

Computational Text
Analysis for Functional
Genomics and
Bioinformatics

This page intentionally left blank

Computational Text
Analysis for Functional
Genomics and
Bioinformatics

Soumya Raychaudhuri

1

3
Great Clarendon Street, Oxford ox2 6dp

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,

and education by publishing worldwide in

Oxford New York

Auckland Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi

New Delhi Shanghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan Poland Portugal Singapore
South Korea Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trade mark of Oxford University Press
in the UK and in certain other countries

Published in the United States
by Oxford University Press Inc., New York

� Oxford University Press, 2006

The moral rights of the author have been asserted

Database right Oxford University Press (maker)

First published 2006

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,

without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate

reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,

Oxford University Press, at the address above

You must not circulate this book in any other binding or cover
and you must impose the same condition on any acquirer

British Library Cataloguing in Publication Data
Data available

Library of Congress Cataloging in Publication Data
Data available

Typeset by SPI Publisher Services, Pondicherry, India
Printed in Great Britain
on acid-free paper by

Biddles Ltd., King’s Lynn Norfolk

ISBN 0-19-856740-5 978- 0-19-8567400
ISBN 0-19-856741-3 (Pbk.) 978-0-19-8567417 (Pbk.)

1 3 5 7 9 10 8 6 4 2

Dedicated to my grandfather and role model
Professor Sahadeb Banerjee (4/1/914–4/20/2005)

This page intentionally left blank

Preface

This book is an introduction to the newly emerging field of textual analysis
in genomics. It presents some of the newest methods, and demonstrates
applications to proteomics, sequence analysis, and gene expression data.
My personal interest in this field began early during my graduate school

years as these methods were rapidly emerging.My colleagues were excitedly
utilizing new high throughput technologies in biologywithwhich they could
collect data at unprecedented rates. Gene expression arrays, for example,
offered the opportunity to simultaneously explore expression of all genes in
a cell. However, many were hitting the same roadblocks; making sense of all
of that data was tedious and frustrating. Even differentiating signal from
noise was a challenge; certainly finding subtle patterns in the data proved to
be much more difficult than anyone expected. A host of statistical methods
were emerging to analyze the numerical data, but yet they lacked the
necessary context to fully harness the power of these complex experimental
results. The difficulty is that complete interpretation requires understanding
all of the large number of genes, their complex functions, and interactions.
But, just keeping up with the literature on a single gene can be a challenge
itself, and for thousands of genes it is simply impossible! At that time I
became interested in the promise of statistical natural language processing
algorithms, and their potential in biology. These methods often are the only
reasonable way to include the literature on thousands of genes in genomics
data analysis and to give context to the data.
We describe analytical methods that utilize the scientific literature in the

context of specific experimental modalities in this book. But much of what
is discussed here can easily be generalized to most large-scale experimental
methods. For example, the expression array methods can be generalized to
any numerical data set, and the protein interaction methods can be gener-
alized to any type of interaction. In addition to devising the theory behind
the methods, we emphasize real world examples and evaluations in this
book to demonstrate how methods can be applied practically and what
performance benefit they offer.
This book can be used as a primary text in a graduate course in a

genomics or computational biology curriculum, or as an adjunct text in
an advanced computational biology course. The book has been written
with sufficient background material and the prerequisites for this book

are few. A basic understanding of probability and statistics is helpful at the
level of an introductory undergraduate course. Basic biological and bioin-
formatics concepts are reviewed to the extent that is necessary. No back-
ground in computational text analysis is necessary, but is certainly helpful.
We are hopeful that this text will encourage the reader to develop and

utilize these methods in their own work, and to maximize the potential of
large-scale biology.

viii Preface

Acknowledgements

This book was to a large extent the product of work that I started under the
guidance of Russ Altman, who has mentored me through the years. In
addition, Jeffrey Chang and Hinrich Schutze have been great influences in
these pursuits. Patrick Sutphin, Farhad Imam, Joshua Stuart, NipunMehra,
Amato Giaccia, Peter Small, and David Botstein are all colleagues that have
influenced and shaped the content of this book. It has been a pleasure
working with Alison Jones and her associates at Oxford University Press.
Sourobh Raychaudhuri, my brother, has given me feedback on specific
sections. Finally, I thank Meenakshy Chakravorty, my wife, whose critical
suggestions on this manuscript have been invaluable.

Soumya Raychaudhuri
Boston, USA, 2005

This page intentionally left blank

Contents

List of Figures xvii

List of Plates xxi

List of Tables xxiii

1 An introduction to text analysis in genomics 1

1.1 The genomics literature 2

1.2 Using text in genomics 5

1.2.1 Building databases of genetic knowledge 5

1.2.2 Analyzing experimental genomic data sets 7

1.2.3 Proposing new biological knowledge: identifying

candidate genes 8

1.3 Publicly available text resources 9

1.3.1 Electronic text 9

1.3.2 Genome resources 9

1.3.3 Gene ontology 11

1.4 The advantage of text-based methods 12

1.5 Guide to this book 13

2 Functional genomics 17

2.1 Some molecular biology 17

2.1.1 Central dogma of molecular biology 18

2.1.2 Deoxyribonucleic acid 18

2.1.3 Ribonucleic acid 20

2.1.4 Genes 22

2.1.5 Proteins 24

2.1.6 Biological function 26

2.2 Probability theory and statistics 27

2.2.1 Probability 27

2.2.2 Conditional probability 28

2.2.3 Independence 29

2.2.4 Bayes’ theorem 30

2.2.5 Probability distribution functions 31

2.2.6 Information theory 33

2.2.7 Population statistics 34

2.2.8 Measuring performance 35

2.3 Deriving and analyzing sequences 37

2.3.1 Sequencing 39

2.3.2 Homology 40

2.3.3 Sequence alignment 42

2.3.4 Pairwise sequence alignment and dynamic

programming 44

2.3.5 Linear time pairwise alignment: BLAST 47

2.3.6 Multiple sequence alignment 48

2.3.7 Comparing sequences to profiles: weight matrices 50

2.3.8 Position specific iterative BLAST 53

2.3.9 Hidden Markov models 54

2.4 Gene expression profiling 61

2.4.1 Measuring gene expression with arrays 63

2.4.2 Measuring gene expression by sequencing and

counting transcripts 64

2.4.3 Expression array analysis 65

2.4.4 Unsupervised grouping: clustering 66

2.4.5 k-means clustering 68

2.4.6 Self-organizing maps 69

2.4.7 Hierarchical clustering 70

2.4.8 Dimension reduction with principal components

analysis 72

2.4.9 Combining expression data with external

information: supervised machine learning 74

2.4.10 Nearest neighbor classification 75

2.4.11 Linear discriminant analysis 75

3 Textual profiles of genes 83

3.1 Representing documents as word vectors 84

3.2 Metrics to compare documents 86

3.3 Some words are more important for document similarity 88

3.4 Building a vocabulary: feature selection 88

3.5 Weighting words 90

3.6 Latent semantic indexing 92

3.7 Defining textual profiles for genes 94

3.8 Using text like genomics data 96

3.9 A simple strategy to assigning keywords to groups of genes 100

xii Contents

3.10 Querying genes for biological function 101

4 Using text in sequence analysis 107

4.1 SWISS-PROT records as a textual resource 109

4.2 Using sequence similarity to extend literature references 111

4.3 Assigning keywords to summarize sequences hits 112

4.4 Using textual profiles to organize sequence hits 114

4.5 Using text to help identify remote homology 114

4.6 Modifying iterative sequence similarity searches to include text 115

4.7 Evaluating PSI-BLAST modified to include text 117

4.8 Combining sequence and text together 120

5 Text-based analysis of a single series of gene expressionmeasurements 123

5.1 Pitfalls of gene expression analysis: noise 124

5.2 Phosphate metabolism: an example 126

5.3 The top fifteen genes 127

5.4 Distinguishing true positives from false positives with

a literature-based approach 129

5.5 Neighbor expression information 130

5.6 Application to phosphate metabolism data set 132

5.7 Recognizing high induction false positives with

literature-based scores 136

5.8 Recognizing low induction false positives 138

5.9 Assessing experiment quality with literature-based scoring 140

5.10 Improvements 140

5.11 Application to other assays 141

5.12 Assigning keywords that describe the broad biology

of the experiment 141

6 Analyzing groups of genes 147

6.1 Functional coherence of a group of genes 148

6.2 Overview of computational approach 152

6.3 Strategy to evaluate different algorithms 155

6.4 Word distribution divergence 157

6.5 Best article score 160

6.6 Neighbor divergence 163

6.6.1 Calculating a theoretical distribution of scores 163

Contents xiii

6.6.2 Quantifying the difference between the empirical

score distribution and the theoretical one 164

6.7 Neighbor divergence per gene 164

6.8 Corruption studies 166

6.9 Application of functional coherence scoring to screen

gene expression clusters 167

6.10 Understanding the gene group’s function 170

7 Analyzing large gene expression data sets 171

7.1 Groups of genes 172

7.2 Assigning keywords 173

7.3 Screening gene expression clusters 173

7.4 Optimizing cluster boundaries: hierarchical clustering 178

7.5 Application to other organisms besides yeast 184

7.6 Identifying and optimizing clusters in a Drosophila

development data set 189

8 Using text classification for gene function annotation 195

8.1 Functional vocabularies and gene annotation 196

8.1.1 Gene Ontology 197

8.1.2 Enzyme Commission 200

8.1.3 Kyoto Encyclopedia of Genes and Genomes 200

8.2 Text classification 202

8.3 Nearest neighbor classification 203

8.4 Naive Bayes classification 204

8.5 Maximum entropy classification 205

8.6 Feature selection: choosing the best words for classification 210

8.7 Classifying documents into functional categories 212

8.8 Comparing classifiers 213

8.9 Annotating genes 221

9 Finding gene names 227

9.1 Strategies to identify gene names 228

9.2 Recognizing gene names with a dictionary 228

9.3 Using word structure and appearance to identify gene names 232

9.4 Using syntax to eliminate gene name candidates 233

9.5 Using context as a clue about gene names 235

9.6 Morphology 237

xiv Contents

9.7 Identifying gene names and their abbreviations 237

9.8. A single unified gene name finding algorithm 240

10 Protein interaction networks 245

10.1 Genetic networks 246

10.2 Experimental assays to identify protein networks 247

10.2.1 Yeast two hybrid 247

10.2.2 Affinity precipitation 248

10.3 Predicting interactions versus verifying interactions

with scientific text 249

10.4 Networks of co-occurring genes 249

10.5 Protein interactions and gene name co-occurrence in text 250

10.6 Number of textual co-occurrences predicts likelihood

of an experimentally predicted interaction 254

10.7 Information extraction and genetic networks:

increasing specificity and identifying interaction type 259

10.8 Statistical machine learning 262

11 Conclusion 271

Index 273

Contents xv

This page intentionally left blank

List of Figures

Figure 1.1 PubMed abstracts 4

Figure 1.2 Distribution of articles as a function of the

number of genes referenced 6

Figure 1.3 Distribution of genes as a function of available

relevant articles 6

Figure 1.4 Article in MedLine format 10

Figure 2.1 Deoxyribose and ribose 19

Figure 2.2 Nucleotide bases 19

Figure 2.3 The phosphodiester bond 20

Figure 2.4 DNA base pairing 20

Figure 2.5 RNA hairpin loop 21

Figure 2.6 From gene sequence to protein 22

Figure 2.7 Basic amino acid structure 24

Figure 2.8 Hydrogen bonding in beta sheets 26

Figure 2.9 Different probability distribution functions 32

Figure 2.10 Prediction results 36

Figure 2.11 Growth of the GenBank Sequence Database 37

Figure 2.12 Edman reaction for protein sequencing 40

Figure 2.13 Using the dot plot to compare sequences 41

Figure 2.14 Example of two short aligned sequences 42

Figure 2.15 Example of a substitution matrix 44

Figure 2.16 Aligning subsequences 45

Figure 2.17 Dynamic programing score matrix 45

Figure 2.18 Tracing back during alignment with dynamic

programming 47

Figure 2.19 Multiple sequence alignment 49

Figure 2.20 Using consensus sequences to summarize multiple

alignments 50

Figure 2.21 Using a scoring matrix to score a sequence against

a multiple alignment 51

Figure 2.22 Creating a weight matrix 52

Figure 2.23 Schematic of PSI-BLAST 54

Figure 2.24 An example of a hidden Markov model 55

Figure 2.25 Example of a hidden Markov model to align sequences 57

Figure 2.26 Example of a hidden Markov model to predict

secondary structure 57

Figure 2.27 The Viterbi algorithm 58

Figure 2.28 Matrix of gene expression data 65

Figure 2.29 Self-organizing map 69

Figure 2.30 Self-organizing map of yeast gene expression data 70

Figure 2.31 Agglomerative hierarchical clustering 71

Figure 2.32 Visualization of 148-dimensional lymphoma data in

two dimensions using principal component analysis 74

Figure 2.33 Linear discriminant analysis 76

Figure 3.1 Converting document text to a word vector 85

Figure 3.2 Histogram of words as a function of document

frequency in a Drosophila corpus 89

Figure 3.3 Latent semantic indexing 93

Figure 3.4 Variance as a function of latent dimension 94

Figure 3.5 Word vector similarity between other Drosophila

genes and the breathless gene 98

Figure 3.6 Word vector similarity to breathless gene

versus sequence similarity 99

Figure 3.7 Word vector similarity to breathless gene versus gene

expression similarity 100

Figure 3.8 Keyword queries in word vector space versus LSI space 102

Figure 4.1 Swiss-Prot record for Breathless protein sequence 110

Figure 4.2 An illustration of PSI-BLAST to include textual

information 116

Figure 4.3 Using text comparison improves homology

search results 118

Figure 5.1 Histogram of phosphate–uracil experiment

expression log ratios 127

Figure 5.2 Histogram of PHO11 neighbor expression 131

Figure 5.3 Histogram of NEI scores 133

Figure 5.4 Plot of gene expression versus NEI scores 134

Figure 5.5 NEI score as a function of log gene expression ratios 134

Figure 5.6 Fraction of genes with high NEI scores as a

function of expression ratio 135

Figure 5.7 Genes with low induction 139

Figure 5.8 Keywords identified that characterize phosphate

deprivation experiments 144

Figure 6.1 Finding the key articles that link a gene group together 153

Figure 6.2 Scoring an article’s semantic content for relevance

to a gene group 154

Figure 6.3 Precision–recall plot for each of the functional

coherence scoring methods 160

xviii List of Figures

Figure 6.4 Histogram of NDPG functional coherence scores 166

Figure 6.5 Replacing functional genes with random genes

reduces NDPG scores gracefully 168

Figure 7.1 Functional coherence increases with NDPG score 182

Figure 7.2 Relationship between annotation quality and

NDPG sensitivity 188

Figure 8.1 Gene Ontology schematic 198

Figure 8.2 Chi-square testing to select features 211

Figure 8.3 Maximum entropy classifier ranks classifications 220

Figure 8.4 Confidence scores are reliable indicators of accuracy 221

Figure 8.5 Predicting gene annotation from articles 223

Figure 9.1 Histogram of synonyms per gene 231

Figure 9.2 Number of references versus number of synonyms 231

Figure 9.3 Finding abbreviations 238

Figure 10.1 Probability of n-co-occurrences in text 256

Figure 10.2 Plot of R as a function of number of co-occurrences 257

Figure 10.3 Relationship between the number of co-occurrences

in the text, the prior probability of an interaction,

and the ultimate probability of the interaction 258

Figure 10.4 Precision-recall plot for maximum entropy

classification of sentences with co-occurring genes 266

Figure 10.5 Sentences suggesting protein–protein interactions

as a function of maximum entropy confidence scores 267

List of Figures xix

This page intentionally left blank

List of Plates

(At End)

Plate 1.1 The PubMed database homepage 1

Plate 1.2 Schematic of using text analysis in genomic data analysis 1

Plate 2.1 The central dogma of biology 2

Plate 2.2 Yeast phenylalanine tRNA 2

Plate 2.3 Hydrogen bonding in alpha helices 3

Plate 2.4 Structure of triose phosphate isomerase 3

Plate 2.5 The Sanger sequencing method 4

Plate 2.6 Gene expression microarrays 4

Plate 2.7 Serial analysis of gene expression 5

Plate 2.8 K-means clustering of lymphoma data 6

Plate 2.9 Classification of lymphoma data into two classes with LDA 7

Plate 3.1 Hierarchical clustering of gene expression analysis articles 8

Plate 4.1 Breathless protein BLAST hits 9

Plate 5.1 Schematic for calculating ‘‘expression values’’ for

a keyword 9

Plate 7.1 Using NDPG to screen self-organizing map clusters 9

Plate 7.2 Correlation between Gene Ontology Group overlap

and NDPG score 10

Plate 7.3 Schematic of hierarchical clustered expression data

with subsequent cluster boundary definition 10

Plate 7.4 Top 20 yeast gene clusters in order of NDPG scores 11

Plate 7.5 Four gene expression clusters from the fly development

data set whose boundaries were defined with the

scientific literature 12

This page intentionally left blank

List of Tables

Table 1.1 Popular molecular biology journals 3

Table 1.2 Reference indices from different genomic resources 11

Table 1.3 GO annotations 13

Table 2.1 Genome size for different species 18

Table 2.2 The genetic code 23

Table 2.3 The amino acids 25

Table 2.4 Application of LDA supervised classification to

diverse tasks 78

Table 3.1 A list of some common stop words 90

Table 3.2 Keywords for the two similar genes

in Drosophila 97

Table 4.1 Keywords to describe sequence similarity hits for

breathless 113

Table 4.2 Comparing PSI-BLAST and a modified version of

PSI-BLAST that includes text 119

Table 5.1 The highest expressed genes in the PU experiments 128

Table 5.2 Neighbors of PHO11 130

Table 5.3 NEI scores for the top 15 expressed genes 136

Table 5.4 NEI scores for each of the individual experiments 136

Table 5.5 NEI scores for the top 15 expressed genes in the

first experiment 137

Table 6.1 DNA dependent ATPase genes in yeast 149

Table 6.2 Recent articles about RDH54 151

Table 6.3 A description of the functional gene groups used

to evaluate functional coherence methods 156

Table 6.4 NDPG scores for individual functional groups 167

Table 6.5 Assigning NDPG scores to experimentally obtained

gene expression clusters 169

Table 7.1 Number of Genes in Self-Organizing Map Clusters 175

Table 7.2 High scoring clusters 177

Table 7.3 Algorithm to prune gene expression dendrogram

into disjoint clusters 180

Table 7.4 Summary of literature index and GO groups for NDPG

evaluation across four organisms 186

Table 7.5 Sensitivity of NDPG in different organisms 187

Table 7.6 Fly functional clusters 191

Table 8.1 Evidence codes for Gene Ontology 199

Table 8.2 Enzyme Commission (EC) classification categories 201

Table 8.3 Maximum entropy example 207

Table 8.4 The training and testing corpus 214

Table 8.5 Classification performance of different supervised

machine learning algorithms 217

Table 8.6 Classification accuracy for different categories 219

Table 9.1 Gene synonyms for two Drosophila genes 230

Table 9.2 Summary of gene/protein name finding algorithm by

Fukuda 234

Table 9.3 Context trigger words for gene names 236

Table 9.4 Features to evaluate abbreviations 239

Table 9.5 Features to characterize the appearance of a word 242

Table 9.6 Different morphological variants for a root 242

Table 10.1 The General Repository for Interaction Datasets (GRID) 251

Table 10.2 Data about sentence and abstract co-occurrences 252

Table 10.3 Words identified by Blaschke and colleagues to identify

protein interactions 260

Table 10.4 Data for interactions predicted by sentences that

co-occur and contain patterns suggestive of

potential interactions 261

Table 10.5 Example of sentences with two gene names and their

probability of describing a protein-protein interaction 264

Table 10.6 Data for interactions predicted by sentences selected

by maximum entropy calssification 268

xxiv List of Tables

An introduction to text
analysis in genomics

The February 16th, 2001 issue of Science magazine announced the
completion of the human genome project—making the entire nucleotide
sequence of the genome available (Venter, Adams et al. 2001). For the first
time a comprehensive data set was available with nucleotide sequences
for every gene. This marked the beginning of a new era, the ‘‘genomics’’
era, where molecular biological science began a shift from the investiga-
tion of single genes towards the investigation of all genes in an organism
simultaneously.
Alongside the completion of the genome project came the introduction of

new high throughput experimental approaches such as gene expression
microarrays, rapid single nucleotide polymorphism detection, and proteo-
mics methods such as yeast two hybrid screens (Brown and Botstein 1999;
Kwok andChen 2003; Sharff and Jhoti 2003; Zhu, Bilgin et al. 2003). These
methods permitted the investigation of hundreds if not thousands of genes
simultaneously.With these high throughputmethods, the limiting step in the
study of biology began shifting from data collection to data interpretation.
To interpret traditional experimental results that addressed the function of
only a single or handful of genes, investigators needed to understand only
those few genes addressed in the study in detail and perhaps a handful of
other related genes. These investigators needed to be familiar with a com-
paratively small collection of peer-reviewed publications and prior results.
Today, new genomics experimental assays, such as gene expression micro-
arrays, are generating data for thousands of genes simultaneously. The
increasing complexity and sophistication of these methods makes them
extremely unwieldy for manual analysis since the number and diversity of
genes involved exceed the expertise of any single investigator.
The only practical solution to analyzing these types of data sets is using

computational methods that are unhindered by the volume of modern data.
Bioinformatics is a new field that emphasizes computational methods to
analyze such data sets (Lesk 2002). Bioinformatics combines the algorithms
and approaches employed in computer science and statistics to analyze,
understand, and hypothesize about the large repositories of collected bio-
logical data and knowledge.

1

However, the most critical resource of relevant information neces-
sary for genomic data interpretation is the peer-reviewed published
literature about the individual genes. While its value is without
question, incorporating it into large-scale computational analyses is chal-
lenging. Text is available in large quantities, but is often disorganized
and contradictory. In addition, accurate computation on text is a challen-
ging subject.
This book introduces automatic algorithms to access and utilize the

intractably vast sources of literature to help interpret such large data sets.
As documents become available in electronic format, and they become
necessary for genomic-scale biology, bioinformatics researchers are investi-
gating the application of natural language processing methods to mine
biological text (Yandell and Majoros 2002; Shatkay and Feldman 2003).
This is an area of growing interest—with dozens of active groups and
internationally publicized symposia. While the content of biomedical lit-
erature is undeniably valuable, it is poorly structured for computation
(compared to databases, for example). Fortunately, the field of natural
language processing has been pursuing techniques to understand and inter-
pret unstructured text (Manning and Schutze 1999). The field of text
mining and computational natural language processing is a well established
one that has made many advances and gains over the past decades. Many of
the techniques from that field can be applied directly to problems in geno-
mics. However there are many more challenges and opportunities as well,
since the challenge in bioinformatics is not just to mine the literature, but
also to utilize it to understand experimental data.

1.1 The genomics literature

The biological literature is a vast and comprehensive resource. Every
accepted facet of biological knowledge is locked in the published literature.
Investigators in genetics and genomics strive to publish their results in
reputable journals. In Table 1.1 we have listed some of the best-known
journals. Publication typically requires a thorough review by scientific peers
to assess the originality and validity of the purported results and interpret-
ation. As a result, peer-reviewed publications are a relatively reliable re-
source of information. Most papers today report experimental results on a
single gene or protein, though more and more large-scale experiments are
being reported. Increasingly, the scientific literature is becoming available
online in electronic format, raising the possibility of facile computational
analysis. PubMed abstracts are increasingly available for most biologically
relevant articles (see Plate 1.1 and Figure 1.1), while electronic publishers

2 1 : An introduction to text analysis in genomics

such as High-Wire press and PubMed Central permit access to full text
articles (Hutchinson 1998; Roberts 2001). Several of the newer journals
publish strictly online; the Public Library of Science (PLOS) and BioMed
Central are two publishers that produce open access peer-reviewed journals
online. The wide availability of papers in electronic format makes compu-
tational analysis for genomic data analysis feasible.
The quantity of available literature is vast. For example, as of January

2005 the PubMed database contains some 14 million biomedical abstracts
from over 30,000 journals published in the last 50 years. As of June
2004, SwissProt, a protein sequence database, has references to 95,654
articles from 1523 journals that are assigned to a total of 137,095
protein sequences (Boeckmann, Bairoch et al. 2003). As of June 2004,
LocusLink, a curated genomic data resource, contains references to some

Table 1.1 Popular molecular biology journals. The above is a list of some of the best-known

journals that contain articles relevant to genetics and molecular biology. Many of the articles

published in these journals are pertinent to the study of specific genes. We also list the number of

articles published by these journals in 2003 in the right column.

Journal Total Articles 2003

1 American Journal of Human Genetics 330
2 Cancer Cell 134
3 Cancer Research 1311
4 Cell 356
5 Developmental Cell 208
6 European Molecular Biology Organization Journal 653
7 Genes and Development 288
8 Genome Research 291
9 Human Molecular Genetics 390

10 Immunity 173
11 Journal of Cell Biology 457
12 Journal of Experimental medicine 493
13 Molecular Cell 325
14 Molecular Cell Biology 803
15 Nature 2408
16 Nature Cell Biology 238
17 Nature Genetics 308
18 Nature Immunology 236
19 Nature Medicine 412
20 Nature Neuroscience 264
21 Nature Structure Biology 210
22 Neuron 421
23 Plant Cell 256
24 Proceedings of the National Academy of Science USA 2955
25 Science 2377

1.1 The genomics literature 3

121,557 articles that are pertinent to 96,577 specific genes (Pruitt and
Maglott 2001).
Besides the inherent challenges of text mining, the genomics literature has

other issues thatmake computationdifficult. Tobeginwith, all documentsdo
not have equal valueby anymeans. Scientists generally regard somepapers to
be more credible and to have more value than others. As a result, most fields
haveafewextremelywell regardedpapers,whoseresultshavebeenreplicated
andarewell cited. But themajority of papers donot have similarwide regard,
and they are citedmore sparsely. Assessing the quality or reliability of a given
paper isachallenge.Manualevaluationby independent reviewers, suchas the
Facultyof 1000 (www.facultyof1000.com), is a thoroughbut tediousoption.
The quality of the journal, the number of citations, the reputation of the
author, and the credibility of the publishing institution, are all factors that
can be used as heuristics to assess the importance of a given paper.
In addition, even if the quality of a paper can be judged computationally

in an absolute sense, there is a greater difficulty in assessing the relevance of
a paper for the specific task at hand. For example if we are creating an
algorithm that automatically reads and assigns the cellular function of a
gene from a document, we must insure that the document, besides being

500

Year

N
ew

 P
ub

M
ed

 a
bs

tr
ac

ts
 (

th
ou

sa
nd

s)

1000

1500

2000

2500

3000

0

19
50

−1
95

4

19
55

−1
95

9

19
60

−1
96

4

19
65

−1
96

9

19
70

−1
97

4

19
75

−1
97

9

19
80

−1
98

4

19
85

−1
98

9

19
90

−1
99

4

19
95

−1
99

9

20
00

−2
00

4

Figure 1.1 PubMed abstracts. New PubMed abstracts added to the PubMed database are

depicted below as a function of time. The number of biological abstracts submitted has been rapidly

increasing over the last 50 years. This plot was derived from publication dates listed in PubMed

records.

4 1 : An introduction to text analysis in genomics

www.facultyof1000.com

a quality publication, is pertinent to the gene. In addition, we must be
careful to ascertain whether the document’s focus is pertinent to the
gene’s cellular function and not other aspects of the gene, such as medical
diseases that the gene has been implicated in.
The diversity of subjects addressed in the biological literature is enor-

mous. A single gene may have references that discuss the function of the
gene at a molecular level, the larger cellular system the gene is involved in,
the role the gene plays at the whole-organism level, diseases that a gene is
involved in, the structure of the protein product of a gene, or different
mutant forms of the same gene. In addition, while most articles are very
scientifically specific, others are very broad. For example, a review article
about a particular gene may focus on a broad array of subjects while
another scientific article may address a very specific aspect of the same
gene. Similarly, while many articles address individual genes, others may
be germane to large numbers of genes. Of the 121,577 LocusLink refer-
ences, 80,724 refer to only a single gene, while 217 refer to over 50 genes.
The skewed distribution of the number of genes referred to by different
articles is displayed in Figure 1.2.
An additional difficulty is that the availability and quality of literature is

very biased towards well-studied areas. For example, some genes are ex-
tremely well studied, but many have not been studied at all. If we consider
human genes, as of June 2004 there are 36,857 genes listed in the LocusLink
database, and of these genes only 22,489 have references associated with
them; so a full one-third of known genes do not have a single relevant
published paper. At the other extreme are genes such as the tumor protector
p53 gene, which has some 580 relevant articles listed in LocusLink, and
vascular endothelial growth factor, which has 277 listed. The skew in the
distribution of genes is apparent in Figure 1.3. Any text mining algorithms
that are used in the field of genomics must take into consideration the
inequities of the published literature.

1.2 Using Text in genomics

There are certainly many areas in genomics where the use of scientific text
can be invaluable. In this section we give a short description of three areas
where text mining might augment genomics analysis.

1.2.1 Building databases of genetic knowledge

One of the active areas of interest in the field is the use of text mining
strategies to scan the literature and summarize pertinent facts in a

1.2 Using Text in genomics 5

1
0

A
rt

ic
le

s

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

2 3 4 5 6 7 8

Genes referenced per article

9 10 11 12 13 14 15 >15

Figure 1.2 Distribution of articles as a function of the number of genes referenced. Here we have

plotted the distribution of articles indexed in LocusLink as a function of the number of genes that

they reference. It is a highly skewed distribution. While the vast majority of articles are specific in

subject matter and refer to only a few genes, a few refer to a large number of genes.

Articles linked per Gene

G
en

es

1−
4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

5−
9

10
−1

4

15
−1

9

20
−2

4

25
−2

9

30
−3

4

35
−3

9

40
−4

4

45
−4

9

>
49

Figure 1.3 Distribution of genes as a function of available relevant articles. Here we have plotted

the distribution of human genes listed in LocusLink as a function of the number of articles that

pertain to them. It is a highly skewed distribution. While the vast majority of genes are relatively

poorly studied genes with less than five articles, a few genes are extremely well studied with many

articles.

6 1 : An introduction to text analysis in genomics

structured format in databases or knowledge bases (Yandell and Majoros
2002; Shatkay and Feldman 2003). Genetic knowledge from the literature
is more appropriate for computation once it has been structured properly.
With the advent of genomics, online resources that contain structured
information about genes, such as gene function, gene interactions, and
protein product interactions, have become extremely valuable tools to
interpret large data sets. For example, The Gene Ontology (GO) consor-
tium and the Munich Information Center for Protein Sequences (MIPS)
provide vocabularies of function and assign genes from multiple organisms
the relevant terms (Ashburner, Ball et al. 2000; Mewes, Frishman et al.
2000). Similarly, the Database of Interacting Proteins catalogs protein
interactions (Marcotte, Xenarios et al. 2001).
However, such resources may not be comprehensive and up to date at any

given time, and it is also laborious to maintain the vocabulary and the
gene assignments. Currently, most resources are maintained and expanded
by careful manual interpretation. Text mining offers an opportunity to
create algorithms that could automatically and rapidly scan the large vol-
ume of literature, as well as new papers as they become available, and then
enter their information content into databases.
This approach has been proposed for databases of biological function

and for databases that keep track of interactions between genes (Ohta,
Yamamoto et al. 1997; Fukuda, Tamura et al. 1998; Sekimizu, Park et al.
1998; Tamames, Ouzounis et al. 1998; Blaschke, Andrade et al. 1999;
Craven and Kumlien 1999; Ng and Wong 1999; Humphreys, Demetriou
et al. 2000; Proux, Rechenmann et al. 2000; Thomas, Milward et al. 2000;
Marcotte, Xenarios et al. 2001; Ono, Hishigaki et al. 2001; Stephens,
Palakal et al. 2001; Wong 2001; Raychaudhuri, Chang et al. 2002; Donald-
son,Martin et al. 2003). This area is a challenging one, however, as effective
algorithms must be available that can (1) identify entity names, such as gene
or protein names in the literature with high accuracy, (2) recognize if a
relevant function or interaction is being described, and (3) classify the
description into one of potentially a great many functions and interactions.
All of these tasks are challenging in themselves and require high levels of
accuracy.

1.2.2 Analyzing experimental genomic data sets

Designing bioinformatics algorithms that analyze genomic data sets is a
significant problem. The challenge in writing such methods is not only in
effectively interpreting the complexity for such data sets, but also overcom-
ing the noise that is inherent in many of these experimental approaches.
One common solution to addressing the challenges of interpreting genomic
data sets is using external data from other sources to guide or verify possible

1.2 Using Text in genomics 7

analytical results. For example, if the interpretation of an experiment is
consistent with another independent experiment our confidence in that
interpretation is increased. One vast and very good source of external
information is the corpus of peer-reviewed publications.
The general approach is, given a genomics data set, to generate many

possible hypotheses that might explain the observed result. Then compare
the hypotheses to what is reported in the large body of the scientific
literature, and then to pick the hypothesis that is most consistent with
what has been reported (see Plate 1.2). In a sense this is very similar to
the normal paradigm under which scientific exploration is undertaken.
Typical interpretation of a scientific result requires the investigator to
examine prior results to pick an interpretation that is most consistent.
This general approach has been applied to gene expression data analysis
and sequence analysis with success (MacCallum, Kelley et al. 2000; Shat-
kay, Edwards et al. 2000; Chang, Raychaudhuri et al. 2001; Jenssen,
Laegreid et al. 2001; Raychaudhuri, Chang et al. 2003). In the case of
sequence analysis, alignment methods may suggest possible families of
related proteins; the validity of these families can be checked against the
scientific literature. In the case of gene expression analysis, the data may
suggest co-regulation of a cluster of genes; the possibility of co-regulation
can then be checked against the literature.

1.2.3 Proposing new biological knowledge: identifying candidate
genes

One of the great hopes of the genomic revolution is that the fruits of our
labor might transfer into medicine in the form of a better understanding of
human disease. In the investigation of particular diseases, many investiga-
tors choose to select a large set of genes, and then conduct specific genetic
studies to identify the ones that are truly involved in a particular disease.
One of the challenges to these approaches is the selection of the initial set of
genes for investigation. It is undesirable to cast too wide a net and select too
many genes, as the number of false positives will be high. On the other
hand, selecting too few genes risks losing the genes that might be most
critical to the particular disease.
Mining the biological literature can offer some insight to this problem.

Currently genes are picked by expert knowledge. Instead, text-mining
strategies can be used to identify genes that have potential associations
with the particular disease or concepts that are associated with these
genes. At the time of writing, this is a completely uninvestigated area of
research. We are hopeful that in the coming years this area will be thor-
oughly addressed.

8 1 : An introduction to text analysis in genomics

1.3 Publicly available text resources

1.3.1 Electronic text

As mentioned above, there are an increasing number of primary resources
from which the text of articles is readily available online for analysis. The
most important for text mining in genomics so far has been PubMed
(www.ncbi.nlm.nih.gov/PubMed/), a National Institute of Health funded
database of article abstracts (see Plate 1.1). Almost every biologically
significant document published in the last 50 years has its abstract available
in PubMed. The articles are in Medline format, a standardized format with
fields for the authors, abstract, and keywords, and other pertinent details
(see Figure 1.4). Included in the format are the MeSH headings; these are
keywords assigned from a hierarchical controlled vocabulary by experts
who have read the original article; these headings can be very useful in
searching for articles.
PubMed Central (www.pubmedcentral.nih.gov) is a newer database of

whole text articles (Roberts 2001). As of June 2004 the whole text of about
285,000 individual articles from 152 different journals is available without
charge. Most of the articles have been published after 1990. This is a very
exciting new initiative for genomics and text mining as it permits the
possibility that algorithms can be produced to mine other sections of an
article rather than just the abstract. Whole-text mining also offers the
possibility of accessing the valuable information that is contained in the
article figures (Liu, Jenssen et al. 2004). Hopefully, in the future initiatives
such as PubMed Central will become more comprehensive.
In addition whole text is becoming available from individual publishers

as well. Publishers such as Biomed Central (www.biomedcentral.com)
and the Public Library of Science (www.publiclibraryofscience.org) are
creating reputable journals that are published exclusively online. Other
traditional journals are now publishing articles online as well. Highwire
(www.highwire.org) press has made over 700,000 articles available from
362 journals.

1.3.2 Genome resources

Many of the publicly funded genome databases have reference indices that are
valuable for textmining.Databases such as FlyBase (flybase.bio.indiana.edu),
Wormbase (www.wormbase.org), Mouse Genome Database (MGD)
(www.informatics.jax.org/mgihome/MGD/aboutMGD.shtml), and Sacchar-
omyces Genome Database (SGD) (www.yeastgenome.org) all have indices
that link article references to genes (Cherry, Adler et al. 1998; Stein, Sternberg
et al. 2001; Blake,Richardson et al. 2002; FlyBase 2002).Most of the links are
toPubMedabstracts. These indices are usuallymanually derived andupdated,

1.3 Publicly available text resources 9

www.ncbi.nlm.nih.gov/PubMed/
www.pubmedcentral.nih.gov
www.biomedcentral.com
www.publiclibraryofscience.org
www.highwire.org
www.wormbase.org
www.informatics.jax.org/mgihome/MGD/aboutMGD.shtml
www.yeastgenome.org

so in general they are very high quality and reliable. Summary statistics for the
reference indices are presented in Table 1.2. The number of genes that have
article references and the number of article references listed in the reference
index are very dependent on how well the organism in question has been
explored. Inadditiongenomedatabasesoftenhaveother valuable information
such as keywords indicating the function of different genes, gene nucleotide
sequences, andprotein product aminoacid sequences. These reference lists are
extremely useful for most applications of textmining to genomics.

Figure 1.4 Article in MedLine format. MedLine format is the document format that PubMed

abstracts are stored in. Fields include the authors (AU), their affiliations (AD), reference number

(PMID), abstract (AB), title (TI), language (LA), information about research funding (GR), the type

of publication (PT), journal title (TA), and MeSH keyword information (MH).

10 1 : An introduction to text analysis in genomics

LocusLink (www.ncbi.nih.gov/LocusLink/) and its successor Entrez
Gene are resources that integrate genetic information from 15 different
species, ranging from viruses to mammals (Pruitt and Maglott 2001). It
too has a comprehensive reference index that associates genes with PubMed
abstracts. Its summary statistics are also presented in Table 1.2. It includes a
very large number of genes and article abstracts.
Curators of the biological data repositories, such as Swiss-Prot, often

provide links from individual data records to PubMed abstracts (Boeck-
mann, Bairoch et al. 2003). For example, a protein sequence submitted to
the Swiss-Prot database might be linked to the PubMed abstract of the
article with details about the protein. Summary statistics for the Swiss-Prot
reference index are provided in Table 1.2.
Countless other databases are available online that have reference indices

that suit their specialized need.

1.3.3 Gene ontology

Another critical resource in functional genomics is the Gene Ontology
(GO). We mention it here because of the special significance that it has
in this book (Ashburner, Ball et al. 2000). The Gene Ontology is a con-
trolled vocabulary of terms that describe gene function. The terms are
organized into three broad branches. ‘‘Molecular Function’’ terms describe

Table 1.2 Reference indices from different genomic resources. Recent statistics for six genomic

database reference indices. All have thousands of articles that refer to thousands of genes. In all

cases the mean number of gene references per article exceeds the median; this is because the

distribution is skewed with a few extreme articles referring to many genes. Similarly, the mean

number of articles linked per gene exceeds the median since there a few very well studied outlying

genes with many germane articles. Data about LocusLink and SwissProt are from June 2004. Data

about the other resources are from March 2002.

SGD MGD Flybase Wormbase LocusLink SwissProt

Organism

Yeast Mouse Fly Worm Many Protein
Sequences

Genes with article
references

5151 26,148 14,732 2289 121,577 137,095

articles 22,934 41,669 15,495 2144 96,577 95,654
Number of genes
referenced per article
median

2 1 3 4 1 1

mean 2.73 2.73 6.27 6.37 3.44 2.63
Number of article
linked per gene
median

4 1 1 2 2 1

mean 12.12 4.35 6.59 5.97 4.33 1.83

1.3 Publicly available text resources 11

www.ncbi.nih.gov/LocusLink/

the biochemical reactions that a protein catalyzes. The ‘‘Biological Process’’
terms describe the global physiologic process that a protein is involved in.
‘‘Cellular Location’’ terms describe the compartment of a cell that a protein
product is situated in. A properly annotated gene may have multiple terms
from each of these branches of Gene Ontology.
Gene Ontology literally contains thousands of terms that describe genetic

attributes ranging from very broad terms (‘‘metabolism’’) to very specific
(‘‘pyruvate kinase’’). One of the very special and valuable features of Gene
Ontology is that it is organized hierarchically. More specific functional
terms are children of more general terms. So if a gene is assigned a particu-
lar specific Gene Ontology term, it will have the function associated with
that term, and also will have the functions described by the parent terms as
well. For example the term glycolysis would be a descendent of the term
carbohydrate metabolism. All genes assigned the term glycolysis are by
default involved in carbohydrate metabolism. However, all carbohydrate
metabolism genes are not necessarily glycolysis genes. So, depending on the
current state of knowledge, annotations for a gene can be made as specific
or general as necessary.
Currently the GO consortium is annotating genes from many different

organisms with GO terms. The present state of Gene Ontology annotations
is described in Table 1.3. In Chapter 8 there is a more detailed discussion of
Gene Ontology and gene annotation.

1.4 The advantage of text-based methods

At present, text-based analytical approaches are mostly an emerging tech-
nology. Most of the methods presented in this book are in the preliminary
stages. Pilot studies have demonstrated encouraging results; wide-scale
application is still pending.
However these methods are promising. As discussed above there are

excellent and easy to access literature resources available that are ever
expanding. As we will demonstrate in the coming chapters, inclusion of
literature in genomics data analysis algorithms has in some cases already
demonstrated the discovery of novel biology! The role of text in genomics
data analysis is particularly effective in cases where the data quality is poor.
For example in expression data or yeast-2-hybrid data, the scientific text
can very effectively help in the separation of valuable biology from noise.
Inclusion of automated text analysis can offer avenues tomake sense of noisy
data.
Under all circumstances, however, inclusion of text can result in a great

speedup in the analysis of data, and hence in scientific discovery. For

12 1 : An introduction to text analysis in genomics

example, in Chapter 7 we will show an example of a gene expression data
set that took experts months to analyze manually; text-based algorithms
obtained similar results in minutes. Simple methods to summarize the
results of a sequence search algorithm using text reduces the amount of
time it may take to comprehend the significance of those similar sequences
from about an hour to minutes.
One of the goals of writing this book is to help popularize these methods

that have the potential of unraveling new biology, and at the very least will
expedite exploration greatly. In each chapter we are careful to provide
detailed evaluations of the major methods and present practical examples
when possible.

1.5 Guide to this book

The aim of this book is to introduce the interested reader to computational
strategies to include the scientific text in the analysis of genomics data. The
work presented in this book represents the state of the art in the field. Many
of the chapters address specific challenges in text mining and bioinfor-
matics, including those in gene function assignment, verifying protein–
protein interactions, gene expression analysis, and sequence analysis.
These chapters describe active research areas, and some of these chapters
introduce novel research.
The different chapters approach text at different levels of granularity.

The first chapter discusses entire corpora of documents. Chapters 3–5

Table 1.3 GO annotations. This table lists some of the organisms whose genes have been assigned

Gene Ontology terms. In the second column the source database is listed. In the third column the

total number of annotated genes is listed. In the final column the total number of article references

used to generate some of those annotations is listed.

Organism Database

Genes with
GO

annotations Article references

Saccharomyces cerevisiae SGD 6459 4849
Drosophila melanogaster FlyBase 9538 6715
Mus musculus MGI 15380 4725
Arabidopsis thaliana TAIR 31411 2536
Caenorhabditis elegans WormBase 11808 718
Rattus norvegicus RGD 4167 3143
Oryza sativa Gramene 34377 2300
Danio rerio ZFIN 4736 394
Dictyostelium discoideum DictyBase 5440 221
Candida albicans CGD 677 491

1.5 Guide to this book 13

use subgroups of text; in these chapters text from multiple documents
referring to the same gene are combined. Chapters 6–8 use article abstracts
individually. Chapters 9 and 10 looks at individual sentences and words.
Chapter 2 provides a brief review of biology and some key experimental

methods. It also reviews some of the important algorithms for the analysis
of genomics data and presents a brief review of probability and statistics. It
is intended as a primer on bioinformatics and acts as background for the
remainder of the book. In Chapter 3 we introduce a simple text represen-
tation: the word vector. We show howword vectors can be defined for genes
and how it can be a simple but useful tool in bioinformatics analysis. In
Chapter 4 we show how sequence analysis can be refined with textual
information using gene word vectors in addition to sequences. Chapter 5
focuses on gene expression analysis; we demonstrate how the scientific
literature can be used to distinguish true positives from false positives and
assess experiment quality. The methods introduced in Chapter 5 can be
applied to the results of any assay that assigns a single value to a large
number of genes. In Chapter 6 we introduce strategies to assess the extent to
which a group of genes contain related genes using only articles about those
genes. Since most genomics analyses produce groups of genes, this ap-
proach can be easily used in many types of analysis. Chapter 7 focuses on
application of the strategies introduced in Chapter 6 to analyze large gene
expression data sets in several different organisms. Chapter 8 introduces
machine learning on scientific text and demonstrates how it can be useful in
gene annotation. In Chapters 9 and 10 we talk about learning relationships
between proteins and using the text to learn biological networks between
genes and proteins. Chapter 9 introduces methods to find gene names in
text. Chapter 10 introduces methods to identify and delineate relationships
between genes and proteins in text. We discuss how well text-based
methods can be used to verify experimentally predicted interactions. We
also explore the possibility of mining the text to create networks of genes.

References

Ashburner, M., C. A. Ball, et al. (2000). ‘‘Gene Ontology: tool for the unification of
biology. The Gene Ontology Consortium.’’ Nat. Genet. 25(1): 25–9.

Blake, J. A., J. E. Richardson, et al. (2002). ‘‘The Mouse Genome Database (MGD):
the model organism database for the laboratory mouse.’’ Nucleic Acids Res. 30(1):
113–5.

Blaschke, C., M. A. Andrade, et al. (1999). ‘‘Automatic extraction of biological infor-
mation from scientific text: protein–protein interactions.’’ Proc. Int. Conf. Intell. Syst.
Mol. Biol. 2(1): 60–7.

Boeckmann, B., A. Bairoch, et al. (2003). ‘‘The SWISS-PROT protein knowledgebase
and its supplement TrEMBL in 2003.’’ Nucleic Acids Res. 31(1): 365–70.

14 1 : An introduction to text analysis in genomics

Brown, P. O. and D. Botstein (1999). ‘‘Exploring the new world of the genome with
DNA microarrays.’’ Nat. Genet. 21(1 Suppl): 33–7.

Chang, J. T., S. Raychaudhuri, et al. (2001). ‘‘Including biological literature improves
homology search.’’ Pac. Symp. Biocomput. 14(5): 374–83.

Cherry, J. M., C. Adler, et al. (1998). ‘‘SGD: Saccharomyces Genome Database.’’
Nucleic Acids Res. 26(1): 73–9.

Craven, M. and J. Kumlien (1999). ‘‘Constructing biological knowledge bases by
extracting information from text sources.’’ Proc. Int. Conf. Intell. Syst. Mol. Biol.
10(1): 77–86.

Donaldson, I., J. Martin, et al. (2003). ‘‘PreBIND and Textomy–mining the biomedical
literature for protein-protein interactions using a support vector machine.’’ BMC
Bioinformatics 4(1): 11.

FlyBase (2002). ‘‘The FlyBase database of the Drosophila genome projects and commu-
nity literature.’’ Nucleic Acids Res. 30(1): 106–8.

Fukuda, K., A. Tamura, et al. (1998). ‘‘Toward information extraction: identifying
protein names from biological papers.’’ Pac. Symp. Biocomput. 61(5): 707–18.

Humphreys, K., G. Demetriou, et al. (2000). ‘‘Two applications of information extrac-
tion to biological science journal articles: enzyme interactions and protein structures.’’
Pac. Symp. Biocomput. 6(4): 505–16.

Hutchinson, D. (1998). Medline for health professionals: how to search PubMed on the
Internet. Sacramento, New Wind.

Jenssen, T. K., A. Laegreid, et al. (2001). ‘‘A literature network of human genes for high-
throughput analysis of gene expression.’’ Nat. Genet. 28(1): 21–8.

Kwok, P. Y. and X. Chen (2003). ‘‘Detection of single nucleotide polymorphisms.’’ Curr.
Issues Mol. Biol. 5(2): 43–60.

Lesk, A. M. (2002). Introduction to Bioinformatics. Oxford, Oxford University Press.
Liu, F., T. K. Jenssen, et al. (2004). ‘‘FigSearch: a figure legend indexing and classification
system.’’ Bioinformatics. 20(16): 2880–2.

MacCallum, R. M., L. A. Kelley, et al. (2000). ‘‘SAWTED: structure assignment with
text description–enhanced detection of remote homologues with automated SWISS-
PROT annotation comparisons.’’ Bioinformatics. 16(2): 125–9.

Manning, C. M. and H. Schutze (1999). Foundations of Statistical Natural Language
Processing. Cambridge, The MIT Press.

Marcotte, E. M., I. Xenarios, et al. (2001). ‘‘Mining literature for protein–protein
interactions.’’ Bioinformatics. 17(4): 359–63.

Mewes, H. W., D. Frishman, et al. (2000). ‘‘MIPS: a database for genomes and protein
sequences.’’ Nucleic Acids Res. 28(1): 37–40.

Ng, S. K. and M. Wong (1999). ‘‘Toward Routine Automatic Pathway Discovery from
On-line Scientific Text Abstracts.’’ Genome Inform Ser Workshop Genome Inform.
10(8): 104–112.

Ohta, Y., Y. Yamamoto, et al. (1997). ‘‘Automatic construction of knowledge base from
biological papers.’’ Proc. Int. Conf. Intell. Syst. Mol. Biol. 5: 218–25.

Ono, T., H. Hishigaki, et al. (2001). ‘‘Automated extraction of information on protein–
protein interactions from the biological literature.’’ Bioinformatics. 17(2): 155–61.

Proux, D., F. Rechenmann, et al. (2000). ‘‘A pragmatic information extraction strategy
for gathering data on genetic interactions.’’ Proc. Int. Conf. Intell. Syst. Mol. Biol.
8(26): 279–85.

Pruitt, K. D. and D. R. Maglott (2001). ‘‘RefSeq and LocusLink: NCBI gene-centered
resources.’’ Nucleic Acids Res. 29(1): 137–40.

References 15

Raychaudhuri, S., J. T. Chang, et al. (2003). ‘‘The computational analysis of scientific
literature to define and recognize gene expression clusters.’’ Nucleic Acids Res.
31(15): 4553–60.

Raychaudhuri, S., J. T. Chang, et al. (2002). ‘‘Associating genes with gene ontology
codes using a maximum entropy analysis of biomedical literature.’’ Genome Res.
12(1): 203–14.

Roberts, R. J. (2001). ‘‘PubMed Central: The GenBank of the published literature.’’
Proc. Natl. Acad. Sci. USA 98(2): 381–2.

Sekimizu, T., H. S. Park, et al. (1998). ‘‘Identifying the Interaction between Genes and
Gene Products Based on Frequently Seen Verbs in Medline Abstracts.’’ Genome
Inform Ser Workshop Genome Inform. 9: 62–71.

Sharff, A. and H. Jhoti (2003). ‘‘High-throughput crystallography to enhance drug
discovery.’’ Curr. Opin. Chem. Biol. 7(3): 340–5.

Shatkay, H., S. Edwards, et al. (2000). ‘‘Genes, themes and microarrays: using informa-
tion retrieval for large-scale gene analysis.’’ Proc. Int. Conf. Intell. Syst. Mol. Biol.
8(10): 317–28.

Shatkay, H. and R. Feldman (2003). ‘‘Mining the biomedical literature in the genomic
era: an overview.’’ J. Comput. Biol. 10(6): 821–55.

Stein, L., P. Sternberg, et al. (2001). ‘‘WormBase: network access to the genome and
biology of Caenorhabditis elegans.’’ Nucleic Acids Res. 29(1): 82–6.

Stephens, M., M. Palakal, et al. (2001). ‘‘Detecting gene relations from Medline
abstracts.’’ Pac. Symp. Biocomput. 52(3): 483–95.

Tamames, J., C. Ouzounis, et al. (1998). ‘‘EUCLID: automatic classification of proteins
in functional classes by their database annotations.’’ Bioinformatics. 14(6): 542–3.

Thomas, J., D. Milward, et al. (2000). ‘‘Automatic extraction of protein interactions
from scientific abstracts.’’ Pac. Symp. Biocomput: 541–52.

Venter, J. C., M. D. Adams, et al. (2001). ‘‘The sequence of the human genome.’’ Science
291(5507): 1304–51.

Wong, L. (2001). ‘‘PIES, a protein interaction extraction system.’’ Pac. Symp. Biocom-
put. 233(1473): 520–31.

Yandell, M. D. and W. H. Majoros (2002). ‘‘Genomics and natural language process-
ing.’’ Nat. Rev. Genet. 3(8): 601–10.

Zhu, H., M. Bilgin, et al. (2003). ‘‘Proteomics.’’ Ann. Rev. Biochem. 72: 783–812.

16 1 : An introduction to text analysis in genomics

Functional genomics

The overarching purpose of this chapter is to introduce the reader to some
of the essential elements of biology, genomics, and bioinformatics. It is
by no means a comprehensive description of these fields, but rather the
bare minimum that will be necessary to understand the remainder of
the book.
In the first section we introduce the primary biological molecules: nucleic

acids and proteins. We discuss genetic information flow in living beings and
how genetic material in DNA is translated into functional proteins. In the
second section we present a short primer on probability theory; we review
some of the basic concepts. In the third section we describe how biological
sequences are obtained and the common strategies employed to analyze
them. In the fourth section, we describe the methods used to collect high
throughput gene expression data. We also review the popular methods used
to analyze gene expression data.
There are many other important areas of functional genomics that we do

not address at all in this chapter. New experimental and analytical methods
are constantly emerging. For the sake of brevity we focused our discussion
on the areas that are most applicable to the remainder of the book. But, we
note that many of the analytical methods presented here can be applied
widely and without great difficulty to other data types than the ones they
have been presented with.

2.1 Some molecular biology

Here we present a focused review of molecular biology designed to give the
reader a sufficient background to comprehend the remainder of the book.
A thorough discussion is beyond the scope of this book and the interested
reader is referred to other textbooks (Alberts, Bray et al. 1994; Stryer 1995;
Nelson, Lehninger et al. 2000).

2

2.1.1 Central dogma of molecular biology

The central dogma of molecular biology is a paradigm of information flow
in living organisms (see Plate 2.1). Information is stored in the genomic
deoxyriboculeic acid (DNA). DNA polymerase, a protein that synthesizes
DNA, can replicate DNA so that it can be passed on to progeny after cell
division. During transcription, RNA polymerase, a protein that synthesizes
RNA, uses the information from genes contained in the DNA sequence to
produce messenger ribonucleic acid (mRNA). During translation, the ribo-
somal complex then uses mRNA as a template to synthesize proteins.
Proteins are involved in most biological processes and have a wide range
of functions, including enzymatic activity, transport, storage, and providing
structural integrity to a cell. In general it is the presence and activity of the
proteins that make a given cell unique and that permit a cell to react to
physiological circumstances or stresses.

2.1.2 Deoxyribonucleic acid

Deoxyribonucleic acid (DNA) molecules are the building blocks of life.
They contain the genetic material that is passed on through generations of
a species; they contain the blueprints for all of the proteins in an organism.
DNA is a long threadlike molecule composed by a linear chain of deoxyr-
ibonucleotide bases. There is great variability in the amount of DNA in the
genomes of different organisms (see Table 2.1).
DNA is composed of deoxyribonucleotides, which is constituted from a

deoxyribose, a sugar moiety, one or more phosphate groups, and a nucle-
otide base (see Figure 2.1). Deoxyribose is similar to the sugar ribose,
except it is lacking an oxygen molecule at the 2’ carbon. There are four
possible nucleotide bases that can be employed in DNA: adenosine (A) and
guanine (G) are purine bases, while cytosine (C) and thymine (T) are
pyrimidine bases (see Figure 2.2).

Table 2.1 Genome size for different species.

Organism Description Bases Genes

Epstein barr virus Virus 170,000 80
Mycobacterium tuberculosis Bacteria 4,400,000 3959
E. Coli Bacteria 4,600,000 4377
Plasmodium falciparum Malaria parasite 23,000,000 5268
Drosophila melanogaster Fruit Fly 123,000,000 13,472
Humans 3,000,000,000 30,000

18 2 : Functional genomics

Deoxyribonucleotides can be linked together through their phosphate
groups to form DNA polymer chains as depicted in Figure 2.3. The invariant
DNAbackbone consists of the deoxyribose sugar and phosphate groups in an
alternating repetitive fashion. The bases, however, are the variable element in
DNA. The information contained in DNA is encoded within the sequence of
bases.Conventionally,DNAsequencesarewrittentoindicatethebases inorder
from the 5’ carbon end to the 3’ carbon endwith the letters A, C, T, andG.

PO4

OH

OH

O O

Deoxyribose Ribose

HOCH2 OHHOCH2

PO4A,C,T, or G A,C,T, or U

H
H

H
OH OH

HH

Figure 2.1 Deoxyribose and ribose. Deoxyribose and ribose are sugar moieties that are the key

structural component of DNA and RNA bases respectively. In this figure the chemical structures of

these sugars are illustrated. Phosphate groups and bases bind the sugar moieties at the indicated

position to form deoxyribonucleotides and ribonucleotides.

NH2

N

N N

H

Adenosine Guanine

CytosineUracilThymine

N

N

C
CC

C
C

O

N

NH

H2N

H

H

N

H

H

H

H

CH3N
C

C

CC

O

O
N

H

H

H

HN
C

C

CC

O

O
N

H

H

HN
C

C

CC

NH2

O
N

H
C C

C
C

C

Figure 2.2 Nucleotide bases. The nucleotide bases are depicted here. The purines are illustrated

above; they are adenosine and guanine, while the pyrimidines are depicted below; they are thymine,

uracil, and cytosine. Adenosine can hydrogen bond with thymine or uracil. Guanine and cytosine

can hydrogen bond as well. Adenosine, guanine, thymine, and cytosine are commonly found in

DNA. In RNA, uracil is found instead of thymine.

2.1 Some molecular biology 19

The native three-dimensional structure of DNA is a double stranded helix
about20angstroms indiameter, inwhichthebases frombothhelicesare in the
interiorof thehelix,andthebackbone isontheexterior.ThestructureofDNA
is contingent on pairing between the bases. Through hydrogen bonding,
adenosine is able to pair with thiamine, and guanine can pair with cytosine.
But, the pairings are in the opposite direction. Consequently DNA exists as
two chains complementing each other running antiparallel (see Figure 2.4).

2.1.3 Ribonucleic acid

Ribonucleic acid (RNA) is similar to DNA in that it is a nucleic acid
polymer. However, instead of deoxyribonucleotides, RNA is composed of

H

PO2

PO2

OCH2

OCH2

O
5�

3�

O

O

O
H

H
H

H
H

Base

Base Figure 2.3 The phosphodiester bond. The

phosphodiester bond links nucleotides together.

Depicted here are two nucleotides in a DNA

polymer. The 5’ nucleotide is at the top, and the

3’ nucleotide is at the bottom. The phosphate

group from the 3’ nucleotide binds the 3’ carbon
of the 5’ nucleotide to form the phosphodiester

bond. DNAmolecules are composed of millions

of bases strung together in this fashion.

−

−

−

−

Figure 2.4 DNAbase pairing. DNA pairs with

its reverse-complement strand in an anti-parallel

fashion. So a DNA strand that runs from 5’ to 3’
will pair with a strand oriented in the opposite

direction. For hydrogen bonding to be satisfied A

and T nucleotides must line up, as must G and C

nucleotides. The two strands wrap together and

form a double helix where the nucleotides are on

the interior and the phosphate backbone is on the

exterior.

20 2 : Functional genomics

ribonucleotides; the key difference is that ribose serves as the sugar moiety
instead (see Figure 2.1). RNA has a ribose and phosphate backbone. The
bases are the same except for thiamine; it is substituted by uracil (U) as a
pyrimidine base pair. Uracil has similar hydrogen bonding properties to
thymine and can also pair with adenosine. Since the RNA bases are similar
to DNA bases, RNA can hybridize to DNA. Unlike DNA, RNA is rarely
found in double stranded forms and can be found having many different
complex structures (see Plate 2.2); it can fold back on itself and self-
hybridize, creating hairpin loops (see Figure 2.5). Base pairing is sometimes
imperfect in RNA.
RNA polymerase transcribes a DNA sequence into RNA by using DNA

as a template during RNA synthesis. The DNA templates have special short
sequences called promoter sites that indicate locations on the DNA strand
that RNA polymerase can bind and start transcription. RNA polymerase
synthesizes RNA in the 5’ to 3’ direction by using DNA as a base pair
template; the bases of the synthesized RNA are the reverse complement of
the template DNA strand. Consequently RNA bases match those of the
reverse complement strand of the DNA template perfectly, except that
thymine bases are replaced by uracil.
Functionally there are three major categories of RNA. Ribosomal RNAs,

or rRNA, are structural components of the ribosomal complex and are
involved in protein synthesis. Transfer RNAs, or tRNA, are small molecules
consisting of 70–90 base pairs that have a characteristic three-dimensional
structure (see plate 2.2) (Shi andMoore 2000). They carry individual amino
acids that are polymerized during protein synthesis. Finally, messenger
RNA, mRNA, is the carrier of genetic information from DNA and acts as
a template for protein synthesis.
After synthesis, mRNA may be modified. In eukaryotes a cap sequence is

added on the 5’ end, and after cleaving extraneous nucleotides at the 3’ end,
a long poly-A tail consisting of about 250 adenosine nucleotides is added. In
addition regions of mRNA called introns are spliced out, leaving other
regions known as exons that will be translated into proteins (see Figure
2.6).
The mRNA sequence can then be used for protein synthesis. Each series

of three nucleotides in the mRNA is called a codon. Each codon corres-
ponds to either a specific amino acid, a signal to start translation, or stop.

