). This has 
revealed that that the percentage of variable sites at the individual loci is only 
1.5–2.5%, which is much less than other bacterial species. This indicates a recent 
common ancestry for extant lineages. Evidence suggests that LGT of housekeeping 
genes is a frequent occurance (Bisharat et al. 2004; Honsa et al. 2008). An eBURST 
population snapshot of the species reveals one large “super complex” of interlinked 
CCs, of which the largest are CC19, CC1 and CC10, and two other major CCs 
which are CC17 and CC23. There have been several reports in the literature that 
ST17 represents a hypervirulent clone that has been very recently acquired from a 
bovine source. The primary evidence for this was that most bovine isolates belong 
to CC17 (Bisharat et al. 2004), and a study of the distribution of mobile elements 
has lent support to this (Hery-Arnaud et al. 2007). However, the current focus on 
CC17 begs the question as to the origins of non-CC17 strains in humans. Despite 
statistical evidence for the greater virulence of CC17 (Lin et al. 2006), the inci-
dence of invasive disease caused by non-CC17 strains is far from insignificant 
(Bohnsack et al. 2008). Therefore, given that GBS disease in humans is a recently 
emerged phenomenon, it is difficult to rule out the notion that all GBS subpopula-
tions are the result of recent cross species transmission events into humans, and that 
the identification of CC17 as a “bovine” lineage may be a consequence of its preva-
lence in the bovine populations that have been subjected to sampling. Recent evi-
dence for this is the finding that GBS CC26 infects both cattle and humans in South 
and South-East Brazil (Oliveira et al. 2006). This issue remains to be fully resolved. 
It is not a trivial issue, as population genetics and clinical evidence for enhanced 
virulence will inevitably underpin large-scale comparative genomics-based meth-
ods for identifying enhanced virulence determinants. Therefore, the findings of 
enhanced virulence need to be correct.

Finally, the study of bacterial pathogens normally has a highly anthropogenic focus, 
with human disease being of primary concern. However, the abundance of humans on 
this planet means that instances of diseases, in which there is cross species transmis-
sion from humans to animals, are likely to be very frequent but rarely noticed. One 
interesting example of a likely anthroponosis is an outbreak of GBS caused necro-
tizing fasciitis in farmed juvenile estuarine crocodiles in Northern Australia. 
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Genetic analysis revealed that all isolates were CC23, and their serotype and 
complement of mobile genetic elements were typical for the human isolates of that 
CC (Bishop et al. 2007). The simplest explanation for these findings is that the 
crocodiles had acquired a human GBS strain that is not of enhanced virulence in 
humans, but is highly virulent to crocodiles.

2.5  Concluding Remarks

Recent research has shown that populations of Bacteria and Archaea, like 
Shakespeare’s rose that is a rose by any other name, simply are what they are. The 
highly variable nature and extent of LGT means that these life forms by and large 
refuse to conform to generalizations regarding diversity and gene flow, and there-
fore mightily resist the development of workable and consistent rules and conven-
tions for taxonomy. The fourteen years that have elapsed since the publication of 
the first complete bacterial genome sequence have seen not just a massive accumu-
lation of data, but a series of surprises, with the biggest surprise probably being the 
size of the accessory genome in any given cell, and the seemingly infinite extent of 
the pan-genome that is the aggregate gene content of all genomes in a species. The 
advent of high throughput sequencing means that we are entering a new era in 
which there will be many thousands of known complete genome sequences. The 
meaningful analysis of these data will be a conceptual and technical challenge, but 
one that is certain to be met. It will allow the determination of the phylogenies of 
thousands of genes, and the use of that information to place extant cells into a net-
work of stunning complexity.

References

Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. 
Nat Rev Microbiol 6(6):431–440

Agius P, Kreiswirth B et al (2007) Typing Staphylococcus aureus using the spaspa gene and novel 
distance measures. IEEE/ACM Trans Comput Biol Bioinform 4(4):693–704

Bisharat N, Crook DW et al (2004) Hyperinvasive neonatal group B streptococcus has arisen from 
a bovine ancestor. J Clin Microbiol 42(5):2161–2167

Bishop EJ, Shilton C et al (2007) Necrotizing fasciitis in captive juvenile Crocodylus porosus 
caused by Streptococcus agalactiae: an outbreak and review of the animal and human litera-
ture. Epidemiol Infect 135(8):1248–1255.

Bohnsack JF, Whiting A et al (2008) Population structure of invasive and colonizing strains of 
Streptococcus agalactiae from neonates of six U.S. Academic Centers from 1995 to 1999.  
J Clin Microbiol 46(4):1285–1291.

Brocchieri L (2001) Phylogenetic inferences from molecular sequences: review and critique. 
Theor Popul Biol 59(1):27–40.

Cairns J (1963) The bacterial chromosome and its manner of replication as seen by autoradiogra-
phy. J Mol Biol 6:208–213.



492 Bioinformatics of Microbial Sequences

Crick FH (1962) The genetic code. Sci Am 207:6–74
Deurenberg RH, Stobberingh EE (2008) The evolution of Staphylococcus aureus. Infect Genet 

Evol 8(6):747–763
Deurenberg RH, Vink C et al (2007) The molecular evolution of methicillin-resistant Staphylococcus 

aureus. Clin Microbiol Infect 13(3):222–235
Didelot X, Darling A et al (2009) Inferring genomic flux in bacteria. Genome Res 19(2):306–317
Didelot X, Falush D (2007) Inference of bacterial microevolution using multilocus sequence data. 

Genetics 175(3) 1251–1266
Diep BA, Palazzolo-Ballance AM et al (2008) Contribution of Panton-Valentine leukocidin in 

community-associated methicillin-resistant Staphylococcus aureus pathogenesis. PLoS One 
3(9):e3198

Dingle KE, Colles FM et al (2005a) Sequence typing and comparison of population biology of 
Campylobacter coli and Campylobacter jejuni. J Clin Microbiol 43(1):340–347

Dingle KE, Colles FM et al (2001b) Multilocus sequence typing system for Campylobacter jejuni. 
J Clin Microbiol 39(1):14–23

Dingle KE, Van Den Braak N et al (2001) Sequence typing confirms that Campylobacter jejuni 
strains associated with Guillain-Barre and Miller-Fisher syndromes are of diverse genetic 
lineage, serotype, and flagella type. J Clin Microbiol 39(9):3346–3349

Enright MC, Day NP et al (2000) Multilocus sequence typing for characterization of methicillin-
resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 
38(3):1008–1015

Enright MC, Spratt BG et al (2001) Multilocus sequence typing of Streptococcus pyogenes and 
the relationships between emm type and clone. Infect Immun 69(4):2416–2427

Fearnhead P, Smith NG et al (2005) Analysis of recombination in Campylobacter jejuni from 
MLST population data. J Mol Evol 61(3):333–340

Feil EJ, Cooper JE et al (2003) How clonalclonal is Staphylococcus aureus? J Bacteriol 
185(11):3307–3316

Feil EJ, Enright MC et al (2000a) Estimating the relative contributions of mutation and recombi-
nation to clonalclonal diversification: a comparison between Neisseria meningitidis and 
Streptococcus pneumoniae. Res Microbiol 151(6):465–469

Feil EJ, Holmes EC et al (2001) Recombination within natural populations of pathogenic bacteria: 
short-term empirical estimates and long-term phylogenetic consequences. Proc Natl Acad Sci 
USA 98(1):182–187

Feil EJ, Li BC et al (2004) eBURSTeBURST: inferring patterns of evolutionary descent among 
clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 
186(5):1518–1530

Feil EJ, Smith JM et al (2000b) Estimating recombinational parameters in Streptococcus pneumo
niae from multilocus sequence typing data. Genetics 154(4):1439–1450

Fleischmann RD, Adams MD et al (1995) Whole-genome random sequencing and assembly of 
Haemophilus influenzae Rd. Science 269(5223):496–512

Fraser C, Alm EJ et al (2009) The bacterial species challenge: making sense of genetic and eco-
logical diversity. Science 323(5915):741–746

Fraser C, Hanage WP et al (2007) Recombination and the nature of bacterial speciation. Science 
315(5811):476–480

French NP, Midwinter A et al (2009) Molecular epidemiology of Campylobacter jejuni isolates 
from wild-bird fecal material in children’s playgrounds. Appl Environ Microbiol 
75(3):779–783

Ghosh R, Nair GB et al (2008) Epidemiological study of Vibrio cholerae using variable number 
of tandem repeats. FEMS Microbiol Lett 288(2):196–201

Gillet Y, Issartel B et al (2002) Association between Staphylococcus aureus strains carrying gene 
for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immuno-
competent patients. Lancet 359(9308):753–759

Grissa I, Bouchon P et al (2008) On-line resources for bacterial micro-evolution studies using 
MLVAMLVA or CRISPR typing. Biochimie 90(4):660–668



50 P. Giffard

Hanage WP, Fraser C et al (2006) Sequences, sequence clusters and bacterial species. Philos Trans 
R Soc Lond B Biol Sci 361(1475):1917–1927

Haubold B, Hudson RR (2000) LIAN 3.0: detecting linkage disequilibrium in multilocus data. 
Linkage Anal Bioinform 16(9):84784–84788

Hery-Arnaud G, Bruant G et al (2007) Mobile genetic elements provide evidence for a bovine 
origin of clonalclonal complex 17 of Streptococcus agalactiae. Appl Environ Microbiol 
73(14):4668–4672

Holder M, Lewis PO (2003) Phylogeny estimation: traditional and BayesianBayesian approaches. 
Nat Rev Genet 4(4):275–284

Honsa E, Fricke T et al (2008) Assignment of Streptococcus agalactiae isolates to clonalclonal 
complexes using a small set of single nucleotide polymorphisms. BMC Microbiol 8:140

Hugenholtz P, Goedel BM et al (1998) Impact of culture-independent studies on the emerging 
phylogenetic view of bacterial diversity. J Bacteriol 180(18):4765–4774

Huson DH (1998) SplitsTree: analyzing and visualizing evolutionary data. Bioinform 14(1):68–73
Huygens F, Inman-Bamber J et al (2006) Staphylococcus aureus genotyping using novel real-time 

PCR formats. J Clin Microbiol 44(10):3712–3719
Jiang LW, Lin KL et al (2008) OGtreeOGtree: a tool for creating genome trees of prokaryotes 

based on overlapping genes. Nucleic Acids Res 36(Web Server issue):W475–W480
Jones N, Bohnsack JF et al (2003) Multilocus sequence typing system for group B streptococcus. 

J Clin Microbiol 41(6):2530–2536
Katayama Y, Ito T et al (2000) A new class of genetic element, staphylococcus cassette chromo-

some mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents 
Chemother 44(6):1549–1555

Keim P, Pearson T et al (2008) Microbial forensics: DNA fingerprinting of Bacillus anthracis 
(anthrax). Anal Chem 80(13):4791–4799

Keim P, Van Ert MN et al (2004) Anthrax molecular epidemiology and forensics: using the appro-
priate marker for different evolutionary scales. Infect Genet Evol 4(3):205–213

Kennedy AD, Otto M et al (2008) Epidemic community-associated methicillin-resistant Staphylo
coccus aureus: recent clonalclonal expansion and diversification. Proc Natl Acad Sci  
USA 105(4):1327–1332

Kim K, Cheon E et al (2005) Determination of the most closely related bacillus isolates to Bacillus 
anthracis by multilocus sequence typing. Yale J Biol Med 78(1):1–14

Kondo Y, Ito T et al (2007) Combination of multiplex PCRs for staphylococcal cassette chromo-
some mec type assignment: rapid identification system for mec, ccr, and major differences in 
junkyard regions. Antimicrob Agents Chemother 51(1):264–724

Kong F, Gilbert GL (2006) Multiplex PCR-based reverse line blot hybridization assay (mPCR/
RLB) - a practical epidemiological and diagnostic tool. Nat Protoc 1(6):2668–2680

Kong F, Ma L et al (2005) Simultaneous detection and serotype identification of Streptococcus 
agalactiae using multiplex PCR and reverse line blot hybridization. J Med Microbiol 
54(Pt 12):1133–1138

Koonin EV, Wolf YI (2008) Genomics of bacteria and archaea: the emerging dynamic view of the 
prokaryotic world. Nucleic Acids Res 36(21):6688–6719

Kumar S, Nei M et al (2008) MEGA: a biologist-centric software for evolutionary analysis of 
DNA and protein sequences. Brief Bioinform 9(4):299–306

Labandeira-Rey M, Couzon F, et al (2007) Staphylococcus aureus Panton-Valentine leukocidin 
causes necrotizing pneumonia. Science 315(5815):1130–1133

Larkin MA, Blackshields G et al (2007) Clustal W and Clustal X version 2.0. Bioinform 
23(21):2947–2948

Lin FY, Whiting W et al (2006) Phylogenetic lineages of invasive and colonizing strains of sero-
type III group B Streptococci from neonates: a multicenter prospective study. J Clin Microbiol 
44(4):1257–1261

Lina, G., Durand G et al (2006) Staphylococcal chromosome cassette evolution in Staphylococcus 
aureus inferred from ccr gene complex sequence typing analysis. Clin Microbiol Infect 
12(12):1175–1184



512 Bioinformatics of Microbial Sequences

Maiden MC, Bygraves JA et al (1998) Multilocus sequence typing: a portable approach to the 
identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci 
USA 95(6):3140–3145

Mardis ER (2008) Next-generation DNA sequencing methods. Ann Rev Genomics Hum Genet 
9:387–402

Margulies M, Egholm M et al (2005) Genome sequencing in microfabricated high-density 
picolitre reactors. Nature 437(7057):376–380

Melles DC, Schouls L et al (2009) High-throughput typing of Staphylococcus aureus by amplified 
fragment length polymorphism (AFLPAFLP) or multi-locus variable number of tandem repeat 
analysis (MLVA) reveals consistent strain relatedness. Eur J Clin Microbiol Infect Dis 
28(1):39–45

Mellmann A, Weniger T et al (2008) Characterization of clonalclonal relatedness among the natu-
ral population of Staphylococcus aureus strains by using spaspa sequence typing and the 
BURPBURP (based upon repeat patterns) algorithm. J Clin Microbiol 46(8):2805–2808

Mellmann A, Weniger T et al (2007) Based Upon Repeat Pattern (BURP): an algorithm to char-
acterize the long-term evolution of Staphylococcus aureus populations based on spaspa poly-
morphisms. BMC Microbiol 7:98

Monecke S, Berger-Bachi B et al (2007) Comparative genomics and DNA array-based genotyping 
of pandemic Staphylococcus aureus strains encoding Panton-Valentine leukocidin. Clin 
Microbiol Infect 13(3):236–249

Nei M (1996) Phylogenetic analysis in molecular evolutionary genetics. Ann Rev Genet 
30:371–403

Nubel U, Roumagnac P et al (2008) Frequent emergence and limited geographic dispersal of 
methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci USA 105(37):14130–14135

Ochman H, Wilson AC (1987) Evolution in bacteria: evidence for a universal substitution rate in 
cellular genomes. J Mol Evol 26(1–2):74–86

Oliveira IC, de Mattos MC et al (2006) Genetic relatedness between group B streptococci originat-
ing from bovine mastitis and a human group B Streptococcus type V cluster displaying an 
identical pulsed-field gel electrophoresis pattern. Clin Microbiol Infect 12(9):887–893

Pearson T, Busch JD et al (2004) Phylogenetic discovery bias in Bacillus anthracis using single-
nucleotide polymorphisms from whole-genome sequencing. Proc Natl Acad Sci USA 
101(37):13536–13541

Read TD, Salzberg SL et al (2002) Comparative genome sequencing for discovery of novel poly-
morphisms in Bacillus anthracis. Science 296(5575):2028–2033

Relman DA (1993) The identification of uncultured microbial pathogens. J Infect Dis 168(1):1–8
Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed 

models. Bioinform 19(12):1572–1574
Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phyloge-

netic trees. Mol Biol Evol 4(4):406–425
Sanger F, Nicklen S et al (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl 

Acad Sci USA 74(12):5463–5467
Sheppard SK, McCarthy ND et al (2008) Convergence of Campylobacter species: implications for 

bacterial evolution. Science 320(5873):237–239
Smith JM, Smith NH et al (1993) How clonalclonal are bacteria? Proc Natl Acad Sci USA 

90(10):4384–4388
Spratt BG, Hanage WP et al (2001) The relative contributions of recombination and point muta-

tion to the diversification of bacterial clones. Curr Opin Microbiol 4(5):602–606.
Staley JT (2006) The bacterial species dilemma and the genomic-phylogenetic species concept. 

Philos Trans R Soc Lond B Biol Sci 361(1475):1899–1909
Stephens AJ, Huygens F et al (2006) Methicillin-resistant Staphylococcus aureus genotyping 

using a small set of polymorphisms. J Med Microbiol 55(Pt 1):43–51
Sun Y, Kong F et al (2005) Comparison of a 3-set genotyping system with multilocus sequence 

typing for Streptococcus agalactiae (Group B Streptococcus). J Clin Microbiol 
43(9):4704–4707



52 P. Giffard

Tettelin H, Riley D et al (2008) Comparative genomics: the bacterial pan-genomepan-genome. 
Curr Opin Microbiol 11(5):472–477

Tourasse NJ, Helgason E, et al (2006) The Bacillus cereus group: novel aspects of population 
structure and genome dynamics. J Appl Microbiol 101(3):579–93

Tristan A, Bes M et al (2007) Global distribution of Panton-Valentine leukocidin-positive methi-
cillin-resistant Staphylococcus aureus, 2006. Emerg Infect Dis 13(4):594–600

Turner KM, Feil EJ (2007) The secret life of the multilocus sequence type. Int J Antimicrob 
Agents 29(2):129–135

Van Ert MN, Easterday WR et al (2007a) Global genetic population structure of Bacillus anthra
cis. PLoS One 2(5):e461

Van Ert MN, Easterday WR et al (2007b) Strain-specific single-nucleotide polymorphism assays 
for the Bacillus anthracis Ames strain. J Clin Microbiol 45(1): 47–53

Vilas-Boas GT, Peruca AP et al (2007) Biology and taxonomy of Bacillus cereus, Bacillus anthracis, 
and Bacillus thuringiensis. Can J Microbiol 53(6):673–687

Watson JD, Crick FH (1953). The structure of DNA. Cold Spring Harb Symp Quant Biol 
18:123–131

Wilson DJ, Gabriel E et al (2009) Rapid evolution and the importance of recombination to the 
gastroenteric pathogen Campylobacter jejuni. Mol Biol Evol 26(2):385–397

Woese CR (1987) Bacterial evolution. Microbiol Rev 51(2):221–371
Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci USA 

97(15):8392–8396
Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary king-

doms. Proc Natl Acad Sci USA 74(11):5088–5090
Yamasaki O, Kaneko J et al (2005) The association between Staphylococcus aureus strains carry-

ing panton-valentine leukocidin genes and the development of deep-seated follicular infection. 
Clin Infect Dis 40(3):381–385

Yang Z, Rannala B (1997) BayesianBayesian phylogenetic inference using DNA sequences: a 
Markov Chain Monte Carlo method. Mol Biol Evol 14(7):717–724



53

3.1  Introduction

The advent of DNA based technologies, particularly the polymerase chain reaction 
(PCR), was an important turning point in microbiology and a revolution in the diagnos-
tics of pathogens. In the last two decades, the range of molecular targets that can be used 
for PCR-based testing has grown tremendously. It is estimated that between ten and 
twenty percent of clinical isolates are novel microorganisms that defy phenotype-based 
identification, leading to the misidentification of rare isolates or new strains (Clarridge 
2004). Evidence suggests that real time PCR can not only detect the presence or 
absence of the target pathogen but also quantify the microbial load in a sample.

Highly accurate diagnostic assays are characterized by their effectiveness and 
ability to detect target microorganisms without interference from non-target 
species. Sensitivity, exhaustivity and specificity are the proxies of effectiveness. 
Specificity indicates how the method is affected by non-target species, and a bad 
specificity may result in false positive reactions. Sensitivity reflects the number of 
cells required for detection, which may otherwise lead to a false negative response. 
Exhaustivity is affected by mutant alleles of the gene, which may escape the detection 
system. To be specific, divergent gene regions are the best choice for designing 
primers; but, to be exhaustive, one should target more conserved domains, or design 
degenerated primers, as some alleles may bear mutations in divergent domains.

In the last decade, the 16S rRNA gene sequence has become the “gold standard” 
platform for microbial identification, as well as the technical basis for modern 
bacterial taxonomy and for the discovery of novel bacteria in clinical microbiology 
laboratories. 16S rRNA gene sequencing is particularly important in the case of 
bacteria with unusual phenotypic profiles, rare bacteria, slow-growing bacteria, 
uncultivable bacteria and culture-negative infections. As a result, hundreds of new 
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bacterial species and tens of genera have been discovered from human specimens 
during the first years of the twenty-first century (Clarridge 2004; Hall et al. 2003; 
Luna et al. 2007; Woo et al. 2008). However, there are some genera in which 16S 
rRNA gene sequences do not differ much between species. Also, some species such 
as Escherichia coli are not always pathogenic, depending upon the presence of 
pathogenicity genes. Therefore, targeting well-chosen pathogenicity genes is also 
becoming a standard procedure. Virulence genes are often an appropriate target, 
because selectivity is easier to address when related non-pathogenic species do not 
bear the gene. As a result, it is easier to discriminate pathogenic strains from non-
pathogenic ones (Bielaszawska et al. 2007a, b; Orth et al. 2007).

Although commonly regarded as a non pathogenic commensal of the gastrointesti-
nal tract, E. coli can be an important bacterial pathogen. Several strains have acquired 
specific virulence factors that are the causes for a variety of intestinal and extra intes-
tinal diseases. These strains are leading causes of morbidity and mortality, especially 
in developing countries (Kaper et al. 2004). Currently, these E. coli strains can be 
grouped into major categories (Nataro and Kaper 1998; Gyles 2007) depending upon 
the pathogenicity genes they bear or express. Enterohaemorrhagic E. coli (EHEC), a 
subgroup of Shiga toxin-producing E. coli (Mora et al. 2007), has become increasingly 
important as a human pathogen in developed countries. EHEC is able to cause serious 
food-borne intestinal diseases that can be followed by extra intestinal sequelae such as 
the hemolytic-uremic syndrome (HUS) (Creuzburg and Schmidt 2007), which can 
cause acute renal failure in children. HUS is mainly caused by the production of vero-
cytotoxins (VT1 or VT2) or Shiga-like toxins (stx1 or stx2), which are different names 
for what is essentially one toxin (Huang et al. 1987; Wani et al. 2007), by EHEC. The 
stx genes are usually located in the genomes of bacteriophages and are expressed dur-
ing the phage life cycle (Creuzburg and Schmidt 2007). Additional potential virulence 
factors include cytolysins (haemolysin, hly), serine proteases (EspP), lymphotoxins 
(Efal) and adhesins (intimin) (Wani et al. 2007), among others. More than 500 different 
serogroups of E. coli have been reported to produce Shiga toxins (Allison 2007), and 
they can carry a wide variety of combinations of virulence factors (Praget et al. 2005). 
To simplify and accelerate differential diagnosis, multiplex PCR assays have been 
developed for the simultaneous detection and differentiation of the major categories of 
intestinal pathogenic E. coli strains (Muller et al. 2007). However, a good detection 
system is not trivial to achieve because many variant alleles can be present in a given 
gene. For example, few variants of the stx1 gene but more than 20 variants of the stx2 
gene have been described (Gourmelon et al. 2006).

Since many detection systems for different target genes have already been pub-
lished, it is often a good idea to collect and assess published sequences and primers 
before proceeding to experiments or trying to design new oligomers. However, 
there are a large number of publications in clinical microbiology literature that can 
be utilized for the extraction of published primers. For example, many papers 
include the words “identification” or “detection” in the title or abstract, as well as 
MESH terms for the E. coli species. The number of such publications in PubMed 
has been increasing steadily each year (Fig. 3.1). There are a total of 18,369 publi-
cations (Fig. 3.1), which include three papers dating from 1935 and 1936 (Moldavan 
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1935; Black and Klinger 1936; Griffiths and Fuller 1936). These were scanned 
because experts had identified them as key papers.

Similarly, there has been a tremendous increase in the number of available 
sequences in the public databases. Figure 3.2 shows the number of entries for E. coli 
concerning toxin-coding genes. There was only a single deposit for 2009 at the time 
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Fig. 3.2 Counts of entries for genes of toxins in E. coli submitted each year to the public databases
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of submission of this chapter. Unfortunately, retrievals of the datasets can be 
difficult and analyses of the collected data almost impossible, without the use 
of dedicated computational tools.

Despite the fact that there are multiple web servers and programs freely avail-
able for download, in silico analyses remain problematic largely because of the 
variety of data formats that are used to store sequences in public databases. These 
analyses can also be challenging because sequence data is often stored in pdf files 
as part of a publication. This chapter aims to:

Critically review the problems involved at each step of  – in silico analyses, and to
Propose programmatic solutions for the problems encountered. –

3.2  Retrieval of Target Sequences

3.2.1  Retrieval by Similarity

In order to retrieve similar sequences, a common practice is the use of a similarity 
search (BLAST, for example) using a known sequence as a query sequence. This is 
often not the most appropriate approach for three reasons. First, it is very difficult 
to place parameters upon the search in order to retrieve only the homologous 
sequences. Similar but not homologous sequences (i.e. a different gene) can also be 
retrieved and these then have to be eliminated by a tedious manual selection. 
Second, some very divergent alleles can be extremely difficult to retrieve. Finally, 
public BLAST interfaces allow the retrieval of every matched sequence, but this 
retrieves the complete entry (i.e. the complete sequence submitted) and not the 
particular gene sequence contained within a (much) larger piece of DNA. For 
example, using the sequence for the hlyA gene (2,997 nt) contained in record 
AB011549 easily retrieves 50 sequences (NCBI blast, default query) that can be 
saved under FASTA format. Doing this readily retrieves the AB011549 accession 
number, but the associated sequence is 92,721-nt long. A sequence of 165,548 nt 
also corresponds to a complete plasmid (AY258503). These very long sequences 
are extremely difficult to align using multiple sequence alignment tools and are 
very difficult to deal with in further analyses.

3.2.2  Retrieval by Keywords

The second approach is to try to retrieve these gene sequences using annotations 
contained in their features. For example the gene hlyA is identified in entry 
AB011549 by these annotations:
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These annotations describe this particular CDS (Coding Sequence) to encode the 
gene hlyA for a protein “Hemolysin A.” The annotations also describe that this 
sequence spans positions 16612 to 19608 of the complete entry (92,721-nt long). 
Three public tools are designed to retrieve sequences according to keywords.

Entrez: Entrez at NCBI is without doubt the most popular tool among biomedi-
cal scientists. Using the query “Escherichia [Organism] AND hlya” retrieves 51 
sequences. However, display in FASTA format demonstrates that only the complete 
entries (sequences) can be downloaded.

SRS: A second query system is that of SRS at EBI (and elsewhere). Using the 
“Extended Query Form” and the EMBL database, one can query for “Escherichia” as the 
organism name and “hlya” as a gene. This retrieves 36 entries (40 if “hlya” is used to 
search the “FTDescription” field). Corresponding sequences can be retrieved using the 
format “FastaFtSeqs.” Corresponding complete entries are also easily retrieved using the 
“Link to EMBL” and then the display option “Complete entries” (see below).

FT CDS 16612..19608
FT /transl_table=11
FT /gene=”hlyA”
FT /product=”Hemolysin A”
FT /protein_id=”BAA31774.1”

ID AB011549_18; parent: AB011549
AC AB011549;
FT CDS 16612..19608
FT /transl_table=11
FT /gene=”hlyA”
FT /product=”Hemolysin A”
FT /db_xref=”GOA:Q46716”
FT /db_

xref=”InterPro:IPR001343”
FT /db_

xref=”InterPro:IPR003995”
FT /db_

xref=”InterPro:IPR013550”
FT /db_xref=”UniProtKB/

TrEMBL:Q46716”
FT /protein_id=”BAA31774.1”

An important problem is the fact that SRS does not accept complex keywords, 
which are combinations of words. Not all sequences are annotated with the gene 
symbol (see below), and have to be queried using their “product name,” such as 
“Hemolysin A,” which contains a space (Crose et al. 2006). For example the query 
below returns no entries:
Query:”([embl-Organism:Escherichia]>([embl-
FtDescription:Hemolysin A]))”
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It has to be reformulated as:
Query:”([embl-Organism:Escherichia]>(([embl-
FtDescription:Hemolysin]&[embl-FtDescription:A])))”

This query returns 47 entries, but is not as precise as desired because it also 
returns sequences annotated as “A Hemolysin…..” As shown below, this situation 
would be even more problematic for the stx gene products which are annotated 
using several words.

Finally, SRS is not able to download very large datasets.
ACNUC: Another tool that can be used on-line or through a dedicated client is 

ACNUC (http://pbil.univ-lyon1.fr/databases/acnuc/acnuc.html). It allows queries 
on keywords with spaces and has no problem with large datasets. Even though 
ACNUC easily extracts sequences that are annotated by keywords, not every public 
sequence is easily retrieved. There are three main reasons: (1) not every sequence 
is duly annotated for a gene name, (2) gene names and, more particularly, product 
names (e.g., protein descriptions) are often found with quite different wordings 
(Table 3.1) if not with misspelling, and finally (3) quite a large number of sequences 
are misdescribed. However, the most important problem is the large variation in the 
way gene products are annotated. To demonstrate this problem, a program was writ-
ten to identify the main variants for the products of the gene stx2a within a response 
to a query such as “sp = Escherichia AND k = @toxin@” using ACNUC.

Variations in names and spellings, a variable use of upper or lower case, and the 
use of either 1 (2) or I (II) for describing a subunit are very common. For stx gene 
products, a total of 303 alternate descriptions were found (see examples in Table 
3.1). Obviously, there is a large number of different descriptions used to identify 
the same protein. Gene names are less variable (Table 3.2), but the problem is that 
a large number of entries do not have an annotation for gene names.

Table 3.1 Examples of variations in the annotations of the gene product for the 
stx2A gene (the most frequent observations from a longer list)

Shiga toxin 2 A subunit 38
shiga toxin 2A subunit 22
Shiga toxin 2 subunit A 21
verocytotoxin 2 variant A subunit 18
Shiga toxin 2 A-subunit 17
variant shiga-like toxin II VT 

subunit A
13

Shiga toxin II subunit A 11
shiga toxin 2e A 8
variant Shiga toxin type 2 A subunit 7
shiga toxin 2d activatable subunit A 7
Shiga toxin 2A subunit 7
verocytotoxin 2 subunit A 6
Shiga toxin 2c A unit protein 5
SLT-IIeA 4
Shiga toxin 2 variant d A subunit 2
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A tedious revision of the list provided 68 gene product descriptions (see except 
in Table 3.1), which allowed the retrieval of the corresponding stx2A gene 
sequences. However, if we compare keyword and BLAST retrievals, we discover 
that 26 of these sequences were not found by BLAST, while some sequences 
retrieved using BLAST were not in the FASTA file. BLAST did not retrieve short 
sequences or very divergent sequences and keyword searching did not retrieve mis-
annotated sequences or sequences annotated with as yet unidentified keywords.

3.2.3  The Brute Force Approach: By Keywords

Using ACNUC, the query “sp = Escherichia and k = @toxin@” returned 515 
records corresponding to 1,013 different sequences. It is then possible to use a 
program such as Cd-hit-est (Li and Godzik 2006) to cluster these sequences quickly 
without alignments. Such clustering at 20 different levels of similarity took only a 
few minutes. After briefly looking at the results, the analysis done at 80% similarity 
using words of length 4 was selected. A specific program allowed the quick identi-
fication of 87 different keywords used to annotate genes or gene product sequences 
of the stx2A gene. Examples of the most common annotations for the gene product 
of the stx2A gene are listed below (all descriptions turned to lower case).

stx2a 50
shiga toxin 2 a subunit 39
shiga toxin 2a subunit 29
shiga toxin 2 subunit a 22
stxa2 19
verocytotoxin 2 variant a subunit 18
shiga toxin 2 a-subunit 17
stx2 a-subunit 16
shiga toxin ii subunit a 11
stx2e a 9
shiga toxin 2e a 8
variant shiga toxin type 2 a subunit 7
shiga toxin 2d activatable subunit a 7
verocytotoxin 2 subunit a 6
shiga toxin 2c a unit protein 5
shiga toxin 2e subunit a 4

Stx2A 49
stxA2 19
Stx2 A-subunit 16
Stx2e A 9
Vtx2A 7
Stx2dA 7
Stx2cA 5
stxA2d 4

Table 3.2 Examples of alternate symbols used to 
annotate the gene stx2A (excerpts)
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A careful examination of this list indicated that some annotations were not good 
enough to retrieve stx2A only. There were clear mis-annotations of some sequences 
(see below for stx2B annotated as stx2A).

Clusters duly identified were merged, providing 237 sequences contained in 
234 entries only. One might suspect that some sequences are not truly stx2A, 
since this is a single copy gene. The pool of these sequences was reduced to 122 
unique long sequences that were then aligned using Muscle (Edgar 2004) (some 
very short sequences were removed). Among the sequences that could not be 
properly aligned were sequences with accession numbers U41251, U41259, 
U41249, U41248, U41253 and U41257. A BLAST query quickly identified that 
they in fact corresponded to the B subunit of the toxin, a typical example of the 
errors that occur when many sequences are submitted. They were removed from 
the analysis. Accession numbers U41253, and AJ271139 were similarly found 
to be wrongly annotated. Finally, 106 sequences were kept for building a phy-
logenetic tree using the BioNJ methods with the Kimura 2-parameters correc-
tions and using only positions of the alignment containing no indels.

3.2.4  The Brute Force Approach: By Similarity

Using ACNUC it was easy to extract the 148,465 CDS sequences available for E. 
coli. These sequences were formatted as a BLAST database and a complete stx2A 
sequence (obtained using the keyword search above) was used as a query sequence 
to produce an output file in XML format. The output file was analyzed to extract 
sequences (longer than 250-nt long) that had at least one local alignment (hsp) of 
more than 40 nucleotides with the query sequence (this was a very crude but easily 
implemented filter). The resulting 309 sequences were either aligned using 
ClustalW or clustered by Cd-hit-est (at 80% similarity, parameters: –n 3 –sc 
0.80).

The CD-HIT analysis resulted in 4 clusters only, with a cluster of 72 sequences 
identified as stx1A sequences, for example AB015056 (stx1 is known to share a high 
percentage of similarity with stx2). The complete analysis, done in less than 20 min, 
yielded 237 true stx2A sequences, 115 of which were unique and the longest of which 
contained some shorter ones. This method appears to be the fastest and easiest way 
to retrieve every gene sequence. It can be summarized in the following steps:

ACNUC:•	

sp=Escherichia and t=CDS and not t=id ==> 148,465 sequences 
in 20 s. Download time in FASTA format is less than 1 min.

BLAST, download OS specific standalone version from:•	
http://www.ncbi.nlm.nih.gov/BLAST/download.shtml.
Format the FASTA file:•	
formatdb.exe –i demo.fasta –p F (less than 15 s).
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BLAST a single sequence on this database then ask for xml output:•	
blastall.exe –p blastn –i AB030484.fasta –d demo.fasta 
–a 2 –v 1500 –b 1500 –F F –W 7 –e 100 –o out.xml –m 7  

(results in about 5 s).

3.3  Retrieval of Published Primers

In order to build a bibliographic database while also looking for already published 
and validated primers, a search of articles in PubMed using Entrez at NCBI is prob-
ably the best and the most commonly used strategy. Such queries are often done by 
scientists using one or two keywords only. However, it is much more efficient in 
terms of exhaustivity and specificity to combine keywords using Boolean OR and 
AND, and to eventually use the “Limits” tab.

3.3.1  A Note of Caution About PubMed Queries

Almost every publication in the medical field is referenced in PubMed, but searches 
are not always simple; searches are done for words contained in the title (and abstract) 
as well as the MESH terms, and Entrez often reformulates the queries. Let’s, for 
example, examine a search for every paper dealing with stx genes and “identification 
or detection.” If one pastes the following line into the Entrez query box for PubMed:
 (stx OR stx1 OR stx1a OR stx2a OR stx1b OR stx2b) AND 
(identification OR detection)

This query retrieved 314 PMIDs (314 different publications). However, using 
the tab “details” to see how Entrez really formulated the search showed:

 (stx[All Fields] OR stx1[All Fields] OR stx1a[All 
Fields] OR stx2a[All Fields] OR stx1b[All Fields] OR 
stx2b[All Fields]) AND ((“identification (psychology)”  
[MeSH Terms] OR (“identification”[All Fields] AND 
“(psychology)”[All Fields]) OR “identification (psycho
logy)”[All Fields] OR “identification”[All Fields]) 
OR detection[All Fields])

Entrez added keywords searches in the field of psychology. Note also that a very 
simple search such as:

 (detection OR identification)AND O157:H7

does not work, the query is reformulated by Entrez as a query which finds no 
match:
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AND (O157[All Fields] AND H7[All Fields]

It has to be rewritten

(detection OR identification)AND “O157:H7”,

which retrieves 779 items.

A number of queries to PubMed below were tested (in January 2009) for their 
sensitivity and specificity to retrieve appropriate publications, targeting three of 
the genes mentioned earlier: eae, stx and hlya. For the stx gene and because of 
the keyword search done earlier, we know that we need to use alternate 
words.

 (intimin OR eae) AND (escherichia OR “E. coli”): 
903.

 (intimin OR eae) AND (escherichia OR “E. coli”) AND 
(detection OR identification): 204.

(shiga OR stx OR verotoxin or vtx) AND (escherichia 
OR “E. coli”): 3376.

(stx OR vtx OR stx1 OR stx2 OR stx1a OR stx2a OR stx1b 
OR stx2b OR verotoxin OR shiga) AND (escherichia OR 
“E. coli”): 3448.

(shiga OR stx OR verotoxin) AND (escherichia OR “E. 
coli”) AND (detection OR identification): 685.

(hlya OR hemolysin) AND (escherichia OR “E. coli”): 
1990.

(hlya OR hemolysin) AND (escherichia OR “E. coli”) AND 
(detection OR identification): 193.

(escherichia OR “E. coli”) AND (detection OR identi-
fication): 18,369.

(escherichia OR “E. coli”) AND (detection OR identi-
fication) AND (pcr) AND (pathogen OR pathogens OR 
pathogenic): 587

According to these results, the stx genes seem to be the most studied among the 
three genes investigated. When faced with the large number of results to analyse, it 
would be tedious and probably much too time consuming to download and read 
each article to look for appropriate primers. The results of queries were thus saved 
as files under XML format, and a program was written to extract each PMID 
and the links to the full text articles on the publisher’s sites. PMIDs are easily 
located in lines of XML files such as:<PMID>19086378</PMID>. Journals in 
which these articles have been published are also easily retrieved in lines such 
as<ISOAbbreviation>Can. J. Vet. Res.</ISOAbbreviation>. Finally, the authors, 
year, abstract, and page numbers are also very easily retrieved. However, the 
links to the full text are not included in the XML files. They can be retrieved from 
NCBI using the facility “EUtils.” The EUtils tool “ELink,” for example, checks 
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for the existence of a hyperlink to the appropriate journal (using the option 
“cmd = prlinks”). It was found that this procedure is not always effective. 
The full information about every external link attached to a PMID was retrieved 
using ELink and the option “cmd = llinks,” which allowed the user to obtain the 
proper link to the publisher’s site. Unfortunately, this web page is not usually a 
direct link to the full text or the pdf file but rather a link to an abstract that also 
displays a “link to pdf” button somewhere in the page. In some cases, the link to 
the pdf is easily derived from the abstract URL (page address), but this is not 
always the case. In some cases, the web page must be analyzed to find out the 
proper link. Finally, a “fake” web browser was built to automatically retrieve each 
pdf file. Appropriate rules had to be set to analyse the site of each publisher. Some 
journals did not have a web site (in a query, 568 out of 2,058 references had no web 
link according to NCBI), some sites required cookies (which were then faked), 
some were not freely accessible and some journals required a login to access recent 
articles. As a result, only freely available documents where used.

Using this procedure and the queries described above, more than 1,000 pdf files 
were retrieved. One should acknowledge that “fake” browsers may slow down suc-
cessive queries to the same journal by 60 s or more, so as not to be identified as a 
(malicious) robot. Successive queries at EUtils should also be delayed and a proper 
email address should be included to avoid problems. The wget command (LINUX 
or Cygwin for MS Windows) can be an alternative, but since it retrieves the entire 
site, free space on the hard disk may become a problem, as may denial from the 
target site.

3.3.2  Primer Extraction

Files in pdf format use a specific language to describe the document’s contents for 
printing. They are also binary encoded and quite difficult to read programmatically. 
It is possible to use Adobe Acrobat Reader to extract a pdf file as a text (ASCII) 
file. However, this is not very realistic for extracting hundreds of documents, and 
this Reader is not scriptable (it cannot be used to automatically read a series of pdf 
files and save them as text). There are a number of freely downloadable programs 
that can do this. Xpdf, which is licensed under the GNU General Public License, 
can be used across platforms (MS Windows and UNIX) and can be found at http://
www.foolabs.com/xpdf/home.html. In our experience, it is effective but is not fool-
proof, as is illustrated below. Python PDF toolkits such as pyPdf or PDFlib can also 
be employed to extract text.

Using this program and the stx genes, 823 out of 882 pdf files could be extracted. 
The remaining files either required a login to extract the text or were somehow cor-
rupted during the automated download. A list of 85 primers that were listed in 
publications and targeted at least one of the stx2A gene sequences, could be 
extracted (for examples see Figs. 3.3 and 3.4).
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Table  3:  PCR primers used for the identification and characterization of attaching
and effacing Escherichia coli strains

Target astA bfpA eae eae– eae– eae– eae– eae– eae– eae– eae– eae– EAF flic stx tir
tir Y–P tir S

Primer East11a East11b  EP1  EP2  SK1  SK2  SK1-LP2  SK1-LP3  SK1-LP4  SK1-LP5  SK1-LP6B
SK1-LP7  SK1-LP8  SK1-LP10  SK1-LP11B  EAF1  EAF25  Flic up Flic down VT1  VT2  tir–R
tirY474–F  tisS478–F

Reference  27  5  22  25  25  22  22  25  25  25  25  25  27  5  27  26

oligonucleotide sequence (5'–3') CCA  TCA  ACA  CAG  TAT  ATC  CGA  GGT  CGC  GAG  TGA  CGG
CTT  TGT  AAT  GGT  GCT  TGC  GCT  TGC TGC  GCC  GCT  TTA  TCC  AAC  CTG  GTA  CCC  GAA  TTC  GGC
ACA  AGC  ATA  AGC  CCC  GGA  TCC  GTC  TCG  CCA  GTA  TTC  G  CCC  GAA  TTC  TTA  TTT  TAC  ACA  AGT
GGG  CCC  GAA  TTC  TTC  TTT  TAC  ACA  AAC  CGC  CCC  GTG  ATA  CCA  GTA  CCA  ATT  ACG  GTC  AGC
TCA  CTC  GTA  GAT  GAC  GGC  AAG  CG  TAG  TTG  TAC  TCC  CCT  TAT  CCC  TTT  ATC  CTG  CTC  CGT  TTG
CT  TAG  ATG  ACG  GTA  GAC  GGG  ATT  GTT  ATC  TGT  TGT  CT  GTT  GAT  AAC  TCC  TGA  TAT  TTT  A
CAG  GGT  AAA  AGA  AAG  ATG  ATA  A  TAT  GGG  GAC  CAT  GTA  TTA  TCA  CAA  GTC  ATT  ATT  AC(AC)
AAC  AGC  C  GAC  AT(AG)  TT(AG)GA(AGC)  ACT  TC(GC)  GT  ATT  GAG  CAA  AAT  AAT  TTA  TAT  GTG
TGA  TGA  TGG  CAA  TTC  AGT  AT  TAA  AAG  TTC  AGA  TCT  TGA  CAT  CAT  ATT  TAT  GAT  GAG  GTC  GCT
C  TCT  GTT  GAG  AAT  ATG  GGG  AAT  A

Fig. 3.4 Text extracted from the pdf file shown in Figure 3.3. In this case, it was not possible to 
readily obtain the proper primer’s sequences from the text

Table 3:  PCR primers used for the identification and characterization of attaching and effacing

Target

astA Eastl la CCA
GGT
AAT
GCC
CCC
CCC
CCC
CCC
CCC
AGC
TAG
TTT

GTT
CAG
TAT GGGGAC CAT TTA TCA

GTC ATT ATT AC(AC) AAC AGC CCAA
GAC
ATT
TGA
TAA
CAT
TCT GTT CAG AAT ATG GGG AAT A

ATT TAT GAT GAG GTG GCT C
AAGTTC AGA TCT TGA CAT
TGATGG CAA TTC AGT AT

CAAGAG AAT AAT TTA TAT GTG
AT(AG) TT(AG) GA(AGC) ACT GTTC(GC)

GTA
GGTAAA AGAAAG ATG ATA A

AAC TCC TGA TTT ATATGAT
TGT CTTGTATCGTTATTGGC

GACGTAACGATGTAG
ATC CTG CGT TTG CTCTC
TTG TAC TCC CCT TAT CCC
TCA CTC GATGTA GAGGGC AAG CG

CCA GTA CCA ATT ACG GTC

GAA
GAA
GTGATA

TTC
TTC

TTA
TTC

TTT
TTT

TAC
TAC

ACA
ACA

AGT
AAC

GGC
CGC

GGATCC GTC TCG CCA GTA TTC G
GAATTC GGCACA AGC ATA AGC
GCTTTA TCC AAC CTG GTA
GGTGCT TGC GCT TGC TGC
CGCGAG TGA CGG CTT TGT
TCA ACA TAT ATC CGACAG

Eastl lb
EPI

EP2
SKI
SK2

SKI-LP2
SKI-LP3

SKI-LP4
SKI-LP5

SKI-LP7

SKI-LP8
SKI-LP10
SKI-LP11B
EAFI

EAF25
FliC up
FliC down

VT I
VT 2
tir-R
tirYA74-F
tisS478-F

SKI-LP6B

bfpA

EAF

fliC

stx

tir
tir Y-P
tir S

eae

eae-α
eae-γ
eae-β
eae-ε
eae-ζ
eae-ι
eae-h
eae-k
eae-q

Primer Ollgonucleotide sequence (5'-3')

Fig. 3.3 The original description of primers in the pdf file (as reported in Frohlicher et al. 2008)
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3.4  Assessing Primers

We can now use the extracted primers and the aligned gene sequences to assess the 
different primers using, for example, the OHM server located at http://bioinfo.
unice.fr/ohm. Because the exact extraction of primers is difficult and can be mis-
leading (for reasons described above), only primers that had been found in at least 
two publications were kept to avoid errors or partial extractions. This analysis dem-
onstrated that most of the retrieved primers were reverse primers, because they 
were often used in combination with a forward primer located in the stx2B gene. 
These results also suggested the poor design of many primers, as they failed to 
hybridize to recently described variant alleles. As a case study and because we 
could not present the entire results here, we have focused on a few primers that have 
been used in recent studies (Beutin et al. 2007; Dhanashree and Mallya 2008; Islam 
et al. 2008; Kobayashi et al. 2009; Mansouri-Najand and Khalili 2007), to which 
we also added primers validated by a widely used diagnostic reference center 
(Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. CHAPTER 
2.9.11. http://www.oie.int/eng/normes/mmanual/A_00001.htm 1). The list of 
primer local identifiers, sequences and the number of respective publications that 
were found to contain them, as well as the number of hits retrieved using Google 
searches, are shown below:

 1 Tbody>GCTCTGGATGCATCTCTGGT (26) 30
 2 CTGGTGGTGTATGATTAATA (26) 12
 3 AGATTGGGCGTCATTCACTGGTTG (4) 9
 4 TACTTTAATGGCCGCCCTGTCTCC (4) 9
 5 CCACATCGGTGTCTGTTATTAACCACACC (24) 2
 6 GCAGAACTGCTCTGGATGCATCTCTGGTC (24) 2
 7 TCCATGACAACGGACAGCAG (1) 1
 8 GCTTCTGCTGTGACAGTGAC (1) 1
 9 GGCACTGTCTGAAACTGCTCC (30) 51
10 TCGCCAGTTATCTGACATTCTG (30) 44
11 CCATGACAACGGACAGCAGTT (13) 32
12 CCTGTCAACTGAGCAGCACTTTG (13) 16

One of the results returned by the OHM server is the position and strand of each 
primer (Fig. 3.5), a useful visual representation to select primers providing an 
amplicon of the requested size.

 Among other data provided by this server is a series of files to be used in 
combination with TreeDyn (Chevenet et al. 2006), allowing the production of infor-
mative figures such as in Fig. 3.6. In this example, predicted melting temperatures 
for each sequence of the phylogenetic tree are displayed for each primer as a column 
of the heat map (colored squares); melting temperatures are translated into colors 
from yellow (58°C) to light blue (41°C). A grey square is used when the Tm is 
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Fig. 3.6 Phylogenetic tree and heat map of the primers (excerpt of a larger figure). From left to 
right: tree derived using the bionj algorithm, annotations of gene products (as found in complete 
entries), numbers of exactly similar sequences contained in each sequence analyzed, heat map and 
color coding

Fig. 3.5 Positions and strands of each primer in the stx2A gene (aligned) sequences
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7 tccatgacaacggacagcag F
57.4 ........................ 112
52.75 ................g....... 3 f variant
9 ggcactgtctgaaactgctcc F
57.58 ........................ 94
55.83 ...................c.... 1
53.86 ....................m... 1
52.68 .................a...... 1
52.19 ..............a......... 1
50.4 ....t................... 1
50.27 ..................a..... 1
35.01 ......g......gg at...... 3 f variant
11 ccatgacaacggacagcagtt F
55.97 ........................ 107
54.17 .......................a 1
53.35 ......................c. 4
51.59 ..........g............. 3 f variant

below 40°C, and a white square is used when the primer is located outside of a 
sequence (a gene not completely sequenced).

Figure 3.6 highlights that the stx2A gene sequences can be grouped in several 
distinct clusters, from the top of the tree: variant f, variant e, variant g, and finally 
the rest of the sequences (the tree shown is the result of a very fast and not definitive 
phylogenetic analysis, in part because sequences of quite different lengths were 
included).

Primer 12 could not be found in any sequence; a BLAST query showed no hit 
(the closest hit was with Streptococcus agalactiae NEM316 complete genome, 
with only 19/23 identities). This primer had first been published in 1999 (Fagan 
et al. 1999). Primers 3 and 4 had been designed to amplify variant f sequences 
only. These variants could be also amplified by primers 7 and 11. The best ampli-
fications of the rest of the gene sequences could be seemingly obtained using 
primers 7, 9 and 11 only. All of the other primers failed on a variable number of 
sequences.

The OHM server provides a summary file, which is an easy way to estimate 
the exhaustivity of primers, as well as the possible modifications required to 
improve a given primer. The identification of sequences that have mismatches 
with a given primer is presented below. The predicted T

m
 (the first column), the 

sequence of the possible variant genes (second column), and the number of such 
sequences (“f variant” indicates the two sequences of the f cluster) are given to 
each primer.

This illustrates in detail how each of these 3 primers matches the 115 sequences 
used as references. Except for primer 7, the other primers might present some 
difficulties with a number of variant alleles. It is of note that these three primers are 
all reverse primers, and that, in combination with a forward primer located in the B 
subunit, they will amplify only part of the stx2A gene (see Fig. 3.5). Interestingly, 
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primer 7 (Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. 
CHAPTER 2.9.11. http://www.oie.int/eng/normes/mmanual/A_00001.htm 1) is 
almost identical to primer 11 (Dhanashree and Mallya 2008).

3.5  Concluding Remarks

This study has highlighted three different aspects of a bioinformatics analysis of 
primers published in articles and designed to amplify a pathogenicity gene. The 
stx2A gene was chosen as an illustration because it has been the subject of many 
publications and because it has been described as having many alleles in the litera-
ture. Our analysis emphasized several problematic aspects, namely the retrieval of 
the gene sequences, the retrieval of the primers, and the reliability of published 
results. There are, however, three challenges: (1) the EMBL/GenBank database 
uses a format that, in most part, dates from the 1980s and is now difficult to use 
considering the growing number of sequences, their size and their complexity, (2) 
the suboptimal annotation of many microbial sequences, and (3) the fact that there 
is a community effort to standardize genes and gene products nomenclature, and to 
create dedicated ontologies (see also Chap. 19).

Gene sequence retrieval. There are presently two main problems that impede 
reliable sequence retrieval. First, despite the fact that a search by sequence annota-
tion is easily done using a tool such as ACNUC, the present format of the EMBL/
GenBank database makes such retrieval difficult. Indeed, gene symbols and gene 
product annotations are not standard - using an ad hoc program, it is feasible and 
reasonably fast to collect a series of alternate keywords. However, collecting every 
alternate keyword proved to be laborious. As there is no standard for naming genes 
and gene products, some keywords cannot be easily retrieved, as for example:

EU999150 (Escherichia coli strain R1388 stx2cA upstream 
region), gene symbol: “stx2cA”, product annotation: 
“Shiga toxin 2c A unit protein”.

A more elaborate strategy, for example using regular expressions, could be envi-
sioned, but without any rule for annotations, this is a difficult and time consum-
ing task, with no proof that every available sequence has been collected in the 
end.

Second, it is almost impossible to use a sequence similarity search as provided 
by the main public servers, because most gene sequences are “buried” within larger 
sequences (complete genomes or plasmids) which the present public BLAST tools 
cannot extract. One solution presented here was to build a local BLAST database 
of every CDS sequence for a given taxon and then use a stand-alone similarity 
search against such a database. This is done quickly, the calculation is very fast and 
the analysis of the (XML) output can be done in a reasonable amount of time (i.e. 
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determination of the threshold levels to retain a sequence as a true hit). This is by 
far the best solution both in terms of time and ease.

Primers sequence retrieval. Any query on PubMed quickly demonstrates that a 
large number of references are retrieved when one tries to gather publications 
describing primers used in PCR experiments (and this would also be true for many 
other queries). Retrieval of full texts in pdf format can be done for a large number 
of papers in a reasonable time using a dedicated robot. However, the pdf format is 
not well suited to the automated extraction of information. As a result, much infor-
mation is either lost or retrieved in a corrupted form. It would be preferable to 
retrieve a full text in html format or in XML format yet this is very seldom the case, 
and is further complicated by the inclusion of specific tags to identify the most 
important data types such as gene or protein names, oligomers, etc. Despite these 
limitations, it was possible to quickly retrieve a large number of primers, but the 
automated extraction of other information (such as gene and protein names, for 
example) has presented an even greater challenge.

Using primers extracted from recently published papers, it was demonstrated 
that:

None of these studies employed even a crude bioinformatics analysis to evaluate •	
the exhaustivity and specificity of every primer used. As a result, many of these 
primers lack exhaustivity because they do not take into account variant alleles 
described in other publications.
Some recent studies used primers designed and published up to a decade ago, •	
when the number of available sequences was very small.
Recent publications have used a combination of primers for the detection of the •	
different variant alleles (Beutin et al. 2007; Wani et al. 2007; Zheng et al. 2008), 
but none have reported an analysis of the specificity or sensitivity of these 
primers.

Similar conclusions can be drawn from the retrieval of sequences and the analysis 
of primers for every other gene tried. Hence, we suggest that in silico validation 
(and the design of new primers when required) should be a required step preceding 
bench experiments. Reliable design software tools and, perhaps more importantly, 
the knowledge of its use and the retrieval of every known sequence, are critical for 
the successful design of new oligomers. Most of the work reported here was done 
using publicly available tools such as ACNUC (Gouy and Delmotte 2008), SeaView 
(Galtier et al. 1993), Muscle (Edgar 2004) or Clustal (Larkin et al. 2007), BLAST 
(Altschul et al. 1990) and phylogeny programs. The subsequent bioinformatics 
analysis did not require professional skills in computing, and was done using a lan-
guage that is easy to learn (Python) and using simple tests and iterations. Starting 
from scratch, it would take less than a week for somebody who already knows pro-
gramming to retrieve the relevant sequences and primers (at least those used in the 
past few years), evaluate them, and suggest improvements. Given how expensive 
wet bench experiments are, it is suggested that laboratories should invest in 
bioinformaticians.
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4.1  Introduction

Due to recent advances in molecular methods for the rapid detection of pathogenic 
bacteria, DNA-sequencing technologies and computational biology, comparative 
genomics has become a valuable tool, not only for the identification of a wide range 
of infectious agents but also for pathogen genotyping, the prediction of virulence, and 
resistance to antibiotics (Barken et al. 2007; Fournier et al. 2007). The rapid detection 
of slow growing or fastidious microorganisms has become possible as a result of the 
development of molecular assays, including different array-based technologies and 
novel methodologies (Barken et al. 2007; Neonakis et al. 2008). The importance of 
these modern sequence-based tools in the monitoring of known pathogens, the devel-
opment of a new generation of vaccines, and the tracing of the origin of new infec-
tious diseases cannot be overstated (Rappuoli 2004; Kaushik and Sehgal 2008).

Comparative genomics provides a unique opportunity for the microbial culture 
and independent detection of fastidious microorganisms or even groups of micro-
organisms. It also enables the accurate identification of pathogenic varieties of 
bacteria as well as the estimatation of the biodiversity of a bacterial population and 
its functional metabolic features (Rappuoli 2004; Barken et al. 2007; Fournier et al. 
2007; Neonakis et al. 2008; Kaushik and Sehgal 2008). These new nucleic acid-
based procedures are more rapid and precise when compared to the often time-
consuming conventional diagnostics. Novel technologies enabling the sequencing 
of the whole bacterial genome of a single cell, or the rapid sequencing of the whole 
bacterial genome in just a few days, allows for routine methods to be replaced with 
faster and more accurate analyses, which may be less prone to human error.
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The data accumulated in the area of molecular identification is growing at a 
great pace, with the number of sequenced bacterial genomes each year having 
increased more then a hundredfold in the last decade (Fournier et al. 2007; Liolios 
et al. 2008).

According to the Genomes Online Database (http://www.genomesonline.org/), 
as on10 January 2009, the sequencing of 921 genomes had been completed and 
published (Fig. 4.1), and 3376 genome projects were ongoing, including 2,261 
bacterial, 1,014 eukaryotic, and 100 archaeal projects.

4.2  Tools for Microbial Classification and Identification  
of Pathogens

Comparative genomics can be defined as a scientific discipline focusing on the 
study of relationships between the genomes of different species. The first com-
pletely sequenced genome was obtained in 1977 by Fred Sanger with co-workers. 
This genome was that of the bacteriophage F-X174, which was just 5,368 bp in 
size (Sanger et al. 1977). This research opened a new era in genomics, which has 
exploded now: almost 18 years later. In 1995, advances in sequencing technology, 
such as the automation of the process, together with the appreciable cost reductions, 
made the sequencing of whole microbial genomes possible (Hall 2007). The first 
complete microbial genome of Haemophilus influenzae was sequenced and 
completely decoded at the Institute for Genomic Research (Rockville, MD, USA). 

Fig. 4.1 Dynamics of complete microbial genome sequencing projects (as on January 2009)
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The data, which included 1,830,137 bp of DNA and 1,743 predicted genes, laid out 
the full genetic complement of a bacterial organism for the first time (Fleischmann 
et al. 1995). Within five years of that publication, numerous other bacteria were 
sequenced, including Mycobacterium tuberculosis, one of the most important 
human bacterial pathogens (Cole et al. 1998), Escherichia coli (Blattner et al. 
1997), and the first archaeon, Archaeoglobus fulgidus (Klenk et al. 1997). This 
marked the beginning of a boom in genome sequencing projects across the globe. 
Notably, most of these bacterial genome projects were funded with the intent to 
utilize the data in biomedical applications (Fig. 4.2). After genome annotation and 
gene function identification, what is important is that specific phenotypic traits may 
be deduced from the genotype (Fournier et al. 2007). The information obtained is 
useful for serological applications, for the development of specific culture media, 
for the identification of antibiotic resistance mechanisms, virulence factors, and for 
the exploration of host–pathogen interactions (Fournier et al. 2007).

Due to the continuing development and improvement of high-throughput 
sequencing technologies and the computational power available for the assembly of 

Fig. 4.2 Funding relevance of bacterial genome projects (Modified from Woodford and Johnson 
2004)
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sequences what was mainly a fundamental discipline of genomics to begin with, 
has now proven itself to be an irreplaceable research tool for various aspects of 
clinical microbiology (Hall 2007).

4.2.1  Sequencing of Selected Genes and Genomes

DNA sequencing is a primary technique in genomics and is the only source of 
genetic information about any kind of life form. The value of these data cannot be 
overestimated because of their potential application in the development of molecular 
methods for the classification of microorganisms, the identification of pathogenic 
species in a wide range of taxa (strain, species, genus, phylum), the detection of 
virulent genes and mutations responsible for antibiotic resistance, and the develop-
ment of new vaccines and drugs (Kaushik and Sehgal 2008).

Several sequencing technologies have been developed, including first generation 
classic Sanger sequencing and the modern second-generation high-throughput 
sequencing platforms that have become available as a result of the following tech-
nologies: the 2007 Genome Sequencer 20/FLX (commercialized by 454/Roche); 
the “Solexa 1G” (later named “Genome Analyzer” and commercialized by Illumina/
Solexa); and the SOLiD system (commercialized by Applied Biosystems) (Hall 
2007). So-called ‘third-generation’ sequencers (single molecule-SBS) such as 
Helicos tSMS, and PacBio SMRT, together with modifications of the Nanopore 
based sequencing system and the ZS Genetics TEM, are expected to be available in 
the next few years (Gupta 2008).

Sequencing data obtained from certain separate genes, complete bacterial 
genomes, and whole shotgun sequences have been accumulated in public databases 
over the last two decades. Three major public databases include the US National 
Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/), the DNA 
database of Japan (http://www.ddbj.nig.ac.jp/), and the European Bioinformatics 
Institute (http://www.ebi.ac.uk/). Free public access to the data has allowed the 
utilization of genomic information in a wide range of comparative genomic and 
metagenomic sequence analysis techniques. A great advantage of sequence-based 
methods is that their results can be easily compiled into databases and subsequently 
compared between laboratories.

Many of these sequence-based approaches involve the comparative analysis of 
16S rRNA gene sequences for the identification of novel isolates. The 16S rRNA 
gene is highly conserved among all microorganisms, is of suitable length (about 
1,500 bp) for bioinformatics analysis and is an excellent molecule for discerning 
evolutionary relationships among prokaryotic organisms (Barken et al. 2007). The 
genotypic and phylogenetic identification of newly isolated microorganisms has 
incorporated data from genome sequences or has been designed on the basis of 
genome sequences. Of the impressive number (up to 100,000) of sequences available 
in public databases, 16S rRNA gene sequences can be used for the comparative 
genomic analysis of these genomes, making this analysis a very powerful tool for 
the identification of microorganisms (Amor et al. 2007).
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It would be reasonable to suggest that 16S rRNA gene sequencing has become 
a ‘gold standard’ tool in the modern classification of microorganisms (Barken et al. 
2007; Sidarenka et al. 2008). This gene is present in all prokaryotes and encodes 
the same product. Mutations occur randomly and are, by and large, not subject to 
selective forces (Woese 1987). The 16S rRNA gene contains many domains, some 
of which are conserved and others of which are variable (Woese 1987). Often, even 
the partial sequencing of the 16S rRNA gene is sufficient to discriminate between 
species of bacteria. For example, it has been shown that the sequencing of the 5¢ 
end of 16S rRNA is sufficient to allow the species level identification of most clini-
cally relevant Mycobacterium isolates (Tortoli 2003).

Moreover, 16S rRNA gene sequencing is often a more accurate bacterial identi-
fication method than phenotypical methods based on biochemical analysis (Barken 
et al. 2007). It was recently demonstrated that the sequencing of some other genes 
that are less conservative than the 16S rRNA gene may provide sufficient data for 
species identification (O’Sullivan 2000). It is, however, important to note one of 
shortcomings associated with bacterial identification techniques based on the com-
parison of 16S rRNA sequences. This approach is effective for well-resolved spe-
cies, but may not always be sufficient to establish the species identity on newly 
diverged species (Barken et al. 2007). In the case of Mycobacteria, for example, 
some strains like Mycobacterium chelonae and M. abscessus, while showing 
almost identical 16S rRNA gene sequence, have only about 35% sequence identity 
when their chromosomes are compared (Tortoli 2003). Other disadvantages associ-
ated with bacterial identification based on 16S rRNA gene sequences include a high 
risk of contamination, difficulties associated with polymicrobial specimens, and 
insufficient discriminatory power for closely related species (Barken et al. 2007).

More recent advances in this field include the development of genotyping methods 
based on the comparative analysis of DNA sequences of several ‘house-keeping’ 
genes, such as the genes associated with certain surface and heat-shock proteins, in 
addition to the 16S rRNA gene and the non-coding conservative parts of DNA. 
These, allow phylotyping to be more precise and allow the identification of micro-
organisms up to a subspecies or even isolates levels (Fournier et al. 2007). 
The comparative resolution of sequencing-based methods is shown in Fig. 4.3.

Sequence data for specific loci (e.g., genes for virulence, pathogenicity, drug resis-
tance, etc) from different strains of the same species have revealed variability in a 
specific gene, such as single-nucleotide polymorphisms (Singh et al. 2006). The reso-
lution of this method differs with regard to the gene being targeted. The single-locus 
sequence typing (SLST) approach involves the analysis of a particular region of the 
targeted gene, which is polymorphic. A demonstration using a S. aureus staphylococ-
cal protein A gene showed that SLST appears to be a very robust technique, with 
benefits including its throughput rate, ease of use and interpretation. At present, how-
ever, no SLST protocol has emerged as a clear stand-alone method for epidemiologic 
typing (Koreen et al. 2004; Shopsin et al. 1999; Stampone et al. 2005).

Multilocus sequence typing (MLST) is considered as a generic typing 
method that provides reproducible results, is reliable, relatively inexpensive, and 
allows a high rate of throughput (Brehony et al. 2007). This method utilizes a larger, 
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and potentially more representative, portion of the genome than SLST. MLST 
was based upon the principles of such molecular methods as Multilocus Enzyme 
Electrophoresis (MLEE), but has also exploited high-throughput nucleotide sequencing 
and data dissemination via the Internet (Urwin and Maiden 2003). As with SLST, 
MLST demonstrates the potential of sequence-based typing to generate consistent, 
reproducible isolate profiles that are highly amenable to standardization and 
database cataloging. However, MLST is less suited to clinical settings due to the 
expense, labor, and time involved in surveying multiple (usually seven or eight) 
genes and the corresponding approximately 2,500 bp or so of sequence to allow real 
time differentiation between multiple isolates (Devulder et al. 2005; Singh et al. 
2006; Brehony et al. 2007; Mignard and Flandrois 2008).

However, sequencing is not without limitations. Unfortunately, the direct 
sequencing of DNA still remains a long-term and expensive procedure, which 
limits its application in clinical practice analysis. The identification of multiple 
pathogens and the determination of the abundance of different organisms is not 
possible using this method and require the implementation of additional techniques 
such as in-situ hybridization or the use of probe-arrays (Barken et al. 2007).

4.2.2  DNA Hybridization-Based Approaches

Originally, Fluorescent In-Situ Hybridization or FISH was designed as a tool for 
the identification, visualization and localization of microorganisms in environmen-
tal samples (Amann et al. 2001). Currently, this technique has been applied in many 
fields of microbiology as a rapid and direct method allowing the detection of both 
culturable and non-culturable species (Amann et al. 1990; Daims et al. 2001; 
Kempf et al. 2000; Peters et al. 2006; Poppert et al. 2002; Thurnheer et al. 2004).

Fig. 4.3 Comparative resolution of sequence based methods of microbial identification
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The striking feature of FISH is its employment of specific probes. The probe/s 
are short oligonucleotides with a fluorochrome molecule/s attached to the 3¢ or the 
5¢-end. They can be highly specific by hybridizing with a complementary sequence 
on the rRNA on the species/subspecies or genus level. A visualization and localiza-
tion of target microorganisms is achieved by using fluorescent microscopy or con-
focal laser scanning microscopy (CLSM) (Barken et al. 2007).

Despite its simplicity, high sensitivity and specificity, FISH has some shortcom-
ings that are mostly associated with possible unspecific bonding. This results from 
insufficient washing after hybridization, insufficient fixation of the bacteria prior to 
hybridization or ineffective penetration of the probe during hybridization. Other fac-
tors, such as low rRNA content in cells or auto fluorescence, may also affect the 
accuracy of the fluorochrome signal reading. In addition, the photo bleaching of the 
samples may decrease signal intensity (Moter and Gobel 2000; Wagner et al 2003).

In a number of studies, FISH has been used to investigate the distribution and 
spatial organization of Pseudomonas aeruginosa in sputum samples and lung 
expectorates from patients (Hogardt et al. 2000). P. aeruginosa and Achromobacter 
xylosoxidans cells were accurately identified in 2.5 hours (Wellinghausen et al 
2006). Another area in which FISH has been successfully employed is the monitor-
ing of the microbial colonization of biofilms (Poulsen et al. 1993). A similar 
approach was applied to biofilms developing in the human body in connection with 
implants (Sunde et al 2003). The visualization of periodontitis causative bacteria in 
a biofilm was achieved using the combination of FISH and CLSM (Wecke et al. 
2000). Bacterial diversity in the oral cavity has also been examined using FISH 
(Fredricks et al. 2005). Some uncultivable causative species have been identified 
and their localization in periapical lesions has been confirmed using a combination 
of FISH and CLSM (Sunde et al. 2003).

FISH has also been applied for the detection of non-cultivable pathogens in the 
blood stream (Kempf et al. 2000). Søgaard et al. have designed highly specific 
peptide nucleic acid (PNA) probes allowing the rapid detection of infectious bacte-
ria (Sogaard et al. 2005). Poppert et al. were able to identify Neisseria meningitides 
directly in cerebrospinal fluid using a combination of real time PCR and FISH 
(Poppert et al. 2005)

DNA microarrays have emerged as a high throughput assay for bacteria geno-
typing (Cassone et al. 2007). Bacterial DNA microarrays for clinical microbiology 
are built upon the increasing amount of sequence information available in public 
databases. The advantages of this technique include its ability to simultaneously 
compare strains at the whole-genome level, its sensitivity to detect subtle differ-
ences, and the automation of microarray handling. As a result of decreased costs, 
DNA micro-arrays are now becoming useful tools in routine clinical laboratories. 
For example, a new low-cost micro-array was developed by Clondiag Chip 
Technologies, Germany (Barken et al. 2007). Specific to certain microorganisms, 
oligonucleotide probes can be immobilized at the bottom of a plastic tube (AT DNA 
microarray chip). An AT biochip based on 13 SNP’s that have been shown to be 
present in different genomic regions in Pseudomonas aeruginosa has already been 
designed (Jelsbak et al. 2007; Morales et al. 2004). Another AT chip was designed 
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for the rapid detection and identification of Chlamydia and Chlamydiaceae in clini-
cal samples (Sachse et al. 2005).

The essence of DNA microarrays is the use of dot blot hybridization. Since this 
is performed in a small and highly parallel format, multiple targets in the same 
assay can be identified (Barken et al. 2007). It is important to note that several 
techniques are used for the deposition of probes for DNA microarrays. Direct 
photolithographic immobilization is most commonly used (Bryant et al. 2004). 
Oligonucleotide probes usually consist of up to 20,000 of 300–800 bp shotgun frag-
ments or PCR products of one or several whole genome(s), specific sets of genes, 
or as many as 600,000 of 50–70 bp oligonucleotides immobilized onto glass slides 
(Fournier et al. 2007). The signal intensity is quantified to the amount of the hybridized 
sample. PCR fragments can also be used in DNA-microarrays: they generate strong 
signals and small sequence differences are hardly detectable. Short oligonucleotide 
probes are able to detect single base mutations but require the careful optimization 
of hybridization conditions (Cassone et al. 2007).

There are several applications where the DNA microarray can be used directly 
for diagnostic purposes: pathogen detection (e.g., Neisseria meningitidis), the 
identification of vaccine candidates (e.g., in Vibrio cholerae), the identification of 
virulence genes and genes encoding antibiotic resistance (e.g., Streptococcus pneu-
moniae, MRSA), and the genotyping of bacterial strains, such as in Campylobacter 
jejuni, Escherichia coli, Francisella tularensis, Helicobacter pylori, Listeria 
monocytogenes, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus 
pneumoniae, Vibrio cholerae, and Yersinia pestis in molecular epidemiological 
studies (Fournier et al. 2007; Neonakis et al. 2008). Chang et al. (2008) used 
genome-probing microarrays together with the digital multiple displacement 
amplification (MDA) of DNA from single uncultivated bacterial cells for microbial 
detection and microbial diversity assessment.

Specific sequences of regions from the 16S rRNA and rpoB loci for mycobacte-
ria have been identified and synthesized. Out of seventy mycobacterial isolates 
belonging to 27 species and the 15 Rifampicin-resistant M. tuberculosis strains 
used in this study, all of the rpoB mutant alleles and 26 species were correctly 
identified (Neonakis et al. 2008). Stavrum with colleagues successfully estimated 
the genomic diversity of M. tuberculosis isolates using whole-genome arrays 
(Stavrum et al. 2008).

Single nucleotide polymorphism (SNP) microarrays can be applied for the 
detection of a limited set of genetic polymorphisms found in some Staphylococcus 
aureus strains, and in methicillin-resistant S. aureus (MRSA) strains, in particular. 
Korczak et al. have surveyed virulence factors of different E. coli strains isolated 
from patients with neonatal meningitis, urinary tract infections and enterohemor-
rhagic syndrome. The authors identified 32 probes associated with the different 
pathotypes (Korczak et al. 2005). Stabler et al. constructed a Neisseria microarray 
incorporating all of the genes of four different Neisseria species and the localized 
genes conserved for N. miningitidis serogroup B strains. The identified combination 
of virulence-associated genes is useful for the detection of pathogenic N. miningitidis 
strains (Stabler et al. 2005).
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4.2.3  Polymerase Chain Reaction (PCR)-Based Approaches

Numerous techniques based on PCR for the amplification of certain parts of the 
bacterial genome with complementary oligonucleotide primers are precise, sensitive 
and rapid (Barken et al. 2007). These assays generally allow the detection of the 
presence of pathogenic microorganisms, including fastidious and slow growing 
ones, directly in clinical specimens. They also allow the samples to be tested for 
antimicrobial resistance genes, and have many other applications with wide range 
specificity (Yang and Rothman 2004). These methods improve the accuracy and 
timeliness/aptness of tuberculosis diagnosis, and can also be used to detect new or 
emerging infections (Barken et al. 2007). Several studies, including one focusing on 
the gastric pathogen Helicobacter pylori, have successfully applied this methodol-
ogy. Different multiplex PCR assays as well as the random amplified polymorphic 
DNA-PCR (RAPD-PCR) (Akopyanz et al. 1992a; Krogfelt et al. 2005) and restric-
tion fragment length polymorphism-PCR (RFLP-PCR) (Akopyanz et al. 1992b) 
have been used for the identification of vacA and cagA genes of H. pylori (Monstein 
and Ellnebo-Svedlund 2002). Several commercial applications of multiplex PCR 
followed by hybridization to a DNA strip are available for the detection of multidrug 
resistant M. tuberculosis (Hillemann et al. 2005; Palomino 2005).

Real time PCR (RT-PCR) technology is an appealing alternative to the conven-
tional culture-based or immunoassay-based testing methods used for diagnosing 
many infectious diseases (Espy et al. 2006). RT-PCR combines PCR chemistry with 
the fluorescent probe detection of an amplified product in the same reaction vessel 
(Heid et al. 1996) and is faster than conventional PCR. Importantly, RT-PCR 
reduces the risk of contamination with amplified nucleic acids because the analysis 
is performed in a closed vessel (Valasek and Repa 2005).

Two different detection methods based either on fluorescent stain (e.g., SYBR 
Green) or fluorescent resonance energy transfer (FRET) probes are utilized in this 
technology (Heid et al. 1996). The FRET probes are more sensitive and specific 
that SYBR Green ones. FRET hybridization probes consist of the upstream probe 
with the fluorescent dye at their 3¢ end and the downstream probe with an acceptor 
dye at their 5¢ end. The downstream probe is phosphorylated at its 3¢ end to prevent 
it from being used by the Taq polymerase during PCR amplification (Espy et al. 
2006; Ota et al. 1998). Currently, three different FRET probes are used: 5¢ nuclease 
probes (TaqMan), molecular beacons, and FRET hybridization probes. TaqMan 
probes secure an increasing abundance of fluorescence after each PCR cycle due to 
the 5¢ nuclease activity of the Taq polymerase (Espy et al. 2006; Heid et al. 1996). 
Molecular beacons carry both a fluorophore and a quencher; a probe sequence is 
embedded within two complementary 5-nucleotide-long arm sequences. A fluores-
cent signal is generated after hybridization as the fluorescent dye and the quencher 
are separated (Tyagi and Kramer 1996).

The RT PCR technique was adopted in several studies. In 1985 Dutka-Malen 
et al. were one of the first groups who reported data where an RT-PCR assay was 
applied for the simultaneous detection of vanA and vanB genes responsible for the 



82 E.P. Ivanova et al.

resistance to vancomycin (Dutka-Malen et al. 1995; Palladino et al. 2003). Uhl et al 
employed LightCycler RT-PCR (Roche Diagnostics) for the detection of group A 
streptococci (GAS), arguing that this method was much better than the antigen 
detection methods since it allowed the results to be obtained on the same day as the 
analysis so that an appropriate antimicrobial treatment could be promptly applied 
(Uhl et al. 2003). Blome et al. successfully used quantitative real time PCR to 
evaluate the presence and numbers of specific species as well as the total bacterial 
load in teeth with endodontic infections (Blome et al. 2008).

The multiplex RT PCR is a useful alternative to RT PCR. The multiplex RT PCR 
was used for quantitative detections of Mycobacterium species, M. tuberculosis, M. 
avium, M. bovis, M. abscessus, M. chelonae and M. ulcerans, as well as for the 
detection of drug-resistant isolates from clinical specimens or laboratory cultures 
(Deepak et al. 2007). The sensitivity of a multiplex RT PCR with the detection of 
six specific virulence genes was demonstrated by Yang et al. (2007), who showed 
that RT PCR considerably reduced the high false-positive rate.

Often, RT PCR is found to be a superior technique with regard to sensitivity and, 
more importantly, with regard to turn-around and hands-on time. This technique 
requires only a few hours, whilst routine detection using selective media takes days. 
Warren et al. described a sensitive and specific test for the rapid detection of MRSA 
directly from nasal swab specimens. This test is based upon real time PCR using a 
molecular beacon probe. The time from sampling to having the result was less than 
two hours (Warren et al. 2004).

The limitations of RT-PCR are common to most PCR technologies and they 
include the possibility of the inhibition of the polymerase by the presence of certain 
compounds, and the risk of detecting contaminating DNA due to the high sensitivity 
of the method (Barken et al. 2007).

4.2.4  Pyrosequencing-Based Approaches

Pyrosequencing is a relatively recent DNA sequencing technology that is based on 
the sequencing-by-synthesis principle. This method is suitable for determining rela-
tively short sequences of 20–60 bp per read in a rapid, high-throughput and semi-
automated format. One of the important advantages of this method is the low cost 
of analyses. The analysis of between 10,000 and 50,000 samples per day may cost 
approximately 20–30 cents per sample (Ronaghi and Elahi 2002).

The four enzymes implemented in the pyrosequencing system are the Klenow 
fragment of DNA Polymerase I, ATP sulfurylase, Luciferase and Apyrase. The 
reaction mixture also contains the enzyme substrates adenosine phosphosulfate and 
d-luciferin, as well as the single stranded sequencing DNA template with an 
annealed specific primer to be used as the starting material for the DNA poly-
merase. The four nucleotides are added one at a time, iteratively, in a cyclic manner, 
resulting in a cascade of enzymatic reactions that generates visible light. The pho-
tons are then captured by a CCD camera (Ahmadian et al. 2006).
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A characteristic feature of pyrosequencing is the sequencing of at least 20 bases, 
which has led to an array of applications associated with the detection of unknown 
polymorphic positions, the detection of molecular markers of resistance, and micro-
bial typing (Ahmadian et al. 2006; Deyde et al. 2009). Some limitations of pyrose-
quencing, however, flow from this characteristic feature. Longer read-lengths are 
necessary to distinguish closely related species. The use of multiple group-specific 
sequencing primers suggested by Gharizadeh et al. maybe useful to overcome the 
read-length limitation in 16S rRNA studies (Gharizadeh et al. 2003).

Multiple Displacement Amplification (MDA) is an emerging technique that 
allows the amplification of the whole bacterial genome of a single cell (Lasken 
2007; Chang et al. 2008). As is the case with all traditional nucleic-acid based 
methods, MDA provides a unique opportunity to access the genetic information of 
non-culturable bacteria on the level of a single cell as it operates with femtogram 
masses of DNA from the sample. The application of the 454 Life Sciences pyrose-
quencing and MDA reactions to a single E. coli cell genome has enabled the suc-
cessful mapping of more than 95% of sequence reads and more than 99% of contigs 
(Chang et al. 2008).

Pyrosequencing has been used to scan for undefined mutations. For example, it 
was demonstrated that a set of sequencing primers covering the 4 exons of the p53 
gene can be used to detect unknown mutations (Garcia et al. 2000).

4.3  Metagenomics: Principles and Perspectives

In 1985, Pace and colleagues proposed the direct analysis of 16S rRNA gene 
sequences to describe the microbial diversity in an environmental sample without 
the traditional culture (Lane et al. 1985). The recent development of advanced high-
throughput DNA sequencing and computational technologies gave birth to a new 
discipline, metagenomics, which focuses on the culture-independent genomic 
analysis of microbial communities in a particular environmental niche (Handelsman 
et al. 1998). Metagenomics is concerned with the direct isolation of DNA from a 
defined habitat, followed by the cloning of the complete genomes of the entire 
microbial population from the particular environment in a surrogate host, such as 
E. coli, and the DNA sequencing of the resulting enriched fragments (Langer et al. 
2006). The results obtained would then be subjected to an evaluation of the phylo-
genetic affiliation and functional diversity within a microbial community (Riesenfeld 
et al. 2004; Sharma et al. 2008; Riggio et al. 2008; Wommack et al. 2008). 
Metagenomic research is often based on the computational analysis of 16S rDNA 
sequence libraries (Huson et al. 2007). For example, the Random Sequences Read 
(RSR) approach is based on a genome comparison analysis that does not use par-
ticular genes, but rather metagenomic libraries created for the whole bacterial 
population. It has been found that direct comparison with complete genomes or 
with Whole Genome Shotgun sequences (WGS) from a database delivers more 
promising results. This method enables the accurate detection of all submitted 
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known sequences in the databases by BLASTing random genomic sequences with 
an average size of 615 bp, allowing an indication of the presence of new strains. 
Metagenomic approaches like RSR show great potential due to the constantly 
growing number of genomes that have been sequenced and subsequently submitted 
to the public databases. This methodology offers a faster and cheaper alternative to 
16S rDNA sequence library analysis (Manichanh et al. 2008).

Current applications of metagenomics are focused on the characterization of 
microbial communities (Riesenfeld et al. 2004; Harris et al. 2007; Riggio et al. 2008; 
Sharma et al. 2008). One example is the detection of lactic acid bacteria in prostate 
tissue core samples (Amor et al. 2007). Sfanos and colleagues (2008) have extracted 
DNA from tissue samples from 200 patients. Using organism-specific PCR the 
presence of Chlamydia trachomatis, Propionibacterium acnes, Trichomonas 
vaginalis, BK virus, Epstein-Barr virus, human cytomegalovirus, human papilloma-
virus, and xenotropic murine leukemia-related virus was tested. Eckburg and 
colleagues assessed the diversity of human intestinal microbial flora by analyzing 
metagenomic libraries of 13,355 prokaryotic 16S rDNA sequences from multiple 
colonic mucosal sites and stool samples (Eckburg et al. 2005). Gill et al. (2006) 
analyzed ~78 million base pairs of unique DNA sequence and 2,062 polymerase 
chain reaction-amplified 16S ribosomal DNA sequences from the human distal gut 
microbiome.

4.4  Emerging DNA Sequencing Technologies

Innovative, high-throughput sequencing technologies employ a computer-based 
analysis (with a subsequent assembly) of relatively short-read sequences in a parallel 
manner. A comparative evaluation of the currently available DNA sequencing tech-
niques is given in Table 4.1. Each technique is briefly discussed below.

The Sanger sequencing method, invented almost 30·years ago, underwent 
significant improvements over the years as a result of the development of highly 
automated template preparation pipelines (Hudson 2007; Sharma et al. 2008). 
This improvement increased the average length of a sequence that could be read 
from approximately 450·bases to 850·bases, thus reducing the cost of analysis. 
Nonetheless, this technology has limitations: the cost of sequencing remains 
relatively high (US$25 per human-size genome) and only large sequencing 
centers can maintain and occupy parts of sequencing machines conducting more 
than ten runs per day (Hudson 2007). Another step forward for Sanger sequencing 
was polyacrylamide gel capillary electrophoresis, which produced high quality 
DNA sequences with long read lengths of up to 1,000 bp in a few hours. As a 
result, the 384 capillary sequencers (MegaBACE™ 4000 DNA Analysis System) 
can generate over 2.8 million bases of sequence data in 24 h. The current top 
model is the 1,024-capillary “Monster CAE” sequencer, developed at Stanford, 
USA in collaboration with the University of California Berkeley, USA (Sharma 
et al. 2008).
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Three highly computerized technologies for DNA sequencing have become 
commercially available: the 454 Pyrosequencing, Sequencing by Oligonucleotide 
Ligation and Detection (SOLiD) and the Illumina/Solexa approach. All of these 
utilize high-throughput; massively parallel sequencing, making outputs relatively 
inexpensive. These technologies use similar principles for sample preparation 
based on in vitro amplification of DNA. These techniques, however, significantly 
differ from each other in the sequencing and detection stages.

The 454 Pyrosequencing method developed in 2005 (Margulies et al. 2005) was 
commercialized and distributed by 454 Life Sciences (Branford, CT, USA). After 
the amplification stage, micro-beads are placed individually into pico litre flow-
cells on a special plate containing up to 400,000 cells. This step is followed by 
simultaneous pyrosequencing reactions. The average read length is over 250 base 
units. The raw base error rate is below 0.5%, making the 454 Pyrosequencing suit-
able for genome re-sequencing and for the de novo sequencing of bacterial or even 
eukaryotic genomes (Hudson 2007).

The SOLiD technology has been widely deployed by Applied Biosystems (www.
appliedbiosystems.com) and is based on an enhancement of the ‘colony sequencing’ 
ligation chemistry (Shendure et al. 2005). It employs a fluorescence microscope as 
a detector. The amplification products are transferred onto a glass surface where 
sequencing occurs by a sequential cycle of hybridization and ligation, with sixteen 
dinucleotide combinations labelled by four different fluorescent dyes. Using the 
specific four dye encoding scheme, each position is effectively probed twice, and the 
identity of the nucleotide is determined by analyzing the color that results from two 
successive ligation reactions. This encoding scheme enables the distinction between 

Table 4.1 Modern DNA sequencing technologies

Technology Read length Throughput
Cost per human-size 
genome (US$)

Automated Sanger 
sequencing

Up to 900 bp 96 kb per 3 
hours run

25,000,000

454 pyrosequencing 240–400 bp 80–120 Mb per 4 
h run

1,000,000

SOLiD ~35 bp 1–3 Gb per 8 days 
run

60,000

Solexa ~35 bp 1 Gb per 2–3 days 
run

60,000

tSMS ~30 bp 60 Mb per < 1 h 
run

70,000

SMRT Up to 100,000 bp Presumably 1 Gb 
per < 1 h run

Presumably < 1,000

Nanopore sequencing Presumably hundreds 
of thousands bp

Presumably 1Gb 
per ~20 h run

Presumably < 1,000

TEM sequencing Presumably hundreds 
of thousands bp

Presumably 1 Gb 
per ~14 h run

Presumably < 1,000
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a sequencing error and a sequence polymorphism. This is a promising technology 
due to its high throughput rate and low cost, in spite of its shorter read length (about 
35 base pairs) compared with the 454 Pyrosequencing method (Hall 2007). The 
newly released SOLiD instrument is capable of producing 1–3 Gb of sequence data 
in 35-bp reads per an eight-day run (Morozova and Marra 2008).

Another method for massively parallel sequencing by synthesis from ampli-
fied fragments is the Illumina/Solexa approach, which has been developed by a 
company with the same name (http://www.illumina.com/). Solexa sequencing 
differs from SOLiD or 454 sequencing as it amplifies the DNA on a solid sur-
face, and then starts the synthesis by incorporating modified nucleotides linked 
to four different colored dyes. It is a cheap, high-throughput technology: The 
Illumina “1G genome analyzer” is capable of producing at least 1 Gb of 
sequence in 2–3 days, by generating at least 35-base reads. Unfortunately, 
because of the use of modified DNA polymerases and reversible terminators, 
substitution errors have been noted in Illumina sequencing data (Hudson 2007; 
Morozova and Marra 2008).

True single-molecule sequencing (tSMS) is a technology where the target DNA 
is used for the construction of a library of poly(dA)-tailed templates, which pair 
with millions of poly(dT)-oligonucleotides that are anchored to a glass cover-slip 
(Helicos Biosciences, Cambridge, MA, USA; http://www.helicosbio.com/). 
The position of each of the individual poly(dT) oligos is fixed on the cover slip. 
The sequence of each poly(dA)-tailed fragment is determined by adding nucleotides 
labeled with the fluorescent cyanine dye Cy5 – in a cyclic manner, one nucleotide 
at a time. This method is highly parallel, and on a 25-mm square it is possible to 
sequence 12 million templates simultaneously, so it is expected that 60·million 
bases of information per ‘run’ will be generated (Hall 2007; Gupta 2008).

Single-molecule real-time sequencing (SMRT) is another proprietary approach 
developed by Pacific Biosciences (PacBio, Menlo Park, CA, USA; http://www.
pacificbiosciences.com). It involves the use of so-called SMRT chips, each made 
up of a 100-nm thick metal film and containing thousands of 10–50 nm cavities, 
each with a DNA polymerase molecule attached at the bottom. The reaction of 
DNA is synthesized from a single-stranded DNA molecule template visualized 
using four different fluorophore-labeled nucleotides, where the label is attached to 
the phosphate group. When a nucleotide is incorporated during DNA synthesis, the 
attached fluorophore lights up due to the laser-beam-mediated illumination of a 
minimal detection volume (20 zeptoliters). This allows the identification of each 
incorporated nucleotide. This set-up enables nucleotides to be incorporated at a 
speed of ten bases per second, giving rise to a chain of thousands of nucleotides in 
length within minutes. This simultaneous and continuous detection occurs in 
real-time, which facilitates the determination of thousands of sequences, each 
sequence thousands of bases long. PacBio claims that, by 2013, the technology will 
be able to give a ‘raw’ human genome sequence in less than 3 min, and a complete 
high-quality sequence in just 15 min (Gupta 2008).
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The idea of nanopore sequencing involves the use of a very thin membrane 
that contains nanopores (channels of ~1.5–2 nm in diameter). The negatively 
charged target single-stranded DNA travels through the nanopore towards the 
positive charge, generating a change in the electrical conductivity of the mem-
brane, which produces a measurable current in the range of picoamperes. 
However, the nanopore sequencing approach is still in the early stages of devel-
opment, and is undergoing changes to overcome problems with the resolution 
of individual base reading. Nanopore sequencing is expected to be high 
throughput, give an almost unlimited read length, and cost only US$100 per a 
human-size genome or less than US$20 per an average bacterial genome (Rhee 
and Burns 2006; Ryan et al. 2007; George Weinstock, personal communication, 
May 2009).

The SMS platform is developed by ZS Genetics (ZSG; North Reading, MA, 
USA; http://zsgenetics.com/). This is a direct reading of DNA sequences using a 
specialized transmission electron microscope (TEM). Natural DNA is transparent 
when viewed with TEM because of the low atomic number of its compounds. ZS 
Genetics technology involves the linearization of the target DNA molecule, fol-
lowed by the synthesis of a complementary strand, whereby three of the four bases 
are labeled with heavy atoms (e.g., iodine or bromine) that make the DNA heavier 
and visible under TEM. Thus, when the resulting complementary strand is 
observed under TEM, the four bases can be discriminated by the size and intensity 
of the relevant dots. ZSG declares that it can achieve read lengths of around 
5,000–7,000 bases, and claims that it will be able to produce an exponential 
increase in the sequencing potential with future improved versions of this technol-
ogy (Gupta 2008).

