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Genomes, Browsers, and Databases

The recent explosive growth of biological data has led to a rapid increase in the

number of molecular biology databases. These databases are located in many

different locations and often use varying interfaces and non-standard data formats.

Consequently, integrating and comparing data from them can be difficult and

time-consuming. This book provides an overview of the key tools currently available

for large-scale comparisons of gene sequences and annotations, focusing on the

databases and tools from the University of California, Santa Cruz (UCSC), Ensembl,

and the National Center for Biotechnology Information (NCBI). Written specifically

for biology and bioinformatics students and researchers, it aims to give an

appreciation for the methods by which the browsers and their databases are

constructed, enabling readers to determine which tool is the most appropriate for

their requirements. Each chapter contains a summary and exercises to aid

understanding and promote effective use of these important tools.

Peter Schattner is a research associate in computational biology at the

University of California, Santa Cruz. His principal research interests are in the

genome-wide identification and characterization of non-protein-coding RNA genes

and cis-regulatory mRNA motifs. Dr. Schattner has taught bioinformatics courses at

the University of California and California State University and has worked in the

research and development of medical ultrasound and magnetic resonance

instrumentation at SRI International (Stanford Research Institute) and Diasonics,

Inc. He has been a Woodrow Wilson Fellow and was leader of the team that received

the 1990 Matzuk Award for technical innovation of the American Institute of

Ultrasound in Medicine.





Genomes, Browsers,
and Databases

Data-Mining Tools for
Integrated Genomic Databases

Peter Schattner

University of California, Santa Cruz



CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13    978-0-521-88443-3

ISBN-13    978-0-521-71132-6

ISBN-13 978-0-511-41391-9

© Peter Schattner 2008

2008

Information on this title: www.cambridge.org/9780521884433

This publication is in copyright. Subject to statutory exception and to the provision of 
relevant collective licensing agreements, no reproduction of any part may take place 
without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy of urls 
for external or third-party internet websites referred to in this publication, and does not 
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

paperback

eBook (EBL)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521884433


To my wife, Sue





Contents

Preface page ix

1 The Molecular Biology Data Explosion 1

2 Introduction to Genome Browsing with the UCSC Genome

Browser 21

3 Browsing with Ensembl, MapViewer, and Other Genome Browsers 38

4 Interactive Genome-Database Batch Querying 61

5 Interactive Batch Post-Processing with Galaxy 76

6 Introduction to Programmed Querying 96

7 Using the Ensembl API 102

8 Programmed Querying with Ensembl, Continued 131

9 Introduction to the UCSC API 148

10 More Advanced Applications Using the UCSC API 178

11 Customized Genome Databases 215

12 Genomes, Browsers, Databases – The Future 238

Appendix 1. Coordinate System Conventions 253

Appendix 2. Genome Data Formats 259

Appendix 3. UCSC Table Formats 272

Appendix 4. Genomic Sequence Alignments 276

Appendix 5. Program Code README File 282

Appendix 6. Selected General References for Genome Databases and Browsers 284

vii



viii Contents

Appendix 7. Online Documentation and Useful Web Sites for Genome

Databases and Browsers 288

Appendix 8. Glossary of Biological and Computer Terms Used in the Text 293

References 307

Index 313



Preface

The idea behind this book developed in late 2004–early 2005 while I was working

on two unrelated projects in computational genomics. The first project involved the

computational detection of small nucleolar RNAs (snoRNAs) in genome sequences.

In the course of this work, I noticed – as others had, as well – that, in mammals,

snoRNA genes are located within introns of protein-coding genes (so-called snoRNA

host genes), which are often genes that code for ribosomal proteins. This observation

led to speculation as to whether there were additional common features of the introns

and genes that contain snoRNAs. For example, are the host genes of homologous

mammalian snoRNAs themselves homologous? Do those host genes have other shared

functions beyond the fact that several of them code for ribosomal proteins? Are the

introns that contain the snoRNAs consistently longer (or shorter) than the average

introns found in these genes? Are the snoRNAs found at any characteristic distance

from the nearest exon-intron junctions in their host gene? To answer these questions

would require accessing sequence and annotation data for both the human and

mouse genomes and performing some simple calculations and statistics on that data.

Moreover, because there were some 200 human snoRNAs already known (and a similar

number of mouse snoRNAs), performing this data acquisition and manipulation

would require computer processing.

The second project involved regions of the mammalian genome exhibiting

“extreme codon conservation,” that is, extended regions (typically 150 nt or longer) in

which homologous protein-coding genes from several species not only have identical

amino acid sequences (which is not unusual), but also use identical codons. Although

such extreme codon conservation is unusual, many such regions do exist in mam-

malian genes. One hypothesis for the existence of these regions is that they not only

code for proteins but also contain motifs for post-transcriptional processing, such as

RNA binding sites or secondary structures. To assess this hypothesis, we needed to

determine whether the conserved regions overlapped known conserved alternative

splice sites, whether they were enriched for known exonic splicing enhancers or

RNA editing sites, and so forth. Answering these questions again required accessing
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sequence and annotation data from numerous genomic regions and performing sta-

tistical analyses on these data.

Of course, others were also addressing biological questions that required these

kinds of bioinformatic analyses. For example, E. Levanon and colleagues (Levanon

et al., 2004) and others discovered RNA editing sites by screening for genomic loca-

tions where DNA adenine bases align with mRNA/EST guanines. Similarly, S. Brenner

and colleagues detected instances of “nonsense mediated decay” (NMD) via genome-

wide screens for mRNAs with “premature stop codons” (Green et al., 2003). What

was apparent was that although the biological phenomena in these examples were

unrelated – snoRNA host genes, codon conservation in mRNAs, RNA editing sites, and

NMD – the types of bioinformatics tasks required for addressing them were strikingly

similar: identify a set of genomic regions, obtain the sequence and a set of annotations

corresponding to each region, and perform some comparisons or manipulations on

the resulting data to enable some inference to be made about the region.

It was also clear that integrated genome databases, such as those used by the

Ensembl, MapViewer, and the UCSC Genome Browser, were excellent data sources

for obtaining the required sequences and annotations. Although the genome browser

interfaces were principally designed to examine one genomic region at a time, their

underlying databases could access data from multiple genomic regions simultane-

ously – that is, in “batch” mode – as required by these types of bioinformatics analyses.

Moreover, much of the software required to perform these analyses already existed in

the genome database computer code, as this code was needed to create the genome

browser displays.

However, I found very few papers in which this approach to genomic analysis

was actually adopted. My impression was that this was in part because of limited

documentation describing how one could use the genome browser databases for

general genomic data mining. In addition, because at this time tools such as Ensembl’s

BioMart, the UCSC Table Browser, and Galaxy had only recently become available, this

sort of strategy was still largely restricted to the biologist with programming skills.

As a result, the molecular biology and bioinformatics research communities gener-

ally took advantage of only a fraction of the capabilities provided by genome browsers

and databases. Admittedly, there is a considerable learning curve to using these tools.

My goal for this book is to ease that learning curve so that more researchers – includ-

ing those with limited computer skills – are able to use these remarkable tools to

address a much wider range of biological questions than they have previously.

This book is intended for graduate or advanced undergraduate students in bio-

informatics or biology or for self-study by researchers or students who want to more

fully exploit the power of the genome databases. I envision two distinct audiences:

biologists with little or no programming experience and bioinformaticists and biol-

ogists with programming backgrounds. The first five chapters of the book, as well as

chapter 12, should be accessible to both groups. There are no formal programming

prerequisites for these chapters – although, in some places, a general sense of how
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computer databases and data files are set up will be helpful. Chapters 6 through 11 do

assume some programming background. Nevertheless, non-programmer biologists

are encouraged to read these chapters as well. Even if they are unable to follow the

programming details, they should get a sense of the types of biological questions

that their more computationally oriented collaborators will be able to address with

these tools. The biological background assumed is that of an introductory molecular

biology course. With this background, the descriptions of the biological examples

used should be reasonably self-contained. In addition, the book contains a glossary

including both biology and computer science terms that may be unfamiliar to the

reader.

I have focused the book on the techniques that I have found most useful in address-

ing practical biological queries. In particular, the book is primarily focused on tools

that integrate data from multiple primary biological data repositories in a standard-

ized and unified manner. As such, the book is not intended to be an “egalitarian”

treatment of the three genome browser databases, in the sense of giving equal time

to each one. Rather it is one researcher’s perspective on useful tools for various bio-

informatics tasks. That said, I realize that sometimes my emphasis may be biased

by my having more experience with certain tools than with others. In this regard, I

should note that (notwithstanding my affiliations with UCSC and the BioPerl project)

I have not been involved in the design or development of any of the genome databases

or browsers. Similarly, the opinions I express here are solely mine and not those of

any of the browser teams.

It is also worth emphasizing that the genome databases and browsers are still

rapidly evolving. Consequently, the book is primarily focused on the basic architec-

ture and concepts of the genome databases and tools and where to obtain information

on them, rather than on creating a comprehensive catalog of browser features. Such

features are continually being added and enhanced, and their online documenta-

tion is generally quite good. In addition, the reader should not be surprised if some

interface or display found on a browser has changed from the way it is described

in the book. Moreover, some features described here will undoubtedly disappear,

whereas in other cases statements like “such-and-such database system does not cur-

rently support such-and-such capability” will no longer be true. For brevity, I have not

always included the word “currently” when describing features that a given browser

or database does or does not have, but the reader should realize that I do imply this

in every such statement of genome database features.

I am thankful for the help of many people, without whose assistance this book

would never have been written. I am particularly indebted to Lincoln Stein for his

thorough and insightful review of the entire book. I am also grateful to Deanna

Church, Hiram Clawson, Sean Eddy, Xose Fernandez, Jim Kent, and Anton Nekrutenko

for reading and commenting on parts of the manuscript. Without their input, there

would certainly be far more errors in this book. Of course, any mistakes that remain

are solely mine.
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The Molecular Biology Data Explosion

The explosion of genome sequence data in the last decade has been so widely

noted as to have almost become a cliché. The first microbial genome was only

sequenced in 1995. However, by late 2007, web sites that track genome sequencing

projects, such as NCBI’s Entrez Genome Project site (http://www.ncbi.nlm.nih.gov/

genomes/static/gpstat.html) and the Genomes OnLine Database (GOLD) project

(http://www.genomesonline.org) had cataloged approximately 1,000 complete micro-

bial genome sequences. Similarly, the first complete genome of a multicellular organ-

ism (C. elegans) became available in 1998. Nine years later, there are complete or draft

genome sequences available for more than 60 multicellular species, with low-coverage

data or sequencing projects in progress for dozens of others. Figure 1.1 shows sum-

mary statistics for genomes that have been sequenced as of November 2007. Moreover,

the rate at which genomes for new species and species variants are being sequenced

continues to accelerate as novel sequencing technologies lower the cost of obtaining

sequence data. For example, Figure 1.2 shows some of the 25 mammalian species

whose genome sequencing is currently in progress. Meanwhile, along with increas-

ing amounts of DNA sequence data, there has been a remarkable increase in the

quantity of data describing how the information in the genome sequence is used to

implement the functions of the organism.

With this explosion of data has come the opportunity – for those with the skill and

ability to identify patterns and correlations among the data – to develop an ever more

profound understanding of the way organisms function at their most fundamental

levels. Genes are being identified that are involved in such basic human experiences

as thinking, feeling, and communicating with spoken language. Genomes of hun-

dreds of new microbial species are being sequenced, some of which may hold keys to

humanity’s most vexing problems in energy generation and environmental preser-

vation. And genes and gene-regulatory mechanisms are rapidly being identified that

underlie many of the most dread diseases, including cancer, heart disease, and the

degenerative neurological diseases of aging.

Indeed, these are heady times in molecular biology. However, the same data explo-

sion that is enabling all these advances is threatening to drown us in its very enormity.

1
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Figure 1.1 Screenshot from NCBI’s Entrez Genome Project (at http://www.ncbi.nlm.nih.gov/

genomes/static/gpstat.html) showing the number of species whose genomes have been sequenced or

whose genomes are in the process of being sequenced as of November 2007.

As the quantity of data increases, the task of discerning the critical interrelationships

among this data has become increasingly difficult. Organizing biological information

into dedicated databases of related data has been helpful. However, as the number of

biological databases reaches into the thousands (the annual database review of the

journal Nucleic Acids Research now regularly includes almost 1,000 new or significantly

enhanced molecular biology databases each year), intelligently “mining” these data

sources becomes ever more challenging.

To a large extent, the current difficulties of analyzing molecular biological data

arise simply from the need to characterize such a large quantity of highly interrelated

information. However, the biological research community has also brought some

challenges of biological data integration and analysis onto itself by the way such data

have historically been stored, transferred, and manipulated. Biology databases are

located in many different locations. Many of these databases are only downloadable

as flat files, as a result of which database searching may be awkward and slow, or

else local relational databases may need to be set up. Varying data formats are used

requiring the use of multiple data parsers for automated data analyses. As a result,

integrating and comparing data from multiple biological databases is difficult and

tedious.
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Figure 1.2 Subset of mammalian genome sequencing projects in progress as of November 2007.

Data taken from http://www.ncbi.nlm.nih.gov/genomes/leuks.cgi.

Genome databases offer solutions to these problems. By aggregating data from

scores of primary databases and integrating data in a uniform and standardized

manner, they enable researchers to formulate complex biological queries involving

data that were originally located in multiple databases. Learning how to effectively

query such interrelated biological data is the primary focus of this book. However,

before we can begin this task, we need to spend a little time describing what a genome

database is, what the main types of data that it includes are, and how such a database

is designed and constructed.



4 Genomes, Browsers, and Database

1.1 What is a genome database?

By a genome database, we will mean a data repository (generally implemented via

multiple relational databases) that includes all or most of the genomic DNA sequence

data of one or more organisms. Generally, a genome database will also include addi-

tional data (usually referred to as “annotations”) that either describe features of the

DNA sequence itself or other biological properties of the species. A genome database

typically also includes a web-based user interface – referred to as a “genome browser” –

that offers the ability to visualize disparate annotations of genes and other genomic

locations in ways that were not possible previously.

Early genome databases and browsers focused on integrating data from a single

species, generally one of the biological research community’s “model organisms.”

There was WormBase, for the nematode worm, Caenorhabditis elegans; FlyBase, for

the fruit fly, Drosophila melanogaster; the Saccharomyces Genome Database (SGD) for

budding yeast; the Mouse Genome Database (MGD); and so on. Since the comple-

tion of the sequencing of the human genome, three additional databases have been

developed – EBI’s Ensembl Database, the NCBI MapViewer Database, and the UCSC

Genome Database – that contain not only integrated human genomic data but also

data from many other species as well. This latter feature is important as it becomes

increasingly apparent that to interpret the genome of a single species, we need to

compare it with its evolutionary relatives. As we will see in detail later in this book,

the NCBI, Ensembl, and UCSC Genome Database projects each provide somewhat

different, largely complementary resources. Collectively, these projects provide tools

and data for genomic analysis that have become indispensable for modern biological

research, as evidenced by the fact that UCSC, Ensembl, and MapViewer papers have

been referenced more than 3,000 times to date in the scientific literature.

1.2 What classes of annotations are found in the genome databases?

Annotations in the genome databases can be roughly separated into two differ-

ent classes. The first class includes what might be called “local chromosomal”

annotations, as they are associated with a specific region along a chromosome. Exam-

ples of such localized annotations include (definitions of unfamiliar terms can be

found in the glossary):

� Locations of genes
� Gene-structure annotations indicating a gene’s exon-intron boundaries
� Locations of known and putative gene regulatory regions such as promoters, tran-

scriptional enhancers, CpG islands, splicing enhancers and silencers, DNase hyper-

sensitive sites, nucleosome sites, and so on
� Transcript alignments indicating the genomic sources of observed proteins,

mRNAs/cDNAs, and expressed sequence tags (ESTs)
� Alignments of protein, mRNA, and EST sequences from related species
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� General chromosomal features such as repetitive sequences, recombination

“hotspots,” and variations in local CG%
� Alignments of genomic DNA from other species, which can provide clues regarding

sequence conservation and chromosomal evolution
� Annotations of regions that vary within a population of individuals, including

single nucleotide polymorphisms (SNPs), short indels, large structural or copy-

number variations, and correlations among sequence variations, such as those

that have been identified by the haplotype mapping projects (e.g., HapMap)
� Genome-wide RNA expression data from tiling-array and related projects
� Sequence features that are used in the process of assembling the genome, such as

sequence tagged sites (STSs) from genetic and radiation hybrid maps

The other class of annotations includes those that are not directly associated with a

genomic region, such as:

� Protein structure data
� Evolutionary data, including evolutionary relationships among individual genes

as well as among chromosomal regions and entire genomes
� Annotations describing phenotype variations
� Metabolic- and signaling-pathway data
� Protein-interaction data, such as data from yeast two-hybrid system experiments

and data derived from protein-chip expression analysis

To be sure, this distinction between annotations associated with a genomic region

and other data is not rigid. However, it can be useful to consider to what extent any

given annotation describes a local feature because of the powerful ability provided by

the genome databases to address queries involving multiple annotations associated

with the same region.

1.3 Building and maintaining a genome database

Building a genome database is a complex multiphase task. Although some of these

tasks vary with the specific annotations included within the particular database

and with the way the database is designed, certain basic tasks are necessary for

the construction of essentially any genome database. These fundamental tasks

include:

� Sequencing the genomic DNA
� Assembling the fragments of DNA sequence data into continuous pieces spanning

all or most of the length of the organism’s chromosomes
� Aligning transcript data to the genomic sequence
� Identifying the locations of the genes within the genome sequence
� Designing and implementing the data-storage architecture to house the data
� Maintaining and updating the database as additional data become available
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In many cases, responsibility for the completion of each of these tasks belongs to a

different project team. For example, genome sequencing is generally the responsibil-

ity of one of the major sequencing centers such as the Broad Institute, the Wellcome-

Trust Sanger Center, Washington University, Baylor University, or the Joint Genome

Institute. In contrast, sequence assembly is performed by other groups; for example,

the human genome assembly was carried out initially by UCSC, and independently

by Celera Genomics, and is now performed by the NCBI. Sequence annotation, partic-

ularly transcript alignment and gene prediction, have been carried out by yet other

groups, for example, Ensembl and NCBI for the human genome. Finally, construction

of the genome databases themselves is the responsibility of the groups that will actu-

ally provide the genome browser interfaces and maintain the databases, for example,

Ensembl, NCBI, and UCSC.

In the following sections, we will introduce each of these tasks briefly. We will

return to some of them in more detail later in the context of examining how they

impact the information that is available from the genome databases. In addition,

these topics are quite broad, and entire books could be (and in some cases have been)

written about them. References to the literature are included for those readers who

would like to learn more about these important topics.

1.3.1 Sequencing and assembly

To date, nearly all genomic sequencing has been carried out using the conventional

Sanger sequencing protocols. With Sanger sequencing, the genome is first randomly

cut (e.g., using mechanical shearing) into pieces of between 10 kilobases and 1

megabase, depending on the specific protocol. These pieces are then amplified and

subsequently sequenced through a multistep process that involves fluorescent label-

ing, sequence priming, sequence extension using chain-terminator nucleotides, and

electrophoresis (e.g., see chapter 7 of Primrose and Twyman, 2006, for a detailed

description). It is worth noting that novel technologies are emerging that show

promise for supplanting conventional Sanger sequencing, at least for some appli-

cations. These new methods significantly lower costs and increase sequencing output

compared to conventional methods. We will describe the potential impact of these

emerging technologies in the final chapter.

Because of the random nature with which the original genome is cut, sequencing

protocols require that far more bases be sequenced than the number of bases in the

entire genome. This is necessary to increase the likelihood that each base will occur

and be sequenced from at least one clone. The average number of times any base in

the genome has been sequenced in a sequencing project is referred to as the coverage of

the genome (e.g., a sequencing project of a 100-megabase chromosome with five-fold

(5x) coverage involves the sequencing of 500 megabases). For example, so-called draft

sequences have 4x to 5x coverage, whereas a finished sequence typically has 8x to 9x

coverage. In some cases, for economic reasons, only “low coverage” – that is, 1x to

2x coverage – sequencing is performed (for an interesting discussion of the trade-offs

involved in low coverage sequencing, see Green, 2007).
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Once a genome has been sequenced, or even partly sequenced, the sequence data

needs to go through a process called sequence assembly. This is because current Sanger

sequencing technology is limited to sequencing no more than approximately 1,000

base pairs in a single data acquisition or “read.” (Note: The newer sequencing tech-

nologies, though faster and cheaper, have even shorter reads.) In contrast, chromo-

somes may be 100 million base pairs or more in length. Consequently, chromosome

sequence assembly is a complex process in which a large number of overlapping

reads are stitched together into longer contiguous regions called “contigs.” Subse-

quently, contigs separated by distances of approximately known length are linked

together into “scaffolds.” Depending on the sequencing and assembly technology, an

additional intermediate step may be necessary to determine the sequence of the indi-

vidual clones, that is, the pieces of DNA into which the chromosomes were sheared

in the initial phase of the sequencing process.

Although this assembly process is straightforward in principle, problems arise

in regions where the sequence is highly repetitive or in regions where there are

gaps between individual reads. To address these problems, two general strategies

for genome sequence assembly have been developed – clone mapping and whole

genome shotgun assembly (WGSA). In clone mapping, one first builds a genomic

“map” of each chromosome, which includes a list of genetic features or landmarks

(e.g., sequence tagged sites) with their relative positions along the chromosome.

Using these landmarks, clone and contig sequences can be “anchored” to regions of

the chromosome, making it possible to distinguish sequences that are duplicated in

other parts of the genome.

In contrast, with WGSA the initial step of building a genomic map is skipped.

Instead, the WGSA process includes the cloning of longer (20–50 KB) sequence frag-

ments. One KB of both ends of these clones are then sequenced in individual sequence

reads. Using these “paired-end reads,” it is then possible to build a scaffold assembly

that jumps over ambiguous, duplicated genomic regions without requiring a map

of genetic landmarks. Initially, it was unclear whether WGSA would be capable of

assembling large genome sequences. However, the effectiveness of WGSA was demon-

strated in the assembly of the fly and human genomes, and WGSA has become the

primary method of genome-sequence assembly.

Because of the ambiguities in determining the precise location of sequence frag-

ments during genome assembly – no matter which assembly strategy is used – a

feature, such as a gene, may be located precisely within a clone or a contig but its

location within the entire chromosome might be much less well established. It is for

this reason that feature locations are sometimes given in contig or clone coordinates

as well as, or instead of, in chromosomal coordinates. Even so-called finished assem-

blies, such as the current assemblies of the human and mouse genomes, still have

gaps. These sequence gaps – for example, those in the centromeric regions – can be

quite large. In fact, “finished” assemblies are not really complete at all. Rather, they

are simply assemblies that are considered to be as complete as possible within the

limits of current technology.
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For low coverage (1x–2x) sequences, assembly is much more difficult. In fact, low

coverage sequences can generally only be assembled if the genome assembly of a

closely related species is available to use as a reference scaffold for ordering the

sequence fragments. In addition, with low coverage sequencing, identified genes

are often missing exons or are otherwise incomplete. On the other hand, because

the costs of sequencing a genome are roughly proportional to coverage, one can

sequence approximately four times as many genomes at 2x coverage than one could

sequence at 8x. Moreover, since for many comparative genomics applications it is

more important to have data from many related species than to have complete-gene

sequence data, low coverage sequencing is used in many sequencing projects (see

Pontius et al., 2007, for an example of how low coverage sequencing data can be used

in the analysis of mammalian genomes). For more details on sequencing and assembly

methods, the reader is referred to any modern molecular biology or genomics text,

such as Primrose and Twyman (2006).

1.3.2 Transcript alignment and gene prediction

Once the genome has been at least partially assembled, the next step is to locate

important biological features – and particularly genes and their exon-intron bound-

aries – on the assembled sequence. This is not an easy task, and several different

strategies, each with its own advantages and disadvantages, have been developed for

this purpose. In general, these strategies can be divided into those that are based on

transcript alignments, those generated by purely ab initio computational predictions,

and those that include a combination of alignment and computational approaches.

Transcript-based alignments include alignments of proteins, cDNA/mRNAs, and ESTs,

both from the genome of the species being sequenced as well as from homologs from

related species. In addition, the transcript alignments may be performed completely

automatically by computer or may involve manual curation of computer-generated

alignments.

In general, gene annotation methods involving manual curation yield fewer false

positives – that is, pseudogenes that are annotated as functional genes – than purely

computational approaches. However, manually curated approaches are much more

labor intensive and tend to generate more false negatives, that is, missed genes. Con-

sequently, depending on the requirements of the specific application (e.g., whether

it is more important that one has high confidence that all annotations are correct

than that no true genes are being missed), one approach may be preferred over the

other.

1.3.2.1 Manually curated gene annotation

The two main projects for manual curation of transcript-based mammalian gene

annotations are the Reference Sequence (RefSeq) Project of the NCBI and the Ver-

tebrate Genome Annotation (VEGA) Project of the Sanger Institute. Although the

specifics of the RefSeq and VEGA annotation algorithms vary considerably (see Ashurst
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et al., 2005, and Pruitt et al., 2007, for details), they both are based on manually

curated alignments of transcripts to the genome. Consequently, the RefSeq and VEGA

datasets often agree, particularly in gene detection and in distinguishing functional

genes from pseudogenes. However, RefSeq and VEGA annotations do not always agree,

especially in terms of their predicted exon-intron boundary locations.

To address the fact that RefSeq and VEGA annotations sometimes differ, yet another

manual curation project, the Consensus Coding Sequence (CCDS) Project, has been

started (http://www.ncbi.nlm.nih.gov/CCDS). The goal of CCDS is to identify highly

reliable gene annotations, namely those for which there is 100% agreement between

the RefSeq and VEGA annotations and that meet other quality tests developed by

the CCDS Project, for example, tests to confirm that the predicted gene is neither a

processed pseudogene nor produces a transcript that would be subject to nonsense

mediated decay. Currently, the CCDS dataset is restricted to human gene annotations;

however, expansion to other mammalian species (e.g., mouse) is planned.

1.3.2.2 Automated gene annotation

Compared to the curated RefSeq, VEGA, and CCDS datasets, the fully automated gene

prediction systems provide larger numbers of gene annotations, and producing them

is much less labor intensive. Such automated gene-prediction algorithms include both

systems, such as the Ensembl Pipeline (Curwen et al., 2004; Potter et al., 2004), which

are based largely on transcript alignments, and the ab initio computational gene-

prediction programs. Furthermore, the ab initio programs can be partitioned into two

major subclasses: single species gene-prediction programs, such as GENSCAN (Burge

and Karlin, 1997), and newer programs that use multiple-species sequence alignments

(Gross and Brent, 2006). Gene finders based on multiple sequence alignments rely on

the fact that genes and gene structures are typically conserved in related species.

Consequently, if a predicted gene splice junction has a consensus splice-site sequence

that is conserved in other species, then the site is more likely to be genuine than

if the splice-site sequence is not conserved. By using the additional information

contained in sequence alignments, multispecies gene prediction programs usually

have considerably lower false positive rates than single species programs (Brent,

2007).

Whether they are based on transcript alignment or on ab initio predictions, datasets

produced by the automated pipelines generally have higher false positive rates or

incorrect intron-exon boundaries than the manually curated datasets. However,

despite their higher false positive rates, the non-curated datasets can be very use-

ful. For example, many genuine genes are expressed only at low levels or in specific

tissues or developmental stages. Consequently, transcripts of these genes may not

have been experimentally detected to date, and such genes will generally not be

included in the curated datasets. And of course, for non-model species for which

there is little transcript data, non-transcript-based computational approaches are the

only available tool. Nevertheless, it is important to remember that the higher false
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positive rates for non-curated datasets means that these datasets need to be viewed

with more caution.

1.3.2.3 Accuracy of gene prediction methods

With so many different ways of predicting genes, it is important to be able to assess the

relative accuracies of the different approaches. Addressing this question for human

gene annotation is one of the goals of the “Encyclopedia of DNA Elements,” or ENCODE

Project (Birney et al., 2007). The ENCODE Project ultimately seeks to annotate all func-

tional DNA motifs in the human genome. In its pilot phase, the ENCODE Consortium

has generated a large number of annotations for a small (around 30 MB) subset of the

human genome.

One of ENCODE’s initial objectives has been to generate a complete list of func-

tional protein-coding transcripts in the 30-MB ENCODE regions, the so-called GEN-

CODE gene set. This list of transcripts was generated by gene predictions from multi-

ple computational and curated gene annotation methods, followed by experimental

PCR-based validation, in over 20 different types of human tissue. The results (Harrow

et al., 2006) indicate that current methods of gene annotation are quite good – but

far from perfect. In addition, they confirm that current manual curation methods

are generally more specific, but less sensitive, than fully automated approaches. For

example, ENCODE determined that Ensembl’s automated gene prediction pipeline

detected 84.0% of the validated gene exons, whereas RefSeq’s manually curated algo-

rithm detected 80.0%. On the other hand, 98.3% of RefSeq’s exon predictions could

be experimentally verified, as compared to 91.5% for Ensembl.

Because there are so many different approaches for genomic gene identification,

with different strengths and limitations, one often finds multiple different “gene”

annotations in the genome browsers. We will consider this topic in more detail in

later chapters. For now, suffice it to say that, for example, in the hg18 build of

the UCSC Human Genome Database, there are more than a dozen different sets of

protein-gene annotations. So if one is searching for data about a specific human

gene, which annotation set should one use? Although there are no hard-and-fast

rules, a useful guide would be to first check whether the gene is annotated in the

CCDS dataset.1 If not, one could check if it is included in VEGA or RefSeq. If the

gene is not found in any of the manually curated sets, one could check an automated

gene annotation dataset such as UCSC genes or Ensembl genes, or a modern ab initio

gene prediction program such as N-SCAN. Finally, we note that this discussion has

been limited largely to annotations of vertebrate genes; other curated gene annota-

tion datasets are available for the non-vertebrate model species, such as the SGD Gene

Set for yeast genes and the FlyBase Gene Set for D. melanogaster fly genes.

1 If the region of interest is within the ENCODE regions, using the GENCODE gene set would also

be a good choice.
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1.3.2.4 Non-protein-coding genes

The various gene datasets described in the previous paragraphs all refer to protein-

coding genes. However, many biologically important genes are never translated into

proteins, and instead perform their functions as RNA. Examples of such non-coding

RNAs (ncRNAs) include the transfer RNA (tRNA), ribosomal RNA (rRNA), small nuclear

RNA (snRNA), small nucleoloar RNA (snoRNA), and microRNA (miRNA) families.

For some species, such as human and mouse, for which there is extensive ncRNA

experimental (transcript) data, genome browsers often provide sets of experimen-

tally supported, ncRNA-gene annotations. Typically, these annotations are for a spe-

cific class of ncRNAs, such as the snoRNAs or miRNAs, and are directly extracted

from a primary database that archives experimentally verified ncRNAs, such as the

human snoRNA database at http://www-snorna.biotoul.fr (Lestrade and Weber, 2006).

For species with limited transcript data, one is restricted to computationally gener-

ated annotations. Unfortunately, apart from tRNAs and rRNAs, ncRNAs are difficult

to detect in newly sequenced genomes through purely computational techniques.

One project that attempts to computationally detect members of known ncRNA

families in newly sequenced genomes is the Rfam project (http://www.sanger.ac.uk/

Software/Rfam) (Griffiths-Jones et al., 2005), and some genome browsers, such as

Ensembl, include Rfam annotations. However, other than for tRNAs and rRNAs, com-

putationally generated ncRNA datasets include numerous pseudogenes and, hence,

should be viewed with caution.

The computational detection of novel classes of ncRNA genes in the genome (i.e.,

ones that do not belong to any of the well-known ncRNA families) is still extremely

difficult. Algorithms to identify potential novel ncRNAs, generally on the basis of con-

served, putative secondary structures, do exist, and their predictions can be found in

some of the genome browsers – for example, the EvoFold annotations (Pedersen et al.,

2006) in the UCSC Genome Browser. The predictions in these datasets undoubtedly

contain some genuine ncRNAs and can be very useful in guiding research. However,

they also include many false positives. In short, any purely computational annota-

tion of a novel ncRNA should probably be considered mainly as an interesting pre-

diction.

Attempts to identify novel ncRNAs in a genome-wide manner are also increas-

ingly made experimentally. The approach is to measure RNA transcription across

the entire genome. The hypothesis is that if a section of the genome is being tran-

scribed, and especially if it is being transcribed at different levels in different tissues

or developmental stages, the transcript must be doing something. In fact, widespread

transcription has been observed across mammalian and other genomes, including

in many chromosomal regions far away from any known genes and including no

identifiable open reading frames. Some of these transcribed RNAs have been shown

to be functional. The functions of others will undoubtedly be experimentally deter-

mined in the future. However, for the majority of these transcripts there is still no
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evidence that they are functional at all, as opposed to simply being some form of tran-

scriptional “noise” (see, e.g., Hüttenhofer et al., 2005, for more details). Consequently,

one should not automatically assume that an RNA is functional simply because it is

transcribed.

1.3.3 Genome database design

One of the primary goals of a genome database is to aggregate data from multiple

“primary” databases into a single database with a uniform interface, thereby enabling

the user to make integrated queries involving data from the entire database. To this

end, three main data integration approaches have been developed in the field of

bioinformatics database design (see Stein, 2003, for a more detailed introduction to

these topics). These approaches are generally referred to as link integration, data

warehouses, and federated databases (also called view integration). In a link integra-

tor, a user presents a query or a keyword (e.g., a gene name) and the system returns

an annotated list of web hyperlinks to information pertinent to the query. In a link

integration system, data from the primary databases are not stored locally by the link

integrator – only links (i.e., web addresses) are stored in the integrating database.2

Link integration has the advantage of being easy to implement and always having

up-to-date data, as long as the link addresses remain current. The GeneCards web site

(http://www.genecards.org; Figure 1.3) is one example of a link integration system.

Unfortunately, link integrators suffer from a significant limitation, namely, that

it is generally not possible to make integrated queries involving data from different

primary databases. To address this limitation, data warehousing takes an opposite

approach to database integration, namely, making a local copy of all of the data

from each underlying, primary database. The data are then usually reformatted

into standardized data structures and loaded into the data “warehouse” – that is,

one or more databases that can be queried in a unified manner by the warehouse

software.

Because of its capabilities for integrating data from multiple data sources, the

data warehouse approach has become important in the storage and access of many

different types of molecular biology data. For example, the Atlas data warehouse

(Shah et al., 2005) integrates taxonomy, disease, and protein interaction data. Biozon

(Birkland and Yona, 2006) contains protein structural and alignment data, whereas

BioWarehouse (Lee et al., 2006) focuses on integrating data from metabolic and signal-

ing pathways. In each of these systems, complex sets of related data can be accessed

2 Some authors (e.g., Stein, 2003) also define “link integration systems” as ones that make local

copies or “caches” of primary database data but do not reformat that data. These authors reserve

the term “data warehouse” to systems that both make local data copies and reformat that data.

Pure data-caching systems are important in some applications (e.g., Google is largely a data-

caching system) but they are less common in bioinformatics data integration. Consequently,

we will find it useful to describe any data integration system that makes local copies of primary-

database data as a “data warehouse,” reserving the term “link integration” for systems that only

store pointers (e.g., web links) to primary data.
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Figure 1.3 Link integration as implemented by Gene Cards. Only a small portion of the gene data

presented by the Gene Cards web site is actually stored by Gene Cards. Most of the data are provided

by hyperlinks to other databases.
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in a uniform manner, and complex queries can be formed using keywords or key

phrases based on concepts originally handled by multiple specialized databases. One

particularly important class of biological data warehouse includes the underlying

genomic sequence of the species. In such a “genome data warehouse,” data are often

associated with a specific region of the genome sequence. Consequently, in addition

to querying based on keywords or database-element names, it is possible to formulate

queries based on genomic locations or on genome-sequence similarity.

Although data warehousing has significant strengths in terms of integrated

querying and data presentation, the approach has drawbacks as well. Genome data

warehouses are very large and complex, typically consisting of multiple relational

databases, each of which may contain hundreds of linked tables. A major software

commitment is required to design and maintain such a system, as well as to develop

programs to convert all the primary data into standard formats that can be handled

by the warehouse. It is necessary to develop methods to regularly update the data

in the warehouse to reflect data updates in the underlying databases. Developing

software to implement querying across so many different types of data is challeng-

ing as well. In addition, each time a new data source is added to the warehouse,

software needs to be developed to transform the new primary data to one of the

standard warehouse data formats (or to create a new warehouse format), to create

the appropriate additional database tables, and to modify the data manipulation and

query-processing software to handle the new data.

Because of the challenges involved with regularly updating data warehouses, a

third strategy for database integration – intermediate between link integration and

data warehousing – has been developed. Referred to variously as view integration or

database federation, this approach integrates remote data without the construction

of local copies of the primary databases. To be practical, the primary databases in

a database federation must agree to use specified formats and protocols that the

view integrator understands. For biological applications, the principal protocol that

has been used for this purpose is called the Distributed Annotation System, or DAS

(http://www.biodas.org and Dowell et al., 2001).

In practice, current genome databases, such as the Ensembl, MapViewer, and

UCSC Databases, are implemented using components of at least two and sometimes

all three of these approaches. Ensembl, MapViewer, and UCSC are all primarily data

warehouses. However, they all also include a link integration component; the total

quantity of biological data is simply too great to all be integrated locally. In addition,

Ensembl also includes a view integration component, implemented with DAS, by

which annotations from other databases are displayed on the Ensembl Browser.

1.3.4 Builds and releases

In one way, our description of the generation of a genome database – namely, the

sequencing of the genome, followed by genome assembly, followed by annotation

generation, and finally leading to database construction – is rather misleading. In
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reality, these tasks are carried out iteratively and somewhat in parallel. Once a draft

assembly has been constructed – and sometimes even earlier, when just a 1x or 2x

coverage assembly for a new species is available – the tasks of transcript alignment

and gene annotation and even the construction of a “skeleton” genome database

are begun. Moreover, because even this limited data may be quite useful to some

researchers, these incomplete and skeleton databases are released for public use at

the genome database sites.

Subsequently, as the coverage of the genome increases, more complete sequence

assemblies are produced by the groups responsible for sequence assembly. Similarly,

each time a new genome assembly is released, the groups responsible for produc-

ing the genome annotations will update their annotations to reflect the changes

introduced by the new assembly. In addition, even after the sequence assembly has

become relatively complete (i.e., “finished”), the genome database maintainers will

need to regularly update their databases as more, and more accurate, annotations

become available. Consequently, maintaining a genome database involves balancing

two often conflicting goals. On the one hand, one wants to have a stable data reposi-

tory from which one can retrieve reproducible results. On the other hand, one wants

the database to remain current with the continuing expansion of known genomic

information.

The three major genome databases address these goals with somewhat different

strategies. With Ensembl and NCBI, data in the databases are modified only as a

part of new data “releases,” which are indicated by changes in a database version

or release number. For the NCBI system, each species database has its own version

number, whereas Ensembl uses both species-specific and system-wide release num-

bers.3 Importantly, between releases, the NCBI and Ensembl databases are stable, and

repeated queries against them should provide identical results. (The only exceptions

are Ensembl DAS tracks that are provided directly by external servers and that do

not have their data stored in the Ensembl databases.) In contrast, in the UCSC sys-

tem each species database only goes through a version number change – referred

to as a database “build” – in response to a new sequence assembly of the species’

genome. For example, the hg18 build of the UCSC database, released in March 2006,

corresponded to the assembly changes from the November 2005 NCBI Build 36 of the

human reference sequence.

Consequently, it is important to pay attention to what genome assembly number

and what database release or build one is using when one uses data from a genome

database. Similarly, when presenting one’s own results (e.g., in a publication) on the

basis of data extracted from a genome database, it is important to include information

indicating exactly which sequence assembly and database build were used to carry

out the analysis.

3 See http://www.ensembl.org/info/using/api/versions.html for a complete description of the

Ensembl release-numbering system.
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1.4 A research query scenario

With this background, we are now ready to begin our description of the genome

databases. We will begin with an example, the details of which are made up and

are chosen for pedagogical purposes. However, the types of questions they bring up

are quite real and will be familiar to readers experienced in molecular biology and

genetics research. So let us imagine a scenario in which we have performed genetic

association studies in an attempt to identify factors contributing to some central

nervous system (CNS) disease. Let us further imagine that we have identified some

genomic markers on the X chromosome that appear to be correlated with the disease

(i.e., the markers and the presence of the disease among family members occur

together more often than can be explained by chance). When this chromosomal

region is resequenced in the affected family members, we observe a nucleotide that is

C in the affected members and G in the unaffected members. This single nucleotide

polymorphism (SNP) is at nucleotide 1905 of the CXorf34 mRNA. Because the function

of CXorf34 is not known and the significance, if any, of the observed polymorphism

is also unknown, it is unclear whether the observed variation is causally related to

the occurrence of the disease.

In an attempt to determine whether our SNP contributes to the disease, there

are many questions that we might want to answer. It is not important at this point

that you understand these questions in detail. We will describe many of them more

fully later. For now, the important point is just to illustrate the wealth of available

information relevant to our question that exists within the various biology databases,

and to indicate that locating this information is not always easy. Questions we might

want to answer include (biological terms are defined in the glossary):

� Is the polymorphism in the dbSNP database, indicating that it has been previously

identified?
� Does it overlap a known repeat sequence?
� Does the polymorphism overlap a CpG island?
� Has it been observed in any known EST?
� Is CXorf34 expressed in the CNS?
� Have any other genes, possibly including ones of known function, been identified

as having similar expression patterns to CXorf34?
� Is the more common variant at the polymorphism site conserved in other verte-

brates?
� Does CXorf34 have homologs in other species that could be manipulated experi-

mentally or that might provide clues as to its function?
� Are there common, nearby SNPs that could be used as markers to identify other

individuals who might have the new allele?
� What nearby regions would be appropriate to use as primers if one wanted to

genotype individuals for the new allele using PCR?
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To be sure, it is possible to at least partially answer these questions without a genome

database. However, at a minimum, this approach requires identifying, becoming

familiar with, and using multiple different resources (dbSNP, GenBank, dbEST, the

GNF database, and so on), each with its own idiosyncrasies and learning curves.

Moreover, some of the needed data – such as that displaying cross-species sequence

alignments and evolutionary conservation – are not available from other types of

databases at all. Determining this information without one of the genome databases

would require actually carrying out one’s own multiple sequence alignment with a

tool such as ClustalW or PSIBLAST. I will not describe these procedures further here;

suffice it to say that without the use of a genome browser, the task would be very

tedious and time-consuming. In contrast, in the following chapters we will see how

to efficiently address these questions in the context of the genome browsers.

1.5 The road ahead

In the following chapters, we will learn how to answer the questions posed in our

scenario and to answer much more complex biological questions as well. To accom-

plish this, we will need to learn how genome databases are organized; how the data

within them are stored, accessed, and can be manipulated; and how the data are

presented in the genome browsers. We will begin in chapter 2 with an introduction

to the UCSC Genome Browser. Using the UCSC system as an illustrative example, the

chapter focuses on the core genome browser features and how they are used to answer

practical biological questions. The general concepts are illustrated using the research

example described in the previous section. In chapter 3, we introduce the Ensembl

and MapViewer Genome Browsers, emphasizing the ways that they differ from the

UCSC system, and revisiting our example research query from the perspective of

the other browsers. We will also briefly introduce the other genome databases – for

example, the single-genome databases and the prokaryote databases – in this chapter.

chapter 4 introduces batch genome-database querying techniques for accessing

data from multiple genomic locations in a single query. The chapter includes exam-

ples of biological questions that can be addressed by batch querying and presents

tools for interactive batch querying of the major genome databases. These include

web-based tools, such as Ensembl’s BioMart and UCSC’s Table Browser and Gene

Sorter, as well as direct querying via the SQL query language.

chapter 5 describes batch data post-processing. The chapter includes a detailed

introduction to the Galaxy tool set, which enables post-processing to be performed

interactively without the need for any computer programming. chapter 6 introduces

the techniques of programmed batch post-processing via SQL-based programming,

the Taverna Toolkit, and an overview of the Ensembl and UCSC Application Program-

ming Interfaces (API).

Chapter 7 describes Ensembl’s Perl API for genome-database programmed query-

ing. The chapter includes a brief review of the BioPerl package and illustrates how
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BioPerl functionality is integrated into the Ensembl Perl API. The general discussion is

accompanied by concrete programming examples that not only illustrate the power

of this approach but can be readily modified by readers for their own applications.

The chapter also includes a brief description of Ensembl’s Java API.

chapter 8 consists of more advanced techniques for programmatic access to data

from Ensembl. These include methods for accessing data from Ensembl’s comparative

genomics database, tools for programmatic access to Ensembl’s DAS data sources, and

an overview of the procedures for installing a local mirror of Ensembl databases.

chapter 9 introduces UCSC’s C API, emphasizing UCSC capabilities that differ

from those of Ensembl. The descriptions are again accompanied by sample working

code. chapter 10 continues the discussion of the UCSC API, focusing on important

biological applications that can only be addressed by installing a local mirror of part

of the UCSC databases. The chapter also includes a description of the steps required

to install such a UCSC database mirror.

chapter 11 describes methods for adding one’s own data to existing genomic

databases or creating one’s own genome database. Methods covered include adding

tables and tracks to the UCSC Genome Browser and database and using the Generic

Model Organism Database (GMOD) construction tools. Finally, in chapter 12 we specu-

late on the features of the genomic databases and browsers of the future. The chapter

also points the reader toward tools and web sites that can be helpful for monitoring

and anticipating these new features.

The book also contains several appendices. These include a glossary of biological

and computer terms, a description of online files associated with the book, a bibliogra-

phy of print references, a list of online resources, and descriptions of genome-database

file and table formats, coordinate system conventions, and sequence alignment algo-

rithms.

I have attempted to organize the book so that readers with specific interests are

able to go directly to the topics that interest them, skipping some of the earlier

chapters. In particular, the reader who is already familiar with genome browsing and

wants to learn about batch querying should be able to start with chapter 4, skipping

much of Chapters 1 to 3. Readers with a good knowledge of interactive querying who

are interested in programmed querying should be able to begin at chapter 6. Also,

Chapters 7 and 8 on Ensembl’s API, and Chapters 9 and 10 on UCSC APIs, are relatively

independent of each other and could be read independently. Lastly, chapter 12 is of a

somewhat more general nature, and a reader should be able to follow it after reading

Chapters 1 through 3.

In addition to the printed text, an important component of the book is the asso-

ciated web site at www.cambridge.org/9780521711326. The web site includes the

complete code for all the programming examples and color reproductions of all of

the browser screenshots shown in the text, and will include corrections of errors and

misprints that have been identified in the text. An important component of the web

site is the documentation of changes in web and application program interfaces that
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cause any of the examples in the text to not function properly; for example, changed

web addresses and modified UCSC or Ensembl API function calls. If any example in

this text does not work as indicated, the reader should check the web site to deter-

mine if a change in the interface has already been observed for this example and

what modifications are necessary for the example to produce the results described

in the text. If the web site does not contain such information, then the reader is

encouraged to e-mail the author at schattner@alum.mit.edu.4 I will use this feed-

back to update the web site so that other readers can find the necessary information

easily. (Note that this information will be restricted to the specific examples in the

text, as implemented on computer systems described in the book, e.g., Unix systems.

Unfortunately, I do not have the resources to address queries beyond the examples

described in the text.)

Chapter summary

� The amount of genomic sequence and annotation data available continues to

increase at a very fast rate.
� Genome databases and browsers provide a means for accessing and querying this

large body of data in a systematic and efficient manner.
� Building a genome database is a complex process including sequencing and assem-

bling the genome sequence data, generating and organizing the annotation data,

and developing effective data storage systems and user interfaces for storing and

accessing the data.
� Because the state of the art for identifying and characterizing genomic annota-

tions is continually improving, it is important for the genome database user to be

aware of the capabilities and limitations of currently available genome database

annotations.

Exercises

Note: Do not be discouraged if these exercises seem difficult. Without the use of a

genome browser some of these questions are difficult. The purpose of these exercises

is simply to motivate you to continue on to the next chapter, where you will see that

by using the genome browsers, answering these questions is quite easy.

The example in the text concerns a putative polymorphism in the predicted gene,

CXorf34. Without using any of the genome browsers can you determine:

1. How many exons does this gene have in all?

2. Is there any evidence for multiple isoforms of this gene from EST or cDNA data?

4 It is a good idea to first try the example again after waiting a few hours or a day, since web sites

and resources are sometimes “down” for short periods of time.
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3. Do any ALUs, SINEs, or other repeat sequences overlap the polymorphism-

containing exon of CXorf34?

4. Does CXorf34 have any mouse homologs?

5. How many ESTs overlap CXorf34?

6. To what extent is the exon containing the CXorf34 polymorphism conserved

among mammals? Is the intronic sequence surrounding the exon conserved as

well?

7. Are there any known SNPs in this exon?
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Introduction to Genome Browsing
with the UCSC Genome Browser

In this chapter, we introduce genome browsing using the UCSC Genome Browser as

an example. We will emphasize the general layout and features of the user interface

and indicate sources of detailed online documentation rather than attempting a

complete survey of all of its annotations and features. We will then return to our

polymorphism characterization example to illustrate some of these features and

capabilities. In chapter 3, we will revisit these topics, this time in the context of other

genome browsers, particularly EBI’s Ensembl and NCBI’s MapViewer.

2.1 Introduction to the UCSC Genome Browser

The teams that have developed the genome databases and genome browsers have

each had somewhat different project goals, and these differences are reflected in the

tools and resources they provide. In the case of the UCSC Genome Browser Project,

by far the most important objective has been to provide a comprehensive genome

browser that is fast and easy to use. In contrast to other groups, such as NCBI or EBI,

UCSC does not currently carry out either sequence assembly or de novo gene prediction

or annotation. The only annotations that UCSC generates are genome-wide sequence

alignments and a gene annotation track based on filtering Ensembl and NCBI gene

annotations. On the other hand, UCSC does provide a vast array of annotations that

it has integrated from multiple primary databases and that it presents in a uniform

and standardized manner that many people find intuitive and natural. As just one

example of the comprehensiveness of the UCSC annotations, analyses involving base-

level sequence comparisons between mRNA or EST transcripts and the genome are

currently easiest (and often solely possible) to carry out with the UCSC system.

So let us see how one actually uses a genome browser. The procedure consists

essentially of three steps. First, one selects the species of interest and usually a spe-

cific genome assembly of that species as well. Second, one selects the genomic region

in which one is interested. And finally, one chooses a set of annotations, variously

called tracks, views, or maps in the different browsers, that contain the type of infor-

mation that one wants to determine for the selected region. To execute these steps,

21
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Figure 2.1 UCSC Genome Browser home page.

one generally begins at the home page for the browser, which is http://genome.

ucsc.edu for the UCSC Browser. A screenshot of the UCSC Browser home page is

shown in Figure 2.1.

2.1.1 Selecting a species and build

With the UCSC Browser, we specify species, assembly, and genomic region via the

browser gateway page, which is reached by clicking on either the “Genomes” or

“Genome Browser” buttons on the UCSC Browser home page or directly at http://

genome.ucsc.edu/cgi-bin/hgGateway. Parts of the gateway page are shown in Fig-

ure 2.2. On the gateway page, there are pull-down menus for selecting an organism

and the desired genome assembly of that organism. Species choice is divided into

separate menus for differing groups, or clades, of organisms to facilitate finding the

desired species quickly.

For our examples, we will usually use the human genome. With the UCSC system,

we next need to select a database build corresponding to a specific genome assembly.

Often, simply selecting the most recent build is appropriate. However, sometimes

the most recent database build may not yet include certain useful annotations. This

is because in the UCSC system, the entire annotation database for the species must

be reconstructed after each new sequence assembly. This involves recomputing the

chromosomal coordinates of all annotations and reloading all the database tables.

Moreover, transferring annotations to a new database build is currently only partly

automated and, consequently, can take months to complete.

What can make this situation more confusing is the fact that some UCSC anno-

tations are never transferred to the new build. Generally, this will be the case for

annotations that are no longer considered important, for example, if the data has

been moved within the database so that it can be accessed from an alternative annota-

tion track. However, sometimes useful UCSC annotations simply disappear between
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(a)

(b)

Figure 2.2 Gateway page for UCSC Genome Browser. (a) Top of gateway page, used for selecting

species, assembly, and genomic location. (b) Bottom of gateway page, showing examples of available

modes for specifying genomic location.

builds for no obvious reason. For example, tRNA genes could be located previously

(e.g., in the hg16 build of the UCSC Human Genome Browser) via the “RNA Genes”

track. But since the hg17 build, the “RNA Genes” track is no longer available, nor

is there currently any other track for locating tRNAs in the UCSC Human Genome

Browser.

Consequently, it is sometimes preferable to use an older UCSC build, especially

if the differences in the underlying sequence assemblies and annotation databases

are minor. In particular, because at the time of this writing, UCSC’s hg17 Human

Genome Database build (May 2004, corresponding to NCBI’s human genome build

35) has several useful annotations that are not available in the hg18 build (March

2006), we will often choose the hg17 build for our examples.
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It is also worth noting that not only can entire annotation tracks suddenly appear

or disappear in a UCSC database without a change in build number, but individual

records within a given track may also be added or removed. In fact, some datasets –

which are rapidly growing and for which having very up-to-date data may be impor-

tant – are updated quite frequently. For example, UCSC updates GenBank and RefSeq

mRNA annotations daily and EST annotations weekly. If an mRNA is added to or

removed from the RefSeq database, that change will be quickly reflected in the UCSC

RefSeq annotation track. Although such changes are desirable for keeping UCSC’s

data up to date, they can be confusing if one is expecting completely reproducible

results from a query of the UCSC database.

2.1.2 Choosing a genomic region

Next, we need to specify what region of the genome we want to query. There are

several ways of doing this, including by explicit genomic coordinates, by gene name

or description, or by locating a specified sequence in the genome with the BLAT

sequence search tool. Some examples illustrating ways of specifying genome locations

are presented on the gateway page itself (see Figure 2.2b).

For our first example, we want to obtain information pertaining to the gene whose

mutated form is responsible for sickle cell anemia, the HBB human beta globin gene.

To do this, we could enter “HBB” in the “Position or Search Term” field, or if we

have forgotten the gene name, we can take advantage of the wide range of indexed

keyword phrases available in the UCSC database and simply enter “sickle cell” into

the “Position or Search Term” field.

After you enter “sickle cell” in the “Position or Search Term” field and press the

“Submit” button, the browser returns a page with several genes and transcripts from

which to select. The browser returned several choices both because the term “sickle

cell” occurs in many places in the database and because some genes listed have more

than one transcript isoform in the database. Because we are interested in human

beta globin itself, we click on one of the links to the HBB gene, for example, the

link for the accession M25079 under the “Human-aligned mRNAs” subheading. The

result is a view of the genome browser – which we refer to as the “main browser

display” – at the position of the HBB gene. The display will be similar to that shown

in Figure 2.3, although the specific annotations displayed – which will either be

the default annotations or the ones you specified the last time you used the UCSC

Browser – are likely to be different than the ones shown here.

2.1.3 Tracks and track controls

The final step is to choose the specific annotations (“tracks”) that you want to display

from the track control list in the lower part of the browser screen. A portion of the

available track controls is shown in Figure 2.4. It is probably a good idea to begin by

selecting the “Hide All” button so that only annotations that you explicitly select are

displayed. Because there are often a large number of possible tracks (for example, over



Introduction to Genome Browsing with the UCSC Genome Browser 25

Figure 2.3 UCSC Genome Browser at the position of the HBB gene.

Figure 2.4 Portion of UCSC Browser track controls. Pull-down menu, shown for Known Genes track,

shows available track density options.
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100 tracks for hg17, or over 160 if one selects one of the genome regions annotated

by the ENCODE Project), selecting among all the available tracks can initially be

somewhat intimidating.

To make track selection easier, the various annotations are grouped together into

categories, including chromosome descriptions, genes and gene predictions, expres-

sion data, comparative genomics, and sequence variations. Within the gene group, for

example, are annotations of genes derived from manually curated gene annotations

(e.g., RefSeq genes) as well as results from various gene prediction programs such as

GENSCAN, N-SCAN, and ACESCAN. The mRNA/EST alignment group includes align-

ments of mRNAs and ESTs to the genome. The gene expression group includes tracks

with microarray probe locations used in several widely used expression chips from

Affymetrix, as well as tracks annotating expression levels from multiple human tis-

sues that have been determined with these chips via the gene expression project of the

Genomics Institute of the Novartis Research Foundation (GNF). The variation section

includes tracks that annotate genetic variations such as single nucleotide polymor-

phisms, copy number polymorphisms, SNP linkage disequilibrium maps, and so on.

The comparative genomics category includes alignments of the region with homol-

ogous regions in non-human vertebrate genomes as determined by the programs

BLASTZ and MULTIZ. The comparative genomics annotations also include an estimate

of the level of sequence conservation over the selected region, as determined by the

phastCons program. (The BLASTZ, MULTIZ, and phastCons programs are described fur-

ther in Appendix 4.) For genomic regions specified by the ENCODE Project, there are

an additional group of 60 annotations, including tracks that locate promoter regions,

regions identified by chromatin immunoprecipitation experiments, and many

others.

Even with track grouping, identifying the tracks of interest may involve going

through some documentation, especially if one is new to genome browsers. A good

way to start is by examining the list of track descriptions found on the display

configuration page, which is accessed by clicking the “Configure” button of the main

browser display page. In addition to listing track descriptions and controls for turning

tracks on or off, the configuration page includes controls from which one can select

display parameters such as text size, overall screen image size in pixels, whether to

display vertical guidelines, and other parameters, thereby enabling one to customize

the screen display to individual preferences.

To obtain more detailed information about any single annotation track, one can

access the track’s documentation and controls page. This page includes descriptions

of the type of data presented in the track and the methods used to obtain the data,

as well as ways of configuring the track display. To access the documentation and

controls page, click on the name of the annotation either on the display configuration

page or in the track controls section at the bottom of the main browser display, or

else click on the marker at the left-most end of the track’s display, if the track is

currently visible in the main browser display.
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Figure 2.5 Portion of track documentation and controls page for spliced EST track. Filtering by

accession number is selected so that only EST BE256422 will be displayed. Color track option is

configured to highlight nucleotides that differ between the EST and the genomic sequence.

If we choose to display a track, we also can configure how to display the track.

Each track control has its own pull-down menu that offers choices such as “Full,”

“Pack,” “Squish,” “Dense,” or “Hide” (see Figure 2.4). As indicated by the name, full

display mode presents the annotation in its most complete form. However, it also

uses the largest amount of screen real estate and takes the longest time to display.

Consequently, if one is looking at many annotations over a large region (e.g., if there

are hundreds of ESTs in the region), using full annotations can be inconvenient.

Pack, squish, and dense modes each display annotation data in a different condensed

format. Dense mode condenses all annotations onto a single line. Squish mode shows

each annotation at 50% height, whereas pack mode puts multiple non-overlapping

annotations onto a single line. Consequently, it is often better to initially select a

few tracks in squish, pack, or dense modes to see the genomic context of the region

of interest and then zoom in to a smaller region where one may want to select a

larger number of tracks, including some in full mode. In addition to controlling the

density of the track display with the track control pull-down menu, we can obtain

finer control of the track display via the documentation and controls page described

previously. As an example, the available controls for the spliced ESTs track are shown

in Figure 2.5.

Certain data are more easily visualized by changing the resolution of the genome

display. This is most easily accomplished by using the “Zoom In” and “Zoom Out”

buttons at the top of the main display page. By decreasing the genomic resolution

(i.e., by “zooming out”), one can get a better sense of the genomic context of the

feature or region being examined. In contrast, other features can only be observed by

zooming to high resolution where individual base pairs are displayed. The easiest way

of zooming to base-pair resolution is by clicking the “Base” zoom button at the top of

the main browser display. When zoomed to base resolution, the “Base Position” track

will display the genomic DNA and the three-frame translated amino acid sequences.

An example of a genome display zoomed to base level is shown in Figure 2.6.

On the UCSC Browser, track annotations are shown separately for each of the two

chromosomal strands. Because the genomic region of interest is often restricted to
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one strand, displaying annotations for only a single strand at a time can lead to a

less cluttered display. A toggle button in the upper left corner of the track display

determines which strand of DNA sequence is displayed. Note that the strand initially

displayed will be the default strand or the one that was most recently selected, and

may not be the strand of the feature in which you are currently interested. Typically,

the strand location of a feature is indicated by “>>>>” or “<<<<” markers in the

annotation track, for example, as shown in the intron region of the HBB track in

Figure 2.3.

However, displaying tracks for only a single strand can be confusing if one does

not pay proper attention to the strand display toggle button. This is illustrated in

Figure 2.7. Looking at the intronic region of Figure 2.7a, the (human) nucleotide

sequence at the top of the display is seen to be identical to the human sequence in

the multiple alignment. However, the sequence of amino acids shown in the exonic

part of the multiple alignment does not match any one of the three genomic reading

frames shown at the top of the screen. The reason is that the displayed amino acids

are those of the aligned mRNA. In Figure 2.7, this mRNA aligns to the negative strand,

but we might not be aware of this because the display is zoomed to a level where one

does not see the intron strand arrows. In contrast, the intron bases are always aligned

to the strand selected by the strand toggle button, which in Figure 2.7a is the positive

strand. Clicking on the strand toggle (see Figure 2.7b) causes the entire display to

show negative-strand data so that one can clearly see that the exon alignment does

indeed match one of the three reading frames.

Of course, precisely which tracks you select for the main browser display page

will depend on the question at hand. For our HBB gene example, we have selected

the Known Genes, GenBank human mRNAs, spliced ESTs, SNP, repeats, GC%, and

vertebrate conservation tracks. Selecting these tracks results in the display shown in

Figure 2.3.

2.1.4 Other UCSC Genome Browser features

The UCSC Browser includes many other annotations and features that are not directly

associated with a genomic region and hence are not represented as annotation tracks.

For example, each annotation track has associated with it a specific “details” page.

The details page is accessed by clicking on the name of the specific annotation,

for example, clicking on “HBB” in the Known Genes track in Figure 2.3. (Note that

individual annotation names are only displayed when the track itself is shown in

full or pack mode.) Precisely what type of data is returned on a details page depends

on the track type and varies for different species and genome assemblies as well.

For example, the Known Genes details page provides information regarding the

description, function, cellular location, expression data, protein structure, disease

associations, and other characteristics of the gene and the protein that it encodes. A

portion of the details page for the HBB gene is shown in Figure 2.8. In addition, the
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Figure 2.8 Portion of UCSC Genome Browser details page for the HBB gene.

details page includes links to dozens of other databases with additional annotation

information for the gene.

Other useful tools provided by the UCSC Browser include the Gene Sorter tool for

identifying “similar” genes (which is described later), the LiftOver tool for genome-

assembly coordinate conversion illustrated in chapter 4, the in silico PCR tool for

primer design (http://genome.ucsc.edu/cgi-bin/hgPcr?command=start), and the Pro-

teome Browser for protein analysis (Hsu et al., 2005). For visual images of mRNA

expression patterns, UCSC’s VisiGene (http://genome.ucsc.edu/cgi-bin/hgVisiGene)

provides a large collection of in situ gene expression images that are indexed by

gene. Figure 2.9 is an example of a VisiGene display showing the in situ expression of

the hoxA gene in the embryonic mouse nervous system. In addition to these, there are

dozens of other annotation tracks and useful features available on the UCSC Genome

Browser that we have not mentioned and will not describe further here. They are all

well documented at the UCSC web site as well as in the excellent introductory tuto-

rials available at the OpenHelix web site (http://www.openhelix.com/tutorials.shtml).

However, there is one tool, the Custom Track tool, that is of such general utility and

importance that we describe it next.

2.1.5 UCSC custom tracks

Often one wants to combine one’s own data with annotations from a genome

database. For example, in our polymorphism characterization example, we might

want to add an annotation track showing the exact location of the polymorphism.

Or if we have identified a set of highly expressed transcripts in a microarray exper-

iment, we might want to determine how the locations of these transcripts relate to
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Figure 2.9 UCSC’s Visigene display of spatial distribution of mRNA expression of hoxA gene in the

mouse.

known genomic features such as gene predictions or pseudogenes. Or perhaps we

have sequenced some ESTs and want to compare them with ESTs that have been

identified previously.

Integrating custom data into the UCSC Genome Browser display is accomplished

by using a custom track. A custom track is essentially a list of genomic coordinates along

with formatting information for displaying them on the browser. The coordinates

can be specified in one of several coordinate formats including BED, PSL, or GFF.

These formats are described in detail in Appendix 2. In order to be displayed in the

UCSC Browser, the custom track data must be stored in a file (the custom track file).

It is possible to simultaneously display multiple custom tracks, including ones with

different data formats (e.g., some BED tracks and some PSL tracks).

Custom track files are stored on the UCSC server for eight hours from the time

they were last accessed. While the custom tracks are on the UCSC Browser, they can

only be viewed from a computer with the same IP address as the one that originally

uploaded the track. In this way, one’s custom data remains private, even though the
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browser position chrX:100081640-100081670
track name=newSnp description="CXorf34 SNP" color=255,0,0
chrX 100081653 100081654 CXorf34   0    -

Figure 2.10 Sample UCSC custom track file for single genomic location. Lines one and two are

header lines specifying the initial browser location to be chosen and the name and coloring of the

custom track. The single location in the track itself is in line three. It is one nucleotide in length and

specifies the location of the polymorphism in our example.

data has been transferred to the main public UCSC site. Once the custom track data

has been removed from the UCSC site, one must re-upload the custom track file to

view it again. You can share your custom data with other users by sending them a

copy of your custom track file, which they can then upload to UCSC for viewing from

their own computers.

There are two basic ways of creating a custom track, via direct upload or by using

the Table Browser tool. We will discuss the Table Browser in chapter 4. Here, we

will look at the direct upload approach. Figure 2.10 shows a simple custom track

file consisting of a single custom track containing a single annotation, specifically,

the location of the CXorf34 polymorphism in our example. The location is specified

in “BED” format consisting of the chromosome name, the feature start and end

positions, the strand on which the feature is located, and the name of the feature.

Our custom track file also includes two header lines that specify the color and track

name to be used by the browser and the genomic region to be displayed when the

custom track is initially selected.

Once the custom track file is completed, the file is uploaded by clicking on the

“Add Custom Track” or “Manage Custom Tracks” buttons on the main browser display

or gateway pages (see Figures 2.2 and 2.4) and following the on-screen instructions

for selecting the custom track file for uploading. After this step is completed, the

custom track can be selected just like any other annotation track and the custom

annotations are visible at each of the locations in the custom track file. Detailed

information on creating and displaying more complex custom tracks can be found

in the online UCSC Browser User’s Guide at http://genome.ucsc.edu/goldenPath/help/

hgTracksHelp.html#CustomTracks.

2.2 Returning to the disease polymorphism example

Having introduced the basics of using the UCSC Browser, let us return to our scenario

from the previous chapter. We recall that we had identified a G → C polymorphism

in the CXorf34 gene and suspect that this polymorphism may predispose an individ-

ual to disease. To explore this hypothesis, we want to ask several questions: Is the

polymorphism in dbSNP? Is it in a genomic region that has previously been linked

to a known disease? Does it occur in any known EST? Is the site conserved in other

vertebrates? Does the polymorphism site overlap any known repeats? Can we get
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any clues as to the function of this uncharacterized gene? Can we identify candidate

mouse homologs?

Starting at the genome browser gateway page, we select the hg17 (May 2004) build

of the human genome. Next, we need to choose the genome region. One possibility

would be to enter “CXorf34” in the “Position and Search Term” field. However, doing

so would return the region corresponding to the entire 42 KB of the CXorf34 gene.

Because we are primarily interested in the short region immediately surrounding

the polymorphism, we will instead use the BLAT sequence search tool. Selecting the

“BLAT” button from the top menu brings us to the BLAT input page. Now we can cut

and paste1 a 60 nt sequence, (GTCCTTGGGATTGAATTGTTGGAGCAGGCACTGGAGGAT

GCAAGATGGACTGCAGCCTTC) centered around the polymorphism (underlined), into

the input field and select the (default) hyperlink output option. BLAT then returns

its results, indicating that there is a single place in the genome that matches our

input at the 98.4% level over its entire length (the match will not be 100% because

of the mismatch coming from the polymorphism itself). Clicking on the “Browser”

link from the BLAT results page returns a view of the 60 nt region surrounding the

polymorphism site.

Next, we need to select the appropriate annotation tracks to answer our biological

questions. First, we click “Hide All” to remove any previously selected tracks. We

specify the locus variant track to see if the polymorphism site is near any regions

associated with known diseases. We choose the Repeatmasker and Segmental Dupli-

cations tracks to see if the site overlaps any known genomic repetitive elements. We

will select the SNP and structural variation tracks to look for any known human

variations at the site.

To determine whether our allele variant has been observed in an EST or mRNA, we

select the human mRNA and spliced EST tracks in the full display mode. Because we

are interested in identifying places where the mRNA or EST differ from the genome,

we select the “Different mRNA bases” option from the “Color Track by Bases” pull-

down menu in the mRNA and spliced EST track configuration pages (see Figure 2.5).

We select the conservation track to see to what extent the site is conserved among

vertebrates, and because we want to search for candidate mouse homologs, we specify

the mouse chain track as well. To facilitate visualizing sequence conservation at the

polymorphism site, we will select “Display bases identical to reference as dots” and

“No codon translation” on the conservation track configuration page.

We will also select the base track to display the actual sequence, if necessary

toggling the strand select switch so that the displayed sequence is from the same

strand as the transcribed gene (the negative strand, in this case). Finally, to more

easily visualize where the polymorphism is in the gene structure, we will select the

1 For cut-and-paste convenience, this sequence can be found in the file CXorf34Poly.fa in the data

directory of the tar file available from the book web site.
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Known Genes track and add the custom track, shown in Figure 2.10, that annotates

the precise position of the polymorphism site.

Clicking “Refresh” displays the selected annotations. The resulting display has

many tracks, including over 40 mRNA and EST tracks. However, with the mRNA and

spliced EST tracks configured to only display different bases, we can quickly determine

that no mRNAs and only a single spliced EST (BE254622) differ from the genome at

the polymorphism site. Moreover, we see that the variant is a G → C transversion,

which is the same variation as in our allele. From the translated genomic sequence,

we learn that this single nucleotide change results in an amino acid change as well

because the affected codon changes from “GTG,” which codes for valine, to “CTG,”

which codes for leucine. Having identified this EST, we simplify our display by hiding

the mRNA track and reconfiguring the spliced EST track, as illustrated in Figure 2.5,

so that only BE254622 is displayed. Refreshing the main browser display then yields

Figure 2.6.

From Figure 2.6, we see that the variation is not in dbSNP nor are there any other

known mutations or variations or any repetitive elements at this location. From the

vertebrate alignment in the figure, we see that the same nucleotide (“G”) is present

at the homologous sites in twelve other vertebrate genomes but that there is a “C” in

opossum and tenrec (as in our new allele), whereas in chicken there is an “A.” Both

of these nucleotide changes result in different amino acids as well.

We next want to identify candidate homologous mouse genes. From the mouse

chain track of Figure 2.6, we see that BLASTZ genome-wide alignment predicts the

homologous region in the mouse genome of our polymorphism site is located on

mouse chromosome X near position 19.5 MB. Examining the mouse genome at

this location, we find that this is located within the mouse 4732479N06Rik gene.

For protein-coding regions, such as CXorf34, an alternative approach to identifying

homologous regions is by determining the most similar translated protein sequence

using the reciprocal blastp method. The best reciprocal blastp hit can be identified

with the UCSC Browser from the “Orthologous Genes” section of the Known Gene

details page. Performing this operation to determine the blastp best hit to CXorf34

in mouse again yields 4732479N06Rik, showing that, in this case, both BLASTZ and

reciprocal blastp predict the same mouse homolog.

Next, we want to see if we can get some clues as to the function of this unchar-

acterized gene. To this end, we will use the Gene Sorter, which is one of several

auxiliary genome analysis tools that is incorporated with the UCSC Genome Browser.

The Gene Sorter searches for genes that are in some way “similar” to a specified query

gene. The idea behind its use in our present application is that if the most similar

genes to our query gene all belong to a certain pathway or functional class, then

there is a reasonable chance that the uncharacterized query gene may belong to that

class as well. Clicking on the “Gene Sorter” button at the top of the main display

page returns the Gene Sorter input screen. With the Gene Sorter, we can search for
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Figure 2.11 Gene Sorter display. Gene Sorter is used to find genes that are similar to a query gene in

terms of mRNA expression patterns, blastp homology, protein-protein interactions, and so on. With

CXorf34 as input, the only related gene identified is CR592601, which, as indicated in the display, is

homologous to CXorf34 using blastp comparison.

“similar” genes on the basis of BLAST sequence similarity, expression pattern similar-

ity, proximity in protein interaction networks, shared Pfam protein domains, and so

on. Using CXorf34 as input, we find, for example, that CXorf34 has significant BLAST

similarity to the partially annotated gene CR592601, suggesting that CXorf34 may

have a related function to CR592601 (see Figure 2.11).

Finally, we would like to be able to search for the new allele in other individuals.

One approach would be to design primers specific to our region of interest for use

in a PCR assay. UCSC’s in silico PCR design tool (http://genome.ucsc.edu/cgi-bin/hgPcr)

enables one to do this easily. An alternative approach would be to look for other

nearby genetic variations that might be inherited in tandem with the new polymor-

phism. This method of looking for evidence of variations based on correlated genetic

inheritance, referred to as genetic markers being in linkage disequilibrium, is possible

via the HapMapLD track available on some UCSC genome builds (e.g., hg17). We will

illustrate this approach in more detail in the context of Ensembl’s LDView, described

in the next chapter.

Chapter summary

� The three main genome browsers – Ensembl, MapViewer, and UCSC – contain

similar data from many of the same species. However, the precise species and anno-

tations contained by each do differ and some tasks are more easily carried out in

one browser than another.
� The UCSC Genome Browser provides perhaps the most comprehensive collection

of genomic annotations available from many primary databases.
� UCSC itself produces only a small number of genomic annotations, primarily in

the form of genomic sequence alignments.
� Using a genome browser, such as the UCSC Genome Browser, generally involves

three steps:

a. Choose a species and, in some cases, a genome assembly.
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b. Choose a genomic location.

c. Select the annotation tracks or maps corresponding to the data in which one is

interested.
� Most of the UCSC tracks and display tools have numerous configuration options,

enabling users to customize the display to the needs of their specific applications.

Exercises

1. Many vertebrate genes may be spliced in multiple forms. One such gene is DRD2,

a dopamine receptor gene. By locating this gene in the UCSC Browser, determine

how many exons each of its two principal isoforms contain.

2. In some cases, mRNA expression data can also be obtained from genome browsers.

Locate the DRD2 gene in the UCSC Browser. Determine whether there are anno-

tation track(s) for mRNA expression in different tissues. In which tissues is DRD2

most highly expressed? Are there tissues in which the short isoform of DRD2 is

highly expressed but the long isoform is not?