Figure 2.5 RNA hairpin loop. Here we

illustrate a hypothetical mRNA hairpin loop.

The mRNA literally folds in on itself and self-

hybridizes. In the process a tight loop is formed.

A A

G

G

G

AGCCAU

U G G C U

U

2.1 Some molecular biology 21

The genetic code specifies the corresponding amino acid for each codon (see
Table 2.2). Codons are recognized by specific tRNA molecules that carry
the appropriate amino acid that corresponds to the codon in the genetic
code. Those amino acids are bound together to synthesize a polypeptide.

2.1.4 Genes

Genes are the functional and physical units of heredity that are passed from
parent to offspring. In the modern era genes are increasingly thought of as a
segment of DNA sequence that corresponds to a particular protein. Clas-
sically, scientists have studied genes by observing phenotypes, or observable
traits, in organisms and how they were transmitted to their offspring. The
observable traits are accounted for by gene sequence variations. At the
molecular level, these variations usually confer differences in the protein
product’s structure or production.
Gene sequences have complex structures including a promoter region

where the RNA transcription machinery binds, a transcription initiation

Protein

Messenger RNA

Primary Transcript

Gene

Promoter Exon 1

Transcription
Start

Translation
Start

Poly-A
Signal

Translation
Stop

Transcription
Stop

Introns

Exon 2 Exon 3

Translation

Splicing

Transcription

AAA...AAAA59 cap

Figure 2.6 From gene sequence to protein. The gene is physically embedded in the genomic DNA

sequence. The lowest bar represents the DNA gene sequence. Black and grey boxes indicate specific

sequences in the gene with functional significance. Genes have promoter sites that bind the

transcription machinery. DNA transcription starts at the transcription start site and extends to the

transcription stop site. A primary transcript, which is the precursor to mRNA, is produced. A 5’ cap
is appended. The transcript is cleaved at the poly-A signal site and a poly-A tail is appended. Introns

are cut out of the transcript, and the messenger RNA is produced. The messenger RNA consists of

the 5’ and 3’ untranslated regions, the exons, and the appended poly-A tail and 5’ cap. The mRNA is

then translated into protein. Translation occurs between the translation start and stop sites.

22 2 : Functional genomics

site where RNA synthesis begins, and a transcription stop site where RNA
synthesis is terminated. A translation start site indicates the position at
which protein synthesis begins; a translation stop site indicates where
protein synthesis ends. The 5’ untranslated region is between the transcrip-
tion initiation site but before the translation start site; it codes DNA that
will become part of the RNA transcript, but will not affect protein synthe-
sis. Similarly the 3’ untranslated region is after the translation stop site but
before the transcription stop site. Eukaryotic genes have a polyadenylation
signal which specifies the position at which the mRNA is cleaved and a
poly-A tail is appended. Eukaryotic genes also have introns that are spliced
out of transcript before protein translation occurs. Figure 2.6 provides a
schematic of a gene structure.
Gene expression, or mRNA transcription, is partially regulated locally at

the promoter regions of a gene. Promoter regions are located upstream of
the transcribed region of a gene on the same DNA strand. They bind
transcription factor proteins that give RNA polymerase access to the gene
and permit RNA transcription. These sequences can bind other activating
and repressing proteins that affect gene expression depending on the phy-
siologic condition that the cell is in. Enhancers are other distant regulatory

Table 2.2 The genetic code. Here we list each of the 64 possible codons. Each codon is three

nucleotides in the messenger RNA or DNA. Each codon corresponds to a particular amino acid. For

example TTT corresponds to phenylalanine and GTT corresponds to valine. Note that some

codons specifically indicate the end of the protein. Many amino acids have multiple codons and the

third position in the codon is usually the most degenrate.

Position 2

Position 1 T C A G Position 3

Phe Ser Tyr Cys T
T Phe Ser Tyr Cys C

Leu Ser END END A
Leu Ser END Trp G
Leu Pro His Arg T

C Leu Pro His Arg C
Leu Pro Gln Arg A
Leu Pro Gln Arg G
Ile Thr Asn Ser T

A Ile Thr Asn Ser C
Ile Thr Lys Arg A
Met Thr Lys Arg G
Val Ala Asp Gly T

G Val Ala Asp Gly C
Val Ala Glu Gly A
Val Ala Glu Gly G

2.1 Some molecular biology 23

sequences found in eukaryotes that can be located thousands of base pairs
away from the gene and can be located on either DNA strand. Stimulatory
proteins can bind enhancers and affect the expression of distant genes.

2.1.5 Proteins

Proteins are the workhorses of an organism. They are intimately involved in
all biological processes. Enzymes catalyze biological reactions, including
those that are involved in metabolism and catabolism. Transport proteins
facilitate the movement of small and large molecules through membranes.
Transcription factors are special proteins that regulate the production of
mRNA for specific genes. Chaperones help other proteins fold into the right
shape. Polymerase proteins facilitate DNA replication, and RNA synthesis.
Structural proteins give cells shape and stability.
Proteins are linear chains of amino acids. An amino acid is composed on a

central carbon atom attached to an amino group, a carboxyl group, and a
distinctive side chain (see Figure 2.7a). There are 20 different amino acids,
each with unique biochemical properties (see Table 2.3). They are linked
together by a strong peptide bond between the amide and carboxyl groups
of the amino acids (see Figure 2.7b). Amino acid sequences are written from
the amino (N) to the carboxyl (C) end. Since some amino acids are more
similar to each other than others, it has been observed when comparing
similar but evolutionarily related proteins that certain pairs of amino acids
are statistically more likely to substitute for each other.

O(a)

(b)
O

C

C C C C

C

H

H O H

N

H

R

R R

OH

OH

NH2

NH2

Figure 2.7 (a). Basic amino acid structure. The basic amino acid structure is indicated above.

Each amino acid has a central carbon. It is attached to a hydrogen atom, a carboxyl (COOH) group,

and an amino group. It is also attached to a variable R group. There are 20 different possibilities for

the R groups, each resulting in a different amino acid with different biochemical properties. (b) The

peptide bond. This is a schematic illustration of the peptide bond. A hydrogen atom from the amino

group of one amino acid and a hydroxyl group from the other amino acid are removed for a net loss

of a single water molecule. The nitrogen from the amino group and the carbon from the carboxyl

group are bound together. This process is repeated many times for polypeptides. The C-terminal end

of this short dipeptide is on the left; there is a free carboxyl group. The N-terminal end of this

peptide is on the right; there is a free amino group.

24 2 : Functional genomics

The amino acid sequence of a protein, known as a protein’s primary
structure, determines the protein’s three dimensional structure and function.
Non-covalent hydrogen bonding between the amino and carboxyl groups
from different amino acids allows the linear chain to fold into structures
known as alpha helices and beta sheets. Beta sheets are formedwhen peptide
strands line up next to each other in either a parallel or antiparallel fashion
(Figure 2.8). On the other hand, alpha helices are formed when peptide
strands coil up; amino acids hydrogen bond to other amino acids above and
below it in the helix (Plate 2.3). These structures constitute the protein’s
secondary structure. Protein function is largely dictated by the protein’s
three-dimensional, or tertiary, structure. A ribbon diagram depicting the
backbone of a protein is displayed in Plate 2.4 (Williams, Zeelen et al.
1999).Note that thesecondarystructure isanevident feature in this structure.
Proteins are capable of forming complexes with other proteins and also

interacting transiently with them. Proteins can often bind DNA or RNA.
For example, ribosomal proteins involved in protein synthesis may bind

Table 2.3 The amino acids. We list the 20 different amino acids along with both their three- and

one-letter abbreviations. In addition we list the chemical structure of their side chain. In the final

column we list their salient chemical property.

Amino acid
3-letter
symbol

1-letter
symbol Side chain

Chemical
properties

Alanine ala A CH3--- Alipathic
Arginine arg R HN ¼ C(NH2)---NH---(CH2)3--- Basic
Asparagine asn N H2N---CO---CH2--- Acidic
Aspartic acid asp D HOOC-CH2--- Acidic
Cysteine cys C HS-CH2--- Sulfur group
Glutamine gln Q H2N---CO---(CH2)2--- Acidic
Glutamic
acid

glu E HOOC---(CH2)2--- Acidic

Glycine gly G NH2---CH2---COOH Alipathic
Histidine his H NH---CH ¼ N---CH ¼ C---CH2--- Basic
Isoleucine ile I CH3---CH2---CH(CH3)---CH(NH2)---

COO
Alipathic

Leucine leu L (CH3)2---CH---CH2--- Alipathic
Lysine lys K H2N---(CH2)4--- Basic
Methionine met M CH3---S---(CH2)2--- Sulfur group
Phenylalanine phe F Ph-CH2--- Aromatic group
Proline pro P NH---(CH2)3---CH---COOH Imino acid
Serine ser S HO---CH2--- Hydroxyl group
Threonine thr T CH3---CH(OH)--- Hydroxyl group
Tryptophan trp W Ph---NH---CH ¼ C---CH2--- Aromatic group
Tyrosine tyr Y HO---p---Ph---CH2--- Aromatic group
Valine val V (CH3)2---CH--- Alipathic

2.1 Some molecular biology 25

mRNA, whereas transcription factors that regulate gene expression would
bind specific DNA sites.

2.1.6 Biological function

One of the goals of functional genomics and its approaches is to understand
what the function of each of the genes and their protein products is. By
function, we mean what the role of the gene or protein is in an organism. To
this end, many modern high throughput functional assays are becoming
available. For example yeast-2-hybrid assays can assess what other proteins
a single protein binds to. Gene expression microarrays can indicate the

O

O
O

O

C

C

C C
C

C

C

C

C

C

C

C

C

C

O

O

H

H

N

N

N

N

H

H

R

R

H

H

H

H

R

R

R
H

R

H

H
H

N
N

H

N

H

N

R

H
O

C

O

C

O

O R

O R

C

O R H
H

N

H
H

C

O

N

H

N

H

O

C

O

C

O

C

O

C

O

C

H

R
O

C

H

N

H

N

N
N

N

H
H

H

R

N C
C

O

C
C

H R O H
H

N
N

C

H
HO

C

R

R

C
C

H
N

HO

H
H

O

C

C

H

R

C

C
C

C C
C

H

R

R

C C

C

H

N

H

N

R

H

C

R

H

C

H

R

C

H

R

C
N

R

H
H

C
N

R

H
H

(a)

(b)

Figure 2.8 Hydrogen bonding in beta sheets. (a) Parallel beta strands. The hydrogen bonding

between parallel peptide strands is depicted in this figure with dotted lines. The arrow indicates the

N to C direction of the peptide. The boxed C indicates the amino acid alpha carbon. Hydrogen

bonding is between the amino hydrogen and the carboxyl oxygen. (b) Antiparallel beta strands.

Hydrogen bonding between antiparallel beta sheets is similarly depicted.

26 2 : Functional genomics

conditions under which genes are expressed. Systemic deletion approaches
can demonstrate gene function by demonstrating functional deficiencies in
an organism when the gene is removed.
But, function is a very protean concept, and it can mean very different

things in different contexts. For example, a medical geneticist might note
that people lacking a particular copy of a specific gene are at high risk of
cancer; she may say that the function of the protein product of the gene is
‘‘tumor suppression’’. On the other hand a cell biologist may ascertain that
the protein product of the gene localizes to the nucleus; she may suggest that
the protein functions as a ‘‘nuclear protein’’. A biochemist may use sophis-
ticated assays to determine that the protein binds to DNA and may say it is
a ‘‘DNA binding’’ protein. A molecular biologist may render the gene
dysfunctional in individual cells and see that cell growth arrests, and decide
that the gene is a ‘‘cell growth’’ gene. All of these same functions could
coexist for the same gene or protein, and all are very relevant to under-
standing the role of a gene in an organism.
It is important to realize that, as we move forward in this new era of

genomics, while high throughput functional assays may give broad func-
tional information about all the genes simultaneously in an organism, the
type of functional information we learn can be quite narrow and often
ambiguous.

2.2 Probability theory and statistics

In this section we present a brief review of probability theory. Here we focus
on the basics that are necessary for this book. For many readers this will be
at a very elementary level. Other readers are encouraged to spend time to
thoroughly understand this material, as it is the cornerstone for the methods
that we will present, and indeed, for much of bioinformatics.
The content of this section is described in the frame box. This section

introduces the reader to basic concepts in probability theory, probability
distribution functions, concepts in information theory, statistical measures,
and performance measures.

2.2.1 Probability

A probability is a number between 0 and 1 that is assigned to a particular
observation or event; the value is proportional to our expectation of the
likelihood of the event occurring. We say the probability of an event is 0 if it
can never happen, and is 1 if it will always happens. The number assigned
represents the fractionof times that the event is expected to occur over a large

2.2 Probability theory and statistics 27

number of trials.We say the probability of an eventA is P(A). Frequently, we
assume that if an event A has been observed to occur n times out of a large
number ofN instances then P(A) is equal to n/N. To illustrate using a simple
example one can consider a fair coin toss. The likelihood of the coin landing
heads side up is equal to that of the coin landing tails side up. If the coin is
tossed 100 times, 50 of the observed outcomes will be heads. Thus if we
denote the heads outcome as event A, P(A) is found to be 0.5.
We speak of the probability space as the collection of all possible events

that can happen. In general the sum of all of the possible observations must
be 1; that is, no matter what, at least one of the possible observations must
be observed. In the case of the fair coin toss the probability space is
comprised of heads or tails, the two possible outcomes that could occur
for the event.

2.2.2 Conditional probability

Often, the probability of an observation depends on the occurence of other
events. Conditional probability is the probability of an event occurring in
the context of another event. For example, consider the probability that a
house has been burglarized. That probability might be increased if it is
known that a burglar has been spotted in the neighborhood. On the other
hand, that probability might be reduced if it is known that the house has an
alarm in good working order that has not been set off. So the probability of
the event is dependent on other events or other knowledge items that
influence our expectation that the event has or has not occurred. Formally
we define conditional probability as:

P(AjB) ¼ P(A‚ B)

P(B)

1) Probability theory
a) Conditional probability
b) Probabilistic independence
c) Bayes’ theorom

2) Probability distribution
functions
a) Binomial distribution
b) Poisson distribution

3) Information theory
a) Entropy of a distribution
b) Kullback–Liebler distance

4) Population statistics
a) Mean
b) Median
c) Variance
d) Z-scores

5) Performance measures
a) Accuracy
b) Sensitivity and specificity
c) Precision and recall

28 2 : Functional genomics

Here we say that the probability of event A is being conditioned on B.
P(AjB) is the probability of event A given that event B is known to have
occurred and P(A, B) is the probability that both event A and event B have
occurred. We can rearrange the equation above to read as:

P(A‚ B) ¼ P(AjB)P(B)

This is a particularly useful expression. Often times we know the probabil-
ity of an event, and the probability of a second event given the first. The
above equation allows us to convert those probabilities into a probability of
both events occurring.
We can extend the above expression in general:

P(A1‚ A2 . . .An) ¼ P(A1)P(A2jA1)P(A3jA1‚ A2)

P(A4jA1‚ A2‚ A3) . . .P(AnjA1‚ A2‚ . . . ‚ An---1)

2.2.3 Independence

We say two events are independent of each other one when the possibility of
one event occurring is not affected in any way by the other event. Formally
we define independence between two events A and B:

P(AjB) ¼ P(A)

So the probability of A is unchanged regardless of the outcome of B. For
example the probability of a coin being heads on the second flip is 1/2.
Whether the coin is heads or tails on the first flip has no influence on this.
On the other hand, the probability that an ace is the second card drawn
from a deck of cards is intimately dependent on whether or not an ace was
drawn first. If an ace was not drawn, the probability is 4/51. If it were
drawn then it is 3/51. So here, we cannot say that the probabilities of the
second draw and first draw being aces is independent. The independence
assumption can be restated after some rearrangement:

P(A‚ B) ¼ P(A)P(B)

In fact, we can extend this relationship to n independent events:

P(A1‚ A2 . . .An) ¼ P(A1)P(A2)P(A3)P(A4) . . .P(An)

This is a very useful equation if we know the probabilities of multiple events
occurring, and can assume that they are independent of one another. For
this reason, the independence assumption is often used in bioinformatics

2.2 Probability theory and statistics 29

and in text mining, even if it does not apply perfectly, as it provides easy to
compute, quick and dirty estimates of an observation. For example, the
probability of an amino acid sequence can be estimated as the multiplicative
probabilities of each of its amino acids. While this is far from accurate, it
offers a simple starting point.

2.2.4 Bayes’ theorem

Bayes’ theorem allows us calculate the conditional probability of an event
using probabilities of the conditions given the event. For example, we may
know the probability that lung cancer patients have a smoking history. We
can use that information to calculate the probability of lung cancer in
smokers. We use the definition of conditional probability:

P(AjB) ¼ P(A‚ B)

P(B)
¼ P(BjA)P(A)

P(B)

If all of the possible observations for A are Ai for all i, then we can make the
substitution:

P(B) ¼
X
i

P(Ai‚ B)

and further rearrangement gives:

P(AjB) ¼ P(BjA)P(A)P
i P(BjAi)P(Ai)

Bayes’ theorem has many practical applications in bioinformatics. It can be
used to update our probability of an event given addition knowledge. For
example, we may wish to calculate the probability of a protein sequence
having a biological function A, given that an assay B is positive.
Assume that we know the following parameters: (1) the prior probability

of the biological function A, P(A), (2) the probability of assay B being
positive if the assayed protein has function A, P(BjA), and (3) the probabil-
ity of assay B being positive if the protein does not have function A, P(Bj�AA).
We can use the above formula to determine the probability that this protein
does in fact have function A in the context of the new assay information. In
this case the formula reduces to:

P(AjB) ¼ P(BjA)P(A)
P(BjA)P(A)þ P(Bj�AA)(1� P(A))

30 2 : Functional genomics

2.2.5 Probability distribution functions

In many cases there are many possible outcomes that might occur for
a given event. In these cases we can define probability distribution functions
(pdfs). These functions can either be continuous or discrete depending on
the nature of the probability space they correspond to. They assign numer-
ical probability values to each of the possible observations. They must have
positive values for each of the possible observations. In addition the total
probability over all possible observations must be one:

X
x2x

f (x) ¼ 1

f (x) > 1 x 2 x

where x is the space of all possible observations, and f is a discrete
probability distribution function. If f is a continuous probability
distribution we require that the integral of f over the space of possible
observations is one:

ð
x2x

f (x) ¼ 1

In Figure 2.9 we have displayed some common probability distribution
functions.
As an example of a probability distribution consider the example of N

binary trials of an event that occurs with probability p. What is the prob-
ability that n of those trials is positive? The number of possible ways that n
out of N trials can be positive is

N

n

� �
¼ N!

n!(N � n)!

The probability for each of these trials is:

pn(1� p)N�n

So the probability of n out of N trials being positive is:

P(n) ¼ N

n

� �
pn(1� p)N�n

2.2 Probability theory and statistics 31

0
0

0.05

0.1

0.2

0.15

0.25

2 4 6 8 10 12 14 16 18 20

0
0

0.05

0.1

0.2

0.15

0.25

2 4 6 8 10 12 14 16 18 20

(a)

(b)

0
0

0.25

0.5

0.75

1

0.5 1.5 2.5 3.51 2 3 4

(c)

Figure 2.9 Different probability distribution functions. (a) Binomial distribution. A discrete

distribution representing the probability for n possible events, where the probability of each event is

0.15, and 20 trials are attempted. (b) Poisson distribution. A discrete distribution that approximates

the binomial distribution. (c) Exponential distribution. One example of a continuous distribution.

32 2 : Functional genomics

This discrete probability distribution function is known as the binomial
distribution (see Figure 2.9a). The Poisson distribution can be used to
approximate this distribution if Np is small:

P(n) ¼ ln

n!
e�l

where l is Np. This is illustrated in Figure 2.9(b).

2.2.6 Information theory

This book uses some of the basic concepts from information theory in
some of the chapters. The development of information theory stems from
transmitting codedmessages, but has foundwide application in many areas.
Suppose we are trying to transmit information about a sequence of events

using binary bits. To create as short a message length as possible, one might
select a code so that events that are expected to be more frequent are
transmitted with shorter sequence of bits, and rare events can utilize longer
sequences of bits. In fact, the code length that will result in the shortest
possible message length is

� log2 (pi)

where pi is the probability of the event i that is being coded. If we have
optimally coded a sequence of events that occur with probability p we can
calculate the average message length:

(d)

−3 −2 −1 0
0

0.1

0.2

0.3

0.4

1 2 3

Figure 2.9 (Continued) (d)The normal distribution. A second example of a continuous

distribution.

2.2 Probability theory and statistics 33

l ¼ �
X
i

pi log2 (pi)

The above entity is also known as the entropy of the distribution p. If p is the
uniform distribution where all circumstances have equal probability, the
entropy is the largest possible. In this case we have no cause to expect
one event more than another, and we have no prior prejudices. In this case
the entropy is maximal. The other extreme of course is if the probability of
one of the events is 1, while the probability of the other events is 0, then the
entropy of that distribution is zero. In this casewe always knowexactlywhat
the outcomewill be, and there is no reason to expect anything else. Entropy is
therefore a measure of the information contained in a distribution.
Oneway to compare two different distributions is to considerwhatwould

happen if we coded events with an incorrect theoretical distribution q, while
the actual probability of events was p. The Kullback–Liebler (KL) distance is
the average difference in the number of bits in the message and the optimal
number of bits. For a given event i this difference in message length is:

log2 (pi)� log2 (qi)

Averaged over all messages:

KL(pkq) ¼
X
i

pi(log2 (pi)� log2 (qi)) ¼
X
i

pi log2
pi
qi

� �

The KL distance is a very helpful means of quantifying the difference
between a theoretical and practical distribution.

2.2.7 Population statistics

There are several key statistical parameters that are commonly used to
describe a collection, or population, of data. The mean and the median
are measures of the central tendency of the data. The standard deviation
and variance are measures of the spread of the data. These parameters can
be calculated for a collection of data and also for a probability distribution
function.
The mean, �xx, for a collection n data points is calculated simply:

�xx ¼ 1

n

X
i

xi

where xi represents the i-th data point. The major limitation of the mean as a
measureof central tendency is that it is influencedmarkedlyby extremevalues.

34 2 : Functional genomics

So, often, the median is a more valuable measure. When the data points are
sorted in increasing order, themedian is the value that is in themiddle. Half of
the data points should be greater in value and half should be less.
For a distribution function, the mean can be calculated as well:

�xx ¼
X
xi2x

xi f (xi)

For continuous distribution functions the summation is replaced by an
integral. For a distribution function, the median is the value that half
the probability mass is less than, and half the probability mass is greater
than.
The variance, s2, can be calculated for a collection of points:

s2 ¼ 1

n

X
i

(xi � �xx)2

The variance is a measure of the spread of the data. The standard deviation,
s, is the square root of the variance. If all of the data points are centered
right at the mean, the variance is zero. As the points are spread further out,
the variance increases. For a probability distribution function:

s2 ¼
X
xi2x

f (xi)(xi � �xx)2

For a continuous distribution, the summation is replaced by an integral.
One standardized measure of the ‘‘extremeness’’ of a given data point in

the context of a collection of data is the z-score. The z-score is a measure of
the number of standard deviations that a particular value is away from the
mean. We can calculate a z-score as

z ¼ x� �xx

s

If the data are normally distributed (see Figure 2.9d), then only about 32%
of the data has z-scores greater than one or less than negative one; only
about 5% of the data has z-scores greater than two or less than negative
two.

2.2.8 Measuring performance

As a final issue we introduce some statistical measures that are commonly
used to assess the performance of algorithms. Suppose that we have an
algorithm that makes binary predictions on a collection of data. The

2.2 Probability theory and statistics 35

algorithm can make a positive or negative prediction. Some of those pre-
dictions might be true, while others might be false. The results can be
divided into true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN) – see Figure 2.10. There are a number of key
performance measures that we will use repeatedly in this book that we
will define here. Sensitivity and specificity are often used to measure the
success of machine learning methods. The sensitivity is the fraction of the
cases that the algorithm should have called positive that were correctly
called. In other words:

Sensitivity ¼ TP=(TPþ FN)

A complementary measure is the specificity. The specificity is the fraction of
the cases that the algorithm should have called negative that were correctly
called. In other words:

Specificity ¼ TN=(TNþ FP)

The most sensitive approach is to call every case as positive, while the most
specific approach is to call every case as negative. Accuracy is the fraction of
cases called correctly:

Accuracy ¼ ðTPþ TNÞ=(TPþ TNþ FPþ FN)

Truth

Positive

Positive True
Positives

False
Positives

True
Negatives

False
Negatives

Negative

Negative

P
re

di
ct

io
n

Figure 2.10 Prediction results. The results of any binary predictive algorithm can be organized as

above. The class predictions can be divided into the upper and lower rows as positive and negative

predictions. Similarly, a gold standard can be referenced and the ‘‘correct’’ answers can be obtained.

Cases can be divided up into the left and right column depending on the gold standard. We can

count the number of cases that fall into each of the four resulting categories. A good predictive

algorithm should have a high percentage of true positives and true negatives, and few false positives

and false negatives.

36 2 : Functional genomics

Another set of measures used commonly in the text mining literature is
precision and recall. These measures are very valuable when the positive
cases far exceed the negative cases. Under these circumstances a reasonably
high specificity can be deceptive. Recall is identical to sensitivity. Precision
is the fraction of positive calls that are truly positive:

Precision ¼ TP=(FPþ TP)

These key measures are often used to evaluate different predictive algo-
rithms, and will be used frequently in this book.

2.3 Deriving and analyzing sequences

High throughput sequencing technology has made sequences for genes and
proteins readily available (see Figure 2.11), and has permitted the sequen-
cing of the genomes of hundreds of different organisms. The rate at which
new nucleotide and amino acid sequences are being produced far exceeds
our ability to thoroughly experimentally investigate the genes and proteins
they derive from. While direct experimentation is the only absolute way to

1

100

10,000

1,000,000

100,000,000

T
ot

al
 s

eq
ue

nc
es

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

Year

Figure 2.11 Growth of the GenBank Sequence Database. The Genbank database has grown

dramatically over the last 20 years as sequencing technology has rapidly improved. The y-axis is

displayed in a logarithmic scale; the growth of the database appears exponential.

2.3 Deriving and analyzing sequences 37

understand the function of a gene, analysis of its sequence often provides
very good suggestive functions quickly. A host of different sequence analysis
strategies have become available, including strategies to compare sequences
to one another, to identify common features in families of similar sequences,
to identify small patterns in sequences that might indicate functionality, and
to cluster similar sequences (Durbin, Eddy et al. 2003). All of these ap-
proaches offer the opportunity to transfer knowledge from well-studied
genes to newly discovered genes once their sequences become available.
Sequence analysis is relevant to automated mining of the scientific litera-

ture in two different ways. The first is using the scientific literature to
directly enhance sequence analysis methods. Text mining methods can
provide clues about what the common function of the aligned domains is,
and can actually be used to improve alignments as well. Second, sequence
analysis can be useful in extending text about genes to other genes. Very
little is known about most genes; in most cases we are inferring knowledge
from a fewwell-studied genes. Since literature is sparsely available, effective
design of functional genomics algorithms requires strategies to make the
available literature apply to poorly studied genes. Sequence similarity is
one avenue to help us decide which genes correspond with what other
genes. If a well-studied gene is similar to a poorly studied one, there is a
good chance that they share biological properties and some of the literature
from the well-studied gene may apply to the poorly studied one as well.
The content of this section is outlined in the frame box. The first part of

this section introduces the reader to the basics of protein and nucleotide
sequencing technology. The remainder of the section focuses on sequence
analysis techniques. The reader is introduced to pairwise sequence com-
parison methods first. We describe the standard methods to score sequence
alignments, and dynamic programming methods that can be used to
find optimal sequence alignments by maximizing that alignment score. We
then describe the popular BLAST database query algorithm. The later part
of the chapter focuses on methods to analyze groups of sequences. We

1) Sequencing technology
a) Nucleotide sequencing
b) Polypeptide sequencing

2) Comparing two sequences
a) Scoring alignments
b) Dynamic programming to

optimize alignments
c) BLAST algorithm to query

sequence databases

3) Comparing multiple sequences
a)Multiple sequence alignments
b) Consensus sequences
c) Weight matrices
d) PSI-BLAST
e) Hidden Markov models

38 2 : Functional genomics

present a discussion ofmultiple sequence alignmentmethods, weightmatrices
to recognizes sequence profiles, PSI-BLAST, and hidden Markov models.

2.3.1 Sequencing

High throughput sequencing technologies have produced a wealth of data
in nucleotide sequences and amino acid sequences. High throughput DNA
sequencing has fueled the rapid growth of available sequences in GenBank
and has been the driving force for efforts such as the human genome project.
DNA is sequenced with the Sanger Dideoxy method depicted in Plate 2.5.

It is a fast and simple method that works on a single strand of DNA, and
provides the sequence of the reverse complement (Stryer 1995). The se-
quencing approach uses DNA polymerase to synthesize a complementary
sequence. For DNA synthesis to be possible, DNA polymerase must be
incubated with the DNA strand and with the four deoxyribonucletide
bases that serve as the building blocks for the complementary strand. In
addition, fluorescently tagged dideoxyribonucleotide bases are added as
well; each base is tagged with a different color. Since they lack the hydroxyl
group at the 30 carbon, the tagged dideoxyribonucleotides are chain ter-
minating nucleotides; they can be appended to the 50 end of a DNA strand,
but cannot be further extended from their 30. Once DNA polymerase
happens to use a dideoxy base instead of the normal deoxyribonucleotide
base by chance, the DNA chain becomes terminated. Since each type of
didieoxy nucleotide is tagged with a different colored fluorescent dye, the
newly synthesized DNA fragment will be tagged with a fluorescent dye the
color of which corresponds to the final base in the fragment. Different
length fragments are produced, each labeled by a specific color correspond-
ing to the last nucleotide incorporated into the sequence. At this stage the
fragments are sorted by length using a technique such as electrophoresis or
chromatography and run through a detector. The sequence of colors cor-
responds to the DNA sequence.
Shotgun assembly strategy is the preferred approach for modern genome

sequencing. Genomic DNA is decomposed into random small overlapping
fragments; the Sanger dideoxy sequencing technique is used to rapidly
sequence these fragments. Genome assembly algorithms piece together the
resulting small sequences to obtain the sequence of the original genome.
Protein sequences are determined using Edman degradation (Figure

2.12). Sequencing proceeds from the N-terminal side of the protein. Phenyl
isothiocyanate is a compound that reacts specifically with the amino group
of the N-terminal amino acid of the protein. Acidification of the protein
solution causes removal of the N-terminal amino acid bound to phenyl
isothiocyanate. The single amino acid bound to phenyl isothiocyanate
is then identified through high pressure liquid chromatography (HPLC).

2.3 Deriving and analyzing sequences 39

Removal of the N-terminal amino acid exposes a new N-terminal amino
acid. The process is then repeated on the remaining protein, to identify the
next amino acid.
Unlike DNA sequencing, protein sequencing is a relatively costly and

laborious process. In practice most protein sequences are inferred from
DNA sequences translated through the genetic code.

2.3.2 Homology

While significant amounts of protein and nucleotide sequence information
is currently available, little is known about most genes. While it is desirable
to directly study all genes experimentally, detailed experiments for each
gene in each organism is not feasible. Fortunately, genes and proteins are
often related to one another through evolution. We refer to such pairs of
genes as homologous. Genes with similar sequences are often evolutionarily
related, and have similar functions that have been conserved; therefore we
can guess the function of a gene by finding other similar genes that have
been well studied. Computational algorithms can help us assess whether
sequences are sufficiently similar to be homologous. For a more compre-
hensive discussion of this subject the reader is referred elsewhere (Durbin,
Eddy et al. 2003).
In the remainder of this section we will discuss protein sequence com-

parison and analysis; however, everything that is presented can be applied
to nucleotide sequences as well without any difficulty.
We seek to address the question of similarity between two sequences. The

most straightforward strategy to look for similarity between sequences is to
look for exact matches between subsequences. Under these circumstances
the challenge of homology searching is reduced to string matching. The first
difficulty with this strategy is that matches are rarely exact, and there are
frequently minor substitutions, insertions and deletions that have occurred

PI N c

c

c

HPLC

PI

PI

PI

N

Figure 2.12 Edman reaction for protein sequencing. Phenyl isothiocyanate (PI) is used in a

sequence of reactions known as Edman degredation to sequence proteins. Phenyl isothiocyanate

reacts and binds the N-terminal end of the protein. Acidification then causes the detachment of the

terminal amino acid, which can then be identified by high pressure liquid chromatography (HPLC).

40 2 : Functional genomics

in biology. For instance, two sequences might be related evolutionarily and
may be very similar, but chance may have deleted a five amino acid loop in
the second sequence without changing the structure or function of the
protein significantly. Additionally, since certain amino acids are relatively
similar to each other, certain particular amino acids can substitute for
others without significantly affecting the structure or function of the protein
either. These substitutions are referred to as conserved substitutions. Since
matches are rarely exact, a more flexible approach must be taken.
Historically, biologists used dot plots to manually identify regions of

similarity in two protein sequences despite insertions, deletions, and sub-
stitutions (see Figure 2.13). In a dot plot the two sequences that are being
assessed for homology are arranged in a matrix so that the first sequence is
running down the left side, while the second is running across the top. The
row of a box in the matrix corresponds to a position in the first sequence;
the column that a box is in corresponds to a position in the second
sequence. A dot is placed in each box where the amino acids or nucleotide

A

A

A

C

T

T

G

C

G

A

G

A

A

C

A C T T T G G A G A A T

Figure 2.13 Using the dot plot to compare sequences. Two similar sequences can be compared

with the dot plot. One sequence is listed across the top, with the second along the side of the matrix.

Dots are placed in the boxes where the corresponding nucleotides or amino acids are identical.

Diagonals indicate identical regions in the sequence.

2.3 Deriving and analyzing sequences 41

bases from both sequences in corresponding positions are identical. The
pattern of dots allows regions of similarity to become visually apparent.

2.3.3 Sequence alignment

Sequence alignment is the computational approach to comparing se-
quences. Alignment algorithms strive to arrange the sequences alongside
each other in a way so that they match up with each other as best as
possible. The goal of pairwise alignment is to compare two sequences to
each other according to their similarities, while multiple alignment strives
to organize a family of sequences so that their commonalities become
apparent. In Figure 2.14 we present an example of two aligned sequences.
The bars (j) between the sequences indicate identical matches, while the
colon (:) indicates functionally conserved amino acids. The dashes in the
sequences indicate that a gap was inserted in that sequence to allow it to
match up appropriately with the other sequence.
Critical to any algorithm that aligns sequences is developing a scoring

function that is proportional to the quality of the alignment that the
algorithm can optimize. Such a scoring function must reward matches
between the sequences, and penalize mismatches. Since insertions and
deletions are possible evolutionarily, alignments and scoring functions
must account for the possibility of gaps. In general, these scoring systems
are additive functions; there are positive terms for matches, and negative
terms for mismatches and gaps.
Some amino acid substitutions are more likely than others. In fact amino

acids that are physiologically similar may replace each other during evolu-
tion with relative frequency compared to dissimilar amino acids. A good
scoring function should not penalize all mismatches equally, but rather
should take into account the probability that a particular substitution has
occurred in the context of evolution. Investigators have devised substitution
matrices that assign a score to each pair of amino acids; the scores for each
pair are based on the ratio of the probability that two amino acids could

A A R Y K F I E

A P R − − F C E

2 1 6 -5.5 9 -2 4

Gap

Figure 2.14 Example of two short aligned sequences. The

bars between the sequences indicate identity at that position.

The dots between the two sequences indicate similar but not

identical amino acids. The substitution score between the amino

acids at each position is listed. Also a gap is placed in the second

sequence to optimize the alignment. The penalty score of the

gap in this example is �5:5. The total score of an alignment is

the sum of the substitution scores and the gap penalty. In this

case the score is 14.5.

42 2 : Functional genomics

have replaced each other during evolution to the probability that the same
two amino acids are observed at random in two unrelated sequences. A
larger score between two amino acids indicates the possibility that the
substitution is a functionally conserved position.
Assuming that the probability of each of the amino acids is independent,

given two aligned sequences x and y where the amino acid in the i-th
position of the alignment for sequence x is xi, the probability that an
alignment is a random occurrence can be represented as follows:

Qx‚ y ¼
Y
i

qxiqyi

where qxi is the frequency of amino acid i. We are assuming that the amino
acids at each position are entirely independent. Similarly the probability
that the alignment is a consequence of evolution can be represented as

Px‚ y ¼
Y
i

pxi‚ yi

where px
i
‚ y

i
is the probability that amino acids xi and yi are derived from an

unknown,but commonparent. The log likelihood ratio of these twomodels is:

log
Px‚ y

Qx‚ y

� �
¼
X
i

log
pxi‚ yi
qxiqyi

� �

This is an alignment score. Substitutionmatrices contain estimates of the log
term for each of the possible amino acid pairs. For each pair the approxi-
mate frequencies of amino acids are used to estimate q and the estimated
probability of a substitution between two specific amino acids in evolution-
arily related sequences is used for p. One substitution matrix, the PAM250
matrix, is depicted in Figure 2.15 (Pearson 1990). Substitution matrices are
used to score matches and mismatches during sequence alignment. The
alignment score is the sum of these matrix terms.
Gaps in alignment are used to account for possible insertions and dele-

tions during evolution. Typically gaps are penalized as a function of only
their length, and not of their content. A common form for gap penalties is
the affine gap penalty function:

g(g) ¼ d� (g� 1)«

where g is the length of the gap, d is a penalty for opening a gap, and « is a
linear penalty for extending the gap. The gap-opening penalty insures that
alignments are penalized for having an excessive number of individual gaps.

2.3 Deriving and analyzing sequences 43

That is, the algorithm is biased towards continuous gaps, and away from
multiple short discrete gaps.
In Figure 2.14 we demonstrate how we can use these concepts to

score an alignment based on the addition of substitution scores and gap
penalties.

2.3.4 Pairwise sequence alignment and dynamic programming

The dynamic programming approach can be used to find the optimal
alignment that maximizes the alignment score presented in the last section.
Dynamic programming is a general computer science term that applies to
solving and storing the solutions to smaller sub-problems in order to solve
larger problems. Needleman and Wunsh introduced this concept to se-
quence alignment (1970). The idea of dynamic programming here is to
use alignments of smaller subsequences to determine the alignment of the
larger sequence (see Figure 2.16).
Say there are two sequences x and y, where xi represents the amino acid in

sequence x at position i, and yj represents the amino acid in sequence y at
position j. Now, consider a subsequence of x consisting only of amino acids
1, . . . , i, and a subsequence of y consisting only of amino acids 1, . . . , j. We
use the term Si‚ j to indicate the score of best possible alignment of these two
subsequences in which xi and yj are aligned next to each other. Such an
alignment may have gaps prior to xi and yj positions, but may not end on a
gap. We create a matrix, S, where the Si‚ j scores will be calculated for all
positions i and j and then maintained (Figure 2.17).

A
2

−2
0
0

−2
0
0
1

−1
−1
−2
−1
−1
−4
1
1
1

−6
−3
0

A
R
N
D
C
Q
E
G
H
I
L
K
M
F
P
S
T
W
Y
V

R

6
0

−1
−4
1

−1
−3
2

−2
−3
3
0

−4
0
0

−1
2

−4
−2

N

2
2

−4
1
1
0
2

−2
−3
1

−2
−4
−1
1
0

−4
−2
−2

D

4
−5
2
3
1
1

−2
−4
0

−3
−6
−1
0
0

−7
−4
−2

C

4
−5
−5
−3
−3
−2
−6
−5
−5
−4
−3
0

−2
−8
0

−2

Q

4
2

−1
3

−2
−2
1

−1
−5
0

−1
−1
−5
−4
−2

E

0
1

−2
−3
0 0

−2
−5
−1
0
0

−7
−4
−2

4

G

5
−2
−3
−4

−3
−5
−1
1
0

−7
−5
−1

H

6
−2
−2

−2
−2
−2
0

−1
−1
−3
0

−2

5

2
−2
2
1

−2
−1
0

−5
−1
4 2

−1
−2
−2
−3
−3
2
4

−3
6

5
0

−5
−1
0
0

−3
−4
−2 2

−2
−4
−1
−2
−2
0
6

9
−5
−3
−2
0
7

−1 −1
−5
−6
0
1
6

3
1

−2
−3
−6 0

−3
−5
3

17
0

−6 −2
10

4

I L K M F P S T W Y V

Figure 2.15 Example of a substitution matrix. The PAM250 substitution matrix is displayed

above. The amino acids are listed by their single letter designation across the top and the sides of the

matrix. Scores are higher for functionally similar amino acids.

44 2 : Functional genomics

If the best scoring subsequence alignment has no gaps in the positions right
before xi or yj, then the score of this alignment should be the score of the
optimal alignment up to the positions right before i and j, plus the reward or
penalty of having amino acid xi and yj aligned against each other. That is:

Si‚ j ¼ Si�1‚ j�1 þ s(xi‚ yj)

where s(xi‚ yj) is the substitution matrix score of amino acids xi and yj.

A

A

AA

AP

AAR

APR

AARYKF

AARYKFI

AARYKFIE

APR--F

APR--FC

APR--FCE

Figure 2.16 Aligning subsequences. Here we list the smaller alignments of the two aligned

sequences in Figure 2.14. Alignments between these smaller sequences can be built up into larger

alignments in dynamic programming.

A A

A

P

R

F

C

E

2 2

3 2

9

16

11

1

−2

−4 −6 −5

−2

−7

−3

−1

−2

R Y K F I E

Figure 2.17 Dynamic programing score matrix. The above matrix shows scores for optimal

alignments for subsequences. For example, the score of the optimal alignment between ‘‘AARY’’

and ‘‘AP’’ ending with P and Yaligned is listed in the forth column and the second row; the score of

that alignment is �7. As an illustrative example in calculating alignment scores, consider the

optimal alignment between the sequences ‘‘AARYK’’ and ‘‘APRFC’’ where ‘‘K’’ and ‘‘C’’ are aligned

with each other. The score of that alignment is equal to the sum of the substitution score between

K and C (�5), one of the scores in the blackened boxes, and the appropriate gap penalty. Those

scores in the blackened boxes are optimal alignments of other possible subalignments. If there is

no gap whatsoever the corner box is used with a score of 16 and no gap penalty is added. If there is a

gap introduced in the sequence along the top, a score from the blackened column is taken and the

gap penalty is added. If a gap is introduced in the sequence along the left, a score from the

blackened row is taken and a gap penalty is added. The box from which the highest score is derived

is noted and stored. That highest possible score is entered as the optimal score.

2.3 Deriving and analyzing sequences 45

Now, instead say that in the best alignment there is a gap of length g right
before xi. Then the last position before i and j where two amino acids are
aligned is i� 1 in x and j� 1� g in y. This is because a gap of length g skips
over that many positions in sequence y. The subsequences up to these two
amino acids preceding the gap must be aligned in the best possible way. The
score of the best possible alignment between the subsequence of x up to
i� 1 and the subsequence of y up to j� 1� g is Si�1‚ j�1�g. Under these
circumstances the score of the best possible alignment up to i and j must be
Si�1‚ j�1�g, plus the substitution score between xi and yj plus the gap
penalty:

Si‚ j ¼ Si�1‚ j�1�g þ g(g)þ s(xi‚ yj)

where g(g) is a gap penalty of length g. Alternatively, if there is a gap of
length g right before yj, then similarly:

Si‚ j ¼ Si�1�g‚ j�1 þ g(g)þ s(xi‚ yj)

Now, if we are trying to calculate Si‚ j and we do not know if there is a gap in
x or y preceding the i and j position, then we can consider all of the possible
scenarios: (1) no gap, (2) gaps of any length possible in x, and (3) gaps of
any length possible in y. The correct situation is the one that derives the
largest value of Si‚ j—that is the best possible alignment of the two sub-
strings. So, since Si‚ j is the highest scoring alignment, then it has to be the
case that:

Si‚ j ¼ max
Si‚ j ¼ Si�1‚ j�1 þ s(xi‚ yj)
Si‚ j ¼ Si�1‚ j�1�g þ g(g)þ s(xi‚ yj) 1 #g < j -1
Si‚ j ¼ Si�1�g‚ j�1 þ g(g)þ s(xi‚ yj) 1 #g < i -1

8<
:

Therefore, Si‚ j can be calculated if all S1...i�1‚ j�1 and Si�1‚ 1...j�1 are known
(see Figure 2.18). Each score Si‚ j is derived from one of these prior values in
the matrix. The prior position tells us if there is a gap, how long the gap is,
and what the previous alignment is. So we maintain a pointer to the cell in S
from which Si‚ j was calculated.
Dynamic programming works by calculating each of the scores Si‚ j for

the matrix. The values in the first row and column are set to the substitution
matrix values for the amino acids they correspond to; these are just single
amino acid alignments. Then the other matrix values are calculated itera-
tively using the procedure described above (see Figure 2.17). This process is
repeated until all scores S are determined.
The score of the best alignment between sequences x and y is the highest

score in the last column or last row of matrix S. To determine the best

46 2 : Functional genomics

alignment between x and y, go to that cell in matrix S and use the pointers to
trace back the route that was taken to get there (see Figure 2.18). The
coordinates of each cell on the path indicate the amino acids in x and y that
align together. If, for instance, the path does through Sm‚ n then amino acids
xm and yn are aligned in the optimal alignment; where the pointer proceeds
in a diagonal there is no gap.
This approach gives an exact solution for the optimal alignment. The

dynamic programming approach is effective because of the additive nature
of the scoring function. The contributions of the scoring function can be
easily decomposed into individual parts.

2.3.5 Linear time pairwise alignment: BLAST

While dynamic programming provides the optimal alignment for any two
given sequences, it is poorly suited for searching databases of sequences.
Dynamic programming with affine gap penalties is extremely sensitive and
is generally regarded as the gold standard for sequence similarity. But the
difficulty is that it requires polynomial time. In its fastest implementation,
given two sequences of length n it requires a number of computations
proportional to n2 (Gotoh 1982). For large database searches against
millions of sequences, this method is often too slow.

A A R Y K F I E

A

P 1

2 2

3

9

16

4

11

11

12.5

7

6 5.5

10.5

4

1 0

5

14.5

0.5

2

R

F

C

E 0

−2

−4

−2 −1

−2 −3

−7

−2

−6

−6

−2 −4 −/5

−6.5

−5 −1

−4

−1 −4

−6

−7 −5.5

−2.5

−6 −2

−5

Figure 2.18 Tracing back during alignment with dynamic programming. To obtain the final

sequence alignment score, first the score for the entire alignment matrix is calculated. Then the

highest score in the final row or column is identified. In this case it is 14.5. Since we stored the boxes

from which each alignment score derived, we can trace back to the beginning of the sequences. As

we go, we can write out the alignment. Each box in the path indicates which amino acids in the

sequence are aligned in the final alignment. For example, in this case the score of the alignment

comes from the box in the last row and column. That box also tells us that the final position of the

alignment involves E and E being aligned to each other. Then we trace back to the prior box. There

is no gap, and we see that going backwards I and C are aligned in the final alignment. When the

trace back goes up and across a single box, no gap is introduced. When the trace back skips across

boxes, a gap is introduced.

2.3 Deriving and analyzing sequences 47

Linear time algorithms that rely on heuristics have been introduced.
These methods are considerably faster, and are well suited for querying
sequences against large databases (Pearson and Lipman 1988; Altschul,
Gish et al. 1990; Pearson 1990). They give approximate solutions, but
often the results are quite compelling, and they frequently select the most
similar sequences. The most popular of these methods is the Basic Linear
Alignment Search Tool, or BLAST; it is available for both nucleotide and
amino acid sequences (Altschul, Gish et al. 1990).
The principle behind BLAST is that if two sequences are homologous,

they will likely have short stretches, or words, that are either exact matches
or at least high scoring matches. Given a query sequence, BLAST creates a
list of ‘‘neighborhood words’’, which are short sequences of a fixed length
(3 for amino acids, 11 for nucleotides) that have a similarity score exceeding
a certain pre-selected threshold to the query sequence.
The algorithm then searches for sequences that have an exact match to

the neighborhood words in the database. Such a matching sequence is
referred to as a hit. Once a hit is obtained, BLAST attempts hit extension;
that is, it extends the alignment without gaps until the maximum possible
score is achieved. It stops extension when the score of the extension falls
below the maximum score observed during extension by a certain thresh-
old.
BLAST has become one of the most common bioinformatics tools used

by biologists worldwide. It is a standard tool used by investigators trying to
assess the function of a newly discovered gene or protein.

2.3.6 Multiple sequence alignment

While pairwise sequence comparison is an extremely powerful tool, there
are many situations in biology where a sequence has to be considered in the
context of a whole family of proteins. In general, genes and proteins come as
classes.Often, a genewill havemany known cousins that are related through
evolution or share common functionality. Under these circumstances it is
critical to be able to appreciate the common conserved features between
these sequences as they give insight as to which parts of a protein are critical
for structure and function. For example, the binding site that is conserved in
a family of related proteins across many species is likely to be conserved in a
similiar query sequence as well. Moreover, the common features may indi-
cate the defining aspects of that family of proteins; this may allow us to
predict whether newly discovered sequences belong to the family as well.
An example of multiple alignment is presented in Figure 2.19, made by

the algorithm Clustal W (Thompson, Higgins et al. 1994).
As with pairwise alignment, it is critical to have a scoring method for

multiple alignment. While making multiple alignments, one would prefer

48 2 : Functional genomics

columns in the alignment where all of the sequences have the same or
functionally conserved amino acids. One commonly employed strategy is
to use a function that is proportional to the uniformity of a column, and
then sum up the scores for each of the columns. A common scoring system
for a column is the sum of pairs scoring system. Given a column of amino
acids in a multiple alignment m, its score is the sum of all of the pairwise
substitution scores in the column:

S(m) ¼
X
i<j

s(mi‚ mj)

where i and j are indices for sequences. Here the score s is obtained by
referencing a substituion matrix, like the PAM matrix. The score of an
entire alignment can be calculated by summing all the scores for each of the
independent columns.
Similar to pairwise alignment, a gap penalty needs to be included to

weight alignments away from those that create excessive numbers of
gaps. We can use the exact same sort of penalty function used in pairwise
alignment.
Dynamic programming can be used to maximize scoring schemes like

the one introduced above. Dynamic programming is used to find optimal
multiple alignments using these scoring schemes in a similar fashion as it
is used to find pairwise alignments. The difference is that instead of a two-
dimensional scoring matrix, we need to implement an n-dimensional matrix
where each dimension represents each of the different sequences. However,
the amount of memory and time required for this approach is prohibitive for
more than a small number of sequences. The memory required is propor-
tional to nm if each sequence is of length n and there are m sequences. The
number of computations necessary is proportional to 2mnm.
Progressive alignment methods are most commonly used to obtain mul-

tiple alignments. These, and other commonly used alignment methods, are
heuristic methods. These methods work well in practice and they are often
efficient. Progressive alignments work by first using dynamic programming
to do all pairwise alignments. Then the closest two sequences are used as a
starting point, and additional sequences are added to the alignment itera-
tively until all of the sequences have been aligned.

Figure 2.19 Multiple sequence alignment. A multiple alignment between three sequences. This

alignment was generated by Clustal W.

2.3 Deriving and analyzing sequences 49

2.3.7 Comparing sequences to profiles: weight matrices

Once a multiple alignment is created, it is possible to create a profile that
represents the common features across the sequences. Such a profile can be
used to scan new sequences and to ascertain whether they may be function-
ally or evolutionarily related to the sequences that the profile represents.
The traditional approach to this problem is the consensus sequence.

Consensus sequences are short sequences, where for each position the
most common amino acids (or nucleotides) that occur are listed. In Figure
2.20 we list several observed nucleotide sequences and a corresponding
consensus sequence. This is a commonly observed eukaryotic promotor
sequence known as the CCAAT promoter (Mantovani 1998). Consensus
sequences have been effective in defining promoter regions in gene se-
quences and functional motifs in protein sequences. One of the shortcom-
ings of consensus sequences is that it accounts poorly for frequency
information. For example, a nucleotide sequence may have G in the first
position 80% of the time, and T 20% of the time. The consensus sequence
for the first position could be written as G/T; in this case the presence of
either nucleotides would be regarded as equally acceptable. This is clearly
not the case as G is more frequently observed. However, if we write only G
in the consensus sequence then we ignore all the cases with T in the first
position.

Observed sequences

Consensus sequences

1 2 3 4 5 6 7 8

C

C

C

C

C

C

C

C

C

C

A A

A

A

A

A

A

A

A

A

T

T

T

T

T

C C C

C

C

T

T

A

A

G

G

C

C

C

C

C C A A T C A/G T/C

Figure 2.20 Using consensus sequences to summarize multiple alignments. A collection of five

aligned sequences each representing a CCAAT promotor is depicted. The consensus sequence is

created by noting the most frequent amino acids at each position.

50 2 : Functional genomics

Another more sophisticated strategy is the weight matrix. It is similar to
consensus sequences in that it has information about short sequences in a
position specific manner. However, weight matrices maintain frequency
information for each position. Let us suppose we have a collection of N
sequences of length n that are known to be in the same class, C. The weight
matrix, W, is calculated from the collection of N sequences. The weight
matrix,W, has n columns, one for each sequence position, and 20 rows, one
for each amino acid. Given a new sequence of length n, we can apply
the weight matrix to obtain a score proportional to the chance that the
sequence is in class C (Figure 2.21). For each position in the new sequence
identify the amino acid. Then find the value of the weight matrix
corresponding to that amino acid at the column representing the position.
Then sum these weights to score the sequence.

Amino
Acid

A

R

N

D

C

Q

E

G

H

I

L

K

M

F

P

S

T

W

Y

V

1 2 3 4 5 6

6

3

3

2

−1

−2

APRFC E
6-2+3+2-1+3 = 11

Figure 2.21 Using a scoring matrix to score a sequence against a multiple alignment. A multiple

alignment is used to construct a weight matrix. Each box in the matrix corresponds to a position in

the alignment (column) and an amino acid (row). It contains a value that is proportional to the

likelihood that a sequence from the multiple alignment has that amino acid at that position. So a

sequence of amino acids can be scored by adding up the corresponding matrix values at each

position. The larger the score, the more likely it is similar to the multiple alignment sequences.

2.3 Deriving and analyzing sequences 51

Figure 2.22 demonstrates how the weights are obtained for a weight
matrix. For each position the probability that a particular amino acid is at
that position can be calculated:

Pa‚ i ¼ Na‚ i

N

where Pa‚ i is the probability of amino acid a in position i, N is the total
number of sequences, andNa‚ i is the number of sequences with amino acid
a in position i. Often pseudo-counts must be used to avoid extreme prob-
abilities. In this case

Pa‚ i ¼ Na‚ i þ qa
N þ 1

where qa is the background frequency of amino acid a. This assumes we
have a single extra sequence that has amino acids distributed according to
the normal background frequency of amino acids.
The values of the weight matrix can be calculated as follows

T

T

T

T

T

T

T

C

C

C

C

C

C

T

C

A

A

G

G

A

A

C

C

C

T

T

G

G

A

C

T

G

6

7 1

1

2 2

2

34

pC,2

NC,2 + qc
=

N + 1

6 + 0.25

7 + 1
= = 0.79

log2

pC,2

qc
= 1.64

A

C

T

G

1 2

−3 −3

−0.7

−3

−3

−0.7

−3−3

−3

1.9

1.6

1.1

0.2

0.2

0.2

0.7

3 4

Figure 2.22 Creating a weight matrix. This is an example of how to construct a weight matrix.

Given a collection of sequences we total up the number of each nucleotide or amino acid observed

in each position. To calculate the probability of each nucleotide or amino acid at each position we

divide the number of times a particular nucleotide is observed at a position by the total number of

sequences. Here we consider the probability of the second position having nucleotide C, p
C,2 .

Often, it is advantageous to include pseudo-counts. We assume the extra counts are proportional to

the background frequency of nucleotides, qC; in this case we assume that each nucleotide has a

background frequency of 0.25. A pseudo-count of one is used here. This avoids zero probabilities.

We divide the probability of each nucleotide at each position by the background probability of the

nucleotide. The log of that ratio is the weight matrix value.

52 2 : Functional genomics

Wa‚i ¼ log
Pa‚ i

qa

� �

Given an unknown sequence, s, of length n we can use it to calculate
the log likelihood that it belongs to the same class using the weight
matrix. If we assume that each of the positions are independent of one
another:

log
P(sjC)

P(sj � C)

� �
¼ log

Q
i

p(si‚ ijC)Q
i

q(si)

0
B@

1
CA

where P(sjC) is the probability of the sequence assuming it is in class C, and
P(sj � C) is the probability of the sequence assuming it is not in class C,
then P(si‚ijC) is the probability that the amino acid si would be at position i
in sequence s, if s was in class C. We can decompose this equation into

Xn
i¼1

log
p(si‚ ijC)
q(si)

This is the same as:

Xn
i¼1

Wsi‚ i

The log likelihood that any sequence belongs to the class C is simply the
sum of the weight matrix terms from each column that corresponds to
the amino acid in that position in the sequence.

2.3.8 Position specific iterative BLAST

Position specific iterative BLASTor (PSI-BLAST) is a more sensitive version
of BLAST that combines the speed of BLASTwith the sensitivity of weight
matrices (Altschul, Madden et al. 1997). It is depicted in Figure 2.23. It uses
principles of multiple alignment in its database search.
Given a sequence, PSI-BLAST first runs a regular BLAST search to find a

collection of similar sequences. These sequences are collected together into
an ungapped multiple alignment with the query sequence. The multiple
alignment is then used to construct a profile that is similar to the weight
matrix described in the previous section. This weight matrix has the same
number of columns as the query sequence. PSI-BLAST then uses the profile
to run BLASTagain and query the database a second time. To do this with a

2.3 Deriving and analyzing sequences 53

profile, a list of neighborhood words of a fixed length that match the profile
must be constructed. This is done by identifying words that match any
position in the weight matrix at or above a specific threshold. This process is
repeated until the algorithm converges or fails to converge after a fixed
number of iterations.
The purpose of the iterative approach is that the query sequence is part of

a larger family of homologous sequences. By iteratively searching the PSI-
BLAST database, the hope is that we are building a profile that corresponds
to the family that the query sequence is a part of, and retrieving all of the
sequences in that family in the process.
One of the difficulties with PSI-BLAST is sequence contamination. That

is if erroneous sequences are retrieved during database search, they could
corrupt the profile, and draw in other erroneous sequences. This could
potentially have the effect of causing the algorithm to converge on the
wrong sequence family or fail to converge altogether.
In general PSI-BLAST is regarded as being more sensitive then BLAST,

though it is somewhat slower.

2.3.9 Hidden Markov models

An extremely valuable sequence analysis method is the hidden Markov
model (Krogh, Brown et al. 1994). In this section we will be talking about

Sequence

Query

Weight matrix

BLAST

Sequence
database

Multiple
alignment

Figure 2.23 Schematic of PSI-BLAST. Given a sequence, PSI-BLAST operates by first running a

BLAST search. The resulting sequences are organized into a multiple alignment. This multiple

alignment is used to generate a weight matrix. The weight matrix is used in another BLAST search,

and the weight matrix is updated with the obtained sequences.

54 2 : Functional genomics

it in the context of multiple sequence alignment, but it has wide application
to many areas of sequence analysis as well as text analysis. The hidden
Markov model (HMM) is a probabilistic model that assumes that a se-
quence of observations are accounted for by hidden states. In this case our
sequence of observations are nucleotides in DNA or RNA or amino acids
observed in a protein. The idea is that the probability of a particular
observation depends only on the state of the system. An additional assump-
tion is the Markov assumption; that is the probability of the state of the
system is dependent only on the prior state of the system, and does not have
any dependence on any other previous state.
As a simple example to illustrate a hidden Markov model, consider a

sequence of coin flips. For each flip we observe tails (T) or heads (H). Now
let’s assume that the flips can be derived by either a fair coin, in which the
probability of both H or T is 0.5, or a biased coin in which the probability
of H is p and T is 1� p. Now assume that between flips the coin can be
switched with some probability. The fair coin can switch to the biased one
with probability q, while the biased coin can switch to the fair one with
probability q0. If we were to model this situation with a HMM, our hidden
state would be the coin. There are two possible states, one in which the flips
are generated by the fair coin (S1) and a second in which flips are generated
by the biased coin (S2). The probability of H or T at any given point
depends on whether S1 or S2 is the current state. This simple two-state
HMM is illustrated in Figure 2.24. The arrows indicate state transitions,

Fair coin

S1

1-q

p(H) 0.5 p(H) p

p(T) 1-pp(T) 0.5

Biased coin

1-q �q �

q

S2

Figure 2.24 An example of a hidden Markov model. This is a simple hidden Markov model with

two states. The fair coin state, S1, generates heads and tails with equal probability. That state can

transition to state S2 after each flip with probability q. The biased coin state, S2, generates heads

with probability p.