4.5  Conclusions

By identifying a spectrum of bacteria that are associated with infectious processes, 
corrective measures that would alter microbial communities via diet, drugs, or pro-
biotics (live bacterial cultures) may be designed and implemented. Further advances 
in the comparative genomics of bacterial genomes will provide the basis for mecha-
nistic hypotheses about the roles that microbes play in many diseases that have been 
associated with microorganisms (e.g., colonic cancer, periodontal disease, autism, 
and obesity) (Worthen et al. 2006; Guan et al. 2007; Kikuchi and Graf 2007). 
Hypothesis testing will demand new conceptual frameworks and tools for investi-
gating community genetics, as well as new models of host-pathogen interactions 
(Fernandez et al. 2000; Relman and Falkow 2001; Yu and Chu 2005; Handelsman 
2008). Further research and investment in metagenomics as one of the leading dis-
ciplines for microbial community analysis will undoubtedly benefit human health 
and biomedical science.
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5.1  Systems Microbiology: Introduction

During the past decades, a tremendous evolution in molecular techniques enabled 
the measurement of the different biological components and their interactions on a 
genome-wide scale, giving rise to genome-wide data sets. With the advent of these 
“omics” data, molecular biology has evolved from a rather data-poor to an 
extremely data-rich research area. Whereas traditional molecular biology focused 
on the study of individual genes or small sets of genes, systems biology studies the 
organism at a more global level. A systems biology approach aims at understanding 
the mechanisms of signal transduction and molecular interactions that give rise to 
the observed behavior, i.e., understanding the underlying regulatory network 
(Kitano 2002). Two different approaches for inferring regulatory networks can be 
distinguished. Top-down network inference methodologies reconstruct the regula-
tory networks by mining and integrating complementary omics data. They usually 
start from scratch and do not require expert knowledge about the relationships 
between the molecular components to infer a network. Bottom-up network infer-
ence on the other hand starts from an expert model of known interactions between 
molecular entities as described in literature and curated databases. These models 
are subsequently used to simulate cellular behavior or to predict the outcome of a 
perturbation experiment. Inconsistencies between observed data and simulations 
point at deficiencies in the current network structure and outline hypotheses of 
novel interactions that can better explain the observations (Bruggeman and 
Westerhoff 2007; De Keersmaecker et al. 2006).
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This chapter zooms in on the top-down reconstruction of a particular part of the 
regulatory network, i.e., the transcriptional regulatory network (TRN). This TRN 
can be represented as a graph in which the nodes are the genes, and the directed 
edges (edges with a defined direction) indicate that the first gene codes for a 
transcription factor that regulates the second gene (Fig. 5.1). This TRN is highly 
condition-dependent: some regulator-gene interactions might be present in some 
experimental conditions, but absent in others (Luscombe et al. 2004; Van den 
Bulcke et al. 2006a). Although the TRN forms only a fraction of the total regulatory 
system, it represents a major level of regulation in prokaryotes: It allows bacteria to 
alter their gene expression and to adapt to novel environmental conditions. For 
prokaryotes, efforts to collect all available information on experimentally verified 
regulator–target interactions resulted in the development of databases such as 
RegulonDB (Gama-Castro et al. 2008), Ecocyc (Keseler et al. 2009), or EcoliHub 
(http://www.ecolicommunity.org/) for Escherichia coli or DBTBS (Sierro et al. 
2008) for Bacillus subtilis.

Bacteria have been studied as model organisms in molecular biology for 
decades, and they are also currently emerging as model organisms for systems 
biology. In this chapter, we therefore focus on the inference of the bacterial TRN. 
We will start by describing genome-wide data sources related to the TRN and 
subsequently discuss methods for the analysis of these “omics” data in prokaryotes. 
Finally, we will describe how systems biology can contribute to revealing novel 
drug targets in bacteria.

Fig. 5.1 The transcriptional network of E. coli. The transcriptional network of E. coli is derived 
from all experimentally verified interactions available in RegulonDB (version 6.2). There are 824 
nodes and 1,334 edges present in this network. The nodes consist of the operons and the regulators 
regulating these operons. An edge between a regulator and operon indicates that the operon is 
regulated by the regulator. Regulator FlhDC, for instance, regulates several operons involved in 
flagella biogenesis, such as fliFGHIJK but also non-flagella operons, such as the glutamate ABC 
transporter gltI-sroC-gltJKL. This type of network representation ignores the condition depen-
dency of the interactions, i.e., all interactions are shown although it may happen that two interac-
tions never “appear” in the same experimental condition
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5.2  High–Throughput Data Sources

In this section we describe “omics” data that give direct information on the TRN 
and that are used by current methods for network reconstruction.

5.2.1  Expression Data

Microarrays have become the main technology for large scale gene expression 
profiling: By quantitatively measuring mRNA molecules, they give a snapshot of 
the level and condition dependency of the transcriptional activity.

Different microarray platforms exist, including Affymetrix, Agilent, Codelink, 
or in-house microarrays [see Sasik et al. (2004) for a review]. Each different plat-
form requires its own optimized sample preparation, labeling, hybridization, and 
scanning protocol, and concomitantly also a specific normalization procedure. 
Normalization of the raw, extracted intensities aims to remove consistent and sys-
tematic sources of variation to ensure comparability of the measurements, both 
within and across arrays.

Microarray experiments are made publicly available in specialized databases 
such as the Gene Expression Omnibus (Barrett et al. 2007), Stanford microarray 
database (Demeter et al. 2007), or ArrayExpress (Parkinson et al. 2007). To 
ensure exchangeability of these data, data submitted to these databases should 
be compliant with he “Minimum Information About a Microarray Experiment 
(MIAME)” standard (Brazma et al. 2001). The MIAME standard enforces a 
careful description of the conditions under which the microarray experiment was 
performed, such as the genetic background of the used strains, the used media, 
growth conditions, triggering factors, etc. However, it does not specify the for-
mat in which this meta-information should be presented. As a result, extracting 
data and information from these public microarray databases remains tedious 
and relies largely on manual curation: information is not only stored in different 
formats and data models, but is also redundant, incomplete, and/or inconsistent. 
To fully exploit the large resource of information offered by these public data-
bases, species-specific compendia that combine all of the experiments on one 
particular organism in a semi-automated process are constructed. Single-
platform compendia combine all data on a particular organism that were obtained 
from one specific platform. Most single-platform compendia focus on Affymetrix 
data as this is considered one of the more robust and reproducible platforms 
(Irizarry et al. 2005; Bammler et al. 2005). The Many Microbe Microarrays 
Database (M3D) (Faith et al. 2007), for instance, offers Affy-based compendia 
for three microbial organisms. Cross-platform compendia, on the other hand, 
include data from different platforms and require more specialized normaliza-
tion procedures to combine data from both one and two channel microarrays 
(Lemmens et al. 2009).
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5.2.2  Regulator-Target Interaction Data

In addition to expression data, data on the interaction between a regulator and its 
target, like regulatory motif data or ChIP-chip data, also provide important information 
on the transcriptional regulation of genes. Regulatory motifs are short, conserved 
DNA-sequences present in the promoter region of a gene. They are the tags that are 
recognized by the regulators and hence, play a very important role in the TRN. 
Although the binding of a regulator to a regulatory motif is condition dependent, 
the motif itself is inherently present in the DNA sequence. Therefore, motifs of an 
organism can be identified independent of the experimental conditions. Specialized 
databases such as TRANSFAC (Matys et al. 2006), RegulonDB (Gama-Castro 
et al. 2008), DBTBS (Sierro et al. 2008), ProDoric (Grote et al. 2009), or TractorDB 
(Perez et al. 2007) contain information on the regulatory motifs of diverse 
microorganisms.

Because the empirical validation of binding sites is laborious, computational 
methods have been developed to identify regulatory motifs. The de novo motif 
identification methods aim at identifying regulatory motifs from scratch, without 
any prior knowledge about the motif structure. These methods search for sequence 
tags that are statistically overrepresented in a set of co-regulated genes as compared 
to a set of unrelated genes. Their search methods are based on word counting or 
make use of advanced statistical procedures (Tompa et al. 2005). Alternatively, 
motif models can be compiled on the basis of lists of experimentally verified binding 
sites. Motif models, resulting from de novo or supervised motif detection can 
subsequently be used to perform a genome-wide screen of all intergenic regions of 
the organism. As such, additional genes that contain the motif in their promoter 
region can be identified, and thus additional target genes of the corresponding regu-
lator can be indirectly discovered (Hertzberg et al. 2005; Marchal et al. 2004).

In addition to this indirect information about a regulator target interaction, direct 
physical interactions can be identified by chromatin immunoprecipitation (or ChIP). 
In the ChIP method, a regulator that is bound to the DNA will be fixated on the DNA. 
The DNA parts to which the regulator was bound can then be identified, for instance 
with qPCR. In genome-wide protocols, the qPCR step is replaced by a hybridization 
step to a microarray (ChIP on chip or ChIP-chip method) or more recently by massive 
parallel sequencing (Solexa) (Ren et al. 2000; Orlando 2000; Laub et al. 2002). The 
binding of a particular regulator in a specific environmental condition to the promoter 
region of a gene can as such be investigated on a genome-wide scale in one single 
experiment. In E. coli, for instance, the regulatory interactions of CRP, FNR, MelR, 
Lrp, and the nucleoid associated transcription factors IHF, Fis, and H-NS were inves-
tigated (Grainger et al. 2005; Grainger et al. 2006, 2007; Cho et al. 2008a, b). ChIP-chip 
data are also available for Caulobacter cresentus (Laub et al. 2002), B. subtilis (Molle 
et al. 2003a, b; Ben Yehuda et al. 2005) and Salmonella typhimurium (Thijs et al. 
2007; Lucchini et al. 2006; Navarre et al. 2006).

ChIP-chip data are condition dependent: only under the appropriate conditions a 
regulator will bind to the promoter region of its target gene, for instance when the 
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regulator is available and active and the promoter region of the target gene is accessible. 
The lack of a physical interaction between a regulator and a target gene under a 
particular condition therefore does not exclude the possibility that this interaction 
exists under a different set of conditions. On the other hand, the physical interaction of 
a regulator with its target gene does not necessarily imply that this regulator will also 
regulate the expression of the gene in this condition. In the case of combinatorial 
control, for instance, an additional regulator might be required. Alternatively, the presence 
of a particular ligand or metabolite may be needed for the activation of the regulator. 
For these biological reasons and the fact that ChIP-chip is a high-throughput technology, 
ChIP-chip data might contain both false negatives and false positives.

5.3  Reconstruction of Transcriptional Networks

5.3.1  Reconstructing from “Omics” Data

A major challenge of top-down systems biology is to reconstruct the underlying 
TRN that explain these heterogeneous data. Here we focus on computational strate-
gies that have been developed to this end. Because of specific data properties and 
the intricacies of the network structure, network reconstruction is not a trivial task. 
Ideally, inference methods should not only reproduce the current knowledge on the 
TRN, but should also provide new high confidence testable hypotheses about the 
system under study.

The first challenge of inferring networks is the fact that current high-throughput 
technologies have mainly highlighted one aspect of transcription regulation: data 
on interactions between transcription factors and their targets is primarily available 
in the shape of gene expression data and ChIP-chip experiments. However, whereas 
transcription factors constitute an important means of transcription regulation, 
several other factors such as chromatine structure (Blot et al. 2006), small non-
coding RNAs (Waters and Storz 2009), and metabolites (Shi and Shi 2004) are 
known to influence gene expression. As the effects of most of these factors on 
transcription regulation have not been measured, they cannot be taken into account. 
This inevitably results in an oversimplification of the biological reality. Consequently, 
most existing computational approaches focus on the interaction between transcription 
factors and respective genes and the influence of the other regulatory influences 
mentioned above can only be conjectured from the data.

Even when only focusing on interactions between transcription factors and their 
target genes, the reverse-engineering problem remains notoriously complex. In 
particular, in a certain biological system we would like to infer the regulators that 
govern the expression changes within individual genes. For E. coli, for instance, 
4,500 genes have to be linked to about 300 known and predicted regulators (Babu 
and Teichmann 2003). These regulators might act independently from one another 
or together to elicit a certain transcriptional response. Consequently, for each of the 
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genes the theoretical number of combinations that need to be evaluated in terms of 
sets of transcription factors that might explain the gene’s expression behavior is 
prohibitively large. In addition, the number of interactions that can be inferred 
exceeds the number of independent measurements for the activity of the transcription 
factors (samples). Therefore, the problem is underdetermined, i.e., different possible 
solutions exist that all explain the data equally well. Extracting the biologically true 
predictions from this large list of possible solutions is not trivial.

Furthermore, high-throughput data are characterized by a low signal-to-noise 
ratio, which further complicates the problem of network inference from these data. 
Yue et al. (2001), for example, reported a variation in expression of over 10% 
between non-differentially expressed genes on different microarrays. In addition to 
this measurement noise, variability in gene expression can occur due to the stochas-
tic nature of gene regulation (Kaern et al. 2005). Hence, this natural source of vari-
ability further aggravates discovery of true underlying networks from popular 
high-throughput techniques, such as microarray and ChIP-chip experiments, which 
measure gene regulation across a whole populations. Each of the published meth-
ods deals with this problem of under-determination differently, often using knowl-
edge on the likely layout of the TRN such as modularity, sparseness, and so on to 
shift the solution space to the most biologically relevant solutions.

5.3.2  Benchmarking Algorithms

A sense of reliability in the reconstructed networks can only arise from an understanding 
of the limitations of the algorithms. Getting a good insight into the behavior of an 
algorithm can only be obtained by benchmarking against a known network. For 
network inference, a positive golden standard is used, i.e., the collection of all known 
interactions in a particular organism (Stolovitzky et al. 2007), such as the well-curated 
E. coli network present in RegulonDB (Gama-Castro et al. 2008). By means of this 
network, algorithmic performance can be assessed using measures such as precision 
(i.e., the proportion of inferred interactions which is correct according to the positive 
golden standard) and recall (i.e., the proportion of interactions in the positive golden 
standard that could be inferred using a certain method). Moreover, measures such as 
precision and recall do not take into account the number of predictions made by a certain 
method that do involve interactions not present in RegulonDB and which therefore 
cannot be validated. Indeed, although positive “golden” standard provides us with infor-
mation on the proportion of inferred true positive interactions between a regulator and 
its targets, there exists no negative “golden” standard (a set of curated interactions that 
can never occur) for TRNs. As a result, we can never assess to what extent novel predic-
tions consist of as yet uncharacterized true interactions or false positive predictions.

The only proper validation strategy is to perform wet-lab experiments on a suf-
ficiently large set of predicted interactions and predicted absent interactions to con-
firm or deny the presumed interaction. It is clear that such an approach is impractical, 
time-consuming, and sometimes unfeasible (Van den Bulcke et al. 2006a).
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Because of these limitations of validation on standard networks and experimental 
data, in silico networks or simulated data are often used as a first step to verify algo-
rithmic performance. Several efforts have been made to mimic experimental data 
from an in silico network which is as close to the biological truth as possible (Van den 
Bulcke et al. 2006b). Hence, in silico networks have the advantage that the underlying 
network is exactly known. However, even the most biologically inspired in silico 
networks cannot cover all of the intricacies of real experimental data. They may for 
instance not account for noise in experimental measurement, or for the multilayered 
aspect of gene regulation (Stolovitzky et al. 2007). Despite these limitations of simu-
lated data they are still useful in unveiling some qualitative properties of the algorithm 
under test (e.g., noise robustness, sensitivity, optimality of the proposed solution) and 
in tuning the parameter settings to some extent (Van den Bulcke et al. 2006b).

While the different means of measuring algorithmic performance described here 
are useful in guiding computational biologists in improving certain algorithms, they 
are often of limited use to biologists searching for the most appropriate algorithm 
for their own research. Benchmarking results are often misleading as they are com-
monly biased towards a certain aspect in which one algorithm is better than the 
other and rarely give a global assessment. Most current performance measures give 
limited or no information on the conceptual differences between the compared 
methods. Therefore, we will focus on how conceptual differences between methods 
result in retrieving different but complementary aspects of the inferred networks 
and how they can influence our choice for a particular method.

5.3.3  Which Method to Choose for Network Reconstruction?

In Fig. 5.2 and Box 5.1 a selection of prominent network inference methods that 
have been applied to study prokaryotic TRNs is provided. Most of these methods 
have been benchmarked on E. coli. For a more detailed description of these meth-
ods and their applications in prokaryotes we refer to Box 5.1. In the following we 
outline different global concepts of transcriptional network inference methods. 
Each of the methods contrasted in Box 5.1 combines one or more of these concepts 
and can be subdivided accordingly.

An inference method can either use only microarray data to learn the TRN or 
can integrate several data sources (then it is called an integrative method). Stochastic 
LeMoNe (Joshi et al. 2009), CLR (Faith et al. 2007), Inferelator (Bonneau et al. 
2006), and SIRENE (Mordelet and Vert 2008) are all methods that learn the net-
work from microarray data, whereas DISTILLER (Lemmens et al. 2009), cMonkey 
(Reiss et al. 2006), de Hoon et al. (de Hoon et al. 2004), and SEREND (Ernst et al. 
2008) are examples of integrative approaches.

Methods can be supervised or unsupervised. Supervised methods take advantage 
of known information to infer novel predictions while unsupervised methods do not 
and rely on the data only. Examples of supervised methods are SEREND, de Hoon 
et al. (2004), and SIRENE.
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 Box 5.1 Overview of network inference methods

Name methods; data  
set analyzed Description methods; results
CLR (Context Likelihood 

of Relatedness) (Faith 
et al. 2007); E. coli (445 
arrays)

The CLR algorithm starts from a list of putative 
and known regulators and scores for each 
regulator. The interaction with all genes in 
the data set is based on similarity between 
expression profiles of the regulator and the 
potential target genes, assessed by mutual 
information scores. Statistical significance 
of the mutual information score for a certain 
regulator–target interaction is evaluated against 
a background distribution consisting of all 
mutual information scores for interactions 
involving that regulator or target gene.

CLR was applied to an E. coli gene expression 
compendium and a list of 328 known and 
putative regulators. At a 60% precision (with 
respect to the known transcriptional regulatory 
network in RegulonDB) CLR identified 1,079 
interactions of which 338 were known and 741 
novel. Of the 741 predicted interactions, 21 novel 
interactions for three different regulators could be 
confirmed by ChIP. Furthermore, using qPCR a 
regulatory link between central metabolism and 
iron transport could be confirmed.

SIRENE (Supervised 
Inference of Regulatory 
Networks) (Mordelet and 
Vert 2008); E. coli (445 
arrays)

SIRENE takes advantage of the known network 
in RegulonDB to tackle the network inference 
problem in a supervised setting. The method 
uses co-expression between targets of the 
same regulator as induction principle. Hence, 
gene expression data are used to construct 
for each regulator a binary classifier, which 
discriminates between genes known to be 
regulated by the transcription factor and genes 
known not to be regulated by the transcription 
factor. On the basis of expression data, this 
regulator-specific classifier can then be 
used to predict regulation of the remaining 
genes, i.e. genes not used for classifier 
construction. Specifically, the output consists 
of a list of ranked genes with higher scores 
reflecting a higher probability of regulation 
by the transcription factor according to the 
constructed classifier.

SIRENE was applied on the same data set as CLR 
and was shown to predict six times more known 
regulations at a 60% precision level than CLR.

(continued)



Stochastic LeMoNe (Joshi 
et al. 2009a); Yeast (Joshi 
et al. 2009); E. coli (445 
arrays) (Michoel et al. 
2009)

Stochastic LeMoNe combines a clustering approach 
with the inference of a regulatory program 
in order to infer the regulatory network from 
gene expression data. A probabilistic clustering 
method is used to partition the genes in modules 
of co-expressed genes. This clustering approach 
does not only assign genes to clusters but also 
partitions the conditions within one cluster in 
such a way that the cluster genes within one 
condition partition are either all up-or down-
regulated. The Stochastic LeMoNe algorithm 
uses the condition partitions obtained in the 
clustering approach to predict the regulatory 
programs for each module. A list of known and

putative regulators is taken as input and regulators 
for which the expression profile best explains 
the obtained condition partitions are assigned 
to the modules. Regulators can be assigned to 
just some of the condition partitions, explaining 
the module genes’ expression behavior under 
only those conditions, or to all conditions in 
the data set. Application of Stochastic LeMoNe 
to an E. coli gene expression compendium 
(Michoel et al. 2009), using a list of 316 known 
and putative regulators as input, resulted in 53 
regulators assigned to 62 modules, comprising 
1,079 predicted interactions. Five hundred and 
ninety four of these interactions are present in 
RegulonDB (29% precision).

Inferelator (+cMonkey) 
(Bonneau et al. 2006; 
Reiss et al. 2006); 
Halobacterium salinarum 
(268 arrays)

Inferelator starts from a set of biclusters. These 
biclusters can be obtained from cMonkey, which 
employs an integrative biclustering approach; 
sets of condition dependent co-regulated genes 
are identified by using gene expression data, 
co-occurrence of cis-acting motifs and the 
presence of highly connected subgraphs in 
metabolic and functional association networks. 
Subsequently, Inferelator uses regression-like 
techniques to assign regulators to the obtained 
modules; the regulator of which the expression 
profile best explains the average gene expression 
profile of the module genes gets assigned  
to the module. Inferelator explicitly models  
time experiments, taking advantage of  
its inherent ability to learn causal relations.  
The method does not only search for regulators 
that explain the expression behavior of the 

Box 5.1 (continued)

Name methods; data  
set analyzed Description methods; results
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genes, but also for environmental factors that 
might underlie changes in gene expression.

The model accounts for simple interactions 
between a maximum of two regulators or 
environmental factors in the shape of AND, 
OR, or XOR relationships.

The inferelator method was applied to a gene 
expression compendium for the archeon 
Halobacterium salinarun. Using this method 
they predicted 80 transcription factors for 
500 genes and also predicted some of the 
metabolites controlling several pathways 
through the usage of environmental factors. 
ChIP-chip experiments and knock-out 
experiments were performed to illustrate that 
the obtained network can serve as a reliable 
blueprint for the Halobacterium salinarun 
transcriptional regulatory network.

de Hoon et al. (de Hoon et al. 
2004); B. subtilis (174 
arrays)

This is a supervised approach which assigns targets 
to regulators based on similarity in expression 
and motifs with known targets of the regulator. 
For each transcription factor separate classifiers 
for the gene expression data and motif data are 
built taking advantage of knowledge on known 
targets. The two classifiers are properly balanced 
and combined into one discriminatory classifier 
that can be used to classify genes with unknown 
regulation.

The method was applied to a compendium of B. 
subtilis gene expression data and known motifs 
for several B. subtilis sigma factors in order to 
predict new targets for those sigma factors.

SEREND (SEmi-supervised 
Regulatory Network 
Discoverer) (Ernst et al. 
2008); E. coli (445 arrays)

SEREND is a (semi-)supervised approach which 
incorporates gene expression data with motif 
data. It essentially follows the same approach 
taken by de Hoon et al. (2004) in that it 
constructs separate classifiers for each data source 
and subsequently combines these classifiers into 
one meta-classifier. SEREND not only predicts 
regulation by a certain transcription factor, but 
also predicts the sign of the interaction (activator, 
repressor, or dual regulator).

SEREND was applied to an E. coli gene expression 
compendium taking all interactions in EcoCyc, a 
position weight matrix and the gene expression 
data as input. Validation of new predictions 
was performed by comparing predicted targets 
for several global regulators against the targets 
predicted by ChIP-chip experiments.

(continued)
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Learning about the TRN can either focus on the detection of modules (module 
inference) or on the detection of a regulatory program (regulatory program infer-
ence). Module inference methods search for sets of co-expressed genes that are 
assumed to be under the influence of the same regulatory mechanism. On the other 
hand, methods for regulatory program inference aim to assign regulators or sets of 
regulators to their corresponding target genes, thus focusing on the interactions in 
the network.

Methods that infer regulatory programs can be subdivided into those that infer 
the program for each gene individually (“direct” network inference methods) and 
those that perform a module inference step prior to or together with the assignment 
of the regulatory program. In the latter case, one program is assigned to a complete 
module at once (“module”-based network inference). CLR and the supervised 
methods SIRENE, SEREND, and de Hoon et al. (2004) are examples of direct 
network inference methods. This in contrast to Stochastic LeMoNe, DISTILLER, 
and Inferelator, which are module-based.

DISTILLER (Data 
Integration System 
To Identify Links in 
Expression Regulation) 
(Lemmens et al. 2009); 
E. coli (870 arrays)

DISTILLER is a deterministic integrative approach 
that searches for modules. DISTILLER uses an 
efficient search strategy derived from itemset 
mining approaches to exhaustively search for all 
possible solutions that correspond to predefined 
criteria. This approach is used to search for 
modules of condition dependent-co-expressed 
genes that share the same motif instances. Since 
the method outputs all results corresponding 
to the predefined search-criteria, the resulting 
set of modules is often very large and partially 
redundant. Therefore DISTILLER combines the 
efficient search strategy with a statistical method 
to score the significance of the obtained modules, 
filtering the most relevant and non-redundant 
solutions.

DISTILLER was applied to an E. coli gene 
expression compendium and a weight matrix for 
67 known regulators in E. coli from RegulonDB 
in order to study the condition dependent 
combinatorial regulation in E. coli (Lemmens 
et al. 2009). Seven hundred and thirty two 
interactions were identified of which 454 could be 
confirmed by RegulonDB. Additionally, 11 novel 
interactions for the regulator FNR were tested and 
could be experimentally verified by ChIP-qPCR.

Name methods; data  
set analyzed Description methods; results

Box 5.1 (continued)
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In what follows, we will discuss how these conceptual differences influence the 
results generated by the different approaches for network inference.

5.3.4  Module Inference: Learning About Co-Expressed Targets

An important property of the TRN is its modularity: the network consists of overlap-
ping modules of functionally related genes that all act in concert under certain envi-
ronmental cues (Hartwell et al. 1999; Qi and Ge 2006). Module inference methods 
are useful on their own as they tell us which genes are co-expressed. They can also 
be an integral part of the module-based network inference methods (see below).

5.3.4.1  From Clustering to Biclustering

To learn about these modules, clustering or biclustering can be used. Clustering meth-
ods were among the pioneering methods to mine microarray data (Quackenbush 
2001). As clustering approaches find sets of genes that are co-expressed under all 
conditions of the microarray data set, they are ideal for finding patterns of coexpres-
sion in small microarray data sets consisting of similar conditions. However, clustering 
methods generally ignore the condition dependency of regulatory programs and 
thus the fact that target genes will only be coexpressed under the conditions in which 
the regulatory program is active. This is particularly problematic when clustering 
large heterogeneous gene expression data sets: the presence of conditions in the data 
set under which the regulatory program is not active will reduce the signal-to-noise 
level of the data and complicate identifying sets of coexpressed genes. Biclustering 
methods (Cheng and Church 2000; Lazzeroni and Owen 2002; Murali and Kasif 
2003; Getz et al. 2000; Sheng et al. 2003; Bergmann et al. 2003; Dhollander et al. 
2007; Madeira and Oliveira 2004; Tanay et al. 2002) deal with this shortcoming of 
clustering methods by combining a search for coexpressed genes with a condition 
selection step to identify the conditions under which the genes are coexpressed, i.e., 
the conditions in which the joint regulatory program of the bicluster genes is active.

Because of the condition dependent nature of the transcriptional regulation, a 
gene can, depending on the conditions, belong to different pathways and thus modules. 
Most biclustering algorithms are therefore able to identify overlapping modules, for 
instance by using different initializations of the algorithm (Ihmels et al. 2004) or an 
efficient search strategy (Lemmens et al. 2009).

Identifying biclusters in a gene expression data set is a significant challenge, as 
it is computationally prohibitive to evaluate all possible gene and condition 
combinations that can co-occur in a bicluster. Different strategies have been devel-
oped to limit the search space or the number of combinations, and as a result 
different methods will produce different outcomes for the same data set (Madeira 
and Oliveira 2004). For instance, different methods produce constraints on the size 
of the biclusters that can be obtained, the tightness of co-expression of the bicluster 
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genes, and the optimization strategy they follow. Below we give two different 
approaches of reducing the search space. In the query-based approach one restricts 
the biological question to be solved, while in the integrative approach data sources 
other than microarrays are used to restrict the number of possible combinations.

5.3.4.2  Global vs. Query-Driven Biclustering

Two different ways of approaching the biclustering problem to solve different bio-
logical questions, global and query-driven biclustering, can be highlighted. Global 
biclustering methods (Cheng and Church 2000; Lazzeroni and Owen 2002; Murali 
and Kasif 2003; Sheng et al. 2003; Tanay et al. 2002) identify the more dominant 
patterns in the data set: the optimization problem is formulated to find those patterns 
that explain most of the data. Such an optimization criterion usually results in large 
modules of co-expressed genes. These modules seem to biologically correspond to 
large pathways, involving many genes and responsible for general responses (e.g., 
modules involved in flagella synthesis, amino acids biosynthesis or DNA damage in 
E. coli). They provide the scientist with a view on the general response of the active 
TRN. However, these methods often do not identify the more subtle patterns of co-
expression, involving only a few genes or conditions that might be of a particular 
interest to a certain scientist. Query-driven biclustering algorithms (Dhollander et al. 
2007; Ihmels et al. 2004; Hibbs et al. 2007) are more appropriate for finding those 
subtle patterns. They search for genes that are co-expressed in a condition dependent 
way with a set of genes that are of interest to a certain researcher (also called query-
genes). Such a query-driven approach can hence be used to identify additional genes 
belonging to the same pathway as a set of query-genes. A possible practical applica-
tion of the query-driven approach is the validation of in vitro experiments, such as 
ChIP-chip experiments (Fig. 5.3). Finally, as biclustering includes a condition selec-
tion, it can hint towards the conditions under which the query-genes are co-expressed 
and thus the regulator is being transcriptionally active.

 Integrative Biclustering: From Co-Expression Towards Co-Regulation

A second way of reducing the number of possible solutions is by complementing 
the gene expression data with other data, thereby restricting only the solutions to 
biclusters that correspond to the different data sources. An advantage of this 
method is that spurious bicluster assignments due to noise can be effectively 
filtered out, because co-expression between genes will need to be at least partially 
confirmed by other data sources. Indeed, while genes within the same bicluster are 
often assumed to be subject to the same set of regulators this is not always the case: 
a random gene might show a correlated expression with other bicluster genes simply 
by chance (e.g., due to measurement noise) or genes might only be co-expressed 
because of indirect effects (Reiss et al. 2006). In this respect, combining the 
microarray data with a complementary data source on the TRN, such as ChIP-chip 
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or motif data, might alleviate the problem. In the latter case the genes within one 
bicluster are not only co-expressed but also co-regulated (Lemmens et al. 2009; 
Reiss et al. 2006). We refer to these methods as integrative biclustering methods.

5.3.5  Inference of the Regulatory Program

Although clustering/biclustering methods improve our insight into the biological 
processes in which genes are involved, they do not give any indication of which 
transcription factors govern these processes. To this end methods that reconstruct 
TRNs from “omics” data are more appropriate. In the following paragraphs we will 
focus on these network inference methods.
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Fig. 5.3 Application of query-driven biclustering to verify predictions made by ChIP-chip 
experiments. As already mentioned above, ChIP-chip experiments can identify physically inter-
acting, but transcriptional inactive regulator target pairs (Gao et al. 2004). To filter those pairs 
from the transcriptional active ones, query-driven biclustering can be used to verify which of the 
identified targets are co-expressed with other known targets of the tested regulator. Those targets 
are transcriptional active and consequently true positive targets. Moreover, the algorithm can also 
suggest potential targets that were missed by the ChIP-chip experiment due to the condition-specific 
nature of this methodology (false negatives). In this figure a heatmap is shown obtained by query-
driven biclustering of pykA (indicated in the white rectangle), a gene shown to be bound by FNR 
in the ChIP-chip experiment conducted by Grainger et al. (2007). Binding of pykA by FNR has 
not yet been shown to be functional (Gama-Castro et al. 2008). The bicluster obtained using this 
gene as a query is significantly enriched in known targets of FNR (indicated by the red dots) and 
other genes shown to be bound by FNR in the ChIP-chip experiment (indicated by the blue dots) 
(Grainger et al. 2007). This suggests that regulation by FNR is indeed functional
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5.3.5.1  Regulatory Program Inference from Microarray Data  
Only vs. Data-Integration

Inference of the regulatory program from microarray data only. Network inference 
methods (both direct and module based ones) generally extract the regulatory pro-
gram from a list of potential regulators and/or motifs. For methods that infer the 
TRN from microarray data only, this assignment is based on similarity in expres-
sion between a regulator and its potential targets (Faith et al. 2007; Joshi et al. 2009; 
Bonneau et al. 2006). Consequently these methods assume that the regulator’s 
expression profile is a proxy for its activity as a transcriptional factor: A regulator 
is assigned to its potential targets if its expression profile corresponds to that of the 
assigned target genes(s). While this assumption enables the reconstruction of TRNs 
from microarray data, it restricts the type of interactions that can be reliably 
inferred. First, one cannot distinguish between regulators that are assigned to genes 
because they regulate those genes from regulators that are simply co-expressed 
with their predicted targets. Moreover, the assumption of targets being co-expressed 
with their regulators particularly disregards the important role of regulation mecha-
nisms other than the transcriptional one. Herrgard et al (Herrgard et al. 2003) illus-
trated, for instance, that in E. coli only few regulators are co-expressed with their 
targets. Michoel et al. (2009) observed that methods, such as CLR and Stochastic 
LeMoNe, mainly infer correct targets for autoregulators and then specifically, auto-
regulators that only act on a limited number of target genes (specific regulators). 
Because of the high level of autoregulation in prokaryotes (Thieffry et al. 1998), 
these methods have a reasonable performance in reconstructing the TRN when 
applied to prokaryotic systems.

Integrative approaches: inferring the regulatory program by data-integration. 
Integrative approaches complement gene expression data with other information on 
the transcriptional interaction between a transcription factor and its target. 
Consequently, the scope of the predictions can be extended beyond interactions for 
regulators that are co-expressed with their targets. In DISTILLER for instance an 
interaction between a regulator and a target is inferred if the target contains a motif 
for the corresponding regulator in its promoter region. As motifs only give direct 
information on the link between regulators and target genes, motif information can 
only help predict the relationship between regulator and target genes for those regu-
lators for which the motif is known. Bonneau et al (Bonneau et al. 2006) tried to 
overcome this problem by combining both the expression and motif-based assign-
ment of regulators (Inferelator): for regulators with a known motif the regulator can 
be assigned to a module based on the motif information. For de novo motifs or 
regulators without known motifs, the assignment of regulators is on the basis of 
gene expression information, as was the case for CLR and Stochastic LeMoNe.

In conclusion, integrative methods (e.g., DISTILLER) or (semi-)supervised 
approaches (e.g., SIRENE, SEREND and de Hoon et al. (2004)) that do not rely on 
the co-expression assumption of a regulator are more suitable for the inference of 
interactions for non-autoregulators or global regulators than the ones that use 
microarray data only.
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5.3.5.2  Module-Based vs. Direct Network Inference

Depending on the output and the working principle, we can distinguish between 
“direct” and “module-based” network inference methods (Fig. 5.2). Direct methods 
treat the TRN as a directed graph, in which regulators are assigned to individual 
target genes. On the other hand, the so-called “module-based” methods exploit the 
modularity of the TRN (Hartwell et al. 1999; Qi and Ge 2006): rather than assign-
ing the regulatory program to individual genes, they group genes into modules. This 
first step of data reduction by module inference (see also above) reduces the search 
space considerably. The method that is used for this first module inference step 
depends on the network reconstruction method and ranges from clustering (e.g., 
Stochastic LeMoNe) to integrative biclustering approaches (e.g., DISTILLER and 
Inferelator). Both “direct” and “module-based” approaches have their advantages 
and limitations.

In contrast to existing direct approaches, most module-based approaches do not 
only make predictions on the regulatory interactions but also on the conditions in 
which a certain regulator is predicted to regulate its target genes. This allows for the 
generation of hypotheses of the form “Gene X regulates the expression of genes Y 
under conditions W,” which can then be used to guide experimental validation of 
the predictions, as illustrated in Bonneau et al. (2006) and Lemmens et al. (2009). 
Whereas some methods include the condition selection step in the module inference 
step by using a certain biclustering approach (e.g., DISTILLER and Inferelator), 
others account only for the condition dependency of transcriptional regulation by 
assigning regulatory programs to clusters of co-expressed genes in a condition 
dependent way (e.g., Stochastic LeMoNe).

In principle, module-based approaches provide more robustness against noise in 
the data than direct inference approaches, i.e., a certain gene is only assigned to a 
regulator if its assignment is confirmed by its co-expression with other targets. This 
is not the case for direct approaches, as each target is treated individually. In case 
of regulatory program inference from microarray data only (e.g., Stochastic 
LeMoNe, Inferelator) this gain in robustness allows for the relaxation of the strin-
gency on the required co-expression between a regulator and its targets but often 
comes at the expense of loosing flexibility. Indeed, the module inference step in the 
module-based approach puts constraints on the (bi)clusters in terms of tightness of 
co-expression, (bi)cluster size and overlap in genes and conditions, restricting the 
possible solutions to some types of modules only. Consequently, the performance 
of the module-based algorithms relies heavily on the quality and characteristics of 
the (bi)clustering method. This trade-off between flexibility and robustness is 
nicely illustrated in a comparison of the Stochastic LeMoNe algorithm with CLR 
on the same E. coli gene expression compendium (Michoel et al. 2009). Modules 
produced by Stochastic LeMoNe are generally large and often contain genes that 
are not so tightly co-expressed. This prevents the identification of correct interac-
tions for certain regulators involved in triggering the expression of just one or few 
operons. The coarse grained properties of the modules identified by Stochastic 
LeMoNe, on the other hand, promoted the identification of correct interactions for 
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regulators of large regulons. For CLR, a direct approach, the situation is reversed: 
the identification of targets for some operonic regulators is no longer impeded by 
the characteristics of the modules. On the other hand, tighter co-expression between 
targets and regulators is required because of the lack of a robust (bi)clustering 
approach, explaining why some of the interactions of the larger regulons identified 
by Stochastic LeMoNe were not picked up by CLR (Michoel et al. 2009).

5.3.5.3  Supervised vs. Unsupervised Inference of the Regulatory Program

Within the direct approaches for regulatory program assignment we can further 
distinguish between supervised and unsupervised methods. Supervised approaches 
make the learning task considerably simpler, as they take advantage of the known 
TRN to constrain the solutions to targets showing similarities in expression (e.g., 
SIRENE) and motifs (e.g., de Hoon et al. 2004, SEREND) with known targets of 
certain regulators. Unsupervised approaches, in contrast, are purely data-driven and 
not based on resemblance with known information. Because supervised approaches rely 
on known information, it is not unexpected that several studies showed that supervised 
approaches outperform their unsupervised counterparts in predicting correct inter-
actions for well-characterized regulators (Mordelet and Vert 2008; de Hoon et al. 
2004). However, supervised network inference comes with a few drawbacks.

First, a supervised approach treats network inference as a classification problem 
and hence needs a curated set of positive and negative interactions in order to dis-
criminate between targets and non-targets of a certain regulator. While positive 
examples can be found for model organisms like E. coli and B. subtilis in databases 
such as RegulonDB and DBTBS, no such set of negative examples exist. Often, 
genes not known to interact with the specific regulator, which we refer to as the 
“unknowns,” are treated as negatives. However, as our knowledge about the TRNs 
is still limited, this set of so called negatives might still contain true positives. 
Consequently, using this set of “unknowns” as negatives to train a classifier, as is 
for instance the case in SIRENE, might result in a suboptimal performance in 
discriminating between true and false positive targets. Therefore, in the SEREND 
framework predictions made on the “unknowns” are incorporated in the training of 
the classifier itself. To this end an iterative self-training approach is used: to 
construct a new classifier for the next iteration, “unknowns” that were in a previous 
iteration predicted to be regulated by a certain transcription factor are added to the 
set of positives and removed from the negatives. This process is repeated until 
ultimately no better separation between positives and negatives can be obtained, 
resulting in a final classifier used for prediction. As SEREND does not only take 
advantage of known targets but also of predicted targets of the regulator in order to 
build the final classifier, the method is referred to as semi-supervised. Ernst et al. 
(2008) showed that such a semi-supervised approach increased the performance of 
the algorithm significantly over a supervised approach without the self-training step.

Another problem with (semi-)supervised approaches is that they constrain the 
network inference problem to what is known. As they rely on the presence of a 
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well-curated standard network their usability is mainly restricted to model organisms 
such as E. coli (Mordelet and Vert 2008; Ernst et al. 2008) and B. subtilis (de Hoon 
et al. 2004). Moreover, as each of these methods constructs separate classifiers per 
regulator on the basis of the known targets for that regulator, reliable new predictions 
can only be obtained for regulators with many known targets such as global regulators 
and sigma factors (Mordelet and Vert 2008). To characterize less-studied systems, 
unsupervised approaches are more appropriate (e.g., Stochastic LeMoNe, CLR, 
DISTILLER, Inferelator). Bonneau et al. (2007), for instance, used Inferelator on a 
gene expression compendium in combination with de novo motif detection in order to 
obtain a blueprint of the TRN of the largely uncharacterized archeon H. salinarum.

5.3.6  Data Integration

Whereas integrative methods hold the promise of giving a more comprehensive and 
reliable view on the TRN, as is illustrated in the paragraphs above, the task of com-
bining heterogeneous data is a tricky one. The most straightforward means of 
integrating data is by taking either the intersection or the union between the differ-
ent data sources. The former approach ensures that most spurious interactions due 
to noise in one of the data sets will be filtered out. This comes at the expense of 
coverage in real interactions. Specifically, the data source with the lowest sensitiv-
ity (i.e., retrieving known interactions) will restrict the sensitivity of the combina-
tion of the data sets. Taking the union, on the other hand, guarantees a high 
coverage of real interactions albeit with a low specificity (i.e., discriminating true 
positives from false positives). DISTILLER is an example of such an integrative 
approach in which the intersection of two data sources is taken. Particularly, sets of 
genes are only retained by the method if they meet both the requirements of condition 
dependent co-expression and motif sharing.

cMonkey (Reiss et al. 2006), on the other hand, takes a more intermediate 
approach: user-defined weights reflect the relevance attached to a certain data set 
in constructing biclusters from the different input data. This has as advantage over 
the intersection- and union-based approaches in that it enables the detection of 
biclusters that stress certain data types over others. Motifs, for instance, are often 
degenerate and ill-defined for many regulators. In a data-integration framework, such 
as the cMonkey one, it is possible to account for these flaws of motifs by down-
weighing the motif data with respect to the gene expression data and hence enabling 
the identification of biclusters in which the genes are co-expressed but do not all 
need to contain the same motif within their promoter region. The problem with such an 
approach is that, at least in an unsupervised setting, there exists to our knowledge 
no objective way to set the different weights. In a (semi-)supervised setting (e.g., 
SEREND and de Hoon et al. 2004), however, it is possible to define the corresponding 
weights of the different data sources objectively on the basis of how well they support 
known interactions (i.e., the training set) (de Hoon et al. 2004; Ernst et al. 2008).
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Depending on the problem that one wants to see solved and the knowledge on 
the studied network, one method can thus be more appropriate than the other. 
Intersection-based methods, for instance, will result in few false positives and are 
hence preferential if further experimental validation is required.

5.3.7  Prioritization of Predictions

On the cellular level gene expression is stochastic in nature: not all cells within a 
population will exhibit the same level of gene expression at the same time (Kaern 
et al. 2005). This is mainly the case for heterogeneous populations such as biofilms 
(Stickler 1999). Microarrays typically average out these stochastic effects as they 
measure the total amount of mRNA in a whole population of cells. Together with 
noise due to experimental procedures this adds to the uncertainty that comes with 
gene expression data. The presence of noise in gene expression data can result in the 
prediction of spurious interactions. In addition, network inference methods gener-
ally yield a large number of predictions, often running into the hundreds, which are 
not always equally meaningful. Therefore, a reliable ranking of the predictions is 
invaluable with respect to in vitro validation of the in silico predictions.

In (semi-)supervized approaches the significance of predicted interactions is 
assessed against the known network. Consequently, results are ranked according to 
how similar predicted targets are in expression (e.g., SIRENE) and/or motifs (e.g., 
SEREND, de Hoon et al. 2004) related to known targets as contrasted to dissimilar-
ity with assumed non-targets. Therefore, the ranking and subsequently the results 
of (semi-)supervized approaches are largely biased in terms of what is known. In 
contrast, unsupervised approaches do not explicitly exploit the information of the 
known network and thus cannot base their predictions on similarities with known 
information. To assess the reliability of the predictions they employ statistically 
motivated and hence more objective measures. Probabilistic methods such as 
Stochastic LeMoNe, for instance, have a natural way of dealing with this noise by 
attaching a certain probability to each prediction. The Stochastic LeMoNe algo-
rithm, for instance, employs a stochastic instead of a deterministic optimization 
(Segal et al. 2003): this means that each time the algorithm is run a different but 
equally likely solution for the network inference problem will be found. Solutions 
that are found repeatedly in a certain number of runs of the algorithm are deemed 
more significant than solutions that occur only once and can be ranked accordingly. 
In this way spurious predictions due to noise are effectively filtered out. In contrast 
to probabilistic methods, the outcomes of deterministic methods, such as itemset 
mining approaches (Zaki and Hsiao 2002) or the relevance networks procedures 
(Margolin et al. 2006), which serve as a basis for respectively DISTILLER and 
CLR, do not assign a significance score to the predictions. Therefore, in CLR the 
relevance networks procedure is extended with an adaptive background correction 
step to filter out spurious interactions, causing the interactions to be ranked accord-
ing to a significance score. In DISTILLER, the significance of the resulting mod-
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ules of the item set mining search strategy is scored by estimating the probability 
that the same modules and regulatory programs would be selected by chance. In 
diverse studies both the probabilistic (Michoel et al. 2009) and the deterministic 
approaches (Faith et al. 2007; Lemmens et al. 2009) discussed here were shown to 
successfully prioritize known interactions, illustrating the practical usefulness of 
the different scoring approaches. With respect to the experimental validation of 
predicted interactions, a method that produces a reliable ranking of the predictions 
is desirable, as it guides the researcher to the most probable predictions among the 
abundance of predictions that the different methods produce.

5.4  High-Throughput Data Can Assist in the Search for Novel 
Drug and Vaccine Targets

As pathogenic bacteria develop more and more resistance against currently used 
antibiotics, there is a growing need for discovering novel drug and vaccine targets. 
Systems biology can aid in discovering the mechanisms of action (MoA) of known 
drugs or in identifying alternative targets for anti-bacterial treatments by complet-
ing our knowledge on bacterial physiology and by providing insight in signal trans-
duction networks.

5.4.1  5.4.1 Revealing the Mechanisms of Action

Information on which genes change their expression profile during antibiotics treat-
ment provides insight in the MoA, by revealing which pathways are affected by the 
treatment (Freiberg et al. 2004; Hutter et al. 2004; Freiberg and Brotz-Oesterhelt 
2005). Several studies have therefore measured the effect of antibiotics on gene 
expression by microarrays (Table 5.1). For instance, Hutter et al. (2004) developed 
a supervised method that uses microarray data to classify antibacterial test compounds 
according to their MoA. They constructed a reference expression compendium 
assessing the response of B. subtilis to 37 different antibacterial compounds with 
known MoA. On the basis of this expression compendium, Hutter et al. revealed 
correctly the MoA of test compounds that were not used during the classification. 
In addition to revealing the MoA of an antibacterial compound, such expression 
studies also help obtaining insight in the defense mechanisms of the affected 
bacteria.

5.4.2  The Search for Novel Targets

Although based on different mechanisms of action, most currently available antibi-
otics focus on a bacteriostatic or bacteriocidal activity. As a result, most current 



114 R. De Smet et al.

Table 5.1 Overview of expression studies that focus on microarrays measuring the effect of 
antibiotics

Species Targets & antibacterial compounds Study

Bacillus subtilis Cell wall synthesis (Amoxicillin, 
Bacitracin, Cefalexin, Cefotaxime, 
Cefoxitin, Cycloserine, 
Methicillin, Oxacillin, Penicillin, 
Phosphomycin, Ristocetin, 
Vancomycin); DNA topology 
& synthesis (Ciprofloxacin, 
Coumermycin, Dapsone, 
Moxifloxacin, Nalidixic acid, 
Norfloxacin, Novobiocin, 
Sulfacetamide, Sulfamethizole, 
Trimethoprim); Membrane-
active compounds (Gramicidin, 
Monensin, Nigericin, 
Nitrofurantoin, Polymyxin, 
Triton); Translation & Protein 
biosynthesis (Actinonin, 
Azithromycin, Chloramphenicol, 
Clarithromycin, Clindamycin, 
Erythromycin, Fusidic acid, 
Neomycin, Norvaline, Puromycin, 
Spectinomycin, Tetracyclin); 
Fatty acid synthesis (Triclosan, 
Cerulenin)

12207695  
11948165  
14707172  
15273089  
14651641  
15273097

Escherichia coli Cell wall synthesis (Ampicillin); 
DNA replication, recombination and 
damage (Norfloxacin, Ofloxacin); 
Translation & Protein synthesis 
(Acivicin, 4-Azaleucine, Mupirocin, 
Kanamycin, Kasugamycin, 
Puromycin); Transcription 
(Rifampin); Unknown (Cecropin A)

12499161  
14982780  
14526028  
11344143  
12736533

Haemophilus influenzae DNA topology & synthesis 
(Ciprofloxacin, Novobiocin)

11156613

Mycobacterium tuberculosis Fatty acid synthesis (Isoniazid, 
Thiolactomycin, Triclosan)

10536008 
12936993

Pseudomonas aeruginosa Translation & Protein biosynthesis 
(Tobramycin)

11677611

Streptococcus pneumoniae Translation & Protein biosynthesis 
(Chloramphenicol, Erythromycin, 
Puromycin, Tetracycline)

12486074

The species on which the microarray experiment was performed (Species), the antibacterial com-
pounds that were tested and their targets (Targets & Antibacterial Compounds), and the PubMed 
ID (Study) of the experiment are indicated.
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bacterial targets have an essential role for bacterial growth or survival. For instance, 
current antibacterial drugs would attack only around 40 target sites, usually 
involved in peptidoglycan biosynthesis or gene expression/translation (Bumann 
2008). Many more components are expected to be essential for bacterial survival 
than the currently identified targets. However, Bumann et al. (Bumann 2008) could 
not find any additional occurring in many related species or broad-spectrum drug 
targets in a genome wide screening. A possible reason for this is the high level of 
redundancy in biochemical pathways. A combinatorial strategy in which a drug or 
combination of drugs can be used to attack multiple redundant targets simultane-
ously in order to cause lethality may be a solution to circumvent this redundancy. 
Systems biology can aid in acquiring information on lethality caused by multiple 
targets. Recently a novel high-throughput technique was developed in E. coli to 
measure synthetic lethality (Butland et al. 2008; Typas et al. 2008). Synthetic lethality 
is defined as the combination of two non-lethal mutations that result in cell death.

The previously mentioned strategy is based on targeting crucial pathways for sur-
vival in bacteria. This strategy puts a heavy selection pressure on bacteria, resulting 
in the increased resistance of bacteria against current antibiotics. This directs us to 
also consider alternative drugs that put less survival pressure on bacteria. One exam-
ple is to target bacterial virulence in order to prevent the pathogen from attacking the 
host by inhibiting mechanisms that are essential during infection (e.g., adhesion) or 
that cause disease symptoms (e.g., toxins). Some successes have been achieved in 
neutralizing bacterial toxins as at least six antitoxin candidates are in clinical trials 
(Cegelski et al. 2008). Systems biology can help us understand the underlying regu-
latory mechanisms of virulence and the consequences of pathogen-host interac-
tions (Cegelski et al. 2008; Kaushik and Sehgal 2008). For instance, by performing 
a microarray experiment in which the pathogen-host interaction was measured, 
Eriksson et al. (2003) showed that more than half of the up-regulated genes were 
genes of unknown function. In the long term such fundamental knowledge provides 
the basis for the identification of possible drug targets (Table 5.2).

Vaccination is another strategy to prevent bacterial infections. Vaccine candidates 
are proteins that are present during infection and are located on the surface of the 
bacteria. The first vaccine candidates that were discovered by the use of microarrays 
were identified for Neisseria meningitidis. Grifantini et al. (2002) started by doing a 
microarray experiment assessing the expression of N. meningitidis during adhesion 
to epithelial cells. They found that 189 genes were up-regulated during adhesion. 
These genes and their corresponding gene products are thus important during infec-
tion. About 40% of these 189 up-regulated genes encode for a protein located on the 
surface of the bacterium, indicating that the cell membrane undergoes a reorganiza-
tion during adhesion to the host. In addition, Grifantini et al. (2002) identified five 
adhesion-induced antigens that were capable of inducing bactericidal antibodies in 
mice and therefore, formed good vaccine candidates. Examples in other bacteria also 
exist (Yang et al. 2006; Merrell et al. 2002; Voyich et al. 2003).

Finally, the study of bacterial populations revealed that bacterial cells do not 
function in isolation, but rather as part of a large community. For instance, bacteria 
can communicate to secrete a particular protein or to differentiate and produce an 
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extracellular matrix (Andre and Godelle 2005). Instead of developing drugs that 
target the cells themselves, it may therefore also be interesting to consider develop-
ing drugs against the cooperation mechanism between cells in a colony. Andre and 
Godelle (2005) developed a model that demonstrates that developing resistance to 
a drug against cooperative behavior is much slower and more difficult than evolving 
resistance to an antibiotic against individual cells. It is thus of importance to find 
out what is causing this cooperative behavior and how we can control it.

In addition, subpopulations with different phenotype may exist in a population 
of genetically identical organisms. From a clinical point of view it is especially 
important to find out how these bacterial subpopulations are able to survive an 
antibacterial treatment (Balaban et al. 2004) or to circumvent the host immune system 
(Ackermann et al. 2008). Ackermann et al. (2008), for instance, showed that for 
S. typhimurium a small part of the population triggers the host innate immune 
response by invading the host cell. This response will kill not only the invading 
subpopulation of Salmonella cells but also many of the competitor gut commensals. 
As a result of the latter, the infection process by the remaining subpopulations of 
Salmonella cells will be more successful. In this example it is critical to investigate the 
differences between the active networks of the two subpopulations (Dwyer et al. 2008).

5.5  Conclusions and Perspectives

Bacteria have been studied as model organisms in molecular biology for many 
decades. In systems biology their use has been lagging behind as compared to 
yeast. Thanks to the increasing availability of “omics” data in bacteria, however, 

Table 5.2 An overview of expression studies that focus on microarrays dealing with the 
host–pathogen interaction

Species Host Study

Borrelia burgdorferi Rat peritoneal cavities 11830671
Chlamidiae trachomatis Human epithelial cervix HeLa 

229 cells
12815105

Streptococcus pyogenes Human polymorphonuclear 
leukocyte

12574517

Mycobacterium tuberculosis Human and mouse macrophages 12953091 
11576227

Neisseria meningitidis Human serum and human 
epithelial and endothelial 
cells

12531357  
12172557  
12486052

Salmonella typhimurium Murine macrophage-like cell line 12492857
Escherichia coli Murine bladder 11744708
Vibrio cholerae Human stool samples 12050664
Leptospira interrogans Serial passages in guinea pigs for 

preservation of virulence
17109759

The species (Species) and the host (Host) on which the microarray experiment was performed; the 
host (Host) and the PubMed ID (Study) of the experiment are indicated.
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bacteria have now gained a similar status to yeast as models for systems biology 
tool development. In comparison with eukaryotes, bacteria indeed offer some 
advantages. Firstly, because of their relatively simple regulatory networks, the 
inference problem is more tractable than it is in higher eukaryotes. Moreover, for 
the most common model organisms such as E. coli and B. subtilis the TRN is at 
least already partly known, allowing developers of network reconstruction methods 
to benchmark and test their algorithms. Finally, bacteria are easy to manipulate so 
that a rather straightforward validation of predictions is possible.

This chapter gives a description of different methods for the inference of TRNs 
that are available today and some applications of these methods on bacteria. The 
inference of networks is not a trivial task considering the complexity of most 
biological systems, the noisy character of the data, and the under-sampling of many 
biological systems. Each of the methods for the analysis of “omics” data deals with 
these problems in a different way, relying on different assumptions and simplifica-
tions of the biological reality. There exist supervised and non-supervised methods, 
methods dealing with expression data only and methods relying on the integration 
of several data sources, methods that reveal the interaction between a transcription 
factor and its target gene directly, and methods identifying transcriptional modules 
prior to the assignment of the regulatory program. In this chapter, we have outlined 
the main advantages and limitations of available network reconstruction tools and 
shown that no single best tool exists. As each of the methodologies highlights 
different aspects of the biology, the results obtained from different methods are 
often complementary (Michoel et al. 2009). The usefulness of a method of tackling 
a particular problem thus depends largely on the nature of the problem and the 
available data. Therefore, it is necessary to tune methods to the specificity of the 
problem and the design of experiments.

Currently, most methods for inferring TRNs make use of microarray, motif, 
and ChIP-chip data but will soon also benefit from novel high-throughput data. 
For instance, newly developed DNA sequencing technologies not only allow for 
rapid, less expensive sequencing of large and complex genomes but are also 
expected to take over from the array-based transcriptome (Brenner et al. 2000) and 
ChIP-chip analyses (Robertson et al. 2007; Johnson et al. 2007).

In the process of reverse-engineering the TRN, most methods account mainly 
for the direct regulator–target gene binding but disregard the role of a plethora of 
other regulatory mechanisms that have a direct or indirect effect on the TRN, 
such as sRNAs (Waters and Storz 2009), chromatin modeling (Blot et al. 2006), 
metabolite-based feedback (Shi and Shi 2004), etc. At this stage this oversimplifi-
cation of the inference problem is partly due to the lack of sufficient amounts of 
high-throughput data at these additional levels of regulation. For prokaryotes, 
high-throughput data on other levels of the regulatory network, like protein-protein 
interaction data (Butland et al. 2005; Arifuzzaman et al. 2006), metabolic data, 
phenome data (Bochner et al. 2001; Zhou et al. 2003; Baba et al. 2006), and genetic 
interaction data (Butland et al. 2008), among others, are emerging. From each of 
these data sources the corresponding networks can be derived. But as cellular 
behavior results from the interplay between these distinct networks, novel methods 
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need to either compare the responses triggered by these different networks or 
integrate the different network layers in a comprehensive way. Few examples 
of this integration exist at this stage and further improvement is thus possible 
(De Keersmaecker et al. 2006).

The novel field of high-throughput analysis is evolving from mere screening 
towards comprehensive network reconstruction and has already unveiled interesting 
biological findings. Systems biology offers a tremendous potential for drug and or 
vaccine development as well as for future research domains such as synthetic 
microbiology.
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6.1  Introduction

Systems biology is an approach to study, analyze, and, finally, control biological 
systems. Unlike traditional research that typically focuses on single genes, systems 
biology, as defined by Leroy Hood, studies the complex interactions of all levels of 
biological information. Biological systems are particularly attractive for systems 
level exploration, as summarized by researchers at the Institute for Systems Biology 
(ISB, Seattle, WA, USA) (Aderem 2005). These systems possess emergent proper-
ties and are robust and modular. Although the success of systems biology lies in the 
integrative and iterative approach between experimental and computational/theo-
retical sciences, in this chapter we will focus on the latter aspect involving, for 
example, the construction of theoretical models, the conduction of in silico experi-
ments, and their theoretical analysis as well as quantitative predictive modeling.

The research of host–pathogen interactions in its broadest definition is a very 
mature field. It is closely linked to our growing understanding of the immune sys-
tem and immune responses (Box 6.1) (Goldsby et al. 1999). Host–pathogen interac-
tions can be interpreted as the battle of two systems. For example, pathogens hijack 
host cells and render host cell capabilities to the pathogens’ own advantage (Kahn 
et al. 2002), or they evolve so rapidly that their sheer diversity overwhelms the 
immune system, as is the case during HIV infection (Simon and Frost 2002).

The detailed mechanistic analysis of host–pathogen systems, encompassing all 
aspects of such a multi-level problem, from molecular interactions to organism 
responses, is still in its infancy. Components and sub-problems have been addressed 
by theoretical and experimental approaches, often focusing on either host-response 
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Box 6.1 Immune system overview

Immune response is an essential defense mechanism against pathogens, and 
is available to most multi-cellular organisms. Even unicellular organisms, 
such as the well-known mold Penicillium chrysogenum produce chemical 
components to kill pathogens. Among other defense mechanisms, chemical 
agents are part of an innate immune response. The following list captures the 
defense mechanisms repertoire of both, the innate and adaptive immune 
system:

Innate Immune Response (plants, animals)

Barriers to pathogen entry•	
Mechanical responses to eliminate antigens•	
Chemical agents•	

Adaptive Immune Response

•	 Phagocytes
Fever; elevated temperature inhibits growth of microbes•	
Inflammatory responses to attract white blood cells (•	 leukocytes) to the 
infection site.

•	 Natural Killer (NK) cells to kill pathogen-infected and cancer cells.

Adaptive Immune Response (higher animals)

Synthesis of antibodies to bind antigens and promote their elimination.•	
T-cell killing of virus-infected cells.•	
Activation of macrophages to destroy phagocytosed pathogens.•	

The innate and adaptive immune responses are complementary components 
of multi-cellular host defense. The innate immune response provides the 
initial defense against infections with responses occurring within hours after 
infection. In contrast, the adaptive immune response requires several days to 
develop after infection. Innate immunity relies on germline-encoded recep-
tors and is limited to some extent in its diversity, although some diversifica-
tion is achieved by heterodimerization of TLRs or the semi-invariant 
NKT-cells. NKT-cells, a special type of T-cells with properties of NK cells 
blur the distinction between innate and adaptive immunity by using the complex 

or pathogen interference by mimicking the missing “partner.” The paradigm of 
integrating these different types of dynamic models into a multi-level host-patho-
gen system is host-pathogen systems biology. The ultimate goal for host-pathogen 
systems biology is not only the discovery and comprehension of the underlying 
biology but also the establishment of a robust framework for more efficient drug 
development and therapeutic intervention. Examples, approaches, and perspectives 
are given in this chapter.
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6.2  Systems Biology in Drug Discovery

Systems biology approaches offer novel strategies to shorten the cumbersome path 
from an identified target to an approved drug (Simon and Frost 2002); (Butcher 
2005). Computational systems biology provides “in silico” models for cost-effective 
decision-making during multi-million-dollar drug development, moving away from 
a target-based reductionistic approach that severely fails, particularly in the case of 
chronic multifactorial diseases (Ho and Lieu 2008).

The term “systems biology” refers to many different techniques and models for 
probing and understanding biological complexity, spanning multiple levels of spatial 
and temporal scales (Fig. 6.1). Because biological complexity is an exponential func-
tion of the number of systems components and the interactions between them, such 
efforts are currently limited to simple organisms or to specific pathways in higher 
organisms. Limiting systems biology studies to specific functional sub-systems is 
even more pronounced in host–pathogen systems biology that focuses on more than 
one organism. Where systems biology is applied to drug discovery, three principal 
approaches can be identified (Butcher et al. 2004): (1) the bioinformatics integration 
of “omics” data (a bottom-up approach); (2) integrative mathematical cell models (an 
intermediate approach); and (3) computer models of disease or organ system physiol-
ogy from cell and organ response information available in the literature (a top-down 
approach to target selection, clinical indication and clinical trial design).

machinery of somatic recombination to produce receptors recognizing a narrow 
range of antigenic diversity. On the other hand, the receptors of the adaptive 
response that are also produced by somatic recombinations of gene segments, 
experience a tremendous diversity. The adaptive immune system also pro-
duces memory cells to store receptor information for particular responses.

Innate Immune Response and Toll Like Receptor Pathways
The innate immune system is essential for host defense and is responsible for the 
early detection and containment of pathogens. The inflammatory response to 
pathogens is activated when the phagocyte recognizes the foreign invader using 
a battery of so called pattern recognition receptors (PRR) including toll like 
receptors (TLRs) (Akira and Takeda 2004), members of the C-type lectin recep-
tor family (Gordon 2002), scavenger receptors (Platt et al. 2002), complement 
receptors (Ernst 1998), and integrins. Conserved pathogen-specific chemical 
motifs that are recognized by these receptors include carbohydrates, glycolipids, 
glycoproteins, nucleic acids (DNA and double-stranded RNA), proteolipids, and 
proteins. Stimulation of PRRs results in activation of a broad spectrum of inter-
acting signaling pathways, revealing a system of extraordinary complexity. 
Additional receptors, such as cytokine, chemokine, or growth factor receptors, 
add to the specificity of the immune response (Lewis et al. 2001).

Box 6.1 (continued)
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Pharmaceutical companies are known to work in all three areas. Initiated by 
Human Genome Sciences, organizations such as GeneGo (http://www.genego.
com/), Ingenuity (http://www.ingenuity.com/), Jubilant Biosys (http://www.jubi-
lantbiosys.com/), and PubGene (http://www.PubGene.org) offer services to access 
and visualize vast amounts of omics data in the context of biological networks. 
Gene expression patterns correlated with biochemical pathways or protein–protein 
interaction maps have yielded diagnostic insights into cancer (Alizadeh et al. 2000), 
and are expected to be useful for biomarker identification. Companies, such as BG 
Medicine (formerly Beyond Genomics), Biosystemix (resurrected from Molecular 
Mining), and Gene Logic (a spin-off into Ocimum Biosolutions), further use even 
more sophisticated algorithms to find biomarkers and diagnostic markers by scan-
ning through omics data.

Other companies, such as Genomatica (http://www.genomatica.com/), use 
steady state flux balance analysis to model bacterial metabolic physiology. 
The modeling is made possible by the availability of the complete genome 
sequences and the fundamental assumption that bacteria will optimize their 
growth under various environmental conditions. Genomatica’s models com-
pute the resulting bacterial response constrained by nutrient availability 
(Schilling and Palsson 1998). These models can be considered as intermediate 
models in building biochemical networks by both bottom-up and top-down 
approaches incorporating all systemic interactions. The objective of these 
models with respect to drug targets is to find and induce growth-inhibiting 
conditions because it is safe to assume that non-growing bacteria are unlikely 
to cause human disease.

True top-down approaches in the pharmaceutical industry include multi-
scale modeling for particular syndromes and diseases with details down to the 
tissue level, and in some areas, down to enzymes and receptors. Such models 
also provide examples of computational simulation of disease to provide 
insights for researchers’ decision-making processes (http://www.entelos.com/
pubArchive/BANGS_A.pdf). For instance, Entelos offers disease models in 
asthma, atherosclerosis, type 1 diabetes, type 2 diabetes/obesity, and rheuma-
toid arthritis. In addition, customers can partner with Entelos to build new 
PhysioLab platforms in new disease areas, or to access technology through 
licensing agreements. Optimata has built models of cancer therapy and throm-
bopoiesis. Both Entelos and Optimata have shifted their business emphasis 
towards developing their own drugs by leveraging the risks in drug develop-
ment with their internal modeling expertise (http://www.bio-itworld.com/
issues/2007/oct/russell-transcript-optimata/). Gene Network Sciences started 
in the area of biosimuation using the bottom-up biochemical modeling of 
cancer cells. This company now has combined pattern recognition and reverse 
engineering with forward simulation. Reverse engineering is used to identify 
multiple models that explain cell physiological behavior. Forward simulation 
and optimization is conducted to select the best model from this set of possible 
models.
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6.3  Computational Systems Biology Models, Methods  
and Tools

6.3.1  Scales and Models

The goal of host–pathogen systems biology is to understand physiology and infectious 
disease from the level of molecules, cellular networks (e.g., metabolic, regulatory, and 
signaling networks), cells (host cells as well as various viruses and bacterial pathogens), 
tissues, organs, and ultimately whole organisms. A comprehensive systems model may 
span about ten orders of magnitudes in scale and even more in time (Fig. 6.1). Two dis-
tinct strategies for modeling along many levels of description can be recognized: bottom-
up and top-down approaches which can also be integrated in a third, hybrid strategy.

It could be argued that a full understanding of a host–pathogen system requires 
knowledge of all of its components. A bottom-up approach focuses on the measure-
ment and description of complex systems utilizing building blocks, their interactions, 
and dynamic properties, such as kinetic parameters. With respect to molecular biology, 
bottom-up modeling has started during the post-genomic revolution, with a plethora of 
“omic” information available. For example, it can be used to investigate which genes, 
proteins, or phosphorylation states of proteins are expressed or upregulated in an infec-
tion process, leading to testable hypothesis that the regulated species are important to 
disease induction or progression. Through the integration of genomic, proteomic, and 
metabolomic data models have been developed to mechanistically describe intra- and 
inter-cellular processes, for example, during drug response or disease progression.

In contrast, modeling (or the top-down approach) attempts to develop integrative 
and predictive multi-scale models of biological processes. A long-term goal would 
be a model of in silico human–pathogen physiology and infection. However, with 
the current technology, such modeling focuses on relatively specific problems at 
particular scales, for example, at the pathway, immune cell-system, or organ level.

Bottom-up models are serving as scaffolds for top-down models by providing 
information of possible and potential interactions and sub-processes, how these 
sub-processes respond to drugs and infection, and how matter and information are 
passed between sub-processes and through different scales. Such hybrid approaches 
benefit from bottom-up molecular biological measurements and knowledge, as well 
as from top-down predictive modeling. A “post-genomic physiology” could span 
many different levels of biology, from molecules to whole organisms, moving away 
from “naïve reductionism” to a discipline that fosters integration and synthesis, as 
Strange envisioned in a review (Strange 2005).

6.3.2  Methods

Complementary to the biological hierarchy of host–pathogen systems, methodological 
descriptions and simulations of such systems have been performed on a different level 
of detail. Interaction networks and network models of biological systems have been 
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studied at the levels of (1) topological connections, (2) qualitative connections, (3) 
quantitative connections, and (4) higher order interactions, as has been reviewed by 
Bower and Bolouri (2001).

Networks are assembled from interaction data, physical measurements, or com-
putational predictions of protein–protein, protein–DNA, protein–small chemical, or 
other identified interactions, or by inference of correlations between cellular com-
ponents. Undirected edges indicate interactions between components. Networks of 
this kind are often referred to as interaction maps or networks. Network Biology 
(Forst 2002; Barabási and Oltvai 2004) is a method that studies (inter/intra) cellular 
networks and their genomic, proteomic, and metabolomic foundations. Network 
biology assembles the basis of systems biology in providing information on bio-
logical components, their interactions, and their functional interplay in biological 
networks. One particular aspect of network biology is focused on the graph-struc-
ture of the underlying interaction map by providing quantifiable measures such as 
node degree distribution, mean path length, and clustering coefficients, as well as 
by identifying architectural features such as the existence of motifs and modules 
and their hierarchical structure (Strange 2005). These measures can be particularly 
interesting when linked to phenotypic properties of the biological system such as 
system survival. Jeong et al. (2001) have shown in a yeast protein interaction net-
work, that proteins essential for survival are highly connected.

Qualitative connections and causality indicate how input nodes affect the out-
put nodes. Directional edges reflect causal relationships as well as qualitative 
types of interactions (e.g., activating or inhibitory interactions). Qualitative mod-
els include metabolic flux-models assuming steady state conditions (Schilling 
et al. 1999; Schuster et al. 2000), some considering gene-regulation (Covert and 
Palsson 2002), or Boolean network models (Stuart and Kauffman 1969; Kauffman 
1993). At the level of quantitative connections, such functions are assigned sets of 
interactions that describe the dynamic co-dependent behavior of inputs and an 
output. Methods of choice cover power law models, such as S-systems (Savageau 
1969, 1970), reaction kinetics modeled by ordinary differential equations (Ackers 
et al. 1982; Novak and Tyson 1993), or stochastic simulations (Gillespie 1977; 
McAdams and Arkin 1998). For example, with respect to cell-signaling cascades 
(see Sect. 11.4.2), Goldstein et al. (2004) propose a three-part protocol for defining 
such a mathematical model:

Selection of a set of components and identification of their interactions on the •	
basis of what is known about the system
Selection of parameters that quantify the cellular concentrations of the •	
components and the strength of the interactions between components (known as 
“rate constants”)
Selection of a mathematical formulation of a method of simulation. Reaction-•	
network models are based on the assumption that each species is uniformly 
distributed throughout the cell. Reaction-diffusion models allow for the variation 
of species concentrations in different cellular compartments

At the level of higher order interactions and reaction rules, higher-level nodes and 
connections represent abstract concepts that can be expanded into sub-level sub-graphs 
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on the basis of reaction rules in a hierarchical fashion. Examples include signaling 
networks and metabolic reactions, with context dependent or rule-based interac-
tions and different types of nodes (Faeder et al. 2003).

6.3.3  Static Networks

Although the pathway analysis experiences a renaissance with the establishment of 
systems biology, the field of research exploring biological pathways is more than 
100 years old. Seminal contributions by Haldane (1924), Miller (1953), Oparin 
(1957), and Orgel (1968) are noteworthy in this context, especially with respect to 
the evolution of metabolic networks. The breakthrough of large-scale network 
analysis came with the post-genomic revolution and the utilization of the plethora 
of genomic data through publicly available databases. Early examples of such data-
bases established in the 1990s are the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) (Kanehisa et al. 2004), Karp’s and Riley’s EcoCyc (Karp et al. 2002), and 
the WIT-system (now commercialized as ERGO: http://ergo.integratedgenomics.
com/) by Overbeek et al. (2000). Nowadays, a large selection of biological network 
databases is accessible, with a variety of genomic, interaction, and network infor-
mation. PathGuide (http://www.pathguide.org/) lists almost 300 biological pathway 
resources on protein–protein interactions, metabolic pathways, signaling pathways, 
pathway diagrams, gene regulatory networks, protein–compound interactions, and 
genetic interaction networks on its web site.

Research areas, such as graph theory and statistical physics, contribute signifi-
cantly to the understanding of biological networks. Generic graph properties and 
their scale-free nature have been described by the pioneering work of Barabasi and 
his coworkers (Barabasi and Oltvai 2004a, b). Following this network biology 
approach, further large-scale statistic and detailed graph-topological analyses have 
been performed on biological networks. For example, Barabasi et al. identified 
hierarchically organized sub-networks within large biological networks, Girvan and 
Newman identified “Community Structures” (Girvan and Newman 2002), and 
Alon and his group classified all possible network modules with six or less modules 
and identified particular functional circuits, such as feed-forward and feed-backward 
loops (Alon 2007).

6.3.4  Response Networks

With respect to molecular-biological networks, response networks were first men-
tioned by Magasanik (1995). Groundwork for a systematic, theoretical analysis of 
response networks was laid by Zien et al. (2000) and further developed independently 
by Ideker et al. (2002). The idea behind response network analysis is the analysis of 
experimental data, such as expression profiles, in the context of biological networks. 
Through a superposition of experimental data with network information, it has become 
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possible to identify networks that best represent the system response according to the 
experimental conditions tested. In principle, graph comparison is a NP hard problem, 
which typically can only be addressed by exhaustive enumeration techniques. On the 
other hand, methods for comparative network analysis for biological systems have been 
developed in the past. Such methods have been proven powerful in a number of applica-
tions including metabolic (Dandekar et al. 1999; Forst and Schulten 1999, 2001; Ogata 
et al. 2000) and protein interaction networks (Kelley et al. 2003) as well as in the cor-
relation of protein interaction networks with gene expression (Nakaya et al. 2001). 
Recently, a method has been developed to correlate and compare response networks for 
the identification of common and specific responses (Cabusora et al. 2005).

6.3.5  Modeling Techniques

Different modeling techniques are chosen depending on the dynamics under consid-
eration at a particular level of description, particularly with respect to quantitative 
modeling (Sect. 6.3.2). Two major types of models can be distinguished – mathematical 
models using equations and computer algorithms applying a detailed set of rules. 
Mathematical models include deterministic and stochastic differential equations, 
discrete Boolean networks, and statistical methods. Computational algorithms 
encompass agent-based models (ABMs), such as cellular automata, or event-based 
simulations (e.g., Petri-Nets).

A plethora of tools and software on biological systems modeling have been 
developed and are available for download, often free for academic users. Many 
modeling tools are using the Systems Biology Markup Language (SBML) for por-
table model description, since SBML (http://www.systems-biology.org/) has been 
developed by Hucka and co–workers (Hucka et al. 2003). Because of the wealth of 
tools available, we refer the potential user to the Systems Biology website by 
“Kitano’s Symbiotic Systems Project” (http://www.systems–biology.org/), which 
lists model editors (http://www.systems–biology.org/002/008.html) for graphic 
assisted model construction, simulation tools (http://www.systems–biology.
org/002/005.html) for deterministic and stochastic simulations, analysis tools 
(http://www.systems–biology.org/002/006.html), and utilities (http://www.systems-
biology.org/002/007.html). Physiology modeling software is not yet well integrated 
with molecular and cellular modeling tools. A list of physiological modeling 
groups and tools can be found at “The Federation of American Scientists” web site 
(http://www.fas.org/main/content.jsp?formAction = 297&contentId = 94).

6.4  Intracellular Models

Host–pathogen system models, which fall in the “omics” category, comprise inter-
action maps or interaction networks that represent components of a network and 
their interactions for further analysis.
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6.4.1  Genomic Foundation of Host-Pathogen Interactions

One example of a true host–pathogen network model is the tryptophan (trp) biosynthe-
sis network of a class of obligate intracellular pathogens, Chlamydiae (Fig. 6.2a, Forst 
2002). Chlamydia primarily infect mucosal epithelial cells with consecutive infection 
of subepithelial tissue (Campbell et al. 1993). Chlamydia infections progress through 
a life-cycle with three distinct stages. The host is invaded by elementary bodies (EBs), 
which represent the extracellular infectious stage. After infection, EBs develop into 
intracellular reticular bodies (RBs), which replicate and further maturate into EBs, 
which then lyse the host-cell and initiate another round of pathogen infection. The 
cycle between EBs, RBs, and lysis of host-cells characterizes the acute disease state. 
A third state of development, the persistence state, is recognized, and describes the 
chronic disease progress. In tissue culture, the persistence state of Chlamydiae can be 
introduced by various factors, specifically interferon-g (IFN-g), nutrient limitations, or 
other environmental stress. For example, it is well documented that tryptophan levels 
in host cells decrease because of an effect of IFN-g (Girvan and Newman 2002; Byrne 
et al. 1986). It has further been recognized that tryptophan depletion may play a role 
in the development of chronic disease conditions (Beatty et al. 1994).

Investigating the tryptophan biosynthesis pathway in a particular Chlamydiae 
species, Chlamydia psittaci, is interesting, because it shows the interdependence 
and interconnectivity between pathogen and host. Thus, it may help to explain the 
development of the chronic disease. This pathway assembles an almost complete 
biosynthetic unit. Interestingly, genes encoding the enzymatic subunits trpAa and 
trpAb, which are typically present in tryptophan operons and which are respon-
sible for catalyzing the reaction from chorismate to anthranilate, are absent in the 
C. psittaci tryptophan operon and are not encoded elsewhere in the genome. 
Instead, the C. psittaci tryptophan operon includes two genes kynU and kprS, 
both of which are atypical components of the classic tryptophan operon (Fig. 
6.2b). This can only be deciphered by systematic metabolic network analysis. 
KynU encodes kynureninase, an enzyme that converts kynurenine into anthra-
nilate. KprS codes for 5-phospho-d-ribosyl-1-pyrophosphate (PRPP) synthetase, 
a component needed in the first steps of tryptophan biosynthesis (Fig. 6.2a). The 
complete tryptophan network, including the tryptophan-salvage pathway of the 
host, is shown in Fig. 6.2a (the pathway starts at IFN-g with black arrows outside 
the oval). For tryptophan biosynthesis, C. psittaci obtains an alternative source of 
anthranilate by hijacking the host’s tryptophan depletion pathway by intercepting 
the by-product kynurenine. At first, the tryptophan depletion pathway of the host 
is activated by inducing indoleamine-2,3-dioxygenase through IFN-g (reaction 
with EC-number1 1.13.11.11 in Fig. 6.2a). Then, C. psittaci utilizes host kynurenine 
by kynU to produce its own tryptophan, enabling intracellular growth and causing 

1 The classification system for enzymes and biochemical reactions by the Nomenclature Committee 
of the International Union of Biochemistry and Molecular Biology (NC-IUBMB): http://www.
chem.qmul.ac.uk/iubmb/enzyme/
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chronic infections. The knowledge of such a metabolic host-pathogen system 
accelerates drug development of successful antimicrobials against chronic chla-
mydial infection.

6.4.2  Large-Scale Host Response Models

The application of massive omics data analysis in the context of biological networks 
(Cabusora et al. 2005; Ideker et al. 2001) leads directly to large-scale studies of 
(human) host response. Particularly in the case of viral-host systems, the whole 
disease process is triggered by few viral components and the host cellular machinery 
is required for the viral life cycle. Thus, studying viral-host systems by analyzing 
host response is a well-justified and valid approach. One of the first comprehensive 
analyses of the global host response of viral infection was conducted by Kash and 
coworkers in the case of the 1918 influenza virus induced response in an animal 
model (Kash et al. 2006). A biological network of selected genes that were induced 
more than twofold (P < 0.01) in the lungs of mice infected with the recombinant 
1918 influenza virus (r1918), as compared with uninfected controls, is used to depict 
the activation of cell-death responses during r1918 infection. Another example is a 
recent study of human response against the avian influenza virus H5N1 in an epithe-
lial cell culture model. By combining the biological response network with the 
hierarchical knowledge representation from the gene ontology (GO), one can easily 
identify essential host response processes, such as “immune response” and “response 
to virus,” as well as cell cycle activation (Tatebe et al. 2009). Figure 6.3 presents a 
combined network of host cell response 24 h after infection with an H5N1 influenza 
strain. Other success stories of large–scale network biology analysis include the 
identification of transcriptional regulatory networks governing the latency and early 
reactivation phases of HIV-1 (Bandyopadhyay et al. 2005), and the inference of 
virus-host protein interaction maps for two herpesviruses, Kaposi sarcoma-associ-
ated herpesvirus and varicella zoster virus, by comparative network proteomics 
using yeast two-hybrid network data (Uetz et al. 2006). Such gene-regulatory and 
protein interaction network information and large-scale virus-host interaction data 
boost our knowledge of the function of many still poorly understood viral proteins, 
as well as the large number of remaining “unknown” genes in host pathways. This 
will lead to a more detailed understanding of viral pathogenesis and will provide 
potential new targets for interfering with either the virus or the host at key points in 
the infection (Torigoe et al. 1998; Valitutti et al. 1995; Wofsy et al. 2001).

6.4.3  Immune-Receptor Signaling

Mathematical and computational network models have studied the process of 
signaling through receptors of the immune system (Magasanik 1995). Mathematical, 
dynamic models of immune-receptor signaling are essentially performed on two 
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Fig. 6.3 Network of significant genes and GO nodes at 24 h: The gene ontology nodes found to 
be significant in the BiNGO analysis are shown as rectangles, with the orange nodes being more 
statistically significant. The genes associated with the GO nodes are listed in ovals connected by 
black arrows to the GO nodes. These genes are further connected to other genes in the Human 
Network via yellow and orange arrows. Red ovals indicate up-regulated genes while blue ovals 
indicate down-regulated genes

distinct levels of description (1) “simple models” and (2) “detailed models” (see 
Sect. 6.3 and Box 6.1).

Using the FceRI receptor as an example, Faeder et al. (2003) have developed a 
detailed signaling model that takes into account downstream components affecting 
the signaling cascade (Fig. 6.4). Figure 6.4a shows the four components of the 
receptor, the ligand (IgE dimer), the receptor (FceRI), and the two kinases Lyn and 
Syk. The nine basic interactions are shown in Fig. 6.4b, which include association 
and dissociation, transphosphorylation, i.e., catalysis of phosphorylation, and 
dephosphorylation. A surprising aspect of this model is that, because of combinato-
rial complexity, four components and nine interactions expand to a signaling 
network with 354 species and 3,680 reactions (one particular reaction “species” is 
depicted in Fig. 6.4c). The simulation results of the FceRI signaling model show 
complex behavior of phosphorylation profiles because of competing behavior or 
two previously known but independently observed phenomena in cell signaling, i.e. 
kinetic proofreading and serial engagement. Kinetic proofreading is a process in 
signaling cascades where required preservation of initial receptor interaction during 
the subsequent time-dependent steps increases the fidelity of the response (Torigoe 
et al. 1998). Serial engagement (Valitutti et al. 1995; Wofsy et al. 2001) is observed 
in T cell signaling in which a single MHC peptide can stimulate a substantial number 
of TCRs. The complex phosphorylation profiles as a function of the ligand–receptor 
off-rate are induced by the change of the balance between kinetic proofreading and 
serial engagement changes, moving down the signaling cascade. Because serial 
engagement increases with the off-rate, an increase in phosphorylation with off-rate 
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indicates that serial engagement is the dominant effect, whereas a decrease indicates 
that kinetic proofreading is dominant. Depending on the timely occurrence of a 
particular phosphorylation event, either kinetic proofreading or serial engagement 
is dominant. For example, the phosphorylation profile of g-ITAM (Immunoreceptor 
Tyrosine-based Activation Motif) passes through a maximum indicating a transi-
tion between control by kinetic proofreading and control by serial engagement. 
Thus, the detailed signaling model shows that kinetic proofreading and serial 
engagement are emergent properties and the interplay of these mechanisms gives 
rise to an optimal off-rate at which the highest response is achieved.

The ultimate goal of immune-receptor signaling models is to understand how the 
components of a signaling cascade work together to direct cellular responses to 

Fig. 6.4 A detailed model of early events in FceRI signaling. (a) The four components in the 
model are the IgE dimer, the receptor (FceRI), and the kinases Lyn and Syk. Of the two cytosolic 
domains of the receptor each contains an immunoreceptor tyrosine-based activation motif (ITAM). 
(b) There are nine basic interactions, five for association/dissociation between signaling compo-
nents, three transphosphorylation reactions, and one for the spontaneous dephosphorylation of 
phosphorylated sites. (c) Considering all possible combinations between components, basic inter-
actions yield 354 complexes and phosphorylation states, each of which is tracked as a separate 
species. The species are connected by 3,680 reactions assembling a large biological network that 
is defined by a small number of parameters (the initial conditions of 4 proteins and 21 rate 
constants). One typical species is illustrated along with nine different reactions, of which six are 
explicitly shown. Reactions seven to nine are generated by using different phosphorylation states 
of Syk (gray square) to form additional states from the complex in the center to the bottom-left 
complex (indicated by “and 3 more states”). The states are connected by a large biochemical reaction 
network (composed of 3,680 reactions). A small number of parameters, the initial concentrations 
of the 4 proteins and 21 rate constants, define this network because the same rate constant can be 
used for many similar reactions. The figure shows 2 of the 24 reactions in which Lyn transphos-
phorylates g-ITAM. The p*

Lg indicates the reaction rate of these two reactions [reproduced with 
permission from Nature Reviews Immunology (Goldstein et al. 2004) copyright (2004) Macmillan 
Magazines Ltd]
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changes in the extracellular environment. Both simple and detailed mathematical 
models have contributed to the understanding of essential host-pathogen signaling 
events through immune receptors by identifying the fundamental mechanisms that 
are involved in determining, regulating, and therapeutically modifying immune 
responses.

6.5  Intercellular or Cell Host-Pathogen Interaction Models

Complementing the molecular biology modeling approach described above, the 
following models capture the dynamics of the immune response to infecting patho-
gens at the inter-cellular level in host–pathogen systems biology. A comprehensive 
review of the mathematic modeling techniques of immune systems has been pre-
sented by Perelson and Weisbuch (1997). Such modeling techniques are deeply 
rooted in Theoretical Biology, one of the foundations of systems biology. Below is 
the model of Anderson and May (Anderson and May 1980, 1981), which describes 
insect diseases. The host population consists of two portions: susceptible or healthy 
organisms, and infected individuals. The model captures changes in the density of 
susceptible (S), infected individuals (I) and pathogens (P):
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Parameters in this model are r, reproduction rate; g, transmission coefficient; a, 
death rate of infected individuals; B, natural death rate; l, pathogen emission rate; 
and m, rate of natural pathogen decay.

The basic idea of viral infection models is simple and lead to the development 
of viral dynamics as a research field (Nowak and May 2000). Analogous to the 
model by Anderson and May (above), viral infection models consist of three types 
of cells, target cells T, infected cells I, and virus particles (virions) V. Infected cells 
produce new virus particles at a constant rate p and die at rate d. Virions are cleared 
by the immune system at rate c. The rate in which a target cell is infected is k.
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The above equations, motivated by (6.1) and further developed by Perelson et al. 
(1996), describe the basic model of viral dynamics and have been used to study 
primary human immunodeficiency virus (HIV) infection. More complex models 
include specific components of the immune systems, such as the cytotoxic T 
lymphocytes (CTLs; DeBoer et al. 2001), other non-toxic lymphocytes, and 
cytokines/chemokines (Wodarz et al. 2000). These models essentially include 
specific expressions for resting, active, memory, and cytotoxic T-cells. 
Mathematical models of HIV infections have also proved to be useful in explor-
ing the response of HIV to antiviral therapy. Specifically, the evolution and eva-
sion of HIV under the selection pressure of the immune system and drug-treatments 
have been extensively studied. A review by Frost discusses the benefit of evolu-
tionary dynamic HIV models for the understanding of HIV response to highly 
active antiretroviral therapy (Simon and Frost 2002). This review specifically 
discusses the role of such models in the design and analysis of structured treat-
ment interruption studies, to reduce drug toxicities, to boost HIV-specific immune 
responses, and to allow drug resistance mutation to be reversed in highly drug-
experienced patients.

Building upon these pharmacokinetic models of HIV evolution in human hosts, 
Dixit and Perelson developed a hybrid model of HIV dynamics under antiretroviral 
therapy that combines pharmacokinetics and intracellular delay, the time which is 
required for an infected cell to replicate virus (Dixit and Perelson 2004). This 
model helps to accurately determine the pharmacological delay and the time-
dependent efficacy of drug action.

Particularly in the case of the tuberculosis causing pathogen Mycobacterium 
tuberculosis, tremendous advances have been made in the modeling of host-
pathogen interactions on multiple scales. For example, Denise Kirschner and her 
group together with experimentalists have developed a suit of approaches and 
tools to study the interaction of the immune system with the intracellular patho-
gen M. tuberculosis at a number of biological and spatial levels. The starting 
point for these studies was a simple model of a mycobacteria-macrophage inter-
action, the preferred host cell for M. tuberculosis, in the lung (Wigginton and 
Kirschner 2001). This model, implemented as ODEs, tracked the time-evolution 
of the concentrations of three sub-populations of macrophages, two bacterial 
populations, three T-helper cell populations, and four key cytokines. It predicted 
that latency, active disease, and clearance could be observed under different host 
conditions. Kirschner and coworkers later extended this basic model to include 
CD8+ T cells (Sud et al. 2006) and the tumor-necrosis factor a (TNFa) (Marino 
et al. 2007).

A significant improvement towards multi-cell models and the analysis of infec-
tions on the tissue and organ level has been made by considering heterogeneous 
models of TB infections due to variation within cell populations. Structured models 
(Cushing 1998) describing, for example, different developmental stages of immune 
cells have been used to generalize age-structured population models known from 
theoretical ecology (Blasi et al. 1982) and epidemiology (Auranen et al. 2004). 
One example was a multi-scale model that combined mutual inhibition of two key 



1396 Host–Pathogen Systems Biology

transcription factors with a cell-population model to describe T
H
-cell differentiation 

(Yates et al. 2004).
Using ABMs of spatially distributed cell population and tissues is an elegant 

approach to close the gap to physiological models discussed in Sect. 6.6. ABMs are 
the preferred modeling techniques in situations in which overall numbers are small 
or in which simulation of discrete individual behavior is desired. As such behavior 
becomes more sophisticated, ABMs offer a powerful approach to integrating indi-
viduals with the next scale above. ABMs have been used in medical setting in 
spatial models of wound healing (Drasdo 2003) and tumor growth (http://www.
biomedtown.org/biomed_town/VPH/VPHnews/tumather) (Alber et al. 2003). 
Kirschner and coworkers applied ABMs to develop a two-dimensional model for 
simulating both the spatial and temporal events of granuloma formation and main-
tenance (Segovia-Juarez et al. 2004). Granulomas are characteristic multicellular 
structures within the lung tissue of infected individuals. Granuloma formation is a 
complex process involving interactions of bacteria, specific immune cells, includ-
ing macrophages, CD4+ and CD8+ T cells, as well as immune effectors such as 
chemokines and cytokines. The formation and dynamics of these granulomas 
potentially play a central role in the pathogenesis of the disease. Two-dimensional 
lattice ABMs representing 2 × 2 mm of lung tissue were developed (Segovia-Juarez 
et al. 2004). As agents, T cells, macrophages in different stages (resting, activated, 
infected, chronically infected, or dead), bacteria, and tissue were included. The 
model predicted three distinct and robust infection outcomes :(1) a granuloma that 
was tightly packed, small, and showed little necrosis, and that was able to contain 
bacterial growth; (2) a larger and more diffuse granuloma that failed to restrict 
bacterial dissemination; and (3) a granuloma that cleared the bacteria load alto-
gether and then dispersed.