3. The gene PALB2 (previously known as FLJ21816) has recently been implicated in

some forms of cancer through its association with BRCA2. In which tissues is PALB2

most highly expressed? Does there appear to be a different level of expression of

PALB2 in cancer cell lines than in normal cells?

4. Use the UCSC Gene Sorter to identify any genes that are similar to or related to

PALB2 on the basis of sequence homology, expression patterns, protein domains

or families, or protein-protein interactions.

5. Custom tracks are not only useful for integrating custom data but for collecting

regions with similar or related known annotations. Make a UCSC custom track of

all genes whose descriptions include the term “Fanconi anemia” (e.g., by using the

“Position and Search Term” input on the UCSC Browser).
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Browsing with Ensembl, MapViewer,
and Other Genome Browsers

In chapter 2, we began our study of genome browsers by examining the UCSC Genome

Browser. In the present chapter, we continue our examination of genome browsers

by looking at EBI’s Ensembl and NCBI’s MapViewer tools. We will focus on the ways

that Ensembl and MapViewer differ from the UCSC Genome Browser, indicating

some of the situations in which one tool may be more appropriate than the others.

We will revisit our example involving the putative disease-causing polymorphism

and see how we could study the properties of this polymorphism using these tools.

Finally, we will introduce the other genome browsers (e.g., Gramene, the prokaryote

browsers, and the single-organism browsers) and indicate when we might want to

use these tools as well.

3.1 Introduction to the Ensembl Browser

As with the UCSC Browser, the Ensembl Browser, from the European Bioinformatics

Institute (EBI), has been designed to be a comprehensive, integrated genome data

resource with a fast and intuitive user interface. However, EBI has had additional

objectives for the Ensembl project. The Ensembl system is also designed to provide

an automated pipeline for gene annotation as well as a well-supported programming

interface to enable querying of the Ensembl databases by researchers outside of EBI.

In addition, Ensembl is designed to facilitate the direct incorporation of annotations

from outside data providers into the Ensembl display via DAS-based “view integra-

tion.” Consequently, because of Ensembl and UCSC’s somewhat different objectives,

making direct comparisons between the UCSC and Ensembl systems is difficult and

not always useful.

3.1.1 Ensembl views

To provide its comprehensive set of annotations, Ensembl uses some thirty different

types of displays or views, each one customized for a specific type of annotation.

One advantage of Ensembl’s multiple views is that the screen display can be less

cluttered, as it is not filled with multiple controls and features that are not needed

38
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for the query at hand. Moreover, multiple views provide Ensembl with the flexibility

to present browser displays not found in other systems.

However, there are drawbacks to Ensembl’s multiplicity of views as well. One

disadvantage is that it is sometimes not obvious just what annotations are even

available. If a desired type of annotation is not visible on the menu in one view,

you do not know whether it might be available in one of the other thirty views. For

example, if one is interested in coding-exon SNPs, should one look for annotations

in SNPView or in GeneSNPView? Or perhaps in TranscriptSNPView? For annotations

stored locally at Ensembl, the answer can usually be found via the Ensembl HelpView

pages at http://www.ensembl.org/common/helpview. However, if the annotations of

interest are not stored locally (i.e., if they are DAS tracks), then determining the

available annotations from the sometimes cryptic names in Ensembl’s DAS-Sources

menu can be difficult. Additional information about DAS tracks can be found at the

DAS registry site at http://www.dasregistry.org.

It is also sometimes not obvious how to switch views, for example, between SNPView

and GeneSNPView or TranscriptSNPView. In such cases, it may be necessary to refer

to the Ensembl Sitemap page (http://www.ensembl.org/ sitemap.html) and link to the

species-specific site map, from which the desired view can be selected.

Another disadvantage of multiple views is that one can only simultaneously display

annotations if all of them are available within a single view. If the desired annotation

data is distributed over multiple views, one needs to switch back and forth between

views. In particular, Ensembl custom tracks cannot be displayed in many views where

they could be useful, such as AlignSliceView or LDView. For another example, one

might want to look at both a base-level multiple sequence alignment as well as at the

occurrence of overlapping ESTs. In this case, we would again need to alternate views

because the ESTs can be viewed only in ContigView, whereas the base-level alignment

is only seen in AlignSliceView.

3.1.2 Ensembl ContigView

Among the various Ensembl views, one of the most important is Ensembl’s Con-

tigView. ContigView is similar to UCSC’s main browser display; however, they have

some significant differences. First, as shown in Figure 3.1, Ensembl ContigView actu-

ally consists of four separate displays (Chromosome, Overview, Detail, and Basepair),

each one displaying the same region at a different resolution. This is a convenient

feature. Because any combination of the four resolutions can be displayed simulta-

neously, it is possible, for example, to view the nucleotide sequence of an intron-

exon splice junction together with the gene context in which the splice junction

occurs (Figure 3.1b).1 A second difference between the Ensembl ContigView and UCSC

1 Of course, it is possible to visualize both a genomic feature and its context in the UCSC display as

well by successively increasing or decreasing the display resolution. However, it is currently not

possible to view such multiple resolutions simultaneously without opening multiple windows

or performing other cumbersome manipulations.



(a)

(b)

Figure 3.1 Ensembl ContigView displays. Portion of Ensembl display showing a splice junction in

CXorf34 together with its the genomic context: (a) ChromosomeView and Overview (b) Detail and

Basepair Views. Detail View shows entire intron and exon. Open rectangle indicates region

immediately surrounding splice junction, which is displayed at the nucleotide level in the Basepair

View shown in the lower part of the figure.
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Figure 3.2 Ensembl (and MapViewer) display only a subset of overlapping mRNAs and ESTs.

Ensembl Detail View (upper display) appears to indicate that only a single mRNA overlaps the

region of interest, which is indicated by the transparent rectangle. However, by opening Basepair

View (lower display), we see that at least six mRNAs actually intersect the region.

displays is that with Ensembl, the nucleotide and codon sequence data for both

genomic strands are included in the same display. As described in chapter 2, this may

make the display somewhat more cluttered but it is also somewhat less ambiguous.

Ensembl ContigView and the UCSC main browser display also differ in that in

Ensembl, each track is simply selected or not selected. There are no track display

options, such as UCSC’s “dense,” “pack,” or “squish” to configure. Although having

only “on” and “off ” modes for track displays makes the user track controls simpler,

it may lead to confusion, as illustrated with the Ensembl mRNA track in Figure 3.2.

In the Detail View screen image, one sees seven mRNAs. However, this is not because

there are only seven mRNAs in this region, but rather because Ensembl only displays
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seven mRNAs at a time. Moreover, the seven displayed mRNAs in Detail View are not

the same mRNAs as those shown in Basepair View. As long as you know what is going

on, this is not a problem because you can “mouse over” each mRNA to identify which

mRNA it is, and can click on the screen to display additional mRNAs. However, for

the unwary this can be confusing. For example, looking only at the open rectangle in

the upper (Detail View) part of Figure 3.2, one might have deduced (incorrectly) that

just one mRNA overlaps the region of interest. However, looking at Basepair View in

the lower part of Figure 3.2 shows that, in fact, multiple mRNAs overlap the region.

Another important (and sometimes confusing) difference between the Ensembl

and UCSC system of annotations is that Ensembl and UCSC have different (implicit)

definitions of what is a “gene.”2 In Ensembl, a “gene” is a collection of over-

lapping transcripts. For example, the BRCA1 gene has the Ensembl gene ID of

ENSG00000012048, and the many isoforms of BRCA1 each have their own Ensembl

transcript ID beginning with the letters “ENST” (e.g., ENST00000351666). As a result,

an Ensembl gene does not have exons or introns per se that can be displayed in a

browser. Instead, selecting the Ensembl “gene” track in the Ensembl Browser results

in the display of the exon-intron structure of multiple Ensembl transcripts, each with

a different Ensembl transcript ID.

In contrast, for UCSC, each transcript isoform is a separate “gene.” For example,

looking on the Ensembl Gene track in the BRCA1 region with the UCSC Genome

Browser shows many “genes,” one corresponding to each Ensembl transcript (e.g.,

ENST00000351666). Ensembl’s BRCA1 gene – ENSG00000012048 – does not have a

separate entry in the UCSC database at all, even though ENSG00000012048 is in the

UCSC database index and points to the various Ensembl BRCA1 transcripts.

3.1.3 Ensembl features

Ensembl has many powerful features, such as custom tracks and multispecies align-

ments, that are similar to features we have already seen in the UCSC Browser. In

addition, Ensembl provides some important tools and annotations not available in

the UCSC system. For example, later in this chapter, we will see the usefulness of the

Ensembl GeneTreeView (Figure 3.3) and TranscriptSnpView (Figure 3.4) for display-

ing gene-level phylogenetic trees and SNP variations across mouse strains, respec-

tively. Similarly, we will see the utility of Ensembl’s MultiContigView (illustrated

in Figure 3.5) for simultaneously visualizing aligned and annotated regions from

multiple species when performing syntenic comparisons.

Ensembl also provides two sequence-searching tools (SSAHA and BLAST) for locat-

ing one’s sequence in the genome (UCSC only provides one, BLAT). SSAHA is a fast

sequence similarity tool, similar to BLAT. However, the speed of BLAT and SSAHA

2 Actually, defining what is meant by a gene is not trivial, especially for organisms that are

capable of alternative splicing or other means for producing multiple transcripts from a single

genomic location. For a detailed discussion of this topic, see, for example, Gerstein et al., 2007.
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Figure 3.3 Ensembl GeneTreeView showing phylogenetic relationships among CXorf34 homologs

in more than forty different species.

comes at a price. Specifically, SSAHA (and BLAT) require that at least a part of the

query exactly matches part of the genome sequence. Consequently, if the query

sequence has only limited similarity to the target – for example, if the two sequences

are from different species – the query sequence may not be located at all. If the query

is a protein-coding sequence, this problem can be minimized by first translating both

the query and the genome sequences, and each of the browser sequence-search tools

have options for performing such translated searches. However, translated searches

cannot be used for non-protein-coding sequences. Moreover, even for protein-coding

sequences, sequence-search tools requiring extended exact matches may still not find

any “hits” in the genome if the query and genome sequences are not sufficiently sim-

ilar. Consequently, if one needs to find more distantly related regions of homology

in a genome, BLAST can be useful, even though BLAST is much slower than BLAT or

SSAHA.

Ensembl has many other useful features that we will not cover here. They are

well described in the Ensembl documentation. If you are interested in exploring
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Figure 3.4 Ensembl TranscriptSnpView displaying variations in the 4732479N06Rik gene in

different mouse strains.

more of these features, a good place to start is the main Ensembl Help page at

http://www.ensembl.org/common/helpview.

3.2 Revisiting our polymorphism example in Ensembl

We now return to our CXorf34 polymorphism scenario, this time using Ensembl. The

general approach is quite similar to the one we used with the UCSC Bbrowser: we

first select the genome and database, then locate the sequence in the genome using a

BLAST-like sequence search tool (SSAHA or BLAST), and finally choose the annotations

to display using Ensembl’s view and track selections.

We begin at the Ensembl home page (http://www.ensembl.org, and shown in Figure

3.6) and select the human genome from the current release of the Ensembl database.

We note that as with the UCSC database, it is possible to view previous releases of the

database either by selecting the “View previous release of page in Archive!” link or else

directly, for example, via http://oct2006.archive.ensembl.org/index.html. However, in

contrast to the UCSC databases, because Ensembl includes essentially all annotations
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Figure 3.5 Simultaneous comparative views of the human CXorf34 gene and homologous mouse

gene, 4732479N06Rik, using Ensembl’s MultiContigView.

from the previous release as soon as a new version becomes available, there is rarely

any reason not to use the most recent Ensembl release.

Next, we select the SSAHA tool from Ensembl’s BlastView page and enter the 60 nt

sequence surrounding our polymorphism (see Figure 3.7). We again receive a single

“hit.” Selecting the location of the hit on the X chromosome as shown on the Ensembl

BLAST output page, we are returned a display in Ensembl’s ContigView mode that

again brings us to the CXorf34 gene.
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Figure 3.6 Home page for Ensembl Genome Browser.

Finally, we need to select the Ensembl annotations. In ContigView, annotation

tracks are selected from the pull-down menus immediately above the Detail View dis-

play section. To address our questions about our polymorphism, we select the SNPs,

Ensembl Genes, ESTs, and human cDNAs from the “Features” pull-down menu, seg-

mental duplications (SegDup WashU) from the DAS Sources menu, and “All repeats”

from the Repeats menu. Currently, there are no Ensembl annotations for structural

variants or disease mutations. Note that DAS annotations, which are provided by non-

Ensembl data providers, are listed in a separate pull-down menu, the DAS Sources

menu.

As we did with the UCSC Browser, we will create a custom track to mark the precise

polymorphism site. In Ensembl, there is more than one way to display custom tracks.

Perhaps the easiest approach, which we describe here, uses Ensembl’s internal DAS

server.3 To use this method, we must first list our annotations in DAS format. For the

present example, which has only a single track with a single feature, the DAS input

file is only one line long:

. CXorf34Snp . . X 100162165 100162165 - . 0

The fields must be tab-delimited and the periods (“.”) are required for fields with

no explicit data. The DAS format is described in more detail in Appendix 2 and at

http://biodas.org/servers/LDAS.html. To upload this custom track, we select “Manage

sources” under the DAS Sources menu, then select “Upload your data” from the re-

turned DasConfView page and follow the three-step instructions for uploading data.

Once the data has been uploaded, a new track, which we named CXorf34Snp, can be

selected from the DAS Sources menu. We note that the coordinates in the Ensembl

3 Other ways of creating Ensembl custom tracks are described at http://www.ensembl.org/info/

using/external_data.
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Figure 3.7 Ensembl BlastView with the sequence surrounding the polymorphism site entered as the

query sequence. SSAHA with near-exact matching is selected because the query sequence differs

from the reference genome by only a single nucleotide.

DAS record are different from those in the UCSC custom track of Figure 2.10. The

differences are partly the result of our having used different genome assemblies

and partly the result of different coordinate numbering conventions used by UCSC

and Ensembl (genome coordinate-system numbering conventions are described in

Appendix 1).

Once we have made our track selections, Ensembl returns the display shown in

Figure 3.8. From the display, we again see that our site does not overlap any known

SNPs, repeats, or disease regions. We again see that numerous cDNAs and ESTs overlap

our polymorphism site. However, there are differences between Ensembl’s EST display

and what we saw with the UCSC Browser. First, the number of transcripts shown

is often different – and generally smaller – than the number of ESTs returned in



(a)

(b)

Figure 3.8 (a) Ensembl Detail View of the region surrounding our CXorf34 polymorphism. Position

of polymorphism is shown via custom “CXorf34snp” track. (b) Basepair View at the polymorphism

site. Overlapping mRNAs and ESTs can be identified by positioning the mouse over tracks, as shown.

Only a subset of overlapping mRNAs and ESTs will appear in the display.

48
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Figure 3.9 PECAN-generated multispecies alignment surrounding the polymorphism site shown in

Ensembl AlignSliceView. The rectangle, which is not part of the AlignSliceView display, indicates

the polymorphism location in the alignment.

UCSC’s “full” display mode for ESTs. This is because Ensembl displays only part of the

complete set of ESTs to keep the display from becoming too crowded. To see which

ESTs are being displayed, one can place the mouse over any of the EST tracks and the

name of the EST will be displayed. Refreshing the screen displays other ESTs. A second

and more significant limitation of the Ensembl EST display is that there is no way to

determine if any of these sequences have sequence variants at the polymorphism site

because the Ensembl database does not store the actual mRNA/EST/cDNA sequences.

Consequently, we cannot tell whether our variant has been observed in any mRNA,

EST, or cDNA transcript.

To further characterize our polymorphism site, we need to use other Ensembl

views besides ContigView. To locate these related views, we can use the pull-down

menus from the menu list on the left side of the ContigView display. For example,

to determine the level of sequence conservation at the polymorphism site, we can

select “10 amniota vertebrates – PECAN” from the “View alignments” menu. This

will switch the display to AlignSliceView. If we switch to AlignSliceView using the

region immediately surrounding our polynomial site (chrX:100,162,136-100,162,195

in NCBI assembly 36 coordinates, currently used by Ensembl), we see an alignment

similar to that shown in Figure 3.9.

We observe that Ensembl’s alignment differs from the UCSC alignment we saw

in Figure 2.6. First, because we cannot display our custom track in AlignSliceView,

we need to note the precise coordinate of the polymorphism so that we can iden-

tify its location in the alignment. We have done this by manually superimposing a

transparent rectangle at the position of the polymorphism in the alignment. Second,

an Ensembl multisequence alignment can only be displayed relative to the positive

genome strand. In contrast, with the UCSC Browser, we can choose the strand to use

for orienting multisequence alignments. In Figure 2.6, we chose to display the conser-

vation alignment relative to the negative strand because CXorf34 is a negative-strand

gene. The UCSC and Ensembl alignments also differ because, currently, UCSC’s align-

ments include more species than Ensembl’s. For the species included in both align-

ments, the observed nucleotides at the polymorphism site are the same, with (positive

strand) “C” being found in the mammals and “T” found in chicken. However, such
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Figure 3.10 CXorf34 in Ensembl’s Linkage Disequilibrium View (LDView). Note that SNP IDs have

been manually added in the figure. One needs to “mouse” over the SNPs to identify them in the

actual display.

agreement between UCSC and Ensembl alignments is not necessarily the case, as UCSC

and Ensembl use different multiple-sequence alignment algorithms. Differences

between UCSC’s and Ensembl’s alignment algorithms are described in Appendix 4.

Other Ensembl views provide additional information on our region of interest.

For example, we can use Ensembl’s LDView to search for common, nearby SNPs

that may be in linkage disequilibrium with our new allele. Figure 3.10 shows

Ensembl’s LDView display in the neighborhood of our polymorphism site in CXorf34.

(You may need to go to the CXorf34 page in “GeneView” – which can be reached by

entering “CXorf34” in the main search box – and then link to LDView from there.)

The display also includes a track showing which common SNPs in this region have

been extensively genotyped for different human populations and which have been

“tagged” by the HapMap project as markers of population variation. The figure shows

that for European populations, our polymorphism site is within a region of strong

linkage disequilibrium, indicated by the dark triangle. Consequently, by genotyping

SNPs rs5921708, rs5921709, or rs5920880, as well as SNP rs7050888, in the individ-

ual with our novel allele, it may be possible to develop a marker to help identify

other individuals who possess the new allele. For more details about the use of

linkage disequilibrium, the HapMap project, and the use of triangle-type linkage-

disequilibrium displays like Figure 3.10, see Barrett et al. (2005) and Frazer et al.
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(2007) and references therein. We note that some UCSC Browser builds (e.g., hg17)

include linkage-disequilibrium displays, as well; however, UCSC does not currently

include tracks that explicitly indicate genotyped and tagged SNPs.

GeneTreeView, MultiContigView, TranscriptSnpView, and FamilyView also con-

tain information that is useful for our example. GeneTreeView provides a phyloge-

netic tree at the individual gene level; the GeneTreeView for CXorf34 is shown in

Figure 3.3. MultiContigView enables us to compare annotations for CXorf34 and each

of its homologs together in a single display. An example of a MultiContigView dis-

play between CXorf34 and its mouse homolog is shown in Figure 3.5. If we anticipate

studying CXorf34 further in the mouse, selecting TranscriptSnpView (see Figure 3.4)

provides a SNP comparison of CXorf34-mouse homolog sequences in different mouse

strains, which may be useful in selecting appropriate mouse strains for experimental

studies. Finally, although there is no equivalent of UCSC’s Gene Sorter to identify

“similar genes” on the basis of gene expression or protein-interaction network prox-

imity, Ensembl’s FamilyView does allow one to search for genes that are similar on

the basis of protein-family grouping.

3.3 Genome browsing with NCBI MapViewer

NCBI’s MapViewer is the third major multispecies genome browser. Because of the

significant differences in genome-database design objectives of NCBI as compared to

UCSC or EBI, directly comparing MapViewer with the Ensembl or UCSC Browsers is

not particularly instructive. Rather than being a comprehensive stand-alone genomic

database resource, MapViewer is one component of a suite of database resources and

tools offered by NCBI. NCBI database resources include archival databases such as

GenBank, dbEST, dbSNP, and the genomic sequence trace databases as well as the

curated databases, such as RefSeq, UniGene, and Homologene. NCBI genome-analysis

tools include in silico PCR tools for primer design (http://www.ncbi.nlm.nih.gov/sutils/

e-pcr), tools for testing putative novel gene isoforms from known transcript data

(http://www.ncbi.nlm.nih.gov/mapview/static/ModelMakerHelp.html), and genome-

wide sequence-searching tools such as Genomic BLAST. In particular, no matter which

browser you use, NCBI Genomic BLAST can be useful for searching for sequences

within a genome, even if the genome is not yet available in any of the genome

browsers. Genomic BLAST can be reached via http://www.ncbi.nlm.nih.gov/sutils/

genom_table.cgi.4

As its name suggests, MapViewer is particularly designed for facilitating the con-

struction of genomic maps. This objective is reflected in the fact that the MapViewer

display is oriented vertically. Such vertical displays facilitate the simultaneous view-

ing of multiple genomic coordinate systems. For example, with MapViewer one can

4 For eukaryotes, there is an alternate interface accessible via the single-organism BLAST buttons

on the NCBI Genome page at http://www.ncbi.nlm.nih.gov/Genomes.
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Figure 3.11 Chromosomal inversion on NCBI MapViewer. Region displayed is from 30 to 120

megabases on mouse chromosome 7. Note the large chromosomal inversion, near 70 megabases,

between the radiation hybrid data (map WI/MRC-RH) and the STS map, indicated by the large

number of crossed lines between corresponding landmarks on the two maps.

compare two complete genome assemblies (e.g., the reference and Celera human

genome assemblies), as well as partial assemblies and non-sequence-based genetic

maps. Such comparisons are more difficult or impossible to perform with the UCSC

or Ensembl systems. An example of map comparison with MapViewer is shown in

Figure 3.11. The figure shows linkage and radiation hybrid maps along with the mouse

reference assembly, illustrating a large inversion of the radiation hybrid mapping

relative to the reference assembly in the middle of the chromosome.

Another useful feature of MapViewer is the support of three tools (MegaBLAST,

discontiguous MegaBLAST, and BLAST) for sequence searching. MegaBLAST is fast but

requires longer regions of exact matches between the query and genome sequences

(similar to BLAT and SSAHA). In contrast, discontiguous MegaBLAST is more sensitive
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Figure 3.12 Home page for MapViewer.

than BLAT, SSAHA, or conventional MegaBLAST, and yet is much faster than conven-

tional BLAST.

However, despite these features, for general genome querying, MapViewer has

some significant limitations. First, because of MapViewer’s vertical orientation, it

would be awkward to “zoom in” to a base-pair level view of the chromosome and,

in fact, MapViewer does not currently provide base-level viewing of the genome

sequence at all. Similarly, MapViewer currently does not provide base-level, cross-

species, pairwise, or multiple-sequence alignments (this capability is currently under

development at NCBI), nor does MapViewer offer custom tracks or direct querying

of its database, either interactively or via computer programs. Consequently, for

applications requiring these capabilities, one needs to use the Ensembl or UCSC

systems. For a more detailed introduction to MapViewer’s capabilities, the reader is

referred to the MapViewer online documentation and tutorials listed in Appendix 7.

3.4 Polymorphism characterization with MapViewer

We now consider MapViewer in the context of our polymorphism-characterization

example. Starting at the MapViewer home page (http://www.ncbi.nlm.nih.gov/

mapview), we select the most recent build of the human genome and BLAST search

input (see Figure 3.12). From the BLAST search page, we select MegaBLAST for searches

with query sequences that are very similar to the underlying genome. We also restrict

the search to the “reference” human genome. Inserting our 60 nt sequence and run-

ning MegaBLAST, we receive a BLAST report that includes a “Genome View” link,
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Region Displayed: 100,162,088-100,162,242 bp
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Figure 3.13 MapViewer display for the genomic region surrounding CXorf34.

enabling us to view the matching region in MapViewer. The result will be similar to

that seen in Figure 3.13, though the selected annotations may differ.

The most obvious difference from the UCSC and Ensembl displays is that the

MapViewer display is oriented vertically. One advantage of MapViewer’s vertical view

is that it enables a convenient overview of regional gene descriptions. For example,

if a region of a chromosome contains a cluster of genes all associated with a specific

molecular function or pathway (as is often the case in prokaryotes), this fact will be

immediately apparent. Such an immediate functional overview of a genomic region

is not easy to display with horizontally oriented annotation tracks.

We now need to select the appropriate annotations. In MapViewer, annota-

tions are selected via the “Maps and Options” button. Descriptions of the various

maps available for each genome are found in MapViewer’s species-specific help pages.

For the human genome, this documentation is located at http://www.ncbi.nlm.nih.

gov/mapview/static/humansearch.html.
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For our polymorphism example, we select the repeats, rnaHs (GenBank mRNAs),

ugHs (UniGene EST clusters), Variation, Morbid/Disease, and Gene maps from the

“Maps and Options” menu. As with Ensembl, MapViewer displays annotations for

both strands and the user only selects whether a track is “on” or “off.” In choosing the

“Gene” map (which is called Genes_seq on the MapViewer display), we should note

that NCBI has yet a third implicit definition of a “gene” that is slightly different from

both UCSC and Ensembl’s definitions, described previously. Specifically, MapViewer’s

“Gene” map displays a “flattened view” of the entire set of transcripts associated with

the gene. That is, MapViewer’s Gene map displays all exons that exist in any transcript

of the gene set.

We will make the Gene Map MapViewer’s “master map” so that the Gene Map links

and annotations are included in the MapViewer display. By clicking on the links in

the Gene Map display, one is led to other tools and databases within the NCBI site that

provide data and functionality similar to that provided by the “Details” pages at UCSC

or the alternate “Views” at Ensembl. For example, clicking on the “SNP” link would

take us to any SNP annotations in dbSNP in the currently selected region. MapViewer

does not currently provide multispecies alignments, so we cannot determine whether

our polymorphism site is conserved among vertebrates. Also, MapViewer does not

support custom tracks, so we cannot highlight the specific polymorphism site as we

did previously.

Upon refreshing the screen, we see a display similar to that shown in Figure 3.13.

No SNPs or other variations are annotated in the region. Two repetitive regions are

annotated; however, without a custom track or other method to specify exactly where

in the display our polymorphism is located, it is difficult to ascertain that the repeat

elements do not actually overlap the polymorphism site. Again, we see that numerous

ESTs and mRNAs overlap our polymorphism site. For the mRNAs, we could determine

whether any of them have mismatches with the genomic sequence by selecting the

“ev” EvidenceViewer tool, shown at the extreme right of Figure 3.13. However, we

would not be able to directly determine whether any ESTs have our sequence variant

at the polymorphism site from the browser display. (We could return to the main

BLAST search page and BLAST our sequence against NCBI’s EST database to determine

whether our variant had been previously observed.) On the other hand, NCBI offers

a useful trace searching utility (http://www.ncbi.nlm.nih.gov/blast/mmtrace.shtml)

with which we could check whether our allele had been deposited in any of the trace

archives. (Ensembl also has a trace searching facility at http://trace.ensembl.org/cgi-

bin/tracesearch but, currently, Ensembl’s site only includes traces for a limited num-

ber of species.)

3.5 Using other browsers

All three “major” genome browsers – Ensembl, MapViewer, and UCSC – have quite

good coverage of animal genomes. In addition, MapViewer includes some 25 plant
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Figure 3.14 GBrowse screenshot of BRCA1 gene in the MGI genome browser.

and 14 fungal species. However, for other species and for more detailed annotations

of some species, other genome browsers may be useful. For example, the Gramene

genome browser (http://www.gramene.org/genome_browser) includes four impor-

tant plant species. Genome browsers for individual model organisms are available

via the single-genome databases, such as the Saccharomyces Genome Database (SGD)

(http://www.yeastgenome.org), the Mouse Genome Database (http://www.informatics.

jax.org), WormBase (http://www.wormbase.org), FlyBase (http://www.flybase.

org), BeetleBase (http://www.bioinformatics.ksu.edu/BeetleBase), DictyBase (http://

dictybase.org/db/cgi-bin/ggb/gbrowse/dictyBase), the Sigenae farm animal browser

(http://public-contigbrowser.sigenae.org:9090), and the cat database (http://lgd.abcc.

ncifcrf.gov/cgi-bin/gbrowse/cat). In addition, although none of the major browsers

officially cover prokaryotes, UCSC, Ensembl, and NCBI do have separate web sites for

microbial genomes. For UCSC, prokaryote genomes are accessed via the microbial

genome portal at http://archaea.ucsc.edu, whereas Ensembl and NCBI use the Genome

Reviews web browser (http://www.ebi.ac.uk/GenomeReviews) and the NCBI microbial

browser (http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_taxtree.html),

respectively.

Using these other genome browsers is straightforward and quite similar to using

Ensembl, MapViewer, or the UCSC Browser. In fact, several of them use the same

architecture and user interface as one of these main genome browsers. For example,

UCSC, EBI, and NCBI’s prokaryote databases each use the same interface as the main

genome browser with which it is associated, and the Gramene browser uses the

Ensembl interface. In contrast, most of the single-genome databases use the GBrowse

genome browser, which we have not yet described. However, the GBrowse interface

is quite similar in spirit to the interfaces of the main genome browsers (especially

Ensembl), and it is quite easy to learn if one is already familiar with the interfaces
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Figure 3.15 Example of detailed allele data available from the MGI genome browser.

of the major genome browsers. An example of a GBrowse genome browser display

is shown in Figure 3.14, which shows a screenshot of part of mouse chromosome

11 from the MGI Mouse Genome Database’s web site. We will return to GBrowse in

chapter 11 in the context of building one’s own custom genome database.

If a species has its own single-genome database, there may be reasons to check it

even if the species is also covered by one of the major databases. First, some of the more

detailed annotations from the single-organism database may not be integrated into

any of the major genome browsers. For example, Figure 3.15 shows mouse allele data

from the genome browser at the Mouse Genome Database (http://gbrowse.informatics.
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jax.org/cgi-bin/gbrowse/mouse_current) that are not directly included in any of the

multispecies databases. In addition, because the single-organism databases are often

the primary data repositories for data on that organism, the data in the single-

organism database may be more current than what one would find in the major

genome databases. For example, the genomic sequence for S. cerevisiae in the UCSC

Genome Browser is from the October 2003 sequence assembly; in contrast, the

sequence available from the SGD site has numerous updates to the genomic sequence

that have been incorporated since 2003. On the other hand, if the data one needs

are available and sufficiently current on one of the major genome databases, there

are often significant advantages to accessing the data and carrying out one’s data

analysis using the major database. In particular, the major databases typically offer

more extensive data analysis tools, and they include more data from other species,

making it easier to carry out comparative genomic analyses.

3.6 Which browser should I use?

Many genome-database queries can be performed with comparable ease using

Ensembl, MapViewer, or the UCSC system. Consequently, which genome database

or browser you use will often be as much a matter of personal taste, or familiarity,

as anything else. That said, there are differences among the tools and for certain

applications, using one of the browsers may be more appropriate than using the oth-

ers. Clearly, the most basic criterion is that the genome database covers the species

and includes the annotations that you need for your application. In addition, even

if more than one genome database has the type of annotation you need, this data

may be updated more frequently in one genome database than in another, and the

frequency of the data updates may be important to your application.

For example, as mentioned previously, if one’s interest is in one of the plant or

fungal genomes, MapViewer is most likely to include the data one needs. Also, if one’s

application requires integrating data or tools from other NCBI resources, or if one

is comparing genomic maps, MapViewer may be convenient. In contrast, for many

other general genomic applications – such as those involving base-level analyses or

multigenome alignments, or ones that involve batch querying (described in Chapters

4 through 11) – UCSC or Ensembl are more appropriate choices.

Assuming that more than one of the browsers include the species and sufficiently

current annotations for your application, then your tool selection criteria are likely

to be more subjective. Do you prefer horizontal or vertical displays? Do you prefer

a single integrated view or do you like multiple views? Is there some special tool or

feature provided by one of the browsers that would be helpful for your application?

Last, but not least, browser convenience and utility are affected by browser speed,

that is, how long it takes for the browser to display the desired annotations after

performing a mouse click. One might not initially think it important whether a

browser takes one second or ten seconds to refresh the screen after changing genome
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location or adding an annotation track. However, the frustration that accompanies

waiting several seconds for a screen refresh is a major drawback for many users.

In the past, system performance could vary quite noticeably among the three

major browsers, especially when searching for a sequence fragment in the genome.

However, performance improvements in sequence-searching programs have resulted

in the speed differences among the browsers to decrease dramatically. At present,

short of performing careful benchmarking experiments, it is difficult to make defini-

tive statements regarding the relative performance of the browsers for comparable

queries. That said, at least my anecdotal experience suggests that sometimes there

are still performance differences among the browsers (and that the UCSC Browser

has the shortest average response time – but then again, I am generally accessing the

browsers from a California location). Perhaps the best that can be said in this regard

is that if you have a set of tasks that will need to be performed repeatedly and could

be accomplished on any of the browsers, then it might be worthwhile to try them

with more than one system and make your own comparison.

Chapter summary

� Like UCSC, Ensembl also provides a comprehensive collection of genomic annota-

tions from many databases.
� In contrast to UCSC, an important goal of Ensembl is also to produce genomic

annotations – in particular, predictions of genes and transcripts – and Ensembl’s

own annotations play a central role on the Ensembl Genome Browser.
� Ensembl provides over thirty different types of customized annotation displays, in

contrast to UCSC and MapViewer’s more integrated display strategy.
� MapViewer is especially designed for comparing genetic and genomic maps and

integrating data from multiple NCBI data resources including RefSeq, Unigene,

NCBI BLAST, dbSNP, dbEST, OMIM, and so on.
� MapViewer uses a vertical display and lacks certain capabilities, such as single-

nucleotide resolution displays, multiple-sequence alignments, custom tracks, and

batch-querying, which are not needed for manipulating genomic maps or utilizing

NCBI’s genomic resources.
� Although genomes and annotations for many species can be found on all three

browsers, some classes of organisms are better represented on one browser than

another, or may be available only on one of the more specialized genome browser

web sites.

Exercises

1. Repeat Exercise 2.1 using the Ensembl and MapViewer Browsers. Do you find one

or another of these browsers easier or more useful for determining transcript

isoform data?
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2. Can you repeat Exercise 2.2 using the Ensembl or MapViewer Browsers? Does one

of these browsers have more, or more easily accessible, gene-expression data than

the other?

3. Can you find information regarding genes that may be similar to, or related to,

PALB2 using Ensembl or MapViewer? You may want to use Ensembl’s FamilyView,

NCBI’s blastp, or other Ensembl or NCBI tools.

4. Make an Ensembl custom track of the genes associated with “Fanconi anemia.”

5. This exercise explores the effectiveness of browser sequence searching tools when

only short search sequences are available. In our polymorphism example, we used a

long, 60-nt region (GTCCTTGGGATTGAATTGTTGGAGCAGGCACTGGAGGATGCAAGAT

GGACTGCAGCCTTC) centered around the polymorphism site.

a. Can you locate the site in the UCSC Browser using BLAT if you only use the

central 30 nt of the query sequence?

b. Can you locate the sequence if only the central 20 or 15 nt are available?

c. Can the site be located in Ensembl using SSAHA with the shorter query

sequences? If not, can it be found by changing the search parameters passed to

SSAHA or using Ensembl’s BLAST tool?

d. Similarly, can the polymorphism site be located with MapViewer’s search tools

(i.e., MegaBLAST, discontiguous MegaBLAST, and BLAST) using shorter (e.g., 15

to 30 nt) query sequences?
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Interactive Genome-Database
Batch Querying

For all its power and convenience, genome browsing has limitations. In particular,

genome browsing only enables one to query a single genomic locus at a time and,

hence, is cumbersome for applications involving multiple genomic regions. Querying

each region interactively is tedious, time-consuming, and, because of all the required

manual mouse manipulations, potentially prone to error.

With genome batch querying, we can obtain data from multiple related locations

(i.e., a “batch” of genes or genomic locations) via a single query. Genome-database

batch querying can be performed either interactively – by direct database querying

or via a web-based interface – or by programmed access.

In the present chapter, we introduce interactive genome batch querying. We begin

with examples of the kinds of biological questions that can be addressed by batch

querying. Then we describe three general strategies – SQL querying, data marts, and

direct table access – used to implement interactive batch querying in the genome

databases. Next, we turn our focus to BioMart, the Table Browser, and the Gene Sorter,

web-based tools that Ensembl and UCSC provide for interactive batch querying, and

show how they can be used in typical batch querying applications. Finally, we briefly

describe interactive batch querying using the standard SQL querying language.

4.1 Batch querying applications

Batch querying applications are queries in which a single set of biological questions

needs to be answered for many genes or genomic regions. These questions may be as

simple as finding the RefSeq IDs for a list of genes for which we have Ensembl IDs, or

determining what genes have annotations for a specific disease. Or they can be more

complex, such as determining which regions in a list of highly expressed regions from

a tiling-array experiment have already been observed as ESTs, or identifying places

where repetitive elements are found within gene coding regions. In the remainder of

this chapter and those following, we will consider these examples and numerous oth-

ers that indicate the range of biological questions that can be addressed by genomic

61
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batch querying. However, first we briefly consider, in more general terms, the types

of interactive batch-querying facilities provided by the genome databases.

4.2 Database architectures and batch querying

Genome databases are generally implemented as relational databases, with their data

stored in tabular format. Consequently, the most direct way that the data in a genome

database can be accessed is via the Structured Query Language (SQL). However, this

approach, which we illustrate at the end of this chapter, requires that users are

familiar with the SQL language and that they understand the descriptions of the

tables used in the database.

To enable batch querying by users not familiar with SQL, a database system may

include a user interface that takes user input and translates it into SQL queries of

the underlying database tables. This is the approach used by the UCSC Table Browser,

which is essentially a “user friendly” interface to SQL querying of the UCSC genome

database. However, the Table Browser user still needs to have some understanding of

the UCSC database table definitions.

Unfortunately, the way data are organized in relational database tables is not

always very natural to humans. This is especially true in the case of hierarchical

data, where one piece of data is, in some sense, a “part” of another piece of data.

For example, a gene might naturally be considered as a collection of transcripts,

each of which consists of a set of exons. However, in a relational database, the gene,

transcript, and exon data for a single gene may well be stored in three separate tables.

Consequently, both Ensembl and UCSC provide interactive batch-querying tools

to combine related data from multiple database tables. Such tools are typically called

data marts. A data mart reorganizes data from the main database into a collection

of fundamental software objects, variously called datasets or data foci, in a separate

auxiliary database (see Figure 4.1). As a result, the data mart user does not need to

know anything about the actual table structure in the database. UCSC’s Gene Sorter,

which we have encountered in chapter 2, is a data mart in which the data focus is

always the gene. Ensembl’s data mart uses the BioMart software package, previously

called EnsMart (Kasprzyk et al., 2004). Ensembl BioMart lets the user select different

kinds of data foci, such as genes, SNPs, or alignments. BioMart is developed sepa-

rately from Ensembl, and is incorporated in several other genome databases besides

Ensembl. In particular, several of the GMOD databases, described in chapter 11, also

incorporate the BioMart software for interactive batch querying. More information

on the BioMart software and its applications is available on the BioMart web site

(http://www.biomart.org).

With the data mart approach, rather than querying arbitrary combinations of

database tables, one is restricted to querying data related to one of the foci. If the

foci are appropriately selected by the data mart designers to reflect the needs of

system users, then the system can be streamlined, modularized, and made expandable
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Figure 4.1 Schematic view of part of Ensembl’s BioMart data mart architecture, showing two data

foci – genes and SNPs – and five of the auxiliary data sets linked to each data focus.

(by adding more foci) – and will still be able to respond to nearly all queries that users

may make. As a result, batch querying with BioMart or the Gene Sorter is, in some

ways, easier than using the UCSC Table Browser. However, as we will see later, in

some cases the table-based approach offers somewhat more flexibility, enabling one

to address some questions with the Table Browser that could not be answered with a

tool like BioMart or the Gene Sorter.

4.3 Ensembl BioMart and MartView

Ensembl’s browser interface to BioMart is called MartView. Using MartView, inter-

active batch querying is carried out with a three-step procedure. Starting from the

MartView input page (http://www.biomart.org/biomart/martview), one first chooses a

genome and a “focus.” Currently, the focus can be either manually curated genes from

the VEGA project, Ensembl genes and gene predictions, SNPs, pairwise or multiple-

sequence alignments, or homologies. In the second step, one selects the desired

“attributes” of the data. Numerous attribute options are available, including SNP or

gene annotations, accession IDs from many databases, sequence data, gene structure,

and so on. Finally, in the third step, one limits the amount of data to be returned

by specifying a single genome region and/or by restricting the annotations the focus

(e.g., the selected genes) may have. Genes can be filtered on the basis of gene IDs,

GO descriptions, Pfam protein domains, as well as many other annotations. It is

even possible to filter genes on the basis of properties of a gene’s homologs in other

species using the second-database and intersection options on the MartView input

page. Figure 4.2a shows a screenshot of part of the MartView input page for a query

to convert a list of RefSeq accession numbers to Ensembl accessions.
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(b)

(a)

Figure 4.2 RefSeq to Ensembl ID conversion using BioMart. (a) Screenshot of a portion of the input

screen. (b) Data output showing RefSeq and Ensembl IDs as well as genomic coordinates.

4.3.1 Applying BioMart

Let us now apply BioMart to some batch querying problems. For our first example,

let us convert the IDs of a set of genes from Ensembl IDs to RefSeq IDs. We begin by

selecting a focus of Ensembl genes for the human genome database of, say, Ensembl

release 42. Next, we select the desired output fields – that is, Ensembl IDs and RefSeq

IDs – from the Ensembl attributes and external references sections, as shown in Fig-

ure 4.2a. Finally, on the filter page, we paste or upload our list of Ensembl IDs into the

“ID list limit,” making sure to specify that the gene ID type is “Ensembl IDs.” Selecting

“Results” returns a list of RefSeq IDs and associated Ensembl IDs, as shown in Fig-

ure 4.2b.

For our second example, we will find genes that have a specific GO annotation,

for example, synaptic transmission. To obtain these genes, we will need to know the

GO code for the annotation, or else we will need to look up the GO code in the GO
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Ensembl Gene ID Description
ENSG00000171189 Glutamate receptor, ionotropic kainate 1 precursor (Glutamate

receptor 5) (GluR-5) (GluR5) (Excitatory amino acid receptor 3)
(EAA3). [Source:Uniprot/SWISSPROT;Acc:P39086]

ENSG00000128245 14-3-3 protein eta (Protein AS1).
[Source:Uniprot/SWISSPROT;Acc:Q04917]

ENSG00000160307 Protein S100-B (S100 calcium-binding protein B) (S-100 protein
beta subunit) (S-100 protein beta chain).
[Source:Uniprot/SWISSPROT;Acc:P04271]

ENSG00000169862 Catenin delta-2 (Delta-catenin) (Neural plakophilin-related
ARM-repeat protein) (NPRAP) (Neurojungin) (GT24).
[Source:Uniprot/SWISSPROT;Acc:Q9UQB3]

ENSG00000144619 Contactin-4 precursor (Brain-derived immunoglobulin
superfamily protein 2) (BIG-2).
[Source:Uniprot/SWISSPROT;Acc:Q8IWV2]

ENSG00000183454 Glutamate [NMDA] receptor subunit epsilon-1 precursor (N-
methyl D- aspartate receptor subtype 2A) (NR2A) (NMDAR2A)
(hNR2A). [Source:Uniprot/SWISSPROT;Acc:Q12879]

ENSG00000174775 GTPase HRas precursor (Transforming protein p21) (p21ras) (H-
Ras-1) (c-H-ras) (Ha-Ras).
[Source:Uniprot/SWISSPROT;Acc:P01112]

ENSG00000156642 Neuroplastin precursor (Stromal cell-derived receptor 1) (SDR-
1). [Source:Uniprot/SWISSPROT;Acc:Q9Y639]

ENSG00000170027 14-3-3 protein gamma (Protein kinase C inhibitor protein 1)
(KCIP-1). [Source:Uniprot/SWISSPROT;Acc:P61981]

ENSG00000132535 Discs large homolog 4 (Postsynaptic density protein 95) (PSD-
95) (Synapse-associated protein 90) (SAP90).
[Source:Uniprot/SWISSPROT;Acc:P78352]

Figure 4.3 Portion of output from a BioMart example for identifying Ensembl genes with GO

annotations associated with synaptic transmission.

database. We begin as in the previous example by choosing a “gene” focus with the

Ensembl human database. This time, we filter on the GO ID code GO:0050804 for

“regulation of synaptic transmission,” which we obtained from the GO database via

a link next to the GO-ID inputs on the MartView filter page. For attributes, we can

choose the Ensembl gene ID and whatever other properties of the selected genes in

which we are interested. Figure 4.3 shows a subset of the resulting output.

Identifying all SNPs located on a set of genes with specified gene IDs is also easy

with BioMart. We again select MartView’s gene focus, this time selecting Ensembl

gene IDs and SNP IDs as output attributes. As in the first example, we can filter

our output using a list of Ensembl gene IDs. If desired, we can further limit our

output using the SNP filter option, so as to only select genes that have coding or non-

synonymous SNPs.

For our final BioMart example, we will choose a slightly more complicated, but

realistic, query. In this case, let us assume that we want to identify mouse homologs of

human genes located on the X chromosome, and that we are particularly interested

in identifying which homologs are on the mouse X chromosome and which are not.

For this example, let us further assume that we want to restrict our search to genes

that have been validated with manual curation.

Because we want manually curated genes, this time we begin our query by selecting

the human VEGA gene set as our data focus. We then filter our query so it is restricted

to genes on the (human) X chromosome. Next, we look for mouse homologs by clicking
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Human Ens. Gene ID Mouse Ens Gene ID Mouse chromosome
ENSG00000205070 ENSMUSG00000069038                              Y
ENSG00000102144 ENSMUSG00000066632 12
ENSG00000174028 ENSMUSG00000029672 6
ENSG00000123130 ENSMUSG00000047565 15

Figure 4.4 Portion of output from two-dataset BioMart example for identifying mouse homologs of

human X chromosome genes that are not on the mouse X chromosome.

the second “Dataset” button (see the lower left part of Figure 4.2a) and selecting the

mouse genome from the second-dataset pull-down menu. Finally, we select whatever

human and mouse attributes we want to display, including the human gene IDs and

the IDs and chromosomal locations of the mouse homologs identified. A portion of

the resulting display is shown in Figure 4.4.

4.4 The UCSC Table Browser and Gene Sorter

UCSC provides two tools for interactive batch querying. For simple, gene-based queries

there is the Gene Sorter, which has an interface that is similar in spirit to the gene

focus component of Ensembl’s BioMart. We previously encountered the Gene Sorter

in chapter 2, and we actually performed some batch queries with it (without calling

them batch queries) when we asked the Gene Sorter to retrieve all genes that had,

say, similar expression patterns to a query gene.

For more complex interactive batch queries, including ones that are not focused

specifically on genes, UCSC has the Table Browser. In contrast to using the Gene

Sorter or BioMart, using the Table Browser requires one to specify which database

tables contain the data of interest. Moreover, the UCSC database actually consists

of multiple related databases – one for each genome assembly as well as multiple

auxiliary databases. Consequently, we will need to identify both the database and the

table containing the required annotations. In addition, we will need to know how

the table is structured, that is, what is the layout of the data in the table.

At first glance, locating the necessary database and table and determining the

table’s structure may seem daunting. UCSC uses multiple databases and each of these

databases may have hundreds of tables, some with millions of entries. However, in

most cases, it is not necessary to have a detailed understanding of the organization

of the UCSC databases to use the Table Browser.1 Descriptions of the most commonly

used UCSC database table formats are given in Appendix 3. In addition, as we will see,

we can usually identify the required table from the Table Browser interface itself, or

else from the “Details” page of the associated track in the Genome Browser. We can

then determine the table structure from the table description in the Table Browser.

1 If you are interested in learning more about the architecture of the UCSC databases, one

source is the (no longer maintained) UCSC table-definition documentation at http://genome.

ucsc.edu/goldenPath/gbdDescriptionsOld.html.
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Figure 4.5 Screenshot of Table Browser interface.

4.4.1 Using the Table Browser

As with BioMart, using the Table Browser consists of essentially three steps: choosing

a genome and a focus, filtering the data, and selecting the desired output data and

format. However, selecting a focus is more involved with the Table Browser because

the “focus” can be any table in the entire database. Typically, one begins at the Table

Browser input page at http://genome.ucsc.edu/cgi-bin/hgTables. One can also reach

this page from within the UCSC Genome Browser by clicking on the “Table” button at

the top of the browser display. A screenshot of the Table Browser interface is shown

in Figure 4.5.

4.4.1.1 Finding the right table

Often the appropriate table to query can be determined directly from the “track

group” and “track” used in the associated genome browser query. For example, if

one wants to check which genomic locations overlap known SNPs, one might start

by entering “SNPs” into the “track” selector on the Table Browser input form, after

having entered “Variations and Repeats” under the “group” selector. Once this is

done, the table “snp126” is automatically selected (assuming that we are using the

March 2006 human genome database, as illustrated in Figure 4.5).

Sometimes, there may still be more than one table that can be selected at this

stage. In this case, one may need to look at the table descriptions of the possible tables

(by clicking the “describe table schema” button shown in Figure 4.5) to determine



68 Genomes, Browsers, and Databases

Figure 4.6 Portion of a Table Description screenshot for the snp126 SNP table in the hg18 database.

which table contains the annotations of interest. For example, Figure 4.6 illustrates

the information available from the Table Description page for the snp126 table. In

contrast, for some database tables there may not be any associated tracks or groups on

the Table Browser input page at all. In this case, there are other ways of identifying the

required table. First, if the needed annotation can be found in the Genome Browser,

one can examine the Details page associated with that annotation. In many cases, the

Details page will have a direct link (labelled by “View table schema”) to its associated

table.

Occasionally, even using the Details pages will not indicate which table contains

one’s required data. In this case, you may need to select the “All tables” option under

the Table Browser’s group selection option and then scan through the entire (long)

list of table names to identify the likely table containing the required fields. You

can then verify whether this is indeed the table you need by clicking on the “Table

description” button.

4.4.1.2 Filtering, intersecting, and correlating tables

Once one has identified one’s table of interest, one usually wants to limit the num-

ber of records that are extracted from the table. A simple example occurs when the

required part of the table can be specified as a single continuous region of a chro-

mosome. In this case, one simply inserts the chromosome name and start and end

positions into the genomic input position in the Table Browser input window.

The Table Browser input window also provides access to several other tools for

limiting table output (see Figure 4.5). The Filter tool limits the records to be retrieved

on the basis of data table values. Selecting the Filter tool presents a menu of data

filtering options similar to those presented in BioMart, with the primary difference

that in this case, filtering is on the values of specific fields in the database table rather

than on the attributes of a data mart object. Figure 4.7 shows the Filter tool page for

the snp126 table. After selecting our data filters, it is often a good idea to select the

“Summary/statistics” option to determine how many records pass the filter to confirm

that the number of output records seems appropriate (i.e., neither zero nor too large).
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Figure 4.7 Filter page for the snp126 SNP table. Note that one can filter on any field in the snp126

table (see Figure 4.6) as well as create a general SQL query using the “Free-form query” input box.

The Intersection tool provides a different method of restricting table output,

namely by only extracting records that overlap regions from a second table. The Inter-

section tool can be quite useful in restricting the returned data to specific regions

of interest in the genome. However, the Table Browser’s Intersection tool also has

some significant limitations (for example, only a limited number of output formats

are allowed from Table Browser intersections). Consequently, for complex genome-

intersection applications, it may be preferable to use Galaxy’s “genomic interval”

intersection tool, which we describe in the next chapter.

Finally, the Table Browser Correlation tool enables one to do nucleotide-by-

nucleotide correlations of the values of two tables over a set of regions. For example,

one can use the Correlation tool to investigate whether GENCODE exon locations are

more highly correlated (i.e., have greater overlap) with RefSeq exons or with VEGA

exons. Or one could look at whether there are genomic regions where conservation

among genomes of multiple species (as measured by phastCons) is correlated with

local GC%.
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4.4.1.3 Specifying table output

Once the required records have been determined by specifying the input tables and

possibly performing filtering or table intersection, the final step in using the Table

Browser is to specify the record output format. The Table Browser offers a wide range

of output format options, including obtaining all the fields or selected fields of the

raw table data; BED files of genes, transcripts, exons, or introns; output in the form of

custom tracks or hyperlinks to the genome browser; FASTA sequence data and MAF

multiple alignment data, among others.

4.4.2 Applications of the Table Browser and Gene Sorter

4.4.2.1 Characterizing genes

Let us now apply the Table Browser and the Gene Sorter to some batch querying

examples. For our first query, we look for human gene transcripts with a large number

of exons, for example, more than twenty. With the Table Browser, performing such

a search is easy. We first select a gene table, say, the ensGene table of Ensembl

gene transcripts. We can identify the name of this table by selecting “Genes and gene

predictions” from the track group pull-down menu and Ensembl genes from the track

pull-down menu. We then select the genomic region in which we are interested. Next,

we click the “Filter” button and set the filter to include only genes with an exonCount

greater than 20. Finally, we choose “Selected fields from table” from the output format

pull-down menu and specify which table fields we want, for example, the gene name

and the exon count.

For our second example, we will revisit the conversion of Ensembl IDs to RefSeq

IDs. Because this gene-based query is more easily carried out in the Gene Sorter, we

select the Gene Sorter tool by clicking the “Gene Sorter” button at the top of the

screen. Once we are at the Gene Sorter input page, we can first upload the Ensembl

IDs by selecting the Gene Sorter Filter tool, and then configure the output to include

both Ensembl IDs and RefSeq IDs. Clicking the Gene Sorter’s “Go!” button results in

a listing of Ensembl and RefSeq IDs.

4.4.2.2 Characterizing genomic regions

For our next examples, let us consider queries to characterize an arbitrary set of

genomic regions. For example, we might have a BED list of novel, candidate disease-

polymorphism locations and want to determine whether the polymorphisms include

any known SNPs. To do this, we would first make a custom track out of the BED list and

upload the custom track to the Table Browser. (The test data used in this example are

located in the file roi.hg18.snp.track, which can be downloaded from the publisher’s

web site for the book.)

Note that the coordinates in our BED file must be from the same assembly that we

are using with the Table Browser. If our coordinates are from a different assembly, we

will need to convert them to the genome assembly we are using, or else change the
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Figure 4.8 Partial screenshot of UCSC coordinate LiftOver tool interface.

chr3 53563273 53563274 rs10707946 0  +
chr4 158503564 158503565 rs17850676 0  +
chr5 4170006 4170007 rs6894646 0  +
chr8 37060699 37060700 rs4739466 0  +
chr9 131899567 131899568 rs11794486 0  +

Figure 4.9 Result of a Table Browser search for all SNPs overlapping a list of regions of interest.

selected assembly in the Table Browser to match our BED file coordinates. To convert

BED coordinates, we can use the UCSC LiftOver coordinate conversion tool, which is

available via the “Utilities” button on the UCSC Browser home page. Figure 4.8 shows

the data input page used by the LiftOver tool.

Having created our custom track, we next select the SNP table in the Table Browser

and use the table-intersection tools to intersect the SNP table with the custom track

to identify any previously known SNPs that overlap the candidate polymorphism

dataset. The result of a BED format output is shown in Figure 4.9.

As another example, we might have a list of highly expressed human genome

regions from a tiling-array experiment. We might want to know which transcripts

overlap any known ESTs. As in the previous example, we begin by uploading our

list of interesting genome regions as a custom track to the Table Browser. This time,

however, we would intersect our custom track with either the intronEst table (if we

are interested in human spliced ESTs) or the xeno_est table, if we are looking for ESTs
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Figure 4.10 Example of an Alu that overlaps a coding region, as identified by a Table Browser batch

query. The figure includes a custom track, called coding SNP Alus, of all the Alus that were extracted

by the Table Browser query.

from other species. The result would be the subset of our list of regions that overlap

at least one EST.

4.4.2.3 Alus and coding exons

As a final Table Browser example, we consider a hypothesis in protein evolution,

namely, that repetitive sequences, such as Alus, play a role in the evolution of protein

coding sequences. Alu elements (Alus) are short repetitive sequences that are common

in primate genomes. In the presence of certain enzymes, known as transposases, Alus

replicate and move to other locations within the genome. It has been hypothesized

that such Alu duplication and movement can contribute to evolutionary change,

including the creation of new exons. This might occur if an Alu were inserted into

an existing intron, and subsequent mutations of the Alu created additional splice

junctions within the intron (Lev-Maor et al., 2003).

A possible marker of such evolutionary activity would be the presence of Alus

overlapping coding sequences, especially near intron-exon boundaries. To search for

such evidence, we begin by creating a custom track including all coding exons. We

create this track in the Table Browser by selecting all genes from, for example, the

knownGene table and selecting the “One BED per exon” option, restricted to coding

exons, as the output format. Then we select the repeat table in the Table Browser.

This table (e.g., table rmsk in database hg18) can be identified by choosing “Variations

and repeats” from the track group pull-down menu and “Repeatmasker” from the

track pull-down menu. We next need to filter the rmsk table with the constraint

repFamily matches Alu∗ (where “∗” is the matching “wild card” operator). Finally,

by intersecting the filtered repeat table with our custom track of coding exons, we

can create a list or a custom track of Alu sequences that overlap coding exons, one of

which is shown in Figure 4.10.

Using the Table Browser interface is more complex than using BioMart or the

Gene Sorter. However, in return, we have seen some queries that were relatively

easily addressed with the Table Browser but were difficult or impossible to answer

with other tools. For example, one cannot currently query multiple genomic locations
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with BioMart (unless each of these regions has an associated gene ID) so that we could

not look for SNPs or ESTs overlapping custom “regions of interest” as we did with the

Table Browser. In addition, we would not be able to find all genes that have repeat

sequences overlapping coding exons because repeat-sequence annotations are not

available within BioMart. (Note that repeat-sequence annotations are stored in the

Ensembl database; they can be retrieved one at a time using the Ensembl Genome

Browser, or in batch mode, using SQL or the Ensembl API. However, because repeat

sequences are not currently included in Ensembl’s BioMart databases, they cannot be

accessed using MartView.)

Finding genes with more than twenty exons is also not currently feasible with

BioMart. On the other hand, finding mouse homologs of human genes on chromo-

some X, which we were able to do easily with Biomart, would be difficult or impossible

to do with the Table Browser. Perhaps the most useful lesson to learn here is that if

the sort of query you need to perform is difficult to do with the batch querying tool

provided by one genome database, it may be worthwhile to check whether the data

you need might be easier to obtain with the tools of another genome database.

4.5 Direct SQL querying

Essentially, all modern relational databases, including the genome databases, can

be accessed directly via the SQL database language. In most cases, SQL querying is

most conveniently accomplished indirectly, via a web-based user interface such as

the Table Browser, Gene Sorter, or BioMart, or with library routines provided within

an API for a conventional computer language such as Perl or C.

However, it is occasionally useful to directly query a genome database with SQL.

This might be the case if a programmed or web-based batch query yields unexpected

results or produces an error message. Direct SQL querying is also useful after one

has just installed a mirror database and wants to confirm that everything has been

installed and configured properly. Additionally, direct SQL querying is useful if one

wants to educate oneself regarding the table structure of the database. (This is espe-

cially useful with Ensembl because Ensembl’s batch-querying tool, BioMart, does not

provide direct querying of the Ensembl database tables.) Finally, for the user who

happens to be skilled and experienced with SQL, direct SQL database querying may

simply be easier or faster than using a web interface or an API.

In any case, to execute SQL queries, you will need to install a local copy of the

MySQL client program (freely available from http://www.mysql.com) and to connect

to a “mirror” of the UCSC or Ensembl genome database. This database copy can

be either a publicly available mirror or a privately installed one. Here, we restrict

ourselves to the simpler approach, which is using a public mirror. If you do use a

public mirror, you need to confirm that there are no firewall or other security systems

in place at your computer location that block outgoing ports, thereby preventing you

from accessing a remote database server.
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As an initial example of direct SQL querying, we might just want to determine

which databases are installed in the public mirror site. For the Ensembl site, we can

execute the following command, from the Unix command line2:

$ mysql --user=anonymous --host=ensembldb.ensembl.org -A \
-e "show databases;"

Once we have determined the names of the constituent databases, we can deter-

mine the tables in any one of them with commands like

$ mysql --user=anonymous --host=ensembldb.ensembl.org -A \
-e "show tables;" homo_sapiens_core_41_36c

The commands with the UCSC mirror are entirely analogous except that the “user”

and “host” would be “genome” and “genome-mysql.cse.ucsc.edu,” respectively. It is

also possible to connect directly to Ensembl’s BioMart database at “martdb.ensembl.

org,” with “user” set to “anonymous,” and “port” set to “3316.”

With the UCSC system, it is possible and often easier to obtain database informa-

tion via the Table Browser rather than with SQL. Strictly speaking, the data obtained

via Table Browser and via direct SQL querying are not identical because the Table

Browser queries the UCSC Genome Browser database itself, whereas SQL queries

UCSC’s public mirror of the genome browser database. However, because these two

databases are resynchronized daily, any differences between them are likely to be

minor. A more significant difference between Table Browser and SQL querying is

that with SQL, one can only access the UCSC relational databases, whereas the Table

Browser can also access some of UCSC’s auxiliary data files, which contain sequence

and multiple alignment data. In contrast, with Ensembl all local (i.e., non-DAS) data

is stored in the relational databases and, hence, can be accessed via SQL. Ensembl

data that has been transferred to Ensembl BioMart (which includes some Ensembl

DAS data) can be accessed via MartView or via SQL querying of the Ensembl’s martdb

database.

Chapter summary

� Ensembl BioMart and the UCSC’s Table Browser and Gene Sorter enable batch

genome-database querying without the need of programming or using SQL.
� Using BioMart, the Table Browser, or the Gene Sorter involves essentially three steps:

1. Choosing a species, assembly, and either a database table (Table Browser), a

query-focus (BioMart), or a gene set (Gene Sorter)

2 Note that we will indicate the Unix command-line prompt with the dollar-sign symbol “$” (i.e.,

the $ is not part of the command that you type). Also note the required backslash “\” which

immediately precedes the carriage return if a command needs to be extended beyond a single

line.
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2. Filtering or limiting the records one wants to retrieve

3. Selecting the output fields or other output format that one wants to use
� Because Ensembl uses a data mart implementation, no knowledge of the database

table structure is required for using BioMart.
� Using the Table Browser does require knowledge of the UCSC database table schema.

However, as a result, nearly all data available in the UCSC databases can be accessed

via the Table Browser.
� Both the Ensembl and UCSC genome databases also provide public mirrors for

direct SQL access.

Exercises

1. Using BioMart, identify the human Ensembl genes that have the GO annotation

of “leukocyte activation.” Can you determine the human VEGA genes with GO

annotation of “leukocyte activation” using BioMart? Can you find the Ensembl

and VEGA genes with GO “leukocyte activation” annotation with the Gene Sorter,

Table Browser, or other UCSC tools?

2. Create a list of Alu repeats that overlap coding exons in humans using the UCSC

Table Browser as described in the text. How many of these regions also overlap

known SNPs?

3. Identify all single-exon Ensembl genes in the “ENCODE” regions.

4. Identify genes on the human X chromosome that are highly expressed in the brain.

You may want to use the Gene Sorter, the Table Browser, BioMart, or direct SQL

querying.

5. Using direct SQL querying, determine how many databases are installed in the

Ensembl public mirror. How many tables are in the Ensembl database homo_

sapiens_core_42_36d? How many databases are installed in the UCSC public mir-

ror? How many tables are in UCSC database hg18? (Note that you will need to have

the MySQL client software installed for this exercise.)
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Interactive Batch Post-Processing
with Galaxy

In chapter 4, we addressed various biological questions requiring sequence and

annotation data from multiple genomic regions with batch querying techniques.

In the present chapter, we move from simple batch querying to batch querying with

batch post-processing. We will see how the range of realistic questions that we can

answer is greatly expanded. We will begin with a brief overview of batch post-

processing, including a sampling of the kinds of queries that can be addressed with

batch post-processing. This is followed by a detailed description of Galaxy, a web-based

interactive tool that enables biologists with no programming experience to perform

quite sophisticated bioinformatics post-processing analyses.

5.1 Batch post-processing overview

We have already seen how BioMart, the Table Browser, the Gene Sorter, and SQL can

be used to extract sets of related data from the Ensembl and UCSC genome databases,

and in the process answer many types of biological queries. However, a much wider

range of practical questions can be answered if we are able to perform additional

manipulations on the retrieved data. We will refer to such additional analysis of data

retrieved from a genome database as batch post-processing.

The types of data manipulations that may be required can be as basic as performing

simple arithmetic computations or as complex as performing multiple data analyses

with bioinformatics programs, such as BLAST, ClustalW, PAML, or one of the EMBOSS

sequence analysis programs. The kinds of applications we will be able to address

with these new tools – and will describe in this and the following chapters – range

from the identification of gene transcripts that are candidates for nonsense mediated

decay (NMD) and the determination of the length distributions of introns of genes

with varying functional annotations, to the detection of candidate RNA-editing sites

and the detection of highly conserved nucleotides in multiple genomic sequence

alignments.

Batch post-processing can be performed either by writing computer programs or

interactively, in which case no programming background is required. In addition,

76
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Figure 5.1 Screenshot of the main Galaxy data entry page. The display is partitioned vertically into

three sections. The left section lists the available Galaxy tools. The middle section shows the details

of the currently selected tool. The right section shows a summary of recently created datasets.

hybrid approaches exist in which it is possible to use an interactive interface to

generate a computer script without actually needing to write the script itself. We

will present examples of interactive batch post-processing using the Galaxy system

in this chapter. We will describe programmed batch post-processing in the following

chapters.

5.2 Introduction to Galaxy

To address the need for genomic data post-processing by nonprogrammers, the Center

for Comparative Genomics and Bioinformatics at Pennsylvania State University has

developed the “Galaxy” web site, located at http://g2.bx.psu.edu. Galaxy (Blankenberg

et al., 2007) provides a uniform interface to sequence and data manipulation tools. A

screenshot of the main data entry page is shown in Figure 5.1.

Galaxy is not the only integrated toolset that has been developed for biologi-

cal sequence and annotation analysis. Others include NCBI’s Genome Workbench

(http://www.ncbi.nlm.nih.gov/projects/gbench), PlatCom (Choi et al., 2005), GenePat-

tern (Reich et al., 2006), SRS (Zdobnov et al., 2002), the SDSC Molecular Biology Work-

bench (Subramaniam, 1998), and MiGenAS (Rampp et al., 2006). However, in contrast

to other tools, Galaxy is specifically designed to handle genome-size data sets and to

interface directly with the major genome databases.
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Using Galaxy involves three steps: acquiring the data sets; filtering, manipulating,

and reformatting the data sets; and carrying out post-processing calculations. As

shown in the screenshot in Figure 5.1, the supported data manipulation tools are

listed on the left side of the Galaxy page. Galaxy currently supports data import from

multiple sources, including the UCSC genome databases (via Galaxy’s Table Browser

interface), from BioMart, from the Microbial Genome Project at NCBI, and from the

NHGRI’s ENCODE Project. In addition, almost any form of custom user data that can

be converted to tabular form (e.g., a spreadsheet) can be uploaded to the Galaxy site.

In Galaxy, all nonsequence data are stored and manipulated in the form of tables,

which are called “queries” in Galaxy. Because data manipulation in Galaxy is per-

formed largely with tables, working with Galaxy may be somewhat more reminis-

cent of using the UCSC Table Browser than of using BioMart. That said, Galaxy can be

used equally well with data from BioMart because once data has been extracted from

BioMart, the data is also in tabular format.

Once input data sets have been uploaded to Galaxy, the next step is to combine and

filter the data sets into a single processed dataset. Such input processing may range

from filtering on any data-table field and performing table intersections or unions to

complex multitable and genomic-interval manipulations. Galaxy’s table editing and

filtering tools provide essentially all of the data-filtering capability available in the

Table Browser, Gene Sorter, or BioMart. However, Galaxy also contains data filtering

and editing features that are significantly more powerful or easier to use than those

in other tools.

Finally, after we have edited and filtered our desired data tables and sequence sets,

we are ready to apply any of Galaxy’s post-processing tools to each data record in the

dataset. The post-processing may be as simple as performing column arithmetic, as

in subtracting the value in a “transcript start” column from the value in a “transcript

end” column to create a “transcript length” column. Or the manipulation on each

record may be quite complex and may include applying functions from any of several

standard bioinformatics data-processing packages that are incorporated in Galaxy,

including the EMBOSS sequence manipulation package (Rice et al., 2000) and the

HyPhy phylogenetics program suite (Pond et al., 2005).

5.3 Galaxy features

5.3.1 Table and interval manipulation

Galaxy’s table and interval manipulation tools are among its most powerful features.

However, some of these features may feel somewhat unintuitive initially, especially

if you are not familiar with table manipulation in the relational database language

SQL. Nevertheless, they are not difficult to master, and it is well worth the effort

involved in learning them.

Two of Galaxy’s most powerful table manipulation tools are the “join” and “com-

pare” tools, with which one can extract related data from multiple tables. With “join,”
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a)

Query1:

chr1 10 20 geneA

chr1 50 80 geneB

chr5 10 40 geneL

Query2:

geneA tumor-supressor

geneB Foxp2

geneC Gnas1

geneE INK4a

b)

Joining the 4th column of Query1 with the

1st column of Query2 will yield:

geneA chr1 10 20 tumor-supressor

geneB chr1 50 80 Foxp2

c)

Finding lines of the First query whose 4th column

matches the 1st column of the Second query:

chr1 10 20 geneA

chr1 50 80 geneB

Figure 5.2 Galaxy join and compare tools: (a) “join” and “compare” input; (b) “join” result; (c)

“compare” result.

you combine records from two tables that are related by having identical values in

some column. An example is shown in Figure 5.2. In this example, we have a list of

“interesting” genes in one table and a list of gene descriptions (which are not necessar-

ily the same genes) in a second table. Let us say that we want to identify the interesting

genes that have descriptions, and to add those descriptions to the interesting-gene

table. We accomplish this by using the “join” command (under “Join, subtract, and

group” in the tool menu on the left side of the Galaxy screen). Specifically, we join

on the common gene field in column 4 of table 1 and column 1 of table 2. The

result, shown in Figure 5.2b, contains a record for each “interesting” gene that has a

description, along with its description. In contrast, we would use the “compare” tool

if we simply wanted to extract the records of table 1 for which a description exists

(or the records for which a description does not exist) without actually modifying

table 1 by adding the description. The result of comparing tables 1 and 2, using

matching rows, is shown in Figure 5.2c.

Galaxy’s “genomic interval tools” are similar in spirit to its table manipulation

tools. However, in this case table records are compared on the basis of whether the
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Figure 5.3 Example illustrating the two different types of interval intersection supported by Galaxy:

“overlapping intervals” and “overlapping pieces of intervals.”

genomic intervals they include overlap or are in close proximity. One useful genomic

interval tool is Galaxy’s Intersection tool, which is similar to, but more powerful

than, the intersection tool in the Table Browser. This is because Galaxy’s Intersection

tool provides two types of genomic region intersections: “overlapping intervals” and

“overlapping pieces of intervals” (see Figure 5.3). In contrast, the Table Browser Inter-

section tool only offers “overlapping intervals” table intersection, which is often not

the type of interval intersection that one needs. A second advantage of using Galaxy’s

Intersection tool is that one can obtain the intersected table in multiple output

formats, including any or all of the table’s fields. In contrast, the Table Browser Inter-

section tool provides only a limited range of output formats (e.g., BED) for intersected

tables.

5.3.2 Format conversion, attributes, and history files

Another useful feature of Galaxy is its data conversion capability. This is particu-

larly useful when preparing data for input to standard bioinformatics applications

programs, which often do not recognize the data formats produced by the genome

databases. For example, aligned sequences are retrieved from the UCSC Table Browser

in MAF or AXT formats; however, these are not suitable formats for most sequence and

alignment analysis tools. To address this, Galaxy’s conversion tool can convert AXT or

MAF files to FASTA format so they can be used with standard sequence post-processing

programs.

Each Galaxy dataset also has a set of “attributes” that describe the format of the

data in the dataset and are used by Galaxy to determine what manipulations can be

performed on the data. Typical attributes may be “table,” “BED,” or “interval.” Tables

with attributes such as “BED” or “interval” also need to have attributes indicating

which columns contain the chromosome, coordinates, and (optionally) strand as well

as information indicating from which genome assembly the coordinates derive.

In most cases, Galaxy automatically determines genomic-interval attributes when

you load the data into Galaxy. However, in some cases – for example, if you load cus-

tom data from you own computer – you may need to explicitly add this information

manually by using the Edit Attributes tool, which is indicated for each dataset via

the pencil icon adjacent to the dataset name (see Figure 5.1). In addition, after you

have performed some table manipulations (e.g., joins), interval attribute annotation
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may be lost, and you will need to re-enter them before genomic interval operations

can be performed on the transformed table.

Another useful Galaxy feature is its History mechanism. With History, you can

save all of your intermediate results and thereby more easily repeat the exact steps

that you performed to reproduce some result. Moreover, one can create multiple

histories – each with its own name – for different tasks, thereby keeping the datasets

that were used for each task separate.

Galaxy has many other useful features that we have not described. We will see

some of them in the examples in the next section. In addition, the reader is referred

to the documentation at the Galaxy web site and, in particular, to the excellent series

of videocasts (see http://g2.trac.bx.psu.edu/wiki/ScreenCasts) that describe Galaxy’s

features in detail.

5.4 Galaxy examples

We are now ready for some examples to see Galaxy at work. We will start with

relatively easy examples, requiring only a few steps within Galaxy. Then we will

move to more complex examples to illustrate the power of Galaxy at addressing

realistic bioinformatics questions.

5.4.1 Finding short exons and short introns

For our first example, we will consider the question of how short exons can be. This

question can be answered in Galaxy with just a few steps. First, we need to acquire a

table of exon coordinates. We can accomplish this by selecting “Get Data” and then

selecting, for example, the UCSC main Table Browser from the Galaxy “Get Data”

menu. This will bring up a screen including the now-familiar Table Browser input

page within the Galaxy window. We then can choose a dataset in the usual manner

with the Table Browser, say, the ensGene table in hg18, and select an output format

of BED with one record per exon. The output screen will now display an option for

sending the result to Galaxy, which we will select.

Next, we need to create an additional column in our table containing the exon

length. We create this column by using the Text Manipulation–Compute Expression

tool to subtract the exon start value from the exon end value for each table record.