2.3 Deriving and analyzing sequences 55

and the probabilities that those transitions can occur are listed next to the
arrow.
Imagine that we have a sequence of observations, and their hidden states

are known. Consider the n-th observation. Let us assume that the state is
known to be Sn at that point and the observation On is observed. The
probability of an observation depends only on the state that it is in at the
time. So, the probability of the observation, P(OnjSn), is a parameter in
the hiddenMarkov model. The probability of the state is dependent only on
the prior state. So, the transition probabilities between the hidden states,
P(SnjSn�1), are also model parameters. So given a sequence of observations,
S, the probability of that sequence of states and observations can be calcu-
lated. In general:

P(S) ¼ P(O1 . . .On) ¼ P(O1)P(O2jO1)P(O3jO1‚O2) . . .P(OnjO1 . . .On�1)

But the hidden Markov model assumptions allow us to make the simplifi-
cation that the probability of each observation depends only on the state
of the system when it was generated. In addition the probability of each
state depends only on the prior hidden state. So the probability of a sequence
of observations is the probability of the sequence of hidden states multiplied
by the probability of the observations given those hidden states. Therefore
the probability of a sequence if the hidden states are known is:

P(S) ¼ P(O1 . . .On‚S1 . . . Sn) ¼
Yn
i¼1

P(OijSi)P(SijSi�1)

In the case of sequence analysis, instead of observing heads and tails on a
coin, we observe nucleotides and amino acids. In these cases the state is a
physiologic state. For example, hidden Markov models are often used as a
generalization of the weight matrices introduced in the previous example.
Each state might represent a particular site in a class of proteins. Each site
would have a biased distribution for amino acids. Each site might transition
to the next site in the sequence that we would expect. However, it might
with a finite probability also skip the next site (a deletion), or it might have
an extra amino acid in place prior to the next site (an insertion). A typical
scheme for a hiddenMarkov model for sequence alignment is demonstrated
in Figure 2.25. Hidden Markov modes can also be used for secondary
structure prediction; a typical Markov model is demonstrated in Figure
2.26. There are three states: alpha helix, beta sheet, and loop. All amino
acids have one of the three hidden states. Any of the states can transition to
any of the others.

56 2 : Functional genomics

Given a hidden Markov model whose parameters have been fully deter-
mined we can determine the most likely underlying hidden states for a given
sequence of observations. In the case of secondary structure prediction, for
example, this would be tantamount to determining which amino acids in a
protein are beta sheets, alpha helices, or loops. Similarly in the case of
sequence alignment, the underlying state determines whether each amino
acid corresponds to a particular position in the alignment or is in an
insertion or deletion.
Dynamic programming can be used to calculate the most likely path

through the hidden states given a series of observations. This algorithm
is known as the Viterbi algorithm and is demonstrated in Figure 2.27.

DeI DeI DeI

Ins Ins Ins Ins

S1 S2 S3 S4 S5

Figure 2.25 Example of a hidden Markov model to align sequences. In this schematic we see five

positions in the alignment: S1 to S5. Each position generates amino acids with a particular

probability distribution. Each position can transition to the next. In addition deletion (Del) states

allow one of the positions to be skipped. Insertions (Ins) states allow for amino acids to be

generated between the prespecified states.

Helix Loop Sheet

Figure 2.26 Example of a hidden Markov model to predict secondary structure. There are three

possible secondary structure states: Helix, Loop, and Sheet. Each one generates amino acids with

different probabilities. Each state can transition to any of the other two with a certain probability.

2.3 Deriving and analyzing sequences 57

In this algorithm we start at the beginning of the sequence and at each
position calculate the probability of the most likely state while remember-
ing the paths that we went through to get there. The key is that the optimal
path to get to position k is related to the optimal path to get to position
k� 1.
Say that pi‚ k is the probability of the optimal path ending at position k

where the last observation Ok has been emitted by state Si. For the first
position k ¼ 1‚ pi‚ k is simply the probability of the observed state to be
generated by each of the possible states multiplied by the prior probability
of each state:

pi‚1 ¼ P(O1jSi)P(Si)

Given pi‚k for each i, we can calculate pi‚ kþ 1. The probability pi‚ kþ 1 is the
probability of the most likely path of kþ 1 hidden states assuming that the
kþ 1 observation was generated by state i. If the probability of the se-
quence through the optimal path up until the prior position is known, then
this probability is easy to calculate:

pi‚ kþ1 ¼ P(Okþ 1jSi)P(SijSj)p0
k

where Sj is the prior state in the optimal path and p
0
k is the probability of

that optimal path up to the prior position. The probability is just the
probability of the optimal path up until the prior state multiplied by
the transition probability to the final state multiplied by the probability of
the observation given that state. In practice, however, we do not know the
prior state. But since we are searching for the most likely path we know the

State

Observations

Loop

Helix

Sheet

1
THR
Plo,1 Plo,2

Phe,1 Phe,3 Phe,4 Phe,5

Plo,6 Plo,7

Phe,8 Phe,9

Psh,10

Phe,2

Psh,1 Psh,2

2
ALA

3
SER

4
ILE

5
GLU

6
LYS

7
LEU

8
VAL

9
GLN

10
VAL

P(sheet)*P(thr \ sheet)
max

P(helix\loop)*Plo,1*P(ala\helix)

P(helix\helix)*Phe,1*P(ala\helix)

P(helix\sheet)*Psh,1*P(ala\helix)

Figure 2.27 The Viterbi algorithm. The Viterbi algorithm allows us to assign the most likely states

to a sequence of observations. At each position in the sequence we calculate the probability of the

highest probability path ending with each state. An example of that calculation is depicted above.

For each position and state we note the prior state used to generate the probability at that position.

Upon completion, we can trace back through the sequence to identify the highest probability

pathway through the hidden states.

58 2 : Functional genomics

prior state must be the state that ultimately results in the highest probabil-
ity. Since we have calculated pi‚k for each possible prior state i, we can
calculate the probability of the most likely path up to the next observation
kþ 1 where the state generating that observation is i:

pi‚ kþ 1 ¼ P(Okþ 1jSi) maxj (P(SijSj)pj‚ k)

where j rangesoverall of thedifferent states.Wenoteandstore the state that is
selected as the prior state.We can iterate through all of the observations, and
calculate these probabilities. Once the entire sequence of n observations has
been iterated through, thenwe select the state i that has the highest pi‚ n as the
final state. The path of states to get to that state is the optimal path.
Now suppose instead that we wished to calculate the probability of a

sequence of observations. A similar strategy can be used to calculate this
probability over all possible states. This is known as the forward algorithm.
It is similar to the Viterbi algorithm. At each step along the sequence we
calculate qi‚k, which is the probability of the sequence up to position k over
all possible states if the sequence ends in state i. So here we calculate the
parameter

qi‚ k ¼ P(O1 . . .Ok‚ k-th state ¼ Si)

The initiation step is identical to the above:

qi‚ 1 ¼ P(O1jSi)P(Si)

As we iterate through the sequence, we calculate:

qi‚ kþ 1 ¼ P(Okþ 1jSi)
X
j

(P(SijSj)qj‚ k)

Notice, the only difference from Viterbi is that instead of picking the best
prior state, we sum over all prior states. The final probability of the
sequence is the sum of all the probabilities for each of the different possible
states at the end of the sequence, qi‚ n.
Training hidden Markov models can be easy if a set of examples with

known states is given. For example, many proteins with known crystal
structures can be used to train the HMM depicted in Figure 2.26. The
emission probability of the amino acids of each of the three states can be
determined by empirical observation of the fraction of the amino acids
observed in helices, loops, and beta sheets. Transition probabilities can
be calculated as well by noting how frequently loops, helices, and sheets
continue in the next amino acid in crystal structures and how often they

2.3 Deriving and analyzing sequences 59

transition to a new type of secondary structure. Similarly if a multiple align-
ment is available, the probabilities in Figure 2.25 can also be calculated by
noting the frequency of deletions, insertions, and the probabilities of the
amino acids in each of the different positions in the alignment.
However, often times, such multiple alignments are unavailable. All that

is available is a collection of sequences. Under these circumstances the
Baum–Welsh algorithm can be used to train HMMs. This is an expectation
maximization algorithm in which we first assign random parameters to the
model. Then we calculate the probability of the state for each sequence
position. Finallyweuse those predicted probabilities to update the parameters.
For each position in a sequence of observed events we can calculate the

probability of each state at a given position to be:

P(k-th state ¼ SijO1 . . .On) ¼ P(O1 . . .On‚ k-th state ¼ Si)

P(O1 . . .On)

¼ P(O1 . . .Ok‚ k-th state ¼ Si)P(Okþ 1 . . .Onjk-th state ¼ Si)

P(O1 . . .On)

The numerator can be split as above, since the probability of all of the
observations after the k-th state depends only on that state, and does not
depend at all on prior observations or states. The denominator of this value
is taken from the forward algorithm; it is the sum of all qi‚n terms over all
states. The first term in the numerator is also from the forward algorithm;
this is qi‚ k. The second term can be calculated from the backward algo-
rithm. The backward algorithm is a third dynamic programming algorithm
in which we calculate terms:

ri‚ k ¼ P(Okþ 1 . . .Onjk-th state ¼ Si)

These terms are the probability of a sequence of observations occurring
given that the system is in state i at position k. In this case we start from the
back of the sequence. The initiation is that

ri‚n ¼ 1

Then as we work backwards we calculate:

ri‚ k ¼
X
j

P(Okþ 1jSj)P(SjjSi)rj‚ kþ 1

So with the backwards algorithm combined with the forward algorithm
we can calculate the probability of each state for each observation in a
sequence.

60 2 : Functional genomics

To proceed with the Baum–Welsh algorithm we use the given collection
of sequences and calculate the probability of each state at each position for
each sequence:

P(k-th state ¼ SijO1 . . .On) ¼ qi‚ k � ri‚ kP
j

qj‚ n

Then we use these probabilities to re-estimate the parameters. So

P(OjjSi) �

P
k-th obs¼Oj

P(k-th state ¼ Si)P
k

P(k-th state ¼ Si)

and

P(SjjSi) �

P
k

P(kþ 1-th state ¼ Sj)P(k-th state ¼ Si)P
k

P(k-th state ¼ Si)

The Baum–Welsh algorithm guarantees that in every iteration the likeli-
hood of the training data will increase. We repeat this procedure iteratively
until the best possible parameters are obtained.
Avery valuable application of the hiddenMarkov model is to actually do

multiple alignments. We can use the Baum–Welsh approach to achieve this
end. Typically we begin with a family of protein sequences and a hidden
markov model with the structure illustrated in Figure 2.25. We can use the
Baum–Welsh algorithm to iteratively fit the parameters of this HMM. As
specified above, we first assign random parameters, then calculate the prob-
ability of each state for each position of each sequence, then update the
parameters. Once the parameters are obtained, we have a hidden Markov
model that describes this family of sequences. If the sequences are related and
the parameters are appropriate, this could be a very useful model for the
family. We can use the optimized HMMwith the Viterbi algorithm to deter-
mine the hidden states of all of the sequences in the family. Each hidden state
represents a position in the alignment. The position state determined for each
protein sequence represents its position in the multiple alignment.

2.4 Gene expression profiling

High throughput measurement of the mRNA gene expression in cells is
revolutionizing biology. Investigators are using technologies such as SAGE,

2.4 Gene expression profiling 61

oligonucleotide arrays, and spotted DNA microarrays to profile the gene
expression of thousands of genes simultaneously. These studies are address-
ing a broad range of biological questions from human cancer to fruitfly
development. Studies typically produce large gene expression data sets that
contain measurements of thousands of genes under hundreds of conditions.
There is a critical need to summarize this data and to pick out the important
details. Otherwise, interpretation of the results is too difficult a task given
the number and diversity of the genes. Many of the available analytical
methods involve creating groups of genes or conditions that share proper-
ties in expression. Most of the commonly used strategies to accomplish this
task utilize only the gene expression data. Other approaches include exter-
nal information about genes and conditions. The most straightforward way
to leverage external knowledge is to use binary statistical classification
methods. In later chapters, this book will introduce strategies to analyze
gene expression data sets with information from the scientific literature.
In order to illustrate howmultiple methods can be applied to a single data

set, we will explore a publicly available gene expression array data set
consisting of 47 expression profiles of 4026 genes collected from lymphoma
specimens (Alizadeh, Eisen et al. 2000). These profiles can be divided
into two subtypes of lymphoma that have distinct clinical and molecular
properties. We will apply some of the methods introduced in this chapter to
this data set (Raychaudhuri, Sutphin et al. 2001).
The key concepts introduced in this section are described in the frame

box. We commence this section with a brief introduction of experimental
methods to measure gene expression. Then we describe metrics that can be
used to calculate similarity and dissimilarity between gene expression pro-
files. We show how these metrics can be used to cluster gene expression
profiles. The section closes with an introduction to classification methods,
and their application to gene expression data.

1) Methods to measure gene
expression
a) Gene expression arrays
b) Serial analysis of gene

expression
2) Gene expression profile metrics
3) Clustering (unsupervised

machine learning)

a) K-means clustering
b) Self-organizing maps
c) Hierarchical clustering

4) Principal components analysis
5) Classification

a) Nearest neighbor
classification

b) Linear discriminant analysis

62 2 : Functional genomics

2.4.1 Measuring gene expression with arrays

Gene expression technology permits the rapid assaying of mRNA quantities
within individual cells. The rate of synthesis of a gene’s protein product is
approximately proportional to the amount of corresponding mRNA pre-
sent within the cell. Most gene expression arrays do not measure absolute
mRNA quantities; they measure the relative mRNA expressed within a cell
subjected to an experimental condition compared to one subjected to a
control condition. As depicted in Plate 2.6, the population of cells is divided
in a typical expression profiling experiment; one half is subjected to some
experimental environment while the other is subjected to a control envir-
onment. Gene expression arrays are then used to determine relative induc-
tion of genes within the experimental condition. These conditions may be
different time points during a biological process, such as the yeast cell cycle
(Cho, Campbell et al. 1998; Spellman, Sherlock et al. 1998) and drosophila
development (White, Rifkin et al. 1999); direct genetic manipulations on a
population of cells such as gene deletions (Hughes, Marton et al. 2000); or
they can be different tissue samples with some common phenotype (such
tissue type or malignancy) (Alizadeh, Eisen et al. 2000).
One popular gene expression array fabrication protocol involves spotting

cDNA for specific genes at specified positions on a glass slide; each cDNA
spot binds mRNA expressed from a particular gene (Plate 2.6) (Schena,
Shalon et al. 1995). Another protocol involves synthesis of short oligonu-
cleotide sequences onto specified positions on a solid substrate directly,
using specific photolithographic techniques; each oligonucleotide spot
binds specifically to mRNA expressed from specific genes (Chee, Yang
et al. 1996). Nylon gene arrays have also been described (Chen, Wu et al.
1998). To measure mRNA quantities, mRNA is first harvested from cells.
The mRNA is used as a template to synthesize proportional amounts of
chemically labeled cDNA; typically the cDNA from the control and experi-
mental conditions are chemically labeled with dyes that fluoresce at differ-
ent wavelengths. All of the labeled cDNA is then hybridized to the gene
array. At each spot the fluorescent intensity at the two wavelengths is
measured; the ratio of intensities is reported as the relative expression of
the corresponding gene. Most of the analytical methods described subse-
quently are applied to the log of these ratios.
Besides measuring gene expression, gene arrays have found other geno-

mics applications as well. They have also been used to identify gene dele-
tions (Behr, Wilson et al. 1999), gene duplications (Pollack, Perou et al.
1999), transposon locations (Raychaudhuri, Stuart et al. 2000), and single
nucleotide polymorphisms (Halushka, Fan et al. 1999).

2.4 Gene expression profiling 63

2.4.2 Measuring gene expression by sequencing and counting
transcripts

An alternative strategy to using gene arrays to assay gene expression is Serial
Analysis of Gene Expression, or SAGE (see Plate 2.7) (Velculescu, Zhang
et al. 1995). SAGE is a considerably more intensive assay, but it permits
quantitative assaying of large numbers of transcripts. SAGE assumes that
large genetic sequences can be recognized by small 11–21 nucleotide ‘‘tags’’.
SAGE works by obtaining these short tag sequences, concatenating them,
and efficiently sequencing them. In addition SAGE assumes that the number
of times these short sequences are observed among expressed sequences
represents the level of expression.
The SAGE assay begins by isolating mRNA transcripts; the mRNA is

used as a template to synthesize proportional amounts of cDNA with
reverse transcriptase and a poly-T primer. Restriction enzymes are then
used to splice out the short tags from the mRNA. Typically, a restriction
enzyme recognizes short nucleotide sequences and cleaves at that site; it also
leaves a short single-stranded overhang that is capable of binding its com-
plement. The enzyme used to cleave the cDNA is called the ‘‘anchoring
enzyme’’. Beads are used to bind to the poly-A tail of the shorter cleaved
cDNA fragments. Beads and the attached segments are divided into two
groups. The overhang from each set is used to bind and attach a sequence
containing a second enzyme recognition site and one of two primer sites.
The second enzyme site is recognized by a ‘‘tagging enzyme’’, which is a
special restriction enzyme that cuts at a defined distance up to 20 base pairs
downstream from the recognition site. After cleavage with the tagging
enzyme, the remaining short sequence segments contain the tags from the
sequence. These are the short stretches of the cDNA sequence downstream
from the anchoring enzyme site that remain after cleavage with the tagging
enzyme. The short sequence segments from the two sets are joined together
to create ditags; the primers on the ends of the ditags are used for PCR
amplification. The anchoring enzyme is then used again to cleave the primer
sites, and the ditags are concatenated into larger sequences. These se-
quences are then sequenced, and the tags are identified. The tag concaten-
ation permits rapid serial tag sequencing. The tag sequences that are
obtained can be directly compared to known sequences of genes. The
number of tags corresponding to the transcript of a particular gene gives a
very good estimate of the expression of the gene.
SAGE is a very powerful, but labor intensive method. Since its introduc-

tion in 1995, SAGE has been applied widely to investigate many biological
problems including gene expression profiling in many different human cells
from different organs, cancer cells, and cells from other organisms as well
(Hermeking 2003; Tuteja and Tuteja 2004; Tuteja and Tuteja 2004). Many

64 2 : Functional genomics

of the analytical strategies discussed below can be used effectively on
matrices of SAGE transcript counts.

2.4.3 Expression array analysis

Gene expression data sets may include measurements for thousands of
genes across hundreds of conditions. Most expression analysis methods
analyze data as a collection of either genes or conditions, each with a series
of associated expression measurements called a ‘‘profile’’. If we imagine a
two-dimensional array of measurements in which the rows are the meas-
urements associated with individual genes and the columns are the meas-
urements associated with conditions, the profile is the list of measurements
along each row or column. ‘‘Features’’ are the individual expression meas-
urements within each profile (see Figure 2.28). Depending on the analytical
task, some features are more valuable than others; in many situations,
focusing on a subset of the features improves results.

CONDITIONS

G
E

N
E

S

Gene profile

Condition profile

Figure 2.28 Matrix of gene expression data. Gene expression data can be organized into a matrix

for easy analysis. Each row represents an individual gene, and each column represents a specific

condition. A row therefore is a gene expression profile, while a column is a profile for a condition

across all genes.

2.4 Gene expression profiling 65

Because there is a symmetric relationship between genes and conditions,
any data set can be analyzed in two ways. For example, we can interpret the
lymphoma data set as 47 cancer profiles with 4026 available features,
where each feature is the expression for a particular gene. In this case, we
are trying to analyze the different cancer cases to understand their similar-
ities and differences. Alternatively, we can analyze the genes, by interpreting
the data as 4026 gene profiles with 47 available features, where each feature
is the expression within a particular cancer specimen. Most analyses that
can be performed on genes can also be performed in a symmetric manner on
conditions. In the rest of the section we will talk mostly about analyzing
genes; but these methods apply equally to genes and conditions.
Analytical algorithms that summarize the data have been applied to

many data sets. Most popular are clustering (or unsupervised machine
learning) algorithms that group together elements (such as genes or condi-
tions) of these large data sets. Dimensional reduction approaches are also
commonly applied; they reduce the number of features so that redundant
ones that are very similar to others are removed or combined.
Other analytical methods include external information about genes and

conditions into the analysis. Classification (or supervised machine learning)
methods classify unknown cases by comparison to labeled training ex-
amples. These methods offer an avenue to include binary labels to genes
(e.g. whether or not a gene has a specific function) or conditions. The
limitation of these methods, however, is that they require the user to
determine the relevant labels beforehand and provide labeled examples.
Frequently, the relevant labels are not known in advance, or the known
labels are inaccurate or incomplete.

2.4.4 Unsupervised grouping: clustering

Clustering methods help to simplify data sets by grouping profiles and
decomposing the results into easier to interpret underlying ‘‘programs’’ of
expression. These methods make the initial interpretation of expression
data facile. However, the majority of clusters tend to be spurious and
have little biological meaning and these can be difficult to interpret.
Some of the gene expression clusters have biological significance; it is

these clusters that are the most important. Theoretically if genes have
similar expression over a large number of conditions, it is possible that
they may be regulated by similar mechanisms and they may have similar
function. The value of an automated grouping method was apparent in
one of the first large-scale gene expression studies (DeRisi, Iyer et al. 1997).
Investigators manually identified five distinct subsets of genes with
similar biological function that were coherently expressed in a yeast time
series where media metabolites were altered. In early demonstrations of

66 2 : Functional genomics

automated clustering algorithms, gene clusters derived from large expression
studies on many conditions corresponded to certain particular biological
functions; this offered promise for annotating uncharacterized genes and
understanding the control of gene regulation (Eisen, Spellman et al. 1998;
Michaels, Carr et al. 1998). Many have used gene expression clusters as a
starting point for gene annotation and for understanding gene regulation.
Clustering algorithms group similar profiles together based on a distance

metric—a formula for calculating the similarity between two profiles (Rip-
ley 1996). There are many ways to express the distance between two
numerical vectors. Many clustering algorithms are based on the statistical
correlation coefficient (ranging from �1 to þ1):

D(x‚ y) ¼ 1� xy0

k x kk y k

where x and y are vectors containing the expression values for two different
genes. The distance is actually one minus the correlation coefficient to
insure that two identical profiles have a distance of zero. Others use the
Euclidean distance, the square root of the sum of the squared differences in
corresponding features values:

D(x‚ y) ¼ k x� y k

Investigators have devised new robust and efficient clustering methods
specifically for gene expression studies recently (Altman and Raychaudhuri
2001). More appropriate metrics for expression studies that account for the
sequential nature of time series measurements or eliminate outlier data have
been proposed (Heyer, Kruglyak et al. 1999; Aach and Church 2001).
Other groups have suggested methods for measuring cluster stability
(Kerr and Churchill 2001; Ben-Hur, Elisseeff et al. 2002). One group
investigated whether dimensional reduction techniques affected clustering
(Yeung and Ruzzo 2001). In practice, however, the clustering methods most
commonly applied to gene expression data are hierarchical clustering, self-
organizing maps, and k-means clustering (Sherlock 2000).
The results of clustering can be very sensitive to the features that are used

to compute the distance metric. Features are usually weighed equally and
the effects of the relevant features can be masked by less relevant ones. For
example, for a study of the response of cancer profiles to a pharmacological
agent, a feature set including the entire genomic expression profile might
not be appropriate because the response might depend only on a handful of
target and transport genes, and inclusion of thousands of other genes might
make similarities or differences difficult to extract from the noise of the
irrelevant genes (Ross, Scherf et al. 2000).

2.4 Gene expression profiling 67

2.4.5 K-means clustering

One of the simplest clustering methods is k-means clustering. It is very easy
to implement.
K-means clustering requires a parameter k, the number of expected

clusters. Correct selection of k can dramatically affect the final clustering
results and unfortunately it is often difficult to know a priori what an
appropriate choice for k is.
Initially k cluster centers, c1‚ . . . ‚ ck, are randomly selected expression

profiles taken from the data set. In each iteration of the algorithm,
the distances between each of the genes and the k centers are calculated
using the pre-selected distance metric; genes are then assigned to
the cluster whose center they are nearest to. For each gene xj and each
center ci:

dj‚ i ¼ D(xj‚ ci)

cluster(xj) ¼ argmin
i

(dj‚ i)

After the genes have been assigned to clusters, the cluster centers are
recomputed by taking the average of the genes assigned to the cluster. In
the subsequent iteration, genes are again assigned to the cluster whose
center they are nearest to and then the centers are recalculated; this process
is repeated until the algorithm converges. Unfortunately the algorithm
converges to a local minimum, and is very sensitive to the initial random
selection of starting centers.
We grouped the lymphoma cases in our test data set with k-means

clustering. Such a calculation could be used to search for cancer sub-
types—perhaps having unique biological or clinical properties. We used
k-means clustering algorithm to cluster the lymphoma samples. To simplify
the analysis, we did not use all 4026 genes as features, but instead used a
subset of 148 that are expressed specifically in the germinal-center cell
populations. The original investigators used the same subset in their cluster
analysis (Alizadeh, Eisen et al. 2000). K-means clustering method with a
Euclidean distance metric grouped the lymphoma cases into two clusters
(Plate 2.8).
For this data set, the two clusters had different phenotypic properties.

One cluster is composed of clinical cases with a poorer prognosis on
average, the ‘‘activated’’ subtype. The other group, the ‘‘germinal center’’
subtype, specifically expressed these 148 genes. The success of this ap-
proach hinged on selecting an informative subset of features, the 148
germinal-center specific genes.

68 2 : Functional genomics

2.4.6 Self-organizing maps

Instead of simply partitioning data into disjoint clusters, self-organizing
maps organize the clusters into a ‘‘map’’ where similar clusters are close to
each other (Tamayo, Slonim et al. 1999). The number and topological
configuration of the clusters are pre-specified. The method is similar to
k-means clustering except that cluster centers are recalculated during each
iteration based on the profiles within the cluster itself as well as the profiles
in adjacent clusters. Over many iterations the clusters conform to the pre-
specified topology. That is clusters that are near to each other in the
predefined topology will contain genes that are similar to each other. This
offers the user an advantage, particularly when dealing with large numbers
of clusters; the algorithm organizes the clusters in a coherent fashion.
Theuserfirst defines a topologybetween the clusters. SeeFigure2.29 for an

example. Then cluster centers, c1‚ . . . ‚ck, are assigned to be random profiles
taken from the data set. At each iteration, a gene is selected randomly and the
cluster center that is closest to it is identified. Say gene expression profile x is
assigned closest to ci and is therefore assigned to be a member of the i-th
cluster. Then the cluster centers are updated with the following equation:

ck ¼ ck þ fn(i‚ k)m(x� ck)

Figure 2.29 Self-organizing map. In self organizing maps a topology between clusters is

predefined. In this schematic the clusters are arranged in a 2� 3 grid. After the algorithm is run,

expression profiles are organized into clusters. The profiles are most similar within the cluster.

Clusters that are near to each other in the predefined topology are relatively similar to each other.

2.4 Gene expression profiling 69

where m is a small parameter that modulates the rate at which the centers
are adjusted and fn is the neighbor function that is inversely proportional to
distance between clusters i and k in the pre-defined topology. So the cluster
centers are recalculated at each step, and the amount they are adjusted is
related to how close they are to the cluster that the selected gene is assigned
to. This process is repeated until the clusters converge. The fact that
expression profiles affect the center of their own cluster and also nearby
clusters insures that clusters that are adjacent to each other in the pre-
defined topology are similar to each other.
As a practical example we apply self-organizing maps to a yeast gene

expression data set with 79 conditions measured on 2467 genes (Eisen,
Spellman et al. 1998). Some of these clusters correlate with biological
function. Looking at the average profile for each cluster, it is apparent
that topologically close clusters are similar to each other (Figure 2.30).

2.4.7 Hierarchical clustering

Hierarchical clustering was the first clustering algorithm applied to high
throughput gene expression data (Eisen, Spellman et al. 1998). The

Figure 2.30 Self-organizing map of yeast gene expression data. 2467 genes were clustered over 79

conditions. Clusters were arranged in a 5� 5 grid. Each graph represents a cluster of genes. The

graphs are arranged according to the self-organizing map topology. In each of the graphs the

average gene expression profile of all of the genes in that cluster is displayed over the conditions.

Similarity between adjacent clusters is apparent.

70 2 : Functional genomics

algorithm analyzes the data and presents genes (or conditions) in the form
of a dendrogram, or tree, based on gene expression similarity. The closer
two genes are placed together in the dendrogram the more related they are
in terms of gene expression. This clustering method predates gene expres-
sion analysis, and was a favorite approach to clustering gene and protein
sequences. Hierarchical clustering strategies suffer because the decision
about where to create branches and in what order the branches should be
arranged can be arbitrary. In practice biologists often use their knowledge
about genes to determine whether they appear related to each other and
draw appropriate boundaries in hierarchical clusters manually. One of the
reasons why many prefer hierarchical clustering is that it offers the user
some flexibility to draw the cluster boundaries.
Here we describe agglomerative hierarchical clustering. This form of

clustering starts at the twigs of the tree and works its way up to the trunk
(see Figure 2.31). Say hierarchical clustering is applied to a data set that has

(a)

Gene 1

Gene 2

Gene 3

Gene 4

Gene 1

Gene 2

Gene 3

Gene 4

Gene 1

Gene 2

Gene 3

G
en

e
1

G
en

e
2,

3

G
en

e
4

Gene 4

Gene 1

Gene 2

G
en

e
1,

2,
3

G
en

e
4

Gene 3

Gene 4

G
en

e
1

G
en

e
2

G
en

e
3

G
en

e
4

0

0

0

046

3

5

7

0

0

0

0

047

2
3

4

(d)

(b)

(c)

Figure 2.31 Agglomerative hierarchical clustering. To create a hierarchical clustering of genes we

begin by calculating a distancematrix,D, between all of the genes. (a) The first step involves

identifying the nearest pair of genes. In this example Gene 2 andGene 3 are the most similar to each

other. (b) The two nearest genes are merged. The distances between this merged entity and the

remaining genes are recalculated. In this case theminimumdistance is used. A newdistancematrix is

created. (c) Again the nearest two entities in the redefined distancematrix are identified by noting the

smallestvalue in thedistancemetric.These twoentitiesare thencombined. (d)Thisprocess is repeated

iteratively until only onemerged entity (the root) remains.

2.4 Gene expression profiling 71

gene expression profiles for n genes. Each of the n genes is initially con-
sidered an individual cluster. The task is then to merge them into larger and
larger clusters, until they have all been combined into a single cluster.
First, hierarchical clustering calculates the n(n� 1)=2 pairwise distances

between each of the n clusters of single genes using one of the aforemen-
tioned distance metrics. These distances are all stored in a matrix D. Next
we search for the smallest off-diagonal distance inD. The two most similar
non-identical clusters are then merged into a new cluster; this defines the
first branchpoint in the tree. Let us assume that these two profiles are i and j.
We now recalculate the matrixD; since gene i and gene j have been merged,
we remove the rows and columns corresponding to i and j in D. We add
another row and column for the (i, j) cluster. So we have replaced two
clusters containing only a single gene each with a single cluster containing
two genes.
To updateD, there are three options to calculate the distance between the

new (i,j) cluster and the other remaining genes. The first is to calculate an
average distance from the original distances to the individual genes (average
linkage). Another option is to assume the distance between a gene and the
new cluster is the greatest distance between that gene profile and all of the
constituent gene profiles in the cluster (complete linkage). The third option
is to assume that it is the least distance between that gene and the constitu-
ent genes (single linkage).
OnceD has been updated, we repeat the process. Again we search for the

smallest distance in D. We combine those two clusters, and update D. This
time it is possible that a cluster of one gene is grouped with the larger cluster
of two genes to form an even larger cluster of three genes. This process is
repeated until all of the genes have been merged into a single cluster. The
sequence in which the merges occurred determines the structure of the
cluster tree.

2.4.8 Dimension reduction with principal components analysis

Like clustering algorithms, dimensional reduction algorithms also reduce
the complexity of the data. Application of dimension reduction methods to
gene array data is an alternative to clustering of genes (Raychaudhuri,
Stuart et al. 2000). Like clustering methods, dimension reduction methods
do not include any outside information besides the expression data itself.
Dimension reduction involves removing or consolidating features in the
data set. Features are removed because they do not provide any significant
incremental information, and because they can confuse the analysis or
make it unnecessarily complex. For example, a time series experiment
may sample data more finely than necessary, and so many of the conditions
are intercorrelated and do not offer additional information about the genes.

72 2 : Functional genomics

Instead, we would choose a subset of conditions that contains ‘‘independent’’
information.Dimension reduction canmake the outliers and clusters in a data
set apparent, and can also reduce the noise in the data set. It can suffer,
however, by throwing away important but weak signals in the data.
Microarray data sets are sufficiently large that dimension reduction can

help algorithms run more quickly, and can also make the results of an
analysis easier to understand. Dimension reduction can be accomplished
with a number of methods, including principal components analysis, sin-
gular value decomposition, independent components analysis, and others.
Principal component analysis (PCA) automatically detects redundancies

in the data and defines a new (smaller) set of hybrid features, or compon-
ents, that are guaranteed not to be redundant. The hybrid features, or
principal components, are composites of the original features, chosen to
provide separate information about the genes or conditions. Each principal
component is a normalized linear combination of the original variables.
These components together account for as much of the variance in the
original n variables as possible while remaining mutually uncorrelated
and orthogonal.
To compute the principal components for a dataset of m genes and n

conditions, we first center the data, so that for each condition the mean
expression is zero. Then we calculate the covariance matrix. The n eigen-
values and their corresponding eigenvectors are calculated from the n� n
covariance matrix of conditions. Each eigenvector defines a principal com-
ponent. A component can be viewed as a weighted sum of the conditions,
where the coefficients of the eigenvectors are the weights. The projection of
gene i along the axis defined by the j�th principal component is:

aPCAij ¼
Xn
t¼1

aitvtj

where vtj is the t
�th coefficient for the j�th principal component, and ait is the

expression measurement for gene i under the t�th condition.APCA is the data
in terms of principal components. Since V is an orthonormal matrix of
eigenvectors, APCA is a rotation of the data from the original space of
observations to a new space with principal component axes.
The variance accounted for by each of the components is its associated

eigenvalue; it is the variance of a component over all genes. Consequently,
the eigenvectors with large eigenvalues are the ones that contain most of the
information; eigenvectors with small eigenvalues are uninformative. We
assume the components with low variance have little information and we
eliminate them. Determining the true dimensionality of the data and the
number of components to eliminate is often ad hoc and many heuristics
exist.

2.4 Gene expression profiling 73

We applied PCA to the test lymphoma data (Figure 2.32). In this case, we
have reduced 47 lymphoma data points in 148-dimensional space (47
cancer cases associated with expression measurements for 148 germinal-
center genes) to just two dimensions; each cancer profile is plotted as a 2D
point in the graphic. Each spot in the graphic is shaded to match its
corresponding cluster in Plate 2.8; the two subtypes are clearly separated
in the reduced two-dimensional component plot. It is sometimes possible
to interpret the new features biologically. For this data set, the first dimen-
sion may be a measure of average overall expression of germinal center
specific genes.

2.4.9 Combining expression data with external information:
supervised machine learning

Supervised classification approaches offer the most straightforward possi-
bility of incorporating outside knowledge. Given a set of known cases,
classification algorithms allow the possibility of determining whether un-
seen cases are similar to the given cases and therefore likely from the same
class. The selection of the known cases is where the external information is
injected into the analysis. These approaches, therefore, require a set of
examples of expression profiles that are labeled with some phenotype or
categorization. The rules that are devised from these examples are used
to predict properties of unseen expression profiles. One advantage of

−20 −15 −10 −5
−2

−6

−8

−4

0 5 10 15 20
0

2

4

6

8

Component 1

C
om

po
ne

nt
 2

Figure 2.32 Visualization of 148-dimensional lymphoma data in two dimensions using principal

component analysis. Principal component analysis (PCA) applied to the lymphoma expression

profiles over the 148 germinal-center specific genes makes it possible to visualize the data in two-

dimensional space. Approximately 45% of the total variance is contained in the first two

dimensions. Each point in the figure represents a specific cancer profile. It is plotted in an expression

space represented by two components. The cases from the germinal-center subtype are dark

diamonds, and the activated subtype cases are lighter triangles. The clusters are well separated in

this space.

74 2 : Functional genomics

supervised machine learning techniques is that they usually place differen-
tial weights on the features based on their utility in distinguishing between
different categories.
For example, one application of classification algorithms is in predicting

the function of a gene by comparison of its expression profile to those of
well studied genes. Another application of classification algorithms is dis-
ease diagnosis based on the gene expression profile of a pathologic specimen
taken from a patient’s biopsy.
Typical use of classification approaches requires the selection of a posi-

tive and negative training set. The training sets contain the known cases.
The positive set contains examples that belong to the class, such as genes
with a particular function. The negative set contains examples of cases that
do not belong to the class, such as genes that specifically are confirmed not
to have that same function.
Examples of such methods include logistic regression, nearest neighbor

classification, neural networks, and linear discriminant analysis (LDA).
Logistic regression uses the feature values for different groups to estimate
the parameters of a predictor function (a linear log-likelihood model) to
best account for the known classified cases (Ripley 1996). Neural networks
use a set of known examples to create a multi-layered computational
network that produces a prediction of the category for each unknown
case. We review linear discriminant analysis and nearest neighbor classifi-
cation in greater detail below.

2.4.10 Nearest neighbor classification

Nearest neighbor classification schemes are some of the easiest to implement
and understand, and frequently they are very effective methods. Given a
previouslyunseen test case, nearest neighborclassificationdetermineswhether
or not it belongs to the class by identifying the most similar cases. If many of
these similar cases belong to the class, then it is assumed that the test case
belongs to the class as well. So first the distance using a pre-selected metric
between the test case, x, and each of the training examples, xi, is obtained:

di ¼ D(x‚ xi)

Then, the closest k training examples are identified. If more than k/2
training examples are positive examples, we predict that the test case
belongs to the class represented by the positive training set.

2.4.11 Linear discriminant analysis

Linear discriminant analysis uses the labeled examples from each set of
classified cases to estimate a probability distribution for the values of the

2.4 Gene expression profiling 75

features in that class (see Figure 2.33). Given a new example, it uses the
distributions to determine themost likely class and assigns the example to it.
The basic assumption of LDA is that the positive and negative training

examples can be modeled with normal distributions. The probability dens-
ity function of a multivariate normal distribution is:

F(x) ¼ e�
1
2(x�m)

0
S�1(x�m)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(2p)njSjp
The two critical parameters are the mean on which the distribution is
centered, m, and the covariance matrix, S, that determines the shape of
the distribution. Let’s assume that our training examples are in a matrix,X,
where each row represents a gene’s expression profile. The mean for the

Discriminant line

Figure 2.33 Linear discriminant analysis. This is an example of a discriminant line separating

positive training cases (white squares) from negative training cases (dark squares). First for each of

those sets of data a separate mean is calculated, indicated by the ‘‘X’’. A pooled covariance matrix is

calculated for both sets of data separately. The pooled covariance matrix and the means are used to

define two normal distributions: one that models the positive cases and one that models the negative

cases. The ovals represent the normal distributions. The distributions are assumed to have the same

covariancematrix – so they have a similar shape. The discriminant line, indicated here with a dotted

line, is defined as the collection of points where the density of the positive distribution is equal to the

density of the negative distribution.

76 2 : Functional genomics

positive training set and negative training set are calculated separately; we
will denote them as mþ and m�, respectively. A common covariance matrix
is assumed for both distributions. This pooled covariance matrix is the
average of the covariance matrix of the positive training examples, Sþ,
and the covariance of the negative training examples, S�:

S ¼ 1

2
(Sþ þ S�)

Given an unseen test case, x, we can calculate the log of the ratio of the
probability of x assuming that it was generated by the positive model to
the probability of x assuming that it was generated by the negative model.
This is the log likelihood that x is a positive case:

log
p(xj þ)

p(xj �)

� �
¼ log

Fþ(x)
F�(x)

� �

¼ � 1

2
(x� mþ)

0
S�1(x� mþ)þ 1

2
(x� m�)

0
S�1(x� m�)

where Fþ is the normal distribution characterizing the positive training
examples, and F� is the normal distribution characterizing the negative
training examples. Since we have assumed they have identical covariance
matrices, we can further simplify to:

log
p(xj þ)

p(xj �)

� �
¼ � 1

2
(mþ � m�)

0
S�1(mþ þ m�)þ x

0
S�1(mþ � m�)

If the value of the log likelihood is greater than zero, then we assume that
the test case, x, is consistent with the positive set and is classified accord-
ingly, otherwise we classify the test case with the negative set.
Supervised grouping methods can be applied to the lymphoma data set.

For example, suppose the biological expertise required to pick out the 148
germinal center genes (as we did in the unsupervised grouping illustration) is
not available. Instead, we would be faced with a data set consisting of
expression measurements for 4026 genes. Suppose, however, that we know
that there are two different clinical presentations of the disease. In particular,
we can partition the data into two sets—those that fall into a less malignant
group and those that fell into the more malignant group. To demonstrate
supervised grouping, we select ten clear-cut cases of each—ten very aggres-
sive lymphomas and ten very benign ones. Then use LDA to predict accur-
ately the prognosis for the remaining 27 unknown cases (Plate 2.9).
The results of applying LDA to other gene expression classification tasks

are described in Table 2.4; these tasks include gene function assignment and

2.4 Gene expression profiling 77

Table 2.4 Application of LDA supervised classification to diverse tasks. The first two tasks are classifying human cancers (condition) expression profiles based on

genome wide expression assays of pathologic specimens. The second two tasks are classifying the type of function or regulation of genes based on expression

measurements. Each row represents a publicly available data set in which there are two predefined classes (arbitrarily designated as either positive or negative). The

column ‘‘Gold standard reference’’ contains the primary resources where the data categorizations were obtained (and/or the original raw data). The columns ‘‘Positive

set’’ and ‘‘Negative set’’ contain a description of the two classification categories and the number of examples for each (the sets are labeled positive and negative

arbitrarily). The ‘‘Features’’ column states the number and type of features used for classification. For example the leukemia profile consists of measurements over

7129 genes. Alternatively, in cases where genes are being classified, its expression in each array experiment constitutes the features. The ‘‘Cross-validation accuracy’’

column is an estimate of the percentage of correctly classified examples on unseen data. We classified acute leukemia cases into the well-established clinical subtypes of

myeloid and lymphoid leukemia based on gene expression in pathologic specimens with linear discriminant analysis (LDA). We classified cancerous and non-

cancerous cell lines into diffuse non-B cell lymphoma (DLCL) and non-DLCL cell lines based on gene expression in pathologic specimens. We classified yeast genes

into members and non-members of the ribosomal complex, as defined by the MIPS consortium based on gene expression in yeast under diverse conditions. We also

distinguished between yeast genes regulated by themse upstream promoter element versus those regulated by a urs1 upstream promoter element; both promoters are

critical to yeast sporulation. The data set consisted of a yeast sporulation time series as well as non-related cell-cycle and metabolic time series experiments.

Problem
Gold standard
reference Positive set N Negative set N Features

Cross-validation
accuracy

1. Acute leukemia
(Golub, Slonim
et al. 1999)

Primary Data
(Golub, Slonim et al.
1999)

Lymphoid 47 Myeloid 25 7129 genes 95.83%

2. Lymphoma
(Alizadeh, Eisen
et al. 2000)

Primary Data
(Alizadeh, Eisen
et al. 2000)

Diffuse large cell
lymphoma 42

Non-DLCL 54 4026 genes 95.83%

3. Ribosomal genes
(Eisen, Spellman
et al. 1998)

MIPS catalogue
(Mewes, Frishman
et al. 2000)

Ribosomal genes
121

Other Genes 2346 79 arrays 99.23%

4. Sporulation
promoters
(DeRisi, Iyer et al.
1997; Chu,
DeRisi et al.
1998; Spellman,
Sherlock et al.
1998)

Reviews (Mitchell
1994; Chu and
Herskowitz 1998)

Early genes (URS1
promoters) 13

Middle genes (MSE
promoters) 23

103 arrays 97.20%

cancer subtype classification. Clearly, the success of supervised machine
learning is dependent on whether high-quality labeled sets are provided. In
the case of expression data, supervised grouping will certainly fail if the
expression data does not explain the phenotype in question.

References

Aach, J. and G. M. Church (2001). ‘‘Aligning gene expression time series with time
warping algorithms.’’ Bioinformatics 17(6): 495–508.

Alberts, B., D. Bray, et al. (1994). Molecular Biology of the Cell. New York, Garland
Publishing.

Alizadeh, A. A., M. B. Eisen, et al. (2000). ‘‘Distinct types of diffuse large B-cell
lymphoma identified by gene expression profiling.’’ Nature 403(6769): 503–11.

Altman, R. B. and S. Raychaudhuri (2001). ‘‘Whole-genome expression analysis: chal-
lenges beyond clustering.’’ Curr. Opin. Struct. Biol. 11(3): 340–7.

Altschul, S. F., W. Gish, et al. (1990). ‘‘Basic local alignment search tool.’’ J. Mol. Biol.
215(3): 403–10.

Altschul, S. F., T. L. Madden, et al. (1997). ‘‘Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs.’’ Nucleic Acids Res. 25(17): 3389–
402.

Behr, M. A., M. A. Wilson, et al. (1999). ‘‘Comparative genomics of BCG vaccines by
whole-genome DNA microarray.’’ Science 284(5419): 1520–3.

Ben-Hur, A., A. Elisseeff, et al. (2002). ‘‘A stability based method for discovering
structure in clustered data.’’ Pac. Symp. Biocomput: 6–17.

Chee,M., R. Yang, et al. (1996). ‘‘Accessing genetic information with high-density DNA
arrays.’’ Science 274(5287): 610–4.

Chen, J. J., R. Wu, et al. (1998). ‘‘Profiling expression patterns and isolating differen-
tially expressed genes by cDNA microarray system with colorimetry detection.’’
Genomics 51(3): 313–24.

Cho, R. J., M. J. Campbell, et al. (1998). ‘‘A genome-wide transcriptional analysis of the
mitotic cell cycle.’’ Mol. Cell. 2(1): 65–73.

Chu, S., J. DeRisi, et al. (1998). ‘‘The transcriptional program of sporulation in budding
yeast.’’ Science 282(5389): 699–705.

Chu, S. and I. Herskowitz (1998). ‘‘Gametogenesis in yeast is regulated by a transcrip-
tional cascade dependent on Ndt80.’’ Mol. Cell. 1(5): 685–96.

DeRisi, J. L., V. R. Iyer, et al. (1997). ‘‘Exploring the metabolic and genetic control of
gene expression on a genomic scale.’’ Science 278(5338): 680–6.

Durbin, R., S. Eddy, et al. (2003). Biological Sequence Analysis. Cambridge, Cambridge
University Press.

Eisen, M. B., P. T. Spellman, et al. (1998). ‘‘Cluster analysis and display of genome-wide
expression patterns.’’ Proc. Natl. Acad. Sci. U S A. 95(25): 14863–8.

Golub, T. R., D. K. Slonim, et al. (1999). ‘‘Molecular classification of cancer: class
discovery and class prediction by gene expression monitoring.’’ Science 286(5439):
531–7.

Gotoh, O. (1982). ‘‘An improved algorithm for matching biological sequences.’’ J. Mol.
Biol. 162(3): 705–8.

References 79

Halushka, M. K., J. B. Fan, et al. (1999). ‘‘Patterns of single-nucleotide polymorphisms
in candidate genes for blood-pressure homeostasis.’’ Nat. Genet. 22(3): 239–47.

Hermeking, H. (2003). ‘‘Serial analysis of gene expression and cancer.’’ Curr. Opin.
Oncol. 15(1): 44–9.

Heyer, L. J., S. Kruglyak, et al. (1999). ‘‘Exploring expression data: identification and
analysis of coexpressed genes.’’ Genome. Res. 9(11): 1106–15.

Hughes, T. R., M. J. Marton, et al. (2000). ‘‘Functional discovery via a compendium of
expression profiles.’’ Cell 102(1): 109–26.

Kerr, M. K. and G. A. Churchill (2001). ‘‘Bootstrapping cluster analysis: assessing the
reliability of conclusions from microarray experiments.’’ Proc. Natl. Acad. Sci. USA.
98(16): 8961–5.

Krogh, A., M. Brown, et al. (1994). ‘‘Hidden Markov models in computational biology.
Applications to protein modeling.’’ J. Mol. Biol. 235(5): 1501–31.

Mantovani, R. (1998). ‘‘A survey of 178 NF-Y binding CCAAT boxes.’’ Nucleic Acids
Res. 26(5): 1135–43.

Mewes, H. W., D. Frishman, et al. (2000). ‘‘MIPS: a database for genomes and protein
sequences.’’ Nucleic Acids Res. 28(1): 37–40.

Michaels, G. S., D. B. Carr, et al. (1998). ‘‘Cluster analysis and data visualization of
large-scale gene expression data.’’ Pac. Symp. Biocomput: 42–53.

Mitchell, A. P. (1994). ‘‘Control of meiotic gene expression in Saccharomyces cerevi-
siae.’’ Microbiol. Rev. 58(1): 56–70.

Needleman, S. B. and C. D. Wunsch (1970). ‘‘A general method applicable to the search
for similarities in the amino acid sequence of two proteins.’’ J. Mol. Biol. 48(3): 443–
53.

Nelson, D. L., A. L. Lehninger, et al. (2000). Lehninger Principles of Biochemsitry,
Worth Publishing.

Pearson, W. R. (1990). ‘‘Rapid and Sensitive Sequence Comparison with FASTP and
FASTA.’’ Methods in Enzymology 183: 63–98.

Pearson, W. R. and D. J. Lipman (1988). ‘‘Improved tools for biological sequence
comparison.’’ Proc. Natl. Acad. Sci. U S A. 85(8): 2444–8.

Pollack, J. R., C. M. Perou, et al. (1999). ‘‘Genome-wide analysis of DNA copy-number
changes using cDNA microarrays.’’ Nat. Genet. 23(1): 41–6.

Raychaudhuri, S., J. M. Stuart, et al. (2000). ‘‘Principal components analysis to sum-
marize microarray experiments: application to sporulation time series.’’ Pac. Symp.
Biocomput: 455–66.

Raychaudhuri, S., J. M. Stuart, et al. (2000). ‘‘Pattern recognition of genomic features
with microarrays: site typing ofMycobacterium tuberculosis strains.’’ Proc. Int. Conf.
Intell. Syst. Mol. Biol. 8: 286–95.

Raychaudhuri, S., P. D. Sutphin, et al. (2001). ‘‘Basic microarray analysis: grouping and
feature reduction.’’ Trends Biotechnol. 19(5): 189–93.

Ripley, B. D. (1996). Pattern Recognition and Neural Networks. New York, Cambridge
University Press.

Ross, D. T., U. Scherf, et al. (2000). ‘‘Systematic variation in gene expression patterns in
human cancer cell lines.’’ Nat. Genet. 24(3): 227–35.

Schena, M., D. Shalon, et al. (1995). ‘‘Quantitative monitoring of gene expression
patterns with a complementary DNA microarray.’’ Science 270(5235): 467–70.

Sherlock, G. (2000). ‘‘Analysis of large-scale gene expression data.’’ Curr. Opin. Immu-
nol. 12(2): 201–5.

Shi, H. and P. B. Moore (2000). ‘‘The crystal structure of yeast phenylalanine tRNA at
1.93 A resolution: a classic structure revisited.’’ Rna. 6(8): 1091–105.

80 2 : Functional genomics

Spellman, P. T., G. Sherlock, et al. (1998). ‘‘Comprehensive identification of cell cycle-
regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization.’’
Mol. Biol. Cell. 9(12): 3273–97.

Stryer, L. (1995). Biochemistry. New York City, W.H. Freeman and Company.
Tamayo, P., D. Slonim, et al. (1999). ‘‘Interpreting patterns of gene expression with self-
organizing maps: methods and application to hematopoietic differentiation.’’ Proc.
Natl. Acad. Sci. USA. 96(6): 2907–12.

Thompson, J. D., D. G. Higgins, et al. (1994). ‘‘CLUSTALW: improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, position-
specific gap penalties and weight matrix choice.’’Nucleic Acids Res. 22(22): 4673–80.

Tuteja, R. and N. Tuteja (2004). ‘‘Serial analysis of gene expression: Applications in
human studies.’’ J. Biomed. Biotechnol. 2004(2): 113–120.

Tuteja, R. and N. Tuteja (2004). ‘‘Serial analysis of gene expression: Applications in
malaria parasite, yeast, plant, and animal studies.’’ J. Biomed. Biotechnol. 2004(2):
106–112.

Velculescu, V. E., L. Zhang, et al. (1995). ‘‘Serial analysis of gene expression.’’ Science
270(5235): 484–7.

White, K. P., S. A. Rifkin, et al. (1999). ‘‘Microarray analysis of Drosophila development
during metamorphosis.’’ Science 286(5447): 2179–84.

Williams, J. C., J. P. Zeelen, et al. (1999). ‘‘Structural and mutagenesis studies of
leishmania triosephosphate isomerase: a point mutation can convert a mesophilic
enzyme into a superstable enzyme without losing catalytic power.’’ Protein Eng.
12(3): 243–50.

Yeung, K. Y. and W. L. Ruzzo (2001). ‘‘Principal component analysis for clustering gene
expression data.’’ Bioinformatics 17(9): 763–74.

References 81

This page intentionally left blank

Textual profiles of genes

Using algorithms to analyze natural language text is a challenging task.
Recent advances in algorithms, and increased availability of computational
power and online text has resulted in incremental progress in text analysis
(Rosenfeld 2000). For certain specific applications natural language pro-
cessing algorithms can rival human performance. Even the simplest algo-
rithms and approaches can glean information from the text and do it at a
rate much faster than humans. In the case of functional genomics, where an
individual assay might include thousands of genes, and tens of thousands of
documents pertinent to those genes, the speed of text mining approaches
offers a great advantage to investigators trying to understand the data. In
this chapter, we will focus on techniques to convert text into simple numer-
ical vectors to facilitate computation. Then we will go on to discuss how
these vectors can be combined into textual profiles for genes; these profiles
offer additional biologically meaningful information that can complement
available genomics data sets.
The previous chapter introduced methods to analyze gene expression

data and sequence data. The focus of many analytical methods was com-
paring and grouping genes by similarity. Some sequence analysis methods
like dynamic programming and BLASToffer opportunities to compare two
sequences, while multiple sequence alignment and weight matrices provide
a means to compare families of sequences. Similarly, gene expression array
analysis approaches are mostly contingent on distance metrics that compare
gene expression profiles to each other; clustering and classification algo-
rithms provide a means to group similar genes. The primary goal of apply-
ing these methods was to transfer knowledge between similar genes.
We can think of the scientific literature as yet another data type and define

document similarity metrics. Algorithms that tap the knowledge locked in
the scientific literature require sophisticated natural language processing
approaches. On the other hand, assessing document similarity is a com-
paratively easier task. A measure of document similarity that corresponds
to semantic similarity between documents can also be powerful. For ex-
ample, we might conclude that two genes are related if documents that refer
to them are semantically similar. We assess similarity by looking at the

3

words that are used in the documents, and seeing if these words are the
same or similar.
The concepts presented in this chapter are listed in the frame box. First

we will introduce document vectors and the common metrics to measure
similarity between them. Then we talk about strategies to remove the less
semantically meaningful words and to also weight words according to their
semantic value. We then talk about recasting document vectors in a reduced
dimensional space using latent semantic indexing. We show how textual
profiles for genes can be created. We demonstrate the utility of these textual
profiles in the context of gene expression data, sequence data, and finding
keywords that describe a gene. We then close with a discussion on strategies
to query genes to identify genes with specific biological functions.

3.1 Representing documents as word vectors

One of the simplest and most effective representations for a document is the
word vector model (Manning and Schutze 1999). A document can be
converted into a word vector by simply counting the number of occurrences
of each word. For a document dj where each word i is present aij times:

dj ¼ ha1j‚ a2j‚ a3j‚ . . . ‚ aNji

We demonstrate the conversion of a document to a word vector in Figure
3.1. Given a large collection of documents, we can construct a matrix, A,
that represents the entire corpus of documents. Each column is a word
vector for a specific document, and each row represents a particular word.
Each entry aij corresponds to the number of times word i appears in

1) Document word vectors
2) Document vector distance

metrics
3) Feature selection and weighting

a) Zipf’s law
b) Removing stop words
c) Stemming
d) Word weighting

4) Latent semantic indexing:
dimension reduction

5) Using reference indices to build
gene textual profiles

6) Gene textual similarity
correlates with sequence
similarity

7) Gene textual similarity
correlates with expression
similarity

8) Keyword assignment to genes
and groups of genes

9) Querying gene text for
biological functions

84 3 : Textual profiles of genes

document j. We use the term document very broadly. Depending on the
application, the document might be a whole full text journal article, an
article abstract, a particular paragraph, a single sentence, or a collection of
words in a particular phrase. Matrix A may have a very large number of
rows, since the number of vocabulary words represented in the rows of A
might be enormous. A typical vocabulary may include thousands of words.
The matrix A may have a large number of columns as well, since most
functional genomics corpora contain tens of thousands of documents.
In addition, A is often a very sparse matrix. Most documents will only use
a minority of the available vocabulary. For example a typical PubMed
abstract may contain several hundred words. Since the vocabulary may
include ten thousand words, only a handful of entries for the document’s
vector will be non-zero. Most vocabulary words will not occur among the
mere several hundred words used in the text.
There are a few definitions with regards to this matrix that are worth

noting. The aij matrix term is also known as the term frequency; it is the
number of times a particular word shows up in a specific document. We will
also refer to the term frequency of word i in document j as tfij. The document
frequency, dfi, of a word i is the number of documents in the corpus that
the term appears in. The collection frequency, cfi, of a word i is the total

DOCUMENTS
W

O
R

D
S

branch

cues

drosophila

in

migration

of

the

tracheal

utility

1

1

1

1

1

0

2

1

0

Document word vector

DOCUMENT TEXT

"The branch-specific
migration cues in the
Drosophila tracheal
system"

Figure 3.1 Converting document text to a word vector. To convert document text to a word

vector, words in the textual document are counted. Those counts are entered in the vector. In many

cases, multiple document vectors can be compiled together in a matrix. For a given document

vector, the vast majority of words are present zero times, and the vector is quite sparse.

3.1 Representing documents as word vectors 85

number of times that a word appears in a corpus. Given any word, its
collection frequency is the sum of its term frequencies over all documents:

X
j

tfij ¼ cfi

The advantage of the word vector model is that standard matrix analysis
approaches can now be applied to a corpus of documents. For example,
many of the same strategies that we used to analyze the gene expression
data matrices introduced in section 2.4 can be directly applied to document
data in this form. In Plate 3.1 we illustrate with a hierarchical clustering of
article abstracts about gene expression analysis (Altman and Raychaudhuri
2001). Here, we have clustered documents with Cluster, a hierarchical
clustering software package available for gene expression analysis (Eisen,
Spellman et al. 1998). Looking at the titles of these articles organized in the
hierarchy, we see that related articles tend to cluster together. Other cluster-
ing strategies, dimensional reduction approaches, and classification
methods can also be applied to these matrices.
In the subsequent sections we will also talk about ways to make more

effective word vectors by removing semantically less valuable words, dif-
ferentially weighting words, and applying dimensional reduction methods.
The word vector document model was originally exploited in informa-

tion retrieval tasks, such as retrieving appropriate documents given a key-
word query. These applications have become valuable in internet and
literature database searches (Hersh 2003). While this approach is very
convenient for computation, a significant amount of information is lost in
this document representation. Basic sentence structure is completely oblit-
erated, and it may be very difficult to piece together the meaning of a
document from the word vector. For example, one very challenging aspect
of this documentation is negations. A document that says a gene has a
certain function and another document that says that the same gene defini-
tively lacks that function have semantically opposite theses. But, from the
point of view of word vectors, these documents look very similar. They may
use the exact same words to describe the gene, the function, and the assays
used to derive the ultimate conclusion. Consequently word vector similarity
can also be confounding for certain applications.

3.2 Metrics to compare documents

The advantage of vector formulations is that assessing document similarity
becomes a relatively easy task. There are many approaches, each of which
may be appropriate for a given situation (Manning and Schutze 1999). The

86 3 : Textual profiles of genes

simplest metrics measure distances between binary vectors, while more
sophisticated metrics take into account the actual term frequencies. Binary
vectors can be formulated from any of the above vector formulations by
replacing non-zero term frequencies with one; this indicates only the pres-
ence or absence of a single word in a document vector.
The matching coefficient is the simplest similarity measure between

binary vectors; it counts the number of dimensions that are non-zero for
two documents. In other words, it is a count of the number of words that
appear in both documents. Mathematically, it can also be thought of as the
dot product between two binary vectors.
To normalize similarity for differences in the document lengths we intro-

duce the dice coefficient. The dice coefficient is the matching coefficient
divided by the average number of non-zero entries in both vectors. If the
two documents share no words, the dice coefficient will be zero; if they are
exactly the same, the dice coefficient will be one.
The Jacard coefficient is an alternative metric that also normalizes for

document lengths. It is calculated by first calculating the matching coeffi-
cient, and then dividing that by the total number of non-zero elements
in both documents. In other words it is the number of common words
between both documents divided by the total number of words that appear
in either.
The overlap coefficient is the matching coefficient divided by the number

of unique words in the smaller of the two documents. For example if a short
document contains 50 unique words, all of which are used in a second
longer document containing 200 words, the overlap coefficient will be 1
despite the fact that the second document has many other words that are
unique to it. So this metric has a clear bias that may, under some circum-
stances, be desirable.
Now, consider real-valued vectors. These vectors are more expressive

than binary vectors and contain term frequency information. One standard
metric we could apply to assess document similarity is the cosine metric.
Given two document vectors x and y the cosine between the documents is:

xyT

k x k k y k

where k x k is the norm of x. The Euclidean metric is another effective
distance metric:

k x� y k

Both of these metrics can be used to compare documents to each other.