6.6  Large Scale Models of Host–Pathogen Physiology

Physiological models go a step further. These models integrate molecular, cellular, 
and organ levels in a top-down approach to put in place an organ-level framework 
and to add increasing complexity in a modular format. With the beginning of the 
new millennium, a number of funding networks, consortia, and projects have been 
formed to target the multilevel modeling and simulation of the human physiology. 
Most noteworthy are two main physiology modeling approaches: the publicly 
funded and developed international IUPS Physiome Project at the University of 
Auckland in New Zealand (http://www.physiome.org.nz/), lead led by Peter Hunter, 
and the proprietary PhysioLab™ by Entelos, Foster City, CA led by Cynthia Stokes. 
Other efforts in the public domain include the Virtual Soldier Research at The 
University of Iowa with the objective of developing a new generation of digital 
humans by creating realistic human models related to anatomy, biomechanics, 
physiology, and real-time intelligence, as well as the Digital Human Project, which 
targets the representation of the body’s processes from DNA molecules and 
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proteins to cells, tissues, and gross anatomy. Another company that uses the 
multi-scale physiological model similar to Entelos is Rosa & Co., with PhysioPD 
(http://www.rosapharma.com/services/physio_pd) as their main R&D application. 
This company is focused on the rapid development of decision-focused models that 
are used to assess which uncertainties will have the greatest impact on outcomes. 
Depending on the decisions, these models range from population pharmacokinetic 
models to full-scale physiologically based population pharmacokinetic/pharmaco-
dynamic models with clinical trial simulations. In order to provide more value, 
Rosa & Co. developed these models with the client in the belief that most insights 
arise from the model creation process.

Worthwhile to mention with respect to host–pathogen systems biology are efforts 
put forward by the European Commission, implementations of the Virtual 
Physiological Human Network of Excellence (http://www.vph-noe.eu/) within the 
EuroPhysiome (http://www.europhysiome.org/) roadmap: ImmunoGrid (http://
igrid-ext.cryst.bbk.ac.uk/immunogrid/site), the European Virtual Human Immune 
System Project and TUMATHER (http://calvino.polito.it/~mcrtn/), the European 
Commission Research Training Network on modeling, mathematical methods, and 
computer simulation for tumor growth.

Any attempt to link molecular and cellular events with physiological function 
must deal with length scales that range from 1 nm (typical diameter of a protein) to 
the 1 m scale of a human body. Similarly, the range of timescales must encompass 
the 1 ms that is characteristic of Brownian motion and the 109 s of a human lifetime. 
It is clear that no single model can cover a factor of 109 in space and a factor of 1015 
in time (see Fig. 6.1). A more reasonable approach is to develop models for a limited 
range of spatial and temporal scales and to develop techniques to link the parameters 
of this hierarchy of models. This means that, at any one level, there is a “black box” 
that groups all of the detail at the level below (in either spatial or temporal sense) 
into a mathematical expression. The parameters of this expression are determined 
directly from experiments, but can be related to another, more detailed, model at the 
finer spatial or temporal level. For example, according to a review by Peter Hunter 
and Thomas Borg (Hunter and Borg 2003), “The Physiome Project will provide a 
framework for modeling the human body, using computational methods that incor-
porate biochemical, biophysical and anatomical information on cells, tissues and 
organs. The main project goals are to use computational modeling to analyze inte-
grative biological function and to provide a system for hypothesis testing.”

The goals of the IUPS Physiome Project are the following:

To develop and capture observations of physiological phenomenon and interpret •	
theme in terms of mechanisms (a fundamentally reductionist goal)
To integrate experimental information into quantitative descriptions of the func-•	
tioning of humans and other organisms (modern integrative biology glued 
together via modeling)
To disseminate experimental data and integrative models for teaching and research•	
To foster collaboration among investigators worldwide, and thereby speed up the •	
discovery of how biological systems work
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To determine the most effective targets (molecules or systems) for therapy, either •	
pharmaceutical or genomic
To provide information for the design of tissue-engineered, biocompatible implants•	

One example of the hierarchical modeling technique based on the IUPS Physiome 
approach is the integrative cardiac model (Winslow et al. 2000). The authors have 
developed a method for the risk stratification and treatment of Sudden Cardiac 
Death syndrome (SCD). Their approach is to collect data from the molecular to the 
organ level and to develop integrative models of the normal and failing heart. Gene 
expression profiles are used to build gene-regulatory network maps. Together with 
measurements on Ca2+, K+ concentration and action potential time-series, Winslow 
et al. developed cellular models of the myocytes (Fig. 6.5a) which have been com-
bined with 3D spatiotemporal models of the heart using Reaction-Diffusion 
Equations that include parameters from the ionic models as well as from the micro-
anatomy of the ventricles (Fig. 6.5):
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where x is the spatial position, v(x, t) is the transmembrane voltage, C
m
 is the mem-

brane capacitance per unit area, I
ion

(x, t) is the sum of the ionic currents per unit area 
through the membrane (from the ionic models), I

app
(x, t) is an applied stimulus cur-

rent per unit area, b is the ration of membrane area to tissue volume, k is the anisot-
ropy ration, and M

i
(x) is the intracellular 3 × 3 conductivity tensor at each point x 

(Musante et al. 2002). Entelos (Foster City, CA, USA) has developed complex 
simulations of disease physiology using a framework, PhysioLab (http://www.
entelos.com/physiolabModeler.php), for determining differential equations based 
on empirical data in humans (Musante et al. 2002). In these models, cells or even 
tissues are represented as black-boxes, without explicit internal network models, 
that respond to inputs by providing specified dynamic outputs. Using such an organ 
level framework of a disease physiology, Stokes and colleagues have developed a 

a b

Fig. 6.5 (a) Schematic diagram of mechanisms involved in intracellular Ca2+ cycling in cardiac 
ventricular myocytes. (b) Reconstruction of epicardial (blue wire mesh) and endocardial surfaces 
(right ventricle endocardium - red; left ventricle endocardium - gold) (c.f. Winslow et al. 2000)
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computational model of chronic asthma that includes interactions among cells, and 
their response to one another and their environment (Stokes et al. 1999). Different 
steady states of this disease, including chronic eosinophilic inflammation, chronic 
airway obstruction, airway hyper-responsiveness, and elevated IgE levels, can be 
induced in the model (Fig. 6.6). The in silico asthmatic model responds as expected 
to various drugs, such as b

2
-agonists, glucocorticoids, and leukotriene antagonists. 

Furthermore, this model accurately predicts a decrease in airway eosinophils with-
out much therapeutic improvement in airway conduction after reduction in the 
interleukin (IL)-5 protein as observed in clinical trials of an anti-IL-5 antibody in 
asthmatic patients.

6.7  Conclusion

Many aspects of host-pathogen systems have been addressed by both experimen-
tal discoveries and mathematical/computational models. However, a comprehen-
sive analysis of entire host-pathogen interaction (including pathogen interference, 
host-response, pathogen-response, etc.) is a far fetched goal. Current models 
focus predominantly on host responses to infections or pathogen biology in a 
simulated host-environment. The size of these model systems depends essen-
tially on the detail of description. They range from large interaction maps (bot-
tom-up models) with thousands of components and interactions, through 
conceptual top-down cellular or organ models consisting of interacting black-
boxes without detailed knowledge of internal processes within each individual 
black-box, to small mechanistic dynamic models describing few steps of a much 
larger system.

Efforts are under way to combine both pathogen action and host response in a 
comprehensive, multi-scale (hybrid) model, merging top-down approaches with 
“omic” bottom-up approaches (Kirschner and Marino 2005). Integrated with 
sophisticated experimental techniques, such as quantitative protein expression, tags 
by quantum dots for localization, and nano-biotechnological measurements on 
single cells, they promise new insights into the complexity of host–pathogen sys-
tems. Potential applications of host–pathogen systems biology range from biologi-
cal target identification and drug discovery to bio-threat assessment and personalized 
health care. As with any modeling approach, theoretical models raise the challenge 
of experimental validation and the iterative cycle of improvement inherent to the 
modeling effort. With respect to drug discovery, success stories are still anecdotal. 
Until a given model shows a track record of successful predictions it will be risky 
to rely on it for drug development decisions. For the foreseeable future, modeling 
predictions will most likely be only one of many inputs into the decision making 
process in the pharmaceutical industry. A long-term goal for host-pathogen systems 
biology, as envisioned by an increasing number of national and international fund-
ing opportunities and seed projects, would include full scale in silico models of an 
individualized human fighting against pathogenic infections.
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7.1  Introduction

The vast body of published literature in biomedicine represents an immensely valu-
able source of knowledge. Text mining tools and techniques aid in the organization 
and navigation of this tremendously rich body of knowledge. Traditional approaches 
to text mining have a strong basis in finite-state pattern extraction (Appelt et al. 
1993; Roche and Schabes 1997). With relationship extraction, a great majority of 
relations are encoded in free text using common linguistic patterns, with the 
remainder being encoded in tabular or graphical form. Extraction methods pre-
dominantly incorporate cue-phrase-based approaches, regular expression pattern 
mining, or grammar induction. These approaches belong to a class of structural 
content-based extraction methods. Although the structure of language is infinitely 
complex, these approaches can produce reasonably reliable results. While the 
majority of relations may be mined using methods based on the structure of lan-
guage alone, there is in reality a long tail of less common structures that will not be 
captured. The distribution is analogous to that of word usage where a small number 
of words are used most often, with a large number of words making up the remain-
der (Zipf 1932). The less frequently occurring relations will generally not be cap-
tured through the use of syntax alone because they are irregular and difficult to 
profile given their sparsity.

One obvious and common case that exemplifies the weakness of structural 
approaches is cross-sentence anaphoric reference. The following passage contains 
a relationship between a pathogen and syndromes that grammar-based solutions 
will not easily capture on their own.

The MRSA clones were mainly isolated from children (overall median age, 3 years). They 
caused a variety of clinical syndromes, including toxic shock syndrome and suppurative 
infections.
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Another linguistic class of problems not readily captured by purely syntactic 
means is that of semantic modification. Examples include negation, speculation, 
varying degrees of association, and context-dependent relationships. The first sen-
tence below reflects a speculative association between a genotype and syndrome 
that is not easily distinguished from a legitimate or actual relationship. The second 
sentence provides evidence of a relationship between a pathogen and two syn-
dromes, although only within a specifically prescribed context.

This is the first report of a Beijing genotype association with HIV status, which may be an 
association unique to tuberculous meningitis.

Group B Streptococcus (GBS) causes severe infections in very young infants and invasive 
disease in pregnant women and adults with underlying medical conditions.

Semantic considerations such as these must be addressed for automatically 
extracted relationships to be useful. In the remainder of this chapter, we explore 
existing technologies that begin to incorporate the semantic layer.

7.2  Corpus Construction

The desired output of a text processing system dictates the type of data that are 
collected for training and evaluation. In many cases, there will be no existing cor-
pus that completely satisfies the requirements. In some cases, it is possible to aug-
ment existing data sets with additional annotations. At the other end of the 
spectrum, corpus construction may involve the recruitment of participants in order 
to acquire raw data upon which domain experts could then apply annotations. Once 
the application is determined and a source for the data is identified, an annotation 
scheme and an annotation guideline need to be developed (Wilbur et al. 2006).

It is useful to collect a small sample and create a pilot corpus as the annotation 
guidelines are being developed. The corpora used for text mining purposes can 
range from a collection of speaker turns to large document sets that comprise a 
range of sources and modalities. The document selection process is an important 
stage of corpus construction, particularly when the documents are being sourced 
from a larger collection, such as the Internet, or large literature databases, such as 
PubMed. Search terms and queries must be carefully crafted in order to capture a 
balanced and representative sample of the target domain. Any necessary refinement 
of the collection or annotation process will emerge as the guidelines are being 
developed and the annotations applied to the test corpus. The quality of the annota-
tions and any further refinements to the annotation guidelines are easily revealed 
through the application of inter-annotator agreement measures. Inter-annotator 
agreement gauges the consistency of annotations across annotators and should be 
measured often during the annotation process. The most commonly used measure 
for inter-annotator agreement is Cohen’s kappa coefficient (Cohen 1960).

The next consideration is the system development methodology itself. Generally, 
a well-balanced mixture of examples is desirable. However, the data should reflect 
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the expected distribution that will be observed in practice. Annotation is an 
expensive step, and if there exists a minority class that is difficult or costly to 
capture, annotating a proportional amount of cases to that found in real world 
scenarios will be more efficient.

Annotation can be performed in a number of ways, either by hand or using com-
putational tools to assist in the process. Commonly used tools that aid annotation 
include Callisto (Day et al. 2004), GATE (Cunningham et al. 2002), and Knowtator 
(Ogren 2006). The employment of annotation tools aims to improve productivity. 
The use of these tools implies the adoption of a standard format and the possibility 
of automatic data validation. For some tasks, annotation can be semi-automated. 
For example, words may be automatically pre-tagged using a statistically derived 
heuristic and subsequently corrected by human annotators. Heuristics can be based 
on observations, such as most common tag, most frequent sense, surrounding con-
text, or any other empirically derived statistic. Often, correcting existing annota-
tions is faster than creating new ones.

7.3  Biomedical Corpora

There exist a small, yet rapidly expanding number of corpora for the biomedical 
domain. Most of these corpora are related to the detection of genes and proteins. 
Currently, very few corpora target relationships that exist between biomolecular 
entities. Even fewer corpora exist that target relationships between genes or patho-
gens and diseases or syndromes. Some of the most notable collections include the 
GENIA corpus, the NLPBA corpus, GENETAG, PennBioIE, and the TREC 
Genomics Track data. Specifically, the GENIA corpus (Kim et al. 2003) contains a 
collection of 2,000 PubMed abstracts annotated for entities that are involved in 
biochemical reactions (e.g., amino acid, DNA, nucleotide, peptide, protein, RNA). 
The text collection is restricted to abstracts that match the MeSH search terms 
human, blood cells, and transcription factors. The NLPBA corpus (Kim et al. 2004) 
is a modified version of the GENIA corpus labelled for five entities across 18,546 
training and 3,856 evaluation sentences. GENETAG (Tanabe et al. 2005) is a corpus 
of 20,000 PubMed sentences labelled for genes and proteins. PennBioIE (Liberman 
and Mandel 2008) comprises 2,257 PubMed abstracts annotated for paragraphs, 
sentences, tokens, parts of speech, entities, and Penn Treebank structure. Recent 
TREC Genomic Track (Hersh et al. 2006) collections have focused on the extrac-
tion of passages relevant to topical questions. The 2007 collection was organized 
around a set of 36 topics such as Antibodies, Diseases, Drugs, Genes, and Strains. 
Below is a set of example questions from the corpus. Relevant passages from the 
literature are associated with each question as part of the corpus itself.

What [ANTIBODIES] have been used to detect protein TLR4?
What [DISEASES] are associated with lysosomal abnormalities in the nervous 

system?
What [DRUGS] have been tested in mouse models of Alzheimer’s disease?
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7.4  Named Entity Recognition

Automatic recognition of relatively well-defined entities, such as gene symbols, 
protein names, and syndromes, can achieve sufficient performance levels to warrant 
their use for relationship extraction. A common problem is that of lexical ambiguity 
such as that between Alzheimer’s in reference to a type of mental condition or the 
possessive form of a person’s name.

There also exist numerous issues related to the determination of beginning and 
end entity spans. An example from the biomedical domain is that of “human T-cell 
leukemia lymphotropic virus type 1 tax protein.” It is extremely difficult to identify 
the beginning and end of such entities in running text without appropriate dictionar-
ies and some appreciation of the context of use. Other issues include the general 
lack of naming conventions, excessive use of abbreviations, the frequent use of 
synonyms, and disagreement among the experts (Leser and Hakenberg 2005).

Selecting the appropriate semantic types and granularity of entities is an impor-
tant consideration for many text-processing tasks. General-purpose parsers will 
tend to recognize a generic set of entities such as Person, Location, Organization, 
and Temporal expressions. Biomedical Named Entity Recognition (BNER) sys-
tems such as ABNER (Settles 2005) or the GENIA tagger (Tsuruoka and Tsujii 
2005) recognize biomolecular entities such as Cell, DNA, Gene, Protein, and Virus. 
The MetaMap program has a much wider repertoire of 135 semantic types that 
includes Antibiotic, Bacterium, Cell Function, Disease or Syndrome, Event, Gene 
or Genome, Molecular Function, and Organism.

Common approaches to entity recognition include the use of gazetteers, rule-based 
grammars and data-driven machine learning methods. Statistical machine learning 
methods are used in many publicly available NER systems and reduce the recognition 
problem to one of feature engineering. The bulk of the effort is concentrated on the 
selection of a set of features that provides the learning algorithm with optimal dis-
criminatory power. However, the feature space itself is static and is not updated once 
it is defined by the human expert. This often implies that a change in the domain 
results in a large drop in performance and is one weakness of modern machine learning 
approaches. The way in which the features are utilized does vary, and learning algo-
rithms are designed to deal with the variations and noise that exist within the training 
data. A good feature for one instance may introduce errors in other instances because 
of interdependencies between features. Such dependencies are accounted for in dif-
ferent ways, depending on the class of learning algorithm that is deployed.

Examples of machine learning algorithms that are used extensively in the bio-
medical domain include Conditional Random Fields (CRF) (Sutton and McCallum 
2007; Sutton et al. 2007) and Support Vector Machines (SVM) (Cristianini and 
Shawe-Taylor 2000; Steinwart et al. 2008). A CRF is a type of graphical model that 
weighs feature functions according to the values of the input sequence. CRFs 
employ an arbitrary number of feature functions that are conditioned across the 
positions of hidden states and the input sequence. This approach can be contrasted 
to Hidden Markov Models (HMM) that use constant probabilities to model state 
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transitions and emissions. The approach is an effective compromise between 
dynamic features and a fixed feature space used for training classifiers. The SVM 
algorithm is based on the notion of the maximum separation of margins and is typi-
cally used for classification and regression. Conceptually, the algorithm casts input 
data into two sets of vectors in an n-dimensional space. Mapping to higher dimen-
sions assists in the construction of maximal separating hyperplanes.

7.5  Syntactic Parsing

The syntactic analysis of natural language aims to identify grammatical structure 
with respect to a formal grammar. Selecting an appropriately suitable parsing for-
malism is an important consideration. Commonly used parsing systems employ 
either dependency grammars or phrase structure grammars.

Dependency grammars are defined by the functional dependencies that exist 
between headwords and their dependants. Word order is not defined in dependency 
grammar making it a useful candidate for free word order languages. Other closely 
related theories of syntax include Link Grammar and Operator Grammar.

Phrase structure grammars are defined by a series of rewrite rules or context-
sensitive transformations. For this reason, they are also commonly referred to as 
constituency grammars, or transformational grammars. They include theories such 
as Government Biding (GB), Head-Driven Phrase Structure Grammar (HPSG), 
Tree Adjoining Grammar (TAG), Lexical Functional Grammar (LFG), and 
Combinatory Categorical Grammar (CCG).

The use of syntactic analyses in biomedical text mining tasks is commonplace 
(Daraselia et al. 2004; Pyysalo et al. 2006; Smith and Wilbur 2009). Recent 
advances have seen the combination of multiple syntactic analyses (Miwa et al. 
2008). Identifying the contributions of different grammatical formalisms is an 
important area of investigation. A number of studies have been conducted that 
explore the differences between parsers and their output representations when used 
in biomedical applications (Clegg and Shepherd 2007; Miyao et al. 2009). Once 
entities and syntactic structure have been identified, it is possible to determine the 
relationships that exist between entities.

7.6  Relationship Extraction

The extraction of pertinent relationships between biological entities aids our under-
standing of the organisms, processes, and interactions that underlie and control 
biological functions. As an example, knowledge of the relationships that exist 
between genes and diseases is required for an appreciation of disease models such 
as phenotype disease networks. In the same fashion, it is the knowledge of the regu-
latory and physical interactions between genes and proteins that provides insights 
into the mechanics of regulatory and metabolic pathways. Relationship extraction 
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provides a means of transforming the vast amount of fragmented knowledge that is 
scattered across millions of unstructured texts into structured forms. There are a 
few examples of structured resources. These include the EMBL-Bank and GenBank 
for gene sequences, SwissProt and UniProt for protein sequences, and KEGG and 
BioCyc for metabolic pathways. The complexity of these data makes the mainte-
nance of such resources costly. Automatic relationship extraction can aid in the 
construction and unification of such resources. Examples of existing systems 
include Arrowsmith (Smalheiser and Swanson 1998; Smalheiser et al. 2006) and 
BITOLA (Hristovski et al. 2006).

The great majority of existing relationship extraction systems have been targeted 
at the genomic level that encompasses gene-protein or protein-protein interactions 
(Hunter et al. 2008; Manine et al. 2009). The protein-protein interaction extraction 
system of Kim et al. (2008) transforms the problem from one of pattern matching 
to one of kernel construction. Kernels are developed incrementally from features at 
the lexical level to incorporate structural features derived from dependency graphs. 
Other relationship extraction systems have been developed for the identification 
of disease models such as phenotype disease networks (Hidalgo et al. 2009) and 
gene–disease interactions (Chun et al. 2006).

7.7  Case Study: Pathogen–Host Relationship Extraction

This section details the steps involved in extracting relationships between a prede-
termined set of entities. The entities chosen for the case study are Genotype, 
Pathogen, and Syndrome. The corpus is a collection of abstracts sourced from 
PubMed. For the relationship extraction task we extend our definition of genotype 
to include genes, and the definition of syndrome to include diseases. Examples of 
each category are listed in the Table 7.1.

The corpus is a collection of 43 PubMed abstracts from articles related to infec-
tious diseases. Document selection and annotation are performed by a domain 
expert-microbiologist. The corpus contains 367 sentences, 59 pathogens, 101 geno-
types, and 91 syndromes. An example sentence manually annotated for entity types, 
as well as automatically annotated using the MetaMap program, is displayed in 
Table 7.2. The foundations of relationship extraction are based on the results of 
entity recognition. The following sections introduce approaches that may be 

Table 7.1 Examples of genotype, pathogen, and syndrome entities

Genotype Pathogen Syndrome

sea-seh gene Escherichia coli Liver abscess
enterotoxin gene Streptococcus agalactiae Community-acquired MRSA
egc Streptococcus pyogenes Toxic-shock-like syndrome
rmpA gene Mycobacterium tuberculosis GBS pathogenesis
nuoG gene Klebsiella pneumoniae Invasive disease
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employed for the construction of genotype, pathogen, and syndrome recognizers 
that approximate the performance of human experts.

7.7.1  Gene and Genotype Recognition

Gene nomenclature standardization efforts have been under consideration for 
many decades. The International Committee on Genetic Symbols and Nomenclature 
published recommendations for naming genes in 1957 (ICGSN 1957). For the 
human genome a complete set of naming guidelines was published in 1979 as a 
result of the Edinburgh Human Genome Meeting (EHGM) (Shows et al. 1979). 
One of the largest ongoing efforts in this domain initiated by the Human Genome 
Organisation (HUGO), is that of the HUGO Gene Nomenclature Committee 
(HGNC) (Eyre et al. 2006; Bruford et al. 2008). Despite these and similar efforts 

Table 7.2 Sentential analysis with semantic annotation

Word Lemma MetaMap semantic type Named entity

Our Our – –
Data Datum IDEA_OR_CONCEPT –
Support Support CLINICAL_ATTRIBUTE –
a a – –
Statistical Statistical INTELLECTUAL_

PRODUCT-RESEARCH_
ACTIVITY

–

Correlation Correlation INTELLECTUAL_
PRODUCT-RESEARCH_
ACTIVITY

–

Between Between – –
The The – –
rmpA rmpA – Genotype
gene gene GENE_OR_GENOME Genotype
And And – –
Virulence Virulence QUALITATIVE_CONCEPT –
In In – –
Terms Term IDEA_OR_CONCEPT-

TEMPORAL_CONCEPT
–

Of Of – –
Abscess Abscess – Syndrome
Formation Formation FUNCTIONAL_CONCEPT –
For For – –
These These – –
Hypermucoviscous Hypermucoviscous – –
K. K. – Pathogen
Pneumoniae Pneumonia DISEASE_OR_SYNDROME Pathogen
Strains Strain INTELLECTUAL_PRODUCT –
. . – –
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many scientists continue to adopt alternative nomenclatures that reflect the functional 
characteristics and abbreviations that signify the research history of particular 
genes (Tamames and Valencia 2006; Lacroix 2009). These alternate names hinder 
the consolidation and exchange of biological knowledge. Even though gene names 
are not entirely uniform or systematic, current nomenclatures still offer utility for 
automatic gene identification.

A lexical ambiguity issue that makes automatic gene recognition difficult is that 
of overlapping terms. Many gene symbols for example correspond to common 
English words such as “end” (Rv0670c), and “folD” (Rv3356). The issue is particu-
larly problematic if orthography is disregarded. Although there is some overlap 
between gene symbols and common English words the variation and ambiguity 
between terms employed to represent genes posits a much larger problem. An 
example of variation and ambiguity is that of the gene symbol ACT. The variety of 
genes for which the symbol ACT is associated follow with the HGNC approved 
symbol for each gene in parentheses: acyl-CoA thioesterase 7 (ACOT7), or four 
and a half LIM domains 5 (FHL5), or alpha-1-antichymotrypsin (SERPINA3). The 
most ambiguous gene recorded in the HGNC database is the epithelial cell adhesion 
molecule (EPCAM), with an astounding 20 aliases on record.

One approach to automatic gene recognition is via the combination of gazet-
teers. Most gene symbols do not overlap with English words and therefore an 
English lexicon may be used as a blacklist to preclude common words. In other 
words, terms that appear in this list are labeled as unlikely gene symbol candidates. 
This approach can be used in conjunction with a list of known gene symbols, essen-
tially forming a whitelist. When a term is identified as a member of both lists, these 
items are greylisted and must be handled as special cases.

The degree of overlap between gene databases and English words is directly 
related to the terminologies that are employed, as well as to the method of 
comparison. For example, the HGNC database currently contains 28,110 
approved gene symbols. Overlap can be measured against independent lexi-
cons, either with or without the consideration of orthography. When compared 
against the 233,615 words from the Webster’s Second International Dictionary 
in a case-insensitive manner, there is an overlap of 163 terms. When compared 
against the smaller set of 147,306 terms from WordNet 3.0 (Fellbaum 1998), 
there is a slightly larger overlap of 166 terms. This increase can be explained 
by the fact that WordNet addresses a broader domain coverage, and is actively 
updated. When compared against a smaller set of 56,647 words from the 
Debian dictionaries-common package the overlap is reduced to 82 terms, as 
would be expected.

A similar proportion of overlap is observed for bacterial gene symbols. Consider, 
for example, a list of 1,476 gene symbols for Mycobacterium tuberculosis H37Rv 
(virulent strain), sourced from the Comprehensive Microbial Resource (CMR, 
http://cmr.jcvi.org/tigr-scripts/CMR/CmrHomePage.cgi). When compared against 
WordNet, there are 50 terms that overlap. When compared against the smaller set 
of Debian dictionaries-common words there are 27 overlapping terms, listed below 
in Table 7.3.
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If a term is identified as being ambiguous, a number of heuristics may be 
deployed. Heuristics may be introduced at any stage of processing. Heuristics 
may be as simple as pattern matching. Patterns can be basic regular expres-
sions that capture a variety of gene symbols such as ACOT7, FLJ30846, 
IL-28R1, R33729_1, and Za11. However, these types of patterns grossly over-
generate and require more stringent constraints. Wider contextual cues can be 
used to constrain the problem of overgeneration. These cues often take the 
form of lexical context words or any other type of language model. Obvious 
cue words include gene and genotype that follow uncommon dictionary words 
or unrecognized terms.

Heuristics are not the only way to disambiguate problematic terms. Language 
models are easily transformed into features that can be used to develop classifica-
tion models. Features such as a dictionary or non-dictionary word, a word on either 
side, the proportion of uppercase letters, and the proportion of numbers can be used 
effectively as features for the classification of gene symbols. Other approaches to 
gene recognition incorporate language modeling that involves the generation of 
profiles extracted for each gene mention from their context of occurrence in publi-
cations (Xu et al. 2007). One of many potential applications of such profiles is the 
discovery of related genes via similarity measures.

Although the identification of gene names is fraught with difficulty many of 
these problems can be overcome through the combination of gazetteers and 
machine learning.

7.7.2  Pathogen Recognition

Pathogens do not suffer from many of the same problems as gene names and 
syndromes, although there are a number of idiosyncratic naming conventions 
and behaviors to account for when automatically recognizing this class of 
entity. Aliases are some of the more common problems that afflict the recogni-
tion of entities representing pathogens. An example is the use of the terms  
methicillin-resistant Staphylococcus aureus, or oxacillin-resistant 
Staphylococcus aureus to refer to the same pathogenic strain of Staphylococcus 
aureus that is often resistant to different classes of antibiotics. Abbreviations 
are also problematic as they affect the recognition of pathogen entities in text. 

add alaS amiD apt ask citE

cobS cysT deaD end far folD
folK gap hisS lipS map mas
menD metE proS proW purE sec
serA sigH sodA

Table 7.3 Gene symbols that 
overlap with common words
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As an example Group B Streptococcus is commonly abbreviated to GBS and 
methicillin-resistant Staphylococcus aureus to MRSA. A commonly used con-
vention in the life sciences literature in relation to pathogens is the abbrevia-
tion of the genus name on subsequent uses. For example, Staphylococcus 
aureus will be abbreviated to S. aureus and Klebsiella pneumoniae abbreviated 
to K. pneumoniae on subsequent mentions. As part of the normalization pro-
cess, an association must be made between full forms and their respective 
abbreviated forms.

7.7.3  Disease and Syndrome Recognition

Diseases and syndromes can be identified using techniques similar to those 
introduced for gene recognition. A number of systems have already been developed 
for the recognition of diseases using related methods and demonstrate reasonable 
performance (Chun et al. 2006; Bundschus et al. 2008). These systems employ 
terminological resources that provide disease terms that include Medical Subject 
Headings (MeSH), the National Cancer Institute (NCI) Thesaurus, the Systematized 
Nomenclature of Medicine-Clinical Terms (SNOMED CT), as well as the over-
arching Unified Medical Language System (UMLS) Metathesaurus. Positive evi-
dence exists for the contribution of terminological resources with respect to the 
recognition of disease entities (Jimeno et al. 2008). An assessment of disease entity 
extraction is then conducted on a corpus of manually re-annotated sentences. 
Competitive results are achieved, suggesting that disease terminology is relatively 
standardized both within the literature and within the resources themselves.

Syndromes, however, are merely indicative of specific etiological disease and 
there are no known terminological resources that define a comprehensive set of 
syndromes for text mining purposes. The list of terms employed to represent syn-
dromes for our case study is sourced from the Medical Dictionary for Regulatory 
Authorities (MedDRA). This list contains 18,483 adverse event terms that are 
employed as a representative sample of syndromes.

7.7.4  Association Mining

The previous sections outlined possible approaches and resources that can be used to 
recognize specific sets of entities. Of interest are the relationships that exist between 
individual syndromes and specific microorganisms or pathogens, pathogens and their 
genotypes, and genotypes and syndromes. A pathogen will be related to any number 
of genotypes, and any single genotype will be related to any number of syndromes. 
Take, for example,the following sentences for which entities are identified.

[K. pneumoniae]
Pathogen

 [genotype K1]
Genotype

 is an emerging pathogen capable of causing 
catastrophic [septic ocular or central nervous system complications]

Syndrome
 from pyogenic 

[liver abscess]
Syndrome

 independent of underlying diseases in the host. (PMID: 17599305)
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We report a patient transferred from Alaska to Washington State with a [magA (+)]
Genotype

 
[K. pneumoniae]

Pathogen
 [liver abscess]

Syndrome
 and describe a simple approach for recognition 

of these hypervirulent strains. (PMID: 15695726)

The association of the [magA gene]
Genotype

 with the hypermucoviscosity phenotype relevant 
to the pathogenesis of [Klebsiella pneumoniae]

Pathogen
 [liver abscess]

Syndrome
 has been 

reported in Taiwan. (PMID: 16619144)

Our data support a statistical correlation between the [rmpA gene]
Genotype

 and virulence in 
terms of [abscess]

Syndrome
 formation for these hypermucoviscous [K. pneumoniae]

Pathogen
 

strains. (PMID: 16619144)

A straightforward method for relationship extraction is one based on co-occurrence. 
Entities found in the same span are proposed as candidates that are potentially 
related. The span may be defined at any level within a document, including paragraph, 
sentence, or clause level. Such an approach introduces a great deal of noise through 
spurious relationships. The relationships at this level are in fact only loose associations. 
With simple normalization the associations can be generated on the basis of common 
entities. In this example, the pathogen Klebsiella pneumoniae (K. pneumoniae) is 
common among all sentences and is thereby able to produce the following network 
(Fig. 7.1).

The network is generated from four different sentences identified across three 
distinct documents. Automatically digesting this information into a graphical form 
has a number of advantages. Firstly, it is now possible to easily identify the genes 
and syndromes that are associated with the pathogen. Secondly, it also becomes 
possible to infer relationships between genes and syndromes themselves on the 
basis of their relationship to pathogens. When combined with networks generated 
for other pathogens, it becomes possible to cluster pathogens together based on 
network topology (Bales et al. 2007).

Fig. 7.1 Literature-mined pathogen–host network
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The relationships extracted thus far are on the basis of sentences that contain all 
of the entity types. A more comprehensive approach to relationship extraction 
involves the use of entity recognition, syntactic analysis, predicate-argument struc-
ture, anaphora resolution, and semantic interpretation. Such an approach reduces 
the level of ambiguity and noise as relationships are semantically constrained. 
Section 7.7.5 introduces a potential solution in the pursuit of these goals.

7.7.5  Potential Directions for Relationship Extraction

As with syntactic parsing, approaches to semantic parsing vary widely. A common 
semantic representation is Predicate Argument Structure (PAS), where each senten-
tial predicate is associated with each of its arguments. For example, the main verb 
in the sentence below is support, and could be represented as follows:

[Our data]
Subject

 support [a statistical correlation between the [rmpA gene]
Gene

 and virulence 
in terms of [abscess]

Syndrome
 formation]

Object
 [for these hypermucoviscous [K. pneumoniae]

Pathogen
 

strains]
Indirect object

.

The PAS for this sentence identifies the subject, object, and indirect object argu-
ments of the main verb support. It is data that supports the statistical correlation 
between the rmpA gene and abscess. When further deconstructed, correlation 
predicates a number of arguments, a statistical modifier, as well as the two noun 
phrase objects, rmpA gene and virulence in terms of abscess formation. The following 
relationships can be inferred for this sentence:

correlation(abscess, rpmA)

association(K. pneumoniae, abscess)

association(K. pneumoniae, rmpA)

There are numerous representations that capture the meaning of a sentence, with 
the most common representation based on either PropBank (Palmer et al. 2005) or 
FrameNet (Fillmore et al. 2003). The question to ask is whether the representation 
provides enough meaningful “hooks” to accommodate the task at hand. In other 
words, does the representation afford sufficient expression to be useful to the appli-
cation? In the current setting the application is relationship extraction and, for 
example, one has to make sure that PAS can extract relationships between genes 
and syndromes, such as the relationship between rpmA and abscess, that is modu-
lated through the notion of virulence. This is a detail that should be captured by the 
semantic representation. Moreover, the representation should readily allow access 
to such modifications. Other phenomena that should be addressed by any semantic 
formalism include the resolution of pronouns and ellipses, quantifier scope ambi-
guities, analyses of tense and aspect, and the ability to distinguish between distribu-
tive and collective readings of plural noun phrases.

It is known that the identification of semantic arguments aids information 
extraction to some extent (Surdeanu et al. 2003). Realistically semantic types are 
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generalizations that overlay syntactic constituents. The approach is little more 
informative than language models based on syntax. It is the pragmatic aspects of 
meaning that can better guide interpretation rather than compositional sentence 
level representations alone. Understanding the intention behind a statement allows 
for a more directly accessible and potentially more usable representation. The char-
acterization of the intention behind statements in a restricted domain whose general 
purpose is well defined is far simpler than identifying the intention of sentences in 
free text. Once the intention of a statement has been identified, at least putatively, 
the ability to refine the interpretation improves.

Abstracts from scientific publications by definition and convention present a 
summary of research aims, methods, and key findings. By assuming this to be 
common ground, then it is possible to extract these types of facts from abstracts. 
The intention of each statement in the abstract will be in some way constructed in 
pursuit of these goals. That is, the author crafts each sentence to support the goal 
of informing the reader of the aims, methods, and key findings concluded by the 
research. It has been shown that such discourse level labels can be automatically 
assigned for sentences in biomedical abstracts with high accuracy (Chung 2009).

Ascertaining the purpose of a given statement to some extent elicits the relationships 
embedded within the sentence. The notion of discourse coherence relationships differs 
from that of discourse segment purpose. Theories of discourse coherence, such as 
Rhetorical Structure Theory (RST) (Mann and Thompson 1987), propose relationships 
such as Explanation, Result, Contrast, and Generalization. A definition of discourse 
segment purpose must allow for a more robust assignment of purposeful labels and their 
consolidation into a wider meaning base. The following passage comprises the first 
three sentences of an abstract. The text is analyzed for discourse segment purpose.

[Multidrug-resistant tuberculous meningitis]
NP

 is [fatal]
ADJP

 [without rapid diagnosis and 
use of second-line therapy]

PP
.

[It]
NP

 is [more common]
ADJP

 [in human immunodeficiency virus (HIV)-positive 
patients]

PP
.

[Beijing genotype strains of Mycobacterium tuberculosis]
NP

 are associated [with drug 
resistance, particularly multidrug resistance]

PP
, and [their prevalence]

NP
 is increasing 

[worldwide]
NP

.

The initial concept that is introduced relates to the potential consequences of 
tuberculosis meningitis. It is framed as a conditional assertion where it is suggested 
that, without some early intervention, tuberculosis meningitis is usually fatal. The 
statement evokes certain expectations that can be viewed as recommendations for 
the prevention of disease. It is these actions that one expects to become the primary 
focus of the discussion. The reader is provoked to ask certain questions, including 
those related to the methods by which the proposed solutions of rapid diagnosis 
and second-line therapy may be instantiated. These types of questions and expecta-
tions guide the reader’s interpretation and understanding.

The second sentence is an elaboration of the main concept, providing information 
about the distribution of the disease among the affected population. The sentence 
provides support for the claims that follow and refines the expectations of the reader. 
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The background information provided to the reader allows for a more felicitous 
reading. This type of communication act is referred to by theories of discourse as 
common ground or mutually recognized intention (Grice 1989; Stalnaker 2002).

The third sentence provides new information in linking a particular strain of the 
virus with drug resistance. The claim that prevalence is increasing worldwide is an 
elaboration in reference to this strain. The sentence serves a number of functions. 
Firstly, the statement alerts the readers and attracts their attention. Secondly, the 
new information introduces further questions that require explanation. It is these 
questions that help elicit the relationships embedded within the text. A simple ques-
tion that may be invoked by this sentence concerns the relationship between the 
Beijing genotype and Mycobacterium tuberculosis. The answer to this question is 
explicitly stated in the text. Questions such as how the Beijing genotype strains are 
associated with drug resistance embed other relationships.

The proposal to formally encode expectations and explanations as a mechanism 
for the extraction of relationships is novel and remains untested. It is clear that 
syntax and semantics alone cannot capture the wide array of relationships that are 
embedded within text. Pragmatic phenomena must be harnessed in conjunction 
with domain knowledge in order to extract reliable relationships.

For details related to the field of text mining in general and approaches for trans-
forming unstructured data into structured forms see Feldman and Sanger (2007) 
and Kao and Poteet (2007). A comprehensive review of text mining for the biosci-
ences that includes details on corpora and corpus annotation, terminological 
resources, and biomedical named entity recognition can be found in Ananiadou and 
McNaught (2006). For further details on theories of discourse and pragmatics the 
reader is referred to Tannen et al. (2001) and Horn and Ward (2004). Also see 
Ginzburg (1996) and Roberts (1996) for more discussion on formalisms that can be 
used for the representation of discourse goals and intentions.

7.8  Concluding Remarks

A number of techniques and resources for the extraction of relationships have been 
outlined in this chapter. Issues related to the automatic recognition of host-pathogen 
named entities are addressed. It is clear that accurate and robust entity recognition 
is essential for relationship extraction. Clustering is one of many applications of the 
relationship extraction process, and can elucidate knowledge embedded within text. 
As shown in the case study, the relationships that are extracted on the basis of the 
recognition of genotype, pathogen, and syndrome entities provide a basis for clus-
tering. The syndromic relationships can be used as features for grouping genotypes 
and pathogens with latent similarity.

However, there are many semantic phenomena that need to be addressed for 
more reliable relationships to be identified and, in particular, for new discoveries to 
be made. The example of negation has been discussed as a semantic phenomenon 
that must be addressed for successful relationship extraction. A related issue is that 
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of absence as opposed to negation. As shown in the sentence below, evidence of the 
absence of a gene in relation to a pathogen is itself a relationship worth 
extracting.

Both MRSA strains were multiresistant and lacked the Panton–Valentine leukocidin-
encoding gene.

It is suggested that discourse purpose can aid in the relationship extraction pro-
cess by addressing these and similar problems. The approach to discourse purpose 
recognition advocated here is based on the notion of expectations and explanations. 
The questions that are evoked by statements can, in the given context, be evaluated 
with respect to their explanations. The explanations that are generated for each of 
these expectations isolate the relationships between entities of interest.

Relationship extraction enables many interesting and useful applications in 
infectious disease research. It is particularly useful in the biosciences where the 
interpretation of complex interactions has become a major bottleneck. The 
study of host–pathogen interactions on the host, organ, tissue, and molecular 
levels offers new opportunities for text-mining applications. Incentives for the 
pursuit of relationship extraction include the ability to integrate data from dis-
parate sources, the provision of information sharing, and the potential for 
breakthrough discoveries.
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8.1  Introduction

Epidemiological models have been used effectively to understand patterns of disease 
transmission, to estimate important epidemiological parameters, and ultimately, to 
design and assess public health policies. The simplest of these mathematical formu-
lations partitions the host population into those that are susceptible to an infection 
and those that are infected or immune. The proportion of hosts within each com-
partment is then tracked over time, with the density of infected hosts contributing 
to the force of infection. These frameworks assume that hosts mix randomly within 
the population, so that each susceptible host is equally likely to become infected, 
and infected hosts contribute equally to the force of infection. This “mean-field” 
assumption allows for analytically tractable equations describing disease dynamics, 
and has led to valuable insights into the relative significance of different epidemio-
logical parameters and the importance of the basic reproductive number, R

0
, for 

defining the likelihood of disease persistence. R
0
 translates as the average number 

of secondary cases of a disease caused by a single infection within a wholly sus-
ceptible population. In these models, a threshold condition exists such that a disease 
can persist if R

0
 > 1. This threshold behavior facilitates analyses of which epide-

miological factors can be changed through public health policies to reduce the R
0
 

of a disease to a value below 1.
However, host populations are generally not homogeneous, with individuals 

exhibiting heterogeneity due to a range of factors including their age, varying levels 
of susceptibility, or behavior. Different types of heterogeneities are taken into 
account within compartmental models by partitioning the host population further, 
for example, into different age groups. Decisions must then be made about mixing 
patterns between different groups of hosts, and the simplest assumption is random 
mixing between all hosts. Populations are also spatially heterogeneous, grouped into 
towns or cities for example, and individuals interact with a particular network of friends, 
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co-workers, and family members. These interactions and spatial heterogeneities 
also underlie the spread of infectious disease across the population. Depending 
on the mode of transmission of the pathogen (for example, airborne versus sexually 
transmitted), the host contact network may have profound consequences not only 
for transmission, but also for the evolution of the pathogen population. We will 
discuss the implications of different types of host contact network for the transmis-
sion of pathogens, with specific reference to the importance of understanding 
the network topologies underlying the spread of sexually transmitted diseases such 
as HIV.

Another assumption made by the simple epidemiological models described 
above is that the pathogen population is also homogeneous. However, for many 
important pathogens of humans, including those responsible for HIV, meningitis 
and malaria, genetic loci encoding immunogenic proteins are highly polymorphic 
across the pathogen population. Genetic diversity at these antigenic loci allows 
pathogens to invade the same hosts multiple times, since an immune response 
against one variant or strain may not be protective against infection by a pathogen 
strain with different antigenic determinants. We will briefly discuss the evolu-
tionary forces that shape the population structure of these loci, and then focus on 
how host contact networks may affect the evolution of antigenically diverse 
pathogen populations.

Understanding the evolution of genetically diverse pathogen species is often 
hampered by high rates of recombination between pathogen genomes. Recombination 
causes otherwise unrelated genomes to share genetic material, disrupting phyloge-
netic signals within gene sequences and complicating sequence analysis. Standard 
phylogenetic techniques cannot accommodate high rates of recombination, since 
different positions within an alignment, upon which these techniques rely, may 
have different underlying trees. In the absence of appropriate phylogenetic tools for 
recombining antigenic loci, a new approach to understanding the evolution of 
malaria parasite antigens has been developed, in which relationships between 
sequences are visualized as a network (Bull et al. 2008). The structure of antigen 
networks reflects the extent to which different genes recombine with one another. 
The identification of a recombination hierarchy within malaria parasite antigens, in 
which particular groups of genes recombine more frequently than others, provides 
insights into the epidemiological patterns of infection and disease observed in 
endemic regions.

We conclude with a discussion of the implications of antigen networks, and 
networks of host immune responses, for the evolution and epidemiology of the flu 
virus. Annual epidemics of influenza are caused primarily by distinct viruses that 
are sufficiently different from previous outbreak strains to evade the immune 
responses of most hosts. Mathematical models of influenza outbreaks often require 
strong constraints on viral evolution, in order to reproduce this single-strain out-
break dynamic. We will present an alternative model of influenza dynamics, in 
which the range of antigenic possibilities for the flu virus is limited because of 
functional constraints (Recker et al. 2007). Within this framework, a network of 
host immune responses drives successive outbreaks of individual strains.
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8.2  Contact Networks and Disease Transmission

Disease transmission depends upon contact between hosts, and since most indi-
viduals within a population have a very few social or sexual contacts relative to the 
overall population size, assumptions of random mixing may be inappropriate for 
particular research questions. Within mathematical models of disease transmission 
that include a host contact network structure, each individual makes contact with 
specific people, and these generally remain fixed. The analysis of network structure 
and function has a long history within the mathematical literature on graph theory 
and percolation theory, and this provides a wealth of useful tools for theoretical 
epidemiologists. However, the structures of real contact networks are often hard to 
elucidate. We will first discuss the implications for disease transmission within 
sexual contact networks, before exploring the role of contact networks for directly 
transmitted infections.

8.2.1  Sexually Transmitted Diseases and Host Contact Networks

Large-scale surveys of sexual behavior have uncovered an extremely high variability 
in the number of sexual contacts per individual (Johnson et al. 2001). For sexually 
transmitted infections (STIs), this highly skewed distribution of contacts, with most 
individuals having a few sexual partners and a small number of individuals having 
many, has a profound impact on disease transmission. Early mathematical frame-
works approximated the sexual contact network by partitioning the population into 
subgroups with different levels of sexual activity (Gupta et al. 1989; Koopman et al. 
1988; Yorke et al. 1978). These models showed that the prevalence among the 
general population may be relatively low, and the maintenance of STIs within the 
population relies on a highly infected core group of individuals with many sexual 
contacts and a high frequency of sexual activity. Attempts to provide a finer grained 
examination of host population structures in the context of STI transmission led to 
the development of pair-formation models, in which men and women form relatively 
long-term sexual contacts in pairs (Dietz and Hadeler 1988), while explicit network 
formulations are required for the inclusion of concurrent sexual contacts (i.e., 
contact with more than one individual). For example, a stochastic individual-based 
model with explicit network structure was used to illustrate how concurrency 
causes a dramatic increase in the size and variability of an epidemic, confirming the 
importance of the distribution of contacts among the population, not just the mean 
behavior (Morris and Kretzschmar 1997).

In fact, the distributions of real sexual contact networks often appear to follow a 
power law that is scale-free; having an exponent between 2 and 3 (Schneeberger 
et al. 2004). As discussed in the introduction, traditional epidemiological models 
exhibit a threshold condition where R

0
 must be greater than one for a disease to 

persist. In heterogeneous networks, this epidemic threshold decreases with the 
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standard deviation of the connectivity distribution of the host population (Anderson 
and May 1992). This effect is amplified in scale-free networks, and May and Lloyd 
have shown that there is no threshold behavior at all for epidemics upon infinite 
scale-free networks (May and Lloyd 2001). Real sexual networks are of course not 
infinite, however, which means that the variance in the partnership distribution is 
finite and an epidemic threshold does exist (Jones and Handcock 2003), even if it 
is extremely small (Pastor-Satorras and Vespignani 2002). Furthermore, when two 
types of nodes are present within a scale-free network, representing males and 
females in a heterosexual population (Gomez-Gardenes et al. 2008), the epidemic 
threshold is higher than if all nodes are the same; the transmissibility of the disease 
must be much higher to cause an epidemic. This observation, and the discovery that 
scale-free networks exhibit extreme fragility to the removal of high-degree nodes, 
suggests that targeted public health strategies (vaccinating particular individuals, 
for example) may be an effective strategy (Callaway et al. 2000).

8.2.2  Directly Transmitted Diseases and Host Contact Networks

For directly transmitted diseases, our knowledge of the structure of the host contact 
networks underlying transmission is less clear. Early social science experiments 
emphasized the importance of “hubs” within social networks and the unexpectedly 
short path length through the network between any two individuals (Milgram 
1967). This phenomenon of an unexpectedly connected network, or a “small-
world” network, has implications for the spread of disease since long-range con-
nections can allow the pathogen to reach different parts of the host population 
rapidly. Empirical estimates of social network structure have generally come from 
surveys of particular groups of individuals like school children (http://www.cpc.
unc.edu/projects/addhealth), which only cover a small fraction of individuals and 
do not measure casual acquaintances. A more comprehensive recent survey in sev-
eral European countries showed that children and young adults tend to exhibit more 
assortative mixing - that is, the extent to which “like mixes with like” (Mossong 
et al. 2008). They also have a higher frequency of contacts and more long-duration 
contacts than adults do, suggesting that some of the results pertaining to sexual core 
groups discussed above may also be applicable to directly transmitted diseases. In 
an age-structured model of measles among school children, for example, Schenzle 
(1984) showed that the timing of school terms and holidays, coupled with strong 
age structure and close contacts between children within schools, could maintain 
biennial outbreaks in the absence of seasonal forcing. In a detailed stochastic simu-
lation model, Eubank et al. (2004) used census and land-use data to develop an 
agent-based model of human movement, constrained by transportation infrastruc-
ture, to explore how a disease may spread on a relatively realistic network. They 
showed that the critical factor determining whether a disease would spread or not 
was the speed at which infected individuals quarantined themselves by going home, 
either due to symptoms or encouragement by public health officials.
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In the absence of large empirical data sets on the structure of host networks, 
theoretical studies have generally focused on simplified hypothetical contact net-
works. Keeling and Eames, for example, reviewed the numerous models of disease 
spread on lattice networks, random networks, and small-world networks (Keeling 
and Eames 2005). Different types of network structure have different effects on 
disease transmission, yet a few findings are general to a range of structures. 
Clustering of hosts and localized contacts, for example, tends to dramatically 
reduce the spread of an infection because a local depletion of susceptible hosts 
occurs following its introduction (Diekmann et al. 1998). In lattice models, a travel-
ing wave of infection is observed, and these capture spatial aspects of the spread of 
diseases such as measles (Grenfell et al. 2001). As the number of long-range links 
increases, as it does within small-world networks, infection can rapidly reach all 
parts of the host network (Watts and Strogatz 1998). Using percolation theory to 
explore the effects of small-world structure on disease transmission, Moore and 
Newman (2000) showed that these long-range links can dramatically reduce the 
epidemic threshold and increase the probability of a disease outbreak. The general-
ity and mathematical tractability of these theoretical studies provide an important 
basis for our understanding of the effects of heterogeneity in contact patterns for 
disease spread. As larger data sets on human behavior become available from 
sources such as mobile phones, it will be possible to start addressing how they 
relate to reality.

8.3  Host Contact Networks and Pathogen Evolution

In addition to contributing to the rate and spatial dynamics of disease spread, 
host contact networks have important implications for the evolution of a pathogen 
species being transmitted across the population. For example, pathogens that 
recombine frequently may be restricted in the rate and type of genetic exchange 
possible due to the non-random mixing of hosts, and due to local differences in 
strain composition of the pathogen population. In addition, the evolutionary forces 
placed on the pathogen by the host, such as drug pressure for example, may be 
heterogeneous across the host network.

8.3.1  Evolution of Pathogen Traits and Host Contact Networks

In classical models, the relationship between a pathogen’s transmissibility and 
virulence is linked, with virulence being an unavoidable consequence of high 
transmissibility (Anderson and May 1992). These frameworks have shown that the 
trade-off between virulence and transmissibility can lead to intermediate levels of 
virulence and transmissibility being selected. However, Rand et al. (1995) showed 
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that in a spatial setting with an explicit lattice contact network, pathogens will not 
evolve too high a transmission rate, even in the absence of this trade-off. Pathogens 
with extremely high transmission rates will rapidly exhaust local clusters of hosts, 
leading to a threshold effect not found in meanfield models: above a critical intrin-
sic transmissibility pathogens cannot survive. When pathogen transmissibility was 
allowed to evolve in this model, it evolved to this critical level and remained sta-
ble. Once immunity is included in spatially explicit lattice models of pathogen 
evolution, interesting dynamics result from the “blocking” behavior of immune 
hosts, which tend to surround infectious hosts (Boots et al. 2004). In this case, an 
evolutionary bistability exists wherein virulent strains are favored among sparsely 
distributed hosts and avirulent strains are favored among dense, locally mixing 
hosts. Large shifts in virulence were observed within the model framework due to 
this bistability, when strains encountered a newly susceptible population for 
example. These models illustrate the importance of local contacts on the evolution 
of virulence.

The observation that hosts within a sexual contact network may be divided into 
a small core group and a peripheral, less active group also has implications for the 
evolution of pathogen traits. For example, it has been shown (Eames and Keeling 
2006) that the level of assortative mixing determines whether pathogen strains with 
different characteristics can coexist or not. They explored the coexistence of two 
strains within a serially monogamous host network: one strain that replicates 
slowly, but produces long infectious periods (“slow”) and one that replicates rap-
idly, but produces short infections (“fast”). Within a mean-field model of compet-
ing strains, the “fast” strain would outcompete the “slow” strain at equilibrium 
which would be driven to extinction. The heterogeneity within the host network 
allowed the two strains to coexist in different parts of the host population, with the 
fast strain dominating the core group and the slow strain dominating the less sexu-
ally active hosts. Among these individuals, hosts generally recovered from the 
“fast” strain, before they could transmit it. Figure 8.1 shows the results of the 
model, with the region of coexistence maximized when assortative mixing is strong 
(Fig. 8.1a). Under these conditions, hosts with the most potential contacts, or large 
“neighborhoods,” will be dominated by the “fast” strain, whereas the “slow” strain 
will dominate among hosts with few potential contacts (Fig. 8.1b). Thus, heteroge-
neity within the pathogen population may be maintained by heterogeneities in 
human contact patterns.

8.3.2  Pathogen Population Structure

Many pathogens are structured into distinct lineages or strains, defined by different 
antigenic determinants that stimulate a specific immune response in the host. 
Antigenically diverse pathogen species can re-invade hosts multiple times, because 
immunity to one strain may not provide protection against a different strain. For 
example, there are approximately 90 different variants of the capsular polysaccharide 
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surrounding the bacteria Streptococcus pneumoniae, and each generates a specific 
immune response that will not fully protect the host against infection with a differ-
ent variant. Here, one locus is responsible for generating immunity, and different 
capsular polysaccharide variants circulate essentially independently. For pathogens 
with multiple immunodominant loci, theoretical frameworks have shown that host 
immune responses can organize the pathogen population into discrete strains char-
acterized by non-overlapping combinations of antigenic determinants (Fig. 8.2). 
Dominant strains will not be competing for hosts, since immune responses will be 
directed against these non-overlapping combinations. Most hosts in the population 
will therefore be exposed to and protected against infection by one or both of the 
dominant strains, preventing the emergence of recombinant combinations of anti-
genic determinants.

However, localized host contact network structure can disrupt the strong herd 
immunity effect described above, and cause the discrete strain structure of the 
pathogen population to break down. Using host networks that varied between a 
mean-field approximation (wherein contacts between hosts were randomly 
changed each time step), a local, regular mixing pattern, and a “small-world” con-
tact structure, Buckee et al. (2004) used a stochastic individual-based model to 
explore these effects. As in the mean-field model described above, pathogens were 
defined by two antigenic loci, each with two alleles to which hosts gained specific 
immunity following infection. Here, two metrics of pathogen population structure, 
diversity and discordance, were used to determine the structure of the pathogen 

Fig. 8.1 The coexistence of “fast” and “slow” strains within a heterogeneous host population, 
from Eames and Keeling (2006). (a) The relationship between the level of assortative mixing and 
strain coexistence. The coexistence region is plotted for a second strain with a fixed value of 
transmission rate for a range of population mixing patterns, where assortativity is defined as the 
proportion of the core group that mix only with other members of the core group (thus when 
assortativity = 1, there is no mixing between the core group and the rest of the population). The dashed 
line shows the level of assortativity corresponding to random mixing. (b) The results of a stochastic 
simulation, with the proportion of hosts infected by each strain shown in red and blue for individuals 
belonging to different behavioral groups, represented as belonging to different size neighborhoods. 
90% error bars are shown around two representative points (Reprinted with permission of 
University of Chicago Press)
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population, once equilibrium had been reached. Diversity measures the evenness 
with which a pathogen population is partitioned into all of its possible different 
strains, in a calculation based on the Shannon-Weaver diversity index (Shannon 
and Weaver 1949):

Fig. 8.2 Model results showing the effect of cross-immunity on the population structure of anti-
genically variable pathogens, from Gupta et al. (1996). Strains are defined by two antigenic 
determinants, represented as a circle and a triangle, and all strains are assumed to have equal 
intrinsic transmissibility. Each antigenic determinant has two alleles, either white or yellow. When 
cross-immunity between strains sharing antigenic alleles is low (a), all strains coexist at the same 
prevalence at equilibrium. When cross-immunity between strains antigenic alleles is high (c), 
however, the pathogen population is dominated by two strains with non-overlapping combinations 
of antigenic alleles, since they will not be competing for hosts. Here, recombinants will be sup-
pressed because most hosts in the population have been exposed to antigenic alleles from parent 
strains. At intermediate levels of cross-immunity (b), an oscillatory dynamic is observed, with sets 
of strains with non-overlapping antigenic alleles alternately dominating the population
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where w
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 is the number of loci with different alleles for strains i and j; p
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j
 are 

the frequencies of strain i and j in the pathogen population, respectively, and n is 
the number of loci.

As the network structure was varied between an essentially random mixing net-
work, a small-world network, and a locally mixing host network, the size of the 
clusters of pathogen strains decreased (Fig. 8.3). Although non-overlapping strains 
dominated within local clusters, when the contacts between hosts were primarily 
local, different subsets of strains dominated different clusters. This caused the 
diversity of the overall pathogen population to increase and the discordance to 
decrease, as the clustering coefficient of the network increased. This result is analo-
gous to ecological and other network models in which local dynamics equilibrate 
more rapidly than global dynamics. In ecological models, for example, the patchi-
ness of resources can increase the diversity of interacting species.

8.3.3  Community Structure in Host Networks and Pathogen 
Population Structure

Community structure has been identified as an important characteristic of many 
real-world networks, including those representing social interactions. However, the 
analysis of community structure in networks to date has focused on understanding 
the structure rather than the consequences of the dynamics of an infection. The extent 
to which connected communities of hosts can affect the composition of the pathogen 
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population was recently explored using an explicit network formulation (Buckee 
et al. 2007). Implementing a similar model as described above, pathogen strains 
were defined by two loci each with two possible antigenic alleles. Two communi-
ties of hosts were loosely linked to each other, with hosts having the majority of 
their links within their own community, and fewer with individuals in the other 
community. Each community was seeded with a different subset of strains, in order 
to distinguish the dynamics of the system.

To compare the antigenic profiles in different communities, the same diversity 
metric discussed earlier was used, based on the Shannon-Weaver diversity index 
(Shannon and Weaver 1949). Here, when cross-immunity was high the within-
community diversities were expected to be relatively low. If both communities were 
dominated by the same subsets of strains, then the overall diversity would also be 
low. Conversely, when different dominant strains were maintained in each community, 
the overall population showed high diversity, since all strains existed at more or 
less the same prevalence overall. Thus, the diversity of individual communities 

Fig. 8.3 The effect of host contact network patterns on pathogen population structure, from 
Buckee et al. (2004). The parameter r determines the degree of mixing within the host network, 
such that when r = 1, hosts mix essentially randomly, and when r is small, hosts mix only locally. 
The top panel shows the effects of r on discordance (dashed line) and diversity (solid line) for 
two simulations. The middle panel shows the effects of r on the clustering coefficient, calculated 
as in Watts and Strogatz (1998). The bottom panel illustrates how mixing affects the average size 
of the largest strain cluster within the host network
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could be compared to that of the overall population, with the difference between 
local and global diversities being analogous to the difference in prevalence of the 
same strains in different communities for the deterministic model.

Interestingly, the extent to which the host population remained structured into 
identifiable communities did not equate to the differentiation of the pathogen popu-
lation. Figure 8.4 illustrates how the maintenance of different pathogen profiles 
within different communities changed as the connectivity between them increased 
(note the logarithmic scale of the x axis). The pathogen population was dominated 
by one subset of non-overlapping strains at very low levels of connectivity between 
the two communities. In contrast, community structure was still easily detected in 
the host network at connectivities that were orders of magnitude higher. Identifiable 
community structure in host networks may not reflect the differentiation of the 
processes occurring upon them, and conversely a lack of genetic differentiation 
between pathogens from different host communities may not reflect strong mixing 
between them.

Fig. 8.4 A comparison of pathogen dynamics and host community structure, from Buckee et al. 
(2007). Black triangles represent the host population, illustrating how the differentiation of the 
two host communities changes as the average number of links to hosts in a different community 
<z

out
> increases (detection of host differentiation relies on an algorithm correctly identifying 

nodes as belonging to one community or another - here, host communities remain well defined 
until z

out
 = 3). The pathogen population structure is shown for different levels of cross-immunity, 

g, with two types of host population taken into account, one “stochastic” and one “network.” The 
stochastic model is individual-based, but without explicit network structure. In both cases, the 
pathogen population is behaving essentially as a homogeneous population when the host com-
munities are still very well differentiated
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We have shown how host contact networks can affect disease transmission in 
terms of the rate and extent of epidemic outbreaks and threshold effects for disease 
persistence. We have also discussed how these network structures differ for STIs 
and directly transmitted diseases, and how assumptions about host networks can 
affect the evolution of virulence and pathogen population structures. We now intro-
duce the use of networks as a conceptual tool for understanding the population 
structure of highly diverse pathogens species.

8.4  Antigen Networks

8.4.1  Malaria Antigen Networks

The malaria parasite, Plasmodium falciparum, exhibits high levels of genetic diver-
sity among parasite antigen proteins expressed on the surface of infected red blood 
cells (Marsh and Howard 1986; Su et al. 1995). To evade the host immune system, 
the parasite has evolved a system of antigenic variation in which different variants 
of this family of proteins, called PfEMP1 (P. falciparum erythrocyte membrane 
protein 1), are expressed sequentially in a mutually exclusive manner during infec-
tion. Each parasite has approximately 60 var genes encoding PfEMP1. As host 
antibodies are generated to one variant, the parasite switches expression to another, 
prolonging infection and increasing the chances of transmission to another host 
(Scherf et al. 1998). PfEMP1 is the primary target of the protective immune 
response and an important virulence factor through its role in the binding of red 
blood cells to the host endothelium. It makes understanding the diversity and 
expression of these antigens critical to public health efforts such as vaccination 
(Bull et al. 1998; Newbold et al. 1997; Rowe et al. 1995). Unfortunately, high rates 
of recombination lead to enormous diversity on a population level and within indi-
vidual parasite antigen repertoires, complicating studies of the parasite population 
structure at these loci.

The full genome sequences of three P. falciparum genomes have now been com-
pleted, and different groups of var genes have been identified based on their 
upstream promoter regions, position in the chromosome, and direction of transcrip-
tion. Three main groups – UpsA, UpsB, and Ups C – have been named for the 
upstream promoter region of the gene (Lavstsen et al. 2003). Studies of the expres-
sion of var genes in different hosts have shown that the UpsA group is associated 
with expression in young hosts and hosts with severe disease (Jensen et al. 2004; 
Kyriacou et al. 2006; Magistrado et al. 2008). However, understanding the evolu-
tionary relationships between var genes and var gene groups remains a major chal-
lenge. Traditional phylogenetic techniques rely on an initial alignment of sequences 
leading to a distance matrix, which is then transformed into a phylogenetic tree. 
Most var genes contain multiple mosaic fragments of sequences from a variety of 
different recombination events with unrelated genomes, however, so a distance 
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matrix may not represent evolutionary relationships adequately. Recently, a technique 
which is not reliant on an alignment has been developed by Bull et al. (2008) for 
visualizing the relationships between var sequence fragments. Sequence tags are 
represented as nodes in a network, with the edges between nodes representing exact 
sequence matches at variable regions termed “position specific polymorphic 
blocks” (PSPBs). These regions show considerable mosaicism, such that otherwise 
unrelated sequences may share one or more PSPB. Figure 8.5 illustrates a network 
of over 1,000 var gene fragments from clinical and lab isolates, as well as several 
P. reichenowi (the primate malaria parasite) homologues.

The network has two distinct lobes with dense links within them and loose links 
between them. These lobes correspond relatively well to different groups of var 
genes based on the classification systems described above, with all UpsA genes 
(using the system reported by Lavstsen et al. 2003) found within the smaller lobe 
(Fig. 8.5). Thus, the separation of groups seems to represent a recombination hierarchy, 
with certain types of var gene recombining with each other more frequently than 
others. This hierarchical recombination is thought to maintain functional differences 
between the groups of var genes, which exhibit different binding specificities. 

Fig. 8.5 A network of Plasmodium falciparum var gene fragments, from Bull et al. (2008). Here, 
each node in the network represents a sequence tag from the DBLa domain of var genes from 
wild isolates, laboratory strains, and chimp malaria parasite homologues. Nodes in the network 
are connected if they share an exact match at the amino acid level at one of four PSPBs (see main 
text), at positions chosen to represent intermediate polymorphism. Exact matches are assumed to 
represent recombination events
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Interestingly, P. reichenowi genes fall within the network, indicating that many of 
these polymorphic regions are relatively ancient. The diversity of the malaria para-
site is therefore primarily generated by recombination, which shuffles variable 
regions between var genes. A major field of research in the next few years will be 
the search for antigenic epitopes within var gene sequences and the investigation 
of how the expression of different var epitopes relates to parasite phenotype and 
disease patterns in the host. This network approach to visualizing the relationships 
between sequences represents a transparent and simple tool for assessing recombi-
nation in the absence of appropriate phylogenetic tools.

8.4.2  Conceptual Antigen Networks and Influenza Dynamics

The technique described above provides a useful way to analyze sequence data 
while avoiding assumptions implicit within phylogenetic frameworks. A network 
approach to understanding pathogen population structure can also be useful on a 
more conceptual level. Pathogen antigens are usually functional in some way, for 
example, they may mediate binding to host receptors. Therefore, the extent of 
potential phenotypic diversity among antigenic loci is generally constrained, in 
spite of strong diversifying selection imposed by host immunity. The structure of 
“antigen space” will determine how a pathogen population responds to selection, 
and networks have recently been used to conceptualize this structure for antigenic 
determinants of the influenza virus.

The influenza virus, though less antigenically complex than the malaria parasite, 
also shows genetic and immunological diversity on a population level. Two main 
antigenic determinants, the surface glycoproteins haemaglutinnin (HA) and 
neuraminidase (NA), generate strain specific responses in humans. Although periodically 
the reassortment of viral segments can lead to global flu pandemics, annual out-
breaks are thought to result from a gradual process of mutation or “antigenic drift.” 
Each outbreak is dominated by a genetically restricted viral population with anti-
genic characteristics sufficiently different from previous strains that it can evade 
the host population’s immune responses. This observation leads to a major concep-
tual problem: why should only a restricted set of viruses evade host immune 
responses at one time? For most mathematical models of influenza, in which the 
viral population mutates irreversibly in a particular direction in “antigen” space, 
either structured constraints on mutation or the inclusion of short-term cross-
immunity are required for the appearance of single strain epidemic behavior. 
Without these assumptions, several variants can emerge within the host population 
at the same time.

Koelle et al. (2006) assume that “neutral networks” underlie influenza evolu-
tion. Here, mutation allows different strains to explore neutral networks that do 
not change the antigenic properties of the virus within sequence space clusters, 
extending the period of cross-immunity between strains. Occasionally, a small 
sequence change from a particular position within these networks will lead to a 
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large phenotypic change or “cluster transition”, allowing the strain to escape herd 
immunity and cause an outbreak. This framework provides a detailed description 
of the sequence-level evolution of the viral population, but requires many 
assumptions about the mutation process itself. Another model by Ferguson et al. 
(2003) recreates observed phylogenetic patterns, but requires the assumption of 
short-lived, strain-transcending immunity to reduce the diversity of the influenza 
population sufficiently between outbreaks. Recker et al. (2007) introduced an 
alternative model of influenza outbreaks that brings together concepts of both 
host networks and antigen networks within a model of single-strain epidemics. 
Here, a network of epitope-specific host immune responses against a limited 
network of antigenic epitopes can drive single-strain outbreaks without explicit 
assumptions about the direction of mutation or transient immunity. The model 
assumes a number antigenic epitopes, each with a varying number of possible 
alleles, representing various levels of functional constraints. Thus “antigen” 
space is not infinite, but is constrained within a defined network of possible 
epitope combinations. The order in which variants emerge in successive out-
breaks then depends on the network of host immune responses present at each 
point of time in the population.

Hemaglutination inhibition (HI) assays have been used to explore the immuno-
logical relationships between different influenza strains over a 40-year period 
(Smith et al. 2004). HI assays measure the cross-reactivity or antigenic distance of 
different influenza strains by exposing ferrets to particular strains, and testing the 
ability of the exposed sera to recognize different strains. The results of these com-
parisons show that flu strains between 1968 and 2003 show a zigzagging pattern 
across “antigen space”, when the HI assays are subjected to multi-dimensional scal-
ing (Fig. 8.6). However, since ferret sera have a limited range of cross-recognition, 
many elements in the matrix of responses to different strains are absent. This creates 
a false sense of antigenic distance between viral samples that cannot be compared 
using this technique. Figure 8.6 shows the output from the model with a restricted 
antigenic space defined by five loci each with two alleles. Although the antigenic 
network in this case is a 5-dimensional hypercube, when subjected to the same 
analysis as the data from Smith et al. (i.e., a projection onto lower dimensional 
space using MDS), a similar zigzag pattern occurs. Figure 8.7 illustrates this 
concept, suggesting that a “true” antigenic map would in fact, cycle through the 
network of epitope combinations in a manner that reflects the immune structure of 
the host population.

8.5  Conclusion

The representation of data and ideas in the form of networks has been successful, 
both because intuitively the interactions between components of a system are eas-
ily understood within a network framework and because a body of mathematical 
theory provides the tools necessary to analyze networks in a quantitative way. 
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Fig. 8.6 Model output from Recker et al (2008) compared to data. (a) The dynamics of the model, 
showing the proportions of hosts infectious over time. (b) Hypothetical samples from individuals with 
influenza at different time points (the dotted lines in (a)) were analyzed using “antigenic cartography,” 
or MDS, as in Smith et al (2004). (c) The observed antigenic map from Smith et al (2004)
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We have discussed how networks of contacts between hosts can dramatically alter 
the epidemiology and evolution of infectious diseases, and how networks of 
pathogen antigens can inform our understanding of pathogen biology. Although 
we still have no reliable empirical observations of social networks in the real 
world, hypothetical host contact networks have provided a solid theoretical basis 
for our understanding of how disease transmission may be affected by localized 
social interactions. Generally, the analysis of these networks has shown a reduced 
rate of spread when contacts are local, and an increase in the heterogeneity of 
pathogen traits such as virulence when host contacts are heterogeneous. Thus, 
pathogen transmission and evolution often reflects structural constraints imposed 
by the host population.

We believe a network approach has utility for understanding the evolution of 
frequently recombining pathogens. Both phylogenetic and population genetic tech-
niques have yet to deal thoroughly with high rates of recombination, complicating 
the analysis of relationships between pathogen strains and species. Visualizing 
relationships between antigenic loci as networks can therefore provide a framework 
for data analysis, as discussed in relation to the malaria parasite. In addition, a more 
conceptual application may also be valuable for framing assumptions about anti-
genic relationships within abstract mathematical models, as explored above for the 
influenza virus. For most antigens that serve a specific functional purpose, such as 

Fig. 8.7 A schematic showing the effects of MDS analysis (see main text) on a multi-dimensional 
network of antigenic epitopes. By projecting a multidimensional network onto two-dimensional 
space, the path between epitope combinations in successive outbreaks (shown in red) in the model 
appears to follow a zigzag pattern in one direction. In this model, however, epitope combinations 
are constrained, such that the path through the network is eventually recycled
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binding to host receptors, the limits of antigenic space are likely to be finite and 
structured. In this context, an explicit representation of the network of possible 
evolutionary trajectories can have important implications for disease dynamics. 
Furthermore, a mapping of this network onto the network of immune responses of 
the host population can provide insight into the dynamical relationships between a 
pathogen and its host.
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9.1  Introduction

As the complexity of a system increases, [the decision maker’s] ability to make precise and 
significant statements about its behavior diminishes until a threshold is reached beyond 
which precision and significance (or relevance) become almost mutually exclusive charac-
teristics…. A corollary principle may be stated succinctly as: The closer one looks at a 
real-world problem, the fuzzier becomes its solution.

L.A. Zadeh (1973) Outline of a new approach to the analysis  
of complex systems and decision processes

Different dictionaries contain different definitions of epitope, one of the most used, 
abused, and certainly oft-cited pieces of modern biomedical terminology. To para-
phrase the Oxford English Dictionary (OED), an epitope is a surface region of an 
antigen to which an antibody may bind with high specificity, or, more generally, an 
epitope is an antigenic determinant. The OED traces the use of the word “epitope” 
to a 1960 review by Niels Kaj Jerne (1911–1994) (Jerne 1960). This work ackno-
ledges the lack of a strict definition of epitope, linking it to many meanings, including 
surface configurations, dingle, determinants, structural themes, immunogenic 
elements, haptenic groups, and antigenic patterns. The termes “epitope” is intimately 
linked with the concept of self and non-self. Likewise, self – the word and concept 
embodied by it – has a variety of meanings, some harmonious, and some in conflict. 
It is important to note that the self is an idea able to encompass, or at least encapsulate, 
both the physical and psychological manifestations of identity.

In this chapter, we attempt to explore the notion of molecular self, as exempli-
fied by the epitope. We examine the diverse and synergistic combination of molecu-
lar patterns that comprise the language of immunological recognition. We discuss 
how the words “self” and “epitope” relate to the ability of the immune system to 
identify molecules, cells, and organs as belonging to the host and to differentiate 
itself from nonself: molecules, cells, and organs of exogenous and potentially 
pathogenic origin. However, rather than saying “definition,” in the singular, we 
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should rather say “definitions,” in the plural, for within immunology there are many 
definitions of epitope.

One attempt to escape semantic constraints is provided by Polly Matzinger’s 
danger model (Matzinger 2002). This proposes that the immune system reacts to 
danger signals, be they of external origin or from injured cells. Thus, the danger 
model effaces the immune self, replacing it with the idea of danger signals. Any 
molecular signal of whatever origin that is itself dangerous or can act as a flag for 
the presence of other dangerous substances could act in this way. Such models are 
uncomplicated yet compelling.

Self or nonself could encode recognition signals. Self is thus encoded as being 
part of the host and nonself encoded as being part of some identified non-host, a 
particular bacterium or set of bacteria, for example. Alternatively, theories can be 
formulated wherein either, but not both, the self or the non-self act as empty place-
holders. For example, “self” could be identified as something possessing one or 
more signals of being part of the host; and “non-self” as being anything that does 
not. An entity is thus seen as non-self if it lacks a self-signal. The reverse could 
hold. Non-self could be identified as something possessing one or more signals of 
being part of a specific non-host organism; self would then be anything else. An 
entity is thus seen as “self” if it lacks a non-self signal.

Thus, put simply, we have three alternatives: A double-positive model, a self-
positive model, or a non-self-positive model. There are many logical and practical 
problems with third alternative. It would necessitate the existence of generic signals 
across all non-host organisms or an effectively infinite capacity to store knowledge. 
At least as far as we know, neither of these can be realized in the context of a finite 
immune system. Obviously, a double-positive model allows for substances that are 
neither self nor non-self. The real immune self, however, is a composite exhibiting 
several features derived from all clear alternatives. Janeway provided a potential 
clarification, arguing that immunity discriminates between non-infectious self and 
infectious non-self (Janeway and Medzhitov 2002). The somatic component is 
provided by the life history of the host organism. Mammals evolve more slowly 
than microorganisms, and so pathogens would always be at an advantage in the 
immunological arms race.

The self is both molecules – peptides and proteins – and signals. The self and 
the non-self are merely, yet not solely, molecules that are recognized – or more 
properly bound – by other molecules. And that, as they say, is all that self and 
non-self ultimately are: molecules and their recognition by the host. All the rest is 
just waffle, confusion, and obfuscation. The signal in the self is the recognition 
event – Major Histocompatibility Complex (MHC) or antibody mediated – which 
triggers the immune system to respond.

It was once felt that the MHC would provide a simple, straightforward, unam-
biguous, and unequivocal criterion capable of discriminating self from non-self. 
Class I MHC molecules are expressed by almost every nucleated cell and are able 
to act to identify self. This is realized in the ternary complex of peptide-MHC and 
the T-cell Receptor (TCR), which is the necessary preliminary to the activation of 
the T-cell and thus the initiation of concomitant immune responses.
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The self, and thus the non-self, are dynamic. Under certain constraints and in 
response to certain stimuli, the immune system is capable of attacking host con-
stituents. Autoimmunity is immunity turning against the self that it is intended to 
defend. An autoimmune response is usually associated with disease, but can also be 
a normative function of homeostatic maintenance and control. Thus, the immune 
self is not a stable and unchanging entity but is clearly context dependent and prone 
to environmental influence.

The fundamental molecular mechanisms underlying cellular and humoral 
immunity are quite different. T-cell immunity is mediated by the molecular recog-
nition of peptides bound to MHC molecules, essentially short denatured fragments 
excised from proteins via proteolytic degradation. B-cell- mediated immunity is 
made manifest by the antibody recognition of a protein antigen’s three-dimensional 
structure. The molecular recognition events at the heart of cellular immunity 
are essentially conformation-independent: instead, they are mediated by the 
recognition of amino acid side chains within the context of a peptide-MHC 
complex. Humoral immunity is, by contrast, highly dependent on the conformation 
of a folded protein.

9.2  The Principal Molecular Varieties of Epitope

In a cellular context, the discrimination of “self” vs. “non-self” by the immune 
system has largely focused on the recognition of fragments derived by proteolysis 
from the host and pathogen proteins presented by classical MHC molecules. The 
innate system is also pivotal to the sensing of non-self, while the innate and adap-
tive immune systems are intimately connected and cooperate highly. Protective 
immunity results from the interplay of the antigen-specific adaptive immune sys-
tem with the more generic, less specific innate response. The recognition properties 
of the innate system do not exhibit any optimization of specificity or selectivity. 
However, those of the adaptive immune system employ receptors that can undergo 
a refinement process that significantly enhances their recognition of whole antigens 
or derived peptides.

Innate immunity has a pivotal role in regulating adaptive immunity, in generat-
ing strong adaptive responses, and in the development of immune memory. Most of 
the operation of the innate immune system is preprogrammed and uses widely dis-
tributed receptors capable of recognizing generic targets: conserved molecular 
patterns characteristic of microbial life. It does this through the recognition, by 
“pattern recognition receptors” or PRRs, of evolutionarily conserved epitopes or 
so-called “pathogen associated molecular patterns” or PAMPs (de Diego et al. 
2007). PRRs react to molecular structures found in or on pathogenic, but not nor-
mal vertebrate, cells. Each PRR has its own binding properties and cellular expres-
sion, and engages with different signaling pathways. This diversity within innate 
immunity protects the host from the diverse plethora of pathogens present in the 
environment. PRRs detect disturbances to the immune microenvironment (including 
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the discrimination of “non-self”) and initiate appropriate innate responses 
(Areschoug and Gordon 2008).

PRRs bind multiple ligands by recognizing common PAMPs rather than binding 
to unique epitopes. However, the range of peptides bound by antibodies, and par-
ticularly by the MHC-TCR system, is much, much larger than is generally sup-
posed. The PRR engagement of PAMPs elicits a response that is typically 
proinflammatory, involving cytokine generation that activates immune cells. Such 
reactions are crucial to disease management, but must be tightly regulated as an 
excessive immune response is pernicious.

PRRs are encoded by germ line genes. Since the structures of such receptors 
are inherited and resulted entirely from conventionally understood evolutionary 
processes, their specificity is fixed. They evolve relatively slowly by the mechanisms 
of natural selection through standard processes of point mutation, gene duplication, 
and so on. The germ line nature of these receptors necessarily limits the eventual 
repertoire of recognition specificity exhibited by the innate immune system; it does 
not permit the recognition of previously unknown antigens, yet except by chance. 
Yet over long periods, it can evolve to ignore self-molecules and thus manifest 
robust discrimination between noninfectious self and infectious non-self.

Several distinct families of PRRs are known, including the following long list 
(Areschoug and Gordon 2008; Kornbluth and Stone 2006). Arguably the most 
important, or at least the most prominent, are the so-called toll or toll-like receptors 
(TLRs). Humans have ten TLRs; they sense both intracellular pathogens (viruses) 
and extracellular pathogens (bacteria and fungi). Some bind particular patterns 
contained in microbial DNA that are absent from vertebrate DNA. More specifi-
cally, ssRNA is recognized by TLR7 and TLR8, and dsRNA is recognized by 
TLR3. TLR4 recognizes LPS, Taxol, bacterial HSP60, F protein, and fibronectin. 
TLR5 binds flagellin. TLR2 and TLR6 recognize many ligands, such as bacterial 
lipoproteins or peptidoglycan. TLR9, found on DCs and B-cells, detects CpG 
motifs in DNA. An activated TLR-dependent signaling cascade ultimately induces 
the expression of a variety of response molecules.

dsRNA is also recognized within the cytoplasm by another PRR – RNA 
helicases such as RIG-I. These are important PRRs, as are the cytosolic NOD-like 
receptors (NLRs), which undertake key activities in innate immunity as intracellular 
sensors of cell damage and pathogens. While TLRs signal from the cell surface or 
early endosome, bacterial molecules activate NLRs intracellularly. Models of 
bacterial infection suggest a pro-inflammatory role for NLRs, including the 
regulation of the “inflammasome.” Other PRRs include scavenger receptors and 
C-type lectin-like receptors such as mannose receptors, which detect mannosylated 
lipoarabinomannans, β-glucan receptors, and DC-SIGN, which detects carbohydrate 
moieties on a variety of proteins.

Whole classes of organisms usually share pAMPs. Lipopolysaccharide (LPS) is, 
for example, found as a common component of gram- negative bacteria. PAMP-
stimulated PRRs induce the maturation and migration of APCs, the upregulation 
of antigen-loaded Class I and Class II molecules, the cell surface expression 
of co-stimulatory molecules, and the production of cytokines and chemokines. 
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Costimulatory molecules flag the microbial origin of a presented antigen, help to 
activate antigen-specific T-cells, and create an inflammatory environment that 
amplifies adaptive immune responses. Activation of different PRRs can alter the 
form taken by subsequent immune responses.

Traditionally, when attempting to analyze and predict properties of the cellular 
response, immunoinformaticians have centred their attention and their efforts solely 
on the specificity of MHC molecules (Flower 2003; Flower and Doytchinova 
2002). In more recent and more enlightened times, attention has turned to the 
richer, deeper, more challenging world of antigen presentation (Vivona et al. 2008; 
Davies and Flower 2007). Our understanding of the manifold mechanisms underly-
ing antigen presentation, and thus the manifestation of the molecular components 
of the immune self, is as yet incomplete and partial. These mechanisms, as we cur-
rently picture them, are by no means simple. As with all exciting branches of sci-
ence, many important aspects of these complex processes remain controversial.

MHCs bind peptides produced by the proteolytic degradation of proteins. There 
are many alternative processing pathways, but the two best-understood are the clas-
sical Class I and classical Class II. MHCs are not indiscriminate binders, but impor-
tantly exhibit a finely tuned yet complex specificity for particular peptide sequences 
composed of the 20 commonly occurring amino acids. MHCs also display a wider 
specificity that is in itself quite catholic in terms of the molecules they can bind; 
MHCs are not restricted solely to peptides; they also bind a variety of other mole-
cules. A wide range of Post-Translational Modifications (PTMs) and synthetically 
modified peptides are also bound by MHCs and recognized by T-cells. Many 
natural and synthetic small molecules also bind to MHCs. In addition, small 
molecule drug-like compounds can form complexes with MHCs. This can mediate 
pathological effects and has important implications for behavior-modifying odor 
recognition.

Cell-surface antigen presentation in the context of Class I and Class II MHC 
molecules demonstrates distinct differences. This arises in at least three different 
ways: one from the physical differences in peptide binding by the different classes; 
one from the TCR-mediated differences in the recognition of the two classes; and 
another from the significant differences in the complex machinery of antigen pro-
cessing and transport that affects the conversion of whole proteins into fragmentary 
epitopes.

Class I MHC molecules survey important intracellular changes. These include 
viral infection, the presence of intracellular bacteria, or malignant cellular transfor-
mation as seen in tumor cells. The flagging or signaling of such profound cellular 
events ensures the induction of an appropriate immune response by circulating CD8 
+ T-cells. Class II MHC molecules proffer to circulating CD4 + T-cell-mediated 
immune surveillance markers sampling extracellular events.

Cellular antigen presentation is affected significantly by the innate response. 
PAMPs and the PRRs that bind them affect both Class I and Class II antigen pro-
cessing and presentation pathways. They regulate and orchestrate the spatio-tempo-
ral dynamics of MHC biosynthesis, antigen sequestration, and the reordering of the 
cytoskeleton.
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The natural repertoire of Class I MHC-presented peptides has a greater breadth 
than is widely supposed (Vyas et al. 2008; Lin et al. 2008; Loureiro and Ploegh 
2006). MHC Class I ligands are derived primarily from degraded endogenously 
expressed intracellular proteins. Intracellular peptide fragments arise from two 
sources: self-peptides derived from the host genome and proteins from external 
sources such as pathogenic microbes, principally those originating from viral infec-
tion. This seeming simplicity obfuscates several layers of complexity.

Intracellular proteins, including newly synthesized proteins, are degraded 
quickly, producing large amounts of short peptides. Nonfunctional proteins, or 
defective ribosomal products (DRiP), result from errors in translation and process-
ing. They form a significant proportion of newly synthesized proteins, which are 
rapidly digested by the proteasome. Viruses can invade host cells and generate viral 
proteins and bacteria can inject protein into the host cell via type III secretion sys-
tems; both are degraded by the host.

A multiprotein complex called the proteasome mediates intracellular protein 
degradation. The proteasome is a multimeric proteinase composed of a core of 
proteolytic enzymes flanked by a complex arrangement of regulatory elements 
capable of recognizing, among other things, an ubiquitin label. A whole variety of 
proteins including heat-denatured proteins, incorrectly assembled, mis-translated or 
mis-folded proteins, as well as regulatory proteins with limited half-lives, are tar-
geted by the proteasome by being tagged with ubiquitin. The proteasome then 
proteolytically digests proteins in a stochastic manner, producing a population of 
relatively short peptides.

After peptides are degraded by the proteasome, they are transferred into the 
lumen of the endoplasmic reticulum (ER). The translocation process from cytosol 
to ER is ATP dependent. The so-called transporter associated with antigen process-
ing, or TAP, effects peptide transit, and is also able to interact with peptide-free 
Class I HLA molecules in the ER. Newly synthesized Class I MHC molecules are 
understood to be unstable in a peptide-free state and are retained in the ER in a 
partially folded form. Formation of a MHC-peptide complex is quite intricate and 
complicated, and it is facilitated by a variety of proteins, including tapasin, calreti-
culin, and ERp57. Once complexed to peptide and b

2
-microglobulin, the MHC 

protein leaves the ER and is transported to the cell surface. The peptide binding 
process is considered as the rate- limiting step of MHC protein assembly, as only a 
fraction of the peptides are able to bind to MHC.

Class II MHC expression is believed to be restricted primarily to professional 
antigen-presenting cells (APCs), including macrophages and dendritic cells 
(DCs). In the MHC Class II processing pathway, following the receptor-mediated 
endocytosis of exogenous antigens by APCs, presented proteins are targeted 
to the multi-compartment lysosomal-endosomal apparatus, passing first into 
endosomes, then into late endosomes, ending up in lysosomes. While in transit, 
antigens are proteolytically fragmented into peptides by cathepsins. Before final 
cell surface presentation, peptides are bound by Class II MHCs. MHC Class II 
ligands have a more variable length of 9–25 amino acids and are derived mainly 
from exogenous proteins. Peptide-bound Class II MHC molecules are ultimately 
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translocated to the cell surface, where they are available for immune surveil-
lance by CD4+ T-cells.

Another entity mediating the recognition of self is the so-called B-cell epitope. 
These are regions of the surface of a protein, or other biomacromolecule, recog-
nized by soluble or membrane-bound antibody molecules. The protection offered 
by all vaccines is mediated completely or predominantly through the induction of 
antibodies, which act mostly in infection at the bacteremic or viremic stage. 
Humoral immunogenicity, as mediated by soluble or membrane-bound cell surface 
antibodies through their binding of B-cell epitopes, is of prime importance for 
almost all existing vaccines, except BCG.

B-cell epitopes can be linear (also called continuous) or discontinuous. 
Linear epitopes are single, short, continuous subsequences within an antigen. 
Discontinuous epitopes are groups of individual, isolated residues forming patches 
on the surface of the antigen. The verity and exegesis of an epitope depends on the 
nature of their experimental determination. Linear epitopes are typically identified 
using an experimental screening procedure, i.e., PEPSCAN, where by overlapping 
sequences are assayed against pre-existing ex vivo antibodies. Discontinuous 
epitopes are usually identified from the structure of an antigen, typically one derived 
experimentally by X-ray crystallography or multidimensional NMR. Discontinuous 
epitopes are also identified by making site-directed mutants of the antigen and testing 
them for their effect on antibody binding.

Taken together, all of these mechanisms greatly increase the potential size and 
diversity of the immunogenic repertoire of reactive peptides. Thus, one may argue 
that, in the face of such complexity, the only realistic way to address this potential 
enormity of the peptide repertoire is via computational analysis and prediction. For 
the reasons adumbrated earlier, we shall concentrate on T-cell mapping.

9.3  T-cell and B-cell Epitope Prediction In Silico

Informatics, in the form of immunoinformatics, offers a considerable diversity of 
tools and techniques for undertaking epitope mapping in silico. With an ever-
increasing number of pathogen genomes now available, the mapping of B-cell and 
T-cell epitopes, both computationally and experimentally, is becoming a central 
issue in vaccine discovery (De Groot 2006; De Groot and Berzofsky 2004). By 
using such approaches, computer-based prediction methods can greatly increase the 
celerity of T-cell and B-cell epitope discovery.

Experimentally determined IC50 and BL50 affinity data have been used to 
develop a variety of peptide sequence-based MHC binding prediction algorithms, 
which can distinguish binders from non-binders. Many different algorithms, 
mostly developed by the data-mining community and derived from research into 
artificial intelligence, have now been applied to immunoinformatic problems. 
MHC binding motifs are a straightforward and easily comprehended method of 
epitope detection, yet produce many false-positive and many false-negative results 
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(Rammensee et al. 1999). Support Vector Machines (SVMs) are machine-learning 
algorithms based on statistical theory that seeks to separate data into two distinct 
classes (in this case binders and non-binders) (Jardetzky et al. 1996; Donnes and 
Elofsson 2002). Hidden Markov Models (HMMs) are statistical tools where the 
system being modeled is assumed to be a Markov process with unknown param-
eters (Noguchi et al. 2002). In a HMM, the internal state is not visible directly, but 
variables influenced by the state are. HMMs aim to determine the hidden param-
eters from observable ones. A HMM profile can be used to determine those 
sequences with “binder-like” qualities. Bayesian Neural networks can also be 
applied to the problem, as they are better suited to recognizing complicated pep-
tide patterns than more straightforward algorithms (Burden and Winkler 2005). 
Bayesian neural networks in particular have the advantages that they are robust, 
resistant, but not immune, to overtraining, capable of minimize the risk of overfit-
ting, tolerate noisy or missing data, and can find the least complex model capable 
of explaining the data automatically.