Finally, we extract the short exons by filtering the table with the constraint that the

value in the exon-length column is less than, say, ten (using the Filter tool under

“Filter and sort”). By modifying our procedure slightly, we can also look for short

introns (see Exercise 5.2).

As an aside, we note that many of the short “exons” and “introns,” which we

find in this manner, are likely to be artifacts caused by such factors as sequence

polymorphisms and sequencing and assembly errors. Figures 5.4 and 5.5 illustrate

the kind of situations you may find in your list of “short” exons and introns. Fig-

ure 5.4 shows three sets of mRNAs with very short gaps that, at first glance, look
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(a)

(b)

(c)

Figure 5.4 Browser display of three mRNA-genome alignments where short gaps probably result

from indel polymorphisms. See text for details.

like introns. However, these gaps almost definitely do not represent real introns. For

example, the single nucleotide gap of Figure 5.4a is almost certainly the result of

a deletion polymorphism. Similarly, because the acceptor splice junction sequence

in Figure 5.4b is CA rather than the canonical AG, and because the gap is in the

untranslated regions (UTR) of the transcript (and hence where an indel polymorphism

would not cause a frameshift mutation), the “intron” is more likely to be caused by a

deletion polymorphism rather than by splicing. Finally, the short gaps overlapping
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(a)

(b)

Figure 5.5 Browser display of two mRNA-genome alignments indicating the presence of short

insertions. (a) Several short insertions probably resulting from indel-polymorphism or sequencing

error. (b) 8 nt insertion with canonical splice junctions, which is probably an actual exon.

a known repetitive region in Figure 5.4c are also most likely the result of deletion

polymorphisms. Note that in several – but not all – cases, the gaps shown in the

mRNA tracks in Figure 5.4 have been removed in the UCSC, RefSeq, and Ensembl

gene tracks.1

Figure 5.5 shows examples of short insertions and gaps in transcript alignments

and gene annotations. The mRNA tracks of Figure 5.5a show a single nucleotide

insertion and several short gaps that almost certainly result from an insertion poly-

morphism or sequencing error related to the overlapping repetitive element. Note

that the single nt insertion has been removed from the RefSeq track but not out of

one of the tracks in the UCSC Known Genes display. On the other hand, the 8 nt exon

in Figure 5.5b is most likely real because the exon is flanked by the canonical donor

(acceptor) splice-sequences GT (AG) and, in fact, the putative exon is preserved in the

RefSeq, Ensembl, and UCSC gene tracks.

In contrast, if we want to find genes with short exons or introns that we can be

confident are not artifacts, we could repeat this procedure using a manually curated

gene set such as the CCDS or VEGA genes. But we will leave that as an exercise.

1 The extent to which annotation tracks in the various browsers include such anomalous short

introns and exons depends, in part, on the transcript alignment methods they use. For more

information on the different alignment algorithms used by the browsers, see Appendix 4 and

references therein.
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5.4.2 Characterizing disease genes

For our second example, we will determine RefSeq or GenBank accession IDs, Swiss-

Prot IDs, as well as gene structures, for all genes that have a specific SwissProt disease

annotation, namely, myasthenia gravis.

With Galaxy, we can create the required dataset in a few steps. In this example,

the most difficult step is the first step, which actually is not related to Galaxy at

all. Rather, the difficulty involves identifying the UCSC database tables containing

the data we need. We will start by going to the UCSC Human Genome Browser

(we will use build hg17 for this example) and entering “myasthenia gravis” in the

“Position or search term” input field. This results in several UCSC “Known Gene” hits.

Next, we need to identify the UCSC tables that contain gene structure and disease

annotations. Because our initial query resulted in UCSC Known Genes, we suspect

that the knownGene table will have at least some of the data we need, and looking at

the knownGene table in the Table Browser shows that it does contain SwissProt and

GenBank/RefSeq IDs as well as gene structure information.

But examining the knownGene table description shows that it does not contain

any disease annotations. Instead, below the table description, one finds a list of more

than fifty other tables that are linked to the knownGene table. It is likely that one of

these tables will contain the desired disease data – though this is not necessarily true

because the disease table might only be linked to the knownGene table indirectly via

yet a third table. In the present example, the list of tables linked to the knownGene

table includes one with the promising table name of proteome.spDisease, and clicking

on the link to the proteome.spDisease table shows that indeed this is the table where

disease annotations are stored.

There is one more minor hurdle to overcome before we can locate the pro-

teome.spDisease table. If we return to the main Table Browser input page, we will

not find the proteome.spDisease table even if we select “All tables” from the group

pull-down menu. The reason is that the table list in the Table Browser menu only

includes the tables in the currently selected database, which, in the present case, is

hg17. To get around this, we note that when we selected the “All tables” group, the

Table Browser presented us with a new pull-down menu, not previously visible, called

“Database” (see Figure 5.6). Here we can select any of the auxiliary databases that are

linked to hg17. From the name of the table we need, we are led to select the proteome

database, where we finally can find the proteome.spDisease table.

Once we have identified the tables we need, we simply download the hg17 known-

Gene and proteome.spDisease tables into Galaxy using “Get Data” and UCSC main

Table Browser from the Galaxy menu. Next, using Galaxy’s Select tool (under the

“Filtering and sorting” menu) to find occurrences of “myasthenia gravis” in the spDis-

ease table, we create an intermediate table of those proteins whose descriptions refer

to myasthenia gravis. Then we extract the first two columns of the intermediate

table (using the Cut tool under “Text manipulation”) corresponding to the SwissProt
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Figure 5.6 Screenshot of Table Browser Interface with “All Tables” selected from the group

pull-down menu. Note that with “All Tables” selected, an additional pull-down menu, “Database,”

becomes available (highlighted in the figure with an ellipse), enabling one to select tables from the

auxiliary UCSC databases, for example, the proteome database, which includes the SwissProt

disease-annotation table.

accession numbers and display IDs. Finally, because we will need the gene structures

of the genes corresponding to these proteins, we perform a “join” (under “Filter,

sort, join, and compare”) between our intermediate table with the knownGene table,

linking them via their common SwissProt ID field. The resulting data is shown in Fig-

ure 5.7.

5.4.3 Finding regions with multiple overlapping ESTs

We recall that in the previous chapter, we were able to identify which regions from

a list of genomic “regions of interest” (say, locations of high expression in a tiling

micro-array experiment) overlapped at least one EST. However, we may also want to

know which regions are covered by at least, say, three different ESTs. (The reason for

this is that EST data is sometimes of limited quality and, consequently, it is preferable

to restrict one’s attention to cases with multiple EST coverage.)

To identify those regions that overlap three or more ESTs, we need to perform

some data post-processing, which is why we were not able to perform this query
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Galaxy Flowchart: Count ESTs Overlapping Regions of Interest (ROIs)

Acquire data
1. Upload ROIs from local computer to Table Browser as custom track
2. On Table Browser, intersect spliced EST table with ROI custom track,
save result as “estROI”
3. Upload ROIs from local computer to Galaxy as BED file
4. Upload estROI from Table Browser to Galaxy as BED file

Initial data processing on Galaxy
5. Perform genomic-interval-join of ROIs and estROI data sets

Count ESTs for each ROI on Galaxy
6. Count # of records in joined data set with each ROI name
7. Filter to select ROIs with count > count minimum.

Figure 5.8 Flowchart of manipulations required for performing an overlapping-EST count example

in Galaxy. See text for details.

in the Table Browser. However, with Galaxy, the procedure is easy. The method is

outlined in Figure 5.8. We begin by uploading a BED file of our genomic regions-of-

interest to UCSC as a custom track. Next, we intersect an appropriate UCSC EST table

(e.g., the intronEst table for spliced same-species ESTs) with our custom track to find

all overlapping ESTs, just as we did in the previous chapter. However, now we upload

both the set of overlapping ESTs (from the Table Browser) as well as the original BED

file of interesting regions (from our local computer) to Galaxy.

We can now use Galaxy to perform a “genomic join” between the tiling-array

regions and the set of ESTs. We use Galaxy’s genomic-interval operations, selecting

the option to return only records that are actually joined. In this way, we have created

a list of records that each include the ID of one of the tiling-array regions as well as

the ID of one of the ESTs that overlaps the region. Now we can apply Galaxy’s statistics

Count tool to determine the number of records in the joined table corresponding to

each tiling-array ID, which will equal the number of ESTs that overlap that region.

Finally, by filtering the table of counts with the constraint that the count is greater

than two (again using the Filter tool), we identify the regions with three or more

overlapping ESTs.

It is worth noting that an alternative and superficially simpler approach would

have been to just download the entire spliced EST table to Galaxy and then to perform

all the manipulations, including the initial table intersection, on Galaxy. However,

because the spliced EST table has approximately four million records, downloading

the entire EST table to Galaxy would, at least, be very inefficient and might well not

work at all.

5.4.4 Conservation at polymorphism sites

For our next example, we return to a query that we encountered in chapter 2 in

the context of genome browsing. There we were investigating a novel polymorphism
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and wanted to determine, among other things, whether the polymorphism site was

conserved in related species and, for the ones that are not conserved, whether the

new allele is found in any other species. With only one polymorphism site, this was

easy to do with a genome browser.

But now let us assume we have a list of the coordinates of fifty candidate poly-

morphisms, and we want to carry out these tests for each of them. Using the genome

browser to evaluate each site, one at a time, would be very cumbersome at best. How-

ever, performing this analysis on all fifty sites with Galaxy is not difficult. We simply

upload a BED file of our polymorphism sites to Galaxy. Then we use the “Extract MAF

blocks given a set of genomic intervals” tool under “Fetch alignments,” using the list

of polymorphism coordinates as our genomic intervals and selecting any available

MAF file (such as multiz17way for build hg18) for the alignments. A small part of

the result of such a query (representing just two sites) is shown in Figure 5.9. From

these single-nucleotide alignments, we can tell by visual inspection in which cases

the site is conserved and, if not, whether the new allele occurs in the homologous

sequence in any other species. Note that the reason Galaxy is more useful here than

the Table Browser is that the Table Browser Intersection tool can only retrieve the

alignments for an entire aligning region and, in particular, cannot extract single-

nucleotide alignments, as required in this application.

5.4.5 Screening for NMD candidates

The identification of mammalian mRNAs that are candidates for degradation via

the NMD pathway is another application of batch querying and post-processing that

can be performed with Galaxy. NMD is a biological process by which specific RNA

molecules are degraded rather than being translated into protein (Green et al., 2003).

NMD is widely used to protect the organism against aberrantly transcribed or spliced

RNAs as well as against RNA viruses; in addition, there is evidence that NMD may

serve other regulatory functions in the cell as well.

The precise sequence motifs that trigger the NMD response vary among species

and are only partially understood. In mammals, the signal is generally the presence of

a stop codon in an exon other than the final or next-to-last exon, or else the presence

of a stop codon in the next-to-last exon that is more than fifty nucleotides from the 3′

end of the exon. Figure 5.10 is a schematic representation of typical mRNA structures

that would be translated into protein as well as other mRNA structures that would

be subject to NMD.

Let us now screen for genes that might be subject to NMD using Galaxy. We

need to follow the steps shown in flowchart form in Figure 5.11. First, we need to

acquire data from a gene or gene-prediction table at the Table Browser. We will use

the ensGene table of Ensembl gene predictions for this example. We will need to

transfer the data in this table to Galaxy in two distinct formats. First, we will use

the “Download selected fields” output option to download the Name, ExonCount,
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##maf version=1

a score=2312839.000000

s hg18.chr1 31199407 1 + 247249719 G

s xenTro1.scaffold_532 223247 1 + 917834 T

s mm8.chr4 24994864 1 - 155029701 G

s galGal2.chr23 461960 1 + 5666127 G

s bosTau2.chr2 75172077 1 + 86543008 G

s monDom4.chr4 3926273 1 - 430141050 A

s panTro1.chr1 31773307 1 + 229575298 G

s rheMac2.chr1 33722232 1 + 228252215 G

s rn4.chr5 149550170 1 + 173096209 G

s oryCun1.scaffold_196310 8631 1 + 84859 G

s canFam2.chr2 15497952 1 - 88410189 G

s dasNov1.scaffold_27063 8207 1 - 43833 C

s loxAfr1.scaffold_6828 53222 1 + 95803 G

s echTel1.scaffold_302436 17060 1 + 150751 G

s tetNig1.chr21 1186878 1 + 5821691 C

s fr1.chrUn 87114897 1 + 349519338 C

s danRer3.chr23 36902940 1 + 55418239 C

a score=746343.000000

s hg18.chr1 33570571 1 + 247249719 C

s panTro1.chr1 34205276 1 + 229575298 C

s rheMac2.chr1 36116336 1 + 228252215 C

s rn4.chr5 25124814 1 - 173096209 C

s mm8.chr4 26782375 1 - 155029701 C

s oryCun1.scaffold_94308 9049 1 + 24239 C

s bosTau2.chr2 71837066 1 + 86543008 C

s canFam2.chr2 17417941 1 - 88410189 C

s dasNov1.scaffold_4980 19689 1 - 100180 C

s loxAfr1.scaffold_5522 22308 1 + 80412 C

s echTel1.scaffold_314821 34322 1 - 92458 C

s monDom4.chr4 4825893 1 - 430141050 C

s xenTro1.scaffold_1087 158201 1 - 316202 G

s fr1.chrUn 306507035 1 + 349519338 A

s tetNig1.chr11 3051437 1 - 11113812 A

s danRer3.chr23 30614371 1 + 55418239 C

Figure 5.9 Portion of output from a Galaxy example, described in the text, that shows the level of

vertebrate sequence conservation at two single-nucleotide polymorphism sites in the human

genome.

CdsStart, CdsEnd, and Strand fields of each Ensembl gene from the ensGene table.

Then we will download the ensGene table a second time in the format of one BED per

exon.

Before we can screen for NMD candidates, we need to perform some initial “clean-

up” of the data. First, we need to create a table column containing the “index” of the

exon, that is, a number that indicates whether the exon is the transcript’s most 5′
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Figure 5.10 Cartoon showing intron-exon structure of mammalian mRNAs. Introns are indicated by

thin lines. Portions of exons that include coding and untranslated sequences are indicated by thick

and thin blocks, respectively; 5′ end of all sequences are at the left side of the figure. (a) Normal

mRNAs, which are not candidates for NMD – stop codon is either in the final exon or within 50 nt of

the 3′ end of the second-last exon. (b) NMD candidates. The stop codon occurs either before the

second-last exon or more than 50 nt from the 3′ end of the second-last exon.

exon (exonIndex = 0), the second-most 5′ exon (exonIndex = 1), and so on. To create

this index, we can take advantage of the way UCSC names exons when using one-

BED-per-exon output format. Specifically, the exon index is embedded in the exon

name where, for example, a downloaded exon with the name ENST00000319604_

exon_2_0_chrX_9845063_f has an exon index equal to 2. Consequently, we can

extract the exon index from the exon name by using Galaxy’s “Convert underscores

to tabs” tool from the “Convert delimiters” option of the “Text manipulation” menu.

Then we extract the Name, ExonStart, ExonEnd, and ExonIndex columns from the

exon-bed dataset with the Cut tool. (This is not strictly necessary but it makes the

tables smaller and hence easier to read.) Next, we “join” the exon-bed and gene

datasets so the resulting table will have all the required data for each location (i.e.,

Name, ExonStart, ExonEnd, ExonIndex, ExonCount, CdsStart, CdsEnd, and Strand)

in a single line. Finally, we split the dataset into two, one with the positive-strand

exons and the other with the negative-strand exons. This is necessary because the

NMD calculations will be different in each case.

We now need to identify the exons that include stop codons because these exons

determine which mRNAs are NMD candidates. For the positive-strand genes, this is

straightforward: we extract those records for which the value of ExonStart is less

than that of CdsEnd and the value of CdsEnd is less than that of ExonEnd. Then
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Galaxy Flowchart: NMD Candidates

Acquire data from UCSC Table Browser
1. Acquire Gene dataset (Name, ExonCount, CdsStart,CdsEnd, Strand)
2. Acquire Exon dataset using one-bed-per-exon BED output format

Initial data processing
3. In Exon dataset, convert underscore to tab.
4. In Exon dataset, cut (Name, ExonStart, ExonEnd, ExonIndex)
5. Join Gene and Step-4-result on Name, creating data set with all needed fields:
Name, ExonCount, CdsStart,CdsEnd, Strand, ExonStart, ExonEnd, ExonIndex
6. Create separate datasets for positive and negative strand genes:

6a. Filter Step-5-result with strand = ‘ + ’ => positive-strand dataset
6b. Filter Step-5-result with strand = ‘ − ’ => negative-strand dataset

Find NMD candidates on positive strand.
7. Extract exons including stop codon

7a. Filter Step-6a-result using ExonStart < CdsEnd
7b. Filter resulting dataset using CdsEnd < ExonEnd

8. Extract exons with stop codon not in last or second-last exon:
Filter Step-7-result with ExonIndex < ExonCount – 2
9. Extract NMD candidates exons with stop codon in second-last exon:

9a. Filter Step-7-result with ExonIndex = ExonCount – 2
9b. Filter Step-9a-result with (ExonEnd – CdsEnd) > 50

Find NMD candidates on negative strand.
10. Extract exons including stop codon

10a. Filter Step-6b-result dataset using ExonStart < CdsStart
10b. Filter resulting dataset using CdsStart < ExonEnd

11. Extract exons with stop codon not in last or second-last exon:
Filter Step-10-result with ExonIndex > 1
12. Extract NMD candidates exons with stop codon in second-last exon:

12a. Filter Step-10-result with ExonIndex = 1
12b. Filter Step-12a-result with (CdsStart – ExonStart) > 50

Figure 5.11 Flowchart of manipulations required for performing NMD screen example in Galaxy.

See text for details.

we can identify (positive-strand) NMD candidates by seeing whether the stop-codon

containing exons satisfy either

exonIndex < ExonCount − 2,

or else

exonIndex = ExonCount − 2 and (ExonEnd − CdsEnd) > 50.

The situation for negative-strand genes is a bit more complicated because of the

fact that UCSC stores gene data in strand coordinates. Strand coordinates are explained

in detail in Appendix 1, but the essential point for this example is that for negative-

strand genes, the position of the gene’s stop codon will be located at CdsStart (rather
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Figure 5.12 Gene structure of ENST00000243040, which was identified by Galaxy from the NMD

screen. Note that the stop codon is in the third exon (as indicated by the conjunction of the thick

and thin exon lines within the exon), whereas the entire transcript consists of five exons.

ACA59
C/D and H/ACA snoRNAs, scaRNAs and microRNAs from snoRNABase and miRBase

Figure 5.13 Relationship between snoRNA and its host gene. One notes that in this example, the

intron that contains the snoRNA is at the extreme 3′ end of the gene and is shorter than the median

(or average) intron in the host gene.

than at CdsEnd) and the terminal exon will have an ExonIndex equal to zero. Conse-

quently, for negative-strand genes, the criteria for a stop codon being located within

the last exon will be

ExonStart < CdsStart, CdsStart < ExonEnd, and ExonIndex = 0.

Carrying out these manipulations for both positive- and negative-strand genes

yields the set of Ensembl gene predictions that are candidates for NMD. One example,

ENST00000243040, is shown in Figure 5.12. We note from the figure that the predicted

gene has five exons and that its stop codon is in exon three.

5.4.6 snoRNA host-gene characterization

For our final Galaxy example, we will investigate the length distribution of human

introns that have a snoRNA embedded in them. snoRNAs are small non-protein-coding

RNAs found in eukaryotes and archaea that play important roles in the development

of the cellular machinery used to splice and translate messenger RNA molecules.

In mammals, the genes that code for snoRNAs are located in the introns of protein

coding genes, often in genes that code for ribosomal proteins.

Figure 5.13 shows the structural relationship between one snoRNA, ACA59, and

part of the VPS13D gene, ACA59’s host gene – that is, the protein-coding gene that

contains the intron (the host intron) in which the snoRNA is embedded. In this

case, the snoRNA is seen to be located in the intron at the extreme 3′ end of the

gene. Also, the host intron is shorter than most of the other introns in VPS13D.

Such observations led to hypotheses that perhaps snoRNA host introns are sys-

tematically shorter than other introns or are located at the 3′ ends of their host

genes.

We now investigate the hypothesis that snoRNA host introns are shorter than

other introns. For pedagogic purposes, we will address a slightly modified version of

this question, namely, whether introns that contain snoRNA genes are systematically

shorter (or longer) than other introns of snoRNA host genes. Modifying this example
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Galaxy Flowchart: SnoRNA host-gene length distributions

Acquire data from UCSC Table Browser
1. Acquire snoRNA dataset as BED
2. Acquire Gene dataset using one-bed-per-Gene output format
3. Acquire Gene-intron dataset using one-intron-per-Gene output format

Initial data processing
4. Intersect Gene with snoRNA using overlapping intervals => hostGeneClusters dataset
5. Select longest transcript from each gene cluster => hostGene dataset
6. Convert underscores to tabs in Gene-intron data set
7. Compare Gene-intron with hostGenes => hostGeneIntrons
8. Intersect hostGeneIntrons with snoRNAs using overlapping intervals => hostIntrons
9. Subtract hostGeneIntrons from snoRNAs => hostGeneOtherIntrons

Calculate intron length distributions
10.Create intron-length column for hostIntrons by subtracting start from end
11.Calculate hostIntron median and mean lengths using summary statisitics tool
12.Create intron-length column for hostGeneOtherIntrons by subtracting start from end
13.Calculate hostGeneOtherIntrons median and mean lengths

Figure 5.14 Flowchart of manipulations required for performing intron-length distribution

example in Galaxy. See text for details.

to other hypotheses – for example, that snoRNA host introns are longer or shorter

than the average introns of all genes – is straightforward.

An outline of the algorithm is shown in Figure 5.14. To begin, we need to download

the genomic coordinates of a set of snoRNAs to Galaxy. For our example, we will use

the coordinates of the known human H/ACA snoRNAs from the Table Browser. We

acquire this dataset by selecting the wgRna table of hg18 in the Table Browser. We

filter the wgRna table output using the Table Browser Filter tool with the “Type” field

matching “HAcaBox” and download the data to Galaxy in BED format. Next, we need

to download a gene set, for example, the Ensembl genes ensGene table, from the

Table Browser to Galaxy. We will need to download this data table to Galaxy twice,

once selecting the whole-gene-per-BED output format and the second time using the

one-intron-per-BED output format.

Now we need to edit and filter the data files. First, we need to isolate the records

of those ensGene genes that “host” (that is, contain) snoRNA genes. We can do this by

intersecting, with overlapping intervals, the whole-gene-per-BED ensGene table with

our snoRNA table.

The next step is to identify the introns of the snoRNA host genes. However, before

we can do this we need to address an issue that could inappropriately bias our

results. The issue is that our host-gene table will often contain multiple transcripts

for a single snoRNA. That is, the table will contain a record for every isoform of any

gene that contains the snoRNA in one of its introns. This is not what we need for

estimating host-gene intron-length distributions because genes with many isoforms

would be weighted more heavily in our average than genes with only a single isoform.

Ideally, we would want to average the intron lengths over all host-gene isoforms. As a



94 Genomes, Browsers, and Databases

simpler alternative, we will select a single representative transcript for each group of

isoforms. Which isoform we select is somewhat arbitrary, but the selection should at

least be performed systematically. We could select the isoform with, say, the highest

mRNA expression, or simply the one with the most introns, or having the longest

transcript length. With Galaxy, we are restricted to choose the longest (or shortest)

isoform as the single representative transcript because these are currently the only

ways of selecting a representative isoform. To do this, we select the Galaxy Cluster

tool under “Operate on genomic intervals” and then select the “Find largest interval

in each gene cluster,” making sure to change the minimum cluster size to equal one.

If we apply this tool to the set of host genes that overlap H/ACA snoRNAs, we will

create a host-gene table with exactly one isoform for each host gene. We will call the

resulting table the hostGenes table.

Now we are ready to identify the introns of the host genes. We accomplish this by

first using the “underscore-to-tab” Conversion tool, as we did in the NMD example,

so that the intron records have a field containing the same transcript ID as found

in the gene records. Having done this, we can use the Galaxy Compare tool to select

only those records in the intron-BED gene table that have the same ID as a record in

the hostGenes table. We call this the hostGeneIntrons table. Next, we need to split

the hostGeneIntrons table into two subtables – a hostIntrons table, which includes

just those introns that actually include an embedded snoRNA, and a hostGeneOther-

Introns table containing those host-gene introns that do not themselves overlap a

snoRNA. We can obtain the hostIntrons table by intersecting with overlapping inter-

vals the hostGenes table with the original snoRNA table. The hostGeneOtherIntrons

table is created similarly by using the Subtract Intervals tool to find the rows in

hostGeneIntrons that do not overlap intervals in the snoRNA table.

We can now perform the actual length computations. First, we apply the Edit–

Compute Expression tool to create a new column of intron lengths in both the

hostIntrons and hostGeneOtherIntrons tables by subtracting the intron start value

from the intron end value for each table record. Finally, we can apply the Summary

Statistics tool to calculate the mean and median values for the intron lengths of each

of the two tables.

5.5 Extending Galaxy

Galaxy is a powerful tool. However, Galaxy also has limitations. First, there may be

some necessary data manipulations for a specific application that have not been

implemented in Galaxy. Second, the Galaxy web site is a shared, online resource. In

principle, performance may be impacted if other users of the Galaxy site make large

demands on the Galaxy system, although to date, usage of Galaxy has not been heavy

enough for this to be an issue.

One way of addressing these potential limitations is by installing a local copy

of Galaxy and adding one’s own custom post-processing tools. However, although

adding custom data-analysis tools to Galaxy is not difficult, developing such new
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tools and creating the necessary local Galaxy mirror do require computer and

programming skills. We will not discuss this approach further here because it is

well documented on the Galaxy web site. In particular, procedures for installing a

Galaxy mirror and extending Galaxy functionality are described in the HowToInstall

and the AddToolTutorial pages of the Galaxy online documentation (http://g2.trac.

bx.psu.edu).

Chapter summary

� Practical batch-querying problems often require data post-processing in addition

to database access.
� Batch post-processing can be performed either by using interactive tools or by

writing a computer program.
� Galaxy provides batch-querying post-processing capabilities for the nonpro-

grammer.
� Galaxy can take input from Ensembl, UCSC, NHGRI, and other data sources as well

as custom user-supplied data.
� Galaxy includes powerful tools for joining, comparing, and subtracting records

from multiple datasets both on the basis of table values and genomic intervals as

well as wrappers for several widely used bioinformatics data processing programs.

Exercises

1. Use Galaxy to determine which human Consensus CDS genes have the shortest

exons. How many base pairs are the shortest annotated exons? Look at a few of

them in your favorite browser.

2. Use Galaxy to determine which human VEGA genes have the shortest introns. How

short are they? Look at a few of them in your favorite browser.

3. Carry out the example from the text to use Galaxy to identify which regions

from a list are intersected by more than three ESTs. Repeat the exercise, this time

identifying the regions that intersect more than three xeno (i.e., not same-species)

ESTs.

4. Following the procedure described in the text, use Galaxy to determine how many

mouse RefSeq transcripts are predicted to be candidates for NMD.

5. Using Galaxy, create a list of Alu repeats that overlap coding SNPs in humans.

Compare this approach to that described in chapter 5 for performing this task

solely using the Table Browser.

6. Predictions of gene locations from the gene-prediction programs are sometimes

considered to be “real” if there is an mRNA from GenBank that overlaps with

the prediction. Simply having an EST (but no mRNA) overlap the prediction is

often not considered sufficient evidence. Use Galaxy to identify human GENSCAN

predictions that do not intersect any same-species GenBank mRNA but do intersect

at least two ESTs.
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Introduction to Programmed Querying

In the present chapter, we introduce programmed batch post-processing, which

we also refer to as programmed querying. We first describe the types of situations

for which programmed querying is advantageous. Then we describe SQL-based pro-

gramming, which enables programmed querying of the Ensembl and UCSC genome

databases without needing to use the Ensembl or UCSC APIs. Then we give an overview

of the Taverna Toolkit, which provides an alternative approach to generating com-

puter scripts for programmed querying. Finally, we briefly introduce the Ensembl

and UCSC APIs, which will be described in detail in the following chapters.

6.1 Programmed batch post-processing

Even if one does not need to add any custom tools to an interactive system like

Galaxy, there are still drawbacks to interactive data post-processing. These disadvan-

tages relate to the difficulty of documenting and exactly reproducing the results of

interactive analyses. With Galaxy, these problems are partially addressed by means

of Galaxy’s History mechanism, which stores all the intermediate data files of the

interactive procedure. However, even with stored intermediate data files, it can be

difficult to remember and reproduce the precise steps of a long interactive procedure.

It is for this reason that we included detailed procedural descriptions (as shown in

Figures 5.8, 5.11, and 5.14) for the more involved examples presented in the previous

chapter.

In addition, repetitively carrying out multistep interactive manipulations is

tedious and time-consuming, and simply performing many manual operations can

lead to errors. These issues are particularly relevant when the required data analysis

is relatively complex and needs to be carried out multiple times. For example, we

might want to repeat our NMD analysis with other human gene sets (e.g., RefSeq,

VEGA, N-SCAN) and compare the results, or we might want to repeat the analysis

with mouse genes. We might have a new gene-prediction program, with adjustable

parameters that we want to test by seeing how many (presumably false positive)

NMD candidates it produces, and how the number of NMD candidates changes as we

96



Introduction to Programmed Querying 97

vary the adjustable parameters. We will not want to repeat all of the Galaxy table

manipulations every time we modify a single parameter.

The Galaxy Development Team has plans that, in the future, Galaxy users will be

able to write a “script” or “stored procedure” containing a list of Galaxy commands to

be executed automatically with user-specified input files and parameters. However,

currently without this capability, ensuring the reproducibility of a multistep data

analysis on the Galaxy system is challenging. In contrast, with a programmed query,

the computer code itself serves to document exactly what procedures were used and

ensures that exactly the same steps are performed each time the program is executed.

6.2 SQL programming

The most straightforward approach to performing programmed post-processing is

simply to write one’s own data analysis program in whatever programming language

one likes and then to embed appropriate SQL programming commands into one’s

code to access the needed data from the Ensembl or UCSC databases.1

This SQL-programming approach is illustrated in the “toy” program shown in

Figure 6.1. The program code is available from the publisher’s web site for this book

and can be executed (after having been made executable with the Unix chmod utility

and been placed in the $PATH program path) by executing the command:

$ ucscPerlDbiExample.pl

The program is a toy program because all it does is extract table names from the UCSC

database and print them. However, for the reader experienced in SQL programming,

it should be apparent how to extend this program skeleton so that it can extract

other data from the UCSC database and do something useful with them.

The program works as follows. First, the “use” statement in line 5 specifies that

the Perl DBI module will be accessed (and you will need to download and install this

module from CPAN, the Perl module repository, at http:// www.cpan.org, if you do

not already have it). In lines 7 through 9, the parameters required to access one of

the mouse databases (mm6) of the UCSC database public mirror are specified.

In line 12, the DBI “connect” method is executed to make the actual database

connection to the UCSC mirror. Lines 15 and 16 define and prepare the SQL data-

retrieval command we want to send to the database. For our demo program, we will

simply retrieve a list of the names of the tables in the mm6 database. The command

is executed in line 17 and, in line 20, the results for each retrieved record are read

into an array we call @ary. In general, each field of the record would be a separate

1 Currently, NCBI does not provide programmed access to the MapViewer database. NCBI does

offer bioinformatics programming tools via the NCBI C++ Toolkit, which offer some of the

functionality of the Ensembl and UCSC APIs. However, we will not describe these tools here and,

instead, refer the interested reader to the online documentation at http://www.ncbi.nlm.nih.

gov/books/bv.fcgi?call=&rid=toolkit.TOC.
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#! /usr/bin/perl -w1

# get data from UCSC DB in perl2

3

use strict;4

use DBI;5

6

my $host = "genome-mysql.cse.ucsc.edu";7

my $db = "mm6";8

my $user = "genome";9

10

# connect to database11

my $dbh = DBI->connect ("DBI:mysql:$db:$host", $user)12

or die ("Cannot connect to database");13

# issue query14

my $command = "SHOW TABLES";15

my $sth = $dbh->prepare ($command);16

$sth->execute ()17

or die ("Cannot execute query");18

# read results of query19

while (my @ary = $sth->fetchrow_array ())20

{21

print join ("\t", @ary), "\n";22

}23

24

$dbh->disconnect ()25

or die ("Cannot disconnect from database");26

exit (0);27

Figure 6.1 Perl program, using standard SQL, to list the table names in UCSC’s mm6 mouse

database. Note that line numbers have been added to the code for clarity.

component of the array, though in the present case, there is only one field per record

and, hence, only one component in the array. Finally, in line 22, we print out the

data, that is, the name of each mouse database table.

For readers with Perl and MySQL programming experience, it should be apparent

how one could easily modify the data retrieval and data processing command in the

“while” loop so that different kinds of genomic data could be extracted from the

database and manipulated in various ways. Readers without such Perl and MySQL

experience are referred to any of several excellent introductions to this subject, such

as chapters 5 through 7 of DuBois (2005).

We will not describe the direct SQL method of programmed database access further

because we will soon describe the Ensembl and UCSC APIs, which usually are easier

and more powerful ways of accessing the Ensembl and UCSC databases. That said, it

is worth mentioning that sometimes the basic SQL-programming approach can be
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advantageous. First, if one only occasionally needs programmatic access to one of the

genome databases, one can accomplish this without installing the Ensembl or UCSC

code or learning the Ensembl or UCSC APIs (which both have nontrivial learning

curves). Second, you are not restricted in what programming language you use – in

particular, you do not need to use Perl to analyze Ensembl data or C to manipulate

UCSC data. And last, if you have a commercial application and you need data from

the UCSC databases, you can access the UCSC data without using UCSC’s database

code, which requires a license for commercial use.

6.3 The Taverna Toolkit

The Taverna Toolkit provides a very different approach to batch post-processing from

the other approaches we have seen so far. Taverna is a computer scripting language

designed specifically for creating bioinformatics data processing pipelines. In addi-

tion, Taverna includes a graphical user interface (GUI) that enables one to build one’s

own Taverna analysis pipeline without having to do any explicit computer program-

ming. Instead, with the Taverna interface, one creates a script that retrieves data from

different databases and then calls bioinformatics programs to analyze the data. The

only requirement is that the data and analysis programs be either on the user’s local

system or else be accessible over the Internet via web service protocols (Zimmerman

et al., 2005). In particular, such standard tools as BLAST, Repeatmasker, Clustalw, and

the EMBOSS sequence analysis programs are all currently available over the Internet

via web service protocols.

For example, in one of its original applications (Stevens et al., 2004), Taverna was

used to search for genes in a medically important region of the human genome, the

Williams-Bueren Syndrome (WBS) region, so called because patients who suffer from

WBS often have chromosomal deletions in this region. Searching for WBS candidate

disease genes is complicated by the fact that the region has significant amounts of

repetitive sequences. Consequently, at the time when this analysis was performed,

the region still had large gaps in its assembly.

For this application, a Taverna pipeline was developed that took newly acquired

sequence data and automatically passed the data to the Repeatmasker program (to

mask repetitive-sequence regions, which limit the effectiveness of BLAST) and then

to the BLAST program to determine if the sequence was located in the WBS region.

Finally, if the new sequence was in the WBS region, the sequence was passed to the

NIX gene-finding program to determine if any novel putative genes might be located

in the new sequence.

Because in this application, the sequence data to be analyzed had only just been

sequenced, the data was not yet in the UCSC or Ensembl databases. Consequently,

the methods that we have presented so far – as well as those we will present in

the following chapters – would be difficult or impossible to apply. As a result, using
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Taverna was an effective approach for this batch data analysis application. In contrast,

for applications involving data already deposited in the UCSC or Ensembl databases,

the advantages of the Taverna approach are less compelling.

There are also disadvantages to approaches using web-based data analysis. For

example, the pipeline will fail if any one of the required web services is not available.

In addition, the tedious but critical task of reformatting data from the output of each

stage of the pipeline so that it is properly formatted to be input for the next analysis

program must generally be performed by a custom-written program. In contrast, in

more integrated analysis systems (e.g., Galaxy), this data format conversion is typically

carried out by the data analysis system itself.

That said, numerous important bioinformatics analysis programs, which can be

accessed via web services and hence by Taverna, are not included in the Galaxy

Toolkit. Consequently, if one is faced with an application involving processing newly

sequenced data or needing access to web-based bioinformatics tools, it is worth con-

sidering whether Taverna may be an appropriate tool for the task. Additional infor-

mation on Taverna is available at the Taverna web site (http://taverna.sourceforge.net)

as well as in the Taverna papers (Hull et al., 2006; Oinn et al., 2004).

6.4 Genome-database APIs

If one does need to write a computer program to perform genomic data processing, it

is of course possible to write the program “from scratch” in any computer language

of one’s choice. For example, we illustrated this approach with the Perl SQL program

in Section 6.2. However, for many applications, and especially for larger projects,

this is an inefficient approach. One reason is that genome databases are generally

implemented as relational databases with data stored in tables. In contrast, most

modern computer programs store related data as a single data “object” (in C++, Java,

or object-oriented Perl) or data “structure” (in C). Consequently, one generally needs

software that can convert data back and forth between the tabular form required by

the relational database organization and the hierarchical, nontabular data structures

that are more natural for application programs.

Writing one’s own code to convert data between database format and program

data structures is a nontrivial task. Moreover, both the Ensembl and UCSC teams have

already written extensive software to perform these tasks. Consequently, it is often

preferable to use the extensive API libraries of data extraction and manipulation tools

that have already been developed for these purposes. In this way, one has immediate

access to functions that perform essentially all the data manipulations that we are

accustomed to performing interactively on the genome browsers. In the following

chapters, we will introduce the Ensembl and UCSC APIs for programmed querying

of genome databases and illustrate how they can be applied to a variety of practical

biological problems.
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Chapter summary

� Genome-database batch post-processing programs can be written in any computer

language that provides an SQL interface to the database.
� Taverna provides an interface for generating computer programs to access bioin-

formatics data processing pipelines using web services.
� Writing batch post-processing programs for use with the Ensembl and UCSC data-

bases is greatly facilitated by using the APIs available for accessing these databases.

Exercise

1. Modify the SQL Perl program in the text so that it displays the gene names of

all the mouse mm6 Ensembl genes between specified genomic coordinates on a

specified mouse chromosome. You will need to know some SQL and Perl for this

example. (We will learn easier ways of performing this sort of programmed query

in the following chapters.)
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Using the Ensembl API

In the present chapter, we begin our detailed introduction to the Ensembl Perl API.

We start with an overview of the API followed by a description of the required software

and necessary setup procedures. Next, we present a brief review of the BioPerl software

package, on which much of the Ensembl code was originally based. Next, we look

at examples of typical Ensembl API syntax and the way that it is similar to, yet also

differs from, BioPerl usage. We also address the question of locating specific Ensembl

functions within the large Ensembl code base. This is followed by an examination

of two complete Perl programs that illustrate how to incorporate the API modules

into one’s own programs. Finally, we present some comments on Ensembl’s Java API.

In the following chapter, we continue our introduction to programmed querying

of Ensembl data by describing more advanced programming techniques, as well as

by presenting an overview of the local-mirror installation procedure for an Ensembl

database.

7.1 Overview of the Ensembl API

Facilitating programmed querying of the Ensembl databases has long been a design

priority of the Ensembl development team. To achieve this goal, the Ensembl team

has developed a reasonably “formal” API for accessing the Ensembl databases within

the Perl programming language.1 By a formal API, we mean essentially a “contract”

between the Ensembl designers and the application programmer saying that, “If you

(i.e., the applications programmer) access our software exclusively using the tools

we have provided for this purpose, then we promise that the system will operate

as we claim it will and, moreover, we promise that it will continue to operate in

the advertised manner even if we change the underlying implementation of the

tools.”

1 Historically, Ensembl has offered two APIs, one in Perl and one in Java. However, as we briefly

discuss at the end of this chapter, the Java API is becoming obsolete. Hence, unless otherwise

noted, the term “Ensembl API” will refer to the Ensembl Perl API.

102
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Using the Ensembl API provides several advantages. The API includes thoroughly

tested software with functionality to perform a wide range of genome data manipu-

lations. The Ensembl API software is open source, and its use is completely free for

all users. In addition, the software is well documented and is actively supported by

Ensembl for general database querying by researchers outside the Ensembl Browser

Development Team. The API is standardized and API versions are synchronized with

Ensembl database releases. Consequently, code written with the API can be applied

equally well to every genome included in the associated Ensembl database release.

Moreover, by using the API, one is assured that one’s code will continue to function

with the published interface in future releases, if at all possible, and that if interface

changes are unavoidable, the changes will be well documented and tools will be

provided to enable programmers to convert their code to the modified interface.

Another advantage of using the Ensembl API is that Ensembl emphasizes the

use of community-standard tools, protocols, and data formats, such as BioPerl, DAS,

GFF, and XML, and generally makes its code interoperable with software from other

genome database projects, such as those of the single-genome databases and GMOD.

Finally, Ensembl has the useful feature that any programmed query that works with

a local Ensembl database can be executed equally well against the public Ensembl

mirror. This feature is useful for software testing, as well as for eliminating the need

to install a local mirror database at all, if one’s programmed-querying needs are not

extensive.

To accomplish these goals, Ensembl uses object-oriented programming techniques.

As a result of Ensembl’s object-oriented design, the Ensembl API user does not need

to be concerned with the details of how the “object methods” – that is, the subrou-

tines that one calls – are implemented by the system. In particular, when using the

objects of the Ensembl API, one does not need to understand the table structure of

the Ensembl database. The API automatically performs all database-to-application-

program data conversions. Consequently, the task of applications programming

becomes much easier and the resulting programs are immune to database schema

changes.

7.2 Software and programming requirements

To take advantage of the Ensembl API, one needs to have a basic understanding of

the Perl programming language, including an understanding of how to use Perl

references, modules, objects, and methods, and a basic knowledge of Perl is assumed

in the remainder of this chapter as well as in the next chapter. Note that advanced

programming skills, such as object-oriented programming, though helpful, are not

required to use the API. In particular, the skills learned in a standard introductory Perl

programming course should be sufficient for understanding the examples presented.

For those readers who do not have such skills, there are many excellent texts available,

including ones that are appropriate for self-study. For example, I have found Perl Core
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Language (Holzner, 1999), Beginning Perl for Bioinformatics (Tisdall, 2001), and Mastering

Perl for Bioinformatics (Tisdall, 2003) to be good books for learning Perl.

Various standard software programs need to be installed on one’s system before

one can use the Ensembl API. You will need to have a local copy of the Perl inter-

preter. You will also need a locally installed version of the MySQL client program.

(Note that installation of the MySQL server program is not necessary.) The MySQL

client program is freely available for download at http://www.mysql.com. Other soft-

ware that is very useful to have – though not strictly required – include software to

download data from the Internet, such as NcFTP (http://www.ncftp.com), the grep text

searching utility (http://www.gnu.org/software/grep), the CVS source-code archiving

utility (http://www.nongnu.org/cvs), and the rsync data transfer and synchronization

program (http://samba.anu.edu.au/rsync).

If you are using a Unix-based system, some of these tools will already be installed on

your system. If they are not already installed, downloading them is free and relatively

straightforward, and the required procedures are described in the documentation

that accompanies the programs.

7.2.1 Installing BioPerl and Ensembl code

To run the Ensembl API, you will need to install BioPerl as well as the Ensembl

API. Specifically, Ensembl requires installation of the core component of BioPerl

(version 1.2.3 or later), called bioperl-live, as well as the Perl modules upon which

BioPerl depends. Instructions for obtaining these files are included in the Ensembl

API documentation. You can download a copy of the API itself from http://www.

ensembl.org/info/using/api.

Installation of BioPerl and the Ensembl API is not difficult and basically follows

the standard three-step Perl installation commands of “perl Makefile.PL,” “make,”

and optionally, if you have system-administrator privileges, “make install.” If you

do not have system privileges, or you do not want to install BioPerl or Ensembl in

the system Perl libraries, you will need to include command-line arguments or Perl

“lib” pragmas in each of your programs to enable the Perl interpreter to locate the

BioPerl and Ensembl libraries. The Ensembl and BioPerl installation README files,

which are included with the download distributions, describe these straightforward

procedures in more detail.

The Ensembl API installation instructions (see http://www.ensembl.org/info/

using/api) specify installing the most recent version of the Ensembl API software.

Although this is likely to be what you ultimately want to do, as an initial step, you

may want to install version 42 because this is the version of Ensembl that I used to

write and test the Ensembl programs described in this book. Downloading version

42 simply involves replacing the current Ensembl version number with “42” in the

download commands, for example, for downloading the Ensembl “core” API:

$ cvs -d :pserver:cvsuser@cvs.sanger.ac.uk:/cvsroot/ensembl \
checkout -r branch-ensembl-42 ensembl
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Once you have version 42 running properly, moving to the current Ensembl API

release is straightforward.

You will definitely need to download the Ensembl core API. Depending on your app-

lications, you may want to download additional Ensembl APIs, such as the compara-

tive genomics API, ensembl-compara (which we will need for the multiple-sequence

alignment example in chapter 8), or the functional genomics API, ensembl-functgeno-

mics. In addition, you will need to download the Ensembl Browser software, called

ensembl-draw, to perform the “grep” examples described below. Downloading these

other components of the API simply requires modifying the final argument in the

previous CVS command; for example, the command to download the ensembl-draw

API is:

$ cvs -d :pserver:cvsuser@cvs.sanger.ac.uk:/cvsroot/ensembl \
checkout -r branch-ensembl-42 ensembl-draw

7.3 Database access

In addition to installing the Ensembl code, you will need to establish some form

of database access to a mirror of the Ensembl genome databases. This requirement

exists because the genome-browser databases themselves do not have the capacity to

handle programmatic querying. In general, there are three ways to create database

access: using a public mirror database, downloading individual database tables and

files, and creating one’s own private mirror.

In the present chapter, we will only describe using the Ensembl public mirror

database at ensembldb.ensembl.org. For occasional programmatic database querying,

this is the easiest approach. Since ensembldb.ensembl.org is an exact mirror of the

Ensembl Browser database, any code using the Ensembl API should run properly

on the Ensembl public mirror. You will need to confirm that there are no firewall

or other security systems where your computer is located that prevent you from

accessing a remote database over the Internet. In the next chapter, we will describe

database access via setting up a local mirror of an Ensembl database. The approach

of downloading individual database tables and files is more applicable to the UCSC

databases than to Ensembl, and hence will be described later in the context of the

UCSC system.

7.4 Using non-Unix systems

I will assume that you are working on a Unix-like system, such as linux or Mac OS

X. The Ensembl API and databases have been successfully installed and thoroughly

tested on a wide variety of Unix systems and the necessary procedures are well

documented. Moreover, if database installation problems are encountered on Unix

systems, a query addressed to the Ensembl mailing list is likely to find someone who

has already encountered the same problem and identified a solution to it.
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In contrast, little documentation is available regarding the use of the genome-

database APIs on computers running the Microsoft Windows operating systems. To

be sure, Perl code is relatively portable between computer operating systems. MySQL

software for Windows systems is also available. That said, porting a system as large as

a genome database API to a different type of operating system is a complex task, and

one should expect that subtle potential incompatibilities that need to be addressed

will arise. Anecdotal reports from users who have attempted such Windows ports

indicate that this is indeed the case.

In general, if one needs to perform programmed querying and one absolutely

must use a Windows-based system, the best route is probably via the Cygwin emu-

lation program. Using Cygwin, available from http://www.cygwin.com, a Microsoft

Windows user is able to run Unix programs essentially as if they were using a Unix

machine. If one is only running the Ensembl API, as opposed to installing a local

mirror database, running under Cygwin should work. An alternative approach for

accessing the Ensembl API under Windows is to install the Windows Perl environ-

ment provided by Active State and available at http://www.activestate.com. That said,

using the Ensembl (or UCSC) APIs under Microsoft Windows is not recommended and

will not be discussed further in this book.

7.5 Perl and BioPerl

In addition to a basic understanding of Perl, some familiarity with the BioPerl pack-

age is important for using the Ensembl API. BioPerl is a collection of Perl modules

that facilitate the development of Perl scripts for bioinformatics applications. Bio-

Perl provides modules for sequence manipulation, for accessing of databases that

use a range of data formats, and for executing and parsing the results of various

molecular biology programs, such as BLAST. In this section, we will present a brief

overview of the BioPerl package, emphasizing the components that are most relevant

to the Ensembl API. Readers who are not already at least somewhat familiar with

BioPerl are referred to the detailed BioPerl tutorial, bptutorial, which is available at

http://www.bioperl.org/Core/Latest/bptutorial.html.

BioPerl consists of a “core” software distribution, called bioperl-live, as well as sev-

eral auxiliary distributions with names such as bioperl-run, bioperl-db, and bioperl-

ext. The auxiliary distributions include more specialized software modules, which

typically require somewhat more involved installation procedures. Use of the

Ensembl API does not depend on any of the auxiliary BioPerl modules, and they will

not be discussed further here.

The BioPerl package is implemented via a collection of Perl objects, each rep-

resenting an important bioinformatics concept. The software includes objects for

biological sequences, for sequence alignments, for sequence features (e.g., genes and

transcripts), and for sequence variations (e.g., SNPs). In addition, there are objects for

implementing many common general bioinformatics tasks such as parsing database
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records or BLAST analysis reports and for reading and writing data from files and

databases in various standard formats.

The central BioPerl object is the sequence object, Seq, which is used for performing

most sequence manipulations on DNA, RNA, or protein sequences. (We note that there

are other sequence objects in BioPerl as well, for more specialized use. See the BioPerl

documentation for more details.) When using BioPerl, Seq objects are typically created

for you automatically when you read in a file containing sequence data using the

BioPerl sequence input-output object, SeqIO. For example, reading a set of GenBank

records into BioPerl using SeqIO is as simple as the following two lines of Perl code:

use Bio::SeqIO;

$inSeqs = Bio::SeqIO->new(-file => "inputfilename", -format => genbank);

Once the sequences have been read in as Seq sequence objects, they can easily manip-

ulated by calling Seq’s various methods, for example:

while ( $seqobj = $inSeqs->next_seq())

{
# obtain the sequence as a string

$seqString = $seqobj->seq();

# retrieve part of the sequence as a string

$partSeq = $seqobj->subseq(5,10);

# a description of the sequence

$description = $seqobj->description();

# truncate nucleotides 5 to 10 as new Seq object

$truncSeq = $seqobj->trunc(5,10);

# reverse complements sequence

$revcomSeq = $seqobj->revcom;

# translation of the sequence

$transSeq = $seqobj->translate;

# etc...

}

If the sequences have annotations associated with them, as will generally be the case

if they are extracted from the Ensembl database, the annotations will be stored as

sequence feature objects (called SeqFeature objects) that can be retrieved with code

with this format:

# to retrieve all of the "top level" sequence features

# (e.g. all gene annotations)

$seqobj->get_SeqFeatures

# to retrieve all sequence features, including sub-sequence features

# (e.g. all genes with their associated transcript and exon annnotations

$seqobj->get_all_SeqFeatures;

In addition, using BioPerl’s Bio::Tools::GFF format parser, SeqFeature objects can also

be created directly from annotations stored in a flat file containing annotation data
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in GFF format for GFF data through version 2.5. Accessing feature data from files

written in GFF3 is slightly more complicated but can be accomplished using BioPerl’s

Bio::DB::SeqFeature::Store::GFF3Loader object. Appendix 2 includes an introduction

to the GFF and GFF3 data formats.

Typical syntax for using Bio::Tools::GFF would be

$gffio = Bio::Tools::GFF->new(file => "gffFileName", -gff_version => 2);

while ($feature = $gffio->next_feature()) {
# do something with feature

}

In a similar manner to the object representation of sequences and sequence annota-

tions, pairwise and multiple-sequence alignments are stored as alignment objects in

BioPerl, called SimpleAlign objects. SimpleAlign objects are read and written to files

with the AlignIO object in a manner completely equivalent to the SeqIO object for

sequences, for example:

use Bio::AlignIO;

$io = Bio::AlignIO->new(-file => "alignmentFileName",-format => "clustalw" );

$threshold_percent = 60;

while ($aln = $io->next_align()) {
$consensus = $aln->consensus_string($threshold_percent);

# etc

}

Once read into memory, alignment objects have their own associated methods for

computing percent identity and a consensus sequence, extracting individual sequ-

ences from the alignment, and so on. For more examples of BioPerl functionality and

usage, the reader is referred to the BioPerl documentation.

7.5.1 Finding BioPerl objects and methods

Often the most difficult parts of writing a Perl program using BioPerl are identifying

the BioPerl object that you need, determining what methods are available for that

object, and finding the proper syntax for using those methods. For common functions,

a simple approach is to look at the sample code in the BioPerl tutorial and modify

it to fit your needs. In addition to the BioPerl tutorial, many examples of code usage

can be found in the program scripts located in the BioPerl examples and scripts

subdirectories. Yet more examples of code usage can be found in the BioPerl “t”

subdirectory, which contains test code for nearly all of the methods that can be called

by a BioPerl object.

An alternative, and more general, approach for locating methods associated with

BioPerl objects, including methods that may not be used in the BioPerl tutorials or

example scripts, is to use the automatically generated documentation called bioperl

pdoc, located at http://doc.bioperl.org (see Figure 7.1). With pdoc, you can find BioPerl
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Figure 7.1 Screenshot of a portion of the BioPerl pdoc page. The upper left side of the display

contains a selectable list of BioPerl object directories, whereas the lower left side is a list of objects

contained in the selected directory. The right side of the display shows documentation for the

selected object, in this case, the Bio::Seq object, including the name of the object’s “parent” objects,

examples of proper syntax for using the object, and a list of methods defined by the object.

objects and methods by first scrolling through the list of objects on the left side of

the screen display. Once one has selected the object of interest, the right side of the

display presents a description of the methods associated with that object and sample

syntax illustrating how they are properly used, as well as the object code itself.

Although this procedure often works well, there is an important detail that needs

to be considered. That is, even after you have located the object that performs a

certain data manipulation in pdoc, it is sometimes still not clear where to find the

documentation for all of the object’s methods. This is because pdoc only displays docu-

mentation for methods that are explicitly defined for that object. In contrast to explicit

definitions, Perl objects can also “inherit” functionality (i.e., methods) from other Perl

objects, essentially by being “special cases” of more general objects. Although such

software inheritance is often useful, it can make finding documentation with pdoc

more difficult.

For example, say you want to find documentation on the parse method of the

BioPerl Genscan object. You would not find this documentation in the pdoc entry

for the Genscan object. In fact, the pdoc documentation of the Genscan object
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Figure 7.2 Partial screenshot of the Deobfuscator user interface. The top of the display lists modules

that matched a keyword input, in this case, “Genscan.” The bottom of the display lists the methods

available for the selected object by inheritance, including those methods defined implicitly.

does not even show that a parse method exists. Rather, the pdoc documentation

for the Genscan parse method is found in the listing for the AnalysisResult object

from which the Genscan object inherits the parse method. Although the documen-

tation for the Genscan object does list the (four) other objects from which it inherits

methods, it does not identify which methods are inherited from where. In cases

where an object inherits methods from many different sources, tracking down the

object containing the actual method definition (and hence its documentation) can be

tedious.

To assist one in finding one’s way through the tree of inherited methods, the

BioPerl distribution (as of BioPerl version 1.5) includes a useful, though somewhat

obscurely named, tool – the Deobfuscator. (The Deobfuscator is also available on the

web at http://bioperl.org/cgi-bin/deob_interface.cgi.) The user interface to the Deob-

fuscator is shown in Figure 7.2. For our Genscan example, we can enter “Genscan”

or “Bio::Tools::Genscan” into the upper part of the display and after clicking “Submit

Query,” the lower part of the display lists all of the methods available to Genscan

objects, including those that are inherited. The display also indicates from which

objects implicitly defined methods are inherited. In our case, the display shows that

Bio::Tools::Genscan’s parse method is defined in the AnalysisResult object. Clicking
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on the associated link retrieves the code and any documentation for the parse method

from the AnalysisResult documentation.

7.6 BioPerl and the Ensembl API

Once one is comfortable with BioPerl objects, the transition to Ensembl objects is

straightforward. All of the basic BioPerl sequence, annotation, and alignment tools

exist in the same or very similar implementations in Ensembl. This is not surprising

because the Ensembl software was originally developed using BioPerl as a source-code

base.

From the user’s perspective, the main new element in Ensembl Perl is that most

of one’s input data will be from a connection to an Ensembl database rather than

from flat files on one’s own computer. Accessing this Ensembl data using the API

is essentially a three-step process. First, one identifies the object that is used by

Ensembl to store the required data type in computer memory. Next, one determines

the database in which this data is stored and the database-adaptor object required

for extracting this data from the database. Finally, one uses the methods associated

with the data object to perform the necessary data manipulations.

An example should clarify this process. Let us assume we want to perform some

manipulations on the coordinates of a set of mRNA transcripts – say, to compute

distances between their stop codons and their exon boundaries to determine whether

the transcripts are predicted to be degraded by NMD. The first step is to identify the

class of Ensembl objects that permit computations of distances between stop codon

and exon boundary coordinates. In this case, it is pretty trivial to guess the name

of the required object: specifically, an Ensembl “transcript object.” (We will shortly

describe general methods for identifying the Ensembl object associated with a specific

type of genome annotation.)

Next, we need to identify the appropriate database and database-adaptor object.

The required database depends on the species of interest and the Ensembl release

number. Note that the Ensembl database release number needs to agree with the

version number of the Ensembl API code that you are using. Specifically, the first

number of the Ensembl database release name must be the same as the number of

the Ensembl API release. For example, if you are using version 42 of the Ensembl API

and you want to query the Ensembl Human Genome Database, you will need to use

the Ensembl homo_sapiens_core_42_36d database. If you do not know the precise

Ensembl database name for a species, it can be determined directly with MySQL using

the command

$ mysql --user=anonymous --host=ensembldb.ensembl.org -A \
-e "show databases;"

Having identified the proper database, we next need to create a database-adaptor

object. For annotations that are associated with a region of a chromosome (called a
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“slice” in Ensembl parlance), for example a gene, exon, or transcript, this object is

a “slice-adaptor” object. By looking up the syntax for slice-adaptor objects in the API

documentation, we find that the required code would look like the following:

$db = new Bio::EnsEMBL::DBSQL::DBAdaptor(-host => ‘ensembldb.ensembl.org’,

-user => ‘anonymous’,-dbname => ‘homo_sapiens_core_42_36d’);

$slice_adaptor = $db->get_SliceAdaptor();

$slice = $slice_adaptor->fetch_by_region(‘chromosome’,’X’, 5.29e5,5.3e5);

$genes = $slice->get_all_Genes();

foreach $gene (@$genes) {
$transcripts = $gene->get_all_Transcripts();

foreach $transcript (@$transcripts) {
# perform calculation on transcript ...

}
}

Note that the @$genes syntax is required because the Ensembl data-adaptor object

returns a Perl reference (i.e., a pointer) to a list of data objects rather than the list of

objects itself.

7.6.1 Finding Ensembl objects

As was the case with using BioPerl, often the most challenging part of using the

Ensembl API is just identifying the appropriate Ensembl object that implements

the required data manipulations. Sometimes the name of the Ensembl object will

be suggested by the type of annotation it describes, as in the case of Ensembl Gene,

Transcript, or Exon objects. However, this is not always the case. This may be true even

though it may be clear that some Ensembl object with the required properties must

be available because the needed data is available via the Ensembl Genome Browser.2

One approach for locating Ensembl objects is to use a text search program, such as

the Unix grep utility, to scan the entire Ensembl code base or the ensembl-draw sub-

directory, which contains the routines that are used to display the Ensembl Genome

Browser. For example, say we are interested in Ensembl’s histone modification anno-

tations. We know that the Ensembl database contains histone modification anno-

tations because they can be displayed in the Ensembl Browser and are not a DAS

track. However, if we want to write a program that accesses multiple histone modi-

fication annotations, we will need to identify the object and database-adaptor object

associated with these annotations.

If we execute the following grep command in the ensembl-draw directory,

$ grep -irn histone.modification .

2 The statement that every data manipulation performed in the Ensembl Browser must be imple-

mented in the Ensembl API is not strictly correct. In particular, the Ensembl DAS tracks are not

created by Ensembl and, consequently, the code used in their creation will in general not be

included in the Ensembl code base.
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we find the entry:

./modules/Bio/EnsEMBL/GlyphSet/histone_modifications.pm:1:package

Bio::EnsEMBL::GlyphSet::histone_modifications;

(Note that the options i, r, and n tell grep to ignore capitalization differences, search

recursively in subdirectories, and report back the name of the files in which the text

is found, respectively. Also note that the final dot “.” in the command, telling grep to

search the current working directory, is required.)

If we now look at the histone_modifications.pm module, we find the following

lines of code, which implement the retrieval of the histone modification data from

the Ensembl database3:

my $pf_adaptor = $db->get_PredictedFeatureAdaptor();

my $features = $pf_adaptor->fetch_all_by_Slice($self->{‘container’});

Performing a second grep, this time on “get_PredictedFeatureAdaptor,” we learn that

get_PredictedFeatureAdaptor is defined in the PredictedFeatureAdaptor.pm module

in the ensembl-functgenomics/modules/Bio/EnsEMBL/Funcgen/DBSQL subdirectory,

and that the object the adaptor object returns is a “PredictedFeature” object. Conse-

quently, we now know that histone modification data is stored in the Ensembl API as

a PredictedFeature object.

With this information, we can finally look up the PredictedFeature object in the

Ensembl pdoc documentation, which is similar in format to the BioPerl pdoc docu-

mentation described previously. In fact, there are multiple Ensembl pdocs, one for

each of the major subcomponents of the Ensembl software. For example, the pdoc for

the Ensembl core modules is located at http://www.ensembl.org/info/using/api/Pdoc.

In the present case, we need the pdoc for the Ensembl functional genomics com-

ponent, which is located at http://www.ensembl.org/info/using/api/Pdoc/ensembl-

functgenomics/index.html.

As with the BioPerl pdoc, the various Ensembl pdocs only document methods

when they are explicitly defined, and do not document methods that are inherited

from parent objects. Moreover, Ensembl does not currently provide a program that

is equivalent to BioPerl’s Deobfuscator to identify inherited methods. Consequently,

one needs to explicitly traverse the entire inheritance tree of an Ensembl object to

identify all of the methods associated with it. However, in most cases, Ensembl object

inheritance trees are not very large and, in practice, finding the methods that one

needs for any given object is generally not too onerous.

3 Note that experienced Perl programmers should not be disturbed seeing Perl syntax like

$self->{‘container’}

Although using direct hash references to a Perl object is not good application programming

practice, here we are looking within the internal Ensembl code where such constructions are

both appropriate and useful.
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7.7 Programming examples using Ensembl and BioPerl

To further illustrate the Ensembl API, we next examine two complete programs. The

first is a short demonstration program that simply prints a list of gene, transcript,

and exon annotations for a genomic region. For our second example, we revisit the

comparison of intron lengths between mammalian introns that contain embedded

snoRNAs and those that do not.

7.7.1 Ensembl example 1: Retrieving gene data

Program ensemblTest1 displays gene annotations for a specific chromosomal region.

The code for the program is shown in Figure 7.3. The code for this program (and all

the other examples in the book) is available from the publisher’s web site for the

book.

Once the program is installed on your system, it can be made executable by using

the Unix chmod utility and placing it in one of the directories that the operating

#! /usr/bin/perl -w1

# test program2

use strict;3

use lib "$ENV{HOME}/programs/ensembl42/ensembl/modules/";4

use lib "$ENV{HOME}/programs/ensembl/bioperl-live/";5

use Getopt::Std;6

use Bio::EnsEMBL::DBSQL::DBAdaptor;7

use Bio::EnsEMBL::DBSQL::SliceAdaptor;8

use vars qw( %option);9

10

sub feature2string {11

# Convert data from feature object to character string12

my $f = shift;13

my $stable_id = $f->stable_id();14

my $display_id = $f->display_id();15

my $seq_region = $f->slice->seq_region_name();16

my $start = $f->start();17

my $end = $f->end();18

my $strand = $f->strand();19

my $chromStart = $f->seq_region_start();20

my $chromEnd = $f->seq_region_end();21

my $chromStrand = $f->seq_region_strand();22

my $sliceString = "$stable_id : $seq_region:$start-$end ($strand)\n";23

my $chromString =24

"$display_id : $seq_region:$chromStart-$chromEnd ($chromStrand)\n";25

return ($sliceString, $chromString);26

}27

28

Figure 7.3 Source code for the gene-data retrieval example (program ensemblTest1.pl).
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######################29

sub ensemblTest1 {30

# retrieve and print gene information from database31

my ($db) = @_;32

my $slice_adaptor = $db->get_SliceAdaptor();33

my $slice = $slice_adaptor->fetch_by_region(‘chromosome’,’IV’,34

5.29e5,5.3e5);35

print "**Starting gene loop\n";36

foreach my $gene (@{$slice->get_all_Genes()}) {37

my ($gstring, $gChromString) = feature2string($gene);38

print "$gstring$gChromString";39

print "\t**Starting transcript loop\n";40

foreach my $trans (@{$gene->get_all_Transcripts()}) {41

my ($tstring, $tChromString) = feature2string($trans);42

print "\t$tstring\t$tChromString";43

my @exons = @{$trans->get_all_Exons()};44

print "\t\t**Starting exon loop with ", scalar(@exons), " exons\n";45

foreach my $exon (@exons) {46

my ($estring, $eChromString) = feature2string($exon);47

print "\t\t$estring\t\t$eChromString";48

print "\t\t sequence: " , $exon->seq->seq , "\n";49

}50

}51

}52

}53

54

######################55

56

my $USAGE =<<END_OF_USAGE;57

58

Usage: ensemblTest1 [options]59

Options: -d <dbName>: default = saccharomyces_cerevisiae_core_42_1e60

-h <hostName>: default = ensembldb.ensembl.org61

-u <userName>: default = anonymous62

END_OF_USAGE63

64

getopts(‘d:u:h:’, \%option) ‖ die("$USAGE");65

my $host = $option{‘h’} ‖ ‘ensembldb.ensembl.org’;66

my $user = $option{‘u’} ‖ ‘anonymous’;67

my $dbname = $option{‘d’} ‖ ‘saccharomyces_cerevisiae_core_42_1e’;68

#Now we can make a database connection:69

my $db = new Bio::EnsEMBL::DBSQL::DBAdaptor(-host => $host,70

-user => $user, -dbname => $dbname);71

if ($db != 0) {print "Made DB connection OK\n";}72

else {print "No DB connection\n";}73

ensemblTest1($db);74

__END__75

76

Figure 7.3 (continued)
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system checks for executable programs (i.e., the directories in $PATH). We can now

execute our program with the command

$ ensemblTest1.pl

By default, the program accesses the release 42 version of the S. cerevisiae database on

the public Ensembl mirror, but these choices can be modified using the options -d, -h,

and -u to specify other databases and host and user names. As the program is written,

these options are not especially useful because the chromosomal coordinates of the

features to be retrieved are “hard-coded” in the demo program. However, modifying

the program so the user can select a different genomic region by adding additional

options (or program arguments) is straightforward (and is left as an exercise).

7.7.2 ensemblTest1 – program implementation

The program is composed of four components: a list of the needed libraries and mod-

ules and their locations; the “main” program; the central subroutine, ensmblTest1,

which retrieves the annotations and prints the results; and an auxiliary subroutine,

feature2string, which formats the annotation data for printing.

The program begins with a list of “use” statements (lines 3 to 9) that specify libraries

and modules needed by the program. The “use Bio::EnsEMBL::DBSQL::DBAdaptor;”

and “use Bio::EnsEMBL::DBSQL::SliceAdaptor;” statements are needed to specify where

within the Ensembl code tree the Perl interpreter will be able to find the two explicit

invocations of Ensembl code. Similarly, the statement

use lib "$ENV{HOME}/programs/ensembl/ensembl/modules/";

is needed to direct the Perl interpreter to the location of the root directory of the

entire Ensembl code tree. (If you run this program, the lib statement needs to point

to the location of the main Ensembl directory in your system. Alternatively, if the

Ensembl modules have been installed in the main Perl library tree structure, the lib

statement can be removed altogether.)

The main program first processes any options using the standard Perl options

module Getopt::Std (lines 65 through 68). The program then connects to the Ensembl

database in lines 70 and 71 and reports whether the connection was successful in

lines 72 and 73. If the connection was successful, the subroutine ensemblTest1 is

called.

Subroutine ensemblTest1 (in lines 34 and 35) issues the command to the database

to retrieve all features for the specified region whose coordinates are hard-coded

in the arguments to the fetch_by_region method. The routine then cycles through

all of the gene annotations for the region (line 37), all the transcript annotations

for each gene (line 41), and all the exon annotations for each transcript (line 46) in

the manner we illustrated in Section 7.6. For each gene, transcript, or intron, the

routine calls the subroutine feature2string to convert annotation data stored within
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Made DB connection OK

**Starting gene loop

YDR038C : IV:-1581-1694 (-1)

YDR038C : IV:527418-530693 (-1)

**Starting transcript loop

YDR038C : IV:-1581-1694 (-1)

YDR038C : IV:527418-530693 (-1)

**Starting exon loop with 1 exons

YDR038C.1 : IV:-1581-1694 (-1)

YDR038C.1 : IV:527418-530693 (-1)

sequence: ATGAGCGAGGGAACTGTCAAAGAA...

Figure 7.4 Part of the output for the gene-data retrieval example.

the Ensembl Feature object corresponding to the gene, transcript, or exon into a

formatted, printable-character string.

Finally, subroutine feature2string converts the Feature object data to character-

string data (in lines 14 through 22) using various methods of the Ensembl Feature

object (recall that we can find these methods by looking up Feature.pm in the Ensembl

pdoc documentation). Once the desired annotations have been extracted, they are

reformatted for printing in two character strings in lines 23 to 25.

Running the program should produce output such as that shown in Figure 7.4.

Note that for each feature, the program displays its coordinates both in chromosomal

and in “slice” coordinates (Ensembl’s coordinate system conventions are discussed

further in Appendix 1).

7.7.3 Ensembl example 2: Intron length comparisons

For our second example, we revisit the snoRNA host-intron length calculation, which

we have already investigated with Galaxy in Section 5.4.6 of chapter 5. We recall

that we want to compare of the lengths of introns that have snoRNAs embedded in

them (so-called snoRNA host introns) with the lengths of introns that do not contain

snoRNAs.

The program is called ensemblIntronLengths.pl and is run with a command like

$ ensemblIntronLengths.pl hacaWgRna.hg18.bed

where hacaWgRna.hg18.bed is a data file containing a list of BED coordinates of

snoRNA genes (in this case, mammalian H/ACA snoRNA genes, as acquired from the

UCSC Table Browser for the wgRna table for UCSC hg18 database). The program

provides options for selecting a different Ensembl host or database, as well as an

option for printing some warning and debugging messages. Note that the user is

responsible for ensuring that the coordinates of the snoRNA genes are from the same

genome assembly as those of the database selected by the -d option. There is no

problem with using coordinates extracted from the UCSC hg18 database because the
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program accesses (by default) release 42 of the Ensembl human database, and both

UCSC hg18 and Ensembl release 42 use the same genome assembly (NCBI assembly

36).

7.7.3.1 Outline of program implementation

The program listing is shown in Figure 7.5 and a flowchart describing the algorithm is

shown in Figure 7.6. From the flowchart, we see that there are two main phases to the

program. In the preprocessing phase, the program builds a hash, called $hostHash,

that associates one transcript of each snoRNA host gene with a list of all the snoRNAs

embedded in its introns. In the second phase, the host-gene hash is used to calculate

the required intron length distributions.