3.2 Metrics to compare documents 87

3.3 Some words are more important for document
similarity

All words are not equally important in assessing document similarity. For
example if two words share the word ‘‘the’’ it does not imply a great deal
about the similarity between these two documents. On the other hand, it is
probably much more significant if two documents share the word ‘‘trans-
duction’’. Methods that identify and emphasize the valuable words, and de-
emphasize the less relevant words will improve overall performance.
In general frequent words provide less information about the semantic

content of a document than rare words. The frequency of a particular word
is typically about proportional to the inverse of its rank in frequency:

f � 1

r

Zipf popularized this empirical observation about language and literature
(Zipf 1929). So the second most common word will be observed half as
frequently as the most common word. The one hundredth most common
word will be observed only one hundredth as frequently as the most
common word. The implication of this is that there are a few very com-
monly observed words, but many rarely observed words.
It is the rarewords thathave themost semanticvaluehowever. InFigure3.2

we have plotted the document frequency of words taken from a corpus of
documents containing 15,495 documents pertinent to Drosophila Melano-
gaster (fruit fly) available at FlyBase (www.flybase.net) (FlyBase 2003).
After excluding words with document frequencies more than ten thousand
and fewer than four, we obtain the resulting histogram. Only 20 words
appear in more than 5000 documents. Most of these words are very
general words such as ‘‘at’’, ‘‘which’’, and ‘‘melanogaster’’. Most words
appear in fewer than 25 documents. These are the words that have
functional relevance. Some examples include ‘‘sycytium’’, ‘‘dyneins’’, and
‘‘ribosylation’’.
The consequence of these observations is that the rare words are more

critical in terms of assessing document similarity. Therefore, schemes that
weight words according to the inverse of their frequency may be more
effective.

3.4 Building a vocabulary: feature selection

When building up the vocabulary to use for building document vectors,
there are some important considerations. One approach is to include counts

88 3 : Textual profiles of genes

www.flybase.net

of all possible words. However, such a vocabulary may be intractably large.
In addition, some words, especially the more common ones, may not be
helpful in terms of assessing document similarity.
One solution is to use a stop list containing commonly used function

words that are valuable in written English, but unhelpful in the setting of
document similarity assessment. Such words may include frequently used
pronouns, articles, and prepositions, among other words. A short stop list
adapted fromManning and Schutze is presented in Table 3.1 (Manning and
Schutze 1999).
Another equally effective strategy is to simply remove words that occur

either extremely frequently or rarely. A word that appears in many docu-
ments is likely to be a function word that does not help in document
comparisons; it is probably not semantically specific enough to be helpful.
A word that shows up in a few documents may be the consequence of a
typographical error, a web site name, or an extremely obscure term that is
rarely used. There are often many such words in large corpora that greatly
increase the size of the vocabulary and the dimensionality of word vectors
without adding significant information. Words such as these may also not
be helpful in document comparisons. This simple strategy has been shown
to be very effective under many circumstances (Yang and Pedersen 1997).

4500

4000

3500

3000

2500

2000

1500

1000

500

0

N
um

be
r

of
 w

or
ds

<11 11−25 26−50 101−
250

251−
500

501−
1000

1001−
2500

2501−
5000

>5000
51−
100

Document frequency

at
which

melanogaster
protein

found
development

dna
genes

previously
rna

receptor
embryo

indicates
yeast
coding
male

microtubules
gain
delta
nerve

axonal
vesicle
ATPase
pupae

modifications
euchromatin
myoblasts

tumors

multisubunit
retrotransposons
metallothionein

ova

ribosylation
tubes

syncytium
rhabdomeric

epidermoblasts
cockroach
dyneins
serines

Figure 3.2 Histogram of words as a function of document frequency in a Drosophila corpus. In

this plot it is apparent that there are just a few words with a very high document frequency, while

there are thousands of words with a very low document frequency. The frequently occurring words

are not very informative. The examples here are words like ‘‘at’’, ‘‘which’’, and ‘‘protein’’; these

words offer little insight about the content of a document. The rare words such as ‘‘ribosylation’’

and ‘‘dyneins’’ are specific biological concepts whose presence in a document is quite informative.

3.4 Building a vocabulary: feature selection 89

Stemming is yet another strategy that can be employed to reduce the size of
the vocabulary. Suffixes are often used to modify words. For example, the
word ‘‘gene’’ in its plural form is ‘‘genes’’. It is sometimes valuable to recog-
nize that these two words are derived from the same root word. Stemming
reduces words to their roots. In this way the vocabulary size is reduced as
multiple forms of the sameword are reduced to a single word. One common
approach to stemming is Porter’s algorithm (Porter 1980). Based on a series
of ad hoc rules, words are truncated until their root form is achieved.
Another more extreme strategy to reducing the size of the vocabulary is

to use only a predefined set of words. For example, one group limited their
analysis to words that they were certain pertained only to biological func-
tion (Glenisson, Coessens et al. 2004). They restricted their document
vectors to include only words and phrases that were predefined in func-
tional vocabularies such as Gene Ontology (Ashburner, Ball et al. 2000).
This approach requires the availability of preexisting controlled vocabular-
ies. One of the disadvantages of this approach is that it can be too restrict-
ive, and valuable words that are not explicitly included in the controlled
vocabulary may be lost.

3.5 Weighting words

As presented previously, document similarity can be assessed by comparing
term frequency vectors. However, term frequency vectors give equal weight

Table 3.1. A list of some common stop words.

a hers their
also his there
an how these
and I they
as if those
at in through
be it to
but its until
by me we
can my what
come of when
could on where
do one which
for or while
from our who
go say with
have she would
her that you
here the your

90 3 : Textual profiles of genes

to all terms included in the vocabulary. In practice, more effective document
similarity measures employ term weighting schemes. These schemes can
improve performance by replacing term frequencies with weighted frequen-
cies that emphasize rare terms and dampen frequency. Most of these
weighting schemes are practical methods that work well empirically, but
are poorly grounded in theory.
The document frequency of a word suggests the importance of a word. As

we described above, rare words are likely more informative. So a good
weighting scheme should give terms weights that are inversely proportional
to the document frequency of the term. A common strategy is to weight
terms by a factor log2 (N=dfi). If a word shows up in every document, then
the document frequency isN, and the term receives a weight of zero. On the
other hand, if the word appears in a single document only, then the term
receives the maximal weight of log2 N.
Term frequency tells us how valuable a particular term is at describing the

content of a document. The more times a word appears in a document, the
more likely it is central to the meaning of the document. So any weighting
scheme should be proportional to the term frequency. However, while the
first occurrence of a term is very indicative about the meaning of a docu-
ment, each additional occurrence is much less meaningful. Therefore, the
most effective weighting schemes often actually dampen the increasing term
frequencies. One common scheme is to replace term frequencies with
1þ log2 (tfij) for non-zero term frequencies. So a term appearing once in a
document will have a weight of one, but a term appearing 16 times will only
have a weight of five. This keeps similarity from becoming skewed by
excessive use of individual terms.
So in the weighted word vector the term frequencies, tfij, are replaced by

weights wij that can be calculated by the following formula:

wij ¼ 1þ log (tfij)
� �

log (N=dfi) tfij > 0
0 tfij ¼ 0

�

So a given document would be represented instead as:

dj ¼ hw1‚ j‚ w2‚ j‚ w3‚ j‚ . . . ‚ wN‚ ji

These weighted word vectors could be compiled into a matrix W, which
could be used as an alternative to the word-document matrix A.
There are other equally effective weighting schemes based on the same

principles of weighing rare terms and dampening term frequencies. These
schemes are generally referred to as term frequency-inverse document
frequency (tf/idf) weighting.

3.5 Weighting words 91

3.6 Latent semantic indexing

Up until this point we have talked about reducing the number of dimensions
in word vectors by removing unimportant words (feature selection and
removal of stop words) and have talked about emphasizing certain dimen-
sions by weighting words differentially. Latent semantic indexing (LSI) is a
dimension reduction method that works by creating new composite dimen-
sions that are linear combinations of the word dimensions in weighted word
vectors (Homayouni, Heinrich et al. 2005). In practice, latent semantic
indexing is identical to principal components analysis; this is described as
an application to gene expression data in Chapter 2.
Latent semantic indexing is used to transform documents represented in

traditionalwordvector space,where eachdimension is aweightedword count,
to a space of latent dimensions. Each of the latent dimensions is a normalized
linear combination of the word dimensions. In theory the latent dimensions
represents semanticmeaning instead of just word counts. As in PCA, the latent
dimensions are chosen so that they are orthogonal to each other. They are also
selected so that they aremutually uncorrelated. Since the latent dimensions are
uncorrelated with each other, they aggregate words that are correlated; these
are words that frequently co-occur together in documents. The result is that
the latent dimensions can actually represent concepts. For example, since the
words ‘‘cycle’’, ‘‘phase’’, ‘‘cyclins’’, and ‘‘mitosis’’ are words that might be used
together in documents germane to the biology of the cell cycle, these word
dimensions might contribute to the same latent dimension (see Figure 3.3).
The advantage of LSI is in converting word vectors to a smaller set of

latent dimensions that account for word co-occurrences. For example, two
documents may use completely different words and appear dissimilar in
word vector space. However, in fact, they may be describing the same
concept using different keywords. Latent semantic indexing might define
latent dimensions that are linear combinations of words in both documents.
Therefore in latent space the documents may actually look similar. In
practice latent semantic indexing has been observed to improve information
retrieval.
Latent dimensions are created by diagonalizing the covariance matrix.

Given a word-document matrix A (or a weighted word document matrix
W) where each entry is a weighted word count for the document, the word
covariance matrix can be calculated as

X ¼ (A� A�)(A� A�)T

where �AA is the average of the weighted counts for each word, and X is the
n� n dimensional word covariance matrix. The covariance matrix, X, can
be diagonalized by calculating the eigenvectors vi and eigenvalues di:

92 3 : Textual profiles of genes

d1 0
0

. . .
dn�1 0

0 0 dn

0
BBBB@

1
CCCCA

v1‚ 1 vn�1‚ 1 vn‚ 1
v1‚ 2 vn�1‚ 2 vn‚ 2

. . .

vn‚ 1 vn‚ n�1 vn‚ n

0
BBBB@

1
CCCCA

¼ X

v1‚ 1 vn�1‚ 1 vn‚ 1
v1‚ 2 vn�1‚ 2 vn‚ 2

. . .

vn‚ 1 vn‚ n�1 vn‚ n

0
BBBB@

1
CCCCA

where each of the columns in the matrixVare eigenvectors; they are orthog-
onal to each other and are normalized vectors. Each vector represents a new
latent dimension. Diagonalizing the matrix is tantamount to rotating the
coordinate space with the matrix V, so that the covariance terms are zero.
The new covariance matrix isD, where the off-diagonal terms are zero. The
terms in thediagonalmatrixDare theeigenvalues; theyrepresent thevariance
of the corresponding dimension. The dimensions associated with greatest
variance are considered most informative. In practical applications of LSI
the eigenvectors with the largest associated variance are used, and other
eigenvectors are eliminated. The result is a dimensional reduction. Docu-
ments or gene-text profiles can be transformed into the latent space by
multiplying themwith the matrix of the top eigenvectors:

"Phase"
Weighted word count

"C
yc

le
"

W
ei

gh
te

d
w

or
d

co
un

t

Figure 3.3 Latent semantic indexing. Here we have plotted documents (black dots) as a function

of their weighted word counts of the words ‘‘cycle’’ and ‘‘phase’’. Few documents may use these

words in isolation (black dots along the axes). Documents about cell cycle biology, however, would

frequently use both. These words have strong covariance. An example of a latent dimension is given

with the diagonal arrow; it captures the greatest variance in the data. Documents that are relevant

to cell cycle physiology will have large values in this direction.

3.6 Latent semantic indexing 93

ALSI ¼ VT
mA

Here,ALSI is the vector of documents inm-dimensional LSI space, andVm is a
matrix consisting only of the topm eigenvectors in thematrixV correspond-
ing to the greatest variance. Document or gene similarity can be quantified
with the cosine of the angle between vectors in the reduced latent space.
To illustrate LSI, we obtained a list of 15,495 articles relevant to Dros-

ophila genes from FlyBase. We looked only at the words with document
frequencies of at least 100 and less than 5000. In the corpus of 15,495
articles; there were 2021 such words. After constructing weighted word
vectors, we calculated a 2021� 2021 covariance matrix, and diagonalized
it. We then selected the top 100 eigenvectors to create a latent dimensional
space. A total of 26.4% of the total variance is captured in these 100
dimensions (Figure 3.4). About 3/4 of the variance or information is com-
pletely discarded in this representation. This represents a twenty-fold re-
duction in dimensionality of the data. In Section 3.10 we will show that
despite this marked reduction in dimensionality, there can actually be
improvements in query performance.

3.7 Defining textual profiles for genes

Until this section we have been discussing document vectors. In this section
we will talk about converting document vectors into gene vectors.

0

5

10

15

20

25

30

35

1 10 19 28 37 46 55 64 73 82 90 100

V
ar

ia
nc

e

Latent dimension

Figure 3.4 Variance as a function of latent dimension. In this example there are a total of 2021

latent dimensions. The first 100 capture about 1/4 of the total variance. Variance (or eigenvalue) per

latent dimension is a measure of the total information contained in that dimension. Here we have

plotted total variance for each dimension in descending order; notice that the information per

dimension drops off quickly.

94 3 : Textual profiles of genes

As a starting point, we build reference indices connecting genes to
document. Manually curated indices are available from online genomic
resources such as FlyBase (FlyBase 2003). Alternatively such an index can
be built up by tabulating articles that simplymention a gene. These and other
indices were discussed in detail in Chapter 1. We can define a matrixG that
contains the document gene index. For each gene we define a vector in the
space of documents; reference documents for the gene are set to one, while
other documents are set to zero. We assemble the vectors into a matrix, G,
where each column corresponds to a gene, and each row corresponds to a
specific document in the corpus. The value of each entry Gij is one only if
document i refers to gene j. Shatkay and colleagues took this approach to
define and cluster genes (Shatkay, Edwards et al. 2000).
In the remainder of this chapter we use a reference index from FlyBase

that contains 15,495 documents to create gene profiles. These articles were
connected to a set of 14,732 genes. The median number of references per
gene is 1, while the mean number of references per gene is 6.6. This
difference between the mean and median number of references per gene is
a consequence of the skewed distribution of literature that was discussed in
detail in Chapter 1.
Given a collection of document references for a specific gene, we can

count up all the constituent words and define a vector for that gene. This is
the textual profile for the gene. In this case, we have a matrixH where each
column corresponds to a specific gene, and each row corresponds to a
vocabulary word. Each entry, Hij, corresponds to the number of times a
word i appears in documents pertinent to gene j. In general, the matrix of
textual profilesH can be derived by multiplying the word-document matrix
A and the reference index G:

H ¼ A�G

One research group took this approach when they organized human genes
into functional categories automatically based on the scientific literature
about these genes (Chaussabel and Sher 2002). After creating word vectors
for each human gene, they used hierarchical clustering to organize those
genes into functional categories. Another group took a similar approach
with yeast and human genes and implemented an online resource for text
profiling of genes (Glenisson, Coessens et al. 2004).
The textual profiles that we use in this text are slightly different from the

above. We use the average of the weighted word vectors for document
references to a gene to create the textual profile. In matrix form:

H ¼ W�G

where W is the weighted word document matrix and G is the normalized
reference index, where values in each of the columns are reduced so that

3.7 Defining textual profiles for genes 95

they sum to one. The result is a textual profile for each gene in which words
are given differential weights depending on their relevance to the gene. This
is a very simple, but effective, textual representation for each gene.

3.8 Using text like genomics data

The scientific text, after being converted into matrix form, can be used as
another type of biologically meaningful genomic data. The textual profile of
a gene gives us information about the gene much the same way that gene
expression or sequence data does. We can use pairwise word vector simi-
larity to assess gene similarity as we can use pairwise sequence alignment or
correlation between gene expression profiles. Alternatively we can look at
keywords or phrases that are associated with a gene the same way we can
look at the presence of sequence motifs or increased expression under
specific conditions to understand the gene’s function.
To demonstrate that the scientific literature is related to biological func-

tion we focus on the Drosophila melanogaster literature and the well
studied gene breathless. Consider the FlyBase reference index described in
Sections 3.6 and 3.7. In this section, we exclude only those words with
document frequencies more than 10,000 and fewer than four. Then the
documents are converted into weighted vectors of words. We average each
of the gene’s referring document vectors together into a textual profile for
each gene. These gene vectors are equivalents to gene vectors in matrix H.
The breathless gene has 103 references in this index. It is a fibroblast

growth factor (FGF) receptor that is involved in a signal transduction
pathway and the control and differentiation of tracheal cells (Dossenbach,
Rock et al. 2001). In Table 3.2 we list the terms with greatest weight in the
gene’s word vector. Notice that these keywords include the name of the gene
and many other words that correspond to the gene’s function. Words like
‘‘tracheal’’ and ‘‘migration’’ indicate the physiological function of the gene,
while other words like ‘‘signaling’’, ‘‘FGF’’, and ‘‘receptor’’ suggest the
biochemical functions of the gene.
We can calculate how similar the word vector of breathless is to other

gene word vectors by calculating the cosine between those vectors. We look
only at the genes with a sufficient number of references to insure that our
results are reliable, and not the function of sparse data. The breathlessword
vector has a mean cosine similarity score of 0.23 with the other 2325 genes
with five or more document references; it has a median cosine similarity of
0.20. More than 80% of genes have word vectors with cosine similarities

96 3 : Textual profiles of genes

less than 0.3, while 98% of genes have cosine similarities less than 0.5. This
distribution is illustrated in Figure 3.5.
The breathless gene has a homolog called heartless; it has a similar

function as breathless, but controls the migration and differentiation of
mesodermal cells instead of for tracheal cells. Heartless has 75 document
references. Since these genes are so similar, we would certainly expect that
they would have similar word vectors as well. In Table 3.2 we have also
listed the highest scoring keywords for heartless. Notice that many of the
keywords are very similar or identical to breathless keywords. Instead of
‘‘tracheal’’, however, we have the more appropriate physiological term
‘‘mesodermal’’. The cosine similarity score for the two word vectors of
these genes is 0.73. This is a much higher score than the score between
breathless and almost all the other genes.
Another point to consider is whether there is a correlation between

textual data and other biological data. For example, we can consider the
amino acid sequences of gene protein products. Using BLASTwe compared
the amino acid sequence of the breathless protein product to all of the other
known gene protein products in Drosophila. We obtained 121 statistically
significant hits. These protein sequences corresponded to 67 unique Dros-
ophila genes. Of these, we found 32 genes with five or more references.
The mean word vector cosine similarity between breathless and the genes
with similar sequences is 0.33; the median vector cosine similarity is also
0.33. These similarity scores are significantly greater than the average
similarity score of all genes (see Figure 3.5). There is a relationship between

Table 3.2 Keywords for the two similar genes in Drosophila: breathless

(103 abstracts) and heartless (75 abstracts).

Breathless keywords tf/idf score Heartless keywords tf/idf score

tracheal 6.9 FGF 4.6
FGF 5.5 mesoderm 3.6
migration 4.4 receptor 3.4
receptor 3.2 heartless 3.0
breathless 3.0 signaling 3.0
branching 2.7 fibroblast 2.8
branches 2.6 migration 2.7
signaling 2.6 mesodermal 2.7
cell 2.5 muscle 2.7
cells 2.4 cells 2.4
tyrosine 2.0 growth 2.0
fibroblast 1.9 cell 1.9
sprouty 1.7 sprouty 1.8
growth 1.6 factor 1.8
branch 1.5 twist 1.7

3.8 Using text like genomics data 97

sequence similarity scores and the word vector similarity as depicted in
Figure 3.6. The more similar the hit sequence is, the more likely it shares
function with breathless and has similar textual content. The correlation
between BLASTscores and word vector similarity is 0.68. The best example
is the heartless gene with dramatic sequence and word vector similarity to
breathless. After removing this potential outlier, the correlation is still 0.42.
We notice a similar relationship when we look at gene expression data.

Here we look at data from a comprehensive expression assay that followed
genes throughout the life cycle of drosophila (Arbeitman, Furlong et al.
2002). This experiment consists of 85 measurements at different time
points throughout fruitfly development of 3987 unique genes. Expression
values for genes were recorded as log ratios between expression at each
value and a baseline. Gene expression profiles can be compared to each
other through cosine similarity. We focus on a subset of genes with 25 or
more document references and greater than an expression variance of 0.3
across the 85 conditions. This insures that the genes we are looking at have
significant changes in expression and sufficient text available. There are 212
genes that fit these criteria. In Figure 3.7 we plot word vector similarity to

Word vector similarity

Similarity to all genes

Similarity to BLAST hitsF
ra

ct
io

n
of

 g
en

es

0.0

0.1

0.2

0.3

0.4

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

Figure 3.5 Word vector similarity between other Drosophila genes and the breathless gene. Here

we plot a histogram of genes as a function of word vector similarity. In addition we have plotted a

separate histogram of word vector similarity between the breathless gene and other Drosophila

sequences that are similar to it identified with BLAST.

98 3 : Textual profiles of genes

breathless as a function of gene expression similarity for these genes. There
is a correlation of 0.35 between expression and text similarity.
These are very coarse examples; but they demonstrate that there is a

relationship between textual similarity and biological similarity. These
experiments suggest that textual analysis might be helpful in the analysis
of biological data. In Chapter 4 we will present methods to exploit textual
similarity to enhance sequence analysis. In Chapters 5 and 7 we will present
methods to exploit textual similarity to enhance expression analysis.
The representation of text that we introduce in this chapter is very simple;

all of the documents for a single gene were averaged together and no higher
level processing was attempted. Yet, even in such an unsophisticated ap-
proach, biological similarity is, to some extent, preserved. The levels of
correlation in these examples are low; theyare comparable to the correlations
that we would obtain by comparing any two very different forms of
genomics data. Investigators have conducted more detailed evaluations of
the performance of representations like textual profiles and have compared
different implementations andweighting schemes (Glenisson,Coessens et al.
2004).

Sequence similarity (BLAST)

W
or

d
ve

ct
or

 s
im

ila
rit

y

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3.6 Wordvector similarity to breathless geneversus sequence similarity.Wehaveplotted for

each gene its word vector cosine similarity to the breathless gene as a function of its BLAST protien

sequence similarity score to the breathless protein sequence. Only BLAST hits to breathless are

plotted.Herewe have removed the heartless gene,which has extreme similarity in sequence and text.

3.8 Using text like genomics data 99

3.9 A simple strategy to assigning keywords to groups of
genes

One very useful application of the word vector representation for genes,
besides its use as another set of genomic data, is its ability to be used to
assign keywords. In the previous section we demonstrated that the word
vector for a gene, created by averaging weighted word vectors of articles
referring to the gene, provide an avenue for selecting descriptive keywords.
We list the keywords for the breathless gene and the heartless gene in Table
3.2. The highest valued words in this vector have high values because they
are (1) frequent and appear in many of the referring documents and (2) they
are rare in the corpus and therefore heavily weighted words. These words
are ideal keywords and provide meaningful clues about the function of a
gene.
This concept can be extended to groups of genes as well. Given a group of

genes that are produced by an experimental assay (such as a gene expression
cluster), the word vectors for each gene can be averaged together. The
words associated with the functions that are recurring themes in that
group will receive high values, and will be effective keywords. There are
other more sophisticated strategies for keyword assignment as well, which
we will explore further in future chapters.

−0.8 −0.6 −0.4 −0.2 0.0

Gene expression similarity

0.0

0.1

W
or

d
ve

ct
or

 s
im

ila
rit

y

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2 0.4 0.6 0.8

Figure 3.7 Word vector similarity to breathless gene versus gene expression similarity. We have

plotted for each gene its word vector similarity to the breathless gene as a function of its gene

expression similarity to breathless.

100 3 : Textual profiles of genes

3.10 Querying genes for biological function

Often times we want to search documents, or genes, for certain concepts
using keywords. One very important type of query in biology is searching
for genes that have a particular biological function. One of the great efforts
of the genomics era is identifying and cataloging genes with specific func-
tions. We have already demonstrated how functionally valuable keywords
can be obtained for a gene using textual profiles. In this section we discuss
how we can query genes for specific functions with keywords.
We can use the word vector formulation that we have been using for

genes and documents to facilitate such queries. A keyword query can be
formulated as a pseudo-document vector where each word in the query is
assigned one in the word vector, all other vector entries are zero. One
queries a database of documents by calculating the cosine between that
vector and all of the weighted word vector representations of the documents
in the database. The highest scoring documents are returned in the query.
This same strategy can be applied to query gene textual profiles.
To demonstrate with an example, we query drosophila genes for the

functions ‘‘signal transduction’’ or ‘‘eye morphogenesis’’. Ideally these quer-
ies should be able to find genes with the appropriate biological function. We
tested this possibility in standard word vector space and subsequently in
latent space.
We used the FlyBase corpus and reference index described in Sections 3.6

and 3.7.We used those words with document frequencies of at least 100 and
less than5000to identify3021vocubularywords.Weaverageweightedword
vector documents that are references to a gene to create a textual profiles for
that gene.Wediscardedall of the geneswithonlya single reference.Wedivide
up the genes into well-documented genes (more than ten references) and
poorly documented genes (ten or fewer references). A total of 4609 genes
have ten or fewer article references; a total of 1276 genes havemore than ten
references. Sincewewere testingqueries for signal transductiongenes andeye
morphogenesis genes, we assembled a gold standard for each query. Gene
Ontologyannotated260genesas relevant to signal transduction.Of these,93
havegreater than ten references;127havemore thanasingle referencebut ten
or fewer references. Gene Ontology annotated 43 genes as relevant to eye
morphogenesis. Of these, 26 have greater than ten references; 13 have more
than a single reference but ten or fewer references. Effective queries should be
able to separate these genes from the rest.We formulated pseudo-vectors for
both queries where all of the words except the ones in the query quotes are
zero valued. The cosine between query pseudo-vectors and gene textual
profiles were calculated. Then query sensitivity and specificity values were
calculated for different cosine cutoffs. A stringent cutoff would result in low
sensitivity but high specificity.

3.10 Querying genes for biological function 101

In Figure 3.8 we display query performance separately for the well
referenced and poorly referenced genes. For the ‘‘signal transduction’’

0%
0%

20%

40%

80%

100%

60%

20% 40%

Specificity

S
en

st
iv

ity

60% 80% 100%

0%
0%

20%

40%

80%

100%

60%

20% 40%

Specificity

S
en

st
iv

ity

60% 80% 100%

(a)

(b)

Figure 3.8 Keyword queries in word vector space versus LSI space. The plots above are sensitivity–

specificity plots for queries formulated in word vector space (dark dots) and LSI space with 100

dimensions (open triangles). An ideal query achieves 100% sensitivity at 100% specificity. (a) Querying

genes with fewer references for ‘‘signal transduction’’. (b) Querying genes with fewer references for ‘‘eye

morphogenesis’’.

102 3 : Textual profiles of genes

100%80%60%40%

Specificity

Specificity

S
en

si
tiv

ity
S

en
si

tiv
ity

20%0%
0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

(c)

(d)
0% 20% 40% 60% 80% 100%

Figure 3.8 (c) Querying genes with more references for ‘‘signal transduction’’. (d) Querying genes with

more references for ‘‘eye morphogenesis’’.

3.10 Querying genes for biological function 103

query this strategy achieves 38% sensitivity at 95% specificity for all genes
studied; it achieves 52% sensitivity at 90% specificity. For the ‘‘eye
morphogenisis’’, the query achieves 54% sensitivity at 95% specificity
overall; it obtains 67% sensitivity at 90% sensitivity.
We noted previously that latent semantic indexing often improves infor-

mation retrieval queries. To demonstrate, we implemented these queries in
latent space as well. Standard weighted word vectors (2021 dimensions)
were converted into latent word vectors (100 dimensions) by multiplying
with matrix Vm. This conversion is detailed at the end of Section 3.6. Latent
document vectors were averaged to create latent textual profiles for all
genes. The query vectors were similarly transformed into latent space by
multiplying by matrix Vm as well. The cosine of the latent query vector and
the latent document vectors can be calculated, and the highest scoring genes
are returned in a query.
In both cases, latent semantic indexing achieves better query performance

than standardwordvectors. For the ‘‘signal transduction’’ query, this strategy
improves sensitivity from 38% to 52% at 95% specificity; it improves sensi-
tivity from 52% to 73% sensitivity at 90% specificity. For the ‘‘eye morpho-
genesis’’ query, this strategy achieves 54% sensitivity at 95% specificity; it
improves sensitivity from 67% to 82% at 90% specificity. The performance
improvements fromlatent semantic indexingaremostnotablewhen there is a
paucity of literature (Figure 3.8). However in cases where there are many
references, the performance between the twomethods is more equivocal.
Incidentally, the sensitivities and specificities in both cases are not nearly

high enough for accurate gene annotation. If, for example, 100 genes out of
1000 have a specific biological function, then even a query that achieves
90% sensitivity at 90% specificity would return 90 true positives and 90
false positives. So a full half of the presumed positives are errors. This level
of accuracy is simply too low. Accurate gene annotation will require more
sophisticated methods to achieve greater performance. We will explore this
question in Chapter 8.

References

Altman, R. B. and S. Raychaudhuri (2001). ‘‘Whole-genome expression analysis: chal-
lenges beyond clustering.’’ Curr. Opin. Struct. Biol. 11(3): 340–7.

Arbeitman, M. N., E. E. Furlong, et al. (2002). ‘‘Gene expression during the life cycle of
Drosophila melanogaster.’’ Science 297(5590): 2270–5.

Ashburner, M., C. A. Ball, et al. (2000). ‘‘Gene ontology: tool for the unification of
biology. The Gene Ontology Consortium.’’ Nat. Genet. 25(1): 25–9.

Chaussabel, D. and A. Sher (2002). ‘‘Mining microarray expression data by literature
profiling.’’ Genome. Biol. 3(10): RESEARCH0055.

104 3 : Textual profiles of genes

Dossenbach, C., S. Rock, et al. (2001). ‘‘Specificity of FGF signaling in cell migration in
Drosophila.’’ Development 128(22): 4563–72.

Eisen, M. B., P. T. Spellman, et al. (1998). ‘‘Cluster analysis and display of genome-wide
expression patterns.’’ Proc. Natl. Acad. Sci. USA. 95(25): 14863–8.

FlyBase (2003). ‘‘The FlyBase database of the Drosophila genome projects and commu-
nity literature.’’ Nucleic Acids Res. 31(1): 172–5.

Glenisson, P., B. Coessens, et al. (2004). ‘‘TXTGate: profiling gene groups with text-
based information.’’ Genome. Biol. 5(6): R43.

Hersh, W. (2003). Information Retrieval: A Health and Biomedical Perspective. New
York, Springer-Verlag.

Homayouni, R., K. Heinrich, et al. (2005). ‘‘Gene clustering by Latent Semantic Index-
ing of MEDLINE abstracts.’’ Bioinformatics 21(1): 104–15.

Manning, C. M. and H. Schutze (1999). Foundations of Statistical Natural Language
Processing. Cambridge, The MIT Press.

Porter, M. F. (1980). ‘‘An algorithm for suffix stripping.’’ Program 14: 130–7.
Rosenfeld, R. (2000). ‘‘Two decades of statistical language modeling: where do we go
from here?’’ Proceedimgs of the IEEE 88(8): 1270–1278.

Shatkay, H., S. Edwards, et al. (2000). ‘‘Genes, themes and microarrays: using informa-
tion retrieval for large-scale gene analysis.’’ Proc. Int. Conf. Intell. Syst. Mol. Biol.
8(10): 317–28.

Yang, Y. and J. P. Pedersen (1997). ‘‘A Comparative Study on Feature Selection in Text
Categorization. Proceedings of the Fourteenth International Conference on Machine
Learning.’’ International Conference on Machine Learning. Morgan Kaufmann, San
Francisco pp. 412–20.

Zipf, G. K. (1929). ‘‘Relative frequency as a determinant of phonetic change.’’ Harvard
Studies in Classical Philology 40: 1–95.

References 105

This page intentionally left blank

Using text in sequence
analysis

Text about genes can be effectively leveraged to enhance sequence analysis
(MacCallum, Kelley et al. 2000; Chang, Raychaudhuri et al. 2001; McCal-
lum and Ganesh 2003; Eskin and Agichtein 2004; Tu, Tang et al. 2004).
Most of the emerging methods utilize textual representations similar to the
one we introduced in the previous chapter. To analyze sequences, a numeric
vector that contains information about the counts of different words in
references about that sequence can be used in conjunction with the actual
sequence information.
Experienced biologists understand the value of using the information in

scientific text during sequence searches, and commonly use scientific text
and annotations to guide their intuition. For example, after a quick BLAST
search, a trained expert might quickly look over the hits and their associ-
ated annotations and literature references and assess the validity of the hits.
The apparently valid sequence hits can then be used to draw conclusions
about the query sequence by transferring information from the hits.
In most cases, the text serves as a proxy for structured functional infor-

mation. High quality functional annotations that succinctly and thoroughly
describe the function of a protein are often unavailable. Defining appropri-
ate keywords for a protein requires a considerable amount of effort and
expertise, and in most cases, the results are incomplete as there is an ever-
growing collection of knowledge about proteins. So, one option is to use
text to compare the biological function of different sequences instead.
There are different ways in which the functional information in text

could be used in the context of sequence analysis. One possibility is to
first run a sequence analysis algorithm, and then to use text profiles
to summarize or organize results. Functional keywords can be assigned to
the whole group of hit sequences. Additionally, given a series of sequences,
they can be grouped according to like function. In either case, quick
assessment of the content of text associated with sequences offers insight
about exactly what we are seeing. These approaches are particularly useful
if we are querying a large database of sequences with a novel sequence that
we have very little information about. In these cases text analysis is used
only to describe results obtained from a sequence analysis query.

4

On the other hand text analysis could be used in addition to sequence
analysis to actually help identify homologous genes. That is sequence-based
database searches could actually leverage the text as well. Remotely hom-
ologous genes are genes that have diverged in evolution early and conse-
quently sequence similarity is only modest, but often these genes continue
to have the same protein structure and function. As a result of the sequence
divergence, traditional sequence similarity measures perform poorly. These
sequences are said to be in the ‘‘twilight zone’’. One solution to recognizing
remotely homologous genes is to use the functional information in the
literature to help recognize whether a sequence with questionable similarity
may be homologous. Iterative sequence analysis algorithms can be modified
so that at each iteration of a sequence search, analysis of the textual profiles
are used to influence the intermediate results before the next iteration
commences.
Text analysis can also be used in functional classification algorithm that

uses both sequence and text simultaneously to assign protein function.
Algorithms can look for features of protein sequences that identify its
function. When attempting to ascertain if a particular protein has a given
function, the textual features of literature references can be used in addition
to help identify the function.
These approaches are a few examples of how text can be used with

functional genomics data in different ways and to different extents. In
later chapters we address using scientific literature to help analyze gene
expression data; many of the same principles apply. Whatever strategy is
employed, there are a few pitfalls that must be carefully regarded.
One of the great challenges to including literature in analyzing genomics

data is that most genes or sequences lack literature altogether. Many have
very limited amounts of literature. We must be cautious of weighting text-
mining approaches heavily when analyzing these sequences with lack of
literature. On the other hand, there are sequences with large amounts
of literature. Should one of these sequences be included in the collection
of sequences being analyzed, we must be careful not to let its very large
body of literature overwhelm the analysis and prejudice the results.
The concepts discussed in this chapter are listed in the frame box. We first

introduce the SWISS-PROT database record; besides containing a protein
sequence, the record contains valuable text describing the protein and is the
most common literature resource used in sequence analysis. Then we dis-
cuss strategies to assign literature references to poorly referenced genes by
transferring references from genes with similar sequences. We present strat-
egies to assign functional keywords to a gene from sequence similarity hits.
We then describe how sequence hits can be organized using their scientific
literature. We describe two methods that use textual analysis to help

108 4 : Using text in sequence analysis

recognize homology among remotely similar genes. Finally we present some
of the recent work in predicting function with both text and sequence
information

4.1 SWISS-PROT records as a textual resource

A very valuable textual resource in sequence analysis is SWISS-PROT
(Boeckmann, Bairoch et al. 2003). In Figure 4.1 we present selected fields
from a typical SWISS-PROT record; this is the amino acid sequence record
for breathless, the same gene we used as an example in chapter 3.
In this record there are important identifying fields, such as the accession

number (AC). In addition, two other extremely valuable text fields are the
keywords field (KW) and the comments field (CC). These two fields contain
highly distilled textual information about the protein. In this example, we
can see that there is information about the protein’s physiological function,
cellular location, role in development, and biochemistry. Indeed the readily
available text of the SWISS-PROT record alone can be used in enhancing
sequence analysis.
When protein sequences are submitted to SWISS-PROT, authors include

literature references so that users may better understand the sequence and
the context in which it was obtained. The reference titles (RT) are listed in
the record and the abstract text can be obtained from PubMed using the
MedLine identification numbers included with each reference (RX). While
many of these references are helpful, they are often a limited subset of the
full breadth of available literature and provide only a limited view of
the relevant biology of the sequence. For example, there are only four
references provided in this sequence record, whereas FlyBase provided
some 103 references for the breathless gene. In general there is a median
of only one article reference per sequence in SWISS-PROT.
Ideally textual profiles for a sequence could be constructed by recogniz-

ing the gene that the sequence in the record pertains to, obtaining all of the

1) The SWISS-PROT record
2) Transferring gene references to

uncharacterized genes based on
sequence similarity

3) Summarizing and organizing
BLAST hits

a) Assigning functional
keywords to sequences

b) Clustering hit sequences
4) Recognizing homologous genes
5) Predicting gene function from
sequence and text

4.1 SWISS-PROT records as a textual resource 109

Figure 4.1 SWISS-PROT record for breathless protein sequence.

110 4 : Using text in sequence analysis

known references for that gene, and then building a textual profile from
those references, the references in the SWISS-PROT record, and also key
fields in the record itself. In practice, however, it is often simpler to con-
struct textual profiles for sequences with only the SWISS-PROT record and
the references contained within it.

4.2 Using sequence similarity to extend literature
references

One of the basic goals of sequence analysis and sequence similarity searches
is to take unknown sequences and to learn something new about them. This
is especially the case for newly discovered sequences for which there is a
paucity of information. We find similar sequences and we might assume
that the known functions of those sequences are potentially relevant to the
newly discovered gene or protein.
In many cases genes and proteins are poorly studied and they have no

documented references. Sequence similarity can be used to assign new
pseudo-references to such proteins. These new references can be used to
help understand gene function. They can also be used to facilitate text-
based analysis with the sorts of algorithms we introduce in this book. For
example, effective analysis of a gene expression data set that has many
unstudied genes might be facilitated if the unstudied genes could have
putative references assigned.
One possible strategy is to conduct a sequence similarity search with

BLASTor some other algorithm against a large database of sequences. Then
we can transfer the references from the most similar sequences. Such
references might provide valuable insight about the sequence. In an ideal
situation a stringent search will find a well-studied homologous sequence
with very similar biological function in other organisms, with applicable
available references. If such homologous sequences are unavailable, a less
stringent search may reveal other similar sequences with protein domains
that have vaguely similar molecular function, and references from those
sequences will still provide hints of function. Using a very stringent se-
quence similarity cutoff risks missing very valuable textual information
that might be stored in remotely homologous genes. However, using too
liberal of a sequence similarity cutoff may result in a flood of references.
One solution is to transfer references only from a fixed number of the

most similar well-studied sequences; these are the genes with the most
reliable and extensive documentation. In addition we would likely only
want to transfer specific references; those references that refer only to the
well-studied gene and not to too many other genes are ideal. Simple screens

4.2 Using sequence similarity to extend literature references 111

that remove genes with less than a preset number of references and that
remove references that refer to more than a preset number of genes can
achieve these goals in a straightforward way.
In Chapter 7 we will actually utilize this approach to facilitate gene

expression analysis. One practical implementation of this strategy is avail-
able online (Tu, Tang et al. 2004).

4.3 Assigning keywords to summarize sequence hits

Given a query sequence of unknown function, one of the primary goals of
database sequence searches is to assign an appropriate biological function
based on the most similar sequences (Andrade and Valencia 1998; Shatkay,
Edwards et al. 2000;Masys,Welsh et al. 2001). This is an area that applies not
just to sequence similarity searches, but to any functional genomics query
where the result is a group of genes or sequence thatmayhave shared function.
Of course, there are many approaches to this same problem. The general

goal is to look for functional words that are used more frequently with the
sequences in the resulting query compared to other sequences or the corpus
of biology in general.
The simplest strategy is to use weighted word vectors to represent the

documents as described in Chapter 3. For all of the genes we can construct a
weighted word vector that is created by averaging the weighted word
vectors for each of the referring documents. We saw in Chapter 3 that the
words with greatest weight in this textual profile were good keywords for
an individual gene. We demonstrated this with the fly genes heartless and
breathless. We can extend this strategy by now averaging together the
weighted word vectors for all of the sequences obtained from a search.
As an example we look at the BLAST search that we conducted in

Chapter 3. We have depicted the results for that search in Plate 4.1. The
sequences seem to line up with one particular domain ranging about from
positions 700 to 1000 on the breathless query sequence. As wementioned in
the previous chapter, this query corresponds to 67 unique drosophila genes.
To ascertain the function of this region, we can look at the 32 averaged
textual profiles of the unique genes with five or more references. We average
these weighted textual profiles. The top five weighted words are listed in
Table 4.1. These words suggest that this domain may correspond to the
tyrosine kinase domain of the protein. A more comprehensive survey would
include sequences from many organisms, and not just drosophila. If a
sequence has groups of hits to different areas, the hit sequences can be
grouped according to the corresponding area that they have similarity to in
the original sequence; then each group can be used to find keywords that
describe each domain specifically.

112 4 : Using text in sequence analysis

This method’s effectiveness is contingent on the weighting strategy
employed. Term frequency/inverse document frequency weighting schemes
emphasize words that are rare in the entire biological corpus. We showed in
Chapter 3 that rare words are themost functionally relevant, and likely have
the potential to be good keywords. If these words appear relatively more
frequently in the set of documents associated with the sequences, then these
rare and heavily weighted words become very good keyword candidates.
An alternative strategy is to identify statistical properties of word fre-

quencies, and given a series of sequence hits, assess how the word frequency
among those hits compares. In an implementation of this approach, a
predefined set of protein families were obtained to characterize the distri-
bution of all vocabulary words (Andrade and Valencia 1998). For each
protein sequence, an unweighted word vector is constructed. Then for each
word and family of protein sequences a frequency statistic is calculated:

Fi‚ j ¼ Wi‚ j

Sj

whereWi‚j is the number of sequences in family j that word i appears in, and
Sj is the total number of sequences in that family. Then for each word i,
calculate a mean frequency and a frequency standard deviation:

�FFi ¼
X
j

Fi‚ j
N

si ¼

ffiP
i

(Fi‚ j � Fi)
2

(N � 1)

vuut

where N is the number of families in the set. Given a new family of protein
sequences, the Fi and si for each word i are calculated just as above. Given a
new family of proteins, the z-score (see Section 2.2) for each word can be
calculated:

Table 4.1 Keywords to describe sequence similarity

hits for breathless.

Word tf/idf weight

kinase 3.69
tyrosine 2.91
signalling 2.10
kinases 1.78
cell 1.62

4.3 Assigning keywords to summarize sequence hits 113

Zi ¼ Fi‚j � �FFi
si

Words with high z-scores are selected as keywords. The idea is that words
that occur with protein families infrequently on average and that have
occurred with the observed family with higher than expected frequency
are likely high quality keywords. There is no clear consensus at this point
about which of these methods or others are optimal.

4.4 Using textual profiles to organize sequence hits

Text can be used in sequence analysis to organize the results of sequence
similarity searches (McCallum andGanesh 2003).Once a sequence similarity
search has been completed, the textual records associated with each of the hit
sequences can be obtained and converted into document word vectors. As
described in Chapter 3, standard statistical procedures such as clustering can
be utilized with document vectors and textual profiles. There is a detailed
discussion on clustering in Section 2.4. So, these methods can be applied to
cluster hit sequences based on their textual profiles as well. The result is that
sequence hits are partitioned into groups. Since the textual contents contain
functional information, the sequences will be grouped by their functions.
McCallum and Ganesh explored hierarchical clustering and k-means cluster-
ing of sequence hits based on text. They demonstrated that larger clusters will
likely be most relevant to the query sequence. Very small clusters may repre-
sent spurious hits. The different clusters may represent different functions of
the same query sequence. For example a sequence with multiple functional
domains may have similarity to different groups of sequences. Clustering
should be able to separate the sequences corresponding to the different
functional domains. The keyword strategies described in the previous section
could be applied to the clusters separately to identify the relevant functions.

4.5 Using text to help identify remote homology

One goal of sequence similarity searching is to identify remotely homolo-
gous genes. When the sequence similarity between two genes is not signifi-
cant enough to be certain of their evolutionary relationship, investigators
must look for other evidence. Since gene function is often preserved through
evolution, homologous genes often have similar functions. If the common
function between two somewhat similar sequences can be appreciated, one
can conclude that an evolutionary relationship is likely.

114 4 : Using text in sequence analysis

In practice, biologists will often manually inspect the keywords and refer-
ences associated with low scoring sequence similarity hits, and assess whether
there is possibly a relationship to the query sequence. It may be possible to
automate this tedious manual inspection that occurs after a search.
After application of a sequence similarity (i.e. BLAST) algorithm to

search for homologous sequences, one strategy is to a filter low sequence
similarity hits based on functional similarity using textual profiles. For
those sequences calculate the cosine between the weighted word vectors
of the query sequence and each of the hits as a textual similarity measure.
Sequences with low textual and sequence similarity are considered to not be
homologous genes.
One group implemented this approach using PSI-BLAST to obtain

sequence hits (MacCallum, Kelley et al. 2000); PSI-BLAST is described in
detail in Section 2.3 (Altschul, Madden et al. 1997). Then for sequence
documents, authors used text from SWISS-PROT record entries that
included keywords, reference titles, and comments. The authors did not
extract the abstract text of the references from the PubMed database. The
authors then created word vectors for each sequence entry in SWISS-PROT.
A weighting scheme, similar to the one we introduced in Chapter 3, was
used to increase the weight of rare terms. For a given query sequence, a list
of similar sequences and their similarity scores was obtained. In addition,
the authors calculated a text-based similarity between the query sequence
and the hit sequences. They compared the sequence similarity score versus
the text-based similarity score for sequences obtained in sequence queries.
In fact, they found that among high scoring sequence hits, text similarity
might actually be more indicative of homology than sequence similarity.
They propose that a weighted combination of the two scores might be an
appropriate way to rank sequences.

4.6 Modifying iterative sequence similarity searches to
include text

The methods that we have discussed to this point in the chapter have used
scientific text to organize, summarize, or modify the results produced by a
sequence similarity search algorithm. Instead of simply summarizing or
modifying search results, scientific text can be used as an integral part of
sequence similarity searches as well. One strategy would be to implement
an iterative algorithm that first seeks similar sequences to the query
sequence. Then the algorithm would modify the results based on text
similarity to the original sequence. The resulting sequences can be used to
create a multiple alignment that can be used to search the sequence database

4.6 Modifying iterative sequence similarity searches to include text 115

again to update the collection of sequences. This process could be iterated
until a stable collection of sequences with both literature and sequence
similarity was achieved.
PSI-BLAST is an iterative sequence search algorithm that can be easily

modified to include text. Given a query sequence, in the first iteration, a
BLAST search obtains significantly similar sequences that are used to create
a probabilistic sequence profile. In subsequent iterations that profile is used
to search the database and to update the significant sequences (see Figure
4.2). By including more diverse sequences into the query, sensitivity is
improved.
However, as PSI-BLAST iterates, it includes a more diverse array of

sequences, and the possibility of including a spurious sequence that is not
a homolog of the original query sequence increases. Thus, any errors
introduced into the profile can be magnified, eventually diluting the signal
from the original sequence. This situation has been called ‘‘profile drift’’. In
these situations the algorithm fails to converge or converges to an imperfect
solution. PSI-BLAST considers only sequence similarity. As we saw in the
previous section the scientific literature associated with the sequences can
also provide valuable information. For example, suppose a query sequence

Sequence
Profile

Search
database

Construst
profile

Examine
literature

Multiple
alignment

Sequence
database

1 2
3

Figure 4.2 An illustration of PSI-BLAST to include textual information. A sequence is used in the

initial query to BLAST search the database for similar sequences (1), a multiple alignment is then

used to construct a profile to search the database again (2). The modification (3) involves screening

the sequences that constitute the multiple alignment for literature similarity; the sequences for

which the associated literature is least concordant with that of the original sequence used in (1) are

eliminated from the construction of the profile.

116 4 : Using text in sequence analysis

is similar to many kinase proteins. A reasonable refinement may be to
consider only those proteins that are also kinases. During each iteration
of the sequence similarity search, sequences can also be examined for
textual similarity, and inclusion of this additional information may result
in a search that is relatively resistant to contamination. One group demon-
strated modest performance improvement by utilizing text in PSI-BLAST
(Chang, Raychaudhuri et al. 2001). Their adaptation of PSI-BLAST re-
moves sequences that lack sufficient literature similarity in each iteration.
The method requires the creation of textual profiles for each sequence.

For each sequence, the authors utilized the description, comments, and
keywords from the SWISS-PROT record. In addition, they utilized the
record’s references from PubMed; they used the MeSH headings, subhead-
ings, and text from the abstracts records. The authors construct unweighted
word vectors for each sequence.
At each iteration, this PSI-BLAST implementation eliminates sequences

that have poor literature similarity to the query sequence. After each
sequence search iteration, the cosine between the word vector of each
significant hit and the query sequence is calculated. The scores are ranked
according to their text similarity scores; the sequences with the lowest
scoring text similarity are discarded, thereby excluding them from the
profile (Figure 4.2). The authors experimented with removing different
percentages of sequences.
A limitation of any natural language processing approach to biological

problems is that areas for which the appropriate quantity of text is unavail-
able may be difficult to study. In the context of this work, for example,
annotation of newly discovered sequences is challenging since sufficient
descriptive text is lacking.

4.7 Evaluating PSI-BLAST modified to include text

Validation of sequence similarity algorithms requires a high quality gold
standard. In an ideal case, the gold standard should contain families of
homologous proteins. If a query with one of the proteins returns all of the
other members of the family that it belongs to, then we feel confident that
the method works well. Homologous families should contain sequences
that are related by evolution, rather than just by sequence similarity. Since
this is difficult to define, one option is to use a definition based on the
Structural Classification of Proteins Database (SCOP) (Murzin, Brenner
et al. 1995). SCOP is a manually constructed hierarchical categorization
of proteins based on structure and function. Since biological relatedness is

4.7 Evaluating PSI-BLAST modified to include text 117

implied at the superfamily level, one appropriate definition of a homology
family is the set of SWISS-PROT sequences that reference structures in the
same SCOP superfamily (Lindahl and Elofsson 2000). All SWISS-PROT
sequences that map into a single SCOP superfamily can be used as a gold
standard for a family.
To validate the modified PSI-BLAST approach described in the previous

section, the authors used a set of query sequences that were as divergent as
possible from the families they belonged to (Chang, Raychaudhuri et al.
2001). They compared the performance of their modification to the stand-
ard PSI-BLAST algorithm.
Figure 4.3 plots their results; it shows a comparison of the performance

of PSI-BLAST to the modified PSI-BLAST approaches. ‘‘Recall’’ is the
number of homologous sequences surpassing a fixed e-value cutoff divided
by the total number of homologous sequences. At a fixed recall, ‘‘precision’’
is the number of homologous sequences detected divided by the total
number of sequences detected. The ideal algorithm would maintain 100%
precision for all values of recall; that is, it would be a straight line across the

In
te

rp
o

la
te

d
 P

re
ci

si
o

n

Recall

PSI-BLAST
5% text cutoff
10% text cutoff
20% text cutoff

0 0.05 0.40.350.30.250.20.150.1
0.8

0.85

0.9

0.95

1

Figure 4.3. Using text comparison improves homology search results. Results of homology search

for 54 training sequences from different families. Precision was interpolated to insure that the

curves were monotonic. The solid bold line represents the unmodified PSI-BLASTalgorithm; other

lines represent the modified PSI-BLAST algorithm that drops the sequences with the lowest 5%,

10%, and 20% of literature similarity.

118 4 : Using text in sequence analysis

top. The modified PSI-BLAST was more precise than the original at any
recall. In addition, the precision did not decay as rapidly as recall was
increased.
For 46 of the 54 SCOP families that were tested, the outcome was

identical for the modified and the unmodified PSI-BLAST. Out of the
eight queries remaining, five differed in convergence, while three differed
in performance. It is these eight families that account for the differences in
the performance plotted in Figure 4.3.
These eight families fall into three categories. The first two families in

Table 4.2 converged to poor solutions with standard PSI-BLAST and failed
to converge for the modified PSI-BLAST. The next three failed to converge
for PSI-BLAST, but converged to reasonably good solutions for the modi-
fied PSI-BLAST. The final three converged for both modified and standard
PSI-BLAST; the solutions are slightly better for the standard one. In these
three cases performance differences can be attributed to a single missed
sequence in each family.

Table 4.2 Comparing PSI-BLAST and a modified version of PSI-BLAST that includes text. Most

of the 54 families have identical performance for both algorithms and are not shown when 10% of

the sequences are dropped at each PSI-BLAST iteration based on textual dissimilarity. The other

families where there is a performance difference are shown below. ‘‘Superfamily’’ is a SCOP

homology family and ‘‘Query sequence’’ is its representative. ‘‘Words’’ is the number of document

words associated with the query sequence. ‘‘# Seqs’’ is the number of sequences in the family. The

final six columns describe the results of a search with the query sequence. Here, precision and recall

were calculated for each individual family using all the results from the homology search.

Convergence Precision Recall

Superfamily
Query
sequence Words # Seqs

PSI-
BLAST

Text
10%

PSI-
BLAST

Text
10%

PSI-
BLAST

Text
10%

EGF/Laminin C1R_HUMAN 1661 5 yes no 0.11 N/A 0.8 N/A
Acid proteases POL_HV2RO 1271 22 yes no 0.6 N/A 0.27 N/A
PLP-dependent
transferases

GLYC_RABIT 1052 21 no yes N/A 1 N/A 0.1

Thioredoxin-
like

CAQS_RABIT 1516 13 no yes N/A 1 N/A 0.38

Glucocorticoid
receptor-like
(DNA-binding
domain)

CYSR_CHICK 1738 10 no yes N/A 0.8 N/A 0.4

EF-hand SCP_NERDI 963 31 yes yes 0.92 0.92 0.74 0.71
Glycosyl-
transferases

CHLY_HEVBR 1007 20 yes yes 1 1 0.2 0.15

Snake toxin-
like

CD59_HUMAN 2435 23 yes yes 1 1 0.13 0.09

4.7 Evaluating PSI-BLAST modified to include text 119

For the ‘‘EGF/Laminin’’ and ‘‘Acid proteases’’ families the standard PSI-
BLAST converged upon incorrect answers, indicating that drift occurred.
Modifying PSI-BLAST to include text slowed the drift and prevented con-
vergence. These families were challenging because non-homologous
sequences had high similarity to family sequences. Literature similarity
checking added an additional constraint against including erroneous
sequences.
For the protein family ‘‘Thioredoxin-like’’, the PSI-BLAST homology

search with the ‘‘CAQS-RABIT’’ test sequence failed to converge. The
modified PSI-BLAST that utilized literature similarity did converge on a
precise solution; it correctly detected five sequences. In this case, removing
sequences with low literature similarity prevented profile drift and allowed
the search to converge on a correct solution.
The literature similarity constraint made little difference in the perform-

ance of PSI-BLAST in the majority of the families. So the approach of
including scientific text presented here certainly does not hurt performance,
and in special cases, significantly improves performance.

4.8 Combining sequence and text together

One promising area is the utilization of information contained in text with
sequence information to determine the function of a protein. Classification
algorithms can be trained with proteins of known function on features from
both text and sequence. These classifiers can then be used to make func-
tional predictions on uncharacterized proteins. This strategy has been
applied with success to predicting the subcellular location of proteins.
It is well accepted that protein sequences provide biological information

that can be used to make reasonably accurate subcellular location predic-
tions (Feng 2002). Addition of textual information can further improve
predictions by including documented known aspects about the protein.
Several groups have experimented with machine learning approaches that
combine information about sequences as well as textual information to
make predictions about subcellular localization of the cell (Stapley, Kelley
et al. 2002; Eskin and Agichtein 2004; Lu, Szafron et al. 2004).
In one of the approaches the authors took unknown sequences and

conducted BLAST sequence similarity searches to find the three most simi-
lar SWISS-PROT sequences for each one (Lu, Szafron et al. 2004). These
sequences are presumed to be homologous sequences. The text of the
keyword field, subcellular localization subfield of the comment field, and
InterPro family number from the database source field were extracted from

120 4 : Using text in sequence analysis

the three protein records. These textual phrases were then used as features
in a classifier that could predict subcellular location of the protein. The
investigators experimented with neural networks, naı̈ve Bayes, nearest
neighbor, and support vector machines. They found that all of the classifi-
cation methods achieve reasonably high accuracy in predicting cellular
location of the protein. This approach is similar to summarizing the results
of a protein sequence similarity search as described above.
In a second study investigators used text in their analysis to two separate

ends (Eskin andAgichtein 2004). First, the authors noted that therewas a lack
of properly annotated sequences where the subcellular localizations are avail-
able to them. They used classification approaches on text in SWISS-PROT
records alone to assign subcellular locations to as many proteins as possible
with accuracy; this augmented their set of sequences with known subcellular
localization. This is akin to assigning a function to a gene using scientific text
alone (see Chapter 8 for a full discussion on functional assignment).
The purpose of augmenting this set was to have more training examples

for classifiers, and ensure more accurate predictions than would be possible
with a small number of training examples. After augmenting their training
set, the authors went on to define for each sequence two feature vectors.
One contained counts of words associated with the sequence’s SWISS-
PROT record. The second vector contained sequence information about
the protein. They then used a joint classifier that classified proteins on the
basis of both features of their sequence as well as text in the SWISS-PROT
records. They found that the combined approach achieved better precision
and recall rather than just classifying on sequence or text alone.
The approach of classifying sequences based on both their sequence

features and their textual features is a very new and exciting area. We
expect in the coming years there will be more examples like these to
determine protein function automatically.

References

Altschul, S. F., T. L. Madden, et al. (1997). ‘‘Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs.’’ Nucleic Acids Res. 25(17): 3389–
402.

Andrade, M. A. and A. Valencia (1998). ‘‘Automatic extraction of keywords from
scientific text: application to the knowledge domain of protein families.’’ Bioinfor-
matics 14(7): 600–7.

Boeckmann, B., A. Bairoch, et al. (2003). ‘‘The SWISS-PROT protein knowledgebase
and its supplement TrEMBL in 2003.’’ Nucleic Acids Res. 31(1): 365–70.

Chang, J. T., S. Raychaudhuri, et al. (2001). ‘‘Including biological literature improves
homology search.’’ Pac. Symp. Biocomput: 374–83.

References 121

Eskin, E. and E. Agichtein (2004). ‘‘Combining text mining and sequence analysis to
discover protein functional regions.’’ Pac. Symp. Biocomput: 288–99.

Feng, Z. P. (2002). ‘‘An overview on predicting the subcellular location of a protein.’’ In
Silico Biol. 2(3): 291–303.

Lindahl, E. and A. Elofsson (2000). ‘‘Identification of related proteins on family,
superfamily and fold level.’’ J. Mol. Biol. 295(3): 613–25.

Lu, Z., D. Szafron, et al. (2004). ‘‘Predicting subcellular localization of proteins using
machine-learned classifiers.’’ Bioinformatics. 20(4): 547–56.

MacCallum, R. M., L. A. Kelley, et al. (2000). ‘‘SAWTED: structure assignment with
text description–enhanced detection of remote homologues with automated SWISS-
PROT annotation comparisons.’’ Bioinformatics 16(2): 125–9.

Masys, D. R., J. B. Welsh, et al. (2001). ‘‘Use of keyword hierarchies to interpret gene
expression patterns.’’ Bioinformatics 17(4): 319–26.

McCallum, J. and S. Ganesh (2003). ‘‘Text mining of DNA sequence homology
searches.’’ Appl. Bioinformatics 2(3 Suppl): S59–63.

Murzin, A. G., S. E. Brenner, et al. (1995). ‘‘SCOP: a structural classification of proteins
database for the investigation of sequences and structures.’’ J. Mol. Biol. 247(4): 536–
40.

Shatkay, H., S. Edwards, et al. (2000). ‘‘Genes, themes and microarrays: using informa-
tion retrieval for large-scale gene analysis.’’ Proc. Int. Conf. Intell. Syst. Mol. Biol. 8:
317–28.

Stapley, B. J., L. A. Kelley, et al. (2002). ‘‘Predicting the sub-cellular location of proteins
from text using support vector machines.’’ Pac. Symp. Biocomput: 374–85.

Tu, Q., H. Tang, et al. (2004). ‘‘MedBlast: searching articles related to a biological
sequence.’’ Bioinformatics 20(1): 75–7.

122 4 : Using text in sequence analysis

Text-based analysis of a
single series of gene
expressionmeasurements

In this chapter we begin to address the issue of the analysis of gene expres-
sion data with the scientific literature. Here we describe methods for
the analysis of a single experiment—one where a single expression meas-
urement has been made for many genes within the same organism. In
Chapter 7 we will address the analysis of larger data sets with multiple
expression measurements for each of the genes; the questions that occur in
that setting are often more complex and utilization of scientific text in that
setting can be more useful. But focusing on a single series of expression
measurements is an effective starting point in understanding the scientific
literature and how it can be used with experimental data. The lessons here
can be applied to a wide array of genomic assays besides gene arrays. These
methods can be applied to any assay that assigns a single value to each gene
In addition, many investigators generate single-condition expression data
sets, and these methods are widely applicable.
One of the great difficulties in analyzing a single expression series is that

context is lacking. That is, we have a large set of isolated measurements.
Each measurement corresponds to the log of the relative ratio of a single
gene’s expression in an experimental condition compared to its expression
in a control condition. These measurements represent a single snapshot of a
cell’s physiologic status. One of the great challenges is sorting out the
physiologically important expression changes compared to random experi-
mental and physiologic aberrations and fluctuations. Gene expression
measurements are subject to a great amount of noise and distinguishing
true positives from genes that are not truly induced or repressed is a great
challenge. Typically, investigators use their knowledge of biology to priori-
tize likely positives. In this chapter we argue that text-mining approaches
can be used to help prioritize these genes instead.
Another equally important challenge is to discern broadly what bio-

logical functions are active in a given experiment. A quick list of keywords
culled from the literature could offer a rapid view of the broad processes
that are induced or repressed in a given experiment.