Of the existing immunoinformatic prediction techniques, by far the most 
successful has been that of data-driven prediction of T-cell epitopes, at least for 
well-studied Class I MHC alleles (Peters et al. 2006). In a pivotal retrospective 
analysis, Deavin et al. (1996) compared several early direct T-cell epitope prediction 
methods without finding a single method with a high-enough accuracy to be useful. 
Today, work concentrates instead on predicting Class I MHC-peptide binding 
affinity. Where data are sufficiently abundant, such methods work well (Peters et al. 
2006; Flower 2008).

Compared with Class I predictions, Predicting Class II epitopes is much more 
problematic. Such difficulties arise for several reasons. Chief among these is the 
unrestricted length of Class II epitopes. The structure of the open-ended Class II 
binding site does not constrain peptide lengths, allowing the binding of the full 
range of peptide lengths – 11–25 + amino acids. X-ray structures of Class II MHCs 
indicate that the binding site is typically occupied by a nine-residue subsequence, 
with the rest of the peptide extending out at one or both ends. Thus, immunoinfor-
matic algorithms for Class II need to identify the central 9mer when attempting 
prediction, and to then develop predictive models for the bound nonameric 
sequence.

This search is complicated, conceptually at least, by the ability of MHCs to bind 
in a degenerative manner. Long peptides, in particular, might exhibit a hierarchy of 
multiple binding modes. However, relatively little is known concerning the explicit 
degeneracy of the binding process. Nonetheless, the fact that the binding groove is 
open at both ends in Class II molecules is consistent with the possibility. Whether 
this phenomenon actually occurs in reality seems unlikely on theoretical grounds, 
except in the case of repetitive sequences.

Moreover, our attempts to account for a possible multiplicity of binding modes, 
i.e., 2 or more 9mer subsequences, have not yet yielded a stable solution or work-
able algorithm. Another important issue is the influence of “flanking” residues on 
affinity and recognition: Arnold et al. identified residues at +2 or −2, relative to the 
core nonamer, as important for effective recognition by T-cells (Arnold et al. 2002). 
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We have sought to address this by increasing the core peptide region identified in 
our model by 2 in both directions, but again this did not yield a stable solution, 
perhaps suggesting that this phenomenon is a subsidiary one, at least statistically.

Recently, an attempt has been made to incorporate components of the Class I 
antigen presentation pathway, such as Proteasome cleavage (Saxova et al. 2003) 
and TAP binding (Doytchinova et al. 2004), into composite approaches to T-cell 
epitope prediction (Doytchinova et al. 2006; Peters and Sette 2005; Larsen et al. 
2005; Dönnes and Kohlbacher 2005). Likewise, we have recently explored a 
CoMSIA method (Hattotuwagama et al. 2006) for distinguishing true epitopes from 
non-epitopes that bind MHCs with high affinity (Doytchinova and Flower 2006). 
These methods, which show encouraging improvements, compared to MHC-only 
approaches, use subsidiary stages, such as TAP binding, as additional filters to 
reduce the number of possible epitopes.

However, for the prediction of all immunological epitope data other than Class 
I MHC peptide binding, results have been unsatisfactory and inadequate. Over the 
last few years, several comparative studies have shown that the prediction of Class 
II T-cell epitopes is usually poor (El-Manzalawy et al. 2008a, b; Lin et al. 2008; 
Gowthaman and Agrewala 2008). Results are similar for structure-driven predic-
tion of Class I and Class II T-cell epitopes (Knapp et al. 2009). Likewise, both 
structure- (Ponomarenko and Bourne 2007) and data-driven (Blythe and Flower 
2005) prediction of antibody-mediated epitopes is known to be poor. Moreover, 
irrespective of the poor reported predictivity, there are several other problems, 
albeit different, for T-cell and B-cell epitope prediction.

For T-cell prediction, the major issue is the quality and availability of data. It has 
recently been shown that that T-cell epitopes, which were previously thought to be 
short peptides of 8–10 amino acids, can consist of up to 16 amino acids or perhaps 
even more. The existence of these longmer epitopes has greatly expanded the rep-
ertoire of peptides open to inspection by T-cells (Flower 2008). Similarly, over 
3,000 different MHC alleles are known to exist in the global human population, 
indicating the potential for distinct peptide specificities among patients. Problematic 
as this seems, the situation is made worse by the fundamental logistic constraints 
of sampling within even a single allele specificity. A nonameric peptide has a 209 
data space equating to 512 billion combinations of amino acid; considering that a 
single model is built from a few hundred peptides at most, the sampling ratio is 
infinitesimally small. While some work addresses the allele diversity issue – for 
example, pan-MHC methods (Zhang et al. 2009; Nielsen et al. 2008) and super-
types (Doytchinova and Flower 2005; Doytchinova et al. 2004) – little has been or 
can be done to circumvent the sampling issue.

Table 9.1 summarizes a fair cross-section of currently available servers for T-cell 
epitope prediction. Within the limits imposed by the quality and sufficiency of 
binding data then these methods work, and unequivocally so. Yet, as we have said, 
these limits can be very limiting indeed. For many alleles, the construction of 
useful and meaningful training and testing sets is highly problematic. Efforts are, 
ultimately, limited by the data themselves. A properly designed training set will 
resolve most issues.
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Data quantity, in particular, has important implications for the selection of 
appropriate prediction techniques. Guidelines that help us to address these issues are:

In the absence of binding data, speculative molecular modeling is the only •	
option. Here, supertype analysis can prove useful.
When peptide number is below 50, binding motifs offer a pragmatic answer.•	
With 50–100 peptides, quantitative matrices, SVMs, or QSAR are usable.•	
With over 100 peptides, HMMs, artificial neural networks, Bayesian networks, •	
or robust multivariate statistical models are useable.
With very large data sets of many hundred peptides, most modern methods pro-•	
vide high-quality predictions, albeit within their own interpolative boundaries.

However, data diversity as well as quantity is an issue. As diversity in peptide 
sequence and affinity increases, so does the generality of the generated models. 
Highly degenerate data or data with a very narrow affinity range often prove difficult. 

Table 9.1 T-cell epitope prediction servers

Prediction server URL Class Ref

CTLPred http://www.imtech.res.in/raghava/
ctlpred

I Bhasin and Raghava 
(2004)

MMBPred http://www.imtech.res.in/raghava/
mmbpred

I Bhasin and Raghava 
(2003)

NetMHC http://www.cbs.dtu.dk/services/
NetMHC

I Buus et al. (2003)

BIMAS http://thr.cit.nih.gov/molbio/
hla_bind

I Bhasin and Raghava 
(2006)

NetCTL http://www.cbs.dtu.dk/services/
NetCTL

I Larsen et al. (2005)

ProPred-I http://www.imtech.res.in/raghava/
propred1

I Singh and Raghava 
(2003)

NHLApred http://www.imtech.res.in/raghava/
nhlapred

I Bhasin and Raghava 
(2006)

MHC-Thread http://www.csd.abdn.ac.uk/gjlk/
MHC-Thread/

II Swain et al. (2001)

NetMHCII http://www.cbs.dtu.dk/services/
NetMHCII

II Nielsen et al. (2007)

ProPred http://www.imtech.res.in/raghava/
propred

II Singh and Raghava 
(2001)

SYFPEITHI http://www.syfpeithi.de/ Both Rammensee et al. (1999)
MHCPred http://www.jenner.ac.uk/MHCPred Both Guan et al. (2006)
IEDB http://tools.immuneepitope.org/ Both Nielsen et al. (2003)
SVMHC http://www-bs.informatik.uni-

tuebingen.de/SVMHC
Both Donnes and Elofsson 

(2002)
RankPep http://bio.dfci.harvard.edu/

RANKPEP/
Both Reche et al. (2002)

ELF http://www.hiv.lanl.gov/content/
hiv-db/ELF/

Both Korber et al. (2005)

EpiPredict EpiPredict http://www.epipredict.
de/Prediction/prediction.html

Both Jung et al. (2001)
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Predictive models should be tested before using via cross-validation, test sets, and 
randomization. However, the ideal testing strategy is to use experimental validation 
involving the blind prediction and testing of novel peptides.

Sequence-based B-cell epitope prediction methods are limited to the identifica-
tion of linear epitopes. If we look back a decade or two, most predictors of either 
T-cells or B-cell epitopes were based on identifying maximally valued regions of 
sequences – essentially looking for peaks, or troughs, in some form of a propensity 
plot. This was long ago shown to be inappropriate for T-cell epitopes and conse-
quently many advanced methods for T-cell epitopes prediction have arisen. 
However, many – most, if not actually all – B-cell epitope prediction methods con-
tinue to rely, wholly or in part, on finding such peaks. No single property is known 
to predict linear or discontinuous epitope location with any reliability or accuracy. 
Most prediction methods use properties related to surface exposure – such as acces-
sibility, hydrophilicity, flexibility/mobility and loop and turn structures – since it is 
believed that epitopes, at least for non-denatured proteins, must be solvent-accessi-
ble if antibody binding is to occur.

Early approaches used the sliding-window method, adapting standard hydropathy 
scales to identify maximal property peaks. A correctly predicted epitope equates to 
any peak close to an antigenic residue. Short windows, which reduced erratic peak 
values, outperformed larger window sizes. Using datasets representing the most 
stringent examples of peer-reviewed publications describing linear epitope-mapped 
protein sequences, Blythe and Flower (2005) have explored the validity of B-cell 
epitope prediction using sequence profiles of amino acid scales. Using 484 amino 
acid scales and 50 epitope-mapped protein sequences, as defined using polyclonal 
antibodies, the analysis of both single sequence and combined profiles indicated 
that this approach is of limited value: the best sets of methods generated predictions 
only fractionally better than random.

The poor performance demonstrated by BCE prediction algorithms is troubling. 
No explanation seems overly convincing. It is unlikely that the available methodology 
is to blame, as data-mining techniques have proved much more successful in other 
areas. The explanation favored here again targets the experimental data as the 
source of the problem. The most widely available data derives from PEPSCAN, and 
there are reasons to suspect that this is not what it seems or what people believe it 
to be. Experimentally derived epitopes are identified by assayed against pre-existing 
antibodies with affinity for whole antigens. However, when such “epitopes” are 
mapped back onto antigen structures, their locations are scattered randomly through 
the protein. They would not form discrete patches as one would expect if they were 
simple mimics of crystallographically identified discontinuous epitopes. These in 
situ epitopes can be exposed or completely buried, and thus are inaccessible to 
antibody binding, and also in every state in between. If we compare the conforma-
tion adopted by antibody bound peptides with those in situ in the intact antigen, we 
see that they are typically very different. However, if we compare antibodies in 
intact antigen and in whole antigen-antibody complexes, they are very similar. 
Thus, how epitopes in a PEPSCAN analysis are recognized requires an explanation 
other than that of a simple one-to-one correspondence. One such explanation might 
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be that denatured antigen is recognized in vivo by the preformed antibody. Another 
is that the isolated peptide has a conformation capable of imitating some or all of 
the surface features exhibited by a discontinuous epitope.

Nonetheless, many servers are now available that implement one or another of 
the many published algorithms and methods purported to predict B-cell epitopes. 
We sample these in Table 9.2. The inclusion of one approach at the expense of 
another should not be taken as any form of vindication nor as any kind of condem-
nation. Instead, we should bear in mind the significant provisos enumerated in the 
preceding paragraph when we seek to select B-cell epitope prediction methods.

An alternative to epitope mapping is the computational identification of whole 
antigens as opposed to the epitopes they contain. Antigens, as prospective subunit 
vaccines, must be immunogenic, but many facets of immunogenicity are as yet 
under-explored experimentally. Some intriguing anecdotal evidence has gathered 
over time and has suggested that large complex proteins or proteins distant in 
sequence from the host proteome are more likely to be immunogenic – while others 
– that aggregated protein is immanently more immunogenic – are less open to pre-
diction. The manifestation of immunogenicity at the protein level arises from a 
complex process that combines both intrinsic and extrinsic factors and that operates 
at different scales and rates. Properties intrinsic to the host immune system (such 
as the possession of appropriate B- or T-cell epitopes) interact with properties 
intrinsic to the pathogen (such as its expression level, the time course of expression 
and secretion, and its location within the host cell) and with properties intrinsic to 
the protein itself (such as the presence of post-translational danger signals) to deter-
mine whether there will be an immunogenic response. The recognition of such 
signals is the job of the innate immune system, which provides a rapid yet non-
specific response. Some efforts have been made to predict antigens directly 
(Doytchinova and Flower 2007a, b) and to develop alternative strategies for the 
identification of vaccine candidates with computer-aided reverse vaccinology 
(Serruto and Rappuoli 2006).

Table 9.2 B-cell epitope prediction severs

Server URL Ref

ABCpred http://www.imtech.res.in/raghava/abcpred Saha and Raghava GPS 
(2006)

Bepipred http://www.cbs.dtu.dk/services/BepiPred Larsen et al. (2006)
CEP http://bioinfo.ernet.in/cep.htm Kulkarni-Kale et al. (2005)
DiscoTope http://www.cbs.dtu.dk/services/DiscoTope Haste Andersen et al. (2006)
PEPPOP http://diagtools.sysdiag.cnrs.fr/PEPOP/ Moreau et al. (2008)
Epitopia http://epitopia.tau.ac.il/ Rubinstein et al. (2008)
Pep-3D-Search http://kyc.nenu.edu.cn/Pep3DSearch/ Huang et al. (2009)
ElliPro http://tools.immuneepitope.org/tools/ElliPro Ponomarenko et al (2008)
LEPD http://biotools.cs.ntou.edu.tw/lepd_

antigenicity. php
Chang et al. (2008)

BCPREDS http://ailab.cs.iastate.edu/bcpreds/ El-Manzalawy et al. (2008)
MIMOP http://diagtools.sysdiag.cnrs.fr/MIMOP/ Moreau et al. (2006)
AAPRED http://www.bioinf.ru/aappred/ Ya et al. (2009)
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9.4  Conclusion

Computational support for vaccinology is clearly a discipline in transition. 
Sequence analysis and genome annotation have long been in use and are now being 
supplemented by many potent prediction techniques, principally those for T-cell 
epitopes. The computational identification of B-cells or T-cells or epitopes hardly 
closes the door on immunological prediction. Rather, it is the key that opens that 
door, or at least the crow-bar that prizes that door open. When there are enough data 
to build a good model and where the prediction method is sophisticated enough, it 
is more efficient to use prediction than to perform exhaustive experiments. That 
such approaches are not much more widely deployed says as much about the mind-
set of immunologists and biotechnologists as it does about the reliability and poor 
exposure of prediction tools and techniques.

Yet we seek to provide a word of caution. Firstly, good data are essential. Despite 
the overenthusiasm of some in the field, much work remains to be done, or at least 
done well. T-cell epitope software is not as reliable as many claim, while B-cell 
epitope software has not developed to the point where it is of any practical use. 
Conversely, reverse vaccinology shows considerable promise. If reverse vaccinology 
is applied astutely as a tool in vaccine design and discovery, it can save enormous 
amounts of money, time, and wasted labor. Nevertheless, the development of accu-
rate, robust, and reliable epitope mapping remains a key objective. Progress is being 
made but not quite as fast as its proponents maintain. The potential is huge, but only 
if researchers are willing to take up the technology and use it appropriately.

People’s expectations of computational work are typically biased and thus 
unrealistic. Some expect perfection and are usually disappointed; others are highly 
critical and are almost impossible to reconcile with informatics methods. Neither of 
these two stances is wholly or completely correct. However, one is ever minded to 
sympathize and condole with the expression of such feelings. Informatics does 
not supplant, or even seek to supplant, experiment; instead, it helps to rationalize the 
increasingly complex, confusing, and confounding world of post-genomic research. 
It exists, at least in part, to save labor, time, and resources. Informatics requires 
intellectual effort comparable in scale but not in kind to experimental science. The two 
disciplines – informatics and experimental science – are complementary and distinct. 
Ultimately, informatics will find its place, although that may take some time yet.

References

Areschoug T, Gordon S (2008) Pattern recognition receptors and their role in innate immunity: 
focus on microbial protein ligands. Contrib Microbiol 15:45–60

Arnold PY, La Gruta NL, Miller T, Vignali KM et al (2002) The majority of immunogenic 
epitopes generate CD4 + T cells that are dependent on MHC class II-bound peptide-flanking 
residues. J Immunol 169:739–749

Bhasin M, Raghava GPS (2003) Prediction of promiscuous and high-affinity mutated MHC binders. 
Hybridomics 22:229–234



200 M.N. Davies and D.R. Flower

Bhasin M, Raghava GPS (2004) Prediction of CTL epitopes using QM, SVM and ANN tech-
niques. Vaccine 22:3195–3201

Bhasin M, Raghava GPS (2006) A hybrid approach for predicting promiscuous MHC Class I 
restricted T-cell epitopes. J Biosci 32:31–42

Bhasin M, Raghava GPS (2006) A hybrid approach for predicting promiscuous MHC Class I 
restricted T-cell epitopes. J Biosci 32:31–42

Blythe MJ, Flower DR (2005) Benchmarking B-cell epitope prediction: underperformance of 
existing methods. Protein Sci 14:246–248

Burden FR, Winkler DA (2005) Predictive Bayesian neural network models of MHC Class II 
peptide binding. J Mol Graph Model 23:481–489

Buus S et al (2003) Sensitive quantitative predictions of peptide- MHC binding by a ‘Query by 
Committee’ artificial neural network approach. Tissue Antigens 62:378–384

Chang HT, Liu CH, Pai TW (2008) Estimation and extraction of B-cell linear epitopes predicted 
by mathematical morphology approaches. J Mol Recognit 21:431–441

Davies MN, Flower DR (2007) Harnessing bioinformatics to discover new vaccines. Drug Discov 
Today 12:389–395

Deavin AJ, Auton TR, Greaney PJ (1996) Statistical comparison of established T-cell epitope 
predictors against a large database of human and murine antigens. Mol Immunol 33:145–155

de Diego JL, Gerold G, Zychlinsky A (2007) Sensing, presenting, and regulating PAMPs. Ernst 
Schering Found Symp Proc 3:83–95

De Groot AS (2006) Immunomics: discovering new targets for vaccines and therapeutics. Drug 
Discov Today 11:203–209

De Groot AS, Berzofsky JA (2004) From genome to vaccine – new immunoinformatics tools for 
vaccine design. Methods 34:425–428

Donnes P, Elofsson A (2002) Prediction of MHC Class I binding peptides using SVMHC. BMC 
Bioinform 3:25–38

Dönnes P, Kohlbacher O (2005) Integrated modeling of the major events in the MHC Class I 
antigen processing pathway. Protein Sci 14:2132–2140

Doytchinova IA, Flower DR (2005) In silico identification of supertypes for Class II MHCs.  
J Immunol 174:7085–7095

Doytchinova IA, Flower DR (2006) Modeling the peptide-T-cell receptor interaction by the com-
parative molecular similarity indices analysis-soft independent modeling of class analogy 
technique. J Med Chem 49(7):2193–2199

Doytchinova IA, Flower DR (2007a) VaxiJen: a server for prediction of protective antigens, 
tumour antigens and subunit vaccines. BMC Bioinform 8:4

Doytchinova IA, Flower DR (2007b) Identifying candidate subunit vaccines using an alignment-
independent method based on principal amino acid properties. Vaccine 25:856–866

Doytchinova IA, Guan P, Flower DR (2004) Identifiying human MHC supertypes using bioinfor-
matic methods. J Immunol 172:4314–4323

Doytchinova I, Hemsley S, Flower DR (2004) Transporter associated with antigen processing preselec-
tion of peptides binding to the MHC: a bioinformatic evaluation. J Immunol 173(11):6813–6819

Doytchinova IA, Guan P, Flower DR (2006) EpiJen: a server for multistep T-cell epitope predic-
tion. BMC Bioinform 7:131

El-Manzalawy Y, Dobbs D, Honavar V (2008a) On evaluating MHC-II binding peptide prediction 
methods. PLoS ONE 3:e3268

El-Manzalawy Y, Dobbs D, Honavar V (2008b) Predicting linear B-cell epitopes using string 
kernels. J Mol Recogn 21:243–255

Flower DR (2003) Towards in silico prediction of immunogenic epitopes. Trends Immunol 
24:667–674

Flower DR (2008) Bioinformatics for vaccinology. Wiley
Flower DR, Doytchinova IA (2002) Immunoinformatics and the prediction of immunogenicity. 

Appl Bioinform 1:167–176
Gowthaman U, Agrewala JN (2008) In silico tools for predicting peptides binding to HLA-Class 

II molecules: more confusion than conclusion. J Proteome Res 7:154–163



2019 Computational Epitope Mapping

Guan P et al (2006) MHCPred 2.0: an updated quantitative T-cell epitope prediction server. Appl 
Bioinform 5:55–61

Haste Andersen P, Nielsen M, Lund O (2006) Prediction of residues in discontinuous B-cell 
epitopes using protein 3D structures. Protein Sci 15:2558–2567

Hattotuwagama CK, Toseland CP, Guan P, Taylor DJ, Hemsley SL, Doytchinova IA, Flower DR 
(2006) Toward prediction of Class II mouse major histocompatibility complex peptide binding 
affinity: in silico bioinformatic evaluation using partial least squares, a robust multivariate 
statistical technique. J Chem Inf Model 46(3):1491–1502

Huang YX, Bao YL, Guo SY, Wang Y et al (2008) Pep-3D-Search: a method for B-cell epitope 
prediction based on mimotope analysis. BMC Bioinform 9:538

Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216
Jardetzky TS et al (1996) Crystallographic analysis of endogenous peptides associated with 

HLADR1 suggests a common, polyproline II-like conformation for bound peptides. Proc Natl 
Acad Sci USA 93:734–738

Jerne NK (1960) Immunological speculations. Annu Rev Microbiol 14:341–358
Jung G et al (2001) From combinatorial libraries to MHC ligand motifs, T-cell superagonists and 

antagonists. Biologicals 29:179–181
Knapp B, Omasits U, Frantal S, Schreiner W (2009) A critical cross-validation of high throughput 

structural binding prediction methods for pMHC. J Comput Aided Mol Des 23:301–307
Korber BT et al (2005) HIV Molecular Immunology 2005. Los Alamos National Laboratory, 

Theoretical Biology and Biophysics
Kornbluth RS, Stone GW (2006) Immunostimulatory combinations: designing the next generation 

of vaccine adjuvants. J Leukoc Biol 80:1084–1102
Kulkarni-Kale U, Bhosle S, Kolaskar AS (2005) CEP: a conformational epitope prediction server. 

Nucleic Acids Res 33(Web Server issue):W168–171
Larsen JE, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. 

Immunome Res 2:2
Larsen MV et al (2005) An integrative approach to CTL epitope prediction. A combined algorithm 

integrating MHC-I binding, TAP transport efficiency, and proteasomal cleavage predictions. 
Eur J Immunol 35:2295–2303

Larsen MV, Lundegaard C, Lamberth K, Buus S, Brunak S, Lund O, Nielsen M (2005) An integra-
tive approach to CTL epitope prediction: a combined algorithm integrating MHC Class I binding, 
TAP transport efficiency, and proteasomal cleavage predictions. Eur J Immunol 35:2295–2303

Lin HH, Zhang GL, Tongchusak S, Reinherz EL, Brusic V (2008) Evaluation of MHC-II peptide 
binding prediction servers: applications for vaccine research. BMC Bioinform 9(Suppl 12):S22

Lin ML, Zhan Y, Villadangos JA, Lew AM (2008) The cell biology of cross-presentation and the 
role of dendritic cell subsets. Immunol Cell Biol 86:353–362

Loureiro J, Ploegh HL (2006) Antigen presentation and the ubiquitin-proteasome system in host-
pathogen interactions. Adv Immunol 92:225–305

Matzinger P (2002) An innate sense of danger. Ann NY Acad Sci 961:341–342
Moreau V, Granier C, Villard S, Laune D, Molina F (2006) Discontinuous epitope prediction 

based on mimotope analysis. Bioinform 22:1088–1095
Moreau V, Fleury C, Piquer D, Nguyen C et al (2008) PEPOP: computational design of immuno-

genic peptides. BMC Bioinform 9:71
Nielsen M et al (2003) Reliable prediction of T-cell epitopes using neural networks with novel 

sequence representations. Prot Sci 12:1007–1017
Nielsen M et al (2007) Prediction of MHC Class II binding affinity using SMM-align, a novel 

stabilization matrix alignment method. BMC Bioinform 8:238
Nielsen M, Lundegaard C, Blicher T, Peters B et al (2008) Quantitative predictions of peptide binding 

to any HLA-DR molecule of known sequence: NetMHCIIpan. PLoS Comput Biol 4:e1000107
Noguchi H et al (2002) Hidden Markov model-based prediction of antigenic peptides that interact 

with MHC Class II molecules. J Biosci Bioeng 94:264–270
Peters B, Sette A (2005) Generating quantitative models describing the sequence specificity of 

biological process with the stabilized matrix method. BMC Bioinform 6:132



202 M.N. Davies and D.R. Flower

Peters B, Bui HH, Frankild S, Nielson M et al (2006) A community resource benchmarking pre-
dictions of peptide binding to MHC-I molecules. PLoS Comput Biol 2:e65

Ponomarenko J, Bui HH, Li W, Fusseder N et al (2008) ElliPro: a new structure-based tool for the 
prediction of antibody epitopes. BMC Bioinform 9:514

Ponomarenko JV, Bourne PE (2007) Antibody-protein interactions: benchmark datasets and pre-
diction tools evaluation. BMC Struct Biol 7:64

Rammensee H et al (1999) SYFPEITHI: database for MHC ligands and peptide motifs. 
Immunogenet 50:213–219

Reche PA et al (2002) Prediction of MHC Class I binding peptides using profile motifs. Hum 
Immunol 63:701–709

Rubinstein ND, Mayrose I, Pupko T. (2009) A machine-learning approach for predicting B-cell 
epitopes. Mol. Immunol 46:840–847

Saha S, Raghava GPS (2006) Prediction of continuous B-cell epitopes in an antigen using recur-
rent neural network. Proteins 65:40–48

Saxova P, Buus S, Brunak S, Kesmir C (2003) Predicting proteasomal cleavage sites: a compari-
son of available methods. Int Immunol 15(7):781–787

Serruto D, Rappuoli R. (2006) Post-genomic vaccine development. FEBS Lett 580:2985–2992
Singh H, Raghava GPS (2001) ProPred: prediction of HLA-DR binding sites. Bioinform 

17:1236–1237
Singh H, Raghava GPS (2003) ProPred1: prediction of promiscuous MHC Class-I binding sites. 

Bioinform 19:1009–1014
Swain MT et al (2001) An automated approach to modelling Class II MHC alleles and predicting 

peptide binding. In: Bourbakis NS (ed) Proc 2nd IEEE Int Symp Biol.-Inform Biomed Engin. 
IEEE Computer Society Press, pp. 81–88

Vivona S, Gardy JL, Ramachandran S, Brinkman FS et al (2008) Computer-aided biotechnology: 
from immuno-informatics to reverse vaccinology. Trends Biotechnol 26:190–200

Vyas JM, Van der Veen AG, Ploegh HL (2008) The known unknowns of antigen processing and 
presentation. Nat Rev Immunol 8:607–618

Ya L, Davydov I, Tonevitsky AG (2009) published in Molekulyarnaya Biologiya 43(1):166–174
Zhang H, Lundegaard C, Nielsen M (2009) Pan-specific MHC Class I predictors: a benchmark of 

HLA Class I pan-specific prediction methods. Bioinform 25:83–89



203

10.1  Introduction

The possibility of quickly obtaining the complete genome sequence of bacterial 
pathogens produced a dramatic change in the process leading to the development 
of protein-based vaccines. While the traditional approach is focused on the identi-
fication and purification of subunits such as toxins or capsular polysaccharides 
from the organism, it has become possible to obtain the complete set of potentially 
expressed proteins from the DNA sequence and, using a combination of computa-
tional and experimental approaches, to select a list of the potential antigens to be 
tested in animal models. This innovative process, termed “Reverse Vaccinology” 
and first applied to the case of Neisseria meningitides serogroup B (MenB), has 
dramatically increased the efficiency of vaccine development (Serruto and Rappuoli 
2006). For MenB, the traditional approach is not feasible because its capsule poly-
saccharide is structurally identical to a self-antigen, while a protein-based vaccine 
had eluded researchers for decades due to the high allelic variation of known anti-
gens. For this reason, the complete genome of a virulent isolate was sequenced 
(Tettelin et al. 2000), 28 novel protective antigens were identified by a combination 
of computational and experimental screening of the proteins predicted to be 
encoded in the genome (Pizza et al. 2000), and a potentially universal vaccine based 
on five of these antigens was developed (Giuliani et al. 2006). Later on, the original 
process based on the genomic sequence of a single isolate was extended into a 
Pangenomic Reverse Vaccinology (PRV) approach, for the design of a vaccine 
against Streptococcus agalactiae (Group B Streptococcus, GBS) (Maione et al. 
2005; Tettelin et al. 2005). The whole pangenome of the species (see Chap. 2 for 
the introduction), rather than the genetic repertoire of a single isolate, was mined. 
This allowed the identification of a large number of previously unknown potential 
vaccine targets, including proteins encoded by genes that are not shared by the 
whole population of the pathogen under investigation.
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The Pangenomic Reverse Vaccinology approach entails a succession of steps, in 
which a shorter list of the best candidates is obtained by successive filtering and 
prioritization steps starting from all the proteins predicted to be encoded within the 
pathogen pangenome. Although the details of the procedure depend on the biology 
of the pathogen, a general scheme can be given. Once the genomic sequence from 
an appropriate number of isolates has been determined (see Hogg et al. 2007 and 
Tettelin et al. 2008) for a discussion on how to establish the right number of 
genomes to be sequenced), the steps required for a complete PRV include: (i) the 
prediction of open reading frames (ORFs) from all genomes, along with the func-
tion and cellular localization of the predicted proteins, (ii) the clustering of the 
predicted ORFs into Clusters of Orthologous Genes (COGs), (iii) the bioinformat-
ics screening of COGs to select and prioritize candidate antigens, (iv) the experi-
mental validation of bioinformatics predictions, and (v) the study of the selected 
antigen distribution within the population structure of the species.

In this process, starting from the overall number of predicted ORFs and COGs, 
gene clusters are sequentially removed from the candidate list when the localization 
of their products is certainly cytoplasmic (based on both localization prediction and 
functional annotation), or when they encode for known antigens whose immuno-
logical characteristics have already been investigated. Since the goal of the in silico 
screening is to collect the largest number of candidates, with the only limit of mak-
ing the further experimental investigation feasible and reasonably prioritized, the 
first selection steps are designed to favor sensitivity over specificity.

One of the most important goals of the in silico analysis is the improvement of 
the annotation of the candidates throughout the filtering steps, in order to have a 
prioritized list to be passed on for experimental validation. Features that affect the 
priority to be given to candidates include: (i) the presence/absence distribution 
profile in the whole pathogen population, or in compartments of the population that 
are known to be of major clinical relevance, (ii) the degree of sequence variability, 
(iii) the number of predicted trans-membrane domains that affect the viability of the 
candidate in the following experimental process, (iv) the presence of leader pep-
tides or lipoprotein signatures, outer membrane anchoring motives and host-cell 
binding domains such as RGD (Brennan and Shahin 1996), (v) anomalous G + C 
content of the chromosomal region, which is often a signature of acquisition by 
horizontal transfer, (vi) the presence of tandem repeats in or at the 5¢ ends of genes 
that characterize certain virulence genes (Saunders et al. 1998; Hood et al. 1996; 
Bentley et al. 2007), and (vii) the homology matches of the candidate genes to 
human genes in order to avoid potential autoimmune reactions. Also, databases of 
protein families such as Pfam (Finn et al. 2008), TIGRFams (Haft et al. 2003), and 
PHN-Families (Medini et al. 2006) are scanned to find distant homologies that can 
contribute to the assignment of a hypothetical subcellular localization or functional 
annotation to each predicted ORF or COG. Searches for orthologous proteins and 
virulence factors previously characterized in other organisms are also conducted.

In the earliest application of Reverse Vaccinology, the screening of vaccine can-
didates was typically performed using the algorithms described in Sect. 10.2. It was 
performed on the genome of an identified “type” strain, historically the only one or 
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the first one for which the sequence was available. As a secondary step, conservation 
and variability of the candidates in other genomes was investigated through the 
methods described in Sect. 10.3, to add upon one-genome analysis. This approach, 
although conceptually simple, has the obvious limitation of being severely biased 
toward the type strain selected, which is particularly relevant in species with an 
“open” pangenome.

Conversely, if a sequence of more than one strain is available, a PRV approach 
can be taken. After the identification of the ORFs in all the available genomes, 
clusters of orthologous genes (COGs) are constructed as described in Sect. 10.3.1, 
and the list of candidates is built in terms of COGs rather than single antigens. As 
a consequence, if the number of genomes is large enough and the sampling is epi-
demiologically meaningful, each candidate is already intrinsically characterized in 
terms of its distribution within the species population and its sequence variability.

10.2  Single Genome Analysis

10.2.1  The Annotation Procedure

The first step of the procedure is the determination of the genes encoded by a 
genome sequence. Compared to the efforts for the prediction of genes in eukaryotes, 
there is relatively little work done for the prediction of genes in prokaryotes. 
Computational methods to identify protein-encoding genes specific to prokaryotic 
genomes have been developed in the late nineties, and are based on methods bor-
rowed from artificial intelligence, aiming to statistically define the functional role of 
each site in a given DNA sequence using local patterns of nucleotide composition.

The software packages most widely used for this purpose are GeneMark 
(Lukashin and Borodovsky 1998) and GLIMMER (Delcher et al. 1999). GeneMark 
predicts the position of genes by identifying the sequence of switches from coding 
to noncoding state and vice-versa, and maximizes the probability of the observed 
DNA sequence using model parameters defined on the Escherichia coli genome. 
Since the statistical model of GeneMark does not allow the overlap of two genes, 
the prediction of the algorithm is then refined using a probabilistic model of 
Ribosomal Binding Sites (RBS) also derived from the annotated E. coli genome. 
Recently, a gene prediction method based on an improved algorithm for the identi-
fication of RBS and on a novel method for the identification of polycistronic oper-
ons have been proposed (Nishi et al. 2005).

Beside these model-based methods, an alternative approach to genome-scale gene 
prediction that leverages on the large body of knowledge on gene sequences available 
in sequence databases has been developed (Frishman et al. 1998). A probabilistic 
model of protein coding genes and of RBS has been derived from a combination of 
homology searches against a database of known genes. This model has demonstrated 
a high degree of sensitivity and a good accuracy in the prediction of the starting 
sites of genes.
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The next step in the selection pipeline consists of the prediction of a biological 
function for each of the predicted genes using a combination of bioinformatics 
tools. At the end of this step, the raw DNA sequence is annotated by a list of the 
regions that are potentially translated into proteins. A putative function for these 
proteins, giving a preliminary picture of the biology of the organism, and a first 
selection of the candidates for development as vaccine targets is then defined.

Traditionally, characterizing directly the function of a single protein requires a 
large body of careful experimental work and is therefore unfeasible on a genomic 
scale. However, information on protein functions in a newly sequenced organism 
can be obtained using the large body of knowledge stored in protein sequences 
databases. The most widely used method for function prediction is the homology 
transfer of annotation. The idea behind this approach is that proteins that differenti-
ated through speciation from a common ancestor usually maintain similar func-
tions. However, this method is based on a number of assumptions that should be 
evaluated with caution, case by case.

In practice, homology is usually inferred from sequence conservation, and the 
homology-based annotation of protein sequences is accomplished by a combination 
of sequence similarity searches against annotated databases, such as UniProt (The 
UniProt Consortium 2008), GenBank (Benson et al. 2008), and Ensembl (Flicek et al. 
2008), using one of the popular sequence alignment methods, such as, BLAST or 
PSI-BLAST (Altschul et al. 1997). Although it is widely accepted that the higher the 
level of sequence conservation, the more likely it is that the query and target proteins 
share a similar function, it is difficult to identify a safe threshold for the conservation 
of function, and verification of the sequence alignment by experts is recommended.

An often-overlooked difficulty in performing the functional annotation step on 
a genomic scale is inherent to the simplification necessarily introduced when con-
densing information about a complex concept such as protein function into a sum-
mary annotation. Proteins often perform more than one function, and the details 
depend on the biology of the organism. To help the researchers to describe protein 
function in a nonarbitrary way, several large interdisciplinary teams have attempted 
to build ontologies of biological functions (Bard and Rhee 2004). The model for 
these projects has been the Enzyme Commission, which defined a four-digit system 
(EC number) for the classification of enzymes. The Gene Ontology (GO) project 
also extends this approach to nonenzymatic functions by providing a controlled 
vocabulary to describe the function of any gene product. Thus, the GO has become 
the standard for the classification of protein function in biological systems (see 
Chap. 19 for the more detailed discussion about ontologies).

Another source of errors in proteins annotation is the fact that many proteins are 
multidomain, and often the query and the annotated target sequence share only a 
portion of the sequence, corresponding to one conserved domain. In these cases, the 
transfer of annotation from the target to the query sequence is not justified. Many 
databases of protein domains and domain families, such as TIGRFAMs (Haft et al. 
2003) and Pfam (Finn et al. 2008), have been compiled and manually curated. 
However, the coverage of these databases is limited. To reduce the noise introduced by 
multidomain proteins and to bypass the bottleneck of manual curation, unsupervised 
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methods of protein classification into families have been proposed [PHN-Fams 
(Medini et al. 2006)]. They allow the assignment of biological functions to single 
proteins and to protein complexes, improving the signal-to-noise ratio in sequence-base 
homology detection and homology transfer.

10.2.2  Review of the Methods for Protein Localization 
Prediction

Despite the growing size of sequence databases, 30–40% of the proteins encoded 
into a typical bacterial genome have no homology to proteins of known function. To 
circumvent this problem, a large set of computational tools has been developed to 
predict protein function directly from a sequence. For a recent review on the main 
methods, see (Punta and Ofran 2008). In this section, we concentrate on the predic-
tion of the cellular localization of proteins from sequence, which is of fundamental 
importance for the selection of possible vaccine candidates, based on the concept 
that, in order to elicit antibody response from the host, proteins must be visible to 
the immune response and must therefore be present outside of the bacterial cell.

In bacterial cells, surface proteins are synthesized in the cytoplasm and are then 
transported to the extracellular space by one of several transport systems. One of 
these is the type I secretion system (Holland et al. 2005), which shuttles proteins 
directly outside the bacterial cell. In type II secretion systems (Pugsley 1993), the 
secretion is a two-step process, where the protein is first inserted into or translo-
cated across the cytoplasmic membrane, and then, in Gram-negative bacteria, 
inserted into or translocated across the outer membrane. Other transport systems 
include type III (Hueck 1998) and type IV (Christie et al. 2005) secretion systems, 
which directly inject effector proteins into host cells through specialized, contact 
dependent secretion systems, and type V (Thanassi et al. 2005) secretion systems, 
or autotransporters, where the exported proteins contains a self-transporter domain 
that is secreted through a pore formed by a pore-forming domain encoded in the 
C-terminus of the protein.

Proteins are directed to one of these export system by signals encoded in their 
sequence, like the N-teminal signal peptides that direct the post-translational 
export out of the cytoplasm, or the differences in amino-acid-composition which 
are characteristic of proteins destined to engage to different compartments 
(Cedano et al. 1997). Although the complete set of sequence-encoded features 
directing the localization of the nascent protein is far from being characterized, 
these signals can be identified using computational methods. These methods are 
able to predict the localization of a protein from the amino-acid sequence of the 
protein alone, can be used in the high-throughput screening of large sets of pro-
teins and can therefore be employed in the selection of candidate antigens from 
complete genome sequences.

The methods for the prediction of the localization of proteins in bacterial cells 
can be classified into three families: (I) computational methods based on statistical 
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properties of the protein amino acid sequence (Gardy et al. 2003, 2005; Gardy 
et al. 2003; Yu et al. 2004); (II) feature-based methods (Bendtsen et al. 2004a, b, 
2005; Juncker et al. 2003; Kall et al. 2007); (III) homology based methods. For a 
recent review of localization prediction methods in bacteria, see (Gardy and 
Brinkman 2006).

Computational methods employ a wide range of unsupervised classification 
techniques based on statistical properties of the sequence, such as its n-peptide 
composition (Yu et al. 2004), the homology to characterized proteins, the presence 
of signal peptides, trans-membrane helices, or specific motifs (Gardy et al. 2005). 
The different lines of evidences are often integrated into a single prediction by 
machine-learning tools, like PSORTb (Gardy et al. 2005). These methods, although 
having a precision as high as 96% in the identification of surface exposed proteins, 
usually have values of recall in the range of 70–80% against annotated datasets, due 
to the fact that prediction is performed only when enough evidence is accumulated 
(Gardy and Brinkman 2006). This drawback is especially important for extracel-
lular proteins, for which the training datasets, which must be composed of experi-
mentally characterized proteins, are usually smaller.

Feature-based methods rely on the identification of sequence features that 
strongly support specific localization, such as the presence of signal peptides (short 
N-terminal stretches of sequence that cause a protein to be exported out of the cyto-
plasm of bacterial cells). While the presence of one of these features can support or 
exclude a localization prediction, its absence does not have any predictive relevance 
on localization. Distinct prediction methods exist for each feature, and the choice of 
the best methods and their integration into a single prediction is left to the user.

Homology methods of protein localization are based on the assumption that 
homologous proteins share the same cellular localization. Therefore, through 
homology searches against annotated sequence databases, the annotation of well-
characterized proteins can be transferred onto unknown proteins. The target data-
bases can comprise specialized databases composed only of proteins of known 
localization, like PSORTdb (Rey et al. 2005) or PA-GOSUB (Lu et al. 2005), or 
more general databases like SwissProt (Boeckmann et al. 2003) or GenBank 
(Benson et al. 2008), where information on localization can be gained from text 
extraction from the annotation field. However, using a nonspecialized dataset poses 
additional difficulties due to the heterogeneity of annotations, and the possibility of 
imprecise or ambiguous annotations.

Recently, experimental protocols for the large-scale identification of surfaces 
exposed in gram-positive pathogenic bacteria have been developed and applied to 
the human pathogen Group A Streptococcus (GAS), responsible for an estimated 
600 million cases of pharyngitis worldwide each year (Rodriguez-Ortega et al. 
2006). In this work, bacteria are treated either with trypsin or with proteinase K and 
the released surface protein fragments are identified with mass spectrometry and 
comparisons to public databases of annotated proteins. As a result, 72 surface-
exposed proteins, 68 of which also predicted by PSORT, were identified and the 
testing of a subset of these proteins in an animal model allowed the identification 
of a previously unknown protective antigen.
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10.3  Pangenomic Analysis

Today, as the number of fully sequenced microbial genomes exceeds 800, it is clear 
that microbial diversity has been vastly underestimated and we are just “scratching 
the surface.” In many species, there is extensive genomic plasticity; for example, 
the completion of the genome sequence of Escherichia coli O157:H7 revealed that 
this strain possesses >1,300 strain-specific genes compared with E. coli K12. These 
genes encode proteins that are involved in virulence and metabolic capabilities 
(Perna et al. 2001). Moreover, when the genomes of three E. coli strains (K12, 
O157:H7 and the uropathogenic strain CFT073) were compared, only 39.2% of 
genes could be found in all three strains (Welch et al. 2002). Other reports have also 
revealed an extensive amount of genomic diversity among strains of a single spe-
cies (Tettelin et al. 2005; Brochet et al. 2006; Brzuszkiewicz et al. 2006). From 
these studies, it is evident that it is not possible to characterize a species from a 
single genome sequence. Recently, a new mathematical model was proposed to 
describe the pangenome of several species (Tettelin et al. 2008), showing that an 
unbounded number of genes for the species (an open pangenome) can be realisti-
cally obtained with a vanishing number of new genes found upon sequencing of 
very large number of new genomes (Fig. 10.1).

The pan-genome (see also Chap. 2) can be divided into three elements: a core 
genome that is shared by all strains; a set of dispensable genes that are shared by 
some but not all isolates; and a set of strain-specific genes that are unique to each 
isolate. Conversely, the dispensable and strain-specific genes, which are largely 
composed of hypothetical, phage-related and transposon-related genes (Tettelin 
et al. 2006), contribute to its genetic diversity. The concept of the pan-genome has 
practical applications in vaccine research. In fact, while the ideal vaccine candidate 
is a conserved protein encoded by a gene present in every isolate of the species, in 
several real cases the identification of such a candidate turned out to be impossible. 
Recently, it was shown that the design of a universal protein-based vaccine against 
GBS was only possible using dispensable genes (Maione et al. 2005). In addition, 
the sequencing of multiple genomes was instrumental in discovering the presence 
of pili in Group A and Group B Streptococci and in Streptococcus pneumoniae, an 
essential virulence factor that had been missed by conventional technologies for a 
century (Telford et al. 2006).

10.3.1  Methods for Ortholog Identification

The introduction of the concept of the pangenome has lead to the understanding 
that, in order to select antigens that are protective against the largest possible frac-
tion of circulating strains of a given pathogen, it is important to compare several 
unrelated genomes from the same species and to identify the homologous genes in 
the different strains.
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Homologous proteins are proteins that share a common ancestry and can be 
characterized as orthologs, i.e., genes that originated through clonal inheritance, 
and paralogs, i.e., genes that originated through duplication followed by differentia-
tion (Fitch 1970; Koonin 2005). Although both types of relationship identify 
homologous genes, it is important to distinguish between these two classes, since 
paralogs are likely to have adapted to perform a different function. Several strate-
gies have been defined to identify orthologous and paralogous genes in different 
species, all of which have specific strengths and weaknesses (Chen et al. 2007). The 
most widely used of these methods, and those that are most easily adapted to the 
specific task of identifying homologs in different strains of a single species, are the 
BLAST-based methods, like the Reverse Best Hit (RBH) technique or the 
OrthoMCL algorithm (Li et al. 2003). The RBH identifies orthologs in different 
genomes as the bi-directional BLAST best hit in an all-versus-all comparison. 
However, this approach only compares pairs of genomes, and its generalizations to 
more than two genomes can lead to inconsistencies. OrthoMCL, although origi-
nally developed for identifying orthologs in eukaryotic genomes, can be fruitfully 
applied for many genomes of the same species, since it is able to compare more 
than two genomes at the same time.

Fig. 10.1 Open and closed pangenomes for bacterial species. Red curves indicate closed pan-
genomes; green curves indicate open ones. Shown are the number n of new genes discovered for 
an increasing number N of genomes sequenced, normalized to the average genome size of the 
species, along with their 25–75 percentile intervals. Solid curves show the power law n = ≥ N-a 
least squares fit to data for N ≥ 3, weighted for the 25–75 percentile interval. In each box a dashed 
guide to the eye shows the borderline power law n ~ N-1 to facilitate the comparison of slopes 
(adapted from Tettelin et al. 2008)
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A second approach consists of exploiting the fact that, although variable with 
regards to gene content, genomes from the same bacterial species often show a high 
level of synteny, i.e., the ordering of genes along the chromosome is mostly con-
served and only a relatively small number of rearrangements are present. In this 
approach, groups of orthologous genes can be identified from RBH screens by 
selecting only those that share the same neighboring genes, directly identified using 
pair-wise or multiple whole-genome alignments obtained by programs such as 
MUMmer (Kurtz et al. 2004) or Mauve (Darling et al. 2004), or by using special-
ized software like DAGChainer (Haas et al. 2004), which identifies chains of gene 
pairs sharing conserved order in different genomes.

10.3.2  Allelic Variation in Candidate Antigens

From the pathogen perspective, exposing a core antigen to interaction with the host 
immune system is a big risk. As a consequence, core antigens are often highly vari-
able, while dispensable antigens tend to be more conserved (a typical example 
being the porA and NadA antigens in N. meningitides, respectively).

Recently, S. pneumoniae was shown to express a multiproteic pilus able to elicit 
protection both by active and passive immunization in a mouse model of infection 
(Barocchi et al. 2006; LeMieux et al. 2006). These long surface exposed structures 
are encoded by a chromosomal element defined as the rlrA pathogenicity islet 
(Barocchi et al. 2006). The function of pneumococcal pili is currently an area of 
investigation. To date, pili are known to be involved in adherence to lung epithelial 
cells in vitro, as well as in colonization in a murine model of infection (Barocchi 
et al. 2006; Nelson et al. 2007). In order to determine the feasibility of a protein 
vaccine that includes pilus components, the distribution and sequence variability of 
the rlrA islet among a defined S. pneumoniae collection of clinical isolates was 
investigated in 386 clinical isolates from diverse geographic regions, selected for 
epidemiological relevance and to capture the genetic diversity within S. pneumo-
niae (Moschioni et al. 2008). It was found that approximately 30% of the isolates 
contained the rlrA islet, and that the presence of the rlrA islet correlated with the 
genetic background (defined by Multi Locus Sequence Typing, MLST), suggesting 
that the islet was probably acquired prior to the formation of the clonal complexes 
and steadily maintained during clonal diversification, even in CCs that show evi-
dence of a complex evolutionary history.

The genetic variability of the rlrA pilus islet can be organized into 3 clades. 
Single protein alignments highlight RrgA and RrgC (84 and 98% of sequence iden-
tity between the most divergent clades, respectively) as the most promising compo-
nents for a serotype-independent vaccine, while the variability of RrgB (49% 
sequence identity between the most divergent clades) makes this protein less attrac-
tive. Additionally, the rlrA clade type within a CC was determined to be identical, 
strongly suggesting clonal inheritance of this islet. In contrast, the serotype frequently 
varies within a CC. These findings clearly reveal that the association between the 
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rlrA islet and serotype depends on the genetic link between serotype and genotype. 
In fact, there is a significant correlation between the serotype and the presence of 
the operon only for those serotypes that correspond to a restricted number of CCs, 
such as serotype 9V (CC 162) and serotype 3 (CC 180).

10.4  Experimental Validation

The in silico candidate selection procedure, outlined in Chap. 1 and performed 
according to the methods detailed in Chaps. 2 and 3, usually results in the selection 
of a large number of genes, covering as much as one fourth of the total number of 
ORFs in a genome, or one fifth of the COGs in a pangenome. In general, this 
amounts to several hundred genes. The priority rank assigned to candidates is 
aimed at screening the most promising antigens upfront, and the adherence of bio-
informatics predictions with the actual features of candidate antigens is an open and 
theoretically relevant field of investigation.

However, from a practical standpoint, the conclusive selection of candidate antigens 
needs to be based on experimental evidence. Therefore, simple procedures that 
allow researchers to clone and express large numbers of genes are necessary. 
Fortunately, PCR and robotics development make this possible. In this case the 
availability of the genomic sequence for multiple isolates is also of paramount 
importance, in that they make it possible to design oligonucleotides for the PCR 
primers. These primers can be universal or specific for the different allelic versions 
of the candidate antigens.

10.4.1  Experimental Validation Procedure

The product of each PCR reaction is cloned and screened for expression in a heter-
ologous system. Successful expression depends on the predicted localization of the 
protein. Integral membrane proteins have proven to be particularly difficult to pro-
duce by recombinant techniques in Escherichia coli. Once purified, the recombi-
nant proteins are used to immunize mice and the post-immunization sera are 
analyzed to verify the computer-predicted surface localization of each polypeptide 
and its ability to elicit a quantitative and qualitative immune response. First, the 
immune sera are tested using western blot analysis of the recombinant proteins, 
outer membrane vesicles (OMVs) and total extracts of the bacterium to determine 
if the antibodies are able to recognize both the recombinant and the bacterial pro-
tein, and to confirm the predicted localization of the protein. A limitation of immu-
noblotting is that it requires the boiling of the samples, which results in a disruption 
to the native structure of antigens, preventing antibodies from binding to con-
formational epitopes. To further confirm the presence of the proteins on the 
bacterial surface and to assess their immunogenicity, sera are analyzed by ELISA and 
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fluorescence-activated cell sorter analysis (FACS), in order to measure antibody 
titers and to determine the ability of antisera to bind to the surface of live bacteria.

The direct means to study the protective efficacy of candidate antigens is to 
test the immune sera in an animal model in which protection is dependent on the 
same effector mechanisms as in humans. The lack of reliable animal models has 
often hampered the development of vaccines, and alternative in vitro assays that 
are known to correlate with vaccine efficacy in humans have to be developed 
[e.g., assays that measure bactericidal activity (Goldschneider et al. 1969) and 
opsonophagocytosis (Ross et al. 1987)].

10.4.2  Reverse Vaccinology Case Studies

Serogroup B meningococcus (MenB) represents the first example of the application 
of reverse vaccinology and the demonstration of the power of genomic approaches 
for target antigen identification (Rappuoli 2000). N. meningitidis is a human patho-
gen that, despite available antibiotic therapy, is still a major cause of mortality as a 
result of sepsis and meningitis. Using traditional approaches, vaccines have been 
developed against serogroups A, C, Y, and W135, but for MenB, an efficacious 
vaccine is not yet available, due to the sequence variation of surface-exposed pro-
teins and the cross-reactivity of the serogroup B capsular polysaccharide with 
human tissues.

While the N. meningitidis sequencing project was in progress, the incompletely 
assembled DNA fragments were screened by computer analysis to select proteins 
predicted to be on the bacterial surface or those with homologies to known bacterial 
factors involved in pathogenesis and virulence. After discarding cytoplasmic proteins 
and known Neisseria antigens, 570 genes predicted to code for surface-exposed or 
membrane-associated proteins were identified. Successful cloning and expression 
was achieved for 350 proteins, which were then purified and tested for localization, 
immunogenicity, and protective efficacy. Of the 85 proteins found to be surface-
exposed, 22 were able to induce complement-mediated bactericidal antibody 
response, providing a strong indication of proteins capable of inducing protective 
immunity. In addition, to test the suitability of these proteins as candidate antigens for 
conferring protection against heterologous strains, the proteins were evaluated for 
gene presence, phase variation and sequence conservation in a panel of genetically 
diverse strains representative of the global diversity of the natural N. meningitidis 
population (Maiden et al. 1998). Most of the selected antigens were able to induce 
cross-protection against heterologous strains, demonstrating that the antigens, identi-
fied by in silico analysis, are good candidates for the clinical development of a vac-
cine against MenB (Pizza et al. 2000; Jodar et al. 2002). Five were finally selected, 
and formulated with different adjuvants to immunize mice. Mice sera were found to 
be bactericidal against a large and diverse panel of invasive, circulating strains, 
obtaining a potentially universal vaccine against the MenB population (Giuliani et al. 
2006), which is currently in advanced clinical trials in humans.
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The availability of an increasing number of bacterial genome sequences, 
together with the MenB example, has prompted the application of the reverse vac-
cinology approach to other pathogens, such as GBS (Maione et al. 2005). Use of 
computational algorithms applied to the genomic sequences of eight GBS genomes 
allowed the prediction that GBS contains 589 surface-associated proteins, of which 
396 were core genes and the remaining 193 were absent in at least one strain. Each 
of these proteins was tested for protection against GBS, and four antigens were able 
to elicit protective immunity in an animal model. The important novelty of this 
study is that none of these antigens could be classified as universal, because three 
of them where absent in a fraction of the tested strains, and the fourth core gene 
showed negligible surface accessibility in some strains. The use of multigenome 
sequence information for vaccine design represented a major conceptual step from 
the common concept that a single genome sequence is sufficient to identify surface 
associated proteins to be tested as potential vaccine candidates. Multiple sequences 
may be needed to identify a vaccine formulation that is effective in the case of a 
highly differentiated species, and this situation is likely to be common to many 
important bacterial pathogens.

The use of bioinformatics tools in combination with molecular biology tech-
niques enables the systematic investigation of the utility of potential genomic 
sequences to act as antigens for vaccine production. It is now possible to conceive 
the development of new vaccines against a wide variety of pathogens for which 
classical vaccinology has failed so far and, in theory, this approach could be 
extended to parasites and viruses.

10.5  Bacterial Population Genetics and Vaccine Design

The experimental validation step discussed in Chap. 4 completes a PRV approach 
to vaccine development, and results in one or more vaccine formulations that are 
introduced into early clinical trials for evaluation in humans. However, recent 
pangenomic and metagenomic studies increased our awareness of the degree of 
variability present in natural microbial populations, and its potential impact on 
vaccine design (Medini et al. 2008). In fact, it is now clear that an appropriate 
population genomic investigation is the essential companion of an effective PRV.

Strictly speaking, understanding the population structure of the species under 
investigation would be an important pre-requisite for any pangenomic approach, 
because it would allow an epidemiologically based selection of the genomes to be 
sequenced. However, the construction of epidemiologically sound collections of 
strains is often a difficult and time-consuming task, especially when dealing with 
occasional pathogens that are commonly carried by healthy individuals, and in 
cases where both the carriage and the invasive populations need to be investigated. 
As a consequence, the study of population structure and antigenic distribution is 
often carried in parallel with the PRV procedure. A continuous cross-talk between 
the two processes is indispensable for the development of an effective vaccine.
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10.5.1  Genetic Variability Between Subpopulations

Very recently, it has been shown that the genetic variability within single naturally 
occurring, seemingly homogenous populations of bacteria could be much higher than 
expected (Thompson et al. 2005). Analyzing 12 randomly chosen clones, the authors 
demonstrated extensive allelic heterogeneity with no spatial or temporal substructure 
in the population and with genomes varying over 20% in size. These results could be 
relevant in the design of vaccines against mainly commensal pathogens that occa-
sionally become pathogenic, such as nonpathogenic and pathogenic types of E. coli 
(Welch et al. 2002). For uropathogenic strains of E. coli, island acquisition resulted 
in the capability to infect the urinary tract and bloodstream and evade host defenses 
without compromising the ability to harmlessly colonize the intestine. If the geno-
typic variability of the colonizing population shares a degree of heterogeneity com-
parable to that found in environmental samples, formulates against these pathogens 
should be designed to cover a wide panel of circulating strains.

These findings demonstrate the importance of characterizing the structure of the 
populations of bacterial pathogens, in order to be able to predict the coverage 
obtained by vaccinating using proteins, which are not expressed by all bacterial 
strains, or which are present with different, noncross-protective alleles. Traditionally, 
bacterial strains are grouped into serotypes according to the ability of specific anti-
sera to recognize them. However, due to the lack of general correlation between 
serotype designation and genetic background, Multi Locus Enzyme Electrophoresis 
(MLEE), a technique that classifies bacteria using the isoforms of about 15 meta-
bolic enzymes, was later developed and successfully applied to define the popula-
tion structure of several bacterial species (Selander et al. 1986). With the 
advancement of DNA sequencing techniques, it has become feasible to develop 
typing methods that are based on the sequencing of selected loci in the bacterial 
genomes. Using this approach, the multilocus sequence typing (http://www.mlst.
net) schema, which is based on the sequencing of fragments of ~450 bp in seven 
housekeeping genes, has recently been developed and applied to a growing number 
of bacteria (Maiden et al. 1998) (Fig. 10.2).

For some bacterial taxa, often defined as “genetically monomorphic species,” 
the level of diversification is so low that even more sensitive typing methods are 
required (Achtman 2008). For these organisms, the most promising method is the 
study of Single Nucleotide Polymorphisms (SNP). Originally developed for use in 
humans, and then applied to bacteria for the analysis of single genes (Moorhead 
et al. 2003; Robertson et al. 2004; Weissman et al. 2003), SNPs have recently been 
used to differentiate B. anthracis clinical samples that were collected from a disease 
outbreak (Read et al. 2002), to resolve the population structure of different patho-
gens (Alland et al. 2003; Gutacker et al. 2002; Roumagnac et al. 2006; Achtman 
et al. 2004; Smith et al. 1993) and to propose an M. tuberculosis typing scheme 
(Filliol et al. 2006).

Genetic typing methods constitute a useful tool for the identification of bacterial 
population structure and for the study of the distribution of genes of interest 
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Fig. 10.2 Genetic markers and deviations from population structure. Schematic representation of 
different resolution levels within a typical population structure as identified by various typing 
schemes. Ribosomal RNA (rRNA) typing is the gold standard to differentiate species from other 
members of the same genus, class or even kingdom but, being based on a single locus, frequently lacks 
intra-species resolution. Multilocus typing schemes that are based on ~10 loci, either via enzyme 
electrophoresis (MLEE) or housekeeping-gene sequencing (MLST), provide fine intra-species 
resolution by defining electrophoretic and sequence types (ETs and STs, respectively) and clusters 
of types that group into clonal complexes. By measuring single-nucleotide polymorphisms (SNPs) 
at ~100 loci or applying an extended MLST (eMLST) schema that includes dispensable gene 
sequences, it is possible to further increase the typing resolution and define species-specific 
haplotypes. However, various genes that encode protein antigens have allelic distributions that do 
not correlate with MLST classification and, in principle, only complete genome coverage will be 
able to detect all of the non-clonal genetic variations that shape the fine structure of a bacterial 
population (modified from Medini et al. 2008)

amongst distinct subpopulations, as in the case of the rlrA islet distribution in 
S. pneumoniae strains. Although the rate of recombination is known to be high 
(Feil et al. 2001; Muzzi et al. 2008) for this organism, the three distinct forms of 
this operon present in the circulating strains correlate well with the clonal structure 
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of S. pneumoniae reconstructed by MLST typing (Moschioni et al. 2008). 
Therefore, even for those organisms for which HGT is known to be important, typ-
ing methods can still yield useful information for specific antigens.

10.5.2  Vaccine-Oriented Antigenic Typing

When HGT has a nonnegligible impact on the antigenic profile of pathogenic 
strains in a given species, the relationship between conventional or newly proposed 
typing schemes and important antigens needs to be clarified. A typing scheme for 
a pathogenic species assumes critical importance when a new vaccine is developed 
and, as we have seen in previous sections, it is based on a combination of proteic 
antigens that are noncore, variable or both (see Fig. 10.2).

Although SNPs can be extremely powerful, owing to their provision of greater 
genomic coverage compared with other classification methods, their potential for 
vaccine-oriented population genetics is limited unless specific polymorphisms that 
perfectly associate with antigenic profiles are identified. In these cases, and when 
the level of expression for an antigen is substantially stable despite allelic variation 
or is clearly associated with different variants, serological tests can be successfully 
substituted with sequence-based typing methods. Conversely, phenotypic typing is 
required when the HGT of antigens is substantial, and/or when the level of expres-
sion of an antigen, or the overall degree of its accessibility to antibodies, is found 
to vary in the population.

10.6  Conclusion

In the pre-genomic era, nonproteic antigens such as capsular polysaccharides were 
known to vary within the pathogen population, and serological typing methods that 
directly addressed the variability of the polysaccharides had been available for 
decades. Despite the profound differences in the immunological properties of pro-
teic and polysaccharidic antigens, from a typing perspective they are both surface 
exposed moieties of the pathogen that can be recognized by vaccine-induced anti-
bodies. From a practical standpoint, the typing exercise to be performed is substan-
tially analogous: it determines the portion of the pathogen population that carries 
that moiety in a sufficient amount to elicit immunity in vaccinated hosts. While 
effective, such an antigen-based approach is only capable of providing a static 
snapshot of the population. Bacterial populations are known to evolve very rapidly 
and genomic typing is an instrument capable of providing some hint into the population 
scale evolutionary dynamics of the pathogen. A combination of genetic typing 
(MLST, SNPs or, in the near future, rapid sequencing) and antigen-based serologi-
cal typing is probably the optimal strategy to support the vaccine development 
phase as well as the continued clinical surveillance needed upon the introduction of 
a new vaccine into the field.
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11.1  Introduction

T cells have come to be recognized as critical mediators of competent and lasting 
humoral and cytotoxic immune responses elicited by vaccines (Gillespie et al. 
2000; Gianfrani et al. 2000). This recognition has catalyzed the development of 
computer-driven (immunoinformatics) methods for defining T-cell epitopes directly 
from protein sequences, allowing investigations into the role of T cells to leapfrog 
directly to the leading edge of immunology and vaccine research. A number of 
laboratories are currently pursuing T-cell directed vaccination, hypothesizing that 
this approach may provide the solution to the development of vaccines against 
human pathogens for which no vaccine has yet been developed.

Critical to the development of T-cell epitope-driven vaccines has been the eluci-
dation of the correlates of “immunity” for a wide range of important human patho-
gens. The link between epitope-specific responses, the establishment of T-cell 
memory, and protection from disease has been confirmed for human immunodefi-
ciency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), malaria 
(Blattman et al. 2000; Harrer et al. 1996; Doolan et al. 1997), and other infectious 
diseases. Several laboratories have published data supporting the hypothesis that a 
protective immune response to a number of pathogens requires the development of 
broad T-cell responses to an ensemble of different epitopes (Gianfrani et al. 2000; 
Gillespie et al. 2000). Following exposure to a pathogen, epitope-specific memory 
T-cell clones are established (Blattman et al. 2000). These clones respond rapidly 
and efficiently upon any subsequent infection, secreting cytokines, killing infected 
host cells, and marshalling other cellular defenses against the pathogen.

Despite these proven linkages between T cells and protection against infectious 
disease, and despite the availability of immunoinformatics tools, new and effective 
epitope-driven vaccines have been slow in coming. The first T-cell epitope-driven 
vaccines for a globally relevant infectious disease, HIV, failed in the clinic, raising 
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questions about T-cell epitope-driven vaccine efficacy for human pathogens 
(Wilson et al. 2008). To better understand the reason for the failure of previous 
epitope-driven vaccines, it is important to remember that vaccine design, delivery, 
and the quality of the resulting immune response all play critical roles in vaccine 
efficacy. These factors can be summarized as follows:

Immunogen + Adjuvant + Delivery vehicle = Vaccine
It is the authors’ view that without the proper payload of effective epitopes (in 

terms of quality and quantity), the right adjuvant (triggering the right type of 
immune response) and the right delivery vehicle (focusing on the right immune 
compartment), a T-cell epitope-driven vaccine is bound to fail. Therefore, rather 
than abandoning all hope on the basis of the failure of two of the best known 
“T-cell-directed” HIV vaccines (Wilson et al. 2008; McElrath et al. 2008), we and 
others believe that T-cell-directed vaccines will work if properly constructed 
(Hanke 2008). These failed HIV vaccines were developed prior to the era of the 
availability of higher-quality vaccine design tools that have now enabled the 
effective selection of highly cross-conserved HIV epitopes, and the delivery of 
those epitopes in properly designed constructs (whether as a polytope or an 
immunogenic consensus protein as described by our laboratory and by Hanke 
et al. 2008).

Although commonly overlooked by vaccine developers, both T-help and cyto-
toxic T-cell response are also required for effective vaccines against viruses. In fact, 
nowhere is the lack of effective T-cell-directed vaccine design more obvious than 
for influenza vaccines. Currently licensed conventional inactivated vaccines (CIV) 
for influenza induce a hemagglutination inhibition (HI) response that is primarily 
strain-specific, and is relatively short-lived due to modifications of the B-cell anti-
genic components in the year-to-year variation of the influenza virus. Evidence 
supporting the development of T-cell directed vaccines for influenza includes the 
following: (1) T-cell help is required for high specific IgG antibody titers 
(Kamperschroer et al. 2006), (2) vaccine efficacy is improved when cross-reactive 
helper-T-cell populations are present from prior infection and/or vaccination 
(Rasmussen et al. 2001), (3) the rate of viral clearance depends on the presence of 
CD4 + T cells, (Belz et al. 2002), (4) cytotoxic T cells are required for viral clear-
ance (Rasmussen et al. 2001), and (5) memory T-helper (TH) cells specific to a 
previous influenza strain lead to distinct cross-strain antibody responses (Marshall 
et al. 1999). It will not be long before influenza vaccine developers realize that 
much is to be gained from the addition of T-cell directed immune response to highly 
conserved influenza epitopes (McMurry et al. 2008). Perhaps a more universal 
influenza vaccine will then be developed.

Cell-mediated immunity is critical for the control of chronic bacterial infections 
and for protection against disease. This is particularly true for vaccines against 
bacterial diseases caused by Mycobacterium tuberculosis (Mtb) and Listeria mono-
cytogenes, which prefer an intracellular lifestyle as a means of escaping the 
humoral (antibody) defense. Mtb is an example of an intra-cellular pathogen (it also 
persists in granulomas in the extracellular state). It is well known that antibodies to 
Mtb do not protect against tuberculosis. In contrast to antibody response, the adoptive 
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transfer of T cells does confer protection from tuberculosis (TB) in the mouse 
model (Lefford 1975). In humans, the induction of broad T-cell mediated immunity 
to Mtb requires the involvement of Type 1 cytokines including interleukin 2 (IL-2), 
interferon g (IFN-g), and tumor necrosis factor a (TNF-a) (Kaufmann and Hess 
1999). In addition, it is clear that CD4 + T cells are involved since TH1-mediated 
immune responses have been demonstrated in mouse protection studies (Cooper 
et al. 1993; Flynn et al. 1993; Scanga et al. 2000). TH1-biased T-cell responses to 
Mtb epitopes not contained in Bacillus Calmette-Guérin (BCG) may help control 
immune response in latently-infected individuals. Although TH1 cytokines are 
essential for protection, their levels of production do not strictly correlate with 
disease state. CD8 + T cells also play a significant role in TB immunity (Serbina 
and Flynn 2001). Importantly, studies of human CD8 + restricted responses to Mtb 
antigens have revealed that these cells play an important role in the control of Mtb 
replication in the alveolar macrophage (Canaday et al. 2001; Lewinsohn et al. 2007; 
Cho et al. 2000). Taken together, these data suggest that the stimulation of TH1-
biased CD4 + and CD8 + T cell responses may be critical to the control (and eradi-
cation) of latent bacterial infection in chronically infected individuals.

11.2  Technological Advances

Several technical advances have enabled vaccines to be better designed for T-cell 
dependent immune responses. These are (1) improved immunoinformatics tools for 
vaccine design, (2) improved delivery vehicles, and (3) improved vaccine adjuvants.

11.2.1  Immunoinformatics for Vaccine Design

One limitation of conventional vaccination, and to a lesser extent natural infec-
tion, is that the immune system often focuses strongly on a surface antigen, 
which can be the most mutable immunogen of the pathogen. This is clearly the 
case in the context of influenza infection, in which the immune response focuses 
on hemaglutinin (HA), a major surface glycoprotein. In the case of HIV and 
other viruses, vaccination with more conserved, subdominant epitopes has been 
shown to circumvent this hierarchy and potentiate cross strain protection 
(Ostrowski et al. 2002; Nara and Lin 2005). Similarly, a conserved TH-directed 
vaccine may stimulate a more “democratic” immune response, increasing the 
number targets for T-cell recognition, thereby providing T-cell help to antibody 
response, despite potential viral variability (Santra et al. 2002; Subbramanian 
et al. 2003; Scherle and Gerhard 1986, 1988; Russell and Liew 1979; Johansson 
et al. 1987). In addition, broadening the T-cell repertoire might make it possible 
to impair viral immune-escape mechanisms and decrease viral loads sufficiently 
to disrupt transmission.
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To identify T-cell epitopes for vaccine development, it is necessary to determine 
which peptides of a pathogen’s proteome will bind to the human major histocom-
patability complex (MHC). Only about 2% of peptides have the ability to bind to 
MHC, the critical first step required for T-cell response. Another critical determi-
nant of T-cell epitope immunogenicity is the strength of epitope binding to MHC 
molecules (Lazarski et al. 2005). It is this peptide-MHC interaction that is modeled 
by immunoinformatics tools [reviewed in Brusic et al; Petrovsky and Brusic 2006 
and De Groot et al. (De Groot and Berzofsky 2004)].

EpiVax, Inc., has developed a suite of computer algorithms that can be applied 
to the development of epitope-based vaccines; this suite includes EpiMatrix, 
ClustiMer, Conservatrix, BlastiMer, Aggregatrix, Optimatrix, and VaccineCAD. 
The EpiMatrix algorithm, which rates the MHC binding capability for every 9 mer 
in a protein sequence, has been benchmarked using a set of “gold standard” 
epitopes published by the IEDB (Immune Epitope Database) (Zhang et al. 2008). 
Using this set of epitopes as an objective standard, EpiVax assessed the predictive 
accuracy of the EpiMatrix algorithm relative to eight well-known epitope-mapping 
tools (such as SYFPEITHI and BIMAS). The comparisons confirm that the 
EpiMatrix algorithm is the most accurate predictive tool currently available: http://
www.EpiVax.com/comps/(Username: guest, Password: welcome) (Ardito 2009). In 
addition to the EpiMatrix algorithm for T-cell epitope identification, the EpiMatrix 
toolset also includes a set of analysis and design tools directly applicable to the 
vaccine design process. ClustiMer, an ancillary algorithm used with EpiMatrix, 
maps MHC motif matches along the length of a protein and calculates the density 
of motifs for eight common class II HLA alleles: DRB1*0101, DRB1*0301, 
DRB1*0401, DRB1*0701, DRB1*0801, DRB1*1101, DRB1*1301, and 
DRB1*1501. Typical T-cell epitope “clusters” range from 9 to roughly 25 amino 
acids in length, and considering their affinity to multiple alleles and across multiple 
frames, they can contain anywhere from 4 to 40 binding motifs, also known as 
promiscuous epitopes. The Conservatrix algorithm identifies conserved segments 
from among any given set of variable protein isolates. Pairing EpiMatrix with 
Conservatrix allows users to identify peptides, which are both potentially antigenic 
and conserved in circulating disease strains. BlastiMer compares the peptides’ 
sequence to the human proteome to ensure that the peptides do not contain too 
much homology to any human protein. The Aggregatrix algorithm addresses the 
classical “set cover” problem by guiding the selection of a portfolio of epitopes that 
collectively “cover” a wide variety of both the known circulating strain variants of 
a given pathogen and the majority of common human HLA types. OptiMatrix is an 
algorithm that is used for designing altered peptide ligands that optimize the 
“aggretope.” Specifically, OptiMatrix guides strategic substitutions of the MHC-
contact residues such that the peptide binds more strongly; the TCR-facing residues 
are free to interact as they would in the unaltered peptide. The VaccineCAD 
algorithm arranges putative T-cell epitopes to create optimized “string-of-beads” 
vaccine immunogens. The EpiAssembler algorithm was developed, especially for 
use with highly variable RNA viruses. It is used to analyze the universe of viral 
isolates and to create composite epitope sequences in which constituent overlapping 
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epitopes are both highly conserved and highly immunogenic (Koita et al. 2006). 
Taken collectively, these tools allow researchers to quickly and effectively identify 
T-cell epitopes and design new antigens for experimental study.

EpiVax’s immunoinformatics toolkit, developed by De Groot & Martin and sum-
marized in Fig. 11.1, has been used to rank proteins for potential immunogenicity 
(Koren et al. 2007; De Groot et al. 2007) and to design and evaluate vaccines (De 
Groot, Knopf, et al. 2007; De Groot et al. 2001; Bond et al. 2001). Over the course 
of a decade of research, these tools have been validated in vitro and in vivo. The 
tools are currently in use for both vaccine and protein therapeutics design (Koita 
et al. 2006; Koren et al. 2007; De Groot et al. 1997; Bond et al. 2001; McMurry et al. 
2005; Dong et al. 2004; Tatarewicz et al. 2007). We note that Korber et al. have 
recently implemented very similar tools for the design of HIV-1 vaccines, although 
these tools have yet to be tested in animal models (Thurmond et al. 2008). For pub-
lished descriptions of these tools, see previously published chapters in the Springer 
Immunomics series (De Groot et al. 2007; De Groot et al. 2008).

11.2.2  Improved Delivery Vehicles

The same range of delivery vehicles that exist for conventional vaccines can be used 
for the development of T-cell epitope-driven vaccines. For example, immunome 
derived vaccines (IDV) and epitope-based vaccines IDV can be formulated and 

EpiMatrix:
Maps T-cell epitopes across HLA Class I & II

Identifies promiscuous epitopes (regions of high epitope density across HLA)

Identifies epitopes conserved across pathogen sequence variants

Identifies epitopes with homology to autologous human proteins or to

ClustiMer:

Conservatrix:

BlastiMer:

other organisms of interest

OptiMatrix:
Strategically alters peptides to optimize aggretope

Aggregatrix:
Selects a set of peptides to maximize coverage of pathogen sequence variants

VaccineCAD:
Minimizes “nonsense” immunogenicity at the junctions between epitopes
in a string-of-beads construct.

EpiAssembler:
Assembles overlapping epitopes to Immunogenic Consensus Sequences (ICS)

Fig. 11.1 EpiVax vaccine development toolkit
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delivered as string-of-beads multi-epitope proteins or as peptides in a carrier vehi-
cle such as a liposome or viral-like protein (VLP). Alternatively, the sequences of 
IDV antigens or epitope strings can be inserted into a DNA vector, or a viral or 
bacterial vector such as adenovirus or Salmonella. Dendritic cells are the desired 
targets of such delivery vehicles. However, as with conventional vaccines, the effi-
ciency of this targeting varies.

11.2.2.1  Targeting Dendritic Cells

As critical intermediaries between antigens and lymphocytes (Steinman 2001), 
dendritic cells are a logical site for vaccine targeting. In addition to their role as 
mediators of immune responses, dendritic cells play a critical role in sensing envi-
ronmental cues that can lead to induction of tolerance (Mahnke and Enk 2005). 
Dendritic cell function is differentiation-dependent (see Fig. 11.2): Antigen capture 
takes place in the immature state, whereas potent immune stimulation follows after 
a complex maturation program resulting from stimulation by microbial toll-like 
receptor (TLR) ligands, innate lymphocytes, and CD40 ligation (Janeway and 
Medzhitov 2002; Takeda et al. 2003; Bendelac and Medzhitov 2002; Caux et al. 
1994) (see section on adjuvants). In this view, immature dendritic cells induce tolerance 

Immature DC Mature DC

LPS

TLR

CD40: CD40L

MHCII: TCR

CD70: CD27

CD80: CD28

Fig. 11.2 Dendritic cell maturity can determine T cell fate. On the left is an immature dendritic 
cell. It has not received any danger signals, has high phagocytic activity and expresses very low 
levels of costimulatory molecules such as CD40, CD80, and CD70. T cells that are reactive for 
antigens presented by a dendritic cell in this state will be anergized. On the right is a mature dendritic 
cell. It has received several danger signals such as TLR stimulation or TNF-a mediated signaling 
from macrophages and NK cells and now expresses high levels of CD40, CD80, CD70 and MHC 
class II in addition to secreting IL-12 which facilitates the binding and activation of T cells
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to self proteins, and mature dendritic cells stimulate immunity to pathogens. The 
term “mature” has also been used to phenotypically characterize dendritic cells 
expressing high surface levels of MHC class II, CD40, CD80, and CD86, all mark-
ers associated with T-cell priming ability.

Despite the discrimination between mature and immature dendritic cells in 
the immunological literature, recent studies show that phenotypically mature 
dendritic cells do not always stimulate immunity and, in some cases, induce 
tolerance (Spörri and Reis e Sousa 2005; Albert et al. 2001; Menges et al. 2002; 
Fujii et al. 2004). Moreover, antigen presentation by dendritic cells in the 
steady-state does not necessarily result in T-cell inactivation (Scheinecker et al. 
2002) and, in some cases, stimulates immunity (Mayerova et al. 2004; Shibaki 
et al. 2004). Indeed, a new paradigm is emerging from these apparent contradic-
tions: immature dendritic cells may give rise to a range of “effector” dendritic 
cells that lead to different T-cell fates (Reis e Sousa 2006). The type of “effector 
dendritic cell” appears to be dependent on a number of cytokine and chemokine 
signals, which can be replicated in the vaccine context through the use of the 
appropriate adjuvants.

A further innovation in vaccine design has been the use of targeting molecules 
to gain entry into dendritic cells. Dendritic cells express DEC-205, an endocytic 
receptor that enhances antigen uptake and presentation. DEC-205 is a member of 
the multi-lectin receptor family and contains a cysteine-rich domain in its amino-
terminus, a fibronectin type II domain, and multiple C-type lectin domains, which 
are important for the binding and uptake of carbohydrate antigens (Jiang et al. 
1995). Upon endocytosis, DEC-205 enters MHC class II compartments (MIICs), 
late endosome/lysosome compartments that are rich in class II MHC, mediating 
enhanced antigen presentation (Jiang et al. 1995). MIICs are the sites where pep-
tides, formed by lysosomal proteolysis, bind to MHC class II molecules just before 
they are transported to the cell surface for presentation to CD4 + T cells (Mahnke 
et al. 2000). In addition, DEC-205 mediates the presentation of protein antigens 
through the exogenous TAP-dependent MHC class I pathway, leading to the activa-
tion of CD8 + T cells (Bonifaz et al. 2002).

The trafficking properties of DEC-205 have made it an excellent marker for 
dendritic cells through targeted antigen delivery via monoclonal aDEC-205. 
Ovalbumin (OVA), HIV-Gag and hen egg lysozyme peptide 46–61 are examples of 
antigens that have been conjugated to aDEC-205. It is not surprising, however, that 
these hybrid antibodies elicit either immunogenic or immuno-suppressive responses 
in vivo, depending on immunization conditions such as the presence of adjuvants. 
Strong inflammatory T-cell responses are generated by the coadministration of 
agonistic aCD40 or other dendritic cells maturation stimuli such as lipopolysac-
charide or poly I:C (Bonifaz et al. 2002; Hawiger et al. 2001; Trumpfheller et al. 
2006; Boscardin et al. 2006). Without aCD40 agonist, dendritic cells in the steady 
state give rise to sustained levels of CD4 +/CD25 + Tregs and to deletion of anti-
gen-specific T cells (Bonifaz et al. 2002; Hawiger et al. 2001; Kretschmer et al. 
2005; Mahnke et al. 2003; Bruder et al. 2005). The mechanism of tolerance induc-
tion has not been fully explained.



230 T. Cohen et al.

11.2.2.2  Mucosal Delivery

Mucosal vaccination has received more attention in the TB vaccine field recently 
(Dietrich et al. 2006; Santosuosso et al. 2006). Mucosal surfaces are important for 
priming immune responses, especially for a pathogen like Mtb that infects a host 
via the mucosal surface of the lung (Fig. 11.3). A number of studies have shown 
signs of protection against Mtb by mucosal vaccination (Wang et al. 2004; Chen 
et al. 2004; Giri et al. 2005).

Larger complexes are more avidly taken up by antigen presenting cells (APCs) 
in mucosal linings. This has provided impetus for the selection of a range of delivery 
vehicles that presents as complexes to APCs. For example, we have used cationic 
liposomes for epitope delivery. These stable structures are prepared from three lipid 
components: dioleylphosphatidylethanolamine, dimethylaminoethanecarbamol-
cholesterol, and polyethylene glycol 2000-phosphatidyl-ethanolamine. The lipids 
are mixed and exposed to a range of stresses that allow them to form unilamellar 
liposomes. Unilamellar liposomes are then mixed with adjuvant (such as CpG 
oligodeoxynucleotide) and the vaccine immunogen (proteins or peptides). Vesicles 
that are consistently less than 150 nm in diameter, the proper size for APC uptake, 
are produced by extruding the liposomes through polycarbonate filters. Liposomes 
can be stored up to a few weeks before use, and when used in combination with our 
DNA-prime vaccines, they have been shown to be very effective at inducing high 
quality immune responses that are protective against challenge in murine models 
(Fig. 11.4).

Vaccine delivery device by (1A) nasal or
(1B) oropharyngeal route

Adjuvanted antigen uptake in vaccine
through the nasal mucosa

Immune-induction in adenoids and
tonsils representing human NALT

Specific antigen targeting and migration
of mucosal DC subsets

Immune induction and amplification
in regional lymph nodes

Compartmentalized homing/extravasation
of NALT-induced T and B cells to secretory
effector sites in the upper airways,
gut and uterine cervix

Production and pIgR-mediated transport
of IgA to generate SIgA
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Fig. 11.3 Dynamics of intranasal delivery. Adapted from: Stefan B. Svenson, Sixth World 
Congress on Vaccines, Immunization & Immunotherapy Milan, Italy 23–25 September 2008, 
Karolinska Institutet/SLU, Stockholm, Sweden
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11.2.2.3  Improved Adjuvants

Factors extrinsic to processing, such as the cytokine milieu induced in response to 
a particular component of a vaccine (Krieg et al. 1998) or pathogen (Ghosh et al. 
1998), also play a role in the conditioning of the immune response. Thus, while 
T-cell epitopes may be necessary to drive immune response, they are not sufficient. 
Co-stimulatory molecules that provide T cells with a second activating signal, the 
right cytokine milieu, and other factors directing the nature of the immune response 
(TH1 vs. TH2) are also crucial (Shahinian et al. 1993; Kuchroo et al. 1995). 
Adjuvants provide this added “boost” in the context of whole protein and epitope-based 
vaccines. The choice of adjuvants for use in humans is relatively extensive, and 
each adjuvant has advantages and disadvantages, as reviewed elsewhere (Fraser 
et al. 2007).

When dendritic cells are exposed to various stimuli, such as lipopolysaccharide 
(LPS), monophosphoryl lipid (MPL) A, or poly-I:C, their ability to stimulate B and 
T cells increases. LPS, MPL-A, and poly-I:C stimulate dendritic cells by binding 
to a family of pattern-recognition receptors known as toll-like receptors (TLR).  
In addition, TLR ligand interactions in NK cells produce an array of cytokines 
(TNF-a, IL-1b, TNF-a, IL-6, and prostaglandin (PG) E2 (Munz et al. 2005). It is 
not clear which maturation stimulus is best for the induction of effector T cells 
in vivo. However, dendritic cells that are matured using the array of cytokines listed 
above are homogenous, have a high viability, migrate well to chemotactic stimuli, 
and induce effector T cells both in vitro and in vivo. Cytokines alone or those 
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Fig. 11.4 Epitope-based prime-boost vaccine induces protective immunity to tularemia in HLA 
DRB1*0101 (class II) transgenic mice. Groups of 7 vaccinated and 8 control mice were chal-
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produced by TLR signaling can also induce TH1 responses in vivo. Interestingly, it 
has recently become evident that PGE2 has to be part of the maturation stimulus in 
order to obtain functional CC chemokine receptor 7 (CCR7) expression. CCR7 
probably guides DCs into the lymph node in response to CCL19 and CCL21 (Luft 
et al. 2002; Scandella et al. 2002).

Unmethylated CpG motifs in oligodeoxynucleotides (CpG ODN) have emerged 
as potent vaccine adjuvants that activate TLR9 on antigen presenting cells (Vollmer 
2005). We typically formulate CpG ODN in liposomes because this preparation 
improves their uptake and immunostimulatory activity (Gursel et al. 2001).

11.2.2.4  Multi-functional T Cells

T-cell immune responses are mediated by multiple mechanisms, making their char-
acterization highly complex. Typically, a T-cell response is characterized by its 
magnitude, as defined by the frequency of antigen-specific T cells or the expression 
of a particular effector function, including cytokine secretion, cytotoxic activity, or 
proliferation. T-cell function is defined by a complex set of parameters, and the full 
potential of a functional T cell cannot be described by any one of these. It is the 
specific combination of functions carried out by T cells in response to infection or 
vaccination that uniquely describe the quality of the T cell response. A T cell that 
produces only one cytokine is a poor quality one; one that produces multiple cytok-
ines is a high quality T cell. Recent reports have shown that pathogen-clearing 
protective immune responses are carried out by multi-functional (i.e., “high quality”) 
T cells (Seder et al. 2008). A vaccine that can elicit this kind of immune response 
holds promise as a protective agent. Flow cytometry is the method of choice to 
quantify individual functions of T cells independently and simultaneously on the 
single-cell level. Multi-functional T cell quantification requires at least six-color 
technology. One color is needed for viability measurement to remove unwanted cell 
populations. T cell lineage is identified by surface staining for CD3, CD4, and 
CD8. Effector functions are determined by staining for multiple cytokines, such as 
IFN-g, IL-4, TNF-a, and IL-2 for TH1-focused vaccines, or for cytotoxic activity 
markers, such as perforin, granzymes, and CD107.

11.3  Advantages and Disadvantages of T-cell Directed Vaccines

One reason for the relative paucity of IDV in clinical development is that the immu-
noinformatics tools for developing these vaccines have really only evolved in the 
last 10 to 15 years, while the average length of time to develop a vaccine is typically 
20 years or more. Currently, immunoinformatics tools are more commonly used for 
antigen discovery and for testing vaccines in animal models. For example, 
Duraswaimy et al. developed an adenovirus-vectored vaccine expressing Class I 
Epstein-Barr virus epitopes; this vaccine successfully prevented and treated tumors 
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associated with Hodgkin’s disease and nasopharyngeal carcinoma in transgenic 
mice (Duraiswamy et al. 2003). There is even evidence in murine models that 
epitopes from wild type p53 can be used therapeutically to fight p53-associated 
tumors (DeLeo and Whiteside 2008). Tian et al. created a vaccine for infectious 
bronchitis virus (IBV) from MHC I, MHC II, and B-cell epitopes that proved to be 
successful in chickens (Tian et al. 2008). In mice, peptides containing epitopes 
from sperm were used as a vaccine against fertilization, with a single injection 
causing a 75% reduction in fertility for 9–10 months (Naz 2009). Since developing 
clinical trials is such a lengthy process, it is likely that IDV and epitope-based IDV 
will begin to enter clinical trials and emerge on the market in greater numbers in 5 
to 10 years.

Another reason for the delayed implementation of IDV is that many researchers 
have had limited access to validated tools beyond epitope mapping tools. Tools 
such as ClustiMer, VaccineCAD, EpiAssembler, and Aggregatrix are validated 
algorithms that are not yet widely used. In addition, researchers, having not had an 
opportunity to test them in their own work, are unfamiliar with their application, 
and are often skeptical about their accuracy. Acceptance of immunoinformatics 
tools for vaccine design tools is gradually improving, as can be measured by the 
number and size of NIH grants awarded (recent US$24M contract for the Immune 
Epitope Data Base, for example) and by the number of “computational immunol-
ogy” papers listed on PubMed (38 published papers claiming “computational 
immunology” as a key phrase in 2001; 232 such publications in 2007).

Despite the slow start, epitope-based IDVs have a lot of benefits compared with 
the traditional methods of vaccination that have been used for the past 50 years. 
Epitope-based vaccines are much safer than traditional vaccines because they oper-
ate under the principle of exposing the body to the minimal activating unit of the 
immune system: epitopes. Moreover, epitopes cannot reactivate like an attenuated 
virus vaccine. T cell epitopes, in contrast to their parent proteins, are generally too 
small to be biologically active; this makes the epitope-based vaccine approach par-
ticularly advantageous in cases wherein the whole antigen, though immunologi-
cally important, has a deleterious effect on the host (Wang et al. 1985). Another 
distinct advantage of epitope-based vaccines is the ability to efficiently exclude 
from consideration any sequence that has significant homology with human pro-
teins. Sequences that do bear high degrees of homology with human proteins are 
poor candidates for vaccines for two reasons. First, the vaccine could be actively or 
passively tolerated. Secondly, if the vaccine is not tolerated, it has the potential to 
engender an autoimmune response.

A number of IDV have been tested in clinical trials (Elliott et al. 2008; Gahery 
et al. 2006; Asjö et al. 2002; Kran et al. 2004). Because epitope-based IDV are 
generally considered to be safe when compared with other vectored or attenuated 
live vaccines, most have progressed more rapidly than traditional vaccine candi-
dates from preclinical concept into the clinic. Epitope-based IDV may also provide 
essential T-cell help for antibody-directed vaccines; this concept has been 
exploited to improve existing polysaccharide vaccines such as Haemophilus influ-
enza type B (HiB) (Falugi et al. 2001) and Pneumococcal vaccines (Sen et al. 2006). 
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In the cancer vaccine field, in which epitope-based vaccines are well established, 
many such vaccines are currently in Phase I/II clinical trials (Pietersz et al. 2006). 
Immunoinformatics tools can also be used to improve vaccines already in the 
clinic; this may be one application of the tools that will progress more rapidly 
from concept to implementation.

11.4  Examples of T-cell Epitope-Driven Vaccines

11.4.1  TulyVax

TulyVax provides evidence that epitope-based vaccines are effective at generating 
protective immunity. Like TB, tularemia is a disease caused by an intracellular 
bacterium, Francisella tularensis, that is transmitted via the aerosol route. A mod-
erately effective live vaccine strain (LVS) is available, which is thought to protect 
via cell-mediated immunity, but suffers from safety issues. Starting with the 
F. tularensis genome of the Schu4 isolate, we have employed a computational 
approach to design and test an epitope-based vaccine to provide protection against 
tularemia in a preclinical model.

Intracellular F. tularensis alters its environment by secreting proteins that 
interact with the host cell (Gil et al. 2006). Our strategy for the selection of 
epitopes within the F. tularensis genome was therefore focused on proteins that 
were predicted to be secreted. Each selected protein was parsed into all possible 
9 mer peptides; EpiMatrix was then used to assess each 9 mer for putative binding 
to an array of Class II HLA alleles. The top scoring 40 promiscuous class II 
epitopes were synthesized and screened in vitro using our in-house HLA Class II 
competition-binding assay. Peptides that bound with high affinity to the selected 
alleles were then tested ex vivo in ELISpot assays with blood obtained from indi-
viduals that had prior F. tularensis infection. Positive responses were observed to 
21 of 25 individual peptides; the pool of peptides was recognized in 95% of sub-
jects, and an average response of 1,000 spots over the background were elicited. 
Vaccination with the multi-epitope vaccine in a DNA prime, peptide in liposome 
boost method resulted in protection (Gregory et al. 2008). Prototype vaccines 
containing the immunogenic epitopes were then assembled via Vaccine CAD for 
in vivo studies.