#! /usr/bin/perl -w1

2

use strict;3

use lib "$ENV{HOME}/programs/ensembl42/ensembl/modules/";4

use lib "$ENV{HOME}/programs/ensembl/bioperl-live/";5

use Getopt::Std;6

use FileHandle;7

use Bio::EnsEMBL::DBSQL::DBAdaptor;8

use Bio::EnsEMBL::DBSQL::SliceAdaptor;9

use Bio::Range;10

use vars qw(%option);11

12

######################13

sub transcript_length {14

my ($transcript) = @_;15

return 0 unless $transcript;16

return ($transcript->end_Exon->end() - $transcript->start_Exon->start() + 1);17

}18

19

######################20

sub transcript_intron_count {21

my ($transcript) = @_;22

return 0 unless $transcript;23

my @introns = @{$transcript->get_all_Introns()};24

my $count = scalar @introns;25

return $count;26

}27

28

######################29

sub sortGeneTranscriptsByIntronCtAndLength {30

my ($transcriptList) = @_;31

return 0 unless $transcriptList;32

Figure 7.5 Source code for the ensemblIntronLengths.pl intron-lengths distribution program.
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my @sortedTranscriptList =33

sort {34

transcript_intron_count($b) <=> transcript_intron_count($a) ‖35

transcript_length($b) <=> transcript_length($a)36

} @$transcriptList;37

return \@sortedTranscriptList;38

}39

40

######################41

sub get_transcript_with_most_introns {42

my ($slice) = @_;43

my $maxIntronT = 0;44

my $maxIntronCount = 0;45

foreach my $gene (@{$slice->get_all_Genes()})46

{47

my $t = $gene->get_all_Transcripts();48

my $sortedTranscripts =49

sortGeneTranscriptsByIntronCtAndLength($t);50

my $maxCurrentT = $sortedTranscripts->[0];51

if (transcript_intron_count($maxCurrentT) > $maxIntronCount)52

{53

$maxIntronT = $maxCurrentT;54

$maxIntronCount = transcript_intron_count($maxCurrentT);55

}56

}57

return $maxIntronT;58

}59

60

#################61

sub parseUcscBedLine{62

# parse bedline in ucsc format and convert data to Ensembl coordinate format63

my ($bedLine) = @_;64

chomp ($bedLine);65

my ($chrom, $start, $end, $name, $score, $strand) = split " ", $bedLine;66

$start++; # NEED to offset coordinates by 167

$chrom =∼ s/chr//;68

$strand = $strand eq ‘+’ ? 1 : -1 ;69

return ($chrom, $start, $end, $name, $score, $strand) ;70

}71

######################72

sub get_Median {73

my ($list) = @_;74

my $listLength = scalar(@$list);75

my $median;76

@$list = sort { $a <=> $b } @$list;77

Figure 7.5 (continued)
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if ($listLength % 2 == 0)78

{79

my $upperMiddleIndex = $listLength/2;80

my $lowerMiddleIndex = $listLength/2 - 1;81

$median = .5 *($list->[$upperMiddleIndex] + $list->[$lowerMiddleIndex]);82

} else {83

my $middleIndex = ($listLength - 1)/ 2 ;84

$median = $list->[$middleIndex];85

}86

return $median;87

}88

89

######################90

sub intronOverlaps{91

# Converts Intron object into a Range object92

# and checks overlap of intron with input range93

my ($intron, $intronStrand, $range) = @_;94

my $intronRange = Bio::Range->new(-start => $intron->seq_region_start(),95

-end=> $intron->seq_region_end(), -strand => $intronStrand);96

my $overlapResult = $intronRange->overlaps($range);97

return $overlapResult;98

}99

100

######################101

sub intronOverlapsAnyBed{102

my ($bedRangeList, $intron, $intronStrand) = @_;103

foreach my $bedRange (@$bedRangeList)104

{105

if (intronOverlaps($intron, $intronStrand, $bedRange))106

{return 1;}107

}108

return 0;109

}110

111

######################112

sub intronLengthsForOneHostGene{113

my ($transcript, $bedRangeList, $overlapList, $otherList) = @_;114

my @introns = @{$transcript->get_all_Introns()};115

my $transId = $transcript->display_id();116

my $intronStrand = $transcript->strand();117

foreach my $intron (@introns)118

{119

if (intronOverlapsAnyBed($bedRangeList, $intron, $intronStrand))120

{push @$overlapList, $intron->length();}121

else122

{push @$otherList, $intron->length();}123

}124

}125

126

Figure 7.5 (continued)
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######################127

sub checkForOverlappingIntrons {128

# determine how many introns overlap region (should = 1)129

my ($transcript, $transId, $chrom, $bedRange, $name, $anomalousHostCount) = @_;130

my @introns = @{$transcript->get_all_Introns()};131

print " Transcript: " , $transcript->display_id() ,132

" intron Ct = " , scalar(@introns) , "\n" if $option{‘w’};133

my $intronStrand = $transcript->strand();134

my $foundOverlaps = 0;135

foreach my $intron (@introns)136

{137

$foundOverlaps++ if(intronOverlaps($intron, $intronStrand, $bedRange));138

}139

if ($foundOverlaps == 0)140

{141

warn "##No overlapping intron in $transId for $name $chrom: ",142

$bedRange->start, "-", $bedRange->end, "\n" if $option{‘w’};143

$anomalousHostCount->{‘noHostCount’} += 1;144

}145

if ($foundOverlaps > 1)146

{147

warn "##More than 1 overlapping introns in $transId for $name $chrom: ",148

$bedRange->start, "-", $bedRange->end, "\n" if $option{‘w’};149

$anomalousHostCount->{‘multipleIntronCount’} += 1;150

}151

return $foundOverlaps;152

}153

154

######################155

sub checkTranscript {156

# Confirm that BEDfile region is included in exactly one "host gene" intron157

my ($transcript, $chrom, $bedRange, $name, $anomalousHostCount) = @_;158

if (!$transcript)159

{160

warn "#####Could not find transcript with intron for $name $chrom:",161

$bedRange->start, "-", $bedRange->end, "\n" if $option{‘w’};162

$anomalousHostCount->{‘noHostCount’} += 1;163

return 0;164

}165

my $transId = $transcript->display_id() ;166

my $foundOverlaps =167

checkForOverlappingIntrons($transcript, $transId,168

$chrom, $bedRange, $name, $anomalousHostCount);169

#region should overlap exactly 1 intron170

return 0 if ($foundOverlaps != 1);171

return 1;172

}173

174

Figure 7.5 (continued)
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######################175

sub buildHostHash {176

# Build two-level hash associating transcript name with Transcript177

# object and list of embedded regions178

my ($bedFile, $slice_adaptor, $anomalousHostCount) = @_;179

my $hostHash = {};180

my $infh = new FileHandle "<$bedFile";181

while (my $bedLine = <$infh> )182

{183

next if $bedLine =∼ /ˆ\s*#/ ;184

my ($chrom, $start, $end, $name, $score, $strand) =185

parseUcscBedLine($bedLine);186

# get genes that overlap BED range187

my $slice = $slice_adaptor->fetch_by_region(‘chromosome’,$chrom,188

$start,$end, $strand);189

die "Could not get slice for $chrom:$start-$end\n" if (!$slice);190

my $bedRange = Bio::Range->new(-start => $start,191

-end=> $end, -strand => $strand);192

my $transcript = get_transcript_with_most_introns($slice);193

my $statusOk = checkTranscript($transcript, $chrom,194

$bedRange, $name, $anomalousHostCount);195

next if !$statusOk;196

my $transId = $transcript->display_id() ;197

$hostHash->{$transId} = { "transcript" => $transcript,"bedRanges" => [ ]}198

if (!exists $hostHash->{$transId});199

my $currentHostGene = $hostHash->{$transId};200

my $currentHostBeds = $currentHostGene->{"bedRanges"};201

push @$currentHostBeds, $bedRange;202

}203

close $infh;204

return $hostHash;205

}206

207

208

######################209

sub process_bedFile {210

my ($bedFile, $db) = @_;211

my $overlapList = [ ]; # reference to list of lengths of overlapping introns212

my $otherList = [ ]; # reference to list of lengths of ‘other’ introns213

# create hash to keep track of ‘anomalies’: Snos with no intron-containing214

# host gene or Host genes with snos overlapping > 1 intron215

my $anomalousHostCount = {‘noHostCount’=> 0, ‘multipleIntronCount’ => 0};216

my $startTime = time();217

my $slice_adaptor = $db->get_SliceAdaptor();218

my $hostHash = buildHostHash($bedFile, $slice_adaptor, $anomalousHostCount);219

Figure 7.5 (continued)
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foreach my $transcriptID (keys %$hostHash)220

{221

my $hostHashValue = $hostHash->{$transcriptID};222

my $transcriptObject = $hostHashValue->{"transcript"};223

my $bedRangeList = $hostHashValue->{"bedRanges"};224

intronLengthsForOneHostGene($transcriptObject, $bedRangeList,225

$overlapList, $otherList);226

}227

print "Snos with no intron-containing host gene = ",228

$anomalousHostCount->{‘noHostCount’}, "\n";229

print "Host genes with snos overlapping > 1 intron = ",230

$anomalousHostCount->{‘multipleIntronCount’}, "\n";231

print "Host genes found = " , scalar (keys %$hostHash) , "\n";232

print "Median value of lengths of ", scalar (@$overlapList) ,233

" overlapping introns = " , get_Median($overlapList) , "\n";234

print "Median value of lengths of ", scalar (@$otherList) ,235

" other introns = " , get_Median($otherList) , "\n";236

print "Elapsed Time = " , (time() - $startTime) , " secs.\n";237

}238

######################239

240

my $USAGE =<<END_OF_USAGE;241

242

Usage: ensemblIntronLengths [options] myBedFile243

where myBedFile is a bed file of genomic ranges244

Options: -d <dbName>: default = homo_sapiens_core_42_36d245

-h <hostName>: default = ensembldb.ensembl.org246

-u <userName>: default = anonymous247

-w display warnings248

END_OF_USAGE249

250

getopts(‘d:u:h:w’, \%option) ‖ die("$USAGE");251

my ($bedFile) = @ARGV;252

$bedFile ‖ die("$USAGE");253

my $host = $option{‘h’} ‖ ‘ensembldb.ensembl.org’;254

my $user = $option{‘u’} ‖ ‘anonymous’;255

my $dbname = $option{‘d’} ‖ ‘homo_sapiens_core_42_36d’;256

my $db = new Bio::EnsEMBL::DBSQL::DBAdaptor(-host => $host,257

-user => $user, -dbname => $dbname);258

process_bedFile($bedFile, $db);259

Figure 7.5 (continued)

$hostHash is a two-level hash whose structure is illustrated in Figure 7.7. At the

top level, the keys of the hash are the IDs of the embedding transcripts. The values

of the hash are two-element anonymous hashes, with the two keys “transcript” and

“bedRanges.” The value of the “transcript” hash element is a Perl reference that points

to the transcript’s Ensembl Transcript object, whereas the value of the “bedRanges”

element points to a Perl array of BioPerl Range objects, one for each snoRNA that is
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Build hash of transcripts of host genes

buildHostHash

For each snoRNA
region in bedFile

fetch_by_region

Retrieve all transcript
objects overlapping region

get_transcript_with_most_introns

No Add transcriot to hash

Add region (BED) to list 
associated with current 
transcriptIs transcript already in hash ?

Yes

checkTranscript

Is transcript OK?

No

Yes

Calculate lengths of all introns in host genes

process_bedFile

For each transcript in hash For each intron in
transcript

intronLengthsForOneHostGene

compute intron length

Yes
Add length to host intron list

intronOverlapsAnyBed

Does intron overlap region?

No

Add length to"other" intron list

Skip region

Select transcript with
greatest number of introns

Figure 7.6 Flowchart for the ensemblIntronLengths.pl intron-lengths distribution program. The

top part of the figure shows the construction of the hash that associates host genes with their

embedded snoRNAs. The bottom half of the figure outlines the steps involved in extracting all the

introns and computing the intron lengths. The principal steps in the algorithm are indicated by

rounded rectangles, with the program subroutine or Ensembl API method used to implement each

step noted outside of the corresponding rectangle.

$hostHash =

{
$transcriptID_1->

{
‘transcript’-> $referenceToTranscriptObect_1,

‘bedRanges’->

$referenceToArrayOfRangeObjectsForSnoRnasInTranscript_1

},
$transcriptID_2->

{
‘transcript’-> $referenceToTranscriptObect_2,

‘bedRanges’->

$referenceToArrayOfRangeObjectsForSnoRnasInTranscript_2

},
...

}
Figure 7.7 Schematic illustrating the two-level “hostGene” hash structure used to store transcript

and embedded snoRNA coordinates in the program ensemblIntronLengths.pl. A top-level “key”

specifies the host gene transcript ID. The values of the hash are two-element anonymous hashes,

with the two keys “transcript” and “bedRanges.”
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embedded in an intron that has been spliced out of the transcript. (Note that multiple

snoRNAs are sometimes embedded in the introns of a single host gene.)

As described previously in the Galaxy implementation of this problem (see Sec-

tion 5.4.6), each host gene will typically have multiple transcripts corresponding to

the multiple isoforms of the gene. To avoid biasing the subsequent counting statis-

tics, the program needs to select a single representative isoform for each host gene.

For the present example, we will choose the isoform with the largest number of exons

as the representative transcript, although other choices could be made equally well.

In the second part of the program, shown in the lower half of the flowchart in

Figure 7.6, the program loops through all of the host-gene transcripts in $hostHash

and, for each transcript, retrieves a list of Ensembl Intron objects corresponding to

each of the transcript’s introns. The program then computes the length of each intron

and stores that length in one of two lists, depending on whether the current intron

overlaps any of the regions in the BED file or not. Finally, after all the host-gene

transcripts have been processed, the program computes the median length of all the

introns that overlapped regions in the input list (e.g., those overlapping a snoRNA)

and the median length of all the introns that did not overlap the corresponding

feature.

7.7.3.2 Program implementation details

Now let us look at the program implementation in more detail, focusing especially on

the program components involving the Ensembl API. The main program (Figure 7.5,

lines 251 through 259) is found at the end of the code, after all the subroutines. The

main program simply reads in the program argument and options (lines 251 through

256), creates a database adaptor (lines 257 through 258), and passes a reference to the

adaptor along with the name of the BED file to the subroutine process_bedFile (line

259).

The process_bedFile subroutine (lines 210 through 238) is the principal subroutine

of the program. process_bedFile first creates a Slice Adaptor object to retrieve gene

information from the database (line 218) and then passes a reference to the Slice

Adaptor object to the routine buildHostHash. Subroutine buildHostHash then creates

the $hostHash hash structure, which associates each host-gene transcript with its

embedded snoRNAs (line 219). After the $hostHash data structure has been built,

process_bedFile cycles through each of the host genes in the hash (lines 220 through

227) and for each one, calls the intronLengthsForOneHostGene subroutine (lines 225

through 226) to calculate the intron lengths for the host gene. Finally, after all the

host genes have been processed, the subroutine calls the get_Median routines (lines

234 and 236) to calculate the medians of the lists of intron lengths and displays the

results.

The subroutine buildHostHash (lines 176 through 206) builds the hash structure

that associates snoRNAs with host genes. The subroutine is implemented by loop-

ing through the input BED file and for each BED record, first parsing the record
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using the parseUcscBedLine subroutine (lines 62 through 71) to perform simple data

transformations on the chromosome and strand fields to convert them from UCSC’s

BED format to Ensembl format. In particular, note that the offset of 1 executed in

line 67 is a result of UCSC and Ensembl’s different coordinate conventions and is

described in more detail in Appendix 1. After reading in the list of regions in the BED

file, buildHostHash constructs a Slice object to retrieve the annotations associated

with each region (lines 188 through 189). buildHostHash then calls the subroutine

get_transcript_with_most_introns (line 193) to select the Transcript object associated

with the overlapping transcript with the most introns.

In turn, subroutine get_transcript_with_most_introns (lines 42 through 59) takes

a Slice object as an argument and starts by retrieving all the Transcript objects asso-

ciated with all the Gene objects that overlap the region specified in the Slice object

(lines 46 through 48). get_transcript_with_most_intron then sorts the list of tran-

scripts for each overlapping Gene object and identifies the transcript that has the

largest number of introns in the transcript, or is the longest transcript, if two or

more transcripts have the same (maximum) number of introns (lines 49 through

51). Finally, subroutine get_transcript_with_most_introns compares the number of

introns of the currently selected transcript with the maximum-intron count from

the previously tested genes and saves the intron count and a reference to the current

Transcript object if a new maximum has been identified (lines 52 through 56). The

actual sorting of the Transcript objects is performed by the subroutine sortGeneTran-

scriptsByIntronCtAndLength (lines 30 through 39).

Once get_transcript_with_most_introns has returned a host-gene transcript, the

buildHostHash subroutine then calls an error-checking routine checkTranscript (lines

194 through 195) to check for anomalous cases, such as finding that the BED region

overlaps a host-gene exon or that the BED region overlaps more than one of the host-

gene transcript’s introns. These occurrences should not happen, but the input BED

file may have incorrect data, and the data in genome databases may have errors as

well. It is usually wise to include such “sanity checks” just to be safe. Finally, if the

transcript does not have any errors, buildHostHash adds the host gene to $hostHash if

it is not yet present in the hash (lines 198 through 199), and adds the BED coordinate

string of the snoRNA to a Perl array associated with the hash element for the host

gene (lines 200 through 202).

The actual intron length computations are carried out in the intronLengths-

ForOneHostGene subroutine (lines 113 through 125). This subroutine applies the

get_all_Introns method to the current Transcript object (line 115), retrieves the

lengths of each intron using the Intron object’s length() method (lines 121 and 123),

and appends the lengths to either the list of host introns or the list of non-host

introns, depending on whether the intron overlapped any region in the BED file or

not (lines 120 through 124).

The last subroutine we will look at is intronOverlaps (lines 91 through 98). This

subroutine determines whether the coordinates of an intron, as represented by an
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Ensembl Intron object, overlap those of a snoRNA gene, as represented by a BioPerl

Range object. To determine whether the regions overlap, intronOverlaps calls the

overlaps() method of the BioPerl Range object (line 97). However, before intronOver-

laps can call this method, the subroutine needs to convert the Ensembl Intron object

into a BioPerl Range object. The reason for this change is that the default coordinates

of an Ensembl Intron object – as specified by the Intron object’s start() and end()

methods – are Ensembl slice coordinates, whereas the coordinates of a Range object

are chromosomal coordinates. The intronOverlaps subroutine resolves this incom-

patibility by building a Range object for the intron using chromosomal coordinates

by using the seq_region_start() and seq_region_end() methods (lines 95 through 96).

Once both the intron and snoRNA locations are in chromosomal coordinates, the

Range overlaps() method correctly determines whether they overlap or not.

7.7.3.3 Executing the program

After making the program executable and placing it in a $PATH directory, we now

run the program with the command:

$ ensemblIntronLengths.pl hacaWgRna.hg18.bed

We obtain the following output:

Snos with no intron-containing host gene = 10

Host genes with snos overlapping > 1 intron = 1

Host genes found = 65

Median value of lengths of 86 overlapping introns = 1075.5

Median value of lengths of 856 other introns = 932

Elapsed Time = 219 secs

From the result, we see that there is a 15% difference between the median lengths

of introns that host snoRNAs and the other introns in the host genes (i.e., 1,075

versus 932). However, if we do a statistical analysis of this difference – for example,

by performing a t test on the two length distributions that we have found – we find

that this difference is not statistically significant ( p = 0.3). There are a couple of other

interesting things that we can learn from the results of our program. First, we notice

that there is no annotated Ensembl host gene for ten of the snoRNAs, indicating

that these snoRNAs are intergenic, or (more likely) that the Ensembl gene-prediction

algorithm did not detect the host genes. Second, and more surprising, the program

has also identified one case where a snoRNA apparently overlaps more than one

intron. To further understand this unexpected result, we can re-run the program, this

time adding the -w flag to display more diagnostic information. From the resulting

output, we learn that it is transcript ENST00000357861 that has been flagged as

having two introns that overlap the snoRNA. Further inspection of this transcript in

a genome browser shows that the overlapped “exon” is only two nucleotides in length

and is almost definitely an annotation artifact (see Figure 7.8). It is precisely because
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Figure 7.8 Display of a portion of the ENST00000357861 intron-exon structure. The gene structure

prediction includes an anomalous two-nucleotide exon, as a result of which snoRNA ACA34 appears

to overlap two introns.

misannotations are not unusual that including test code for unexpected annotations

is important.

In one sense, our results are disappointing in that we have not found a statistically

significant difference in the lengths of human H/ACA snoRNA host introns and other

host-gene introns. However, the point of the example has been to demonstrate that

by writing a relatively simple program, we were able to answer a nontrivial biological

question. In contrast, to have written such a program without the use of the Ensembl

API (or the UCSC API) – for example, by writing a general SQL program as in Sec-

tion 6.2 – would have required substantially more effort. (The reader who is not

convinced of this statement is encouraged to write such a program.)

Compared to performing this analysis with Galaxy, as we described in chapter 5,

writing a program using the Ensembl API has both advantages and disadvantages.

Clearly, performing a single interactive analysis is faster than writing and debugging

a computer program. However, if we need to run the analysis repeatedly – say, we

want to look at introns embedding C/D snoRNAs rather than H/ACA snoRNAs, or we

want to compare the results obtained in the mouse or rat genome with that obtained

in the human genome – using a computer program becomes more attractive. In

addition, if we wanted to see the effect of using a different criterion for selecting

the representative host gene, we would just have to change one subroutine (see Exer-

cise 7.4), whereas with Galaxy, we would need to have a local Galaxy implementation

to which we would need to write and add a custom tool.

7.8 Ensembl Java API

Historically, Ensembl has supported two distinct APIs – one for Perl language pro-

grammers, the other for Java programmers. Currently, there are several reasons why

using the Ensembl Perl API is recommended and why we exclusively describe the

Perl API in this book. First, the Ensembl Genome Browser itself is implemented with

the Ensembl Perl API, implying that code for any data manipulations found in the

Ensembl Browser will be available somewhere within the Ensembl Perl software.

In contrast, although many types of data manipulation found on the Ensembl web

site can also be carried out using the Java API, there is no guarantee that this will

always be the case. Second, the range of bioinformatics software available in the Perl

language – mostly via the BioPerl project – is significantly larger and has a larger

user base than the comparable code available via Java and the BioJava project (e.g.,
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a search for “BioPerl” on Google yields about four times as many hits as a “BioJava”

query). Finally, and most importantly, as of December 2006 (Ensembl release 42) the

Ensembl developers are no longer formally supporting the Java API.

In principle, the Java programmer who wants programmed access to the Ensembl

databases can still use the archival Ensembl Java API. Documentation for the most

recently supported version of the Java API can be found in the Ensembl archives

at http://oct2006.archive.ensembl.org/info/software/java/index.html. In addition, the

BioJava project (http://biojava.org) still provides some support for Java querying of

Ensembl databases. However, many of the features of the Ensembl Browser and

database are already incompatible with the archival Java API, and over time, the

Ensembl Java API is likely to grow increasingly out of date and difficult to use.

Chapter summary

� The Ensembl API is patterned to a large degree on objects and methods found in

the BioPerl software package.
� Identifying the proper software objects to store different types of genomic data and

database-adaptor objects is often the crucial step in using the Ensembl API.
� Ensembl pdocs documentation contains definitions and sample usage of Ensembl

objects. Ensembl tutorials, scripts, and “t” files contain complete programs illus-

trating the usage of those objects.
� Any programs written with the Ensembl API run equally well on the Ensembl public

database as on a local, private mirror.
� All Ensembl software is open source, and software use does not require licensing

for any application.

Exercises

Note that you will need to install BioPerl to carry out Exercises 1, 3, 4, and 5, and you

will need to install the Ensembl API to complete Exercises 3, 4, and 5.

1. Write a Perl script, using BioPerl, to read in a file of FASTA sequences, and for each

sequence:

a. Print the name and description of the sequence.

b. Print the reverse complement of the first thirty nucleotides of the sequence.

c. Print the amino acid translation of the reverse complement of the first thirty

nucleotides of the sequence.

2. Find the code for the revcom method used in the BioPerl Bio::Seq module using

BioPerl pdoc or the Deobfuscator. In what module is the revcom method actually

defined?

3. Modify the program ensemblTest1.pl so that the program accepts arguments spec-

ifying the chromosome and start- and end-coordinates of the region from which

to access the gene annotations.
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4. Modify the intron lengths program so that it selects the longest gene transcript

as the representative gene rather than the transcript with the largest number of

introns. How do the results for the relative sizes of snoRNA hosting introns and

host-gene introns that do not contain embedded snoRNAs change?

5. Write a Perl program using the Ensembl API to search for NMD candidates. Run

the program against the human Ensembl gene set as well as against the human

VEGA gene set. Compare the percentage of genes that are NMD candidates in the

two data sets. Are the results similar in mouse?
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Programmed Querying with Ensembl,
Continued

In Chapter 7, we introduced the Ensembl Perl API and presented two programs illus-

trating how to use the API to extract and manipulate genomic data from an Ensembl

database. In the present chapter, we continue our discussion of programmatic query-

ing of Ensembl data with three more advanced topics: accessing multiple-sequence

alignment (MSA) data from Ensembl’s comparative-genomics “compara” database,

accessing data found on Ensembl DAS tracks, and installing and maintaining a local

mirror of an Ensembl database.

8.1 Using ensembl-compara

The Ensembl API software consists of several components, including the Ensembl

core API, ensembl-functgenomics for functional genomics (e.g., micro-array expres-

sion) data, ensembl-variation for variation (e.g., SNP) data, and ensembl-compara for

comparative genomics, for example, multiple-sequence alignment (MSA) data. The

examples presented in the last chapter only used code from the Ensembl core API.

Because accessing MSAs is necessary for several of the biological examples we consider

in this book (e.g., assessing sequence conservation or identifying if a polymorphism

in one species is the dominant variant at the homologous site in another species), we

now describe the ensembl-compara component of the Ensembl API.

In Chapter 7, we created an explicit database-adaptor object for each Ensembl

database that we needed to access. This approach is fine if one only needs to connect to

one or two Ensembl databases. However, this method has disadvantages if one wants

to access an MSA. This is because with Ensembl, accessing MSAs requires connecting to

the genome database of every species in the alignment. Consequently, using explicitly

defined database adaptors would require changing the database adaptors each time

the set of species in the alignment changed. In addition, whenever Ensembl released

a database update, the database adaptors would need to be modified, or else they

would not point to the most current versions of the database.

To address these issues, the Ensembl API includes a “Registry file” (named reg.conf )

that contains a listing of all of the database IDs for each Ensembl release. Using the

131
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Registry file, one can write programs that load all of the database adaptors required

for MSAs without explicitly listing all of the required database names. However,

writing the code to access an MSA via the Registry file is still a bit tricky because each

of the sequences in the MSA is stored in a separate database. For example, to access a

human-mouse-rat alignment, the software needs to extract the human sequence from

Ensembl’s Human Genome Database, the mouse sequence from the Ensembl mouse

database, and the rat sequence from the rat database.1 In addition, the ensembl-

compara API software needs to access yet another database (the ensembl-compara

database itself ) to assemble the various sequences into the actual alignment.

Retrieving alignments via the Ensembl Registry file involves five steps. First, the

program needs to “load” the Registry file. Second, the program accesses the Registry

file to create an Ensembl database-adapter object (called a GenomicAlignBlockAdap-

tor object) that can extract blocks of genomic MSAs. Third, the program must create

a MethodLinkSpeciesSet object, which links together the name of the desired align-

ment method (e.g., PECAN or BLASTZ) with the set of species for which the align-

ment is needed. Fourth, the program selects one species in the alignment to call

the “query” sequence and creates an Ensembl Slice object specifying the alignment

region (i.e., chromosome and coordinates) in the query-species genome. Finally, the

program retrieves the alignment by passing Perl references for the Slice object and

the MethodLinkSpeciesSet object to the fetch_all_by_MethodLinkSpeciesSet_Slice of

the GenomicAlignBlockAdaptor object.

The tricky part is the third step because there is no method or subroutine built

into the Ensembl API for creating MethodLinkSpeciesSet objects. However, in the

next section, we will present an example of such a subroutine that is taken from the

DumpMultiAlign.pl program in the Ensembl comparative genomics tutorial (called

ComparaTutorial and available as part of the Ensembl software distribution). If you

need a subroutine with these capabilities, you can just copy this subroutine directly

into your application program (just as I did for the example below).

8.1.1 Ensembl-compara example

Let us now use the ensembl-compara API to display MSAs extracted from the Ensembl

databases. The objective of our example program, ensemblComparaExample.pl, is

similar to that for our conservation-at-polymorphism-site example with Galaxy (see

Section 5.4.4). Specifically, we want to be able to pass the program a list of coordinates

(in a BED file) to indicate the regions for which we need alignments. The program

should then display all of the alignments that overlap each region.

The program will be called with the command:

$ ensemblComparaExample.pl [options] ensemblCompara.test.bed

1 As we will see in chapter 10, this is quite different from the way that UCSC stores MSA data.
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Homo sapiens: NCBI36

Mus musculus: NCBIM36

Rattus norvegicus: RGSC3.4

Bos taurus: Btau_2.0

Canis familiaris: BROADD2

Pan troglodytes: CHIMP2.1

Macaca mulatta: MMUL_1

Monodelphis domestica: BROADO3

Gallus gallus: WASHUC2

CLUSTAL W(1.81) multiple sequence alignment

HsX/100162142-100162165 TGCAGTCCATCTTGCATCCTCCAC

PtX/100571604-100571627 TGCAGTCCATCTTGCATCCTCCAC

MmX/99725832-99725855 TGCAGTCCATCTTGCATCCTCCAC

MmX/129586439-129586462 TGCAGTCCACCTGGCATCCTCTAC

RnX/121709625-121709648 TGCACTCCACCTGGCATCCTCTAC

CfX/78022478-78022501 TGCAGTCCACCTGGCATCCTCTAC

Gg4/2085509-2085532 TGCATTCCACCTGGCATCCTCTAT

**** **** ** ******** *

Elapsed Time = 42 secs.

Figure 8.1 Output generated by the ensemblComparaExample.pl program using the test data file

shown in the text. Note that difference in the start positions in the human genome between the

input file (100162141) and the output in the figure (100162142) is the result of UCSC and Ensembl’s

different coordinate numbering conventions.

where ensemblCompara.test.bed contains the list of genomic regions in BED format.

The program has numerous options, including ones for specifying what kind of

alignment to use, what species to include, and which species’ coordinates are used

in the BED file.

For example, if we apply our program to a very simple test BED data file consisting

of the single line:

chrX 100162141 100162165 cxorf34 0 -

we obtain the result shown in Figure 8.1. Note that we need to ensure that the co-

ordinates in the input BED file correspond to the species and assembly of the selected

query sequence.

As we noted in chapter 5, when we described the Galaxy implementation of this

task, simply displaying an alignment is typically not all we would want to do. In a

more realistic application, we would want to perform additional data processing –

perhaps determining the alignment consensus sequence, or counting what fraction

of the sequences have the consensus nucleotide at a given alignment position. How-

ever, once we have access to the alignment in computer memory (e.g., as a BioPerl

SimpleAlign object), it is not difficult to perform these additional tasks by taking
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advantage of methods available for a SimpleAlign object, which are detailed in the

BioPerl pdoc documentation for SimpleAlign.pm.

8.1.1.1 Program implementation

The ensemblComparaExample.pl program source listing is shown in Figure 8.2 and

a flowchart of its algorithm is shown in Figure 8.3. As depicted in the flowchart, the

execution of the program has two phases. In the first phase (outlined in Figure 8.3a

and implemented in lines 194 through 199 of Figure 8.2), the program follows the

#! /usr/bin/perl -w1

2

use strict;3

use lib "$ENV{HOME}/programs/ensembl42/ensembl/modules/";4

use lib "$ENV{HOME}/programs/ensembl42/ensembl-compara/modules/";5

use lib "$ENV{HOME}/programs/ensembl/bioperl-live/";6

use Bio::EnsEMBL::Registry;7

use Bio::EnsEMBL::Utils::Exception qw(throw);8

use Bio::SimpleAlign;9

use Bio::AlignIO;10

use Bio::LocatableSeq;11

use FileHandle;12

use Getopt::Long;13

14

my $usage = qq{15

Usage: ensemblComparaExample [options] myBedFile16

where myBedFile is a bed file of genomic ranges17

Getting help:18

[--help]19

General configuration:20

[--db compara_db_name]21

the name of compara DB in the registry_configuration_file or any22

of its aliases. Uses "compara" by default.23

For the query slice:24

[--species species]25

Query species. Default is "human"26

[--noRestrictBlocks]27

Display entire overlapping alignment, not just specified region28

For the alignments:29

[--alignment_type method_link_name]30

The type of alignment. Default is "PECAN"31

[--set_of_species species1:species2:species3:...]32

The list of species used to get those alignments. Default is33

"human:mouse:rat:cow:dog". The names should correspond to the name of34

core database in the registry_configuration_file or any of its35

aliases36

Figure 8.2 Source code of the ensemblComparaExample.pl program for displaying a

multiple-sequence alignment using the Ensembl API.
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Output:37

[--output_format clustalw|fasta|...]38

The type of output you want. "clustalw" is the default.39

[--output_file filename]40

The name of the output file. By default the output is the41

standard output42

};43

44

my $db = "compara";45

my $species = "human";46

my $alignment_type = "PECAN";47

my $set_of_species = "human:mouse:rat:cow:dog:chimp:rhesus:opossum: chicken";48

my $output_file = undef;49

my $output_format = "clustalw";50

my $help;51

my $noRestrictBlocks = 0;52

53

GetOptions(54

"help" => \$help,55

"noRestrictBlocks" => \$noRestrictBlocks,56

"db=s" => \$db,57

"species=s" => \$species,58

"alignment_type=s" => \$alignment_type,59

"set_of_species=s" => \$set_of_species,60

"output_format=s" => \$output_format,61

"output_file=s" => \$output_file,62

);63

64

######################65

sub get_species_set {66

# Construct Ensembl MethodLinkSpeciesSet Object that67

# contains database adaptors for all the species68

# in the sequence alignment69

my ($db, $set_of_species, $alignment_type) = @_;70

my $genome_dbs;71

my $genome_db_adaptor =72

Bio::EnsEMBL::Registry->get_adaptor($db, ’compara’,’GenomeDB’);73

throw("Registry configuration file has no data for connecting to <$db>")74

if (!$genome_db_adaptor);75

foreach my $this_species (split(":", $set_of_species))76

{77

my $this_meta_container_adaptor =78

Bio::EnsEMBL::Registry->79

get_adaptor($this_species,’core’,’MetaContainer’);80

throw("Registry configuration file has no data for <$this_species>")81

if (!$this_meta_container_adaptor);82

Figure 8.2 (continued)
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my $this_binomial_id = $this_meta_container_adaptor->get_Species-> binomial;83

# Fetch Bio::EnsEMBL::Compara::GenomeDB object84

my $genome_db =85

$genome_db_adaptor->fetch_by_name_assembly($this_binomial_id);86

# Display assembly info87

print $genome_db->name, ":\t", $genome_db->assembly, "\n";88

# Add Bio::EnsEMBL::Compara::GenomeDB object to the list89

push(@$genome_dbs, $genome_db);90

}91

# Getting Bio::EnsEMBL::Compara::MethodLinkSpeciesSet object92

my $method_link_species_set_adaptor =93

Bio::EnsEMBL::Registry->94

get_adaptor($db,’compara’,’MethodLinkSpeciesSet’);95

my $method_link_species_set =96

$method_link_species_set_adaptor->97

fetch_by_method_link_type_GenomeDBs($alignment_type, $genome_dbs);98

throw("The database do not contain $alignment_type data for $set_of_species!")99

if (!$method_link_species_set);100

return $method_link_species_set;101

}102

103

######################104

sub slice_from_Registry {105

my ($species, $chrom, $start, $end) = @_;106

my $slice_adaptor =107

Bio::EnsEMBL::Registry->get_adaptor($species, ’core’, ’Slice’);108

throw("Registry configuration file has no data for connecting to <$species>")109

if (!$slice_adaptor);110

my $query_slice =111

$slice_adaptor->fetch_by_region(’toplevel’, $chrom, $start, $end);112

throw("No Slice can be created with coordinates $chrom:$start-$end")113

if (!$query_slice);114

return $query_slice;115

}116

117

######################118

sub GAB_to_SimpleAlign {119

my ($GAB) = @_;120

my $simple_align = Bio::SimpleAlign->new();121

my $all_aligns = $GAB->get_all_GenomicAligns;122

# Create a Bio::LocatableSeq object from every GenomicAlign123

foreach my $this_align (@$all_aligns)124

{125

my $seq_name = $this_align->dnafrag->genome_db->name;126

$seq_name =∼ s/(.)\w* (.)\w*/$1$2/;127

Figure 8.2 (continued)
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$seq_name .= $this_align->dnafrag->name;128

my $aligned_sequence = $this_align->aligned_sequence;129

my $seq = Bio::LocatableSeq->new(130

-SEQ => $aligned_sequence,131

-START => $this_align->dnafrag_start,132

-END => $this_align->dnafrag_end,133

-ID => $seq_name,134

-STRAND => $this_align->dnafrag_strand135

);136

# Add this Bio::LocatableSeq to the Bio::SimpleAlign137

$simple_align->add_seq($seq);138

}139

return $simple_align;140

}141

142

#################143

sub parseUcscBedLine{144

# parse bedline in ucsc format and convert data to Ensembl coordinate format145

my ($bedLine) = @_;146

chomp ($bedLine);147

my ($chrom, $start, $end, $name, $score, $strand) = split " ", $bedLine;148

$start++; # NEED to offset coordinates by 1149

$chrom =∼ s/chr//;150

$strand = $strand eq ’+’ ? 1 : -1 ;151

return ($chrom, $start, $end, $name, $score, $strand) ;152

}153

154

#################155

sub alignments_for_one_BED {156

my ($species, $chrom, $start, $end,157

$method_link_species_set, $GAB_adaptor, $alignIO) = @_;158

# Fetching the query Slice:159

my $q_slice = slice_from_Registry($species, $chrom, $start, $end);160

# Fetching all the GenomicAlignBlock corresponding to this Slice:161

my $genomic_align_blocks = $GAB_adaptor->162

fetch_all_by_MethodLinkSpeciesSet_Slice($method_link_species_set, $q_slice);163

my $all_aligns;164

# Create a Bio::SimpleAlign object from every GenomicAlignBlock165

foreach my $this_GAB (@$genomic_align_blocks)166

{167

$this_GAB = $this_GAB->restrict_between_reference_positions($start, $end)168

if (!$noRestrictBlocks);169

my $simple_align = GAB_to_SimpleAlign($this_GAB);170

# my $simple_align = $this_GAB->get_SimpleAlign;171

push(@$all_aligns, $simple_align);172

}173

Figure 8.2 (continued)
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foreach my $this_align (@$all_aligns)174

{175

print $alignIO $this_align;176

}177

}178

179

######################180

# main program starts here181

my $startTime = time();182

# Print Help and exit183

if ($help) {184

print $usage;185

exit(0);186

}187

if ($output_file) {188

open(STDOUT, ">$output_file") or die("Cannot open $output_file");189

}190

my ($bedFile) = @ARGV;191

$bedFile || die("$usage");192

193

Bio::EnsEMBL::Registry->load_registry_from_db(-host => "ensembldb.ensembl.org",194

-user => "anonymous");195

my $GAB_adaptor =196

Bio::EnsEMBL::Registry->get_adaptor($db, ’compara’, ’GenomicAlignBlock’);197

my $method_link_species_set =198

get_species_set($db, $set_of_species, $alignment_type);199

200

# construct a Bio::AlignIO object for printing the genomic alignments201

my $alignIO = Bio::AlignIO->newFh(202

-interleaved => 0, -fh => \*STDOUT,203

-format => $output_format, -idlength => 10);204

# read BED file of regions of interest and convert to Ensembl format205

my $infh = new FileHandle "<$bedFile";206

while (my $bedLine = <$infh> ) {207

next if $bedLine =∼ /ˆ\s*#/ ;208

my ($chrom, $start, $end, $name, $score, $strand)209

= parseUcscBedLine($bedLine);210

# extract and print alignments overlappping current region211

alignments_for_one_BED($species, $chrom, $start, $end,212

$method_link_species_set, $GAB_adaptor, $alignIO);213

}214

print "Elapsed Time = " , (time() - $startTime) , " secs.\n";215

exit;216

__END__217

218

219

Figure 8.2 (continued)
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b)a) Database Adaptor Construction Main Program Loop

For each region in 

bedFile
alignments_for_one_BED

Retrieve Registry 

ObjectsRegistry->get_adaptor

fetch_by_name_assembly

fetch_by_method_link_type_GenomeDBs

Retrieve database-adaptor object for each

Retrieve alignment-database adaptor
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Retrieve region Slice object from query

Retrieve GenomeAlignBlock (GAB) objects for all

sequence database

fetch_all_by_MethodLinkSpeciesSet_Slice
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Convert GAB object To 
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Figure 8.3 Flowchart for the ensemblComparaExample.pl program. The program subroutine or

Ensembl API method used in each step is noted outside of the corresponding box. (a) Construction of

the database adaptors needed to access the sequence-alignment data. (b) Steps involved in extracting

the actual alignment for each region in the BED file using the database adaptors created in part (a).

general procedure described in Section 8.1 for constructing Ensembl database-adaptor

objects. Specifically, first the main program loads the Ensembl Registry file (lines 194

and 195) and constructs a GenomeAlignmentBlockAdaptor (GAB) object (lines 196 and

197). A MethodLinkSpeciesSet object is then created by the get_species_set subroutine

(called in lines 198 and 199). Once the database-adaptor objects have been constructed,

the main program loop (outlined in Figure 8.3b) can be executed. For each BED region,

the main program (lines 212 and 213) calls the subroutine alignments_for_one_BED,

which creates a query slice for the region, retrieves the alignments that overlap the

region, truncates the alignments to the length of the BED, and finally, prints the

overlapping alignments. Let us look now at some of the subroutines in more detail.

The MethodLinkSpeciesSet object is created with the get_species_set subroutine,

shown in lines 66 through 101. The subroutine is modified from the DumpMulti-

Align.pl code in the ensembl-compara tutorial. Subroutine get_species_set first cre-

ates a database adaptor for the ensembl-compara database (lines 72 and 73). The

subroutine then cycles through each species in the alignment (line 76). For each
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species, the subroutine first retrieves the species’ “binomial ID,” which is sim-

ply the standard two-word ID specifying the genus and species (e.g., “Homo sapi-

ens” for human, or “Mus musculus” for mouse). In the Ensembl system, the bino-

mial ID is contained in a BioPerl Species object, which is stored in an Ensembl

Bio::EnsEMBL::DBSQL::MetaContainer object (lines 78 through 83). Next, in lines 85

and 86, subroutine get_species_set calls the fetch_by_name_assembly method with

the species’ binomial ID to retrieve the species’ GenomeDb object (which specifies the

required genomic assembly). The get_species_set subroutine then prints the assem-

bly’s ID (line 88) and adds the species’ GenomeDb object to a list of all the required

GenomeDb objects (line 90). Finally, in lines 93 through 99, the subroutine con-

structs the MethodLinkSpeciesSet object that links together the required alignment

type with the list of the GenomeDb objects.

The get_species_set subroutine is a bit complicated because the subroutine needs

to perform multiple steps to establish all the required database connections via the

Ensembl Registry file. However, as noted previously, a detailed understanding of the

steps involved in constructing the MethodLinkSpeciesSet object is not really neces-

sary. Instead, one can simply copy the get_species_set subroutine in any program

in which one needs to extract paired- or multiple-sequence alignment data from

Ensembl.

Once we have created the MethodLinkSpeciesSet object, retrieving and display-

ing alignments using the alignments_for_one_BED subroutine (lines 156 through

178) is straightforward. The subroutine alignments_for_one_BED first calls the sub-

routine, slice_from_Registry (at line 160) to create a Slice object for the speci-

fied genomic region. Using this Slice object, along with the previously created

GenomicAlignBlockAdaptor and MethodLinkSpeciesSet objects, the subroutine calls

the fetch_all_by_MethodLinkSpeciesSet_Slice method to retrieve a list of Genomic-

AlignBlock objects for all the overlapping alignments (lines 162 and 163). Next,

alignments_for_one_BED truncates each alignment to the size of the region spec-

ified by the BED file coordinates.2 This step is necessary because the fetch_all_by_

MethodLinkSpeciesSet_Slice method returns objects corresponding to the entire

length of an alignment, even if only a subregion of the alignment overlaps the query

region. The truncation is performed by the restrict_between_reference_positions

method of the GenomicAlignBlock object in line 168.

Finally, subroutine alignments_for_one_BED needs to convert the GenomicAlign-

Block object into a BioPerl SimpleAlign object so that the alignment can be dis-

played in an easily readable format. The Ensembl API provides a method, called

get_SimpleAlign, for carrying out such a conversion (see commented line 171). How-

ever, using get_SimpleAlign causes the species’ ID information to be lost in the for-

mat conversion. (You can confirm this by modifying and executing ensemblCompara-

Example.pl with line 170 commented out instead of line 171.) Because we want to

2 This is true unless the “noRestrictBlocks” option was selected when the program was called.
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display the species identification in the alignments, we will instead use a custom

GenomicAlignBlock to SimpleAlign conversion routine, called GAB_to_SimpleAlign

(lines 119 through 140). The key lines in GAB_to_SimpleAlign are lines 126 and 127,

where the species’ ID is parsed from the sequence name in the GenomicAlign object,

and line 128, in which the species’ ID is then concatenated with the chromosome

name. Finally, the concatenated name is used as the sequence ID in the SimpleAlign

object in line 134.

8.1.2 Finding Ensembl objects, revisited

We noted that we identified some of the Ensembl objects we needed (e.g., Genomic-

AlignBlock or MethodLinkSpeciesSet) in the DumpMultiAlign.pl demo program. If we

had not been aware of the DumpMultiAlign.pl program – and we had not used these

Ensembl objects before – we would have probably had to locate them in the Ensembl

code using grep and pdoc as described in the previous chapter. (Note that the point

here is not that the Ensembl documentation is poor – it is not – but rather that just

finding the documentation you need is sometimes difficult.)

For example, knowing that the Ensembl Browser creates MSAs using the PECAN

algorithm, we can find the appropriate Ensembl object for MSAs by executing the

command:

$ grep -rin pecan .

from the main Ensembl directory. We would find that most of the retrieved results

are in the ensembl-compara/modules/Bio/EnsEMBL/Compara/Production/Genomic-

AlignBlock/ subdirectory, suggesting that we look for a GenomicAlignBlock object

in the ensembl-compara pdoc. Doing so, we would have found most of the code we

needed. In addition, if we had then run the command:

$ grep -rin GenomicAlignBlock .

in the ensembl-compara/scripts subdirectory, we would have found numerous com-

plete examples of the usage of GenomicAlignBlock and MethodLinkSpeciesSet objects

as well.

8.2 Accessing Ensembl DAS data

As we have mentioned previously, programmed querying to access data from

Ensembl’s DAS tracks via the Ensembl API is not possible because most DAS anno-

tations are not stored in the Ensembl databases. However, DAS annotations can be

accessed directly from the individual DAS servers. Such access can be performed using

the Bio::DAS Perl API. The syntax for using the Bio::DAS API is very similar to that

used with the BioPerl and Ensembl APIs. For example, sequence feature annotations

from the WormBase DAS server can accessed with code such as (code adapted from

the Bio::DAS documentation):
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use Bio::Das;

# contact a DAS server using the "elegans" data source

$das = Bio::Das->new(’http://www.wormbase.org/db/das’ => ’elegans’);

# fetch a segment

$segment = $das->segment(-ref=>’CHROMOSOME_I’,

-start=>10_000, -stop=>20_000);

# get features from segment

for $feature ($segment->features) {
$id = $feature->id;

$type = $feature->type;

$refseq = $feature->refseq;

$reference = $feature->reference;

$start = $feature->start;

$stop = $feature->stop;

@subs = $feature->sub_seqFeature;

}

Because all DAS servers transmit their data in the same (i.e., DAS) format, one

only needs to learn a single data format and API to access data from any DAS server.

However, one does need to know the host address of each DAS server that one needs

to access. This information can generally be retrieved from the DAS Registry located

at http://www.dasregistry.org.

Actually, since Ensembl (and UCSC) databases include DAS server capability as

well, in principle one could directly access the Ensembl and UCSC databases using

the Bio::DAS interface as well without needing to use the Ensembl or UCSC APIs.

However, in most cases, using Bio::DAS to access the Ensembl or UCSC databases does

not offer any advantages compared to using the Ensembl or UCSC APIs.

An alternative method for obtaining programmatic access to some of Ensembl’s

DAS annotations is via the Ensembl martdb database. This is possible because Ensembl

mirrors some DAS annotations so that they can be accessed via MartView. The DAS

annotations that are available this way include those that are listed as “external refer-

ences” on the MartView Attributes input page. Examples of DAS annotations that are

available via BioMart include RefSeq, SwissProt, and Unigene IDs. These annotations

can then be accessed from Ensembl’s martdb database (martdb.ensembl.org) either

directly via SQL or with the BioMart API – which uses syntax quite similar to that of

the Ensembl API. Because Ensembl’s martdb database uses a non-default port number

(3316), one needs to include the port number in the database connection command.

For example, to determine the names of all the databases in martdb.ensembl.org

using SQL, we would execute:

$ mysql --user=anonymous --host=martdb.ensembl.org \
--port=3316 -A -e "show databases;"

We will not describe the DAS or BioMart APIs further here. The interested reader

is referred to Appendix 2 for an introduction to the DAS format and to the Bio::DAS
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documentation for more details on using the Bio::DAS API (http://search.cpan.org/∼
lds/Bio-Das-1.06/Das.pm). The BioMart API is described in http://www.biomart.org/

user-docs.pdf.

8.3 Installing and maintaining an Ensembl mirror database

So far, we have executed all of our sample programs against the public Ensembl mirror

database at ensembldb.ensembl.org. In fact, an attractive feature of the Ensembl API

is that any program that can be run against a private Ensembl mirror can be run

equally well against the public mirror.3 The ability to run one’s programs against

a public database can be useful even if one also has installed a private mirror. This

is particularly helpful while debugging a newly developed program, so one can

determine whether unexpected program results are caused by program bugs or by

the configuration of the local mirror.

In fact, as any Ensembl API-based program can be executed equally well with the

public mirror, one might well ask why bother to install a private Ensembl mirror

at all. Indeed, for occasional use, exclusively accessing the public mirror can be an

effective way to programmatically query the Ensembl databases. For one thing, the

public databases will be kept up to date by the Ensembl Development Team. In addi-

tion, queries involving MSA data, as in our previous example, require downloading

multiple Ensembl databases (eight, in our example) even if our primary interest

is only in one of those species. Moreover, creating a local mirror of an Ensembl

database requires a considerable amount of free disk space and the human and com-

puter resources to maintain and administer a MySQL database system. As of October

2007, installing a mirror of all of the Ensembl databases required about 500 to 600

gigabytes of disk space. In addition, the Ensembl database is continually increasing in

size; for current disk space requirements, one can check http://www.ensembl.org/info/

webcode.

Despite the additional effort required in installing a private Ensembl mirror, there

are situations where one will find it advantageous to mirror one or more Ensembl

databases. Because the public databases are shared resources, accessing databases

locally may improve performance compared to using the public mirror. Similarly,

one’s own usage of the public databases needs to be restrained so as not to monopolize

the shared resources. In addition, it is of course impossible to customize a public

database. Lastly, some computer security systems prevent the accessing of remote

databases.

8.3.1 Installation preliminaries

Installing an Ensembl mirror database is well documented (http://www.ensembl.

org/info/webcode) and reasonably straightforward. As an illustrative example, we

3 As noted in chapter 10, this feature is not shared by the UCSC system.
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outline the steps for installing a small Ensembl database, the core Ensembl database

for yeast, Saccharomyces cerevisiae. In fact, if one wants to install any Ensembl database,

it is wise to first install a small one (e.g., a yeast database) as a test to ensure that there

are no problems with the download and install procedures on your system. Installa-

tion of the yeast genome database follows very similar procedures as that for larger

genomes but will be much faster. Consequently, if there are going to be installation

problems, you will generally be confronted with them much more quickly and will

be able to test fixes to them more quickly as well. We will consider some of the issues

specific to the installation of large databases in chapter 10 in the context of installing

the UCSC databases.

Before installing any of the Ensembl databases, one needs to have installed the

Ensembl API code, as well as all of the necessary prerequisite software (e.g., BioPerl) as

described in Chapter 7. As noted previously, the version of the Ensembl API you have

must agree with the release number of the databases you want to install. You will also

need to have installed a MySQL server and to have the necessary MySQL privileges to

load a new database and create a new user on this database. In addition, you will need

to have a web server program, such as Apache (http://www.apache.org) installed, if

you want to mirror the Ensembl Browser in addition to the genome databases. For

some of the steps, you also will need “superuser” access to the local host computer

system. If you do not have such access, you will need to get assistance from your local

system administrator.

We will assume in this chapter – and will continue to assume for the remainder

of this book – that any mirror databases will be implemented with MySQL and any

mirror browser is implemented using the Apache web server. Whereas, in princi-

ple, it is possible to implement the Ensembl (or UCSC) systems with other database

management systems (DBMS) or web servers, in practice this is likely to be a very

challenging endeavor, as there are places where references to the MySQL and Apache

systems are hard-coded in the API software. Moreover, since MySQL and Apache are

freely available, there are a few cases where there is a reason not to use these tools.

One exception might be if one wishes to integrate Ensembl data with local data that

is stored using a different DBMS, such as Oracle or Postgres. In this case, rather than

directly use the Ensembl database structure, one may want to perform the data inte-

gration within a generic genome-database development environment, such as that

provided by the GMOD development tools discussed in chapter 11. In particular, the

GMOD tools support DBMS other than MySQL.

8.3.2 Installing a mirror of an Ensembl database

Assuming that the necessary software has been installed, one can download and

install an Ensembl database with the following – Unix Bash and MySQL – commands

(where “/diskLocationWithAvailableSpace” is replaced by the actual disk directory

location to be used, and the yeast database needs to be changed appropriately if you

are installing a release other than 42_1e):
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# First define a local hard-drive location with available space

$ export ENSEMBLROOT="/diskLocationWithAvailableSpace/ensemblData"

$ mkdir -p $ENSEMBLROOT/saccharomyces_cerevisiae_core_42_1e/

# Next perform the data download.

$ cd $ENSEMBLROOT/saccharomyces_cerevisiae_core_42_1e/

$ ncftp ftp://ftp.ensembl.org/pub/saccharomyces_cerevisiae_core_42_1e/data/mysql/

> get -R ∗
> quit

$ gunzip ∗gz

# Next create database and tables

$ mysql -uroot -p

password:

mysql> create database saccharomyces_cerevisiae_42_1e;

$ mysql -u root -p saccharomyces_cerevisiae_42_1e \
< saccharomyces_cerevisiae_core_42_1e.sql

password:

# Load database tables

$ mysqlimport -u root -p saccharomyces_cerevisiae_42_1e -L ∗.txt.table

# grant database privileges to ensembl user

$ mysql -u root -p

password:

mysql> grant select on saccharomyces_cerevisiae_42_1e.∗ to \
ensemblDbUser@localhost;

At this point, the data should be properly installed in the local database and

accessible by the Ensembl API. To check that the installation has been completed

successfully, one can perform a few basic tests. First, one can confirm that direct SQL

access of the database is functional by executing a command such as:

$ mysql --user ensemblDbUser --host=localhost -A \
-e "show tables;" saccharomyces_cerevisiae_42_1e

If SQL access is working properly, one can then run a simple program such as

ensemblTest1.pl, described in the previous chapter, using the host name and user

name of your new local mirror. If this program successfully retrieves and prints a list

of gene data, then one can be confident that the local database installation has been

successful.

Note that we have only described installing a mirror of the Ensembl core database

for S. cerevisiae. Certain applications will require the installation of additional Ensembl

databases. For example, to access sequence alignments locally using a program

like ensemblComparaExample.pl, we would need to mirror the ensembl-compara

database as well as the Ensembl databases of each of the other species in the desired

alignments. In addition, we would need to configure a local version of the Ensembl

Registry file. Similarly, if we need to mirror Ensembl’s BioMart, we would need
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to install the Ensembl BioMart database. We will not describe these tasks further

here, instead referring the reader to the installation and registry sections of the

Ensembl software documentation site (http://www.ensembl.org/info/using/api) and

the BioMart installation procedures (http://www.biomart.org/user-docs.pdf ), where

they are described in detail.

8.3.3 Keeping one’s database up to date

We recall that Ensembl updates the data in its databases when it performs a new

release – which occurs approximately every two months. Depending on one’s appli-

cations, it may be important to use as current a version of the Ensembl databases

as possible. At the present time, if one wants to update one’s local Ensembl mir-

ror after a new Ensembl release, one needs to perform a complete re-download and

re-installation of the databases that are to be updated. No support is provided for

incremental database updating. Consequently, programmed-querying applications

for which it is important to use the most current version of the Ensembl data are

usually best implemented by accessing the Ensembl public mirror databases.

In addition, the version of API software that one is using must be compatible with

the build of the associated database. In Ensembl, tracking API-database version com-

patibility is implemented via a linked numbering system. For example, to access the

homo_sapiens_core_42_36d database, one should use version 42 of the Ensembl API,

where the initial number in the full Ensembl database name indicates the required

API release number. If another API version (either an earlier or a later one) is used,

a warning will be generated. The API will still attempt to execute the program but

there is a good chance that the program will crash. Consequently, a new version of

the Ensembl API should be downloaded and installed each time one wants to use a

new release of the Ensembl databases.

Chapter summary

� Some Ensembl data, such as micro-array expression and multiple-sequence align-

ment data, are stored in specialized Ensembl databases rather than the “core”

Ensembl databases.
� The Ensembl Registry file facilitates simultaneously accessing multiple Ensembl

databases, which is necessary for retrieving Ensembl multiple-sequence alignment

data.
� Although not directly accessible via the main Ensembl databases, Ensembl DAS

data can be accessed directly from their DAS sources via the Bio::DAS interface or,

in some cases, via Ensembl’s martdb database.
� For reasons of perfomance, data security, and customization, one may want to

install private mirrors of one or more Ensembl databases, which can be carried out

in a straightforward manner.



Programmed Querying with Ensembl, Continued 147

Exercises

Note that you will need to install BioPerl and the Ensembl API to complete these

exercises. You will also need to install the MySQL server to complete Exercise 2.

1. Run the ensemblComparaExample.pl program against the mouse genome using

the mouse sequences identified when running the program against the human

genome (i.e., using the mouse coordinates shown in Figure 8.1).

2. Follow the procedure outlined in the text to install a local copy of the Ensembl

yeast database. Test your installation by directly querying the database with SQL

and by executing the ensemblLocalTest1.pl program.
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Introduction to the UCSC API

In the present chapter, we turn to UCSC’s implementation of programmed genome-

database querying. The UCSC software and API, written in C, were originally developed

by Jim Kent and are typically referred to as the “kent source tree.” Even if you never

access the UCSC databases, if you ever write bioinformatics code in C, you are likely to

save yourself hours of coding and debugging time by becoming familiar with the kent

source tree. This is because of the large number of sequence manipulation and bioin-

formatics utility routines it provides. The functionality of this code is comparable to –

and in some cases, more comprehensive than – the analogous code provided by other

well-known bioinformatics projects, such as BioPerl, BioJava, BioPython, and the AJAX

libraries of the EMBOSS project. In addition, use of the kent tree “core” code (i.e., that

portion of the code neither related to the database interface nor BLAT, and not located

in the jkOwnLib subdirectory) is free for all uses, including commercial applications.

We begin with a general overview of the UCSC API design. Then we describe pro-

gramming requirements, procedures for obtaining, installing, and compiling the

UCSC software, and methods for establishing UCSC database access. Next, we look

at the principal components of the UCSC source code – including the general and

database-specific code libraries, utility programs, database-construction programs,

and browser-display programs – and describe the functionality each provides. Next,

we consider the basic steps involved in constructing a program to access the UCSC

databases via the UCSC API. We then describe methods for “navigating” around

the code to find the specific library functions or subroutines that one needs. This is

followed by illustrative code examples that apply these tools. In the following chapter,

we continue our description of the UCSC API with more advanced examples as well as a

description of the issues involved in installing and maintaining a private mirror of all

or part of the UCSC databases.

9.1 Overview of the UCSC API

In many ways, the motivation and design philosophy behind the UCSC API are similar

to those of the Ensembl API. Both are designed to ease the task of writing application

148
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code to access and manipulate data in their underlying databases in a way that

does not require detailed knowledge of the database implementation and that will

continue to function even if the details of the database implementation change over

time.

However, there are significant differences between the UCSC and Ensembl APIs,

beyond the obvious ones that they are written in different programming languages

and access different genome databases. Some of the differences stem from differences

in the objectives of the two groups. Whereas one of Ensembl’s stated goals is to develop

a programmer interface that can be used relatively easily by non-EBI researchers, the

UCSC software has been designed primarily for efficient, internal software develop-

ment. In contrast to the Ensembl API, the UCSC API is not formally described and,

in fact, the UCSC software documentation does not even use the term “API.” In addi-

tion, although the UCSC code is generally well documented, the documentation is

somewhat dispersed and often located within the code itself. In particular, there is

little in the way of software-usage tutorials and documentation for the programmer

who is new to the UCSC API.

Using the UCSC API requires some knowledge of the table schema of the under-

lying database. Also, in the UCSC API, data is extracted in the form of C structures

rather than as software objects with formally associated methods. To be sure, certain

functions are associated with each C structure, as indicated by being defined in the

same “.h include” file as the definition of the C structure. However, in contrast to a

purely object-oriented approach, it is not unusual to manipulate data in a UCSC C

structure with functions that are not explicitly associated with the structure.

Also, UCSC often uses custom-designed data formats to maximize system perfor-

mance rather than rely on ones that already exist in the bioinformatics community.

To be sure, because several of these internally developed data formats,1 such as BED,

PSL, and MAF, are not only useful for fast data transfer but have other desirable

properties, they have become de facto standards as well. Moreover, the UCSC API does

typically include some support for more traditional data formats and protocols. That

said, currently there is generally more support for outside developers from Ensembl

than from UCSC.

Although the UCSC code is generally backwardly compatible, in the sense that

application programs will continue to work even after changes to the UCSC systems

software and databases, there is no formal commitment to this effect, nor is there

a commitment to provide advanced announcements of changes to library code that

may affect the functionality of application programs. Similarly, application programs

developed using the UCSC API for use with one species database will usually be

portable for use with other UCSC species databases, but this is not always true. For

example, database table names sometimes change between UCSC species databases.

1 The principal UCSC data formats are described in Appendices 2 and 3. The reader will need to

be familiar with this material to understand parts of this chapter.
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As a result, using the UCSC API imposes somewhat more work on the program-

mer, especially in terms of identifying the appropriate tables and data manipulation

functions to use. However, in some situations, the flexibility afforded by such explicit

selection of tables and functions can be useful. Moreover, in practice, accessing the

necessary database tables for use with specific C structures is simplified because there

are utility programs available for converting between database tables and C struc-

tures and back again. In fact, in most cases, the necessary code to convert between

database table (SQL) format and code (C) format is generated automatically by Jim

Kent’s autoSQL program, which is described in chapter 11.

9.2 Software prerequisites

Software requirements for using the UCSC API are similar to those for using Ensembl’s

API (aside from the obvious differences relating to the fact that the UCSC API is

in C rather than Perl or Java). Consequently, the reader is referred to the section

on required software in Chapter 7. Also, C programming exerience is clearly nec-

essary for using the UCSC API. For readers lacking such background, many intro-

ductory textbooks are available; I have found Pointers in C (Reek, 1998) particularly

helpful.

As in Chapters 7 and 8, we will assume a system configuration based on Unix and

MySQL, and all the caveats described in Chapter 7 for using other systems are equally

relevant here. We will also assume that you have a recent version of the C compiler

gcc. If your system does not currently have a recent gcc compiler, then you should

download and install a copy of gcc, which is freely available from http://gcc.gnu.

org.

9.3 Obtaining and maintaining the UCSC code tree

The UCSC API source code can be obtained using the CVS utility as described at

http://genome.ucsc.edu/admin/cvs.html. Alternatively, the code can be downloaded

from http://hgdownload.cse.ucsc.edu/admin/jksrc.zip. For CVS access, the basic com-

mands (in Bash) are

$ export CVSROOT=:pserver:anonymous@genome-test.cse.ucsc.edu:/cbse

$ cvs login

CVS password: genome

$ cvs co -rbeta kent

Using CVS downloading has the advantage that keeping your source tree up to date

will be easier. It is true that the library functions and utilities, which are the parts

of the code you will be primarily using, are quite stable and not updated frequently.

Nevertheless, if you use the UCSC API regularly, it is advisable to update your copy of
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the kent source tree periodically. Under CVS, updating your copy of the UCSC API just

involves logging in to the UCSC pserver site and executing the CVS update command

(see http://genome.ucsc.edu/admin/cvs.html for more details) :

$ cvs update -A -d -P -rbeta

In contrast, at this time if you acquire the UCSC source code tree by downloading

the zip file, the only way you will be able to update your tree is by downloading

another entire copy of the zip file (the zip file is updated approximately every two

weeks).

9.4 Installing the UCSC code

Once the UCSC code is downloaded, it needs to be unzipped (if downloaded as a zip

file) and compiled. Detailed API installation instructions can be found in the README.

building.source file located in the src/product directory of the code tree.

If your system uses the same compiler and compiler version as UCSC – which is

likely to be the case if your operating system is linux – then compilation should

proceed without any problems. With linux, the only modifications to the README

installation procedure that I recommend are to make the code readable by a symbolic

debugger such as gdb. The necessary changes are as follows:

1) Make sure that all compilations use the gcc compiler debugging flag. This can be

accomplished by editing the compiler-options line in the common.mk file (in the

kent/src/inc subdirectory) to be

COPT=-g -O

(Alternately, one can explicitly include the debugging flag every time one runs a

“make” command.)

2) Define an environmental variable called “STRIP” (ideally, in one’s login file). With

Unix Bash, this definition would be

export STRIP=true

(or “setenv STRIP true,” in the C shell). This somewhat unintuitive definition specifies

to the makefile used by the UCSC API to not strip debugging information from the

object file. Note that the reason for compiling with debug options enabled is not

because the UCSC code is buggy (it is not) but rather because it makes it easier to

track problems in your own code later.

If your computer uses a different version of the gcc compiler than that used by

UCSC, you may need to make a few additional modifications to the standard API

compilation procedure. For example, using version 3.3 of the gcc compiler, which is
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included in some versions of Mac OS X, may produce some warning messages when

compiling the UCSC code. In particular, you may get warning messages, such as

warning: ISO C requires whitespace after the macro name

warning: -Wuninitialized is not supported without -O

These warnings are harmless and can be safely ignored. However, there may also be

warnings such as

warning: ‘rcsid’ defined but not used

warning: use of ‘long double’ type; its size may change in a future release

which may lead to a fatal compiler error. If this fatal error occurs, it can generally be

converted to a harmless warning by issuing the Bash command:

$ export OSTYPE

(or else add the command “export OSTYPE” to your login command file). An alternative

approach would be to edit the file common.mk in the kent/src/inc subdirectory to

remove the compiler option -Werror from the definition of ${HG_WARN}.

The next step is to define an environmental variable (ideally, in your login file)

to tell the system where the top source level of the kent code tree is located. For

example, in Bash, the command would be

export KENTSRC='/pathToKentSourceTree/kent/src/'

where pathToKentSourceTree would, of course, be replaced by the actual path to the

code in your system.

You can then compile the basic UCSC library functions (using the “make libs” com-

mand in the top directory of the source tree, as described in the README.building.

source file). Finally, you may want to compile and test one or two of the util-

ity programs in the $KENTSRC/utils subdirectory just to confirm that everything

has installed properly. You may need to create a new subdirectory in your home

directory – $HOME/bin/$MACHTYPE, where the environmental variable $MACHTYPE

should be defined by your operating system, for example, “ppc” on my Power Macin-

tosh. If this variable is not defined by your system, you will either need to define it in

your startup file or else edit the variable $BINDIR in common.mk in $KENTSRC/inc,

which specifies where executable programs should be stored. In either case, make

sure to include your $BINDIR location in $PATH, the list of directories to be searched

for executables.

With these preliminaries taken care of, you should be able to compile and link,

say, the faSplit program in $KENTSRC/utils, and try it on a sample FASTA file. To

find out just what this program (or any other UCSC code program) does, as well as

what command-line syntax and options it expects, you can run the program without

any arguments. The program will respond with a short usage message describing its

functionality and syntax.
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9.5 Database access

If you only want to use the kent library and utility programs, such as the faSplit

program mentioned in the last section, you do not need to have any database connec-

tion to the UCSC genome databases. However, to take full advantage of the UCSC API,

you need to be able to access data from the UCSC databases. In the present chapter,

we will describe the easiest method for obtaining such database access – using the

UCSC public mirror database at genome-mysql.cse.ucsc.edu. As with remote Ensembl

access, you need to check that no local firewalls prevent you from accessing a remote

database. In chapter 10, we will describe alternative methods for accessing data in the

UCSC databases that can be advantageous in certain situations. Note that accessing

the UCSC databases with the UCSC API for commercial applications requires a license

from UCSC.

9.6 Major components of the UCSC code source tree

The UCSC software is organized in a conventional hierarchical directory structure.

Although the main kent/src directory (which you should have located at $KENTSRC)

has some thirty or more subdirectories, many of them contain code that is not

directly needed for genome-database querying. Rather, these directories contain code

used by other UCSC or Jim Kent software projects such as alignment programs (e.g.,

BLAT and intronerator) or programs for running massively parallel computer systems

(parasol).

In fact, most of the definitions of the structures and functions of interest to genome-

database programming are located in the “include” files in the inc and hg/inc sub-

directories of $KENTSRC. Implementations of these functions are found in the lib and

jkOwnLib subdirectories, for functions defined in inc, and in the hg/lib subdirectory

for functions in hg/inc. In most cases, structures and functions for general applica-

tions are defined in inc, whereas those that are useful primarily in the context of the

UCSC Genome Browser and databases are defined in hg/inc.

9.6.1 Library functions

The inc subdirectory contains definitions of library functions that provide a wide

range of sequence and data manipulation capabilities. Library subroutines are avail-

able for everything from managing C data structures such as linked lists, balanced

trees, hashes, and directed graphs to developing routines for HTML or CGI code.

Additional library functions are available for biological sequence and data manip-

ulation tasks such as reverse complementation, codon and amino acid lookup, and

sequence translation.

Many of the most commonly used library functions are defined in the file inc/

common.h, which contains routines for memory management, error handling,

linked-list management, basic string manipulation, and so on. Other files in the inc
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subdirectory contain more specialized functions. For example, biological sequence

manipulation routines (e.g., for nucleotide translation or reverse complementation)

are found in the dnautils.h and dnaSeq.h files, whereas string manipulations for

strings whose length can vary during program execution (a capability that is awk-

ward to implement in standard C) are found in dyString.h.

Structure and function definitions directly related to the UCSC genome databases

are located in hg/inc. In this subdirectory, one can find structures and functions

associated with essentially every type of database table found in the UCSC databases.

Standard functions included in these files include ones for creating, loading, and free-

ing C structures associated with each database table. Additional functions implement

data manipulations related to specific data types (analogous to methods associated

with data objects). For example, hg/inc contains bed.h, genePred.h, and maf.h files,

as well as more specialized files such as snp.h, tfbsCons.h, and mapSts.h for handling

SNP and transcription-factor binding site and STS mapping data, respectively.

9.6.2 Utility programs

Many of the programs in the kent source tree are specific for the construction of the

UCSC genome databases and displaying data on the UCSC Genome Browser, and are

of limited interest to bioinformatics programmers outside the UCSC Development

Team. However, the code also includes programs that implement common bioinfor-

matics tasks and that are of more general interest. These programs are mostly found

in the utils subdirectory. The source code for each utility program, along with its

“make” file, is located within a separate subdirectory of the utils directory. Once the

lib library functions have been compiled, any of these utilities can be built by exe-

cuting its associated make file, after which the utility can be directly executed from

the command line. The included utilities include programs for sorting, splitting,

or merging FASTA sequences; record parsing and data conversion using GenBank,

FASTA, nib, and BLAST data formats; sequence alignment; motif searching; hidden

Markov model development; and much more.

Other useful programs include those used to build the UCSC databases, particularly

for loading database tables (e.g., hgLoadBed and hgLoadPsl) and for parsing different

types of data formats (e.g., gbToFaRa for parsing GenBank records). These programs

are generally found in subdirectories of the hg directory. Again, each program or set of

closely related programs is usually stored in a separate subdirectory and can be built

by running the make file in that subdirectory. The principal overall documentation

for these programs is found in the docs subdirectory of the hg/makeDb directory,

which also contains the programs for building the UCSC databases.

In addition to being useful as stand-alone applications, the programs in the utils

and hg subdirectories provide examples of correct syntax for calling the library

functions in inc and hg/inc. Moreover, when one requires functionality not available

in one of the libraries, the necessary code can often be found in one of the UCSC

application programs and can be copied from there.
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9.7 Using the UCSC code library functions

Developing code to access and manipulate data in the UCSC genome databases using

the UCSC API involves a three-step process, similar to that we saw in Chapters 7

and 8 when using the Ensembl API. First, we need to write code to connect to the

UCSC databases containing the needed data. Second, we need to identify the tables

in the database containing the needed data and write code to load that data from

the database into our program memory. Finally, we need to find the appropriate

library data manipulation functions to perform the data post-processing part of the

program.

UCSC database connection can often be accomplished with only a few lines of

code. For example, connecting to the hg18 database on UCSC’s public mirror may be

performed with these two lines of code2:

hSetDbConnect("genome-mysql.cse.ucsc.edu", "hg18", "genomep", "password");

conn = sqlConnectRemote("genome-mysql.cse.ucsc.edu", "genomep", "password", "hg18");

The call to library function hSetDbConnect sets the database parameters within the

UCSC API, whereas the call to sqlConnectRemote establishes the database connection

itself. There are also numerous variants of the sqlConnRemote() function – such

as sqlConnect(), hgAllocConn(),– that are sometimes useful and are defined in the

hg/inc/jksql.h and hdb.h include files.

Once a database connection has been established, the API provides functions for

accessing the database tables. For some commonly used data types, for example, PSLs

and genePreds, one can load all or part of a table into a linked list of C structures

with a single line of code such as

psl = pslReaderLoadRangeQuery(conn, table, chrom, start, end, NULL);

or

gp = genePredReaderLoadRangeQuery(conn, table, chrom, start, end, NULL);

psl and genePred C structures are defined in $KENTSRC/inc/psl.h and $KENTSRC/

hg/inc/genePred.h, respectively, and are shown in Figure 9.1. Fields in these structures

are very similar to those in the corresponding file and table formats, which are

described in Appendices 2 and 3.

2: The careful reader will notice that with the UCSC API, the user name is “genomep” and the

password “password” is required. In contrast, for command-line MySQL querying and SQL

programmed querying, as illustrated in Chapters 4 and 6, respectively, one can use the user

name “genome” without a password. The host and database names are always the same whether

or not one is using the API.
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struct psl

/* Summary info about a patSpace alignment */

{
struct psl *next; /* Next in singly linked list. */

unsigned match; /* Number of bases that match that aren’t repeats */

unsigned misMatch; /* Number of bases that don’t match */

unsigned repMatch; /* Number of bases that match but are part of repeats */

unsigned nCount; /* Number of ’N’ bases */

unsigned qNumInsert; /* Number of inserts in query */

int qBaseInsert; /* Number of bases inserted in query */

unsigned tNumInsert; /* Number of inserts in target */

int tBaseInsert; /* Number of bases inserted in target */

char strand[3]; /* + or - for strand */

char *qName; /* Query sequence name */

unsigned qSize; /* Query sequence size */

int qStart; /* Alignment start position in query */

int qEnd; /* Alignment end position in query */

char *tName; /* Target sequence name */

unsigned tSize; /* Target sequence size */

int tStart; /* Alignment start position in target */

int tEnd; /* Alignment end position in target */

unsigned blockCount; /* Number of blocks in alignment */

unsigned *blockSizes; /* Size of each block */

unsigned *qStarts; /* Start of each block in query. */

unsigned *tStarts; /* Start of each block in target. */

char **qSequence; /* query sequence for each block */

char **tSequence; /* target sequence for each block */

};

b)

struct genePred

/* A gene prediction, with optional fields. */

{
struct genePred *next; /* Next in singly linked list. */

char *name; /* Name of loci, transcript, mRNA, etc */

char *chrom; /* Chromosome name */

char strand[2]; /* + or - for strand */

unsigned txStart; /* Transcription start position */

unsigned txEnd; /* Transcription end position */

unsigned cdsStart; /* Coding region start */

unsigned cdsEnd; /* Coding region end */

unsigned exonCount; /* Number of exons */

unsigned *exonStarts; /* Exon start positions */

unsigned *exonEnds; /* Exon end positions */

/* optional fields */

unsigned optFields; /* which optional fields are used */

unsigned id; /* Numeric id of gene annotation */

char *name2; /* Secondary name. (e.g. name of gene)

enum cdsStatus cdsStartStat; /* Status of cdsStart annotation */

enum cdsStatus cdsEndStat; /* Status of cdsEnd annotation */

int *exonFrames; /* List of frame for each exon */

};

Figure 9.1 psl and genePred C structures. The structure fields are very similar to those used in psl

and genePred file and table formats (see Appendix 2, Table A2.2, and Appendix 3, Table A3.1).
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For tables with other formats, or if one wants more flexibility in data access,

accessing the database table requires more than a single line but is still quite easy.