5

The basic concepts of this chapter are highlighted in the frame box. For
this chapter we introduce a phosphate metabolism data set; we use this data
set to demonstrate these key concepts. We begin with a discussion of the
confounding factors in gene expression measurements and how they result
in many false positives and negatives. We then talk about the basic statis-
tical properties of a gene expression data set. We motivate and introduce
neighbor expression information (NEI) scoring, a text-based information
theoretic score. It has applications at recognizing true and false positive
genes in an expression series. It can also be used to roughly gauge the
quality of an experiment. Finally we introduce methods to assign keywords
to an expression series from text about genes.

5.1 Pitfalls of gene expression analysis: noise

In looking at a single gene expression experiment the goal is to distinguish
genes that are aberrantly expressed under some physiological stress or
environment change. The difficulty is that in the assessment of some several
thousand genes the likelihood of a certain number of false positives, when
the true positives may only be a handful of genes, is enormous. For example,
consider a gene expression assay of 1000 genes where 30 are truly respon-
sive to the physiological stimuli being assessed. Assume our expression
assay is 90% sensitive and 95% specific. In this case we will discover
27 of the 30 truly responsive genes. But, on the other hand, we will also
incorrectly identify 49 genes that are not actually responding to the phy-
siologic stimuli. So 64% of the 76 genes detected by this assay are entirely
spurious. In practice distinguishing true positives and false positives
requires careful manual assessment of the results, experimental followup,
and experimental replication.
The difficulty is the many sources of noise involved in gene expression

assays; these have been explored in the literature (Lee, Kuo et al. 2000;
Novak, Sladek et al. 2002; Tu, Stolovitzky et al. 2002).

1) Noise sources in gene
expression measurement

2) Statistical properties of an
expression data series

3) Neighbor expression
information method

a) Separating true and false
positives

b) Assessing experiment quality
4) Finding keywords to describe an

experiment

124 5 : Text-based analysis of a single series of gene expressionmeasurements

Creation of high quality gene expression data requires exposing cells to
both an experimental and control condition; the mRNA from these cells is
then harvested, amplified and labeled and hybridized to a gene expression
array; see Section 2.4 for a more detailed discussion. The log base 2 of the
ratio of the signal between the experimental and control condition is
reported as the expression for each of the genes. Sources of variability and
noise include technical sources, physiologic sources, sampling sources in the
lab, as well as sources in the actual array as well.
Some of physiologic variability includes differences in the way the bio-

logical samplesmayhave been prepared. For example,media conditions that
cells may have been cultured in, or variations in presumed important lab
conditions could account for significant gene expression influences. Sam-
pling sources include expression variability that might occur while harvest-
ing a particular tissue; contaminant tissue or heterogeneous cells might be
inadvertently included andmay alter themeasured expression profile. This is
a frequent issue in medical applications using pathlogical samples. Gene
expression array analysis is also plagued by a host of laboratory technical
issues. These would include the quality of the work used to isolate the
mRNA, the quality of the mRNA samples, and the efficiency of reverse
transcribing and labeling the mRNAwith fluorescently dyed nucleotides.
In addition to these issues, investigators are familiar with many chip or

array noise sources. For example, expression measurement variability can
be attributed to the quality of the probe on the slide, the ability of the probe
to bind labeled DNAwell, and even the position of the spot on the slide. The
probe on the slide may have cross-reactivity to other genes and bind other
labeled nucleotide products than the ones that it is supposed to, and
hybridization may be altered. Genes that have low expression in either
the control or experimental condition are particularly susceptible as the
ratios between the two conditions can be dramatically affected by these
small errors. Specific regions of the glass slide may be smeared or damaged,
affecting the expression of a large number of genes.
These error sources account for the differences between true physiologic

gene expression and the gene expression that is measured by an expression
assay. When looking at a single experiment and trying to appreciate the
genes with truly altered gene expression we must realize that a large number
of the genes that may appear induced or repressedmay appear that way only
because of noise. The challenge is to separate the genes whose alteration in
expression is biologically relevant versus the aberrant measurements.
Of course, the inclusion of external information to bias our analysis helps

to distinguish biologically important gene expression changes from aber-
rant ones. For example, additional gene expression conditions may suggest
the true positives; these will have increased gene expression under other
similar physiologic conditions. Genome sequence information can be

5.1 Pitfalls of gene expression analysis: noise 125

suggestive also. For example, if a set of induced genes shares a common
promoter site then that may suggest that those genes correspond to true
altered expression. Here we discuss the possibility of using the scientific
literature; our hypothesis is that the likelihood that a gene has truly altered
gene expression under a physiologic condition is related to whether or not
genes that are functionally similar also have altered expression under the
same condition. These functionally similar genes can be identified with the
scientific literature.

5.2 Phosphate metabolism: an example

In this chapter we will focus on a series of experiments conducted by
Saldhana and colleagues that explored the gene expression of yeast under
nutritionally deficient circumstances (Saldanha, Brauer et al. 2004). The
authors investigated the changes in gene expression that occurred when
different metabolites were made available to yeast cultures in limiting
quantity. They explored whether and at what point the limited availability
activated particular metabolic pathways, or stress responses. The data set
included a total of 124 experiments, and measured the expression of some
5104 genes. We will focus on six replicates of what the authors referred to
as PU conditions; in this series the organisms were placed in phosphate
deprived media in the experimental conditions, whereas in the control
conditions uracil deprived media were used instead. So genes with higher
expression values have high expression under phosphate deprivation as
compared to uracil deprivation. The histogram of gene expression ratios
are displayed in Figure 5.1.
We chose this data set for several reasons. The first is that it is a yeast data

set and the literature in yeast is relatively well organized, and provides a
good starting point to illustrate literature-based approaches. The second is
that the data set includes six replicates of the same experiment. Averaging
the expression values of the six data sets together mitigates some of the
noise. For example, error associated with laboratory protocol may be
reduced by averaging replicates. This affords us something closer to a
higher quality experiment. For the purposes of demonstration this is ideal.
Finally, the experiment is relatively easy to understand. Since these yeast
cultures were phosphate starved, it is very reasonable to expect that genes
related to phosphate metabolism should be aberrantly expressed. These
factors make this data set well suited for demonstrations, and avoid some
of the ambiguity that is inherent to most gene expression array analysis. The
raw data was obtained from the Stanford Microarray Database (SMD)
(Ball, Awad et al. 2005).

126 5 : Text-based analysis of a single series of gene expressionmeasurements

Of the 5104 genes analyzed in this data set, we were able to identify 3611
uniquegenes thathadat leastonearticle.Article referenceswereobtainedfrom
the SaccharomycesGenomeDatabase; PubMedabstractswere used.Varation
in gene nomenclature may have prevented some genes from being associated
with references. The mean number of articles per gene was 14.3, and the
median number of articles per gene is 5. The highest number of article refer-
ences per genewas 443. A total of 74 genes had over 100 references. This data
set referenced a total of 21,213 PubMed abstracts. Each article referred to a
mean of 2.43 genes and a median of three genes. The largest number of genes
referred by a single abstract was 132. A total of seven articles referred tomore
than50genes, and234referred toover tengenes.Thedistributionsofgenesper
article and articles per gene are extremely skewed distributions; this issue is
addressed in greater detail Chapter 1.
In the remainder of this chapter we demonstrate how literature-based

approaches can be used to distinguish true positive genes that are expressed
in this data set from the false positives using a literature based scoring
system. In addition, we demonstrate one method to quickly assign key-
words that broadly describe the experiment.

5.3 The top fifteen genes

The distribution of gene expression after averaging the six similar replicates
is depicted in Figure 5.1. We focus on the average of the six experiments

0.5

0.4

0.3

0.2

0.1

0 <-3
-3 to -1

-1 to -1/2

-1/2 to 0

0 to 1/2

1/2 to 1

1 to 3

> 3

Log base 2 of expression ratio

F
ra

ct
io

n
of

 g
en

es

Figure 5.1 Histogram of phosphate–uracil experiment expression log ratios. Expression log

ratios from all six experiments are averaged together and a histogram is plotted.

5.3 The top fifteen genes 127

rather than an individual one in this section; the averaged experiment is a
surrogate for a high quality experiment. Later in this chapter we will look at
individual experiments; the quality of those experiments is more typical. It
can be seen immediately that the vast majority of genes have very minimal
changes in gene expression. About 80% of the genes have log base 2
expression ratios between �0:5 and 0.5. This corresponds to expression
ratios between the experimental and control condition ranging from 0.7 to
1.4. On the other hand, less than 1% of genes have expression ratios
exceeding 8 or less than 1/8.
To begin exploring this rich data set, we look at those genes that have the

greatest induction under phosphate deprivation compared to uracil depriv-
ation. These genes are listed in Table 5.1. Along with the genes, we have
listed a short description of their functions. All of these genes are very
significantly expressed in this data. Do they all make sense in the context
of the experiment? Certainly the genes that are intimately involved in
phosphate metabolism are consistent with our understanding of the data.
So genes in rows 1–3 and 5 are almost certainly true positives. A number of
the genes are involved in vacuole fusion; as we can see with gene VTC3,
there seems to be a connection between vacuolar transport and phosphate

Table 5.1 The highest expressed genes in the PU experiments. We have listed the top 15 expressed

genes in order. Also listed is the systematic name, the gene function, the average expression log

ratio, and the corresponding ratio. Many genes are related to phosphate metabolism.

Gene Systematic name Function
Expression
(log ratio)

Expression
(ratio)

1 PHO11 YAR071W Phosphate metabolism 6.3 78.8
2 PHO12 YHR215W Acid phosphatase 5.6 48.5
3 PHO5 YBR093C Phosphate metabolism 5.1 34.3
4 un-named YOL155C Cell wall Organization 4.98 31.6
5 PHO3 YBR092C Acid phosphatase involved

in thiamine transport
4.16 17.9

6 VTC3 YPL019C Phosphate metabolism
Vacuole fusion (non-autophagic)

3.72 13.2

7 VTC1 YER072W Vacuole fusion (non-autophagic) 3.49 11.2
8 BAP3 YDR046C Amino acid transport 3.43 10.8
9 un-named YAR068W 3.39 10.5
10 ARO9 YHR137W Aromatic amino acid

family metabolism
2.92 7.6

11 SSU1 YPL092W Sulfite transport 2.65 6.3
12 SUL1 YBR294W Sulfate transport 2.52 5.7
13 HXT2 YMR011W Hexose transport 2.52 5.7
14 un-named YIL169C 2.41 5.3
15 VTC4 YJL012C Vacuole fusion (non-autophagic) 2.33 5.0

128 5 : Text-based analysis of a single series of gene expressionmeasurements

metabolism. So these genes might be reasonable candidates. The remaining
genes are involved in diverse processes or unknown processes that do not
have any obvious link to phosphate metabolism.

5.4 Distinguishing true positives from false positives with a
literature-based approach

Our goal is to use the literature to help distinguish the true positive genes
from the false positive genes. The degree of noise in gene expression is great
enough that it is a challenge to set a concrete expression threshold
and identify induced genes with a sufficiently high degree of sensitivity
and specificity. The solution is to look at the genes themselves and to
understand if it is reasonable to expect those genes to be induced or not.
In a best-case scenario, such as the one we are presenting with our example
data, we have an excellent idea what the implications of the physiologic
stress or condition is and what types of genes we would expect to be
induced.
An alternative approach is to assume that genes that are truly induced in a

physiologic condition are not likely induced in isolation. A physiologic
stress that induces the expression of a gene likely affects other related
genes involved in similar biological processes.
As we have suggested in Chapter 3, the literature can be used to identify

functionally similar genes. The approach we take here is that for each gene
that might be significantly expressed, we identify likely functionally similar
genes and examine what their expression is. If their expression is also
significantly affected, then we are likely looking at a gene that is truly
induced in this physiologic condition.
For each gene we create a normalized and weighted word vector using the

references to that gene as detailed in Chapter 3. Then we calculate distances
between that gene and all of the others in the literature space using the
cosine distance metric. We assume that many of the most similar genes
share some function.
As an example consider the most expressed gene in this data set, PHO11.

In Table 5.2 we have listed the 20 most similar genes to PHO11 based on
word vector similarity. In addition we list the log expression ratios for those
similar genes. Many of these genes are either very highly induced or
repressed, that is, they either have a very positive or negative log expression
ratio. Only nine out of the 20 genes have an expression ratio between �0:5
and 0.5. If this were a random distribution of genes we would expect about
80% or 16 genes to have log ratios between �0:5 and 0.5. We see imme-

Distinguishing true positives from false positives 129

diately that many of the functional neighbors selected using the scientific
literature have aberrant gene expression. We might then assume that
PHO11 is significantly affected in this condition because it has increased
expression on its own, and in addition many genes that have similar
function to it also seem to be affected in a non-randomway by the condition
as well. The next step will be to quantify the non-randomness of the
expression of neighbor genes.

5.5 Neighbor expression information

In this section we will present the neighbor expression information (NEI)
scoring system; it is a mathematical method that is effective in suggesting
whether genes are truly affected by the experimental condition.
For each gene we identify n functional neighbors using similarity in the

scientific literature. We average weighted word vectors for all the articles
for each gene to define a word vector for each gene. Then we calculate
distances between articles using the cosine metric:

Table 5.2 Neighbors of PHO11. Using the cosine vector metric we calculated the

most similar genes to PHO11. We also list their gene expression values.

Neighbors of PHO11 Text-based cosine similarity Gene expression

PHO5 0.54 5.12
PHO3 0.51 4.16
PHO12 0.46 5.65
PHO4 0.44 �0.23
HIS3 0.43 0.63
PHO81 0.43 0.82
PHO80 0.43 0.53
URA3 0.43 �1.35
LEU2 0.42 �0.69
PHO2 0.42 �0.85
TRP1 0.41 0.05
HIS4 0.39 0.46
LYS2 0.39 0.36
GCN4 0.36 0.14
ABF1 0.36 0.08
LEU1 0.36 �0.4
FLO8 0.35 0.08
ADH2 0.35 �0.12
URA4 0.35 �1.48
URA1 0.35 �3.7

130 5 : Text-based analysis of a single series of gene expressionmeasurements

x� yTffik x k k y kp
where x and y are the tf/idf averaged weighted word vectors for the two
genes. Then, for each gene, we choose the n genes as functional neighbors
that have the highest cosine values. These genes have articles that use
similar words as each other, and are likely similar in function.
We recognize that while many of these functional neighbor genes may

have true functional relationships with the gene, some may not. If the gene
is significantly expressed, other neighbor genes with the same function
should be perturbed by the same experimental condition; some neighbor
genes with dissimilar function may not be affected by the condition at all. In
any case, the expression ratio distribution of the functional neighbor genes
should be dissimilar to the background distribution of gene expression. We
have plotted the expression ratio distribution of the 20 PHO11 neighbor
genes alongside the distribution of expression for all genes in this experi-
ment for the sake of comparison in Figure 5.2.
To compare the distribution of expression ratios for functional neighbors

to the background we use KL- diveregence, discussed in greater detail in
Section 2.2. The KL- divergence is a measure of how inappropriate a
background distribution p is at explaining an observed distribution q. In
this case, p is the background expression distribution of expression ratios

0.3

0.2

Log base 2 of expression ratio

0.1

0

0.4

0.5

F
ra

ct
io

n
of

 g
en

es

<-3
-3 to -1

-1 to -1/2

-1/2 to 0

0 to 1/2

1/2 to 1

1 to 3

> 3

Figure 5.2 Histogram of PHO11 neighbor expression. Here we have plotted a histogram of the

expression log ratios of the neighbors of PHO11 listed in Table 5.2 with light grey bars. For

comparison we have included the histogram of gene expression of all genes for comparison in black;

this is identical to the plot in Figure 5.1.

5.5 Neighbor expression information 131

depicted in Figure 5.1. On the other hand, q is the distribution of expression
ratios for the genes that are functional neighbors. We calculate:

D(q k p) ¼
X
i

qi log2
qi
pi

� �

If the expression of the functional neighbor genes is random, then the
distribution q should look similar to the distribution p. If the gene is part
of a process not affected by the physiological condition, the expression of its
functional neighbor genes will likely be distributed randomly, and the
divergence will be close to zero. On the other hand, if the gene has func-
tional neighbors that are affected by the process, the distribution q will be
enriched in high and low expression genes, and the divergence between the
two distributions will be large. So we assume, if we find the divergence to be
large, that the gene is likely to be involved in the response to the condition.
So for each gene we calculate the KL divergence of the expression ratios

of its neighbors to quantify how likely it is that it is directly involved in the
process. We will refer to this number as the neighbor expression informa-
tion (NEI) score of a gene.

5.6 Application to phosphate metabolism data set

To assess the effectiveness of this measure we apply it to the data set of the
six averaged phosphate deficient conditions. We looked at n ¼ 5 functional
neighbors for each gene. The functional neighbors were identified using the
cosine vector distances between gene word vectors as described and the NEI
scores were calculated for each of the genes by looking at the expression
values of those five genes. The distribution of NEI scores that are obtained is
depicted in Figure 5.3. About 5% of genes have an NEI score greater than
1.8, and about 10% of genes have NEI scores greater than 1.4. So focusing
our attention on only genes with NEI scores greater than NEI scores of 1.8
or greater reduces the number of genes that we are seriously investigating
from 3611 to about 181. This is a much more palatable number of genes to
go through. The genes that are the most interesting are the genes with the
greatest changes in expression that also have high NEI scores. The NEI
scores offer an independent means of evaluating genes with large induction
or repression in expression.
Our prediction is that these are the genes that are most relevant to the

experiment, and least likely to be false positives. The NEI score is calculated
on the basis of literature-based neighbors and their gene expression; it does
not consider the expression of the gene itself.

132 5 : Text-based analysis of a single series of gene expressionmeasurements

To validate the NEI scores we see how well it correlates with the expres-
sion in this data set. The expression data set being used here is a high quality
average of six replicated experiments. Compared to any individual experi-
ments, there should be minimal noise. So in this case, we expect many of the
induced and repressed genes to represent true physiological responses. If the
high NEI genes are in fact the most relevant to the experiment, it would
make sense that genes with higher NEI scores should have, on average, the
greatest changes in gene expression. Most of the true positives should have
large changes in gene expression and high NEI scores. On the other hand,
we would expect few of the genes with minimal changes in gene expression
to be involved in the physiologic process and therefore we expect most to
have low NEI scores.
In Figure 5.4 we have plotted the absolute log expression ratio as a

function of NEI scores. On average, it is apparent the genes with lower
NEI scores have minimal changes in gene expression, while those with
higher NEI scores have greater changes in expression. Similarly, since the
genes that have extremely high or extremely low gene expression values are
more likely to be genes that are truly involved in the physiologic process,
these genes should have higher NEI scores. Genes that have relatively
unaffected gene expression values should likely be uninvolved in the pro-
cess; these should have relatively low scores on average. In Figure 5.5 we
have plotted the median and mean NEI scores for different levels of gene
expression. It is immediately apparent that the extremes of gene expression
have the mean and median highest NEI scores. In Figure 5.6 we show the

0.6

0.5

0.4

0.3

0.2

0.1

0
0 to .5 .5 to 1 1 to 1.5 1.5 to 2 2 to 2.5 > 2.5

NEI score

G
en

es

Figure 5.3 Histogram of NEI scores.

5.6 Application to phosphate metabolism data set 133

0.8

1.2

0.6

0.4

0.2

0

1

M
ea

n
ab

so
lu

te
 lo

g
ex

pr
es

si
on

 r
at

io

1 to 1.5 1.5 to 2.5 to 10 to .5 2 to 2.5 > 2.5
NEI score

Figure 5.4 Plot of gene expression versus NEI scores. Genes are categorized by their NEI scores.

The absolute value of the log expression ratio of genes with NEI scores in each range are averaged

and plotted. Included are also 95% confidence intervals. Error bars are larger for genes with high

NEI scores since there are fewer genes. Genes with high NEI scores have significantly higher gene

expression scores than genes with low NEI scores.

3

2.5

2

1.5

1

0.5

0 < - 3
-3 to -1

-1 to -1/2

1/2 to 0

0 to1/2

1/2 to 1

1 to 3
> 3

Log gene expression ratios

N
E

I s
co

re

3.5

mean

median

Figure 5.5 NEI score as a function of log gene expression ratios. Here all genes are grouped by

their gene expression. We plot the mean and median NEI score in each category.

134 5 : Text-based analysis of a single series of gene expressionmeasurements

percentage of genes that have NEI scores greater than 2 for different levels
of expression. Recall that altogether about 4% of genes have NEI scores
greater than 2 in this data set.
Now let us turn our attention to the 15 highest scoring genes in the data

set. These were the same genes listed in Table 5.1. We re-list these genes
along with their NEI score in Table 5.3. The genes involved in vacuole
fusion and phosphate metabolism all have high NEI scores, except for
PHO5. These are genes that are almost certainly involved in the condition
being tested, phosphate deprivation. On the other hand, the genes ARO9,
SSU, and SUL1 are almost certainly false positives, and they haveNEI scores
that are less than one. The three unnamed and uncharacterized genes are
difficult toappreciate; theyhaveveryfewarticleswrittenabout thembutseem
to receive high NEI scores, suggesting they might be true positives. Whether
this is in fact the case might be difficult to assess at the present time in an
objective sense as there is limited knowledge about these genes.
The NEI scores offer a second way to corroborate the involvement of

a gene outside of the expression data itself, and the possibility to distinguish
the true positives from the false positives. The NEI scores offer the
possibility to go down the list to other induced genes, with lower
expression ratios and distinguish which of those are true positives and
false positives.

0.8

0.6

0.4

0.2

0

F
ra

ct
io

n
of

 g
en

es

<-3
-3 to -1

-1 to -1/2

-1/2 to 0

0 to 1/2

1/2 to 1

1 to 3
> 3

Log gene expression ratios

1

Figure 5.6 Fraction of genes with high NEI scores as a function of expression ratio. For each

range of gene expression we plot the fraction of genes with NEI scores greater than 2. A horizontal

dotted line drawn at 4% indicates the total fraction of genes in the data set with scores greater

than 2.

5.6 Application to phosphate metabolism data set 135

5.7 Recognizing high induction false positives with
literature-based scores

The example that we have been focusing on so far is a high quality experi-
ment. It is a fabricated experiment that is the average of six different
experiments. In this section we will look at poorer quality individual
experiments. In these cases, the NEI scores become very valuable, as there
are many more false positives.
Here we consider arbitrarily the first of the six phosphate deprivation

experiments. The NEI scores of highly induced and repressed genes are in
general lower in this data set. ThemedianNEI score for the 15most induced
and repressed genes in this first experiment is 0.99 and 0.72; this compares to
2.9 and 1.5 in the averaged data set (see Table 5.4). In this data set 5% of the

Table 5.3 NEI scores for the top 15 expressed genes. In this table we list the same 15 genes as in

Table 5.1. We also list the NEI scores with respect to the same gene expression data set, and the

number of articles available for that gene. In addition the gene function is listed.

Gene NEI score #Articles Function

PHO11 4.8 14 Phosphate metabolism
PHO12 2.88 3 Acid phosphatase
PHO5 0.81 168 Phophate metabolism
unnamed 3.05 2 Cell wall organization
PHO3 3.05 21 Acid phosphatase involved in thiamine

transport
VTC3 3.08 3 Phosphate metabolism, vacuole fusion

(non-autophagic)
VTC1 3.08 7 Vacuole fusion (non-autophagic)
BAP3 3.53 13 Amino acid transport
unnamed 2.14 1
ARO9 0.68 4 Aromatic amino acid family metabolism
SSU1 0.57 8 Sulfite transport
SUL1 0.27 7 Sulfate transport
HXT2 2.02 36 Hexose transport
unnamed 1.78 2
VTC4 3.12 4 Vacuole fusion (non-autophagic)

Table 5.4 NEI scores for each of the individual experiments. Median NEI scores for the top 15

and bottom 15 genes in each individual experiment are listed in this table. Also the NEI scores for

the extreme genes are listed for the averaged experiment and for a randomized experiment.

exp 1 exp 2 Exp 3 exp 4 exp 5 exp 6 avg rand

15 most induced genes 0.99 1.56 1.72 2.24 2.5 2.6 2.88 0.49
15 most repressed genes 0.72 0.61 0.83 0.9 1.3 1.44 1.5 0.43
all genes 0.76 0.75 0.62 0.71 0.56 0.65 0.49 0.49

136 5 : Text-based analysis of a single series of gene expressionmeasurements

genes haveNEI scores above 1.6 and themedianNEI score is 0.76. In general
NEI scores are lower for the extreme genes. Since the data are much noisier,
manymore inappropriate genes are highly expressed or induced while many
of the genes that respond to the condition have their responsesmasked in the
noise.The inappropriate genes are the false positives,most ofwhichhave low
NEI scores. In addition, the NEI scores for the true positive genes can be
somewhat lower aswell, since the expression change of their literature-based
functional neighbor genes may be inappropriately lower due to noise. In this
example we focus on the most induced genes, and examine how well NEI
distinguishes likely false positives from true positives.
In Table 5.5 we have listed the top 15 induced genes in that experiment

and their NEI scores, and a short description of their biological functions.
Many of the genes have larger expression ratios than in the averaged
experiment, but larger expression ratios do not necessarily imply greater
biological significance. Only five of these genes are the same as the top
induced genes in the averaged data set. Most of these genes have relatively
high NEI scores; all five have scores greater than 1. Most of the genes other
than those five have no obvious connection to phosphate metabolism. In

Table 5.5 NEI scores for the top 15 expressed genes in the first experiment. In this table we

list the top 15 expressed genes. We list the gene names in the first and second columns, the gene

function in the third column, the log expression ratio in the fourth column, and the NEI Score in the

fifth column. Asterisks indicate the genes that were among the top 15 induced in the averaged

expession series (see table 5.1).

Systematic name Name Function Log exp ratio NEI score

YOL155C *un-named Cell wall organization 6.7 1.02
YAR071W *PHO11 Phosphate metabolism 6.3 2.78
YHR215W *PHO12 Acid phosphatase 5.8 1.89
YLR142W PUT1 Glutamate biosynthesis 3.7 0.6
YBR150C TBS1 3.5 0.53
YDR080W VPS41 Protein transport 3.3 1.24
YLR089C ALT1 Transaminase 3.2 0.97
YOL038W PRE6 Ubiquitin dependent protein

catabolism
3.2 0.53

YJR148W BAT2 Branched chain family amino
acid biosynthesis

3.1 1.02

YBR092C *PHO3 Acid phosphatase involved in
thiamine transport

3.1 1.73

YAR068W *un-named 3.1 1.59
YNL333W SNZ2 Thiamine biosynthesis 3 0.7
YDR017C KCS1 Response to stress 2.9 0.99
YMR145C NDE1 Ethanol fermentation 2.7 0.59
YER056C FCY2 Purine transport 2.7 0.72

Recognizing high induction false positives 137

addition they have relatively low NEI scores; eight of the ten have NEI
scores less than 1. The functions seem rather like a motley collection of
unrelated biological functions, and are likely false positives despite their
high gene expression. In this context the NEI scores are effective at separ-
ating the likely true positives from the false positive. In this case setting an
NEI threshold of one would eliminate eight false positives and select all five
presumed true positives.

5.8 Recognizing low induction false positives

Another way to demonstrate the value of the NEI scoring system is to focus
on genes with even minimal changes in expression values rather than
extreme changes. For these genes, it can be evenmore difficult to distinguish
genes that are reliably influenced by the condition from spurious genes,
since they have lower expression levels.
We contend that NEI scores can help assess genes having minimally

changed expression. To demonstrate we focus arbitrarily on the third of
the same set of experiments. And we examine low induction genes. In this
case we look at genes with log expression ratios between 0.5 and 1.5. In this
experimental set there are some 308 genes with expression values in this
range. Under these circumstances, it would be difficult to do detailed
experimental follow-up of all of these genes. In addition false positives
will be abundant.
One way of distinguishing genes that are true positives and false positives

is to do replicates. Presumably, the more times a gene achieves expression
values greater than 0.5 in other experiments, the more likely it is to be a true
positive. Of course, this will not account for systematic error, but should
reduce sporadic errors such as the ones caused by aberrations in inducing
the experimental condition in that particular trial. In this case we have five
other replicates of the same experiment to examine. Since genes with high
NEI scores should be true positives, then the experimental replicates for
those genes should also have expression values that are greater than 0.5.
In Figure 5.7(a) we have plotted the average number of times the repli-

cated expression values of these low induction genes are greater than 0.5 in
other experiments. As the literature-based NEI scores increase, the average
number of positive replicates increases as well. Similarly the fraction of
genes with at least four out of five positive replicates correlates with the NEI
score (Figure 5.7b). This correlation with the reproducibility of a gene’s
expression suggests that the NEI score can be used to suggest likely true
positives, even among genes with low induction.

138 5 : Text-based analysis of a single series of gene expressionmeasurements

(b)

5

4

3

2

1

0
.5−1.0 1.0−1.5 1.5−2<0.5 >2

NEI score

.5−1.0 1.0−1.5 1.5−2<0.5 >2
NEI score

N
um

be
r

of
 r

ep
lc

ia
te

s
w

ith
 lo

g
ex

pr
es

si
on

 >
 0

.5

0.75

0.5

(a)

1

0.25

0

F
ra

ct
io

n
re

pl
ic

at
ed

 in
 >

3/
5

ex
pe

rim
en

ts

Figure 5.7 Genes with low induction. Here we look specifically at genes in experiment 3 that are

modestly induced with log expression rations between 0.5 and 1.5 These genes are divided by their

NEI scores into five ranges. Genes with high NEI scores are more likely to be true positives. (a)

The average number of the five replicates in which those genes have a log expression ratio greater

than 0.5. (b) The proportion of genes with a log expression ratio greater than 0.5 in at least four of

the five replicates. In both plots 95% confidence intervals are included.

5.8 Recognizing low induction false positives 139

5.9 Assessing experiment quality with literature-based
scoring

The single experiment we looked at in Section 5.7 was a lower quality data
set than the averaged data of all six. It was apparent that the data from this
experiment did not capture a clean physiologic response when we looked at
the highest induced genes. They did not appear to represent a clear physio-
logic process. This was reflected in the lower NEI scores.
Up until now we have been arguing that NEI scores can be used to

distinguish false positives and true positives. In addition, NEI scores can
be used to compare experiments and assess their quality.
For each of the six experiments we have tabulated the median NEI scores

for all genes and for the top 15 induced and repressed genes in Table 5.5.
The averaged experiment, which is data that contains the least noise, has
the highest scores for the induced and repressed genes, and the lowest
median score for all genes. Also for comparison we show the same statistics
for a random data set. Not surprisingly, the median NEI score is no different
from the median NEI scores of the top 15 induced and repressed genes.
These numbers give us a good sense of the quality of the data. High

quality data sets have induced and repressed genes with high median NEI
scores. Low quality data sets, on the other hand, may show little enrichment
of high NEI scoring genes at the extremes of expression.

5.10 Improvements

Here we have demonstrated a scoring system that evaluates a gene in the
context of other genes. To assess the involvement of a gene in a given experi-
ment it looks at the expression of its neighbors. The value of the scientific
literature, here, is to help identifywhat those neighbors are. Aswe applymore
effective strategies to identify functional neighbors, the performance of this
method will improve; for example application of latent semantic indexing
might improve performance. In addition more effective weighting schemes
and better distancemetrics will likely improve performance.
In addition, in its current formulation, there is poor accounting for the

fact that some articles have hundreds of referring genes while others only
have a single one. When constructing a word vector for a gene, there is
likely some advantage to down-weighting the influence of articles that refer
to many other genes; these articles are likely nonspecific assays. On the
other hand, articles that refer to only that gene are likely very valuable and
should be up-weighted when creating word vectors. These adjustments to
the formulation of word vectors may also increase the performance of the
NEI method altogether.

140 5 : Text-based analysis of a single series of gene expressionmeasurements

The strategy we are using to identify neighbors requires us to create
vectors of words by averaging the content of many different articles. This
can be a major disadvantage as the articles may have diverse content. As we
average many different articles that talk about different aspects of the
genes, valuable signal may be diluted out. A better strategy is to treat the
articles separately, and not merge their content into a single vector. We will
address this issue more thoroughly in Chapter 6.
Finally, there is the issue that many genes are poorly studied and lack

sufficient amounts of literature to create accurate NEI scores for. In these
cases, the current formulation we have introduced is less effective. In many
cases, these are the most interesting genes to focus on as well. This is one of
the real challenges to using any literature-based approach. In Chapter 4 we
introduced sequence-based strategies to supply these genes with surrogate
references.

5.11 Application to other assays

The framework that we have introduced here is valuable to many genomic
assays where the response of thousands of genes to a stimulus is being
assayed. In all of these cases, the sheer number of genes examined often
requires external corroboration to evaluate whether a positive finding by
assay makes sense in the context of the rest of the data. The NEI approach
offers a means to do this. For example, the Serial Analysis of Gene Expres-
sion (SAGE) assay can also assess expression of genes, but in an alternative
fashion (Velculescu, Zhang et al. 1995). The assay results can also be used
with NEI scores to assess the reliability of highly expressed genes. Another
assay that this approach can be effectively applied to is large yeast-2-hybrid
assays where thousands of genes are screened and scored for their ability to
bind a single protein (Fields and Song 1989). A more detailed discussion of
protein binding is presented in Chapter 10. One would expect that a true
positive binding protein should share some biological function with other
proteins that are able to bind. NEI scoring can be used to identify proteins
that have functionally similar proteins that are also likely binding proteins.

5.12 Assigning keywords that describe the broad biology
of the experiment

In this section we introduce a strategy to assign keywords to the gene
expression experiment that broadly describe the function of the genes that
are either induced or repressed. The goal is to identify words that provide

Assigning keywords that describe the broad biology 141

the biologist with a quick sense of the experiment and which genetic
processes are active. There are many possible strategies that can effectively
accomplish this goal.
In the previous chapters we showed how weighted word vectors for

different genes could be averaged together; the greatest valued words in
this vector can often be effective keywords for that group. This strategy
could be applied in the context of gene expression data if a group of
genes could be defined effectively. This is difficult, however, since true
positive and false positive genes are mixed together, and it is impossible to
create an expression threshold that clearly separates a groupof genes that are
truly responding to the physiologic condition from non-responsive genes.
Instead we propose another approach in this section. We calculate an

expression value for each word. We do this by looking at each article and
assigning it an expression value by averaging the genes it refers to. Then the
expression value of a word is the average expression value of all of the
articles it is in. This is depicted in the schematic in Plate 5.1. The final step is
to determine whether or not that expression value for the word is signifi-
cantly positive or negative.
The average expression of an article i that has references to mi genes is:

ai ¼ 1

mi

X
gj

where ai is the averaged expression of the genes j that it refers to, and gj is
the expression of gene j. In matrix form, we define a matrix R (for reference
matrix) where the rows correspond to articles, and the columns correspond
to genes. If there are Na articles and Ng genes, then this matrix is Na �Ng.
The entry at any position (i, j) is non-zero only if article i has a reference to
gene j. If non-zero entries at each position (i, j) are assigned 1=mi, then with
this formulation,

ai ¼
X

rij � gj

or

A ¼ R�G

where G is a column vector that contains the gene expression values for
each of the genes, and A is a column vector that contains the expression
values for each of the articles.
Similarly, the expression value of a word i that occurs inmi articles, each

with an expression aj, can be calculated by averaging the expression of
those articles:

142 5 : Text-based analysis of a single series of gene expressionmeasurements

wi ¼ 1

mi

X
aj

where wi is the calculated expression value. In matrix form, we define a
matrix T (for text matrix) where the rows are words and the columns are
articles. The entry (i,j) is non-zero only if theword is in the article. If theword
i is in the article j then the entry (i,j) is set to 1=mi. So each entry is the inverse
of the number of articles the word appears in. With this formulation:

wi ¼
X

tij � aj

or:

W ¼ T � A

where A is a column vector that contains the gene expression values for
each of the articles, and W is a column vector that contains the calculated
expression values for each of the words. In fact we can see that the expres-
sion values for the words W is calculated directly from the gene expression
values G:

W ¼ T � R�G

So actually, for each word, its expression is a weighted mean of gene
expression values where the weights are contained in the matrixY ¼ T � R.
Once the mean expression values for each of the words are calculated, the

key step is to determine whether the expression values are significant or not.
The first step to this is to calculate the variance of the weighted mean for
each word:

s2i ¼
X
j

yij(gj �wi)
2

Where yij is the weighted contribution of the gene expression gj to the mean
word expression value, wi. The next step to calculating the variance of the
mean is as follows:

s2
i ¼ s2i

X
j

yij2

Once a mean expression value has been calculated for each word, and its
mean variance determined, we can determine the number of standard
deviations it is away from zero, or its z-score (see Section 2.2):

Assigning keywords that describe the broad biology 143

zi ¼ wi � xffiffiffiffiffiffi
s2
i

q

Here x is the mean expression of all genes,wi is the mean expression for the
word. The square root of the variance is the standard deviation. Aword that
has an expression value that is 1.97 standard deviations away from zero is
significant at the alpha < 0:05 level (assuming a two-tailed test), while a
word that is 2.58 standard deviations away from the mean is significant at
the alpha < 0:01 level. Since we are looking at on the order of a thousand
words, the standard of statistical significance level is much greater. Using
the standard Bonferoni correction, we would prefer significance values on
the order of 0.05/1000. These values can be achieved with z-scores of 4.05.
Results of the application of this method to the phosphate deprivation

data are displayed in Figure 5.8. This strategy provides some clues about the
general expression responses of genes involved in different biological pro-
cesses. There were a total of 1179 words present in more than 300 articles.
We selected these common words. Then we used the above equations to
calculate the mean expression for each word, and the mean variance. We
selected all words with z-scores greater than 4.05 with the greatest mean
positive and negative expression. These words are listed in the figure. We
have plotted the mean expression value for each word with 99.995%
confidence intervals; these confidence intervals include 4.05 mean standard
deviations on either side of that value.

MAP
cAMP
cyclin
MAT

sigaling
coupled

kinase

basal
G1
nitrogen
arrest
ubiquitin
kinases
transduction
heat
receptor
shock
mating
receptors
pheremone phosphatase

cytochrome
oxidase

glycosylation
outer

reductase
secreted

respiratory
mitochondria
transformed

mitochondrial
inner

mature
oxidative

phosphate
matrix

replaced
plasma

electron
amounts

0 0.20.1 0.3 0.4 0.5−0.5 −0.4 −0.3 −0.2 −0.1

Figure 5.8 Keywords identified that characterize phosphate deprivation experiments. Top

positively expressed and negatively expressed keywords, plotted with confidence intervals.

144 5 : Text-based analysis of a single series of gene expressionmeasurements

The most induced word is ‘‘phosphatase’’. It makes sense that under the
condition of phosphate deprivation genes that are phosphatases that free
phosphate from other molecules are up-regulated. Not surprisingly the
word ‘‘phosphate’’ is also induced, highlighting the critical role this mol-
ecule plays in this condition. Many of the other induced words seem to be
connected to aerobic respiration and energy generation in the mitochon-
dria. These words include ‘‘mitochondria’’, ‘‘respiratory’’, ‘‘electron’’,
‘‘cytochrome’’ and ‘‘oxidase’’.
On the other hand, the genes that are suppressed are related to mating

and cell reproduction. Genes related to communicating and mating with
other cells, such as signaling molecules and pheromones, are repressed;
the words ‘‘MAT’’, ‘‘pheromone’’, ‘‘signaling’’, and ‘‘receptors’’ are down-
regulated. Also there is a suggestion that cell cycle associated genes are also
repressed during starvation; words like ‘‘cyclins’’ and ‘‘G1’’ have negative
log expression ratios. During a starvation state cellular replication and
reproduction is low priority. Finally kinase proteins, responsible for phos-
phorylation of proteins, is down-regulated when phosphate is scarce. These
keywords seem to offer some insight as to what is happening in this
condition.

References

Ball, C. A., I. A. Awad, et al. (2005). ‘‘The Stanford Microarray Database accommo-
dates additional microarray platforms and data formats.’’ Nucleic Acids Res. 33
Database Issue: D580–2.

Fields, S. and O. Song (1989). ‘‘A novel genetic system to detect protein-protein inter-
actions.’’ Nature 340(6230): 245–6.

Lee, M. L., F. C. Kuo, et al. (2000). ‘‘Importance of replication in microarray gene
expression studies: statistical methods and evidence from repetitive cDNA hybridiza-
tions.’’ Proc. Natl. Acad. Sci. USA. 97(18): 9834–9.

Novak, J. P., R. Sladek, et al. (2002). ‘‘Characterization of variability in large-scale gene
expression data: implications for study design.’’ Genomics 79(1): 104–13.

Saldanha, A. J., M. J. Brauer, et al. (2004). ‘‘Nutritional homeostasis in batch and
steady-state culture of yeast.’’ Mol. Biol. Cell. 15(9): 4089–104.

Tu, Y., G. Stolovitzky, et al. (2002). ‘‘Quantitative noise analysis for gene expression
microarray experiments.’’ Proc. Natl. Acad. Sci. USA. 99(22): 14031–6.

Velculescu, V. E., L. Zhang, et al. (1995). ‘‘Serial analysis of gene expression.’’ Science
270(5235): 484–7.

References 145

This page intentionally left blank

Analyzing groups of genes

The analysis of large-scale genomic data (such as sequences or expression
patterns) frequently involves grouping genes based on common experimen-
tal features. The goal of manual or automated analysis of genomics data is
to define groups of genes that have shared features within the data, and also
have a common biological basis that can account for those commonalities.
In utilizing algorithms that define groups of genes based on patterns in data
it is critical to be able to assess whether the groups also share a common
biological function. In practice, this goal is met by relying on biologists with
an extensive understanding of diverse genes that decipher the biology
accounting for genes with correlated patterns. They identify the relevant
functions that account for experimental results. For example, experts rou-
tinely scan large numbers of gene expression clusters to see if any of the
clusters are explained by a known biological function. Efficient definition
and interpretation of these groups of genes is challenging because the
number and diversity of genes exceed the ability of any single investigator
to master. Here, we argue that computational methods can utilize the
scientific literature to effectively assess groups of genes. Such methods can
then be used to analyze groups of genes created by other bioinformatics
algorithms, or actually assist in the definition of gene groups.
In this chapter we explore statistical scoring methods that score the

‘‘coherence’’ of a gene group using only the scientific literature about
the genes—that is whether or not a common function is shared between
the genes in the group. We propose and evaluate such a method, and
compare it to some other possible methods. In the subsequent chapter, we
apply these concepts to gene expression analysis.
The major concepts of this chapter are described in the frame box. We

begin by introducing the concept of functional coherence. We describe four
different strategies to assess the functional coherence of a group of
genes. The final part of the chapter emphasizes the most effective of these
methods, the neighbor divergence per gene. We present a discussion of its
performance properties in general and on its robustness given imperfect
groups. Finally we present an example of an application to gene expression
array data.

6

6.1 Functional coherence of a group of genes

The main challenge that we address in this chapter is creating a computa-
tional method that analyzes scientific literature about a group of genes to
determine whether the group is a biologically meaningful one. The goal is to
create a method that can quickly assess the biological significance of a
group of genes based on scientific text. We have many statistical methods
available to us, some of which were discussed in Chapter 2, that can help us
assess and create group of genes with statistical similarity in experimental
data. But statistical significance and biological significance do not always
correspond. Methods such as those we introduce here help to assess the
biological significance of a group of genes based on the scientific literature.
These methods can be used after the application of statistical algorithms to
select the groups that are biologically meaningful that also correlate with
patterns in the data. Alternatively, experimental data analysis can be used in
conjunction with literature-based approaches to create more meaningful
groups—that is, groups can be defined with optimal biological coherence as
well as similarity in the experimental data. We can achieve these goals by
using two measures of similarity: one based on the experimental data and a
second on the biological literature, and optimizing both of them.
In this chapter we will use the term ‘‘functional coherence’’ to describe the

degree to which a set of genes have a common biological basis. In Table 6.1
we have listed a set of functionally coherent genes. These are all of the genes
in yeast that are the DNA-dependent ATPase genes in yeast; we obtained
these genes from Gene Ontology (Ashburner, Ball et al. 2000). These genes
convert ATP to ADP and generate energy that is then used to manipulate
DNA. Since these genes share this function in common, we would say this
group is a functionally coherent group.
Each gene is listed alongside a critical article reference that suggests that

function for the gene. The shared function of these genes is immediately
apparent by glancing at these references. We can see that many of the same

1) Functional coherence of a gene
group

2) Word distribution divergence
3) Best article score
4) Neighbor divergence
5) Neighbor divergence per gene

a) Performance
b) Score robustness to imperfect

groups
c) Application to expression

data

148 6 : Analyzing groups of genes

words appear in the titles of all of these genes. Ideally, functionally coherent
gene groups have two properties: (1) all of the genes have the same function,
and (2) all of the genes with that function are contained in the group itself.
In practice, text-based functional scoring schemes can only approximate this
ideal. For example, a group of genes similar to the one depicted in Table 6.1
that contains two additional unrelated genes may receive a lower coherence

Table 6.1 DNA dependent ATPase genes in yeast. This table lists the genes with the DNA

dependent ATPase function in yeast as indicated in the Gene Ontology database. We list the key

reference cited in Gene Ontology that suggests that biological function in the second column. In the

final column we list the total number of references that each gene has.

Gene Article
Article
references

RAD16/YBR114W Guzder SN, et al. (1998) The DNA-
dependent ATPase activity of yeast
nucleotide excision repair factor 4 and its
role in DNA damage recognition. J Biol
Chem 273(11):6292–6

66

RAD18/YCR066W Bailly V, et al. (1997) Yeast DNA repair
proteins Rad6 and Rad18 form a
heterodimer that has ubiquitin conjugating,
DNA binding, and ATP hydrolytic
activities. J Biol Chem 272(37):23360–5

96

RAD26/YJR035W van Gool AJ, et al. (1994) RAD26, the
functional S. cerevisiae homolog of the
Cockayne syndrome B gene ERCC6.
EMBO J 13(22):5361–9

34

RAD54/YGL163C Petukhova G, et al. (1999) Yeast Rad54
promotes Rad51-dependent homologous
DNA pairing via ATP hydrolysis-driven
change in DNA double helix conformation.
J Biol Chem 274(41):29453–62

189

RAD7/YJR052W Guzder SN, et al. (1998) The DNA-
dependent ATPase activity of yeast
nucleotide excision repair factor 4 and its
role in DNA damage recognition. J Biol
Chem 273(11):6292–6

67

RDH54/YBR073W Petukhova G, et al. (2000) Promotion of
Rad51-dependent D-loop formation by
yeast recombination factor Rdh54/Tid1.
Genes Dev 14(17):2206–15

26

RIS1/YOR191W Zhang Z and Buchman AR (1997)
Identification of a member of a DNA-
dependent ATPase family that causes
interference with silencing. Mol Cell Biol
17(9):5461–72

3

6.1 Functional coherence of a group of genes 149

score, but likely still a significant one. In the same way a group of genes
similar to the one in the table but missing two of the genes will also receive a
significant score. For our purposes, this is actually a helpful property as
experimental methods rarely generate perfect groups of genes and more
often than not we are attempting to detect approximate groups. However,
we would prefer that, as a group becomes closer to ideal, its functional
coherence score does improve.
Another caveat about functionally coherent groups of genes is that they

may be broad or very narrow in scope. For example, a group of genes
containing all of the genes involved in metabolism can be a large, but
coherent group of genes. On the other hand, a smaller subset of genes
containing only carbohydrate metabolism is still functionally coherent,
even though it is a much smaller set of genes. Going further, the even smaller
subset of genes involved in glycolysis is also equally functionally coherent.
So this can be confusing since all metabolism genes may include thousands
of genes, whereas all glycolysis genes may include ten genes or so. In the
context of the analysis of experimental data, both large broad groups and
smaller narrow functional groups are equally important, as either type can
be affected by different stimuli and both are important to recognize.
Recognizing coherent gene groups from the literature is a challenging

problem, since there are disparities in the literature about genes. A given
gene may have many relevant documents or none, and the documents about
it may cover a wide spectrum of functions. This issue is addressed in great
detail in Chapter 1. Some genes have been extensively studied while others
have only been recently discovered, and may not have any available articles.
This disparity is apparent even in the group listed in Table 6.1, which is an
unusually well studied group as evidenced by the number of article refer-
ences available for each gene. Note, however, that while most genes have
20–100 references, one has 189 and another has only three.
Additionally, most genes have multiple functions, and this is reflected in

the literature. References about a given gene might include articles that
discuss the gene’s sequence, phenotype, molecular function, location in the
cell, one or more of its biological functions, or the structure of its protein
product. For example, consider the gene RDH54 that has 26 relevant
articles, the most recent of which are listed in Table 6.2. Of these articles
none of them address theDNA dependent ATPase function of the gene. The
articles address a variety of different functions including meiosis, recom-
bination, DNA double strand break repair, and a sequencing paper. These
other articles are not relevant to this issue. So effectively understanding the
relationship of the genes in Table 6.1 relies on our ability to recognize and
focus on those key articles that tie these genes together. So in this chapter,
unlike the previous ones, we treat each article as an independent source of

150 6 : Analyzing groups of genes

Table 6.2 Recent articles about RDH54. Here we have listed 16 of the most recent articles about

this gene. These articles speak to the diverse and complex functionality of this gene, and none of

these articles addresses the genes DNA-dependent ATPase function in an obvious manner.

Shinohara M, et al. (2003) Crossover interference in Saccharomyces cerevisiae requires
a TID1/RDH54- and DMC1-dependent pathway. Genetics 163(4):1273–86

Lee SE, et al. (2003) Yeast Rad52 and Rad51 recombination proteins define a second
pathway of DNA damage assessment in response to a single double-strand break. Mol
Cell Biol 23(23):8913–23

Kellis M, et al. (2003) Sequencing and comparison of yeast species to identify genes and
regulatory elements. Nature 423(6937):241–54

Fukuda T, et al. (2003) VDE-initiated intein homing in Saccharomyces cerevisiae
proceeds in a meiotic recombination-like manner. Genes Cells 8(7):587–602

Catlett MG and Forsburg SL (2003) Schizosaccharomyces pombe Rdh54 (TID1) acts
with Rhp54 (RAD54) to repair meiotic double-strand breaks. Mol Biol Cell
14(11):4707–20

Symington LS (2002) Role of RAD52 epistasis group genes in homologous
recombination and double-strand break repair. Microbiol Mol Biol Rev 66(4):630–70,
table of contents

Shor E, et al. (2002) Mutations in homologous recombination genes rescue top3 slow
growth in Saccharomyces cerevisiae. Genetics 162(2):647–62

Miyagawa K, et al. (2002) A role for RAD54B in homologous recombination in human
cells. EMBO J 21(1–2):175–80

Signon L, et al. (2001) Genetic requirements for RAD51- and RAD54-independent
break-induced replication repair of a chromosomal double-strand break. Mol Cell Biol
21(6):2048–56

Lee SE, et al. (2001) The Saccharomyces recombination protein Tid1p is required for
adaptation from G2/M arrest induced by a double-strand break. Curr Biol
11(13):1053–7

Klein HL (2001) Mutations in recombinational repair and in checkpoint control genes
suppress the lethal combination of srs2Delta with other DNA repair genes in
Saccharomyces cerevisiae. Genetics 157(2):557–65

Sung P, et al. (2000) Recombination factors of Saccharomyces cerevisiae. Mutat Res
451(1–2):257–75

Shinohara M, et al. (2000) Tid1/Rdh54 promotes colocalization of rad51 and dmc1
during meiotic recombination. Proc Natl Acad Sci U S A 97(20):10814–9

Petukhova G, et al. (2000) Promotion of Rad51-dependent D-loop formation by yeast
recombination factor Rdh54/Tid1. Genes Dev 14(17):2206–15

Haber JE (2000) Recombination: a frank view of exchanges and vice versa. Curr Opin
Cell Biol 12(3):286–92

Haber JE (2000) Partners and pathwaysrepairing a double-strand break. Trends Genet
16(6):259–64

6.1 Functional coherence of a group of genes 151

information. Combining the signal from all of the articles about a gene into
a single word vector dilutes the important signal that we are interested in.
The best performing method is neighbor divergence per gene (NDPG). It

requires only a corpus of documents relevant to the genes being studied (e.g.
all genes in an organism) and an index connecting the documents to appro-
priate genes. Given a group of genes, NDPG assigns a numerical score
indicating how ‘‘functionally coherent’’ the gene group is from the perspec-
tive of the published literature (Raychaudhuri, Schütze et al. 2003). The
methodwas tested by assessing its ability to distinguish 19 known functional
gene groups from 1900 randomly assembled groups. NDPG achieves 95%
sensitivity at 100%specificity, comparing favorably to other testedmethods.
An alternative approach to assessing the functional coherence of a gene

group is to cross-reference it against predefined groups of related genes that
have been compiled automatically from the literature or by manual anno-
tation. The Gene Ontology (GO) consortium and the Munich Information
Center for Protein Sequences (MIPS) provide vocabularies of function and
assign genes from multiple organisms the relevant terms (Ashburner, Ball
et al. 2000; Mewes, Frishman et al. 2000). Genes that are assigned the same
term constitute a functional group of genes. However, such resources may
not be comprehensive and up to date at any given time, and it is
also laborious to maintain the vocabulary and the gene assignments. The
literature-based method introduced here requires only a set of references
associated with genes. It requires no precompiled lexicons of biological
function, previous annotations, or co-occurrence in the literature. It is
kept current and up to date if it is provided a current literature base.
Furthermore, this method can be applied to any arbitrary set of genes, as
long as an index of gene-article associations is provided. These precompiled
sets of genes are very helpful, however, in that they provide a nice set of
functionally coherent groups that can be used as a gold standard to evaluate
the literature methods that we propose.

6.2 Overview of computational approach

The neighbor divergence per gene (NDPG) and the other methods that we
test in this section require only a corpus of articles relevant to the studied
genes (e.g. all genes in an organism) and a reference index connecting the
articles to appropriate genes. Such reference indices are often available on-
line from genome centers (see Chapter 1) or can be compiled automatically
by scanning titles and abstracts of articles for gene names (Jenssen, Laegreid
et al. 2001). Given a group of genes, these methods assign a numerical score
indicating how ‘‘functionally coherent’’ the gene group is from the perspec-
tive of the published literature.

152 6 : Analyzing groups of genes

The intuition behind NDPG involves recognizing key articles that are
about the function represented in the group. Suppose a group of genes
shares some specific function, such as DNA-dependent ATPase, and con-
tains all of the genes with that function. An article germane to that function
must refer to at least one of the genes in the group. Furthermore, other
articles that are semantically similar will pertain to the same function and
will also refer to genes in the same group. In Figure 6.1 we have displayed a
schematic group and its articles. The articles represented by the darkened
boxes are the key articles that tie these genes together. Presumably there is
similarity between these articles. These articles are not unlike the articles
listed in Table 6.1 that are the key articles for that group. The other articles
represented by the light boxes are like the articles listed in Table 6.2; these
articles address the other facets of the genes.
NDPG assigns a functional coherence score to a group of genes based on

the literature. It uses document distance metrics to calculate semantic
neighbors; two articles are semantic neighbors if there is similar word
usage in each of them. First, semantic neighbors are pre-computed for each
article in the corpus.Given a gene group, each article’s relevance to the group

gene A

article A.1

article B.1 article B.3 article B.4

article C.1

article C.2

article C.3

article C.4

article A.6

article A.5

article A.2

gene C

gene B

article A.3

article A.4

article B.2

article C.5

Figure 6.1 Finding the key articles that link a gene group together. This is graphical depiction of a

small gene group of three genes with the function DNA-dependent ATPase (boxes with dotted

boundaries). The genes are connected to their respective article references (boxes with solid

boundaries). Articles that talk specifically about theDNA-dependent ATPase genes are represented

as dark boxes with white lettering. For all genes, only a few of the referenced articles are pertinent

to this aspect of the gene. The arrows are used to indicate the semantic neighbors of ‘‘article B.2’’, a

DNA-dependent ATPase article. The significance of this article to the group’s unifying function

becomes apparent when we notice that many of its semantic neighbors, other articles about the

same function, refer to other genes in the same group.

6.2 Overview of computational approach 153

is scored by counting the number of its neighbors that have references to
genes in the group. If the group represents a coherent biological function, the
articles that discuss that function will have many referring neighbors within
the group and therefore score high (see Figure 6.2). Other articles that
address biological functions that are unrelated to the group function will
score low. If a few of the articles referring to a gene are high scoring articles,
then the gene has a function that is relevant to that of the group. For each
gene in the group, NDPG scores its functional relevance to the group by
comparing article scores of its references to an expected randomdistribution
of article scores; the difference between the two distributions is quantified
with the KL – divergence measure. The NDPGmeasure of functional coher-
ence of a gene group is the mean divergence of all of the genes in the group.
The key aspect of NDPG that makes it very effective is that it is an article-

based approach; its success hinges on the presence of a few key articles that

N8

N6 N4

N3

N1

N2

N5

N7

Gg
Gg Gg

Gg

G

Gg

G

Gg

G

G

G

Gg

G

G
G G

Gg

Gg

Gg

G

G

G

Gg

Gg

Gg

G

Article

Figure 6.2 Scoring an article’s semantic content for relevance to a gene group. For each article we

look at its semantic neighbors. Here we score the central article; it has eight semantic neighbors

indicated by the boxes with Ni labels. In principle the score of an article is the number of its

neighbors that refer back to genes in the original group. Here, we indicate group genes withGg and

non-group genes withG. In practice, neighbor articles might refer to multiple genes, some of which

are in the group and others of which are not.

154 6 : Analyzing groups of genes

unifies the group of genes given. This addresses the issue of recognizing and
avoiding irrelevant articles in scoring groups of genes. A second key aspect
of NDPG is that the score is a mean divergence of the scores of each of the
genes; each of the genes, regardless of whether they have a few or many
articles, make an equal contribution to the mean. This addresses the issue of
the biases in the amount of literature present per article.
We compare this method to other seemingly promising approaches that

lack these key features. We demonstrate a method that is based on the
distribution of words. In this method articles are not treated individually.
Rather, all of the words from all of the articles are combined together, and a
distribution of words among these articles is defined. The theory is that if
the genes in this group define a coherent function, the distribution of words
describing these genes will be considerably different from the baseline
distribution of words in biology.
Asecond strategy is to lookat the singlekeyarticle that ismost relevant toa

group of genes. The idea is that a relevant article will have article neighbors
that refer to genes in the group of genes. Unlike the prior strategy, this is an
article-based strategy.But it lacks robustnessas it looksonlyata singlearticle.
A third strategy is to score all of the articles in the corpus for its relevance

to the group. A significant group that is biologically meaningful should have
a larger than randomly expected number of articles with high scores.

6.3 Strategy to evaluate different algorithms

NDPG calculation of a gene group requires a corpus of documents relevant
to all genes in the organism, and a reference index indicating the articles
that are germane to each gene. As in the previous chapters, the documents
are PubMed abstracts. The title and abstract fields in the PubMed records
are the only ones used. Those words that are present in more than four
abstracts and fewer than 10,000 abstracts are considered as vocabulary
words. Abstracts are converted into vectors of word counts. All experi-
ments described below were conducted in S. cerevisiae, or baker’s yeast. For
this study we used a reference list that contained PubMed abstract refer-
ences to yeast genes (Cherry, Adler et al. 1998). The reference list included
20,101 articles with 50,860 references to 4205 genes.
To evaluate NDPG and compare it to the other approaches described in

the previous section, we used 19 known functional yeast gene groups. We
also devised 1900 decoy random yeast gene groups. We compared the four
methods by scoring all groups. A good method should assign high scores to
functional groups and lower scores to random groups.
The functional groups were devised by selecting 19 Gene Ontology terms

relevant to yeast biology; all terms were biological process terms. Since GO

6.3 Strategy to evaluate different algorithms 155

is a hierarchical vocabulary, each group was defined as the set of genes
assigned either the listed term or more specific descendants of that term.
The GO terms and some properties of the groups they correspond to are
described in Table 6.3(a). The gene groups selected for this study varied
vastly in number and content. This diversity is representative of gene groups
that experimental procedures may derive. The number of genes per group
range from 6 to over 600. Incidentally, many of the genes were members of
more than a single functional gene group (Table 6.3b). This underscores the
multiple functionality that many genes have.
We assembled a set of 1900 random gene groups as decoy gene groups.

For each functional gene group, 100 gene groups were created with the

Table 6.3 A description of the functional gene groups used to evaluate functional coherence

methods. (a) Each of the gene groups was devised from a Gene Ontology code. In the first column

we list the function of the associated code. In the second column we list the number of yeast genes

with that function. In the final column we list the number of articles referenced in total by those

genes with that function. (b) Many of the genes are in more than one of the groups in (a). This table

lists the number of genes in multiple functional groups. Many genes are not in a single functional

group. Some genes are in as many as six functional groups.