We immunized DRB1*0101 transgenic mice intratracheally with a 14-epitope 
DNA vaccine construct and boosted with peptide epitopes formulated in liposomes 
with CpG ODN. Splenocytes from the vaccinated mice were shown to respond 
in vitro to the peptides encoded in the vaccine (by ELISpot and intracellular 
cytokine staining, data not shown). Cytokine levels were found to be elevated in 
mice receiving DNA prime in addition to peptide when compared with those receiv-
ing peptide alone. Following intratracheal challenge with 6200 colony forming units 
(5 times the 50% lethal dose) of LVS, 57% (4/7 mice) of immunized mice survived 
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compared with 13% (1/8 mice) of nonimmunized mice (as shown in Fig. 11.4). 
Considering that this SchuS4 vaccine contained only 7 epitopes that were conserved 
in the LVS challenge strain, this study was an unqualified success.

11.4.2  HelicoVax

In the context of chronic infections, pathogens may be able to survive by subverting 
the inflammatory response and inducing tolerance instead. Modification of the 
immune response by vaccination could result in clearance. H. pylori is one of the 
most common human pathogens, infecting approximately 50% of the world popu-
lation, leading to a gastric cancer incidence of approximately 18 to 32 per 100,000 
cases (Rupnow et al. 2001).

Putative T-cell epitope clusters were identified by computational analysis from 
highly conserved J99 and 26695 open reading frames (ORFs) using the EpiMatrix 
algorithm. About 1,152 epitope clusters were identified from 1107 conserved 
ORFs. Of these, 150 epitope clusters, with no more than 25.9% human homology 
(determined via BlastiMer), were selected as vaccine candidates. These 150 clus-
ters represent 130 distinct ORFs, of which only two were previously published 
antigens. In a soluble DR1 competition binding assay, 57 peptides (73% of those 
successfully synthesized) demonstrated moderate affinity (i.e., 50% inhibition of 
competitor (IC

50
) < 100 mM); 28 demonstrated high affinity (i.e., IC

50
 < 10 mM).

Fifty epitopes were incorporated into “HelicoVax,” a DNA-prime/peptide-boost 
vaccine, and tested in p27 −/− mice preinfected with the murine-adapted H. pylori 
SS1 strain (Kuzushita et al. 2005). This transgenic strain is susceptible to developing 
gastric cancer following H. pylori infection. Two groups of mice (20 per group) 
were primed with a plasmid DNA vaccine, either intranasally or intramuscularly, 
and then boosted intranasally with peptides formulated in liposomes. Control 
groups (20 per group) neither received SS1 lysate vaccine nor were vaccinated. 
Immunogenicity was measured 45 weeks postinfection. IFN-g ELISpot assays of 
epitope-stimulated splenocytes demonstrated that 47/50 peptides (94%) were 
immunogenic following intranasal (IN) or intramuscular (IM) DNA immunization 
with the multi-epitope vaccine (Fig. 11.5, filled bars), compared with only 4/50 
epitopes that were recognized in SS1 lysate-immunized animals (Fig. 11.5, open 
bars). There is no consistent difference between IN and IM DNA immunization on 
the single-epitope level, but intranasal vaccination generally correlates with stron-
ger responses, particularly among the most immunogenic epitopes (Fig. 11.5). 
However, despite the fact that the vaccine stimulated strong and sustained immune 
responses, we cannot definitively conclude that it had a significant effect on bacte-
rial burden as measured by real time (RT)-PCR, because bacterial loads at 45 weeks 
postinfection are too low in this model for there to be a significant difference 
between the vaccinated and the control mice. IN immunized animals eradicated 
infection, whereas IM-immunized, placebo-immunized, and SS1-immunized ani-
mals did not. The bacterial burden was assessed by standard quantitative PCR 
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methods (Ozpolat et al. 2000). The ratio of SS1/glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) PCR cycles to reach a product threshold was the crite-
rion for measurement of H. pylori levels (Fig. 11.6). The goal of our current 
HelicoVax vaccine development program is to reduce chronic infection and to 
modulate metaplastic disease in this well-established model of gastric carcinogen-
esis in H. pylori-infected mice.

Notably, for this vaccine development program, we did not screen epitopes in  
H. pylori-infected humans. The rationale for skipping this step was primarily sci-
entific: the literature shows that people who have H. pylori infection have weak 
responses to H pylori epitopes because of the immunomodulatory effects of the 
bacteria (Fan et al. 1994; Quiding-Järbrink et al.2001). Thus, it is not thought that 
even detectible responses would be particularly helpful in identifying the “protec-
tive” epitopes.

11.4.3  VennVax

We proposed to develop a safe, new smallpox vaccine based on epitopes conserved 
between the vaccinia virus (VV) and Variola (VAR) “immunomes.” Such a vaccine 
could be used as both a prophylactic and a therapeutic intervention in the event of 
a bioterrorist attack. To do this, we first identified peptide sequences that were 
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conserved between the VV and Var genomes. We then used EpiMatrix to score 
these conserved sequences to identify highly promiscuous T cell epitopes. The 
highest scoring candidates were synthesized as peptides and validated in both sol-
uble MHC binding assays and in T cell assays using blood from individuals that 
had been Vaccinia-immunized. In vitro binding assays showed that 13 out of 14 
(93%) peptides bound with high affinity to the human MHC class I HLA-A*0201 
molecule and 73 of 90 (81%) bound with high affinity to HLA-B7. Ninety-one 
percent of the variola/vaccinia epitopes identified were confirmed in ELISpot 
assays. We then developed a DNA vaccine based on these epitopes and tested it for 
immunogenicity in HLA transgenic mice. In our first study, the immunization of 
DRB1*0101 transgenic mice stimulated significant T-cell responses to 6 of 25 
epitopes (24%). In comparison (2007–08), DRB1*0301 mice immunized with the 
same 25-epitope set responded to 10 (40%) of epitopes, of which two were also 
reactive in DRB1*0101 mice. A vaccine encoding a second set of 25 epitopes 
stimulated significant responses for 8 (32%) epitopes in DRB1*0301 mice.
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JA, Moss S, Martin WD, De Groot AS. Therapeutic epitope-based vaccine clears Helico-bacter 
pylori infection in p27 knockout mice. Manuscript in preparation.
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In lethal challenge studies, vaccinated mice maintained 100% survival, and their 
body weights remained normal. By comparison, the placebo mice demonstrated 
only 17% survival, and the mice that did survive experienced dramatic weight loss 
(Fig. 11.7).

11.5  Concluding Remarks

Future vaccine approaches may need to move away from “whole” protein or pathogen 
vaccines for a wide range of reasons. Multiple antigen or epitope vaccinations such 
as the approach illustrated here could be one way to elicit the sort of strong TH1 
response necessary to pathogens following infection, in the context of a therapeutic 
vaccine. And although often surmised, the linkage between immune responses to 
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whole antigen vaccines and potential adverse effects is recently becoming evident. 
For example, the one Lyme disease vaccine tested in clinical trials contained a 
single sequence that was cross-reactive with human myelin protein (self), leading 
to possible postvaccination side effects and contributing to the withdrawal of the 
vaccine from the market. Further, there is considerable evidence that in some indi-
viduals, chronic infections (such as EBV) result in autoimmune disorders (such as 
multiple sclerosis, or reactive arthritis). Since specific HLA haplotypes are associ-
ated with this adverse response to infection (DR2 and DR4), it follows that immune 
epitopes could be the root cause.

Using immunoinformatics tools, we have begun to discover whether or not these 
observations are true, and we are developing vaccines that limit the immune target 
to epitopes that are not cross-reactive with self. This approach could also be useful 
for a wide range of pathogens for which genomes have been partially or completely 
mapped. As described in this article, our group is actively pursuing the develop-
ment of epitope-driven vaccines for F. tularensis and H. pylori. We have progressed 
from genome-derived epitope mapping to challenge studies in less than 1 year for 
some of our vaccine development programs. Thus, the question is not whether to 
begin making immunome-derived vaccines, but when to begin. New approaches to 
vaccine development are required, and there is no better time to implement these 
new technologies than now.
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12.1  Introduction

Bacteria have been adapting to change since long before eukaryotic organisms 
developed. In many ways, the limited success of antibiotics due to such adaptation is 
much less surprising than the apparent unwillingness of humans to accept and accom-
modate this fact. This chapter deals with some of the natural adaptive capacities of 
eubacterial genomes, with particular focus on the shared genome of the Gram-negative 
bacteria, especially antibiotic resistance in the Enterobacteriaceae, as a model.

The Gram stain divides bacteria into those that retain significant amounts of 
stain in their cell wall (“Gram-positive”) and those that do not (“Gram-negative”) 
(Gram 1884). This simple distinction remains relevant today because it distin-
guishes bacteria with double-membraned cell envelopes, including a lipid-rich 
outer membrane, from those with single peptidoglycan-rich cell walls. The pres-
ence or absence of the periplasmic space, which separates the two membranes of 
the Gram-negative bacteria, is probably the most important biological divide 
among the eubacteria. Failure to recognize this fact may lead to inappropriate 
extrapolations from the simpler and better-explored genetic paradigms of the 
Gram-positive bacteria, to the differently adapted Gram-negative bacteria.

A variety of terms have been applied to the nonessential parts of the genome, 
including the “dispensible” genes of the “pangenome” (see also Chap. 2), the 
“floating genome” (Liebert et al. 1999), the “metagenome” (Chung et al. 2008; 
Holmes et al. 2003; Robinson et al. 2008), and the “mobile genome” (Li et al. 
2009). Lack of clarity in all of these terms has rendered them less useful, although 
the terms “metagenome” and “metagenomics” have come in to the general lexicon. 
These terms refer to the unsorted genes found by high-volume sequencing 
approaches which may be, at one extreme, “fixed” in multiple unrelated chromosomes 
or, at the other extreme, a pool of truly promiscuous genes found in any one of a 
number of genetic contexts.
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In the opening chapters, the concept of the “pangenome” is introduced. In this 
model, comparative genomics allows the bioinformatician to define a “core” 
genome (always present in a given species), a “dispensible” genome (present in 
some but not all members of a species), and a “strain-specific” genome (unique to 
a given isolate or strain). All this borrows heavily from our traditional concept of 
an organized genome and begs the definition of the eubacterial species, a concept 
of uncertain value in organisms for which participation in a mobile gene pool is the 
key adaptation. A large highly organized eukaryotic genome is intolerant of muta-
tions, translocations, insertions, deletions, etc., relying instead on carefully regu-
lated genomic systems. Such a genome has great power and sophistication but is 
relatively inflexible and slow to adapt. By contrast, a very small genome (e.g., HIV, 
~10 kb) must rely on cooperative populations to complement defects in individual 
members. This is the least sophisticated genomic strategy but one that is character-
ized by enormous flexibility with the capacity to rapidly generate novel subpopula-
tions with high spontaneous mutation rates.

The eubacterial genome (typically ~2–6 Mb) is quite distinct from both of these 
examples, relying on genomic plasticity, a key part of which is the ability to share 
genetic information. The notion of the eubacterial genome as a work in progress 
(Chaps. 1 and 2) helps to remind us that not every gene is a “core” gene or even a 
“functional” gene. However, this tends to deny one of the key functions of the 
genome itself: to generate adaptive capacity. Recombinatory evolution is a primary 
driver in rapid eubacterial adaptation, such as is required to resist antimicrobials. 
Rare gene capture events mobilize useful genetic elements into a common gene 
pool, which in turn becomes progressively more efficient in the capture and trans-
mission of such material. This pool can be seen as evolving independently of the 
bacterial hosts that both enrich it and benefit from it. Bacteria with less access to a 
high-flux genomic pool (i.e., those whose biological niche is unique and/or iso-
lated) are less likely to successfully exploit this adaptive strategy and will be less 
dependent on it. Differences in participation in the shared gene pool are important 
in the approach to the bacterial genome and are essential to understanding it.

12.2  Ecological Niche and Adaptive Capacity

The outer lipid-rich layer of Gram-negative bacteria provides a gated hydrophobic 
barrier that allows efficient exploitation of aqueous environments. The protected 
space (the periplasm) between this and the inner cell wall gives Gram-negative 
bacteria a sheltered environment in which to elaborate delicate sensor systems 
to selectively sample the outside world. Transmembrane sensor/regulator 
machinery assembled on the inner (cytoplasmic) membrane has access to the 
cell’s energy stores and protein production systems and can directly interact 
with cytoplasmic DNA to regulate a variety of cellular processes (Zhu et al. 2002). 
It is similarly clear that bacteria intercommunicate effectively to co-ordinate 
group activity (“quorum sensing”) (Bassler 2002) and that bidirectional signaling 
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between host and pathogen is important in determining the process of human 
infection by many pathogens.

In the human gut, bacteria have access to rich and diverse sources of carbon and 
nitrogen and have only to compete with each other. Exposure to multiple popula-
tions of bacteria, which use a range of strategies to compete, means that the ability 
to efficiently acquire new strategies is in itself a major biological advantage. One 
well-studied example of such adaptation is the acquisition of bacteriophage-trans-
duced adhesins (Karaolis et al. 1999) and toxins (Waldor and Mekalanos 1996) by 
Vibrio cholerae. This acquisition allows it to invade and disseminate massively 
using a new life cycle which involves human infection. To us, this is epidemic 
cholera. Genetic changes, which allowed avoidance of host responses, were at the 
basis of the feared eighth (O:139 or “Bengal” strain) cholera pandemic (Faruque 
et al. 2003; Stroeher et al. 1995).

An important adaptation now required by organisms already adapted to human 
commensalism or parasitism is the ability to withstand antibacterial drugs. These drugs 
have been developed only in the last several decades but have been met by an efficient 
adaptive response on each occasion (Fig. 12.1). There is no reason to be surprised by 
this, nor any reason to suppose that this will change. However, we argue that such 
adaptations may be anticipated, and even managed, if we understand their bases.

The mechanism of bacterial adaptation varies with the natural adaptive capacity 
of the organism. The adaptation style can be divided for the sake of discussion into 
those organisms with existing systems which can be readily employed for new 
purposes, with or without modification (improvisation), and those organisms which 
rely on their ability to acquire completely new characteristics (innovation). 
Improvisation is an efficient strategy since, by definition, material from which to 
develop new capacity is already available within the organism. Sometimes there is 
a cost, which comes from sacrificing one function for another, but often it is an 
adaptation which is well tolerated or can be compensated for.

P. aeruginosa is one of the best studied models of bacterial pathogenesis. Isolates 
infecting patients with Cystic Fibrosis (CF) are genetically distinct from environmen-
tal isolates and non-CF clinical isolates (Finnan et al. 2004; Reik et al. 2005; Wood 
and Smyth 2006), and are more likely to contain known virulence-associated genes 
(Finnan et al. 2004). Importantly, the CF lung is a unique environment in which 
hypermutable Pseudomonas populations with specific defects in their mismatch-
repair systems are not uncommon. This adaptation, reviewed in (Hall and Henderson-
Begg 2006), makes the organism more likely to undergo further spontaneous changes, 
including development of antibiotic resistance. The genome of P. aeruginosa encodes 
several efflux pumps important in resistance to antibiotics. The ability to combine 
various responses to external toxins means that P. aeruginosa is less dependent on the 
mobile genome, in which it also participates (McGowan 2006).

The capacity to innovate is a function of the ability to acquire new material and 
to effectively integrate it. The opportunity comes from access to genetic potential, 
and is most available in a diverse polymicrobial community in which organisms 
have developed alternative adaptations to the same environment. The relative 
importance of each of the mechanisms widely available for DNA acquisition 
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(bacteriophage transduction, direct uptake from the environment, and conjugal 
transfer between cells) is logically a function of the niche/s occupied by the 
organism. In the case of aquatic organisms such as the Pseudomonadaceae and 
Vibrionaceae, adapted to aqueous environments scarce in resources, small pro-
tected packages of DNA must be able to shuttle freely between sparsely distributed 
cells: the bacteriophages are specialized viruses which mediate DNA transfer in the 
course of symbiotic or parasitic relationships with bacteria. In the case of organisms 
such as the staphylococci, adaptation to survive a dry environment means the clonal 
expansion of successful organisms is an important epidemiological feature. In these 
organisms, a significant element of genomic diversity is expected to be generated 
by mutation in relatively less mobile components of the genome.

In the case of the medically important Enterobacteriaceae (e.g., E. coli and 
Klebsiella spp.), adapted to close living in an aqueous nutrient-rich environment 
(the gut), direct cell-cell communication and genetic transfer are the most important 
adaptations. This has special implications for the rapid acquisition of varied and 
multiple resistance mechanisms in these types of bacteria. For organisms adapted 
to sharing genetic material, it is generally most efficient to acquire (and possibly 
then adapt) what is already available elsewhere. Mechanisms for the integration of 
genes into the genome are important for this, and necessary to profit from access to 
bacteriophage-packaged or conjugally transferred DNA. Genes of value to the 
wider pool include those conferring resistance to antibiotics, which may be mobi-
lized from, say, a chromosomal position, by any one of a number of specialized 
processes (“gene capture”) and thus brought into the wider gene pool. It follows 
that the actual gene “capture” events are rare and that associations with individual 
gene capture systems are relatively stable. Once a useful gene is captured in such a 
manner, it would be most efficient if the capture process also enhances genetic 
mobility. Natural selection will tend to favor events that enhance the mobility and 
flexibility of a useful genetic package within the gene pool.

The shared genome is therefore characterized; at least in the Gram-negative 
bacteria where it has been well studied, by common themes in the genetic relation-
ships between the genes and gene capture elements. We will discuss antibiotic 
resistance genes in the medically important Enterobacteriaceae to illustrate this. 
The mosaic patterns observed reflect a process of recombinatory evolution, which 
is likely to be most prominent in those organisms which are most adapted to gene 
sharing. The extent to which an organism participates in gene sharing, and therefore 
the extent to which its genome is recombinatory and mosaic, and shared with other 
species, is a function of its ecological niche.

12.3  The Shared Genome

Organisms such as E. coli are naturally rich in conjugative plasmids, which provide 
highly efficient vehicles for DNA exchange. These plasmids themselves occupy an 
intracellular niche in which gene sharing is advantageous to the host bacterium and 
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to the plasmid itself, and it is therefore unsurprising that the conjugative plasmids 
of E. coli found in humans are rich in antibiotic resistance genes and gene capture 
elements of various types.

12.3.1  Gene Capture and Transfer

Genes which confer resistance to medically important antibiotics are associated 
with a few types of mobile elements (ME), which have some features in common 
but capture and move resistance genes in different ways. Large transposons (Tn; 
Fig. 12.2a, f) carry both “transposition” functions required for movement and resis-
tance genes (Grindley 2002). Classical insertion sequences (IS; e.g., IS26) contain 
only genes which encode their own mobility (Chandler and Mahillon 2002), but a 
pair inserted either side of an antibiotic resistance gene can capture it as part of a 
composite transposon (C-Tn; Fig. 12.2b) that subsequently moves as a unit. ISEcp1 
is unusual in that it is able to capture and move adjacent resistance genes (Fig. 12.2c) 
(Poirel et al. 2005), ISCR elements (Fig. 12.2d) achieve the same result but use a 
distinct mechanism (Toleman et al. 2006). Class 1 integrons (In) capture one or 
more gene cassettes (Fig. 12.2e) by site-specific recombination, creating arrays (of 
typically less than nine cassettes) inserted between two highly conserved elements 
(5¢- and 3¢-CS) (Hall et al. 1999).

12.3.2  Associations Between R Genes and ME

As indicated above, gene capture is a rare event, but such an event may only need 
to happen once for a gene to enter the pool, from which it can be efficiently 
acquired by different organisms. Thus, each resistance gene is typically associated 

ISCR

ISEcp1

Tn3-like
gene 

class 1 
IS IS

composite Tn 5'-CS 3'-CS
tnp

tnp
cassette  array

Tn21-like

a

b

c

d

e

f

tnp

tnp

5'-CS 3'-CS

Fig. 12.2 Mobile gene-capture elements. Black arrow, resistance gene; Tn, transposon; tnp, 
transposition functions; vertical bar, terminal inverted repeat (IR); IS, insertion sequence; broken 
vertical bar, alternative IR used by ISEcp1 to mobilise adjacent genes; ISCR elements have no IR 
and mobilise adjacent genes by a different (“rolling circle”) mechanism; CS, (integron) conserved 
sequence; white box, attI1 recombination site; black box, attC recombination site
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with a particular ME, and the types of ME originally identified some time ago in 
association with “older” resistance genes (conferring resistance to antibiotics that 
are now less important) also remain important in the capture of “new” resistance 
genes (Table 12.1).

Association with a particular type of ME may dictate where a resistance gene 
can be incorporated after it has been captured. For example, gene cassettes are usu-
ally inserted into integrons, and integrons are generally found in specific sites 
found in Tn21-like transposons and in related sites in plasmids (Minakhina et al. 
1999), ISCR1 usually lies between partial duplications of the 3¢-CS of class 1 inte-
grons (Toleman et al. 2006) while most IS, large transposons and, probably, ISEcp1 
exhibit no particular insertion-site preferences. The initial spread of a resistance 
gene may thus depend on which ME it is captured by and the availability of appro-
priate sites for insertion of that ME-resistance gene combination. However, the 
subsequent success of genes associated with the same ME may be more dependent 
on their wider genetic contexts (Walsh 2006). This is discussed in more detail 
below, and we will use a common and important antibiotic resistance phenotype as 
an example.

12.3.3  b-Lactamases Conferring Resistance  
to Cephalosporins

b-lactamases are the most important transferable mechanisms of resistance to the 
most important class of modern antibiotics and are encoded by variants of a few bla 
gene families (http://www.lahey.org/Studies/). The third-generation cephalosporins 
(3GC) are potent broad-spectrum antibiotics that were developed to combat rising 
resistance to b-lactam antibiotics, but were soon confronted by the emergence of 
“extended spectrum” b-lactamases in bacteria. The “classical” extended-spectrum 
b-lactamases (ESBL) confer resistance to 3GC antibiotics, but two more b-lactamase 

Table 12.1 Associations between resistance genes and mobile elements

Gene 
typea

Mobile elementb

Tn C-Tn Gene cassette ISCR ISEcp1

“older” strB tetD, aph dfrA,B, catB, aadA, dfrA, sul2, catA2
ESBL TEM SHV OXA, VEB CTX-M-9,-14b CTX-M-3,-14a,-15
ampC DHA CMY-2-like
CPMase KPC IMP, VIM, SIM, GIM SPM
AG-R npmA aadB, aacC1, 

aac(6¢)-Ib
armA, rmtD rmtC

FQ-R aac(6¢)-Ib-cr qnrA, qnrB2

Note:a ESBL, extended-spectrum b-lactamase; CPMase, carbapenemase; G-R, aminoglycoside 
(e.g., gentamicin)-resistance; FQ-R, fluoroquinolone (e.g., ciprofloxacin)-resistance
b Tn, transposon; C-Tn, composite transposon; IS, insertion sequence. Gene names in uppercase 
(e.g., TEM) are simplifications of full bla b-lactamase gene names (e.g., bla

TEM
)
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groups have overlapping antibiotic-hydrolyzing activities (Table 12.2). Several 
bla genes may be present in one organism at the same time and the frequent 
co-occurrence of multiple b-lactamases makes it difficult to predict which genes 
are present from the phenotype, greatly complicating screening and diagnosis 
(Babic et al. 2006).

For the clinical microbiologist, the crucial question is whether the genetic basis 
for a given resistance phenotype is sufficiently predictable to enable the develop-
ment of surveillance and/or diagnostic tools. There are many genes associated with 
the common and important antibiotic resistance phenotypes but there are very few 
data to address the local prevalence of a given resistance gene, the extent of natural 
diversity, or the way in which this changes over time and place.

Significantly, however, available data suggest that the gene pool may be rela-
tively limited (Rossolini et al. 2008) – that is, there tends to be a limited set of genes 
and genetic elements responsible for the local antibiotic resistance phenotypes and 
these are commonly shared between unrelated organisms (Baquero 2004). This 
implies that surveillance and monitoring of the genome has the potential to be a 
vital tool for both predicting and containing the spread of resistance and for devel-
opment of diagnostic applications.

12.3.4  Genetic Disequilibrium Within the Mobile Gene Pool;  
the Multi-(Antibiotic) Resistance Region

Studies of the wider contexts of ME-resistance gene combinations indicate that 
they are often found in large multiresistance regions (MRR; e.g., Fig. 12.3). Other 
resistance genes have yet to be detected inside MRR, but only limited contextual 
data is available for many of these.

The insertion of a resistance gene into an MRR will result in links to other resistance 
genes, potentially allowing coselection by unrelated antibiotics, and/or may enable 

Table 12.2 Summary of b-lactamases conferring resistance to 3GC

b-Lactamase typea b-Lactamase (bla-) genes b-Lactam resistanceb

ESBL CTX-M; SHV; TEM; VEB; PER, GES 3-GC
AmpC CMY; DHA; FOX; MOX; ACC; 3-GC; APP-b
Carbapenemases
Metallo-b-lactamases IMP; VIM; GIM; SIM; SPM 3-GC; APP-b; CPMc

Serine-mediated KPC; (GES)d 3-GC; APP-b; CPMc

Note:
aESBL, extended-spectrum b-lactamase
b3-GC, third-generation cephalosporin (e.g., ceftrixaone, ceftazidime); APP-b, antipseudomonal 
penicillin-b-lactamase inhibitor combination (e.g., ticarcillin-clavulanate; piperacillin-tazobac-
tam); CPM, carbapenem (e.g., imipenem, meropenem)
cFull resistance to carbapenems usually requires additional permeability defects
dOnly some GES variants can confer carbapenem resistance
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the movement of resistance genes to new locations in different mobile entities, 
freed from constraints of the original ME (O’Brien 2002). Insertion into an MRR 
also allows movement of genes by homologous recombination between common 
MRR components, which may be important if the original ME is damaged (O’Brien 
2002). Cassettes can move by homologous recombination or in common cassettes 
(Partridge et al. 2002; Gestal et al. 2005; Toleman et al. 2006).

MRR appear to be modular structures that are subject to combinatorial evolution 
(Baquero 2004; Martinez et al. 2007; Walsh 2006). The same structures, composed 
of more than one ME-resistance gene combination or fragments thereof, may be 
found in many different MRR, often with precisely the same boundaries between 
them (Fig. 12.3). Events mediated by homologous recombination and by ME are 
both important in the remodeling of MRR and the relative importance of each is 
determined by opportunity. It seems logical that early developments are largely 
ME-driven and that further changes will likely occur mostly through recombinatory 
processes. The recurring themes in MRR suggest that although the processes 
involved in their assembly and evolution are complex, they are not random and 
should be predictable (Baquero 2004; Martinez et al. 2007; Walsh 2006).

12.3.5  The Arrival and Spread of New Members of the Gene Pool

If the early development of MRR is largely ME-driven, then new genes arriving in 
the gene pool will tend to initially disseminate as the ME-resistance gene complex 
(assuming they have secured a passage on an efficient vehicle such as a plasmid or 
bacterial strain). Two examples of newly arrived genes allow us to examine this.

1. bla
OXA-23

 encodes a serine carbapenemase responsible for the highly carbapenem-
resistant phenotype observed in outbreaks of Acinetobacter baumannii in this 
country (Playford et al. 2007; Valenzuela et al. 2007). This phenotype had not 
been seen before these outbreaks and, when examined, the gene proved to be in 
a composite transposon flanked by ISAba1, which others have also identified 
and shown to be mobile (Mugnier et al. 2009). Locally, the resistance gene was 
found in multiple different clones (Valenzuela et al. 2007), so that it appears that 

InTn21 Tn21 

aphA1 blaTEM 
catA1

4 x 

9 xsame boundary 5 x

7 x 7 x 

Tn10 Tn2 Tn5393

dfrA14

In

strBtetA

4 x 

5 x 

26 26 26 111 6100 26

Fig. 12.3 Recombination and mosaicism in multiresistance regions. The MRR in pRSB107 
(GenBank accession no. AJ851089; not to scale), showing some common combinations of com-
ponents and the number of times they appear in GenBank. Transposon fragments and resistance 
genes are labeled; numbered boxes represent insertion sequences; different shapes represent other 
common MRR components
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mobilization of the resistance gene-complex may be the crucial element, whether 
transmitted as the composite transposon itself or as part of a larger structure.

2. Carbapenem resistance in Australian Enterobacteriaceae was recently identified 
as being due to a metallo-b-lactamase gene (bla

IMP-4
) found in an array of gene 

cassettes in an integron within a ~20 kb MRR (Espedido et al. 2008). This gene 
was also new to Australia and was found on a large number of closely related 
plasmids in Sydney, but in a different genetic context on apparently different 
plasmids in isolates from Melbourne, and in different arrays in an isolate from 
China (Espedido et al. 2008) and in local P. aeruginosa strains.

These findings support the idea that new arrivals in the local gene pool/s, whether 
as a composite transposon (e.g., ISAba1|bla

OXA-23
|ISAba1) or as a new gene cassette 

(bla
IMP-4

), can be expected in different contexts but with a fairly recognizable 
ME-resistance gene complex still intact. Conversely, genes that are already well 
established in the microflora should be found in a more mosaic structure with the 
initial ME-resistance gene complex less evident or at least apparently less impor-
tant as a source of variation in the genetic context/MRR. Only one completely 
sequenced plasmid carrying the globally disseminated extended-spectrum b-lacta-
mase (ESBL) gene bla

CTX-M-15
 is available in the GenBank database (Boyd et al. 

2004) but we have recently characterized several related MRR carrying bla
CTX-M-15

 
in more than a dozen plasmids from Sydney. Here, we see evidence of frequent 
IS-mediated rearrangements/deletions and although there is also evidence of move-
ment of bla

CTX-M-15
 as part of smaller structures, we found only one example of 

apparent movement of the original ME-resistance gene complex, while the majority 
of structural variation is apparently the result of recombinatory processes (unpub-
lished data).

12.3.6  Comparative Analysis of Multiresistance Regions

Patterns and predictable relationships in MRR will only become apparent after 
systematic comparison of many carefully selected examples. Until now most MRR 
have been analyzed as part of completely sequenced resistance plasmids, but 
sequencing more plasmids is an inefficient way to characterize large numbers of 
MRR. Modern high-throughput sequencing approaches using small (75–500 bp) 
reads are likely to be complicated by repeated elements found in MRR. These ele-
ments are often too long to sequence through in one reaction, producing mixed 
sequences from outwardly directed primers and making the assembly of final 
sequences more problematic (Frost et al. 2005).

Comparative analyses of MRR can be efficiently performed by a process of 
mapping based on the known likelihood of finding given components adjacent to 
one another. The very fact that this approach is efficient and successful (e.g., for 
bla

CTX-M-15
 contexts, above) is in itself evidence of the mosaic nature of these MRR. 

Apart from within resistance genes themselves (where minor mutations can lead to 



25512 Understanding the Shared Bacterial Genome

changes in phenotype), and across boundaries between ME or their fragments 
which are informative of transposition events and/or the original source of the DNA 
fragment, sequencing is generally unnecessary to obtain the most useful informa-
tion about MRR. It is much more important to know which components are present 
and how they are organized. The challenge is to find efficient ways to map MRR 
and to collate the resulting data in a format amenable to analysis.

It may therefore be that the most efficient approach to an analysis of MRR is by 
a probabilistic method. Available data are dominated by many examples of single 
resistance genes with minimal flanking sequences, but there are a few whole plas-
mid sequences available. We favor an approach that combines gene-specific data 
(obtained by hybridization and/or sequencing) with the direct mapping of genetic 
contextual relationships (Fig. 12.4).

The MRR are a mosaic set of interrelated structures within a mobile gene pool 
and they evolve through the incorporation or substitution of different features, 
including the substitution of genes determining key phenotypes, as well as by the 
gain or loss of large genetic regions. It is therefore difficult to conceive of an MRR 
as a unitary structure using the usual paradigms of infectious diseases, in which we 
consider a pathogen with unique and relatively consistent defining characteristics. 
However, the elements that dictate the antibiotic resistance phenotype and the 
nature and efficiency of its spread throughout the gene pool have sufficient com-
mon features and predictable relationships to enable the modeling of the evolution 
of MRR and their epidemic potential. The necessity is unarguable and the most 
useful epidemiological analyses probably need to include:

a

1 or 2
complete
plasmid

sequences

bgene ±
immediate

context only

mobile elements 

resistance genes 

Key

mapping of large numbers of MRR
from systematically selected sets of isolates  

currently available information 

Fig. 12.4 An approach to the mapping and bioinformatics of the multi-resistance regions. 
Currently available information (a) is less informative than (b) complementary mapping and bio-
informatics of multi-resistance regions (MRR). Black and white arrows, resistance genes; white 
boxes, different mobile elements
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1. Appropriately representative sampling/surveillance of bacterial population/s
2. Efficient high-throughput hybridization methods for the recognition of impor-

tant components (e.g., components of ME-resistance gene complexes)
3. An efficient bioinformatics tool to direct PCR mapping by identifying the most 

likely context of those components found in (2)
4. Determination of the DNA sequences of specific regions of interest - these 

logically include particular resistance genes (in which altered genotype may 
alter phenotype), and the signatures of recombination and transposition events 
found at the boundaries of discrete genetic elements within the mosaic struc-
ture of an MRR.

The third component of this is the most problematic. Analysis of the sequences 
from sources such as GenBank, which are required to make predictions about MRR 
structure, is often hampered by incorrect or incomplete annotations (Frost et al. 
2005) that focus on open reading frames (ORF) rather than on informative boundar-
ies between components. Many resistance genes are incorrectly/incompletely anno-
tated or even missed and essentially identical ORF are given different names. 
Manual re-annotation of large complex sequences is time consuming, but these data 
can be managed by automated methods, which use context-specific grammars, 
rather than sequence alignments (Partridge et al. 2009). This allows a probabilistic 
approach to the mapping of MRR and complex mosaic sequences, which is dis-
cussed in detail in the following chapter.

12.3.7  Conjugative Plasmids: The Need for a New 
Metagenomics Strategy

In addition to MRR, the large self-mobilizing (conjugative) antibiotic-resistance 
plasmids, which so often carry them, are crucially important in the transmission 
dynamics of antibiotic resistance in the Enterobacteriaceae. However, very little 
data are available on the character and content of these plasmids. This may relate 
to the fact that it is difficult to obtain DNA sequences from them, as explained 
above for the MRR, or it may simply be that we have not focused sufficient atten-
tion on them. They are clearly the most important and efficient genetic vectors in 
the Enterobacteriaceae, and are responsible for the spread of most of the currently 
troublesome transmissible antibiotic resistance phenotypes.

Opportunities for homologous recombination increase with the extent of DNA 
relatedness between plasmids, but phylogenetic relatedness between large conju-
gative plasmids is difficult to define. By convention, we group plasmids according 
to the compatibility of their replication strategies, on the premise that plasmids 
with sufficiently similar replication strategies interfere and/or compete with each 
other in the same host bacterium and are therefore deemed to have “incompatible” 
replicons. The core functions which define this incompatibility relate to plasmid 
maintenance and replication processes. The associated genes are presumed to be 
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more conserved and have therefore been targeted to develop successful typing 
systems (Carattoli et al. 2005), which assign conjugative plasmids to incompatibility 
(Inc) groups.

Surveys of E. coli show that such an approach identifies around three quarters 
of the conjugative plasmids, and often reveals multiple replicons (Zong et al. 2008). 
Multiple replicons may exist in a single conjugative plasmid, and multiple conjuga-
tive plasmids with different replicons may co-exist in a single cell. Distinguishing 
between these scenarios is difficult and labor-intensive, but an understanding of the 
makeup and genetic context of the replication regions may allow recognition of 
unique structures characteristic of particular plasmids or plasmid types, using mod-
ern genomic tools.

For example, most of the publicly available fully sequenced IncF plasmids 
appear to have multiple replicons, but whether the activity of a given replicon varies 
with the host bacteria is not well studied. These plasmids tend to be large (85–185 
kb) and some have highly mosaic structures, including truncated replicon copies 
(Perichon et al. 2008). Detailed analysis of IncF plasmids carrying the bla

CTM-15
 

gene in our own region reveals multiple different IncF replicons and even nonIncF 
replicons within these plasmids (unpublished data). Most of these replicons appear 
to be entire and may be fully functional.

The replicative strategy is a primary determinant of host range, and the presence 
of a potent “addiction” system may establish a plasmid as a permanent feature 
within a bacterial population. One can easily envisage such a plasmid becoming 
dominant, by virtue of an MRR, which has a highly protective phenotype or which 
provides an easy access point for other ME-resistance gene complexes. Strong and/
or ongoing selection pressure (e.g., antibiotic exposure in a nosocomial environ-
ment) would be predicted to favor plasmids with effective addiction systems, broad 
host-range replicons, and increasingly versatile MRR. The epidemiology and evo-
lution of such populations has not been systematically tested.

A practical approach to testing such hypotheses might reasonably focus on 
those factors, which determine the transmissible phenotypes, and those factors, 
which determine host range. Biological constraints upon sequence variation 
within replication-specific targets used for typing are poorly defined but may 
allow metagenomics approaches to discover related and as yet unrecognized 
sequences from short reads (<500 bp). Combined with a mapping approach to 
MRR as described above, this should allow development of a metagenomics pro-
filing strategy. Much needs to be better defined, including the extent of divergence 
of different components within addiction systems (e.g., homologues and paral-
ogues of the sok/hok/mok-like antisense RNA systems) (Gerdes and Wagner 
2007), and their coassociations identified.

Multilocus sequence typing (Maiden 2006) is a useful phylogenetic tool for 
some bacterial genomes. It has been adapted to IncI1 (Garcia-Fernandez et al. 
2008) and IncHI1 plasmids (Phan et al. 2009) but it is unknown whether this 
approach will break down in highly mosaic plasmids. Candidate targets would need 
to be tested for their informative capacity in a large plasmid population, in the way 
that candidate alleles are tested for MLST of bacterial genomes.
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12.4  Concluding Remarks

There are a few key questions for those who seek to apply modern genomic tools 
to the management of major clinical problems such as the spread of antibiotic resis-
tance in medically important bacteria. Firstly, how diverse is the gene pool in a 
given region for a given resistance phenotype? Are there predictable relationships 
between highly selectable elements such as antibiotic resistance genes? How fixed 
are these and how responsive are they to antibiotic selection once established?

There might be many dozens of transferable genes that could explain, say, gen-
tamicin resistance, but how many are likely to be responsible in a given region? One 
might reasonably predict that the gene pool would be limited to those which are 
most successful locally, whether this is true globally or not. Local success will be 
serendipitous in part, but may also relate to factors that facilitate transmission. Such 
factors might include intrinsic mobility (such as association with a highly active 
transposon) and/or the ability to recombine into a plasmid with a high mobility and 
a broad host-range.

Secondly, how stable is this picture? Is genetic flux very rapid – do the subsets 
of genes determining the key phenotypes of today bear any relationship to those of 
tomorrow? Thirdly, how much does this vary from place to place and how predict-
able are these differences? It is possible to recognize genes with high-level epidemic 
potential. For example, a gene on a broad host-range conjugative plasmid in an 
MRR with extensive regions of homology to MRR already widely established in 
compatible plasmids is likely to be successful if there are strong selection pressures 
and few alternative sources of the resistance phenotype. At the other extreme, a 
gene in a disrupted ME-resistance gene complex in a small MRR with few common 
elements on a nonconjugative plasmid or on the chromosome is much less likely 
to spread other than clonally with the host strain. This is an oversimplification to 
illustrate the point, but it is clear that understanding these epidemiological differ-
ences is essential, and that this understanding can be advanced by the intelligent 
application of genomic tools. Well-integrated local and regional sampling is needed 
to answer these important questions.

Informative surveillance of mobile genetic material with a broad host range may 
require only representative sampling of the Enterobacteriaceae – readily achieved 
in the course of routine nosocomial Infection Control surveillance. The predictive 
power of such sampling is yet to be properly tested in clinical studies, but anecdotal 
evidence suggests that foreknowledge of the presence of a mobile highly-resistant 
MRR is useful (Thomas et al. 2005), as we accept to be the case for surveillance of 
organisms such as methicillin-resistant S. aureus. Applications of such knowledge 
in highly multiplexed PCR systems appears to be quite feasible, and the use of high 
throughput sequencing to identify signature regions within undifferentiated sam-
ples of the microflora may prove to be efficient.

Finally, there are a number of important unknowns about the evolution of the 
major resistance vehicles. Is there an optimal size for a resistance plasmid? Does 
the plasmid host-range evolve with natural selection, or is it more advantageous to 
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have high compatibility with multiple plasmids so as to optimize genetic exchange 
opportunities? Do plasmids and/or MRR commonly cause resistance outbreaks by 
“infecting” bacterial populations? Do incoming MRR “infect” populations of local 
resident conjugative plasmids, with subsequent natural selection defining the final 
epidemiology, or do MRR and plasmids coevolve? Does this vary with the MRR 
and/or plasmid? If so, what are the characteristics which influence this? Are the 
MRR-plasmid relationships as stable over time and place as resistance gene-ME 
associations seem to be?

“Outbreaks” of plasmids (Espedido et al. 2005) and/or ME-resistance gene 
complexes (Valenzuela et al. 2007) obviously do occur in bacteria. It may be 
more usual, however, for a successful bacterial clone to be made more successful 
by the acquisition of a resistance plasmid and thus dominate the transmission of 
that resistance (e.g., E. coli ST131 carrying bla

CTX-M-15
) (Nicolas-Chanoine et al. 

2008). In any case, it is clear that when dealing with an outbreak of antibiotic 
resistant Gram-negative bacteria, epidemiological studies need to carefully con-
sider those elements of the genetic context that determine the transmission and 
spread of the resistance trait itself. The multiple antibiotic resistance regions of 
Gram-negative eubacteria, and the movement of their components within the 
metagenome, provide a model of prokaryotic evolution, which should be able to be 
successfully approached by a combination of modern genomics and bioinformatics.
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13.1  Introduction

Antibiotic resistance in bacteria is a growing health problem of major significance 
in both the developing and the developed world. The limited development of new 
antibiotics over the last three decades and the emergence of many new multi-drug 
resistant organisms have severely decreased our ability to treat bacterial infections 
(see Furuya and Lowy 2006 and Finch 2004 for an introduction and some history 
on antibiotic resistance). Mobile genetic structures are widely considered respon-
sible for the emergence of bacterial strands resistant to multiple antibiotics due to 
their capacity to aggregate the multiple resistance genes (Levy and Marshall 2004; 
Furuya and Lowy 2006; Frost et al. 2005). Such genetic structures (called mobile 
genetic elements; MGEs) enable the multiple antibiotic resistance (R) genes to 
aggregate and be transmitted. MGEs typically consist of integration sites, trans-
posase and/or integrase genes, and one or more R genes (see Box 13.1 for brief 
description, Frost et al. 2005 and Chap. 12 for a more comprehensive introduc-
tion). MGEs are usually arranged in semi-stable structures when in transit between 
DNA molecules in a cell. Once integrated into conjugative plasmids, the MGEs 
can horizontally transfer to other cells, even those of a different species (Lewin 
2007; Bennett 2008).

Antibiotic chemotherapies aim to cure infections without unnecessarily 
 increasing the prevalence of R genes in the population through excessive selection 
pressure. The ability to automatically recognize and explain the genetics underpin-
ning mobility is a requirement for the detection of co-mobility of R genes. This 
co-mobility, in turn, is needed to inform the clinicians of the possible consequences 
of prescribing a drug if resistance to it is associated with resistance to another drug: 
namely, that such a prescription policy can lead to an increase in resistance to two 
or more antibiotics instead of one.
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13.2  Automatic Annotation of Bacterial DNA

MGE recognition is a DNA annotation problem and as such can potentially make 
use of established methods in this field. DNA annotation refers to marking up 
regions within a DNA sequence with a name and often an associated function. The 
function could be a protein product, an interaction with a protein, the phenotype 

Box 13.1 List of common mobile genetic elements (MGEs) associated  
with antibiotic resistance. For a more detailed introduction to MGEs, refer to 
Frost et al. (2005)

Gene cassettes: consist of a gene, often conferring resistance to one or more 
antibiotic agents, and a characteristic recombination site (Stokes and Hall 
1989). This recombination site can interact with a recombination site present 
in integrons, resulting in the insertion of the corresponding gene cassette into 
the integron (Stokes et al. 1997). Repeated activation of this mechanism 
often leads to large cassette arrays that confer resistances to several antibiot-
ics. A recent survey of GenBank found 132 unique resistance cassettes 
(Partridge et al. 2009).

Insertion sequences: insertion sequences are genes that code for a trans-
posase protein. This protein can interact with inverted repeats on either side 
of the gene, leading to transposition of the gene. The insertion of the sequence 
at a new location duplicates up to nine bases on either end of the insertion 
sequence.

Transposons: transposons are similar to insertion sequences but usually 
larger. Normally, they contain at least one resistance gene, but may include 
an integron that in turn holds several resistance gene cassettes. Similarly to 
insertion sequences, between two and nine bases are copied in the transposi-
tion process at either end of the mobile unit.

Integrons: transposons in which the transposase gene is no longer func-
tional are called integrons. Integrons can still move between molecules if an 
appropriate transposase protein exists in the cell (Stokes and Hall 1989). 
Typically, the protein would have been transcribed from a transposon present 
in the same cell but not necessarily on the same molecule as the integron. 
Integrons still maintain their gene cassette capture mechanism.

Composite transposons: Composite transposons consist of two similar 
insertion sequences that occur relatively close to each other. An error in the 
insertion sequence transposition mechanism can transpose both insertion 
sequences and the material between them. The DNA between the insertion 
sequences may potentially contain gene cassettes. The difference between a 
composite transposon and two independent insertion sequences is apparent 
from the direct repeats on either end.
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associated with the DNA region, etc. Given the time and effort involved in manually 
annotating large genomes and the advances in sequencing throughput over the past 
two decades, it is not surprising that early research attention focused on the automation 
of these standard tasks.

Gene prediction refers to identifying the protein-coding and non-protein-coding 
genes in DNA. Most gene prediction tools rely on the identification of an open 
reading frame (Wheeler et al. 2003) followed by a machine-learning step to reduce 
the number of false positives (Delcher et al. 2007; Larsen and Krogh 2003). State-
of-the-art systems have a prediction accuracy of 95–97% for coding regions 
(Overbeek et al. 2007). Intrinsic gene predictors such as GLIMMER (Delcher et al. 
2007) and GeneMark (Besemer and Borodovsky 2005) rely on the statistical prop-
erties of the underlying sequence, typically modelled using hidden Markov models 
(HMM) (Rabiner and Juang 1986). Extrinsic approaches such as REGANOR 
(Linke et al. 2006) or CRITICA (Badger and Olsen 1999) employ homology using 
BLAST (Altschul et al. 1990) searches to identify the known genes (Bohnebeck 
et al. 2008; Partridge et al. 2009).

After gene-prediction, the next step in annotating a genome usually involves the 
identification of gene products or gene function. In particular, gene function predic-
tion identifies the protein that is synthesized as a result of transcribing a gene. 
Automatic protein annotation is frequently done using BLAST and FASTA 
(Pearson and Lipman 1988), which rely on sequence similarity to predict homology 
with known (and ideally trusted) annotations from public databases such as 
GenBank (Benson et al. 2007), The Kyoto Encyclopaedia of Genes and Genomes 
(Kanehisa and Goto 2000) and the Gene Ontology (The Gene Ontology Consortium 
2000; Ashburner et al. 2000). Results are usually refined and filtered either manu-
ally with the aid of annotation tools such as Artemis (Rutherford et al. 2000) or 
using some automatic tools that validate the annotations from multiple sources such 
as MAGPIE (Gaasterland and Sensen 1996) and GenDB (Meyer et al. 2003).

Further analysis can involve the establishment of protein families, i.e. proteins 
that perform the same or similar function or are homologous (phylogeny), or the 
comparison to established protein databases such as SwissProt (Wu et al. 2006), a 
manually curated protein database with a focus on high annotation quality and low 
redundancy, and TrEMBL (Bairoch and Apweiler 1999), which provides automati-
cally derived annotations based on SwissProt.

13.3  Computational Grammars

A computational grammar (or formal grammar) consists of a set of symbols (some-
times called tokens; e.g. words in a natural language) and rules (sometimes called 
productions) that describe how symbols can be assembled into legal sentences. 
Grammar rules have two parts: the left hand side (LHS) of the rule represents some 
complex structure (such as a phrase or sentence). The right hand side (RHS) of the 
rule captures an ordered set of tokens that describe how the LHS can be assembled.
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The simple grammar shown in Fig. 13.1 consists of eight rules. The first 
rule’s LHS is the single token ‘sentence’. The RHS consists of two tokens 
(“Noun” and “VerbPhrase”). The rule defines the pattern of “Noun immediately 
followed by VerbPhrase” to be a Sentence. The second rules defines the pattern 
“Verb followed by a NounPhrase” to be a VerbPhrase. The third and fourth rules 
define the NounPhrase to be either a Noun or “Determiner immediately followed 
by Noun”. The rest of the rules identify the part of speech (semantic type) of 
words (symbols).

Grammars can provide a readable and compact representation of even arbitrarily 
complex languages. For a comprehensive introduction, see Hopcroft et al. (2006).

The act of using such grammar rules to interpret a text is called parsing and a 
computer program that carries out the task is called a parser (or sometimes an 
interpreter). Various algorithms allow a parser to recognize patterns of RHS tokens 
in a text and label them with the LHS tokens. Thus, the parser “decodes” the seman-
tics, or meaning, of a text, as prescribed in the grammar.

The output of a parser is a parse tree – a data structure in which every final or 
leaf-node corresponds to a symbol (word) from the text, and every internal node 
(non-leaf) corresponds to a semantic construct found in the LHS of a grammar rule. 
The parse tree represents the sentence structure and thus captures the relationships 
between different parts of speech, sentences, and words.

Figure 13.2 shows an example parse tree that results from applying the grammar 
in Fig. 13.1 to the sentence given in the previous example. The connections between 
the symbols indicate their relationship. The parse tree shows, for example, that the 
word “the” is a determiner for the word “door” (and not for “opens”) and further 
that the pattern “the door” is called NounPhrase.

Computational grammars provide a basis for many aspects of computer science. 
Automatically understanding and translating programming and natural languages 
(Jurafsky and Martin 2008) as well as many aspects of theoretical computer science 
and computability theory are all strongly tied to formal grammar theory (van 
Leeuwen and Leeuwen 1994). The automatic extraction of grammars from example 
texts is a major research strand in machine learning and is particularly applicable 
to molecular biology, where the rules that govern self-assembly are not well  understood. 

[1] Sentence ® Noun VerbPhrase 
[2] VerbPhrase  ® Verb NounPhrase 
[3] NounPhrase ® Noun 
[4] NounPhrase ® Determiner Noun 
[5] Noun ® Michael 
[6] Noun ® door 
[7] Verb ® opens
[8] Determiner ® the

Fig. 13.1 Example grammars to describe a small subset of the English language. The first rule 
specifies that a sentence is only complete if it consists of a noun followed by a verb phrase; the 
second rule states that a noun phrase consists of a determiner followed by a noun or simply a noun. 
A verb phrase is defined as a verb followed by a noun phrase
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In particular, HMM have been used to identify genes in prokaryotes (Delcher et al. 
2007; Gheorghe and Mitrana 2004) and intron/exon junctions in eukaryotes (Burge 
and Karlin 1997).

The use of grammars in molecular biology is not limited to gene identification. 
It spans a diverse range of domains, and is especially useful where BLAST searches 
are not effective, such as when finding promoters (Leung et al. 2001) or identifying 
the mRNA secondary structure (Rivas and Eddy 2000). More examples can be 
found in a review by Searls (2002). In almost all applications, grammars of macro-
molecules represent arrangements of nucleic acids that correspond to patterns of 
interest. However, it is quite possible for grammars to operate on tokens that consist 
of entire genes and the other entities recognized in the DNA sequence, effectively 
modeling larger-than-gene structures such as MGEs.

13.4  Annotating Biological Structure Using Grammar Models

Theoretical knowledge about genetic structures in DNA and their relationship to 
each other can be expressed as constructs in a grammar, and a parser can then iden-
tify these structures in DNA sequences. For example, specific structures like genes 
can represent basic words, and the grammar can assemble such words into higher-
order structures. The resulting parse tree shows the recognized annotations as a 
hierarchy of nested structures.

Figure 13.3 gives an example grammar that identifies the cassette arrays and 
their parts. Figure 13.4 shows the parse tree from this grammar as it is applied to a 
particular DNA sequence. A similarity based tokenizer identified the symbols 
5’-CS, 3’-CS and aadA3. The parser identified those symbols as the start, end and 
middle of the array respectively, and that together they form an array.

Noun Verb

Determiner Noun

Michael opens the door

NounPhrase

VerbPhrase

Sentence

Fig. 13.2 Parse tree for the input sentence “Michael opens the door”. The parse tree shows which 
structures have been found and how they form a sentence according to the rules from Fig. 13.1
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When designing a grammar for biological structure annotation, a number of 
design choices need to be considered, some of which will be elaborated on in this 
section.

13.4.1  DNA Tokenization

If a sequence of DNA or some other macromolecule is to be parsed, the basic unit 
of input needs to be defined. In the simplest example, a single nucleotide or amino 
acid can be used, and a trivial tokenizer would simply read the input sequence one 
letter at a time. This is an obvious and proven choice for grammars of relatively 
short DNA structures such as gene promoters or protein domains used by most 

[1] CassetteArray ® CassArrStart CassArrMid CassArrEnd 
[2] CassArrStart ® 5'-CS 
[3] CassArrEnd ® 3'-CS 
[4] CassArrMid  ® Cassette 
[5] CassArrMid  ® CassArrmid Cassette 
[6] Cassette  ® aadA3 

Fig. 13.3 Example grammar that defines the parts of a cassette array. The elements 5’-CS and 
3’-CS define the start and end of the array respectively and a cassette its middle. Only one cassette 
is given in this example for brevity, but any number of cassettes can be accumulated in a 
CassArrMid structure (rule 5) and many more rules of the form of rule 6 can be added

Fig. 13.4 A grammar for genetic structure annotation. The input DNA (bottom) is tokenized, and 
the tokens are interpreted by a parser following grammar rules similar to the ones in Fig. 13.1. The 
resulting parse tree offers a clear annotation of the structures found in the input DNA and the 
grammar rules that lead to their recognition. In this example, a 5¢-CS token, an aadA3 cassette and 
a 3¢-CS have been interpreted by the parser as a complete cassette array
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approaches reviewed by Gheorghe and Mitrana (2004) and Searls (2002). However, 
due to the small symbol set, it is difficult to account for long structures, as the grammar 
rules become overly complex.

In analogy with the natural language, a grammar for recognizing larger-than-
gene structures that uses the four DNA bases as its basic units of input is similar to 
a grammar for recognizing sentences from letters instead of words. A better choice 
may be to group functionally related nucleotides to form higher-level patterns for 
parsing steps. These patterns (often referred to as features) can, for example, cover 
the MGEs or other larger-than-gene structures typically consisting of a gene and 
associated protein interaction sites, various conserved sequences and direct and 
inverted repeats.

Performing such annotations manually is tedious and requires an understanding 
of the underlying biological process. Automatic motif finding methods (Sandve and 
Drablos 2006; Pavesi et al. 2004) such as classical consensus patterns (Brazma 
et al. 1998; Smith et al. 1990), pattern-inference methods from positive examples 
(Aiyar 2000; Schuler et al. 1991) or nucleotide-level grammar inference approaches 
(Muggleton et al. 2001) can assist the DNA tokenization by using the automatically 
inferred motifs as features.

13.4.2  Grammar Class and Parsing Algorithm

The type of grammar to be used depends on the complexity of the structures to be 
analyzed, is closely coupled to the choice of the parsing algorithm and may con-
strain the form of the grammar rules.

Context-free vs. context-sensitive grammars: Context free grammars always 
arrive at the same interpretation of a pattern, independent of the broader context 
within which it occurs. In contrast, context-sensitive grammars are able to distin-
guish between the instances of a symbol based on its context within the other 
symbols (Searls 2002): For example, the following rules could help analyzing 
whether the word “books” occurs as an object or a predicate within an already 
partially annotated sentence:

Subject books Object → Subject Predicate Object
Subject Predicate books → Subject Predicate Object

Here, “books” is recognized as a predicate only if surrounded by a subject and 
object and as an object only if preceded by a subject and a predicate. Parsing of 
these grammars, however, may require an exponential number of steps and is there-
fore only practical for short sequences, however various modifications exist to 
context free grammars that confer them with some context-sensitivity aspects with-
out the big computational overheads (Grune and Jacobs 2008). Another advantage 
of context-sensitive grammars is that biological structures are usually defined in 
terms that allow them to be directly expressed as context sensitive grammars with-
out introducing any artificial semantic constructs.
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Deterministic vs. non-deterministic grammars: Deterministic grammars will 
always generate the same unambiguous parse tree for the same input, an appropriate 
property for many applications. Non-deterministic grammars, on the other hand, 
produce multiple parse trees; stochastic grammars, a subclass of the latter, have 
probabilities associated with each grammar rule (Baldi and Brunak 2001). 
Stochastic grammars are often appropriate for modeling non-determinism in biol-
ogy and have mostly been applied as HMMs – a constrained form of stochastic 
grammars (Rabiner and Juang 1986; Ewens and Grant 2005; Koski 2001; Baldi and 
Brunak 2001). In particular, when multiple biological reading of DNA are possible, 
for example when multiple ORF shifts encode for different proteins which are both 
expressed, it would be possible to produce the alternative parses using a non-
deterministic parser to show the various genes.

Bottom-up vs. top-down parsing: Bottom-up parsing refers to parsing techniques 
that build the parse tree from the leaves towards the root by successively combining 
input symbols (Grune and Jacobs 2008; Aho et al. 1986). Top-down parsers, in 
contrast, start with a root and try to find parse trees that match the input symbols 
(Dale et al. 2000). Top-down parsers are suitable for the recognition of patterns 
when the root (top node) of the parse tree is known, for example when annotating 
whole molecules. Bottom-up parsers are suitable when the structures to be anno-
tated might be truncated, for example when annotating segments of DNA that 
include only a part of a structure.

13.4.3  Grammar Derivation

Grammars can be derived manually, automatically, or by a combination of both. The 
way a grammar is derived depends on the training data and the theories available in 
the biological domain that is to be modeled. In automatic grammar derivation, a 
grammar inference algorithm identifies the rules of a grammar using machine 
 learning methods (for an introduction to machine learning, refer to Mitchell (1997). 
This is typically done by examining a set of annotated sequences and extracting 
frequent sequences of symbols, hypothesizing that frequent occurrences imply an 
evolutionary selection of the sequence and hence significance of the pattern.

Machine learning algorithms not only require a training set (ideally partitioned 
into positive and negative examples of the patterns to be inferred) for accurate 
results, they also require that the training set must be the representative of the 
sequences that will later be annotated by the parser. Consequently, the existence 
and size of such a corpus are crucial for its applicability and impact. Many auto-
matic grammar inference methods have been developed for recognizing specific 
patterns in biological sequences from a training set (Rissanen et al. 2008; Baldi and 
Brunak 2001).

Manual derivation, on the other hand, requires that a well-defined theory exists 
in the biological domain. This theory can then be manually represented as a 
grammar. Grammar rules that encode how the symbols are mapped into semantic 
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constructs are defined to reflect the biological concepts and processes. This typically 
involves a significant amount of computer programming; however, for context-free 
grammars, parser generators such as YACC (Johnson 1978) can facilitate the software 
development. A more complete description of this process is given in Grune and 
Jacobs (2008). A good example for manual derivation is the grammar presented in 
Searls (1988).

13.4.4  Validation of Grammatical Models

Once developed, grammar needs to be tested to ensure that they are accurate mod-
els of the biological processes that they are intended to represent. The ease with 
which a grammar can be evaluated depends on the availability of annotated 
sequences. If available, these can be used as a test set to measure the accuracy of 
annotations produced by the parser. Standard evaluation measures require that each 
symbol annotated be classified as either correctly (true positive) or incorrectly 
annotated (false positive), and that gaps in the annotation be classified as correctly 
left unannotated (true negative) or missed (false negative). Using these values, the 
quality of the grammar is reported as sensitivity, specificity and as F-score (van 
Rijsbergen 1979; Mitchell 1997).

If no test set exists for comparison, a panel of independent human experts can 
be asked to identify the semantic construct that each symbol belongs to. Agreement 
of the automatic annotations with those produced by the experts can then be used 
to show whether the grammar can annotate the sequences at least as well as the 
experts. Inter-annotator agreement within the panel is measured using a nominal 
agreement measure such as Fleiss’ к (Fleiss 1971). This measure is compared with 
the measure of the expert annotators and the grammar. Significantly lower к value 
in the second measure indicates that the grammar created worse annotations than 
the experts.

13.5  Case Study: A Grammar Model for Cassette Array 
Modeling and Interrogation

In this section, we present an implementation of an automatic annotator for R gene 
cassette arrays (Box 13.1). The annotator uses BLAST to annotate the features of 
interest such as gene cassettes and conserved sequences that mark the start and end 
of several types of cassette arrays (Sect. 13.3). A context-sensitive grammar was 
derived manually (Sect. 13.3) to recognize the cassette arrays based on these fea-
tures. The grammar model was used to conduct a major survey of antibiotics resis-
tance cassettes (Partridge et al. 2009) and to discover two new gene cassettes 
(Tsafnat et al. 2009).
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13.5.1  DNA Tokenization

Tokenization of the raw bacterial DNA was carried out with the help of a feature 
database (FDB). This database had been manually curated and comprised of 276 
features including 214 gene cassettes, conserved sequences marking the start and 
end of the arrays and non-cassette sequences that are found in cassette arrays (but 
do not seem to interfere with the expression of R genes in the array). Instances of 
these features were found using BLAST (Altschul et al. 1990) and marked up in the 
bacterial DNA sequences. A default identity match of 97% was used and manually 
adjusted for the disambiguation of the features. Annotations gaps in the DNA were 
tagged using a special token denoted as l. In a second run, these l tokens were 
matched against the FDB using BLAST to find instances of truncated features. Full 
and partial feature instances as well as the remaining l tokens were stored in a 
database and made available for processing by the parser.

13.5.2  Cassette Array Grammar

Gene cassette arrays are made up of an initial conserved sequence, a middle part (a 
sequence of gene cassettes) and a terminating conserved sequence (Hall and Collins 
1998). Tsafnat with co-workers (2009) derived a 21-rule grammar that accurately 
annotated cassette arrays based on the input tokens described in Sect. 13.3. In cas-
sette arrays, it is relatively common to encounter short DNA sequences (usually 
less than 300 base pairs) that are not gene cassettes, do not encode genes but do 
allow gene cassettes downstream from them to be expressed. Recognition of a 
sequence as such a non-cassette insertion depends on the context in which the 
sequence occurs and thus requires context-sensitive grammar rules.

The grammar was derived manually in collaboration with an expert and con-
tained seven context-sensitive rules that facilitated the recognition of the array 
structure as compared to using context-free rules only. Rule application was per-
formed by a deterministic parser in a bottom-up manner, gradually summarizing the 
sequence features to form the cassette array structure.

The grammar’s ability to identify arrays was compared with three experts and 
achieved a very high agreement score of 94.8%, where agreement was measured using 
Fleiss’ к (Fleiss 1971). Two putative new gene cassettes (qacK and dfrB7) were discov-
ered by investigating the length and context of annotation gaps (Tsafnat et al. 2009).

13.6  Interrogation of Annotated Structures

The annotation of thousands of sequences is of limited use without tools to 
retrieve, interrogate and visualize them. We borrow ideas from the discipline of 
information retrieval to present systems specific to genetic sequences and MGEs. 
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Most common information retrieval systems are retrospective search engines that 
work in two stages: an indexing stage that prepares the source data for quick search 
(Sect. 13.4.1), and a retrieval stage (Sect. 13.4.2) in which a search query is evalu-
ated using the index, and the relevant components that satisfy the query are returned 
(Manning et al. 2008; van Rijsbergen 1979). Search indices are used in virtually 
any database and allow for efficient on-line query operations on large and complex 
amounts of data (Elmasri and Navathe 2007).

13.6.1  Indexing Hierarchical Genetic Structures

Given a set of bacterial DNA sequence data from chromosomes and plasmids, a 
grammar model can be used to obtain parse trees. One way of organizing these data 
is to transform the parse trees into an XML representation and persistently store them 
in a database such as Sedna (Fomichev et al. 2006). A query represented in a specific 
language, e.g. for searching for antibiotics resistance genes in MGEs, is translated to 
XQuery, a general query language for XML databases (Chamberlin et al. 2001). This 
XQuery program is then run against the XML database for result retrieval.

13.6.2  A Query Language for Structure Annotations

The tree representation of genetic structure annotations allows for a number of que-
ries not possible using “flat” annotations only. In the context of MGE, it may, for 
example, be interesting to know if a certain resistance gene co-occurs with another 
in a unit of mobility, such as a gene cassette array or an integron. For this purpose, 
this query language provides, among the other things, an in operator of the form

X in Y,

restricting the results for a given query to structures where the predicate X (e.g. a 
gene) occurs inside the structure Y (e.g. a transposon). In addition, the query lan-
guage interprets logical operators such as and and or as well as parentheses to 
distinguish between (A and B) or C and A and (B or C).

To execute a query, it is translated into the XQuery language and executed 
against the XML database of saved structure annotations. For example, the query

(qacE and aadA3) in CassetteArray

will return accessions containing cassette arrays in which both qacE and aadA3 
gene cassettes occur. This query is translated into XQuery

for $acc in doc(“annotations.xml”)//accession

where
$acc//feature[name eq “CassArray”]//feature[name eq “qacE”]
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and
$acc//feature[name eq “CassArray”]//feature[name eq 
“aadA3”]
order by $acc

This sample XQuery program is applied to an XML database (Fomichev et al. 
2006) and returns all accessions from the XML annotation database annotations.
xml that feature cassette arrays in which the resistance genes qacE and aadA3 co-
occur. Similarly, we can add a wildcard operator * that matches any structure. For 
example, the query

(qacE and aadA3) in *

will be satisfied by sequences that have any structure that contains both a qacE ele-
ment and an aadA3 element.

The resists operator allows querying for sequences based on some predicted 
phenotypes. This wildcard operator matches all names of genes that are known to 
confer resistance to an antibiotic. For example,

resists(carbapenems)

will match any element that confers resistance to carbapenems. Finally, nested 
searches allow for more powerful queries searching for potential co-mobility of 
arbitrary structures:

((qacE in CassetteArray) and resists(carbapenems)) in Integron

will match any sequence containing an integron that includes a cassette array car-
rying both the gene qacE and any gene conferring resistance to carbapenems.

13.6.3  Structure Visualization

A number of programs exist for DNA annotation visualization. Artemis (Rutherford 
et al. 2000) is a popular visualization tool that provides a number of features mainly 
centered on prokaryotic gene transcription and overlays of analysis results originat-
ing from the external tools. GO Bar (Lee et al. 2005) and DynGO (Liu et al. 2005) 
both visualize genes on the basis of the Gene Ontology (The Gene Ontology 
Consortium 2000) and Osprey (Breitkreutz et al. 2003) visualizes gene regulation 
networks. Other methods focus on the generic visualization of hierarchical infor-
mation. For example, tree maps (Johnson and Shneiderman 1991) are better suited 
to display the large hierarchical structures than are the standard tree graphs, due to 
a better space utilization.

However, none of these tools meet the requirement of visualizing  larger-than-gene 
genetic structures, such as the ability to incrementally explore complex hierarchical 
structures or direct links to relevant public databases. Generic parse tree visualiza-
tion programs, on the other hand, do not offer explanations of the underlying 
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 biology. The second and third authors implemented a DNA grammar visualization 
tool that addresses some of these shortcomings (Fig. 13.5), intended as a 
 proof-of-concept implementation of what better visualization of complex 
 hierarchical annotations in the biological domain could look like.

Navigation buttons allow structures (e.g. a CassArray token) to be expanded into 
their constituent parts, which in turn can be further explored through the same 
mechanism. Leaf nodes are accompanied by information on the feature that they 
match and links to knowledge repositories such as GenBank and GO. All nodes 
allow the DNA sequence part covered by them to be displayed. The tool (Held and 
Tsafnat 2007) is intended to complement the existing DNA visualization tools, thus 
only focusing on improving on the aspects mentioned above.

13.7  Conclusion

Generic annotation methods are insufficient for the recognition of MGEs, as they 
do not account for the variation in the genes accommodated. We suggested that 
computational grammars can be used for recognizing MGEs; by parsing an input 
DNA sequence using such a grammar, instances of structures of interest can be 
made explicit in the input. We presented some tools that can be used for the annota-
tion of a batch of genetic sequences as well as for search through the annotations, 
and the visualization of individual ones.

We discussed in some detail the available strategies for tokenization – the 
 recognition of genetic “words” - and those for putting them together into MGE 
“sentences”. One way to tokenize DNA is to use a manually curated feature data-
base containing annotations considered important for the specific genetic domain 
investigated. This is analogous to use a dictionary to find word patterns in a text 

Fig. 13.5 Graphical tool to visualize structure annotations. The screenshot shows GenBank 
accession AB113114, where a cassette array consisting of three tokens has been found: a 
CassArrayStart token (1…80), a Cassette token (80…666) and a CassArrayEnd token (666…702). 
The arrow buttons allow expanding annotation details for each token. For example, pressing the 
down arrow under the Cassette token trigged expansion of the dfrA15 token. This mechanism 
enables showing and hiding annotation parts as required and allows the visualisation of complex 
parse trees in a clearly arranged way. Other buttons allow viewing the token associated DNA as 
well as executing local sequence alignments against it
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without punctuation or words. However, this is only applicable if prior knowledge 
about the domain (i.e. the dictionary) is available. Context-sensitive grammars allow 
biological structures to be represented in similar terms to the way they are described 
in the literature. Once higher-order structures have been annotated in a sequence, 
these may be queried using a domain-specific query language, and individual struc-
tures can be visualized. This allows for the implementation of search operators 
specific to a certain research or clinical question. One example presented in the 
case-study was the implementation of search operators useful for the collection of 
evidence for the co-mobility of the resistance genes in MGEs.
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14.1  Introduction

In silico approaches to accelerate the identification, selection, and validation of 
novel targets (“target discovery”) and of corresponding ligands (“drug discovery”) 
follow basic principles that are briefly listed below:

1. The first principle is the in silico filtering of electronically stored information 
based on appropriate representations of knowledge. For example, a protein of 
an infectious agent might be a target if it is involved in a vital process. An  
in silico filter might be applied to identify such vital proteins. A drug candidate 
should comply with Lipinski’s rule of five (Lipinski et al. 1997), which con-
cerns its molecular mass, constituting atoms and solvent solubility. Incorporation 
of these attributes in an in silico filter allows the selection of drug-like com-
pounds. The combination of filters is made possible using Boolean logical 
principles.

2. The second principle is the execution of in silico experiments or simulations. 
For example, in the target discovery process, the real effect of the impair-
ment of a target might be simulated based on a modeled biological system in 
which a graphical representation of the targeted biological process is com-
bined with a dynamic model that allows the prediction of the response of the 
system when some of its components are functionally altered. In the drug 
discovery process, simulation is even more critical since the filtering of 
information is clearly not sufficient. The modeled docking of small com-
pound structures inside a cavity at the surface of a protein target is at the 
heart of most in silico strategies.
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These general basic principles are clearly constrained by specific features, which 
are dictated by the biological uniqueness of each pathogen. It is not the purpose of 
this chapter to give a complete description of these specificities. Rather this chapter 
introduces one of the most complicated cases of the in silico drug discovery process 
– the search for novel compounds that might prevent or cure malaria infections.

Malaria is a life-threatening disease affecting approximately 500 million people 
worldwide (World Malaria Report 2005). Five species of malaria parasites can 
infect humans via mosquito transmission: Plasmodium falciparum (the species that 
causes the greatest incidence of illness and death), P. vivax, P. ovale, P. malariae, 
and P. knowlesii. These parasites belong to the Apicomplexa phylum, which 
contains thousands of other parasitic protists of medical and veterinary importance 
(Adl et al. 2005). Malaria was eradicated from temperate regions following 
concerted preventative sanitary actions that included insecticide-spraying campaigns 
and systematic treatments with the most cost-effective drugs, i.e., quinine and chlo-
roquine (Desowitz 1992; Utzinger et al. 2002; Baldwin 2003). However, the 
prophylactic programs based on insecticide and drug treatments failed to control 
malaria in subtropical areas (Nchinda 1998). Resistance to chloroquine spread rap-
idly (Ridley 1998, 2002). Current efforts focus therefore on chemoprophylaxis 
using artemisinin, an antiplasmodial molecule from Artemisia annua, and its 
derivatives, which can be manufactured efficiently and cheaply. However, plans for 
the extensive use of artemisinin might be compromised by the emergence of the 
parasitic resistance that it will almost certainly trigger (Jambou et al. 2005; Towie 
2006; Afonso et al. 2006). Given the small number of available drugs and the resis-
tance they have already induced, the discovery of new targets and of new drugs 
remains a key priority.

A major landmark in the history of malaria was the launch of a collaborative 
genomic sequencing program in 1996 (for a review see Birkholtz et al. 2006), leading 
to the release of the complete genome of the 3D7 strain of P. falciparum in 2002 
(Gardner et al. 2002). This unprecedented effort to sequence the genomes of 
eukaryotic pathogens was a technical challenge due to the extreme compositional 
bias of Plasmodium DNA (>80% A + T in P. falciparum), which accounted for the 
instability of these genomic fragments in bacteria (Gardner 1999; Carucci et al. 
2004; Hall et al. 2004) and complicated the assembly of contigs (Hall et al. 2004). 
However, among eukaryotes, the Plasmodium genus is currently the best docu-
mented at the genomic sequence level, with well-established syntenic relations. At 
the level of the Apicomplexa phylum, additional complete genomes of 
Cryptosporidium, Theileria, and Toxoplasma have been also sequenced and anno-
tated (Aurrecoechea et al. 2009).

All Plasmodium molecular data have been collected and organized in the 
PlasmoDB public database as early as sequencing outputs were made available 
(http://www.plasmodb.org; Aurrecoechea et al. 2009). The architecture of the 
relational database was designed following biologically relevant relationships, i.e., 
the “gene to mRNA to protein” dogma, using the Genomics Unified Schema 
(Kissinger et al. 2002), and ensures that gene loci are linked to annotation using the 
Gene Ontology standards (Aurrecoechea et al. 2009). Predictions of protein 
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domains, post-translational modifications, subcellular targeting sequences, etc. are 
included. Furthermore, PlasmoDB is currently the only site where molecular data 
are (1) clustered based on sequence comparisons, (2) linked to generic schemes 
designed to view metabolic pathways, and (3) linked to X-omic functional information 
(transcriptome, proteome, interactome). This allows any biologist to exploit the 
integrated data with basic or combined queries, and it is therefore the first resource 
designed to allow the mining of biological knowledge in order to accelerate the 
development of new therapeutic strategies. PlasmoDB operates inside EuPathDB, 
a master Web portal for eukaryotic pathogens’ genomes (Aurrecoechea et al. 2009). 
PlasmoDB was designed to allow the identification of novel target candidates 
following in silico approaches and the combining of “filters” inspired by our 
knowledge of the infection. Since the target discovery process cannot be discon-
nected from the downstream drug discovery process, it is briefly summarized in the 
first part of this chapter. Identifying novel drugs that might impair the function of 
these targets is not trivial. Actually, there are far more target candidates than 
derived drug candidates in the literature, since the latter process is not based on the 
simple filtering of biological knowledge appropriately stored in an electronic data-
base. Therefore, there is a need for in silico experiments, which are mainly based 
on the simulation of the docking of small molecules in cavities at the surface of the 
protein targets. These interactions are believed to alter the target protein’s structure 
in such a way that it becomes nonfunctional. In silico strategies to discover novel 
drug candidates will therefore be detailed in the second part of this chapter. Lastly, 
since in silico docking requires a large computational capacity, the deployment of 
grid infrastructures to expand the scale of these strategies will be described.

14.2  In Silico Identification and Selection of Chemotherapeutic 
Target Candidates

14.2.1  Target Discovery Overlapping with In Silico Drug 
Discovery

A target is a broad concept that qualifies a biological entity and/or a biological phe-
nomenon at which part of a therapy is aimed. It follows that a target can be defined 
as a phenotype (e.g., symptoms of a disease), a biological process (e.g., a vital 
metabolic pathway in a pathogen), a subcellular organelle, a protein (e.g., a vital protein 
of a pathogen), and a protein domain (e.g., a pocket at the surface of a protein into 
which an active drug can dock; numerous targets can be defined on a given protein 
structure). It also follows that a target cannot be defined independently of the type of 
intervention one considers implementing, particularly when one intends to introduce 
a novel chemotherapeutic strategy. Intervention depends on the level of knowledge of 
the disease and relies on the availability of methods to design and introduce exog-
enous chemicals (biological extracts and natural substances, drugs purified from 
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biological material or obtained by synthetic chemistry). As a result, in reviewing the 
strategies for target discovery, characterizations, validations, etc., the target should be 
defined. Here, targets will be discussed following their understanding in allopathic 
medicine, as molecular entities (genes, proteins, protein domains) or biological 
phenomena (molecular functions, pathways, phenotypes) organized in causal 
schemes. One is the DNA → RNA → protein ↔ function/phenotype simplified 
scheme; the other is the functional scheme in which the target plays a role like a meta-
bolic scheme or a gene regulatory network.

In the last decade, access to complete genomic sequences of human and pathogens 
has brought the hope that target genes would be rationally identified, allowing the 
design of new cures. For diseases caused by parasites such as malaria, biological 
knowledge of all partners involved in the parasitic relationship (here Plasmodium 
parasites, Anopheles mosquito vectors, and the human host) is therefore a prereq-
uisite to explore rational and creative ways of fighting the disease.

The introduction of a therapeutic treatment, which might be inspired by the 
characterization of a target, is a high-risk, lengthy, and expensive process. A robust, 
automated screening assay has to be developed to allow the detection of molecules 
with appropriate bioactivity (e.g., antagonists binding to a receptor, inhibitors of an 
enzymatic activity, molecules impairing a phenotype, etc.). From thousands to 
hundreds of thousands of molecules can thus be screened. From our experience in 
automated screening, and according to the cost of reagents and consumables, the 
total cost of such screening ranges from 15,000 to over 100,000 Euros. Risk of 
failure within the screening process is high, depending on the properties of the 
target, the quality of the screening assay, and the appropriate molecular diversity of 
the chemolibrary. More than 70% of the drug discovery and development projects 
fail (Frantz 2007). Lindsay (2005) reports that, whereas the number of targets 
identified by modern biological methods increases, yet clinical medicine declines. 
Any in silico analyses that could help select and characterize target candidates 
earlier in the drug discovery process, as well as help to discard risky targets, are 
therefore particularly valuable.

Thus, the objective of a target discovery project is not simply to end with a list 
of genes, but to advance and assist the subsequent therapeutic development pro-
cesses, which could entail the search for novel bioactive molecules that might act 
as successful drugs as well as the development of new vaccines or the design of 
gene therapy strategies. Given the cost of drug/vaccine development, the feasibility 
of advancing the target discovery process is therefore a major additional criterion 
for the in silico target discovery.

14.2.2  Filters Combined with Boolean Logic

The acceleration of target discovery to combat diseases by employing appropriate 
databanks of genes’ structures and the function they harbor is one of the most 
expected benefits of genomic sequencing projects. Considering the malaria example, 
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the genomes of all partners, i.e., Human (International Human Sequencing 
Consortium 2001; Venter et al. 2001), P. falciparum (Gardner et al. 2002), and the 
main malaria vector A. gambiae (Holt et al. 2002) have been fully sequenced. The 
biology of each organism is a field of research by itself, and respective knowledge 
cannot be necessarily organized following the same principles, for historic and 
scientific reasons. Current genomic databases, however, have been organized using 
standard electronic formats allowing data exchanges, interoperability, and 
comparisons.

The search for new targets in genomic databases is mostly achieved by combina-
tions of filters rationally designed given the knowledge of the disease. These filters 
are either basic (e.g., “List of genes that are vital for the infectious organism”) or 
more sophisticated (e.g., “List of genes that are vital for the infectious 
organism”/“with no homologue in the human host in order to lower the toxicity risk 
of the treatment”/“with little allelic variation in order to lower the risk of resistance 
spreading”/“with genetic expression in the infectious stage that complies with the 
sought treatment, for instance the blood circulating stage”/“etc.”). These combina-
tions of filters are basic Boolean operations (AND, OR, NOT) applied to genomic 
and postgenomic databases. Outputs are lists of candidate target genes, the quality 
of which depends on the accuracy of the underlying scientific reasoning and the 
quality of the input data. In silico drug discovery is therefore a field of research 
where innovation lies in (1) the improvement of the quality of genomic data and 
postgenomic information, (2) the improvement of tools used to analyze and process 
genomic and postgenomic information, and (3) the rational combination of filters.

14.3  Case of Malaria In Silico Target Discovery

14.3.1  Targets Are Somewhere in Genomic and Postgenomic 
Databases

Considering malaria with a practitioner’s eye, the organisms involved in the 
three–partner relationship fall in the following categories: (1) the patient, a human 
affected with malaria, often referred to as the host, (2) the vector, a mosquito also 
hosting the parasite and also affected, but seen as a contaminating intermediate 
from one human patient to another, and (3) the parasite, considered as the malaria 
causative agent, although the human and the mosquito also play their roles in the 
complete cycle. Currently, human DNA sequences, deduced genes, and corre-
sponding annotations have been carefully organized as a source of data and 
information for a large variety of basic scientific questions, ranging from develop-
ment and physiology to Mammal evolution, population genetics, etc. Some of these 
studies, in the field of medical sciences, aim at accelerating the design of new thera-
peutic strategies, but there is no data organization scheme that fulfils all of these 
purposes. It has now been acknowledged that organization schemes shall either be 
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designed to address a focused research topic with a high level of precision, reliability, 
and quality, or shall be generalist. To our knowledge, little has been developed 
in the field of human genomics specifically focusing on malaria. Concerning 
generalist Internet databases, the Ensembl resource (Hubbard et al. 2007) provides 
access to the human genome, with comprehensive and integrated sources of annota-
tion of other chordates, strain variation data, and ortholog/paralog annotations 
based on gene trees.

By contrast, Anopheles genomics is solely motivated by the fight against 
malaria, although mosquitoes happen to be insects and therefore interesting model 
organisms that could be compared with Drosophila. The first complete genomic 
sequence of A. gambiae was released a month before that of P. falciparum (Holt 
et al. 2002) and has been recently updated (Sharakova et al. 2007). The VectorBase 
(Lawson et al. 2007) provides internet access to A. gambiae genomic data and 
postgenomic information, together with those of other insect vectors of human 
pathogens but disconnected from any integrated genomic information on nonvector 
insects such as the fruit fly (FlyBase, Crosby et al. 2007) or honey bee (BeeBase, 
Elsik et al. 2007). The Ensembl resource mentioned earlier (Hubbard et al. 2007) 
allows access to both Anopheles and Drosophila, and since it is also a repository 
for human genomics, it represents a useful source of data for mosquito-specific 
target searches.

In the case of P. falciparum, PlasmoDB is currently the only database where 
molecular data have been designed to specifically address the fight against this 
infection. Genes have been tentatively clustered based on their homology with 
sequences of other organisms, allowing the search of Plasmodium-specific sequences. 
This search is linked to schemes designed to view metabolic pathways and X-omic 
functional information (transcriptome, proteome, interactome). Any biologist can 
exploit these integrated data with basic or combined Boolean queries (Coppel 2001; 
Kissinger et al. 2002; Bahl et al. 2003; Carucci 2005, Aurrecoechea et al. 2009; 
Saidani et al. 2009).

14.3.2  Translating Working Hypotheses into Boolean Searches

Boolean comparisons of genomic and postgenomic tables are key in the in silico 
target discovery process, and databases that allow comparative genomic approaches 
are therefore important instruments. The major working hypotheses underlying the 
search for novel antimalarial interventions should focus on the three-partner 
relationship:

In the Human •	 ↔ Anopheles relationship, targets on the mosquito side (mainly, 
targets for insecticides, i.e., vital processes and genes) are mainly sought 
(reviewed by Toure et al. 2004). On the human side, no molecular target has 
been currently described to repel or block Anopheles bites, in spite of clues that 
skin substances are involved in mosquito attraction (Schreck et al. 1990).
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In the Human •	 ↔ Plasmodium relationship, targets on the Plasmodium side 
(mainly targets for chemotherapies and vaccines) are mainly sought. Human 
resistance is also studied (e.g., Hernandez-Valladares et al. 2004; Cunha-
Rodrigues et al. 2006), with possible treatments based on immune response 
enhancers.
In the •	 Anopheles ↔ Plasmodium relationship, targets on both the Anopheles and 
Plasmodium sides are sought. The objective is the selection or transgenic pro-
duction of mosquitoes that resist Plasmodium infection and have a better popula-
tion fitness than the wild-type (Christophides 2005). This strategy is based on 
the hypothesis that transgenic mosquitoes might be released and that a fertiliza-
tion barrier might also be designed so that Plasmodium-carrying mosquitoes are 
eradicated.

Among all these working hypotheses, the major effort is the search for Plasmodium 
chemotherapeutic targets that comply with practical constraints, i.e., the environ-
mental risks accompanying insecticide spraying and the ethical concerns relating to 
transgenic organisms. Antimalarial chemotherapy is principally based on specific 
vital components and processes in the blood stages of the parasite (requiring there-
fore information on stage-specific gene expression). Parasite features currently 
investigated as promising targets for future drugs are very heterogeneous: Jana and 
Paliwal (2007) list membrane dynamics (lipid biosynthesis, membrane transport-
ers), protein turnover (protein synthetic machinery and proteases), plant-like 
metabolism (shikimate pathway, isoprenoid biosynthesis), redox systems, organ-
elles (mitochondria, apicoplast), nucleic acid metabolism (purine and pyrimidine 
pathways), etc. This heterogeneity reflects the diversity and creativity of biological 
researches.

To use these selection criteria for an in silico filtering, a translation into a formal 
language should occur. For instance, the assessment that a Plasmodium-specific 
organelle such as the apicoplast is a target for intervention (for review, Bisanz et al. 
2008) can be translated into database queries based on a large variety of criteria:

The apicoplast is an intracellular organelle that is limited by membranes, •	
containing proteins encoded by both the apicoplast DNA, and by the nuclear 
chromosomes. Targets can therefore be sought in a list of genes encoded by 
the apicoplast DNA and nuclear genes whose products are directed to the 
apicoplast.
The apicoplast is involved in specific metabolic processes (e.g., fatty acid, •	
glycerolipid, and isoprenoid metabolism, etc.). Targets can therefore be sought 
among the genes whose products play a role in these metabolic pathways, 
including metabolite transporters.
The apicoplast is an organelle, in which biogenesis (e.g., apicoplast DNA •	
replication, transcription/translation, posttranslational modifications including 
methionine peptide deformylation; nuclear-encoded protein import), develop-
ment, and division (organelle division machinery) depends on a series of genes 
that can also be examined for their potential as drug targets (Wiesner and Seeber 
2005; Waller and McFadden 2005; Bisanz et al. 2008). Since the apicoplast 
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derives from an ancestral alga engulfed by a series of endosymbiotic events, the 
search for new drug targets in Plasmodium can also be expanded to all 
Plasmodium genes that were inherited from the ancestral algae and are therefore 
phylogenetically related to plants. All of these basic queries can be combined 
with tools made available by Internet resources such as PlasmoDB (Coppel 
2001; Kissinger et al. 2002; Bahl et al. 2003; Carucci 2005; Aurrecoechea et al. 
2009), or by local software suites.

14.3.3  In Silico Target Discovery Tools

Some of the main criteria used in the in silico identification of putative drug targets 
may include selecting the aspect of the parasite’s biology to be interfered with; finding 
proteins or protein orthologs with sequence, functional and structural properties of 
interest; determining the level of conservation with host orthologs, which may affect 
cross-reactivity; defining the classes of compounds that the proteins interact with; 
analyzing the druggability of the protein active site and validating the protein as a 
suitable target or choosing targets that have been clinically validated in other species. 
The amount and quality of the target candidates one can predict based on in silico 
filtering depends on one’s access to the relevant genomic and metagenomic informa-
tion. Either one has experimental evidence regarding the structure and function of 
genes, or one has to rely on predictive tools. Obviously, given the millions of gene 
sequences in public databases, experimental investigations will not be carried out 
and the results of in silico mining will rely upon bioinformatics methods. Following 
are a list factors in the search of apicoplast targets as an example:

Prediction of gene structure will depend on the tools used to detect the genes 
(see GeneDB). In the case of Plasmodium, the strong A + T bias, the noncanonical 
structure of promoter regions and gene splicing sites, etc. imply that a comparison 
of the open reading frame predictions with sequenced ESTs and manual examina-
tion is required. Precise gene structures have recently been updated (Aurrecoechea 
et al. 2009). Prediction of nuclear genes coding for apicoplast proteins will depend 
on the accuracy of the tools developed to predict protein targeting, i.e., PATS 
(Zuegge et al. 2001) or PlasmoAP (Foth et al. 2003). The prediction of genes 
coding for enzymes involved in apicoplast metabolic reactions or transporters will 
depend on the quality of the automatic annotation of genes, i.e., the functional 
inference for each open reading frame (at the date of writing, > 60% of the 
Plasmodium genes have no functional annotation; Birkholtz et al. 2006), and the 
quality of the metabolic representations, i.e., KEGG (Kanehisa et al. 2006), 
MetaCyc (Caspi et al. 2006), and the Malaria Parasite Metabolic Pathways 
(Ginsburg 2006, 2009). Part of the functional annotation derives from the prediction 
of gene homologies and molecular phylogenies and depends on the performance of 
sequence comparison methods, statistics, and molecular phylogenetic reconstruction 
methods (Bastien et al. 2004a; 2004b; 2005; 2007). Moreover, part of the functional 
inference can derive from nonhomology-based annotation transfers, resulting in the 
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creation of GO-databases, i.e., the Plasmodium OPI Databases (Zhou et al. 2008) 
or PlasmoDRAFT, which contain annotated predictions based on guilt-by-association 
methods using postgenomic data including those from the transcriptome, pro-
teome, and interactome (Bréhélin et al. 2008). Prediction of nonprotein apicoplast 
targets depends on the availability of resources for nonprotein objects. Such 
resources do not exist.

In contrast to this focused search on the structure and function of the cell (and 
its components), global analyses based on postgenomic data provide invaluable 
additional clues. Thus, experimental and in silico interactome data have revealed 
unique protein–protein networks within the malaria parasite with controlling nodes 
indicating a “rich-club phenomenon” of interconnectivity (Birkholtz et al. 2008b). 
Computational prioritization of drug targets is utilized in PlasmoCyc, which 
contains an integrated pathway/genome database and has resulted in the identifica-
tion of 216 chokepoint enzymes (Yeh et al. 2004). More recently, the P. falciparum 
metabolic pathways have been used to identify additional 22 potential new targets 
using in silico knock-out approaches (Fatumo et al. 2009).

PlasmoDB currently provides the most complete resource to assist with selection 
of malaria target candidates, but improvement of existing tools and development of 
new analytical tools are still needed to increase the quality of molecular and func-
tional annotation, to allow biological knowledge representation and to improve the 
integration and mining of genomic/postgenomic molecular and functional data 
(Birkholtz et al. 2006). A real challenge is to move further from user-friendly but 
rigid Web portals to flexible and creativity-oriented knowledge accesses (with user-
designed workflows, implying a strong interoperability).