For example, here is a segment of code to extract the start and end coordinates of

CpG island annotations that overlap a query region:

struct sqlResult *sr = hExtendedRangeQuery(conn, "cpgIslandExt", chrom,

start, end, NULL, FALSE, "chromStart,chromEnd", NULL);

while ((row = sqlNextRow(sr)) != NULL)

{
int cpgStart = sqlUnsigned(row[0]);

int cpgEnd = sqlUnsigned(row[1]);

/* Do something with the CpG data */

}
sqlFreeResult(&sr);

Finally, one needs to perform any needed data post-processing (the “do something”

in the code fragment here). In many cases, the necessary functions for performing

the data manipulations will be defined in the same include file as that defining the

structure holding the data. However, this is not always the case, and sometimes some

searching is needed to find the library functions that one needs.

9.8 Finding what you need in the kent source code

The kent source code is very comprehensive, containing subroutines for performing

most bioinformatics tasks one can imagine. However, this very comprehensiveness

sometimes can make it challenging to determine precisely where within the code

tree the needed subroutines are located.

The desired functionality can often be found simply by searching the inc and

hg/inc subdirectories. In other cases, the necessary code can be found by scanning the

list of programs in the utils directory. For example, if one is looking for code to sort

or split FASTA sequence files, scanning the names of the files in the utils directory

(or using a file search utility such as Unix “find”) will quickly lead one to the files

faSort.c and faSplit.c, respectively, from which the needed code can be extracted.

However, sometimes finding the location of a desired utility function or library

function is not so easy. In Chapter 7, we described using a text-searching tool such

as the Unix grep utility to find the appropriate Ensembl object for implement-

ing a desired bioinformatics task. Similarly, using grep can be an effective way to

locate functions in the UCSC code tree. Useful keywords or phrases for use in such

searches may include genome browser track or table names (e.g., “CpG Islands,” “mul-

tiz17way,” or “phastCons”) or simply words describing the data manipultion you need

to perform (e.g., “reverse complement,” “Smith Waterman,” or “Hidden Markov”). In

many cases, the returned source code lines will point you to the appropriate function

and C structures in one or more of the lib or inc subdirectories.

Once the names of the C structures have been found, one can obtain more informa-

tion about them and their associated functions from the include directory “.h” files
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in which they are defined. In addition, it is often useful to run grep again, this time

with the name of the structure or function as the grep argument, to find examples

illustrating correct structure and function usage.

Unfortunately, sometimes even using grep one cannot find any appropriate UCSC

function. Of course, this could be because the desired functionality simply is not

implemented in the kent source code. However, typically this is not the case. In

particular, if the data manipulation is something you can do interactively on the

UCSC Browser, then the functionality to perform that data manipulation must exist

somewhere in the code. For example, say you need a subroutine that takes a genome

location (chromosome and position) in the human genome and determines to what

extent the nucleotide at that location is conserved in other vertebrate genomes. We

may be certain that such capability exists somewhere in the code because we can

answer the question for any single genomic position by setting the UCSC Browser

to that position, selecting the “conservation” track, and zooming to “base level.”

However, if we cannot guess an appropriate keyword, grep will not be able to locate

the relevant code.

In this case, we can try to find the relevant code by executing the desired function

in the web browser and examining the resulting web address. In our example, when

we display the conserved alignment in the browser, we see that the web address

listed is http://genome.ucsc.edu/cgi-bin/hgTracks. This indicates that the browser has

just executed the (CGI) program hgTracks. Therefore, hgTracks.c might be a good

place to start our search. Locating hgTracks.c in the hg/hgTracks subdirectory in the

code tree is straightforward using Unix find (or grep). However, hgTracks.c is around

14,000 lines long, so some additional searching is necessary. If we can identify some

identifying keyword at this point, such as “conservation” or “maf ” (if we remember

that multiple alignments are stored in “maf ” format in the database), scanning the

file with a standard text editor may be sufficient for narrowing the search region.

However, sometimes the browser code is sufficiently long and complex that find-

ing the code where the required data manipulation is being performed is still

difficult. In this case, there may be another (simpler) web program that has the

desired functionality. In our example, multiple alignments are also produced by

the web browser using the Table Browser interface pointing to the multiz17way

table with maf output selected. If we access the Table Browser in this manner, we

notice that in this case the CGI program accessed is hgTables.c, which has 1,500

lines.

Although hgTables.c is shorter than hgTracks.c, it is still quite complex, and one

may need to analyze the logic of the program further before one can isolate the code

with the desired functionality. One way to carry out such an analysis is to run the

program as a stand-alone command-line program. In fact, all of the UCSC Browser CGI

programs can also be run in stand-alone mode. You just need to compile and link the

program using its associated “make” file and pass the program the arguments it
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expects. Determining the arguments being used by a browser program can be accom-

plished with the cartDump utility, which is executed by loading the web address

http://genome.cse.ucsc.edu/cgi-bin/cartDump. cartDump displays the most recent set

of arguments used by the browser. Once the program has been compiled in stand-

alone mode and appropriate input arguments have been determined from a cart-

Dump, one can step through the program with an interactive debugger, such as gdb.

In this way, one should be able to decipher the logic underlying even complex CGI

browser programs.

The description in the preceding paragraphs may suggest that identifying the

kent code that performs a specific task occasionally requires a considerable amount

of detective work. However, this is actually rarely the case. Usually, “grepping” with

one or two well-chosen keywords quickly identifies the appropriate code, and in most

cases, the code is sufficiently clearly written that the underlying logic is apparent.

Moreover, as should be apparent from the following examples, the advantages gained

by incorporating the kent library functions and subroutines into one’s own code are so

great as to make the occasional additional detective work of locating the appropriate

routines worthwhile.

9.9 UCSC API example programs

9.9.1 UCSC example 1: “Hello World”

Let us now illustrate how to use the UCSC API with some program examples. Our

first program is a variant on the traditional beginner’s “Hello World” computer

program. Although we are assuming that the reader has C programming experience,

we nevertheless begin with this simple program so we can illustrate some basic

features of code development with the UCSC API.

The first issue we need to address is where to place the source file so that the

compiler can locate any UCSC library routines that the program may need. The

easiest approach uses the newProg utility and involves creating a new subdirectory

within $KENTSRC/hg. We will call this subdirectory $KENTSRC/hg/ucscExamples. You

can, of course, place your code in other places, but you will need to edit the UCSC

makefiles or else make other modifications to ensure that the compiler and linker

can find all the UCSC libraries.

We next need to build the “newProg” utility program, itself. newProg creates a

new subdirectory for the program we want to write, along with skeleton source code

and a makefile to compile the program and link it to the UCSC code libraries. We

build “newProg” (we only need to do this once) by running the make command in

the $KENTSRC/utils/newProg subdirectory.

Once newProg has been built, we can create a skeleton source file and a makefile

for our “Hello World” program by executing the command:

$ newProg -jkhgap $KENTSRC/hg/ucscExamples/helloWorld Print Hello World
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where -jkhgap tells the program to include the jkhgap.a library archive and, again,

$KENTSRC specifies the location of the root directory of the kent/src tree. All the

arguments to newProg after the name of the subdirectory to be created (“Print Hello

World,” in this case) are simply passed on to the program skeleton as a program

description.

The code skeleton that newProg creates consists of a main program and two

subroutines. The main program simply processes the program arguments and options

and calls the principal subroutine, which has the same name as the program file (e.g.,

helloWorld, in the present case.) The other subroutine is called “usage” and contains a

message to be displayed if the program is called with the wrong number of arguments.

We can now edit the skeleton so that the program prints “Hello World.” The

resulting code is shown in Figure 9.2 and, like all the code examples in the book, is

available from the publisher’s web site for the book. Note that we have retained some

code generated by newProg that is not needed for printing “Hello World,” such as the

option-processing code.

Once we have completed editing and saving the source file, executing “make” in

the directory $KENTSRC/hg/ucscExamples/helloWorld compiles and links the code.

If all goes well and there are no error messages, we should be able to execute the

program by typing “helloWorld” at the command line.

9.9.2 UCSC example 2: Accessing the UCSC public databases

For our second example, we will write a program called ucscDbConnTest that

connects to one of the databases at the UCSC public mirror site (genome-mysql.

cse.ucsc.edu), prints a list of the names of the tables in the database, and then prints

the name of a gene from a specified gene table and in a specified genome region.

Usage of the program will be, for example:

$ ucscDbConnTest sacCer1 sgdGene

where we are telling the program to access the sacCer1 S. cerevisiae database and the

sgdGene gene table in that database. Running the completed program will produce

output similar to that shown in Figure 9.3.

9.9.2.1 Program implementation

To write the program, we first create the skeleton program file, as in the previous

example, by running the newProg utility, this time with

$ newProg -jkhgap $KENTSRC/hg/ucscExamples/ucscDbConnTest \
Database Connection Test

We then fill in the skeleton with the code shown in Figure 9.4.

Let us now look at how the program is implemented. As in the helloWorld example,

the main program, lines 63 through 73, processes arguments and options and calls

the main subroutine, called ucscDbConnTest. Subroutine ucscDbConnTest (lines 30



/* helloWorld - Print Hello World. */1

#include "common.h"2

#include "linefile.h"3

#include "hash.h"4

#include "options.h"5

6

void usage()7

/* Explain usage and exit. */8

{9

errAbort(10

"helloWorld - Print Hello World\n"11

"usage:\n"12

" helloWorld XXX\n"13

"options:\n"14

" -xxx=XXX\n"15

);16

}17

18

static struct optionSpec options[] = {19

{NULL, 0},20

};21

22

void helloWorld()23

/* helloWorld - Print Hello World. */24

{25

printf("Hello World\n");26

return;27

}28

29

int main(int argc, char *argv[])30

/* Process command line. */31

{32

optionInit(&argc, argv, options);33

if (argc != 1)34

usage();35

helloWorld();36

return 0;37

}38

39

Figure 9.2 Source code for the “Hello World” program using the UCSC API.

Requesting connection

Made connection OK

Here are the names of the tables in the DB

all_est

all_mrna

...

transRegCodeMotif

transRegCodeProbe

yeastP2P

Gene name 1 = YAL034W-A

Figure 9.3 Part of the ucscDbConnTest program output.
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/* ucscDbConnTest - Database Connection Test. */1

#include "common.h"2

#include "linefile.h"3

#include "hash.h"4

#include "options.h"5

#include "jksql.h"6

#include "genePred.h"7

#include "genePredReader.h"8

#include "hdb.h"9

10

void usage()11

/* Explain usage and exit. */12

{13

errAbort(14

"ucscDbConnTest - Database Connection Test\n"15

"usage:\n"16

" ucscDbConnTest db geneTable\n"17

" where db is the database (in the public mirror)\n"18

" to connect to and table is a table of genes in that database,eg\n"19

" ucscDbConnTest sacCer1 sgdGene\n"20

"options:\n"21

" -xxx=XXX\n"22

);23

}24

25

static struct optionSpec options[] = {26

{NULL, 0},27

};28

29

void ucscDbConnTest(char *db, char *table)30

/* ucscDbConnTest - Database Connection Test. */31

{32

struct slName *tableName, *allTables = NULL;33

char *chr = "chr1"; int start = 80000; int end = 90000;34

char* host = "genome-mysql.cse.ucsc.edu";35

char *user = "genomep";36

char *password = "password";37

hSetDbConnect(host, db, user, password);38

39

printf("Requesting connection\n");40

struct sqlConnection *conn = sqlConnectRemote(host, user, password, db);41

if (conn == NULL)42

errAbort("Unable to establish connection to %s\n", db);43

printf("Made connection OK\n");44

45

allTables = sqlListTables(conn);46

printf("Here are the names of the tables in the DB\n");47

Figure 9.4 Source code for the ucscDbConnTest program for accessing the UCSC databases using the

UCSC API.
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for(tableName = allTables; tableName != NULL; tableName=tableName->next)48

{49

char *name = tableName->name;50

printf("%s\n", name);51

}52

53

struct genePred *gp54

= genePredReaderLoadRangeQuery(conn, table,chr,start,end,NULL);55

if (gp == NULL)56

errAbort("No gene found in %s overlapping %s:%d-%d\n",57

table, chr, start, end);58

printf("Gene name 1 = %s\n", gp->name);59

sqlDisconnect(&conn);60

}61

62

int main(int argc, char *argv[])63

/* Process command line. */64

{65

optionInit(&argc, argv, options);66

if (argc != 3)67

usage();68

char *db = argv[1];69

char *table = argv[2];70

ucscDbConnTest(db, table);71

return 0;72

}73

74

Figure 9.4 (continued)

through 61), in turn, performs three tasks. First, it establishes the database connection

(lines 34 through 38) using code we have already seen in Section 9.7. Next, in line

46, the program retrieves a C structure called allTables, which is an slName struct

(defined in $KENTSRC/inc/common.h) consisting of a singly linked list of all the table

names in the database:

allTables = sqlListTables(conn);

Then in the “for” loop (lines 48 through 52), the program cycles through the slName

structure, printing out the name of each table. The program next (lines 54 and 55)

acquires a singly linked list of genePred C structures for each of the genes in the

specified gene table that overlaps the region of interest (hard-coded in this example

to chromosome 1:80,000–90,000). Finally, in line 59, the name of one of the genes

in the region (whichever happens to be first in the list) is printed. If we wanted to

print the name of all the genes in the region, we would just loop through the list

of genePred structures the same way we looped over the list of slName structures in

lines 48 through 52.



164 Genomes, Browsers, and Databases

Requesting connection

SQL_CONNECT 1078189 sacCer1 genome-mysql.cse.ucsc.edu genomep

SQL_TIME 1078189 sacCer1 0.804s

Made connection OK

SQL_QUERY 1078189 sacCer1 show tables

SQL_TIME 1078189 sacCer1 0.030s

Here are the names of the tables in the DB

Figure 9.5 Part of the JKSQL_TRACE output, verifying that a connection has been established to the

sacCer1 database at the UCSC public mirror.

If all goes well, after compiling, linking, and executing the program with argu-

ments sacCer1 and sgdGene, we will obtain a display similar to that in Figure 9.3.

On the other hand, if we obtain an error message when we attempt to create the

database connection, we will need to debug the program. For identifying such con-

nection problems, in addition to the usual C debugging tools (e.g., gdb), it is useful

to turn on the SQL trace function in the UCSC API by defining the environmental

variable with (in Bash)

$ export JKSQL_TRACE=‘on’

The trace tool displays messages for all SQL transactions and can be quite use-

ful for tracking down database connection problems. A part of the display from

JKSQL_TRACE when running ucscDbConnTest is shown in Figure 9.5. When you are

finished using the trace tool, you turn it off with

$ export JKSQL_TRACE=‘off’

If the cause of the database connection problem is still unclear, make sure that you

can access genome-mysql.cse.ucsc.edu by directly using the MySQL program from the

command line as illustrated in Section 4.5. If this fails as well, there is a problem in

your overall MySQL configuration, or perhaps you have a local firewall preventing

remote database access. However, if command-line access is successful, the problem

is in the code and needs to be tracked down with gdb or some similar tool.

9.9.3 UCSC example 3: Intron length comparisons

For our third example, we consider a more realistic application – namely, our now

familiar comparison of lengths among the introns of mammalian genes that contain

embedded snoRNAs that we have previously investigated with both Galaxy and the

Ensembl API. Recall that we wish to compare the median lengths of introns that have

snoRNAs embedded in them and the remaining introns of those snoRNA host genes

(see Section 5.4.6 for a detailed description of this application.) Here we determine

the intron length distributions with a C program using the UCSC database and the

UCSC API.

Let us write the program so that we can execute it with a command similar to

the one we used in the analogous Ensembl program in Chapter 7. We will call this
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program ucscIntronLengths1 and invoke it with three arguments. The first argument

is the genome database to use, the second argument is the name of the database gene

table, and the third argument is the name of a file of (BED) locations, for example:

$ ucscIntronLengths1 hg18 ensGene snoBedFile

Here hg18 is the UCSC database, ensGene is the (Ensembl) gene table to be searched

for genes that may have a snoRNA gene in one of their introns, and snoBedFile is a

BED list of snoRNA gene coordinates in the (hg18) database.

Note that in contrast to our program based on the Ensembl API, with the UCSC

API we need to explicitly specify which gene table to use. For example, with the UCSC

hg18 human genome build, we could use the table for Ensembl genes, UCSC “Known

Genes,” NCBI RefSeq genes, GENSCAN, ACESCAN, or N-SCAN gene predictions, among

others.

9.9.3.1 Program implementation

Code for ucscIntronLengths1 is shown in Figure 9.6. A flowchart of the program

is shown in Figure 9.7. By comparing Figure 9.7 with the ensemblIntronLengths.pl

flowchart in Figure 7.6, we see that the overall strategy of the program is almost

identical to that of the Ensembl implementation. The only difference stems from

the fact that, as described in Section 3.1.2, the UCSC system does not distinguish

/* ucscIntronLengths1 - Intron lengths from public database. */1

/* ucscIntronLengths1 - illustrates accessing data from public UCSC2

* database */3

#include <time.h>4

#include "common.h"5

#include "options.h"6

#include "jksql.h"7

#include "bed.h"8

#include "binRange.h"9

#include "genePred.h"10

#include "genePredReader.h"11

#include "hdb.h"12

13

struct hostGene14

/* hostGene with associated bed records */15

{16

struct hostGene *next; /* Next in singly linked list. */17

struct genePred *hostGp; /* genePred list of overlapping genes */18

struct bed *bedList; /* list of overlapping beds */19

};20

21

22

void usage()23

/* Explain usage and exit. */24

Figure 9.6 Source code for the ucscIntronLengths1 intron lengths distribution program.



{25

errAbort(26

"ucscIntronLengths1 - find median length of introns \n"27

" overlapping ranges in input file\n"28

"usage:\n"29

" ucscIntronLengths1 db dbTable myBedFile\n"30

" where db is the database name \n"31

" where dbTable is tableFileName in ’file’ mode or else\n"32

" name of table to use in ’public’ or ’localDb’ modes \n"33

" where myBedFile is a bed file of genomic ranges \n"34

" Options:\n"35

" -verbose print progress and warning messages\n"36

"\n");37

}38

39

/****************************************/40

void hostGeneHashFree(struct hash **hash)41

/* Free hostGene Hash */42

{43

if (*hash != NULL)44

{45

struct hashEl *hashEl = NULL;46

struct hashCookie cookie = hashFirst(*hash);47

while ((hashEl = hashNext(&cookie)) != NULL)48

{49

struct hostGene *hg = hashEl->val;50

struct bed *hgBedlist = hg->bedList;51

slFreeList(&hgBedlist);52

freez(&hg);53

}54

hashFree(hash);55

}56

}57

58

/****************************************/59

int genePredMostExonsCmp(const void *va, const void *vb)60

/* Compare to sort based on exon count and61

* sizes of txEnd - txStart, most exons first. */62

{63

const struct genePred *a = *((struct genePred **)va);64

const struct genePred *b = *((struct genePred **)vb);65

int dif = b->exonCount - a->exonCount;66

if (dif != 0)67

return dif;68

int lengthA = a->txEnd - a->txStart;69

int lengthB = b->txEnd - b->txStart;70

dif = lengthB - lengthA;71

return dif;72

}73

74

Figure 9.6 (continued)
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/****************************************/75

struct genePred *genePredWithMostExons(struct bed *bed,76

struct sqlConnection *conn, char *geneTable, int *noHostGenePtr)77

{78

boolean verbose = optionExists("verbose");79

int bStart = bed->chromStart; int bEnd = bed->chromEnd;80

struct genePred *gp = NULL;81

if (verbose)82

printf("%s\t%d\t%d\t%s\t%d\t%c\n", bed->chrom, bStart, bEnd,83

bed->name, bed->score, bed->strand[0]);84

/* Create singly-linked list of gene prediction structures */85

gp = genePredReaderLoadRangeQuery(conn, geneTable,86

bed->chrom, bStart, bEnd, NULL);87

if (gp == NULL)88

{89

if (verbose)90

warn("#####No gene found in %s overlapping %s:%d-%d, skipping\n",91

geneTable, bed->chrom, bStart, bEnd);92

*noHostGenePtr += 1;93

return NULL;94

}95

/* Sort the gene structure list by number of exons and keep the96

* structure for gene with most exons*/97

slSort(&gp, genePredMostExonsCmp);98

return gp;99

}100

101

/****************************************/102

boolean oneOverlappingIntron(struct genePred *gp, struct bed *bed,103

int *noHostGenePtr, int *twoIntronPtr)104

/* Check whether exactly one intron overlaps the bed region */105

{106

boolean verbose = optionExists("verbose");107

int i, iStart, iEnd;108

int foundOverlaps = 0; /* Number of introns overlapping bed region */109

for (i=1; i< gp->exonCount; ++i)110

{111

/* For each intron in the gene, calculate its length. */112

iStart = gp->exonEnds[i - 1];113

iEnd = gp->exonStarts[i];114

if (positiveRangeIntersection(bed->chromStart, bed->chromEnd,iStart,iEnd))115

foundOverlaps++;116

}117

if (foundOverlaps == 0)118

{119

if (verbose)120

warn("#####No overlapping intron found in %s %s:%d-%d\n", gp->name,121

bed->chrom, bed->chromStart, bed->chromEnd);122

Figure 9.6 (continued)
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*noHostGenePtr += 1;123

return FALSE;124

}125

if (foundOverlaps > 1)126

{127

if (verbose)128

warn("#####More than 1 overlapping introns found in %s %s:%d-%d\n",129

gp->name, bed->chrom, bed->chromStart, bed->chromEnd);130

*twoIntronPtr += 1;131

return FALSE;132

}133

return TRUE;134

}135

136

137

/****************************************/138

struct hostGene *hostGeneNew(struct genePred *gp)139

/* Create new hostGene struct */140

{141

struct hostGene *hostGene;142

AllocVar(hostGene);143

hostGene->hostGp = gp;144

hostGene->bedList = NULL;145

return hostGene;146

}147

148

/****************************************/149

void hostGeneAddBed(struct hostGene *hg, struct bed *bed)150

/* Add bed to list of overlapping regions */151

{152

struct bed *bedCopy = cloneBed(bed);153

slAddTail(&hg->bedList, bedCopy);154

}155

156

/****************************************/157

struct hash *makeHostGeneHash(struct bed *bedList,158

struct sqlConnection *conn, char *geneTable,159

int *noHostGenePtr, int *twoIntronPtr)160

/* Create hash of structures of host gene genePred and contained161

* bed regions */162

{163

struct bed *bed=NULL;164

struct hostGene *hg = NULL;165

struct hashEl *el;166

struct hash *hostGeneHash = newHash(0);167

struct genePred *gp = NULL;168

for(bed = bedList; bed != NULL; bed = bed->next)169

{170

gp = genePredWithMostExons(bed, conn, geneTable, noHostGenePtr);171

Figure 9.6 (continued)
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if (gp == NULL)172

continue;173

if (!oneOverlappingIntron(gp,bed, noHostGenePtr, twoIntronPtr))174

continue;175

if (hashLookup(hostGeneHash, gp->name) == NULL)176

{177

hg = hostGeneNew(gp);178

hashAdd(hostGeneHash, gp->name, hg);179

}180

hg = hashMustFindVal(hostGeneHash, gp->name);181

hostGeneAddBed(hg, bed);182

}183

return hostGeneHash;184

}185

186

/****************************************/187

boolean overlapsAnyBed(struct bed *bedList, int start, int end)188

/* */189

{190

struct bed *bed;191

for(bed = bedList; bed != NULL; bed = bed->next)192

{193

if (positiveRangeIntersection(bed->chromStart, bed->chromEnd, start, end))194

return TRUE;195

}196

return FALSE;197

}198

199

/****************************************/200

void intronLengthsForOneHostGene(struct hostGene *hostGene,201

struct slDouble **overlapListPtr, struct slDouble **otherListPtr)202

/* For each intron in the gene, calculate its length.203

* Then append the length to a list of the lengths of204

* either the introns that overlap the region specified by the205

* ’bed’ coordinates or the introns that don’t overlap the ’bed’ */206

{207

int i, intronStart, intronEnd;208

struct genePred *gp = hostGene->hostGp;209

struct bed *bedList = hostGene->bedList;210

for (i=1; i< gp->exonCount; ++i)211

{212

intronStart = gp->exonEnds[i - 1];213

intronEnd = gp->exonStarts[i];214

double intronLength = (double) (intronEnd - intronStart);215

struct slDouble *slIntronLength = slDoubleNew(intronLength);216

if (overlapsAnyBed(bedList, intronStart, intronEnd))217

{218

slAddTail(overlapListPtr, slIntronLength);219

}220

Figure 9.6 (continued)
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else221

slAddTail(otherListPtr, slIntronLength);222

}223

}224

225

/****************************************/226

void processBedFile(char *bedFile, struct sqlConnection *conn,227

char *geneTable)228

// char *geneTable, struct hash *gpHash)229

/* Main subroutine loop */230

{231

// List of lengths of introns containing a sno232

struct slDouble *overlapList = NULL;233

// List of lengths of host-gene introns NOT containing a sno234

struct slDouble *otherList = NULL;235

// Count of snos with no host-gene found236

int noHostGeneWithIntron = 0;237

// Count of snos overlapping two introns of host-gene238

int twoIntronOverlapHost = 0;239

struct bed *bedList = bedLoadAll(bedFile);240

struct hostGene *hostGene = NULL;241

struct hash *hostGeneHash = makeHostGeneHash(bedList, conn, geneTable,242

&noHostGeneWithIntron, &twoIntronOverlapHost);243

struct hashEl *el;244

struct hashEl *list = hashElListHash(hostGeneHash);245

for(el=list;el;el=el->next)246

{247

hostGene = el->val;248

intronLengthsForneHostGene(hostGene, &overlapList, &otherList);249

}250

printf("snos with no host gene containing intron = %d\n",noHostGeneWithIntron);251

if (twoIntronOverlapHost !=0)252

printf("Host genes with snos overlapping more than one intron = %d\n",253

twoIntronOverlapHost);254

printf("Host genes found = %d\n", slCount(list));255

printf("Median value of lengths of %d overlapping introns = %f\n",256

slCount(overlapList), slDoubleMedian(overlapList));257

printf("Median value of lengths of %d other introns = %f\n",258

slCount(otherList), slDoubleMedian(otherList));259

hashElFreeList(&list);260

bedFreeList(&bedList);261

hostGeneHashFree(&hostGeneHash);262

slFreeList(&overlapList);263

slFreeList(&otherList);264

}265

266

/****************************************/267

/* ucscIntronLengths1.c */268

Figure 9.6 (continued)
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int main(int argc, char *argv[])269

/* Find median value of lengths of introns overlapping ranges in input file270

* and compare with lengths of other introns in those genes271

* Program reads ’bed fileÕ of genomic regions and272

* extracts longest gene overlapping each region. For each273

* gene, lengths of introns overlapping the region as well274

* as those not overlapping the region are computed. Medians275

* of each set of intron lengths is printed out.276

* Once compiled and linked, the program is run as e.g.:277

ucscIntronLengths1 sacCer1 sgdGene myYeastBedFile278

* where the first argument is the db, the second argument is the name of279

* the db or file gene table and the third program argument is the location280

* file of (bed) locations to be screened for intron lengths,281

*/282

{283

time_t start_time, end_time;284

double diff_time;285

optionHash(&argc, argv);286

char* host = "genome-mysql.cse.ucsc.edu";287

char *user = "genomep";288

char *password = "password";289

char *db = argv[1];290

char *geneTable = argv[2];291

char *bedFile = argv[3];292

if (argc != 4)293

usage();294

start_time = time(NULL);295

struct sqlConnection *conn = NULL;296

conn = sqlConnectRemote(host, user, password, db);297

hSetDbConnect(host, db, user, password);298

processBedFile(bedFile,conn, geneTable);299

sqlDisconnect(&conn);300

end_time = time(NULL);301

diff_time = difftime(end_time, start_time);302

printf("## Elapsed time (secs): %f \n", diff_time);303

return 0;304

}305

306

307

Figure 9.6 (continued)

between “genes” and “transcripts.” In the UCSC system, every transcript corresponds

to a distinct gene. Consequently, whereas to retrieve transcript data with the Ensembl

API we needed to perform two program loops – one to access every gene in a region

and a second to retrieve every transcript of that gene – with the UCSC system, we will

need only a single loop over every “gene.”

Now let us look at the program implementation in more detail. ucscIntron-

Lengths1 consists of a short main program and a number of subroutines that do
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Build hash of host genes

makeHostGeneHash

For each snoRNA
region in bedFile

genePredReaderLoadRangeQuery

Retrieve genePreds for all
genes overlapping region

Select gene with greatest
number of introns

hostGeneAddBedhostGeneNew; hashAdd

Add gene to hashNo
Is gene already in hash?

Yes

Yes

Add region to list associated
with current gene

genePredWithMostExons oneOverlappinglntron

Is gene structure
OK?

Yes

No

Skip region

Calculate lengths of all introns in host genes

process_bedFile

For each intron in geneFor each gene in hash

intronOverlapsAnyBed

Does intron overlap region?

No

Add length to "other" intron list

Add length to host intron list

compute intron length

intronLengthsForOneHostGene

Figure 9.7 Flowchart for the ucscIntronLengths1 program. The top part of the figure shows the

construction of the hash associating host genes with their embedded snoRNAs. The bottom part of

the figure outlines the steps involved in extracting all the host-gene introns and computing their

lengths. The principal steps in the algorithm are indicated by rounded rectangles, with the program

subroutine or UCSC API library function used to implement each step noted outside of the

corresponding rectangle. Note the similarity between this flowchart and the outline of the Ensembl

implementation in Figure 7.6.

most of the work. The main program first reads in the program arguments (lines 290

through 292). Next, in lines 297 through 298, the program creates an SQL connection

to the database (just as in the previous example). Finally, the main program calls the

“processBedFile” subroutine (line 299).

The processBedFile subroutine (lines 227 through 265) is the principal subroutine

of the program. processBedFile first executes the single line (line 240):

bedList = bedLoadAll(bedFile);

which opens the file “bedFile,” converts each line of the file into an element of a singly

linked list of bed C structs (defined in bed.h and shown in Figure 9.8), and finally closes

the file. Next, processBedFile calls makeHostGeneHash (lines 242 and 243) to create

a hash associating each host gene with its embedded snoRNAs, just as we did in the

Ensembl program. Once the host-gene hash has been constructed, the program cycles

through each of the host genes in the hash (lines 246 through 250) and, for each one,

calls the intronLengthsForOneHostGene subroutine to calculate the lengths of the
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struct bed

/* Browser extensible data */

{
struct bed *next; /* Next in singly linked list. */

char *chrom; /* Human chromosome or FPC contig */

unsigned chromStart; /* Start position in chromosome */

unsigned chromEnd; /* End position in chromosome */

char *name; /* Name of item */

/* The following items are not loaded by the bedLoad routines. */

int score; /* Score - 0-1000 */

char strand[2]; /* + or -. */

unsigned thickStart; /* Start of where display should be thick (start

codon for genes) */

unsigned thickEnd; /* End of where display should be thick (stop codon

for genes) */

unsigned itemRgb; /* RGB 8 bits each */

unsigned blockCount; /* Number of blocks. */

int *blockSizes; /* Comma separated list of block sizes. */

int *chromStarts; /* Start positions inside chromosome. Relative to

chromStart*/

};

Figure 9.8 BED C structure. The structure fields are very similar to those used in BED file and table

formats (see Appendix 2, Table A2.1).

gene’s introns. When the loop is completed, the median lengths are computed with

the library function slDoubleMedian. Finally, processBedFile frees its allocated mem-

ory (lines 260 through 264). Explicitly freeing memory is not strictly necessary here

because the program is terminating; however, freeing previously allocated memory

is a good habit.

The subroutine makeHostGeneHash (lines 158 through 185) creates the hash that

associates snoRNAs with host genes. Because C, unlike Perl, does not include hashes

among its fundamental data types, we instead build the hash with library routines

defined in the hash.h file in the kent/src/inc directory. Also, rather than create a

second two-element hash to contain pointers to the associated gene structures and

bed lists, as we did in the Ensembl example (compare with Figure 7.7), we instead

define the hash value to be a new C struct called hostGene and defined in lines 14

through 20. The hostGene struct contains pointers to both the host gene’s genePred

struct as well as to a list of bed structs, one for each snoRNA embedded in the host

gene’s introns.

With these preliminaries, we build the hostGene hash as we did previously in the

Ensembl example. For each bed location, makeHostGeneHash calls the subroutine

genePredWithMostExons in line 171. Subroutine genePredWithMostExons (lines 76

through 100), in turn, first fetches the gene data from the database and stores the

data in a list of genePred structures (lines 86 and 87), one for each of the genes that

overlap the region. Next, genePredWithMostExons selects the overlapping gene with
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the most exons by sorting the gene list in terms of the number of exons and then

returning the initial element of the sorted list (lines 98 and 99).

Next, makeHostGeneHash performs some error-checking by calling the oneOver-

lappingIntron subroutine (lines 174 and 175), which determines whether a “believ-

able” gene structure has been found, that is, by making sure that each snoRNA region

is located within a single intron. If the gene passes the tests, the program checks

whether a hostGene struct already exists for the gene in the hostGene hash. If the

gene is not already in the hash, the subroutine creates a new hostGene struct by calling

hostGeneNew and adds the new hostGene struct to the hostHash (lines 178 and 179).

makeHostGeneHash then calls hostGeneAddBed (lines 181 and 182) to append the

bed struct for the current region to the hostGene structure’s bedList field. Note that

in the subroutine hostGeneAddBed (lines 150 through 155), it is necessary to copy

the entire bed struct using the cloneBed library function (line 153) before appending

the bed to the bedList. This ensures that the “next” pointers in the singly linked list,

bedList, all point appropriately to the next item in the list.

With the host-gene hash created, processBedFile can finally call intronLengths-

ForOneHostGene for each host gene in hostGeneHash (lines 246 through 250) to

implement the second phase of the program. Subroutine intronLengthsForOneHost-

Gene (lines 201 through 224) cycles through the exons of the host gene, computes

the length of each intron by subtraction of exon coordinates, and inserts the length

into an slDouble struct so that the length can be added to a list of lengths (lines 213

through 216). The subroutine then determines whether the intron overlaps any of the

input beds and appends the length to either the linked list overlapList or otherList

using the library routine slAddTail (lines 217 through 223).

9.9.3.2 Running the program

Assuming we have created our program’s makefile by using newProg, we can now

compile and link the program simply by typing “make” at the command line. Once

the program has been compiled and linked, we can try the program out with the

command:

$ ucscIntronLengths1 hg18 ensGene hacaWgRna.hg18.bed

Here hacaWgRna.hg18.bed is our list of known H/ACA snoRNA locations, and we

choose the ensGene table of Ensembl genes to facilitate comparison with our Ensembl

API-based program. The results are

snos with no host gene containing intron = 10

Host genes with snos overlapping more than one intron = 1

Host genes found = 65

Median value of lengths of 86 overlapping introns = 1075.500000

Median value of lengths of of 857 other introns = 928.000000

## Elapsed time (secs): 6.000000
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The results are very similar to those we obtained in Chapter 7 using the Ensembl

API, both in terms of the intron length distributions as well as the presence of the

anomalous cases for which either no host intron is found or the snoRNA overlaps

more than one intron. As we used the same human genome assembly and the same

(Ensembl) set of gene structures, such agreement is not surprising.

However, there are also differences between the UCSC and Ensembl approaches.

First, we notice that the results are not exactly the same. We have found 857 “other”

introns, whereas in Section 7.7.3.3 we found 856. We can determine the cause of

the difference by running each program with fewer snoRNA coordinates in the

input BED file to isolate which input entry is causing the different results. If we

do so, we find that for snoRNA AJ609441, UCSC and Ensembl pick different Ensembl

transcripts (ENST00000255477 versus ENST00000379060, respectively). Checking the

Ensembl web site, we find that “transcript ENST00000255477 is no longer in the

Ensembl database, but it has been mapped to the following deprecated identifiers:

ENST00000379055 ENST00000379060 ENST00000379056.”

Another difference is that with the UCSC database, it is relatively easy to see how

our results are sensitive to our choice of gene-structure annotation. For example, we

can determine the effect of using NCBI RefSeq genes, or UCSC “Known Genes,” or the

results one of several gene structure prediction programs (e.g., GENSCAN or N-SCAN)

rather than the Ensembl gene set. We would simply change the gene-table argument

when executing our program. In contrast, with Ensembl’s API, a “gene” can be only

an Ensembl gene or, if we had queried the ensembl-vega database, a VEGA gene. We

could also use the GENSCAN gene predictions in the Ensembl database; however, this

would require modifying our program to retrieve “Gene Prediction” objects rather

then “Gene” objects from the Ensembl database.

For example, to see the effect of using RefSeq gene annotations on our intron

length distributions, we would run

$ ucscIntronLengths1 hg18 refGene hacaWgRna.hg18.bed

The result is

snos with no host gene containing intron = 26

Host genes found = 58

Median value of lengths of 72 overlapping introns = 958.000000

Median value of lengths of of 752 other introns = 920.000000

## Elapsed time (secs): 19.000000

We see that the median values of the intron length distributions have not changed

greatly. This is not surprising because in many cases, gene predictions and struc-

tures generated by Ensembl and NCBI RefSeq methods are identical. However, we

do notice that the RefSeq gene set includes host genes for sixteen fewer snoRNAs.

On the other hand, the RefSeq set does not include any anomalous host genes like

ENST00000357861, with two introns overlapping a snoRNA. The point here is not
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that one gene data set is better than another; rather, it is that with genomic data, it

is often helpful to check more than one annotation method.

The Ensembl API and UCSC API-based programs also differ in execution times.

Using each program with its associated public mirror database, the UCSC-based C

program required 6 seconds, whereas the Ensembl-based Perl program required 219

seconds. Admittedly, this is just a single program benchmark, and there are other

factors that may contribute to this result. For example, the Ensembl public mirror

may have been more heavily accessed than the UCSC mirror at the times the test

programs were being run, and the tests were run from California (which is closer

to the UCSC mirror than to the Ensembl mirror). That said, the almost forty-fold

difference in performance is probably not entirely the result of such outside factors,

and consequently, if one has a computation-intensive application, it may useful to

consider execution time differences in deciding how one wants to implement a

genome-database querying program.

Chapter summary

� The UCSC API includes stand-alone utilities and C language library functions

addressing a wide variety of bioinformatics and general data-processing tasks.
� Essentially, any data manipulation that can be performed by the UCSC Genome

Browser can be carried out programmatically with code from the UCSC API.
� Identifying which library functions and C structures one needs to use is often the

crucial step in using the UCSC API, and can generally be accomplished by applying

the grep utility to the source code tree.
� The UCSC core software is free for all uses; UCSC’s database access and other

specialized software are free for academic and research use but require licensing

for commercial applications.

Exercises

Note that you will need to have the UCSC API and the MySQL client software installed

to complete these exercises.

1. Find the code for the C structures and functions used to access the main “repeat”

table in the UCSC databases. Write a program to read a set of BED regions and

return a list of repeats that overlap each region that indicates the type of repeat

and start and end coordinates for each one. The program should work for either

the human, mouse, rat, or chicken genomes. Test the program against the public

UCSC mirror database.

2. Modify the intron lengths program so that it selects the longest gene transcript

as the representative gene rather than the transcript with the largest number of

introns. Run the program with the hacaWgRna.hg18.bed dataset.
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3. Write a program to read a list of BED regions and a UCSC database name (e.g.,

hg18) and output a list of the SwissProt protein IDs for each gene overlapping each

region. This program should work for (at least) both the UCSC human and yeast

genome databases.

4. Write a C program using the UCSC API to search for NMD candidates. Run the

program against the human Ensembl gene set as well as against the human RefSeq

gene set. Compare the percentage of genes that are NMD candidates in the two

datasets. Are the results similar in mouse?



10

More Advanced Applications Using
the UCSC API

In the present chapter, we continue our description of the UCSC API and its appli-

cation in programmed querying of the UCSC databases. In particular, we consider

applications for which database access via the public UCSC mirror is insufficient or

inconvenient, and describe alternative methods for accessing the UCSC databases.

For each method, we detail the steps required and the relative advantages and disad-

vantages of the approach. We also present three complete programming examples

illustrating each of these methods. Finally, we describe the procedure for mirroring

all or part of a UCSC database.

10.1 Alternate methods for accessing the UCSC databases

In Chapter 8, we noted that there are reasons – for example, performance, data

security, or the need to customize a database – why one might want to create a private,

local mirror of one or more of the Ensembl databases. We noted that this was true,

despite the fact that any program written using the Ensembl API works equally well

with the Ensembl public database as with a private mirror (aside from issues relating

to program execution speed).

Performance, security, and customization considerations may also lead one to

want to install a local mirror of one or more of the UCSC genome databases. However,

in the case of the UCSC databases, there is an additional reason for not relying exclu-

sively on the UCSC public mirror. The reason is that although most code developed

with the UCSC API will run properly on the UCSC public mirror, there is one impor-

tant exception. The issue is that remote public access to genome-mysql.cse.ucsc.edu

is via the MySQL client-server interface. Consequently, remote users can only access

data that is explicitly stored within the MySQL databases. However, in the UCSC

system, some commonly used data, such as sequence-alignment data and genomic

and GenBank sequence data, are stored in auxiliary flat files and not in the MySQL

databases. (A schematic view of the UCSC database architecture is shown in Fig-

ure 10.1.) Because sequence and alignment data can only be accessed locally, these

data cannot be retrieved via the UCSC public mirror.

178
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UCSC MySQL Relational Databases

hg18

hg18hg17

go

uniProt

proteome

hgFixed

mm9

mm8

dm3

seqs and MAFs

hg17 seqs and MAFs

GenBank records

UCSC Auxiliary Files

mm9 seqs and MAFs

mm8 seqs and MAFs

droSim1

sacCer1

Figure 10.1 Highly simplified schematic overview of the UCSC database architecture. The UCSC

architecture includes both multiple MySQL databases, shown on the left side of the figure, and

multiple auxiliary flat-file databases, outlined on the right. The MySQL databases include a separate

database corresponding to each species’ genome assembly covered by the system. These databases

are labeled by the corresponding UCSC database-build ID (hg18, hg17, hg16 . . . for human; mm9,

mm8, mm7 for mouse; etc.). In addition there are MySQL databases that are shared among multiple

species, such as the GO, UniProt, and proteome databases. Genomic sequences and multiple

sequence alignments corresponding to each build are stored in a flat-file subdirectory of the /gbdb

directory (e.g., /gbdb/hg18/nib for human genomic sequences and /gbdb/hg18/multiz17way for

human MAF alignments). Other flat-file data, such as GenBank and Visigene data, are stored in

separate /gbdb subdirectories.

To address these issues, there are essentially three distinct (though related) means

for accessing the data in the UCSC databases without relying on the public mirror.

The first method involves downloading individual database tables as flat files and

subsequently reading the flat files directly into one’s application programs. The sec-

ond approach involves downloading one, or a few, database tables or auxiliary flat

files from the UCSC databases and then installing them into a skeleton UCSC mir-

ror. Finally, one may decide to mirror an entire UCSC database (e.g., hg18), or even

multiple UCSC databases. We now describe each of these approaches in more detail.1

1 For completeness, there is yet one other method, namely, via a web robot or “bot.” A bot is

a computer program that sends requests to an interactive web resource and processes the
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10.2 Using flat files containing individual tables

If one only needs data from one or a few database tables, one option is to simply down-

load the needed tables. For the UCSC databases, the individual tables can be down-

loaded using either the Table Browser, the UCSC FTP site (e.g., http://hgdownload.

cse.ucsc.edu/goldenPath/hg18/database), or the UCSC DAS interface.

Once the UCSC table data have been downloaded, the data files can be read directly

into computer memory by one’s application program. If the tables are stored in one of

the common UCSC table formats, such as BED, PSL, genePred, or MAF, reading the flat

files in this manner can be accomplished easily using the library functions and subrou-

tines available in the UCSC API for this purpose. In fact, in the last chapter, we already

used one such function, bedLoadAll, which read a flat file in BED format and converted

it into a singly linked list of bed C structures (line 240 in Figure 9.6). Similarly, in

the next example, the library function genePredLoad (defined in hg/inc/genePred.h)

is used to read a line in a data file in genePred format and convert it into a genePred

C structure. In this way, the application program can access the data in one or more

UCSC database tables without having to directly connect to any database at all.

10.2.1 UCSC example 4: Intron lengths using three data sources

We now illustrate the flat file, table-access approach (as well as the local mirror

database access method) with the program ucscIntronLengths2. This program has the

same purpose as ucscIntronLengths1, which we examined in the previous chapter,

and is implemented with largely the same code. However, with ucscIntronLengths2,

we can access the required gene table data in any one of three ways – via the public

database (as in Chapter 9), via a downloaded flat file version of the table data, or via

a local mirror.

The program is called in a manner similar to ucscIntronLengths1, except that now

there is one more program argument, the “method,” which can be “public,” “file,” or

“localDb.” That is, one calls the program using one of these three commands:

1. Using the public UCSC mirror

$ ucscIntronLengths2 hg18 ensGene hacaWgRna.hg18.bed public

2. Using a private mirror

$ ucscIntronLengths2 hg18 ensGene hacaWgRna.hg18.bed localDb

responses automatically as well. The requests are transmitted as though they were coming

from a person using the web interface (in our case, a genome browser). In principle, a bot could

be written to automate any task that is performed interactively by human biologists. However,

the genome browsers have not been designed to handle the volume of queries generated by

bots and, for this reason, are generally configured to deny service to Internet requests that they

determine are coming from bots. Consequently, in practice, bots are not a feasible means for

establishing programmatic access to a genome database.
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3. Using a downloaded gene table

$ucscIntronLengths2hg18ensGene.hg18.txt \
hacaWgRna.hg18.bed file

As in example 3 in Chapter 9, hacaWgRna.hg18.bed is the list of snoRNA locations.

Also, when using either the public or local database access methods, the second

program argument (e.g., ensGene) is the name of the database table to use. However,

if the “file” method is selected, the second program argument is the name of a file

that contains the downloaded data from the required table (e.g., ensGene.hg18.txt).

Of course, using the “file” method assumes that the required file with the gene table

data has previously been downloaded, for example, with the Table Browser. Similarly,

using the localDb method only works if one has installed a private mirror of at least

part of the specified UCSC database (in this case, at least the ensGene table of the

hg18 database).

10.2.1.1 Program implementation

Since most of the implementation of ucscIntronLengths2 is identical to ucscIntron-

Lengths1, we will not repeat the analysis of the entire program here. Rather, we will

just describe the new parts of the program necessary to implement the additional

data-input features. The flowchart of ucscIntronLengths2 is essentially the same as

that for ucscIntronLengths1, shown in Figure 9.7. The only difference is in the imple-

mentation of the “Retrieve genePreds for all genes overlapping region” box in the

flowchart. In ucscIntronLengths1, this step is implemented exclusively by accessing

the UCSC public database. In contrast, in ucscIntronLengths2 the genePred retrieval

is implemented in one of three ways, depending on whether the “method” option

has been set to “public,” “file,” or “localDb.”

Let us now look at the differences between ucscIntronLengths1 and ucscIntron-

Lengths2 in more detail. (The modified and new subroutines are shown in Figure 10.2

and the entire program is available from the publisher’s web site for the book.)

The first difference is in the ucscIntronLengths2 main program, where we see (Fig-

ure 10.2a, lines 18 through 29)

if (sameWord(method, "file"))

gpHash = readGpToBinKeeper(geneTable);

else

{
if (sameWord(method, "public"))

{
conn = sqlConnectRemote(host, user, password, db);

hSetDbConnect(host, db, user, password);

}
else

conn = sqlConnect(db);

}
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int main(int argc, char *argv[])1

{2

time_t start_time, end_time;3

double diff_time;4

optionHash(&argc, argv);5

char* host = "genome-mysql.cse.ucsc.edu";6

char *user = "genomep";7

char *password = "password";8

char *db = argv[1];9

char *geneTable = argv[2];10

char *bedFile = argv[3];11

char *method = argv[4];12

if (argc != 5)13

usage();14

start_time = time(NULL);15

struct sqlConnection *conn = NULL;16

struct hash *gpHash = NULL;17

if (sameWord(method, "file"))18

gpHash = readGpToBinKeeper(geneTable);19

else20

{21

if (sameWord(method, "public"))22

{23

conn = sqlConnectRemote(host, user, password, db);24

hSetDbConnect(host, db, user, password);25

}26

else27

conn = sqlConnect(db);28

}29

processBedFile(bedFile,conn, geneTable, gpHash);30

sqlDisconnect(&conn);31

binKeeperGpHashFree(&gpHash);32

end_time = time(NULL);33

diff_time = difftime(end_time, start_time);34

printf("## Elapsed time (secs): %f \n", diff_time);35

return 0;36

}37

Figure 10.2 Main program of ucscIntronLengths2 and ucscIntronLengths2 subroutines, which

differ from corresponding subroutines in the ucscIntronLengths1 program. (a) Main program. (b)

Subroutine genePredWithMostExons. (c) Subroutine readGpToBinKeeper, which reads the file

containing gene data into a hash of binKeeper structures. (d) Subroutine bkToGenePreds, which

extracts gene data from the binKeeper-structure hash to a list of genePred structures. For a program

flowchart and listing of other subroutines, see Figures 9.6 and 9.7. Only the implementation of the

“Retrieve genePreds for all genes overlapping region” step is changed from the ucscIntronLengths1

flowchart in Figure 9.7. See text for details.
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struct genePred *genePredWithMostExons(struct bed *bed,1

struct sqlConnection *conn, char *geneTable,2

struct hash *gpHash, int *noHostGeneWithIntronPtr)3

{4

boolean verbose = optionExists("verbose");5

int bStart = bed->chromStart; int bEnd = bed->chromEnd;6

struct genePred *gp = NULL;7

if (verbose)8

printf("%s\t%d\t%d\t%s\t%d\t%c\n", bed->chrom, bStart, bEnd,9

bed->name, bed->score, bed->strand[0]);10

/* Create singly-linked list of gene prediction structures11

* from either mySQL database or in-memory hash loaded from12

* flat-file */13

if (gpHash == NULL)14

gp = genePredReaderLoadRangeQuery(conn, geneTable,15

bed->chrom, bStart, bEnd, NULL);16

else17

gp = bkToGenePreds(gpHash, bed->chrom, bStart, bEnd);18

if (gp == NULL)19

{20

if (verbose)21

warn("#####No gene found in %s overlapping %s:%d-%d, skipping\n",22

geneTable, bed->chrom, bStart, bEnd);23

*noHostGeneWithIntronPtr += 1;24

return NULL;25

}26

/* Sort the gene structure list by number of exons and keep the27

* structure for gene with most exons*/28

slSort(&gp, genePredMostExonsCmp);29

return gp;30

}31

32

Figure 10.2 (b)

We see that if the “method” is “public,”2 a database connection is established to the

public database, exactly as in ucscIntronLengths1. If the method is “file,” the gene

data is read from the file “geneTable” into memory using the subroutine readGpTo-

BinKeeper, which we will describe shortly. Finally, if the method is neither “public”

nor “file,” we connect to the local database using the command:

conn = sqlConnect(db);

Note that sqlConnect automatically determines the correct MySQL arguments from

the user’s configuration file (called .hg.conf). Later in this chapter, we describe how

this configuration file is created as part of the local mirror database installation.

2 For the string comparison, we apply the useful “sameWord” library function, defined in

kent/source/inc/common.h.
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struct hash *readGpToBinKeeper(char *gpFileName)1

/* adapted from readPslToBinKeeper in psl.c */2

{3

#define MAX_CHROM_SIZE 4000000004

struct binKeeper *bk;5

struct genePred *gp;6

struct lineFile *pf = lineFileOpen(gpFileName , TRUE);7

struct hash *hash = newHash(0);8

char *row[21] ;9

int genePredLineCtMin = 10;10

while (lineFileNextRow(pf, row, genePredLineCtMin))11

{12

gp = genePredLoad(row);13

if (hashLookup(hash, gp->chrom) == NULL)14

{15

bk = binKeeperNew(0, MAX_CHROM_SIZE);16

hashAdd(hash, gp->chrom, bk);17

}18

bk = hashMustFindVal(hash, gp->chrom);19

binKeeperAdd(bk, gp->txStart, gp->txEnd, gp);20

}21

lineFileClose(&pf);22

return hash;23

}24

Figure 10.2 (c)

/****************************************/1

struct genePred *bkToGenePreds(struct hash *gpHash,2

char *chrom, int start, int end)3

/* Retrieve all genePreds from binkeeper overlapping region */4

{5

struct genePred *gpList = NULL;6

struct genePred *gp;7

struct binKeeper *bk = hashFindVal(gpHash, chrom);8

struct binElement *el, *elist = binKeeperFind(bk, start, end) ;9

for (el = elist; el != NULL ; el = el->next)10

{11

gp = el->val;12

if (gp != NULL)13

{14

slSafeAddHead(&gpList, gp);15

}16

}17

slFreeList(&elist);18

return gpList;19

}20

Figure 10.2 (d)



More Advanced Applications Using the UCSC API 185

The main program then calls the principal subroutine, processBedFile (Figure 10.2a,

line 30), passing it both “conn” (which contains a pointer to the database-connection

structure, if we are using local or public database access) and “gpHash” (which points

to a hash structure containing the gene table data, if we are in “file” mode).

Subroutine processBedFile handles the BED file of snoRNA locations in exactly

the same manner as in ucscIntronLengths1, with one exception – the subroutine

makeHostGeneHash is passed one additional parameter, gpHash, the pointer to the

gene data hash (compare with Figure 9.6, lines 242 and 243):

hostGeneHash = makeHostGeneHash(bedList, conn, geneTable,

gpHash, &noHostGeneWithIntron, &twoIntronOverlapHost);

In turn, makeHostGeneHash is also almost identical to the subroutine of the same

name in ucscIntronLengths1. The sole difference is that the subroutine genePredWith-

MostExons, which returns a genePred structure for the overlapping transcript with

the most exons, is also called with one additional argument, gpHash (see Figure 9.6,

line 171, for comparison):

gp = genePredWithMostExons(bed, conn, geneTable, gpHash,

noHostGeneWithIntronPtr);

Finally, in the genePredWithMostExons subroutine, we see the following code (Fig-

ure 10.2b, lines 14 through 18):

if (gpHash == NULL)

gp = genePredReaderLoadRangeQuery(conn, geneTable,

bed->chrom, bStart, bEnd, NULL);

else

gp = bkToGenePreds(gpHash, bed->chrom, bStart, bEnd);

If gpHash was set to “NULL” in the main program, we connect to a database and we

retrieve the gene data directly from the database via the call to genePredReaderLoad-

RangeQuery, just as in ucscIntronLengths1. However, depending on the data stored

in the “conn” data structure, here we may be accessing either the public database or

a local mirror.

In contrast, if gpHash is not “NULL,” we are in “file” mode. In this case, the program

needs to retrieve the gene data from the gpHash structure using the new subroutine

bkToGenePreds. Once the gene data has been retrieved as a list of genePred struc-

tures pointed to by the variable “gp” by one of these methods, the remainder of the

ucscIntronLengths2 is identical to ucscIntronLengths1.

The only new subroutines3 are readGpToBinKeeper (Figure 10.2c) and bkTo-

GenePreds (Figure 10.2d) for reading the gene file into a data structure (gpHash)

and then for extracting data from that structure, respectively. The point is that with

3 There is also a third new routine, binKeeperGpHashFree, which simply frees the gpHash data

structure at the end of program execution, as shown in Figure 10.2a, line 32.
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struct binElement

/* An element in a bin. */

{
struct binElement *next;

int start, end; /* 0 based, half open range */

void *val; /* Actual bin item. */

};
struct binKeeper

/* This keeps things in bins in memory */

{
struct binKeeper *next;

int minPos; /* Minimum position to bin. */

int maxPos; /* Maximum position to bin. */

int binCount; /* Count of bins. */

struct binElement **binLists; /* A list for each bin. */

};

Figure 10.3 UCSC data structures, defined in binRange.h, used to build a binKeeperHash struct. The

binKeeperHash itself is a hash whose keys are chromosome IDs and whose values are pointers to

binKeeper structs that store the gene data for the corresponding chromosome.

the “file” method, we need have a way to load an entire gene data table (e.g., the

Ensembl gene table or the RefSeq table) into memory and then to efficiently retrieve

records that overlap a specified genomic region.

Developing an efficient data retrieval method, keyed on chromosomal location, is

actually a nontrivial programming exercise. However, the kent code has a ready-made

solution in the form of the binKeeperHash structure. The binKeeperHash structure,

of which gpHash is an example, is a two-level data structure in which the top level is

a simple hash in which the keys are chromosome names. The values of the hash are

pointers to the structures at the second level, called binKeeper structures. This data

structure segments each chromosome into numerous “bins,” and data associated with

any specific genomic coordinate range are stored in the smallest bin that completely

contains the specified region. This implementation enables very fast data retrieval.

The kent code structs that are used to build a binKeeperHash are shown in Figure 10.3

and are defined in binRange.h in $KENTSRC/inc.

However, the important point is that we do not need to understand the details of

the binKeeper implementation to take advantage of its capabilities. Rather, because

reading files into, and accessing records from, hashes and binKeeper structs are

functions that the UCSC system does already, writing the necessary subroutines is just

a matter of finding these routines in the kent code and copying or modifying them

to perform the tasks we need. In particular, the UCSC subroutine pslToBinKeeper

(which is found in $KENTSRC/lib/psl.c) reads PSL-formatted alignments from a file
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into a binKeeperHash of psl C structs, and contains code very similar to what we need.

Modifying pslToBinKeeper into our subroutine readGpToBinKeeper (Figure 10.2c), so

that we can read in genePred data rather than PSL data, just involves replacing the psl

data-loading functions and psl structures with the corresponding genePred functions

and structures.

The data-retrieval subroutine bkToGenePreds performs the reverse operation –

retrieving a list of genePred structs for all the genes in a specified genomic region

from the binKeeperHash struct. bkToGenePreds performs this data retrieval by first

finding the binKeeper structure corresponding to the specified chromosome in the

binKeeperHash struct (Figure 10.2d, line 8). The subroutine then retrieves from the

binKeeper struct a linked list of the binElement structures that overlap the specified

coordinates, that is, binElement structs for each of the genes in the region (line 9).

Finally, the list of binElement structs are converted into a list of genePred structs

(lines 10 through 17) and returned to the calling program (line 19). By now, the

linked list looping syntax should be familiar and, in any case, by using grep with the

keyword “binKeeperFind,” we can find several examples in the kent code with correct

syntax to copy.

10.2.1.2 Running the program

If we have a file of downloaded gene table data (such a file for the hg18 ensGene

table is included among the files for the book on the publisher’s web site), we can

now execute the program ucscIntronLengths2 in “file” mode. If we have installed a

skeleton hg18 mirror database – consisting of the single table, ensGene (as described

in Section 10.3) – we can also test the program in “localDb” mode. We carry out these

tests by using the commands shown at the beginning of Section 10.2.1. Performing

these tests, we will find that with all three methods, we obtain the same result that

we obtained with ucscIntronLengths1 in Section 9.9.3.2 (except, of course, for the

execution times.)

10.3 Using a skeleton database

As we have already noted, there are some important applications of the UCSC API for

which neither the method of public database access nor that of downloading MySQL

tables as files is sufficient. These applications include ones in which one needs to

access sequence data, such as genome sequences, mRNA/EST sequences, or sequence

alignments. For these applications, we need to locally mirror a “skeleton” of one of

the UCSC databases, consisting of, at a minimum, one of the UCSC auxiliary data

files. In our final two examples using the UCSC API, we illustrate this approach. In

the examples, we will assume that the installation of the required skeleton mirror

has been completed, deferring the description of the installation procedure to the

end of the chapter.



188 Genomes, Browsers, and Databases

10.3.1 UCSC example5: Displaying local multiple-sequence alignments

For our next example program, mafWriteRegions, we revisit the task of displaying

multiple alignments that overlap a set of genomic regions, which we previously

addressed using Galaxy and Ensembl. We will assume that we have a local mirror of

the hg18 database, including at least the auxiliary MAF files located at /gbdb/hg18, as

well as the hg18 MySQL database with the MAF index table, multiz17way. Note that

you will need an understanding of UCSC’s MAF file and table formats, described in

Appendices 2 and 3, for this example.

The program, mafWriteRegions, takes a set of genomic regions and, for each

region, retrieves all MSAs that overlap at least a part of the region. For those align-

ments that meet minimum alignment-score and alignment-length cutoffs, the pro-

gram outputs the part of the alignment that overlaps the input coordinates either as

an alignment (in MAF format) or as a set of individual sequences (in FASTA format).

mafWriteRegions’ functionality is similar to that of the ensemblComparaExam-

ple.pl from Section 8.1.1. However, since we are using the UCSC databases rather than

Ensembl’s, the set of species included in the MSAs will be different and, in addition,

different alignment algorithms will be used (MULTIZ with UCSC versus PECAN with

Ensembl). We note that as with the Ensembl program, it would be straightforward to

modify mafWriteRegions to perform additional analyses on the retrieved alignments,

such as determining the alignment consensus sequence or counting the number of

the sequences having the consensus nucleotide at a specified position.

We will execute our program with the command:

$ mafWriteRegions [options] hg18 multiz17way regionLocations.bed outFile

Here hg18 is the species database we are using, multiz17way is the name of the MAF

index table to use, regionLocations.bed is a BED file containing a list of the genomic

regions for which we want alignments, and outFile is the desired destination of the

program output. The program includes several options, including ones to change

the minimum alignment length and score necessary to display the alignment and

options selecting whether the output format should be FASTA or MAF.

10.3.1.1 Program implementation

The code for the mafWriteRegions program is shown in Figure 10.4 and a flowchart

is shown in Figure 10.5. The basic approach for accessing and displaying alignments

in mafWriteRegions is similar to ensemblComparaExample.pl, as can be seen by

comparing Figures 8.3b and 10.5. However, one important difference in the imple-

mentations stems from the fact that UCSC stores all data for MSAs in the database

of the “query” species. For example, even if we want to access alignments for six-

teen vertebrate genomes to the human genome, we only need to access a single

UCSC genome database (in this case, the human genome database). mafWriteRegions

retrieves the alignment data in the form of C data structures. Specifically, the UCSC
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/* mafWriteRegions - write all maf alignments in specified region. */1

/* mafWriteRegions takes a list of genomic regions in BED format and2

* for each one retrieves all overlapping alignments */3

4

#include "common.h"5

#include "linefile.h"6

#include "hash.h"7

#include "options.h"8

#include "hdb.h"9

#include "maf.h"10

#include "fa.h"11

12

void usage()13

/* Explain usage and exit. */14

{15

errAbort(16

"mafWriteRegions - write all maf alignments in multiple specified regions\n"17

"usage:\n"18

" mafWriteRegions db table bedFile mafOutputFilename\n"19

"options:\n"20

" -public use public ucsc mirror for relational data\n"21

" (maf data **MUST** still be local)\n"22

" -hitAny output all of maf if any of it overlaps specified region\n"23

" (default is to output intersection region only) \n"24

" -fasta output fasta files (default is maf file)\n"25

" -minLen=integer minimum length of intersected aligned seq \n"26

" (ie including dashes) to output\n"27

" -minScore=integer minimum score of intersected alignment to output\n"28

" -outDb=outDbID used with -fasta to specify which species seq to output\n"29

" (default is to output all species) \n"30

" maf alignments are loaded using coordinates from the positive (W) strand\n"31

"eg mafWriteRegions hg18 multiz17way myBedFile stdout\n"32

"or mafWriteRegions -fasta -outDb=mm8 hg18 multiz17way myBedFile stdout\n"33

);34

}35

/**********Globals************/36

time_t start_time, end_time;37

double diff_time;38

static struct optionSpec options[] = {39

{NULL, 0},40

};41

/****************************************/42

void removeDashes(char *out, char *in, int size)43

/* removeDashes - copy size non-dash characters from in to out,44

* skipping dashes and zero terminating */45

{46

int count = size;47

Figure 10.4 Source code of the mafWriteRegions program for displaying a multiple-sequence

alignment using the UCSC API.
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while (count > 0)48

{49

if (*in != ’-’)50

{51

*out++ = *in;52

count--;53

}54

in++;55

}56

*out = ’\0’;57

}58

/****************************************/59

void mafWriteComponentFa(FILE *f, struct mafComp *mc)60

/* mafWriteComponentFa - write component sequence of maf alignment61

* in fasta, trimming dashes */62

{63

char buf[512];64

char *s = needMem(mc->size + 1);65

removeDashes(s, mc->text, mc->size);66

sprintf(buf, "%s:%d:%d:%c", mc->src, mc->start, mc->size, mc->strand);67

faWriteNext(f, buf, s, mc->size);68

freez(&s);69

}70

/****************************************/71

void mafWriteAllFa(FILE *f, struct mafAli *ali)72

/* mafWriteAllFa - write all components of maf alignment in fasta,73

* trimming dashes */74

{75

struct mafComp *mc;76

for (mc = ali->components; mc != NULL; mc = mc->next)77

mafWriteComponentFa(f, mc) ;78

mafCompFree(&mc);79

}80

/****************************************/81

struct mafComp *mafMayFindDbComponent(struct mafAli *ali, char *dbName)82

/* Find component of given source with specified dbName or NULL if not found.*/83

{84

struct mafComp *mc;85

for (mc = ali->components; mc != NULL; mc = mc->next)86

{87

if ( startsWith(dbName, mc->src) )88

return mc;89

}90

return NULL;91

}92

/****************************************/93

void mafWriteGeneric(FILE *f, struct mafAli *ali)94

/* mafWriteGeneric - output alignment data either as maf or fasta */95

Figure 10.4 (continued)
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{96

char *outDb;97

struct mafComp *mc;98

99

outDb = optionVal("outDb", "all");100

if (!optionExists("fasta"))101

mafWrite(f, ali);102

else if (sameWord(outDb, "all") )103

mafWriteAllFa(f, ali);104

else105

{106

mc = mafMayFindDbComponent(ali, outDb );107

if (mc)108

mafWriteComponentFa(f, mc);109

}110

}111

/****************************************/112

void mafWriteSubset(FILE *f, struct mafAli *ali,113

char *dbChrom, int start, int end)114

/* mafWriteSubset - write intersecting subset of single maf alignment */115

{116

int minLen = optionInt("minLen", 0);117

int minScore = optionInt("minScore", 0);118

119

struct mafAli *subset = mafSubset(ali, dbChrom, start, end);120

if (subset == NULL)121

return;122

if ( (minLen != 0) && (subset->textSize < minLen) )123

{124

mafAliFree(&subset);125

return;126

}127

subset->score = mafScoreMultiz(subset);128

if ( (minScore != 0) && (subset->score < minScore) )129

{130

mafAliFree(&subset);131

return;132

}133

mafWriteGeneric(f, subset);134

mafAliFree(&subset);135

}136

137

/****************************************/138

void mafWriteOneRegion(char *db, struct sqlConnection *conn, char *table,139

char *chrom, int start, int end, FILE *f)140

/* mafWriteRegions - write all maf alignments in specified region. */141

{142

char dbChrom[64];143

Figure 10.4 (continued)
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struct mafAli *ali, *mafList;144

if (start >= end)145

errAbort("Start %d greater than end %d in bedFile\n", start, end);146

mafList = mafLoadInRegion(conn, table, chrom, start, end);147

if (!optionExists("fasta"))148

mafWriteStart(f, "multiz");149

for (ali = mafList; ali != NULL; ali = ali->next)150

{151

if (optionExists("fasta"))152

{153

mafWriteGeneric(f, ali); /* Write full alignment to file. */154

}155

else156

{157

safef(dbChrom, sizeof(dbChrom), "%s.%s", db, chrom);158

/* Write maf of intersection to file. */159

mafWriteSubset(f, ali, dbChrom, start, end);160

}161

}162

mafAliFreeList(&mafList);163

}164

165

/****************************************/166

void mafWriteRegions(char *db, char *table, char *bedFile, char *outName)167

/* Read file and process */168

{169

FILE *f = mustOpen(outName, "w");170

struct sqlConnection *conn = NULL;171

if (optionExists("public"))172

{173

char *host = "genome-mysql.cse.ucsc.edu";174

char *user = "genomep";175

char *password = "password";176

hSetDbConnect(host, db, user, password);177

conn = sqlConnectRemote(host, user, password, db);178

}179

else180

conn = sqlConnect(db);181

struct bed *bedList=NULL, *bed=NULL;182

bedList = bedLoadAll(bedFile);183

for(bed = bedList; bed != NULL; bed = bed->next)184

{185

mafWriteOneRegion(db, conn, table, bed->chrom, bed->chromStart,186

bed->chromEnd, f);187

}188

bedFreeList(&bedList);189

if (!optionExists("fasta"))190

mafWriteEnd(f);191

Figure 10.4 (continued)
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carefulClose(&f);192

sqlDisconnect(&conn);193

end_time = time(NULL);194

diff_time = difftime(end_time, start_time);195

printf("## Elapsed time (secs): %f \n", diff_time);196

}197

198

/****************************************/199

int main(int argc, char *argv[])200

/* Process command line. */201

{202

optionHash(&argc, argv);203

start_time = time(NULL);204

if (argc != 5)205

usage();206

mafWriteRegions(argv[1], argv[2], argv[3], argv[4]);207

return 0;208

}209

210

Figure 10.4 (continued)
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Figure 10.5 Flowchart for the mafWriteRegions program. Principal steps in the algorithm are

indicated by rounded rectangles, with the program subroutine or UCSC API library function used to

implement each step noted outside of the corresponding program block. The MAF data retrieval

step assumes that the necessary tables and auxiliary files have been mirrored locally.

API uses mafAli C structures for storing an entire MAF alignment and mafComp C

structures for storing a single component (i.e., a single sequence) of the alignment.

These C structures are defined in inc/maf.h and are illustrated in Figure 10.6. We

note that, as usual, these structures are defined with “next” pointer fields, enabling

mafAli and mafComp structs to be concatenated together as singly linked lists.

Using these structures, the program is implemented as follows. After processing

the command-line options, the main program calls subroutine mafWriteRegions.
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struct mafComp

/* A component of a multiple alignment. */

{
struct mafComp *next;

char *src; /* Name of sequence source. */

int srcSize; /* Size of sequence source. */

char strand; /* Strand of sequence. Either + or -*/

int start; /* Start within sequence. Zero based. If strand is - is

relative to src end. */

int size; /* Size in sequence (does not include dashes). */

char *text; /* The sequence including dashes. */

char leftStatus; /* the syntenic status of the alignment before us */

int leftLen; /* length related information for the previous

alignment */

char rightStatus; /* the syntenic status of the alignment after us */

int rightLen; /* length related information for the following

alignment */

};
struct mafAli

/* A multiple alignment. */

{
struct mafAli *next;

double score; /* Score. Meaning depends on mafFile.scoring.

0.0 if no scoring. */

struct mafComp *components; /* List of components of alignment */

int textSize; /* Size of text in each component. */

};

Figure 10.6 C structs for multiple-alignment files (MAFs). The mafAli struct corresponds to a single

alignment and simply stores the score and number of characters in each sequence of the alignment,

along with pointers to a list of the sequence components in the alignment and to the (optional)

next alignment in a list of alignments. The mafComp struct stores the data for each sequence in the

alignment. Note that in contrast to bed, psl, and genePred structs – which use formats that are very

similar to BED, PSL, and genePred file and table formats – mafAli amd mafComp structs have quite

different formats from the MAF file and table formats described in Sections A2.4 and A3.3,

respectively. Note that the leftStatus, leftLen, rightStatus, and rightLen fields are not needed by

most applications.

Subroutine mafWriteRegions begins by setting up a connection to the database at

line 181.4 mafWriteRegions then reads in the entire BED file (line 183) and for each

region in the BED file, the program calls the subroutine mafWriteOneRegion, at

lines 186 and 187. The mafWriteOneRegion subroutine (lines 139 through 164) first

loads all the alignments that overlap each region of interest into a linked list of

mafAli structures (at line 147) using the mafLoadInRegion library function (defined

in hg/inc/hdb.h):

mafList = mafLoadInRegion(conn, table, chrom, start, end);

4 At this point, we are assuming that the program has been called without the -public option.
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mafWriteOneRegion then checks whether FASTA or MAF output is requested (lines

148 and 152). For FASTA output, mafWriteOneRegion calls mafWriteGeneric at line

154, which writes the entire alignment as a set of FASTA sequences using the

faWriteNext library function (defined in inc/fa.h), at line 68 in subroutine mafWrite-

ComponentFa.

On the other hand, for MAF output, mafWriteOneRegion truncates the align-

ment to the size of the region5 and then outputs the truncated alignment as a MAF

file. mafWriteOneRegion performs these tasks by first concatenating the “db” and

“chrom” strings using the UCSC safef library function6 defined in inc/common.h

(line 158). This is necessary because the mafSubset library function, which truncates

the alignment (at line 120) requires the database and chromosome information as

a concatenated string. Finally, mafWriteOneRegion calls subroutine mafWriteSubset

(at line 160) to print out all the alignments that overlap the region.

Subroutine mafWriteSubset (lines 113 through 136) first extracts the subset of

each alignment that overlaps the specified region by calling the mafSubset library

function, defined in inc/maf.h, at line 120:

subset = mafSubset(ali, dbChrom, start, end);

Next, mafWriteSubset skips alignments that do not meet the alignment-score and

alignment overlap-length minima (lines 123 through 133). Lastly, mafWriteSubset

calls mafWriteGeneric (at line 134) to output the alignments that pass the length and

score tests. mafWriteGeneric outputs the MAF alignments using the mafWrite library

function (at line 102).

10.3.1.2 Executing the program

As in the previous examples, we create a makefile to compile and link the program

using newProg. Once the program is compiled and linked, we can run it with the

command:

$ mafWriteRegions hg18 multiz17way ensemblCompara.test.bed stdout \
| egrep -vw 'e|i'

(The grep command serves to remove unwanted lines from the MAF format output.)