(a)

Functional classification Genes Unique articles referenced

signal transduction 94 1944
cell adhesion 6 59
autophagy 16 55
budding 74 979
cell cycle 341 4438
biogenesis 459 3840
shape size control 54 1014
cell fusion 89 1470
ion homeostasis 43 363
membrane fusion 6 209
sporulation 27 553
stress response 94 1866
transport 313 2708
amino acid metabolism 78 1221
carbohydrate metabolism 90 1855
electron transport 8 187
lipid metabolism 90 715
nitrogen metabolism 15 229
nucleic acid metabolism 676 6674

(b)

Number of groups/gene 0 1 2 3 4 5 6
Number of genes 2412 1242 386 113 40 9 3

156 6 : Analyzing groups of genes

same number of random genes. This was done to insure that decoy groups
varied as dramatically in size as the functional groups.
In this study we evaluated several different methods to score the func-

tional coherence of a gene group. These methods are described in detail
below. Each method was used to score the 1900 decoy gene groups and the
19 functional gene groups. A good method assigns a score to each func-
tional group that exceeds the score of the other 1900 groups. For compari-
son, we calculated the precision and recall of a method at different score
cutoff levels. The precision is the number of functional groups scoring
above the cutoff divided by the number of total groups scoring above the
cutoff. The recall is the number of functional groups scoring above
the cutoff divided by the total number of functional groups.

6.4 Word distribution divergence

In Chapter 2 we defined word vectors for genes and groups of genes by
averaging word vectors for many different articles together. These amal-
gamated vectors were simple to use and effective in sequence analysis and in
expression analysis. For example, in the previous chapter we analyzed
single condition gene expression data by creating word vectors for each
gene that were averages of the word vectors for referring articles. The crux
of this approach was that we approached the literature by merging a large
collection of pertinent literature together. These approaches are conceptu-
ally simple and easy to implement.
The disadvantage of these approaches is that merging articles eliminates

their uniqueness. Merging together such text information often gives the
impression of creating more robust word vectors. But in practice the con-
tent of the articles is diverse, even those articles describing the same gene. As
a result combining the information from many articles into a single repre-
sentation for a gene can actually dilute the signal. For example, a very non-
specific collection of words may result from merging articles about the
protein structure of a gene product, the human diseases that a gene has
been implicated in, and a broad screen that had been used to identify the
association of that gene with others.
As a starting point to address automatic functional coherence assessment,

we describe the word distribution divergence (WDD) method (Raychaud-
huri, Schutze et al. 2002). TheWDD strategy is similar to those strategies in
prior chapters, where word counts for many articles for many genes are
simply merged together to create a single representation for the gene group.
This method requires calculation of and comparison of two distributions of
words. The first, f, is a distribution of words used in all articles referring to

6.4 Word distribution divergence 157

genes in the group; the second, g, is a distribution of words referring to
genes outside the same group. The thinking behind this approach is that if a
specific function is represented in the group then words corresponding to
that function will be enriched among the articles referring to genes in that
group. The other distribution of articles referring to genes outside the group
will have a paucity of those same words. Consequently there will be
differences between these two distributions that become increasingly dra-
matic as the gene group becomes more functionally coherent. A group of
ribosomal genes, for example, should have referring articles with words like
‘‘ribsome’’ and ‘‘tRNA’’ occurring considerably more frequently than in the
other articles.
The distribution f is computed from words in abstracts referring to genes

within the group; counts of each word are divided by the total number of
words in these abstracts:

f (wi) ¼

P
j

wijP
j

nj

wherewij is the number of times that word i appears in document j, and nj is
the total number of words in document j. In practice, articles may refer to
multiple genes, some of which are contained within the group and others
outside. To account for this we calculate the parameter fr for each article,
where:

frk‚ g ¼
rk‚ g
rk

where rk‚ g is the number of genes in the gene group g that the document k
refers to, rk is the number of genes that document k refers to altogether;
frk‚ g is the fractional reference for document k to group g. In practice, to
correctly account for articles having gene references both inside and outside
a given group, we calculate the empirical probability distribution f by
weighting word occurrences:

f (wi) ¼

P
j

frj‚ gwijP
j

frj‚ gnj

A distribution g is computed similarly for all abstracts referring to other
genes outside the group:

158 6 : Analyzing groups of genes

g(wi) ¼

P
j

(1� frj‚ g)wijP
j

(1� frj‚ g)nj

To avoid extremely low probability words that could inadvertently bias the
outcome both distributions are smoothed. This is particularly an issue if the
gene group has only a small number of relevant articles, and certain words
are not seen in those articles spuriously. Under those circumstances the
empirical distribution will have zero probability. Both distributions are
smoothed with Dirichlet priors assuming 300 prior words distributed
according to a baseline distribution, b:

fs(wi) ¼
f (wi)

P
j

frj‚ gnj

 !
þ b(wi)� 300

P
j

frj‚ gnj

 !
þ 300

The baseline distribution of each word is computed by dividing its count in
all abstracts by the total count of all words in all abstracts. The KL-
divergence between these two distributions of words is then computed to
quantify the difference between them; the gene group distribution f is
treated as the observed distribution. The divergence value is used as a
measure of functional coherence:

D(fs k gs) ¼
X
i

fs(wi) log2
fs(wi)

gs(wi)

� �

Therefore, WDD is an information theoretic measure of the disparity
between the two word distributions. If a subset of rare words is used
significantly more inside the group than outside the group, then these
words may be indicative of some biological function within the gene
group. Therefore WDD should be sensitive to the presence of biological
function in the gene group.
Figure 6.3 plots the precision and recall at different cutoff levels forWDD

and other methods for comparison. As the cutoff score is selected to be
more stringent, some functional groups are not obtained and therefore
recall is lower. But, most random groups fail to make the cutoff and the
precision is higher. WDD only achieves 10.5% recall (2 out of 19 functional
groups) at 8.3% precision on the same data set; this is equivalent to 10.5%
sensitivity at 98.9% specificity. The method does detect some signal since it
achieves 63% sensitivity at 64% specificity; a totally random method
would be 50% sensitive at 50% specificity.

6.4 Word distribution divergence 159

This method performs relatively poorly. While an individual article may
address a single aspect of a gene’s function, different articles referring to the
same gene may discuss many different biological functions. Consequently,
pooling all of the articles referring to a gene results in an uninformative
distribution of words. If all articles written about a gene addressed the same
function, this method would have been more successful.

6.5 Best article score

To demonstrate the value of article-based approaches, we introduce one
simple approach. This approach shows a dramatic improvement from
the word-based approach described in the last section. The best article

ND/gene

word distribution divergence

neighbor divergenece

best article score

Recall

P
re

ci
si

on

0%

0%

20%

40%

60%

80%

100%

20% 40% 60% 80% 100%

Figure 6.3 Precision–recall plot for each of the functional coherence scoring methods. We used

each method to score the functional coherence of the 19 functional gene groups and the 1900

random gene groups. We calculated and plotted precision and recall at cutoff scores of different

stringency. There is a tradeoff between precision and recall. More stringent cutoff values select

fewer true functional groups and recall (or sensitivity) is compromised; however less stringent cutoff

values cause many random groups to be selected inappropriately and precision is compromised. An

ideal precision–recall plot achieves 100% precision for every value of recall. The ‘‘neighbor-

divergence’’ method is closest to the optimal curve.

160 6 : Analyzing groups of genes

score (BAS) works by scoring the semantics of each article in the corpus for
relevance to the group of genes and then using the score of the best one as a
coherencemeasure. The score of an article is calculated by first identifying its
semantic neighbors, and then counting the number of neighbors that refer to
the genes in the group. The highest article score is used as ameasure of a gene
group’s functional coherence. Here, we will identify 199 neighbors for each
article, and in this case scores range from 0 to 199. While this method is
relatively simple compared toNDPG, testing its performance demonstrates a
definitive improvementbetweenword-basedandarticle-basedapproaches to
this same problem. It is limited, however, in that it utilizes only the score of a
single article rather than the distribution of article scores.
For each document, the 199 most similar documents (not including the

article itself) are pre-computed. To quantify the similarity between two
documents we use the cosine between the two weighted document word
vectors. To reduce the impact of common words, word vectors are first
converted into inverse document frequency weighted word vectors as
described in Chapter 3:

wi‚ j ¼ (1þ log2 (tfi‚ j)) log2 N=dfið Þ if tfi‚ j > 0
0 if tfi‚ j ¼ 0

�

where wi‚ j is the weighted count of word i in document j, tfi‚ j is the term
frequency of word i in document j, dfi is the document frequency of word i,
and N is the total number of documents. Document similarity is the cosine
of the angle between two weighted article vectors.
Given a gene group, we assign a score, Si, to each document i. The score is

the count of semantic neighbors that refer to group genes. The higher the
score of an article, the more relevant is its content to the shared biological
function that is represented in the group of genes. Coherent groups of genes
will cause a small set of germane articles to have extremely high scores.
Calculation of article scores is displayed schematically in Figure 6.2.
Practically, semantic neighbor documents in the data set may refer to

multiple genes rather than a single one. In many circumstances only some
of those genes may be contained in the group. If all of those genes are
contained in the gene group, then it makes sense to include the neighbor
article in the count of referring neighbors. If none of them are in the
group, then it is not included in the count at all. If only some of the
genes are contained, then the neighboring document is included as a
fraction:

frk‚ g ¼
rk‚ g
rk

6.5 Best article score 161

where frk‚ g is the fractional reference for document k to group g.
To obtain the document score, the referring fractions of the 199 neigh-

bors are summed and rounded to the nearest integer.

Si‚ g ¼ round
X199

j¼1
frsemi‚ j‚ g

	

whereSi‚ g is the score fordocument i for agroupg calculatedby roundingand
summing the fractional reference of its 199 neighbor documents whose
indices are semi‚ j: The value Si‚ g is an integer that ranges between 0 and199.
In practice, in defining the neighbors it is important to avoid articles that

refer to the same genes. Certain genes have large numbers of article refer-
ences; often many of these articles can be very similar to each other as they
may address the same issues about the same gene and on many occasions
can even be written by the same authors. In scoring articles for relevance to
a group of genes, neighbor articles that share reference to the same gene can
confound the analysis. Any group containing that particular gene will cause
those article to receive artificially high scores. To avoid this issue the
method uses a simple filter in the selection of the 199 neighbors for each
document. The method selects neighbors of a given document only from
those other documents that refer to at least one additional gene not in the
set of genes referred to in the given document.
The best article score (BAS) is similar to NDPG in that articles are scored

for relevance against the gene group by counting the number of referring
semantic neighbors. In BAS, however, only the single highest article score is
used as a score for the group. This method outperforms WDD, since it does
not combine a signal from many different articles, but rather considers the
articles individually. BAS achieves 31.6% recall at 100% precision (100%
specificity) (Figure 6.3). This is a dramatic improvement.
This method searches for articles that have semantic content that is

relevant to the group. The advantage of this approach is that articles are
treated as individuals. This approach is more appropriate for the problem,
since genes are often multifaceted. Scientific articles, however, tend to be
focused on the subject they are addressing, and appropriate semantic neigh-
bors can easily be found using good weighting schemes and distance met-
rics. The BASmethod is limited since it uses the score of only a single article;
this ignores other high scoring articles that should be abundant if the
gene group truly represents a function. The NDPG method relies on the
referring neighbor principle also, but in contrast obtains greater statistical
power by considering the scores of many articles and not just the extreme
valued ones.

162 6 : Analyzing groups of genes

6.6 Neighbor divergence

In neighbor divergence (ND) all the documents are scored as described
above. (A small technical difference is that 200 neighbors per article are
used, and one of the neighbors is the seed article itself.) Like the BAS
approach, this too is an article-based approach, but considers the score of
all articles instead of just the best scoring article. The empirical distribution
of article scores is obtained and examined. The idea is that if there is
functional coherence, there should be an excess of high scoring articles.
The number of these high scoring articles should exceed what we might
expect by random. The random distribution of article scores is modeled
with the Poisson distribution. The KL divergence between the entire
empirical distribution of all of the document scores and the theoretical
Poisson distribution is calculated and reported as a measure of functional
coherence.

6.6.1 Calculating a theoretical distribution of scores

In this subsection we estimate the expected distribution of article scores if
the gene group has no coherent functional structure. This gives us a basis of
comparison for the article scores we obtain. If the empirically obtained
article scores for a given set of genes are similar to what we would expect
for a random, incoherent group of genes, then we might assume that the
given group of genes is incoherent.
To calculate the theoretical distribution of article scores for a random

group of genes, we begin by assuming that the chance that an article will
refer to a gene in a group is a purely independent random statistical event
with a probability q. We can estimate the probability q empirically as the
number of articles referring to the group divided by the total number of
articles. In practice, since many articles refer to multiple genes:

q ¼
PN
i¼0

fri‚ g

N

where fr is the fraction of genes per article that refer to genes in the group.
Now consider that there are 200 neighbor articles, and the article score is

the number of articles that have references to genes in the group. If the
group is completely random, then this is akin to determining the number of
successful binary trials each with probability q of success. Since the trials
are independent, the probability distribution can be given with the binomial
distribution. The mean score of an article should be l ¼ 200� q. Under
most circumstances the group of genes is a small number compared to the

6.6 Neighbor divergence 163

number of genes in the data set, and q is relatively small. A Poisson
distribution would estimate this distribution accurately for small values of
q (see Section 2.2). In this case:

P(S ¼ n) ¼ ln

n!
e�l

The Poisson distribution gives us a distribution of expected article scores if
the group of genes was totally random.

6.6.2 Quantifying the difference between the empirical score
distribution and the theoretical one

After all of the articles are scored, an empirical distribution of article scores
is tabulated. If the group contains no functional coherence, the distribution
of scores should be similar to the Poisson distribution. The neighbor diver-
gence (ND) functional coherence of the group is the KL divergence between
the empirical distribution of article scores and the Poisson distribution.
Here the empirical distribution is the observed distribution, and the
Poisson distribution is the theoretical one. As the number of high scoring
articles increases with the coherence of the functional group, the empirical
distribution of article scores appears less and less like the random distribu-
tion.
On the same data set ND achieves 68% recall at 100% precision. This is

an improvement from the best article score strategy. This strategy has the
advantage that it is an article-based approach. Unlike the BAS method, it
takes advantage of all article scores. However, the disadvantage is that it
treats all articles equally in the score. Consequently genes with many
articles will weigh heavily on the score, while genes lacking significant
numbers of articles will have minimal influence on the score. So the ND
score can be influenced by well-studied genes. In addition, since it is an
article distribution based approach, larger groups with more articles may
have larger significance scores. This is not an ideal property—since a small
but very coherent group of genes might be considered as coherent as a large
but broad group.

6.7 Neighbor divergence per gene

Neighbor divergence per gene (NDPG) is very similar to neighbor diver-
gence. To calculate the NDPG score we begin by obtaining the article scores
for each gene in the group. For each gene, we calculate a distribution of

164 6 : Analyzing groups of genes

article scores. Then we calculate the divergence between the distribution
of article scores for each gene in the group and the Poisson distribution
calculated in the previous section. The divergence of article scores for each
gene is an independent measure of that gene’s relevance to the function of
the group. The NDPG score is the average divergence for each of the genes.
Each gene in the group, should it be relevant to the dominant group
function, should have referring documents that score high.
The idea is that we are looking for significant articles among the refer-

ences for each gene. If there are significant articles, the divergence of
the article scores for a gene should be a larger number. If many of the
genes have articles that are high scoring and relevant to the group’s function
then the average divergence for all of the genes should be high. The key is
that we are trying to identify genes with referring articles that seem to be
similar to other articles that refer to other genes.
This approach has the advantages of an article-based approach that looks

at large numbers of articles. Since we are averaging the divergence contri-
butions from each of the genes, the contribution of each gene is weighed
equally. The bias towards well-studied genes is therefore mitigated. This
method also focuses only on the articles that are actual references to the
genes. It is a high-yield set of articles.
NDPG achieves 95% recall (18 out of 19 functional groups) at 100%

precision; this is equivalent to 95% sensitivity at 100% specificity. NDPG
performance is robust to different size gene groups. Smaller groups usually
contain fewer genes, fewer articles, and consequently are more difficult to
discover. Despite that, the NDPG is able to assign relatively high scores to
these groups as well.
Figure 6.4 plots the distribution of NDPG scores for the 1900 random

gene groups and the 19 functional gene groups. While there is slight
overlap, most functional groups have scores that are about an order of
magnitude higher than the highest score assigned to a random gene group.
None of the random groups have a score exceeding 12. In Table 6.4 we have
listed the scores of the individual groups of genes. Notice there is no specific
pattern associated with the size of the groups, or the number of articles
available.
The only adjustable parameter is the exact number of semantic neighbors

that should be calculated for each article. The performance is robust to the
number of neighbors; 95% recall, at 100% precision is achieved with 19,
49, or 199 neighbors. However 199 neighbors achieve the highest precision
at 100% recall. At 100% recall, 199 neighbors achieve 90.5% precision,
while 49 and 19 neighbors achieve 66% and 59%precision, respectively. So
the performance of NDPG is superior to that of the other example coher-
ence schemes that we have presented.

6.7 Neighbor divergence per gene 165

6.8 Corruption studies

At the beginning of this chapter we suggested that a method to assess the
functional coherence of a group of genes could be used in devising groups of
genes with shared data featuers that can be also explained in terms of a
biological basis. Iterative optimization of features in the data alongside
functional coherence scores should create groups of genes with shared bio-
logical bases. For this to be possible, the functional coherence score should
(1) be able to detect imperfect groups generated by experimental data and (2)
improve as groups of genes are optimized. As appropriate genes are added,
and inappropriate ones are removed, the functional coherence score should
improve monotonically. Only in this context does it make sense to modify
groups to achieve the highest coherence score possible.
In this section we demonstrate how removing legitimate genes and re-

placing them with noise genes in the gene group affects the score. If the
score falls off monotonically, then the score is well behaved and even partial
groups have a signal. The scoring system proposed can then also be used to
refine gene groups, by adding and replacing genes to increase the functional
coherence score.
For two of the gene groups, ion homeostasis and autophagy, we removed

genes from the gene set and swapped in random genes. We repeated this
process until all but one of the original gene remained. As genes were
swapped, we recalculated the NDPG score. This procedure was repeated
ten times.

0

400

1200

1600

0 0.5 1 2 4 8 16 32 64 128

NDPG score

0

2

4

6

8

Random groups Functional groups

N
u

m
b

er
 o

f
g

ro
u

p
s

800

Figure 6.4 Histogram of NDPG functional coherence scores. Each open triangle (4) represents

the count of random gene group scores in the range indicated on the horizontal axis; each open

diamond (}) represents the count of functional gene group scores in the range on the horizontal

axis. The horizontal axis is in a log range. There is little overlap between the two histograms. None

of the random gene groups score above 12; most of the functional gene groups score well above 12.

166 6 : Analyzing groups of genes

Scores slowly decrease as genes are replaced. Over half of the genes can
be removed while still maintaining a strong signal (see Figure 6.5). Incom-
plete gene functional sets can be detected, though their scores will be less.
Therefore, partial functional groups derived from experimental screens are
still discernable. Figure 6.5 also suggests as NDPG scores are optimized by
addition and removal of genes, more ideal functional gene groups can be
obtained. There is then the possibility of using NDPG in algorithms to
automatically define and redefine gene groups independently and also in
the context of experimental data.

6.9 Application of functional coherence scoring to screen
gene expression clusters

One goal of functional coherence assessment is to be able to rapidly evalu-
ate experimental groups of genes created from data. One real world ex-
ample of this is in gene expression array data clustering. The methods

Table 6.4 NDPG scores for individual functional groups. The first column

lists the functional group, the second column lists the total number of

references for that group, and the final column lists the NDPG score. It is

apparent that the NDPG score is not necessarily correlated with the size of the

group or number of reference articles available.

GO code Article references NDPG

Signal transduction 3484 89.04
Cell adhesion 82 24.63
Autophagy 110 104.41
Budding 1692 112.29
Cell cycle 8399 60.61
Biogenisis 6439 40.39
Shape size control 1629 60.92
Cell fusion 2495 90.74
Ion homeostasis 667 79.73
Membrane fusion 212 18.41
Sporulation 646 10.01
Stress response 2603 32.85
Transport 4559 53.25
Amino acid metabolsim 1594 13.15
Carbohydrate metabolism 2719 29.12
Electron transport 205 19.27
Lipid metabolism 1035 94.47
Nitrogen metabolsim 264 24.06
Nucleic acid metabolism 12345 33.74

Application of functional coherence scoring 167

described in Section 2.4 can be used to devise many clusters of genes rapidly.
The next step is to quickly examine those groups for clusters that are
interesting functionally.
As a preliminary demonstration of the potential of coherence measures

such as NDPG, we have scored 10 gene expression clusters that were
identified manually as being biologically consistent. This is a real world
test of our ability to detect meaningful groupings (Eisen, Spellman et al.
1998). Eisen and colleagues collected expression measurements on yeast
genes under 79 diverse conditions. They used a hierarchical clustering
algorithm to identify groups of genes with coherent gene expression pat-
terns. Some of the gene clusters contained many genes with similar func-
tion. These clusters were manually identified and labeled with the
appropriate gene function. We re-evaluated the functional coherence of
these clusters automatically with NDPG. Our results are presented in
Table 6.5. All clusters had very significant scores; all scores exceeded 98%
of the scores of the random gene groups. So NDPG is very sensitive for these
functionally coherent experimentally derived groups of genes.

0

15

30

45

60

75

90

105

120

0 0.2 0.4 0.6 0.8 1
Percentage of genes replaced

G
en

e
di

ve
rg

en
ce

 s
co

re

ion_homeostasis autophagy

Figure 6.5 Replacing functional genes with random genes reduces NDPG scores gracefully. Here

we have replaced genes in two functional gene groups (autophagy and ion homeostasis) with

random genes, and scores were recalculated for the corrupted groups. Each point represents ten

scores, error bars indicate 95% confidence interval of scores for that many genes replaced.

Functional coherence scores above 12 are very significant (see Figure 6.4). Functional coherence

scores remain significant despite replacement of about 56% (9 of 16 genes) of the autophagy genes

and 58% (25 of 43 genes) of the ion homeostasis genes.

168 6 : Analyzing groups of genes

For three of the clusters the functional coherence score was relatively
poor, however, compared to the other groups. These three clusters were the
only ones whose scores did not exceed the scores of all of the random gene
groups. The ‘‘spindle pole body assembly and function’’ cluster contained
11 yeast genes; only three of these genes are among the 32 ‘‘spindle pole’’
genes listed by the Comprehensive Yeast Genome Database (CYGD)
(Mewes, Frishman et al. 2000). Similarly, the ‘‘mitochondrial ribosome’’
cluster contained 22 genes; only 10 of these genes are among the 49
‘‘mitochondrial ribosome’’ genes listed by CYGD. Also, the ‘‘mRNA spli-
cing’’ cluster contained 14 genes; only three of these genes are among the 38
listed ‘‘mRNA splicing’’ yeast genes in CYGD. Many of the genes in these
clusters do not represent the annotated function. While these clusters are
suggestive, they are not completely coherent functional groups; they con-
tain less than half of the genes with the reported function. Accordingly, the
functional coherence scores are lower. The true functional groups of genes
probably contain a coherent signal in the gene expression data, but the
signal is more subtle than a clustering algorithm based on overall expression
similarity can capture. Perhaps, similarity in a few particular conditions is
especially critical. Detection of such subtleties will require algorithms to
include functional similarity into the analysis directly; NDPG scoring may
be a means to do this.

Table 6.5 Assigning NDPG scores to experimentally obtained gene expression clusters. Eisen and

his colleagues clustered genes from diverse experimental conditions. They labeled ten of the clusters

in Figure 2 of their paper as containing genes that represent some consistent biological function.We

applied NDPG to score the functional coherence of each of these clusters. Each row represents a

gene cluster. The first column lists the functional label assigned by Eisen to the gene cluster. The

second column lists the number of genes in the cluster. The third column lists the functional

coherence score of the cluster. The fourth column lists the percentile of the score relative to 1900

random gene groups.

Function label assigned
to expression cluster
(by Eisen et al.)

Number of
genes

NDPG
score

Score
percentile

ATP synthesis 14 36.945 100.0%
Chromatin structure 8 73.072 100.0%
DNA replication 5 64.476 100.0%
Glycolysis 17 27.635 100.0%
Mitochondrial ribosome 22 5.842 98.8%
mRNA splicing 14 8.433 99.8%
Proteasome 27 154.758 100.0%
Ribosome and translation 125 55.022 100.0%
Spindle pole body assembly and function 11 10.869 99.9%
Tricarboxylic acid cycle and respiration 16 27.290 100.0%

Application of functional coherence scoring 169

6.10 Understanding the gene group’s function

NDPG determines whether a group of genes has a coherent function. It does
not tell us the function. The easiest way to determine the group’s function is
to examine the higher scoring articles for a gene group manually or auto-
matically. These high scoring articles are those most relevant to the group’s
shared function. Alternatively, keywords that describe the function of the
group could be automatically determined. Investigators have already devel-
oped algorithms to find keywords in collections of biological documents
that could be applied to these high scoring articles to determine function
words (see Chapters 3 and 4).

References

Ashburner, M., C. A. Ball, et al. (2000). ‘‘Gene ontology: tool for the unification of
biology. The Gene Ontology Consortium.’’ Nat. Genet. 25(1): 25–9.

Cherry, J. M., C. Adler, et al. (1998). ‘‘SGD: Saccharomyces Genome Database.’’
Nucleic Acids Res. 26(1): 73–9.

Eisen, M. B., P. T. Spellman, et al. (1998). ‘‘Cluster analysis and display of genome-wide
expression patterns.’’ Proc. Natl. Acad. Sci. USA. 95(25): 14863–8.

Jenssen, T. K., A. Laegreid, et al. (2001). ‘‘A literature network of human genes for high-
throughput analysis of gene expression.’’ Nat. Genet. 28(1): 21–8.

Mewes, H. W., D. Frishman, et al. (2000). ‘‘MIPS: a database for genomes and protein
sequences.’’ Nucleic Acids Res. 28(1): 37–40.

Raychaudhuri, S., H. Schutze, et al. (2002). ‘‘Using text analysis to identify functionally
coherent gene groups.’’ Genome Res. 12(10): 1582–90.

Raychaudhuri, S., H. S. Schütze, et al. (2003). ‘‘Inclusion of textual documentation in
the analysis of multidimensional data sets: application to gene expression data.’’
Machine Learning 52: 119–145.

170 6 : Analyzing groups of genes

Analyzing large gene
expression data sets

The most interesting and challenging gene expression data sets to analyze
are large multidimensional data sets that contain expression values for
many genes across multiple conditions. In these data sets the use of scientific
text can be particularly useful, since there are a myriad of genes examined
under vastly different conditions, each of which may induce or repress
expression of the same gene for different reasons. There is an enormous
complexity to the data that we are examining—each gene is associated with
dozens if not hundreds of expression values as well as multiple documents
built up from vocabularies consisting of thousands of words.
In Section 2.4 we reviewed common gene expression strategies, most of

which revolve around defining groups of genes based on common profiles.
A limitation of many gene expression analytic approaches is that they do
not incorporate comprehensive background knowledge about the genes
into the analysis. We present computational methods that leverage the
peer-reviewed literature in the automatic analysis of gene expression data
sets. Including the literature in gene expression data analysis offers an
opportunity to incorporate background functional information about the
genes when defining expression clusters. In Chapter 5 we saw how litera-
ture-based approaches could help in the analysis of single condition experi-
ments. Here we will apply the strategies introduced in Chapter 6 to assess
the coherence of groups of genes to enhance gene expression analysis
approaches. The methods proposed here could, in fact, be applied to any
multivariate genomics data type.
The key concepts discussed in this chapter are listed in the frame box. We

begin with a discussion of gene groups and their role in expression analysis;
we briefly discuss strategies to assign keywords to groups and strategies to
assess their functional coherence. We apply functional coherence measures
to gene expression analysis; for examples we focus on a yeast expression
data set. We first demonstrate how functional coherence can be used to
focus in on the key biologically relevant gene groups derived by clustering
methods such as self-organizing maps and k-means clustering. We also
demonstrate howmeaningful hierarchical cluster boundaries can be defined
using literature-based functional coherence measures. We then focus on
extending functional coherence assessment methods to other organisms

7

beyond yeast, where there is a relative paucity of literature. We compre-
hensively evaluate our methods to score functional coherence in four dif-
ferent organisms; we also discuss extending literature references with
sequence similarity. Finally we demonstrate these methods on a real world
data set where there is a paucity of literature.

7.1 Groups of genes

Most gene expression analysis approaches focus on defining groups of genes
containing common expression features. Both clustering and classification
algorithms organize expression data sets by dividing them into smaller sets
of genes.
Currently, clustering methods are the most popular computational ap-

proach to apply to gene expression data. Clustering methods organize
complex expression data sets into tractable subgroups, or clusters, of
genes sharing similar expression patterns and thus suggesting co-regulation
and possibly common biological function (Eisen, Spellman et al. 1998;
Sherlock 2000). Clustering methods are reviewed in detail in Chapter 2,
and countless novel clustering approaches have been purported to be ex-
cellent methods for expression data. Careful examination of the genes
that cluster together can lead to hypotheses about gene function and co-
regulation. But the quality of clusters and their ability to explain biological
function can vary greatly.
However, clustering methods are limited in that no background know-

ledge is included. The prejudices of established biology may be of enormous
value in the context of clustering. Published scientific text contains a dis-
tilled version of all of the most significant biological discoveries and is a

1) Screening clusters for biological
relevance
a) Self-organizing maps
b) k-means clustering

2) Optimizing cluster coherence
to draw cluster boundaries

3) Functional coherence in
different organisms
a) Yeast
b) Mouse

c) Fly
d) Worm

4) Augmenting the literature
index with sequence similarity
when literature is limited

5) Application of literature-based
methods to a real world data set
where genes have limited
literature.

172 7 : Analyzing large gene expression data sets

potent source of functional information for analytical algorithms. This
information is invaluable in guiding the investigator in understanding
which clusters represent true biological phenomena. In this section we
will explore the enhancement of clustering approaches with the scientific
literature. At the very least, the scientific literature can be used to
annotate the clusters that are obtained. A more sophisticated problem is
discerning whether the cluster contains relevant biology or is spurious.
In addition the scientific literature can actually be used to bias the clustering
as well.

7.2 Assigning keywords

One of the first challenges of including the scientific literature in algorithms
that analyze and interpret gene expression data is the assignment of key
words after a group of genes with common expression features have been
devised. This subject is explored in detail in Chapter 4 in the context of
annotation of families of protein sequences. The same methods could be
transferred to gene expression data, the only difference being that instead of
families of genes with similar sequences, we have families of genes with
similar expression features (Andrade and Valencia 1997). Alternatively,
articles could be scored for relevance to the gene group as described in
Chapter 6, and then keywords could be gleaned specifically from high
scoring articles only using the same strategies.

7.3 Screening gene expression clusters

Gene expression clustering algorithms such as k-means and self-organizing
maps and others can significantly reduce the complexity of the data that are
being analyzed. For example, expression profiles for thousands of genes can
be reduced to hundreds of clusters. Many of these clusters correspond to
true biological phenomena, while others are the result of spurious statistical
anomalies. One of the challenges of gene expression analysis is sorting
through these large numbers of clusters and separating the clusters that
consist of spurious genes from the functionally significant ones.
For this purpose, functional coherence scores are ideal; they are described in

detail in thepreviouschapter.Givenagroupofgenes, a reference index,andthe
text of abstracts, these methods assign a score proportional to the functional
coherence of the group. Our method of choice, NDPG, works by looking at
gene references, and theNmost similar abstracts to thembasedonsimilarity in
word use; here we usedN ¼ 19. NDPG scores each of the referring abstracts

7.3 Screening gene expression clusters 173

for overall relevance to the given gene group by counting the number of its
semantically similar neighbors that also have references to group genes. The
distribution of article scores is used to assess functional coherence.
NDPG can be used to do a literature-based assessment of the coherence

of functional groups of genes. As we saw in the last chapter, the high scoring
groups are very likely to share a biological basis. The higher the score,
the more the biological significance of the genes is explained by the scientific
literature. A clustering algorithm can be used to produce large numbers
of groups of genes, and then NDPG can be used to screen the groups
of genes that are biologically coherent. This is the manual equivalent of
taking each cluster, and examining the literature to see if there is a
common recurring pattern among the genes. Investigators can then focus
their efforts on high scoring clusters that are most likely to be biologically
relevant.
We demonstrate this concept on Eisen’s yeast data set (Eisen, Spellman

et al. 1998). In the last chapter we showed that the clusters that Eisen and
his colleagues constructed actually have high NDPG scores. Here we used
self-organizing maps to cluster the expression data collected on 2467 genes.
The genes were clustered on the basis of 79 expression conditions. The
genes were organized into a 15 by 15 grid of 225 clusters. Presumably
clusters that are close on the grid have similar expression profiles. The
number of genes in each cluster is depicted in Table 7.1(a).
Each of the clusters can be scored with NDPG. The reference index to

PubMed abstracts was obtained from SGD (Cherry, Adler et al. 1998); it
had references available for 2394 of the 2467 genes (97%) in the data set.
There were a total of 40,351 references to 17,858 articles. Each gene had a
median of eight article references, but a mean of 16.9 references. This is
because the distribution of article references per gene is skewed; a few
articles have many references. This is a common property of gene reference
indices, and is described in greater detail in Chapter 1. This data set had the
advantage of containing only genes that had excellent coverage in the
scientific literature.
The NDPG scores of each of the clusters have been calculated and

reported in Table 7.1(b). We regard the scores of the clusters with five or
fewer genes in this case to be unreliable. Since the score is calculated on very
few genes and possibly very few articles, we will disregard the scores of
these small groups.
In Plate 7.1 we have displayed all of the clusters with more than five genes

and with NDPG scores greater than 3. There are a total of 140 groups with
more than five genes; of these only 22 have NDPG scores more than 3. Six
have scores greater than 6, and four have NDPG scores more than 9. (Since
a different reference index and gene set are being used here, the cutoff for a
significant NDPG score is not the same as in Chapter 6.)

174 7 : Analyzing large gene expression data sets

To independently evaluate the clusters we assess how well they correlate
with Gene Ontology functional groups (see Chapter 1). For yeast, Gene
Ontology (GO) annotations are well defined and can serve as a gold
standard for assessment. We expect biologically relevant clusters to overlap
with GO functional groups more often than not. For each GO code, we

Table 7.1 (a) Number of Genes in Self-Organizing Map Clusters. Genes from the yeast data set

were clustered into a 15 � 15 grid using the self-organizing map clustering method. The number of

genes in each cluster is listed below in grid format. (b) NDPG score for each cluster. Each of the

clusters in the grid was scored with NDPG. The final score cluster score is listed in grid format.

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 15 21 17 17 8 14 11 3 4 1 14 8 6 11
2 4 3 11 14 1 10 8 2 4 45 6 9 3 8 43
3 11 31 15 1 7 1 4 3 6 18 4 3 12 4 11
4 5 6 13 3 4 2 4 4 1 0 4 8 7 112 4
5 18 8 7 3 1 4 0 6 6 5 3 6 5 10 17
6 7 8 29 11 7 5 8 3 22 10 3 4 6 8 19
7 1 29 4 1 24 6 0 10 3 1 3 7 5 6 5
8 9 27 26 2 14 4 6 5 29 4 9 3 8 2 8
9 48 6 2 7 22 45 17 2 23 6 6 7 28 1 18

10 0 2 6 6 4 17 3 2 4 2 1 3 4 4 12
11 17 4 5 10 5 3 14 13 6 12 14 16 8 1 7
12 13 10 10 13 6 6 33 11 4 1 7 36 5 13 9
13 3 38 9 7 9 54 5 10 4 9 10 3 8 13 20
14 6 5 9 8 3 13 7 4 10 6 34 52 19 6 11
15 47 113 4 33 8 13 11 12 1 21 6 0 18 11 13

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 22.4 5.2 2.1 8.5 1.3 2.5 3.4 2.0 0.8 5.3 0.0 1.5 1.3 1.5 1.2
2 1.6 4.3 1.8 1.8 3.6 2.2 3.5 0.0 3.2 4.7 2.3 3.9 0.6 2.1 3.9
3 1.9 2.3 1.9 0.0 1.4 2.8 2.5 3.3 1.1 1.5 3.2 3.5 1.5 0.3 0.5
4 2.8 1.8 2.0 0.8 1.5 0.8 0.9 2.0 0.0 0.0 2.7 1.5 1.4 4.2 1.0
5 2.1 2.2 1.2 3.4 0.0 0.0 0.0 0.7 1.6 3.2 3.6 1.6 1.2 1.6 1.5
6 1.0 2.6 1.7 0.7 0.9 2.1 2.9 2.5 1.5 9.6 5.4 1.4 1.6 1.0 2.1
7 0.0 1.5 4.1 0.0 1.4 2.4 0.0 1.5 1.7 8.8 2.6 1.5 2.7 2.6 4.0
8 1.0 0.8 2.8 0.0 1.7 1.4 1.7 1.2 1.5 2.9 2.0 1.2 4.1 4.4 1.8
9 2.6 0.2 1.8 3.3 0.9 1.1 1.7 4.0 1.1 1.2 0.8 1.2 2.5 6.5 13.6

10 0.0 0.0 1.3 3.1 2.5 1.2 3.6 0.0 1.9 4.2 13.4 2.7 1.2 6.9 3.0
11 1.4 1.1 1.5 1.4 6.1 1.5 1.8 2.6 1.3 1.4 1.5 2.1 1.5 1.8 1.3
12 1.9 2.1 1.7 0.9 1.7 3.4 1.3 1.3 1.1 0.0 2.2 23.5 4.3 1.8 0.8
13 7.5 2.9 2.3 2.2 12.9 5.0 1.9 1.0 4.7 0.7 0.7 1.9 1.7 2.5 1.4
14 2.0 1.5 2.1 1.3 3.5 3.6 1.4 1.8 2.5 1.7 2.5 1.0 1.1 2.2 1.0
15 3.6 8.8 1.8 4.9 2.4 1.4 1.4 1.2 0.0 2.8 3.3 0.0 2.9 1.3 2.1

7.3 Screening gene expression clusters 175

defined functional groups to contain (1) all genes with that code as an
annotation and (2) all genes with a descendant of that code as an annota-
tion. To assess the concordance or overlap of a cluster with a functional
group we used the following formula:

#(G
T
C)

#(G
S
C)

whereG is the GO functional group and C is the cluster of genes. This is the
percentage of genes in either the cluster or the GO functional group that are
in both. An overlap of 100% implies that the cluster and the GO functional
group contain the exact same genes, whereas an overlap of 0% implies that
the two groups have no genes in common. An overlap of 50% can be very
significant; for example a cluster containing ten genes that shares seven
genes with a functional group containing eleven genes corresponds to an
overlap of 50%. An overlap of 10% can be ambiguous. For a small cluster,
a 10% overlap may imply that only a single gene is in the functional group.
On the other hand, given a large cluster and a very small functional group a
10% overlap may imply that the entire functional group is contained in the
cluster, and it can be significant. In this chapter we evaluate clusters by
finding the functional group it overlaps the best with. The expectation is
that groups with high NDPG scores should have relatively high overlap
with a predefined functional group.
For each of the groups we calculate the percentage overlap with all of

the possible functional groups, and then select the highest overlapping
group.
In Table 7.2 we list all of the clusters with NDPG scores greater than 3

and the GO functional group they overlap most strongly with. Some of the
clusters have very obvious functional correlations. For example cluster B
has a high NDPG score of 8.5, and has a high overlap with the nucleosome
GO functional group of 47%. Another example is cluster L which has a
high NDPG score of 13.6 which has a high overlap of 46% with the heat
shock protein GO functional group.
It should be emphasized that while a high overlap definitely implies

functional significance, a low percentage overlap does not necessarily indi-
cate lack of functional coherence. For example, some of the clusters have
a lower overlap with a GO functional group but a high NDPG score.
Looking at these clusters closely may identify a common thread among
these genes.
In general there is a direct relationship between NDPG and the highest

percentage overlap with the GO group. Both of these measures are indirect
measures of coherence of a functional group. In Plate 7.2 we have plotted
the percentage overlap of each cluster as a function of the NDPG score, and

176 7 : Analyzing large gene expression data sets

the relationship is evident; there is a correlation between these two variables
of 0.78. Consider the 22 groups with NDPG scores greater than 3. The
mean overlap of these clusters with the best GO functional groups is 23%;
the maximum overlap is 69% among these groups. On the other hand, let
us consider the 118 genes with NDPG scores less than 3. The mean per-
centage overlap of these groups is 9%, and the maximum overlap is 15%.
These results argue that the NDPG score is a good way to separate likely
functionally coherent groups from the rest.
This same strategy could be applied just as easily to any other clustering

method, such as k-means clustering, that produces a set of disjoint clusters.
In practice NDPG provides a means of incorporating information from the
scientific text in the analysis of gene expression data. After a clustering
method is applied, we can use text analysis in the form of NDPG to

Table 7.2 High scoring clusters. We show all of the self-organizing map clusters with more than

five genes and NDPG scores greater than 3. Groups are identified by the letter and coordinate. We

list the number of genes in the cluster and its NDPG score. We also list the Gene Ontology (GO)

group with which the cluster has the greatest overlap, and the percentage of that overlap.

Cluster Coordinates N NDPG GO overlap (%)

A 1,2 15 5.2 Hydrogen transporting ATPase
V1 Domain

10

B 1,4 17 8.5 Nucleosome 47
C 1,7 14 3.4 Pyrivate dehydrogenase 13
D 2,7 8 3.5 Signal peptide processing 10
E 2,10 45 4.7 Hydrogen transport 14
F 2,12 9 3.9 Copper ion transport 9
G 2,15 43 3.9 DNA strand elongation 15
H 4,14 112 4.2 Microtubule based process 15
I 6,10 10 9.6 Nitrogen starvation response 40
J 8,13 8 4.1 Hydrogen transporting ATP Synthase,

central stalk
22

K 9,4 7 3.3 Isocitrate dehydrogenase 11
L 9,15 18 13.6 Heat shock protein 46
M 10,4 6 3.1 Microtubule stabilization 13
N 12,6 6 3.4 Proline metabolism 13
O 12,12 36 23.5 26 S proteosome 50
P 13,5 9 12.9 oxidoreductase, acting on the

CH-NH2 group of donors,
NAD/P as acceptors

20

Q 13,6 54 5 Mitochondrial ribosome 31
R 14,6 13 3.6 O Linked glycosolation 10
S 15,1 47 3.6 Nucleus 14
T 15,2 113 8.8 Cytosolic ribosome 69
U 15,4 33 4.9 Glycolysis 24
V 15,11 6 3.3 Histone acetyltransferase 13

7.3 Screening gene expression clusters 177

prioritize the clusters and select the biologically meaningful ones. These
clusters allow us to characterize the key biological elements in a data set.
They also open the possibility of assigning a function to uncharacterized
genes. An uncharacterized gene in a highly coherent cluster likely shares
that same function.
Furthermore, NDPG scoring offers an objective means to assessing how

appropriate a clustering method is for a data set. The performance of a
clustering method can be measured for a given data set, by examining the
NDPG scores of the clusters produced by it. A high quality method will
generate more high scoring clusters.

7.4 Optimizing cluster boundaries: hierarchical clustering

Not only can literature-based coherence scores such as NDPG be used to
identify the key clusters, they can also be used to actually define cluster
boundaries. Defining cluster boundaries such that the NDPG scores are
maximized insures high quality clusters that are less subject to the whims of
statistical noise. We propose drawing boundaries so that the group of genes
is coherent with that which is published in the scientific literature.
The most commonly used clustering method, hierarchical clustering,

offers considerable ambiguity in determining the exact cluster boundaries.
Hierarchical clustering organizes expression data into a binary tree, or
dendrogram, in which the leaves are genes, and the interior nodes (or
branch points) are candidate clusters. The more similar the gene expression
patterns of two genes, the closer they are within the tree structure. In many
cases, genes with a shared biological function also share expression features
and therefore cluster together in a node. Hierarchical clustering is described
in greater detail in Section 2.4.
Once a dendrogram has been devised, the challenge is to define the final

cluster boundaries by pruning the tree (see Plate 7.3). In other words, the
challenge is to select nodes appropriately so that the genes are divided into
non-overlapping biologically meaningful clusters. Typically, cluster bound-
aries are drawn so that the final clusters contain functionally related genes.
In practice, investigators define clusters by tedious application of their own
knowledge of these genes. Some have proposed automatically selecting
nodes and defining boundaries based on statistical properties of the gene
expression profiles within them; however the same statistical criteria may
not be generally applicable to identify all relevant biological functions.
The result is that the boundaries do not necessarily divide the dendrogram
by biological function at all, and can appear arbitrary to the eye of a
biologist.

178 7 : Analyzing large gene expression data sets

After application of hierarchical clustering to the given gene expression
data set, text about genes can instead be used to resolve hierarchical cluster
boundaries to correspond to biological functions.
Application of hierarchical clustering on K genes yields K� 1 internal

nodes containing at least two genes and K leaf nodes containing a single
gene. The root node contains all K genes. The goal of the algorithm
presented here is to ‘‘prune’’ the dendrogram, or rather to select a subset
of nodes, S, such that each gene is contained in a single selected node (Plate
7.3). The objective of our pruning strategy is to maximize the functional
relatedness of the genes in each selected node based on the scientific litera-
ture. We propose selecting nodes so that the total weighted average of
NDPG cluster scores is maximized (Raychaudhuri, Chang et al. 2003).
Nodes are weighted by their size, so larger, but equally coherent groups
have an advantage. The selected nodes with the highest scores are likely to
constitute functionally relevant clusters. As in the previous section, the
NDPG scores can be used to prioritize clusters for subsequent detailed
manual analysis and experimental follow-up.
The NDPG weighted average of a disjoint set of nodes S is defined as:

FS ¼ 1

K

X
i2S

ni � fi (7:1)

where fi is the NDPG score of the node i and K is the total number of genes.
The average is weighted by the number, ni, of genes in the node i. The goal
of our algorithm is to select disjoint nodes S and prune the tree so that Fs is
maximized. The key insight to the algorithm is that if a node is in the
optimal set, then the NDPG score of the node must exceed the weighted
average NDPG score of any disjoint subset of its descendants. That is for
any node i contained in the optimal set S,

ni � fi$
X
j2Si

nj � fj (7:2)

where the nodes Si are any disjoint set of descendent nodes of node i. Were
this not the case for a given subset of a node i, Si, then node i could
be replaced by the nodes in Si in the final set of optimal nodes, and
the weighted NDPG score calculated with equation (7.1) would be in-
creased.
We use this very property to identify the key nodes. We start at the

bottom of the tree and assume that all of the leaf nodes constitute the set
that gives the largest average score. We then work our way up the tree,
replacing those nodes with new nodes that satisfy equation (7.2).

7.4 Optimizing cluster boundaries: hierarchical clustering 179

The algorithm is summarized in Table 7.3. Our algorithm has three
states that a node can be in: unvisited, visited, and selected. After running
the algorithm, the set of selected nodes constitute the final set S of clusters;
the remainder of the nodes will be in the visited state. Initially all internal
nodes are unvisited and the terminal leaves are selected. The pruning
algorithm proceeds iteratively, visiting unvisited nodes whose descendents
are in the visited or selected state; the status of the node is changed to
visited. If the functional coherence score of this node equals or exceeds
that of the weighted average of its selected descendants, it is placed in the
selected state, and all of its selected descendant’s children are de-selected
and placed in the visited state. The process repeats until all nodes up to
the root node have been examined; the nodes that are still selected define
the final set of clusters that maximize the NDPG weighted average across
the hierarchical tree.
Since our goal is to identify small specific coherent groups, we assign

groups containing more than 200 referenced genes a score of zero. Also
NDPG might be unreliable for extremely small groups of genes, so groups
with fewer than six referenced genes are assigned a score of zero.
To test this approach, we apply our pruning method to the Saccharo-

myces cerevisiae (yeast) gene expression data set used in the last section
(Eisen, Spellman et al. 1998). If our method is successful, the expression
clusters defined by our method should correspond to well-defined func-
tional groups of genes. As in the previous section, Gene Ontology (GO) is
available for use as a gold standard for comparison. We again use the
reference index from the Saccharomyces Genome Database (SGD) (Cherry,

Table 7.3 Algorithm to prune gene expression dendrogram into disjoint clusters. The NDPG

score of a node i is represented as fi, the number of nodes in the cluster is ni. The set of descendants

of a node i in the selected state is Sel(i). Nodes are in one of three states, selected, unvisited, or

visited. Initially all internal nodes are unvisited and the terminal leaves are selected. After running

the algorithm, the nodes that are selected define the final set of disjoint clusters.

1. For each node i, determine ni and fi
2. Assign all nodes state unvisited
3. Assign leaf nodes state selected
4. While there exists unvisited nodes
5. For each node i (1) in the unvisited state and (2) with

both children in state visited or selected
6. Assign node i state visited
7. If ni � fi$

P
j2Sel(i)

nj � fj
8. Assign node i state selected.
9. Assign all nodes in Sel(i) state visited

10. Nodes in state selected define cluster boundaries

180 7 : Analyzing large gene expression data sets

Adler et al. 1998). Our results are comparable to those produced manually
by the original investigators and required only minutes of computation.
We use the gene expression analysis software Cluster to create a hier-

archical clustering of the yeast gene expression data. To create the clustered
dendrogram of the data we use average-linkage clustering with the
centered correlation metric option to calculate distances. In inter-gene
distance calculations, conditions are differentially weighted according to
the scheme introduced in the original publication; each condition is
weighted with the square root of the number of conditions in that series.
Hierarchical clustering of the yeast gene expression data set creates a

total of 2466 internal nodes containing two or more genes; availability of
the SGD literature reference index and corpus of article abstracts allows
NDPG evaluation of the functional coherence of each node. We use the
overlap with GO functional groups as an independent measure of func-
tional coherence. Figure 7.1(a) shows that the literature-based NDPG score
of a node predicts how well it corresponds with a GO functional group
(non-parametric Spearman rank correlation r ¼ 0:81). Therefore, selecting
nodes with large NDPG scores will result in selecting nodes whose genes
share a common function.
Defining cluster boundaries that respect biological function by maximiz-

ing total NDPG weighted average selects 369 non-overlapping nodes as the
final clusters. These nodes are indicated as black circles in Figure 7.2(a).
Figure 7.2(b) individually plots the node corresponding to the function
threonine endopeptidase. The other points in this plot correspond to
other nodes that are either ancestors or descendants of that node; these
nodes contain a subset or superset of the genes in the node. The selected
node has the greatest concordance with any GO functional group than all of
the other nodes in that plot; these are nodes that might have been selected
instead. This figure suggests that the tree was in fact pruned as best as it
could have been, and that a node at exactly the right level was selected.
We ranked the top 20 clusters by NDPG scores in Plate 7.4. To evaluate

whether the selected genes are true functional groups of genes, we checked
the degree to which they corresponded to any of the functional groups
defined by GO. Listed alongside the clusters is the best corresponding GO
code and a graphical depiction of the overlap between that GO code and the
cluster. Nine of the ten functional clusters noted in the original publication
of the data set are included in our list along with other functional clusters.
These functions include threonine endopeptidase, ATP synthesis coupled
proton transport, ATP dependent DNA helicase, nucleosome, electron
transport, glyceraldehyde 3-phosphate dehydrogenase, cytosolic ribosome,
mitochondrial ribosome, and the tricarboxylic acid cycle. The other
depicted groups also contain functionally related genes, but were not
described in the original publication, such as pheromone response, heat

7.4 Optimizing cluster boundaries: hierarchical clustering 181

0

(a)

10
0%

20%

40%

60%

80%

100%

20

Literature-based NDPG score

30 40

0

(b)

10
0%

20%

40%

60%

80%

100%

20

Literature-based NDPG score

30 40

182 7 : Analyzing large gene expression data sets

shock protein, and nucleolus. These are other potentially interesting clus-
ters that our method picked up easily in a first pass.
As noted previously, the percentage overlap can underestimate the func-

tional relatedness of a gene group. For example, the eleventh listed cluster
has the highest overlap with the glyceraldehydes-3-phosphate dehydrogen-
ase GO code, but the non-G3PD genes in the cluster are other closely
related glycolysis genes.
Hierarchical clustering can be implemented in multiple different ways

(such as average linkage, centered linkage, etc.) with one of a wide array of
metrics (such as Euclidean, Manhattan, jack-knife, etc.) and weighting
schemes. In this study we did not wish to explicitly evaluate the choice of
hierarchical clustering implementation.We attempted to use amethodology
that was as consistent as possible with the original publication so that our
results were comparable. However, maximization of the NDPG weighted
average to select cluster boundaries could be used in evaluating the output
of different implementations of hierarchical clustering and selection of the
best one. The better implementation will produce hierarchical trees that are
more easily segmented into clusters that respect biological function. Such
hierarchical trees will have a higher total maximized NDPG weighted aver-
age than trees produced by an implementation less effective for the specific
data set.
The most labor-intensive component of gene expression array projects

is the identification of biologically relevant clusters and optimization of
cluster boundaries. This task is difficult and often arbitrary, requiring
laborious steps of gathering information on genes within a cluster, identi-
fying a common biological process, and drawing a boundary line some-
where around a cluster. Practically, it amounts to identifying the interesting
aspects of a large experiment. This method not only automates the identi-
fication of biologically relevant data using the same source literature that
researchers would access to make the same comparisons by hand, but it also
creates an optimized version of each cluster, at the level of highest enrich-
ment for a given biological function.

Figure 7.1 Functional coherence increases with NDPG score. (a) After clustering the yeast gene

expression data into a dendrogram with 2466 individual nodes, we plotted the literature-based

NDPG score of the 1150 nodes containing 6–200 genes on the x-axis and the highest percentage

concordance with a GO functional group on the y-axis. Black circles indicate the nodes selected by

the computational method. There is a correlation of r ¼ 0:81 between these two variables. (b) To

demonstrate that the pruning algorithm selects the most appropriate node, we plot the threonine

endopeptidase cluster, and its ancestors and descendents in the hierarchical clustering. We have

plotted the NDPG score and the highest percentage concordance with a GO functional group for

these nodes. The selected cluster is represented with a black circle. The ancestors and descendants

nodes represent clusters that are subsets or supersets of the genes in the selected node. Notice that

the selected node has optimal overlap. In other words, it is the best of the possible clusters that could

have been selected.

7.4 Optimizing cluster boundaries: hierarchical clustering 183

7.5 Application to other organisms besides yeast

The exampleswehaveprovided so far havebeen focusedonyeast data; a very
high percentage of the genes in those data sets had literature references. The
literature in this organism is extremely comprehensive, and most genes have
some documentation. In addition the total quantity of literature, and the
quality of the data sets is very high. For most other organisms, however,
there is a relative paucity of literature. Most genes are not described at all.
The available literature indices are poorer. In addition the scope of the
literature can often be narrow. For example, a large proportion of the litera-
ture on drosophila is focused on developmental biology, while investigation
ofmolecularbiologyandbiochemistry is limited. In theory, the applicationof
literature-based approaches to gene expression data from high-level organ-
isms is no different from application to yeast data. In practice, it can be
challenging since the literature may be limited. The first step is to assess the
performance of literature-based metrics in different organisms.
To get a sense of the performance of NDPG across different organisms,

we evaluate NDPG on 2796 diverse functional groups generated by the
Gene Ontology consortium in four organisms (Raychaudhuri and Altman
2003). In the last chapter, a small-scale, preliminary evaluation conducted
on 19 yeast functional groups, NDPG achieved 95% sensitivity at 100%
specificity.
We use Gene Ontology (GO), which was devised to describe genetic

function in a standard way across many types of organisms, as our gold
standard. To evaluate our method we assembled functional groups of genes
from four species: Saccharomyces cerevisiae (yeast), Mus muscularis
(mouse), Drosophila melanogaster (fly), and Caenorhabditas elegans
(worm).
We used the GO annotations of genes to define functional groups. Each

GO term generates a species-specific gene group consisting of genes
assigned that term. Random groups of genes were assembled also. Ideally,
we expect that the functional groups will receive high scores and that
random groups will receive low scores. The better NDPG is at separating
the random and functional groups, the more effective we expect it will be in
that organism.
For each of the four organisms, Gene Ontology assignments were

obtained from the genome databases for each organism: SGD for yeast
(Cherry, Adler et al. 1998), MGD for mouse (Blake, Richardson et al.
2002), FlyBase for fly (Gelbart, Crosby et al. 1997), and WormBase for
worm (Stein, Sternberg et al. 2001)). The assignments are either explicitly
indicated, or are inferred from assignments to more specific terms. Terms
ascribed by the database are explicit annotations. Since GO is hierarchical,
a specific annotation implies more general annotations that are parents in

184 7 : Analyzing large gene expression data sets

the hierarchy; we refer to these as inferred annotations. For each species, a
Gene Ontology term that had six or more genes assigned that term defined a
functional group. There were a total of 2796 such functional groups across
all four species. Each group was scored with NDPG. For each organism 200
random groups were also devised of each size: 6, 12, 24, 48, and 96 genes,
for a total of 1000 random groups per organism.
Reference indices were assembled for each species by collecting gene

references from the same online resources. A gene reference list was
obtained from each of the genomic databases. All relevant article abstracts
were obtained from PubMed.
Table 7.4 contains descriptive statistics about the literature index for

each organism and the GO annotations also. Mouse has the highest number
of genes with references, while worm has the fewest. For the total number
of references per article and references per gene, the mean exceeds the
median in all organisms. For each organism there are a few outlier genes
with many article references, and there are a few outlier articles with many
gene references.
All of the different organisms used about the same number of GO codes

for annotation, about 2500 codes, except worm which used fewer, about
500 codes. For each term assigned explicitly to a gene as an annotation,
many more annotations that are parents of the term are also implied.
The more specific the term, the more inferred terms apply to the same
gene. In general the yeast and fly annotations are very specific, and the
ratio of inferred annotations to explicit annotations is large (3.6 and 3.3)
compared to mouse andworm, where the annotations are more general (2.5
and 2.2).
The NDPG method was used to score all random groups; the 99.9th

percentile of scores for each organism was identified as a cutoff. A separate
cutoff was generated for each organism; the cutoffs are listed in the table.
The cutoff can be thought of as a 99.9% specificity threshold. The prob-
ability that a random group will score above the cutoff is less than 0.001.
The functional groups derived from GO were scored with NDPG. The

NDPG method is effective at identifying groups of genes that are function-
ally coherent in multiple organisms. The percentage of functional groups
within the organism scoring above the cutoff is tabulated in Table 7.5. This
percentage of groups above the cutoff is the sensitivity of our method. The
results are presented separately for each of the three branches of GO. For all
GO branches yeast has the greatest percentage of groups exceeding the
cutoff, followed by mouse, then fly, then finally worm. The method achieves
96%, 92%, 82%, and 45% sensitivity at 99.9% specificity in yeast, mouse,
fly, and worm, respectively. When all worm functional groups are com-
bined, the median group score of worm functional groups is less than the
cutoff.

7.5 Application to other organisms besides yeast 185

The variable performance in the four different organisms can be
accounted for by different factors. The first is the quality of the references
in the reference indices; in a good reference index, genes should be con-
nected to the appropriate articles. This is difficult to objectively assess. It is
possible that different literature indices have more or less appropriate
references depending on the articles available and the level of care placed
in putting the literature resource together.

Table 7.4 Summary of literature index and GO groups for NDPG evaluation across four

organisms. For each of the four organisms we have listed summary statistics for the reference lists

obtained from the genome databases andGO annotations. The top half of this table summarizes the

reference lists obtained from the genome centers. This table lists the total number of genes that have

references and the total number of articles referenced for each of the four organisms. Also listed are

the total number of references, that is the number of links between genes and documents. The lower

half of this table summarizes the Gene Ontology annotations obtained from the GO consortium.

Most organisms use only a few of the 4773 process, 977 function, and 5015 function GO codes.

Explicit GO annotations are ones assigned directly by GO, while inferred annotations are more

general annotations that are implied by explicit annotation of a more specific code. The ratio

indicates the average number of inferred parents terms generated by each explicit term annotation.

The greater the ratio, the deeper the average annotation is down the hierarchical tree of GO.

Yeast Mouse Fly Worm

Genes with reference 5151 26148 14732 2289
Articles 22934 41669 15495 2144
References 62473 113738 97117 13659

References/article median 2 1 3 4
mean 2.73 2.73 6.27 6.37

References/gene median 4 1 1 2
mean 12.12 4.35 6.59 5.97

Yeast Mouse Fly Worm

Genes with codes assigned 4276 6148 4042 523
GO codes process 874 904 1019 196

component 251 233 347 42
function 1132 1432 1458 246
total 2257 2569 2824 484

Explicit GO annotations 13770 27122 14405 2235
Inferred GO annotations 49781 68075 47801 5017
Ratio explicit/implicit 3.62 2.51 3.32 2.24
Annotations/gene median 14 15 14 13

mean 14.86 15.48 15.39 13.87
Annotations/code median 3 3 2 3

mean 28.15 37.06 22.02 14.98

186 7 : Analyzing large gene expression data sets

A second issue is the abundance of available articles in the reference
index. Yeast has the strongest performance; it has over 20,000 articles
and a 4:1 ratio of articles to genes. Worm, on the other hand, has the
smallest corpus with one-tenth the number of articles that the yeast refer-
ence index has and a ratio less than 1:1 of articles to genes; our method is
less than half as sensitive for worm functional groups. For application to
gene expression this could be a severely limiting factor.
An additional contributing factor may be the quality of the GO annota-

tions themselves. Gene Ontology is a massive effort, and remains a work in
progress. Since this is the case, it is perhaps not an ideal gold standard yet.
Currently annotation of genes with GO codes remains an active area with
many groups experimenting with different strategies involving manual and
computational analysis of literature, sequence, and experimental data (Hill,
Davis et al. 2001; Hvidsten, Komorowski et al. 2001; Dwight, Harris et al.

Table 7.5 Sensitivity of NDPG in different organisms. The cutoff score is defined so that the

NDPG score of 99.9% of random groups in that organisms scores less than the cutoff. In each of the

organisms and each of the three GO categories we have calculated the percent of functional groups

that exceed the cutoff score.