14.3.4  Toward Druggable Plasmodium Genome

Despite the small number of genes that have been annotated in the Plasmodium 
genomes, tens of drug targets have already been deduced from in silico analyses. 
With the three-dimensional structures of previously characterized biological 
targets, classifiers based on machine learning methods can be developed by docking 
known drugs. Any protein whose structure has been assessed by crystallography or 
predicted by structure modeling (left of Fig. 14.1) might be subjected to this 
classifier in order to predict whether they share some of the key properties of drug 
targets. The structure of investigated proteins can be compared to databases of 
protein structures (Charette et al. 2006) (Fig. 14.1b). Alternatively, the structure of 
investigated proteins can be analyzed to detect surface cavities (e.g., Laurie and 
Jackson 2006; Nayal and Honig 2006) that can then be compared to databases of 
drug/ligand-binding cavities (Fig. 14.1c). Processing genes following this workflow 
allows the definition of a “druggable” genome. This is a longer term goal in the case 
of malaria in silico target discovery, due to the few Plasmodium protein structures 
currently available, as well as to the difficulties associated with the structural 
modeling of Plasmodium proteins (Birkholtz et al. 2006; de Beer et al. 2009).
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Progress toward the Plasmodium druggable genome and the linkage of genomic 
data and postgenomic information with chemical knowledge of drugs and drug-like 
small molecules represent future challenges for in silico target discovery. This 
information provides the basis for drug target databases including the TDR Targets 
Database (http://tdrtargets.org).
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Fig. 14.1 In silico determination of the druggable genome. This scheme, adapted from Saidani 
et al. 2009, shows the in silico analyses (comparisons and docking) that can be performed in order 
to predict whether a protein sequence (A), protein structure (B), or protein surface cavity (C) share 
features with known protein targets (or known ligand/drug binding sites). The systematic investi-
gation allows the definition of a set of predicted “druggable” genes
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14.4  Strategies to Identify and Select Drug Candidates

14.4.1  In Silico and In Vitro Drug Discovery

There has been a steady decline in the number of new molecular entities entering 
clinical development and reaching the market over the past 10–15 years. This is due 
to high levels of drug attrition, mainly attributed to unanticipated efficacy and 
toxicity problems (Bhogal and Balls 2008). Reasons for this situation seem to 
reside in the extensive use of High-Throughput Screening (HTS) against ambigu-
ous or single targets, which in effect reduces the biological context by separating 
the target from other cellular proteins and processes that might impact its function 
(Hellerstein 2008). Another contributing issue is the lack of diversity in existing 
chemical libraries (Lipkus et al. 2008). The phenotypic robustness of biological 
systems often reduces the effectiveness of a single-target compound (Hopkins 
2008). Cell-based high content screening (HCS) circumvents this problem, since it 
allows the detection of small molecules acting in the cellular context (Muskavitch 
et al. 2008), but it leaves the question of the actual target unresolved. Disease-
relevant in silico screens are therefore considered as advanced methods to be intro-
duced as early as possible into the drug discovery process (Kassel 2004; Hall 2006; 
Lang et al. 2006; de Beer et al. 2009).

14.4.2  Structure-Based Drug Discovery

In silico structure-based drug design can be classified into receptor-based design 
and ligand-based design (Fig. 14.2) as follows:

Receptor-based drug design exploits the three-dimensional structural description •	
of a macromolecular drug target to predict the in silico binding of hypothetical 
ligands. These hypothetical ligands can be obtained from the in silico virtual 
screening of compound libraries against the target, receptor-based pharmacophore 
design, modification of a ligand known to bind to the target, and fragment-based 
inhibitor design (scaffold structures or de novo design) (Fig. 14.2).
Ligand-based drug design aims to predict the effects of new compounds based •	
on the properties of compounds previously known to affect the target. This may 
be pursued in the absence of a target structure.

Both design avenues are highly integrated, iterative, and knowledge-based and all 
substrategies should be investigated. The knowledge available on both the structure 
and inhibitors of a specific target determines the approach to be followed. Identified 
compounds are scored and ranked based on their physiochemical interactions with 
the target structure and the best scoring compounds are biochemically tested for 
inhibitory activity. Promising lead compounds are then verified by solving the 
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structure of the target-lead complexes to confirm predictions. This is followed by 
the in silico optimization of the lead compound and iterative testing.

Receptor-based drug design starts by describing the three-dimensional structure 
of the protein target. Subsequently, inhibitors are sought either by:
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Fig. 14.2 In silico drug design pipelines. Parallel and integrative strategies include receptor-based 
design and ligand-based design
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1. Docking ligands inside cavities within the structure surface and selecting those 
predicted to bind with the highest affinity (virtual HTS)

2. Deriving a pharmacophore model from the binding site and using it to screen for 
ligands or

3. Docking small molecular fragments within the binding site with a possibly weak 
affinity for assembly into a high-affinity ligand that occupies the entire cavity

Plasmodial proteins are notoriously difficult to express in heterologous systems, 
and the structures have proven difficult to solve experimentally. Some confounding 
characteristics of proteins from P. falciparum include large protein sizes, greater 
protein disorder, high pI, low complexity of parasite-specific inserted regions 
(Mehlin et al. 2006), and a marked A + T bias of the P. falciparum genome. These 
factors additionally contribute toward the low crystallization efficiencies of 
Plasmodial proteins. In the Protein Data Bank (PDB, http://www.pdb.org), only 118 
entries correspond to structures of Plasmodial proteins, excluding sequences with 
high-level (>90%) identity. In contrast, querying the PDB for nonredundant (<90% 
identity) human protein entries reveals more than 4,500 structures.

Even though the number of Plasmodial protein structures is still sparse, there has 
been a notable increase in the corresponding protein structures between 2005 and 
2008. This is due largely to the advent of structural genomics programs including 
the Structural Genomics Consortium (SGC, http://sgc.utoronto.ca) and the Structural 
Genomics of Pathogenic Protozoa (SGPP, http://www.sgpp.org). The SGC reported 
25 distinct Plasmodial protein crystal structures from five species. The SGPP 
consortium has solved 16 Plasmodial proteins.

As an alternative to crystal structure resolution, many groups have resorted to 
homology modeling to predict the three-dimensional structure of a target. 
Successful homology modeling depends on the alignment of the target sequence 
with template structures. This is especially critical in the case of malaria, since 
P. falciparum proteins often contain long inserts that, along with low sequence 
similarity, make alignments problematic. Not surprisingly, proteins with long 
inserts appear to be avoided for modeling, and the problem of obtaining reliable 
alignments in their case is seldom discussed. A number of techniques can be used 
to circumvent this problem (for a recent review see de Beer et al. 2009). Once an 
alignment has been optimized, a series of models can be built to identify problem 
areas within the alignment. Despite the difficulties with the homology modeling of 
Plasmodial proteins, there have been some notable successes with a diversity of 
applications.

An example of a protein model used for in silico drug discovery is the DHFR 
(dihydrofolate reductase) domain of the bifunctional protein DHFR-TS domain (dihy-
drofolate reductase-thymidylate synthase). The effectiveness of existing drugs such 
as cycloguanil and pyrimethamine, which target the DHFR domain, has been 
reduced due to drug resistance. Hence, DHFR has been a popular target for homology 
modeling efforts (e.g., Toyoda et al. 1997; McKie et al. 1998; Lemcke and 
Christensen 1999; Rastelli et al. 2000; Santos-Filho et al. 2001; Delfino et al. 2002), 
which allowed the identification of new inhibitors in the nano- and micromolar 
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range (Toyoda et al. 1997; McKie et al. 1998), the rationalization of the antifolate 
resistance mechanisms (McKie et al. 1998; Lemcke and Christensen 1999; Rastelli 
et al. 2000; Delfino et al. 2002), and the ability for the drug WR99210 to inhibit 
both pyrimethamine and cycloguanil-resistant mutants (Rastelli et al. 2000). A 
number of new inhibitors were also successfully designed, and the quality of the 
alignment used for modeling and dockings was subsequently confirmed with the 
crystal structure of the complete bifunctional enzyme (Yuvaniyama et al. 2003).

Gutiérrez-de-Terán et al. (2006) demonstrated the advantages of using multiple 
structures, including a homology model and a low-resolution crystal structure on 
P. falciparum plasmepsin IV as an example. The structural quality indicators for the 
homology model were better and more robust when calculating binding energies 
for an inhibitor series. Further improvements in predicting binding were gained by 
using a combined model employing both structures, as well as by using molecular 
dynamics to increase sampling quality. Other noteworthy examples have been 
discussed by de Beer et al. (2009). After a reliable structure for a Plasmodium drug 
target has been obtained, whether through modeling, X-ray crystallography, or 
NMR, it has to be extensively analyzed before the lead discovery process can be 
commenced. Protein quality assessment is needed to identify the limitations of the 
target structure to be used. The most reliable structures are those from X-ray and 
NMR, although one should be mindful of inaccuracies inherent in some crystal 
structures. Most deposited structures assume some isotropic variation of atomic 
positions and do not fully capture the dynamic and anisotropic nature of protein 
crystals (DePristo et al. 2004; Davis et al. 2008). It is essential that the dynamic 
nature of the target, which implies the use of multiple structures from crystallogra-
phy or NMR, should be taken into account. This can be further supplemented with 
various in silico methods such as molecular dynamics or Monte Carlo sampling. It 
is generally believed that homology models with a > 50% sequence similarity can 
be reliably and independently used (Hillish et al. 2004).

Receptor-based virtual HTS involves the screening of large libraries of ligands 
by computational methods to simulate and evaluate the strength of the docking of 
ligand inside a cavity of a protein. The main issues of in silico docking experiments 
include the following, which, from our practical experience, should be examined 
carefully.

The selection of the screening method: according to Sousa et al. (2006), the 
five most popular algorithms are AutoDock (Huey et al. 2007), GOLD (Jones 
et al. 1997), FlexX (Rarey et al. 1996), DOCK (Ewing et al. 2001), and ICM 
(Abagyan et al. 1994). A recent program, Glide (Friesner et al. 2004) is also more 
and more associated with successful work in the literature. Among these top six, 
only AutoDock and DOCK are freely available for academic users. These 
software applications are based on different algorithmic approaches (detailed by 
Höltje et al. 2008) such as Incremental construction methods (FlexX, DOCK), 
Genetic Algorithms (GOLD, MolDock, Psi-Dock), the Tabu search that can be 
combined with Genetic Algorithms, Simulated annealing, and Monte-Carlo 
simulations (Glide), Shape-Fitting methods (FT-Dock), or miscellaneous other 
approaches.
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Each structure-based screening tool addresses two correlated issues. The first 
issue is the ability to predict the best “pose,” i.e., the best ligand-bound conformation 
and orientation in the target site (the docking processing), and the second one is the 
capacity to rank ligands and their poses by correctly evaluating their binding affinity 
with the target (the scoring processing). Since both tasks are complex and imply 
exponential computing time, each type of processing is generally based on different 
approximations or heuristics, especially in the context of High Throughput Docking 
(HTD).

Ideally, the docking processing should take into account the flexibility of both 
the protein and the ligand in order to massively and correlatively explore the two 
conformational spaces. Nowadays, most docking algorithms handle ligand flexibility 
using various approaches (Sousa et al. 2006; Höltje et al. 2008), which can be, for 
instance, the storage of multiple conformations in a database, the incremental 
construction of a ligand that was previously divided into fragments (like in FlexX), 
or the modification of specific dihedral angles during the genetic operations (muta-
tions, cross-over) stage (in genetic algorithm like Gold). Incorporating target 
flexibility is a more complex challenge that is however essential in HTD, especially 
when using proteins models with low resolution, which can be the case for malaria 
proteins. According to Cavasotto and Singh (2008), the various observed move-
ments that can modify docking results could be classified into three categories: 
side-chain movements, loop/backbone motions, and domain motions. The develop-
ment of docking methods that address the flexibility of the protein is recent, thanks 
to improvements in the computer capacities. Cavasotto and Singh (2008) give a 
detailed review of the existing methods and their respective advantages and draw-
backs. These authors emphasize that most of the current methods cannot handle 
some important protein motions like long loop or large backbone movements in a 
context of HTD because of extreme computational time requirements. This is why 
some current projects (like Docking@Grid, http://dockinggrid.gforge.inria.fr/) aim 
to use the computer Grid power to address this issue.

The scoring processing tries to give an accurate evaluation of the binding affin-
ity between a ligand pose and the target site. It takes place during the docking 
stage, first to optimize the placement of a ligand and then to rank all the putative 
hits. Some robust methods (like free energy perturbations; Miyamoto and Kollman 
1993) compute a reliable binding free energy, but they are so expensive in terms 
of computation time that they cannot be used for HTD. The conventionally used 
scoring functions are much faster; they are mainly grouped into three categories: 
empirical scoring ones, force-field-based ones, and knowledge-based ones (Höltje 
and al. 2008). Their main drawback is that the ranking based on these functions is 
not always reliable, even if they help to identify a restrained list of ligands with a 
higher percentage of hits than a random selection (Verkhivker et al. 2000). This 
can be a major issue, especially when the final goal is to give to the experimental 
biologists an extremely reduced subset of chemical compounds having a high 
probability to be active; a critical step for malaria targets, which are difficult to 
study in vitro. Filtering strategies to postprocess docking outputs have therefore 
been developed. Filtering by consensus based on different docking approaches 
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(Paul and Rognan 2002) or on different scoring functions (Bissantz et al. 2000; 
Teramoto and Fukunishi 2008), filtering by chemical diversity, and filtering by 
interaction fingerprint-based scoring (Heteny et al. 2003; Marcou and Rognan 
2007) are some of the methods that are detailed by Höltje et al. (2008). They can 
be applied to detect false positives to improve the true positive rate. However, most 
of these approaches also have their constraints, which must be assessed before the 
approach is chosen in the context of the studied target. Consensus approaches or 
interaction fingerprint methods, for instance, require a large amount of information 
about the target (several X-ray structures, many known actives). Moreover, inter-
action fingerprints (built on a training set of known actives) present the risk of 
discarding new binding modes, and so perhaps of rejecting more original ligands. 
In conclusion, the choice of a docking program, of the scoring functions, and of 
the postfiltering strategies for a specific target requires a great deal of prepara-
tive work. Methodologies and algorithm evaluations abound in the literature but 
independent comparative studies are rare. It has been shown that some docking 
tools and some docking/scoring combinations are more robust than others 
(Bissantz and al. 2000; Kellenberger et al. 2004). Evidence also emphasized that 
the best possible option to design a strategy is to test a systematic combination of 
docking/scoring parameters on a reduced dataset (about 1,000 compounds) con-
taining a few known ligands, and then to select for the full library a protocol that 
best discriminates true hits from random ligands. Likewise, the docking of known 
inhibitors has been used against wild-type and quadruple resistant mutant forms of 
P. falciparum DHFR (Fogel et al. 2008) to define a common interaction pattern 
between inhibitors and the different forms of the protein that describes selection 
criteria for further screening strategies.

The selection of the compounds before docking is extremely important. 
Several commercial and public chemical libraries are available for screening. 
Some of the major efforts to generate chemical databases include the ZINC 
database (Irwin and Schoichet 2005), the National Cancer Institute (NCI, http://
cactus.nci.nih.gov), PubChem (http://pubchem.ncbi.nlm.nih.gov), the French 
National Chemical Library (http://chimiotheque-nationale.enscm.fr/), the Super 
Drug DataBase (Goede et al. 2005), the Drug Bank (Wishart et al. 2009), and the 
SuperNatural database (Dunkel et al. 2006). These databases are not all freely 
available for downloading and screening but are available online for similarity 
searches. Irwin and Schoichet (2005) suggested that the “gold standard” for 
docking databases in academia is the commercially available ones (e.g., the 
Available Chemical Database or ACD, http://www.mdli.com; the ACD screen-
ing compound set, http://www.ccdc.cam.ac.uk; the Cambridge Structural 
Database or CSD, http://www.ccdc.cam.ac.uk; and the ChemNavigator database, 
http://www.chemnavigator.com). These databases are a few of the most popular 
ones used in virtual screening and contain from a few hundred thousand up to 
ten million compounds. An important problem that should be handled is that the 
user is left with the decisions on the protonation states, charges, and tautomeric 
forms and the removal of salts (Irwin and Schoichet 2005). The ZINC database, 
containing over 8 million purchasable compounds, is the first database where all 
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of these aspects have been addressed by the curators (Irwin and Schoichet 2005) 
and provides subsets such as lead-like, drug-like, fragment-like, Verneralis-
filtered, etc., which have been prefiltered using specific criteria such as 
Lipinski’s rule-of-five (http://zinc.docking.org). More generally, since HTD is 
CPU greedy and since postdocking analyses can be very demanding in human 
time, it is therefore strongly advised to first filter the starting compound library 
(Höltje et al. 2008; Dubois et al. 2008). The design of sublibraries (from a large 
library or from several libraries) is highly recommended and should take into 
consideration the size, chemical diversity, or specific properties of the chemical 
compounds according to the pursued goal. Different strategies and available 
software for the preparation of collections of compounds for virtual screening 
are described by Dubois et al. (2008).

Eventually, the preparation of the target needs meticulous attention. Usually, 
docking software explains how to prepare the protein file before submitting it to 
the screening processing. If the target structure has been resolved by X-ray crystal-
lography, the structural information is derived from the Brookhaven Protein Data 
Bank. The user must first check the structure file; for instance, it is usual that some 
residues of the target structure are not resolved by X-ray crystallography due to a 
variety of reasons. If residues within or near the binding site are missing, they 
must be inserted by other methods. Usually, PDB files contain water molecules; 
these must be removed if they are not essential. Hydrogen atoms must be added, 
with particular care taken for the histidine residues, since they can have different 
protonated states depending on their local environment. Moreover, if the protein 
is considered as a rigid molecule during the docking, it is important to optimise 
the intermolecular (protein–ligand) and intramolecular (protein–protein) interac-
tions by adjusting the torsions of the polar hydrogens (in the residues serine, thero-
nine, and lysine), as well as the torsions of the residues that are the hydrogen bond 
donors or acceptors in the binding site. The software then usually makes some file 
format transformation (for instance from PDB format to Mol2 format) and con-
ducts some specific preprocessing. These instructions are intended to answer some 
questions, which imply an in-depth knowledge of the protein. The latter point 
seems to be obvious but is difficult for recently discovered targets or for targets 
that are difficult to study in vitro, which is a common case for malaria targets. 
Questions that need to be answered are as follows: how large should the volume 
for docking around the active site be? Does the docking site contain molecules of 
water? which of these are necessary and should be conserved? if a cofactor bind-
ing site is overlapping the binding site of the ligand, should the cofactor be kept? 
if the site contains metallic ions, how should they be considered in the model? 
Some of these questions have been explored by Höltje et al. (2008), and most 
require extensive experimental data about the biological system (conditions of 
crystallisation, in vitro binding assays, mutagenesis results, etc.) to be provided 
before any answer can be offered.

Receptor-based pharmacophore approaches use resolved protein structures to 
derive pharmacophore features and, subsequently, pharmacophore models. These 
models are a set of structural features in a molecule, which are recognized at a 
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receptor site and are responsible for the bioactivity of the molecule. This approach 
works particularly well when using structures resolved in complex with ligands, as 
the conformational changes associated with ligand binding and protein–ligand 
interactions can be inferred from the complexes. From these structures, a negative 
image of the active site can be constructed, which complements the interactions 
between the receptor and ligand as described by the pharmacophore model. These 
models are subsequently used to screen chemical libraries to find compounds 
matching the desired features.

Receptor-based HTS and pharmacophore approaches are complementary. Hits 
identified during virtual HTS need to be filtered and ranked using docking tech-
niques, and only the best scoring compounds are then tested in vitro. The advantage 
of a pharmacophore-based method lies in the ability to generate a divergent set of 
compounds consisting of different scaffold structures. The derivation of the correct 
geometric orientation of the pharmacophore provides directionality during the 
search for ligands and the identification of novel features (Dror et al. 2004). The 
parameters describing protein movement in receptor-based pharmacophore strategies 
were developed to incorporate the inherent flexibility of protein structures in the 
drug design process and to reduce the entropic penalties that occur upon ligand 
binding to a target structure (Carlson et al. 2000). This led to a remarkable improve-
ment in results compared to rigid pharmacophore models (Meagher and Carlson 
2004). Because of the difficulty in obtaining three-dimensional structures for 
Plasmodium proteins, very few receptor-based pharmacophore studies have been 
performed (see de Beer et al. 2009).

Fragment-based drug design relies upon a library of smaller (<200–300 Da) 
but more diverse ligands than those used for HTS, which are docked into the 
cavities of a protein. The highest scoring hits are then used in subsequent steps 
of the rational drug design process. With structural insights, these fragments 
can be optimized quickly to a lead compound stage (Hesterkamp and Whittaker 
2008), although linking the smaller ligands together in a complete and active 
compound can be a challenge (Villar 2007). However, the resulting molecules 
are likely to have better ligand efficiency than classical HTS-derived molecules 
(Erlanson 2006). Applications of this approach in the malaria field are limited 
but its future application may yield new classes of drug candidates (see de Beer 
et al. 2009).

The lack of a target three-dimensional structure does not preclude the use of 
an in silico approach to design novel drug candidates. With access to a set of 
structurally divergent compounds that bind in the active site, various in silico 
ligand-based drug design approaches can be followed (Fig. 14.2). All method-
ologies in this approach aim to reduce the chemical search space and may 
include similarity searching, substructure searching, as well as structure–activity 
relationship (SAR) or quantitative structure-activity relationship (QSAR) and 
ligand-based pharmacophores. These methods are usually tightly integrated 
since this approach is based on the assumption that molecules with similar 
physiochemical properties exert a similar biological activity (Sheridan and 
Kearsley 2002).
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14.4.3  Target Similarity Searching, Substructure Searching, 
and QSAR

Similarity searching, substructure searching, and QSAR have been widely used to 
explore the chemical space of known inhibitors in the absence of a target structure. 
These techniques make use of molecular fingerprints that encode fragment-type 
descriptors that indicate the presence or absence of particular chemical features. 
Substructure searches can be defined as searches performed on complete structures to 
identify other compounds containing a specific query substructure. Maximum common 
substructure approaches are often preferred since they are more flexible than traditional 
similarity searching, which only considers global similarities between structures (Cao 
et al. 2008). Furthermore, similarity searching complements substructure searching 
since it often returns alternative structures. The predominant use of these methods is 
currently in the design of specific libraries used in virtual HTS (Gillet 2008). However, 
these methods can also be used to filter databases and to design custom libraries to be 
screened in silico. The use of similarity and substructure searching has become readily 
accessible by projects such as PubChem and DrugBank, and it is foreseen that it will 
play an increasingly important role in the drug discovery pipeline for malaria.

If a set of structurally divergent compounds with known inhibitory activities is 
available, a QSAR can be determined and used to statistically predict the inhibitory 
potential of new compounds. QSAR includes various levels of information that are 
captured in 2D-QSAR, 3D-QSAR, or 4D-QSAR models. Several QSAR studies 
have been performed on malaria with different levels of success (Marrero-Ponce 
et al. 2005; Dheyongera et al. 2005; Flipo et al. 2007; Fatorusso et al. 2008; 
Mahmoudi et al. 2008; Xie et al. 2006).

If a set of compounds that have sufficient structural diversity and act against a 
specific target is available, pharmacophore features can be extracted and used in the 
generation of ligand-based pharmacophore models. These models can then be 
screened against chemical databases to identify new lead compounds (Güner et al. 
2004). The pharmacophore models can also be used to identify novel inhibitors 
with a wide diversity of backbones (scaffold-hopping) and of different chemotypes, 
which still have a similar biological activity (Sun 2008). As with the receptor-based 
pharmacophore approach, the advantage lies in the models’ ability to generate a 
diverse set of compounds (Dror et al. 2004). The use of ligand-based pharmacoph-
ore approaches has clearly evolved as an important technique in the fight against 
malaria (de Beer et al. 2009).

14.5  Grid Infrastructures for In Silico Drug Discovery

Although virtual HTS is mainly achieved through clusters of computers physically 
connected to one another to screen compound sets against the target, powerful grid-
computing strategies achieved by recent advances in the network linking of 
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computers are increasingly being applied to HTS. Grid computing is an exciting 
new technology offering rapid computation, large-scale data storage, and flexible 
collaboration by harnessing together the power of a large number of commodity 
computers or clusters of other basic machines distributed worldwide and linked via 
a high-speed network (Andrade et al. 2007).

Several grid infrastructures with different sizes are available: the regional 
Auvergrid (http://www.auvergrid.fr), the French Grid 5000 (https://www.
grid5000.fr), the E-science grid for Europe and Latin America (EELA, http://
www.eu-eela.org), Enabling Grids for E-sciencE (EGEE, http://www.eu-egee.
org/), EUChinaGrid (http://www.euchinagrid.org), EUMedGrid (http://www.
eumedgrid.org), TWGrid (http://www.twgrid.org), North Carolina BioGrid 
(http://www.ncbiogrid.org), the Canadian BioGrid (http://www.cbr.nrc.ca), the 
Asia Pacific BioGrid (http://www.apbionet.org/grid), and the Cancer Biomedical 
Informatics Grid (Covitz et al. 2003). These grids focus on different problems 
ranging from genetic linkage analysis (Andrade et al. 2007) to molecular docking 
(Kasam et al. 2007) and metabolic pathway modeling (Kimura et al. 2004).

The malaria parasite presents various challenges, which can benefit from a grid-
based approach. They include searching the Plasmodium genome and proteome for 
new drug targets, the identification of single nucleotide polymorphisms (SNPs) on 
human as well as Plasmodium genomes relating to drug sensitivity, drug resistance 
mechanism elucidations, and the epidemiological monitoring of outbreaks. Of these, 
drug discovery against malaria is a well-identified area of relevance for the grid para-
digm. Various projects were initiated to use grids for the large-scale docking of 
ligands in target proteins to assist in the discovery of new drugs against malaria. For 
example, WISDOM-1 (World-wide In Silico Docking On Malaria) used EGEE, the 
largest multidisciplinary grid infrastructure in the world, to screen a filtered ZINC 
library against two P. falciparum plasmepsin proteins (plasmepsin II and IV) with 
FlexX (Kuntz et al. 1982) and Autodock (Goodsell and 1990). Around one million 
compounds were docked into each of the five PDB structures (1lee, 1lf2, 1lf3,1ls5): 
in total, 41 million dockings were achieved in 6 weeks (the equivalent of 80 years of 
CPU power). To further address parameters such as protein flexibility, an automatic 
procedure of refinement by molecular dynamics is applied on the best 5,000 docked 
compounds using the Amber software suite (Ferrari et al. 2007). In the course of the 
WISDOM-I program, previously characterized inhibitors, as well as novel promis-
ing groups of guanidino-based compounds, were selected in silico and are currently 
being investigated further (Kasam et al. 2007). Following the successful WISDOM-I 
round on both computational and biological sides, several teams in academic institu-
tions worldwide proposed targets implicated in this disease, leading to the second 
assault or WISDOM-II program. Four different Plasmodial proteins (glutathione-S 
transferase, tubulin, and DHFR from both P. vivax and P. falciparum) were targeted 
(Salzemann et al. 2007). EGEE, Auvergrid, EELA, EUChinaGrid, and EUMedGrid 
were used to dock the whole ZINC database, representing 4.3 million compounds, 
into ligand sites defined at the surface of the four selected proteins, with the FlexX 
method. Comparisons of the predicted docking poses with the structures of compounds 
cocrystallized with the target were performed to evaluate the docking parameters. 
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During the 76-day duration of the project, nearly 140 million dockings were performed 
at a rate of almost 80,000 dockings per hour (equivalent to 413 years on a single PC). 
The outcome of these applications needs to be experimentally validated but illus-
trates the power of virtual HTS in substantially reducing search time as well as in 
providing a coarse filtering of large libraries. Libraries can be further reduced using 
more accurate docking, or can be screened using more stringent approaches. The use 
of grids as an initial screening tool will contribute significantly to the fight against 
malaria as more grids that can be applied to the search for new compounds become 
available.

14.6 Conclusions

In silico drug discovery has entered its mature stage. One indicator for this is the 
increasing number of successful drug discovery projects by virtual screening in the 
pharmaceutical industry. Since a 7- to 10-year period separates the initial phases of 
a drug discovery project and its communication, when successful, essentially by the 
publication of a patent, no statistics are available. Based on 2008 surveys of phar-
macological research and development strategies, virtual models can reduce drug 
development costs by at least 25% and drug development time by up to 50%.

In this chapter, we have illustrated how in silico approaches can be creative and 
diverse, and how they rely on the quality of the biological expertise and its transla-
tion into accurate knowledge representations. There is a necessary connection with 
in vitro and in vivo approaches. In silico methods are particularly important in 
developing new treatments against infectious diseases, including virulent viruses, 
bacteria or eukaryotes, as the pathogens are difficult to handle in a laboratory envi-
ronment, and since the number of target candidates is too high for the in vitro 
screening capacities. Future prospects include the modeling of biological systems 
to push the in silico tool a step further and computational testing of the responses 
to the drug candidates, in both the pathogen and the patient.
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15.1  Introduction

Healthcare epidemiology is a sub-discipline of epidemiology, with the practical 
focus on surveillance, prevention, and control of adverse events in healthcare. 
Healthcare epidemiology has gained prominence in an era of performance improve-
ment in healthcare; this is so because the study of healthcare epidemiology is the 
study of the factors and outcomes of healthcare and the quality of healthcare being 
provided to patients within hospitals. Information technology has the potential to 
be transformative in the practice of healthcare, but its applications are in their 
infancy. Healthcare informatics is a tool to enable greater efficiency and broadened 
scope of performance measurement; as will be discussed, greater maturity in stan-
dards adoption and tool creation is needed to permit maximal use of healthcare 
information technology (HIT) to improve patient safety.

15.2  Performance Measurement and Healthcare  
Associated Infections

Since the 1999 Institute of Medicine Report, “To err is human” (Kohn et al. 2000), 
medical errors have been appreciated to be a significant cause of patient morbidity 
and improvements in patient safety and health care quality have become major areas 
of study. Public disclosure of performance information has been promoted as an 
important method to attain these goals (Lansky 2002). To this end, consumers 
of healthcare increasingly desire readily available information about the performance of 
hospitals and providers in healthcare delivery. Efforts to measure the performance 
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of care delivery may take the form of process measures (i.e. measurement of adher-
ence to guidelines in processes of care), or outcome measures (i.e. measurement of 
the occurrence of events) (McKibben et al. 2005). Healthcare epidemiology is criti-
cal in performance improvement efforts, as it provides foundational knowledge that 
can inform interventions.

Healthcare associated infections (HAIs) are a potentially rich area for perfor-
mance improvement. The United States’ Centers for Disease Control and Prevention 
(CDC) have estimated that annually, up to 10% of hospitalized patients in the 
U.S.A. (i.e. 2,000,000 patients) develop an HAI, leading to 100,000 deaths a year 
(Weinstein 1998). HAIs are increasingly considered controllable through surveil-
lance, proper infection control practice, and bundling of effective preventive prac-
tices (Pronovost et al. 2006; Bleasdale et al. 2007; Vernon et al. 2006; Evans 2005; 
Haley et al. 1985). Examples of strategies to reduce HAI rates are the bundling of 
effective insertion, monitoring, and removal practices for central-line associated 
bloodstream infection (CLABSI) rates; the use of chlorhexidine bathing on 
CLABSI rates; bundling semi-recumbent positioning, subglottic suctioning, and 
monitoring for ventilator-associated pneumonia (VAP) rates; and the appropriate 
insertion and removal of urinary catheters, with monitoring and feedback of urinary 
tract infection (UTI) rates to healthcare personnel for reduction of UTI rates (Yokoe 
et al. 2008).

The Centers of Disease Control and Prevention (CDC) have conducted surveil-
lance of HAIs since the 1970s. Infection control practitioners have by and large 
conducted this surveillance through the manual collection of data. Case definitions 
for infection were developed and recognized internationally through guidelines 
from the National Nosocomial Infections Surveillance (NNIS) Definitions (Garner 
et al. 1988). In the 1970s, infection control programs were implemented voluntarily 
to implement NNIS criteria and measure HAI rates. In 1985, the CDC published 
the results of the SENIC project, documenting reductions in HAI rates following 
the efforts of infection control programs (Haley et al. 1985). Mandatory reporting 
of HAI rates, public disclosure of HAI rates, and changes in reimbursement strategies 
have more recently been used to promote reductions in the burden of HAIs (Yokoe 
and Classen 2008). These initiatives have increased the demand for high-quality 
measures of healthcare-associated events. To allow the workforce of infection 
preventionists to focus on education and infection reduction efforts, the automation 
of HAI surveillance through the use of HIT is critical.

15.3  Electronic Health Records

HIT uses technological innovation to transform information into knowledge. 
Making use of large quantities of data, exposing these data in organized ways, and 
revealing underlying meanings of data are among the several key aspects of infor-
mation technology in healthcare. Information technology is best considered a tool, 
not a solution, for quality improvement. Typically, while implementing IT tools in 
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healthcare, hospitals will first identify problematic business processes before being 
able to use HIT to improve care. Therefore, the development and implementation 
of HIT solutions will only be successful after following a problems and require-
ments discovery process in which current processes and needed changes are identi-
fied, measured, and synthesized (Hota et al. 2008).

The substrate for information technology in healthcare is the availability of data 
for use with analytic and decision support software. These data can be categorized 
based on the type of data being stored, and the destination of the data once stored. 
Categories of data types generated by clinical care include clinical (e.g. laboratory, 
microbiology, pathology, radiology, and pharmacy), finance (e.g. discharge diagnosis 
codes, utilization of health care services), and administrative data (e.g. admission, 
discharge and registration data, bed location, demographic and address data). Since 
finance functions play a major role, as part of mature electronic record systems, 
data warehouses and applications of finance and administrative data sets to health-
care epidemiology are usually more advanced and standardized than the use of 
patient level laboratory or microbiology data, even though the latter are potentially 
richer and more accurate sources of data.

Clinical databases can also be categorized based on the capacity for sharing, or 
the target audience for data. Most clinical and administrative data are stored in an 
electronic medical record, or EMR. The focus of the EMR is patient and hospital 
centered data storage and retrieval. EMR data may be standardized within vendor 
solutions, but may not be designed with the goal of interoperability between 
centers. Data may lack interoperability: terminologies may be restricted to local 
code sets and may be difficult to export generally. The solutions for the restrictions 
imposed by the EMR model are the electronic health record (EHR) and personally 
health record (PHR). For the former, an emphasis is placed on sharing data between 
institutions. Given that many individuals seek care at multiple centers, such health 
information exchange would permit a medical record that can move with the patient 
between centers, thus reducing redundancy in tests ordered, and knowledge gaps 
based on inaccessible data. For the latter, a patient specific record of all medical 
visits and care is created. This record is then controlled and managed by a patient, 
and maintained over the patient’s lifetime of care. For the field of healthcare epide-
miology, access to regional data about HAIs and multidrug resistant organisms 
(MROs) acquired by patients could generate more accurate rates of MROs infec-
tions and enhance efforts to reduce the acquisition and transmission of MROs. For 
example, one regional health information exchange found that 10% of patients with 
methicillin-resistant S. aureus (MRSA) colonization or infection were shared 
between multiple centers – suggesting that information exchange could improve 
the identification and isolation of MRSA colonized individuals on admission 
(Kho et al. 2008).

Barriers to the use of information technology in healthcare epidemiology and 
infection control exist (Kilbridge and Classen 2008). These barriers include technical 
issues and non-technical issues. Technical issues are related to the lack of interoper-
ability of data between centers; due to the evolution occurring in HIT, there are many 
systems for storing data. Many hospitals may have legacy systems or purpose-built 
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homegrown systems, and data are frequently trapped in unique silos that cannot be 
scaled more broadly. As a result, data cannot be shared between centers, cannot have 
rules for event detection applied, and are semantically distinct to each center. The 
use of standards is an important step in overcoming this barrier.

Non-technical barriers to the use of healthcare IT in healthcare epidemiology 
relate to diffusion of capability and knowledge about the value of healthcare IT to 
patient safety. Many centers do not have EMRs, and may not see the value of imple-
menting EMRs. Furthermore, the staff to support the application of EMR data to 
HIT may be lacking. Finally, data within EMRs may not be sufficient to deploy HAI 
detection algorithms; collection of these data may require changes in the business 
practice of documentation by healthcare personnel. A lack of appreciation of the 
application of these data may hamper efforts to change practices in hospitals. For 
example, documentation of device use electronically (e.g. central venous catheters, 
endotracheal tubes, urinary catheters) is essential for HAI detection, but is infre-
quently done. A change in this documentation step from paper to electronic methods 
may be resisted because of a lack of understanding of the value of these data. The 
recognition of these barriers by developers of policy may lead to opportunities to 
improve use of HIT to enhance patient safety (Kilbridge and Classen 2008).

15.4  Building Databases for Healthcare Infection Control

15.4.1  Standards in Healthcare Informatics

The application of information technology to healthcare epidemiology and per-
formance measurement is in its infancy, largely due to segmentation of data stores 
between centers, which limits data sharing. As a result, multicenter research that 
demonstrates the value of HIT in patient safety and healthcare epidemiology may 
face many barriers and have limited quality; however, recent work suggests that 
positive trends are emerging (de Keizer and Ammenwerth 2008). Many hospitals 
have EMR with electronic data captured which is inaccessible for standardized 
reporting requirements (Kilbridge and Classen 2008); individual hospitals may 
have administrative data, finance data, and clinical data in electronic formats with 
unique database structures and semantic differences in representation of clinical 
values. Furthermore, even with the use of single vendors, implementations of 
EMR may vary slightly between centers, making data inoperable. The two prob-
lems of heterogeneity in system architecture and semantic knowledge seriously 
limit the development of solutions to conduct surveillance for healthcare events 
of interest.

To reduce the impact of silos of clinical information, the use of standards in HIT 
has been promoted (Overhage et al. 2001; National Electronic Disease Surveillance 
System (NEDSS) 2001; Khan et al. 2006; Wurtz and Cameron 2005). Standards 
exist or are being developed for the representation of clinical information, for docu-
mentation, for the messaging of data, and for security between parties sharing data. 
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The importance of standards is that they can permit the interchange of data between 
centers and investigators with minimal data manipulation, ensuring that standard 
algorithmic detection rules can be implemented at multiple sites. In the context of 
healthcare epidemiology, this ensures that performance measurement and interhos-
pital comparison is a feasible goal.

A robust set of standards for data interoperability currently exists. The represen-
tation of clinical information has been specified by standards such as Systematized 
Nomenclature of Medicine (SNOMED – College of American Pathologists) and 
Logical Observation Identifiers Names and Codes (LOINC – Regenstrief Institute) 
for test names, test results, specimen sources, and test methods; these standard 
vocabularies have also been implemented as part of natural language processing 
techniques to help apply semantic frameworks to free text reports, e.g. radiology 
reports. Standards for data messaging have been specified as part of the health level 
seven (HL7) frameworks (Holena and Blobel 1997). Specifications for data trans-
mission are available at http://www.hl7.org. These specifications create a set of 
rules that permit the sharing of data in understandable formats between centers. The 
clinical document architecture (CDA) and continuity of care record (CCR) formats 
specify requirements to be used in the arrangement and transmission of documents, 
and are versions of XML (Dolin et al. 2006; Ferranti et al. 2006).

Naming vocabularies are essential standards for data interoperability. Figure 15.1 
illustrates the role of naming vocabularies in healthcare epidemiology analysis. Two 
vocabularies warrant special mention as they have emerged as core components of 
a public health information network in the United States: SNOMED and LOINC. 
These two vocabularies have been endorsed by the United States Department of 
Health and Human Services and CDC for the representation of concepts in elec-
tronic databases (Wurtz and Cameron 2005). Laboratory data sent to the National 
Healthcare Safety Network are suggested to be represented using these vocabular-
ies (Edwards et al. 2008). LOINC coding is used to represent test names, and has 
varying levels of specificity. In a LOINC code, the test type, the specimen used, and 
the method of test can all be supported. SNOMED codes are used to represent 
coded results (e.g. organism names, susceptibility interpretations, and serologic 
interpretations). Using these standards, most information about a test can be stan-
dardized semantically (Wurtz and Cameron 2005).

Data messaging standards provide a framework for data transfer (Holena and 
Blobel 1997). Figure 15.2 shows examples of the HL7 version 2.5 and 3.0 stan-
dards. HL7 standards have several features of note. First, messages are event-
driven, meaning that typically messages are generated and transferred at the time 
of data creation or updates. Second, HL7 messages are hierarchical and intent to 
preserve the relationships of data from multiple databases. Third, different kinds of 
clinical data are represented by individual HL7 message types. In HL7 version 2.x, 
delimiters [e.g. the pipe symbol (|), caret (ˆ), and ampersand (&)] are used to denote 
unique fields in HL7 messages, and the type of HL7 message being sent is found 
at the message header (i.e. the MSH component) of HL7 messages. The HL7 3.0 
and above use XML to markup messages. The clinical care record and CDAs 
extend the use of XML to allow the inclusion of narrative text and provider 
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documentation in messages sent between systems (Dolin et al. 2006); (Ferranti 
et al. 2006). Using natural language processing and pattern matching, naming 
vocabularies can be applied to these narrative sections.

15.4.2  Data Auditing and Validation

Healthcare epidemiology concerns itself with the surveillance of healthcare events. 
Data obtained for surveillance is often displayed as charts and graphs for use in 
examining trends and detecting excess disease (e.g. outbreaks of infection or 
MROs). For a reporting solution to provide these data effectively, ongoing and 
systematic data auditing and validation is essential to allow confidence in the 
reports generated by the system. A problem common to clinical data warehouses is 
that captured data are either in a “free text” format that is not usable or use codes 
unique to the institution or laboratory information system which, though useful for 
within hospital trend analysis, do not scale well beyond single center measurement 
or require the local reinterpretation of measurement algorithms (Hota et al. 2008). 
Therefore, strategies for transforming data to ensure reliable and accurate measures 
are critical. Some examples of these strategies are the use of standard vocabularies 
as part of the business process of care and in local data stores; the mapping of local 
data to standard vocabularies for use in reporting and detection algorithms; systematic 
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auditing of individual records for accuracy in captured data; and the report based 
review of records to assess outlier events for erroneous data collection. Usually, 
discharge diagnoses are already coded with standard vocabularies, either as ICD-9 
or 10 coding or diagnosis related groups (DRGs). In other databases, the use of 
standard vocabularies could be added as part of the business process of care: replac-
ing local codes in laboratory information systems with a standard set of SNOMED 
and/or LOINC codes to represent test results and test names is one example. If this 
is not achievable, an alternative is to use translation, or mapping, tables to relate 
local terms to standard codes. Tools to achieve this effort exist: examples are 
WHONET (Stelling and O’Brien 1997; O’Brien and Stelling 1996; WHO|WHONET 
Software 2009), software from the World Health Organization available to stan-
dardize microbiology data and map microorganism names to SNOMED codes, or 
RELMA (McDonald et al. 2003); (RELMA – LOINC 2009), a tool to translate test 
names to LOINC values. Furthermore, WHONET uses a standard database schema, 
interacts with a variety of EHR and laboratory information systems, and also has 
an associated application, called BacLink, which can convert local data to standard 
SNOMED nomenclature (Stelling and O’Brien 1997; O’Brien and Stelling 1996; 
WHO|WHONET Software 2009).

Systematic auditing can be achieved through the regular random or sequential 
sampling of specific patient records with a manual review of medical charts to 
assess accuracy. As an example, one approach might be to obtain the first ten 
records in a month, or 1% of records in a quarter, and review these to assess com-
pleteness and accuracy of laboratory information, microbiology, pharmacy, or 
diagnosis codes. Finally, reports targeting outlier data measures could be of value 
to detect data quality issues. For example, a histogram of counts of diagnosis codes 
could be viewed to detect suspect codes. Also, this approach, when combined with 
auditing, can greatly assist validation. A report of patients with common conditions 
could be generated to prompt a sampling approach to assess accuracy. Patients with 
multidrug resistant organisms identified could populate a line list, which could then 
be prospectively reviewed for accuracy. Ad hoc reports, prior to dissemination, also 
provide an opportunity to validate electronic data. In general, a validation cycle 
should be incorporated to ensure reports properly represent the clinical or adminis-
trative question prompting a report (Wisniewski et al. 2003).

15.5  Information Systems for Healthcare Epidemiology

15.5.1  Use of Hit for Measurement

The use of EMRs in healthcare settings allows for the capture of clinical, finance, 
and administrative data in a single location, which can then be used to target areas 
that require improvement. Measures that document problems and interventions that 
target problem areas may rely on the electronic data for detection. IT is limited in 
its ability to improve patient safety, however, and should be considered as simply a 
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tool to change behaviors. Figure 15.3 contrasts the pathway from measure development 
to decision support, and the role of HIT in these efforts.

Measures of HAI or adverse event rates are a good starting point for understanding 
problem areas. Once developed and validated, these measures can shine a light on 
inadequate processes of care in a hospital, and prompt a search for smaller compo-
nents that require an assessment. For example, high CLABSI rates may indicate a 
breakdown in multiple areas of healthcare: improper line insertion practice, failure 
to remove central lines, changes in device utilization, poor dressing care, changes 
in comorbidities of patients admitted to the hospital, and changes in hand hygiene 
or environmental cleaning practice (Yokoe et al. 2008; Marschall et al. 2008). With 
such multifactorial causes of HAIs, HAI rates are the markers of many root causes. 
Therefore, designing an IT based solution to high HAI rates may be inappropriate, 
but may give an indication that changes in the business process of care are 
required.

If, on the other hand, an assessment of high HAI rates indicates that a process 
measure amenable to an IT intervention exists, then decision support tools may 
become essential in an improvement effort. The advantages of decision support are 
that it can be implemented at the point of care, it can be automatically triggered at 
the time of a decision being made, and it can (when effective) change behavior in 
a way that intervention teams tasked with changing behavior may not be able to 
do. Some examples of successful electronic HAI measures, decision support and 
alerting tools, and ordering systems to enhance care are outlined in Sect. 15.5.2.

Automated HAI
measurement

implementation

Validation of
measures

Infection control
business process
assessment for
problem areas

Information Technology Solutions Systems and Process Solutions

Disseminate rates and
rankings to infection control

and adminstrative staff;
assess problem areas

Custom reports, line lists,
and charts to report trends

in HAI rates; provides
feedback on interventions

Target areas for
improvement to reduce

HAIs; implement
interventions

Alerts and point of care
tools to influence decision

making, improve
compliance with infection

control measures

Fig. 15.3 The role of HIT in implementing an HAI measurement and reduction plan. Following 
business process assessment, HIT can be used to provide feedback of information as well as start 
decision support based interventions
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15.5.2  Monitoring Infection Control Interventions

Many measures of HAI exist; vendors of EMR software may provide customized 
indicators of disease states unique to their implementations (Young and Stevenson 
2008). These measures are often “black box” methodologies in which the exact algo-
rithms used for measurement are proprietary and opaque to users. The future of HAI 
surveillance is the use of automated HAI measures that are interoperable between 
systems, produce results that are reliable within centers, and generate rates that can 
be used for between hospital comparisons or benchmarking. The use of vocabulary 
and messaging standards within EHRs may permit centralized processing of data for 
HAI measurement; for example, all positive and negative blood cultures may be sent 
to a regulatory or quality measurement agency or consortium, and BSI rates produced 
from the interoperable data that have been sent. Alternatively, the use of vocabulary 
standards at the database level may allow for the decentralized application of standard 
algorithms to detect and measure HAI rates. Finally, for each measure, the appropri-
ate case-mix adjustment should be studied and applied; in many instances, these 
measures still require assessment, especially in the context of the increasing avail-
ability of electronic data (Harris and McGregor 2008; McGregor et al. 2006).

Research has been conducted to attempt the measurement of HAIs. Some mea-
sures have been studied using administrative and diagnosis coding data. Examples 
of efforts in this domain include work on SSI surveillance (Huang et al. 2007; Yokoe 
et al. 2004), the surveillance of Clostridium difficile (Dubberke et al. 2006), and the 
benchmarking of HAI rates (Julian et al. 2006; Sherman et al. 2006; Stevenson et al. 
2008). Although administrative data is an easily obtained data source and is already 
standardized between institutions, concerns have been raised regarding the predic-
tive value of administrative data for the detection of HAIs (Sherman et al. 2006; 
Stevenson et al. 2008). In contrast, laboratory reports, although a potentially richer 
source of data, often lack standardization, limiting general integration. The success-
ful use of laboratory data for surveillance has been demonstrated for CLABSI sur-
veillance (Trick et al. 2004). Efforts to conduct surveillance for ventilator associated 
pneumonia have been more complex, and algorithms likely will require electronic 
documentation of both laboratory results, radiological studies, and respiratory ther-
apy care (Klompas et al. 2008a, b); if these datasets are available, however, a strategy 
that follows changes in ventilator settings, laboratory values, and sputum culture 
results holds promise (Table 15.1).

15.5.3  Decision Support

Moving beyond simply measuring HAI rates, detection algorithms to implement 
infection control interventions have been shown to accurately detect at-risk patients. 
Many centers have the facilities to identify patients with prior isolation of MROs 
from clinical or surveillance cultures. These patients may then be collated on 
admission on a “line-list” or daily report which can be utilized to recommend 
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Table 15.1 Examples of successful electronic approaches to HAI detection, with associated 
performance characteristics

Data source and 
measure Numerator Denominator

Performance 
characteristics

Administrative data
Surgical site infection 
(SSI) (Yokoe et al. 
2004)

Patients with ICD-9 
CM codes suggesting 
SSI or with 
readmission £ 60 days 
AND antimicrobial 
use ³ 9 days from 
procedure

Total number 
of patients with 
studied procedures

Sensitivity 79–97%; 
positive predictive 
value 20–42%

Clostridium difficile 
(Dubberke et al. 2006)

Patients with ICD-9 
codes documenting C. 
difficile infection

Total number of 
admissions

Kappa 0.72; 
sensitivity 78%; 
specificity 99.7%

Laboratory/microbiology
Central-line associated 
blood-stream infections 
(CLABSI) (Trick et al. 
2004)

Patients with 
electronically applied 
NNIS criteria for 
CLABSI

Central-line days Sensitivity 81%; 
specificity 90%; 
positive predictive 
value 81%; kappa 
0.73

Hybrid
Ventilator-associated 
pneumonia (Klompas 
et al. 2008a, b)

Patients with change 
in ventilator settings 
that persist ³ 48 h 
AND fever OR WBC 
> 12,000 OR WBC 
< 4,000 cells/mm3 
AND sputum gram 
stain with ³ 25 PMNs 
per HPF AND New 
radiographic infiltrate 
for ³ 72 h

Ventilator days Positive predictive 
value 100%

candidates for isolation to infection preventionists (Wisniewski et al. 2003; Evans 
et al. 2004). Furthermore, this list can be used to implement decision support, with 
automated alerts or ordering of contact isolation. Investigators at one center in the 
United States have created an index to identify patients at high risk of carriage of 
one MROs (methicillin-resistant Staphylococcus aureus (MRSA)) by targeting 
those not only with prior MRSA carriage, but also those with higher risk of car-
riage, based on the presence of longer durations of length of stay, older age, prior 
antimicrobial use, or use of hemodialysis (Evans et al. 2008). High-risk patients 
based on these criteria were fivefold more likely to be colonized with MRSA as 
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compared with low risk patients, when patients were assessed with PCR. Automated 
alerts targeting those likely to be colonized with multidrug resistant organisms 
require further assessment, but may represent a novel method of detecting patients 
at risk for colonization with MROs, and help targeting the use of resources in the 
setting of increasing burdens of healthcare surveillance.

The most experience in process improvement using HIT has been gained with the 
implementation of computerized provider order entry and decision support systems. 
HIT has been used for many years to measure the adverse effects and increased costs 
of medication errors; mature systems exist for the provider entry of medications to 
eliminate the need for the handwriting of medication orders and corresponding 
opportunities for error. Antimicrobial use measurement, though complex, can help 
systems understand the utilization of antimicrobials and can help inform risk assess-
ments for unit, hospital, and regional risks for MDRO acquisition (Fridkin et al. 
1999; Monnet et al. 1998; Cunha 2002; Rogues et al. 2007; Charbonneau et al. 2006; 
Muller et al. 2006). A recent review highlights many accomplishments that have 
occurred in the domain of HIT and decision support tools for improvement in the 
prescribing of medications, with reductions in duplicate or redundant medication 
use, appropriate dosing, and allergy detection (Kuperman et al. 2007).

15.6  Reporting Tools

A major feature of healthcare epidemiology is the time-dependent nature of data 
being measured. Users of the data value graphical representations of collected 
information. Several methods of data presentation are typically used to display data 
and allow an understanding of rates, thus transforming information to knowledge. 
Interrupted time series, in which rates are graphed over time and critical events 
create interruptions in the series, are the predominant method of data presentation 
(Shardell et al. 2007). Changes in slope or intercept are noted on the graphs at the 
start and during interventions, as compared with a pre-intervention period. Rising 
in use are statistical process control (SPC) charts, which plot counts, rates, or time 
to events on the vertical-axis as compared with time on the horizontal axis (Walberg 
et al. 2008; Morton et al. 2001; Kahn et al. 1996). SPC charts have a well-estab-
lished literature and history of use in the field of industrial management. A common 
feature among SPC charts is the graphing of a center line, or mean, value of a pro-
cess, and warning lines, typically three standard deviations from the mean. Alerts 
are issued when trend data or points are found above or below the warning lines. 
A third method of data presentation is funnel plots, which graph rates as a function 
of denominator size (Spiegelhalter 2005). The underlying premise of these graphs 
is that rates with small denominators are inherently unstable, are more likely to show 
variability, and are more likely to regress to the mean from one period to another. 
These graphs have utility in comparing measures from centers or units of unequal 
size in a way that rank ordering rates do not; in addition, they provide alert confi-
dence bands that change based on denominator size (Fig. 15.4).
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Interrupted Time Series Analysis

Events/1000 Device Days, Hospital Unit Aa

c

16

14

12

10

8

6

E
ve

nt
s 

pe
r 

10
00

 D
ev

ic
e 

D
ay

s

4

2

0

Event Rate, Baseline Period Event Rate, Intervention Period Trend, Baseline Period Trend, Intervention Period

Per
iod

 1
 B

as
eli

ne

Per
iod

 2
 B

as
eli

ne

Per
iod

 3
 B

as
eli

ne

Per
iod

 4
 B

as
eli

ne

Per
iod

 5
 B

as
eli

ne

Per
iod

 6
 B

as
eli

ne

Per
iod

 7
 B

as
eli

ne

Per
iod

 8
 B

as
eli

ne

Per
iod

 9
 B

as
eli

ne

Per
iod

 1
0 

Bas
eli

ne

Per
iod

 1
1 

Bas
eli

ne

Per
iod

 1
2 

Bas
eli

ne

Per
iod

 1
 In

te
rv

en
tio

n

Per
iod

 2
 In

te
rv

en
tio

n

Per
iod

 3
 In

te
rv

en
tio

n

Per
iod

 4
 In

te
rv

en
tio

n

Per
iod

 5
 In

te
rv

en
tio

n

Per
iod

 6
 In

te
rv

en
tio

n

Per
iod

 7
 In

te
rv

en
tio

n

Per
iod

 8
 In

te
rv

en
tio

n

Per
iod

 9
 In

te
rv

en
tio

n

Per
iod

 1
0 

In
te

rv
en

tio
n

Per
iod

 1
1 

In
te

rv
en

tio
n

Per
iod

 1
2 

In
te

rv
en

tio
n

b Statistical Process Control Chart
Events/1000 Device Days, Hospital Unit A

E
ve

nt
s 

/1
00

0 
D

ev
ic

e 
D

ay
s

20

18

16

14

12

10

8

6

4

2

0

Event Rate Mean 2 sigma 3 sigma

Per
iod

 1
 B

as
eli

ne

Per
iod

 2
 B

as
eli

ne

Per
iod

 3
 B

as
eli

ne

Per
iod

 4
 B

as
eli

ne

Per
iod

 5
 B

as
eli

ne

Per
iod

 6
 B

as
eli

ne

Per
iod

 7
 B

as
eli

ne

Per
iod

 8
 B

as
eli

ne

Per
iod

 9
 B

as
eli

ne

Per
iod

 1
0 

Bas
eli

ne

Per
iod

 1
1 

Bas
eli

ne

Per
iod

 1
2 

Bas
eli

ne

Per
iod

 1
 In

te
rv

en
tio

n

Per
iod

 2
 In

te
rv

en
tio

n

Per
iod

 3
 In

te
rv

en
tio

n

Per
iod

 4
 In

te
rv

en
tio

n

Per
iod

 5
 In

te
rv

en
tio

n

Per
iod

 6
 In

te
rv

en
tio

n

Per
iod

 7
 In

te
rv

en
tio

n

Per
iod

 8
 In

te
rv

en
tio

n

Per
iod

 9
 In

te
rv

en
tio

n

Per
iod

 1
0 

In
te

rv
en

tio
n

Per
iod

 1
1 

In
te

rv
en

tio
n

Per
iod

 1
2 

In
te

rv
en

tio
n

Funnel Plot
Events/1000 Device Days, all hospital units

25

20

15

10

E
ve

nt
s/

10
00

 D
ev

ic
e 

D
ay

s

Device Days Risk

5

0
0 200

System Mean Lower Confidence Level Unit A Unit B Unit C Unit D

400 600 800 1000 1200 1400 1600 1800 2000

Upper Confidence Level

Fig. 15.4 Graphical displays of automated HAI measures. Data are for a hypothetical HAI mea-
sure obtained in four hospital units. Unit A is a 12 bed unit, unit B a 24 bed unit, unit C a 48 bed 
unit, and unit D a six bed unit. (a) Interrupted time series analysis; (b) Statistical process control 
chart; (c) Funnel plot of rates vs. device days at risk
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The value of automated surveillance is that graphs can be produced and give 
feedback to infection preventionists, institutions, and regulatory agencies much 
faster than conventional manual measurement methods. If reliable, automated, 
measures of HAIs can be produced using HIT, then the possibility of a real-time 
assessment of the quality of healthcare can be achieved. As stantards adoption 
increases, such measurement need not be limited to technologically advanced cen-
ters, but can be instituted for a region. Regional differences in MROs epidemiology 
and risk adjustment based on case-mix could be used to generate near real-time 
measurement of HAI rates (see Chap. 17 for examples).

15.7  Concluding Remarks

Although the field of HIT has much to offer in terms of enhancing the measurement 
of HAIs and enabling automated surveillance of healthcare-associated events, 
continued innovation is essential. Areas of need include the adoption and validation 
of current manual surveillance processes to a more automated approach; the 
creation of new, reliable measures between centers to allow comparisons; the use 
of measures to permit global process assessment and improvement; the real-time 
reporting of measures to create feedback loops of improvement; and the implemen-
tation and dissemination of decision support tools that can be added to clinical 
workflows and can enhance patient care.

HIT alone does not represent a solution to healthcare quality issues, but it can be 
an effective tool to understand and improve care. The science of HIT implementation 
and assessment continues to improve, with more multicenter and methodologically 
sound research occurring. The future of HIT and healthcare epidemiology is likely 
to show better support of standards in EHR solutions, better interoperability, and 
more tools for clinical use to improve patient care.
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16.1  Introduction

The emphasis in this chapter is on automated information systems capable of 
supporting high-throughput public health surveillance, adding public health value 
to large volumes of routinely collected health care data, at relatively low cost. 
Infectious disease is the main focus, but other important public health problems of 
current interest are addressed, as they share many challenges in terms of the infor-
mation systems needed. In addition to access to complete and comprehensive EHR 
containing identifiable human data, these systems depend on reliable algorithms 
and decision rules that can be efficiently implemented and then objectively evalu-
ated and iteratively refined. Examples of decision rules and production information 
systems are briefly reviewed to illustrate potential solutions to these challenges. 
Some of the material is abstract and generalized, but the practical and technical 
illustrations are necessarily concrete, being examples drawn from the author’s 
collaborations in the United States, where reasonably complete EHR are relatively 
abundant and a number of automated, high-throughput systems of proven validity 
are operating (Lazarus et al. 2008).

Human EHR are the major focus of the work and systems described here, where 
the term EHR refers to reasonably complete data from an electronic medical record 
(EMR) system, or another electronic record of an individual’s health care, including 
newer forms such as personally controlled health records (PCHR). Measurable 
public health benefits have been demonstrated for notifiable disease reporting 
systems using EHR. A desire to do something that might minimize the impact of 
an extremely improbable, but potentially high-impact, threat posed by biological 
terrorism or an emerging pandemic infection has motivated much recent activity, 
including work based on the hope that non-health related data sources, such as 
retail sales data, might be usefully repurposed for public health surveillance. 
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Additional benefit in terms of improved public health, arising from substantial and 
ongoing investment in systems using these non-health related data, remains to be 
demonstrated.

Public health activities are often aimed at preventing the occurrence or spread of 
illness, with a broad focus on whole communities or populations. This stands in 
stark contrast to investment in medical care in most developed countries, which is 
largely directed at diagnosis and treatment of existing pathology in individual 
patients. Historically, prevention has proved to be a very effective strategy to 
decrease the overall community burden, particularly for infectious diseases, such as 
tuberculosis or influenza. Enumerating and tracing of outbreaks is a core source of 
information for public health planning. Effective interventions often start with an 
index case and take actions that minimize the risk of further spread of infection, 
such as the delivery of effective curative treatment. The basic idea in public health 
surveillance is to routinely search for cases of illness that may have public health 
importance and to bring them to the attention of authorized public health officials, 
in a secure manner, so that they can efficiently intervene to prevent spread or other 
exposure. In addition to sources of data, appropriate governance and security sys-
tems, and appropriate automated case detection methods, this also requires some 
way of presenting the data to authorized users, in ways that help them to effectively 
manage public health resources. In the case of large-scale events, timeliness is of 
fundamental importance, as early response is likely to be far more efficient in most 
of the plausible scenarios.

Modern public health surveillance arose as a scientific response to unpredict-
able, explosive outbreaks of deadly diseases. It is hard to imagine the situation less 
than two centuries ago, when epidemic infections, including plague, influenza, and 
cholera, periodically ravaged Europe and Asia. Almost no effective control was 
implemented, because the causative organisms and their mechanisms of spread 
were not well understood. However, even in the absence of a formal scientific 
understanding of these diseases, some European authorities were able to effectively 
control the spread of plague to geographically isolated regions in the seventeenth 
and eighteenth centuries (Konstantinidou et al. 2009). More recently, John Snow 
combined surveillance, intervention, and evaluation to form what is generally 
recognized as the basis for modern population health science, or epidemiology 
(Paneth 2004). In a London cholera outbreak during 1854, he convinced local parish 
authorities to disable the mechanical Broad Street water pump. Subsequent surveil-
lance data showed decreased cholera incidence rates among nearby residents. This 
was a defining moment in modern public health, although as Snow himself humbly 
pointed out, rates also fell in distant London communities, because the epidemic 
was already waning at the time of the intervention.

Surveillance in public health implies recording and reporting aggregate level 
details from individual cases of a disease over time. For example, effective inter-
ventions, such as curative or prophylactic antibiotic treatment, are often available 
to minimize risk of spread of disease from infected individuals. The goals of 
surveillance and analysis may include the following:
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Identifying, quantifying, and monitoring public health threats,•	
Identifying opportunities to intervene efficiently, and•	
Evaluating interventions.•	

16.2  Evaluation of Surveillance Systems

Measuring the performance of public health systems against pre-specified goals 
and other benchmarks is an integral part of good system design, so that competing 
methods can be objectively compared and existing systems can be iteratively 
improved (German et al. 2001). Surveillance systems can be modeled as disease 
detection systems or diagnostic tests applied to populations rather than to individuals. 
So when appropriate, independent “gold standard” data are available, surveillance 
system performance can be measured in the usual diagnostic test performance 
terms of validity, positive and negative predictive values, sensitivity, and specificity. 
However, as surveillance goals become less distinct, evaluation becomes increasingly 
challenging. For some potentially catastrophic events such a pandemic of avian 
influenza, there is no obvious way to externally validate the performance of any 
surveillance system until after an event has been observed.

The key ingredients of public health surveillance include partner organizations 
willing to serve as reliable sources of data, secure technologies to manage data and 
distribute queries and results, reliable statistical and other methods to identify 
opportunities for intervention, and objective measures of performance so impacts 
of implementations can be evaluated, compared, and improved. The specific 
objectives of a surveillance system are critical determinants of the kinds of data 
needed, the statistical or other methods used in evaluating the data, and the mea-
surements needed to evaluate and improve performance.

16.3  Surveillance Goals

Public health surveillance systems can be divided into four broad classes, with 
decreasingly specific goals:

 – Notifiable disease surveillance: Designed to monitor and control common and 
well known threats to public health – the oldest and best understood model. 
These systems usually rely on timely notifications from clinicians or laborato-
ries about cases of communicable diseases.

 – Syndromic surveillance: Generally aimed at the earliest possible detection of 
cyclical natural disease patterns, or potential deliberate bioterrorism. These 
systems usually monitor health care utilization patterns, in real time, and rely on 
detecting case features that are discernable before laboratory diagnoses are 
confirmed.
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 – Adverse event surveillance: Post-marketing surveillance for adverse events 
represents an important potential opportunity for EHR-based surveillance systems 
to help to overcome well-recognized deficiencies in the current regulatory 
processes for ensuring the safety of widely used therapeutic interventions, 
particularly of medications and vaccines.

 – Biosurveillance: Attempting to borrow strength across all available and poten-
tially informative sources of data in order to detect potentially important health 
perturbation, at the earliest possible time in the course of an event of public 
health importance.

Each of these activities can use EHR, but each requires very different decision 
rules, implementation, validation, evaluation, and presentation. In the sections that 
follow, technical aspects of each of these four broad public health surveillance 
goals are discussed in more detail, followed by sections in which some of the spe-
cific practical challenges to building and maintaining sustainable surveillance sys-
tems are discussed, including manual system challenges, sources of electronic data, 
security and protection of human subject data, statistical methods and visualization, 
technologies for data transfer, and governance for large-scale surveillance 
systems.

16.4  Notifiable Disease Surveillance

All functional public health jurisdictions operate some kind of case notification 
protocol for important conditions of public health significance. Some have auto-
mated notifiable disease reporting from electronic health data such as electronic 
laboratory records (ELR) (Klompas et al. 2007). With specific notifiable disease 
definitions, we can search electronic health data for matching criteria in terms of 
physician assigned diagnoses, laboratory test results, and other clinical observa-
tions (Lazarus et al. 2008). In general, notifiable disease surveillance involves rela-
tively little statistical sophistication, as the goal is to identify all real cases and bring 
them to the attention of appropriate authorities in a secure and useful manner 
(Lazarus et al. 2008). Validation is important for new systems – it is expensive to 
conduct, but it is an essential component of good system design to ensure that public 
health resources are not diverted away by false alerts (Klompas et al. 2008a, b). The 
key issue for investment in public health activities is whether it efficiently leads to 
measurable improvements in the control of public health challenges.

16.4.1  Deficiencies in Existing Systems

In practice, most routine, planned public health case surveillance operates through 
practitioner initiated, manually transcribed case notification of designated diseases 
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of potential public health importance. National US data from the CDC Morbidity 
and Mortality Weekly Reports (MMWR, http://www.cdc.gov/mmwr/) is a well-
known example of this combined approach, where local and State records are centrally 
collated and made available for surveillance purposes. It is widely agreed that these 
systems suffer from under-enumeration and from incomplete data on reported cases, 
two deficiencies that automated systems can address directly. Automated ELR are 
increasingly being used to supplement manual reporting, but these also have 
substantial limitations that can be addressed using comprehensive EHR.

16.4.2  Challenges in Automated Disease Detection

When dealing with specific diseases, data streams, case detection algorithms, and 
the systems implementing all of these can be tested for validity and performance 
when we can calibrate against an independent source of case notifications. False 
negative and false positive alerts are both potentially very bad – the former leading 
to false reassurance and the latter to wasted investigational resources and other 
undesirable outcomes.

Distinguishing acute infection from chronic illness is useful in case notifications 
because they often trigger different kinds of intervention. For example, close contacts 
of a case of acute hepatitis B may benefit from immediate preventive intervention, 
and data on the changing epidemiology of the disease, particularly the impact of 
universal vaccination programs, have both planning and evaluation value (Klompas 
et al. 2008a, b). Surveillance using laboratory results alone is increasingly being 
used to supplement manual reporting systems, but cannot detect conditions requiring 
non-laboratory clinical findings, such as pelvic inflammatory disease, and cannot 
reliably distinguish between the acute, chronic, and resolved states of disorders 
such as viral hepatitis B or C.

Similarly, sensitivity and specificity will suffer if surveillance algorithms rely on 
diagnostic codes alone, because busy clinicians may not make ideal coding choices. 
In practice, clinicians tend to choose from a limited subset of codes when coding 
encounters using an EHR system. This behavior is often reinforced by the design 
of the EHR interface, where available code choices are deliberately restricted to 
make the interface less overwhelming for the user. Although distinct codes may 
exist in the full ICD-9 for some disorders, a clinician is likely to choose the same 
ICD-9 code to represent previous resolved illness, suspected current disease, 
confirmed acute disease, and current chronic disease, complicating the decision 
rules needed when these must be distinguished.

These challenges require careful design, testing, and implementation, but the 
problem is tractable. For example, an algorithm that takes into account the presence 
of elevated liver function tests, biochemical jaundice, a positive test for hepatitis B, 
and no prior ICD-9 codes or laboratory tests for hepatitis B can detect acute viral 
hepatitis B with sensitivity of 97.4% and specificity of 93.8% in the ESP system 
(Klompas et al. 2008a, b). This algorithm identified eight cases of acute hepatitis B 
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without any false positives (Klompas et al. 2008a, b). Seven of the eight cases were 
novel, four were hitherto completely unknown to the health department, and three 
of the four previously reported cases had been misreported as chronic rather than 
acute cases. Surveillance of other notifiable diseases such as tuberculosis is 
also complicated by cases of culture-negative disease being missed by purely 
laboratory-based reporting. For tuberculosis, such false negative cases can be 
identified by finding associated prescriptions for pyrazinamide or other first-line 
antituberculous medications in EHRs and by finding the co-occurrence of ICD-9 
codes for tuberculosis with pathology orders for diagnostic tests for tuberculosis 
(Calderwood et al. 2007). In prospective surveillance, the ESP algorithm identified 
and reported seven cases over an 18-month period, including two patients with 
culture-negative disease (Calderwood et al. 2007).

16.5  Syndromic Surveillance

As described above, automated systems can add value to EHR by detecting and 
reporting case notifications to local public health officials (Lazarus et al. 2008). 
These systems generally rely on automated decision rules applied regularly to all 
EHR data from a defined population and their performance and validity are well 
established (Klompas et al. 2008a, b). In notifiable disease reporting systems, the 
practitioners or the software “knows” what to look for and report to the public 
health official. However, for some potential public health threats, a practitioner 
initiated manual system, or even an EHR based automated disease identification 
and reporting system might not provide the timely detection needed for early inter-
vention, because the initial effects are likely to be non-specific and will therefore 
not be picked up by a system designed to find cases of single, specific diseases 
(Lazarus et al. 2001, 2002).

This challenge arises when public health planners are asked to prepare for events 
of unknown, but extremely low probability, with potentially catastrophic conse-
quences, such as mass exposure to a weaponized biological agent. In general, 
appropriate intervention is likely to be more effective earlier than later in most 
plausible scenarios, such as inhalational anthrax, since early appropriate antibiotic 
therapy is the only likely curative intervention. Fortunately there have not been any 
opportunities to test existing systems in real events, so it is very difficult to demon-
strate any improvements in public health outcomes, although subjective reassur-
ance might arguably be a sufficient goal.

16.5.1  Syndromes in Place of Specific Diseases

Surveillance for a known, specific contagious disease is reasonably tractable, using 
relatively simple decision rules, such as a laboratory report of a positive culture for 



32916 Automated, High-throughput Surveillance Systems for Public Health

the causative organism, and systems implementing these rules can be validated 
using independent case finding systems (Lazarus et al. 2001, 2002). Unfortunately, 
statistical power to reliably detect a very rare disease in a noisy EHR data stream 
may be very low, even with large sample sizes, and calibration is impossible without 
some real cases in the data stream (Kleinman et al. 2004). Defining decision rules 
for the reliable, early detection of a bioterrorism event such as the release of inha-
lational anthrax might be possible given appropriate definitions of “early” and 
“reliable”, but the resulting rules cannot be externally validated until real events 
have been observed.

Many substantial practical problems must be overcome for the effective wide 
scale delivery of any of the few known plausible, large-scale biological terrorism 
agents, but although the risk of a large-scale event is vanishingly small, it is probably 
not zero (Haas 2002). These agents tend to produce specific patterns of early signs 
following exposure, in a limited number of broad categories. One of these patterns, 
such as upper respiratory syndrome, might be assigned to any individual with any 
one or more of dozens of carefully selected ICD-9 codes, chosen to reflect the 
presence of acute upper airways symptoms. Use of these coarse disease categories 
based on amalgamated ICD-9 codes may allow a large-scale event to be detected 
earlier because wide-scale exposure to any single agent is likely to cause an 
increase in only one of the syndrome categories. The basic idea is that if the release 
of an agent such as anthrax is effective and exposes a large number of individuals 
to an acute, inhalational route of infection, there will soon be an unusual rise in total 
periodic (e.g., hourly or daily) counts of “upper respiratory syndrome” cases. This 
idea is motivated by the observation that, clinically, inhalational anthrax tends to 
produce an early, influenza like prodrome. Given a method to obtain the summary 
data required for each data stream, syndromic surveillance can be framed in terms 
of looking for unexpected increases, localized in time and in space, for any of a 
dozen or so syndromes.

16.5.2  Choice of Syndromes and ICD Code Groupings

Syndromes are chosen to cover what most of the known, plausible, localized agents 
would be likely to produce. In the absence of a known attack, bioterrorism events 
have extremely low prior probability as the explanation for illness in a patient 
consulting a primary care or emergency room physician. For example, the initial 
clinical presentation of inhalational anthrax may not be reliably distinguished from 
a very severe instance of a common viral respiratory infection. Syndromic surveil-
lance offers a way of being alerted to unusual numbers of respiratory infections that 
might be the first signal from a regional inhalational anthrax outbreak following an 
intentional or accidental exposure. In a real but as yet unrecognized event, a defini-
tive diagnostic test (such as sputum culture for anthrax) is not likely to be initially 
ordered for the very first few cases, because in the absence of known exposure, 
anthrax is an extremely improbable explanation for the kinds of symptoms that are 
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likely to be reported initially. More importantly, definitive laboratory test results 
may take considerable time to become available.

The range of organisms and toxins that are known to have high attack rates with 
effective, practicable dispersal methods suitable for large-scale bioterrorism is 
fairly narrow, and hence, it is possible to have a reasonable expectation of what to 
look for. These few agents, such as Bacillis anthracis (cause of anthrax), produce 
predictable symptom patterns as the infection progresses, so syndromic surveil-
lance uses, for example, daily counts of broad groups of diagnostic codes in 
geographic regions. In the example of anthrax, upper respiratory coded events 
might be expected to enter the health data stream soonest after exposure. Daily 
counts by region for other broad syndromes are also of potential utility, including 
skin coded events, neurological events, gastrointestinal events, and so on. A public 
health surveillance system based on diagnoses grouped into broad syndromes will 
likely give as early a warning as we can get, if a substantial biological event should 
occur and the consequences should begin to enter the EHR stream feeding an auto-
mated syndromic surveillance system.

16.5.3  Early Detection and Alerting

Statistical methods are always required to make sense of syndromic surveillance 
data. We can count these syndrome events to help understand each day’s count as 
it arrives, but an arbitrary count today (e.g., n = 42) for lower respiratory tract infection 
syndrome cases in a specific geographic area is just a number, and can only be 
interpreted using appropriate statistical methods and known historical count 
patterns (Kleinman et al. 2004). There are well known seasonal (e.g., winter lower 
respiratory infections), cultural (e.g., public holiday and weekend health care avail-
ability), geographic (e.g., sociodemographic differences in health care seeking 
behaviors), and other factors that confound these daily counts in addition to the 
usual daily random count variability.

16.5.4  Statistical Challenges

Any routine surveillance system evaluating syndrome counts in space and time will 
perform large numbers of statistical tests every day, so control of family-wise error 
is a fundamental concern, where a Type 1 statistical error or false alarm will have 
highly undesirable consequences. Conversely, ensuring that the model has appro-
priate statistical power to detect a true event is also challenging, because in the 
absence of real events to use for calibrating statistical inference and surveillance 
implementations, approximations using simulated data based on models incorpo-
rating subjective assumptions, such as the CDC simulated bioterrorism data streams 
(http://www.bt.cdc.gov/surveillance/ears/datasets.asp), are the only available option. 
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Paradoxically, we can never be certain that the assumptions are appropriate unless 
we are unfortunate enough to be able to record, study, and calibrate our systems in 
real events. Given that real events are exceedingly rare, parametric assumptions are 
hard to test, so permutation under the null hypothesis of no attack is a useful, if 
computationally expensive, way to estimate how improbable any given count of 
cases is in any given geographic area.

Once the counts for each syndrome, date, and region are stored in a database, we 
can model seasonal, geographic and other characteristics to check that nothing 
“unexpected” is going on from a statistical point of view. The right way to detect 
these events will depend on how the term “unexpected” is defined and there is a rich 
statistical literature on the challenge. There are non-parametric methods such as 
scan statistics that can be applied to syndromic counts in space and time, when we 
have no clear model of exactly what to expect to see. SaTScan is a statistical tool 
that analyzes spatial and temporal patterns to test for unexpected clustering under 
the null hypothesis of random distribution. It has been broadly applied to disease 
surveillance for applications ranging from infectious disease outbreak to cancer 
cluster detection and is freely available (http://www.satscan.org) (Kulldorff et al. 
2005). SaTScan offers a method that makes few assumptions, and seems robust in 
a range of applications, providing empirical space and time case cluster probabilities 
adjusted appropriately for the large number of tests performed and providing an 
indication of exactly which region and period are of interest. Models incorporating 
more distributional assumptions may have greater statistical power for a given 
number of observations (Kleinman et al. 2004), but these models may be at risk of 
bias if those assumptions prove to be wrong, and in the absence of real examples, 
there is no empirical way to confirm their validity.

A manual notifiable disease system is unlikely to respond quickly enough to be 
useful for syndromic surveillance, as there is likely to be a substantial lag between 
multiple clinicians encountering new cases, and the manual report making its way 
through to being counted and distributed in an aggregate report. In addition most 
cases of acute illness are not routinely notified. Automated sources of data such as 
EHR from an ambulatory care practice or a hospital emergency room (ER) can be 
opportunistically repurposed for this purpose. For example, automated high volume 
but relatively non-specific “chief complaint” systems have been built, with sophis-
ticated displays, such as AEGIS (Reis et al. 2007), allowing mapping of case volumes 
and statistics for chief complaints or syndromes by public health officials.

Given that an event can be reliably detected at an early stage, bringing this to the 
attention of appropriate public health and emergency officials remains a substantial 
challenge. The “last mile” problem in all of these systems has been addressed by 
investment in automated alert systems in Massachusetts (see below) and many 
other states of the USA. There is substantial political motivation and support for the 
implementation and maintenance of these expensive systems, even in the absence 
of high-risk threats, to satisfy a strongly felt desire to be doing something to address 
a variety of low-probability, but potentially very high-impact, events. The extent to 
which resources diverted to these activities improve public health practice and 
outcomes remains to be demonstrated.
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16.6  Adverse Event Surveillance

Recent controversy about the adequacy of the post-regulatory monitoring of 
routinely administered vaccines and medications for particular subgroups 
of individuals indicates that improved public health “post marketing” surveil-
lance is an urgent priority for improving the management of these risks at a whole 
population level. This is clearly a public health surveillance challenge and oppor-
tunity, because the whole population of medication exposed or vaccinated individuals 
must be considered in order to detect an elevated risk for some arbitrary adverse 
event associated with the exposure in a particular subgroup. EHR are likely to be 
one of the most valuable resources for automated systems to achieve these goals, 
and extremely large samples are required to ensure adequate statistical power to 
detect rare events, particularly when risk is only elevated among small subgroups 
of individuals.

16.6.1  Vaccine Adverse Event Surveillance

Although vaccination is effective in terms of preventing epidemics of potentially 
serious infectious illness, ensuring the safety of routine vaccination is a crucial 
activity, as new products are regularly being introduced and large numbers of 
healthy individuals are being exposed to them. No matter how well-intentioned, 
quantification of the risks involved is an important part of their ongoing evaluation. 
In general, risks are known to have a very low upper limit by the time the regulatory 
processes have been successfully completed. However, pre-marketing trials are of 
limited size and duration, and may have very low statistical power to detect 
extremely rare but serious adverse events. Large studies over long periods of time 
are needed to reliably detect very rare events. Aside from mandated regulatory 
animal experiments and pre-release human clinical trials, adverse events related to 
vaccination are generally collected and reported using relatively haphazard, incom-
plete manual systems.

16.6.2  Medication Adverse Event Surveillance

A similar situation pertains for widely used existing and newly introduced drugs. 
A number of recent, well publicized examples where there was a previously unrec-
ognized increased risk of adverse events for patients using commonly prescribed 
medications (Graham et al. 2005) have demonstrated the importance of improving 
the current mechanisms for ongoing, active, very large-scale surveillance for unex-
pected and rare adverse events. Controlled clinical studies of the required sample 
sizes and duration are simply not practicable beyond the modest requirements of 
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the regulatory process, but very large-scale observational studies may be possible 
in the form of post-marketing surveillance using multiple, federated collections of 
EHR and appropriate automated systems.

In all forms of adverse event detection, statistical and epidemiological methods 
play a key role, because the patients who are given a particular make of drug have 
characteristics that make some adverse outcomes more likely to occur. For exam-
ple, patients with type II diabetes (T2D) are known to be at increased risk of car-
diovascular disease, so if a drug used in the treatment of T2D is being evaluated for 
increased risk of adverse cardiovascular events, the biases associated with charac-
teristics leading to the prescription of the drug, often termed “confounding by 
indication” must be controlled for reliable statistical inference about the risk associ-
ated with the drug itself. Specialized methods such as propensity scoring are 
required for reliable results, and for very rare events extremely large samples are 
needed over long periods.

16.7 Non-Specific Biosurveillance

There is great recent interest in surveillance for potential public health problems 
that may never have been previously seen. For example, how will we recognize 
when the first human cases of a pandemic outbreak of avian influenza have 
occurred? This turns out to be a far more difficult problem than notifiable dis-
ease reporting or the specific syndromic surveillance systems described above. 
Part of the challenge is that for efficient intervention in a large-scale event, time-
liness is of the essence, so the earliest possible reliable detection and alerting are 
always sought, but this desire must balance the two possible kinds of highly 
undesirable errors – namely false positive reports inducing large-scale but use-
less response, and false negative reports inducing inappropriate reassurance that 
there is nothing unusual going on leading to lost opportunities for effective, 
early intervention.

Unlike notifiable or even rare potential bioterrorist vector disease cases, we 
do not have any well validated examples or reliable models of previously 
unseen, emerging, or unknown disease patterns, making it very hard to ratio-
nally design, and even harder to validate, reliable automated decision rules 
from existing EHR or non-health related data streams. In this situation, compar-
ing competing models, each claiming to produce the earliest, most reliable 
signal, requires subjective judgment. Objective criteria about timeliness and 
reliability are available only under arbitrary assumptions using simulated null 
data generated under the null hypothesis of no events to establish Type 1 or 
false positive error rates, and “real” data simulated to represent real events of 
various kinds and scales, against a background of realistically noisy data. 
Simulating data to represent a large-scale public health event requires multiple 
subjective assumptions to be incorporated into both the null and real data 
models.
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16.7.1  Non-Health Related Data Sources

It is widely hoped that the improved availability of non-health care related, 
unconventional data streams, such as orange juice (Fienberg and Shmueli 2005), 
facial tissue, or acetaminophen sale volumes from large retailers, might contain 
potentially important signals about health (e.g., https://www.rods.pitt.edu/site/), as 
health related issues might influence purchase patterns. Unfortunately these sales 
data are likely to be confounded by real, but far less informative variation related 
to advertising, availability, regional “specials”, and other non-health related eco-
nomic and market condition effects. Random and other non-health related variation 
might make it difficult or even impossible to extract any reliably health related 
signals from these data. Evidence that investment in gathering and processing these 
data can produce measurable public health benefit beyond some subjective mea-
sures of comfort is not yet available in any convincing form. Although improved so 
called “situational awareness” resulting from the substantial investment already made 
in non-health care related data streams and in non-specific surveillance methods may 
in itself be a worthy goal, there are many competing activities that can produce mea-
surable improvements in public health given the same level of investment.

A privately funded web search term based system for identifying temporal and 
regional patterns of internet searches related to acute upper respiratory illness has 
been deployed at http://www.google.org/flutrends, demonstrating the potential util-
ity of non-EHR data streams for surveillance. This system’s main claim for benefit, 
in a high profile scientific publication, was a two weeks lead-time over existing 
CDC manual reporting systems for influenza like illness. It is disappointing that the 
authors (and reviewers) appear unaware that even greater lead times (up to 6 weeks) 
had been demonstrated in an EHR based automated system more than seven years 
previously (Lazarus et al. 2001). There is no evidence of substantial utility for less 
common but important non-respiratory public health threats, such as gastrointesti-
nal illness. Again, despite enthusiastic and optimistic engagement, and the impor-
tance of novel public-private partnerships, the convincing demonstration of 
improved public health practice as a result of presumably substantial investment in 
processing data from this non-health care delivery data stream is not yet available.

16.7.2  The Challenge of Opportunity Cost

All public health activities, including newer biosurveillance systems have opportunity 
costs because resources devoted to those purposes become unavailable for other, 
potentially more efficient investment. Demonstrating return on investment in terms 
of improved public health may be an insurmountable methodological challenge 
unless goals are substantially sharpened. Although hundreds of millions of dollars 
have been invested, the literature on the application of non-EHR data based surveil-
lance is relatively recent, and is notable in its optimism about their potential. 
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However, equally enthusiastic investment in rigorous evaluation of such surveillance 
in terms of measurable public health benefits is usually lacking. While process and 
activity are sometimes reported, even rudimentary validation against existing 
systems is generally absent, because without a source of known events to test the 
models, external criterion validation is not possible, and the performance and 
benefit of these expensive systems remain a subject of speculation, although 
substantial investment has been and continues to be diverted to these activities.

16.8  Finding and Harnessing Data

No matter what kind of surveillance is proposed, any useful surveillance system 
needs data. It is known that useful public health information can be gleaned from 
reliable and complete EHR, and it is clear that for post-marketing vaccine or medication 
adverse event surveillance, non-health care data streams are unlikely to have appro-
priate relevant exposure data to make them reliable or useful. The question of how 
useful information from retail (e.g., orange juice) sales or other non-health care data 
sources can be for large-scale outbreak detection remains to be answered.

For notifiable disease, syndromic surveillance, and adverse event reporting, data 
at the level of the individual patient are needed at some point in processing, even if 
such data do not allow the identification of a patient. However, only summary data 
may need to be distributed for effective public health planning, and for some kinds 
of broad scale intervention. Precise local regulatory requirements will vary by juris-
diction. As an example, some of the conditions currently prevailing in the United 
States are used to make the challenges more concrete, in terms of actually gaining 
access to individual patient electronic health data (EHR) or PCHR from one or 
more of the health delivery or insurance entities. Security, access control, and 
governance arrangements are crucial to securing collaboration and access to data 
needed for surveillance.

Public health information systems where potentially identifiable individual human 
data may be involved, such as those the CDC manages, require substantial levels of 
security and protection from unauthorized access. Integrating across multiple data 
resources often allows value to be added. Unfortunately, in the US system, indi-
vidual applications have generally implemented their own security and authentication 
mechanisms, although more recently, Public Health Informatics Network Messaging 
System (http://www.cdc.gov/phin/activities/applications-services/phinms/) has been 
increasingly deployed for secure communication. The resulting, generally incompat-
ible technologies currently deployed in secure public health systems are technically 
demanding to manage, and even more technically challenging to integrate across 
individual systems. Most of these applications have been very narrowly focused, and 
implemented as independent, isolated vertical information silos. They were deliber-
ately made hard to access through specific and often proprietary access mechanisms, 
and were very hard to get data out of, because integration with other, independent 
systems was rarely a design goal. As a result, there are many large-scale public health 
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systems in operation containing data that could be very useful, if they could be 
repurposed and combined with other data, but that are not currently easily integrated 
into any value-adding public health applications.

16.9  High Throughput Distributed Surveillance

There are many potential sources of EHR, such as health care payment and 
insurance processing, managed care organizations, and large group medical practices 
with electronic medical record systems, and there are many independent vendors 
and products available for implementing large-scale EHR systems. In order to 
obtain useful statistical power, public health surveillance requires consistent and 
complete data from very large numbers of individuals, particularly when rare 
adverse events are being sought. Currently, no single system or source covers any 
more than a fraction of the population of an entire state, so one of the challenges 
for practicable systems is to be able to combine data from multiple independent 
sources. This introduces many technical and administrative challenges. The most 
familiar information system model for doing this is to collect all the data in one 
single physical collection, and then process it using a single application. 
Unfortunately for identifiable EHR in the current US health system culture, this is 
simply not a sustainable option.

Experience in practical research projects over the last decade has clearly 
demonstrated that most large US data holders – termed covered entities under the 
U.S.A. HIPAA (http://hipaa.org) provisions – will not permit any individual level 
patient records to be moved outside their private networks, unless there is a statutory 
reporting requirement or some other special case. One potential solution is for the 
query or analysis to be sent to the data, in a distributed or federated information 
system model. Securing and administering these processes is not a trivial task, and 
some mechanism for ensuring that the analysis operates correctly at each EHR site, 
as well as for managing analysis queries and amalgamating all the individual query 
outputs, must be created and sustained.

Gaining data provider cooperation, in the absence of legal obligation, requires 
careful attention to specific restrictions on communication imposed as requirements 
for participation by the covered entities without whom there would not be any data 
to federate. The security requirements of the security and other corporate represen-
tatives of the entities volunteering to take part in data federation are very clear and 
very restrictive. Although there is a wide range of security considerations, there are 
two more or less uniform general principles – firstly, that no individual level data 
can be permitted to leave the private network and secondly, that only outgoing 
connections initiated from inside the private network are likely to be acceptable. 
These are the most important technical restrictions and they restrict the choice of 
available communication architectures markedly.

In essence, for a federated network to be attractive to potential data providers, 
the architecture is likely to be that queries are to be executed on data held in a 
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common format, within the covered entity’s private network, and that only 
summary data will generally be returned. The server running inside the private 
network will periodically contact (poll) the remote portal node, because it is 
unlikely that covered entities will permit unsolicited inbound connections to their 
servers. During each poll, it will pick up any waiting queries, and return completed 
results for amalgamation and presentation. This is the model that was demonstrated 
recently in the Distributed Research Network (DRN) project described below, and 
is the essence of a federated model that appears compatible with the requirements 
of the large-scale data providers who collaborated on that project.

In practice, there are many, far more detailed technical issues that will vary 
depending on the specifics of the implementation. These include the scripting and 
management of secure communications; specific task command syntax and local 
execution models; details of the shared data structures; details related to the actual 
analysis package; and the design and operation of the presentation layer at the cen-
tral portal from where the queries originate, and where the individual entity results 
are amalgamated for presentation to the user. Although each of these issues is likely 
to depend on the specific implementation, the basic model of a successful large-
scale voluntary system is likely to be distributed and federated.

16.10  Technical Aspects of Secure and Controlled Data 
Sharing

In the physical sciences, such as atmospheric science and astronomy, vast volumes 
of data are generated on a daily basis, and this is now routine for some life sciences 
such as genomics and genetics. It is widely understood that the value of all these 
data increases when they are made widely, conveniently, and securely available to 
as many authorized researchers as possible. In contrast with health services data 
flows, which have often been built with closed source, proprietary technologies in 
the past, there has been enormous investment in open source software, specifically 
designed to support the secure sharing of computational resources and large quanti-
ties of data, with very fine grained authentication, and high grade security.

16.10.1  The Globus Toolkit

One of the best known examples of an integrated set of technologies for the kinds of 
secure data transfers that characterize modern data rich shared computing resources 
and data is the Globus Toolkit, available from the Globus Consortium (http://globus.org). 
Globus is a very vigorous and diverse project. It can be characterized as a collec-
tion of fundamental, interoperable infrastructure components providing basic ser-
vices such as authentication and access control, remote job execution, secure file 
transfer, and other basic communication protocols. Layered on top of these basic 
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services are rapidly growing collections of specialized applications that re-use these 
infrastructure components to provide higher level applications. While there are 
important differences between the challenges faced in data sharing for public health 
surveillance, and those faced in the physical sciences, there are also many deep simi-
larities. In particular, the need for secure, controlled federated query distribution in 
order to allow value to be added through the virtual integration of otherwise inde-
pendent collections of individual health records enables far larger populations to be 
monitored than is possible with any single data source.

The National Center for Public Health Informatics (NCPHI) group has been 
working with the Globus Toolkit on a variety of public health projects in CDC 
priority areas. Details of their work are recorded at http://sites.google.com/site/
phgrid/, where some of the important technical challenges associated with the sharing 
of potentially identifiable human data are described.

16.10.2  Internet Security

Potential data providers in the US such as health plans are covered entities working 
under HIPAA (http://www.hipaa.org) regulations. Security for the identifiable 
patient data they hold is a paramount concern. The primary issue is the threat vector 
represented by any incoming internet connections from the outside world to any 
servers on their private networks, so these are always handled on a case by case 
basis. Network security staff members are understandably very careful about how 
this is organized and will not permit any activity on their networks unless they are 
confident that the risks are appropriately managed.