To compare our results with those obtained from Ensembl, we use the same input

file that we used with the ensemblCompara program in Section 8.1.1. We recall that

this particular test file has just a single input line:

chrX 100162141 100162165 cxorf34 0 -

The program output is shown in Figure 10.7. Comparing Figure 10.7 and Figure 8.1,

we see that in this particular case, Ensembl and UCSC produce the same results for

5 This condition applies unless the option -hitAny is selected.
6 The safef function allows one to concatenate strings in a buffer, like the standard C sprintf

function, but also provides for buffer-overflow checking.
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##maf version=1 scoring=multiz

a score=133374.000000

s hg18.chrX 100162141 24 + 154913754 TGCAGTCCATC---TTGCATCCTCCAC

s panTro1.chrX 103325023 24 + 160174553 TGCAGTCCATC---TTGCATCCTCCAC

s rheMac2.chrX 99725831 24 + 153947521 TGCAGTCCATC---TTGCATCCTCCAC

s rn4.chrX 121709624 24 + 160699376 TGCACTCCACC---TGGCATCCTCTAC

s mm8.chrX 129586438 24 + 165556469 TGCAGTCCACC---TGGCATCCTCTAC

s oryCun1.scaffold_113276 4423 24 + 8378 AGCCGTCCACC---TGGCATCCTCTAC

s bosTau2.scaffold2252 17861 24 + 126872 TGCTGTCCACC---GGGCATCCTCTGC

s canFam2.chrX 78022477 24 + 126883977 TGCAGTCCACC---TGGCATCCTCTAC

s dasNov1.scaffold_45247 11824 23 - 12890 TG-AATGCACC---AGGCATCCTCTAC

s loxAfr1.scaffold_20375 8297 24 - 34054 TGCAGTCCACC---TGGCATCCTCTAC

s echTel1.scaffold_313318 36025 27 - 111094 TGCAGTCCACCACATAGCATCCTCTAG

s monDom4.chr3 437629003 24 + 526135210 AGCAGTCCATT---TAGCATCCTCTAG

s galGal2.chr4 1939414 24 + 90634903 TGCATTCCACC---TGGCATCCTCTAT

s danRer3.chr13 31321733 24 + 47719189 TGCATTAAACT---TGGCATCCTCCAC

Figure 10.7 Part of the output generated by the mafWriteRegions program using the test data file

shown in the text.

the species that occur in both alignments. In general, UCSC and Ensembl alignments

will not be identical. First, sometimes UCSC and Ensembl may use different genomic

assemblies.7 Second, even if the same genome assemblies are used, UCSC and Ensembl

might yield different results because UCSC uses MULTIZ alignments whereas Ensembl

uses the PECAN program, as described in Appendix 4. Apparently, in this case, neither

using the different chicken assemblies nor different algorithms changes the resulting

alignment.

A couple of additional comments regarding the MafWriteRegions program. First,

although mafWriteRegions does not currently have an option to restrict which species

in the alignment to display (as the ensemblCompara program does), it would be

straightforward to use the UCSC maf subroutine library routines to implement such

an option. Second, we note that mafWriteRegions has an option -public. Selecting

this option causes the program to use the public MySQL database for accessing the

database tables, for example, multiz17way. However, the MAF files themselves must

still be accessed locally. In fact, if we run

$ mafWriteRegions -public hg18 multiz17way ensemblCompara.test.bed stdout

we obtain the same answer as before. However, in this case we have accessed the

public database for the table information. To convince ourselves that we have actually

7 In fact, close inspection of Figures 8.1 and 10.7 show that, for example, the chicken assemblies

used in the two alignments are not the same. From Figure 8.1, we see that Ensembl used the

“WASHUC2” chicken sequence, which, as indicated on the Ensembl web site, is from the May

2006 chicken assembly. In contrast, from Figure 10.7 we see that the UCSC alignment used

UCSC’s “galGal2” database, which corresponds, according to the UCSC documentation, to the

February 2004 chicken assembly. Note that the May 2006 chicken assembly is also available now

from the UCSC databases as UCSC build galGal3; however, at the time I downloaded the MAF

alignment data, UCSC’s hg18 MAF alignments were based on the earlier galGal2 sequences.
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Figure 10.8 Evidence of ADAR sites in human glutamate receptor gene, GRIA2, as shown by

comparison of genomic and mRNA sequences. Note the presence of guanine (G) residues in mRNAs

at locations where adenines (A) are found in the genomic sequence.

accessed the public database, we can turn on the JKSQL_TRACE function (described in

Section 9.9.2.1) and run the program again, both with the -public option and without

it. With the -public option, the TRACE output of the SQL connect command displays

SQL_CONNECT 1078192 hg18 genome-mysql.cse.ucsc.edu genomep

whereas with the default (local) database selected, the TRACE displays

SQL_CONNECT 7 hg18 localhost ucscDbUser

showing that the SQL queries are indeed going to different hosts in the two cases.

These observations may lead you to suspect that we did not need to include the

multiz17way table in our local skeleton database mirror. And you would be correct.

The reason we do not need the multiiz17way table locally (and hence, that the -public

option works) is that the MAF files and multiiz17way MAF indexing table in human

database hg18 are quite stable. Consequently, the (current) public MAF indexing

table is compatible with the (older) downloaded MAF files. However, in general, this

approach of combining local files and public index tables will not work because the

public index will not correspond to the downloaded indexed files.

10.3.2 UCSC example 6: Comparing genomic and mRNA/EST sequences

For our last UCSC API example, we illustrate comparing genomic and mRNA/EST-

transcript sequences. Comparing transcript and genome sequences arises in many

important applications, including searching for novel SNPs and RNA editing sites

and detecting genomic sequencing, assembly, and alignment errors. For example, in

RNA editing, adenosine deaminase enzymes (ADARs) convert specific adenosines in

RNA to inosine. The precise sequence motifs that result in adenosine targeting by an

ADAR are not yet known. One method to screen for potential ADAR target sites is to

search for genomic locations that code for an “A” while a “G” has been observed at

the corresponding location in an mRNA or EST (inosine is generally interpreted as

guanosine by both reverse transcriptase and the ribosome). For example, Figure 10.8

shows how ADAR sites in the GRIA2 gene appear in the UCSC Genome Browser.

The program pslDisplaySeqs demonstrates this application. The program first

reads in a BED file of genomic regions and the name of the UCSC transcript-alignment
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table to use. By default, the program queries the hg18 human genome database. For

each region, the program displays the alignment between the transcript and the

genome, highlighting places where the transcript and genomic sequence differ by

displaying them with capital letters. The program is invoked with the command:

$ pslDisplaySeqs [options] transcriptTable regions.hg18.bed outFile

where transcriptTable indicates the transcript table to use (e.g., xenoEst if one wants

alignments of ESTs from other species) and regions.hg18.bed contains a BED file of

the genomic regions to compare. Various options are available, including ones that

filter alignments by the transcript’s name or that enable one to extend the regions

beyond the ranges specified in the input BED file.

10.3.2.1 Program implementation

The program code is shown in Figure 10.9 and is outlined in flowchart form in Fig-

ure 10.10. As with the mafWriteRegions program, pslDisplaySeqs requires that at

least a skeleton local UCSC mirror has been installed because the program accesses

genome sequences and the GenBank mRNA and EST sequences. For example, for use

with the UCSC Human Genome Database hg18, the local system needs to include at

least the UCSC data directories /gbdb/hg18 and /gbdb/genbank. The local mirror also

needs to include a skeleton of the hg18 MySQL database, including the GenBank and

genome-sequence index tables – specifically, chromInfo, for indexing the genomic

sequence data files, and gbSeq and gbExtFile, for indexing the GenBank transcript

files. Note that in the present example, accessing the indexing tables via the public

database (illustrated by the “-public” option in the mafWriteRegions program) will

almost definitely not work. This is because the UCSC GenBank files are updated

frequently and, consequently, the index tables and the downloaded files will almost

certainly no longer be in sync.

The overall structure of the pslDisplaySeqs program and many of the library func-

tions and structures used in its implementation are similar to what we have seen

in previous examples. However, the current program also needs to access transcript

alignments. Transcript alignments are stored in PSL format, which can be somewhat

confusing (especially in the case of negative-strand alignments). The main subtleties

of negative-strand PSLs are described in Section A1.4 of Appendix 1 and Section A2.3

of Appendix 2. The reader who has not read this material previously is advised to do

so now.

Let us now look at the program in more detail. As usual, the main program pro-

cesses arguments and options (lines 184 through 189) and then calls a principal sub-

routine that has the same name as the overall program, that is, pslDisplaySeqs (line

190). pslDisplaySeqs (lines 162 through 177) first sets up database access (lines 165

and 166). The subroutine next opens the output file (line 167) and reads in the input

BED file (line 169). pslDisplaySeqs then cycles through the list of genomic regions

from the BED file and, for each region, calls the subroutine doOneBed (line 172).



/* pslDisplaySeqs - align transcripts with genome for region. */1

#include "common.h"2

#include "bed.h"3

#include "options.h"4

#include "jksql.h"5

#include "hdb.h"6

#include "dnautil.h"7

#include "genbank.h"8

#include "linefile.h"9

#include "pslReader.h"10

11

void usage()12

/* Explain usage and exit. */13

{14

errAbort(15

"pslDisplaySeqs - display genome and EST/mrna seqs of psls \n"16

" overlapping input beds \n"17

"usage:\n"18

" pslDisplaySeqs [options] table inFile outFile\n"19

" where infile is a bedFile of genome locations \n"20

" and table is db table to use (eg all_mrna or \n"21

" all_est or xenoMrna or xenoEst)\n"22

"Options:\n"23

" -db - database [hg18] \n"24

" -filter - only use psls whose qName matches filter \n"25

" -bedExtend=int - increase size of bed by int nt at both ends \n"26

"\n");27

}28

29

/* command line option specifications */30

static struct optionSpec optionSpecs[] = {31

{"db", OPTION_STRING},32

{"filter", OPTION_STRING},33

{"bedExtend", OPTION_INT},34

{NULL, 0}35

};36

37

/* globals*/38

FILE *f; /* output file handle */39

40

/****************************************/41

boolean isTranslatedAlignment(struct psl *psl)42

/* Determine whether psl is for translated alignment43

* from whether strand field has 1 or 2 characters */44

{45

if (strlen(psl->strand) == 1)46

return FALSE;47

return TRUE;48

}49

50

Figure 10.9 Source code of the pslDisplaySeqs program for displaying transcript to genome

alignments.

199
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/****************************************/51

void doOneBlock(int bStart, int bEnd, struct psl *psl,52

int blockIx, struct dnaSeq *qSeq, struct dnaSeq *tSeq)53

/* extract both subsequences for each alignment54

* block. Any mismatching transcript characters to55

* capitals and then print out alignment block.*/56

{57

int blockSize = psl->blockSizes[blockIx];58

int ix = 0; /* index within part of block within bed */59

/* Truncate block to size of BED if necessary */60

int overlapSize = positiveRangeIntersection(bStart, bEnd,61

psl->tStarts[blockIx], psl->tStarts[blockIx] + blockSize);62

if (overlapSize <= 0)63

return;64

int qOffset = psl->qStarts[blockIx];65

int tOffset = psl->tStarts[blockIx] - psl->tStarts[0];66

if (bStart > psl->tStarts[blockIx])67

{68

tOffset += (bStart - psl->tStarts[blockIx]);69

qOffset += (bStart - psl->tStarts[blockIx]);70

}71

DNA *qSeqStart = qSeq->dna + qOffset;72

DNA *tSeqStart = tSeq->dna + tOffset;73

/* Convert mismatches to caps */74

for (ix = 0; ix < overlapSize; ix++)75

{76

char tchar = tSeqStart[ix];77

char qchar = qSeqStart[ix];78

if (tchar == qchar)79

continue;80

qSeqStart[ix] = toupper(qSeqStart[ix]);81

}82

fprintf(f, "mRNA/EST block %d: %.*s\n", blockIx, overlapSize, qSeqStart);83

fprintf(f, "genome block %d: %.*s\n\n", blockIx, overlapSize, tSeqStart);84

}85

86

/****************************************/87

void doOnePsl(int bStart, int bEnd, struct psl *psl,88

struct sqlConnection *conn)89

/* Retrieve transcript and genome DNA, reverse comp90

* if on negative strand, then cycle through each91

* gapless block of alignment */92

{93

int blockIx;94

int blockCount = psl->blockCount;95

fprintf(f, "mrna/est: %s\n", psl->qName);96

if (psl->strand[1] == ’-’)97

reverseIntRange(&bStart, &bEnd, psl->tSize);98

Figure 10.9 (continued)
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struct dnaSeq *tSeq = hChromSeq(psl->tName, psl->tStart, psl->tEnd);99

if (psl->strand[1] == ’-’)100

reverseComplement(tSeq->dna, strlen(tSeq->dna));101

struct dnaSeq *qSeq = hExtSeq(psl->qName);102

if (psl->strand[0] == ’-’)103

reverseComplement(qSeq->dna, strlen(qSeq->dna));104

for (blockIx = 0; blockIx < blockCount; blockIx++)105

{106

doOneBlock(bStart, bEnd, psl, blockIx, qSeq, tSeq);107

}108

dnaSeqFree(&tSeq);109

dnaSeqFree(&qSeq);110

}111

112

/****************************************/113

boolean bedAndTargetSameStrand(struct psl *psl, char bStrand)114

/* Check whether transcript aligns to strand that bed is on115

* Assumes negative strand, nucleotide alignment has been116

* reverse complemented to make query in forward orientation */117

{118

char pslTStrand = ’+’; /* true for all nucleotide alignments */119

if (isTranslatedAlignment(psl))120

pslTStrand = psl->strand[1];121

return (pslTStrand == bStrand);122

}123

124

/****************************************/125

void doOneBed(struct bed *bed,126

struct sqlConnection *conn, char *table)127

/* Run BED region for requested transcript table(s) */128

{129

bedTabOutN(bed,6,f);130

int bedExtend = optionInt("bedExtend", 0);131

int bStart = bed->chromStart - bedExtend;132

int bEnd = bed->chromEnd + bedExtend;133

if (bStart >= bEnd)134

return;135

char *chrom = bed->chrom;136

char bStrand = bed->strand[0];137

struct psl *pslList = NULL, *psl;138

char *filter = optionVal("filter", NULL);139

pslList =140

pslReaderLoadRangeQuery(conn, table, chrom, bStart, bEnd, NULL);141

if (pslList == NULL)142

return;143

for(psl = pslList; psl != NULL; psl = psl->next)144

Figure 10.9 (continued)
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{145

if (filter && !wildMatch(filter, psl->qName))146

continue;147

if (!isTranslatedAlignment(psl) && (psl->strand[0] == ’-’))148

pslRc(psl);149

if (bedAndTargetSameStrand(psl, bStrand) == FALSE)150

{151

fprintf(f, "mRNA/EST on opposite strand for psl %s, skipping\n",152

psl->qName);153

continue;154

}155

doOnePsl(bStart, bEnd, psl, conn);156

}157

pslFreeList(&pslList);158

}159

160

/****************************************/161

void pslDisplaySeqs(char *table, char *inFile, char *outFile)162

/* Load regions and call doOneBed for each region */163

{164

char *db = optionVal("db", "hg18");165

struct sqlConnection *conn = sqlConnect(db);166

f = mustOpen(outFile, "w");167

struct bed *bedList=NULL, *bed=NULL;168

bedList = bedLoadAll(inFile);169

for(bed = bedList; bed != NULL; bed = bed->next)170

{171

doOneBed(bed, conn, table);172

}173

bedFreeList(&bedList);174

carefulClose(&f);175

sqlDisconnect(&conn);176

}177

178

/****************************************/179

int main(int argc, char *argv[])180

/* Process command line. */181

{182

char *outFile, *inFile, *table;183

optionInit(&argc, argv, optionSpecs);184

if (argc != 4)185

usage();186

table = argv[1];187

inFile = argv[2];188

outFile = argv[3];189

pslDisplaySeqs(table, inFile, outFile);190

return 0;191

}192

193

Figure 10.9 (continued)
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pslReaderLoadRangeQuery

For each region, retrieve all
overlapping transcript
alignments

bedAndPslChromOnSameStrand

Genome and transcript same strand?
No

skip transcript

Yes

For each alignment, retrieve
genome and transcript sequences

hExtSeq
hChromSeq

For each block in alignment,
extract subsequences within block
and truncate subsequences to region

Set mismatching characters to
upper case.

Print block of alignment

doOneBlock

Figure 10.10 Flowchart for the pslDisplaySeqs program. The program subroutine or UCSC API

library function used to implement each step is noted outside of the corresponding block. The data

retrieval step assumes that the necessary tables and auxiliary files have been mirrored locally.

The doOneBed subroutine (lines 126 through 159) first prints the BED region coor-

dinates (line 130) and then optionally extends the range of the BED region (lines 131

through 133). Next, doOneBed calls the library function pslReaderLoadRangeQuery

(defined in hg/inc/pslReader.h) to retrieve all overlapping transcript alignments as a

linked list of PSL data structures (recall the PSL C structure from Figure 9.1a) at lines

140 and 141.

Next, doOneBed cycles through each transcript alignment. For each alignment,

doOneBed first performs optional filtering on the transcript name using the library
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function wildMatch from inc/common.h (lines 146 and 147). Next, because we want

our alignments to be displayed with the transcript in positive orientation, the sub-

routine reverse-complements the PSL alignment (using the library function pslRc,

defined in inc/psl.h) if the alignment is a nucleotide alignment and the PSL strand

field is equal to “-” (lines 148 and 149). doOneBed then determines if the transcript

aligns to the same genomic strand as the region of interest in the BED record by

calling subroutine bedAndTargetSameStrand (line 150). If the transcript is on the

specified strand, doOneBed then calls subroutine doOnePsl at line 156. Otherwise,

the alignment is skipped with a warning message (lines 152 through 154).

Subroutine doOnePsl (lines 88 through 111) first converts the start and end

positions of the BED region from absolute to strand coordinates (lines 97 and 98)

using the library function reverseIntRange from inc/dnautil.h.8 The subroutine then

retrieves the chromosomal and transcript sequences. The chromosomal subsequence

is retrieved from the auxiliary hg18 sequence files at line 99:

tSeq = hChromSeq(psl->tName, psl->tStart, psl->tEnd);

where “psl->tName” is the chromosome name and the library function hChromSeq

is defined in hg/inc/hdb.h. Note that the sequence is retrieved as a dnaSeq C struct,

defined in inc/dnaSeq.h.

Similarly, the sequence of the transcript is retrieved from the auxiliary GenBank

files at line 102:

cSeq = hExtSeq(psl->qName);

where “psl->qName” is the GenBank accession ID for the sequence to be retrieved,

and the library function hExtSeq is also defined in hg/inc/hdb.h.

Next, the transcript and/or genomic sequences are reverse-complemented, if nec-

essary, as specified by the values of the PSL strand field (lines 100 and 101, and 103

and 104). As described in Section A2.3, if the first character of the strand field is

equal to “-,” the transcript (i.e., the “query”) needs to be reverse-complemented. If the

second character of the psl strand field is equal to “-,” the genomic sequence (i.e., the

“target”) needs to be reverse-complemented. Sequence reverse-complementation is

implemented with the reverseComplement library function defined in inc/dnautil.h.

Finally, doOnePsl loops through the alignment (lines 105 through 108), calling the

subroutine doOneBlock for each (gapless) block of the alignment.

Subroutine doOneBlock (lines 52 through 85) first computes the number of bases of

overlap between the current block and the BED region of interest, and skips the block

unless the amount of overlap is greater than zero (lines 61 through 64). The library

function positiveRangeIntersection, defined in inc/common.h, is used to perform the

range intersection.

8 This is necessary because we will later be comparing the BED region to the alignment region

on the chromosome, which is in strand coordinates in PSL format.
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Next, doOneBlock needs to compute the offsets into the transcript and chromo-

somal sequences to retrieve the subsequences corresponding to the current block. If

the start of the block in the genomic sequence is located within the BED region, the

offsets are given by lines 65 and 66:

qOffset = psl->qStarts[blockIx];

tOffset = psl->tStarts[blockIx] - psl->tStarts[0];

Note that hExtSeq retrieves the entire transcript sequence in line 102, so that the tran-

script offset is simply “psl−>qStarts[blockIx].” In contrast, hChromSeq only retrieves

the part of the chromosomal sequence between “psl−>tStart” and “psl−>tEnd” in

line 99, so “psl−>tStarts[0]” needs to be subtracted from “psl−>tStarts[blockIx]” in

the computation of tOffset. Consequently, if the start of the BED is within the genomic

region specified by the current block, we need to offset into the current block by the

distance between the block start and the start of the BED. The offsets for this case are

computed in lines 69 and 70.

With the proper offsets calculated, doOneBlock can now retrieve the subsequence

for the current block, one nucleotide pair at a time (lines 72 through 78). The sub-

routine then checks if the nucleotides are the same at each position and converts

the transcript character to uppercase, if the genome and transcriptnucleotides differ

(lines 79 through 81). Finally, the subroutine prints out the aligned sequence block

(lines 83 and 84).

10.3.2.2 Executing the program

As before, we create the source code file and makefile using the newProg utility.

We can then compile and link the program using make. pslDisplaySeqs can now be

executed with the command:

$ pslDisplaySeqs all_mrna pslDisplay.hg18.bed stdout

where pslDisplay.hg18.bed is a BED file of genome locations and all_mrna is the

database table used for locating the same-species mRNA PSL transcript-alignment

records. A portion of the program output is

chr4 158477314 158477333 GRIA2 0 +

mrna/est: BC028736

mRNA/EST block 10: gcctttatgcGgcaGggat

genome block 10: gcctttatgcagcaaggat

chr2 47650962 47650974 KCNK12 0 -

mrna/est: AF287302

mRNA/EST block 0: atgtcctcccgc

genome block 0: atgtcctcccgc

The first alignment is for part of the coding region of the GRIA2 gene, and illustrates

the identification of two positions where a genomic “A” has been replaced by a
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“G” in the mRNA transcript as a result of RNA editing. We see that the program

highlights places where the transcript and genome sequences differ by capitalizing

the nucleotide in the transcript sequence.

The second alignment is for the initial part of the coding region of the KCNK12

gene, which is found on the negative strand (as indicated by the “-” in the BED

record for KCNK12). Note that even though KCNK12 aligns to the negative strand, the

alignment is correctly oriented, as shown by its starting with a start codon (ATG).

As we have emphasized, implementing pslDisplaySeqs requires that you have

installed a skeleton mirror of at least one UCSC database. That said, we note that

the computational comparison of genomic and transcript sequences is important for

many applications and cannot be accomplished using any of the tools that we have

described previously, including Galaxy or Ensembl.

10.4 Installing a private UCSC genome database mirror

The last two examples indicated why mirroring at least a small part of the UCSC

databases is necessary if one wants to fully exploit the capabilities of the UCSC

databases and API. In addition, reasons of performance, data security, and database

customization may also lead one to want to create a local private UCSC mirror.

That said, mirroring large parts of the UCSC genome database, such as the entire

human hg18 database, is not a trivial task, and also requires a large amount of disk

space. For example, mirroring the MySQL tables for hg18 requires about thirteen

gigabytes, and mirroring the entire UCSC genome databases currently requires over

one terabyte. Moreover, the size of the UCSC databases is continually increasing.

Current information on disk space requirements for UCSC database mirroring can

be found at http://genome.ucsc.edu/admin/mirror.html.

The task of mirror installation will generally be easier if one’s target system con-

figuration is similar to UCSC’s own configuration (e.g., linux and MySQL). In my

experience, downloading and installing a large UCSC database, such as hg18, can

be successfully completed on a Macintosh G5 running OS X 10.3 without too many

complications. However, with any large software installation, it is difficult to predict

exactly what sorts of complications will arise because these problems often depend

on the specific hardware and software configuration being used. In case of difficul-

ties, you may need to get help from someone with Unix database administration

experience (if you do not have it) or else seek assistance from the UCSC support team

via the UCSC mailing list (genome-mirror@soe.ucsc.edu). In addition, it is important

to remember that even when downloading and installation are executing completely

smoothly, they are both slow processes. For example, downloading and installing the

database and auxiliary files for hg18 each required approximately twenty hours on

a 1.8-Ghz Mac G5 with a wide-band cable modem network connection. Downloading

the GenBank auxiliary files – which are needed for the mRNA and EST sequence

comparisons – required about another twenty hours of data transfer time.
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Consequently, before performing a large mirror installation, it is highly recom-

mended to first install a small test database to identify potential installation prob-

lems. One possible choice would be to use a small-genome database such as the yeast

sacCer1 database. Installation of the yeast genome database follows essentially the

same procedure as that for the human genome described here (in fact, simply replac-

ing each reference to hg18 with sacCer1 should work) but will be approximately 100

times faster.

An alternate choice of test database for initial installation testing would be to

install a small subset of the database tables and files from the target database. For

example, to carry out the local database implementation of ucscIntronLengths2, we

would actually only need to download and install a single table, the ensGene table,

into our mirror database. To compare the length-distribution results for the Ensembl

and RefSeq gene sets, as also described in example 4, we would only need to have the

ensGene and refGene tables installed. Similarly, to display the multiple alignments

of example 5, we would need to install the multiz17way table and the MAF auxiliary

files in our local mirror. In fact, one can even create a working skeleton of the UCSC

Genome Browser by only downloading and installing five tables (grp, chromInfo,

trackDb, hgFindSpec, and any other table that represents a single browser track)

into one’s local mirror database. This minimal browser installation is described in

http://genomewiki.ucsc.edu/index.php/Browser_installation.

Whether one installs a skeleton database with a single table or a complete mirror,

the necessary sequence of commands described in the following three subsections are

almost identical, with only a single command (as noted in Section 10.4.1) changing.

However, because the skeleton database installation is several orders of magnitude

faster, beginning with a test database installation has significant advantages. In

particular, if there are going to be installation problems, you will be confronted with

them much more quickly, and testing potential solutions can be carried out more

rapidly as well. Moreover, with this approach, any subsequent problems during a

large-database installation will most likely be specifically a result of manipulating

large data files.

In the following sections, we outline the steps required to install the UCSC hg18

database (or a skeleton subset of hg18) with some of its auxiliary databases and files.

The steps are also shown schematically in Figure 10.11. For additional details on UCSC

database installation, the reader is referred to the mirror installation documentation

at http://genome.ucsc.edu/admin/mirror.html.

10.4.1 Data download

Before performing the database installation, you need to have downloaded and

installed the UCSC software code, as described in Chapter 9. You will also need

to have the MySQL Server software installed and have privileged access to MySQL and

to the host computer system. You will also need to ensure that any local firewalls that

might prevent you from downloading large data files have been disabled.



208 Genomes, Browsers, and Databases

Create directories
for downloads

For each needed database, download
needed table file(s)

Download each needed auxiliary file

Create and load local
MySQL databases

Link files and databases
to expected locations

Create MySQL user

Create.hg.conf file

Figure 10.11 Flowchart outlining the principal steps required in the installation of mirror UCSC

databases.

Assuming these preliminary steps have been completed, you can now download

the data files from the UCSC FTP site. Precisely which files you need to download will

depend on how much of the UCSC system you want to mirror. As an example, here we

will describe installing the entire human database (hg18) along with its associated

sequence and alignment files, the UniProt and GO (gene ontology) databases and the

auxiliary files containing the GenBank EST and mRNA records. However, as we have

emphasized, you are strongly advised to initially just install one or two tables and

auxiliary files.

We first need to create and specify a root directory on a local disk drive with

sufficient free disk space and make this our working directory. The commands are as

follows (where “diskWithFreeSpace” is replaced by the actual disk directory location

to be used):

$ mkdir −p /diskWithFreeSpace/goldenPath/hg18/

$ cd /diskWithFreeSpace/goldenPath/hg18/

Next, we execute the actual data download using a data-transfer utility program such

as rsync or ncftp. This is the only step that varies between skeleton-database and



More Advanced Applications Using the UCSC API 209

full-database installation. If we build a skeleton database with only a single table

(e.g., ensGene) or a few tables, as suggested previously, the download command using

rsync would be

$ rsync -avzP --delete --max-delete=20 \
rsync://hgdownload.cse.ucsc.edu/genome/goldenPath/hg18/database/ensGene* \
/diskWithFreeSpace/goldenPath/hg18/database/

To obtain the data for more than one table, we would need to repeat this command

for each table or else write a shell script for this purpose.

Alternatively, if we want to mirror the entire hg18 database, we would execute a

command to download the data for the entire database, such as the following (this

time illustrated with ncftp):

$ ncftp ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/

> get -R *

In contrast to the single-table download, which should complete within a few seconds,

the download of the entire hg18 database files will require approximately fifteen

to twenty hours. To minimize the likelihood of losing the connection during data

downloading, it is helpful to disable any automatic sleep timer on one’s local machine

during this time. If, nevertheless, the network link is lost during the download, or the

download does not complete successfully for some other reason, one can complete

the download by simply re-executing the rsync or ncftp-get command.

To create mirrors of the UniProt and GO databases, we need to use ncftp for the

corresponding files for these databases as well. Commands for these downloads are

identical to those for the hg18 download, with the terms “uniProt” (or “go”) sub-

stituted for “hg18” in the prior example.

Once all the MySQL files are downloaded, we need to create a root directory for

the auxiliary sequence and alignment data, and we then need to download the

corresponding data files. In particular, to perform the analyses illustrated in our

programming examples, we need to download the hg18 and GenBank auxiliary files.

The commands for this are

$ mkdir -p /diskWithFreeSpace/gbdb/hg18/

$ rsync -avzP rsync://hgdownload.cse.ucsc.edu/gbdb/hg18/ \
/diskWithFreeSpace/gbdb/hg18/

$ mkdir -p /diskWithFreeSpace/gbdb/genbank/

$ rsync -avzP rsync://hgdownload.cse.ucsc.edu/gbdb/genbank/ \
/diskWithFreeSpace/gbdb/genbank/

Again, if the connection is lost before the download completes successfully, we can

complete the transfer later by simply repeating the rsync command.

Finally, because the UCSC software expects that the sequence and alignment files

are located in a directory named /gbdb, we need to create a link from the actual file
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directory to /gbdb. As these directories may well be on different disks, this needs to

be a symbolic link:

$ ln -s /diskWithFreeSpace/gbdb//gbdb

10.4.2 Installation

Once all of the required files have been successfully downloaded, the next steps are

to create the local databases, uncompress the database files, and load the data into

the local databases. To create the databases, we need to log on to the MySQL server

with MySQL administrator privileges. We can then initialize each database we need

as follows:

mysql> create database hg18;

mysql> create database uniProt;

mysql> create database go;

etc.

In addition, if you are installing a large database like hg18, you will probably

need to increase the value of the “max_allowed_packet” parameter (otherwise, the

database loading script may abort). This can be done at the MySQL command line

with

mysql> set global max_allowed_packet=25165824;

(If you plan to be frequently installing large databases, you may prefer to include

this command in your MySQL configuration file, for example, /etc/mysql/my.cnf or

/etc/my.cnf.)

Next, we need to address the fact that MySQL generally assumes that its databases

are on the same hard drive as the MySQL server. However, typically this will not

be the case with the large genome databases. Consequently, we need to configure

appropriate links so that MySQL knows where to locate its databases. There are several

different ways for accomplishing this – see, for example, (Dubois, 2005) Chapter 10,

for more details. One simple approach is to create a separate symbolic link for each

new database. Note that you will typically need to be system superuser (using the

“su” command under Unix/linux or “sudo su” under Mac OS X) to create these links.

For example, on the Macintosh, assuming that the expected location of the MySQL

data directory is /usr/local/mysql/data:

peter$ mkdir −p /diskWithFreeSpace/var/mysql/data/hg18

peter$ mkdir −p /diskWithFreeSpace/var/mysql/data/uniProt

peter$ mkdir −p /diskWithFreeSpace/var/mysql/data/go

(etc.)

peter$ sudo su

root# ln -s /diskWithFreeSpace/var/mysql/data/hg18 /usr/local/mysql/data/hg18
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#!/bin/sh

DB="hg18"

WEBROOT="/Volumes/LaCieDisk/ucscDbRoot"

cd $WEBROOT/goldenPath/${DB}/database
for SQL in *.sql

do

T_NAME=${SQL%%.sql}
echo "loading table ${T_NAME}"
mysql -uAdmin -pAdminPw -e "DROP TABLE ${T_NAME};" \

${DB} > /dev/null 2>/dev/null

mysql -uAdmin -pAdminPw ${DB} < ${SQL}
zcat "${T_NAME}.txt.gz" | mysql -uAdmin -pAdminPw --local-infile=1 \
-e "LOAD DATA LOCAL INFILE \"/dev/stdin\" INTO TABLE ${T_NAME};" ${DB}

done

Figure 10.12 Template installation script to load data downloaded from the UCSC FTP site into

MySQL tables of a local UCSC database mirror. See text for template modifications required before

the script can be used for table loading.

root# ln -s /diskWithFreeSpace/var/mysql/data/uniProt \
/usr/local/mysql/data/uniProt

root# ln -s /diskWithFreeSpace/var/mysql/data/go /usr/local/mysql/data/go

(etc.)

Now we are almost ready to load the database tables. The UCSC installation docu-

mentation provides a script that automates this process, shown here in Figure 10.12.

However, we first need to edit the script in Figure 10.12 so that

1. /Volumes/LaCieDisk/ucscDbRoot is replaced by the location where you pre-

viously loaded the compressed UCSC tables.

2. “-uAdmin -pAdminPw” is substituted with the appropriate administrator user

name and password.

3. hg18 is replaced with the database that you are loading.

We now need to run this script separately for each database that must be loaded,

or else modify the script to load multiple databases sequentially. Note that loading

all the tables of a large database, such as hg18, using the script in Figure 10.12 may

require fifteen hours or more, depending on your hardware. (If we are only creating

a skeleton database with one or a few tables, the database table-loading script will

finish within a few seconds or less.) Once the downloaded data have been loaded into

the local MySQL database, the download files can be deleted, if desired, to free up

disk space. Finally, for security, if you use this type of script, you will want to remove

the administrator MySQL password from the script once it has completed.
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10.4.3 Configuration

Once all the databases have been loaded, the final steps are to create a MySQL user

account through which one’s software can access the UCSC databases, and to set up

either a configuration file or environmental variables so that the software can find

the database account information.

A simple method for granting read access to the databases is with the following

single command, executed by the MySQL administrator:

mysql> GRANT SELECT ON *.* TO ucscDbUser@localhost IDENTIFIED BY "ucscDbPw";

Alternatively, more complex (but more secure) grant options can be configured – see

DuBois (2005), chapters 11 and 12, for examples.

Finally, we need to set up a configuration file for each user who needs program-

matic access to the database via the kent code. The file needs to have the name

“.hg.conf” (note the initial dot), to be located in the user’s home directory, and to con-

tain the following three lines of code (with “db.host,” “db.user,” and “db.password”

values substituted as appropriate):

db.host=localhost

db.user=ucscDbUser

db.password=ucscDbPw

Alternately, a user can define the following three environmental variables, typically

in one of their login files (syntax given is for the Bash shell):

export HGDB_HOST="localhost"

export HGDB_USER="ucscDbUser"

export HGDB_PASSWORD="ucscDbPw"

Once the database is set up and configuration is complete, one should run tests to

confirm that everything has been properly configured. As an initial step, one should

confirm the ability to log in to the different databases and the ability to query them

interactively, for example:

$ mysql -u ucscDbUser -p -A hg18

password:

mysql > show tables;

If direct access works, the next tests might be to run the demonstration programs

described in this chapter.

10.4.4 Maintaining UCSC code and databases

In contrast to Ensembl, UCSC’s code revisions are not explicitly linked to its database

releases. Usually, the most current UCSC code will function properly both with
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current as well as with older database builds. In many cases, older versions of the UCSC

API – in particular, the library functions that one principally uses – will continue to

function properly with newer UCSC database builds. That said, it is recommended –

and easy – to periodically update one’s copy of the UCSC API either by using the

CVS updating system or by re-downloading the entire API from http://hgdownload.

cse.ucsc.edu/admin/jksrc.zip, which is updated by UCSC every two weeks.

Keeping the data in UCSC mirror databases and auxiliary files current is a more

substantial task. Essentially, one needs to update (via the rsync program) every one

of the database tables and auxiliary files that one is mirroring, and then to replace

each changed database table with one containing the current data. Because a mirror

database may well contain numerous UCSC databases (e.g., from many genomes) and

because some of the tables and files are modified on a daily or weekly basis by UCSC,

this is a nontrivial task.

To assist one in automating these updating tasks, two Unix command scripts are

available from the UCSC genome wiki site. The first script, called doDownloads.sh,

handles the updating of the auxiliary files and compressed database table files. The

second script, doUpdateDb.sh, automates the process of loading the decompressed

updated tables into the appropriate database. Each of the scripts can read a list of

database names that can be customized so that just the databases present in one’s

local mirror are updated.

A subtlety with which one is confronted in the updating process is the removal of

obsolete database tables. If one simply mirrors the UCSC databases without adding any

custom data tables, one can simply include the - -delete option to the rsync command

and the rsync program will automatically delete the corresponding tables in the

mirror database. However, this simple approach will fail if one has added custom

tables to one’s local mirror. In this case, one needs to customize the arguments to

rsync so that the rsync program does not inadvertently remove one’s custom tables.

For more information on updating UCSC mirror sites, the reader is referred to the

discussion of partial mirrors at the UCSC genome wiki site (http://genomewiki.ucsc.

edu/index.php/Browser_Mirrors).

Chapter summary

� UCSC API access of data from the UCSC databases – without using the UCSC public

mirror databases – is possible by either downloading individual database tables as

flat files or by installing a local mirror of all or part of one or more UCSC databases.
� Programs using sequence and alignment data can only be executed if the relevant

components of the non-MySQL data from the UCSC database have been mirrored

locally.
� For many applications, only one or a small number of tables or auxiliary files need

to be mirrored locally.
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� Even if one wants to eventually mirror an entire UCSC database, it is usually

advisable to first install a skeleton mirror to ensure that the installation procedure

has been configured properly for one’s local system.
� Although mirroring parts of the UCSC databases is not trivial, creating such a

private mirror enables one to carry out genomic analyses – such as base-level com-

parisons of genomic and transcript data – which are quite difficult to accomplish

by other means.

Exercises

Note that you will need to have the UCSC API and the MySQL client and server software

installed to complete these exercises.

1. Download a copy of the hg18 refSeq gene table from UCSC (e.g., using the Table

Browser). Use this data file with the ucscIntronLengths2 program using the “file”

method option. Compare your results to those you obtain if you use the hg18 refSeq

gene table from the UCSC public databases while running ucscIntronLengths2 with

the “public” method option.

2. Follow the procedure outlined in the text to install a local copy of a skeleton of

the hg18 database consisting just of the ensGene table. Test your installation by

directly querying the database with SQL and by executing the ucscIntronLengths2

program against your local database.

3. Install a local copy of the UCSC yeast database using the procedures described in

the text. Test your installation by directly querying the database with SQL and

by executing the program from Chapter 9, Exercise 3, against your local yeast

database.
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Customized Genome Databases

Biological research often involves combining publicly available data from genome

(and other) databases with custom data that has been identified in one’s own research.

So far, we have primarily focused on techniques for accessing public data, especially

in the integrated formats used by the major genome database projects. We have also

seen how to incorporate one’s own data using the method of custom tracks offered

by the UCSC and Ensembl Browsers and how to use the tools for including custom

data in batch queries via the UCSC Table Browser and Galaxy interfaces.

We now turn our attention to additional techniques for integrating custom data

with data in the public databases. These range from quite simple methods for navi-

gating among features on a custom track to quite complex approaches for creating

entirely new genome databases and browsers for newly sequenced genomes. As we

will see, some of these methods are applicable to both the Ensembl or UCSC archi-

tectures. Others are significantly easier or only possible in one of the two systems,

or are best performed outside of either the UCSC or Ensembl framework using the

GMOD tools. In particular, we will restrict ourselves to approaches that do not require

writing new software for either the UCSC or Ensembl APIs.

The tasks described in the present chapter are more specialized and are needed

less frequently by the typical researcher than the database querying and data

analysis tasks on which we have focused in previous chapters. Moreover, some of

these methods require significantly more computer system skills (e.g., Unix systems-

administrator experience) than have been needed in other parts of this book. Also, the

requirements of custom database configuration vary widely with the specific appli-

cation and, consequently, describing all the issues that may arise in a database cus-

tomization is difficult. For all of these reasons, our descriptions of genome database

customization are less detailed than our descriptions of genome database querying

have been. In particular, in some cases, we will restrict ourselves to briefly describ-

ing the various tools available, noting the tradeoffs among these tools, and pointing

the reader toward the detailed documentation, which describe the methods more

fully.

215
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11.1 Overview of genome database customization

Despite the capabilities of the custom-track tools provided by both the Ensembl and

UCSC systems, there are several situations in which one might want custom-data

integration capabilities beyond those provided by conventional custom tracks. First,

custom-track data are kept on the UCSC and Ensembl sites for only a limited time

period. Consequently, custom tracks need to be continually re-uploaded if they are

needed on a regular basis. Second, if one’s custom data set is large, it may exceed the

space allocation for custom data provided by UCSC or Ensembl. In addition, if the cus-

tom tracks only include a small number of features that are sparsely distributed

across the genome, navigating among the custom features can be awkward. Also, if

the custom data consist of numerous, interrelated tracks, batch querying with the

UCSC Table Browser may be difficult or inconvenient, whereas in Ensembl BioMart,

batch querying using custom data is not possible at all. Another limitation of custom

tracks is that it may not be possible to express all of the relationships among one’s

data using one of the available custom-track formats (e.g., BED or PSL). Also, there may

be security concerns with depositing one’s private data as custom tracks on a public

genome database site (even though both the UCSC and Ensembl systems are designed

so that custom data can only be accessed by the machines that initially uploaded the

data). Finally, if one’s data comes from a species whose genome is not in the UCSC

or Ensembl databases at all, then clearly one cannot incorporate one’s data into the

standard databases and one needs to create one’s own genome database.

Various methods have been developed to address the limitations of conventional

custom tracks. Each has its advantages and its limitations. For example, custom

frames are simple and easy to implement, but only address the issue of displaying

sparse datasets. Using DAS server software enables one to display large and permanent

custom datasets on the public Ensembl Browser while representing one’s data with

any desired data model. With a local DAS server, one can also make batch queries of

one’s data using the Bio::DAS API. However, one cannot easily make integrated batch

queries (either interactively or via API) that involve both local data and annotations

in the Ensembl database.

In contrast to the DAS server approach, UCSC provides tools that enable one to add

custom data in a permanent manner to a local mirror of the UCSC database. These

tools facilitate the creation of a UCSC database mirror in which one can browse and

batch query both custom data and public genome annotations in a truly integrated

way. The disadvantage of this approach is that setting up such a system can be

technically challenging, particularly if your machine architecture differs from the

UCSC’s.1

1 In principle, one can apply the approach of adding custom tables to a local database mirror

to an Ensembl mirror as well. However, adding tables to an Ensembl database requires adding

software to the Ensembl API and, because of this added complexity, will not be further described

here.
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Databases for genomes not present in UCSC or Ensembl’s databases can be designed

by “cloning” or copying the architecture of an already existing UCSC or Ensembl

database or by using the genome-database architecture of the GMOD (Generic Model

Organism Database) project as a template. Cloning an Ensembl or UCSC database has

the advantage that when one is finished, one will have access to the entire array of

database-access tools developed by UCSC or Ensembl. However, the disadvantage of

this approach is that cloning an Ensembl or UCSC database schema is quite chal-

lenging technically and is often most appropriate for large-scale projects similar to

those for which the UCSC and Ensembl systems were designed. In contrast, using

the GMOD genome database construction strategy enables one to build a genome

database and browser interface for a small- or medium-size genome with a relatively

modest investment of development time. The disadvantage is that the resulting sys-

tem will not be as full-featured for either genome browsing or batch querying as the

Ensembl or UCSC systems.

11.2 Custom frames

A custom frame is a simple tool, available in the UCSC system, for displaying sparse

custom data. In the next section, we will illustrate custom frames via their use within

the UCSC Genome Graphs tool. In the following section, we will describe custom

frames more generally, showing how they can be used to display other types of sparse

custom data.

11.2.1 Genome Graphs

The Genome Graphs tool was developed to aid in the display of custom genetic associ-

ation data, such as those generated by genotyping arrays. Genetic association studies

are designed to identify genomic regions for which there is a statistically significant

correlation between a specific genetic variant (typically a SNP) and some phenotype,

such as the susceptibility to a disease. Identifying such regions is important because

they are likely to include genes whose variations contribute to the observed range of

phenotypes.

To display one’s genetic association data using Genome Graphs, one needs to

format one’s data slightly differently than for a standard UCSC custom track. First,

as each value in a genetic association study is associated with a SNP, a location in

the custom data file is specified by a single coordinate rather than by a start and

end coordinate. Also, this location may be specified indirectly via a dbSNP rsID or

an Affymetrix or Illumina chip location rather than explicitly specifying its genomic

coordinate. The other addition to the input format is the inclusion of a user-adjustable

threshold for data significance so that one can specify precisely which records in the

input file are included in the data display.

As shown in Figure 11.1, a Genome Graphs display is similar to a standard UCSC

custom data track, however, with some new features. First, we see the appearance
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Figure 11.1 Example of a custom frame display obtained after selecting the “Browse regions” option

from the UCSC Genome Graphs page. The left side of the display contains a list of genomic

coordinates. Clicking on any one of them causes the browser display on the right side to show the

region of the genome specified by the selected coordinates.

of line segments connecting the genetic association probabilities of adjacent SNPs,

where “adjacency” is determined by a user-specified maximum distance. The other

new feature of the Genome Graphs display is the use of a custom frame. The custom

frame includes a list of all of the regions that contain custom data. The list appears as

a separate frame on the left side of the display. By clicking on any one of the regions

in the list on the left side of the display, the main browser window is refreshed to

display the specified region. In this way, it is easy to navigate among the various

genomic regions containing the custom data.

11.2.2 General custom frames

The custom frame display shown in Figure 11.1 is useful for applications besides

genetic association studies. In particular, custom frames can be helpful for displaying

any type of sparse custom data (i.e., data from a relatively small number of regions

sparsely distributed throughout the genome).

Assuming the UCSC API has been downloaded and installed as described in Sect-

ion 9.4, the bedToFrames program (located in the hg/orthoMap subdirectory) can

be used to easily create a custom frame of one’s own data. After the bedToFrames

program has been compiled and installed, a list of genomic regions in BED-file format

can be converted into custom-frames format with a command like

$ bedToFrames hg18 bedFileIn.bed htmlTableFile.html htmlFrameFile.html ""

In this command, bedFileIn.bed is the file of input regions and htmlTableFile.html

and htmlFrameFile.html are the output HTML pages implementing the custom frame.

The final command-line argument to bedToFrames specifies an optional URL; because

we do not require this option, we replace this argument with an empty pair of double

quotes.

After executing the program, pointing one’s web browser to the local file html-

FrameFile.html will create a custom frame display analogous to that shown in Fig-

ure 11.1, with the left part of the display showing the list of regions in the original
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BED file with their browser links and the right side of the display showing a standard

view of the UCSC Genome Browser for the selected region.

We note that the custom frame display is complementary to the custom track dis-

plays that we have described previously. In fact, it is often useful to also upload a cus-

tom track of one’s custom-frame data to the UCSC Browser. However, creating a cus-

tom track at UCSC is not necessary for creating a custom frame and, in particular, the

custom frame (which uses data located entirely on one’s own computer) will continue

to function even after one’s custom track has been removed from the UCSC database.

It is also worth noting that there is an even easier, albeit slightly less convenient,

means for navigating among a sparse set of selected genomic regions. One simply

uploads the set of regions as a custom track and then selects the custom track in the

Table Browser. If one then chooses “hyperlinks” as the output data format, the Table

Browser will return a list of links of one’s regions of interest to the genome browser,

though not in the form of a separate frame.

11.3 User-generated DAS tracks in Ensembl

In chapter 3, we saw how to load custom-track data via Ensembl’s internal DAS server.

Ensembl also has a custom-track tool that uses the client computer’s web-serving capa-

bility to create custom tracks (see http://www.ensembl.org/info/using/external_data).

These approaches work well for relatively small custom datasets that only need to be

temporarily integrated into the Ensembl Browser. For situations where one wants to

integrate a large amount of custom data or wants the data to be available relatively

permanently, Ensembl provides a third mechanism for custom tracks – using a local

DAS server.

The DAS protocol enables computers to add annotation tracks to a remote genome

browser. DAS includes specifications for annotation formats – described in Appen-

dix 2 – as well as for communications between the DAS annotation server and the

main sequence-server of the genome browser. Ensembl has been designed to be fully

compliant with the DAS protocol and, consequently, a DAS server can create anno-

tations that will be properly incorporated into the Ensembl Browser as a standard

Ensembl (DAS) track.

Setting up a local DAS annotation server is more complex than using other means

of creating Ensembl custom tracks, such as using Ensembl’s internal DAS server. How-

ever, the installation procedure is relatively straightforward and well documented

(see http://www.ensembl.org/info/using/external_data/das/das_server.html and links

therein), and will not be detailed further here. Once a DAS server has been installed

and configured on one’s local computer, one can easily and stably view one’s custom

data as tracks on the Ensembl Browser. However, as the DAS data is not incorporated

into the Ensembl BioMart database, the data is not available for access via MartView,

nor is the data accessible via the Ensembl API. (The data can, however, be accessed via

the Bio::DAS API described in chapter 8.)
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Figure 11.2 Custom track of putative miRNA precursor on the UCSC Genome Browser.

11.4 Adding tables to the UCSC database

The UCSC system does not currently support the integration of custom tracks onto

its public browser via a remote DAS server. Instead, the UCSC software provides tools

for integrating one’s data into a local mirror of the UCSC database. This approach has

both advantages and disadvantages compared to integrating DAS server tracks. It is

more complex than using DAS, and one needs to install a UCSC database mirror and –

if one wants to display the custom data visually on the browser – also a mirror of the

UCSC Genome Browser software. On the other hand, with this approach one’s data is

truly integrated with the public genome data and is accessible for batch querying via

the Table Browser and the UCSC API, as well as visually via the Genome Browser.

Just how difficult integrating one’s custom data into the UCSC database will be, as

well as the extent that one will be able to access that data via the UCSC toolset, will

depend on the nature of the data being added. If the custom data consists solely of

additional tables having exactly the same table formats as ones that already exist in

the database (e.g., tables containing gene predictions from some new gene-prediction

program), then adding the data into the database is easy. If the new data requires a

new type of database table, then integrating the data with the database and the UCSC

API requires more effort.

We illustrate both of these scenarios with a simple example involving annota-

tions for microRNA-precursor sequences. microRNAs (also known as miRNAs) are small

ncRNAs that have recently been found to play important roles in eukaryotic gene reg-

ulation. microRNAs are coded in the genome by short (20 to 22 nt) regions of DNA that

are located in larger (60 to 80 nt) miRNA-primary sequences. These primary miRNAs may

themselves be located within larger transcripts known as miRNA-precursor sequences,

which may include two or more primary miRNA sequences. Figure 11.2 shows anno-

tations for several human miRNA primary sequences on the UCSC Genome Browser,

as well as a putative precursor sequence that contains them.

11.4.1 Adding standard-format database tables to a UCSC mirror

Let us now imagine that we have experimentally or computationally identified the

locations of a set of miRNA-precursor sequences. An example of one such putative

precursor miRNA is shown as a custom track in Figure 11.2. Now there is no stan-

dard UCSC table format that completely captures all of the relationships among
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Table 11.1 Creating a new database table with standard format (e.g., BED-12)

Step Task Utility or library function Comments

1 Create SQL code for Text editor Could also use autoSql
table generation

2 Create MySQL table mysql or hgsql
3 Convert data format for Custom parser using gff.c Data in GFF

database loading autoXml Data in XML
4 Load table into hgLoadBed, hgLoadPsl,

database hgLoadMaf, or other
dataloading program

miRNA-precursor data. However, BED-12 table format (see Appendix 2, Table A2.1)

can describe most of the data if we set chromStart and chromEnd equal to the

precursor-transcript start and end coordinates, and set the blockStarts and block-

Sizes fields to the start coordinates and lengths of the primary miRNA sequences.

In fact, the “putative precursor” track shown in Figure 11.2 was input to the UCSC

Genome Browser as a custom track using BED-12 format.

If we store our miRNA-precursor data in BED-12 formatted tables, we can inte-

grate our data into a mirror database in just a few steps. These steps are outlined in

Table 11.1. First, we need to create a new BED-12 table in our mirror database (assumed

here to be hg18). We can do this by editing the table name in the fullBed.sql file in

the hg/lib directory to rnaPrecursor and renaming the file rnaPrecursor.sql. Alter-

natively, we could create the rnaPrecursor.sql file directly with the autoSql utility,

as we describe in the following section. In either case, once we have created the

rnaPrecursor.sql file, we can create the new database table using the command:

$ hgsql hg18 < rnaPrecursor.sql

where “hgsql” is a simple UCSC API wrapper program (located in the hg subdirectory

of the UCSC API code) for the MySQL program, which eliminates the need to explicitly

enter the database user name and password. Note that for this command or the

following hgLoadBed command to work, you need to ensure that the database “user,”

defined by either $HGDB_USER or .hg.conf, has MySQL privileges to create and drop

tables. (How to grant such privileges to a database user was described in the database

configuration section of chapter 10.)

Next, we need to load the precursor data from a file in computer memory into

the rnaPrecursor table. If we have generated the data ourselves, it is generally easy to

store our data in BED-12 file format. In this case, we can load the entire table with the

hgLoadBed program (located in the hg/makeDb subdirectory) using the command:

$ hgLoadBed hg18 rnaPrecursor rnaPrecursor.bed
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where “rnaPrecursor.bed” is the BED file with the (hg18 human-genome) precursor

locations and “rnaPrecursor” is the hg18 database table name.

On the other hand, if our data is available only in another format, such as XML

or tab-delimited GFF, we will need a program to parse the input file and convert it

into a format compatible with one of the UCSC database-loader functions. However,

here as well there are kent code programs and library functions available to facilitate

the task. For some database table formats, a parser that can convert a tab-delimited

GFF-formatted file into the required database format is already available (see, for

example, gtfToGenePred in the utils subdirectory). For other GFF-formatted files, one

can use the parsing routines available in the gff.c file in the lib subdirectory to write

a GFF parser.

If our data is in XML, we can use the UCSC xmlToSql, autoDtd, and autoXml

programs to directly generate the necessary SQL code as well as to generate an XML

parser program to read the XML input file into memory. See the articles “autoSql and

autoXml: Code generators from the Genome Project” and “XML, SQL and C” (which

are available online; see the references in Appendix 7), as well as the embedded

documentation in the autoXml, autoDtd, xmlToSql, and sqlToXml subdirectories of

the hg directory for more information on autoXml.

Finally, once our data has been loaded into the UCSC database, it can be accessed

either directly via SQL or via the UCSC API using the library functions described in

the file bed.h of the hg/inc subdirectory.

11.4.2 Creating new types of database tables

So far, we have seen how by storing our miRNA-precursor annotations in BED-12

format in one of the UCSC databases, we can access them via the UCSC API. How-

ever, by using BED-12 format we have lost some of the information contained in our

annotation. Specifically, although each table record contains the precursor and pri-

mary transcript coordinates, it does not contain the coordinates of the miRNAs them-

selves.

One way of including this additional information would be to add a field to each

record of our rnaPrecursor table consisting of a comma-separated list of names of the

embedded miRNAs. This field could then be used to derive keys to look up information

on the constituent miRNAs stored in some other table, for example, the wgRna table.

To implement this approach, we need to first design the structure of our modified

table and then execute an SQL command to create the table in the database. Next, we

need to load the table with our data. Finally, we need to write C code to access the

data from the database and to store the data in memory in appropriate C structures.

The tasks required to construct such a new database table are shown in outline form

in Table 11.2.

As in the previous example, these tasks are made much easier by using UCSC

utility programs, in particular, the autoSql program. autoSql is located in the UCSC

code tree in subdirectory hg/autoSql. autoSql is described in detail in the “autoSql
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Table 11.2 Creating a database table with new structure (e.g., rnaPrecursor)

Step Task Utility or library function Comments

1 Create SQL + C code
for table generation
and access

autoSql Creates rnaPrecursor.sql,
rnaPrecursor.c, and
rnaPrecursor.h files

2 Create MySQL table mysql or hgsql
3 Convert data format

for database loading
Custom parser using

rnaPrecursorCommaIn
Comma-separated data

Custom parser using gff.c GFF Data
autoXml XML Data

4 Load table into
database

Custom loader using
rnaPrecursorSaveToDb

and autoXml” article noted in Section 11.4.1, as well as in the autoSql.doc file in

the hg/autoSql subdirectory. With autoSql, we need only specify the structure of the

annotation data. The autoSql program then generates the C and SQL code necessary

to create and load the new MySQL tables and to access these tables via the UCSC

API.

Figure 11.3a shows a sample autoSql specification file for miRNA-precursor anno-

tations. In the specification file, we see two new fields. miRnaCount stores the num-

ber of miRNAs contained within the precursor sequence, whereas miRnaNames is a

comma-separated string with the names of the miRNAs (which are also the primary

keys of the miRNA records in the wgRna table). We have also changed some of the

BED-12 field names (e.g., chromStart has become precursorStart, and thickStart has

become primaryStart) to more accurately correspond to their usage in our example.

Once the autoSql program has been compiled and linked, we can run it against

the template file of Figure 11.3a with the command:

$ autoSql rnaPrecursor.as rnaPrecursor -dbLink

where rnaPrecursor.as is the name of the autoSql template file. This will create

three output files, rnaPrecursor.sql, rnaPrecursor.c, and rnaPrecursor.h. Creating the

database table can now be accomplished using the same hgsql command indicated in

the previous section. The rnaPrecursor.c and rnaPrecursor.h files provide the C code

for loading and accessing the rnaPrecursor table from a C program (see Figure 11.3c).

In particular, the rnaPrecursorLoad function loads a row from the rnaPrecursor table

into a C structure, whereas rnaPrecursorSaveToDb performs the reverse task – saving

the data from an rnaPrecursor C structure into the database.

The final step before we can access our data is to actually load the data into the

database. Because our data table has a new format, we can no longer use a standard

UCSC loader program, such as hgLoadBed or hgLoadPsl. However, if we format our

data records as strings of comma-separated fields, we can use the autoSql-generated
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a)

table rnaPrecursor

"A cluster of cotranscribed ncRNAs (eg miRNAs or snoRNAs)."

(

string name; "Name of RNA cluster"

string chrom; "Reference sequence chromosome or scaffold"

char[1] strand; "+ or - for strand"

uint precursorStart; "Precursor transcript start position"

uint precursorEnd; "Precursor transcript end position"

uint primaryStart; "Primary transcript region start"

uint primaryEnd; "Primary transcript region end"

uint primaryCount; "Number of primary transcripts"

uint miRnaCount; "Number of processed RNAs"

uint[primaryCount] primaryStarts; "Primary transcript start positions"

uint[primaryCount] primaryEnds; "Primary transcript end positions"

string[miRnaCount] miRnaNames; "Processed RNA names"

)

b)

CREATE TABLE rnaPrecursor (

name varchar(255) not null, # Name of RNA cluster

chrom varchar(255) not null, # Reference sequence chromosome or scaffold

strand char(1) not null, # + or - for strand

precursorStart int unsigned not null, # Precursor transcript start position

precursorEnd int unsigned not null, # Precursor transcript end position

primaryStart int unsigned not null, # Primary transcript region start

primaryEnd int unsigned not null, # Primary transcript region end

primaryCount int unsigned not null, # Number of primary transcripts

miRnaCount int unsigned not null, # Number of processed RNAs

primaryStarts longblob not null, # Primary transcript start positions

primaryEnds longblob not null, # Primary transcript end positions

miRnaNames longblob not null, # Processed RNA names

#Indices

PRIMARY KEY(name)

);

Figure 11.3 Use of autoSQL program to add database table and C code for RNA precursor

annotations to the UCSC database. (a) Input file for autoSql program specifying the

precursor-transcript structure. (b) autoSql-generated SQL code for creating the database table for

RNA-precursor data. (c) Part of autoSql-generated C struct and subroutine definitions for

manipulating RNA-precursor data within the UCSC API.

functions rnaPrecursorCommaIn and rnaPrecursorSaveToDb to read the data into

memory and then write it out to the database table. In contrast, if the data is only

available in XML or tab-separated GFF format, we will need a parser to read the data

into memory, as in the previous example. For XML data, we can again use the autoXml

program to automatically generate an XML data parser. Similarly, for tab-delimited

GFF files, we can again use the GFF parsing routines from the gff.c library to write

a GFF parser. In addition, for XML, we can automatically generate a database table
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c)

struct rnaPrecursor

/* A cluster of cotranscribed ncRNAs (eg miRNAs or snoRNAs). */

{
struct rnaPrecursor *next; /* Next in singly linked list. */

char *name; /* Name of RNA cluster */

char *chrom; /* Reference sequence chromosome or scaffold */

char strand[2]; /* + or - for strand */

unsigned precursorStart; /* Precursor transcript start position */

unsigned precursorEnd; /* Precursor transcript end position */

unsigned primaryStart; /* Primary transcript region start */

unsigned primaryEnd; /* Primary transcript region end */

unsigned primaryCount; /* Number of primary transcripts */

unsigned miRnaCount; /* Number of processed RNAs */

unsigned *primaryStarts; /* Primary transcript start positions */

unsigned *primaryEnds; /* Primary transcript end positions */

char **miRnaNames; /* Processed RNA names */

};

struct rnaPrecursor *rnaPrecursorLoadByQuery(struct sqlConnection *conn, char

*query);

/* Load all rnaPrecursor from table that satisfy the query given. */

void rnaPrecursorSaveToDb(struct sqlConnection *conn, struct rnaPrecursor *el,

char *tableName, int updateSize);

/* Save rnaPrecursor as a row to the table specified by tableName. */

struct rnaPrecursor *rnaPrecursorCommaIn(char **pS, struct rnaPrecursor *ret);

/* Create a rnaPrecursor out of a comma separated string. */

void rnaPrecursorOutput(struct rnaPrecursor *el, FILE *f, char sep, char

lastSep);

/* Print out rnaPrecursor. Separate fields with sep. Follow last field with

lastSep. */

Figure 11.3 (continued)

schema using autoXml (rather than autoSql) that will be compatible with the XML

data representation.

Once our input data file has been parsed and loaded into the database, the data

can be programmatically accessed with the UCSC API using the autoSql-generated

rnaPrecursorLoadByQuery function.

11.5 Adding tracks to the UCSC Browser

In the previous sections, we have seen how we can add custom data to a local UCSC

mirror database and access that data via the UCSC API in an integrated manner.

However, we are not yet able to view this data as a track on the Genome Browser. To
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visualize the new data with the Genome Browser, we must first install a mirror of

the UCSC Browser software itself and then configure the browser so that it displays

the data in our new database tables as browser tracks. In the following sections, we

outline the procedure for performing these tasks assuming that our custom data

can be represented using one of the standard UCSC table formats (e.g., BED or PSL).

In contrast, displaying data from a new type of database table requires adding new

code to the UCSC Browser software itself, which is beyond the scope of the present

chapter.

11.5.1 Installing a mirror of the UCSC Browser

In chapter 10, when we described installing a mirror of the UCSC databases, we did

not discuss creating a mirror of the Genome Browser itself. The reason is that unless

one is creating new database tables, it is just as effective to visualize the results of

any batch query using the public Genome Browser at UCSC. However, if one wants

to visualize annotations corresponding to our custom data, it is necessary to install

a mirror of the UCSC Genome Browser itself (or else to continually upload custom

tracks to the UCSC site).

Assuming that we have already installed a mirror of one or more UCSC databases,

it is straightforward – though not trivial – to install a mirror of the UCSC Genome

Browser. Detailed browser-installation procedure is located in the UCSC mirror instal-

lation guide at http://genome.ucsc.edu/admin/mirror.html. Additional useful docu-

mentation for installing a browser mirror can be found at http://genomewiki.ucsc.

edu/index.php/Browser_installation and in the ex.installExample and README.

install files in the kent/src/product subdirectory of the kent code distribution. If

your target system uses RedHat or a similar linux distribution, the documentation at

http://genomewiki.ucsc.edu/index.php/Browser_ Installation (note capitalization of

“Installation”) is also helpful.

The main steps in the browser installation procedure are

� Install and configure the Apache web server.
� Create a new MySQL user and grant that user read and write privileges on the UCSC

annotation databases.
� Create an additional database, called hgcentral, which contains overall browser-

configuration tables.
� Create html, cgi-bin, and trash subdirectories in the main Apache document direc-

tory.
� Copy static HTML pages from the UCSC download site to the html subdirectory.
� Either copy precompiled CGI binaries to your system’s main Apache CGI binary

directory (for linux systems) or compile the CGI binaries from source by executing

“make compile” and “make install” commands in the kent/src/hg subdirectory. In

the latter case, when you run “make install,” you will need to define the DESTDIR

and CGI_BIN variables so that the output binary is written to the main Apache CGI

binary directory.
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track rnaPrecursor

shortLabel RNA Precursors

longLabel snoRNA and miRNA Precursors

group genes

priority 50

type bed 12

visibility hide

Figure 11.4 A section of a trackDb.ra file, which is configured to display a BED-12 formatted track

called rnaPrecursor.

� Load the hgcentral database using the (edited) command script ex.hgcentral.sql

located at kent/src/product and described in the README.install file.
� Modify the ex.hg.conf configuration file located at kent/src/product and copy it to

the main cgi-bin directory, again as described in the README.install file.

In practice, the effort required to install a browser mirror depends on how similar

the target hardware and software configurations are to those used at UCSC. If the

target system uses linux, the Apache web server, and MySQL, installation will be less

difficult. If the target system uses another version of Unix, such as Mac OS X, or some

other web server or relational database, installation and system configuration will

require more time and effort because installation on such systems has been much

less tested.

In any case, it is advisable to make sure that one’s web server properly executes

basic CGI programs before one undertakes Genome Browser installation because

otherwise, it is difficult to distinguish browser installation problems from other web

server configuration issues. It is also important to install all of the browser html and

cgi-bin subdirectories in exactly the location expected by the browser, that is, in the

primary web server directory, because parts of the browser software are hard-coded

to expect them in those locations.

11.5.2 Displaying new tracks on the UCSC Browser

Once one has a genome browser mirror installed and running, any custom tables

that you have installed in your local database will be viewable via the Table Browser.

However, if one also wants to view the data as tracks on the Genome Browser, one has

to modify and reload one of the track-configuration trackDb.ra files in hg/makeDb/

trackDB or one of its subdirectories. These files specify which tracks to display on the

browser, which table to associate with each track, and how to display each track.

In a trackDb.ra file, configuration data for each track is contained in a multi-

line record separated by a blank line. A small portion of a sample trackDb.ra file,

illustrating the track-configuration file format for an rnaPrecursor track, is shown

in Figure 11.4. As can be seen, the trackDb.ra format includes multiple fields and

options for customizing the track display. These options are described in detail in the

README file in the hg/makeDb/trackDB. However, if one only needs to display tracks

from tables with standard UCSC table formats, one does not need to learn all of these
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options. Instead, it is sufficient to simply copy a record from another preexisting,

track that uses the same database format (e.g., BED-12) and edit the copied record

with the new track and table names, as shown in Figure 11.4.

The various track-configuration files are located in multiple subdirectories of the

hg/makeDb/trackDb directory hierarchy, and all have the same file name (trackDb.ra).

All trackDb.ra files have the same function and format. Which trackDb.ra file you need

to modify depends on in which genome assemblies you want your new track to appear.

For example, tracks listed in the trackDb.ra file of the human/hg18 subdirectory of

hg/makeDb/trackDb will be displayed only if the user selects the hg18 build of the

human genome. In contrast, tracks in the trackDb.ra file of the human subdirectory

will appear in all assemblies of the human genome. Similarly, those in the main

trackDb directory will be displayed in the browser for all species.

After one has added the record for the new track to one of the trackDb.ra files, one

has only to load the modified trackDb.ra file for the changes to appear in the browser.

Loading the trackDb.ra files is accomplished by executing the following command in

the hg/makeDb/trackDb directory:

$ make alpha DBS=hg18

where the argument of DBS (in this case, hg18) indicates which browser builds should

be updated. After this command has been completed, any new tracks in the trackDb.ra

files in the trackDb, trackDb/human, or trackDb/human/hg18 subdirectories will be

visible the next time the hg18 human genome build is selected in the Genome Browser.

In the case that our custom data requires the use of a nonstandard table format,

the previous procedure for displaying the data as a browser track will not work.

This is because there is no standard track type associated with our new type of table

and, consequently, we cannot configure the track in a trackDb.ra file. Instead, we

would need to create a new type of track. This would involve writing software to

display the new track in the browser code (e.g., in the display program hgTracks.c)

and will not be described further here. For more information on adding tracks to a

UCSC mirror, see http://genomewiki.ucsc.edu/index.php/Adding_New_ Tracks_to_a_

browser_installation.

11.6 Creating new genome databases

So far, we have described situations where we already have a genome browser or

database and we want to add annotations to it. However, there are cases where one

needs to create an entirely new genome database. The typical scenario would be for

annotating a genome that has been newly sequenced. To be sure, this is not a task

with which most researchers are often confronted. However, as the time and cost

required for sequencing and assembling genomes continues to drop, the number of

sequenced genomes that have not yet become available on the Ensembl, MapViewer,

or UCSC systems is likely to increase.
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One approach could be to design a new database and associated browser interface

from scratch. First, one would need to select and install the underlying database

management system (DBMS) and define the database-table specifications (i.e., the

database schema). Next, one would need to format one’s data so that it can be loaded

into the database and execute the SQL code to create the database and load it with

the data. Finally, one needs to develop an API and user interface to facilitate accessing

the data via a browser or with querying programs.

Building a genome database from scratch is a very major undertaking and is

almost never actually done. Instead, one generally copies (or “clones”) the database

schema and tools from a genome-database architecture that already exists. Obvious

choices for architectures to clone include either the UCSC or Ensembl systems (or

some subset of one of them). The resulting cloned systems could then be customized

to meet the specific requirements of the new genome database. However, the designs

of the Ensembl and UCSC systems are in certain ways specific to the requirements of

the Ensembl and UCSC projects, and are implemented using hardware that is much

more powerful than may be available to projects for smaller genomes. Consequently,

an attractive alternative approach for building a new genome database is to use the

generic database-building tools provided by the GMOD project. These tools are rela-

tively easy to use for small- to medium-size databases, while maintaining multiple

customization options so that they will be appropriate for a wide range of genome

database projects.

11.6.1 Cloning a UCSC or Ensembl database

Database cloning is the approach used by the Ensembl and UCSC Browser teams when

they are building a database for a newly sequenced genome, or for a new assembly

of a previously sequenced genome. However, cloning a database for a new genome

is much more complex than simply mirroring an already existing Ensembl or UCSC

database, as described in Chapters 8 and 10.

To clone a database for a newly sequenced genome, UCSC and Ensembl use differ-

ent approaches, both in terms of the extent of integration of the annotation gener-

ation with the database-building process and in the level of automation used. UCSC

uses a partially automated procedure in which annotation generation and database

construction are largely separated. The steps involved in these procedures are doc-

umented in files in the hg/makeDb/doc subdirectory, with names like “Database-

Name.txt,” where “DatabaseName” is the name of the database being built (e.g., the

hg18 build documentation is in the file hg18.txt).

At first glance, the makeDb/doc files look like Unix shell scripts that could be

executed automatically. However, in fact, the contents of these files are a set of

individual Unix commands, many of which are currently not set up for completely

automated execution. Although the makeDb files are generally well documented,

they are long and complex – hg18.txt, for example, is over 12,000 lines. Conse-

quently modifying such a command list for use with a new genome or on a computer
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configuration that is not likely to be identical to UCSC’s will inevitably uncover

installation challenges.

To be sure, one does not need to load all the tables used in the hg18 database to

configure a UCSC database clone for a newly sequenced genome. In fact, to clone a

UCSC database and browser for a new genome, one could (and probably should) start

by simply creating a skeleton database of five tables. This approach was mentioned

in chapter 10 and is described in http://genomewiki.ucsc.edu/index.php/Browser_

installation. After one has successfully installed and configured the skeleton database

and browser for the new genome, one can add additional tables and tracks as needed.

Although gradually building a UCSC clone database is much easier than attempting

to create a new UCSC database with large numbers of tables and tracks all at once, it

is still challenging. In fact, to date only one public genome database, the Archaea and

Bacterial Genome Browser (http://archaea.ucsc.edu), has been developed by cloning

the UCSC architecture.

In contrast to UCSC’s approach, Ensembl’s database-construction procedure is

more integrated and automated. Ensembl uses a database-construction program suite

called the Ensembl pipeline (Potter et al., 2004), which not only performs the creation

and loading of the new database but also executes the programs (e.g., BLAST, GEN-

SCAN, repeatmasker) that create many of the database annotations. As a result, the

procedures in the Ensembl pipeline are tightly connected with the specific annota-

tions that are to be included in the Ensembl database. Consequently, the strategy of

cloning the Ensembl database architecture has been primarily used in the annota-

tion of large, newly sequenced genomes, similar to those in Ensembl itself. Examples

of the use of Ensembl’s software for implementing genome databases include the

genome browsers for agricultural and other grains used by the Gramene Project

(http://www.gramene.org/genome_browser) and the farm-animal genome browsers

used by SIGNAE Project (http://public-contigbrowser.sigenae.org:9090).

Some customization of the Ensembl pipeline is possible using a configuration pro-

gram known as the RulesManager. In addition, a more generic form of the Ensembl

pipeline, called Biopipe (Hoon et al., 2003) exists. However, even using Biopipe, cre-

ating an Ensembl-like genome database for a newly sequenced genome is a complex

task requiring significant programming and Unix system-administration experience,

as well as access to considerable computer hardware (e.g., computer clusters). In gen-

eral, genome database designers considering the use of the Ensembl pipeline and

database architecture for new genome database construction are well advised to

first contact the Ensembl developer’s mailing list for support and guidance. The

developer’s mailing list can be accessed via Ensembl’s general mailing list page at

http://www.ensembl.org/info/about/contact.html.

11.6.2 Database construction using the GMOD tools

For the reasons described in the previous section, cloning and adapting the UCSC

or Ensembl database structure for annotating a new genome is a challenging task.
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At a minimum, a genome database designer should have a year of Unix system-

administration experience, or the equivalent, before attempting such database clon-

ing. An alternative, and often easier, approach to creating databases and browsers for

new genomes is to use the genome-database architecture and tools provided by the

GMOD project. Using GMOD software components, one can build a genome database

system that provides genome browsing, interactive and programmed batch querying,

and the display of genetic maps and biochemical pathways with relatively modest

effort. Moreover, the resulting genome databases will have uniform user interfaces, so

that someone familiar with one GMOD database can easily navigate another. FlyBase,

WormBase, the Mouse Genome Database, FleaBase, and BeetleBase are some of the

widely used genome databases that have been built at least partly using the GMOD

tools.

Descriptions of all of the tools in the GMOD toolset can be found at the GMOD web

site (http://www.gmod.org). At first glance, the tool descriptions at the GMOD web

site may seem a little confusing, in part because the tools have been developed by

independent groups and, in some cases, have redundant or overlapping capabilities.

For several steps in the genome database construction process, multiple tools are

available – generally including both simple tools, which are more thoroughly tested

and documented, and more powerful ones that are in earlier stages of development.

In general, the GMOD project is still somewhat of a work in progress, with some

tools that are well developed and documented and others that are much less so. In

particular, many of the tools are well developed for stand-alone use, whereas the

mechanisms for combining these tools into an integrated genome database system

are less well developed and documented.

11.6.2.1 Genome browsing with GBrowse

The central component of a typical GMOD database is the web-based genome browser,

GBrowse. GBrowse is relatively easy to set up and yet offers considerable flexibility.

GBrowse can handle genomic data in varying formats and multiple different database

schemas and database-management systems.