Yeast Mouse Fly Worm

Process codes Number of groups 429 354 349 71
Median group size 21 20 16 17
Median NDPG score 15.3 10.2 5.2 1.4
% of groups exceeding
cutoff

97.4% 87.9% 86.8% 46.5%

Component
codes

Number of groups 148 111 151 18

Median group size 20 18 16 16
Median NDPG score 18.7 11.7 5 2.4
% of groups exceeding
cutoff

94.6% 91.0% 81.5% 77.8%

Function codes Number of groups 264 435 382 84
Median group size 17 16 17 15
Median NDPG score 11.4 13.4 3.6 1.5
% of groups exceeding
cutoff

93.6% 96.1% 78.3% 36.9%

All codes Number of groups 841 900 882 173
Median group size 20 18 16 16
Median NDPG score 15.1 11.8 4.5 1.6
% of groups exceeding
cutoff

95.7% 92.2% 82.2% 45.1%

99.9% specificity
cutoff

3.43 3.19 1.34 1.63

7.5 Application to other organisms besides yeast 187

2002; Raychaudhuri, Chang et al. 2002; Schug, Diskin et al. 2002; Xie,
Wasserman et al. 2002). The on-line resources for the different organisms
rely more heavily on different strategies of annotation. The strategy used to
make a specific annotation is listed as an ‘‘evidence code’’. (See Chapter 8
for a more detailed discussion of evidence codes.) We considered IDA
(‘‘inferred from direct assay’’) and TAS (‘‘traceable author statement’’) as
the two highest quality and most reliable evidence codes. We determined
the percentage of inferred and explicit annotations that could be attributed
to each of these two evidence codes in the three GO branches of the four
organisms. In Figure 7.2 it is evident that there is a relationship between the
percentage of high quality annotations and our method’s performance. The
percentage of high quality annotations is an indication of the amount of
manual effort involved in that organism’s GO annotation. We reason that
the more effort, the better the quality of the annotation, and the more
reliable a gold standard it is, and consequently the better our performance.

0.0%
25.0%

50.0%

75.0%

100.0%

20.0%

Percentage of annotations
with quality evidence

P
er

ce
nt

ag
e

of
 a

nn
ot

at
io

ns

w
ith

 fu
nc

tio
na

l c
oh

er
en

ce

40.0% 60.0% 80.0%

YeastWormFlyMouse

Figure 7.2 Relationship between annotation quality and NDPG sensitivity. In this figure we have

plotted the percentage of annotations attributable to either the TAS (‘‘traceable author statement’’)

or IDA (‘‘inferred from direct assay’’) annotations for each GO branch and organisms. These

annotations are generally regarded as reliable, high quality annotations. The resulting percentages

were plotted against the percentage of functional groups that NDPG was able to successfully

identify in that GO branch and organism. In general, annotated sets where many of the annotations

were derived from high quality evidence had a greater percentage of annotated groups exceeding

the cutoff.

188 7 : Analyzing large gene expression data sets

A functional group may not be identified as functionally coherent if the
shared function is not represented in the corpus of scientific literature.
This may be the case if the function has not yet been described in the
literature, or if the function has not been well studied in that organism.
For example the tricarboxylic acid cycle (TCA) functional group in yeast
receives a significant score of 15.43, whereas in mouse the same func-
tional group receives an insignificant score of 1.97. The subject of TCA
genetics has not been well described in the mouse literature. A MedLine
query for articles assigned the MeSH subject headings of ‘‘tricarboxylic
acid cycle’’ and ‘‘genetics’’ yielded 365 articles. Only 13 of these articles
had the ‘‘mouse’’ MeSH heading also, and none of those 13 references
were listed in the mouse reference index. In contrast, 52 had the ‘‘yeast’’
MeSH heading and of those 32 were listed in the yeast reference index.
The TCA GO annotations in mouse were made without direct reference
to the literature. Eight of the nine genes were assigned the TCA function
because of the presence of an appropriate keyword in the SWISS-PROT
sequence entry for the gene; these annotations were assigned the evidence
code IEA (‘‘inferred from electronic annotation’’). The other gene was
assigned the TCA function by sequence similarity search; this annotation
was assigned the evidence code ‘‘ISS’’ (‘‘inferred from sequence similar-
ity’’). Since NDPG is an approach based on primary literature, this
functional group is missed altogether. This issue might be mitigated if
references to homologous genes in other organisms were included as
additional references to genes. Undiscovered functions would still not be
discernible.
These data suggest that there is quite a bit of power in the literature for

these different organisms, and that while NDPG is somewhat less effective
outside of yeast, it is still quite powerful and can detect most functional
groups.

7.6 Identifying and optimizing clusters in a Drosophila
development data set

We apply our hierarchical pruning method to a different gene expression
data set with very different properties. In this more challenging test, we
applied this strategy to analyzing a Drosophila melanogaster (fly) develop-
ment series containing expression measurements for 4040 expressed se-
quence tags. The fly gene expression data set consisted of measurements
from over 84 conditions, 75 of which were part of a wild type developmen-
tal time series, four that were segregated by sex, and five that involved
mutations in specific genes. These expressed sequence tags corresponded to

Identifying and optimizing clusters 189

sequences for 3987 unique genes (Arbeitman, Furlong et al. 2002). How-
ever, the available reference index from FlyBase contained PubMed refer-
ences for only 1681 of the 3987 unique fly data set genes represented in the
data set. This data set is more challenging since a minority of the genes have
been studied and have any primary literature.
When we evaluated NDPG it was 96% sensitive in yeast and 82%

sensitive in fly at discriminating between functional groups of genes and
random groups of genes at 99.9% specificity. We also found that one of the
limitations of this (and likely any) literature-based approach is that certain
biological functions have not been studied and reported on in the literature
in certain organisms. For example, cellular and metabolic functions of
many genes are better characterized in yeast than in fly or mouse.
So, in this case transferring references from well-studied homologous

genes from other model organisms as described in detail in Chapter 4 is
crucial. There simply are few genes that have the necessary references.
As an example consider our discussion in the last section about the

function tricarboxylic acid cycle (TCA), which was a well-studied function
in yeast. So an unstudied TCA fly gene could be assigned appropriate and
informative references if we transferred the references from the correspond-
ing well-studied homologous yeast genes.
We use sequence similarity searches to identify homologous genes for

each gene in the study, and associate references from the homologous gene
to the study gene. We were able to associate 3962 fly data set genes with
protein sequences from SWISS-PROTor SPTREMBL. We then constructed
a database of all of the genes in fly, yeast, and mouse with five or more
PubMed references assigned by Flybase, SGD, or the Mouse Genome
Database (MGD). We obtained protein sequences for all of these genes
from the same databases. Then, for each of these 3962 fly data set gene
protein sequences, BLAST was used to find the single most similar well-
documented protein sequence corresponding to a fly, yeast, or mouse gene.
The fly gene was assigned references from the most similar gene with more
than four references only if the e-value score of the similarity was less than
1� 10�6. This is a very liberal cutoff. We did not transfer references if the
e-value was larger than this arbitrary threshold, as the similarity may have
represented a local or spurious similarity.
The initial literature reference index obtained from FlyBase contained

primary references for 1681 of the 3987 genes (42%) in the data set. There
were a total of 30,622 references to 11,070 articles. Each gene had amedian
of three article references and a mean of 18.2 references. In the augmented
reference index, containing references transferred from homologous genes,
2602 of the 3987 genes (65%) had references. There were a total of 77,509
references to 29,115 articles. Each gene had a median of eight article
references and a mean of 29.8 references.

190 7 : Analyzing large gene expression data sets

We apply the strategy presented in Section 7.4. To create the clustered
dendrogram of the data we use average linkage clustering with the uncen-
tered correlation metric option to calculate gene distances. Defining cluster
boundaries by maximizing NDPG weighted average selects 525 non-over-
lapping nodes as the final clusters. Many of the defined clusters correspond
to well-defined biological functions such as photoreceptor genes, protein
degradation, protein synthesis, muscle function, citric acid cycle, and pro-
ton transport (Table 7.6). Some of these clusters listed are graphically
depicted in Plate 7.5. Most of these clusters correspond exactly or closely
to clusters described in the original publication of the data. These are
discussed in detail, and validated with in situ hybridization and mutation
experiments in that publication.
One novel cluster represents uncharacterized maternally expressed genes

that localize primarily to the nucleolus; this functional cluster was not
identified in the original publication and has the highest NDPG score of
the selected nodes (Plate 7.5a). The maternal expression of these genes is

Table 7.6 Fly functional clusters. Functional clusters obtained after using NDPG to define

boundaries on a hierarchical clustering of a fly development time series. Here we list the top 20

clusters sorted by NDPG score; the score and the number of genes in the cluster are in the first and

second column. We also list an appropriate function if it was immediately apparent.

NDPG score N Function

22.5 7 Nucleolar maternally expressed
20.5 7 Vacuolar ATPase
8.3 7 Photoreceptor
6.7 41 Proteasome
6.6 8 Vacuolar ATPase
6.5 7 T-ring complex
6.0 10 TCA cycle
5.2 7 Cell adhesion
5.0 34 Ribosomal
4.8 7 Vesicle transport – coatomer
4.8 12
4.1 9 Muscle
4.1 13
3.9 7
3.7 22 Strict maternal
3.7 7 Photoreceptor
2.9 10
2.7 12
2.7 12
2.7 12

Identifying and optimizing clusters 191

apparent from the expression profile: transcripts are seen in the female
adult, but not the male adult, and in the embryo. These genes likely
constitute an interesting biological module of developmental regulation in
fly genes. Only two genes in the cluster are well studied, each with five
primary papers listed in FlyBase. It has already been demonstrated that
these two genes, the Fbgn0029196 (Nop5) and FBgn0023184 (Nop60B)
genes, are in fact maternally expressed genes that localize to the nucleolus
(Phillips, Billin et al. 1998; Vorbruggen, Onel et al. 2000).
Without the augmented reference index, clusters such as the muscle

cluster are identified, as muscle development is extensively studied in
fly. Many of the clusters that contain genes where the functional common-
ality is biochemical or molecular in nature, such as ribosomal genes, are
missed without the augmented reference index. Most biochemical aspects
of genes have not been explored in detail in fly; rather homologs in yeast
and other species have been carefully studied. In fact, proper resolution for
approximately half of the labeled functional clusters, including the nucle-
olar maternal cluster in Plate 7.4(a), required the use of the augmented
reference index, as the published primary literature on the fly genes was
sparse.
One of the primary goals of gene expression analysis is to attribute

functions to unidentified genes and identify novel functions based on gene
co-expression. If a gene with unknown function is in a functionally coherent
cluster, it likely shares the common function of the other genes in the cluster.
Experimental follow-up is necessary to confirm the putative gene function.
In addition, detailed examination of unstudied genes just outside the cluster
may be fruitful since they may also share the cluster function.
For example, Plate 7.4d appears to be a cluster of muscle genes. Some of

the genes have not been specifically annotated as muscle expressed genes,
but are likely candidates. Glycogenin, Fbgn0034603, was recently con-
firmed to be a muscle specific gene with in situ hybridization (Arbeitman,
Furlong et al. 2002).
Not only has this method almost completely recapitulated the biologic-

ally relevant associations found through months of hands-on, one-gene-at-
a-time work by teams of scientists working in both yeast and drosophila,
but it has also been able to identify new clusters that were missed by the
primary researchers (personal communication, Farhad Imam, 2003). Fur-
thermore, this method was able to accomplish this task on the order of
hours! Text-based approaches therefore other researchers the potential to
reduce significantly the amount of data analysis required to begin to make
meaning from the mountain of experimental data.

192 7 : Analyzing large gene expression data sets

References

Andrade, M. A. and A. Valencia (1997). ‘‘Automatic annotation for biological se-
quences by extraction of keywords from MEDLINE abstracts. Development of a
prototype system.’’ Proc. Int. Conf. Intell. Syst. Mol. Biol. 5(1): 25–32.

Arbeitman, M. N., E. E. Furlong, et al. (2002). ‘‘Gene expression during the life cycle of
Drosophila melanogaster.’’ Science 297(5590): 2270–5.

Blake, J. A., J. E. Richardson, et al. (2002). ‘‘The Mouse Genome Database (MGD): the
model organism database for the laboratorymouse.’’Nucleic Acids Res. 30(1): 113–5.

Cherry, J. M., C. Adler, et al. (1998). ‘‘SGD: Saccharomyces Genome Database.’’
Nucleic Acids Res. 26(1): 73–9.

Dwight, S. S., M. A. Harris, et al. (2002). ‘‘Saccharomyces Genome Database (SGD)
provides secondary gene annotation using the Gene Ontology (GO).’’ Nucleic Acids
Res. 30(1): 69–72.

Eisen, M. B., P. T. Spellman, et al. (1998). ‘‘Cluster analysis and display of genome-wide
expression patterns.’’ Proc. Natl. Acad. Sci. U S A. 95(25): 14863–8.

Eisen, M. B., P. T. Spellman, et al. (1998). ‘‘Cluster analysis and display of genome-wide
expression patterns.’’ Proc. Natl. Acad. Sci. U S A. 95(25): 14863–8.

Gelbart, W. M., M. Crosby, et al. (1997). ‘‘FlyBase: aDrosophila database. The FlyBase
consortium.’’ Nucleic Acids Res. 25(1): 63–6.

Hill, D. P., A. P. Davis, et al. (2001). ‘‘Program description: Strategies for biological
annotation of mammalian systems: implementing gene ontologies in mouse genome
informatics.’’ Genomics 74(1): 121–8.

Hvidsten, T. R., J. Komorowski, et al. (2001). ‘‘Predicting gene function from gene
expressions and ontologies.’’ Pac. Symp. Biocomput: 299–310.

Phillips, B., A. N. Billin, et al. (1998). ‘‘The Nop60B gene of Drosophila encodes an
essential nucleolar protein that functions in yeast.’’ Mol. Gen. Genet. 260(1): 20–9.

Raychaudhuri, S. and R. B. Altman (2003). ‘‘A literature-based method for assessing the
functional coherence of a gene group.’’ Bioinformatics 19(3): 396–401.

Raychaudhuri, S., J. T. Chang, et al. (2003). ‘‘The computational analysis of scientific
literature to define and recognize gene expression clusters.’’ Nucleic Acids Res.
31(15): 4553–60.

Raychaudhuri, S., J. T. Chang, et al. (2002). ‘‘Associating genes with gene ontology
codes using a maximum entropy analysis of biomedical literature.’’ Genome Res. 12:
203–214.

Schug, J., S. Diskin, et al. (2002). ‘‘Predicting gene ontology functions from ProDom and
CDD protein domains.’’ Genome Res. 12(4): 648–55.

Shatkay, H., S. Edwards, et al. (2000). ‘‘Genes, themes and microarrays: using informa-
tion retrieval for large-scale gene analysis.’’ Proc. Int. Conf. Intell. Syst. Mol. Biol.
8(10): 317–28.

Sherlock, G. (2000). ‘‘Analysis of large-scale gene expression data.’’ Curr. Opin. Immu-
nol. 12(2): 201–5.

Stein, L., P. Sternberg, et al. (2001). ‘‘WormBase: network access to the genome and
biology of Caenorhabditis elegans.’’ Nucleic Acids Res. 29(1): 82–6.

Vorbruggen, G., S. Onel, et al. (2000). ‘‘Restricted expression and subnuclear localiza-
tion of the Drosophila gene Dnop5, a member of the Nop/Sik family of the conserved
rRNA processing factors.’’ Mech. Dev. 90(2): 305–8.

Xie, H., A. Wasserman, et al. (2002). ‘‘Large-scale protein annotation through gene
ontology.’’ Genome Res. 12(5): 785–94.

References 193

This page intentionally left blank

8Using text classification
for gene function
annotation

Recognizing specific biological concepts described in text is an important
task that is receiving increasing attention in bioinformatics. To leverage the
literature effectively, sophisticated data analysis algorithms must be able to
identify key biological concepts and functions in text. However, biomedical
text is complex and diverse in subject matter and lexicon. Very specialized
vocabularies have been developed to describe biological complexity. In
addition, using computational approaches to understand text in general
has been a historically challenging subject (Rosenfeld 2000). In this chapter
we will focus on the basics of understanding the content of biological text.
We will describe common text classification algorithms. We demonstrate
how these algorithms can be applied to the specific biological problem of
gene annotation. But text classification is also potentially instrumental to
many other areas of bioinformatics; we will see other applications in
Chapter 10.
There is great interest in assigning functional annotations to genes from the

scientific literature. In one recent symposium 33 groups proposed and imple-
mented classification algorithms to identify articles that were specifically rele-
vant for gene function annotation (Hersh, Bhuporaju et al. 2004). In another
recent symposium, seven groups competed to assign Gene Ontology function
codes to genes from primary text (Valencia, Blaschke et al. 2004). In this
chapter we assign biological function codes to genes automatically to investi-
gate the extent to which computational approaches can be applied to identify
relevantbiological concepts in text aboutgenesdirectly.Eachcoderepresentsa
specific biological function such as ‘‘signal transduction’’ or ‘‘cell cycle’’.
The key concepts in this chapter are presented in the frame box. We

introduce three text classification methods that can be used to associate
functional codes to a set of literature abstracts. We describe and test
maximum entropy modeling, naive Bayes classification, and nearest neigh-
bor classification. Maximum entropy modeling outperforms the other

8

methods, and assigns appropriate functions to articles with an accuracy of
72%. The maximum entropy method provides confidence measures that
correlate well with performance. Once function codes are assigned to
abstracts, a voting scheme can be used to combine the assigned codes
from multiple abstracts relevant to a single gene into an annotation for
that gene. We thus show that statistical text analysis methods are able to
automatically access relevant biological concepts from text and that infor-
mation can be further used to annotate genes.

8.1 Functional vocabularies and gene annotation

In order to provide some standards for describing gene function, investiga-
tors have developed controlled vocabularies for annotation. The vocabu-
laries include a pioneering classification for Escherichia coli gene function
(Riley 1993), the Munich Information Center for Protein Sequences (MIPS)
classification (Mewes, Frishman et al. 2000), and Gene Ontology (GO)
Consortium’s recent widespread effort across multiple organisms (Ashbur-
ner, Ball et al. 2000). These vocabularies contain a set of codes associated
with specific genetic attributes and functions. They provide a distilled set of
biological concepts that can be used to make exact statements in biology.
These vocabularies are important in text mining because they provide a
basic set of concrete definitions.
Great effort has been made in the last decade to begin assigning function

codes to genes, to facilitate large-scale analysis. The goal is to use high
quality evidence to create reliable information resources about genes. This
is currently achieved by manual assignment or annotation of specific codes
to genes. The value of such resources in bioinformatics is tremendous. They
can be used as a starting point for analysis of data collected on thousands
of genes. A large knowledge resource covering many functions and many
genes offers the possibility of very comprehensive analysis. For example, an
investigator can infer the function of an uncharacterized gene by obtaining
and comparing primary data from it to primary data from other annotated

1) Gene function vocabularies
a) Gene Ontology
b) Enzyme Commission
c) Kyoto Encyclopedia of Genes

and Genomes
2) Text classification

a) Maximum entropy

b) Nearest neighbor
c) Naı̈ve Bayes

3) Feature selection
4) Classifying documents into

functional categories
5) Gene annotation

196 8 : Using text classification for gene function annotation

genes. Furthermore, annotated genes can be used as gold standards in
testing bioinformatics algorithms.
Unfortunately, annotating genes with these controlled vocabulary codes

is a labor-intensive task. An expert inspects the literature (and, in principle,
other available data) associated with each gene to determine the appropri-
ate function code. It is likely that one-time annotation will not be sufficient;
as our knowledge of biology increases and expands into new areas, the
vocabularies will undergo refinement and coding may need to be repeated.
Therefore, tools to automate this process are critical to building such large
knowledge resources.
In the next section we briefly outline some well-known functional vo-

cabularies.

8.1.1 Gene Ontology

Gene Ontology (GO) is one of the most widely used functional ontologies.
We introduced it in Chapter 1, and have been using it as a gold standard to
validate our algorithms in other chapters. Gene Ontology is a functional
vocabulary that was built for general application to all organisms. It is
regularly revised and updated as more and more genes from different
organisms are being annotated with it. Beyond being simply a list of
terms, Gene Ontology is a hierarchically arranged set of codes. Broad
terms are at the top of the hierarchy, and more specific terms are at the
bottom. When a gene is assigned a specific term, the more general parent
terms of that term are implied functional assignments. For example oxidor-
eductase activity (GO:0016491) is a specific type of catalytic activity
(GO:0003824), which in turn is a specific type of molecular function
(GO:0003674). So a gene assigned the function oxidoreductase activity,
carries with it implicit assignments of those other two more general terms
(see Figure 8.1). However, a gene assigned the catalytic activity function
term does not imply that the gene necessarily has oxidoreductase activity as
a function.
The advantage of the hierarchical approach is twofold. First genes can be

annotated as specifically as possible, given the information available. As
more information becomes available about the genes, the annotations can
be refined and made more specific. Second, the hierarchical structure facili-
tates general as well as specific queries. So if a user wishes to obtain all of
the genes that have catalytic activity, any gene assigned that term, or any of
its more specific descendent terms, will be obtained.
Gene Ontology is organized into three broad components: molecular

function, cellular compartment, and biological process (see Figure 8.1).
Molecular function terms describe the biochemical reactions that the gene’s
protein product is directly involved in. For example, the enzymatic reaction

8.1 Functional vocabularies and gene annotation 197

that a protein catalyzes can be considered its molecular function. Cellular
compartment termsdescribe specific locations in the cell; these termsareused
to describe the subcellular location of the gene’s protein product. For ex-
ample, the protein complex that a gene’s protein product is a part of can be
considered its cellular location. Biological process is a set of broad terms that
describe the biological role that each gene plays. These terms include terms
ranging from processes that occur at the organism level, such as organ
development, to the most basic cellular processes, such as metabolism.
Gene Ontology codes are assigned to genes by many different means.

After a professional assigns a term to a gene, she assigns an evidence code
indicating the source of the information that suggested the term assignment.
There are 12 different evidence codes (see Table 8.1). The most reliable
annotations are taken from the scientific literature—these are coded as
‘‘Traceable Author Statements’’. Other high quality annotations are
obtained from direct experimental data. These quality annotations are
often the most time consuming to obtain as well, as they require detailed
examination of the scientific literature. Much less reliable are the ‘‘Inferred
from Sequence Similarity’’ annotations or ‘‘Inferred from Reviewed Com-
putational Analysis’’ annotations that have been made on the basis of
sequence similarity to another already annotated gene or computational
analysis. Even less reliable than those are the ‘‘Inferred from Electronic
Annotation’’ annotations; these annotations have been transferred from
external databases or automatically by sequence similarity searches that
have not been reviewed by any curator.

Gene
Ontology

Process Function Compartment

binding structural
molecule

transporter catalytic
activity

transcription
regulation

motor
activity

nutrient
reservoir

hydrolase ligase transferase oxidoreductase
activity

integrase transposase lipase

Figure 8.1 Gene Ontology schematic. Gene ontology (GO) has three major branches: biological

process, molecular function, and cellular compartment. To demonstrate the hierarchical nature of

GO we list selected descendents of molecular function, and selected descendents of catalytic

activity. Any gene assigned a descendent of catalytic activity, such as oxidoreductase activity, is also

assigned the broader functions catalytic activity and molecular function implicitly.

198 8 : Using text classification for gene function annotation

Table 8.1 Evidence codes for Gene Ontology. The different evidence codes used to identify the

source for Gene Ontology code assignments to genes. This information was obtained from the Gene

Ontology web site.

Evidence code Abbreviation Notes

Traceable
author
statement

TAS

Inferred by
curator

IC

Inferred from
direct assay

IDA – Enzyme assays
– In vitro reconstitution (e.g. transcription)
– Immunofluorescence (for cellular component)
– Cell fractionation (for cellular component)
– Physical interaction/binding

Inferred from
mutant
phenotype

IMP – Any gene mutation/knockout
– Overexpression/ectopic expression of wild-type or
mutant genes

– Anti-sense experiments
– RNAi experiments
– Specific protein inhibitors

Inferred from
genetic
interaction

IGI – ‘‘Traditional’’ genetic interactions such as suppressors,
synthetic lethals, etc.

–Functional complementation
– Rescue experiments
– Inference about one gene drawn from the phenotype of
a mutation in a different gene.

Inferred from
physical
interaction

IPI – 2-hybrid interactions
– Co-purification
– Co-immunoprecipitation
– Ion/protein binding experiments

Inferred from
expression
pattern

IEP – Transcript levels (e.g. Northerns, microarray data)
– Protein levels (e.g. Western blots)

Inferred from
sequence or
structural
similarity

ISS – Sequence similarity (homologue of/most closely related
to)

– Recognized domains
– Structural similarity
– Southern blotting

Continued

8.1 Functional vocabularies and gene annotation 199

8.1.2 Enzyme Commission

One of the oldest and well-known functional vocabularies is the Enzyme
Commission (EC) classification scheme. This vocabulary only addresses the
definition and classification of enzymes by the molecular function they
catalyze. In practice each EC number is written as four numbers with
periods in between. The left-most number defines the broadest classification
of enzymes and can range from 1 to 6. In Table 8.2 we list these broad
classifications. The numbers to the right define the enzymatic reaction more
specifically. For example, consider an enzyme annotated with the EC num-
ber 3.2.1.4. The number 3 specifies that the enzyme is a hydrolase. The
number 2 specifies that it is a hydrolase that breaks glycosidic bonds.
The number 1 specifies that the bonds that are hydrolyzed by these enzymes
are actually O-glycosyl bonds. And the final number 4 indicates that
the enzyme catalyzes the hydrolysis of 1,4-beta-D-glucosidic linkages in
cellulose, lichenin and cereal beta-D-glucans. Like Gene Ontology, the
EC classification is a hierarchical vocabulary, but with only four levels.
Many other biological vocabularies have been constructed around the EC
classification.

8.1.3 Kyoto Encyclopedia of Genes and Genomes

Another ontology is theKyotoEncyclopedia ofGenes andGenomes (KEGG)
(Kanehisa, Goto et al. 2004). This ontology seeks to unify functional

Table 8.1 Continued

Evidence code Abbreviation Notes

Inferred from
reviewed
computational
analysis

RCA – Large-scale protein–protein interaction experiments
– Microarray experiments
– Integration of large-scale datasets of several types
– Text-based computation

Inferred from
electronic
annotation

IEA

Non-traceable
author
statement

NAS

No biological
data available

ND

200 8 : Using text classification for gene function annotation

information about genes from over 100 organisms. In addition, KEGG
seeks to provide a unified resource that characterizes the chemical reactions
that each of the genes are involved in and also catalogs protein–protein
interactions and molecular pathways. It contains three separate categories
of structured information: structured information about genes, protein
networks, and chemical intermediates.
Gene information is stored in the GENES database. This database con-

tains a listing of over half a million genes from more than 150 sequenced
organisms. These genes are annotated with KO (Kegg Orthology) numbers
that correspond to specific biological functions. The idea is that genes from
different organisms with the same KO number have the same biological
function and also are evolutionarily related. The KO numbers are an
extension and modification of the Enzyme Classification (EC) numbers
described above. There are five broad categories of pathway functions
used in the KEGG ontology: metabolism, genetic information processing,
environmental information processing, cellular processes, and human dis-
ease. There are 24 subcategories at the next level. The third level is indi-
vidual pathway maps. The fourth level is specific KO numbers that
correspond to orthologous groups of genes sharing the same biological
function. The actual orthologous groups of genes are assembled semi-
automatically.
KEGG also contains a large repository of structured information about

chemical intermediates and metabolites. It contains entries for over 10,000
chemical intermediates and more than 10,000 carbohydrate entries as well.
A database of reactions contains over 5,000 reactions; each entry lists the
products and reactants for these reactions.
The information on molecular interactions between proteins and

pathways is contained in the PATHWAYS database. This database contains
manually compiled networks of functional significance, including meta-
bolic pathways and protein–protein interactions. We will discuss learning
genetic networks and pathways more extensively in Chapter 10.

Table 8.2 Enzyme Commission (EC) classification

categories. Listed below are the broad EC categories.

They correspond to the first of the four numbers that

define each enzyme classification.

Class 1 Oxidoreductase
Class 2 Transferase
Class 3 Hydrolase
Class 4 Lyase
Class 5 Isomerase
Class 6 Ligase

8.1 Functional vocabularies and gene annotation 201

8.2 Text classification

Successful recognition of the biological function described in a short seg-
ment of text is critical to gene function annotation. Functional annotation
with text requires us to determine the most relevant segments of text, and to
recognize its meaning. Text classification methods can help us focus in on
the critical pieces of text and they can also help us decide what function is
being described in that piece of text.
Given a piece of text, the goal is to classify it into the most appropriate

biological function. If the text can be classified with confidence, it is likely a
relevant segment of text. These techniques fall under the heading of super-
vised machine learning (Manning and Schutze 1999). An alternate use of
text classification is to use it to separate the relevant from irrelevant seg-
ments of text, so that they can be subject to further manual scrutiny.
Classification algorithms require examples of text that have already been

classified. For example, a large collection of text segments that are associ-
ated with known biological function would suffice. These examples of text
might be PubMed abstracts or specific selected sentences from scientific
articles. These examples are known as ‘‘training’’ examples. Ideally, experts
should select the training examples carefully. After the classifier is trained
on these examples, it can classify unseen ‘‘test’’ cases. In our case, the
test cases are segments of text relevant to a particular gene of unknown
function.
These methods are similar to some of the methods we described for gene

expression profile classification in Chapter 2. However, text classification is
more challenging than gene expression profile classification. For one thing
the set of features is much larger. For example, documents might be classi-
fied based on the words that are contained or not contained in it. In that
case, the features examined are the vocabulary words. The number of
vocabulary words that are important to our analysis is often enormous.
So instead of looking at 10–100 gene expression measurements to classify
a gene, we look at the presence or lack of tens of thousands of specific words
to classify a document. Since the feature set is so large, the available data
are comparatively inadequate. So complex statistical models for classifica-
tion work poorly for document classification. Sophisticated Bayesian net-
works or neural networks that require many parameters to be fit are
probably more effective in the world of gene expression classification.
The relative paucity of training examples compared to the number of
features results in degenerate fitting. In document classification the features
must be explained by either fewer parameters or by very constrained
parameters. Simple classification methods that make strong assumptions
about the data can be more effective for text classification.

202 8 : Using text classification for gene function annotation

Here we present several examples of well-known text classification algo-
rithms. Naive Bayes and nearest neighbor classification schemes are easy-
to-understand and effective methods. Maximum entropy modeling is ef-
fective in generic text classification tasks, and has gained recent popularity
(Ratnaparkhi 1997; Nigam, Lafferty et al. 1999).
Besides classifying text, it is also important to know how confident the

classifier is about its classification. For one thing, we would only want to
focus our attention on high confidence statements in the text that are
certainly describing biological function. Low confidence predictions may
lead us astray, and cause erroneous predictions to be made about a gene’s
function. In addition, confidence scores provide a scheme to combine
predictions from different pieces of text.
Text classification can be widely applied to many different areas outside

gene annotation as well. For example, text classification can be used to
identify the key sentences that describe protein–protein interactions, and
help to elucidate networks of interactions between different proteins; we
will explore this further in Chapter 10. Or they can be used to scan the
literature for papers in which a specific sort of assay was attempted, or to
identify papers that are relevant to a particular organism. They offer an
opportunity to scan and understand a large body of literature at a high level.

8.3 Nearest neighbor classification

Nearest neighbor classification can be applied to document classification
much in the same way that it can be applied to gene expression profiles. In
nearest neighbor classification, a distance metric is employed to calculate
the distance between the word vector of an unclassified document in the test
set and each of the abstracts in the training set. Documents can be first
converted into weighted word vectors as described in Chapter 3. A cosine-
based distance metric between the word vectors can be used to assess
document similarity:

dist(a‚b) ¼ 1� a � b
kak kbk

where a and b are vectors of word counts. Alternatively a and b can be
document vectors in latent semantic indexing space as described in Chapter
3. Typically given a test document, the k most similar documents in the
training set are obtained. The classifications of each of the k documents are
noted, and the document is assigned the classification that corresponds to
the greatest number of those documents.

8.3 Nearest neighbor classification 203

The basic assumption behind nearest neighbor classification is that two
documents that use the same sort of words in general are likely to have the
same meaning. This method is of course very sensitive to the selection of the
document weighting scheme and the choice of document metric. Not only
are a wide variety of metrics available, but words can also be weighted
differentially depending on their preconceived value to the classification
task at hand.

8.4 Naive Bayes classification

Another simple and effective document classification strategy is the naive
Bayes classifier (Manning and Schutze 1999). There are two basic assump-
tions behind naive Bayes. First, is that the probability that a word is found
in a document is a function of the classification of the document, and that
different classes of documents have different distributions of words. Sec-
ond, naive Bayes assumes that the words within the document are inde-
pendently distributed. That is, the presence of one word has no bearing on
whether another word will be present or not. In reality this is clearly not the
case. For example a document that has the word ‘‘transduction’’ in it will
very likely have the word ‘‘signal’’ in it as well if it is a paper about signal
transduction. So this is a strong and inaccurate assumption in principle, but
in practice naive Bayes is often effective. The large number of vocabulary
words compared to the relatively few documents available requires effective
classification techniques to make strong assumptions about the data.
Therefore, given a document, and the class that it belongs to, the prob-

ability of the document is the multiplicative product of the probability of
each of the individual words occurring in that class. So the probability of a
document d given that it is a member of a class c can be calculated:

P(djc) ¼
Y

w2d P(wjc)

In naive Bayes, the probability of each word appearing in a document of a
certain class is estimated directly from the training data. Given a large
collection of documents that pertain to a specific class, we estimate the
probability to be the number of documents that the word occurs in, divided
by the total number of documents. There is the concern that a specific word
may show up in the training documents too rarely or not at all. Under these
circumstances the probability of a document containing that word will be
zero. To avoid this situation we employ pseudo-counts of words that are
based on a background distribution:

204 8 : Using text classification for gene function annotation

P(wijc) ¼ si þ
P

d2C I(wi‚ d)

sþNd2C

In this equation, c is a specific class, d is a training document within the class
c, and Nd2C is the number of documents within the class c. I(w, d) is an
indicator function that is 1 if the word w is in the document d, 0 otherwise.
The term si represents the number of times we would expect to see word i in
s documents. One way of calculating si is to calculate a background distri-
bution from all of the documents available and to multiply it by s. These
terms are added in as pseudo-counts to compensate for unseen events and
avoid zero probabilities. If very few documents are available, then the
pseudo-counts determine the probability. If large numbers of documents
and words are available, the influence of the pseudo-counts is minimal.
Given an unclassified document, we can use Bayes theorem to calculate

the probability that a class c is the correct classification of a document d.
Under the naive Bayes model:

P(cjd) ¼ P(c)P(djc)
P(d)

� P(c)
Y

wi2d P(wijd)

Here P(c) represents the prior probability of class c. That is, it is the back-
grounddistributionof class c; it canbe estimatedas the fractionofdocuments
in the training set that correspond to that classification.P(d) is theprobability
of a document; this is a constant term across the different classes.
To predict the class of an unseen test set document, we calculate the above

probability of the document given each class and multiply it by the prior
probability of that class. The class that receives the highest value is predicted.
While naive Bayes is a very easy method to understand and implement, its

performance is usually comparable to the best classifiers. The limitation is in
the strong independence assumption that is made. While that assumption
allows the construction of an easy to fit probabilistic framework, it also leads
to a classifier that over-commits to classifications. The presence of multiple
keywords in a document that imply a specific function leads to unreasonably
high probabilities since the presence of these keywords was assumed to be
independent. The result is a classifier that gives extreme probabilities in the
case that the classification is obvious, but dealswith ambiguous cases poorly.

8.5 Maximum entropy classification

Maximum entropy modeling is a classification method that has proven to
be effective in many text classification tasks (Ratnaparkhi 1997; Nigam,

8.5 Maximum entropy classification 205

Lafferty et al. 1999). It is similar to naive Bayes classifications in terms of
the probabilistic framework to classify documents. But the framework is
based on different assumptions. Entropy can be used to characterize prob-
abilistic models used for classification. Low entropy models depend on
making many distinctions when classifying documents, and can suffer
from over-interpretation of the training data. High entropy models make
fewer distinctions but do not take full advantage of the signal within the
training data. For example, the uniform distribution has the greatest pos-
sible entropy; under this distribution all observations are equally likely.
Maximum entropy methods are based on the strong assumption that the

best models are those with the highest entropy that are still consistent with
the training data. The parameters are selected via an iterative algorithm to
insure that the distribution has the highest possible entropy. This strategy
biases us to pick a probabilistic distribution for classification that is least
prejudiced by the observed data in the training set. The result is a classifier
that does not over-fit the training data, and make spurious classifications
based on limited information. One advantage of maximum entropy classi-
fication is that, in addition to assigning a classification, it provides a
probability of each assignment being correct.
In maximum entropy classification, the user defines category specific

‘‘features’’. Each feature fi(d‚c) is a binary function of any document d
and any class (or code) c. In this application each feature fi is defined
relative to a specific word wi and class ci. The feature fi(d‚c) is unity only
if d contains wi and c is ci. For example, one feature fexample might be

fexample(d‚ c) ¼ 1 if ‘‘cell’’ 2 d; c = ‘ metabolism ’

0 otherwise

�
(8:1)

where wexample is ‘‘cell’’ and cexample is ‘‘metabolism’’.
The goal in maximum entropy is to define a probabilistic distribution that

assigns a probability to each possible document and class. The entropy of
the distribution, P, can be calculated as follows:

H(P) ¼ �
X
j

X
i

P(dj‚ci) log P(dj‚ci)
� �

where c is a class, d is a document.
To help demonstrate we present a simple example of documents that can

be classified into two different classes, þ and �. We define two features for
each classification that are based on the presence of a specific word in the
document. So we have four features altogether f1þ‚ f2þ‚ f1�, and f2�. So
given a document and a class there is a possible total of seven feature vectors

206 8 : Using text classification for gene function annotation

that can be defined (see Table 8.3). Our goal is to define probabilities over
these seven possible feature vectors. If we were completely
unconstrained, the highest entropy probability distribution possible
would be the uniform distribution; each case is assigned equal probability.
However, this does not provide a very helpful statistical model. Now
suppose that we had some constraints. Say, we wanted to define a distribu-
tion such that f1þ had an expectation of 0.25, while the other features had
an expectation of 0.4. In other words we wish to define a distribution
among those seven possibilities such that f1þ is set to 1 in 0.25 of the
cases and 0 in 0.75 of the cases. In Table 8.3 we present a high and low
entropy possibility that conforms to this constraint. Notice the higher
entropy scenario has fewer extreme probabilities, and is closer to the
uniform distribution. We assert that this high entropy distribution is closer
to the ‘‘real’’ distribution.
Our goal is to identify the distribution P that maximizes the entropy

while also resembling the training data. We apply a simple requirement on
the choice of distribution. We constrain our choice of P so that the fraction

Table 8.3 Maximum entropy example. Here we give a simple example of the maximum entropy

modeling formulation. We define two features for each of the two classes. There are seven possible

feature vectors that can be defined over these features. Every document can, given the class that it

belongs to, be mapped to one of these seven vectors. The highest entropy probability distribution is

to assign equal weight to each vector; that distribution has 2.81 bits of entropy. The lowest possible

entropy distribution is to assign all of the probability mass to a single vector; that distribution has 0

bits of entropy. Now suppose that we wanted the probability distribution to be such that the

expectation of each feature was a specific value. That constraint greatly limits our choices of

distributions. We provide two possible distributions. The lower entropy distribution has zero

probability assigned to three of the vectors and has 1.74 bits of entropy. The higher entropy

distribution has non-zero values for all of the vectors, and is closer to a uniform distribution. It has

2.55 bits of entropy. It is a more plausible distribution.

þ class � class

Highest
entropy

distribution

Lowest
entropy

distribution

Lower
entropy

distribution

Higher
entropy

distribution
Feature f1þ f2þ f1� f2�

vec 1 1 1 0 0 0.143 1 0.05 0.20
vec 2 0 1 0 0 0.143 0 0.35 0.20
vec 3 1 0 0 0 0.143 0 0.20 0.05
vec 4 0 0 0 0 0.143 0 0 0.05
vec 5 0 0 1 1 0.143 0 0.40 0.30
vec 6 0 0 0 1 0.143 0 0 0.10
vec 7 0 0 1 0 0.143 0 0 0.10
expectation 0.25 0.40 0.40 0.40
Entropy 2.81 0 1.74 2.55

8.5 Maximum entropy classification 207

of documents that a feature is observed in a data set is equal to the
expectation of that feature under the model P. That is, given a training
data setD with real documents and class assignments, we can calculate the
fraction of documents that each feature is observed in:

g ¼ 1

Dj j
X
d2D

f (d‚ cd)

where d is a document in the training set, cd is the document’s true classi-
fication and Dj j is the number of documents in the training set. The
expectation of the feature is the average fraction of times we would expect
the feature to occur in a random set of data. The expectation of the same
feature under a distribution P can be calculated:

g ¼
X
i

X
j

P(dj‚ ci)f (dj‚ ci)

Notice, in theory this is calculated over all possible documents d and
not just documents in the training set. It is quite reasonable to expect that
the fraction of times a feature is observed in practice and the expected
fraction of times a feature is observed under a model should be the same
if the model approximates reality well. We thus require the selection of a
distribution P such that the above two quantities for each feature are
identical.
With the given feature formulation and the above constraint, it can be

shown that the maximum entropy probability distribution for documents
must be distributed according to an exponential distribution. So

P(cj‚d) ¼ v exp
X
i

lifi(d‚ cj)

 !

where c is a class, d is a document, the li are feature weights, and v is a
constant that ensures that the probability distribution is normalized.
The probability of each class for a test document can be calculated with

this exponential model:

P(cjjd) ¼ 1

Z(d)
exp

X
i

lifi(d‚ cj)

 !

where Z(d) is a normalization constant:

208 8 : Using text classification for gene function annotation

Z(d) ¼
X

c
exp

X
i

lifi(d‚ c)

 !

Once the parameter weights are fixed, the probability that a document
belongs to a particular class can be calculated with the above pair of
equations. The class with the highest probability is assigned. Furthermore
the probability of that class can be viewed as a measure of confidence in the
prediction.
Now, the challenge is to fit the parameter weights, li. Each li weight is

selected so that the aforementioned constraint on the probability density is
satisfied: the expectation of fi must equal its observed frequency in the
training data. In principle, this expectation should be calculated over the
true distribution of documents. However, in practice this distribution is
unknown, so instead we estimate the expectation for the feature empirically
over the training documentsD. So in practice the constraints are reduced to:

1

Dj j
X

d2D fi(d‚ cd) ¼
1

Dj j
X

d2D
X

c
P(cjd)fi(d‚ c)

Here cd is the correct classification of document d specified in the training
set, P is the probability calculated from the statistical model, and Dj j is the
number of documents in the training set. The left side is the observed
fraction in the training data, while the right side is the expectation given a
distribution P. This constraint must hold true for each of the features.
In practice, the weight parameters are fit to satisfy this constraint by

iteration. One common method is generalized iterative scaling (GIS) (Rat-
naparkhi 1997). In GIS, all of the weights are assigned to be zero in the first
iteration. Then, in every iteration the weights are updated:

lnþ1
i ¼ lni þ

1

C
ln

gi
�ggni

� �

The fraction of documents each feature is observed in the data set is also
computed initially – this is invariant over the iterations. Then at each
iteration, the expectation for each feature is re-calculated with the given
parameters. If these two terms are equal, the log of the ratio is zero and the
weight is not updated. On the other hand, if the observed fraction is much
larger, the log of the ratio is positive, and the weight is updated to be a larger
value. If the observed fraction is smaller than the expectation the log of the
ratio is negative, and the weight is updated to be a smaller value.
GIS requires that the sum of all the features for any document-class

instance is always the same value C. In practice an extra non-binary feature

8.5 Maximum entropy classification 209

is added to achieve this. The extra feature is assigned Cminus the sum of all
of the other terms. The factor C modifies the speed at which the algorithm
converges and is included to insure the correctness of the algorithm. Other
strategies to satisfy the constraint and find the exponential parameters are
also available. The more features that are used in a classification the more
complicated it is to find values of the parameters that satisfy our constraint.
In this case the value C is larger, and the weights are updated slowly in each
iteration so that convergence can be achieved.

8.6 Feature selection: choosing the best words for
classification

In many cases there may be too many vocabulary words for quick classifi-
cation. We can make intelligent decisions to include and exclude certain
words from our calculation to facilitate rapid computation. In many cases,
if we eliminate the right words, or features, from our analysis we can do so
without costing prediction accuracy. Indeed, under many circumstances
performance can actually be improved since erroneous features that can
lead the analysis astray are no longer present. Feature selection is an active
field in the machine learning scientific community. We will only focus on a
simple, but very effective method.
Chi-squares is a statistical method that can be used to see if a certain

feature occurs more or less often with a certain classification than expected.
First, documents are divided by whether they have the feature and by which
class they belong to. If there are only two classes, the results can be placed in
a 2� 2 table. See Figure 8.2 for an illustration. If the feature is a valuable
one for prediction, we would expect that its presence correlates with the
classification of the document.
The expected number of documents in each box can be calculated if we

assume there is no relationship between the feature and the classification.
We simply calculate the fraction of documents in which the feature occurs,
p, and the fraction of times the classification occurs, q. The number of times
we then expect a feature and a classification to occur together if they are
independent is therefore Npq. Similarly the number of documents where
the feature is lacking and it has a different classification can be calculated as
well: N(1� p)(1� q). The chi-square score can be calculated:

x2 ¼
X
i

(Oi � Ei)
2

Ei

210 8 : Using text classification for gene function annotation

Here,O is the number of times each of the four possibilities is observed and
E is the number of times each of the four possibilities is expected to occur if
the feature and class are unrelated. If all of the data collected are in fact
random, the chi-square score should be close to zero. The probability that it
is larger than the obtained value if the data were collected randomly is given
by the Chi-square distribution (the p-value) with one degree of freedom.
In practice we select the words with the largest Chi-square scores and
smallest p-values. These features are likely to constitute a set of features
that correlate with the classifications.

class class

feature (+)

feature (-)

(−)(+)

A B

DC

P(f+) = A+B
A+B+C+D

P(f_) = C+D
A+B+C+D

P(c+) = A+C
A+B+C+D

P(c_) = B+D
A+B+C+D

Expected(f+,c+) =N . P(f+,c+) =(A+B+C+D) P(f+)P (c+) = (A+B)(A+C)

A+B+C+D

Figure 8.2 Chi-square testing to select features. For each feature, all of the documents from the

training data are divided into four categories: those that possess the feature and are in the class (A),

those that possess the feature and are not in the class (B), those that lack the feature and are in the

class (C), and finally those that lack the feature and are not in the class (D). The candidate features

that we are testing are typically the presence of a specific word. We are looking for features where

the class is correlated with the feature. If there is no correlation, then the probability of the feature

and the class can be calculated independently with the equations below. To calculate the expected

number of documents, assuming there is no relationship between the feature and the class, we

simply multiply the total number of documents by the probability of the feature (or lack of the

feature) and the probability of the class (or lack of the class). We calculate this value for each of the

four possibilities. Comparison of these expected values assuming the feature and class are

independent to the actual values in the table yields the chi-square score.

Choosing the best words for classification 211

This method can be easily extended to multiple classifications. Instead of
a 2� 2 table, a 2� n table needs to be created. This time for each classifi-
cation ci, the fraction of times that classification occurs can be calculated,
qi. Expected values of each box can be calculated, and a chi-square score
can be calculated in the same way as above. The only difference is that
instead of summing over four boxes, we sum over 2n boxes. The statistical
significance can be determined by looking to the chi-square distribution
with n� 1 degrees of freedom.

8.7 Classifying documents into functional categories

To demonstrate the effectiveness of using text classifiers to discern bio-
logical function in text, we train a maximum entropy classifier to recognize
the text most relevant to Gene Ontology functions. Later in this chapter we
will show how such a classifier can be used to annotate a gene by combining
the GO code classifications from all of its abstracts.
Here we (1) evaluate the performance of a maximum entropy document

classifier to obtain genetic functions and (2) annotate the gene based on the
literature. To evaluate document classification, we use accuracy; to evaluate
gene annotation we use precision and recall. Accuracy is the percentage of
predictions on a document test set for which the classifier prediction was
correct. Precision is the percentage of annotated genes that are true posi-
tives. Recall is the percentage of genes that truly have the function that are
true positives.
We conduct experiments to annotate Saccharomyces cerevisiae (yeast)

genes with codes from a subset of GO. We choose this organism because
many of its genes have manually curated GO annotations that can be used
as a gold standard. We used a high quality list of PubMed citations hand
assigned to relevant genes by the curators of the Saccharomyces Genome
Database (SGD) (Cherry, Adler et al. 1998; Ball, Dolinski et al. 2000).
Since the crux of our annotation strategy is a document classifier, we

compare it to the two other types of classifiers described. After establishing
the effectiveness of a maximum entropy classifier, we evaluate using the
classifier’s probabilistic estimates as robust confidence estimates of predic-
tion. Finally we introduce a voting scheme to combine document classifi-
cations into gene annotations. Since our classifications of documents have
reliable confidence estimates, our annotations of genes should also. At
higher confidence cutoff values, better precision is achieved since the pre-
dictions are more certain, but at the cost of lower recall since low confi-
dence correct annotations are missed.

212 8 : Using text classification for gene function annotation

In total we scrutinize 21 gene function categories (see Table 8.4a). All
codes are biological process codes that are relevant to yeast. The unclassi-
fied text is assigned to categories based on similarities with the training
examples.

8.8 Comparing classifiers

We compare the classification accuracy of two different classifier families,
naive Bayes and nearest neighbor, to maximum entropy classification. We
tested the different document classifiers described above to predict the
subject matter of the documents in two test sets, test2000 and test2001.
We begin by creating a corpus containing at least 1000 PubMed ab-

stracts relevant to each functional category. These comprise the training
sets for the classification algorithms. The best approach to this problem
would be careful examination of many articles by qualified experts.
However, obtaining a large volume of abstracts in this manner is very
difficult. Instead, we use MeSH term headings and title words to query
PubMed for relevant abstracts as a surrogate(Bachrach and Charen 1978).
MeSH headings are keywords that have been carefully assigned to docu-
ments by curartors that have studied them closely. For each code we identify
the most relevant MeSH terms that were semantically similar to the code or
one of its children in GO. Then, we use those terms to construct a PubMed
query for each GO code; most queries included specific MeSH terms as a
major heading for the article. For many categories, such as signal transduc-
tion, an obvious MeSH term is available; other categories require use of an
appropriate combination of title words and MeSH terms. The queries also
included the ‘‘genes’’ or ‘‘genetics’’MeSHheadings to insure that the article is
biologically focused. To balance the sizes of the training sets, we adjusted the
publicationdate so that approximately 1000abstracts couldbe obtained.We
construct training and test corpora of documents for the 21 GO codes by
searching PubMed with those queries.
The queries and the number of abstracts per GO code are listed in Table

8.4(a). We split the results into three sets based on publication date; docu-
ments published before 2000 constitute the training set, documents pub-
lished in 2000 constitute the test2000 set, and documents published in 2001
constitute the test2001 set. A few of the documents are relevant to more
than one GO code (see Table 8.4b).
We use the abstracts and title fields from the PubMed records for the

training set only. Since the titles were sometimes used to select the articles,
we omit the title from the document when testing. From these documents,
we find 63,992 unique tokens by tokenizing on white space, punctuation,

8.8 Comparing classifiers 213

Table 8.4 The training and testing corpus. (a) This table lists the gene ontology code in the first

column and the PubMed query used to obtain abstracts in the final column. For the training data

set, the articles were obtained by using the query as listed in the table. The test2000 and test 2001

data sets were obtained by modification of the publication date limit to restrict articles to those

published in 2000 and 2001, respectively. Titles were omitted from the test data sets. The table also

lists the number of articles obtained for each category for the training and test sets. (b) Some of the

articles within the training set were obtained in more than a single query; thus these articles have

multiple GO classifications. This table lists the number of abstracts in each data set and the number

of abstracts with 1, 2, 3, and 4 relevant codes.

(a)

GO code Training Test2000 Test2001 PubMed query

metabolism 1005 225 30 ‘‘(metabolism[MAJR]) AND
Genes[MH] AND
1989:1999[DP]’’

cell cycle 1085 303 19 ‘‘(cell cycle[MAJR]) AND
Genes[MH] AND
1996:1999[DP]’’

signal
transduction

1168 302 25 ‘‘(signal transduction[MAJR])
AND Genes[MH] AND
1995:1999[DP]’’

oncogenesis 1043 168 15 ‘‘(cell transformation,
neoplastic[MAJR]) AND
Genes[MH] AND
1994:1999[DP]’’

cell death 1154 434 28 ‘‘(cell death[MAJR]) AND
Genes[MH] AND
1997:1999[DP]’’

meiosis 1003 151 7 ‘‘((meiosis[MAJR])) AND
(Genes[MH] OR
Proteins[MH]) AND
1986:1999[DP]’’

intracellular
protein traffic

1107 322 28 ‘‘(endocytosis[MAJR] OR
exocytosis[MAJR] OR
transport vesicles[MAJR] OR
protein transport[MAJR] OR
nucleocytoplasmic[TI]) AND
(Genetics[MH]) AND
1994:1999[DP]’’

cell adhesion 1025 133 5 ‘‘(cell adhesion[MAJR]) AND
(genetics[MH]) AND
1993:1999[DP]’’

cell motility 1094 269 23 ‘‘(cell movement[MAJR])
AND (Genetics[MH]) AND
1995:1999[DP]’’

sporulation 847 49 0 ‘‘(sporulation[TI]) AND
(genetics[MH]) AND
1940:1999[DP]’’

membrane
fusion

317 58 4 ‘‘(membrane fusion[MAJR])
AND (Genetics[MH]) AND
1940:1999[DP]’’

214 8 : Using text classification for gene function annotation

autophagy 177 22 1 ‘‘(autophagy[TI] OR
autophagocytosis[MAJR])
AND (Proteins[MH] OR
Genes[MH]) AND
1940:1999[DP]’’

cell fusion 740 20 0 ‘‘(cell fusion[MAJR] OR
(mating[TI] AND
Saccharomyces
Cerevisiae[MAJR]) AND
(Genetics[MH]) AND
1940:1999[DP]’’

stress response 1068 253 22 ‘‘(Wounds[MAJR] OR DNA
repair[MAJR] OR DNA
Damage[MAJR] OR Heat-
Shock Response[MAJR] OR
stress[MAJR] OR
starvation[TI] OR soxR[TI]
OR (oxidation-
reduction[MAJR] NOT
Electron-Transport[MAJR]))
AND (Genes[MH]) AND
1996:1999[DP]’’

cell
proliferation

394 0 0 ‘‘(cell proliferation[TI]) AND
(Genes[MH]) AND
1940:1999[DP]’’

biogenesis 1023 132 4 ‘‘(biogenesis[TI] OR ((cell
wall[MAJR] OR cell
membrane structures[MAJR]
OR cytoplasmic
structures[MAJR]) AND
(organization[TI] OR
arrangement[TI]))) AND
(Genetics[MH]) AND
1984:1999[DP]’’

cell-cell
signalling

237 41 0 ‘‘(synaptic
transmission[MAJR] OR
synapses[MAJR] OR gap
junctions[MAJR]) AND
(Genes[MH]) AND

invasive
growth

492 52 4 ‘‘((invasive[TI] AND
growth[TI]) OR neoplasm
invasiveness[MAJR]) AND
(Genetics[MH]) AND
1940:1999[DP]’’

transport 1022 84 8 ‘‘(biological transport[MAJR]
OR transport[TI]) AND
(Genes[MH]) AND
1985:1999[DP]’’

Continued

8.8 Comparing classifiers 215

and common non-alphanumeric characters such as hyphens and paren-
theses. From these, we exclude stopwords, which were defined as tokens
that appeared in four or less or 10,000 or more documents. This leaves a
total of 15,741 unique words. Then, we represent documents as 15,741
dimensional vectors of word counts.
We train each classifier on the training set and fit their parameters by

maximizing performance on the test2000 data set. The results of the clas-
sification trials on the test2000 data set are summarized in Table 8.5(a).
The parameters we experiment with include different vocabulary sizes.

For the naive Bayes and nearest neighbor classifiers, we use a chi-square
method to identify the words whose distribution is most skewed across all
21 GO codes in the training set; see Section 8.6. We take only the words
with the highest scoring chi-square values as features. We experiment with
using different vocabulary sizes including the full 15,741 words, and also
with reduced vocabularies of 100, 500, 1000, and 5000 words selected by
chi-square score. For nearest neighbor classification we experiment with

Table 8.4 Continued

GO code Training Test2000 Test2001 PubMed query

ion
homeostasis

424 64 5 ‘‘((na[TI] OR k[TI] OR ion[TI]
OR calcium[TI] OR
sodium[TI] OR hydrogen[TI]
OR potassium[TI] OR pH[TI]
OR water[TI])AND
(concentration[TI] OR
senses[TI] OR sensing[TI] OR
homeostasis[TI] OR
homeostasis[MAJR]) AND
(genetics[MH]) AND
1940:1999[DP]’’

chemi-
mechanical
coupling

1011 147 6 ‘‘(contractile proteins[MAJR]
OR kinesins[MAJR]) AND
(Genes[MH]) AND
1993:1999[DP]’’

(b)

Articles with N codes

Corpus 1 2 3 4 Total articles

training 15444 888 60 9 16401
test2000 2682 231 27 1 2941
test2001 184 22 2 0 208

216 8 : Using text classification for gene function annotation

different numbers of neighbors as well. Because of its formulation, we use a
slightly different strategy to vary the vocabulary size for the maximum
entropy classifier. Each feature is defined relative to a code and word; the
feature is assigned one for a document only if that word is in the document
and the document is relevant to that code. We use the chi-square test to find

Table 8.5 Classification performance of different supervised machine learning algorithms. (a)

Classification performance for algorithms on the test2000 data set across different parameters. For

maximum entropy classification we attempted different numbers of word-features/code; also we

tested the accuracy at each iteration of the GIS optimization algorithm. We report in each column

the number of words/code, the highest accuracy obtained, and the first iteration obtaining that

highest accuracy. For naive Bayes classification, we calculated accuracy on different vocabularies.

The size of the vocabulary and the accuracy is reported in each column. For nearest neighbor

classification we calculated accuracy for different numbers of neighbors and different vocabularies.

The accuracy data is reported in a grid, with different numbers of neighbors for each row, and with

different vocabularies for each column. (b) For each classification algorithm we fix the optimal

parameters based on the data in (a). The classifier is run with optimal parameters on test2001; the

accuracy is reported in this table.

(a)

Maximum entropy

words / code 10 50 100 250 500 750 1000 2000 4000
Iteration 83 109 186 104 169 104 199 65 59
Accuracy 68.62 72.73 72.8 72.56 72.83 71.54 71.44 69.47 67.66

Naive Bayes

words 100 500 1000 5000 All
Accuracy 63.89 66.92 66.88 65.59 63.79

Nearest neighbor

words

neighbors 100 500 1000 5000 All

1 58.04 54.06 52.84 53.28 52.19
5 60.52 57.53 57.84 58.38 56.82

20 59.71 59.91 60.8 61.88 61.24
50 59.23 60.39 61.85 62.9 62.26

(b)

Classifier Accuracy

Maximum entropy (100 words/category) 72.12
Naive Bayes (500 words) 59.62
Nearest neighbor (5000 words, 50 neighbors) 61.54

8.8 Comparing classifiers 217

the words that are most unevenly distributed when comparing abstracts
relevant to a given code to all other abstracts. A word that scores high
against a code is used with that code to define a feature. We take only the
words with the highest scoring chi-square values for each code. We experi-
ment with different numbers of features per code; we attempt a total of 210
(10/code), 1050 (50/code), 2100 (100/code), 5250 (250/code), 10,500 (500/
code), 15,750 (750/code), 21,000 (1000/code), 42,000 (2000/code), and
84,000 (4000/code) features.
For maximum entropy classification trials we report the highest accuracy

over the 200 generalized iterative scaling (GIS) iterations for different
vocabulary sizes. Based on these results we choose 100 words/code as the
optimal feature size for maximum entropy classification. While 500 words/
code performs slightly better, it is less robust than 100 words. Either
doubling to 200 words or splitting to 50 words does not significantly affect
performance; however going from 500 to 750 words degrades the perform-
ance on the test2000 set by more than a full percent. Naive Bayes performs
best with a vocabulary of 500 words; nearest neighbor performs best with
50 neighbors and 5000 words. Table 8.5(b) lists the performance of each of
the classifiers on the smaller test2001 data set after parameter optimization
on the test2000 data set. Maximum entropy has the best performance
(72.12% accuracy) compared to nearest neighbor (61.54%) and naive
Bayes (59.62%). Results of maximum entropy classification for individual
categories are reported in Table 8.6.
Our findings about the effectiveness of maximum entropy classification

performance are consistent with recent reports within the statistical natural
language processing literature (Nigam, Lafferty et al. 1999; Rosenfeld
2000). Frequently in statistical natural language modeling tasks, there is
insufficient data to adequately estimate the large number of parameters
involved. Naive Bayes compensates for this limitation by making a strong
independence assumption that the words are associated with codes inde-
pendent of each other. This is untrue in text classification tasks, where many
dependencies exist between words. Maximum entropy relaxes this assump-
tion, by allowing differential weights for different word-code associations.
It should be recognized that the classification of documents is not exact;

there are often ambiguities. Funk and Reid examined 760 biomedical
articles that had been assigned MeSH headings by two experts (Funk and
Reid 1983). They found that the major MeSH headings, controlled vocabu-
lary terms that represent the central concepts of the document, were
assigned with only a 61.1% consistency. This study illustrates the subjective
nature of document classification; the same sort of inconsistency may
fundamentally limit performance on documents analyzed in our study.
While the document classifier may misclassify a document, the correct

class is almost always assigned a high probability and is contained in the top

218 8 : Using text classification for gene function annotation

four predictions. Maximum entropy classification assigns a probability to
each of the 21 codes for each abstract. A good classifier would assign the
correct classification a high probability; a perfect classifier would assign the
correct classification the highest probability. For abstracts in test2000 we
sorted the predicted GO codes by probabilities and calculated how often
the n-th prediction was correct (Figure 8.3). The top prediction was correct
72.8% of the time as listed in Table 8.5. Predictions that were ranked
greater than four rarely contained accurate predictions. The accuracy of
the prediction drops off gradually with its rank.
To define a reliable voting scheme, it is critical to establish robust confi-

dence estimates for correct document classification. We test the probability
of the predicted GO code as a measure of confidence for the prediction.
With reliable confidence scores, we expect that document classifications
with high confidence scores are likely to have been classified correctly. To
assess whether the reliability of the classifier prediction tracked with the

Table 8.6 Classification accuracy for different categories. For each code listed in the first column

we list the number of articles in the test2000 set for which that code is relevant in the second

column. The ‘‘Exact match’’ column lists the percentage of articles for which the classifier predicts

the code listed. Since some abstracts have multiple correct codes, the ‘‘Partial match’’ column lists

the percentage of articles for which the classifier assigned any correct code to the article, even if it is

not the listed code.