One term widely used in talking about securing network traffic is the concept of 
a ‘port’ on a server. On the internet, each connected workstation or server is identi-
fied by a unique internet protocol “address”, and most request packets addressed to 
an internet server are associated with a specific numeric address, or port, on that 
particular server where they are to be processed. A server may be executing a 
program or service that “listens” for incoming packets on one or more of those 
numeric ports. For example, a web server will typically “listen” on port 80 for unen-
crypted HTTP requests, and on port 443 for SSL encrypted Internet traffic. If an 
incoming request packet comes in from the internet, addressed to a particular server, 
with a numeric port label of 443, that server passes the contents of the request packet 
to the software running on that port – most likely an SSL enabled web server. As 
accepting a request and transferring it to a running program on a server represents 
an open communication channel, it requires careful control and substantial security 
expertise, because it is a major potential threat vector for unauthorized access to 
protected human data on the exposed systems and servers. Globus generally requires 
that a fully active grid node server responds to unsolicited incoming requests on 
literally hundreds of ports. For covered entities, the large number of incoming firewall 
exceptions required (see http://dev.globus.org/wiki/FirewallHowTo) exposes them to 
what they reasonably see as unacceptable administrative burden and risk.
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16.11  Examples of Public Health Surveillance Systems

16.11.1  The National Bioterrorism Syndromic Surveillance 
Program

The CDC funded National Bioterrorism Syndromic Surveillance Program (NBSSP) 
was one of the earliest large-scale US distributed public health syndromic surveil-
lance systems based on federated ambulatory and emergency care EHR data (Lazarus 
et al. 2001, 2002; Yih et al. 2004; Platt et al. 2003). Identifiable, patient-level informa-
tion remained under the control of participating health care providers at all times in 
order to minimize the risk of inadvertent disclosure of protected health information. 
Software was distributed to process, display, and transfer summaries of that local 
data. Aggregate data were federated from six independent health plans and large 
group practices across five US states, covering approximately 25 million individuals. 
Each site extracted data in a uniform format from their local EHR system, with details 
of all encounters from the previous 24 h. Office visits or telephone encounters with 
diagnostic codes corresponding to syndromes of interest were counted by the distrib-
uted software. In order to minimize spurious correlation between repeat encounters 
for any given individual for the same episode of care, these were excluded within 6 
weeks of a previously reported case for that individual and syndrome. De-identified 
daily counts of syndromes by zip code were transferred to the data center for statisti-
cal analysis, using the CDC PHIN-MS secure messaging software.

The system provided near real-time public health surveillance summaries by 
time and space for a range of aggregated syndromes in an effort to provide the earliest 
possible notification of possible disease outbreaks for participating public health 
officials. A variety of statistical methods were used to estimate the extent to which 
the number of cases seen each day was unexpected, based on seasonal and other 
known factors. Estimates were expressed in terms of how often a count of that 
particular magnitude might be seen, so a count expected at least once a month was 
far less interesting than one only anticipated every 100 years (Kleinman et al. 
2004). These estimates were available to authorized users on a secured website 
maintained by the data center. When clusters of syndrome counts surpassed a 
statistical threshold (individually specified by each participating health department) 
an alert was automatically transmitted through the Massachusetts Health Alert 
Network for delivery to the appropriate public health officials.

16.11.2  The Electronic Medical Record Support for Public 
Health Project

The Electronic medical record Support for Public Health (ESP) project was built 
upon the experience of the NBSSP syndromic surveillance project but provided 
highly targeted notifiable disease surveillance and secure electronic case reporting 
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to public health authorities, from EHR data. Traditional manual disease reporting 
systems are hampered by under-enumeration, delay, and incomplete data for 
reported cases. The automatic identification and reporting of these cases from 
EHR data overcomes many of these weaknesses in conventional surveillance. 
Collaborations between a large multispecialty group medical practice (Atrius Health, 
formerly known as Harvard Vanguard Medical Associates) and the Massachusetts 
Department of Public Health permitted the creation and deployment of a model 
system under the auspices of a CDC Center of Excellence in Public Health 
Informatics award. The rationale, development, architecture, algorithms, and sur-
veillance results of this system have been reported in multiple publications (Klompas 
et al. 2007, 2008a, b; Lazarus et al. 2008). The source code and documentation are 
freely available at http://esphealth.org.

ESP is a generalizable model for secure public health information surveillance 
and reporting using EHR data (Lazarus et al. 2008). It is a standalone system, oper-
ating independently of the host EHR systems. This makes it easier to adjust for 
different source EHRs and to isolate computing burden from the host resources, to 
minimize impact on production functions. The ESP server is deployed inside the 
data center of the host practice or health information exchange, inaccessible behind 
the host organization’s Internet firewall in order to minimize risk of the inadvertent 
exposure for sensitive clinical data. Once a case is identified, an electronic case 
report is securely transmitted as an HL7 document to local public health authorities. 
The case report includes patient demographics, contact information for the respon-
sible clinician, patient symptoms, pertinent laboratory tests, prescribed treatments, 
and pregnancy status.

ESP is currently active in Atrius Health, a multispecialty, multisite practice with 
approximately 700 physicians that serve over 600,000 patients in Eastern 
Massachusetts. Clinical information on every patient encounter from the preceding 
24 h is loaded each morning, and analyzed for cases of chlamydia, gonorrhea, pel-
vic inflammatory disease, acute hepatitis A, B, and C, active tuberculosis, and 
syphilis. Prior to transmission, cases can be reviewed by the practice’s Infection 
Control personnel using an internal web-based case-management system limited to 
authorized users inside the host organization private network. Since deployment in 
January 2007, ESP has reported almost 2,500 notifiable disease cases.

Validation was undertaken by comparing the completeness, accuracy, and clini-
cal detail of ESP case reports to existing public health reports for the same popula-
tion (Klompas et al. 2008a, b). For the period of June 2006 through July 2007, 758 
cases of chlamydia, 95 cases of gonorrhea, 20 cases of pelvic inflammatory disease, 
and four cases of acute hepatitis A were detected and reported (Klompas et al., 
2008a, b). Specificity was measured using a manual chart review of all patients. 
The positive predictive value was 100% for chlamydia, gonorrhea, and hepatitis A and 
95% for pelvic inflammatory disease. Archives of conventionally reported cases 
during this period served as an external validity criterion to quantify sensitivity to 
true disease. ESP detected 41% more cases than had been initially identified by 
conventional reporting including manual and automated ELR systems, and no addi-
tional cases of gonorrhea, pelvic inflammatory disease, or hepatitis A known to the 
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health department were missed (Klompas et al. 2008a, b). One case of chlamydia 
was missed because of a coding error in the source EHR. Patient treatment informa-
tion and pregnancy status for female patients were provided on all reports of chla-
mydia and gonorrhea whereas conventional surveillance only included treatment 
data on 88% of case reports and pregnancy status for 5% of female cases. The 
importance of improved case reporting completeness to public health authorities is 
that it enables far more efficient and effective intervention, as substantial effort is 
often wasted trying to communicate with busy clinicians in order to obtain these 
important case details.

16.11.3  The ESP Vaccine Adverse Event Reporting System

A new surveillance mechanism to automate the detection of adverse events follow-
ing vaccination from EHR data, elicit clinician comments on potential events, and 
submit electronic case reports to the existing manual CDC and FDA vaccine adverse 
event reporting system (VAERS) is currently being integrated into the data analysis 
and external communication components of the ESP system. Existing EHR data 
flows from the notifiable disease detection algorithms described above are being 
repurposed as a model for other adverse event surveillance and reporting systems.

The ESP-VAERS event detection algorithm is predicated upon prospectively fol-
lowing patients who are given vaccines for novel diagnoses, abnormal laboratory val-
ues, elevated temperature, allergies, or new medication prescriptions for up to 42 days 
following the recorded administration of the vaccine. New ICD-9 codes and lab tests 
that arise during the risk period are compared to the patients’ prior ICD-9s and test 
results in order to exclude pre-existing conditions or out of range values that were 
previously noted. The duration of the risk period, the threshold for abnormal lab val-
ues, and any pertinent ICD9 codes are tailored for each vaccine and potential adverse 
event – for example, fever is only sought for 72 h after vaccination whereas myocardi-
tis is sought for 42 days. When a possible adverse event is identified, ESP delivers a 
message to the patient’s primary care provider’s secure in-basket. The message 
includes details of the purported adverse event and then invites the clinician to endorse 
or refute the case. If the clinician endorses the case, ESP submits an electronic case 
report directly to CDC and FDA’s vaccine adverse event reporting system.

16.11.4  The Distributed Research Network

In response to the Institute of Medicine’s call for improved post marketing surveillance 
for adverse events associated with medication and other routine health care 
interventions, there is substantial interest in the development of public health 
surveillance systems capable of supporting very large-scale analyses of comprehensive 
and reliable EHR data. No existing single EHR system is likely to provide enough 
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complete health records to give sufficient statistical power to reliably detect very 
rare events sought in patients treated with particular medications or vaccines. The 
design and proof-of-concept demonstration of a national network capable of 
supporting this kind of research is a major technical and governance challenge, 
being addressed by the DRN collaborators, including academic researchers, and 
representatives from health care organizations willing to explore ways in which 
they can safely allow their very large collections of EHR to be repurposed.

A series of reports are being prepared and made available through the AHRQ 
web site as part of this project. The project itself will be completed soon, but some 
preliminary observations are summarized here because they provide useful insight 
into the likely future technical, administrative, and governance directions for large- 
scale adverse event surveillance systems.

The proof-of-concept demonstration conducted in February 2009 involved a 
distributed statistical query and response from participating covered entities. As 
planning progressed, the data providers were adamant that no individual level data 
would be permitted to leave their protected networks, even if the data contained 
none of the identifiable elements defined under the HIPAA regulations. They were 
willing to permit queries to return aggregate, summary data as long as the summaries 
from each participant were hidden from the user and amalgamated in an irreversible 
way before being presented, as there was substantial concern about the potential 
commercial value of individual institutional summary results for the types of research 
query being proposed.

Technically, the demonstration was based on Globus Toolkit security and 
communication infrastructure. As described above, Globus infrastructure assumes 
a large number of exposed server ports, and this default requirement was rejected 
by the participating data providers. Technical support for the demonstration was 
provided by the CDC NCPHI, who had already encountered this challenge, and had 
created and deployed a secure messaging service “wrapper” for Globus that 
required only a standard secure web browser port (443) to be opened for outbound 
connections at the host firewall to one specific external machine used as the query 
source and result destination. Permitting access only from one specific remote SSL 
secured machine is generally regarded as a highly secure, state of the art approach, 
particularly to a server on a special isolated network (usually termed a demilitarized 
zone or DMZ) inside the institutional firewall. Thus, the institutional technical staff 
is generally more comfortable about managing these specifically restricted access 
control rules, involving a single firewall port at most, accessed by one or only a few 
designated remote machines.

16.12  Concluding Remarks

EHR are now established as a valuable source of reliable data for public health 
surveillance. Security and control are two primary issues for large organizations 
responsible for managing identifiable EHR, and new, emerging grid based 
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technologies offer substantial promise in terms of meeting these requirements. 
High throughput notifiable disease surveillance systems adding value to routinely 
collected EHR are practicable, and their performance can be directly and objec-
tively validated against independent existing sources of similar data. Their effec-
tiveness can be demonstrated, for example, through appropriate intervention in 
otherwise unrecognized cases. Syndromic surveillance system performance may 
be validated to some extent using data from known events such as seasonal respi-
ratory illness, or known local outbreaks of food-borne illness, or simulated data. 
The comfort derived from knowing that something is being done may arguably 
be a worthwhile outcome, as we hope that the practical utility of many surveil-
lance systems is never tested in a true outbreak.

Practicable automated EHR based adverse event detection systems are still in 
their infancy, but it would be expected that statistical findings should be replicable, 
in independent samples, to provide external validation. Using very large samples, 
they have a very high potential to prevent substantial death or injury before an 
excess adverse event risk is otherwise noticed. Although process and activity can 
be measured for generic biosurveillance systems, measuring performance in terms 
of public health outcomes, or the cost effectiveness of comparing competing meth-
ods, is not generally possible.

Notifiable disease surveillance usually involves reporting or counting specific 
positive laboratory tests and other clinical findings. Automated, high-throughput 
surveillance requires comprehensive and complete coverage of each individual, 
validated decision rules, and robust, efficient implementations to be useful for large 
volumes of data. Each decision rule must be able to determine when an event, such 
as a case of influenza like illness, or a case of syphilis, has been observed. The time, 
location, and demographic details of the case are then of potential use for presenting 
summaries of events and statistical inference to users.

Despite the abundance of statistical techniques and data for their testing, none 
of such methods appears to demonstrate outstanding performance over the wide 
range of potential kinds of aberrations or data patterns. The methods available in 
SaTScan (Kulldorff et al. 2005) involve relatively few assumptions and appear 
to calibrate well in real data, but there are many alternatives (Kleinman et al. 
2004). It may be appropriate to offer multiple alternative statistical evaluations, 
based on different sets of assumptions, and therefore a human user can deter-
mine when more than one method shows a pattern suggestive of a low-probability 
event.

Explicit and rigorous evaluations are crucial design features for public health 
surveillance information systems. Competing systems should be compared on the 
basis of objective measures of effectiveness and cost efficiency, so that building 
these into the design at an early stage is highly desirable.
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17.1  Introduction

It has long been recognized that admission to health care institutions is associated 
with a risk of acquiring infection (Best and Neuhauser 2004). Despite this and the 
institution of wide-ranging prevention measures, hospital acquired infections (HAI) 
are an increasing problem. While much of this can be explained by the changing 
demographics of the inpatient population, with an increase in the number of immu-
nosuppressed and elderly patients who are undergoing more invasive procedures 
with indwelling prosthetic devices, there is also evidence of the emergence of more 
virulent nosocomial pathogens, which have evolved to thrive in the modern hospital 
environment. This evolution is characterized not only by an acquisition of resis-
tance to a wide range of antibiotic and antiseptic agents, but also by other virulence 
mechanisms, which facilitate environmental persistence (Wagenvoort et al. 2000), 
and transmission from patient to patient (Casewell and Desai 1983; Papakyriacou 
et al. 2000; Phillips 1991).

HAI is a major cause of preventable healthcare-associated morbidity and mortality 
(see also Chap. 15). In 2005–2006, 31,639 hospital separations in Australia, or 
0.5% of admissions, were coded as having the adverse event “infection following a 
procedure” (Australian Institute of Health and Welfare 2007). In the United States, 
it is estimated that there are 2 million nosocomial infections every year, resulting in 
90,000 deaths and excess healthcare costs of approximately $5 billion dollars 
(Burke 2003). This occurs in spite of extensive infection control measures aimed at 
preventing both colonization and infection by nosocomial pathogens. Nosocomial 
acquisition of, and infection by, bacterial pathogens is increasing but remains under 
recognized. Current infection control measures concentrate only on a handful of 
multiresistant pathogens, and are often unsuccessful. New approaches to the 
identification and prevention of nosocomial infection are clearly required.
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17.2  Hospital Infection Control Surveillance

An essential component of hospital infection control is surveillance for nosocomial 
infection. One function of surveillance is the reporting of specific infection rates for 
quality indicator purposes. A more valuable application of surveillance is the iden-
tification of clusters of infection, which may represent outbreaks of nosocomial 
transmission because of lapses in infection control precautions. Such clusters can 
then be investigated and measures instituted to terminate the outbreak.

A cluster is identified when the observed rate of infection is noted to be higher 
than the endemic, baseline rate. For a condition that is rare (i.e. the baseline rate is 
essentially zero), any two cases occurring contemporaneously may warrant investi-
gation, and so a simple observation of laboratory notifications may be all that is 
necessary to identify clusters. Examples may vary from institution to institution, 
but could include vancomycin resistant Staphylococcus aureus.

More commonly, nosocomial outbreaks are due to organisms that also pro-
duce sporadic infection. These conditions thus have a measurable background 
incidence. Examples include methicillin-resistant Staphylococcus aureus infec-
tion or colonization, or Clostridium difficile diarrhea. In these examples, clus-
ters of nosocomial transmission may be harder to discern because of randomly 
fluctuating background incidence. Here, the detection of clusters is greatly 
aided by statistical methods. Such methods identify a statistically significant 
increase in rate above the background incidence, which should prompt further 
investigation. A number of methods to perform these calculations have been 
described, including comparing the number of episodes in the time period to the 
long term mean, looking for a 100% increase compared to the previous time 
period or for a 50% increase compared to the mean of the previous three time 
periods (Hacek et al. 2004).

A particularly effective method for the statistical analysis of surveillance data is 
the use of process control charts (discussed in Chap. 15). Specifically, Shewhart 
and Exponentially Weighted Moving Average (EWMA) charts are particularly 
applicable to monitoring nosocomial infection events. These plot the incidence of 
the outcome of interest against time, with control limits for either the incidence 
(Shewhart) or its moving average (EWMA), which, if crossed, indicate an increase 
in the event rate beyond what would be expected by chance (Morton et al. 2001). 
Figure 17.1 gives an example of EWMA for MRSA incidence in an intensive care 
unit. Such methods have the ability to identify clusters of transmission or infection 
early and accurately (Wright et al. 2004). Separate charts may be generated for 
different wards or units in a hospital, allowing the detection of temporospatial 
clusters.

In an effort to improve interest in and compliance with infection control 
measures, the graphical presentation of incidence data to departmental staff, 
such as in the form of control charts, can highlight areas of concern and give 
positive feedback, which may itself be an effective intervention. This has been 
evaluated as an intervention to reduce nosocomial infection rates. To be effective, 
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such strategies require an effective surveillance program with timely data entry 
and frequent feedback of the most current results. One study demonstrated a 
reduction in MRSA transmission with the introduction of such feedback (Curran 
et al. 2002).

17.3  Targeted Genotyping to Confirm Nosocomial Outbreaks

Traditionally, the molecular typing of organisms as an aid to infection control has 
been limited to investigating clusters identified by surveillance methods to see if 
the involved isolates are clonal. If clonality is established, then the clonal cluster 
is assumed to represent a true outbreak, and it is then investigated to identify 
infection control breaches and to institute measures to prevent further transmis-
sion. Often some cases can be excluded from the cluster when they are distinct 
from the clonal isolates, making the investigation of the outbreak more efficient 
(Hacek et al. 2004; Macfarlane et al. 1999; Peterson et al. 1993; Pfaller et al. 
1991). If the clonality of a cluster is not established by molecular typing, then the 
cluster is usually presumed to be a “pseudo-outbreak,” occurring by chance, with 
no further investigation being necessary (Hartstein et al. 1997; Imataki et al. 
2006; Macfarlane et al. 1999). It is through these two factors - improving effi-
ciency of outbreak investigation and the ability to identify “pseudo-outbreaks” - 
that molecular typing can improve the cost-effectiveness of nosocomial infection 
surveillance (Andrei and Zervos 2006).
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The utility of molecular typing to confirm clusters depends on the background 
incidence of the organism in question. When the organism is not endemic and 
rarely isolated, then temporospatial clusters have a high probability of representing 
true outbreaks, and molecular typing may not be necessary. In fact, typing may be 
misleading in this circumstance if false negative results occur, leading to a true 
outbreak being mistakenly called a pseudo-outbreak.

Molecular typing can also be misleading, where the transmissible element is not 
the organism, but genetic material passing horizontally from one organism to 
another. Such genetic material will frequently encode antimicrobial resistance, but 
it is feasible that other virulence factors such as exotoxins could cause outbreaks in 
this way. An increasingly recognized example of this is the transmission of genetic 
material encoding carbapenemases conferring high-level resistance to a variety of 
gram-negative organisms. Molecular typing of the responsible organisms of such 
outbreaks will be misleading, since a single outbreak will be due to a variety of 
strains, or indeed a variety of species, all carrying the same genetic element (Peleg 
et al. 2005). This scenario is discussed further in Chap. 12.

When there is a low level but measurable background incidence of the organ-
ism in question, then targeted molecular typing becomes useful. This is com-
monly the case for organisms that may be community acquired, but may also 
spread in the hospital environment, or for organisms wherein long-term coloniza-
tion may occur. Pimentel et al. were able to demonstrate, using molecular typing 
by pulsed field gel electrophoresis (PFGE), that what appeared to be a single 
large outbreak of multiresistant Acinetobacter baumanii was in fact two distinct 
outbreaks, one centered on a surgical unit and the other in ICU (Pimentel et al. 
2005). Such information is valuable since it allows different infection control 
interventions targeted to each specific outbreak. In this case, the ICU outbreak 
was associated with contaminated respiratory ventilation equipment; in the surgi-
cal unit, complete ward closure and decontamination were required to terminate 
the outbreak. Mascini et al. describe the utilization of PFGE to determine whether 
cases of vancomycin resistant Enterococcus species (VRE) colonization were 
part of an evolving nosocomial epidemic or not; this allowed the targeting of 
infection control measures toward epidemic strains and led to successful termina-
tion of the outbreak (Mascini et al. 2006). Molecular typing with PFGE is also 
frequently used to confirm nosocomial outbreaks of methicillin-resistant 
Staphylococcus aureus (MRSA) (Imataki et al. 2006). Molecular typing can 
verify the termination of an MRSA outbreak and the effectiveness of infection 
control interventions (Hartstein et al. 1995).

When the organism in question is highly endemic in the hospital, molecular 
typing is still useful to confirm clusters, but the results must be interpreted with 
caution. This is because pseudo-outbreaks will occur more commonly, so the 
probability that a cluster represents a true nosocomial outbreak is lower. Yet, 
because of the high background incidence, there is a greater risk that the strains 
will appear clonally related by chance. In this case, the typing method utilized 
must have high discriminatory to avoid false positive results (Dziekan et al. 
2000; Weber et al. 1997). A case in point is MRSA. In institutions with low 
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baseline levels of MRSA colonization, targeted typing, even employing methods 
with a relatively low discriminatory power such as spa typing, has been success-
fully used to confirm outbreaks (Mellmann et al. 2006). However, many institu-
tions have high endemic rates of MRSA colonization and infection, and 
increasing numbers of patients admitted to hospital from the community are 
already colonized with MRSA. Often these isolates may belong to only a 
restricted number of spa types. In this circumstance, a much more discrimina-
tory typing method such as PFGE is required to distinguish true outbreaks from 
pseudo-outbreaks.

17.4  Universal Genotyping in Hospital Infection Control

Universal typing refers to the routine typing of all isolates as a primary part of 
cluster detection. This is in contrast to targeted typing, described earlier, that is 
only performed once a spatiotemporal cluster has been identified. Such an 
approach has found a place in the domain of community public health, wherein 
control programs for several organisms rely on typing for the initial identifica-
tion of outbreaks. Clark and colleagues describe the success of the universal 
typing of Mycobacterium tuberculosis in identifying both laboratory contamina-
tion events and otherwise unknown transmission routes, which permitted more 
extensive case-finding and improved tuberculosis control (Clark et al. 2006). 
However, universal typing has only rarely been employed in hospital infection 
control. This is partly because, until recently, the available typing methods, such 
as PFGE, were expensive, slow, cumbersome, and low-throughput. With the 
development of PCR-based methods, rapid, high throughput typing is now pos-
sible using a variety of platforms. As the costs of these rapid methods continue 
to fall, universal typing with results available in real-time is becoming increas-
ingly feasible. Some experts have argued against the use of universal typing in 
hospital infection control, arguing that it is likely to lead to the mis-identifica-
tion of clonal clusters occurring by random chance (rather than representing true 
outbreaks) because of the imperfect discriminatory power of many molecular 
typing methods (Pfaller and Herwaldt 1997). This is a valid concern, but if the 
performance characteristics of the method being used are well defined and the 
results are interpreted appropriately, as discussed later, mis-identification should 
be able to be minimized.

For highly endemic organisms, outbreaks may be difficult to identify against the 
naturally fluctuating background incidence, so targeted molecular typing may be 
problematic. In this situation, cluster detection may be impossible without universal 
typing. This concept is illustrated with an example below (Figure 17.2).

It has been shown in short-duration studies of universal typing that frequent 
nosocomial transmission occurs in many organisms for which surveillance is not routinely 
performed. One such example examined nosocomial Candida sp. infection. In a 
retrospective study, Ásmundsdóttir et al. performed typing using PCR-fingerprinting 
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Fig. 17.2 Demonstration of utility of molecular typing for cluster detection using mock data from 
nosocomial surveillance of new MRSA acquisition in a hospital with high endemicity for MRSA. 
Horizontal axes – time in weeks. Vertical axes – count of new cases of MRSA. Solid line – 
Exponentially weighted moving average (EWMA). Chart A: surveillance without genotyping 
does not show any discernable clusters, and there is no obvious deviation of the EWMA. Chart B: 
graph of surveillance data incorporating genotyping information. Epidemic strain A is shown in 
light gray, epidemic strain B is shown in dark gray, and all other strains remain black. Two distinct 
temporal clusters are now discernable due to epidemic strains A and B, respectively. Charts C and 
D: surveillance data for epidemic strains A and B further highlighting the temporal clustering and 
demonstrating the deviation of the EWMA. Chart E: nonepidemic strains in the same period – no 
clustering is evident, and there is no deviation of the EWMA.



35117 Microbial Genotyping Systems for Infection Control

on all bloodstream isolates of Candida collected in Iceland over a 16-year period. 
Between 19 and 40% of isolates were suspected to have been acquired by nosocomial 
transmission on the basis of similar typing results and temporospatial occurrence 
(Asmundsdottir et al. 2008).

Other organisms for which frequent, unidentified transmission may occur in 
hospitals include, but are not limited to, methicillin susceptible Staphylococcus 
aureus (MSSA) (Chaves et al. 2005; Wilcox et al. 2000), Staphylococcus epider-
midis (Muldrew et al. 2008), Streptococcus pyogenes (Ramage et al. 1996), 
Streptococcus agalactiae (Easmon et al. 1981; Kim et al. 2006), various gram nega-
tive bacilli (Almuneef et al. 2001; Prospero et al. 2006), and Pneumocystis jiroveci 
(Schmoldt et al. 2008).

Although not yet in wide routine use, several universal typing systems have been 
applied for hospital infection control. MRSA is one important organism for which 
traditional surveillance with targeted molecular typing fails to identify nosocomial 
outbreaks. This is largely because of MRSA’s changing epidemiology, with the 
rising prevalence of this organism as a community pathogen (Otter and French 
2006) and the high rates of endemicity of MRSA in many hospitals. In 1993, a 
study that used restriction enzyme analysis (REA) of plasmid DNA (REAP) typing 
found that the routine typing of all hospital MRSA isolates led to the identification 
of small clusters that would have gone unobserved if only traditional epidemiologic 
surveillance was used (Trilla et al. 1993).

Hacek et al. described universal typing by REA of genomic DNA with con-
ventional electrophoresis in a tertiary facility for isolates of MRSA, VRE, and 
fluoroquinolone-resistant Pseudomonas aeruginosa. A 10% decrease in nosoco-
mial infections was observed in the 24 months after the introduction of the 
system, compared with the 24 months prior, with an estimated cost saving of 
US$4,368,100 (Hacek et al. 1999). Mascini et al. used PFGE to distinguish 
epidemic from sporadic strains during a hospital outbreak of vancomycin resis-
tant Enterococcus faecium, enabling infection control measures to be withheld 
for a large number of patients while still successfully terminating the outbreak 
(Mascini et al. 2006).

Microbial subpopulations differ in their virulence, which may manifest as an 
increased severity of a disease, or an enhanced ability to spread in the hospital 
environment and colonize the host. Genotyping data linked to clinical data have 
been able to establish the presence of hypervirulent clones in a number of microbial 
species. For example, some MRSA strains spread more easily and are more difficult 
to control than others (Amaral et al. 2005). In a study from the UK, colonization 
with one hypervirulent MRSA strain (sequence type [ST] 239) conferred a 4.5 
times higher risk of intravenous-line associated BSI, compared with colonization 
with other MRSA strains (Edgeworth et al. 2007). Molecular typing using PFGE 
has demonstrated the emergence of the highly virulent USA300 clone of MRSA as 
a nosocomial pathogen in the United States (Patel et al. 2008).

Another clear example of molecular typing identifying a hypervirulent clone in 
a problematic nosocomial pathogen is Clostridium difficile. In 2003, it was reported 
that there had been an increasing number of cases and deaths from C. difficile diarrhea 
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in Quebec, Canada, over the previous years. Subsequent molecular typing studies 
demonstrated that this increase was due the emergence of a clone, identified as 
ribotype 027 (Loo et al. 2005), which subsequently spread worldwide. Using 
PCR-ribotyping and multivariate analysis, Labbe et al. confirmed that this strain 
was more virulent, with a twofold increase in the risk of 30-day mortality compared 
with other ribotypes (Labbe et al. 2008).

Universal genotyping, when linked with clinical data (such as progression from 
colonization to infection, disease severity, complications and death) may be a 
powerful tool for the continuous monitoring for the emergence of new, hyperviru-
lent strains of nosocomial pathogens. Such system, if had been in place in Quebec 
in 2002, could have identified the hypervirulent C. difficile ribotype 027 clone 
earlier, facilitating more timely, aggressive infection control measures that may 
have averted the subsequent world-wide epidemic.

17.5  Analysis of Genotyping Results

Traditionally, molecular typing results in infection control have been used to con-
firm or refute suspected outbreaks. In this scenario, an outbreak is considered 
confirmed if the strains are found to be indistinguishable (or closely related) by the 
typing method, and it is refuted if the strains are found to be unrelated by the typing 
method. However, for many organisms, such as MRSA, the population structure is 
very clonal, and indistinguishable results with even the most discriminatory typing 
method may not be sufficient to confirm an outbreak if the strain identified is one 
that is commonly circulating in the institution in question, or in the community 
in general. This has led to the criticism that universal typing may lead to the 
mis-identification of outbreaks (Pfaller and Herwaldt 1997). It follows, then, that a 
better way to utilize a typing result is to determine the probability that a set of 
indistinguishable strains represent an outbreak. This probability can be determined 
from both the surveillance data (using the magnitude of the increase in case 
frequency over the background rate) and the known molecular epidemiology of the 
organism in question (using the expected frequency of the particular strain type 
from the overall population).

This approach is analogous to the interpretation of any diagnostic test – wherein 
the likelihood ratio of a test result is applied to the pretest probability (in this case, 
the chance of an outbreak being present based on temporospatial surveillance data 
alone) to determine the posttest probability. In this case, the post-test probability is 
the probability that an outbreak has occurred, based on the combination of temporal, 
spatial, and genotyping data (Jaeschke et al. 1994). After this probability is deter-
mined, it can be decided whether further action is required, based on a certain 
threshold probability that would vary according to cluster frequency and available 
resources. Such an approach, previously advocated for MRSA spa typing (Harmsen 
et al. 2003), has been outlined in detail using nosocomial norovirus transmission as 
an example (Lopman et al. 2006).
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17.6  Choosing Typing Method for Genotyping Systems

The choice of microbial genotyping method will be different for a particular organism 
in a given setting and will depend on the characteristics of the typing system, such 
as its discriminatory power, stability, ease of use, reproducibility, throughput, portability 
of results, and cost (Riley 2004). Rather than utilizing a single typing method, 
routine typing will often employ an initial, less discriminatory, typing method followed 
by more discriminatory methods for indistinguishable isolates. Selected methods 
referred to in this chapter are described in the Box 17.1.

 Box 17.1 Typing methods

Pulsed field gel electrophoresis of restriction enzyme-digested genomic 
DNA (PFGE). This method consists of digesting DNA using a restriction 
enzyme that recognizes specific short DNA motifs and cleaves the DNA 
strand at that site. Variation between strains occurs because of mutations 
that create or remove restriction enzyme binding sites. Enzymes are chosen 
such that 10–20 DNA fragments are produced. These are then visualized 
using gel electrophoresis. No DNA amplification is employed. The tech-
nique is labor-intensive, low throughput, and the results do not lend them-
selves to digitization to establish libraries of strain types. However, it is a 
highly discriminatory method and remains the mainstay for the genotyping 
of many bacteria (Fig. 17.3a).

Rep-PCR. Amplification of bacterial DNA is performed using primers 
specific for an element that is found repeatedly interspersed throughout the 
genome. The direction of the primers is such that the intervening sequence, 
not the repetitive sequence, is the element amplified. Only when two repeti-
tive elements are close together will a PCR product be produced, but with a 
good choice of target 10–20, PCR products can be obtained. These are then 
visualized by electrophoresis. This method has been commercialized in an 
automated high-throughput system (DiversiLab™), which also digitizes and 
analyses the results. It can be used for a wide variety of bacteria (Carretto 
et al. 2008) (Fig. 17.3b).

Multilocus variable number of tandem repeats analysis (MLVA). In this 
method, PCR is used to amplify a number of targets that vary in their size by 
virtue of short subunits that are repeated a variable number of times in a given 
isolate. The number of repeats at each locus is determined after the visualiza-
tion of the amplification products with electrophoresis. The results can then be 
presented in a numerical format, rather than in a fingerprint format. With a 
good choice of targets, MLVA can be highly discriminatory. It is also high-
throughput and reproducible (Fig. 17.3c).

(continued)
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Sequence typing. This involves PCR amplification and sequencing of one 
or more targets that vary between isolates in their DNA sequence. Sequence 
typing is commonly used for the typing of viruses, often employing genes 
encoding surface proteins that are more variable and that broadly correlate 
with viral serotyping. spa typing is one form of sequence typing for 
Staphylococcus aureus. Sequence typing is robust and can be highly discrimi-
natory if the correct targets are selected. With the greater availability, faster 
turnaround time, and lower cost of sequencing facilities, sequence typing is 
becoming increasingly used for hospital infection control applications. Multi-
locus sequence typing (MLST) involves the sequencing of multiple targets. It 
is most commonly used to explore evolutionary relationships and population 
structure, so the targets used are genes that evolve slowly and so are less 
discriminatory (Fig. 17.3d).

 Box 17.1 (continued)

17.7   Integrating Genotyping with Surveillance Systems

An ideal microbial genotyping system for infection control would integrate geno-
typing data with that from patient information systems, medical records, and labo-
ratory information systems. This would then be analyzed to alert infection control 
practitioners of spatio-temporal-genotypic clusters of infection, which are sugges-
tive of outbreaks and require further investigation and intervention. The addition of 
clinical outcome data from the medical record would allow continuous monitoring 
for the emergence of hypervirulent strains, which could prompt a higher level of 
infection control precautions. For such a system, the genotyping method used 
would ideally be inexpensive, rapid, and high throughput to allow universal geno-
typing when necessary. The method would so be highly discriminatory to reduce 
false positive cluster detection and to produce results that could easily be tracked in 
a database. The results would be expressed as a probability that isolates were 
related, as discussed earlier. The medical records would be electronic, and would 
automatically be screened for outcomes of interest, as discussed in detail in Chaps. 
15, 16, and 20.

There are few publications describing such comprehensive genotype-based sur-
veillance systems for hospital infection control, and none which link typing informa-
tion to clinical outcome data. However, increasing progress is being made toward 
such systems. Mellman with colleagues successfully incorporated spa typing of 
MRSA with spatiotemporal epidemiologic data in a German tertiary care facility to 
automatically generate prospective “clonal alerts” that were found to identify clus-
ters of MRSA transmission more reliably than in the case of clusters identified by 
frequency data alone or by the infection control professionals after a review of the 
microbial data and patient information (Mellmann et al. 2006). Fontana et al. 
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Fig. 17.3 Molecular typing methods. (a) Pulsed field gel electrophoresis (PFGE) of restriction-
enzyme digested genomic DNA. (b) rep-PCR results and analysis using the automated DiversiLab™ 
system (figure courtesy of BioMerieux). (c) Multilocus variable number of tandem repeats analysis 
(MLVA) with product detection by capillary electrophoresis. (d) Sequence based typin

describe a system by which temporospatial clusters of nosocomial infections are 
identified in the laboratory by software (VIGI@ct), which takes data from the labo-
ratory information system and the patient information system. Rapid targeted typing 
performed by either fluorescent AFLPs or the DiversiLab™ rep-PCR typing system 
is then conducted to confirm clusters. This was found to be useful to identify noso-
comial clusters of a variety of pathogens (Fontana et al. 2007, 2008).
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17.8  Conclusion

Molecular typing is a valuable tool for the identification of nosocomial infection 
outbreaks. Recent advances have produced rapid, discriminatory, high-throughput, and 
inexpensive typing methods that may permit the routine use of universal typing. 
This may prove to be invaluable for the surveillance of organisms with high 
endemicity, but typing results must be applied appropriately to avoid false conclusions. 
When combined with outcome information from electronic medical records, universal 
typing could facilitate continuous monitoring for the emergence of hypervirulent 
nosocomial pathogens.
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18.1  Introduction

Infectious disease surveillance involves the monitoring of available infection-related 
data with the goal of detecting and, consequently, preventing and controlling out-
breaks. Current methods of disease surveillance incorporate temporal, spatial, and 
multivariate information and make use of a wide range of statistical and machine 
learning algorithms for the classification, clustering and analysis of the data 
(Buckeridge et al. 2005; Shmueli and Fienberg 2005; Sonesson and Bock 2003; 
Song and Kulldorff 2003; Wagner et al. 2006). One important data source for the 
detection and monitoring of infectious disease outbreaks are collections of bacterial 
isolates. In particular, molecular characterization of pathogens from infected patients 
can be used as a biomarker of transmission and provides help with the identification 
of unsuspected transmission sites, reinfection and laboratory cross-contamination 
(McNabb et al. 2004; Tauxe 2006; Torpdahl et al. 2007).

Identifying patients that share the same pathogen genotype is often not enough 
to proceed with a public health investigation. The automated spatio-temporal clus-
tering of pathogen genotypes can aid routine epidemiological surveillance by pro-
viding an operational definition of outbreak that adjusts to the local epidemiology 
of the disease as well as to the availability of public health resources (Gallego et al. 
2009). In what follows, we provide a review of the detection of spatio-temporal 
clusters in biosurveillance and present a specific example of outbreak definitions 
using the spatio-temporal clustering of bacterial genotypes.

18.2  Detection of Spatio-Temporal Clusters

Given a set of events, a spatio-temporal cluster is loosely defined as a set of 
occurrences in a bounded space and time that are related to each other and are 
therefore unlikely to have occurred by chance. In a more rigorous statistical 
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context, clustering represents the departure from a null hypothesis of spatio-temporal 
randomness. However, often some degree of clustering is regarded as belonging to 
a background spatio-temporal pattern, leading to a redefinition of clustering as the 
departure from this pattern. Within epidemiology, events usually represent disease 
counts and their relatedness may be due to human factors (e.g., infectious or genetic 
factors) or external factors (environmental, social) which give rise to spatio-temporal 
variations in risk. This chapter is concerned with the clustering of bacterial genotypes 
for the early detection of infectious disease outbreaks. We will start with a discussion 
on methods of prospective temporal surveillance followed by the introduction of 
the spatial dimension. Finally, we will discuss the methods’ applicability to bacte-
rial genotypes. A snapshot of the cluster detection methods most commonly used 
in biosurveillance systems can be found in Table 18.1.

18.2.1  Temporal Surveillance Methods

In its most basic form, temporal surveillance consists of the monitoring of a uni-
variate time series with the goal of detecting an important change in the underlying 
process as early and accurately as possible. This requires information on the 
expected background activity or baseline, as well as a definition of the deviation 
from expected. When the signal is specific and sparse (e.g., laboratory test results), 
it is often monitored using simple nonstatistical rules. Less specific and noisy sig-
nals (e.g., syndromic data), require the use of statistical detection algorithms. In 
such statistical models, the quantity under surveillance is assumed to be a random 
variable that follows a given probability distribution. Under the null hypothesis of 
no outbreak, the baseline described by this distribution is usually either population-
based (expected number of cases is proportional to population at risk) or expectation-
based (expected number of cases is estimated from historical data). Deviation from 
expected is measured by an alarm function and an alarm limit is imposed to deter-
mine when the deviation is significant.

Many detection algorithms have been used in statistical surveillance. They differ on 
their baseline, alarm function and limit calculations depending on the application. 
Some of the algorithms most commonly used in public health biosurveillance systems 
include variations of the traditional statistical process control (SPC) methods such as: 
the likelihood ratio (LR) (Frisen and Demare 1991), the cumulative sum (CUSUM) 
method (Hawkins and Olwell 1998) and the exponentially weighted moving average 
(EWMA) method (Roberts 1959). A review and comparison of statistical surveillance 
algorithms can be found in (Brookmeyer and Stroup 2004; Buckeridge et al. 2005; 
Sonesson and Bock 2003). A description of their optimality properties is given in 
(Frisen 2003). Often the time series under analysis is pre-processed before the 
application of a detection algorithm with the goal of filtering background temporal 
structure and thus improving surveillance performance. Typical pre-processing meth-
odologies include forecasting values using Poisson regression models (Williamson 
1999), adaptive Kalman filters (Harvey 1993) and wavelet analysis (Shmueli 2005).
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Current public health surveillance systems collect a wide range of data from a 
variety of sources such as emergency department visits, over-the-counter medica-
tion sales or reports of notifiable diseases. This data translates into multivariate 
time series often accompanied by additional co-variate information (e.g., spatial, 
demographic, clinical etc). Monitoring of multiple values can be performed by 
combining the outputs of the individual time series analysis or via the application 
of a multivariate algorithm. Both the SPC and scan statistics methodologies have 
been extended to account for covariate and multivariate information (Burkom and 
Murphy, 2007; Kulldorff et al. 2007). Other proposed methods for monitoring 
multiple temporal values make use of artificial intelligence techniques such as 
Bayesian networks and associations rule search and include the Biosurveillance 
using a change-point detector (BCD) algorithm (Wong et al. 2002) and the 
What’s strange about recent events (WSARE) method (Wong et al. 2003). For a 
discussion on the performance of some of these multivariate detection systems, 
see (Buckeridge et al. 2005).

18.2.2  Spatio-Temporal Surveillance Methods

A large number of approaches have been proposed to search for spatial clustering 
in a set of data. These include heterogeneity methods (Potthoff and Whittinghill 
1966), distance methods (Cuzick and Edwards 1990; Tango 1995), risk surface 
methods (Clayton and Kaldor 1987; Kelsall and Diggle 1998), moving window 
methods (Kulldorff 1997) and cluster modeling methods (Lawson and Denison 
2002). An overview of the literature on spatial clustering in epidemiology can be 
found in (Elliot et al. 2000; Lawson 2001; LeSage et al. 2009). However, many of 
the proposed spatial clustering methods do not offer a formal indication of the loca-
tion of clusters or their statistical significance, and are therefore not appropriate for 
infectious disease surveillance.

Here, we are interested in detection algorithms that extend the temporal surveil-
lance methods to account for spatial variability. One possibility is to treat location 
as any other covariate such as age, and use the methodologies mentioned in the 
previous section. This approach, however, does not account for the special 
geographical properties of spatial information. Similarly, performing separate tests 
for each spatial point or region is generally inappropriate since events in each loca-
tion are not likely to be independent. An approach that overcomes these drawbacks 
is to scan over all possible sets of regions using scan statistics. First proposed by 
Naus (1965) and further elaborated in the public health context by (Kulldorff 1997), 
the spatial scan statistics method looks for spatial regions where the probability of 
an incident case occurring is higher than outside. This model can be applied to 
temporal regions or extended to look for clusters in the spatio-temporal space 
(Kulldorff 2001; Kulldorff et al. 2005). It can also be combined with temporal SPC 
methods (Neill and Moore 2004; Sonesson 2007). The scan statistics methodology 
can, in theory, be applied for the scanning of any combination of multi-dimensional 
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objects. In practice, however, the scanning algorithm is computationally very 
expensive and the search must be limited to a few degrees of freedom. For instance, 
Kuldorff’s models search for contiguous clusters within circular (or at most ellipti-
cal) spatial regions. A faster spatial scan algorithm has been described (Neill and 
Moore 2004).

The task of the spatio-temporal detection of disease outbreaks remains a work 
in progress. Open questions include: analysis and recognition of spatio-temporal 
epidemic signatures, faster appropriate algorithms for prospective spatio-temporal 
detection and the evaluation of existing models for the surveillance of data with 
spatial information.

18.3  New Surveillance Data Types

In infectious disease surveillance, data types range from the very specific such as 
lab-test results and clinicians reports to the pre-diagnostic (such as emergency 
department chief complaints) and the pre-clinical (such as over-the-counter drug 
sales or school absentees reports). There is generally a trade-off between data 
quality and specificity and its timeliness and level of coverage. Syndromic data 
represents early warning signals characterized by large, noisy datasets. It is useful 
for the faster detection of large outbreaks but its associated public health action is 
often unclear. Higher diagnostic precision implies larger communication times and 
smaller coverage, since it is associated with patients undergoing diagnosis and 
maybe testing. It is more useful for the detection of moderate and small outbreaks 
and it can prompt well-defined public health action. Modern cheaper rapid patho-
gen genotyping techniques have allowed for highly specific epidemiological signals 
that can be generated very soon after a patient visit. This, combined with the imple-
mentation of electronic laboratory reporting, can improve the timeliness and com-
pleteness of the collection of diagnostic datasets (Overhage et al. 2001; Panackal 
et al. 2002).

Outbreak detection algorithms have different performance characteristics 
depending on the properties of their target datasets (Buckeridge 2007). Most of the 
statistical methods described so far have been designed for the analysis of syndromic 
data. These algorithms fail when applied to datasets that are sparse or have low 
signal-to-noise ratios, which is often the case for pathogen genotyping data. For 
example, Burkom and Murphy (2007) indicate the failure of existing temporal 
detection algorithms for sparse time series with low mean values, while Edgerton 
et al. discuss alternatives to the spatial scan statistics model when observed events 
are sparse in a large percentage of the spatial zones (Edgerton et al. 2007). Similarly, 
Gallego and colleagues find that the space-time permutation scan statistics fails to 
find statistically significant clusters when applied to sparse sets of Salmonella typh-
imurium isolates with identical genotypes (Gallego et al. 2009).

In contrast to the analysis of large syndromic datasets, very little has been said 
about algorithms suitable for the clustering of sparse spatio-temporal information 
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in the context of public health biosurveillance. There is a need for the development 
of detection algorithms that make use of spatial, lower count, more specific biosur-
veillance data.

18.4  Infectious Disease Surveillance Using Genotype 
Clustering

18.4.1  Outbreak Definitions

Many definitions of the infectious disease outbreak have been coined, all of them 
subjective to the context in which they are applied. However, these definitions always 
contain two elements: there must be transmission of a pathogen and this transmission 
must be epidemic or unusual in nature. In recent years, pathogen genotyping profiles 
have proven to be good biomarkers of transmission and have been used to infer epi-
demiological links and to guide outbreak investigations. For example, in the United 
States, the tuberculosis genotyping and surveillance network has developed a stan-
dard for cluster investigations based on the IS610 restriction fragment length poly-
morphism (RFLP) and spoligotype patterns of isolates (Crawford et al. 2002). For 
many types of infections, the epidemic nature of a set of same-genotype isolates 
needs to be assessed using spatio-temporal considerations. For example, in Denmark, 
an outbreak was defined as occurrence of at least five cases of foodborne infection 
detected within a 4-week period with respective Salmonella typhimurium (STM) 
isolates with indistinguishable MLVA (multiple-locus variable-number tandem-
repeats analysis) profile (Torpdahl et al. 2007). Looking for spatio-temporal clusters 
adds value because it provides valuable information on transmission patterns and it 
lowers the threshold for investigating possible outbreaks. Ultimately, an operational 
definition of outbreak must include the criteria that controls public health action, 
both in terms of the severity, communicability and local epidemiology of the dis-
ease as well as in terms of the public health resources regarding investigative methods 
and options for effective prevention and control.

Recently, Gallego et al. introduced a scalable definition of outbreak that was 
based on the temporal and spatial clustering of molecular genotypes and could be 
tuned to accommodate the requirements and resources available for outbreak inves-
tigations (Gallego et al. 2009). Given a set of genotyped isolates from infected 
patients, each with an associated date (e.g., specimen collection date) and location 
(e.g., patient’s residential address), the model clusters the isolates according to their 
genotype, and the temporal and spatial distance among them. In this way, a spatio-
temporal cluster is defined using three parameters: the minimum number of same-
genotype isolates, maximum time between consecutive isolates, and the maximum 
distance between spatially adjacent isolates (all locations in a genotype cluster are 
linked, forming a spanning tree, and two isolates are spatially adjacent when they 
are connected by an edge of the tree). These clustering parameters can be adjusted 
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to the desired level of outbreak investigation. In what follows, this operational 
definition of outbreak is implemented using a dataset of STM isolates from patients 
in the state of New South Wales, Australia.

18.4.2  Clustering Cases of Foodborne Disease

The dataset used in this section consists of all confirmed (STM) isolates from 
patients referred to the New South Wales reference facility for enteric pathogens at 
the Centre for Infectious Diseases and Microbiology, Institute of Clinical Pathology 
and Medical Research (ICPMR) in Sydney between October 2006 and May 2008. 
Isolates were fingerprinted using multiple-locus variable-number tandem-repeats 
analysis (MLVA). MLVA (Lindstedt et al. 2004) detects short sequence repeats that 
vary in copy number in five regions or loci of the microbial genome. An MLVA 
profile consists of five numbers corresponding to the allele numbers assigned to 
each locus. MLVA has high discriminatory power within clonal species and has 
been found useful in epidemiological surveillance of salmonellosis (Chan et al. 
2001; Torpdahl et al. 2007). Each isolate was also marked with an associated 
collection date and postcode of patient’s address. The average turn-around time for 
MLVA genotyping was between 3 and 7 days after identification of STM.

The clustering algorithm described in (Gallego et al. 2009) was implemented 
using different clustering parameters. A genotyping cluster was defined as a maximal 
set of at least N isolates that share an identical MLVA type. A temporal cluster of 
parameter t was defined as a genotyping cluster for which the time difference 
between any two consecutive collection dates is at most t days. Similarly, a spatial 
cluster of parameter d was defined as a genotyping cluster for which the spatial 
difference between any two adjacent (refer to footnote) isolates is at most d kilome-
ters. The distance between two isolates was estimated as the distance between 
the geographical centers of the corresponding patients’ postcodes. Finally, a spatio-
temporal cluster was defined as the combination of a temporal and a spatial cluster.

There were 1,464 isolates, displaying 345 different MLVA profiles. Most MLVA 
profiles (60.6%) appeared only once, while the most common MLVA profile 
3–12–9–10–550 was found in 136 (9.3%) of the isolates. The average number of 
isolates per genotyping profile was 4.2. If we believe MLVA profiling to be a good 
biomarker of STM transmission, we can search for potential outbreaks of salmonel-
losis by looking for MLVA clusters. We start by deciding on the minimum number 
N of same-MLVA cases that will constitute an outbreak. The larger N is the fewer 
the number of potential outbreaks for our investigation. Here, the number of potential 
outbreaks decreased from 345 (N = 1) to 136 (N = 2), 43 (N = 5), and 25 (N = 10). 
The sharpest change took place between N = 1 and N = 6 (see Fig. 18.1). Also 
dependent on N are the spatio-temporal properties of the potential outbreaks. In this 
study, a genotyping cluster is characterized by: (a) size - number of isolates, (b) 
temporal duration - number of days from the first to the last collection dates, (c) 
surface area - sum of the areas of the patients’ postcodes plus those of the enclosed 
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postcodes, and (d) detection time - date at which the set of same genotype isolates 
that fulfill the appropriate spatio-temporal restrictions (if any) reaches N or more 
isolates. This time has been measured as a fraction of the duration of the outbreak 
and represents the time at which the cluster would have been detected prospec-
tively. Figure 18.1 illustrates the properties that characterize the average cluster for 
different values of N. As expected, the mean size, duration, and area of the potential 
outbreaks increases with N. The capacity for early outbreak detection is best for 
N = 6 (35% of the outbreak duration).

Table 18.2 presents the sizes, temporal durations, surface areas and detection 
times of the 43 genotyping clusters, each containing at least five isolates (N = 5). 
The cluster durations ranged from 37 (MLVA 1–16–0–0–490) to 566 days (MLVA 
3–9–9–12–523) and averaged 340 days. Their mean area was 6,861 km2 represent-
ing 0.86% of total area of New South Wales. MLVA 3–12–10–12–523 occupied the 
largest area (29,911 km2 or 3.73% of total area). Many of these clusters were 
confirmed by epidemiological investigations. Figure 18.2 shows a map of the spatio-
temporal cluster characterized by MLVA 3–10–14–11–496, with a minimum number 
of isolates N = 5, a maximum temporal distance between consecutive cases t = 2 
days, and a maximum spatial distance between adjacent cases d = 10 km. This 
cluster corresponds to a salmonellosis outbreak associated with contaminated pork 
in a Chinese bakery that took place in western Sydney at the end of March 2007.

Spatio-temporal clustering also has an effect in the number of potential out-
breaks and their characteristics. Variation with temporal and spatial “distances” t and d 
in the number of spatio-temporal genotyping clusters with N = 5, as well as their 

No.outbreaks

1

0.01

0.1

1

10

V
al

ue
 (

N
) 

/ V
al

ue
 (

N
=

1)
lo

g 
sc

al
e

N
2 3 4 5 6 7 8 9 10

mean size (No. counts)
mean duration (days)

mean area (sqkm)
mean detection (% outbreak duration)

Fig. 18.1 Relationships between the size and duration of different outbreaks



36718 Temporal and Spatial Clustering of Bacterial Genotypes

Cluster MLVA profile
Size (no. 
isolates)

Duration 
(days)

Detection  
(% duration)

Area (sq 
km)

 1 3–12–9–10–550 136 102 21.6 28093.8
 2 3–10–8–9–523 95 560 5.4 24021.4
 3 3–12–11–10–523 79 505 2.2 10349.5
 4 3–10–14–11–496 78 530 18.3 19324.1
 5 3–11–10–8–523 71 409 16.1 15341.8
 6 3–12–10–12–523 68 525 15.6 29911.0
 7 3–9–8–12–523 51 557 5.7  9180.4
 8 3–17–16–13–523 37 135 8.9  4018.4
 9 3–9–7–12–523 34 554 4.3 11360.4
10 5–14–9–9–490 31 525 16.0 22421.4
11 3–9–9–12–523 22 566 14.8 15963.3
12 3–13–10–12–523 22 501 2.4  7995.8
13 3–11–7–12–523 21 561 0.4    684.2
14 3–14–11–9–523 18 397 2.5  3863.7
15 1–16–0–0–490 18  37 21.6    84.1
16 4–10–13–0–544 15 117 16.2 10185.6
17 3–14–8–13–523 13 228 41.7  3681.2
18 3–15–0–0–517 12 505 47.7  9967.9
19 3–9–7–13–523 11 449 12.9   606.3
20 4–16–13–0–517 11 399 73.4 10234.3
21 3–10–14–11–523 11 464 22.8  3762.2
22 3–12–9–12–523 10 472 74.2  9104.2

23 4–16–14–0–517 10 533 3.2   207.7
24 3–11–7–13–523 10  83 8.4   166.2
25 4–16–10–0–517 10 118 3.4  1010.9
26 3–12–12–12–523 9  83 53.0    49.7
27 3–12–10–10–523 9 532 75.9   645.9
28 3–13–11–12–523 8 423 51.5  3771.6
29 3–10–9–9–523 8 556 89.9   525.7
30 4–16–15–0–517 8 118 28.8    82.2
31 3–13–12–10–523 7 172 77.9  9268.4
32 3–13–8–12–523 6 345 97.7  4194.5
33 4–13–10–0–490 5 228 100.0   660.3
34 3–13–15–9–523 5 489 100.0  6044.9
35 3–13–11–10–523 5 377 100.0   716.5
36 3–12–12–11–523 5  46 100.0  9214.9
37 3–13–12–20–523 5  43 100.0    82.3
38 3–9–8–13–523 5 420 100.0   847.7
39 4–16–12–0–517 5 157 100.0    40.1
40 1–14–0–0–490 5  81 100.0    43.5
41 4–14–10–0–490 5 198 100.0  2449.4
42 3–25–13–12–523 5 202 100.0  2502.7
43 4–12–0–0–462 5 323 100.0  2355.0

Table 18.2 MLVA clusters of Salmonella typhimurium in NSW, containing at least five cases 
between October 2006 and May 2008
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Fig. 18.2 Spatio-temporal cluster of Salmonella typhimurium corresponding to point-source 
outbreak in metropolitan Sydney

average size and detection time, are shown in Fig. 18.3. The number of potential 
outbreaks (Fig. 18.3a) generally decreases with increasing restrictions in time and 
space (that is, with smaller t and d). There is only 1 outbreak taking place in 1 day 
(t = 0) and one postcode (d = 0). The mean outbreak size (Fig. 18.3b) varies from 
7 to 24.2 isolates and it is most sensitive to variations in t between 0 and 3 days and 
in d between 5 and 15 km. For large enough values of t and d, both the average 
duration and the average area of the clusters (not shown here) tend also to decrease 
with increasing temporal and spatial restrictions. Variations for small values of t and d 
are less straightforward. Mean duration has a small local maximum around t = 3 
days and d = 10 km, while mean area has a local maximum at t = 1, 2 days and d 
= 0 km. The outbreak detection time (Fig. 18.3c) tends to increase with increasing 
restrictions in t and d. That is, clustering in space and time generally has the effect 
of decreasing the effectiveness of prospective surveillance.

18.5  Concluding Remarks

The operational definition of infectious disease outbreaks using the spatio-temporal 
clustering of bacterial genotypes integrates pathogen genotyping data into public 
health actions, thus aiding in the detection of small and medium size epidemics. 
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The timeliness of the response is limited by the turn-around time of the molecular 
genotyping techniques and the coverage is limited by the proportion of the infected 
population that undergoes testing. On the other hand, any spatio-temporal analysis 
of patients’ isolates will also be restricted by the fact that associated locations and 
dates are generally just an estimate of the place and time of transmission.

A promising extension of this work consists of including other molecular profiling 
data relevant to the spatio-temporal clustering. Subtyping methods for the purpose 
of clonal discrimination cannot often identify the phenotypic characteristics associ-
ated with more rapidly changing regions of the pathogen’s genome. The integration 
of genetic information regarding characteristics such as the pathogen’s drug resistance 
profile or virulence would complement the biosurveillance task and assist in designing 
more effective public health interventions (Sintchenko et al. 2007).
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19.1  Vocabulary Resources for Biomedicine

Vocabulary resources have been used in biology and medicine at least since the 
time of Linnaeus, whose work on classification extended not only to organisms but 
also, in his Genera morborum (1763), to the classification of diseases. Linnaeus’ 
work (and through it Aristotle’s ideas on classification) continues to play an influ-
ential role in terminology and taxonomy work today.

Initially, vocabularies and terminologies existed in the form of printed dictionar-
ies compiled for human use, and such resources continue to play an important role, 
for example, in education. The primary use of vocabulary resources of interest to 
us, however, is in fostering the presentation of biomedical and clinical data and 
information in ways that can support the use of computation in research. In this 
context, vocabulary resources have been developed for purposes of bibliographic 
search, coding of clinical and public health data, and database interoperability. For 
example:

The Medical Subject Headings (MeSH) vocabulary (•	 http://www.nlm.nih.gov/
mesh/meshhome.html), first published in 1954, is used to support literature 
indexing and document retrieval for the MEDLINE database of biomedical 
literature.
The International Classification of Diseases (ICD) (•	 http://www.who.int/classifi-
cations/icd/en/), first published as the International List of Causes of Death in 
1893, is the international standard for coding diagnostic information for health 
and vital records and is also commonly used for hospital billing purposes.
SNOMED (•	 http://www.snomed.org), first released in 1965, was initially developed 
to support documentation of pathology data and is projected to become a world-
wide reference vocabulary for structured clinical documentation.
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The Gene Ontology (GO) (•	 http://www.geneontology.org/), created in 1998, is a 
vocabulary resource for the annotation of gene and gene-product data facilitating 
interoperability between a large number of diverse databases, especially in the 
domain of model organism research.

In the last decade, there has been an increasing need for biology and medical 
terminologies to support more sophisticated computational algorithms requiring 
high precision. This is a consequence of (a) tremendous increases in the volumes 
and types of data and information coming out of biomedical and clinical research, 
resulting in the need for computational assistance for the analysis and interpretation 
of these data, (b) pressure to implement electronic health records, and (c) increased 
interest in the possibilities of automated reasoning for biomedical research, clinical 
decision support, and biosurveillance.

In addition to the increased need for machine interpretable vocabulary resources, 
there is a growing need also for vocabularies to be interoperable across institutional 
and disciplinary boundaries. In both the biological and clinical domains, interoper-
ability across subdisciplines is critical to advancing scientific understanding. The 
emergence of translational medicine as a new field and the push to use clinical data 
for research have increased the need for interoperability between the academic and 
clinical care domains. The formation of public data repositories and the movement 
of patients between health care systems both put additional requirements on vocab-
ularies to be interoperable across institutions. Analogous requirements are also 
increasingly being felt in the domains of public health and disease and pathogen 
surveillance.

Unfortunately, existing biomedical and clinical vocabularies are in many ways 
incompatible because they were developed for a variety of different purposes and 
by multiple separate communities. They have different underlying semantics, 
employ different linguistic and logical structures, and manifest varying degrees of 
formal rigor (described in detail below). As a consequence, they are not interoperable 
and most do not support sophisticated computing of the sort that is becoming 
central to informatics-driven biomedical research. Increasing reliance on the 
computer processing of data and information and the requirement for cross-domain 
interoperation have highlighted the need for more structure and formal rigor in 
vocabulary resources. Because of their enhanced formal capabilities to support 
computing, interoperation, and reasoning, ontologies are being advanced as a new 
kind of terminology resource that can provide a necessary foundation for biomedical 
and clinical research in the future.

In what follows, we describe the different types of vocabulary resources available 
in the infectious disease domain, covering the spectrum of terminology-based 
representational artifacts from simple taxonomies, wordlists, glossaries, and 
loosely structured thesauri through data dictionaries to the more highly formalized 
“ontologies” now increasingly being applied in biomedical research. We will 
emphasize those features of formal ontologies that make them most useful for 
computational applications. We will then describe the various uses of ontologies 
in biomedical and clinical research, describe existing vocabulary resources 
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relevant to infectious diseases, and conclude with some speculations concerning 
the potential uses of ontologies in the future.

19.2  Types of Vocabulary Resources

All vocabulary resources consist of terms; they differ in how these terms are 
presented and organized. Most importantly for our present purposes, vocabulary 
resources differ in whether terms are provided with definitions, in the types of 
relationships asserted between terms or the entities to which the terms refer, and in 
the degree of logical rigor underlying definitions and relations.

The simplest vocabulary resources are term lists (with or without definitions), 
containing no information about how the terms or the entities to which the terms 
refer are related to each other beyond what can be inferred from the terms them-
selves when considered linguistically. Examples include nomenclatures such as the 
Human Genome Organization (HUGO) Gene Nomenclature (http://www.hugo-
international.org/committee_nomen.htm) and the Nomenclature for Factors of the 
Human Leukocyte Antigen (HLA) system (http://www.anthonynolan.org.uk/HIG/
nomen/reports/homen/reports.html).

The majority of vocabulary resources, however, assert a simple term hierarchy 
or taxonomy in which the relationships between terms indicate that one term has a 
narrower meaning than another, or that one type of thing (e.g, dog) is classified as 
a subtype of another type of thing (e.g., animal). ICD and MeSH are examples of 
this type of resource. Vocabulary resources that assert a richer set of relations are 
less common. The best example is the Foundational Model of Anatomy (FMA) 
(http://sig.biostr.washington.edu/projects/fm/), which includes backbone hierar-
chies structured by means of taxonomic (is_a) and partonomic (part_of) relations 
and various formally defined spatial relations representing adjacency, connectedness, 
and relative position.

Many vocabulary resources, including many medical glossaries, have poor 
structural organization and provide at best definitions written in natural lan-
guage for interpretation by human users. This means that they are poorly 
suited for computational purposes. Providing definitions based on a formal 
theory [such as (Rosse and Mejino 2003)] enhances the potential utility of a 
vocabulary resource for computation, but requires a non-trivial investment of 
resources, especially for the large vocabulary resources often found in the bio-
medical domain.

Similarly, there is great variability in the degree to which the relations used in 
the structure of vocabulary resources are formalized in a way that supports 
automatic reasoning. In MeSH, for example, relations are presented primarily in an 
implicit fashion through the relative position of terms in the MeSH hierarchy. 
Among vocabulary resources with explicitly asserted relations, the vast majority 
provides either no definition of the relations, or provides only natural language 
descriptions of the intended meaning of relational expressions. At the other, more 
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formally rigorous, end of the spectrum are a growing number of vocabulary 
resources employing relations defined according to a formal theory, for example, 
within the context of the Semantic Web (Ruttenberg et al. 2007) and of the Open 
Biomedical Ontologies (OBO) Foundry Initiative (Smith et al. 2007).

Following what is increasingly becoming standard usage, we shall here employ 
the term “ontology” to refer to a vocabulary resource that is structured by means of 
relations between its terms and is logically formalized in the sense that the developers 
adhere to a logical theory in the definition of terms and relations, for example, as 
outlined in Rosse and Mejino (2003) and Smith et al. (2005). Vocabulary resources 
of this sort are standardly represented as graph-theoretical structures built up out of 
terms as the nodes of the graph and relations as edges (Bechhofer et al. 2004). 
While there are a variety of other meanings associated with the term “ontology,” the 
usage here is consistent with that of large influential ontology developer and user 
groups, including the Gene Ontology Consortium (http://www.geneontology.org/), 
the W3C community (http://www.w3.org/), and the OWL Web Ontology Language 
community (http://www.w3.org/2004/OWL).

The different uses for which the different vocabulary resources have been built 
have determined to a large extent the degree and type of structure, level of detail, 
and logical formalism used in their construction. We argue, however, that even 
when the intended application does not require a highly structured and formalized 
vocabulary resource, there are benefits to be gained from developing the resource 
with a structured and formalized approach in ways that adhere to best practice guide-
lines. First, such an approach results in vocabulary resources that have fewer 
developer-introduced errors. Second, the resulting vocabulary resources can be 
subjected to automated error checking (Ceusters et al. 2004a, 2005; Smith et al. 
2004). Third, structured and formalized resources are likely to be free of idiosyn-
cratic features and are therefore more broadly applicable. Thus, the development 
of a structured and formalized vocabulary resources can facilitate their reus-
ability and utility as biomedical research becomes increasingly reliant on compu-
tation (Yu 2006).

A simple illustration of the advantages already resulting from a greater formal 
organization of a vocabulary resource is how this organization makes possible a 
more complete and more focused retrieval of data. Without formal organization, 
searches against data catalogued on the basis of mere word lists are restricted to the 
use of string matches, which is highly ineffective especially in a domain like infec-
tious diseases, where data are derived from many heterogeneous sources and 
nomenclature is poorly standardized. Formal organization means that, when 
collecting information about a given disease or pathogen, we can automatically 
extend our search to include corresponding subtypes or variants independently of 
how the latter are named. Another simple benefit of formal organization is the ability 
to ensure that the effects of changes to a classification are automatically propagated 
to all relevant parts of the classification.

The use of classifications that rest on a well-defined and reliably executed appli-
cation of the subclass or subtype relations (called in what follows “is_a”) is crucial 
to the realization of these benefits. Here, the test of reliability is conformity to the 
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rule: if type A is classified as a subtype of B, then all instances of A (e.g., all cases 
of a given infectious disease) are also instances of B.

One consequence of conformity to this rule is that the is_a relation will be tran-
sitive (if we know that A is_a B and B is_a C, then we can infer also that A is_a C). 
For example, if we know that Staphylococcus aureus is_a Staphylococcus and 
Staphylococcus is_a bacterium, then we can infer that Staphylococcus aureus is_a 
bacterium.

Another consequence is that all instances of A will inherit the properties shared 
by all instances of B. For example, bacteria of the genus Staphylococcus are facul-
tative anaerobes. If this is asserted in the ontology, along with Staphylococcus 
aureus is_a Staphylococcus, Staphylococcus aureus will inherit the property of 
being a facultative anaerobe. Inheritance is an important source of potential benefits 
from the use of vocabulary resources in automatic reasoning. Definition and use of 
the is_a relation are discussed in more detail below.

Terminological note. Where type A stands in an is_a relation to type B in a 
classificatory hierarchy, we shall also describe “A” as the child term and “B” as 
parent. Any given child can have sibling terms in the sense of terms that share a 
common parent. Further discussion of the different types of vocabulary resources 
can be found in Yu (2006), Bodenreider and Stevens (2006), Cimino and Zhu 
(2006), and Coonan (2004).

19.3  Features of Ontologies Needed to Support Informatics

For ontologies to support sophisticated computational algorithms with high preci-
sion, it is necessary that they be developed in accordance with certain principles 
of ontology development best practice. In particular, adherence to the following 
has been shown to enhance support for computation: (a) the use of Aristotelian 
definitions with a single mode of classification, (b) the use of single inheritance 
hierarchies, (c) the use of relations with formal, logical definitions based on a 
distinction between types and instances, and (d) writing definitions and ontol-
ogy assertions as compositions of ontology terms and relations rather than as 
natural language.

The definition of types in an ontology serves an important purpose beyond 
describing the meaning of the term that refers to the type, and that is to specify the 
placement of the types in the ontology’s inheritance hierarchy. This is accomplished 
through the use of Aristotelian definitions, the form of which is A is_a B which C, 
where A is the type being defined, B is its genus (parent or supertype), and C is the 
differentia (Rosse and Mejino 2003; Michael et al. 2001). It is the first part of the 
definition, A is_a B, that results in inheritance, as A will inherit all of the properties 
of B, including those properties B inherits from its parent. B may have many 
subtypes, and it is the differentia, C, that distinguishes A from the other subtypes of B. 
For example, in a hierarchy of disease types, one could define infectious disease as 
a disease that is caused by an infection.
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In addition to the use of Aristotelian definitions, it is recommended that a single 
mode of classification be adopted for any given hierarchy, that is, all types within a 
single hierarchy should be differentiated based on the same type of criterion. It is 
further recommended that each type has only a single parent type. Hierarchies in 
which all types have only a single parent are referred to as single inheritance hierar-
chies, whereas hierarchies in which types can have more than one parent are referred 
to as multiple inheritance hierarchies. The problem with using multiple modes of 
classification and with allowing multiple inheritance is that the meaning of the is_a 
relation becomes uncertain, resulting in errors on the part of both maintainers and 
users of an ontology (Bodenreider et al. 2004) and the inability to use the hierarchy 
for automated reasoning. For example, in SNOMED, is_a has in some contexts the 
meaning “has cause” (e.g., Tuberculosis of meninges is_a Mycobacteriosis), while 
in others it means “has location” (e.g., Tuberculosis of meninges is_a Disorder of 
meninges). The use of is_a with multiple meanings is often referred to as “is_a 
overloading” (Guarino 1998). While in practice it can be difficult to avoid multiple 
inheritance, even within a single mode of classification, multiple modes of classifi-
cation (and therefore multiple meanings for is_a) should be avoided by using the 
corresponding specific relations (e.g., has_location). The benefits are not only an 
ontology that has fewer errors, is easier to maintain, and can be used for automated 
reasoning, but also a reduced loss of information by using the more specific repre-
sentation. Other considerations in the classification of biological entities are outlined 
in detail in (Michael et al. 2001; Bodenreider et al. 2004).

Successful inferencing over the relations asserted between ontology types relies 
on a single, logical definition for each relation with clearly specified implications. 
This is best accomplished by distinguishing between types (e.g., influenza infection) 
and instances (e.g., each of the individual cases of influenza infection), and defining 
the relations between types in terms of the relations between the corresponding 
instances (Smith et al. 2005). Thus, a type-level relation R will be defined in terms 
of the instance-level relation R by: X R Y = 

def
 for every instance x of X, there exists 

at least one instance y of Y such that x R y, where uppercase indicates types (X, Y) 
and lowercase indicates instances (x, y). For example, human has_part brain means 
that every instance of human has as part of it some instance of brain. Defining the 
relations between types in terms of the relations between instances, and specifying 
that the type-level relation X R Y holds when the instance-level relation x R y holds 
for all instances of X ensures that X R Y holds universally. This, in turn, ensures 
transitivity, which can be used for automated reasoning: if X R Y and Y R

1
 Z, then 

there is some relation R
2
 such that X R

2
 Z. The distinction between types and 

instances corresponds to the distinction between A-boxes and T-boxes used in the 
Owl/Semantic Web community (Baader 2007).

In almost all natural-language-based vocabulary resources thus far, terms and 
definitions have been treated in effect as black boxes, so that their logical content 
is not accessible to computational tools. The GO, along with its sister ontologies in 
the OBO Foundry, has initiated an ambitious strategy to expose the compositional 
character of compound terms and definitions by conceiving them as cross-products 
of simpler terms, some of which are derived from other ontologies (Smith et al. 
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2007; Hill et al. 2002). For example, rather than defining Tuberculosis of the meninges 
with the natural language phrase “Tuberculosis of the meninges is a Mycobacterium 
tuberculosis infection in which the site of infection is the meninges,” one can 
instead use formally defined relations between ontology terms to create structured 
phrases such as:

Tuberculosis of the meninges is_a Mycobacterium tuberculosis infection THAT 
has_location meninges

where meninges is a term in an anatomy ontology, such as the FMA, and 
Mycobacterium tuberculosis infection is a term in an ontology of infectious 
diseases, such as the IDO described below, and is itself defined as a cross-product. 
By this means, the potential for the ontology to support automatic reasoning and 
error checking is enhanced, and so also is its capacity to integrate data in the direction 
of enhanced semantic interoperability.

That the enhanced formalism and logical rigor of ontologies relative to other 
vocabulary resources brings significant benefits to applications is perhaps best 
evidenced by the relative numbers of citations for the GO, SNOMED, and the 
Unified Medical Language System (UMLs) in the PubMed database. As the name 
implies, the UMLS, initiated in 1986, is an attempt to provide a unified terminology 
system for the medical domain. The goal is two-fold: to make the many medically 
relevant vocabulary resources interoperable, and to create a single, broad coverage 
resource. The strategy used by the UMLS developers is to integrate the many existing 
medical terminologies by providing joint access to them through mappings between 
their terms. The UMLS includes the GO and SNOMED, as well as MeSH and ICD, 
among its source terminologies. Despite its short history and small domain relative 
to SNOMED and the UMLS, the GO has become the most cited vocabulary 
resource in PubMed, with over 450 citations per year (Bodenreider 2008). In con-
trast, the number of UMLS citations has remained constant over the last 10 years 
(Bodenreider 2008). From 2001 to 2007, among papers that cite the GO, SNOMED, 
the UMLS, the FMA, MeSH, the National Cancer Institute Thesaurus (NCIT), and 
the Logical Observation Identifiers, Names, and Codes (LOINC) vocabulary, the 
proportion of GO citations increased from about 5% to about 85%, while the 
proportion citing SNOMED decreased from about 20% to about 5% and the propor-
tion citing the UMLS decreased from about 55% to about 5% (Bodenreider 2008).

As can be seen from the description of ontology uses below, the utility of ontolo-
gies in computational applications depends not just on adherence to development 
principles like those outlined above, but also on the breadth of the developer and 
user communities. When each community develops and uses its own ontology, 
many of the benefits of ontology are not realized. To address both of these issues, 
the Open Biomedical Ontologies (OBO) Foundry (http://obofoundry.org) (Smith 
et al. 2007) was initiated in 2006. The goals of the Foundry are to foster the pursuit 
of best practice in ontology development on the basis of an evolving set of design 
principles and to provide a foundation for the coordinated development of ontologies 
by large developer and user communities. Its ontologies are designed to represent 
in an interoperable fashion the biomedical reality from which data are sampled. 
Their development within the framework of a common top-level ontology, the 
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Basic Formal Ontology and the consistent employment of a constrained set of 
logically defined relations allows Foundry ontologies to be used together as 
modules of a larger system for computational applications.

There are currently some 35 member ontologies at varying stages of develop-
ment in the OBO Foundry. There are OBO Foundry ontologies covering many of 
the domains relevant to infectious diseases, including proteins [the Protein Ontology 
(Natale et al. 2007)]; cells [the Cell Ontology (Bard et al. 2005)]; human anatomy 
[the FMA (Rosse and Mejino 2003)]; anatomy for important vector species [the 
Tick Gross Anatomy Ontology and the Mosquito Gross Anatomy ontology (http://
www.anobase.org/)]; and biological processes, molecular functions, and cellular 
components [the Gene Ontology (http://www.geneontology.org)].

19.4  Uses of Ontologies in Informatics-Driven Research  
and Care

Vocabulary resources have a long history of use in clinical settings, primarily to 
support the coding of clinical data for health records, laboratory reports, and 
hospital billing, the coding of public health data for monitoring disease incidence 
and prevalence, and the coding of knowledge for clinical decision support systems. 
In basic biomedical research, the primary use of vocabulary resources has, until 
recently, been to support bibliographic searches and database integration. However, 
the logical rigor and formalism underlying biomedical ontologies has increased 
significantly in recent years, allowing biomedical ontologies to be applied for a 
larger variety of purposes.

For ontologies and the data annotated in their terms, we find a variety of different 
types of uses in biomedicine, outlined in Yu (2006), Bodenreider (2008), and Rubin 
et al. (2008), including terminology management; text-mining; integration, interop-
erability, and sharing of data; data interpretation and analysis; and knowledge reuse, 
reasoning, and decision support. Ontologies support terminology management in 
aligning independently developed terminologies with overlapping content (Rickard 
et al. 2004; Zhang and Bodenreider 2005). They also bring benefits in managing 
changes to terminologies by allowing flexible response to new scientific discoveries, 
as contrasted with the relative inflexibility of more traditional database approaches, 
where a database schema may need to be revised in its entirety when one aspect of 
classification changes.

Ontologies are increasingly used to add value to more traditional vocabulary 
resources, whose informal structure and lack of systematic definitions “is generally 
deemed to be inadequate with respect to the requirements of health care informa-
tion systems that depend on clear communication of complex medical and biologi-
cal information in a form that is usable by computers” (Yu 2006). Applying a 
formal structure to vocabulary resources allows enhanced opportunities for both 
manual and automatic error checking. Ontological methods are used to detect errors 
in definitions and to analyze the meanings of terms and represent those meanings 
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formally (Ceusters et al. 2005; Smith et al. 2004; Pisanelli 2004). Additionally, 
ontological methods are used to detect errors in classification, such as the improper 
assignment of is_a relations arising through inadequate treatment of negation, or 
the improper assignment of part-whole relations resulting from an inconsistent use 
of terms in different parts of terminology (Ceusters et al. 2004, 2005).

In the area of text mining, vocabulary resources are used to facilitate the retrieval 
of information from biomedical literature [reviewed in (Bodenreider 2008; Spasic 
et al. 2005)]. The greatest success has come from the assignment of terms from 
vocabulary resources to individual documents within large collections, a process 
referred to as indexing. MeSH has long been used to index documents within the 
PubMed database (Nelson et al. 2001), and, more recently, ontologies have been 
used for this purpose, allowing text-mining algorithms to take advantage of the 
richer set of relations and their formal definitions (Ide et al. 2007; Muller et al. 
2004; Doms and Schroeder 2005). The identification of documents that are relevant 
to a query within a collection (document retrieval) is greatly facilitated by utilizing 
the ontologies’ structure. For example, the hierarchy of is_a relations can be used 
to expand a query to include parents or children of the original query term, signifi-
cantly improving recall. part_of relations can be similarly used, retrieving docu-
ments that refer to fingers or palms in response to a query for documents that refer 
to hands.

After the identification of relevant documents, text-mining often progresses to 
information extraction, the identification within documents of statements about 
prespecified entities. Named entity recognition is the simplest approach in which a 
list of entities of interest is provided as input to the information extraction 
algorithm. The terms from ontologies can serve as an important source of term lists 
for named entity recognition, and the ontologies’ structure can serve to improve 
information extraction just as document retrieval is improved.

Within the area of infectious disease research, ontology-supported text-mining 
is used to monitor news reports from all over the world so as to detect disease out-
breaks, monitor the geographic distribution of diseases (BioCaster, http://biocaster.
nii.ac.jp/; EpiSpider, http://www.epispider.org/), and predict candidate vaccine 
epitopes (Schonbach et al. 2004). Ontologies have also been developed to support 
text-mining about Dengue fever, specific Dengue virus serotypes (Rajapakse et al. 
2008), and vaccine development and efficacy. The Vaccine Investigation and Online 
Information Network (VIOLIN, http://www.violinet.org) was established as a cen-
tral repository for literature related to vaccine research and the data resulting from 
vaccine research. In addition to a variety of data analysis tools, VIOLIN provides 
several text-mining tools supported by its Vaccine Ontology (VO), as well as MeSH 
and the Textpresso Ontology (Muller et al. 2004).

Currently the most successful use of ontologies is to support integration, 
interoperability, and the sharing of data through data annotation. The best 
example is use of the GO for the creation of annotations by the curators of model 
organism databases (Blake et al. 2006; Cherry et al. 1997; Grumbling and 
Strelets 2006) and genome annotation centers (Camon et al. 2004). GO curators 
are striving to capture, in a form accessible to computational algorithms, information 
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about the contributions of gene products to biological systems, as reported in 
the scientific literature. The annotation process unfolds in a series of steps 
(Blake et al. 2007). First, specific experiments, documented in the biomedical 
literature, are identified as relevant to the responsibilities of a given ontology 
curator. Second, the curator applies expert knowledge to the documentation of 
the results of each selected experiment. This process entails determining which 
entities (e.g., which proteins) are being studied in the experiment, the nature of 
the experiment itself, and (in the case of the Gene Ontology) the molecular func-
tions, biological processes, and cellular components that the experiment identi-
fies as being associated with that gene product. The curator then creates an 
annotation, which captures the appropriate relationships between the corre-
sponding ontology types and the database entry for the gene product type. The 
annotated data then become accessible through the use of the associated Gene 
Ontology term as a search vehicle and becomes automatically combined with 
many other types of relevant and useful information as a result of the fact that 
the curators of many other types of data are using the same controlled vocabu-
lary resource to annotate their data. Developing the ontology in tandem with the 
process of curation of data also provides a means of ensuring that the ontology 
is maintained in a way that keeps pace with the advance of science as recorded 
in the published literature and ensures that the vocabulary provides the resources 
needed to express the most recent scientific results.

The GO and other ontologies are used for annotation of genes and gene products 
in a variety of databases relevant to infectious disease research. In addition to the 
annotation of data for humans and for model organisms, such as mice, which are 
used to study the host immune response, ontologies are used to annotate data in:

The ApiDB databases (•	 http://eupathdb.org/eupathdb/), which include genomic 
and other data for Cryptosporidium, Giardia, Plasmodium, Theileria, Toxoplasma, 
and Trichomonas strains
VectorBase (•	 http://www.vectorbase.org), which includes genomic and other data 
for invertebrate vectors of human pathogens, including Anopheles gambiae, 
Aedes aegypti, Ixodes scapularis, Pediculus humanus, and Culex 
quinquefasciatus
The Integrated Microbial Genomes System (•	 http://img.jgi.doe.gov/), Microbes 
Online database (http://www.microbesonline.org/), the Pathogen-Host Interaction 
Data Integration and Analysis System (http://phidias.us), BioHealthBase (http://
www.biohealthbase.org/), and the National Microbial Pathogen Data Resource 
(http://www.nmpdr.org/), among others (Medigue and Moszer 2007), together 
include annotations for the genomes of hundreds of bacterial and viral species, 
as well as a significant number of eukaryotic pathogen species
Many of the databases listed at •	 http://databases.biomedcentral.com/under the 
“infectious diseases” subject area

In addition to the annotation of genomic data, the use of ontologies and other 
vocabulary resources to annotate other types of data is also becoming common. For 
example, data in ArrayExpress (http://www.ebi.ac.uk/microarray-as/ae/) has been 
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annotated with GO terms as well as terms from the Microarray Gene Expression 
Data (MGED) Ontology (Whetzel et al. 2006). Of particular interest in the study of 
infectious diseases is the use of MeSH to annotate human disease names to 
microarray data in the Gene Expression Omnibus (Butte and Chen 2006) and the 
use of GO and SNOMED to annotate pathways and integrate disease and pathway 
information (Chabalier et al. 2007).

Ontology annotations not only provide a basis for database interoperability, but also 
significantly enhance the interpretation of data from genome-wide and high-throughput 
experiments, as for example in Baranzini et al. (2009), Valouev et al. (2008), Kim et al. 
(2008), and Grinde et al. (2007). A variety of software tools have been developed to 
use ontologies and other vocabulary resources for the analysis and interpretation of 
microarray data, including Onto-Tools (Chabalier et al. 2007), GoMiner (Zeeberg 
et al. 2003), GOTree Machine (Zhang et al. 2004), MeSHer (Djebbari et al. 2005), and 
more recent tools (Bresell et al. 2006; Osborne et al. 2007).

Ontology annotations have formed the basis for new bioinformatics approaches 
for the analysis of such data (Osborne et al. 2007; Ochs et al. 2007). One such 
method for the analysis of microarray data is the CLASSIFI algorithm (Lee et al. 
2006), which determines, for sets of genes clustered based on their expression 
levels, whether particular gene ontology terms are overrepresented within any set 
of genes. Ontologies have also been used to enhance clustering algorithms for 
microarray data by using the ontology annotations as a second cluster variable 
(Brameier and Wiuf 2007; Huang et al. 2006; Liu et al. 2004). In another study, 
proteins were clustered based on the similarity of their GO annotation profiles. 
The annotations for each protein were represented as a graph, and the graph simi-
larity for pairs of proteins was used as the distance measure for clustering 
(Wolting et al. 2006). This method was applied to sets of proteins from two dif-
ferent protein array screens, and in both cases, proteins not identified in the origi-
nal study were implicated to play a role in the biological process under study 
(Wolting et al. 2006). Finally, ontologies have been used to integrate text-mining 
approaches with microarray data analysis to facilitate disease gene identification 
(Tiffin et al. 2005).

An important benefit of ontologies is that they facilitate knowledge reuse. 
While knowledge-based systems that support applications such as decision sup-
port in health care are typically dependent on large amounts of current domain 
knowledge, the capture of such knowledge in computationally accessible informa-
tion systems through data curation is an expensive and arduous process. In the 
domain of molecular biology, the widespread adoption of the Gene Ontology as a 
standard vocabulary has worked well, eliminating the need for developers of dif-
ferent information systems to expend resources capturing the same knowledge. In 
the clinical domain, however, knowledge capture has standardly been performed 
with the aid of locally developed database schemas and vocabulary resources, both 
structured to the specific application at hand. Such database schemas and vocabu-
lary resources do not support the reuse or accumulation of data and often lose their 
validity within a short space of time. Increasingly, therefore, there is a move, illus-
trated by the caBIG endeavor, to foster the development of reusable resources for 
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data capture in which, again, ontologies and ontology-related technologies are 
again playing an important role.

The use of ontologies to support automated reasoning is an active area of 
research and recent work, described below, has shown that the benefits of even 
primitive reasoning algorithms can be significant. These results have led to 
increased interest in developing vocabularies with sufficient formalism to support 
reasoning as well as in developing reasoning algorithms that make use of the types 
of information captured in ontologies. An important application area of automated 
reasoning is clinical decision support.

Query engines have been developed in such a way that the ontology itself is a 
directly query-able knowledge resource. For example, Emily (Detwiler et al. 
2004) is a system used to query the FMA for structural relationships between 
anatomical entities. The FMA also serves as a source of anatomical knowledge in 
a reasoning application used to predict the consequences of penetrating injury 
(Rubin et al. 2006). The system is used to determine which organs are injured and 
whether vital structures, such as a coronary artery, are injured given particular 
projectile trajectories (Rubin et al. 2006). HyBrow is a system that uses ontolo-
gies and ontology annotations as sources of existing knowledge to test whether 
hypotheses are consistent with existing knowledge and data, to rank hypotheses by 
the amount of supporting evidence, and to test the implications of hypotheses 
(Racunas et al. 2004).

Clinical decision support systems (CDSS) are commonly used in the infec-
tious diseases field for diagnostic assistance, guidance in the prescription of 
anti-infectives, biosurveillance, and vector control [Global Infectious Disease 
and Epidemiology Network, http://www.gideononline.com, and (Schurink et al. 
2005; Thursky 2006; Sintchenko et al. 2008; Pestotnik 2005; Coleman et al. 
2006; Buckeridge 2007; Buckeridge et al. 2005; Veenema and Toke 2006)]. 
Vocabulary resources, such as classifications of drug types, serve as a source of 
knowledge for CDSS. In most cases, however, simple terminology lists or term 
hierarchies are used, and when vocabulary resources with more complex rela-
tions are used, the resources are developed for the purposes of the specific 
application and do not have sufficient logical formalism to serve the purposes 
of broad interoperability. For example, the clinical vocabulary resource with the 
broadest scope, and which also has many ontology-like features, is SNOMED. 
A recent review of the literature found little evidence that SNOMED is being 
used for direct care purposes such as CDSS (Cornet and de Keizer 2008). The 
use of ontologies, as we have defined them, in CDSS is still a young field of 
research. One prominent example is the use of ontologies in the Dengue 
Decision Support System (http://www.rams-aid.org/) developed by the Risk 
Assessment and Management Solutions for Arthropod-borne and Infectious 
Diseases group at Colorado State University. There is a growing effort within 
the OBO Foundry community to develop ontologies with coverage of the clini-
cal domain and to develop ontology-based reasoning algorithms, including 
those useful within CDSS.
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19.5  Vocabulary Resources Relevant to the Field of Infectious 
Diseases

We provide a brief review of vocabulary resources that have content relevant to the 
infectious diseases domain, restricting ourselves primarily to those resources that 
are freely available, widely used, and likely to persist. For each resource, we 
describe its intended use and evaluate its adequacy and prospects for general use in 
infectious disease research and clinical care, taking account of the considerations 
outlined below.

The vocabulary resources relevant to this review can be divided into two broad 
groups: resources produced primarily as terminologies for use in the clinical 
domain, and resources developed in support of research in the basic biological sci-
ences. In light of the increasing focus on translational medicine, we take it that the 
trajectory of clinical and biomedical sciences is toward an ever closer alignment of 
these two groups of resources, which have hitherto evolved almost entirely inde-
pendently. Therefore, one focus of our evaluation has been to gauge the degree to 
which existing clinical and biomedical terminology resources can support this tra-
jectory. The second focus is on evaluating the degree to which such resources sup-
port the increasing demand for more sophisticated information processing 
capabilities.

19.5.1  Medical Subject Headings Controlled Vocabulary

MeSH is a general-purpose vocabulary, initially developed for purposes of indexing 
and cataloging medical literature, now used to support many text- and literature-
mining endeavors. Terms from the MeSH controlled vocabulary are used to anno-
tate biomedical journal article citations and abstracts for the MedLine database. 
Query interfaces to MedLine, such as PubMed, use MeSH to support the retrieval 
of MedLine records in ways that supplement the use of simple string searches.

MeSH is a controlled vocabulary organized as a thesaurus consisting of sets of 
terms or “descriptors” in a hierarchical structure that permits searching at various 
levels of specificity. The relationship between terms in a hierarchy is not is_a; 
rather the terms appear in the MeSH term hierarchies on the basis of relatedness as 
assessed in terms of fields of study or research (a strategy designed to maximize the 
utility of MeSH as a literature indexing resource). For example, most of the content 
relevant to the infectious disease domain is found under one of descriptors Anatomy, 
Organisms, Diseases or Biological Sciences. Under Biological Sciences, one finds 
Public Health, under which one finds Disease Outbreaks, Disease Reservoirs, and 
Disease Transmission, along with terms such as Consumer Product Safety and 
Equipment Reuse. A natural language note is associated with each term.

MeSH is marked by a broad coverage of topics relevant not only to the domain 
of infectious diseases but also to microbiology and host immunity. Of all the 
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vocabulary resources we have evaluated, MeSH has the broadest coverage across 
the entirety of the infectious disease/immunology domain. However, the terms are 
not linked to any relations, which limits the usefulness of the information contained 
in MeSH for many purposes. Despite its broad coverage of the subject matter, 
MeSH cannot be used as a computable vocabulary resource for infectious diseases, 
though it is highly useful in supporting a variety of string- and statistics-based 
forms of data and literature mining. Its utility in this respect has been enhanced by 
its recently completed alignment to the GO (Tveit et al. 2004).

19.5.2  International Classification of Diseases

ICD version 10 (ICD-10) is a member of a family of World Health Organization 
(WHO) international classifications designed to promote international comparability 
in the collection, processing, classification, and presentation of diagnostics in 
health epidemiology, health management, and mortality statistics. ICD-10 is a clas-
sification of diseases and other health problems developed for the purposes of 
compiling statistics of disease or causes of death. ICD-10 is used to record disease 
and other health problems on health and vital records such as death certificates. 
These records are subsequently used to compile national mortality and morbidity 
statistics by WHO member states. ICD-10 is also used for general epidemiological 
and health management purposes, such as monitoring the incidence and prevalence 
of diseases.

ICD-10 is organized as a term hierarchy in which terms are names of diseases 
and each term is associated with a code of up to six digits in length, indicating the 
term’s placement in the hierarchy. Terms are defined primarily by their placement 
in the hierarchy along with statements of inclusion and exclusion. For example, 
Tuberculosis is defined by being a subclass of Certain infectious and parasitic 
diseases, along with the statements “Includes: infections due to Mycobacterium 
tuberculosis and Mycobacterium bovis. Excludes: congenital tuberculosis, pneumo-
coniosis associated with tuberculosis, sequelae of tuberculosis, silicotuberculosis.”