Setting up a GBrowse system is essentially a three-step process. First, one chooses

the DBMS and database schema. Second, one formats one’s data so that it can be

loaded into the database (in the case of relational database implementations) and so

that it can accessed for genome browsing and batch querying. The simplest GBrowse

database configuration is a flat-file (i.e., nonrelational) database, using GMOD’s

Bio::DB::SeqFeature::Store database schema and with data in the GFF3 format.2 The

last step in GBrowse database installation is that of installing and configuring the

GBrowse program itself. In general, the procedure is similar to that for installing and

configuring the UCSC Browser. One first needs to install and configure a web server

program (i.e., Apache). One then downloads and installs the GBrowse software and

2 See Appendix 2 for a description of the GFF3 data formats.



232 Genomes, Browsers, and Databases

copies the GBrowse HTML and binary files to the web server directory. Finally, one

edits the GBrowse configuration files so that the browser communicates properly with

the web server and with the underlying database. We will not cover the installation

procedure further because it is described in detail in the GBrowse tutorial (available

at http://www.gmod.org/nondrupal/tutorial/tutorial.html) and the GBrowse installa-

tion guide (see http://www.gmod.org/wiki/index.php/GBrowse_Install_HOWTO). Once

one’s data has been loaded into the database and GBrowse has been configured to

point to this database, one can visualize the data using one’s web browser. The result-

ing genome browser display will be similar to that shown in Figure 3.14 in Chap-

ter 3.

So far, we have described setting up GBrowse with a flat-file database using

GFF3-formatted input data and the Bio::DB::SeqFeature::Store database schema. How-

ever, the GMOD architecture supports several other database-management systems,

schema, and file formats. For example, if one wanted to implement the database as

a relational database, one could modify the GMOD/GBrowse installation procedure

to specify RDBMS data storage (currently, GMOD supports MySQL, PostgreSQL, and

Oracle, among others). For use with, say, MySQL, one would need to create a MySQL

database and create a user with read and write privileges on that database. One then

would load the MySQL database with one’s data in GFF3 format. Loading the database

is easily performed with the bp_seqfeature_load.pl load script (available in the BioPerl

1.5.2 distribution). If, at a later point, one wants to incorporate additional data into

the database, one can simply run the bp_seqfeature_load.pl script again with the new

data, as long as the new data is also GFF3-compatible. In contrast, if our data is only

available in GFF format rather than in GFF3, we could configure our MySQL database

to use the Bio:DB::GFF schema instead of the Bio::DB::SeqFeature::Store schema by

using the BioPerl GFF loading script bp_load_gff.pl instead of bp_seqfeature_load.pl.

11.6.2.2 Batch querying with GMOD’s Perl API

In addition to visualizing one’s data with GBrowse, batch queries can be executed

against a GMOD database using either standard SQL or one of several available APIs.

For example, if you are programming in Perl, you can use the library routines from

the BioPerl Toolkit (you will need BioPerl, version 1.5.2 or later). BioPerl database-

access adaptors are available for several GMOD-supported database schemas including

Bio::DB::SeqFeature::Store, Bio:DB::GFF, and Chado. The necessary syntax for calling

the database adaptors for the various APIs is very similar to the Ensembl Perl API

syntax. For example, retrieving sequence-feature objects on chromosome 3 from a

flat-file database (using, say, a GFF3-formatted file at /var/databases/test.gff3) with

Bio::DB::SeqFeature::Store could be performed with Perl code like this:

$db = Bio::DB::SeqFeature::Store->new(-adaptor => ‘memory’,

-dsn => ‘/var/databases/test.gff3’);

@features = $db->get_features_by_location(-seq_id=>‘chr3’);
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Similarly, if you have stored the GFF3 data in a local MySQL database using the

Bio::DB::SeqFeature::Store schema, you could retrieve sequence-feature objects asso-

ciated with gene ‘‘ZK909” or sequence-feature objects of type “mRNA,” “match,” and

“repeat region” from Chromosome1:5000–6000 with Perl code like this:

use Bio::DB::SeqFeature::Store;

$db = Bio::DB::SeqFeature::Store->new( -adaptor => ‘DBI::mysql’,

-dsn => ‘dbi:mysql:test’);

@features = $db->get_features_by_name(‘ZK909’);

# or

@features = $db->features(-seq_id=>‘Chr1’, -start=>5000,

-end=>6000, -types=>[‘mRNA’,’match’,’repeat_region’]);

Syntax for accessing a Bio:DB::GFF-based database would be similar, except that the

lines in the code here referring to “Bio::DB::SeqFeature::Store” would be replaced by

“Bio:DB::GFF.”

11.6.2.3 Cmap, Pathway Tools, and BioMart

Although running GBrowse as a stand-alone genome browser is quite useful by

itself, GMOD also includes several other tools for genome data analysis. Three of

the most useful tools are Cmap (http://www.gmod.org/wiki/index.php/Cmap), Path-

way Tools (http://www.gmod.org/wiki/index.php/Pathway_Tools), and BioMart (http://

www.biomart.org).

With Cmap, one can display genetic maps (such as maps of quantitative trait

loci), physical maps (e.g., chromosomal markers), and sequence assemblies. In addi-

tion, pairs of maps can be compared to identify syntenic regions (i.e., sets of related

markers, such as homologous sequences or regions associated with similar pheno-

types, which occur in the same order in both maps). Such comparisons can be made

between maps of any two species within the Cmap database. By means of such com-

parisons, Cmap can help identify genes that influence different phenotypes even

in cases where the underlying genomic sequence has not yet been sequenced or

assembled.

GMOD’s Pathway Tools provide a mechanism for storing and graphically display-

ing biochemical pathway data (e.g., metabolic pathways or signaling pathways). In

this case as well, the database need not include the sequence of the underlying

genome. In addition, metabolic or signaling pathways can be compared between

related species. In this way, Pathway Tools can help, for example, identify enzymes

that are missing (or perhaps have simply not yet been identified) in specific species.

Although GBrowse, Cmap, and Pathway Tools provide powerful features for the

browsing of genomic and other biological data, they have limited batch-querying

functionality. Instead, batch-querying support is provided by the BioMart component

of the GMOD project. As we have seen in chapter 4, BioMart is a data-management sys-

tem that simplifies the task of creating web-based batch-query interfaces to complex
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Figure 11.5 General BioMart architecture.

biological data. With BioMart installed, a GMOD database will have interactive batch-

querying capability very similar to Ensembl’s BioMart interface. In addition, as noted

in chapter 8, BioMart provides its own API, which can be used as an alternative to

GMOD’s APIs for programmatic access to one’s GMOD data. BioMart uses a relational

database backend and can currently support the Oracle, PostgreSQL, or MySQL rela-

tional database platforms. BioMart can be constructed from an existing relational

schema (e.g., Bio::DB::SeqFeature::Store, Bio:DB::GFF, or Chado) or can be built from

nonrelational data sources. Figure 11.5 shows a schematic of the data-mart architec-

ture as implemented by BioMart.

Setting up a BioMart for a GMOD database is described in detail in the BioMart doc-

umentation at http://www.biomart.org/user-docs.pdf. Essentially, one first downloads

and installs the BioMart software itself. One then needs to use BioMart’s MartBuilder

and MartEditor tools to generate the SQL for creating one or more new databases (the

data marts). One then runs the SQL code to create the data marts and fill them with

data from the GMOD database. Finally, one needs to install the BioMart Perl API and

configure the MartView BioMart application to run as a web-based program under

one’s Apache installation.

11.6.2.4 Integrated GMOD databases with Chado

So far, we have considered the various GMOD components – GBrowse, Cmaps, Pathway

Tools, and BioMart – as separate, stand-alone tools. However, the GMOD architecture
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is designed so that multiple GMOD tools can be incorporated into a single integrated

genome database. But implementing such tool integration requires using a more

complex database schema called Chado (Mungall and Emmert, 2007).

Chado differs from the database schemas that we have seen before – such as

the Bio::DB::SeqFeature::Store and the Bio::DB::GFF schemas, as well as the Ensembl

and UCSC database schemas – in that the relationships among the data are not

completely described by the table definitions in the Chado database. Rather, Chado

uses an additional layer of data description that constrains its data specifications

to follow a “controlled vocabulary” of biological data types. In particular, a Chado

implementation can only use biological-sequence terms defined by the Sequence

Ontology Project (Eilbeck et al., 2005). Forcing data within a Chado database to follow

the rules of the controlled vocabulary is generally implemented via the use of trigger

functions defined within the underlying relational database management system

itself. Consequently, all data that is to be loaded into a Chado database must be in a

format, such as GFF3, that is already compliant with the data-type constraints of the

Sequence Ontology Project.

Although controlled vocabularies impose constraints on the data formats that

can be handled, the result is a genome-database architecture that is very flexi-

ble and customizable. At the same time, the controlled vocabulary ensures that

tools developed by one Chado-based project will be interoperable with tools devel-

oped by any other Chado-compliant project. For example, with a fully installed

GMOD database implementing the Chado database schema, one could view genome

annotations with GBrowse, edit genome annotations with the Apollo genome-

annotation editor (http://www.fruitfly.org/annot/apollo; Lewis et al., 2002), compare

maps with Cmap, make data mining batch queries using the BioMart API, and

browse the entire database using GMODWeb (http://www.gmod.org/wiki/index.php/

GMODWeb).

Chado is a relatively new genome-database architecture. Several of its components

and features – for example, those for incorporating BioMart into the Chado frame-

work, or for supporting Chado under RDBMS other than PostgreSQL – are currently

under active development. Moreover, documentation and tutorial material for some

Chado tools are still somewhat limited. In particular, the details for implementing

Chado may well change in the near future and, as a result, we will not describe

them further here. For these same reasons, at present, installing and maintaining a

database using the Chado schema requires considerably more effort and Unix system

administrator and Perl programming experience (probably at least a year’s experi-

ence) than using a database with the Bio::DB::SeqFeature::Store schema. However,

this situation is likely to change in the near future, so the reader who is interested in

deploying the Chado schema for integrated genome-database development is encour-

aged to consult the Chado web pages (http://www.gmod.org/chado) to determine the

current status of the Chado toolset and its documentation.
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Chapter summary

� Although custom tracks work well for the temporary integration of private data

with genome annotations, for reasons of security, convenience, or enhanced data

manipulation, it is sometimes desirable to integrate one’s data with a public

genome database in a more permanent manner.
� Adding permanent tracks to the Ensembl databases can be performed by setting

up a DAS server system.
� If one has installed a local mirror of one or more UCSC databases, it is straight-

forward to add additional tables to the database using code generated with the

autoSql program.
� To visualize the new tables on the UCSC Browser requires that a UCSC Browser

mirror has been installed in addition to a database mirror. If this has been done,

the data in the new tables can be displayed by editing the database’s trackDb.ra

configuration files.
� Creating an entirely new genome database, for example, to support the sequencing

of a new genome, can be accomplished using the tools of the GMOD project.

Exercises

1. In the text, we described custom frames in terms of linking a set of custom regions

of interest to the UCSC Browser. However, custom frames can also be used to move

quickly between a set of related regions that are not necessarily based on custom

data. Make a BED list of the coordinates of all genes whose descriptions include

the term “Fanconi anemia” (e.g., by using the “Position and search term” input

on the UCSC Browser). Convert the BED list into a custom frame as described in

the text. Now by selecting different regions from the region list, one can easily

compare genomic regions containing regions that have been implicated with this

single disease. (To create the custom frame using the UCSC bedToFrames program,

you will need to install the UCSC API and compile the bedToFrames program.)

2. Add a tRNA table to the UCSC S. cerevisiae database. (Actually, this information is

already in the database as part of the sgdOther table, but this exercise asks you to

make a separate tRNA-only table.)

a. Create an autoSql template for a tRNA table.

b. Execute autoSql to create SQL code to create the table and the associated C code.

c. Obtain the locations of yeast tRNAs as a BED file (this can be done, for example,

with the Table Browser by filtering the sgdOther table).

d. Assuming you have installed a local yeast UCSC mirror (chapter 10, Exer-

cise 10.3), load the new table with hgLoadBed.

e. Finally, confirm that you can access the newly loaded data either directly using

SQL or else using the UCSC API with the C functions that you have generated

with autoSql.
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3. Create a list of all protein genes in the S. cerevisiae genome in GFF format (this

can be done, for example, by using the GTF output option for the sgdGene table

in the Table Browser). Create a new GMOD yeast database and load the database

using the BioPerl bp_load_gff.pl program. Confirm that you can access the newly

loaded data by writing a BioPerl script, as described in the text. Install GBrowse

and display the gene track.
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Genomes, Browsers, Databases –
The Future

With the acquisition of complete sequence data from multiple organisms, and the

development of genome browsers and genome databases, researchers are now able to

investigate fundamental biological questions in ways that were impossible to address

in the past. Moreover, the rate at which useful sequence and annotation data is

accumulating is not showing any signs of slowing down – even with the completion

of the Human Genome Project. Instead, as technical innovation and economies of

scale continue to drive down the cost per base pair of sequencing DNA, the quantity

of available data increases ever more rapidly.

One may well wonder what new opportunities and applications may emerge from

this new data, and what sorts of new tools will be required to analyze them. Of

course, it is impossible to answer these questions with any certainty. However, in

this final chapter, we will speculate regarding future trends in genomic data from

the perspective of genome browsers and databases. In addition, we introduce web

sites that provide an early glimpse of some of the new genomic-data resources being

developed.

12.1 Glimpses to the near future

At least in the near term, development of new tools for analyzing and displaying

genomic data are likely to come from the very research teams whose work we have

already described in this book – UCSC, Ensembl, NCBI MapViewer, Galaxy, and GMOD.

Most of these groups carry out a portion of their development work on public web

sites that can be viewed by all. Consequently, if one is interested in glimpsing the

future of genome databases and browsers, periodically checking these sites can be

illuminating.

The UCSC “genome-test” web site (http://genome-test.cse.ucsc.edu) displays work

in progress on the UCSC Genome Browser. The layout of genome-test is essentially

identical to the main UCSC site and, in fact, all features on the main UCSC site

initially appear on the test site. Only after they have remained on the test site for

a period of weeks or even months and been determined to be useful and bug-free

238
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are they transferred to the main UCSC Genome Browser. In particular, by looking

at the test site, one can determine which species and genome assemblies may soon

be added to the main Genome Browser. For example, at the time of this writing

genome assemblies for fourteen eukaryotic species were available on the test site but

not on the main UCSC Browser. In most cases, annotations for these new species are

limited. Nevertheless, if one is studying one of these species and integrated genomic

information is not yet available elsewhere (e.g., at Ensembl or MapViewer), then being

able to access the genome data on the UCSC test site may be advantageous.

In addition to browsers for newly sequenced genomes, the UCSC test site contains

annotations and browser features that are not yet implemented on the main UCSC

site. For example, at the time of this writing, there are some 80 tracks on the hg18

build of the human genome on the main UCSC site, whereas there are almost 200 hg18

tracks on the UCSC test site, including ones for VEGA genes, structural variations,

and Eponine-predicted transcription start sites.

To be sure, many of the UCSC test-site annotations are experimental, or are relevant

primarily for internal UCSC research projects, and are of limited general interest.

Moreover, these tracks often have had only limited testing and may fail, or even

display invalid data. As the test-site documentation indicates, using data from the

test site should be done with caution, and generally only if there is no equivalent data

available on the main UCSC site. On the other hand, if one simply wants a glimpse at

what features and annotations will be coming to the main UCSC site in the future,

examining the UCSC test site can be quite useful.

One can also glimpse the future of the UCSC Browser via the “ENCODE” tracks,

which have been developed out of a collaboration between UCSC and the ENCODE

Project (Birney et al., 2007). The ENCODE annotations are the result of multiple

experimental collaborations that have acquired transcriptional data, chromosomal

immuno-precipitation information, CpG methylation data, and many other anno-

tations for characterizing genomic regions. Some twenty-five separate annotation

tracks available only for the ENCODE regions can be found on the hg18 build of the

UCSC Genome Browser. Even more annotations of the ENCODE regions are available

on the older hg17 build of the UCSC Browser. At present, the ENCODE annotations are

available for only about one percent of the genome. However, in the future, similar

data should become available for the rest of the human genome and, quite possibly,

for the genomes of some of the model organisms as well. The UCSC ENCODE tracks

provide a useful preview of the how this data will appear in the genome browsers of

the future.

Another source of previews of future developments by the UCSC group is the

“Browser Development” section of the UCSC genome wiki web site (http://genomewiki.

ucsc.edu/index.php/Main_Page#Browser_Development). On these pages, one can

find proposals for new features and tools to be incorporated into the UCSC sys-

tem. Descriptions on the Browser Development pages are sometimes sketchy and

may well never actually be incorporated into the UCSC site. However, they do
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provide a glimpse of future features being considered within the UCSC developer

community.

Ensembl and Galaxy also provide opportunities for learning more about their

development plans. The Ensembl Pre! site (http://pre.ensembl.org) includes browsers

for newly sequenced genomes that are not yet available via the main Ensembl site. For

example, at the time of writing, six genome assemblies were available on the Ensembl

Pre! site. The level of annotation on the Ensembl Pre! site is generally quite limited.

In contrast to the UCSC test site, Ensembl Pre! does not include test browsers for

upcoming builds for species that are already represented in the main Ensembl site.

Ensembl also does not have a public web site for posting proposals for new Ensembl

features, analogous to the Browser Development pages of the UCSC genome wiki site.

Instead, if one wants a glimpse of future Ensembl plans, one can subscribe to the

Ensembl developer’s mailing list or view the mailing list archives, both of which are

accessible at http://www.ensembl.org/info/about/contact.html.

Galaxy provides a view of its upcoming features via its test server at http://test.g2.

bx.psu.edu, from which, every few weeks, software is transferred to the main Galaxy

server. In addition, users interested in future Galaxy enhancements can subscribe

to the Galaxy developer’s mailing list at http://mail.bx.psu.edu/cgi-bin/mailman/

listinfo/galaxy-user. At the present, NCBI does not provide a preview web site or a

public mailing list for discussion of upcoming MapViewer features.

12.2 Future genome database features

We now look at the kinds of data and features we may find in genome browsers and

databases in the coming years. My guess – and, to be sure, it is just a guess – is that

the most significant new features will be in the areas of regulatory region and epi-

genetic annotations, genome-wide RNA expression data, population-variation data,

integrated multigenome querying, ancestral genome data, and databases describing

microbial communities.

Acquiring many of these new types of data requires the sequencing of large

amounts of genomic data. At the same time, new technologies are emerging that

greatly lower the costs and increase the speed for the acquisition of such sequence

data. Consequently, to better appreciate the range of new data types that are being

added to the genome databases, we first briefly describe these new technologies,

which are currently revolutionizing genomic sequencing.

12.2.1 New sequencing technologies and genome databases

Until recently, most sequence data in the genome databases have been generated

by the Sanger sequencing technique. Sanger sequencing works well; its costs have

decreased significantly and its throughput has greatly increased over the thirty years

that it has been in use. Nevertheless, the costs and throughput of Sanger sequencing

still limit its application for many important biological questions. To address these
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limitations, two other classes of sequencing technologies – referred to as sequencing by

hybridization and sequencing by synthesis – are becoming increasingly important. These

technologies promise dramatically lower sequencing cost and increased sequencing

speed. For a more detailed introduction to these sequencing technologies, the reader

is referred to the literature on sequencing technologies, such as chapter 7 of Primrose

and Twyman (2006), as well as to the specific references indicated here.

Sequencing by hybridization (SBH) refers to a class of technologies in which the

sequence of a (“target”) DNA is determined by its pattern of hybridization to a large

number of short DNA elements (“probes”) of known sequence. In most SBH implemen-

tations, the probes are deposited in a grid pattern on a micro-array chip, similar to the

micro-arrays used for RNA-expression measurements. Although SBH was proposed in

the late 1980s and early 1990s (Drmanac et al., 1989; Southern et al., 1992), its use

has been limited until recently. This is because SBH is limited primarily to resequenc-

ing, that is, sequencing of genomic regions that have been sequenced previously –

for example, in other individuals of the species or of a closely related species. How-

ever, with the completion of the sequencing of numerous genomes (and especially

the human genome) and the increasing interest in determining sequence variants

within populations, resequencing by SBH has become increasingly important. In par-

ticular, as improved technology has increased the number of oligonucleotides that

can be placed on an array and has lowered the costs of producing such arrays, SBH has

enabled the detection of large numbers of novel SNPs. In addition, variants of the SBH

approach, such as array-CGH (Sebat et al., 2004), have enabled the cost-effective detec-

tion of genomic structural variations, including some classes of genomic insertions,

deletions, and copy-number variations. Moreover, when combined with biochemical

assays, SBH can be used for genome-wide identification of DNA binding sites or DNA-

and histone-methylation patterns.

However, except for very short (e.g., mitochondrial) genomes, de novo DNA sequenc-

ing generally can still not be performed by SBH. In addition, determining certain

important genomic variations, such as finding rare SNPs, identifying chromosomal

inversions, and determining high-resolution maps of CNV breakpoints, is still diffi-

cult or impossible to accomplish with SBH. To address these applications, sequencing

by synthesis (SBS) technologies are being developed. Several different SBS technolo-

gies have recently been commercialized or are likely to become available in the near

future – for example, see Leamon and Rothberg (2007) and Kartalov and Quake (2004).

Although these technologies differ among one another in important details, they all

involve modifying the DNA replication process so that a detectible signal (e.g., fluo-

rescent or enzymatic light emission) is generated as each nucleotide is incorporated

into nascent replicated DNA. Consequently, if the target DNA is used as a replication

template for the DNA polymerase, the sequence of light signals emitted during the

replication process can be used to determine the sequence of the target DNA.

As of 2007, SBS technologies are already capable of determining DNA sequence at

rates that are about 100 times faster than Sanger sequencing and have about 100 times
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lower per-base cost – for example, see Rogers and Venter (2005), and Olson (2007).

Moreover, as these technologies are still in relatively early stages of development,

it is likely that improvements in cost and speed will continue. In fact, the National

Institutes of Health (NIH) currently has established programs for funding research

with the goal of reducing sequencing costs so that an entire human genome can be

sequenced for $1,000 or less.

The main limitations of SBS technologies are that they produce shorter sequenc-

ing “reads” than Sanger sequencing and that they have higher error rates. How-

ever, for many important applications, these limitations are not critical, and meth-

ods for addressing them exist. For example, by using a fraction of the increased

throughput available from SBS to replicate each sequencing run, one can signifi-

cantly decrease the error rate with only a minor decrease in throughput. Also, as the

main sources of SBS sequencing errors are usually known (e.g., several of these tech-

nologies have increased error rates when sequencing regions consisting of a single

repeated nucleotide, or “homopolymer regions”), one can selectively resequence the

error-prone regions using Sanger sequencing to decrease the overall error rate with

only a small increase in sequencing cost.

Because of its short read lengths, SBS has to date been focused on resequencing

applications. Such applications include searching for rare, but medically important,

genomic variants, identifying genetic and epigenetic sequence variations in different

cell types, and sequencing entire genomes of single individuals. For such applications,

short read-length sequencing (which range from about 500 base pair reads for the

most mature approaches to less than 50 base pairs for techniques with the highest

speed and lowest cost) is just as effective as Sanger sequencing with its 1,000 base pair

read length. For de novo sequencing of small (e.g., microbial) genomes, the limitations

of short read lengths have also been shown to be quite surmountable. In contrast, de

novo sequencing of large genomes is not yet feasible with short read-length technology.

However, even here, the situation is improving. For example, new computational

approaches show promise for assembling mammalian-size genomes from reads as

short as 200 base pairs (Sundquist et al., 2007).

In short, there appears to be little doubt that SBH and SBS technologies will

enable the acquisition of far more biologically important sequence data than could

be previously acquired with Sanger techniques. This new data will greatly enhance

the range of data that will be available for integrated querying from the genome

databases. We now look at some areas where the availability of this new data is likely

to have the greatest impact on the genome browsers and databases, and on biological

research in general.

12.2.2 Regulatory regions and epigenetics

It has been evident for a number of years that genomic regulatory features, which

control gene expression, are likely to have as significant an impact on phenotypic

variation as protein-coding gene sequences. Such regulatory features include both
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properties of the sequence itself – for example, the occurrence of CpG islands or pro-

moter sequences – as well as epigenetic genomic markers – for example, nucleotide

methylation patterns or variations in the distribution of chromatin that binds to the

genomic DNA.

In most cases, identifying regulatory regions in the genomic sequence is still much

more difficult than locating protein-coding genes. Determining regions of epigenetic

variation is typically even more difficult. In many cases, it is not even known to what

extent epigenetic markers are determined by the underlying sequence or by other

factors, such as the cellular environment, developmental stage, or the parental origin

of the chromosome. However, recently the identification of regulatory regions in the

genome has become more tractable via the use of techniques such as affinity assays

to identify transcription-factor binding sites and chromatin immuno-precipitation

assays to locate sites of chromatin-DNA association.

As new regulatory regions are identified, new approaches may be required to dis-

play this data in the genome browsers. One the one hand, regulatory regions that are

simply specific genome sequences can be displayed on a standard genome-browser

annotation track. In contrast, regulatory regions including epigenetic markers that

vary with cell type or developmental stage will require a more complex display – such

as a separate annotation track showing the epigenetic modifications (e.g., methyla-

tion state) for each different cellular environment.

Annotations for epigenetic modifications and genome regulatory regions can

already be found in the current genome browsers. One example is in the ENCODE

regions of the human genome. For these regions, the ENCODE Project has generated a

variety of gene-regulation data including annotations for DNaseI-hypersensitive sites,

locations of unmethylated CpGs, and regions of DNA-chromatin association as deter-

mined by ChIP/chip experiments. Tracks describing many of these annotations can be

visualized in the ENCODE tracks of the UCSC Human Genome Browser.1 As such reg-

ulatory data becomes available for entire genomes, annotation tracks similar to the

ENCODE tracks are likely to become incorporated into all of the genome databases,

providing important clues as to the detailed regulation of gene transcription.

12.2.3 Genome-wide micro-array transcription data

Until recently, most micro-array transcription data – that is, data measuring the

transcription level of thousands of RNAs as a function of cell type and cellular envi-

ronment – has been limited to the mRNA transcription of protein-coding genes. As

a result, these data, though of considerable biological significance, have only been

incorporated to a limited extent into the genome databases (e.g., primarily via the

Gene Sorter or Known Gene Details pages of the UCSC Browser or via third party

DAS tracks in Ensembl). Instead, these data are principally stored in specialized

1 Some ENCODE annotations are currently only available in the hg17 build of the UCSC Genome

Browser. Others are also available in hg18.
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micro-array databases (e.g., GEO or ArrayExpress), where the data are accessed via

gene name or keyword rather than by genomic location.

However, in the last few years, the development of “tiling” micro-arrays, which

measure transcription from all locations in an entire chromosome or even an entire

genome, has made the incorporation of micro-array data into the genome databases

more attractive. Tiling-array experiments show that, at least for mammals, a large

portion of the non-protein-coding portion of the genome is transcribed and that

some, or perhaps even most, of this transcription is biologically functional. However,

unraveling the extent of functional transcriptional activity is not easy. To address

this important question, integrating transcriptional data with other genomic anno-

tations should provide valuable insights. To date, viewing tiling-array data via a

genome browser is available primarily for the ENCODE regions, for example, using

the ENCODE Affymetrix-transfrag and Yale transcriptionally active region tracks on

the UCSC Human Genome Browser. In the near future, genome browsers are likely to

become important tools for asking questions such as which transcriptionally active

regions are highly conserved, or which ones overlap gene candidates from gene-

prediction programs or are found in loci associated with known diseases.

Because of the large amounts of data acquired from tiling-array experiments,

incorporating such expression data into the genome browsers will introduce consid-

erable challenges in data storage and display. A separate annotation track may well

be needed for each cell-type, developmental-stage, or cellular environment for which

tiling-array expression data is available. Besides the demands imposed by the sheer

volume of data, it will also be necessary to provide flexible user interfaces so that

the user can access the expression data that is relevant to the application at hand

without being overwhelmed by vast quantities of extraneous data.

12.2.4 Human variation and medically important mutations

Except in the cases of monozygotic twins, genetic clones, or totally inbred strains, each

individual of a species has its own unique genomic sequence. Indeed, such genetic

variation is known to be a critical component of individual disease susceptibility or

other phenotypic variation. Moreover, even within a single individual, there may be

intercellular sequence variations arising from somatic mutations, DNA replication

errors, chromosomal translocations, telomeric sequence loss, and so on. Storing and

displaying such population variations are increasingly important components of

genome databases and browsers.

To date, the principal population variations included in the genome databases

are short, common (i.e., those occurring in greater than five percent of the pop-

ulation) polymorphisms, as well as the linkage disequilibrium data (e.g., HapMap

data) that indicate the extent of correlation or independence among these variations.

These polymorphisms include SNPs and short indels (i.e., indels that are less than

approximately fifty base pairs). However, data describing other types of genomic struc-

tural variations – such as large insertions and deletions, chromosomal translocations,
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inversions, and copy-number variations – have now become more widely available,

thanks to new technologies such as array-CGH (Sebat et al., 2004) and paired-end

mapping (PEM; Korbel et al., 2007).

Structural variation data promises to greatly increase our understanding of the

nature of genetic variation beyond what is currently known from the more famil-

iar SNPs and short indels. To date, structural variation data has been primarily

archived in specialized databases, such as the Database of Genomic Variants (http://

projects.tcag.ca/variation; Iafrate et al., 2004), and has only been available to a lim-

ited extent in the genome browsers. However, this situation is changing and in the

not-too-distant future it should be possible for users of the genome browsers to visu-

ally correlate structural variations with other genomic features such as segmental

duplications, retrotransposed elements, recombination hotspots, and regions of high

or low gene density.2 Being able to carry out such integrated genetic and structural

sequence analyses should provide an important new source of information for medi-

cal diagnostics and treatment planning.

The second major change in population variation data is the increasing detection

of rare sequence variants. As genomic resequencing costs continue to decline, one

can even envision that each person may ultimately have access to their own “personal

genome,” consisting of a list of all the SNPs and structural variants for which one’s

genome differs from the reference sequence. In fact, the genome sequences of two

individuals, Craig Venter and James Watson, have already been completed and are

even available from public databases and several startup companies (such as Navigen-

ics, 23AndMe, and Knome) are even beginning to offer personal genomic sequencing

as a commercial service. Moreover, beyond the “personal genome,” one can also

envision the determination of the “personal epigenome” and “personal transcrip-

tome” annotating an individual’s epigenetic variations and patterns of transcript

expression in varying cell types. If and when personal genomes (and epigenomes and

transcriptomes) do become generally available, they should dramatically enhance

our capabilities for medical diagnosis and treatment. With this data, it should be pos-

sible to determine whether the patient has any variations at genetic loci correlated

with disease predisposition or pharmacological response.

The genome databases are potentially ideal resources for analyzing such personal

genomic data. One could imagine that individual genomic variation data might be

stored in a set of custom tracks that could be uploaded to a genome database. To be

sure, storing and displaying all of this information in a manner that is useful to the

physician and the patient – and that preserves the confidentiality of this personal

information – will be challenging. However, if these challenges can be overcome, the

utility of such data could be great. For example, one can envision future genome

2 The UCSC Human Genome Browser already includes tracks for copy-number polymorphisms

and other structural variations. However, to date, the number of annotations on these tracks

is limited.
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browsers containing annotation tracks with all known polymorphisms having medi-

cal implications in which one could compare these tracks with the patient’s “personal

genome” track to produce a list of medically relevant, patient-specific polymorphisms.

Similarly, in the next decade it should become possible to annotate the sequence,

epigenetic, and transcriptional changes that occur in tumor cells. One example of

such an effort is the Cancer Genome Project (http://www.sanger.ac.uk/genetics/CGP),

which is developing an atlas of sequence and chromosomal changes in cancer cells.

Once this data has been acquired, incorporating it into the main genome databases

should be possible. With this resource, comparing a patient’s genetic profile to known

tumor-cell genomic-sequence variations should become possible.

12.2.5 Biological pathways and proteomic data

Two other classes of biological data that are becoming increasingly relevant to

genome databases are pathway data and proteomic data. By pathway data, I include

data from both metabolic and signaling pathways, whereas with proteomic data I

mean not only information characterizing individual proteins but, especially, data

characterizing protein-interaction networks. To date, much of this data cannot be

directly accessed from the major genome databases but is instead queried via more

specialized databases such as MetaCyc (Caspi et al., 2006) and BIND (Alfarano et al.,

2005). However, if the genome databases are to become complete (or even partially

complete) repositories of molecular biological data, which can be queried in a truly

integrated manner, then these important types of data will need be more fully

included.

One challenge to genome-database developers will be to determine effective

interfaces for displaying biological-pathway and protein-interaction data in genome

databases. Pathway and proteomics data are typically not correlated with the chromo-

somal locations of the pathway or protein-network components (except in prokary-

otes). Consequently, conventional genome browsing along a chromosome may not

be an effective way of displaying pathway or protein-network data. Instead, such data

might be included via additional “views” – to use Ensembl terminology – includ-

ing, perhaps, “Pathway Views” and “Protein Network Views.” Such additional views

would complement Ensembl’s ProteinView and UCSC’s Proteome Browser, which

already exist for examining data from individual proteins.

An attractive, alternative approach would involve tools that facilitate exploring, in

an integrated manner, all the proteins that share a pathway or interaction network.

One tool that can already be used – to a limited extent – in this manner is the UCSC

Gene Sorter. With the Gene Sorter, one can search for proteins that are “close” to one

another in a protein network. In the future, one could well imagine extensions of

this capability by which one could search for genes that encoded for proteins that are

“close” to one another in a metabolic or signaling pathway, or that are homologous

to genes that are “close” to a query gene in a pathway or interaction network in a

different species.
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12.2.6 Multiple-genome querying

Sequence alignments from multiple related species, and tools to assess the sequence

conservation within these alignments, are already among the most valuable features

provided by the genome browsers. However, these features represent only a fraction

of the comparative-genomics capabilities that will become available as multispecies

databases become more tightly integrated. In the future, it will become possible to

compare annotations from multiple-genome databases. This capability will enable

one to ask questions like: How do the lengths of introns vary among orthologous genes

in related species? Are recombination hotspots conserved between related species?

What genes are spliced in one species while their orthologs in another species are

coded within a single exon? Are there systematic differences in the distances between

promoter or CpG regions and transcription start sites in different species? To be sure,

it is already possible to formulate some of these questions with the current genome

databases using custom programs. However, in the future, performing such multi-

species comparative queries should become possible to the nonprogrammer as well.

To get a sense of the kinds of analyses that are possible with multigenome querying,

we can turn to the Integrated Microbial Database (IMG) of the U.S. Department of

Energy Joint Genome Institute (JGI) located at http://img.jgi.doe.gov (Markowitz et al.,

2006a). IMG is a relatively new genome database resource but it already includes the

genome sequences of hundreds of microbial species and provides tools for performing

multigenome queries of this genomic data. Figure 12.1 illustrates one of IMG’s tools

for multigenome querying, the Abundance Profiler. The figure depicts the variations

in the number of different enzymes of various enzymatic families among several

methanogenic archaeal species. Each row of the display represents a different enzyme

group, and each column is a different species. Enzyme-family abundances are shown

graphically by the color in the display (shown as varying shades of gray in the figure).

Numerical abundances can be determined by positioning one’s mouse over each

enzyme class in the display. As shown in the figure, for this example, most enzyme

classes have only a few members occurring in each of the species; however, two

classes (EC:3.6.3.25 sulfate-transporting ATPases and EC:2.7.7.6 DNA-directed RNA

polymerases) have widely varying abundances. In this purely illustrative example,

the varying abundances of EC:3.6.3.25 and EC:2.7.7.6 are most likely a chance result.

However, similar types of analyses, focusing on identifying classes of enzymes that

seem to be missing in one species while appearing in multiple closely related species,

have led to the identification of previously undetected enzymes and in the improved

characterization of enzymatic pathways – see, for example, Bishop et al. (2002).

12.2.7 Phylogenomic trees and ancestral genomes

The next few years will also likely see a migration from multispecies sequence

alignments to multispecies phylogenetic trees. As more sequence data from mul-

tiple species become available, phylogenetic trees provide more information on the
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Figure 12.1 Enzymatic abundance profile of methanogenic archaeal species as displayed via the

Joint Genome Institute (JGI) Integrated Microbial Genome database. Each row is a distinct enzyme

class, and each column a different species. Numbers of different enzymes of each class for each

species are indicated by the color. Since different colors are difficult to discern in the grayscale

reproduction, the two enzyme classes with elevated abundances, EC:3.6.3.25 and EC:2.7.7.6, are

highlighted by surrounding ellipses in the figure.

evolution of a genomic region than alignments can. In addition, phylogenetic trees

can provide clues as to the genetic sequences of long-extinct ancestral species. Such

ancestral sequence data is not only of intrinsic scientific interest but can also be of

valuable practical utility. For example, at the individual gene level, phylogenetic trees

have already facilitated the synthesis of enzymatically active ancestral proteins that

are no longer found in nature (see Thornton et al., 2003). Genome-wide phylogenetic

trees promise to make such identification of active ancestral proteins possible on a

much wider scale.

Displays of phylogenetic trees, at the single gene level, already exist in the genome

browsers. For example, we saw the phylogenetic tree of the CXorf34 gene in Ensembl’s

GeneTreeView in Figure 3.3. However, the full power of phylogenetic alignments will

become evident when sufficient numbers of completely sequenced related genomes
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become available to enable the construction of phylogenetic trees for entire genomes.

Creating such phylogenomic trees will not only require sequence data from multi-

ple organisms spanning the phylogenetic tree but will probably also require novel

tree-building algorithms to extend the largely single-gene oriented methods that have

been used previously. Such algorithms are currently under development and initial

views of the results of whole-genome phylogenetic trees and even of entire genome

browsers based on inferred genomes of long-extinct ancestral species can be seen at

the UCSC development site.

Along with genome browsers for inferred, ancestral-species sequences, the next

decade is likely to offer the first views of experimentally acquired sequence assem-

blies from extinct species. In particular, DNA extraction, sequencing, and analysis

techniques for genetic material isolated from fossil remains are now beginning to

be sufficiently sensitive to enable the assembly of portions of the genomes of such

extinct species as the cave bear (Noonan et al., 2005) or the Neanderthal (Green et al.,

2006). Should such ancient DNA extraction and sequencing technologies continue

to improve, integrating this data in the genome databases with the sequence and

annotation data of the descendents of these extinct species should provide important

insights into genomic evolution.

12.2.8 Environmental genome databases

The last emerging research area that we discuss is metagenomics, or environmental

genomics. In environmental genomics, the objective is to obtain sequence data from

an entire biological community of species living in a single environment. Examples of

recent environmental genomic projects include the sequencing of DNA from a single

environmentally important location – such as acid-mine drainage soil or oceanic sea-

water – or from an entire symbiotic or parasitic community that may impact the host

organism’s health status – for example, all of the microbes that colonize the human

gut.

Some metagenomics projects are carried out primarily to sequence the genome

of a single organism that cannot currently be cultured in the laboratory (it is esti-

mated that more than ninety-nine percent of known microbes, including many with

important health and environmental characteristics, cannot be cultured with cur-

rent techniques). Such projects may require innovative methods for isolating the

desired sequence data from the background of the remaining sequences of the sam-

ple. However, once the sequence has been obtained, annotating and displaying the

data with a genome browser can be done in a relatively standard manner.

In contrast, other metagenomic projects seek to acquire sequence data from all,

or at least many, species in the environment simultaneously. The motivation may

be that there are so many species of comparable abundances in the environment

that determining their individual genome sequences is prohibitively difficult. On

the other hand, for some applications it may be more important to simply know

whether a certain gene function – for example, a specific type of enzyme – is
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Figure 12.2 Screenshot of the metagenome browser at the JGI Integrated Microbial Genome web

site.

present somewhere in the environment and less important to identify the specific

microbe that is contributing that enzyme. Such applications require not only new

methods of sequence acquisition but also novel approaches for storing, analyzing,

and displaying the data. For example, the “metagenomic browser” may not know

from what organism a specific segment of DNA sequence has been derived or even

whether two apparently related sequences on separate contigs are from the same

species.

The genome browsers that we have been considering in this book do not currently

provide methods for displaying “genomes” with sequences derived from multiple

species. This is hardly surprising because most environmental genomic data are for

microbial species and the main genome browsers are largely focused on metazoa. In

contrast, the microbial IMG database does include an environmental genome compo-

nent (Markowitz et al., 2008) at http://img.jgi.doe.gov/m.3 To date, IMG’s capabilities

3 The Genomes OnLine (GOLD) Database at http://www.genomesonline.org is a good source of

information regarding the status of metagenomics sequencing projects.
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Figure 12.3 Gene-family abundance profile of environmental genomes of the guts of two lean and

two obese mice. Most families show similar profiles, but a few families – for example, COG4646

(DNA methylases) and COG1662 (Transposases), which are circled – appear to differ in abundance

between the lean and obese mouse gut environments.

for displaying and analyzing metagenomic data are limited, and few metagenomic

annotations are available. Figure 12.2 illustrates a display from the IMG Environmen-

tal Genome Browser. At first glance, the figure looks like a conventional genome-

browser display. However, the “genome” of the sequence shown in the figure is not

that of a single identified species but rather the metagenome of a community of

anaerobic methane oxidation (AMO) organisms extracted from a California coastal

sediment.

IMG’s Abundance Profiler, described in Section 12.2.6, can also be applied to envi-

ronmental genome data. Figure 12.3 illustrates the application of the Abundance

Profiler to the comparison of metagenomes, specifically, to the bacterial environ-

ments of the guts of lean and obese mice. In this example, the display is of the

abundances of members of different gene families as indicated by membership in

varying clusters of orthologous groups of genes (“COGs”). From the graph, at least

two gene families (transposases and DNA methylases) appear to have different rep-

resentations between the bacteria found in the guts of the obese mice and the lean

ones. As in the previous example with the Abundance Profiler, one needs to be very
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cautious before concluding that this observation has biological significance and is not

the result of random variations. Still, it should be apparent that by using careful con-

trols to exclude chance results, this approach could lead to biologically interesting

hypotheses to guide experimental testing.

Environmental genomic analyses are still in their infancy. Addressing important

environmental genomics questions will most likely require additional tools for inte-

grating data from multiple species within the metagenome. However, as these tools

are developed, metagenomic databases should begin to be able to address complex

biological and ecological questions involving the interactions among different species

that until now have been difficult or impossible to answer.

Chapter summary

� UCSC, Ensembl, and Galaxy all provide preview or test versions of their web sites

where one can get a glimpse of features and data that are likely to be included in

the main web sites in the near future.
� Data that is likely to be increasingly incorporated into genome databases in the near

future include regulatory region annotations, genome-wide RNA expression data,

population variation data, integrated multigenome querying, ancestral genome

data, and databases describing microbial communities.
� In many cases, the driving factor behind the new types of genomic data is the

emergence of low-cost, high-throughput DNA-sequencing technologies.
� Storing and displaying some of this data – such as expression, epigenetic, popula-

tion variation, and metagenomic data – is likely to require substantial modifica-

tions and enhancements to the data-management and data-display tools currently

used by the genome browsers.
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Coordinate System Conventions

Genome databases consist largely of sequences and annotations together with

genomic coordinates describing where these features are located. Consequently,

specifying genomic coordinates is fundamental to using genome databases. How-

ever, interpreting coordinates in genome databases can be somewhat subtle. In this

Appendix, we discuss some topics involving genomic coordinate systems that can

cause confusion, especially when carrying out batch queries. These topics include

absolute and relative genomic coordinates, ways for specifying the feature start and

end positions, and conventions for locating negative-strand features.

A1.1 Absolute, chromosomal, contig, and clone coordinates

Because of the limited read lengths produced by current sequencing technology,

genomic-sequence assembly is a gradual and iterative process. Typically, individual

clones are first sequenced, and then the overlapping clone sequences are assembled

into contigs, scaffolds and, ultimately, chromosomes. As a result, especially in the

early stages of genome assembly, it is sometimes useful to have coordinate systems

based on clones or contigs for comparing sequence assemblies or locating subfeatures

(e.g., exons) relative to their parent features (e.g., transcripts). Ensembl and MapViewer

offer such alternative coordinate systems in addition to a chromosomal coordinate

system. In contrast, UCSC uses essentially only a single “top-level” or “absolute”

coordinate system, corresponding to the entire chromosome.

The existence of multiple coordinate systems is not in itself a source of confusion.

Generally, one is only interested in absolute coordinates because the chromosome

is the actual biological entity on which the feature is located. Moreover, since one

can visualize individual clones and contigs as annotation tracks, it is straightfor-

ward to view the sequence and annotations from the clone or contig perspective as

well.

Rather, the issue is that – in contrast to clone coordinates, which are stable – a

feature’s chromosomal coordinates often need to be modified each time the sequence

of the genome becomes more precisely determined. In fact, until sequence assembly
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is relatively complete, a feature’s chromosomal coordinates are not even approxi-

mately known. Instead, the feature can only be located relative to a scaffold or a

contig.

To deal with this issue, chromosomal coordinates are “frozen” each time a new

version of the genome sequence assembly is released. Genome-sequence reassembly is

performed periodically by the responsible genome-assembly organization (e.g., by the

NCBI, in the case of the human genome), and at that time the new genome assembly

is given a specific identifying number. In this way, absolute coordinates within any

single sequence-assembly release are fixed and stable (albeit approximate).

With frozen coordinates, one can reliably compare locations of different features

from a genome as long as the coordinates of all features are taken from the same

assembly. However, if one does need to compare genome locations of features known

only in absolute coordinates from different assemblies, then the coordinates of one

of the feature sets needs to be converted so that all coordinates are from the same

assembly. (Of course, if the features are in stable, clone- or contig-based coordinates,

then no conversion is necessary.) Conversion of absolute coordinates of sequence

features is usually not difficult using UCSC’s LiftOver tool (see Section 4.4.2.2) or by

directly searching for the sequence with BLAT, SSAHA, or MegaBLAST. However, if

a feature occurs in multiple copies throughout the genome, coordinate conversion

may not be straightforward, and locating a feature in a new sequence assembly can

be quite difficult.

In this context, it is worth noting that the concept of “absolute” chromosomal coor-

dinates is itself only an approximation, as there really is no single human-genome

sequence (nor is there a unique genome sequence for any other species, for that

matter). Indeed, because of insertion, deletion, duplication, and translocation poly-

morphisms and mutations (some of which can be quite large), the chromosomal

coordinates of genes and other features vary widely among individuals of the same

species. In fact, in individuals with cancer, for example, chromosomal coordinates

often vary among cells of a single organism. Consequently, it is important to remem-

ber that the “absolute” chromosomal coordinates that one sees in a genome browser

merely represent either those of a specific individual within the species (for example,

in the mouse genome, those of a single inbred mouse strain) or the consensus posi-

tions taken from the sequencing of a relatively few individuals of a species (as is the

case with the reference sequence of the human genome).

A1.2 Start- and end-numbering conventions

Conventions for specifying start and end positions of genomic features are some-

what arbitrary. In fact, the internal database coordinate representations used by the

three genome database systems are not identical. Specifically, the internal represen-

tations used by the UCSC and NCBI databases are “zero-based,” whereas the Ensembl

coordinate system is “one-based.” This can lead to confusion if one needs to directly
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a) Start and End Coordinate Conventions

[---------------] (Feature A)

T T A G G G T T A G G G

1 2 3 4 5 6 7 8 9 10 11 12 Ensembl

0 1 2 3 4 5 6 7 8 9 10 11 UCSC

|=============================================|
b) Ensembl Slice Coordinates

[-----] (Feature B)

[--------] (Feature C)

|====================================| (Slice)

A C T A A A T C T T G (positive strand)

21 22 23 24 25 26 27 28 29 30 31 32 33

=============================================== (Chromosome or contig)

T G A T T T A G A A C

[--------] (Feature D)

c) UCSC Strand Coordinates

0 1 2 3 4 5 6 7 8 9 10 11

T T A G G G T T A G G G (positive strand)

|=======================================|
A A T C C C A A T C C C

11 10 9 8 7 6 5 4 3 2 1 0

[---------------] (Feature E)

Figure A1.1 Simplified example illustrating differences between Ensembl’s and UCSC’s coordinate-

system conventions. (a) The feature is located at the extreme end of the chromosome (i.e., the

telomere), illustrating start- and end-numbering differences. (b) Three features are shown relative to

a “slice,” illustrating Ensembl’s slice-coordinate conventions. (c) An example showing differences

between UCSC’s absolute and strand coordinates.

access data from the genome databases (as opposed to merely viewing the data via

the genome browsers).

To better understand what is going on, let us, for simplicity, consider a feature

at the extreme 5′ end of a chromosome (i.e., at a telomere) as shown schematically

in Figure A1.1a. We may ask what is the coordinate of the very first nucleotide of

the feature, that is, the initial “T” in the sequence. We might well imagine that

the coordinate value is equal to one, and indeed this is what we would find on all

three genome browsers. Similarly, we might expect that the coordinate of the final

nucleotide of the feature in Figure A1.1a would be six, and that its length would be

determined by

Length = end - start + 1 ( = 6 - 1 + 1 = 6)

In fact, in the Ensembl database, the start and end coordinates of our feature would

be stored as “1” and “6.” However the UCSC database has different coordinate con-

ventions. In the internal representation of the UCSC database, which is used by the

UCSC Table Browser and the UCSC API, our feature would begin at position zero. Also,



256 Appendix 1

with the UCSC coordinate conventions, the feature end-coordinate number is that of

the first nucleotide beyond the actual feature. In our example, the feature would be

specified internally in the UCSC database as being at positions zero through six. (Note

that the UCSC Genome Browser adds an offset of one back to each start position so

that in the browser, the feature does start at position one. Only the internal data rep-

resentation starts at position zero. Additional details regarding the UCSC coordinate

conventions can be found at http://genome.ucsc.edu/FAQ/FAQtracks#tracks1.)

Although the UCSC conventions for representing start and end coordinates may

be somewhat unexpected, they do have some advantages. For example, accessing data

from database tables is easier because tables are conventionally stored in computer

memory starting at relative position zero. Moreover, feature-length arithmetic is also

made simpler because one does not need to add an offset of one when computing

feature lengths:

Length = end - start ( = 6 - 0 = 6)

Finally, the locations of “zero-length” features, such as sequence insertions, are

arguably less awkward to annotate in the UCSC than in the Ensembl coordinate

system. For example, a sequence insertion between nucleotides 1000 and 1001 on

chromosome X would be described in the UCSC system with coordinates:

chrX 1000 1000

With Ensembl, the location of such a zero-length feature is described by using an end

coordinate that is one less than its start coordinate, or

X 1000 999

The point here is not whether one coordinate system is “better” than the other.

Each approach has its merits. Rather, what is important is to remember is that these

differences in coordinate definitions do exist, and although when using genome

browsers these details can usually be safely ignored, when creating custom tracks or

using batch and programmed querying, not being aware of them can lead to puzzling

inconsistencies. For example, if one has a custom track of SNPs in BED format for use

with Ensembl,1 a sample record might look like

X 1000 1000

In contrast, to describe this same SNP in a UCSC custom track, one would need to

describe it as

chrX 1000 1001

1 Making custom tracks in Ensembl using BED format is described at http://www.ensembl.org/

common/helpview?se=1;ref=;kw=urlsource.
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It is worth noting that several of the tools of the GMOD system for generic genome-

database development described in chapter 11 (e.g., the GBrowse Genome Browser

and the Chado database schema) use another coordinate system called interbase coor-

dinates. In the interbase system, position one is located between the most 5′ and the

second-most 5′ nucleotide of the sequence, so that the most 5′ nucleotide would be

described as extending from position zero to position one. Although defined slightly

differently, in practice, interbase coordinates are essentially the same as UCSC coor-

dinates.

A1.3 Slice coordinates

In the UCSC system, all genome features are specified in top-level (chromosomal)

coordinates. In contrast, Ensembl uses both top-level and relative coordinates. Such

relative coordinates, called slice coordinates, enable one to specify the location of one

feature relative to some other feature or genomic region. Slice coordinates can be

useful and are frequently used in Ensembl’s software. However, slice coordinates can

also be a bit confusing.

For example, consider the features shown in Figure A1.1b. In slice coordinates, a

feature’s coordinates are given by

SliceCoordinate(a) = AbsoluteCoordinate(a) - SliceOffset + 1

In Figure A1.1b, the slice offset is equal to 22, so Feature B’s start position (in slice coor-

dinates) is 21 − 22 + 1 = 0. Similarly, Feature B ends, in slice coordinates, with coordi-

nate equal to 2. Slice coordinates operate identically for features on either strand, so

the start and end slice coordinates for Features C and D are (3,6) and (5,8), respectively.

For more information on slice coordinates and when they are useful, see the Ensembl

API Tutorial at http://www.ensembl.org/info/using/api/core/core_tutorial.html.

A1.4 Strand coordinates

As noted in Section A1.1, UCSC only uses top-level coordinates. However, UCSC does

use two different top-level coordinate systems. One is what we have been calling

absolute coordinates. The second UCSC top-level coordinate system is called strand

coordinates. Absolute coordinates, which we have already described, are always mea-

sured with respect to the positive DNA strand. In contrast, strand coordinates are

measured with respect to the strand on which the feature of interest is located. For

features (e.g., genes) on the positive strand, absolute coordinates and strand coor-

dinates are identical. However, for features on the negative strand, this is not the

case.

We illustrate this first with the mini-chromosome example of Figure A1.1c. This

entire “chromosome” is twelve base pairs long. If we consider Feature E (the sequence
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CCCTAA) on the negative strand, its absolute start and end coordinates are (0,6).

However, its strand coordinates are (6,12). Extending this concept to a more realistic

chromosome of, say, six megabases, we can consider a thousand-base feature whose

5′ end aligns to the negative strand of a chromosome one third of the distance from

the beginning of chromosome’s positive strand. In absolute coordinates, the feature’s

coordinates are 1,999,000–2,000,000. However, in strand coordinates, the feature’s

coordinates are 4,000,000–4,001,000. More generally, to convert a negative-strand

feature’s location from absolute to strand coordinates, we can use the formulae:

featureStart(strand coordinates) =

chromosomeSize - featureEnd(absolute coordinates)

featureEnd(strand coordinates) =

chromosomeSize - featureStart(absolute coordinates)

Strand coordinates are quite useful for describing alignments of transcripts to the

negative DNA strand, and are used for this purpose in the PSL sequence-alignment

format. However, strand coordinates can also be confusing, especially when they are

mixed together with absolute coordinates. This can be particularly true when using

PSL format, described in Appendix 2, because some fields in PSL format are specified

in absolute coordinates whereas other PSL fields are defined in strand coordinates.

A related source of confusion arises in the numbering of exons and in the identi-

fication of start- and stop-codon positions for genes that are located on the negative

chromosomal strand. Because gene locations are stored in the UCSC database in

absolute coordinates, the cdsStart position of a negative-strand gene is actually the

position of the stop codon of the gene, whereas the cdsEnd position is that of the start

codon. Similarly, for a negative-strand gene, the “first exon,” which is called “exon 0”

in the UCSC database, is the exon that corresponds to the 5′ end of gene location on

the positive strand, and hence corresponds to the 3′ end of the mRNA transcript of the

gene. Although the genome browser generally shields the user from these issues, in

many batch-querying analyses, such as the identification of targets of NMD described

in chapter 5, handling these details properly is essential.

Exercise

1. The long isoform of the DRD2 gene is located on the negative strand at

chr11:112,785,528–112,851,091 (according to NCBI human genome assembly 36,

e.g., UCSC build hg18 or Ensembl release 42). What are the coordinates of this

gene as stored internally in the UCSC database in absolute coordinates? What are

the gene’s coordinates in UCSC strand coordinates? If one created a genomic slice

from chr11:112,800,000 to chr11:112,900,000, what would the gene’s coordinates

be in Ensembl slice coordinates?
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Genome Data Formats

To read data from a genome database, one needs to understand the format in which

the data are stored and transmitted. In the past, the use of myriads of data formats

was one of the major stumbling blocks to effectively using biological databases. By

reformatting the data from these databases into a few standard formats, the genome

databases have facilitated the analysis of large quantities of biological data in new

and powerful ways.

However, the data formats used by the genome databases can themselves be some-

what confusing, especially initially. This is because the data are complex – there is a

vast amount of data (quantities are currently measured in terabytes and are rapidly

growing), the data are of many different types, and the data are highly interrelated.

Moreover, new types of biological information are continually being discovered, and

our understanding of the biological relationships among the different types of data

is continually evolving. As a result, data formats that were adequate to describe data

previously must be extended in ways that may not have been planned, or else entirely

new data formats must be developed.

Each time new data formats are designed, design trade-offs must be addressed,

including choosing between formats that are easier for computers to read (and there-

fore generally faster and more compact) and ones that are easier for humans to

read. Other trade-offs are between formats that are more portable between multiple

computer systems and ones that run more efficiently (i.e., more rapidly) on a single

system. Moreover, some formats capture detailed relationships among the data more

completely, whereas other formats can be processed more quickly. Consequently,

even a single genome database system may include multiple formats for storing and

transmitting a single type of genomic data.

An additional source of potential confusion is that four distinct classes of data

formats – table, track, file, and program – exist. Table formats describe how data is

stored in the (relational) databases. Track formats describe how the data is presented on

the browser. File formats describe how the data is stored in conventional computer files,

and how the data is formatted for transmission between computer systems. Finally,

computer programs reformat data into computer objects or other data structures
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during program execution. For example, in the UCSC system, there are “BED” and

“PSL” data formats for files, database tables, browser tracks, and C structures, all

of which are quite similar to one another but not quite identical. Moreover, under

certain situations, data stored in a database table in one type of table format (e.g., PSL

or genePred table format) may be extracted from the database in a different type of

file format (e.g., BED file format.)

In this appendix, we describe the principal genomic file formats. In Appendix 3,

we describe UCSC table formats (because Ensembl’s software performs database-table

conversion automatically, knowledge of Ensembl’s table formats is rarely needed).

Program formats and track formats are described as they are needed within the main

text.

A2.1 File data formats

Numerous file formats have been developed for flat-file storage and the transmission

of genomic data. Among the most important for genome databases are the UCSC-

developed BED, PSL, MAF, and WIG data formats, and the GFF/GTF/GFF3 and DAS

formats that are used by Ensembl and the single-genome databases.1

A2.2 BED file format

Browser Extensible Description (BED) format is the basic format used to specify a genomic

location in the UCSC system. In its simplest form, the BED format consists of just

three fields: the name of the entire sequence on which the feature is located (e.g., the

chromosome name, or the contig or scaffold name) and the start and end positions of

the feature within the sequence. In the case of a flat file in BED format, each of these

fields is a string of ASCII characters with the individual fields separated by “white

space” (i.e., spaces or tab marks). Several extensions of the BED format exist. The most

common variant is the BED-12 format, shown in Table A2.1, which is often used for

formatting gene data in flat files. For transferring gene data in BED-12, the thickStart

and thickEnd fields are typically used to store the coordinates of the start and stop

codons, and the comma-separated blockSizes and blockStarts fields are for storing

exon locations.

BED format is used throughout the UCSC database system. A BED-like format is used

in the specification of custom-track annotations. In addition, variants of the BED for-

mat are used internally by UCSC for various genomic annotations, such as conserved

transcription-factor binding sites (tfbsConsSites.bed), cytogenetic band locations

(cytobands.bed), and mapped bacterial artificial chromosome ends (bacEndPairs.bed).

1 The distinction here between “UCSC” and “Ensembl” formats is only approximate; for compati-

bility purposes, the UCSC system does provide GFF and DAS output, and Ensembl software does

read BED and PSL files as one of its options for displaying custom tracks.
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Table A2.1 BED-12 file format

Field Example Description

chrom chrX Reference sequence chromosome or scaffold
chromStart 1541467 Start position in chromosome
chromEnd 1616000 End position in chromosome
name NM 178129 Name of item
score 0 Score from 0 to 1000
strand − + or −
thickStart 1544371 Start of where display should be thick (start codon)
thickEnd 1545451 End of where display should be thick (stop codon)
reserved 0 This should always be set to zero
blockCount 2 Number of blocks (exons) in the BED line
blockSizes 4008,187 Comma-separated list of the block sizes. Number of items

should equal blockCount.
blockStarts 0,74346 Comma-separated list of block starts. BlockStart positions

are calculated relative to chromStart. Number of items
should equal blockCount.

Note that BED format does not contain the sequence of the feature. Consequently,

retrieving the sequence of a feature is generally a two-step process – first retrieving

the feature coordinates from the database and then obtaining actual sequence data.

When one is using a genome browser, or a tool like Ensembl BioMart or the UCSC

Table Browser, these two steps are performed automatically without the user even

being aware that they are occurring. However, for performing direct database queries

within the UCSC system, this two-step process must be carried out explicitly by the

user (or, more typically, by the user’s computer program).

A2.3 PSL file format

Pattern Space Layout (PSL) format is the principal UCSC file format for storing pairwise

sequence alignment data.2 PSL describes an alignment in terms of the two sequences

being aligned, referred to as the “query sequence” (typically a transcript, e.g., mRNA

or EST) and the “target sequence” (in most cases, a chromosome). The PSL file format

is shown in Table A2.2. As with BEDs, PSLs generally do not contain the actual aligned

sequences, just the coordinates from which one could retrieve those sequences. There

is an extended version of PSL format (called PSLx) that includes the actual sequence

as well; however, PSLx is rarely used within the UCSC database.

2 An alternative format for storing pairwise alignments, called AXT, also exists in the UCSC

database. AXT format is used with the BLASTZ program, which generates UCSC’s genomic cross-

species alignments. We will not be using AXT-formatted files in this text, but the interested

reader is referred to http://genome.ucsc.edu/goldenPath/help/axt.html for a description of the

AXT format. In addition, there is a UCSC utility program, axtToPsl, for converting files from

AXT to PSL.



262 Appendix 2

Table A2.2 PSL file format

Field Example Description

matches 557 Number of bases that match that are not
repeats

misMatches 113 Number of bases that do not match
repMatches 0 Number of bases that match but are part of

repeats
nCount 0 Number of “N” bases
qNumInsert 3 Number of inserts in query
qBaseInsert 194 Number of bases inserted in query
tNumInsert 7 Number of inserts in target
tBaseInsert 1984 Number of bases inserted in target
strand +− + or − for strand. First character query,

second target (optional)
qName BC101888 Query sequence name
qSize 1300 Query sequence size
qStart 1 Alignment start position in query
qEnd 865 Alignment end position in query
tName chr1 Target sequence name
tSize 245522847 Target sequence size
tStart 4558 Alignment start position in target
tEnd 7212 Alignment end position in target
blockCount 2 Number of gapless blocks in alignment
blockSizes 54,59, Size of each block
qStarts 1,55, Start of each block in query.
tStarts 245515635, 245515692, Start of each block in target.

To completely describe an alignment, a PSL record must store three principal data

components. First, the record needs to specify the regions of the query and target

sequences that need to be retrieved from the database. The query and target sequences

are indicated by the qName and tName PSL fields; the regions within those sequences

that need to be retrieved are specified by the qStart and qEnd PSL fields, and the tStart

and tEnd fields, respectively.

Second, the PSL annotation must include the orientations of both the query and

target sequences in the alignment. These orientations are specified by the PSL strand

field. Finally, the PSL record must identify the set of sequence blocks that need to be

extracted to build the alignment. These sequence blocks are specified by a list of their

sizes (the blockSizes field) and two lists indicating the start positions in the query

and target sequences of each of the blocks (the qStarts and tStarts fields).3

3 Note that in contrast to the BED format, the list of PSL blockSizes, qStarts, and tStarts have

trailing commas. Moreover, there are other PSL fields, including ones that count the number

of matches and inserts in the alignment, that we do not discuss here; we will not need these

fields for the applications described in this book.
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PSL format can be somewhat difficult to understand at first. One reason is that

some PSL fields are in absolute (positive-strand) coordinates, whereas other PSL fields

are in strand coordinates. Two coordinate systems are used because different PSL fields

are used in two separate tasks. One the one hand, constructing an alignment involves

retrieving sequences from the database. In the UCSC system, sequences are nearly

always stored in absolute coordinates, so the PSL fields used in sequence retrieval

(qStart, qEnd, tStart, tEnd) are all in absolute coordinates. However, building the

actual alignment from the retrieved sequences is more easily accomplished using

strand coordinates. Consequently, the fields used to build the alignment from the

two sequences (i.e., the qStarts and tStarts fields) are specified in strand coordinates.

The second reason for the complexity of PSL stems from the requirement that

PSL be flexible enough to represent both nucleotide and translated-nucleotide align-

ments.4 In particular, PSL needs to be able to represent both same-species (nucleotide)

alignments of mRNAs and ESTs, which are implemented on the UCSC system with

BLAT,5 as well as xeno-mRNA/EST translated alignments, which are implemented

with translated BLAT.

One important difference between nucleotide and translated-nucleotide align-

ments is that with nucleotide alignments, there are only two possible orientations

of the target and the query sequences. Either the query aligns to the positive strand

of the target (i.e., the chromosome) or to the negative strand. By UCSC convention,

nucleotide PSL alignments are always to the positive strand of the chromosome, and

the PSL strand field indicates whether the query needs to be reverse-complemented

or not to align to the positive chromosomal strand. Consequently, nucleotide PSLs

require only a single-character strand field; a strand field equal to “-”6 means the

query is reverse-complemented, whereas a strand field equal to “+” means the query

is not reverse-complemented.

In contrast, for a translated alignment it is possible that either the query or the tar-

get sequence (or both) need to be reverse-complemented to produce the (translated)

alignment.7 Consequently, for translated alignments, the PSL strand field needs to be

able to take on four values, which are labeled “++,” “+ -,” “- +,” or “- -.” In each case,

the first character in the strand field indicates whether the query sequence needs

4 The UCSC system rarely uses protein alignments, and the PSL format is generally not used to

represent protein alignments.
5 In some cases, sequences from closely related species, such as human and chimpanzee, are

aligned with nucleotide BLAT, as well.
6 Note: that the “minus” character for PSL is the hyphen (“-”) rather than the dash (“–”) since ASCI

does not support the dash/minus symbol.
7 The fact that the query sequence may need to be reverse-complemented in a translated align-

ment may not be immediately obvious. The point is that query sequences may include ESTs,

which are often fragmentary and taken from the 3′ ends of transcripts. Consequently, ESTs are

often found reverse-complemented in the archival EST databases (e.g., dbEST) and, hence, also

in the genome databases. In contrast, mRNAs only need to be reverse-complemented in the rare

cases in which they were originally incorrectly deposited in the archival databases in reverse

orientation.
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to be reverse-complemented in the translated alignment, and the second character

indicates whether the target sequence needs to be reverse complemented. Note that

because the reverse complements of two synonymous codons are generally not syn-

onymous themselves, a “+ -” PSL alignment is different from a “- +” alignment, and

a “++” alignment is not the same as a “- - ” one.

The “toy” examples in Figure A2.1 should help explain the use of PSL format for

different types of alignments. Figure A2.1a shows the thirty base pairs at the extreme

5′ end of a thousand base-pair “chromosome.” The figure also shows two transcripts,

one aligning to each strand of the same, discontinuous, six-nucleotide region of the

chromosome. At the top of the schematic in Figure A2.1a are the coordinates of the

region in the absolute coordinate system. At the bottom of the figure, the coordinates

of the negative strand of the region are shown in strand coordinates.

In Figure A2.1b, we consider a nucleotide alignment of a 9-nt “query sequence”

(GCCCCTTGG) to the chromosome. The transcript aligns to the positive strand, as

shown in the figure. The principal PSL field values required to represent this align-

ment are shown below the alignment schematic. In addition, the tStarts (equal to

12 and 25) and qStarts (equal to 1 and 5) field values are illustrated at the top and

bottom of the figure, respectively.

Figure A2.1c is a nucleotide alignment of a different query sequence (CCAAGGGGC)

to the chromosome. This query aligns to the negative chromosomal strand; hence, in

this case, the PSL strand field is equal to “-.” The region of the query that is included in

the alignment extends (in absolute coordinates) from 2 to 8. Hence, qStart is equal to

2 and qEnd is equal to 8. The other PSL fields as well as the schematic representation

of the alignment are the same as in part (b).

Figure A2.1d shows a “++” translated alignment of the sequence GCCGCTGGG to

the chromosome. In Figure A2.1d, we include the amino acid translations of the two

codons in the 6-nt alignment. The alignment shows that both amino acids match

in the translated alignment, even though a nucleotide alignment would have two

mismatches. Figure A2.1e represents a translated alignment of the query sequence

CCAGCGGC for which the query sequence must be reverse-complemented for the

sequences to align. The PSL strand field is “- +” in this case.

Figure A2.1f represents a translated alignment of the sequence CCAAAGGAC, in

which the chromosome sequence must be reverse-complemented. In this case, the PSL

tStarts field will be in negative-strand coordinates (tStarts = 974, 985), as shown at

the top of the alignment schematic. Note that the order of the block sizes in the

blockSizes field is reversed compared to the previous examples. The chromosomal

region that needs to be retrieved from the database, however, is still the same as in

each of the previous cases, so the tStart = 12 and tEnd = 26 values will be the same

(in absolute coordinates) as they were before. Finally, Figure A2.1g shows the PSL

field values for a transcript (CTCCTTTCC), which aligns only if both the query and the

chromosome are reverse-complemented in the translated alignment. Hence, the PSL

strand field is equal to “- -” in this case.



Positions shown are at 5’ end of 1000 bp "chromosome".

a)

0 1 2 3 ten’s position in target (absolute coordinates)

0123456789012345678901234567890 one’s position in target

>>>> >> plus strand alignment

AAAAAAAAAAAACCCCAAAAAAAAATTAAAA

TTTTTTTTTTTTGGGGTTTTTTTTTAATTTT

<<<< << minus strand alignment

0987654321098765432109876543210 one’s position (negative strand coordinates)

0 9 8 7 ten’s position

0 9 9 9 hundred’s position

1

b) nucleotide positive orientation alignment

Sequence to align: gCCCCTTgg

1 2 ten’s position in target

234567890123456 one’s position in target

AAAAAAAAAAAACCCCAAAAAAAAATTAAAA

**** **

gCCCC---------TTgg

1234---------56 one’s position in query

qSize=9, qStart=1, qEnd=7

tSize=1000, tStart=12, tEnd=26

blockSizes=4,2

qStarts=1,5

tStarts=12,25

strand=‘+’

c) nucleotide negative query orientation alignment

Sequence to align: ccAAGGGGc

reverse complemented query: gCCCCTTgg

qSize=9, qStart=2, qEnd=8

strand=‘-’

Other fields same as in (b)

Figure A2.1 PSL representations of simple transcript alignments to the 5′ end of a thousand

base-pair “chromosome.” (a) Schematic of the alignment of two ESTs to a genome, one aligning to

the positive genomic strand (shown by “>” symbols), the other to the negative strand (shown by “<”

symbols). Both strands of the chromosomal sequence are shown. The chromosome’s coordinates are

shown in absolute coordinates above the sequence and in (negative) strand coordinates below.

(b) PSL fields and alignment schematic for “+” nucleotide alignment. Aligning (nonaligning)

nucleotides are shown in uppercase (lowercase) letters, respectively. (c) PSL fields for “-” nucleotide

alignment, that is, for a transcript that aligns to the negative chromosomal strand. Both the

transcript (query) sequence and the reverse-complemented query sequence are shown. (d) PSL fields

and schematic of a “++” translated alignment. Schematic also includes the amino acids coded for

by the target and query sequences. (e) PSL fields of “- +” translated alignment. (f) PSL fields and

schematic of a “+ -” translated alignment. The reverse-complemented chromosomal region is

shown. Target start positions are shown in the schematic in negative-strand coordinates (tStarts =
974, 985). (g) PSL fields for a “- -” translated alignment.

265



d) translated ++ orientation alignment (EST/mRNA)

Sequence to align: gCCGCTGgg

1 2 ten’s position in target

234567890123456 one’s position in target

P L target amino acid

AAAAAAAAAAAACCCCAAAAAAAAATTAAAA

* *

gCCGC---------TGgg

P L query amino acid

1234---------56 one’s position in query

strand=‘++’

Other fields same as in (b)

e) translated -+ orientation alignment (EST)

Sequence to align: ccCAGCGGc

reverse complemented query: gCCGCTGgg

qSize=9, qStart=2, qEnd=8

strand=‘-+’

Other fields same as in (b); same alignment as in (d)

f) translated +- orientation alignment (EST/mRNA)

Sequence to align: ccAAAGGAc

reverse complemented target: TTTTAATTTTTTTTTGGGGTTTTTTTTTTTT

9 9 hundred’s position in target

7 8 ten’s position in target

456789012345678 one’s position in target

K G target amino acid

TTTTAATTTTTTTTTGGGGTTTTTTTTTTTT

* *

ccAA---------AGGAc

K G query amino acid

23---------4567 one’s position in query

qSize=9, qStart=2, qEnd=8

tSize=1000, tStart=12, tEnd=26

blockSizes=2,4

qStarts=2,4

tStarts=974,985

strand=‘+-’

g) translated -- orientation alignment (EST)

Sequence to align: cTCCTTTcc

reverse complemented query: ggAAAGGAg

reverse complemented target: TTTTAATTTTTTTTTGGGGTTTTTTTTTTTT

qSize=9, qStart=1, qEnd=7

strand=‘--’

Other fields and alignment same as in (f)

Figure A2.1 (continued)
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##maf version=1

a score=9584.000000

s hg18.chr14 75000019 8 + 106368585 TCTAGGCT

s panTro1.chr15 75034079 8 + 106954593 TCTAGGCT

s rheMac2.chr7 138580786 8 + 169801366 TCTAGGCT

s mm8.chr12 86522660 1 + 120463159 T-------

s oryCun1.scaffold_174157 7566 8 + 54562 TCGAGGCT

s bosTau2.chr10 57039273 8 + 70001009 TCGAGACT

s canFam2.chr8 51520568 8 + 77315194 TCTAGGCT

s loxAfr1.scaffold_140471 3502 8 + 5079 TCTAGGCT

##maf version=1

a score=6657.000000

s hg18.chr9 129250759 11 + 140273252 ATCTGACATGG

s panTro1.chr11 112107791 11 + 123086034 ATCTGACATGG

s rheMac2.chr15 10987254 11 - 110119387 ATCTGACATGG

s mm8.chr2 149191489 8 - 181976762 ---CAGCAGCC

s bosTau2.chr11 12621147 11 - 87172399 ACCTTACATGG

s canFam2.chr9 5176735 11 - 64418924 ATCTTACACAG

s dasNov1.scaffold_349 130322 11 - 188029 ATCTGACATGT

s loxAfr1.scaffold_8295 8936 11 + 100154 ACCTGACAtat

s echTel1.scaffold_174690 5038 11 + 6760 TACTCACATAA

s galGal2.chr17 9322292 11 + 10632206 CTTTGAGGATG

s danRer3.chr5 29470428 11 + 73302350 ATATTTTAGCA

Figure A2.2 File with two multiple-sequence alignments in MAF format. The file consists of two

MAF records separated by a blank line.

A2.4 MAF file format

Numerous formats have been developed for the representation of multiple-sequence

alignments. These include ClustalW, Pfam, PHYLIP, and MAF. The UCSC system uses

the Multiple Alignment Format (MAF) format because it is easily read (i.e., parsed) by

computer code while being human-readable as well.

An example of the basic MAF file format is shown in Figure A2.2. In contrast to BEDs

and PSLs, for which each record consists of a single line and does not include sequence

data, a MAF record (describing a single multiple-sequence alignment) consists of

multiple lines and does include the actual sequence alignments. Consequently, a

blank line is used as part of the format specification to indicate the separation of MAF

records. For example, Figure A2.2 shows a single MAF file with two MAF records.

Each line within a MAF record starts with a single-letter code indicating the type

of information within the line, for example, “a” indicates an alignment score and “s”

a sequence from the alignment itself. Each “s” line specifies the database from which

the sequence was extracted, as well as the sequence ID (e.g., chromosome name),

the location of the aligned segment within the sequence, and the sequence itself.

Note that in contrast to the PSL representation, MAFs may contain gaps (indicated by
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dashes) within an alignment block. We also note that there are additional line types

besides “a” and “s” included in the MAF specification. However, these additional line

types are rarely needed and will not be used or described further (see http://genome.

ucsc.edu/FAQ/FAQformat#format5 for a detailed description of MAF syntax).

A2.5 WIG file format

The final UCSC file format we will describe is the WIG format, which is used for

numerical annotations that vary along the genome. Examples include local GC% or

multiple-species conservation scores. (Such annotations typically appear in the web

browser as wiggly lines, from which the format name originates.)

In its simplest form, a WIG file is similar to a BED file, with each line including

the name of the underlying sequence (e.g., the chromosome), the start and end

coordinates of a region on that sequence, and a numerical value (e.g., the local GC%)

that is associated with that region. In addition to the basic WIG format, variations of

the format exist that enable regions of constant or periodic numerical values to be

stored in a more compact form. These format modifications are straightforward and

are described at http://genome.ucsc.edu/google/goldenPath/help/wiggle.html.

A2.6 GFF and DAS formats

Outside of the UCSC database system, the BED, PSL, and MAF formats are less fre-

quently used. Instead, genomic annotation files typically use either the GFF/GTF/GFF3

or DAS data formats. Tools for converting data files between the GFF and BED formats

exist, for example, on the Galaxy web site.

Both GFF and DAS formats are capable of describing multiple types of genomic

features including genes, transcripts, and pairwise alignments, though they do so

in a manner that is different from the BED and PSL approaches. In particular, the

UCSC formats all use tab-delimited fields in which each file contains a single type of

data (e.g., PSL files contain pairwise alignments, MAF files contain multiple-sequence

alignments). In addition, most of the UCSC annotation formats, such as BED and

PSL (MAF is an exception), are line-oriented, meaning that all the data required to

describe a complex feature is contained within a single (sometimes rather long)

line.

In contrast, a GFF or DAS file may contain multiple types of annotations (e.g.,

gene structures and alignments may be stored in the same file), with the type of

annotation stored as one of the fields in each record. Data records are not necessarily

all contained on a single line, nor need they be implemented using tab-delimited

fields. In particular, field boundaries may be specified using an XML Document Type

Definition (DTD) file. As a result of using these more flexible data formats, GFF and

DAS records can store more complex data relationships than BED or PSL records.
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However, the price is that GFF and DAS data parsers are generally more difficult to

write than BED or PSL parsers.

A2.6.1 GFF/GTF/GFF3

The GFF format, and its more recent variants GFF2.5 (also known as GTF) and GFF3,

consists of records with nine fields, the first eight of which are simple fields, includ-

ing name, reference sequence (e.g., chromosome name), start, end, strand, and score

fields. GFF also includes fields indicating the type of feature (e.g., gene, transcript,

or exon), the source of the annotation and, for protein-coding features, the codon

reading frame, or “phase,” of the feature. However, in contrast to the BED-12 format –

in which hierarchical data information is stored in the blockStarts and blockLengths

fields, the GFF format does not include any fields for directly describing data subfea-

tures.

Consequently, the GFF record requires some other mechanism for indicating hier-

archical relationships among features, for example, the set of exons that are associ-

ated with a single transcript. In GFF, this hierarchical information is stored in the

ninth field of the record. Precisely how this hierarchical data is represented in the

ninth data field is one of the principal differences between the original version of

GFF and its GFF2.5 (GTF) and GFF3 variants. In the original GFF format, the ninth field

was called the “group” field, and all GFF records with the same group field value were

components of the same larger feature (e.g., all exons of a single transcript would

have the same group field value).

However, there were limitations with this form of data representation. First, only a

single level of annotation grouping could be represented. In addition, the group field

was also used for storing other types of feature annotation, such as feature descrip-

tions. The GTF and GFF3 formats overcame these limitations. First, GTF extended

GFF to allow multiple, semicolon-separated values to be included in the group field.

GFF3 then specified how the multiple values in the group field could be used to

describe data hierarchies with more than a single level. In addition, the GFF3 speci-

fication restricted the values that could be used in the various data fields to be those

from a controlled vocabulary of genomic terms established by the Sequence Ontology

Consortium (Eilbeck et al., 2005), thereby eliminating ambiguous annotations and

making it easier to develop data indexes for fast data retrieval. An example of the GFF3

representation, using tab-delimited fields, of a gene structure is shown in Figure A2.3.

Note that the two lines starting with a single “#” symbol are comments, which indi-

cate how the same gene information would be annotated in BED-12 format.

The main limitation of the GFF3 format is that it is still somewhat new and,

consequently, not that widely used. In particular, many programs that generate GFF

output or parse GFF files do not yet take advantage of the newer features provided by

the GFF3 format. For a more detailed description of the GFF/GTF/GFF3 data formats,

the reader is referred to http://www.sequenceontology.org/gff3.shtml.
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Gene NM_138636 transcript curated chrX 12684414 12700943 + . .

Gene NM_138636 exon curated chrX 12684414 12684485 + . .

Gene NM_138636 exon curated chrX 12696819 12700943 + . .

Gene NM_138636 CDS curated chrX 12684414 12684485 + . .

Gene NM_138636 CDS curated chrX 12696819 12699942 + . .

Gene NM_016610 transcript curated chrX 12684414 12700079 + . .

Gene NM_016610 exon curated chrX 12684414 12684485 + . .

Gene NM_016610 exon curated chrX 12688081 12688218 + . .

Gene NM_016610 exon curated chrX 12696819 12700079 + . .

Gene NM_016610 CDS curated chrX 12688161 12684485 + . .

Gene NM_016610 CDS curated chrX 12688081 12688218 + . .

Gene NM_016610 CDS curated chrX 12696819 12699942 + . .

Figure A2.4 Representation of same gene from Figure A2.3, in lightweight DAS format.

A2.6.2 Lightweight DAS

The DAS format specification (Dowell et al., 2001) is one component of the larger

DAS protocol describing the process of annotating a genomic sequence via a remote

annotation server. A complete description of the DAS protocol and format can be

found at http://www.biodas.org. A streamlined version of the DAS annotation format,

known as the “lightweight” DAS format, is supported by several genome-database

systems including UCSC, Ensembl, and the Chado database schema. Lightweight DAS

format is similar to tab-delimited GFF. Data fields include annotation type, reference

sequence, start, end, strand, phase, score, and subtype (analogous to the GFF source

field). DAS also includes explicit “name” and “class” fields, and optional alignment

start and end fields for alignment annotations. Figure A2.4 shows the lightweight DAS

representation of the same gene structure as shown in Figure A2.3 in GFF format.

Similarly to GFF, lightweight DAS has limitations for describing multilevel data

hierarchies. More complex versions of DAS, such as DAS2.0, have been proposed

and are described in detail at the DAS web site. We will not need these newer DAS

specifications in this book.
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UCSC Table Formats

In this appendix, we describe the most frequently used UCSC table formats (BED, PSL,

genePred, and MAF) that are needed to perform batch querying with the UCSC system.

Note that as Ensembl’s software performs database-table conversion automatically,

knowledge of Ensembl’s table formats is rarely needed.

A3.1 BED and PSL table formats

UCSC’s BED and PSL table formats are very similar to their corresponding file formats,

with almost identical fields generally occurring in the same order. For example, BED

tables, like BED files, come in several varieties, all of which contain the basic BED

fields – reference-sequence name, feature start, and feature end – whereas some of

them include additional fields such as strand, feature name, score, block count, block

starts, or block lengths.

However, BED and PSL table formats are not identical to their corresponding file

formats. One difference is that in BED or PSL table format, numerical data such as

the start and end positions are stored as integers rather than as character strings.

Another difference is that some BED and PSL tables have an additional (initial) field

called the bin field. The bin field is used internally by the UCSC system to speed up

table lookup and indexing. In general, the bin field is not used in batch querying.

However, it is important to know whether a BED or PSL table has a bin field because it

will be extracted along with all the other table fields in a “SELECT ∗ FROM table” SQL

query or a “Select all fields from table” Table Browser request. In such cases, the bin

field will typically need to be removed from the obtained output file before the file

can be processed by any UCSC BED file or PSL file programs because these programs

expect data in BED or PSL file format, which do not have initial bin fields.

It is also worth noting that data stored in the database in PSL table format, such as

mRNA- or EST-alignment data, can be accessed in BED-12 file format. This can happen,

for example, when retrieving PSL alignments using the “BED output” option of the

Table Browser. An example of the result of accessing a PSL table with BED-file output

is illustrated in Figure A3.1a. The figure shows records for several mRNAs from the
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all mrna (PSL) table after they have been converted to BED-12 file format. Although

some information is lost in the change from PSL to BED, such format conversion is

often useful because other data-processing tools, such as Galaxy, are designed to use

BED input.

A3.2 genePred table format

The genePred table format is used to store gene or gene-prediction features in the

UCSC database. In addition to the familiar reference-sequence name, feature name,

feature start and end, and strand fields, there are additional fields for storing the

start and end of the coding sequence, the number of exons, and comma-separated

strings of exon-start positions and exon lengths (see Table A3.1). In contrast to

the BED-12 format, exon starts are relative to the entire reference sequence (e.g.,

the chromosome), whereas in BED-12 the block starts are relative to the feature start

coordinates. We also note that genePred fields are in absolute (i.e., positive strand)

coordinates. This means, for example, that if the gene is on the negative strand, then

cdsStart is actually the location of the stop codon of the gene. Also, as with BED format,

the actual sequence of the feature (i.e., the gene) is not stored directly in the database

but instead must be retrieved indirectly via the chromosome name and sequence

coordinates. Last, as illustrated in Figure A3.1b, we note that data in genePred format

tables can also be output as a BED file, although again some annotation data is lost

in the process.

A3.3 MAF table format

Whereas BED and PSL table formats are very similar to their corresponding file

formats, MAF table format is quite different from MAF file format. For example, the

MAF record for the MULTIZ alignment data in UCSC database hg18 at location chr14:

75000019–75000027 is shown, in MAF file format, as the first record in Figure A2.2.

In contrast, if we use the Table Browser or SQL to extract the MAF table record from

the hg18 multiz17Way table corresponding to this position, we obtain

# bin chrom chromStart chromEnd extFile offset score

1157 chr14 74999993 75000106 2389771 764900017 0.505048

This is quite different from Figure A2.2. The first difference is that in a relational

database, each record must fit on a single line of a single table. In contrast, as we have

already noted, each alignment in a MAF file consists of multiple lines: some lines

containing overall properties of the alignment (e.g., the alignment score), whereas

other lines contain the actual aligned sequence data. Consequently, to store an entire

MAF alignment in a single table record with the UCSC architecture, the actual MAF
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Table A3.1 genePred table format

Field Example Description

name BC073913 Name of gene
chrom chr1 Reference sequence chromosome or

scaffold
strand − + or − for strand
txStart 4268 Transcription start position
txEnd 7438 Transcription end position
cdsStart 6607 Coding region start
cdsEnd 7173 Coding region end
exonCount 6 Number of exons
exonStarts 4268,4832,5658,6469,6720,7095, Exon start positions
exonEnds 4692,4901,5810,6628,6918,7438, Exon end positions
proteinID Q6GMS0 HUMAN SWISS-PROT ID
alignID G220323 Unique identifier for each (known

gene, alignment position) pair

sequences are stored in separate data files outside of the relational database. For

example, the table record shows extFile is equal to 2389771 and an offset equal to

764900017. The record does not show the actual aligned sequences. Rather, the extFile

and offset parameters indicate the ID of the external file and an offset within that

file from which one could obtain the aligned sequences.

The second difference between MAF file and table output is that the MAF file

corresponds precisely to the query region (in our case, chr14:75000019–75000027),

whereas the MAF table in the UCSC database corresponds to the entire alignment that

overlaps the specified region (in the present example, chr14: 74999993–75000106).

To find the MAF alignment, or even the alignment score, for the specified subregion

from the database table record requires additional work. If one accesses the database

via the UCSC Genome Browser or Table Browser, the browser will retrieve the actual

MAF sequence alignments from the external files and extract the proper subregion

without one needing to understand any of the “behind the scenes” file access and

data offset protocols. However, if one needs to directly access MAF records (e.g., as in

example 5 in chapter 10), one does need to be concerned about these details.
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Genomic Sequence Alignments

Alignment annotations – including both alignments of transcripts to the genome

and alignments of genomic DNA from other species – are among the most useful

annotations found in the genome browsers. Ensembl, MapViewer, and UCSC each

use somewhat different algorithms for generating these alignments. As a result,

their alignment displays sometimes differ and, consequently, it is important to have

some understanding of the various approaches used so as to better interpret the

varying (and sometimes conflicting) alignments you may find in the different browser

displays.

In this appendix, we present an overview of the various strategies used to build

the alignments found in the browsers and a description of how the different assump-

tions used in the underlying alignment algorithms can affect the resulting browser

displays. This appendix assumes that the reader is familiar with the basics of biologi-

cal sequence alignment. Readers unfamiliar with biological sequence alignment are

referred to the extensive literature describing this subject, such as the texts by Mount

(2004) and Durbin et al. (1998).

A4.1 Aligning transcripts to the genome

Browser transcript alignments include both “cis” alignments – that is, alignments

of protein sequences or mRNA- or EST-transcripts to the region from which they

were generated – and “trans” alignments, alignments from other regions of the

genome or from the genomes of other species. cis alignments provide information

on the diversity of splicing and transcriptional isoforms that may be produced from

a single genomic locus. In contrast, trans alignments can provide clues as to the

function of an unannotated gene. In addition, identification of domains within a

trans alignment that are highly conserved may indicate which regions are important

for gene function.

To generate transcript alignments, Ensembl uses the program Exonerate (Slater

and Birney, 2005) and NCBI uses Splign (Kapustin et al., 2004). Both of these pro-

grams include algorithms to aid in the identification of canonical splice sites as

276
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part of their alignment. In contrast, UCSC currently uses the BLAT (Kent, 2002) and

translated BLAT programs, which are not sensitive to splice-site signals and, conse-

quently, BLAT-derived genomic mRNA alignments may have inaccurate intron-exon

boundaries. Improved alignment tools that include splice constraints are currently

under development at UCSC that will make intron-exon boundaries displayed in the

browser more reliable.

No matter what alignment algorithm is used, intron-exon boundaries in browser

alignments can be misleading if there are polymorphisms between the transcript

data and the genome, or if there are sequencing errors in the transcript or genome

sequence data. Although sequencing errors are uncommon, they do occur (Furey

et al., 2004) and, along with splice-site polymorphisms, they can produce unexpected

results (see, for example, Figures 5.4 and 5.5). In addition, approximately 0.1 to 0.3%

eukaryotic splice sites are created by the U11/U12 “minor” spliceosome. The minor

spliceosome is known to use a variety of noncanonical 3′- and 5′-splice sites (Will

and Luhrmann, 2005). Identifying minor spliceosome splice sites computationally is

challenging, and current gene-annotation programs may miss some of them. Conse-

quently, additional care should be exercised in accepting intron-exon boundaries if

one has reason to believe that the splicing might be produced by the minor spliceo-

some.

A4.2 Genome alignments

Genomic (i.e., DNA) alignments also provide important information in a genome

browser. Such genomic alignments include both “localized” alignments,1 which

extend over a limited region (typically less than one megabase), or “extended” align-

ments, which may extend over many tens of megabases or even the entire length

of a chromosome. Genomic alignments typically also include some set of alignment

scores that indicate the level of similarity among the sequences for each subregion

of the alignment. Such similarity measures, in turn, indicate the level of evolution-

ary constraint on sequence variations within the region and, hence, the functional

importance of the region.

For localized, pairwise alignments, UCSC and Ensembl use the BLASTZ tool

(Schwartz et al., 2003). BLASTZ is similar to BLAST, however, with two significant

differences. First, the parameters in the similarity scoring matrix are selected to

reflect biological similarity in non-protein-coding regions. This choice reflects the

fact that many metazoan genomes consist largely of non-protein-coding sequences.

Second, BLASTZ uses the technique of “discontinuous seeds,” which has been shown

1 I use the somewhat awkward-sounding term “localized” alignment because a “local” alignment

has a specific (and different) meaning in biological sequence-alignment terminology. In fact,

both what I call localized alignments and extended alignments are examples of local alignments

in the usual terminology of biological sequence analysis – see, for example, Durbin et al. (1998)

for the standard definitions of local and global alignments.
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Figure A4.1 Example of UCSC “nets” and “chains” tracks, illustrating an apparent chromosomal

translocation subsequent to the evolutionary divergence of human and mouse. On the UCSC

Browser, the best BLASTZ homolog to human snoRNA ACA66 is shown in red indicating that it is on

mouse chromosome 5, whereas the best homologs to the exons of its host gene are displayed in

yellow-green showing that they are located on mouse chromosome 11. The colors corresponding to

these different mouse chromosomes are difficult to distinguish in the grayscale figure

reproduction. However the different chromosomal locations of the two homologs can also be seen

from the chr11 and chr5 annotations at the left side of the Mouse Chained Alignments track.

to be somewhat more sensitive than the contiguous seeds used by conventional BLAST

(Ma et al., 2002).

BLASTZ identifies regions of high local similarity. To link together high-scoring

BLASTZ alignments into extended alignments, UCSC uses the chain and net algo-

rithms (Kent et al., 2003), whereas Ensembl uses the Mercator program (Dewey and

Pachter, 2006). The UCSC chain algorithm accepts gaps between localized alignments

that are longer than those allowed in BLAST or BLASTZ. The net algorithm then ranks

the chains and allows for gaps in one chained alignment to be filled with shorter

chains that may be from other genomic regions, such as those that may have been

created by chromosomal inversions or translocations. The result of this process is a

global view of the syntenic history of a genome, and can be viewed on the “nets” and

“chains” tracks of the UCSC Browser. An example of nets and chains can be seen in

Figure A4.1, which shows the genomic region surrounding the human snoRNA gene

ACA66, including the intron of the USP32 gene in which ACA66 is located. The figure

shows that the best mouse homolog of ACA66 is on a different chromosome from

the mouse homolog of USP32, as shown by the different colors – or shadings in the fig-

ure – of the snoRNA and host-gene exons on the mouse-net track. The figure suggests

that the region surrounding ACA66 has been translocated to another chromosome

in the human or the mouse genome or both subsequent to the divergence of the two

species.

The Mercator program used by Ensembl builds extended alignments by a different

approach from UCSC nets and chains. Rather than build chains from localized BLASTZ

nucleotide alignments, Mercator builds a “synteny” map by locating strings of similar

protein-coding exons between the two genomes. These exon strings serve as anchors

for the extended nucleotide alignments. Because Mercator and the nets-and-chains

method use different algorithms, they may produce rather different genomic align-

ments. Consequently, it is wise to examine both UCSC and Ensembl’s alignments for

one’s region of interest. For more details on the nets-and-chains approach, see the
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paper by Jim Kent (Kent et al., 2003). For additional information on Mercator, see

Dewey and Pachter (2006).

A4.2.1 Multiple-species genome alignments

For many applications, it is useful to obtain genome alignments of homologous

regions from more than two species. For example, when looking for functionally

important regions, a region that is highly conserved among multiple species provides

stronger evidence of the presence of constraining evolutionary pressure than a region

that is only known to be conserved between two species.

Genomic multiple-sequence alignment (MSA) is a challenging and active field

of research, and several genomic MSA programs have been developed. These pro-

grams include MULTIZ (Blanchette et al., 2004), PECAN (see http://www.ebi.ac.uk/∼bjp/

pecan), TBA (Blanchette et al., 2004), MAVID (Bray and Pachter, 2004), and MLAGAN

(Brudno et al., 2003a). Each employs a different approach for adding sequences to the

alignment, a different algorithm for selecting the anchors for the underlying local-

ized pairwise alignments, and a different approach for linking the anchors together

to create extended alignments.

At the time of this writing, Ensembl performs MSA using the PECAN algorithm,

whereas UCSC uses MULTIZ. PECAN’s approach is to initially use the Exonerate pro-

gram to search for orthologous exons in each of the genomes and then to use

the Mercator program to link those exons into syntenic maps. PECAN then uses

a progressive-alignment algorithm with consistency constraints to build the actual

MSA from Mercator’s syntenic map. The UCSC approach, in contrast, begins with pair-

wise extended alignments generated by BLASTZ and the nets-and-chains approach.

Once the pairwise extended alignments have been generated, the MULTIZ program

then uses a progressive-alignment approach to build the final MSA.

To fully exploit the evolutionary information contained in a MSA also requires tools

that measure local sequence conservation. As with MSA itself, multiple programs have

been developed to score MSA similarity and thereby identify regions of evolutionary

conservation. These algorithms are generally based on probabilistic models to identify

regions of high conservation in MSAs. Two widely used probabilistic MSA scoring

algorithms are the phastCons program (Siepel et al., 2005), which is used by UCSC,

and GERP (Cooper et al., 2005), which is used by Ensembl.

As Ensembl and UCSC use different genomic MSA and MSA-scoring algorithms,

their resulting alignments and predictions of highly conserved regions may be differ-

ent. Moreover, few benchmarks are available to guide one as to the relative accuracy

of the different multiple-alignment and conservation programs – see Prakash and

Tompa (2007) and Margulies et al. (2007) for two interesting attempts to assess MSA

algorithms. Consequently, it may be worthwhile to check the results of more than

one MSA program, especially if the answers returned by one algorithm differ from

one’s biological intuition. For comparing MULTIZ and MLAGAN alignments, the VISTA

Genome Browser at the VISTA web site (http://pipeline.lbl.gov/cgi-bin/gateway2) can
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Figure A4.2 Comparison of levels of conservation of MULTIZ and MLAGAN alignments as viewed on

the VISTA web site. Tracks labeled “Track 1039” indicate the level of sequence conservation as

determined by MLAGAN. The track labeled “conservation” shows sequence conservation when the

phastCons conservation program is applied to the MULTIZ alignment.

be informative. With this tool, one can simultaneously view the results of MULTIZ

and MLAGAN alignments on the UCSC Browser. An example of such a display is

shown in Figure A4.2. Another useful tool for getting a sense of the variety of align-

ments and conservation predictions is the set of conservation tracks for the ENCODE

regions, which is available on the hg17 build of the UCSC Browser. Using these tracks

along with the standard UCSC conservation track, one can compare the output of the

MULTIZ, MAVID, MLAGAN, and TBA alignment algorithms, as well as of the phast-

Cons, GERP, and SCONE2 MSA-scoring algorithms. For example, Figure A4.3 shows the

level of sequence conservation at a region within the cystic fibrosis gene generated

2 SCONE (Sequence CONservation Evaluation) is yet another program for evaluating the conser-

vation of a multiple-sequence alignment (Asthana et al. 2007).
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UCSC Known Genes (June, 05) Based on UniProt, RefSeq, and GenBank mRNA
Vertebrate Multiz Aligenment & Conservation

TBA PhastCons Conservation

TBA PhastCons Conservation

TBA PhastCons Conservation

MLAGAN PhastCons Conservation

MLAGAN PhastCons Conservation

MAVID PhastCons Conservation

MAVID GERP Conservation

CFTR
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1
TBA PhastCons

-
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-
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Figure A4.3 Varying patterns of multiple-sequence conservation in the region of the cystic fibrosis

gene as determined by the MULTIZ, MLAGAN, MAVID, and TBA alignment programs and the

phastCons, GERP, and SCONE conservation-scoring programs.

by several of these tools. From the figure, one notices differences in the regions of

constrained sequence identified by the phastCons, GERP, and SCONE algorithms.

Despite the remarks here concerning the different results produced by various

alignment procedures and the lack of rigorous techniques for comparing and assess-

ing these results, genomic MSA can be very useful in identifying homologous and

conserved regions in multiple genomes, especially if the level of conservation is

relatively high. As just one anecdotal example using a MULTIZ alignment of three

mammalian genomes, it was possible to use the location of snoRNA genes in one

species to identify homologous snoRNA genes in the other two mammalian species

(Schattner et al., 2006). This result indicated not only that snoRNA genes are con-

served but also that the MULTIZ alignment procedure is able to properly group these

homologs.
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Program Code README File

This archive contains the code and data files for the examples used in this book.

Before accessing the files in the archive, you need to execute: tar -xvzf gbd1.0.tar.gz

from the Unix command line in the directory where you want to store the included

programs and data files.

Chapters 4, 5, and 6

Chapters 4 and 5 include examples using BioMart, the UCSC Table Browser and Gene

Sorter, and Galaxy. In the subdirectory data/martViewTbGalaxyTests, you will find

some track and bed files that may be useful as input data for the examples in these

chapters. In chapter 6, there is a program, ucscPerlDbiExample.pl, that illustrates

direct SQL access of the UCSC databases with Perl’s DBI module. This program is

located in the top-level directory. You will need to install the Perl DBI module to run

this program.

Chapters 7 and 8

These examples are run using the Ensembl API. You will need to have installed MySQL,

BioPerl, and the Ensembl API as described in the text. In addition, you will need to

modify the “use lib” statements in each of the scripts to point to the locations of

Bioperl and the Ensembl API as indicated in the text or use the Perl -I directive. The

three scripts described in the text are in the ensemblScripts subdirectory:

ensemblTest1.pl

ensemblIntronLengths.pl

ensemblComparaExample.pl

Input data is located in the data subdirectory:

hacaWgRna.hg18.bed (for ensemblIntronLengths.pl)

ensemblCompara.test.bed (for ensemblComparaExample.pl)
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Chapters 9 and 10

These examples are run using the UCSC API. You will need to have installed MySQL

and the UCSC API as described in the text. The six programs described in the text are

each in a separate subdirectory of the ucscExamples subdirectory:

helloWorld

ucscDbConnTest

ucscIntronLengths1

ucscIntronLengths2

mafWriteRegions

pslDisplaySeqs

Input data is located in the data subdirectory:

hacaWgRna.hg18.bed (for ucscIntronLengths1 and ucscIntronLengths2)

ensGene.hg18.txt (also needed to run ucscIntronLengths2 in “file” mode)

ensemblCompara.test.bed (for mafWriteRegions)

pslDisplay.hg18.bed (for pslDisplaySeqs)

The programs all need to be compiled and linked before they can be executed. Instruc-

tions for using “make” to compile and link these programs can be found in the text.

The mafWriteRegions example in the text will only work if you have the UCSC auxil-

iary files (see the text for details) located in /gbdb/hg18 (and preferably also the UCSC

hg18 database table multiz17way) installed on your system. The pslDisplaySeqs exam-

ple in the text will only work if you have the UCSC auxiliary files (see the text for

details) located in /gbdb/hg18 and /gbdb/genbank and the UCSC hg18 database tables

chromInfo, gbSeq, and gbExtFile installed on your system.

chapter 11

Input and expected output data for the autoSql example in the text can be found in

the subdirectory data/autoSql.
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Selected General References for Genome
Databases and Browsers

A6.1 Genome database overview

Stein, L. D. (2003). “Integrating biological databases.” Nat Rev Genet 4(5): 337–45.

Furey, T. S. (2006). “Comparison of human (and other) genome browsers.” Hum

Genomics 2(4): 266–70.

Baxevanis, A. D. (2003). “Using genomic databases for sequence-based biological dis-

covery.” Mol Med 9(9–12): 185–92.

A6.2 UCSC Genome Database and Browser

Karolchik, D., R. M. Kuhn, et al. (2008). “The UCSC Genome Browser Database: 2008

Update.” Nucleic Acids Res 36(Database issue): D773–9.

Thomas, D. J., K. R. Rosenbloom, et al. (2007). “The ENCODE Project at UC Santa Cruz.”

Nucleic Acids Res 35(Database issue): D663–7.

Karolchik, D., A. S. Hinrichs, et al. (2004). “The UCSC Table Browser data retrieval

tool.” Nucleic Acids Res 32(Database issue): D493–6.

Kent, W. J., F. Hsu, et al. (2005). “Exploring relationships and mining data with the

UCSC Gene Sorter.” Genome Res 15(5): 737–41.

A6.3 Ensembl Genome Database and Browser

Stabenau, A., G. McVicker, et al. (2004). “The Ensembl core software libraries.” Genome

Res 14(5): 929–33.

Flicek. P., B. L. Aken, et al. (2008). “Ensembl 2008.” Nucleic Acids Res 36(Database issue):

D707–14.

Curwen, V., E. Eyras, et al. (2004). “The Ensembl automatic gene annotation system.”

Genome Res 14(5): 942–50.

Birney, E. (2003). “Ensembl: a genome infrastructure.” Cold Spring Harb Symp Quant Biol

68: 213–15.
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Birney, E., T. D. Andrews, et al. (2004). “An overview of Ensembl.” Genome Res 14(5):

925–8.

A6.4 MapViewer Genome Database and Browser

Wheeler, D. L., T. Barrett, et al. (2005). “Database resources of the National Center for

Biotechnology Information.” Nucleic Acids Res 33(Database issue): D39–45.

Wheeler, D. L., T. Barrett, et al. (2007). “Database resources of the National Center for

Biotechnology Information.” Nucleic Acids Res 35(Database issue): D5–12.

Wheeler, D. L., T. Barrett, et al. (2008). “Database resources of the National Center for

Biotechnology Information.” Nucleic Acids Res 36(Database issue): D13–21.

A6.5 Other genome databases

Yeast genome database: Christie, K. R., S. Weng, et al. (2004). “Saccharomyces Genome

Database (SGD) provides tools to identify and analyze sequences from Saccharomyces

cerevisiae and related sequences from other organisms.” Nucleic Acids Res 32(Database

issue): D311–14.

Worm genome database: Schwarz et al. (2006). “WormBase: better software, richer

content.” Nucleic Acids Res 34 (Database issue): D475–8.

FlyBase genome database: Gilbert, D. G. (2007). “DroSpeGe: rapid access database for

new Drosophila species genomes.” Nucleic Acids Res 35(Database issue): D480–5.

Gramene genome database: Jaiswal, P., J. Ni, et al. (2006). “Gramene: a bird’s eye view

of cereal genomes.” Nucleic Acids Res 34(Database issue): D717–23.

Mouse genome database: Eppig, J. T., J. A. Blake, et al. (2007). “The mouse

genome database (MGD): new features facilitating a model system.” Nucleic Acids Res

35(Database issue): D630–7; and Blake, J. A., J. E. Richardson, et al. (2003). “MGD: the

Mouse Genome Database.” Nucleic Acids Res 31(1): 193–5.

UCSC prokaryote genome browser: Schneider, K. L., K. S. Pollard, et al. (2006). “The

UCSC Archaeal Genome Browser.” Nucleic Acids Res 34(Database issue): D407–10.

Microbial metagenomic databases: Markowitz, V. M., F. Korzeniewski, et al. (2006a).

“The integrated microbial genomes (IMG) system.” Nucleic Acids Res 34(Database

issue): D344–8; and Markowitz, V. M., N. Ivanova, et al. (2006b). “An experimental

metagenome data management and analysis system.” Bioinformatics 22(14): e359–67.

A6.6 Genome browser and related tools

Overview: Stajich, J. E. and H. Lapp (2006). “Open source tools and toolkits for bioin-

formatics: significance, and where are we?” Brief Bioinform 7(3): 287–96.
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Galaxy: Blankenberg, D., J. Taylor, et al. (2007). “A framework for collaborative analysis

of ENCODE data: making large-scale analyses biologist-friendly.” Genome Res 17(6):

960–4.

VISTA: Frazer, K. A., L. Pachter, et al. (2004). “VISTA: computational tools for compar-

ative genomics.” Nucleic Acids Res 32(Web Server issue): W273–9.

BioPerl: Stajich, J. E., D. Block, et al. (2002). “The Bioperl toolkit: Perl modules for the

life sciences.” Genome Res 12(10): 1611–18.

GBrowse: Stein, L. D., C. Mungall, et al. (2002). “The generic genome browser: a building

block for a model organism system database.” Genome Res 12(10): 1599–610.

BioMart: Kasprzyk, A., D. Keefe, et al. (2004). “EnsMart: a generic system for fast and

flexible access to biological data.” Genome Res 14(1): 160–9.

DAS: Dowell, R. D., R. M. Jokerst, et al. (2001). “The distributed annotation system.”

BMC Bioinformatics 2: 7.

BioPipe: Hoon, S., K. K. Ratnapu, et al. (2003). “Biopipe: a flexible framework for

protocol-based bioinformatics analysis.” Genome Res 13(8): 1904–15.

A6.7 Molecular biology and genomics

Primrose, S. B. and R. M. Twyman (2006). Principles of Gene Manipulation and Genomics,

7th Edition, Blackwell Publishing.

A6.8 Sequence alignment and conservation

Durbin, R., S. Eddy, et al. (1998). Biological Sequence Analysis, Cambridge University Press.

Mount, D. W. (2004). Bioinformatics: Sequence and Genome Analysis, 2nd Edition, Cold

Spring Harbor Laboratory Press.

Siepel, A., G. Bejerano, et al. (2005). “Evolutionarily conserved elements in vertebrate,

insect, worm, and yeast genomes.” Genome Res 15(8): 1034–50.

Ma, B., J. Tromp, et al. (2002). “PatternHunter: faster and more sensitive homology

search.” Bioinformatics 18(3): 440–5.

Kent, W. J., R. Baertsch, et al. (2003). “Evolution’s cauldron: duplication, deletion, and

rearrangement in the mouse and human genomes.” Proc Natl Acad Sci U S A 100(20):

11484–9.

Kent, W. J. (2002). “BLAT – the BLAST-like alignment tool.” Genome Res 12(4): 656–

64.

Blanchette, M., W. J. Kent, et al. (2004). “Aligning multiple genomic sequences with

the threaded blockset aligner.” Genome Res 14(4): 708–15.
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Brudno, M., C. B. Do, et al. (2003a). “LAGAN and Multi-LAGAN: efficient tools for

large-scale multiple alignment of genomic DNA.” Genome Res 13(4): 721–31.

Brudno, M., S. Malde, et al. (2003b). “Glocal alignment: finding rearrangements during

alignment.” Bioinformatics 19 Suppl 1: i54–62.

Margulies, E. H., G. M. Cooper, et al. (2007). “Analyses of deep mammalian sequence

alignments and constraint predictions for 1% of the human genome.” Genome Res

17(6): 760–74.

A6.9 Programming references

Perl:

Holzner, S. (1999). Perl Core Language, Coriolis.

Tisdall, J. D. (2001). Beginning Perl for Bioinformatics, O’Reilly.

Tisdall, J. D. (2003). Mastering Perl for Bioinformatics, O’Reilly.

C:

Reek, K. A. (1998). Pointers on C, Addison-Wesley.

MySQL:

DuBois, P. (2005). MySQL, Sams Developer’s Library.
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Online Documentation and Useful
Web Sites for Genome Databases
and Browsers

A7.1 General web tutorials

Open Helix online tutorials: http://www.openhelix.com/tutorials.shtml

A7.2 UCSC Genome Database and Browser

A7.2.1 UCSC Genome Browser

Genome Browser home: http://genome.ucsc.edu

Genome Browser Gateway: http://genome.ucsc.edu/cgi-bin/hgGateway

Genome Browser User’s Guide:

http://genome.ucsc.edu/goldenPath/help/hgTracksHelp.html

Genome Browser FAQ: http://genome.ucsc.edu/FAQ

Genome Browser custom tracks:

http://genome.ucsc.edu/goldenPath/help/hgTracksHelp.html#CustomTracks

Wiki site: http://genomewiki.ucsc.edu

UCSC development site: http://genome-test.cse.ucsc.edu

Browser mailing lists: http://genome.ucsc.edu/contacts.html

A7.2.2 Table Browser

Table Browser: http://genome.ucsc.edu/cgi-bin/hgTables

Table Browser User’s Guide:

http://genome.ucsc.edu/google/goldenPath/help/hgTablesHelp.html

Database table descriptions (this resource is no longer actively maintained):

http://genome.ucsc.edu/goldenPath/gbdDescriptionsOld.html

A7.2.3 UCSC software and API

UCSC software: http://hgdownload.cse.ucsc.edu/admin/jksrc.zip

CVS software site: http://genome.ucsc.edu/admin/cvs.html

Web software installation instructions: http://genome.ucsc.edu/admin/jk-install.html
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Software installation instructions (included in UCSC download files):

README.building.source in the kent/src/product/ subdirectory

Program list: http://genome-test.cse.ucsc.edu/eng/useMessageIndex.html

A7.2.4 UCSC mirror databases and installation

Public mirror database:

host = genome-mysql.cse.ucsc.edu, user = genome (no password)

Public mirror database for use with UCSC API:

host = genome-mysql.cse.ucsc.edu, user = genomep, password = password

Public mirror information:

http://genome.ucsc.edu/FAQ/FAQdownloads/download29#download29

Mirror installation: http://genome.ucsc.edu/admin/mirror.html

Installation documentation:

README.install and ex.InstallExample in the kent/src/product subdirectory

Minimal browser installation:

http://genomewiki.ucsc.edu/index.php/Browser_installation

Database files: http://hgdownload.cse.ucsc.edu/downloads.html

Database table files (hg18): http://hgdownload.cse.ucsc.edu/goldenPath/hg18/database

Updating partial mirrors: http://genomewiki.ucsc.edu/index.php/Browser_Mirrors

Documentation describing the building of the various databases (e.g., for hg18):

kent/src/hg/makeDb/trackDB/README and kent/src/hg/makeDb/doc/hg18.txt

A7.3 Ensembl Genome Database and Browser

A7.3.1 Genome Browser

Genome Browser home: http://www.ensembl.org

Human Genome Browser: http://www.ensembl.org/Homo_sapiens

Site map: http://www.ensembl.org/sitemap.html

Ensembl General Help page: http://www.ensembl.org/info

Ensembl HelpView page (with links to documentation describing different views):

http://www.ensembl.org/common/helpview

Ensembl ContigView documentation:

http://www.ensembl.org/common/helpview?se=1; ref=;kw=contigview

Animated tutorials: http://www.ensembl.org/common/Workshops_Online

Browser custom tracks: http://www.ensembl.org/info/using/external_data

Using Ensembl with a DAS server:

http://www.ensembl.org/info/using/external_data/das/das_server.html

DAS registry: http://www.dasregistry.org

Ensembl Pre! site: http://pre.ensembl.org

Ensembl mailing lists and mailing list archives:

http://www.ensembl.org/info/about/contact.html
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A7.3.2 Ensembl software and API

Ensembl MartView: http://www.biomart.org/biomart/martview

Ensembl API: http://www.ensembl.org/info/using/api

Ensembl Perl API tutorial: http://www.ensembl.org/info/using/api/core/core_tutorial.

html

API pdoc pages: http://www.ensembl.org/info/using/api/Pdoc

Archival Java API (no longer maintained):

http://oct2006.archive.ensembl.org/info/software/java

A7.3.3 Ensembl mirror databases and installation

Ensembl mirror: host = ensembldb.ensembl.org, user = anonymous (no password)

Ensembl MartDb mirror: host = martdb.ensembl.org, user = anonymous, port = 3316

(no password)

Ensembl installation: http://www.ensembl.org/info/webcode

Ensembl registry configuration: http://www.ensembl.org/info/using/api/registry

A7.4 MapViewer Genome Browser

Genome Browser home: http://www.ncbi.nlm.nih.gov/mapview

MapViewer Help: http://www.ncbi.nlm.nih.gov/mapview/static/MapViewerHelp.html

MapViewer Human Maps Help:

http://www.ncbi.nlm.nih.gov/mapview/static/humansearch.html

MapViewer tutorial:

http://www.ncbi.nlm.nih.gov/About/outreach/gettingstarted/mapviewer

NCBI Handbook Introduction to MapViewer:

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=handbook.chapter.ch20

NCBI Handbook MapViewer exercises:

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=handbook.chapter.ch24

A7.5 Other genome databases

Yeast genome database: http://www.yeastgenome.org

Worm genome database: http://www.wormbase.org

FlyBase genome database: http://www.flybase.org

Gramene genome database: http://www.gramene.org/genome_browser

Mouse Genome Database:

http://gbrowse.informatics.jax.org/cgi-bin/gbrowse/mouse_current

Cat genome browser: http://lgd.abcc.ncifcrf.gov/cgi-bin/gbrowse/cat

Farm animal genome browser: http://public-contigbrowser.sigenae.org:9090

UCSC prokaryote genome browser: http://archaea.ucsc.edu

Ensembl genome reviews: http://www.ebi.ac.uk/GenomeReviews
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Tribolium genome database: http://www.bioinformatics.ksu.edu/BeetleBase

Dictyostelium genome database:

http://dictybase.org/db/cgi-bin/ggb/gbrowse/dictyBase

Joint Genome Institute microbial genomes: http://img.jgi.doe.gov

Joint Genome Institute environmental genomes: http://img.jgi.doe.gov/m

NCBI microbial browser:

http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_taxtree.html

Genomes OnLine Database: http://www.genomesonline.org

A7.6 Genome browser and related tools

Galaxy home page: http://main.g2.bx.psu.edu

Galaxy Documentation: http://g2.trac.bx.psu.edu

Galaxy Screencast tutorials: http://g2.trac.bx.psu.edu/wiki/ScreenCasts

Galaxy genomic interval operations: http://g2.trac.bx.psu.edu/wiki/GopsDesc

Galaxy test server: http://test.g2.bx.psu.edu

Galaxy mailing list: http://mail.bx.psu.edu/cgi-bin/mailman/listinfo/galaxy-user

Taverna: http://taverna.sourceforge.net/

VISTA multiple-sequence alignment tools: http://genome.lbl.gov/vista

VISTA Browser: http://pipeline.lbl.gov/cgi-bin/gateway2

Perl module repository: http://www.cpan.org

BioPerl home: http://www.bioperl.org

BioPerl pdoc pages: http://doc.bioperl.org

BioPerl tutorial: http://www.bioperl.org/Core/Latest/bptutorial.html

BioPerl Deobfuscator: http://www.bioperl.org/cgi-bin/deob_interface.cgi

BioJava home: http://www.biojava.org

NCBI (genomic) BLAST: http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi

NCBI genomes: http://www.ncbi.nlm.nih.gov/Genomes

NCBI (same-species) trace archives BLAST:

http://www.ncbi.nlm.nih.gov/blast/mmtrace.shtml

NCBI (xeno) trace archives BLAST: http://www.ncbi.nlm.nih.gov/blast/tracemb.shtml

Ensembl trace server: http://trace.ensembl.org/cgi-bin/tracesearch

DAS: http://www.biodas.org

Bio::DAS API: http://search.cpan.org/∼lds/Bio-Das-1.06/Das.pm

A7.7 Tools for creating custom genome databases

autoSql and autoXml: http://www.linuxjournal.com/article/5949

sqlToXml, autoDtd, xmlToSql, and autoXml:

http://www.ddj.com/web-development/193402895

GMOD project: http://www.gmod.org

Chado database schema: http://www.gmod.org/chado
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Chado manual: http://www.gmod.org/wiki/index.php/Chado_Manual

GBrowse: http://www.gmod.org/ggb

GBrowse tutorial: http://www.gmod.org/nondrupal/tutorial/tutorial.html

GBrowse installation guide:

http://www.gmod.org/wiki/index.php/GBrowse_Install_HOWTO

BioSQL: http://www.biosql.org

BioMart: http://www.biomart.org

BioMart manual: http://www.biomart.org/user-docs.pdf

A7.8 File and track format references

UCSC file formats (BED, PSL, MAF, WIG): http://genome.ucsc.edu/FAQ/FAQformat

GFF3: http://www.sequenceontology.org/gff3.shtml

Lightweight DAS: http://biodas.org/servers/LDAS.html

Embedded UCSC documentation describing UCSC track format:

README in kent/src/hg/makeDb/track DB subdirectory

Documentation describing search-field component of UCSC track format:

http://hgwdev.cse.ucsc.edu/admin/hgFindSpecHowTo.html

A7.9 Useful software programs

MySQL: http://www.mysql.com

CVS: http://www.nongnu.org/cvs

rsync: http://samba.anu.edu.au/rsync

NcFTP: http://www.ncftp.com

grep: http://www.gnu.org/software/grep

Apache: http://www.apache.org

Cywin: http://www.cygwin.com

Active State Perl (Perl for Windows users): http://www.activestate.com
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Glossary of Biological and Computer
Terms Used in the Text

This glossary contains definitions of terms used in the text. More information on

most of these terms can be obtained from Wikipedia, the online encyclopedia at

http://www.wikipedia.org. For additional information on biological terms, see Prim-

rose and Twyman (2006). For information on terms from computational biology, see

Mount (2004) or Durbin et al. (1998).

ab initio gene prediction: Computational gene prediction not based on transcript data.

absolute coordinates: See “top-level” coordinates.

aCGH: “array Comparative Genomic Hybridization.” Micro-array technology that uses

genomic DNA probes for applications such as determining DNA copy number

variations between individuals and DNA copy number alterations in cancer.

ADAR: “Adenosine deaminase acting on RNA.” RNA-editing enzyme that converts

adenosines to inosines.

alignment: The association of residues between the two or more sequences in a way

that maximizes the “similarity” between the sequences in a biologically meaning-

ful way.

allele: A variant of a gene observed between individuals of the same species; a gene

polymorphism.

alternative splicing: Process in which a single gene can be spliced in multiple ways

to produce varying transcripts, each yielding a protein with a potentially different

function.

Alu: Family of SINEs that are widespread in primate genomes.

Apache: A widely used, free, open-source web server program.

API: “Application Programming Interface.” A standard interface to a programming

library that enables a programmer to easily use the functions in the library without

needing to understand their implementations.

Archaea: Third major kingdom of life (along with bacteria and eukaryotes). Includes

unicellular prokaryotes, which, on the basis of the similarity of their ribosomal

RNA sequences and other features to those of eukaryotes, are believed to be more

closely related to eukaryotes than to bacteria.
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array-CGH: See “aCGH.”

ArrayExpress: Micro-array database maintained by EBI and available at http://www.

ebi.ac.uk/microarray-as/aer.

ASCII: “American Standard Code for Information Interchange.” Widely used data

format for storing text data on computer systems.

assembly (genome): The process of linking together individual overlapping sequence

“reads” into a sequence of an entire chromosome or genome; also refers to the

resulting chromosomal sequence produced by the assembly process.

AXT: Pairwise-alignment format used by the UCSC genome database. Most pairwise

alignments are stored at UCSC in PSL format; however, those alignments derived

directly from the BLASTZ program are stored in AXT format.

base: Adenine, cytosine, guanine, or thymine (uracil) subunit of DNA (RNA) nucleotide.

batch querying: Process of executing multiple requests (queries) of a database in a

single command or a single invocation of a computer program.

BED: “Browser Extensible Description.” Flexible data format for describing genomic

locations and gene structure used by the UCSC genome database.

BioMart: Tool for interactive batch querying of genome databases used by Ensembl,

GMOD, and other genome database projects.

BioPerl: Suite of Perl software objects and subroutines designed to facilitate the

writing of Perl software for bioinformatics.

BLAST: Universally used, heuristic algorithm for rapidly aligning sequences by using

short exact sequence matches to “seed” the alignment process.

blastp: Version of the BLAST program optimized for aligning protein sequences.

BLASTZ: Version of the BLAST program optimized for aligning long nucleotide

sequences that do not necessarily code for proteins.

BLAT: “BLAST-like Alignment Tool.” Very fast sequence-alignment tool designed

for aligning extremely similar sequences, such as sequence fragments within a

genome.

build (database): A complete reconstruction of a genome database, typically in

response to the release of a revised genome assembly.

cDNA: “Complementary DNA.” DNA that is synthesized from mRNA by reverse tran-

scriptase.

C/D snoRNA (or C/D Box snoRNA): Class of snoRNAs characterized by two sequence

motifs known as the “C Box” and the “D Box.” Most C/D snoRNAs are involved in

the methylation of ribosomal or spliceosomal RNAs.

Celera assembly: Refers to the assembly of the human genome using the data and

tools from Celera’s Human Genome Project.

centromere: Region near the center of the chromosome to which the spindles attach

during cell division.

CG%: Percentage of nucleotide bases in a genomic region that are either cytosine or

guanine.
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CGI: “Common Gateway Interface.” Software protocol for designing programs that

can be executed over a web-page interface.

ChIP/chip: Chromatin immumoprecipitation on a (micro-array) chip. A high-

throughput technique for determining DNA sites that are bound by chromosomal

proteins.

chromatin: Complex of DNA and associated proteins making up the chromosome.

chromosomal coordinates: Coordinate system derived from the actual chrosomomal

feature locations on a reference genome; for a completely assembled genome, the

“top-level” coordinates will be chromosomal coordinates.

clade: Collection of related species, for example, vertebrates, nematodes, insects.

clone (genomic): A section of DNA that is stored and amplified within a bacterial or

eukaryotic chromosome, often as part of the DNA sequencing process.

clone mapping: Strategy for genome sequence assembly in which one builds genomic

maps onto which the sequences of individual clones are placed.

Clustalw: Widely used program for aligning multiple protein or nucleotide sequences.

coding sequence: Portion of an mRNA transcript that is translated by the ribosome

into an amino acid sequence.

codon: Three consecutive nucleotides in the coding sequence of an mRNA that are

translated by the ribosome into a single amino acid.

compiler: Computer program used to parse a set of instructions to a computer in a

“high-level language” (which is human-readable, and referred to as “source code”)

into machine-readable code.

Consensus Coding Sequence (CCDS) Project: Project that seeks to identify human

gene annotations for which there is 100% agreement between RefSeq and VEGA

annotations.

consensus sequence: Description of a multiple-sequence alignment by means of a

single sequence consisting of the most commonly occurring nucleotide (or amino

acid) at each position in the alignment.

conserved site: Position in a sequence alignment at which all, or most, of the

nucleotides (or amino acids) are identical, or represent amino acids with simi-

lar biochemical properties, or nucleotides that code for similar or identical amino

acids.

contig: Group of overlapping clones that represent a single continuous region of a

chromosome.

copy number polymorphism: Polymorphism involving variation in the number of

copies of a section of chromosomal DNA in the genomes of different individuals.

coverage (genome): In a sequencing project, the ratio of the total number of bases

sequenced to the size of the target genome.

CpG island: Region of vertebrate genome with unusually high occurrence of CG

dinucleotides; often found near gene promoters.

custom track: Track on a genome browser containing a user’s private data.



296 Appendix 8

CVS: “Concurrent Versioning System.” A computer utility program designed to assist

multiple software developers in accessing and modifying a set of computer pro-

grams without interfering with one another.

DAS: “Distributed Annotation System.” A set of software specifications enabling

genome browsers to display sequence annotations stored on remote computer

systems.

data warehouse: Data storage and management system where data from multiple,

remote, “primary” databases are copied and stored locally in a single integrated

data structure.

data focus: One of the central concepts or subjects in relation to which data is stored

and retrieved in a data mart.

data mart: Data storage and management system where data are stored as multiple

data foci, each focus corresponding to a particular subject (such as “genes” or

“SNPs”) central to the data being stored.

dbEST: Database of EST sequences, maintained at NCBI.

dbSNP: Database of known SNPs, maintained at NCBI.

DDBJ: DNA Databank of Japan.

deoxyribonucleotide: Monomer subunit of DNA molecule, generally identified with

its associated base of adenine (A), cytosine (C), guanine (G), or thymine (T).

discontiguous MegaBLAST: Version of NCBI’s MegaBLAST program using discontigu-

ous “seeds.”

DNase hypersensitive site: Region of the genome that is particularly susceptible to

digestion by the DNase enzyme; often found near gene promoters.

draft sequence assembly: Intermediate-level genomic assembly; usually defined as

having approximately 4x to 5x coverage.

DTD: “Document Type Definition.” In XML, specification of the set of “tags” and their

properties used in an XML document.

dynamic programming: Class of rigorous optimization algorithms useful in multiple

bioinformatics applications, including sequence alignment.

EBI: European Bioinformatics Institute.

EMBL: European Molecular Biology Laboratory.

EMBOSS: Open-source software sequence-manipulation package developed by EMBL.

ENCODE: “Encyclopedia of DNA Elements.” Name of a project to classify all fea-

tures found in genomic (initially human) sequence. The pilot phase of the project,

recently completed, characterized approximately one percent of the human

genome.

Ensembl: Genome browser and database hosted by the European Bioinformatics Insti-

tute (EBI).

epigenetics: Study of DNA and chromosomal changes not involving changes to the

DNA sequence (histone modifications, DNA methylation, and so on).

EST: “Expressed Sequence Tag.” Single read of a portion of an mRNA or cDNA sequence.

eukaryote: Organism with cells that contain a cell nucleus.
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exon: Parts of a gene transcript that are spliced together during the processing of

many eukaryote genes.

Exonerate: Program used by Ensembl for aligning transcripts to genomic se-

quence.

extended alignment: Alignment of two or more sequences that may include long

(greater than 100 kilobase) gaps and that may extend over multiple megabases of

the genomes.

FASTA: Both a computer program for sequence alignment and database searching

as well as a widely used data format for representing nucleotide and protein

sequences.

federated database: Data management system where data from multiple, remote,

“primary” databases are accessed in a unified manner by an integrated querying

system.

finished sequence assembly: Genomic sequence assembly considered to be as com-

plete as possible within the limits of current technology; typically having 8x to 9x

coverage.

flat-file data structure: Conventional computer data structure in which data is orga-

nized in files that are located with a hierarchical structure of directories with

subdirectories.

Galaxy: Web-based tool set for manipulating genome-size datasets, such as those

produced by batch queries of the genome databases.

GBrowse: Browser program provided by the GMOD project for visualizing data from

a GMOD-compatible genome database.

GC%: See “CG%.”

GenBank: One of three main sequence data repositories (along with EMBL and DDBJ);

maintained by NCBI.

GENCODE genes: Genes identified and experimentally validated in one percent of the

human genome by the ENCODE Project.

gene structure: Annotation of a gene (or, more precisely, of a transcript) indicating

the locations of all of the exon-intron boundaries.

genetic association study: Genetic study of a large population of unrelated individuals

that attempts to find statistically significant associations between an observed

phenotype (e.g., a disease) and a specific genomic polymorphism.

genetic map: Map of a chromosome as inferred by the shared inheritance patterns of

specific genetic loci (contrast with “physical map”).

genome browser: Graphical tool for visualizing data in a genome database as anno-

tation tracks along the chromosomes of the genome of a species.

genome database: Database of biological data in which data is indexed on the basis

of genomic (chromosomal) location as well as by keyword.

genotype: Specific genetic sequence of an individual member of a population.

GENSCAN: Widely used computer program for identifying the locations of genes

within the chromosomes of eukaryotic genomes.
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GEO: “Gene Expression Omnibus.” Micro-array database maintained by NCBI and

available at http://www.ncbi.nlm.nih.gov/geo.

GERP: “Genomic Evolutionary Rate Profiling.” Program used by Ensembl to identify

regions of constrained evolution.

GFF: “Generic Feature Format.” Widely used genomic data format capable of repre-

senting multiple types of annotations, with the type of annotation stored as one of

the fields in the record.

GFF3: Extension of GFF format that enables the description of data hierarchies and

requires that data fields be described using terms from the controlled vocabulary

of the Sequence Ontology Project.

global alignment: Form of sequence alignment that seeks to find the high-scoring

alignments between the entire input sequences (in contrast to “local alignment”).

GMOD: “Generic Model Organism Database.” Project to develop software tools to

facilitate the development of genome databases for newly sequenced genomes.

GNF database: Database of mammalian gene expression developed by the Genomics

Institute of the Novartis Research Foundation.

GO: “Gene Ontology.” Project to develop a standardized “controlled vocabulary” of

terms for the description of genes.

grep: Computer utility program for locating specific items within a text file.

GTF: “Gene Transfer Format.” Extension of GFF format allowing multiple, semicolon-

separated values to be included in the GFF group field.

H/ACA snoRNA (or H/ACA Box snoRNA): Class of snoRNAs characterized by two se-

quence motifs known as the “Hinge” or H Box” and the “ACA Box.” Most H/ACA

snoRNAs are involved in the pseudouridylation of ribosomal or spliceosomal RNAs.

haplotype: A set of genetic polymorphisms, typically inherited together, that are

associated with a single chromosomal region.

HapMap: International project to determine the common genetic variants (in partic-

ular, haplotypes) existing among humans.

hash: Computer data structure in which data items are indexed and can be retrieved

via unique keys.

heuristic algorithm: Algorithm that has been empirically shown to be useful and is

generally fast but which cannot be rigorously proven to always yield the optimal

result.

histone: Any of a class of proteins that are physically associated with eukaryotic

chromosomes.

homologous genes or proteins: Refers to genes (or proteins) that are similar because

the genes share a common ancestor; includes both orthologous and paralogous

genes.

homopolymer regions: Regions consisting of a single repeated nucleotide, for exam-

ple, AAAAA.

host gene: Gene that has another genomic feature (such as a snoRNA) embedded in

one of its introns.
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host intron: Intron that has another genomic feature (such as a snoRNA) embedded

within it.

HyPhy: Open-source phylogenetics program suite.

immunoprecipitation: Biochemical technique by which molecules are extracted or

purified on the basis of their physical association with specific antibodies or other

binding proteins.

indel: A genetic polymorphism consisting of either a sequence insertion or deletion.

in silico: Performed via computer, as in an “in silico analysis.”

in situ: “In place.” Refers to any experimental technique where the phenomenon is

observed in the location where it naturally occurs, as in “fluorescent in situ hybrid-

ization.”

inheritance (software): In an object-oriented language, inheritance refers to the fact

that objects automatically possess all the functionality (e.g., methods) associated

with any of their parent objects.

interactive batch querying: Batch querying that does not require the writing of a

computer program.

integrated database: Single database that includes data from multiple other (primary)

databases in a unified manner.

interpreter: Computer program used to sequentially parse and immediately execute

each line of a set of instructions to a computer.

intron: Segment of a gene transcript that is removed during the processing of many

eukaryote genes.

inversion (chromosomal): Section of a chromosome whose sequence has become

inverted.

isoform: Specific alternative splice form of a gene.

join (database): SQL command for retrieving data from multiple tables of a relational

database.

key (database): Field or column from a database table that can be used to link the

database record to the data for the same record in another database table.

link integration: Form of database integration in which the databases are connected

solely by hypertext links.

linkage disequilibrium: Term used to describe the correlated inheritance of alleles.

local alignment: Form of sequence alignment that seeks to find the high-scoring

alignments between subsequences of the input sequences (in contrast to “global

alignment”).

localized alignment: Local sequence alignment in which only relatively short gaps

are allowed between matching subsequences.

low-coverage assembly: Genomic sequence assembly with 1x to 2x coverage.

MAF: “Mutiple Alignment Format.” Principal data format for storing multiple align-

ment data in the UCSC database.

makefile: Data file used by the “make” utility program that specifies the tasks to be

performed.
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map: Term used by NCBI MapViewer to describe a genome annotation; similar to a

track in Ensembl and the UCSC Genome Browser.

MapViewer: NCBI’s genome browser program.

MAVID: Multiple-sequence alignment algorithm developed by Bray and Pachter

(2004).

MegaBLAST: Fast variant of the BLAST program for aligning nearly identical nucleo-

tide sequences.

Mercator: Computer program used by Ensembl to extend localized alignments by

building a map of homologous exons.

metagenomics: Simultaneous study of the genomes of all species from a single envi-

ronmental habitat; also referred to as environmental genomics.

metazoa: Multicelluar organisms.

method: Subroutine associated with a computer object (see “object”).

micro-array: Collection of biological-polymer sequences, which may be synthetic or

natural sequences, that have been arrayed on a solid surface; may include RNA,

DNA, or peptide sequences.

minor spliceosome: Spliceosome found in many eukaryotic cells that removes introns

with atypical splice-junction sequences.

miRNA/microRNA: Short (typically twenty-one to twenty-three bases in length)

naturally occurring RNA sequence involved in gene regulation in eukaryotic

cells.

mirror: Fully functional copy of a computer database or web site.

MLAGAN: Multiple-sequence alignment algorithm developed by Brudno et al. (2003a).

mRNA: “Messenger RNA.” A transcribed section of RNA that is capable of being trans-

lated into an amino acid sequence.

multiple-sequence alignment (MSA): Alignment of three or more nucleotide or amino-

acid sequences.

MULTIZ: Computer program that uses multiple pairwise sequence alignments pro-

duced by the BLASTZ program to create a single multiple-sequence alignment.

MySQL: Open-source relational database management system widely used by genome

databases, including UCSC and Ensembl.

NCBI: “National Center for Biotechnology Information.” U.S. government agency with

the responsibility of maintaining multiple archival and curated molecular biology

databases and developing tools for facilitating the analysis of the data within them.

ncRNA: See “noncoding RNA.”

negative selection: Removal over evolutionary time of variations in the genomic

sequence that diminish the fitness of an organism; also referred to as “purifying

selection.”

nets-and-chains: Program used by UCSC to link together high-scoring, localized

BLASTZ alignments into extended alignments.

nonsense mediated decay (NMD): Cellular process by which mRNA transcripts that

have premature stop codons are selectively degraded.
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non-coding RNA (ncRNA): Transcribed functional RNA that is not translated into

protein.

N-SCAN: Gene prediction program developed at Washington University that uses

the characteristics of multiple-sequence alignments as part of its gene-prediction

algorithm.

nucleosome: Histone-protein structures that are wrapped around DNA.

nucleotide (nt): Ribonucleotide or deoxyribonucleotide.

object: In computer science, a data structure and a set of associated subroutines that

are available for manipulating the data within the data structure.

object-oriented language: Computer language in which all or most data are stored

and manipulated via objects.

oligonucleotide (oligo): Short (e.g., less than 20 nt) sequence of nucleotides.

OMIM: “Online Mendelian Inheritance in Man.” Database of human genes and dis-

eases maintained by NCBI.

open reading frame (ORF): Section of DNA that begins with an initiation codon (gener-

ally ATG), terminates with a stop codon (TAA, TAG, and TGA), and has a minimum

length (typically around twenty codons).

orthologous genes or proteins: Homologous genes or proteins resulting from a speci-

ation event.

paired end mapping: High-resolution technology for detecting insertion and deletion

polymorphisms using sequencing-by-synthesis.

paired sequence alignment: Alignment of two nucleotide or amino-acid sequences.

PAML: “Phylogenetic Analysis by Maximum Likelihood.” Software package for phylo-

genetic analyses.

paralogous genes or proteins: Homologous genes or proteins resulting from a gene

or chromosomal duplication event.

parsing: Process (typically implemented by specialized computer programs) of con-

verting instructions or data written in human-readable format into a format that

can be processed by a computer.

PCR: “Polymerase Chain Reaction.” A technique for the amplification of small quan-

tities of DNA.

PECAN: Program used by Ensembl for multiple-sequence alignment.

Pfam: Database of protein structural domains.

phastCons: Computer program for estimating the extent of evolutionary conservation

among a set of genome sequences from a sequence alignment.

phenotype: Observable properties of an organism or cell.

phylogenetic tree: Tree diagram showing the relationships between species, genomes,

or parts of genomes (e.g., genes) showing their descent from a common ancestor.

physical map: Map of a chromosome in terms of physically identifiable biochemi-

cal landmarks, such as specific subsequences or restriction-enzyme cutting sites

(contrast with “genetic map”).

pipeline: Suite of computer programs that are executed sequentially on a set of data.
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polymorphism (sequence): Variation between two sequences taken of the same region

of the genomes of two individuals of the same species.

porting: Modifying computer programs that have been designed to operate on one

computer platform or operating system to function properly on another computer

system.

positive selection: Increase in the frequency of a genetic variant over evolutionary

time as a result of its enhancing the fitness of the organism.

post-transcriptional processing: Refers to all of the RNA modifications – such as

splicing, polyadenylation, RNA-editing, and so on – that are performed by the cell

on an RNA after it is transcribed.

pragma: Single-line directive to a computer compiler or interpreter.

primary database: Database that stores a single or a small number of types of

data.

primer (sequence): Short section of single-stranded DNA that can hybridize with

a nucleic acid substrate and is required for the initiation of certain enzymatic

reactions, such as PCR and reverse transcription.

programmed batch querying (or programmed querying): Batch database querying

and data post-processing carried out by means of a computer program.

prokaryote: Unicellular organisms lacking a cell nucleus; includes bacteria and

archaea.

promoter: Region of a gene that binds RNA polymerase and signals the initiation of

transcription.

pseudogene: Section of the genome that resembles a gene but which is either not

transcribed or whose RNA or protein product is nonfunctional. Often the remnant

of a previously functional gene.

PSIBLAST: Variant of BLAST that uses position-specific scoring matrices and that

enables one to search for sequences that are similar to a set of related sequences

rather than to only search for sequences that are similar to a single sequence.

PSL: “Pattern Space Layout.” Principal data format used by the UCSC genome database

for storing pairwise sequence alignment data.

QTL: “Quantitative trait locus.” Region of a genome for which the occurrence of any

one of a set of alleles correlates with the value of some quantitatively measurable

phenotype.

radiation hybrid map: Ordering of genetic markers along a chromosome made by

fusing irradiated donor cells with host cells from another species.

read: Raw sequence data acquired from a single data acquisition of a DNA-sequencing

instrument; currently ranges from about 30 to 1,000 nt, depending on the tech-

nology.

reading frame: One of the six possible ways of translating a DNA sequence into a

peptide sequence.

recombination hotspot: Region of a genome in which high rates of genetic recombi-

nation during meiosis have been detected.
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record: Single entry in a data structure, such as a single row in a relational database

table or a single line in data file.

reference assembly: Genome assembly of a single individual (or a single well-defined

composite) that is used to specify a reference sequence and coordinate system for

the genome.

RefSeq: Database of mRNA sequences maintained by the NCBI.

registry: Data structure with associated querying software that allows a user to

determine all the services that are provided by a computer or network sys-

tem.

relational database: Computer data-storage system in which the data is stored in

multiple tables and in which an efficient querying system for data retrieval is

implemented.

relational database management system (RDBMS): Set of computer programs control-

ling the management of, and access to, a relational database.

repeat-sequence: Genome subsequence that occurs in multiple locations throughout

the genome.

resequencing: Sequencing of a previously sequenced section of a genome in additional

individuals for the purpose of identifying sequence variations occurring within a

population.

residue: Individual unit of a biological polymer; a single amino acid in the case of

proteins, and a single nucleotide in the case of nucleic acids.

retrotransposon: Mobile genetic element whose transposition includes the reverse

transcription of an intermediate RNA molecule.

Rfam: Database of families of ncRNAs.

ribonucleotide: Monomer subunit of RNA molecule, generally identified by its asso-

ciated base of adenine (A), cytosine (C), guanine (G), or uracil (U).

ribosome: Ribonuclear-protein complex that mediates the translation of an mRNA

into a polypeptide.

RNA editing: Originally, a post-transcriptional modification of one or more nucle-

otides of an mRNA leading to the production of a modified peptide during transla-

tion. Currently, also used to describe other post-transcriptional nucleotide modifi-

cations, including those not resulting in modified peptides.

rsID: SNP ID numbering system used by the dbSNP database.

rsync: Computer utility program widely used to update, compare, and synchronize

related computer files and directories.

same-species sequence-alignment: Alignment of two (or more) sequences from the

same species (e.g., alignment of a mouse EST to the mouse genome).

Sanger sequencing: Widely used method of sequencing of DNA involving chain ter-

mination of the DNA sequence followed by electrophoresis.

scaffold: Set of contigs of DNA sequences from a chromosome with known relative

order, orientation, and spacing.

schema (database): Specification of the set of tables



304 Appendix 8

SCONE: “Sequence CONservation Evaluation.” Computer program for scoring evolu-

tionary conservation; used with TBA alignment program.

scripting language: High-level computer language that is executed directly by another

program (the “interpreter”) without needing to be initially processed by a compiler;

examples include Perl, Python, and Bash.

seed: In sequence-similarity search programs, a short region which must exactly

match between the query and target sequences.

segmental duplication: An extended region of a chromosome (generally 1,000 nt or

longer) that has an almost exact duplicate somewhere else in the genome.

sequence tagged site (STS): A unique short (typically 200 to 500 base pairs) region of

DNA within a genome with known location and sequence.

sequence trace: Output from a single “read” of a conventional DNA sequencing instru-

ment.

sequencing-by-hybridization: Class of technologies in which the sequence of a “target”

DNA is determined by its pattern of hybridization to a large number of short DNA

elements of known sequence.

sequencing-by-synthesis: Class of DNA sequencing technologies in which the DNA

sequence is determined by detecting light signals generated as nucleotides are

incorporated during DNA replication.

SINE: “Short Interspersed Nuclear Element.” Short repetitive, transposable element

found throughout eukaryotic genomes.

singly linked list: Software data structure in which a set of related data are organized

by having each piece of data include a pointer to the location of the next piece of

data in the list.

slice coordinates: Genomic coordinate system in which a feature’s coordinates are

specified in relation to the location of another, generally larger, feature (the “slice”).

snoRNA: Small RNAs typically found in the nucleolus of eukaryotes. Also found in

Cajal bodies of eukaryotes, and in archaea. See also “C/D snoRNAs” and “H/ACA

snoRNAs.”

SNP: “Single Nucleotide Polymorphism.” A variation between a DNA sequence and

the sequence of a reference sequence in which the variation consists of a single-

nucleotide difference.

splice junction: Location in the genomic sequence containing to an intron-exon

boundary.

spliced EST: EST sequence derived from a spliced RNA transcript.

spliceosome: Ribonuclear-protein complex that mediates the removal of introns from

an RNA.

splicing enhancer: Sequence or structural motif in an RNA, the presence of which

increases the likelihood of a splicing event during post-transcriptional RNA pro-

cessing.

splicing silencer: Sequence or structural motif in an RNA, the presence of which

decreases the likelihood of a splicing event during post-transcriptional RNA pro-

cessing.
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Splign: Program used by NCBI for aligning transcripts to genomic sequence.

SQL: “Sequence Query Language.” Widely used, standard programming language for

querying relational databases.

SSAHA: “Sequence Search and Alignment by Hashing Algorithm.” Fast, heuristic

sequence-alignment algorithm used by Ensembl.

start codon: Initial codon of an mRNA coding sequence that is translated by the

ribosome; nearly always AUG.

stop codon: Trinucleotide mRNA subsequence that signals the ribosome to terminate

mRNA translation; generally either UGA, UAA, or UAG.

strand: Either of the two nucleotide biopolymers that make up the DNA molecule;

the two strands are conventionally referred to as the “Watson” or “positive” strand

and the “Crick” or “negative” strand.

strand coordinates: Coordinates measured with respect to the strand on which a

feature of interest is located.

struct: General data structure used in the C programming language.

structural polymorphism: Genetic polymorphism in which the variation involves

not only a change of one or more nucleotides but also the structure of the DNA

molecule, generally via a large scale indel, inversion, or translocation.

synonymous codons: Two (or more) distinct codons that code for the same amino

acid.

syntenic: Having the same gene order along the chromosome; often used to describe

structural relatedness between chromosomes of different species.

table (database): Two-dimensional array of data; the fundamental unit of data storage

in a relational database.

Taverna: Computer scripting language and tool set designed for creating bioinfor-

matics data-processing pipelines.

TBA: See “threaded blockset aligner.”

tagged SNP: SNP that is generally inherited together as a set of other polymorphisms

and is used as a marker to indicate whether the entire set of polymorphisms has

been inherited.

telomere: End of a linear chromosome; often characterized by a specific repetitive

DNA sequence.

threaded blockset aligner (TBA): Genomic mutiple-sequence alignment program used

by UCSC.

tiling array: DNA micro-array in which the micro-array probes are designed to

hybridize with each region of a genome or chromosome in a well-specified and,

generally, high-resolution manner.

top-level coordinates: Coordinates derived from (the positive strand of) the longest

contiguous pieces in the assembly.

track (browser): Means of depicting a genomic property in a genome browser in which

the annotation consists of a series of line segments along a chromosome, which

indicate the sections of the chromosome that possess the property.

transition (mutation): Mutation involving a change between A ↔ G or T ↔ C.



306 Appendix 8

transcript: RNA product of transcription by means of RNA polymerase.

transcription: Copying of a section of chromosomal DNA into RNA by the enzyme,

RNA polymerase.

transcriptional enhancer: DNA sequence or structural motif that increases the likeli-

hood of a genomic region being transcribed.

translation: Synthesis of a sequence of amino acids by the ribosome from an mRNA

coding sequence.

translocation (chromosomal): Chromosomal alteration in which a piece of a chromo-

some is moved to a new location either on the same chromosome or on another

chromosome.

transposase: Enzyme (or enzyme complex) involved in the movement of DNA sequence

elements between different parts of the genome.

transversion (mutation): Any mutation other than a transition.

tRNA: “transfer RNA.” One of a family of RNA molecules that are used by the cell in

conjunction with the ribosome in the translation of mRNA to protein.

UTR: “Untranslated Region.” Section of spliced mRNA that is not translated by the

ribosome into protein.

vector (in molecular biology): Section of DNA – typically of bacterial, viral, plasmid,

or yeast origin – used for the maintenance, amplification, or transfer of genetic

material of another species.

Vertebrate Genome Annotation Project (VEGA): Project for the identification of ver-

tebrate genes by the manual curation of alignments of experimentally confirmed

transcripts to the genome.

VISTA: Web site providing access to tools for multiple genomic-sequence alignment.

web service: Software system designed to facilitate communication between machines

over the Internet; in particular, a system by which a “client” program on one

machine can execute a “service” (i.e., another program) on a remote machine.

whole genome shotgun assembly (WGSA): Strategy for genome sequence assembly in

which individual sequence “reads” are directly linked together without creating a

genomic map prior to building the sequence scaffold.

WIG: Data format used by UCSC for numerical annotations that vary along the

genome, such as local GC% or multiple-species sequence-conservation scores.

xeno sequence-alignment: Alignment of two (or more) sequences from different

species, for example, alignment of a mouse EST to the human genome; cf. same-

species alignment.

XML: “Extensible Markup Language.” Computer language developed to facilitate the

transfer of machine-readable data between computers with differing operating

systems and hardware over the Internet.

yeast two-hybrid system: Experimental system for identifying proteins that interact

with one another.
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UCSC Genome Browser (cont.)
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