ICD’s coverage of the domain in terms of types of infectious diseases is broad, 
but information about other aspects of infectious disease is limited and thus the 
scope of ICD-10 is considered narrow. Because ICD provides a disease classifica-
tion constructed primarily on the basis of anatomy, it has a relatively robust clas-
sification of pathological structures resulting from disease, such as carcinomas and 
neoplasm, whose classification follows the anatomical partition. For the infectious 
disease domain, however, a different approach would be needed. The ICD-10 clas-
sification of infectious disease is based on many different and inconsistently used 
classification criteria resulting in a disorganized hierarchy that is counter-intuitive, 
difficult to navigate, and difficult to construct queries for. Furthermore, there are no 
formal definitions for terms and no logical basis for the hierarchical structure used. 
Thus, ICD-10 could not sensibly be used to support either interoperability with 
other information resources or reasoning within the context of its own hierarchy.
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19.5.3  The Systematized Nomenclature of Medicine – Clinical 
Terms

While Systematized Nomenclature of Medicine – Clinical Terms (SNOMED CT) 
is not a fully open source vocabulary resource, its broad scope and the long experi-
ence of its use and maintenance, combined with its presumptive status as an inter-
national master vocabulary for the coding of clinical information, mean that it is an 
especially important vocabulary resource for analysis and critical review.

The intended use for SNOMED CT is documentation and reporting of health 
care information throughout the health care process (medical history, illnesses, 
treatments, laboratory results, etc.) in software applications used for clinical data 
collection. The intention is that the processing of health care information recorded 
in SNOMED CT terms can be used to improve patient outcomes by providing 
health care providers with more easily accessible and complete information, as well 
as to conduct outcomes research, to evaluate the quality and cost of care, and to 
design effective treatment guidelines.

SNOMED CT comprises concepts, concept descriptions, and relationships. A 
concept is described as a clinical meaning. Concepts are defined by the relation-
ships between them. The primary defining relationship is the is_a relation, but there 
are an additional 50 defining attribute relationships, such as Finding_site and 
Associated_morphology.

In general we find that SNOMED CT contains a large number of terms relevant to 
the infectious disease domain, but that these terms and their organization are biased 
toward capturing information about clinical observations and about patients in patient 
records. Terms and relations describing pathogens and the host immune responses to 
these pathogens are correspondingly lacking. The emphasis on clinical findings and 
their attributes is not surprising given SNOMED CT’s intended use for the documenta-
tion and reporting of clinical data, but this does handicap SNOMED CT in terms of its 
usefulness for translational medicine. This handicap could be overcome if SNOMED 
CT were developed in accordance with a set of rigorously applied principles sufficient 
to allow its interoperation with vocabulary resources from the biological domain.

The logical formalism underlying SNOMED CT has been evaluated previously 
(Ceusters et al. 2004; Bodenreider et al. 2004). Our evaluation based on the infectious 
disease-relevant content is consistent with these previous evaluations. We observed 
problems with SNOMED CT’s classification hierarchies resulting primarily from the 
use of multiple modes of classification and a lack of adherence to basic principles of 
sound classification. The result is the assertion of type-supertype relations that do not 
hold. For example, the SNOMED class Infectious disease is asserted to have subclass 
Abrasion AND/OR friction burn with infection, where neither an abrasion nor a fric-
tion burn is itself an infectious disease. Similarly, Incomplete illegal abortion with 
genital tract or pelvic infection is a subtype of Infectious disease in SNOMED CT, 
asserting that a type of abortion is an infectious disease.

As SNOMED becomes more widely used, and begins to serve as a platform to 
ensure cross-language interoperability of clinical data, it will become ever more 
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urgent that SNOMED meets the highest standards of logical coherence. The 
SNOMED International Health Terminology Standards Development Organization 
has recognized many of the above problems and is taking steps to correct them.

19.5.4  The Disease Ontology

The Disease Ontology (DO) was developed for the annotation of patient DNA 
samples collected with the patients’ associated healthcare information. Broader 
motivations for the creation of the DO were to provide a public domain vocabulary 
resource for use in data mining against medical records and in annotating model 
organism phenotype data using terms for human disease.

The DO is organized as a taxonomy of diseases with terms, taken over primarily 
from ICD, referring to types of diseases. The hierarchy is intended to reflect the 
is_a relation between disease types. Few terms are defined, but the definitions thus 
far included are natural language expressions, usually taken from MeSH, SNOMED 
CT, or the NCI thesaurus. The current DO hierarchy improves somewhat on ICD 
version 9, and plans for further improvements to the DO are based on a strategy of 
aligning DO to the SNOMED CT disease typology.

Despite the DO claim of organizing disease terms based on types using an is_a 
relation, the DO hierarchy is poorly organized, mixing not only types of infection 
with types of disease, but also mixing types based on anatomical location, proper-
ties of infection (e.g., latent), type of infectious agent, developmental stage, type of 
geographical area to which a disease is endemic, and properties of infectious agents 
(e.g., zoonotic). The mixing of modes of classification and the use of multiple 
inheritance results in the inheritance of properties that do not hold for a type. For 
example, Tuberculosis is a subtype of Respiratory Tract Infections in DO, but not 
all instances of tuberculosis infection are an infection of the respiratory tract. 
Tuberculosis is also a subtype of Opportunistic Infections, which is a subtype of 
Virus Diseases, but Tuberculosis is not a viral disease. The DO has a limited utility 
as a general vocabulary resource for the infectious disease domain due to its limited 
scope and its disorganized classification hierarchy containing false assertions. The 
DO developers are, however, aware of these problems, and have initiated efforts 
toward realizing the necessary reforms.

19.5.5  General Conclusions Concerning Clinical Vocabularies

The most common use of clinical vocabulary resources thus far is as dictionaries 
with the potential to support forms of computer-aided retrieval of information. 
Vocabularies such as SNOMED CT also have in a certain logical structure, which 
means that they may be able to support more advanced services, including data 
integration (e.g., the integration of public health data), patient status descriptions, 
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providing codes for problem lists or drug adverse events, and support for text-mining 
(Bodenreider 2006). In addition, they can support certain kinds of reasoning. They 
are increasingly used in association with basic biology vocabulary resources as 
tools for clinical and translational research, which are reviewed next.

19.5.6  The Gene Ontology and OBO Foundry Ontologies

We focus here on ontologies within the OBO Foundry, as these ontologies are being 
developed with the intention of broad interoperability and of their joint use for 
computation. Although there are still gaps in the domain jointly covered by Foundry 
ontologies, there is steady progress towards broad coverage of the biomedical 
domain, including both basic biological and clinical entities.

To fully support informatics-driven infectious disease research, prevention, and 
treatment, vocabulary resources that cover physiologic and pathologic entities are 
needed, and within each of those categories, resources are needed that cover: objects, 
such as molecules and cells; qualities, functions, and roles of the objects; and pro-
cesses. The domain of physiologic objects is already well covered within the OBO 
Foundry by ontologies such as the many anatomy ontologies, the Cell Ontology, the 
Protein Ontology, and the GO Cellular Component Ontology. In addition, the 
domains of physiologic processes and molecular functions are also well covered by 
the GO Biological Process Ontology and the GO Molecular Function Ontology.

However, there are important gaps in the current coverage of the infectious 
diseases domain by OBO Foundry ontologies. In particular: terms for population-
level processes, such as the epidemiological spread of disease; terms for cellular 
functions, such as the presentation of antigen to naïve T cells; terms for pathologi-
cal anatomical entities, such as granulomas, and pathological processes, such as 
hematogenous seeding; terms for roles, such as host, pathogen, vector, carrier, and 
reservoir; terms for qualities, such as immunocompromised and virulent; and terms 
for relevant clinical entities, such as clinical phenotypes. In addition, important 
information is not captured, even about the entities already represented in Foundry 
ontologies, due to the restricted set of relations currently used. There are, however, 
large consortia of individuals committed to the development of Foundry ontologies, 
including the development of a set of ontologies developed specifically for the 
coverage of the infectious diseases domain (described below). Thus, we anticipate 
good coverage of the relevant entities in the near future.

Previous evaluations of the GO’s implementation and underlying formalism found 
flaws (Smith et al. 2004; Kohler et al. 2006; Smith and Kumar 2004), but the GO 
Consortium has responded by working to educate curators and make the necessary 
changes to the GO ontologies. For example, efforts are under way to create genus-differ-
entiate definitions (Rosse and Mejino 2003) for all terms, to standardize naming conven-
tions, to utilize rigorous definitions of the GO’s two relations, is_a and part_of (Smith 
et al. 2005), and also to add further relations, including relations spanning GO’s three 
constituent ontologies. Development of OBO Foundry ontologies, including revisions 



390 L.G. Cowel and B. Smith 

and expansion to the GO, adheres to a set of guidelines (http://www.obofoundry.org/crit.
shtml) that include the features outlined above and are designed to maximize the long-
term utility of Foundry ontologies, in particular for computational applications.

19.5.7  Inadequacy of Current Resources

The existing vocabulary resources in medicine, such as SNOMED-CT, and many of the 
other source terminologies collected by the UMLS are highly valuable for purposes of 
data retrieval. However, they were independently developed by separate specialist 
groups, and thus manifest a low degree of interoperation. They use different naming 
conventions, different modes of classification, different relations, and different formal-
isms. Moreover, each has its own independently derived technical implementation. The 
resulting vocabulary resources are therefore inadequate for purposes of computational 
and translational medicine; their representations are lacking in both the needed formal 
rigor and in their coverage of the relevant biological domains. They fall short as cross-
domain applications requiring high precision because they employ uneven standards of 
rigor. Thus, any information resource created using terms from these terminologies 
contains insufficient formalism for the sorts of reasoning applications needed for future 
biomedical and clinical research and translational medicine. Furthermore, the represen-
tation of information about the immunobiology and pathogenesis of infectious diseases 
has thus far been neglected in these terminologies, and this is so even for SNOMED-CT, 
currently the medical terminology with the broadest coverage.

The medical vocabulary resources are also marked by a focus on billing, hospital 
management and liability issues, and hence by a centrality in their organization on 
findings, observations, and procedures, with associated epistemological problems. 
These factors hinder their interoperability with counterpart vocabulary resources 
developed in the basic biological sciences, where approaches to developing com-
putable vocabulary resources have been developed and tested to a larger degree 
than in the clinical realm, primarily because the biological data are more highly 
structured and more readily accessible to researchers.

Biologically focused ontologies and terminologies accordingly employ a more 
rigorous formalism than do the medical terminologies. Even here, however, the 
biological content relevant to our purposes is lacking. Formal, computable repre-
sentations of information about infectious diseases, immunology, and disease 
pathogenesis are thus still needed.

19.6  The Infectious Disease Ontology Consortium

The last five years have seen a surge of interest in biomedical ontology, yet broad 
coverage, computable vocabulary resources for the infectious diseases domain are 
lacking. This is resulting in both an urgent need for ontology development in this 
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field and there is an opportunity for a coordinated, community-wide development 
effort producing broad interoperability across the disease-specific specialties and 
across the clinical care, public health, and biomedical research domains.

To provide the foundation for such a community-wide ontology development 
effort, we have established a methodology for the development of ontology mod-
ules that together cover the entire infectious disease domain (http://www.infec-
tiousdiseaseontology.org). The methodology relies on the use of a general IDO that 
serves as a core for the development of domain-specific extensions (e.g., tubercu-
losis). This methodology offers many benefits. The core IDO ensures interoperabil-
ity between the domain-specific extensions, while the modular approach allows for 
each module to be developed and maintained by researchers expert in that domain. 
The division of labor allows for rapid progress toward the needed set of ontologies, 
ensures the biological accuracy of the modules, and increases the likelihood of the 
broad adoption of the ontologies by the infectious disease research community.

IDO and its extensions are being built by relating terms from OBO Foundry ontolo-
gies using relations from the Foundry’s relation ontology where possible, and creating 
new terms and relations as needed. There are many benefits from building IDO and its 
extensions from OBO Foundry ontologies. In addition to the formalism underlying 
Foundry ontologies subsequently ensuring their support for sophisticated computation 
both within and between ontologies, building from Foundry ontologies means exten-
sive use of existing ontology resources, both eliminating redundant effort and provid-
ing a significant head-start to ontology development. By building on OBO Foundry 
ontologies, IDO and its extensions are automatically interoperable with other ontolo-
gies that also build from Foundry ontologies as well as with the large information 
resources, such as UniProt and others mentioned above, that use Foundry ontologies 
for their wide base of existing annotations. Finally, as OBO Foundry ontologies, and 
in particular GO, are widely used, the use of Foundry ontologies in constructing IDO 
and its extensions improves the chances that IDO and its extensions will be accepted 
by the biological ontology and database communities.

To facilitate participation in the development and use of the infectious disease 
ontologies, we have established an Infectious Disease Ontology Consortium. In 
addition to development of the core IDO, consortium members are developing 
extensions for malaria, dengue fever, Staphylococcus aureus bacteremia, tubercu-
losis, brucellosis, influenza, HIV, and infective endocarditis. The Vaccine Ontology 
described earlier is also being developed as an IDO extension.

The IDO extensions are being tested for interoperability and for their use in a 
variety of computational applications. In response to these tests, the ontologies are 
refined for continued improvement. For example, the Vaccine Ontology is being 
applied to text-mining within the VOLIN project; the Staphylococcus aureus bacter-
emia ontology is being applied to the prediction of disease genes; the influenza ontol-
ogy is being applied to influenza surveillance within the context of the Centers for 
Excellence in Influenza Research and Surveillance program; and the Dengue fever 
ontology is being utilized with the Dengue Decision Support System (DDSS).

The DDSS project (http://www.rams-aid.org) is the most developed and best 
demonstrates the long-term potential of computing with ontologies. The goal of the 
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DDSS is to guide the implementation of locally appropriate Dengue and Dengue 
vector control programs. The DDSS makes use of the Mosquito Insecticide 
Resistance Ontology (http://www.obofoundry.org/), the Vector Surveillance 
Ontology, the Vector Control Ontology, and the Dengue ontology.

19.7  Conclusions

Here, we have described the various types of vocabulary resources used to support 
informatics. We have emphasized the formal features of ontologies that enhance 
their utility for informatics applications relative to other types of vocabulary 
resources. We have discussed the current uses of vocabulary resources with a par-
ticular focus on the use of ontologies in the domain of infectious diseases. We have 
included a brief review of existing vocabulary resources relevant to the infectious 
diseases domain and have found that they are lacking in terms of their support of 
computational applications and translational medicine. We have described the 
Infectious Disease Ontology suite of ontologies and now invite all interested parties 
to participate in the development, testing, and refinement of these ontologies.
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20.1  Introduction

Infectious diseases are still among the major causes of morbidity and mortality 
worldwide. Current estimates are that each year – mainly in developing countries – 
500 million people become ill and more than 1 million die from malaria; 2 million 
of the 33 million people living with human immunodeficiency virus (HIV) infection 
die of acquired immune deficiency syndrome (AIDS); and 1.7 million of the 
14 million with active tuberculosis (TB) die from it (WHO 2000, 2007, 2009). 
Millions of children, particularly, die each year from respiratory and diarrheal 
diseases, the rates of which are largely determined by political, socioeconomic and 
environmental factors. Although there has been a progress in the control of vaccine 
preventable diseases in developing countries, vaccines for malaria, TB and HIV/
AIDS remain elusive and increasing antimicrobial resistance makes treatment diffi-
cult, even when it is available.

In industrialized countries, food-borne, respiratory and healthcare associated 
infections (HAIs) cause significant excess morbidity, mortality and healthcare 
costs. In the USA each year, an estimated 1.7 million HAIs cause ~100,000 deaths; 
76 million food-borne diseases lead to 5,000 deaths. Many of these infections and 
deaths could be prevented if evidence-based control measures were properly imple-
mented (Mead et al. 1999; Klevens et al. 2007). Clearly “smarter” strategies are 
needed to control communicable diseases.

Modern technology has enabled large scale screening for human genomic mark-
ers of susceptibility or resistance to infection and comparative studies of microbial 
genomes and is providing new knowledge about relationships between humans and 
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disease-causing microbes. This knowledge will reveal new targets for vaccines, 
antimicrobial agents, diagnostics and disease surveillance, which can be exploited 
to improve disease prevention, control and management.

Because infectious (or communicable) diseases affect communities – rather than 
merely independent individuals – new strategies to control and prevent infection 
involve complex relationships within and between populations. The disproportion-
ate burden of communicable diseases among the most disadvantaged populations 
provides a challenge for new technology to improve disease prevention and control 
where conventional strategies have failed.

20.2  Infectious Diseases Ethics

The emergence of the discipline of human bioethics in the 1950s and 1960s coincided 
with a prevalent (but, with hindsight, unwarranted and dangerous) belief that the 
problems of infectious diseases had been solved by sanitation, immunization and 
antibiotic therapy. The much-quoted pronouncement that “it is time to close the 
book on infectious disease” is usually attributed to former US Surgeon General 
William Stewart. Although there appears to be no evidence that he ever actually 
said this, “the sentiment was certainly widely shared” at the time (Sassetti and 
Rubin 2007). This widespread complacency remained largely unchallenged 
throughout most of the twentieth century. It was dispelled by the unfolding of HIV 
pandemic and the plethora of other emerging and re-emerging infectious diseases 
that followed (or in some cases preceded) it, but it had already contributed to the 
gross neglect of infectious diseases by bioethicists (Smith et al. 2004; Francis et al. 
2005; Selgelid and Selgelid 2005). AIDS was a rare exception, but many of the 
ethical issues it raised – confidentiality, discrimination, patients’ rights and sexual 
freedom – were not specifically related to its status as an infectious disease.

Belatedly, this neglect is now being addressed; infectious diseases have at last 
come to the attention of bioethicists. During the twenty-first century, public health 
ethics has become a rapidly growing sub-discipline of bioethics, and much of the 
public health ethics literature has focused on infectious disease in particular. In 
addition to AIDS, attention has especially focused on severe acquired respiratory 
syndrome (SARS), pandemic influenza planning and issues related to bioterrorism 
(Reid 2005; Thompson et al. 2006; Miller et al. 2007). There has also been debate 
about the ethics of issues such as: intellectual property rights, relating to antimicro-
bial agents and their implications for the access to essential treatment of infectious 
diseases (Gupta et al. 2005) and the relationship between marketing of antimicrobials 
and the emergence of antibiotic resistance (Selgelid 2007).

Although infectious diseases are no longer the most common cause of death 
worldwide, they are still major contributors to illness, loss of productivity and prema-
ture death in developing countries and among poor and disadvantaged people every-
where, despite the long history of successful prevention and control. Communicable 
diseases have implications far beyond their effects on individual sufferers and their 
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immediate families. Because they can be rapidly fatal in previously healthy people 
and their spread is often unpredictable and indiscriminate, they can cause fear, panic, 
social disruption, political overreaction and victimization, out of proportion to the 
actual disease burden or risk (Smith et al. 2004). The explosive, but relatively short-
lived, spread and high mortality of SARS in 2003 led to international socioeconomic 
repercussions affecting tourism, trade and international relations and costing billions 
of dollars. Disproportionate responses are often exacerbated by the florid language 
used by media and politicians, with analogies to terrorism or war (“flesh-eating”; 
“silent killer”; “superbug”; “plague”; “attack”; “struck down”). The fact that many 
communicable diseases are preventable or can be successfully treated can provoke 
recriminations against individuals or institutions, which are perceived to have failed.

Infectious disease ethics occupies a position between the individualistic perspec-
tive of conventional bioethics and the traditionally more collective approach of 
public health and incorporates elements of both. The former emphasizes the right 
of individuals to make decisions about their health, based on their own interests or 
preferences (autonomy), limited only by the potential of those decisions to harm 
others (the harm principle). The latter is based on utilitarian principles, whereby 
decisions are determined by the best overall outcomes (in terms of aggregate and/
or average human well-being), even if some individuals may be disadvantaged as a 
result. Recently, Margaret Battin and colleagues have suggested a new approach – 
that ethical decision-making about infectious diseases should take place behind a 
Rawlsian “veil of ignorance”, a concept developed as the basis for making fair deci-
sions about distributive justice (Battin et al. 2009; Rawls 1971). They propose that 
patients with infectious diseases – and indeed anyone – can be seen, actually or 
potentially, as both a victim and a vector of infection (Battin et al. 2009). Behind 
the “veil of ignorance”, the decision-maker does not know her actual status – victim 
and/or vector – but acknowledges that she could be, or could become, either.

Infection affects communities, not just individuals; everyone is both part of a 
human social network and host to billions of micro-organisms which can spread 
from person to person. Most of these microbes are benign or even essential to health, 
but a minority are potentially harmful to people carrying them or to others with 
whom they interact. Levels of susceptibility to infection vary between individuals, 
as determined by, inter alia, where and how they live, their age, underlying health, 
nutritional status, life-style choices and genetic makeup and the measures they take 
to protect themselves, such as immunization. No one can be reliably protected from 
infections due to respiratory viruses, food-borne bacteria or pathogens spread by 
mosquitoes. Like the patient with fever and cough or diarrhea, each of us is a poten-
tial victim and a potential vector. Ethical infectious disease policy will respect the 
interests of both patients with infections – who want care and protection, without 
discrimination – and of the rest of the community who seek protection from infec-
tion. The latter include not only apparently healthy individuals, some of whom are 
unwitting carriers of potentially dangerous pathogens, but also people at increased 
risk of infection, because of underlying disease or genetic predisposition.

In this chapter we explore how recent advances in microbial and/or human 
genomics and modern information technology can improve our understanding of 



400 G.L. Gilbert and M. Selgelid

communicable diseases and provide better strategies to manage, prevent and control 
them. We try to anticipate and suggest ways to meet the social and ethical challenges 
that will arise. Some ethical issues, such as those relating to research in developing 
countries or human genomics, are neither new nor specific to communicable 
diseases and have been debated at length. Others, which arise from application of 
new microbial diagnostics and pathogen profiling, enhanced communicable disease 
surveillance and informatics, have been explored less extensively, if at all. We examine 
issues such as informed consent, privacy and confidentiality, autonomy, resource allo-
cation, quality control, compliance with evidence-based practice and disease surveillance, 
prevention and control, in these contexts, from behind a “veil of ignorance,” by 
assuming that anyone could be victim or vector of infection.

20.3  Challenges in Infectious Diseases Genomics Research

20.3.1  Genetics and Disease Susceptibility

It is well established that susceptibility to infection varies between individuals and 
that a component of this variation is inherited (Cooke and Hill 2001). For example, 
malaria parasites are known to have contributed, over millennia, to the evolution of 
the human genome, by selecting gene mutations, such as those causing sickle cell 
disease and glucose-6-phosphate deficiency (G6PD) that enhance survival of 
heterozygous carriers living in malaria-endemic areas (Daily et al. 2008). Differences 
in susceptibility to malaria and TB have been recognized between different but 
closely related ethnic groups (Modiano et al. 1996); and large epidemiological, 
twin and genetic studies have provided insights into the hereditable proportions of 
susceptibility or resistance to a number of infectious diseases. There are well docu-
mented associations between certain human leukocyte antigen (HLA) genes and 
susceptibility to severe malaria, rapid progression of HIV infection to AIDS, devel-
opment of overt TB disease or leprosy and hepatitis B carriage (Cooke and Hill 
2001). However, HLA genes account for only a small component of genetic suscep-
tibility to infection, which (like many other types of disease) is apparently deter-
mined by interactions between many different genes, acquired characteristics (e.g., 
nutrition, previous exposure) and environmental factors.

Sequencing of the human genome and advances in metagenomics have provided 
opportunities to search more broadly for genetic traits that contribute to infectious 
disease susceptibility and host–pathogen interactions that can be targeted by new 
vaccines or drugs. Genome-wide mapping and analysis of hundreds of polymorphic 
markers in family groups and matched case/control studies of diseases of interest 
are currently underway. The aim is to identify genomic regions linked to commu-
nicable disease risk. These studies are difficult, because the diseases most suited to 
this type of investigation are most common in the poorest countries with limited 
health (and research) infrastructure and whose residents are understandably wary 
of possible exploitation by researchers from rich countries (Cooke and Hill 2001).
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20.3.2  The Malaria Genomic Epidemiology Network

The MalariaGEN project illustrates some of the ethical challenges involved in 
human genomics research. It was established in 2005, with joint funding from the 
Gates Foundation and the Wellcome Trust. Members of this network of indepen-
dent investigators contribute to a central DNA repository and to databases of core 
phenotypic data. One of the goals of MalariaGEN is to determine why only a small 
proportion of children develop life-threatening malaria, in communities where all 
children are repeatedly infected with the malaria parasite, Plasmodium falciparum. 
Researchers are using the technique of genome-wide association (GWA) analysis, 
which involves mapping half a million or more single nucleotide polymorphisms 
(SNPs) in thousands of individuals – without the need for whole genome sequenc-
ing – to identify sequence variants that correlate with disease risk, using statistical 
inferences based on common patterns.

The study has the potential to benefit millions of children but involves the 
complex methodological, social and ethical challenges which are common to 
any clinical research in developing countries or human genomics research any-
where. The involvement of numerous independent investigators, in rich and poor 
countries, from disciplines as varied as clinical and community medicine to 
state-of-the-art genomics and bioinformatics, requires a balance between stan-
dardization and uniformity of practice, on the one hand, and the need for sensi-
tivity to diverse cultural settings, on the other (The Malaria Genomic 
Epidemiology Network 2008).

Informed consent and privacy. Children with severe malaria often die within 
hours of the admission to hospital. This raises logistical issues of recruiting sub-
jects, classifying clinical phenotypes correctly and collecting specimens for genetic 
studies, without compromising medical care in the resource-poor settings where 
most cases occur. Language and cultural barriers complicate effective communica-
tion with the parents of potential research participants. It can be difficult to convey 
the distinction between diagnosis and medical research. Unfamiliar concepts must 
be explained in the local language – perhaps through the use of metaphors drawn 
from local experience – but even then there may be misunderstandings. Guidelines 
for obtaining informed consent, without creating undue anxiety, are being devel-
oped and carefully evaluated by MalariaGEN researchers, in collaboration with 
local communities.

Actual and perceived protection of the anonymity of research participants and 
their communities is critical to the development of trust between researchers and 
participants. In the MalariaGEN project, local databases which contain both 
phenotypic and genotypic data are designed to comply with appropriate ethical 
guidelines to ensure data security. A data access committee oversees research-
ers’ access to individual genomic data. Qualitative research is underway to 
identify the concerns, of community members and other stakeholders, about the 
collection and use of ethnicity data in relation to genomic epidemiology, which 
could result in stigmatization if misused. Although it is commonly claimed that 
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the use of de-identified data cannot harm research subjects, this is not necessarily 
so; research findings can sometimes lead to the development of policies or 
behaviors that are harmful to (e.g., ethnic) groups of which the subject is a mem-
ber. This kind of risk should be explained to parents of potential research sub-
jects as part of the informed consent process. Guidelines are essential for the 
publication and release of ethnicity data to provide maximum scientific benefit 
while respecting and protecting the interests of participants and their 
communities.

Ownership of data and intellectual property. When many different research 
groups and parent institutions are involved, ownership of data and intellectual prop-
erty is complex and potentially contentious. There is often institutional pressure on 
researchers to patent any discoveries with the potential for commercial develop-
ment. The principle agreed by MalariaGEN is that intellectual property protection 
will be sought only if it will facilitate the translation of research results into afford-
able health benefits for the populations most in need. Any resulting financial gains 
will be returned to the participating communities.

20.3.3  The Human Microbiome Project

The Human Microbiome project (McGuire et al. 2008) is another multicenter pro-
gram, which entails familiar ethical, legal, and social challenges in a novel setting. 
It is an investigation of the relationship between humans and microbial societies 
that inhabit all body surfaces and play a vital role in human health. It will establish 
a database of microbial DNA and RNA, based on sampling of 15–18 mucosal and 
skin sites from about 250 healthy individuals aged between 18 and 40 years of age, 
about half of whom will provide a follow-up set of samples within 12 months. 
Blood will be collected and stored for human genome and immune response inves-
tigation from a subset of around 10 participants. Extensive demographic and medical 
historical data will be collected.

Informed consent, respect for autonomy, and communication. Disclosure of the 
possible risks involved in providing samples for this project is difficult because of 
the current dearth of knowledge about the human microbiome and what future 
research questions may arise from linking microbial with human genomic data. As 
in other areas of research involving biobanking, there is controversy as to whether 
participants should be asked to give consent only for specific investigations already 
planned or blanket consent for future research. Almost by definition, blanket consent 
involves consent to research that neither subject nor researcher may, at the time it 
is given, be able to understand or predict. It has been argued, however, that request-
ing general consent is acceptable so long as participants are well informed about 
the uncertainties, and there is a strong governance structure to protect the privacy 
of participants and ensure that future research is consistent with their expectations 
(Caulfield et al. 2008). This would generally involve the appointment of an inde-
pendent multidisciplinary monitoring body, including lay representatives, to 
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promote public trust and ensure respect for participants’ autonomy; therefore, blanket 
consent would be limited to future research approved by this body.

It is likely that analysis of the preliminary results of this project will identify 
characteristics of individual microbiomes, which could affect the health of the par-
ticipant (e.g., risk of obesity or type 2 diabetes or changes due to medical interven-
tions, such as antibiotic therapy). The point at which information, which could 
affect lifestyle or medical decisions, should be shared with participants or their 
physicians will be controversial. The study will almost certainly identify healthy 
individuals who are infected or colonized with potential pathogens that could cause 
future disease, under circumstances which are currently unpredictable and likely to 
vary between individuals. Should participants be told that they are potential victims 
or vectors if the level of risk is unknown? Researchers are unlikely to be qualified 
to manage potential clinical issues; at what stage should a medical practitioner be 
consulted, if at all?

The answers will depend on the validity and clinical significance of the find-
ings and whether the participant has expressed a desire to know the results. For 
example, identifying nasal colonization with Staphylococcus aureus would 
require a different response from the discovery that the participant has asymp-
tomatic genital infection with a sexually transmissible pathogen, which is a 
potential risk to others. If there were no apparent risk (e.g., of infection) to others, 
the participant’s “desire to know” may be a key consideration. For this kind of 
research, discussion and negotiation on details regarding disclosure of findings to 
the subject and/or others should arguably become a more important part of the 
informed consent process.

Data confidentiality and security. Confidentiality of individual genomic and 
microbiomic data will compete with the need for researchers to share data and will 
depend on the extent to which data can be linked to individuals. For the human micro-
biome project, microbial DNA sequence data will be coded and released into publicly 
accessible databases, but clinical information and individual human DNA data will be 
coded and stored in controlled-access databases for later correlation with microbial 
data. Only aggregate human genomic data will be released into public databases. 
Whether, how, and by whom data are linked remain controversial because of the 
existing uncertainty about the extent to which microbial data can reveal individual 
identity and could be used to stigmatize individuals or groups. These are among the 
risks that will be discussed with participants when seeking informed consent.

Representativeness and justice. In most clinical research projects, subjects are 
selected and so not truly representative of the whole population. This means that 
the risks and potential benefits are not equally shared and the results may not be 
generalizable. The human microbiome project excludes children and older adults, 
to ensure that interpretation is not complicated by metabolic changes related to 
growth, puberty, or aging. However, subjects are chosen to include as many racial 
and ethnic groups as possible even though this could risk identifying false associa-
tions due to unrecognized confounding factors. While these problems are often 
unavoidable, they must be recognized and accounted for in the data analysis and 
conclusions.
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20.4  Application of Pathogenomics and Informatics Research 
to Communicable Disease Diagnostics and Prevention

Over the past half-century or so, the natural histories of many human infectious 
diseases have changed, often fundamentally and often as a result of deliberate or 
unwitting human intervention. For example, immunization has (actually or almost) 
eliminated a few (smallpox, polio, and measles) and has controlled many other 
diseases (diphtheria, rubella, tetanus, hepatitis B). However, although vaccines are 
available, they have been less successful in controlling some diseases (e.g., pertus-
sis, TB, influenza), and immunization remains elusive for many (e.g., most respira-
tory and diarrheal diseases, malaria, and HIV infection). Antimicrobial agents are 
available for the treatment of many types of infection but, with few exceptions, their 
efficacy has been compromised by the development of resistance in target patho-
gens. On the other hand, changes in land and water use, agriculture, animal husbandry, 
transportation, climate, or lifestyle, as well as increasing numbers of people who 
are immunocompromised because of AIDS or immunosuppressive drug therapy, 
have led to the emergence of new and opportunistic human pathogens which were 
once regarded – if they were recognized at all – as animal, rather than human, pathogens 
or as harmless commensals.

Recently, studies of microbial genomes have helped explain many of these phe-
nomena at the molecular level and have led to changes in anthropocentric concepts 
of pathogens and commensals. In future, they will reveal new ways to protect 
humans from illness and death by identifying new targets for antimicrobial agents 
or vaccines. At least one genome (and often several) of all significant human patho-
gens has now been fully sequenced. Comparison of genomes of different strains of 
the same and related species can provide extensive information about microbial 
evolution and the relative importance of different types of genetic variation (e.g., 
mutation, insertion, deletion, duplication, recombination, or lateral transfer) and 
how they occur. We now know that many of the genes that determine virulence or 
antibiotic resistance are transferred on mobile genetic elements (plasmids, bacterio-
phages, transposons, pathogenicity islands) between different strains or species; 
this can dramatically amplify the effects of selection pressures (see Chap. 12 for 
details). These mobile elements can be exploited in the development of diagnostic 
and surveillance tools, but they also complicate the interpretation of test results and 
attempts to control disease transmission.

20.4.1  Diagnostics and Antibiotic Resistance: Ethical 
Implications

Increasingly sophisticated “smart” diagnostics, which are currently under development, 
will potentially allow more sensitive and specific pathogen detection and profiling 
(Sintchenko et al. 2007) which could significantly improve communicable disease 



40520 Populations, Patients, Germs and Genes: Ethics Of Genomics and Informatics 

diagnosis, management, and control. If their benefits are to be fully realized, the 
predictive values of new tests (i.e., the ability to predict whether or not the patient 
has the infection which the test is intended to diagnose) must be thoroughly evaluated, 
with reference to clinical outcomes not just through comparisons with existing 
diagnostic methods. Moreover, the evaluation should not end with their introduc-
tion into routine practice.

Currently, the microbiology laboratory’s task is to identify a relevant pathogen 
in a clinical specimen and report it, with an antibiotic susceptibility profile, if 
appropriate. Conventional diagnostic methods are relatively slow, and the interpre-
tation of results is often subjective. For example, whether or not a pathogen is 
identified and reported in a culture from a site with normal flora may depend on the 
skill and experience of the laboratory scientist. The interpretation of the result 
depends on clinical information, which is often not available to the scientist, and 
technical information which may not be available to the clinician – such as the type 
and quality of specimen, diagnostic method used, and the pathogen strain. The 
clinician’s interpretation of the result will often determine the antibiotic choice, but 
if this is inappropriate, the outcome may be compromised (Khatib et al. 2006; 
Chapman et al. 2008).

In the near future (and to some extent already), multiplexed nucleic acid detection 
(NAD) systems, which target 10s, 100s, or even 1,000s of highly specific nucleic 
acid sequences, will identify, in virtually real-time, any of a large number of pos-
sible pathogens relevant to the site of the specimen or the clinical syndrome. At the 
same time, they will also determine whether the pathogen identified carries specific 
virulence determinants or antibiotic resistance genes and/or whether its profile is 
similar to those of pathogens isolated from other people (a cluster of infections) 
(see Sect. 20.4.2). New or unusual pathogens can be included in these systems at 
little or no extra cost, which will save time by identifying less common or less obvi-
ous pathogens sooner than is currently possible.

In a clinical research setting, the ability to study the prevalence and clinical 
associations of many different species or genetic markers simultaneously will pro-
vide new knowledge about the etiology, epidemiology, and pathogenesis of infec-
tious disease syndromes and interactions between species. Multiplexed NAD 
systems will allow inclusion of species which are usually harmless commensals but 
occasionally are potential pathogens, copathogens or opportunists (Wang et al. 
2008; Masue et al. 2007; Mckechnie et al. 2009). With appropriate analysis of clini-
cal, epidemiological, and microbial data, this will help define their role and the 
circumstances, if any, in which they cause disease.

Properly designed clinical research studies (currently, a rarity in diagnostic micro-
biology) will clarify the circumstances in which the detection of virulence or antibiotic 
resistance markers in mixed flora is significant (Table 20.1). For example, genes that 
encode resistance to newer b-lactamase and carbapenem antibiotics or vancomycin are 
often carried in commensal gut flora, but can be transferred to virulent Gram negative 
bacilli (such as Enterobacteriaceae) or enterococci, respectively, under selection pres-
sure from antibiotic therapy (Chapman et al. 2008; Iredell et al. 2006). Multiresistant 
Enterobacteriaceae or vancomycin resistant enterococci (VRE) are much more likely 
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than commensal or environmental bacteria to cause disease or spread to other patients 
and are more difficult to treat than their antibiotic susceptible counterparts.

However, even after careful evaluation, in a research setting, there are pitfalls in 
the translation of new diagnostic methods into practice. Although the interpretation 
of conventional microbiological results is often empirical and subjective, it is based 
on years of experience. Faster and more sensitive methods will provide more infor-
mation, more timely and reproducible results and detection of a broader range of 
pathogens than conventional methods; they may uncover new infectious disease 
syndromes or identify previously unrecognized carriers. Confirmation that a new 
(and usually more expensive) assay will improve clinical outcomes requires ongo-
ing prospective analysis of reliability and cost-effectiveness, which is difficult in a 
diagnostic laboratory setting. However, without it, the use of new assays could lead 
to unnecessary therapy or medicalization of “normal” conditions.

For example, screening patients for carriage of multiresistant organisms, such as 
methicillin resistant Staphylococcus aureus (MRSA) using rapid NAD methods, can 
improve hospital infection control by allowing more timely and appropriate isolation of 
patients and can guide appropriate antibiotic therapy. However, the sensitivity and 
specificity of some NAD methods differ from those of conventional methods, leading 
to potentially adverse consequences. Failure to identify some carriers (Thomas et al. 
2008) will increase the risk of transmission to other patients. On the other hand if NAD 
assays identify more carriers than conventional methods, it can be difficult to distin-
guish increased sensitivity from false positive results. Either way, it will mean that more 
patients will be isolated, possibly unnecessarily (Humphreys 2008), which is costly, can 
adversely affect clinical care (Stelfox et al. 2003) and may cause unnecessary anxiety.

These uncertainties emphasize the importance of not only carefully evaluating the 
performance characteristics of a new test, but also of defining its purpose and clini-
cal impact. Is it performed for the benefit of the patient on whom it is performed or 
for the benefit of other patients? While benefits to other patients may justify screen-
ing and isolation of patients who are colonized with multiresistant organisms, the 
degree of benefit, cost-effectiveness, and possible alternative strategies to achieve 
similar results must be assessed (Jeyaratnam et al. 2008; Wenzel et al. 2008; 
Buhlmann et al. 2008). A key question in public health (and infection control) ethics 
is: how great must the expected danger to public health (or to hospital patients) be 
to justify involuntary isolation of an individual who is a potential source of danger? 
Assuming that the appropriate metric of danger to public health is the “disability-
adjusted life year” (DALY), for how many DALYs (x) would confinement of a per-
son (e.g., a carrier of MRSA) for time t be justified, assuming that the free movement 
of that person could be expected, on average, to result in x or more DALYs?

The effects of changes in test turn-around times, reliability and predictive values, 
on patient care should be critically assessed, as new diagnostic methods are introduced. 
As part of this assessment, the point at which clinical research – with its ethical safe-
guards such as the informed consent of subjects – merges into routine practice will 
need to be defined. We need to develop standards for interpretation and reporting of 
the results of new diagnostic tests, in consultation with clinicians, to improve consis-
tency. At present, introduction of new diagnostic and screening methods generally 
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occurs independently in individual laboratories; test evaluation is often limited to 
comparison with existing methods and continued satisfactory performance in quality 
assurance programs, as required by accreditation bodies. Differences between methods 
used by different accredited laboratories suggest that some are “better” than others, but 
this information is not readily accessible to clinicians or patients and the criteria on 
which choices are based are often poorly defined. New tests are usually more expensive 
that conventional methods. It is usually assumed – and often true – that any 
increased costs are justified by better patient outcomes and savings elsewhere, but 
formal cost-effectiveness studies that are needed to confirm this are rarely done. 
Even if extensive evaluation demonstrates that a new method can improve patient 
outcomes and/or reduce costs, introduction of the test is often prevented or delayed 
because of the difficulty of transferring costs (and savings) between cost centers.

In summary: the widespread application of the new science of pathogenomics to 
infectious diseases diagnosis – with appropriate prospective evaluation of the clinical 
impact – should not only improve outcomes, but also provide a better understanding 
of many aspects of human infection and disease such as:

The spectrum of diseases caused by known pathogens•	
The possible infectious etiology of diseases of unknown cause•	
The ecology of human microflora and factors that affect them•	
The incidence and significance of colonization with different strains of known •	
pathogens and of carriage, by commensals or opportunistic pathogens, of viru-
lence or antibiotic resistance genes
Potential interactions that may affect virulence, simultaneous carriage of combi-•	
nations of pathogens, and/or commensal species
The routes and mechanisms of transmission of pathogens between people and of •	
genes between different microbial strains or species

20.4.2  Strain Typing for Pathogen Tracking

Surveillance is essential for disease control. It has been described as “the eyes of 
public health” (Fairchild et al. 2008). Although laboratory-confirmed cases of 
infectious diseases represent a small minority of notified cases (and an even smaller 
proportion of all cases), laboratory notification is more specific, reliable, and con-
sistent than clinician notification. For many notifiable infectious diseases, simple 
species identification of the pathogen is inadequate and strain typing is required to 
monitor trends or to investigate outbreaks. However, until recently, the efficacy of 
surveillance has been limited by the fact that conventional strain typing methods are 
relatively slow, insensitive, and often performed only by specialized public health 
laboratories. Recent developments in microbial genomics have led to the develop-
ment of faster and more discriminatory methods (see Chap. 2, 4, and 17), but their 
introduction has been limited and haphazard, in part because of inadequate recogni-
tion of the importance of improved strain typing methods, for disease control.
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Delays of 2–3 weeks, in obtaining strain typing results mean that recognition of 
outbreaks is delayed and subsequent investigation of the cause is compromised. For 
example, in cases of food-borne disease, it may be impossible to identify a common 
food source, because victims cannot remember what they ate weeks before. 
Outbreaks involving large geographic areas, which are investigated in different 
jurisdictions and laboratories, may only be recognized after very large numbers of 
people have been affected, if at all.

In the early stages of the 2009 “swine flu” outbreak, there was no rapid strain 
typing method to distinguish the novel influenza H1N1 strain from other circulating 
H1N1 seasonal influenza A strains. This meant that many recent travelers to 
Mexico, where the outbreak began, or to the USA or Canada, where human-to-
human transmission was reported early, were isolated for many days, awaiting 
results from the few reference laboratories able to identify the strain (initially, only 
after it was isolated in cell culture). However, sequences of several relevant antigen 
genes (hemagglutinin [H], neuraminidase [N], and polymerase [P]), from “swine 
flu” H1N1 strains isolated in different parts of the world, were published (http://
www.ncbi.nlm.nih.gov/genomes/FLU/SwineFlu.html) within a very short period. 
This meant that culture-independent strain identification and typing methods soon 
became available to diagnostic laboratories around the world and played an impor-
tant role in subsequent surveillance and control.

The availability of culture-independent diagnostic and strain typing systems for 
many pathogens of public health importance will make it possible for diagnostic 
laboratories to simultaneously identify relevant pathogenic species and their strain 
profiles, in a single assay, and report the results to public health authorities, within 
hours. Faster recognition and investigation of outbreaks will limit the number of 
cases and reduce the risk of new outbreaks. Some rapid strain typing methods are 
already available and in use. However, like diagnostic methods, new strain typing 
methods need to be carefully evaluated to ensure that their use translates into better 
public health outcomes. Unfortunately, the variety of different methods, the speed 
with which they are already being introduced, and limited funding for surveillance 
studies make prospective evaluation of risks, costs, and benefits, difficult. In addi-
tion, prospective evaluation will be impracticable without easy access to patient 
demographic, clinical, and outcome data and will be impracticable without sophis-
ticated informatics tools to analyze these data.

20.5  Information Science and Technology for Patient 
Management and Communicable Disease Control

20.5.1  Health Information Systems

Rapid advances in medical science and therapeutics and increasing specialization 
have increased the demand for more accessible diagnostic, epidemiological, and 
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therapeutic information, interpretive reporting of diagnostic test results, and clinical 
decision support systems. Electronic patient records (EPRs), networked with 
relevant clinical databases and information systems, are a logical response to these 
needs and are predicted to improve the quality, efficiency, safety. and reduce the cost 
of healthcare (Hillestad et al. 2005). They could also significantly improve disease 
surveillance and control (Friedman 2006; Chaudhry et al. 2006) and population 
health.

Linking clinical data from EPRs with microbiological results will enhance and 
personalize clinical decision support, e.g., for antibiotic prescribing (Sintchenko 
et al. 2008; Thursky et al. 2007). Linking clinical information with strain typing 
data will allow comparison of strains from different patients, in order to identify 
linked cases or outbreaks and to define their limits in space and time, much more 
rapidly than is currently possible (Gallego et al. 2009). Prospective surveillance of 
aggregated clinical, diagnostic, pathogen profile, and outcome data will help iden-
tify previously unrecognized risk factors or microbial strains which are associated 
with more severe disease or adverse outcomes. They will provide a basis for risk 
assessment tools to alert public health or infection control practitioners to the need 
for quarantine or investigation of contacts. The elements of an integrated clinical 
and public health information system may include:

On-line laboratory test order entry and reporting systems•	
Rapid, microbiological diagnosis and strain typing•	
Access to components of individual EPRs, including demographics and relevant •	
medical history (e.g., medical or environmental risk factors, presenting com-
plaint, and laboratory test results)
Data mining/analysis software that can identify and interpret epidemiological •	
links
Risk assessment and decision support systems to guide public health or infection •	
control action
Online prescribing and decision support to guide antibiotic therapy, if required, •	
based on laboratory results and clinical history

20.5.2  Practical Application

Imagine this (future) scenario (only some components of which are currently plau-
sible or - some would argue - even desirable):

A patient presents with symptoms of an infectious disease; the doctor records •	
the clinical findings in the EPR and orders diagnostic tests online.
An informatics program with appropriate scanning software will scan the EPR •	
for relevant demographic and medical risk factors and may prompt the doctor to 
seek additional information (e.g., about recent travel, diet, or contacts).
The program will analyze the clinical data, provide a differential diagnosis and •	
a list of appropriate laboratory tests, and recommend empirical antibiotic therapy, 
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if indicated, based on therapeutic guidelines, local susceptibility data and the 
medical history. (Artificial intelligence systems capable of making diagnostic 
and management decisions are still largely aspirational).
The doctor will confirm, change, or override the laboratory test orders or pre-•	
scription before transmitting them, electronically, to the laboratory and phar-
macy, respectively.
A pharmacy information system will establish that the drug dose is correct and •	
will check for possible interactions with other current medications before the 
drug is dispensed and ready for the patient to collect, along with a personalized 
information sheet about precautions and potential adverse side-effects.
The laboratory request form and a list of specimens required will be available •	
when the patient arrives at the specimen collection center; specimens will be 
delivered to the laboratory and processed rapidly.
If a relevant pathogen is identified, appropriate strain typing and/or antibiotic •	
susceptibility testing will be performed. A personalized laboratory report, with 
interpretative information, will be generated and sent immediately or after 
review by a clinical microbiologist.
The treating doctor’s report may include a modified recommendation for treat-•	
ment (e.g., a different antibiotic, based on the pathogen susceptibility or a rec-
ommendation to discontinue treatment); in some cases, a warning of potential 
complications (based on patient and pathogen profiles) will be added.
If the infection is notifiable a second report will be sent, automatically, to the •	
relevant public health authority. The strain profile will be compared with those 
of other strains in a database linked to similar laboratory databases within the 
same jurisdiction, country or, potentially, internationally.
This analysis will identify outbreaks and monitor the geographic and temporal •	
distribution of different strains in different populations, which may provide early 
warning of the emergence of new strains or detect potential vaccine failures. 
Spatial and temporal parameters for the detection of outbreaks due to the same 
strain will be modifiable to account for varying geographic areas or time periods 
from a few days to months or years.
If an outbreak is identified, the report may also list other individuals infected •	
with the same pathogen strain and any relevant medical or epidemiological risk 
factors (recorded in their EPRs) and suggest appropriate public health action or 
a possible common source or index case.

The use of integrated clinical and laboratory systems and informatics tools, 
linked to decision support systems, with continuous analysis and feedback of 
epidemiological, clinical, outcome and other data, could improve our understanding 
of disease epidemiology. It would enable assessment and improvement of the 
predictive accuracy (likelihood ratios) of diagnostic and pathogen profiling methods 
and the efficacy and cost-effectiveness of treatment and preventive interventions; it 
should improve clinical outcomes. Nevertheless, as with other novel health 
management systems, if there is inadequate validation or precautions against 
inappropriate use, it could lead to unnecessary anxiety, the stigmatization of 
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infected patients, unwarranted infringement of liberty (if coercive public health 
restrictions are inappropriately applied) and increased healthcare costs.

20.6  Ethical Implication of Improvements in Biosurveillance

20.6.1  Electronic Patient Records

EPRs are computerized medical records, which allow storage, easy retrieval, 
searching, and sharing of different types of medical and non-medical data (includ-
ing laboratory results). Many different EPR systems have been described but are 
still in limited use in hospitals and healthcare systems. Many potential benefits – 
including better medical care, reductions in medical errors and litigation, and sig-
nificant cost savings – have been claimed, but, so far, there is limited hard evidence 
to support the claims. A report commissioned by the Rand Corporation, in 2005, 
suggested that the introduction of EPRs could save >$US 80 billion in healthcare 
costs in the USA (Hillestad et al. 2005). However, this has been recently disputed 
by physicians from Harvard Medical School hospitals – where EPRs have been in 
use for many years – who claimed that, despite some real benefits of EPRs, the 
projected cost-savings and quality improvement were exaggerated (Groopman and 
Jartzband 2009). They expressed concern about the potential use of EPRs to gather 
evidence about costs, which could be used to limit the use of expensive medical or 
surgical interventions, and warned against the introduction of expensive technology 
without rigorous evaluation and evidence.

There has been very little analysis of the potential improvement in disease sur-
veillance by the use of EPR data (and, to our knowledge, none specifically related 
to communicable disease control). In paper-based medical systems, “privacy is 
protected by chaos” (Rothstein 2008), records are fragmented and often difficult to 
compile or locate. EPRs can facilitate the optimal use (mining, analysis, linkage) of 
data to improve health outcomes and save lives. To achieve this, EPRs would need 
to be universal (everyone has one), longitudinal (cradle – or womb – to grave) and 
networked with each other and with other information systems (Fairweather and 
Rogerson 2001); for example, in the USA, the Nationwide Health Information 
Network (NHIN) is being established to develop electronic formats that will make 
records of different types that are compatible and transportable across networks and 
across the country.

The characteristics which make EPRs most useful are also those that cause most 
public concern about the potential for inappropriate access and use. Patients will be 
reluctant to disclose intimate information, no matter what the potential public ben-
efit, if they fear that it could be used to their disadvantage by government officials, 
employers or insurance companies. Safeguards based on sound ethical principles 
will be needed to protect privacy and to prevent harm or disadvantage to individuals 
while promoting public health and gaining optimal benefit from limited public 
health resources.
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Despite increasing concern and legislation relating to the privacy of personal 
information (e.g., in Australia, the Federal Privacy Act, 1988 – http://www.austlii.
edu.au/au/legis/cth/consol_act/pa1988108/), health information is generally treated 
as a separate category of personal information (e.g., New South Wales [NSW] 
Health Records and Information Privacy Act, 2002 – http://www.lawlink.nsw.gov.
au/lawlink/privacynsw/ll_pnsw.nsf/pages/PNSW_03_hripact). If the use of health 
information for disease surveillance were to be expanded, there would be certain 
requirements for the protection of privacy, such as:

Development of ethical standards for the development, implementation, evalua-•	
tion and modification of bioinformatics software programs for the storage and 
analysis of patient data (Gotterbarn and Rogerson 2006)
Publicly debated, transparent and binding software and hardware standards to •	
protect privacy, confidentiality, integrity and security of data
Clearly defined principles governing access to identified data for the purposes of •	
disease surveillance or research, including by whom and under what circum-
stances access is allowed, how it will be monitored and under what circum-
stances the individual must either give consent or be informed that their record 
has been accessed

Breaches of privacy may be objective (i.e., resulting in fraud or denial of a service 
or of freedom) or subjective (i.e. resulting in second or third parties having access 
to intimate information, which may cause distress, without objective harm). 
These different consequences may need to be considered differently in assessing 
the risks associated with the use of EPRs. It has been suggested (Dyson 2008) 
that the best way to prevent breaches of privacy would be to allow individuals to 
control access to their own data. However, informed consent for the selective 
release of medical records (McKinney et al. 2005) would be difficult to obtain 
and is unlikely to be practicable if data are to be accessible in an emergency or 
for disease control purposes.

A number of standards exist already, including some designed to protect confi-
dentiality of data transferred across national borders in compliance with interna-
tional health-related applications e.g., International Organization for Standardization 
(ISO) 22857:2004 (Kalra and Ingram 2006).

20.6.2  Communicable Disease Notification and Surveillance

Even for communicable disease surveillance, some data can be de-identified and 
used to monitor trends in disease rates, to identify risk factors and to assess the 
effectiveness of public health interventions. However, communicable disease sur-
veillance often requires individual patient identification to allow contact tracing, 
outbreak investigation and the implementation of appropriate control measures and 
to determine the outcomes. For example, under the NSW Public Health Act, 1991 
(http://www.austlii.edu.au/au/legis/nsw/consol_act/pha1991126/), disclosure of 
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certain data is allowed, but there are strict principles governing the collection, 
storage, access and use of information. In practice, there is little public opposition 
to the notification of identifiable, personal information to health authorities for 
communicable disease surveillance, which is accepted as necessary in the public 
interest. However, this may be, in part, because current communicable disease 
surveillance systems are generally slow, insensitive, and nonspecific. They are rela-
tively ineffective in detecting, preventing, or interrupting disease outbreaks (Eng 
and Eng 2004) but also difficult for unauthorized individuals to access and use 
inappropriately. Thus, privacy is protected by “information friction” (Dyson 2008). 
The type of future networked EPRs and databases envisaged in the scenario above 
will be more effective than conventional systems, but potentially more at risk of 
abuse, with more serious consequences.

Protection of genetic or infectious diseases data is necessary to prevent objective 
breaches of privacy, such as harassment or stigmatization, which could lead to 
denial of insurance or jobs. However, improvements in disease control, based on 
efficient surveillance across large populations could not be achieved if large num-
bers of people refused to participate because of fear that results could be misused. 
Denmark has one of the most advanced EPR networks, which allows individuals to 
block information in their records. This option is reported to be rarely exercised but 
greatly valued (Rothstein 2008). At present, the disclosure of health information for 
public benefit is often regulated by laws that are so broad that, in practice, no limits 
are placed on their scope. EPR networks could, paradoxically, protect privacy more 
effectively, by allowing limits to be imposed on the scope of data that could be 
accessed. Scanning software could be programmed to select only information rel-
evant to a specific purpose, using ‘contextual access criteria’ – software algorithms 
which specify that, for an enquiry of type X, only data A, B, and C are needed.

Networking of EPRs and other information systems raises new issues relating to 
informed consent. For effective disease surveillance, all patient records would need 
to be accessible to data scanning software. Limiting the data that can be accessed 
to what is relevant may be theoretically possible but defining, in advance, what is 
relevant may be difficult. Informed consent for individual investigations or routine 
surveillance would be impracticable. It will, therefore, be important that the imple-
mentation of electronic health data management systems and their use for disease 
surveillance be preceded and accompanied by adequate information, public debate, 
transparency and appropriate safeguards.

20.6.3  The Use of New Laboratory Data

Networking laboratory information systems. The use of laboratory data for electronic 
disease surveillance would require that laboratory results from different laboratories 
mean the same thing. While this may seem obvious, existing differences in result 
interpretation, predictive values of different methods and lack of consensus on 
optimal methods, mean that considerable harmonization of laboratory practices will 
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be required. Different laboratory management structures, funding sources, referral 
patterns, and accountabilities between private and public laboratories or between 
primarily diagnostic and reference/public health laboratories will make this difficult, 
but not impossible.

Laboratory staff and directors are often reluctant to share details of tests 
numbers or methods, quality assurance programs are generally conducted anony-
mously, and accreditation authorities are required to maintain strict confidentiality, 
in relation to procedures (including any deficiencies) within individual laboratories. 
Clearly, issues of trust, commercial confidentiality and quality assurance will need 
to be addressed at the same time, as details of, laboratory testing methods and 
interpretation and compatibility of different types of information system.

The ability to generate personalized interpretive laboratory reports based on demo-
graphic and clinical data in the EPR would assist clinicians who are often unfamiliar 
with rapidly changing laboratory methods and their interpretation. The ability of the 
laboratory information system to rapidly identify a possible outbreak, by identifying 
clusters of microbial isolates with similar genetic profiles could significantly reduce 
the size and impact of communicable disease outbreaks. Personalized, targeted deci-
sion support can potentially reduce inappropriate antibiotic use, healthcare costs 
(Sintchenko et al. 2005), the emergence of drug resistance and adverse drug effects.

The use of laboratory data for clinical quality and safety. Laboratory information 
systems can be used by health authorities to monitor the quality of patient care in 
individual hospitals (Fairweather and Rogerson 2001) by gathering statistics about 
infections which develop after a patient’s admission to hospital – such as S. aureus 
or specifically MRSA blood stream infections. This has benefits for both potential 
patients and the general public who arguably have a right to information about the 
quality of care in hospitals to which they may be admitted in future. In some coun-
tries, data related to HAIs are publicly reported, and the occurrence of cases judged 
to be preventable may incur penalties. For example, the Centers for Medicare and 
Medicaid Services (CMS) in the USA have recently announced that they will no 
longer reimburse healthcare facilities for costs related to certain HAIs that could 
have reasonably been prevented through the use of evidence-based guidelines 
(http://www.idsociety.org/newsArticle.aspx?id = 6,852).

Many health professionals and administrators are concerned about financial 
penalties for “preventable” infections and about possible misinterpretation of 
publicly reported HAI rates because of differences in case-mix and reporting sys-
tems (Stone et al. 2005) between hospitals. Some commentators fear that hospitals 
may refuse to care for high-risk patients who are more likely to develop infections. 
However, electronic reporting and data scanning software have the potential to 
analyze individual patient risk factors and adjust incidence data according to the 
differences in case mix between different types of hospital.

Like most other applications, the use of surveillance data for quality assurance has 
the potential to improve patient care and the performance and accountability of indi-
vidual clinicians and healthcare organizations, but there is, also the potential for 
misuse, breaches of confidentiality and data security not only for patients, but also for 
professionals, who are usually very wary of any type of performance monitoring.
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20.6.4  Surveillance Ethics: A New Paradigm

Advances in surveillance technologies raise the need for the development of frame-
works and guidelines for surveillance ethics. Research ethics has traditionally been 
a central theme of bioethics discourse, for which monitoring guidelines and proce-
dures are well established in health and research institutions, but the ethics of dis-
ease surveillance is a relatively unexplored area in need of debate. On the one hand, 
there are questions about the technical similarities and/or differences between sur-
veillance and research and how they affect practice, if at all (Fairchild and Bayer 
2004). In theory, these may be the questions of definition and semantics, but there 
are currently major differences, which may or may not be justified, in the way these 
two areas are perceived by practitioners and funding bodies. From an ethical per-
spective, the key question is whether there are morally relevant differences between 
research and surveillance such that the ethical requirements for the former should 
not also apply to the latter. According to research ethics, for example, informed 
consent is paramount and the interests of the individual are supposed to take prior-
ity over those of science or society (Declaration of Helsinki - available at: http://
www.wma.net/e/policy/b3.htm). Given that research and surveillance are similar 
insofar as both aim to generate information to promote health outcomes, the crucial 
questions are whether, why and how much, if at all, ethical requirements for disease 
surveillance should be less stringent than those of biomedical research.
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Analysis workflow: The transformation of raw data into biological evidence by 
applying algorithms, tools and services in a certain order

Annotation: The routine process of assignment of functions to genes in a sequenced 
genome or the extraction of biological knowledge from raw nucleotide sequences

Antisense: Nucleic acid molecules that bind a complimentary strand of nucleic 
acid to modify gene expression

Assembly: Construction of longer sequences, such as contigs or genomes, from 
shorter sequences, such as sequence reads with or without prior knowledge on the 
order of the reads or reference to a closely related sequence

Bayes’ rule: A mathematical identity [Pr(x|y)=Pr(y|x) Pr(x)/Pr(y)] that allows one 
to swap variables in a conditional probability expression

Bioinformatics: The application of molecular biology as an information science, 
especially the use of computational tools and algorithms in genomics research

Biomarker: A biological characteristic which is objectively measured and evaluated 
as an indicator of normal or pathological processes or host responses to a therapeutic 
intervention

Biosurveillance: A systematic process that monitors the environment for patho-
genic bacteria, viruses and other biothreats. Disease surveillance systematically 
collects and analyzes this data for the purpose of detecting cases and outbreaks of 
disease

BLAST (basic logical alignment and search tool): A computer program for finding 
sequences in databases that have identity to a query sequence

Browser: Interface to the Web that permits the display of Web pages and other 
applications

Clade: A group of organisms that shares a common ancestor to the exclusion of 
the other considered taxa

Glossary
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Cladistics: A school of thought that emphasizes reconstructing evolutionary 
relationships solely through recognizing clades by a set of specific criteria for 
inference

Clone: Clone can be identified using molecular epidemiological methods. Strains 
belong to a clonal cluster if they share at least five out of seven housekeeping genes 
according to multilocus sequence typing

Controlled vocabulary: A set of terms used in a database to describe a particular 
biological object or process. Use of these terms avoids confusion when describing 
the same type of biological object or process in different databases

Core genome: The set of genes found in all members of a single species

Data: Any and all complex data entities from observations, experiments, simulations, 
models and higher order assemblies, along with the associated documentation 
needed to describe and interpret them

Data integration: The process of combining disparate data and providing a uni-
fied view of these data

Data mining: Automatically searching large volumes of data for patterns or 
associations

Data warehouse: An information infrastructure that enables researchers and clinicians 
to access and analyze detailed data and trends. Created by collecting databases and 
linking them using common data elements

De novo gene prediction: An approach to gene prediction in which the only inputs 
are genome sequences; no evidence derived from RNA is used

DNA sequencing: Biochemical methods for determining the order of the nucleotide 
bases, adenine, guanine, cytosine and thymine, in a DNA oligonucleotide

Electronic laboratory reporting (ELR): The automated reporting of notifiable 
disease data via a secure, electronic connection by laboratories to state and local 
health departments or public health authorities

Electronic medical record (EMR): Computer-based patient medical record

Epitope: The regions of an antigen that bind to antigen-specific membrane receptors 
on lymphocytes

Exon: DNA or mRNA sequences that include a series of codons carrying information 
for a part of the amino acid sequence of a protein.

Free text: Data that has no particular structure other than normal grammar; may 
show substantial variation between records

Functional genomics: Exploration of the function of genes and other parts of the 
genome



421Glossary

Gene cassettes: Gene cassettes consist of a gene, often conferring resistance to 
one or more antibiotic agents, and a characteristic recombination site, which can 
interact with a recombination site present in integrons, resulting in the insertion of 
the corresponding gene cassette into the integron

Genome: The complete set of genetic information in an organism. In bacteria, this 
includes the chromosome(s) and extrachromosomal genetic information, e.g., plasmids

Genome-level characters: Features of a genome or its products other than the 
linear sequences of nucleotides or amino acids that can be assessed for phyloge-
netic analysis

Genomics: The study of the entire genome of an organism; structural genomics 
includes whole-genome sequencing, whereas functional genomics aims to determine 
the functions of all genes

Genotype: The entire genetic constitution of an organism or the genetic composition 
at a specific gene locus or set of loci

Geographic information system (GIS): A computer system designed to allow 
users to collect, manage and analyze large volumes of spatially referenced informa-
tion and associated attribute data

Grid: A fully distributed, dynamically reconfigurable, scalable and autonomous 
infrastructure to provide location-independent, secure and efficient access to a 
coordinated set of services encapsulating and virtualizing resources

Informed consent: A legal term referring to a situation where a person can be said 
to have given his or her consent based upon an appreciation and understanding of 
the facts and implications of an action

Health Level 7 (HL7): A health data interchange standard designed to facilitate 
the transfer of health data resident on different and disparate computer systems in 
a health care setting

Homoplasy: A pattern of character states that supports an alternative to the true, 
accepted or most parsimonious evolutionary tree that is generally caused by evolu-
tionary changes

Horizontal gene transfer: Any process in which an organism transfers genetic 
material to another cell that is not its offspring. This process is in contrast to more 
common vertical gene transfer, which occurs when genetic information is passed 
from parent to offspring

Hospital-acquired infection (HAI): An infection that is associated with a stay in 
a hospital. An infection is considered nosocomial or hospital-acquired if it occurs 
48 h or more after a hospital admission

Infectome: System of networks of interacting host and pathogen’s genes, proteins 
and metabolites involved in a process of infection and disease
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Information retrieval: An electronic process that selects documents from a 
collection based on a user’s query

Insertion sequences: Insertion sequences are genes that code for a transposase 
protein. This protein can interact with inverted repeats on either side of the gene, 
leading to transposition of the gene

International Classification of Diseases (ICD): A standard vocabulary for diseases, 
health status, types of patient visits to doctors and other health providers, and external 
cases of injuries

Intron: Portions of a gene between the coding exons that are also transcribed, but 
are enzymatically removed from the mRNA before its translation into a protein

Knowledge base: A repository for the knowledge used by a knowledge system

Knowledge-based system: A computer system that represents and uses knowledge 
to carry out a task

Metagenomics: The high-throughput study of sequences from multiple genomes 
recovered from samples that contain mixed microbial populations

Metadata: Data about data; may be regarded as a subset of data which adds 
relevance and purpose to data and enables the identification of similar data in 
different data collections

MHC – major histocompatibility complex: A large genomic region or gene family 
which plays an important role in the immune system

Microbiome: Collective system of genomes of all microbial flora of the human

Middleware: A software stack composed of security, resource management, data 
access and other services and applications, users and resource providers to operate 
effectively

Natural language processing: Automated methods for converting free-text data 
into computer-readable format

Network: Series of points or nodes interconnected by edges, edges can have direc-
tion or different weights

Next-generation sequencing: Novel approaches to DNA sequencing that dis-
pense with the need to create libraries of clone sequences in bacteria and holds the 
promise of providing faster and cheaper sequencing

Notifiable disease: A disease that by public health law must be reported to some 
jurisdictions, typically a local public health authority, by laboratories, hospitals, or 
individual clinicians

Ontology: The systematic description of a given phenomenon, which often includes 
a controlled vocabulary and relationships, captures nuances in meaning and enables 
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knowledge sharing and reuse. Typically, ontology defines data entities, data attributes, 
relations and possible functions and operations

Outbreak detection: A process or set of processes that detects the existence of an 
outbreak

Pan-genome: The set of all genes found in members of a single species

Ontology: A formal description of set of entities within a body of knowledge and 
the relationships between those entities, used to reason about the entities. Usually 
is represented as hierarchical, and often richly interconnected, set of objects, 
concepts and other entities that embody knowledge about the field

Orthologs: Homologous genes in two or more organisms that are related only by 
lineage splitting and not by gene duplication

Parsing: A segmentation of a string of letters together with a labeling of the 
segments

PCR or polymerase chain reaction: A method for amplifying a specific region of 
DNA fragment using enzyme DNA polymerase and short primer sequences to 
delimit the amplified region. The repetitive cycle of reactions results in the expo-
nential production of new DNA molecules

Phenetics: Phylogenetic reconstruction based on measures of overall similarity

Pharmacophore: Functional group linked to a molecular scaffold that is necessary 
to ensure the optimal supramolecular interactions with a specific biological target 
and to trigger (or block) its biological response

Polymorphism: Genetic variability across a population of the same species. Within 
a particular gene, there may be single or multiple base changes which may not affect 
an individual microorganism or may cause a biological change. They are distributed 
in a population in different frequencies depending on when they occurred and their 
biological effects

Quantitative structure–activity relationship (QSAR): Rules deduced from the 
comparison of active and inactive analogues of a drug, correlating features of the 
drug scaffold (such as the presence of specific categories of pharmacophores) with 
their effects on the target

Quorum sensing: The communication and coordination of bacteria through 
signaling molecules

Scaffold: A central structure of a molecule, on which one can add or remove functional 
groups

Single nucleotide polymorphism (SNP): Sites in the genome where individual 
organisms differ in their DNA sequence, often by a single base, usually with very 
low population frequencies
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Species: For the purpose of sequence analysis, a population of biologically alike 
microorganisms that share nearly the same genetic makeup

Standard vocabulary: Systems of names that are assigned to concepts or entities 
that can create order within databases

System biology: Integrative discipline that seeks to explain the properties and 
behavior of complex biological systems in terms of their components and their 
interactions

Systematized Nomenclature of Medicine (SNOMED): A standard vocabulary 
system for medical databases; contains more than 144,000 terms and is available in 
at least two languages. Developed by the College of American Pathologists

TCR – T-cell receptor: A molecule found on the surface or T cells which is essential 
for recognizing antigens bound to major histocompatibility complex molecules

Transposons: Transposons are similar to insertion sequences but usually larger. 
Normally, they contain at least one resistance gene, but may include an integron 
that in turn holds several resistance gene cassettes

Terminal branch: The part of an evolutionary tree that leads only to the taxon 
considered (not internode branches)

Universal genetic code: A misnomer based on an earlier, incorrect belief that all 
genomes share the same code for specifying amino acids from triplets of nucleotides

Virulence factor: A protein or a gene that is required for a pathogen to cause disease

Whole-genome shotgun sequencing: An approach to determine the sequence of 
a genome in which the genome is broken into numerous small fragments. These 
fragments are then assembled en masse. The individual sequences are assembled 
into larger sequences (known as contigs) that correspond to substantial portions of 
the genome
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A
Agent-based models (ABMs).  

See also Host-pathogen system
computational algorithms, 133
modeling techniques, 141

Aggregatrix algorithm, 228
Antigen-presenting cells (APCs)

exogenous antigens, 194
maturation and migration, 192
vaccine delivery vehicles, 232

Annotation, microbiol genome, 2–6, 207–209
APCs. See Antigen-presenting cells
Artemis comparison tool (ACT), 2, 158

B
Bacterial genotypes, temporal and spatial 

clustering
detection

definition, 361–362
spatio-temporal surveillance methods, 

364–365
temporal surveillance methods, 

362–364
infectious disease surveillance, genotype 

clustering
foodborne disease, 367–370
outbreak, 366–367

patients identification, 361
surveillance data types

algorithms, 365–366
syndromic data, 365

Biological structure annotation
DNA tokenization, 270–271
grammar derivation, 272–273
grammatical models validation, 273
graphical tool, 277
parsing algorithm and grammar class, 

271–272

Bottom-up models, 130
Brute force approach, mining databases

by keywords, 59–60
by similarity, 60–61

C
Chemotherapeutic agents, in silico approaches 

to synthesis
basic principles, 281
grid infrastructures, drug discovery, 

299–301
identify and select drug candidates

structure-based drug discovery, 
291–298

target searching and QSAR, 299
in vitro drug discovery, 291

malaria, target discovery
druggable plasmodium genome, 

289–290
genomic and postgenomic databases, 

285–286
working hypotheses translation, 

286–288
molecular data, 284
target candidates

filters, boolean logic, 284–285
target discovery overlapping, 283–284

Clonal complex (CC)
genetic isolation, 43
MLST databases, 33–34
SLVs, 36–37
Single locus variants, 36–37

Clusters of orthologous genes (COGs),  
206, 207, 314

Communicable disease control
biosurveillance

EPRs, 414–415
ethics, 418

Index
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laboratory data, 416–417
notification, 415–416

diagnostics and antibiotic resistance
evaluation, 410
multiresistant organisms, 409
pathogen detection and profiling, 

406–407
ethics

microbial/human genomics, 401–402
veil of ignorance, 401

genetics and disease susceptibility, 402
human microbiome project

blanket consent, 404–405
data confidentiality and security, 405
definition, 404

immunization, 406
information science and technology, 

patient management
application, 412–414
health information systems, 411–412

MalariaGEN project, 403–404
strain typing, pathogen tracking

surveillance, 410
swine flu, 411

Computational epitope mapping
fundamental molecular mechanisms, 191
molecular varieties

cell-surface antigen, 193
linear/discontinuous, 195
pattern recognition receptors,  

191–192
proteasome, 194
recognition properties, 191

T-cell and B-cell prediction, in silico
algorithms and methods, 200
binding modes and process, 196
data quality and availability, 197
MHC binding, 195–196
PEPSCAN analysis, 199–200
servers, 198, 200
tools and techniques, 195

Computational systems biology
methods, 130–132
modeling techniques, 133
scales and models, 130
static and response networks, 132–133

Conceptual antigen networks, 182–183
Conditional random fields (CRF), 154
Conservatrix algorithm, 228
Conventional inactivated vaccines (CIV), 226

D
Decision support 16–17, 316–318, 393–394

Delivery vehicles, vaccine
adjuvant improvement, 233–234
mucosal delivery, 232–233
multi-functional T cells, 234
targeting dendritic cells, 230–231

Dengue decision support system (DDSS), 
393–394

Disease ontology (DO), 390
Distributed research network (DRN), 343–344
DNA hybridization-based approach, pathogen,

78–80
DNA sequencing technology

colony, 85–86
modern, 85
nanopore, 87
poly(dA)-tailed templates, 86
Sanger method, 84

DRN. See Distributed research network
Drug discovery

complexity, 127
modeling, multiscale, 128
pharmaceutical companies, 129

E
EHR. See Electronic health record
Electronic health record (EHR)

automated systems, 329–330
barriers, 309–310
clinical databases, 309
IT tools, 308–309

Electronic patient records (EPRs)
benefits, 414
clinical data, 412
privacy protection, 415

EpiMatrix algorithm, 228
EpiVax toolkit, 229
EPRs. See Electronic patient records
eScience

data aggregation, 14–15
infrastructure, 13–14

Eubacterial genome, 248
Exponentially weighted moving average 

(EWMA) charts
biosurveillance systems, 362
MRSA incidence, 348–349
nosocomial infection events, 348

Extended-spectrum b-lactamase (ESBL),  
253, 254, 256

F
Feature database (FDB), 274
FlexX method, 300
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Fluorescence-activated cell sorter analysis 
(FACS), 215

G
Gene and genotype recognition

heuristics and overlapping, 158–159
nomenclature standardization, 157–158

Gene ontology (GO)
and biological response network, 136
gene annotation, 384
nodes and significant genes network, 137
OBO, 391–392
project, 208
UMLS, 381

Genes and genomes sequencing
comparative resolution, 78
phylotyping, 77
public databases, 76
16S rRNA, 76–77

Genomes interrogation
annotated structures interrogation

indexing hierarchical genetic, 275
query language, 275–276
visualization, 276–277

bacterial DNA automatic annotation, 
266–267

biological structure annotation
DNA tokenization, 270–271
grammar derivation, 272–273
grammatical models validation, 273
parsing algorithm and grammar class, 

271–272
cassette array modeling and interrogation

DNA tokenization, 274
gene cassette arrays, 274

computational grammars
parse tree, 268–269
rules, 269
tokens, 267

Globus toolkit, 339–340, 344
GO. See Gene ontology

H
Healthcare epidemiology

electronic health records
information technology, 308–309
technical and non-technical barriers, 

309–310
infection control database

data auditing and validation, 312–314
standards, 310–312

information systems

decision support, 316–318
monitoring infection control 

interventions, 316
performance measurement, 313–314
reporting tools

automated HAI measurements, 319
automated surveillance, 320
data presentation, 318

Healthcare information technology (HIT)
development and implementation, 309
patient safety, 310

HealthMap (Global Disease Alert Map), 18–19
HelicoVax, 237–238
Hidden Markov models (HMMs),  

196, 267, 269
High content screening (HCS), 291
High-throughput docking (HTD), 295, 297, 298
High-throughput screening (HTS)

libraries, 299
receptor-based virtual, 294
use, 291

High-throughput sequencing, 84–87, 75–76
High-volume sequencing approaches, 247
HIT. See Healthcare information technology
Hodgkin’s disease, 235
Host contact networks

community structure
infection dynamics, 177–178
vs. pathogen dynamics, 179
Shannon-Weaver diversity index, 178

directly transmitted diseases
assortative mixing, 172
infection traveling wave, 173

pathogen traits evolution, 173–174
sexually transmitted diseases

epidemic threshold, 172
sexual activity levels, 171

Host-pathogen system interaction
computational

methods, 130–132
modeling techniques, 133
response networks, 10–11, 132–133
scales and models, 128, 130
static networks, 132

immune response, 126–127
intercellular/cell host-pathogen interaction 

models
ABMs, 141
mathematical techniques, 139
multi-cell, 140–141
tuberculosis, 140
viral infection, 139–140

intracellular models
immune-receptor signaling, 136–139
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interactions, genomic foundation, 
134–136

large-scale host response, 136, 137
viral dynamics, 139

mechanistic analysis, 136
physiology, large scale model

approaches, 141–142
hierarchical modeling technique, 

143–144
molecular and cellular events link, 142
reaction-diffusion equations, 143

HTS. See High-throughput screening

I
IDI. See Infectious disease informatics
Immune-receptor signaling

components cascade work, 138–139
FcεRI receptor, 136–138
mathematical dynamic models, 126–127, 

136–137
Immuno informatics tools, 195–199, 234–235, 

227–228
Infectious disease informatics (IDI)

antibiotic prescribing decision
bioinformatics tools, 16
statistical learning approach, 17

automatic recognition, functional regions, 
9–10

clinical outcome, 17
comparative genomics

gene duplication, 8
SNP detection, 9

cross-validation, knowledge source, 12–13
dynamic view

genomic and proteomic data, 12
infection cycle, 10

eScience
data aggregation, 14–15
infrastructure, 13–14

global genome analysis, 7–8
goals, 1
inter-relation, informatics and 

bioinformatics domain, 20–21
metagenomics and metaproteomics, 5–7
microbial genome and annotation

accuracy problem, 5
analysis types, 3, 5
bioinformatics tools, 2–3, 6
nucleotides, string, 3
Staphylococcus aureus alignment, 2, 4

pathogens identification, 15–16
tracing pathogens

chromosomal sequence comparison, 18

HealthMap (Global Disease Alert 
Map), 18–19

Infectious disease ontology
biomedicine, vocabulary resources

interoperability, 376
ontologies, 376–377
printed dictionaries, 375

consortium
DDSS project, 393–394
developmental need, 392–393
methodology, 393

features
Aristotelian definitions, 379–380
computation, 379
natural language, 380–381
OBO Foundry, 381–382, 391–392
relations, 380
UMLS, 381

informatics-driven research and care
coding, 382
data annotation, 383–384
document identification and  

text-mining, 383
error detection, 382–383
knowledge reuse, 385–386
microarray data, 385
query engines, 386

relevant vocabulary resources
DO, 390
GO and OBO Foundry, 391–392
ICD, 388
MeSH, 387–388
SNOMED CT, 389–390

vocabulary resource types
formal organization, 378
relations, 377–378
reliability, 378–379
term lists, 377

Infectious disease surveillance,  
clustering definitions
scalable, 366–367
transmission, 366

foodborne disease
genotyping cluster, 367
potential outbreaks, 367–368
Salmonella typhimurium, MLVA 

clusters, 369
size and duration relationships, 368
spatiotemporal cluster map, 370

Information systems
decision support

HIT process improvement, 318
performance characteristics, 317

hit for measurement
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healthcare settings, 314
HIT roles, 315

infection control interventions, 316
In silico drug discovery

grid infrastructures
docking parameters, 300–301
types, 300

structure-based
docking processing, 295
filtering, 295–296
fragment-based drug design, 298
parallel and integrative strategies, 292
plasmodial protein, 293–294
receptor-based pharmacophore 

approaches, 297–298
screening processing, 296–297
three-dimensional, 292–293
types, 291

target discovery overlapping, 283–284
In silico target discovery
In silico target discovery, malaria

druggable plasmodium genome, 289–290
genomic and postgenomic databases, 

285–286
tools, 288–289
working hypotheses translation, 286–288

International classification of diseases (ICD)
code groupings

daily counts, 332
syndromes, 331

terms, 388
Intracellular models

genomic foundation, 134–136
immune-receptor signaling, 136–139
large-scale host response, 136

IUPS Physiome project, 142–143

L
Large-scale host response models, 136
Lateral gene transfer (LGT)

extent and frequency revealing methods, 
32–34

inherent rate, 31
point mutation frequency, 45

LGT. See Lateral gene transfer
Ligand-based drug design

definition, 291
in silico pipelines, 292

Literature-mined pathogen-host network, 161

M
Major histocompatibility complex (MHC)

binding prediction algorithms, 195
bind peptides, 193
capabilities, binding, 228
protein assembly, 194
surface levels, 231
ternary complex, 190

Malaria antigen networks
Plasmodium falciparum, 180–181
PSPBs, 181
var gene sequences, 182

Malaria genomic epidemiology network 
(MalariaGEN), 403–404

Medical subject headings (MeSH)
controlled vocabulary

coverage, 388
term hierarchies, 387

documents indexing, 383
relations, 377–378

MeSH. See Medical subject headings
Metagenomics and metaproteomics,  

5–7, 83
Methicillin-resistant staphylococcus  

aureus (MRSA)
cluster identification, 356
community pathogen, 43–45, 353
population structure, 43–45, 354

MGEs. See Mobile genetic elements
MHC. See Major histocompatibility  

complex
Microbial genome and annotation

accuracy problem, 5
analysis types, 3, 5
bioinformatics tools, 2–3, 6
nucleotides, string, 3
Staphylococcus aureus alignment, 2, 4

Microbial genotyping systems, infection 
control

hospital surveillance
cluster identification, 348
process control charts, 348–349

results analysis, 354
surveillance systems

laboratory and patient information, 357
medical records, 356

targeted
clonal cluster, 349
molecular typing, 350
MRSA outbreak, 350–351

typing method
DNA and PCR amplification, 355–356
molecular, 357

universal
Clostridium difficile, 353–354
molecular typing utility, 352
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MRSA, 353
nosocomial transmission, 351, 353
typing, 351

Microbial sequence bioinformatics
evolutional impact

Bacillus anthracis, 41–42
Campylobacter jejuni and 

Campylobacter coli, 45–46
microbiologist, task, 40
Staphylococcus aureus, 43–45
Streptococcus agalactiae, 46–48

phylogenies and population structures
depiction methods, 34–39
entire genomes comparison, 40
LGT, 32–34

prokaryotic microorganisms
bacterial genome nature, 27–28
classification, 31
universal tree and bacterial evolution, 

28–31
Minimum spanning trees (MSTs), 37
Mining databases, microbial gene sequences

primer assessment
exhaustivity, 67–68
phylogenetic tree and heat map, 66

publications count, 55
published primers retrieval

extraction, 63–64
PubMed queries, 61–63

in silico analyses, 56
16S rRNA gene sequence, 53–54, 76
target sequences retrieval

by keywords, 56–59
by similarity, 56

MLST. See Multilocus sequence typing
MLVA. See Multiple-locus variable-number 

tandem-repeats analysis
Mobile genetic elements (MGEs)

antibiotics resistance genes, 275
description, 266
recognition, 277

MRR. See Multiresistance regions
Multidrug resistant organisms (MROs), 309
Multi locus enzyme electrophoresis  

(MLEE), 78, 217
Multilocus sequence typing (MLST)

bacterial species, 33, 77
CC founders, 33–34
eBURST software, 36
generic typing method, 77–78
high-throughput nucleotide sequencing, 78

Multiple-locus variable-number  
tandem-repeats analysis (MLVA)

profile, 37, 367

variations, 371
Multiresistance regions (MRR)

comparative analyses, 256–258
mapping approach, 259
recurring themes, 255
resistance gene insertion, 254–255

Mycobacterium tuberculosis (Mtb)
Beijing genotype, 164
gene symbols, 158
infection, 381
strains, 80
timeliness/aptness, 81

N
National bioterrorism syndromic surveillance 

program (NBSSP), 341–342
National nosocomial infections surveillance 

(NNIS), 308
Network reconstruction, transcriptional

benchmarking algorithms
measurement, 101
precision and recall, 100
validation, 100–101

data integration
intersection/union, 113
motifs, 114

method
inference, 102–106
microarray data, 101
module inference, 107

module inference
clustering to biclustering, 107–108
global vs. query-driven biclustering, 

108–110
omics data

computational strategies, 99
reverse-engineering problem, 99–100
variability, 100

predictions prioritization
significance score, 115
stochastic effects, 114

regulatory program inference
microarray data vs. data-integration, 

110–111
module-based vs. direct network 

inference, 111–112
supervised vs. unsupervised, 112–113

Next generation sequencing  
see High-troughput sequencing

Non-specific biosurveillance
non-health related data sources, 336
opportunity cost challenge, 336–337
undesirable errors, 335
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Nucleic acid detection (NAD) system
pathogens detection, 408
sensitivity and specificity, 409

O
Open biomedical ontologies (OBO) Foundry

GO and evaluation, 391–392
infectious diseases coverage, GO, 391

Open reading frames (ORFs), 206, 207
OrthoMCL algorithm, 212
Outer membrane vesicles (OMVs),  

206, 207, 214

P
Pangeno me, 28
Pangenomic analysis

candidate antigens, allelic variation, 
213–214

elements, 211
open and closed, 212
ortholog identification

DAGChainer, 213
homologous proteins, 212

Pangenomic reverse vaccinology (PRV)
bacterial population genetics and vaccine 

design
genetic variability, 217–219
structure and antigenic distribution, 216
vaccine-oriented antigenic typing, 219

experimental validation, 214–219
filtering and prioritization steps, 206
pangenomic analysis

candidate antigens allelic variation, 
213–214

ortholog identification methods, 
211–213

protective antigens, 205
screening, 206–207
single genome analysis

annotation procedure, 207–209
protein localization prediction, 

209–210
Parsing algorithm

bottom-up vs. top-down, 272
context-free vs. context-sensitive 

grammars, 271
deterministic vs. non-deterministic 

grammars, 272
Pathogen genomics

DNA sequencing technologies
colony, 85–86
modern, 85

nanopore, 87
poly(dA)-tailed templates, 86
Sanger method, 84

genome sequencing dynamics, 74
metagenomics

DNA sequencing, 83
microbial communities 

characterization, 84
microbial classification tool

DNA hybridization-based approaches, 
78–80

gene sequencing, 76–78
high-throughput sequencing, 75–76
PCR-based approaches, 81–82
pyrosequencing-based approaches, 

82–83
Pathogen population structure

antigenic alleles, 176
antigen networks, 180–182
contact networks, 171–173
Hamming distance, 177
host contact networks

community structure, 177–180
pathogen traits evolution, 174–177

immune response, 174
non-overlapping combinations, 175

Pathogen recognition, 159–160
Pathogens identification, 15–16
Pattern recognition receptors (PRRs), 191, 192
Personal health record (PHR), 309
PFGE. See Pulsed field gel electrophoresis
Phylogenetic tool, 259
Plasmodium falciparum, 282

genome sequences, 180
network, 181

Polymerase chain reaction (PCR)-based 
approach, pathogen

Helicobacter pylori, 81
turn-around-time, 82
vanA and vanB genes, 81–82

Population structure depiction, phylogenies
Bayesian methods, 35–36
eBURST software, 36–37
MSTs, 37, 39
parsimony approach, 35
phylogenetic trees, 34
spa sequences, 38–39

Position specific polymorphic blocks  
(PSPBs), 181

Post-genomic physiology, 130
Prokaryotic microorganisms

bacterial genome nature
DNA sequencing, 27–28
pan-genome, 28
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classification, 31
universal tree and bacterial evolution

base pairing, 29
evolutionary relationships, 28–29
LGT, 31
16S ribosomal RNA tree, 30

PRV. See Pangenomic reverse vaccinology
Public health surveillance systems

adverse event, 334–335
data, finding and harnessing, 337–338
Distributed Research Network (DRN)

adverse events, 343–344
Globus toolkit, 344

Electronic Support for Public Health (ESP)
Atrius Health, 342
electronic case reporting, 341–342
validation, 342–343

evaluation, 327
goals

classes, 327–328
EHR, 328

high throughput distributed
DRN project, 339
EHR systems, 338

non-specific biosurveillance, 335–337
notifiable disease

detection, 329–330
existing systems, deficiency, 328–329
validation, 328
secure and controlled data sharing, 

339–340
syndromic

early detection and alerting, 332
EHR data, 330
ICD code groupings, 331–332
specific diseases, 330–331
statistical challenges, 332–333

Published primer retrival
extraction, 63–64
PubMed queries

Entrez query box, 61
fake browsers, 63
sensitivity and specificity, 62

Pulsed field gel electrophoresis (PFGE)
DNA digestion, 355
epidemic and sporadic strains, 353
molecular typing, 350

Pyrosequencing-based approach, 82–83

Q
Quantitative structure-activity relationship 

(QSAR), 298, 299

R
Receptor-based drug design

definition, 291
in silico, 292–293

Reverse best hit (RBH) technique, 212, 213
Rhetorical structure theory (RST), 163

S
Sentential analysis, 157
Sexually transmitted infections (STIs), 171
Shannon-Weaver diversity index, 176, 178
Shared bacterial genome

β-lactamases, 253–254
conjugative plasmids, 258–259
ecological niche and adaptive capacity

antibiotics, 250
gene integration mechanisms, 251
Gram-negative bacteria, 248, 249

gene capture and transfer, 252
genetic disequilibrium, mobile gene pool, 

254–255
genetic elements, 248
members arrival and spread, 255–256
R genes and ME association, 252–253

Single genome analysis
annotation procedure

DNA sequence, 207–208
genes prediction, 207
homology transfer, 208
multidomain proteins, 208–209

protein localization prediction
computational tools, 209
homology and feature-based  

methods, 210
Single-locus sequence typing (SLST)

benefits, 77
MLST, 78

Single locus variant (SLV), 33–34,  
36–37, 43

Single nucleotide polymorphism (SNP)
allele distribution, 45
analysis, 41
genotypes, 44
tree, invisible structure, 42

Sliding-window method, 199
SNOMED CT. See Systematized  

nomenclature of medicine-clinical 
terms

Spatio-temporal surveillance methods
common, 363
detection algorithms, 364
scanning, 364–365
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Statistical process control (SPC) charts, 
318–319

Structure-activity relationship (SAR), 298
Sudden cardiac death syndrome  

(SCD), 143
Support vector machines (SVMs)

algorithm, 154–155
statistical theory, 196

Syndromic surveillance
early detection and alerting, 332
ICD code groupings

daily counts, 332
respiratory infections, 331

public health officials, 330
specific diseases

decision rules, 330–331
ICD-9 codes, 331

statistical challenges
family-wise error, 332
SaTScan, 333

Systematized nomenclature of medicine-
clinical terms (SNOMED CT)

cross-language interoperability, 389–390
data retrieval, 392
terms, 389

T
T-cell and B-cell prediction

binding modes and process, 196
data quality and availability, 197
MHC binding, 195–196
PEPSCAN analysis, 199–200
published algorithms and methods, 200
servers, 198, 200
tools and techniques, 195

T-cell receptor (TCR), 190
Temporal surveillance methods

common, 363
detection algorithms, 362
multiple temporal values, 364

Text mining, 
biomedical corpora, 153
corpus construction

annotation, 153
methodology development, 152–153
sample collection and pilot creation, 152

entity recognition
approaches, 154–155
span determination, 154

extraction relationships
association mining, 160–162
biological entities aids, 155–156

disease and syndrome recognition, 160
gene and genotype recognition, 

157–159
genomic level and syndrome, 156
pathogen recognition, 159–160
potential directions, 162–164
sentential analysis, 157

syntactic parsing, 155
T-helper (TH) cells, 226
TLRs. See Toll-like receptors
Toll-like receptors (TLRs)

definition, 233
ligands, 230
types, 192

Transcriptional regulatory network (TRN)
high-throughput data, novel drug and 

vaccine targets
action mechanism, 115–117
search, 117–119

high-throughput data sources
expression data, 97
regulator-target interaction data,  

98–99
reconstruction

benchmarking algorithms, 100–101
data integration, 113–114
inference methods, 103–106
method, 101–102
module inference, 107–110
omics data, 99–100
predictions prioritization, 114–115
regulatory program inference, 110–113

regulatory networks inferring, 95

U
UMLs. See Unified medical language system
Unified medical language system (UMLs), 

381, 392
Urinary tract infection (UTI) rates, 308

V
Vaccine adverse event reporting system 

(VAERS), 343
Vaccine design

CD4 + and CD8 + T cell responses, 227
cell-mediated immunity, 226
epitope-specific responses, 225
immunoinformatics

EpiMatrix algorithm, 228
EpiVax toolkit, 229
immune-escape mechanisms, 227
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improved delivery vehicles
improved adjuvants, 233–234
mucosal delivery, 232–233
multi-functional T cells, 234
targeting dendritic cells, 230–231

T-cell epitope-driven vaccines

HelicoVax, 237–238
TulyVax, 236–237
VennVax, 238–240

Viral-host systems, 136
Viral-like protein (VLP), 230
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