Category Number Exact match Partial match

metabolism 225 67.56% 74.22%
cell cycle 303 45.87% 68.65%
signal transduction 302 59.93% 67.55%
oncogenesis 168 63.10% 70.83%
cell death 434 75.81% 79.72%
meiosis 151 77.48% 82.78%
Intracellular protein traffic 322 68.63% 72.67%
cell adhesion 133 66.17% 70.68%
cell motility 269 71.38% 74.35%
sporulation 49 73.47% 81.63%
membrane fusion 58 48.28% 53.45%
autophagy 22 59.09% 68.18%
cell fusion 20 65.00% 75.00%
stress response 253 64.82% 73.52%
cell proliferation 0 - -
biogenesis 132 58.33% 61.36%
cell-cell signalling 41 73.17% 92.68%
invasive growth 52 69.23% 71.15%
transport 84 60.71% 70.24%
ion homeostasis 64 79.69% 81.25%
chemi-mechanical coupling 147 79.59% 82.31%

8.8 Comparing classifiers 219

confidence score we separated the test2000 predictions into ten groups by
confidence score. For those predictions with the highest confidence scores
(ranging from 0.9 to 1) the classifier’s prediction was correct 93% of the
time (see Figure 8.4). For predictions with lower confidence scores, the
accuracy was proportionately less; the algorithm appears to estimate low
confidence predictions conservatively.
When classifications are imperfect, it is important that they be associated

with confidence scores. The maximum entropy classifier assigns probabil-
ities to each possible prediction. After sorting predictions by probability
score, we observe that a code’s prediction accuracy matches its probability
rank (Figure 8.3). Thus, the probability of the predicted code can be used as
a measure of confidence on the prediction (see Figure 8.4).

Percentage prediction correct

R
an

k
of

 p
re

di
ct

io
n

1

2

3

4

5

6

7

8

0% 20% 40% 60% 80% 100%

Figure 8.3 Maximum entropy classifier ranks classifications. The maximum entropy classifier

assigns a probability to each code for the unclassified document. Here we have ranked each code by

its maximum entropy assigned probability for the documents in test2000 and have calculated

accuracy for each rank (light gray bars). The correct classification in both cases is almost always

contained in the top four ranked classifications.

Some of the documents have multiple correct classifications. The articles with multiple correct

classifications were removed, and accuracy was recalculated for each rank (dark gray bars). While

the accuracy of the highest rank prediction is only slightly reduced from 72.8% to 72.0%, the

accuracies of the second and third ranked classes is somewhat more reduced from 17.7% to 13.7%

and 6.2% to 4.2%, respectively.

220 8 : Using text classification for gene function annotation

8.9 Annotating genes

At this point we have an accurate classifier. In addition, the classifications
are associated with confidence scores. Given a set of documents relevant to
a gene, the maximum entrorpy classifier can determine the relevant func-
tional class of the documents. Then these classifications can be combined to
determine the functional class of the gene.
Using the maximum entropy classifier we assign GO codes to each gene,

based on their abstracts. We create a data set of abstracts associated with S.
cerevisiae genes. Each gene is linked to a small set of abstracts; we use a set
of curated abstracts for S. cerevisiae genes maintained by the Saccharo-
myces Genome Database at Stanford University. We make predictions only
on those genes with three or more associated abstracts. There is a mean of
12.1 and a median of four articles per gene.

P(GO code document)
Confidence of Maximum Entropy Algorithm

P
er

ce
nt

ag
e

of
 A

cc
ur

at
e

C
al

ls

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 0.2 0.4 0.6 0.8 1

Figure 8.4 Confidence scores are reliable indicators of accuracy. Here we partitioned documents

by the maximum entropy confidence score. The confidence score is the estimated probability of the

predicted code given the document. For each partition we calculated accuracy on each subset. Each

data point has an x-error bar indicating the size of the partition and a y-bar indication the 95%

confidence interval on the accuracy estimate. As the confidence score increases along the x-axis the

accuracy of the prediction increases proportionately. In fact the confidence score is a very

reasonable predictor of the probability that the prediction is correct.

8.9 Annotating genes 221

To validate our predictions we use the annotations assigned by the GO
consortium. If an annotation was more specific than one in our set of 21, we
map it back to a relevant ancestor based on the GO hierarchy. A total of 991
genes was annotated with GO codes relevant to this study by the consor-
tium. In total, 835 genes were annotated and also had the requisite number
of abstracts. We calculate the precision and recall at various thresholds for
each of the annotations using the GO consortium assignments as a gold
standard.
The voting scheme takes classifications of individual abstracts associated

with a gene and combines them into a single gene classification. Maximum
entropy classification provides the probabilities of a document’s relevance
to each of the 21 codes. The ad hoc parameter fr is the expected fraction of
associated abstracts that should discuss a function if it is relevant to the
gene. Here we selected a value of 1/3 for fr in all experiments; ideally a
specific fr should be selected for each function separately depending on its
prevalence in the literature. If N is the number of abstracts associated with
the gene, analysis of each abstract with maximum entropy classification
obtains N probability values for each GO code. We averaged the top
ceil(fr N) probabilities for each code to score the code’s relevance to the
gene. This score rangedbetween0 and1; higher code scores indicated greater
relevance to the gene. Genes with scores above a predetermined cutoff were
assigned the code; the cutoffs were varied to create precision–recall plots.
Other effective voting schemes are certinely feasible.
Here, we evaluate yeast gene annotation using abstracts. Even though

many of the 21 categories that we study do not apply to yeast, we still
include them in our calculations. Different thresholds of confidence can be
used as a cutoff to assign an annotation to a gene. Typically, higher confi-
dence values obtain higher precision at the cost of a lower recall. We
computed the precision and recall for different confidence thresholds for
each of the categories and plotted them in Figure 8.5. Ideally, precision
remains 100% at all levels of recall.
Annotation efforts of genes from the curated set of abstracts yield uneven

results. The precision–recall performance for some of the GO codes is
reliable (Figure 8.5a), while others are passable (Figure 8.5b), and some
are poor (Figure 8.5c). At one extreme, for the code ‘‘meiosis’’ we obtain the
ideal precision–recall plot; a 100% precision was achieved at all levels of
recall; in other words all of the correct genes were annotated. ‘‘Invasive
growth’’ (16.7% precision at 100% recall), ‘‘sporulation’’ (100% precision
at 11.1% recall) and ‘‘stress response’’ (9.1% precision at 76.9% recall) are
the three codes that are difficult to annotate genes with.
Since the classifier performs consistently across all categories when the

testing set and training set are similar (Table 8.6), the discrepant perform-
ance is explained by how well the training set represents the biological

222 8 : Using text classification for gene function annotation

metabolism

cell cycle

meiosis

intracellular protien
traffic

Recall

P
re

ci
si

on

0.2

0.4

0.6

0.8

1

0
0 0

0.2 0.4 0.6 0.8 1

(a)

Recall

P
re

ci
si

on

0

0.2

0.4

0.6

0.8

1

0.2 0.6 0.80.4 1

(b)

0

signal transduction

cell fusion

biogenesis

transport

ion homeostasis

Figure 8.5 Predicting gene annotation from articles. Plot of precision versus recall for gene

predictions. Predictions were attempted on all genes with three or more associated articles;

correctness of the prediction was verified with annotations from GO consortium. (a) Precision–

recall plot of the reliably predicted categories. (b) Precision–recall plot of the reasonably well

predicted categories.

8.9 Annotating genes 223

processes. In general, the availability of a majorMeSH heading correspond-
ing to the code insures the quality of our PubMed search-based training set.
Three of the four reliably predicted codes, plotted in Figure 8.5(a), had a
single corresponding MeSH term, while two of the five codes plotted in
Figure 8.5(b) had a single corresponding MeSH term. Of the three codes in
Figure 8.5(c), one code, ‘‘invasive growth’’ had only a single gene, and thus
a biased sample of text. For the other two codes, ‘‘sporulation’’ and ‘‘stress
response’’, there are no corresponding MeSH terms for either, and ad hoc
strategies were fabricated to create the set of articles. These strategies may
be ineffective for these functions.
An ideal training set should be constructed by experts. The National

Library of Medicine relies on experts to read the articles to assign MeSH
headings (Bachrach and Charen 1978). These headings are likely to have a
low false positive rate (high specificity) but may suffer from false negatives
(low sensitivity) since experts assign some correct headings but may miss
others. Our reliance on MeSH terms therefore assures that we get good
training data when a MeSH heading corresponds directly to a GO code.
However, the strategy is limited when there are no appropriate MeSH
terms.
Better training sets consisting of more specific paragraphs from whole

text articles and abstracts selected under expert supervision would address
many of these difficulties.

Recall

P
re

ci
si

on

0

0.2

0.4

0.6

0.8

1
(c)

0.2 0.6 0.80.4 10

sporulation

stress response

invasive growth

Figure 8.5 (Continued) (c) Precision–recall plot for categories for which predictions are poor. The

predictions quality appears to correlate with the training set quality for that category.

224 8 : Using text classification for gene function annotation

References

Ashburner, M., C. A. Ball, et al. (2000). ‘‘Gene ontology: tool for the unification of
biology. The Gene Ontology Consortium.’’ Nat. Genet. 25(1): 25–9.

Bachrach, C. A. and T. Charen (1978). ‘‘Selection of MEDLINE contents, the develop-
ment of its thesaurus, and the indexing process.’’Med. Inform. (Lond). 3(3): 237–54.

Ball, C. A., K. Dolinski, et al. (2000). ‘‘Integrating functional genomic information into
the Saccharomyces genome database.’’ Nucleic Acids Res. 28(1): 77–80.

Cherry, J. M., C. Adler, et al. (1998). ‘‘SGD: Saccharomyces Genome Database.’’
Nucleic Acids Res. 26(1): 73–9.

Funk, M. E. and C. A. Reid (1983). ‘‘Indexing consistency in MEDLINE.’’ Bull. Med.
Libr. Assoc. 71(2): 176–83.

Hersh, W. R., R. T. Bhuporaju, et al. (2004). TREC 2004 Genomics Track Overview.
The Thirteenth Text REtrieval Conference Proceedings (TREC 2004), Gaithersburg,
MD, National Institute of Standards and Technology.

Kanehisa, M., S. Goto, et al. (2004). ‘‘The KEGG resource for deciphering the genome.’’
Nucleic Acids Res. 32(Database issue): D277–80.

Manning, C. M. and H. Schutze (1999). Foundations of Statistical Natural Language
Processing. Cambridge, The MIT Press.

Mewes, H. W., D. Frishman, et al. (2000). ‘‘MIPS: a database for genomes and protein
sequences.’’ Nucleic Acids Res. 28(1): 37–40.

Nigam, K., J. Lafferty, et al. (1999). ‘‘Using maximum entropy for text classification.’’
IJCAI-99 Workshop on Machine Learning for Information Filtering.

Ratnaparkhi, A. (1997). A simple introduction to maximum entropy models. Philedel-
phia, Institute for Reseach in Cognitive Science, University of Pennsylvania.

Riley, M. (1993). ‘‘Functions of the gene products of Escherichia coli.’’ Microbiol. Rev.
57(4): 862–952.

Rosenfeld, R. (2000). ‘‘Two decades of statistical language modeling: where do we go
form here?’’ Proceedimgs of the IEEE 88(8): 1270–1278.

Valencia, A., C. Blaschke, et al. (2004). Critical Assessment for Information Extraction
in Biology (BioCreative), Granada, Spain. http://www.biomedcentral.com/1471-
2105/6/S1/S1

References 225

http://www.biomedcentral.com/1471-2105/6/S1/S1
http://www.biomedcentral.com/1471-2105/6/S1/S1

This page intentionally left blank

9Finding gene names

Successful use of text mining algorithms to facilitate genomics research
hinges on the ability to recognize the names of genes in scientific text. In
this chapter we address the critical issue of gene name recognition. Once
gene names can be recognized in the scientific text, we can begin to under-
stand what the text says about those genes. This is a much more challenging
issue than one might appreciate at first glance. Gene names can be inconsist-
ent and confusing; automated gene name recognition efforts have therfore
turned out to be quite challenging to implement with high accuracy.
Gene name recognition algorithms have a wide range of useful applica-

tions. Until this chapterwe have been avoiding this issue and have been using
only gene-article indices. In practice these indices are manually assembled.
Gene name recognition algorithms offer the possibility of automating and
expediting the laborious taskofbuilding reference indices.Article indices can
be built that associate articles to genes based on whether or not the article
mentions the gene by name. In addition, gene name recognition is the first
step in doingmore detailed sentence-by-sentence text analysis. For example,
in Chapter 10 we will talk about identifying relationships between genes
from text. Frequently, this requires identifying sentences refering to two gene
names, andunderstandingwhat sortof relationship the sentence is describing
between these genes. Sophisticated natural language processing techniques
to parse sentences and understand gene function cannot be done in a mean-
ingful way without recognizing where the gene names are in the first place.
The major concepts of this chapter are presented in the frame box. We

begin by describing the commonly used strategies that can be used alone or
in concert to identify gene names. At the end of the chapter we introduce
one successful name finding algorithm that combines many of the different
strategies.

1) Using a gene name dictionary
2) Appearance of gene names
3) Syntax
4) Context of the gene name

5) Morphology of the gene name
6) Abbreviations for genes
7) Combined gene name finding

method

9

9.1 Strategies to identify gene names

There are several commonly used approaches that can be exploited to
recognize gene names in text (Chang, Shutze, et al. 2004). Often times
these approaches can be combined into even more effective multifaceted
algorithms. The first strategy is to recognize gene names by dictionary; this
strategy involves using a predefined list of gene names to identify words in
text as names. A second strategy is to use appearance; often gene names
have common features or structure that can be exploited to determine
whether a word is a gene name. A third strategy is to use the syntax; the
fact that all gene names must be nouns or noun phrases can be used to
eliminate many words as potential gene names. A fourth strategy is to look
at the context of a word; that is, the words around a given word can help
provide clues about whether or not it is a gene name. A fifth strategy is to
look at the morphology of a word; different gene names often share a
common root—recognizing those roots may help identify names them-
selves. Finally names often have abbreviations or are themselves abbrevi-
ations of a longer phrase; identification of these abbreviations can help
provide clues about which words are true gene names.
If gene names were standardized and unique, the dictionary method

would be most effective. Since this is rarely the case, more sophisticated
name recognition methods using the other strategies are often necessary.
Most of these methods use different combinations of these features to
successfully identify gene names in text. We will discuss each of these
features individually in this chapter.

9.2 Recognizing gene names with a dictionary

Perhaps the most reasonable way to start looking for gene names is to
search for known gene names in the text. If gene names were standardized,
unique, and used in a consistent manner in the literature, dictionary based
look-ups would be all that was necessary for gene name recognition.
The unfortunate challenge to this straightforward strategy is that gene
nomenclature is quite complicated.
Most genome centers have a single standardized name for all genes in

their organism. For example, the FlyBase name for the gene breathless is
FBgn0005592. However, these names are used about as often as people
refer to others with their social security numbers. They are neither intuitive
nor descriptive and have no presence in common parlance. Often times the
genome centers provide an official name, in this example breathless is the
name of the gene. However, this official name is also a matter of consensus

228 9 : Finding gene names

and opinion, there are frequently other common names that are used in the
literature.
Most genes have several colloquial names coined by investigators. Often

multiple names have arisen as a historical anomaly since the same gene
might have been investigated or discovered by different groups under
different contexts. Also abbreviations and variations of those names
might be found commonly in the literature. In addition, there are frequently
multiple standardized names from different versions of multiple controlled
vocabularies.
In Table 9.1 we present the listed synonyms for twowell-known fly genes,

breathless and heartless. Some of the synonyms are based on standardized
nomenclature while others are different names that have arisen for that
gene throughout history. Some are related to their biochemical function,
such as fibroblast growth factor receptor, while others are based on the
phenotype of the gene when it is absent, such as breathless.
Extensive lists of synonyms have been compiled for many different

organisms. FlyBase makes synonyms for fly genes available (Gelbart,
Crosby et al. 1997). The synonyms in Table 9.1 are taken from the FlyBase
synonym list. In Figure 9.1 we display a histogram of the number of
synonyms per gene. It is a highly skewed distribution, where a few well-
studied genes also have large numbers of synonyms, but the vast majority of
the genes have very few names. In fact 44% of the recorded synonyms are
pertinent to only 10% of genes. In Figure 9.2 we plot the relationship
between number of articles and the number of synonyms; there is a striking
correlation between these two variables. The log of the number of gene
references and the total number of gene synonyms has a correlation of
r ¼ 0:67. Gene name recognition is therefore especially critical to mining
the literature of well-studied genes; these genes have the greatest variety in
gene names and also the most valuable available scientific literature. Similar
synonym lists are available at many different genome database sites includ-
ing Saccharomyces Genome Database, Mouse Genome Database, and
Wormbase (Cherry, Adler et al. 1998; Stein, Sternberg et al. 2001; Blake,
Richardson et al. 2002).
When compiled lists of synonyms are available, the task of the gene name

finding can be as seemingly simple as string matching on text. However,
there are some basic challenges to this approach. The synonym lists are
manually curated, and are perpetually in a state of flux. It is difficult to keep
such large lists current and gene names might be missing. Often gene names
are used in text that are slightly varied from the listed synonym, and string
matching can miss these occurrences. As an example, we might not be
surprised to find breathless referred to in the scientific literature as FGFR-1;
while this is similar to many of its synonyms, it is not an exact match. In
addition gene names can be ambiguous since multiple genes can have the

9.2 Recognizing gene names with a dictionary 229

Table 9.1 Gene synonyms for two Drosophila genes. Here we list the synonyms listed by the

FlyBase Consortium for two closely relatedDrosophila genes: breathless and heartless. Some of the

names correspond to the mutant phenotype of the gene; for example a mutation in breathless causes

a deficiency in the fly respiratory system. Other names correspond to the biochemical function of

the gene protein product; for example breathless is a fibroblast growth factor receptor. Other names

are derived from standardized gene nomenclatures; for example CG6714 is a standardized name for

the breathless gene.

Breathless Heartless

0844/01 CG7223
breathless CT22273
Btl CT39172
BTL/FGFR2 DFGF-R1
CG32134 DFGF-R2
CG6714 DFR1
CT20816 Dfr1
dev DFR-1
devenir Dfr-1
D-FGFR DFR1/DFGF-R2
DFGF-R1 DmHD-38
DFR2 DPR3
Dfr-2 dtk1
DmHD-311 Dtk1
dtk2 DTRK(FR1)
Dtk2 EMS2
FGF receptor FGF receptor
FGFR FGFR
fgf-r FGFR2
Fgf-r FGF-R2
Fgf-r: Fibroblast-growth-factor-receptor Fibroblast growth factor receptor
FGFR1 Fibroblast growth factor receptor 1
Fibroblast-growth-factor-receptor FR1
HD-311 Fr1: Fibroblast growth factor receptor 1
l(3)00208 FR1: Fragment 1
Tk2 HD-38

heartless
Htl
HTL/FGFR1
i100
i150
i79
j372
Tk1

230 9 : Finding gene names

7000

6000

5000

4000

3000

2000

1000

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20
−2

9

30
−4

9

50
−9

9

10
0−

20
0

Synonyms per gene

G
en

es

Figure 9.1 Histogram of synonyms per gene. This figure is a histogram of the number of

synonyms per gene name. We looked only at a set of 14,385 fly genes known to have references. Of

these, 45% of genes do not have a single name. The number of names per gene tapers off rapidly.

About 44% of the gene names are assigned to 10% of the genes. About 90% of the gene names are

assigned to 50% of the genes. These disparities are even more dramatic if we include the genes

without any literature references.

10000

1000

100

10

1
0 10 20 30 40 50 60 70 80

Synonyms

R
ef

er
en

ce
s

Figure 9.2 Number of references versus number of synonyms. Here each spot represents a gene.

On the x-axis we plot the number of synonyms for that gene, and on the y-axis we plot the number

of references for that gene on a log scale. There is a correlation of 0.67 between these two variables.

The best-studied genes have the most synonyms.

9.2 Recognizing gene names with a dictionary 231

same name. In Table 9.1 we can readily see that FGFR is a name for both
breathless and heartless. One of the most challenging aspects of gene name
recognition is that some names are common words in the English language
that have non-biological meanings; for example, the gene names breathless
and heartless can be used in other contexts besides that of a gene name. This
challenge in gene name recognition is underscored by the fly gene calci-
neurin, which has can as a listed synonym, and the gene early. Simple text
matching will in these cases turn up many false positives.
Nonetheless, this approach can be quite effective, especially if we are

looking for names corresponding to a small set of genes. For example, given
an article that is known to pertain to four specific genes, we can identify the
exact location of references to individual genes in the text using synonyms.
However, if we were scanning the same text for all of the tens of thousands
of gene synonyms available using simple string matching we would obtain a
large list of gene names in text, many of which are not true gene names.
One group evaluated how accurately string searches can match words in

text to drosophila genes (Morgan, Hirschman et al. 2004). They concluded
that matching with synonym lists combined with basic filtering strategies
can be quite an effective approach to finding gene names in text. Matching
for gene names on the full text without any filtering obtains only a 2.9%
precision and 95% recall; there is an enormous number of false positives.
Filtering out those gene name synonyms that (1) correspond to multiple
gene names, (2) are not different from common English words, and (3) have
greater than two characters in the name, improves the performance to 50%
precision and 72% recall on the same data set. One other strategy to
increase the sensitivity of dictionary-based gene name recognition algo-
rithms might be to use approximate string matching instead of exact string
matching. One group tested this approach; they used BLAST (see Chapter 2)
to search scientific text to do approximate gene name matches to the
scientific text (Krauthammer, Rzhetsky et al. 2000).

9.3 Using word structure and appearance to identify gene
names

One approach to recognizing gene names is to analyze the appearance of a
word or phrase to determine whether or not it is a gene name. Often there
are specific clues that are a consequence of gene naming conventions that
can serve as powerful hints in gene name recognition. In yeast genes, for
example, there is a strong naming convention; these names are typically
short three letter strings with a number at the end. Similarly the cytochrome
P450 genes have a very standardized nomenclature that can be identified

232 9 : Finding gene names

effectively with simple regular expressions. However, in general gene and
protein names can become quite complicated. But other rules about word
appearance can guide us in identifying gene names.
Chang and colleagues identified some of these clues in their investigation

of gene name identification (Chang, Schutze et al. 2004). One of the most
salient clues is the presence of the suffix ‘‘-ase’’. Examples of words fre-
quently contained in gene names are ‘‘kinase’’, ‘‘phosphorylase’’, ‘‘transfer-
ase’’, and ‘‘topoisomerase’’. The suffix ‘‘-ase’’ in biology implies a protein
product of a gene with catalytic properties. This group identified only 196
words in the English language that end with ‘‘-ase’’ that are non-gene
names; all other words that end in ‘‘-ase’’ are, in fact, very likely gene
names. Another less salient clue is the presence of the suffix ‘‘-in’’; for
example ‘‘insulin’’, ‘‘myosin’’, ‘‘actin’’ and ‘‘tubulin’’. Other useful hints
include the use of lower and upper case letters, the presence of digits, the
length of the word, and the presence of keywords found frequently in gene
and protein names. Many gene names are shorter and they include numbers
and capital letters. Some longer gene names may include keywords such as
‘‘activator’’, ‘‘receptor’’, and ‘‘transporter’’; looking for these keywords in
text could clue us in on gene names.
One of the pioneering studies utilizes word appearance to identify protein

names (Fukuda, Tamura et al. 1998). This method uses a series of ad hoc
rules to identify gene and protein names. The method is summarized in
Table 9.2. In the first step the method looks for keywords and labels them as
‘‘feature terms’’. In the second step the authors identify words that have the
appearance of atypical words that look like gene names; they refer to these
terms as ‘‘core terms’’. They use aspects of the word such as length, presence
of digits, and the presence of special characters. The authors use these terms
to piece together gene names. The authors achieved a 98.8% recall and
94.7% recall with this strategy on a limited evaluation of their method.
Another group took a similar approach to finding gene names with com-
parable results (Proux, Rechenmann et al. 1998).

9.4 Using syntax to eliminate gene name candidates

One simple, but key observation is that gene names are nouns or noun
phrases. This offers a simple and easy way to remove many words as
potential gene names. An off the shelf part-of-speech tagger can be used
to identify the parts of speech for each word in a sentence. All words that
are not in noun phrases can be immediately eliminated. In addition once
a word that is likely part of a gene name is identified, part-of-speech tagging
can be used to identify the entire the noun phrase containing it, and
establish the complete gene name.

9.4 Using syntax to eliminate gene name candidates 233

We will not discuss the details of part-of-speech tagging except to note
that it is a very mature subfield in natural language processing, and that
high quality off the shelf part-of-speech taggers are available. Modern part-
of-speech taggers routinely achieve greater than 95% accuracy in tagging
(Brill 1994).

Table 9.2 Summary of gene/protein name finding algorithm by Fukuda.

Step 1. ‘‘Feature’’ terms are predefined
1. Include terms commonly found in protein names such as:

a. Protein
b. Receptor
c. Domain
d. Kinase
e. Enzyme

Step 2. Identify core terms in text

1. Extract all words with capital letters, numerical figures, or special
characters.

2. Eliminate those words >9 characters, all lower case, and with ‘‘-’’.
3. Eliminate words if >1=2 of its characters are special characters.
4. Exclude numerical words with units following (such as nM, fold, etc.)
5. Exclude all words that are part of the reference (authors name, journal, etc.)

Step 3. Concatenation

1. Concatenate any adjacent feature terms from Step 1 in the text, and core
terms identified in the text in Step 2. This defines phrases that are either
single terms, or multiple concatenated terms.

2. Apply the Brill part-of-speech tagger to identify the part of speech for the
text.

3. Connect non-adjacent phrases if all words between them are nouns,
adjectives, or numbers,

4. Extend all phrases to the left if there is a preceding determiner or preposition.
The phrase should be extended just short of the determiner or preposition,
and should be a noun phrase.

5. Extend all phrases to the right if they are followed by a Greek letter or single
upper case letter.

Step 4. Resolve dependencies

1. Phrases can be concatenated despite comma, ‘‘and’’, and ‘‘of’’ with the use of
several patterns.

2. If A, B, C, D, and E are phrases then concatenation can occur if the following
forms are observed:
a. A, B, . . . C, and D feature term
b. A, B, . . . C, and D of E
c. A of B, . . . C and E
d. A feature term, core term, and core term
e. A of B
f. A, B

Step 5. Filter
1. Remove phrases that are single feature terms.
2. Remove phrases for which the last word in not a noun.

234 9 : Finding gene names

The method proposed by Fukuda uses, in addition to the appearance of
the word, the part of speech. First a set of rules is used to identify likely gene
name words based on appearance and other terms that frequently show up
in gene names (see Table 9.2). Phrases are then merged together if the words
between them are nouns, adjectives, or numbers. The authors are using
parts of speech to construct noun phrases that represent the whole of the
gene name. This key step requires the application of a part-of-speech tagger
to determine the part of speech of the words between phrases.

9.5 Using context as a clue about gene names

Neighboringwords around a putative gene name can help algorithms decide
whether in fact it is a true gene name. In fact, the context ofword use is a very
valuable clue to human readers. For example consider the sentence:

The gene _____ is expressed under . . .

Based on the presence and location of the word ‘‘gene’’ and ‘‘expressed’’
the reader would conclude that the blank space is an omitted gene name.
Computational approaches can be devised that leverage the context as well.
For the purposes of computation, context might be defined as the words

right before or right after a putative gene name, or a window of words
before and after the putative gene name, or perhaps even all of the words in
a given sentence.
The simplest strategy is to look at the word right before or right after a

gene name and to see if matches certain pre-defined keywords. Chang and
colleagues used chi-square test to identify a list of very effective keywords;
we have listed these words in Table 9.3. Rindflesch defined a set of trigger
words that frequently occur in noun phrases that contain gene names
(Rindflesch, Tanabe et al. 2000). In his method he first identified noun
phrases with a part-of-speech tagger, and then assumed phrases containing
terms such as activated, expression, gene, and mutated mark them as
phrases referring to genes.
An alternative, and somewhat more sophisticated approach might be

to use statistical models to differentiate the context of a gene name from
the context of non-gene names. One strategy might be to build a naive
Bayes classifier to assess the word previous to and after a gene name.
In this case, using Bayes’ theorem and the independence assumption we
assert:

P(w ¼ GjContext) � P(Contextjw ¼ G) ¼ P(prevjw ¼ G)P(nextjw ¼ G)

9.5 Using context as a clue about gene names 235

Here w is the word or phrase being assessed to see if it is a gene name, G.
The higher this value, the more likely it is a gene name. With this equation
we are asserting that the probability of the context of a gene name is the
product of the independent probability of the word just previous to and just
after the gene name. These probabilities can be calculated from training
data. The probability distribution of words before and after gene names can
be calculated separately. Sparse data may require the use of pseudo-counts
to avoid zero probability words. This approach would be similar to the
approach outlined in Chapter 8 for document classification, only in this
case we are classifying context. For comparison we would need to define the
probability of a context given that it was not a gene name:

P(w ¼GjContext) � P(Contextjw ¼G) ¼ P(prevjw ¼G)P(nextjw ¼G)

where G represents a non-gene name. The ratio of these values predicts
whether the context is more consistent with the context surrounding a gene
name or a non-gene name.
Equivalently, maximum entropy or other text classification methods can

be used to differentiate context surrounding a gene versus context sur-
rounding a non-gene. This strategy can be further extended to include larger
windows around the gene name instead of just the word just before and
after the name.

Table 9.3 Context trigger words for gene names. These words were assembled by Chang et al.

Using chi-square goodness of fit they assessed whether each word predicted a gene name before or

after that word. Words that are asymmetrically present or lacking in the context of a gene name are

listed below. In addition published p-values based on chi-square goodness of fit are listed below.

Previous word p-value Next word p-value

These words appear with gene names
gene 1.7 E-10 gene 0.0 E-00

mrna 1.2 E-20
protein 4.8 E-13
promotor 1.3 E-13
genes 1.5 E-10
expression 4.5 E-09
transcripts 3.8 E-08
mrnas 3.4 E-07

These words do not appear with gene names
or 3.3 E-27 or 1.8 E-16
by 3.5 E-21 were 9.0 E-09
with 2.3 E-12 to 8.2 E-09
to 1.5 E-11
in 1.5 E-10
for 2.0 E-08

236 9 : Finding gene names

Morgan and colleages explored an even more sophisticated method.
They tested the use of hidden Markov models to examine the context of
gene names (Morgan, Hirschman et al. 2004). Hidden Markov models
(HMMs) are described in greater detail in Section 2.3 for the purpose of
sequence analysis. In analyzing text, HMMs can be used in exactly the same
way. The only difference is that instead of observations being amino acids,
they are vocabulary words in the sentence. Hidden states in this case are the
type of word observed. The hidden states or word types might include a
state for ‘‘gene name’’ or for ‘‘gene context’’. The hiddenMarkov model can
be trained on sentences containing gene names. Other potential gene names
can be identified by scanning sentences with the hidden Markov models.
Based on context some words may be assigned the hidden state ‘‘gene
name’’. Morgan’s method involved first tagging putative gene names with
a hidden Markov model, and then confirming the gene name with a dic-
tionary look-up. The authors found that the HMM could be used to filter
dictionary look-ups to achieve 88% precision at 61% recall if they removed
ambiguous gene names. This represents a substantial improvement over
dictionary look-ups with the filtering scheme investigated in the same study
described in Section 9.2.

9.6 Morphology

An interesting facet about gene names is that they are often derived from a
common root. This is particularly the case when genes are part of a larger
family of genes. Many genes will have the same root, but different prefixes
and suffixes. Recognizing these roots in the text can be a critical clue in
recognizing gene names. For example consider the root ank for example. In
mouse there are three genes with the morphological root ank : ank1
(ankyrin 1, erythroid), ank2 (ankyrin 2, brain), and ank3 (ankyrin 3,
epithelial). Recognizing the root ank would help identify any of these
gene names in text.
To date, word morphology has not been extensively exploited in gene

name recognition.

9.7 Identifying gene names and their abbreviations

In biology, professionals use gene name abbreviations liberally, so much so
that the abbreviation can often become the common name of the gene. For
example, the breathless gene is also known as ‘‘fibroblast growth factor
receptor’’; this longer name describes one of the important functions of this

9.7 Identifying gene names and their abbreviations 237

gene. Commonly, in the literature it is referred to as FGFR, which is its
abbreviation. Another example is ‘‘cyclin dependent kinase’’ or CDK. Pre-
viously we mentioned the gene ‘‘calcineurin’’ which is abbreviated as ‘‘can’’.
Biology is filled with countless examples of many different types of abbre-
viations. In cases such as this, recognizing abbreviations in the text as well
as their longer form can be a critical component to gene name recognition.
Several groups have proposed algorithms to identify abbreviations in the

literature (Yoshida, Fukuda et al. 2000; Pustejovsky, Castano et al. 2001;
Chang, Schutze et al. 2002; Yu, Hripcsak et al. 2002). These algorithms can
be used to mine large collections of literature, such as PubMed to create lists
of common abbreviations. Here we will focus on a very effective strategy
proposed by Chang and colleagues that uses dynamic programming to link
phrases and their abbreviations (Chang, Schutze et al. 2002).
The method has four steps: (1) scanning the text for phrases and their

putative abbreviations; (2) aligning the candidate abbreviation to the abbre-
viated phrase; (3) creating a feature vector that quantifies different aspects of
the putative abbreviation; and (4) using machine learning to score the puta-
tive abbreviation with the feature vector.
In the first step, we begin by scanning the text for parentheses. The text

within the parentheses is regarded as a putative abbreviation for the phrase
preceding the left parenthesis (see Figure 9.3). We remove candidate abbre-
viations that are more than two words long and those candidates without
any letters. To limit the scope of the search, we filter potential abbreviated
phrases only up to the previous comma or semicolon. To identify the phrase
that the candidate abbreviation might be abbreviating, we take at most the

... expression of the Fibroblast Growth
Factor Receptor (FGFR) gene ...

... s i o n o f t h e F i b r o b l a s t G r ow t h F a c t o r R e c e p t o r

F

R

G

F

1

2

3

4

Figure 9.3 Finding abbreviations. The method of abbreviation discovery proposed by Chang and

colleagues involves first finding putative abbreviations in parentheses. The words prior to the left

parenthesis are presumed to be the phrase that is abbreviated. The abbreviation and prior words are

aligned with dynamic programming. Unlike sequence analysis, there are no gap penalties or

approximate matches. Note there is some potential ambiguity in matches: the R in ‘‘FGFR’’ could

have matched the last R in ‘‘Receptor’’ or the last R in ‘‘Factor’’.

238 9 : Finding gene names

3Nwords preceding the left parenthesis, whereN is the number of letters in
the candidate abbreviation.
In the second step we use dynamic programming to align the putative

abbreviation with the abbreviated phrase. Dynamic programming for string
alignment is described in the context of DNA and protein alignments in
Section 2.3. The approach is identical here. The only difference is that there
is no gap penalty for introducing spaces. The score of a match between two
letters is 1, and the score of a mismatch between two letters is 0. An
example of this sort of alignment is provided in Figure 9.3. As with dynamic
programming for sequence alignment, once the scoring matrices are de-
fined, trace-back through the matrix from the highest scoring position can
be used to determine the optimal alignment between the phrase and the
abbreviation.
Given an alignment between an abbreviation and abbreviated gene name,

we evaluate the alignment against eight features. These features are de-
scribed in detail in Table 9.4. Each alignment is automatically assessed and
scored for each of these features.
Chang and colleagues trained a binary logistic regression classifier to

score these alignments based on the feature values. Logistic regression is
another supervised machine learning binary classification method similar
to linear discriminant analysis described in Section 2.4. If the probability
of an alignment being a true abbreviation and abbreviated phrase is p,
logistic regression assumes that the log odds ratio is a linear function of
the feature set.

Table 9.4 Features to evaluate abbreviations. These are the features proposed by Chang and

colleagues to assess abbreviations and abbreviated phrase alignments. Once an alignment is scored

with the system below, logistic regression is used to determine whether the alignment represents a

true abbreviation. The logistic regression parameters are included in the right column.

Feature Description b

0 Constant (b0) �9.70

Abbreviation features
1 Percent of lower case letters �1.21
2 Percent of letters in the abbreviation that are aligned 3.67

Abbreviated phrase
3 Percent of letters aligned at the beginning of a word 5.54
4 Percent of letters aligned at the end of a word �1.40
5 Percent of letters aligned on a syllable boundary 2.08
6 Percent of letters aligned immediately after another letter 1.50
7 Number of words not aligned to the abbreviation �5.82
8 Average number of aligned letters per word 0.70

9.7 Identifying gene names and their abbreviations 239

log
p

1� p

� �
¼ b0 þ

X
i

bixi

The left-hand side is the log odds ratio; the b0 parameter is a normalization
constant; thebi parameters are the feature weights in Table 9.4; and xi are the
actual values for the individual features. The investigators trained the logistic
regressionequationonatrainingsetof1000examples toobtaintheparameters
listed in Table 9.4. The investigators obtained 95%precision at 75% recall.
This method has been used to scan the MedLine database to assemble all

abbreviations. In gene finding tasks, these abbreviations can be used to
identify abbreviated gene names in the text. To determine whether a gene
name is being described one could either consider the actual word in the
text, or see if it corresponds to an abbreviation or expanded form that looks
more like a true gene name.

9.8 A single unified gene name finding algorithm

As we have already suggested, many of these methods use multiple strat-
egies to recognize gene names. For example, Fukuda and colleagues rely
heavily on the appearance and part of speech (see Table 9.2). We also
referred to Morgan and colleagues; their method relied heavily on a dic-
tionary, but used context to optimize their results. The above approaches
cannot be used effectively in isolation, and require some degree of combin-
ation to effectively find gene names.
Optimal combinations will depend on the exact application, and may

even vary from species to species. For example, while dictionarymight be a
powerful approach in yeast where names are reasonably standardized, it
might be much less effective in humans where the names are much less
standardized.
In this section we will outline the method proposed by Chang and

colleagues (Chang, Schutze et al. 2004). This algorithm represents only
one of countless gene name finding algorithms that have been proposed at
this point. Unfortunately, it is not practical for us to delve into the details of
all proposed gene finding algorithms. Our goal here is give an example of
the way in which these different features can be combined into a gene name
identification algorithm.
This method illustrates usage of all of these strategies except dictionary.

This method proceeds through five steps: (1) tokenize, (2) filter, (3) score,
(4) extend, and (5) match abbreviation. The final product is a score that
predicts the likelihood that the phrase is a true gene name.
In the first step, text is segmented into sentences, and further segmented

into words. To identify words, the algorithm separates the text in sentences

240 9 : Finding gene names

by tokenizing on spaces and punctuation in the text, except for dashes.
Dashes are word boundaries unless the previous token is a single letter, or
the next token is a roman numeral or number.
The second step, filter, uses syntax. A part-of-speech tagger is applied to

the sentences to assign a part of speech to each of the words. Only the words
that are identified as nouns, adjectives, participles, proper nouns, and
foreign words are kept for further consideration. In addition numbers,
roman numerals, virus names, common chemical compounds, organism
names, and a list of common technical words are also removed.
In the third step, the remaining words are scored. Prior to scoring, two

special cases are recognized and treated separately. Words that end in ‘‘-ase’’
that are not part of a predefined collection of 196 non-gene name words
receive the highest possible score. Similarly words that conform to the
standardized nomenclature of cytochrome enzymes also receive the highest
possible score. The remaining words are examined for features that describe
their morphology, appearance, and context.
To score the appearance of a word, key binary features are formulated;

these features are described in Table 9.5. These particular features were
selected because of their presumed ability in distinguishing gene names
from non-gene names. If a candidate word has a feature, the number 1 is
assigned to that feature in a feature vector; if it lacks that feature, 0 is assigned
to the feature vector. In addition to these binary features a final appearance
feature was defined that pertained to words containing the ‘‘-in’’ suffix. The
authors hypothesized that thosewordswith the suffix that are geneor protein
names have a recognizable pattern of letters. The authors utilized an n-gram
classifier that was trained on known gene names that had the ‘‘-in’’ suffix and
alsoonnon-genenames (SmarrandManning2002).Then-gramclassifier is a
word statistical model that for any word with the ‘‘-in’’ suffix will assign a
value proportional to the probability that the word is indeed a gene name.
Given a candidate word with the ‘‘-in’’ suffix, the n-gram classifier is used to
obtain a predictive value. That value is entered as a final appearance feature.
Words that lack the ‘‘-in’’ suffix are assigned 0 to this feature.
The method also defines features that score the morphological root of the

word. Eight features are defined, each representing a different type of
variation (see Table 9.6). Then for each of the eight different kinds of
variation we calculate the number of that kind of variation:

max log
1

1000
‚
#Vars

#Root

� � �

So if cdc occurs alone in a corpus of 30 times, and cdcþnumber (such as
cdc8 or cdc22) occurs 300 times, then the value for the morphological
feature score for cdc is max[�3,1]. The 1/1000 ratio is included in the

9.8 A single unified gene name finding algorithm 241

equation to normalize for aberrant misspellings in the corpus. Given a
candidate word, the root is identified, and feature values are assigned
with the above equation. If there is ambiguity about what the root in the
word is, the highest scoring root is utilized.
To calculate the context of a word, look at the word just before and just

after the candidate word. For each trigger word listed in Table 9.3 we define
a feature. The total number of times each trigger word appears with the
candidate word across the corpus is entered as the value for that feature.
So in total we have defined a feature vector with 14 appearance features,

eight morphological features, and 18 context features. For each candidate
word this defines a total of 40 features. The authors tested naive Bayes,
maximum entropy, and support vector machines as machine learning

Table 9.5 Features to characterize the appearance of a word. These features are defined for each

of the candidate gene name words. All of these features are binary features.

Length
1 letter
2 letters
3–5 letters
>6 letters

Presence of numbers
First letter is digit
Last letter is digit
Last letter is a Roman numeral

Cases
Entire word is capitalized
Last letter is upper case
Mixed upper and lower case word
Word ends with upper case letter and number

Other
Presence of Greek letter
Presence of dash

Table 9.6 Different morphological variants for a root. Each of these types of morphological

variants is scored as described in the text. The score for each of the variants is used as a feature

vector to score candidate gene names.

root þ Greek letter
Greek letter þ root
root þ Roman number
‘‘apo’’ or ‘‘holo’’ þ stem
stem þ upper case letter
stem þ number
stem þ upper case letter þ number
stem þ lower case letter

242 9 : Finding gene names

methods to classify candidate gene names based on these feature vectors.
They trained each of these different types of classifiers on known gene
names, and known non-gene names. The score that these classifiers assigned
to a given word was used to predict whether the potential gene name that
they were a part of was in fact a true gene name. Higher scores were
considered more predictive of true gene names.
The authors then extend the genename fromthe candidateword to include

nouns, adjectives, and participles preceding the candidate word and Roman
numerals, Greek letters, and single letters proceeding the candidate word.
In the final step, the algorithm checks if the gene name is an abbreviation

for a longer gene name, or if it has an abbreviation using the method to
identify abbreviations described in the previous section. If the abbreviation
has the higher score, that score is transferred to the gene name. Alterna-
tively if the gene name is an abbreviation, and its long form has a higher
score, that score is transferred.
The authors found that maximum entropy classification and support vec-

tor machines offer comparable performance. The optimized support
vector machine classifier obtains 83.3% recall at 81.5% precision. Most
importantly, however, they showed that removal of any of the different
strategies used in the program markedly decreased performance. That is to
say that all of the incorporated strategies were actually critical to the algo-
rithm’s high performance level. At a fixed recall of 75%, removing different
modules causes a loss inprecision ranging from2%loss (by removingcontext
features) to 23% loss (by removing part-of-speech filtering). Examination of
all of these features together contributes to the overall performance of the
algorithm.
We anticipate that the future will bring novel combinations of these

different aspects to continue improving gene name identification. This
certainly remains a dynamic and very active area of research.

References

Blake, J. A., J. E. Richardson, et al. (2002). ‘‘The Mouse Genome Database (MGD): the
model organism database for the laboratory mouse.’’ Nucleic Acids Res. 30(1):
113–5.

Brill, E. (1994). Some advance in transformation based part of speech tagging. Proceed-
ings of the 12th National Conference on Artificial Intelligence (AAAI-94), pp. 722–7.

Chang, J. T., H. Schutze, et al. (2002). ‘‘Creating an online dictionary of abbreviations
from MEDLINE.’’ J. Am. Med. Inform. Assoc. 9(6): 612–20.

Chang, J. T., H. Schutze, et al. (2004). ‘‘GAPSCORE: finding gene and protein names
one word at a time.’’ Bioinformatics. 20(2): 216–25.

Cherry, J. M., C. Adler, et al. (1998). ‘‘SGD: Saccharomyces Genome Database.’’
Nucleic Acids Res. 26(1): 73–9.

References 243

Fukuda, K., A. Tamura, et al. (1998). ‘‘Toward information extraction: identifying
protein names from biological papers.’’ Pac. Symp. Biocomput: 707–18.

Gelbart, W. M., M. Crosby, et al. (1997). ‘‘FlyBase: a Drosophila database. The FlyBase
consortium.’’ Nucleic Acids Res. 25(1): 63–6.

Krauthammer, M., A. Rzhetsky, et al. (2000). ‘‘Using BLAST for identifying gene and
protein names in journal articles.’’ Gene. 259(1–2): 245–52.

Morgan, A. A., L. Hirschman, et al. (2004). ‘‘Gene name identification and normaliza-
tion using a model organism database.’’ J. Biomed. Inform. 37(6): 396–410.

Proux, D., F. Rechenmann, et al. (1998). ‘‘Detecting gene symbols and names in
biological texts: a first step toward pertinent information extraction.’’ Genome In-
form Ser Workshop Genome Inform 9: 72–80.

Pustejovsky, J., J. Castano, et al. (2001). ‘‘Automatic extraction of acronym-meaning
pairs from MEDLINE databases.’’ Medinfo. 10(Pt 1): 371–5.

Rindflesch, T. C., L. Tanabe, et al. (2000). ‘‘EDGAR: extraction of drugs, genes and
relations from the biomedical literature.’’ Pac. Symp. Biocomput: 517–28.

Smarr, J. and C. Manning (2002). ‘‘Classifying unknown proper noun phrases without
context.’’ Technical Report, Stanford University.

Stein, L., P. Sternberg, et al. (2001). ‘‘WormBase: network access to the genome and
biology of Caenorhabditis elegans.’’ Nucleic Acids Res. 29(1): 82–6.

Yoshida, M., K. Fukuda, et al. (2000). ‘‘PNAD-CSS: a workbench for constructing a
protein name abbreviation dictionary.’’ Bioinformatics. 16(2): 169–75.

Yu, H., G. Hripcsak, et al. (2002). ‘‘Mapping abbreviations to full forms in biomedical
articles.’’ J. Am. Med. Inform. Assoc. 9(3): 262–72.

244 9 : Finding gene names

10Protein interaction
networks

Genes and proteins interact with each other in many complicated ways. For
example, proteins can interact directly with each other to form complexes
or to modify each other so that their function is altered. Gene expression
can be repressed or induced by transcription factor proteins. In addition
there are countless other types of interactions. They constitute the key
physiological steps in regulating or initiating biological responses. For
example the binding of transcription factors to DNA triggers the assembly
of the RNA assembly machinery that transcribes the mRNA that then is
used as the template for protein production. Interactions such as these have
been carefully elucidated and have been described in great detail in the
scientific literature.
Modern assays such as yeast-2-hybrid screens offer rapid means to ascer-

tain many of the potential protein–protein interactions in an organism in a
large-scale approach. In addition, other experimental modalities such as
gene-expression array assays offer indirect clues about possible genetic
interactions.
One area that has been greatly explored in the bioinformatics literature is

the possibility of learning genetic or protein networks, both from the
scientific literature and from large-scale experimental data. Indeed, as we
get to know more and more genes, it will become increasingly important to
appreciate their interactions with each other. An understanding of the
interactions between genes and proteins in a network allows for a mean-
ingful global view of the organism and its physiology and is necessary to
better understand biology.
In this chapter we will explore methods to either (1) mine the scientific

literature to identify documented genetic interactions and build networks of
genes or (2) to confirm protein interactions that have been proposed ex-
perimentally. Our focus here is on direct physical protein–protein inter-
actions, though the techniques described could be extended to any type of
biological interaction between genes or proteins.
There are multiple steps that must be addressed in identifying genetic

interaction information contained within the text. After compiling the

10

necessary documents and text, the first step is to identify gene and protein
names in the text. This can be difficult in itself; this issue is addressed in
Chapter 9. The second step is to identify candidate sections of text, for
example abstracts or sentences, where the names of both genes in the
putative interaction co-occur. Often the co-occurrence of two gene or
protein names alone is suggestive of some sort of relationship. The final
step is to analyze that text and to determine whether an interaction is
described, and what that interaction is.
The key concepts in this chapter are described in the frame box. We begin

with a discussion of genetic and protein interaction networks. We proceed
to describe the high throughput experimental modalities that have been
recently popularized to derive protein–protein interactions. We then discuss
the predictive value of gene name co-occurrence alone in abstracts or
sentences. We then present some more advanced methods to analyze text
segments for interactions; we describe and give examples of information
extraction and statistical machine learning approaches to this problem.

10.1 Genetic networks

Genetic networks are graphical depictions of the relationships between
different genes in the same organism. The simplest networks simply connect
genes together through binary links with each other. These links may
indicate an intimate physical connection between the genes or proteins
implying a specific type of relationship. Alternatively links may have a
more generic meaning; they may imply only that these two genes have
some sort of vague functional connection to each other. More complicated
networks encode many different kinds of specific interactions between
genes. These binary interactions may have a directional component to
them as well; proteins may interact with each other in a non-symmetric
manner. In most cases we expect that genes that are functionally similar to
be either directly connected or closely associated with each other in the
network.

1) Genetic networks
2) Experimental modalities

a) Yeast-2-hybrid method
b) Affinity chromatography

3) Predicting protein–protein
interactions from text

a) Gene name co-occurrence
i) Sentences
ii) Abstracts
iii)Numberof co-occurrences

b) Information extraction
c) Statistical machine learning

246 10 : Protein interaction networks

Genetic networks can be defined to encode all kinds of different types of
interactions between genes and proteins. To start with, consider protein–
protein interactions. Proteins can interact with each other in many sophis-
ticated and complicated ways. Experimental modalities such as yeast-
2-hybrid assays can detect binding between proteins. The most generic
protein–protein interaction networks simply have links between all genes
whose protein products bind at any point and time to each other. However
proteins can interact with each other in as many different ways as there are
proteins. They may be bound together in a permanent structure as part of a
complex, the way two ribosomal proteins might be tightly bound to each
other. Many proteins are part of larger subcellular complexes that function
collectively as units; these proteins are often bound to each other statically.
Alternatively, proteins can bind to each other dynamically. They may come
together briefly to achieve some functional purpose. For example, the
transcription factor proteins bind DNA and each other when a gene is
about to be transcribed. A large functional complex is formed that engages
in DNA transcription. Proteins can also interact in an even more transient
fashion. For example, they can chemically modify other proteins. For
example, protein kinases attach phosphate groups to proteins and in the
process can often modify the function of the protein. Protein phosphatases
remove phosphate groups, on the other hand, and return the phosphoryl-
ated protein to its native structure and function. There are many functional
modifications of proteins that are catalyzed by proteins.
Of course proteins can interact with genes. Transcription factors and

promoters are proteins that influence the expression state of a gene. These
moieties bind the DNA and can cause a gene to be expressed and ultimately
translated into a protein. Studies with gene expression arrays in which a
single transcription factor is artificially over-expressed can help determine
which genes are affected by a particular transcription factor.
Many of the known interactions have been tediously obtained by careful

experimental biology, and are documented and described in the scientific
text. Appropriate use of text mining strategies can be helpful in identifying
and characterizing interactions.
Our emphasis in this chapter is protein–protein interactions specifically.

10.2 Experimental assays to identify protein networks

10.2.1 Yeast two hybrid.

One of the most widely used experimental methods to rapidly determine
protein–protein interactions is the yeast-2-hybrid method (Zhu, Bilgin et al.
2003). This method can be scaled to do large screens. For example, the

10.2 Experimental assays to identify protein networks 247

assay can be executed in an array format that facilitates rapid screening
(Uetz 2002). Large yeast-2-hybrid screens to determine protein interaction
maps have been undertaken in helicobacter pylori, yeast, worm, and fly
(Uetz, Giot et al. 2000;Walhout, Sordella et al. 2000; Ito, Chiba et al. 2001;
Rain, Selig et al. 2001; Giot, Bader et al. 2003).
This method relies on a reliable reporter gene; the reporter gene is a gene

whose expression can be easily noted phenotypically. For example, one
ideal reporter gene is beta-GAL; it expresses a fluorescent protein whose
excessive expression can be noted macroscopically by a color change in the
cell. To assess whether two proteins interact, one protein is fused to a DNA
binding domain that binds upstream of a reporter gene in yeast. The protein
fused to the DNA binding domain is also known as the ‘‘bait’’. The second
protein is fused to a transcription-activating domain; this protein is known
as the ‘‘prey’’. The theory is that if the bait and prey proteins interact, then
the transcription-activating domain is brought close to the upstream region
of the reporter gene when the bait and prey bind. The result is that the
reporter gene is over-expressed. If the expected color change is observed in
the cell, it is then assumed that the bait and prey proteins are interacting.
While this method is fast and efficient, it has known limitations as well.
Binding is assessed in the nucleus, andmembrane bound proteins are unable
to be assessed properly. Two hybrid screens are known to miss many
accepted protein interactions; they also have a reasonably high false posi-
tive rate.

10.2.2 Affinity precipitation.

Another popular method to rapidly assess protein–protein interactions is
affinity precipitation (Zhu, Bilgin et al. 2003). Two comprehensive studies
in yeast have been successfully implemented (Gavin, Bosche et al. 2002; Ho,
Gruhler et al. 2002). The general approach is to use molecular biological
methods to attach bait proteins with a polypeptide tag. This tag is capable
of binding a chromatography column. Then, cellular extracts are purified
using the chromatography column. The tag and the attached protein bind
the column. Proteins that bind the protein remain in the column, while the
other proteins and cellular debris wash off. Harsher conditions are then
employed to elute the binding proteins. Electrophoresis can be employed to
sort proteins by mass into bands on a gel. Mass spectroscopy is one
approach that can then be employed to determine the identities of the
different proteins that were bound to the bait proteins.

248 10 : Protein interaction networks

10.3 Predicting interactions versus verifying interactions
with scientific text

We address two separate roles of scientific text in the context of gene
networks in this chapter. One possibility is using the text to learn networks
of genes only from pre-established knowledge. This is tantamount to doc-
umenting all gene interactions described in the scientific text. Alternatively,
we can use the corpus of published scientific text to verify experimentally
predicted interactions. The simplest and most sensitive approach to both of
these challenges is to count gene-gene co-occurrences and assume that if
two genes co-occur that there is some sort of interaction between them.
These different uses of the literature imply different goals, however.

Verification of predicted interactions typically requires methods that are
very sensitive, at the cost of specificity. That is to say, given a prediction of a
protein interaction, we are looking for any supportive evidence to say that
the interaction might be valid. So co-occurrence in text may be the most
appropriate strategy – as it is as sensitive as any text-based method can be
expected to be. On the other hand, if the goal is to simply mine the text
without any experimental information, then we would desire a more spe-
cific method. The goal of such a method would be to accurately obtain from
the text well-documented interactions; we would want only the interactions
that we could be certain of. So simple co-occurrence in text may lack the
specificity requisite to build high quality networks – more sophisticated text
mining strategies are required to determine which sentences are actually
describing the interactions between the co-occurring proteins.

10.4 Networks of co-occurring genes

In either mining gene networks from the scientific text or assessing the
validity of predicted interactions, looking at gene–gene co-occurrence in
the literature is the initial step. For example if we are trying to assess
whether or not the protein product of two genes physically interact, ideally
we are looking for sentences such as:

Protein A binds and modifies the function of protein B.

In practice, however we are not often so fortunate. Sentences are written
with subtle grammer and vocabulary, and understanding the content of
such sentences computationally can be difficult. The first step is simply
identifying sentences or paragraphs that contain the names of both genes.
These sentences where gene names co-occur are good candidate sentences.
Themore sentenceswe findwith the same pair of gene names, themore likely
that one of them describes a physical interaction between them. In any case

10.4 Networks of co-occurring genes 249

frequent co-occurrence might at the very least imply a vague functional
relationship if not a specific interaction.
Jenssen and colleagues explored networks based on gene name co-occur-

rence in the scientific text (Jenssen, Laegreid et al. 2001). They looked for
the names of 13,712 human genes in PubMed abstracts. They defined a link
between two genes if they were mentioned together in the same abstract.
They noted the number of abstracts that those two genes occurred together
in as a measure of the strength of the interaction. They reported that 62% of
the genes they examined had at least a single reference. Of those genes with
references, 88% have at least one gene that it co-occurs with in the text. The
average number of abstracts that each name pair was represented in was
7.8. To get a sense of the quality of the predicted gene links the authors
sampled 500 gene pairs that co-occurred in five or more abstracts. Of these,
72% corresponded to true biological links between the two genes. Alterna-
tively, doing the same experiment on gene pairs with a strength of one
abstract reveals that only 60% correspond to true biological links. Incorrect
links were always a function of failure to either recognize gene names
correctly or associate them with the right gene. This study underscores the
importance of high quality gene name recognition in text analysis. The
authors provide the network as a conceptual map between genes, and do
not provide an explanation for the links.

10.5 Protein interactions and gene name co-occurrence in
text

Here we will assess how effective co-occurrence in the scientific literature is
at predicting and verifying gene–gene interactions. Specifically, we look at a
comprehensive collection of protein interactions, and see how well co-
occurrence of gene names in text correspond to these interactions.
We use as a gold standard the General Repository for Interaction Data-

sets (GRID) (Breitkreutz, Stark et al. 2003). We focus only on affinity
precipitation and yeast-2-hybrid predicted interactions as a gold standard.
Comprehensive information about this data set is summarized in Table
10.1. There are a total of 4,621 yeast genes with 12,509 documented
interactions. This means that of all possible gene pairs, about 0.12%
correspond to documented physical interactions. This is by no means a
perfect gold standard. These assays have high false positive and false
negative rates, and many consider them questionably reliable. In fact the
literature clearly describes many interactions between proteins that are not
represented by GRID. We use it for lack of a better comprehensive experi-
mentally derived standard. We must recognize that the sensitivities and

250 10 : Protein interaction networks

specificities that we derive may be gross underestimates. However, they do
provide a nice starting point that helps to get a sense of the effectiveness of
text-based strategies and compare different approaches.
Here we will assess how sensitive and specific simple co-occurrence is at

identifying these interactions. Due to the limited availability and difficulty
in obtaining full text, we looked for co-occurrence in article abstracts. This
is a limited approach, as much of the valuable information about genes is
summarized in the introduction and discussion of published papers. The
yeast literature has the advantage of having many well-studied genes with
abundant references.
We obtain the references from the Saccharomyces Genome Database. For

each abstract we identify gene names in the text. We use a synonym list of
gene names to identify gene names in each sentence. We look only for the
names of genes that are referenced by that document according to the
Saccharomyces Genome Database reference index. This is the dictionary
strategy outlined in Chapter 9. First, we identify gene name co-occurrence
in abstracts. There were some 287,533 co-occurrences among these ab-
stracts. Of these, 133,687 co-occurrences are pertinent to the 4621 genes
that we are focused on. We then also look at sentence co-occurrences. We
broke up the abstracts into individual sentences. Then we select all sen-
tences with two or more gene names. There were 24,524 sentences with co-
occurring gene names from the set of 24,378 abstracts. Of these, 17,712 are
co-occurrences where both genes are from the list of genes that were in the
interaction data set. The results are summarized in Table 10.2.
Abstract co-occurrence can be a powerful indicator of a relationship

between genes. Since there are many genes associated with each abstract
there are many more co-occurrences than when looking at co-occurrences

Table 10.1 The General Repository for Interaction Datasets (GRID). This table describes the

data contained in GRID. Each row represents a specific sort of assay represented in GRID. For each

assay we list the total number of genes examined, the total number of interactions found between

those genes, and the total number of studies included in GRID.

GRID data set Genes Interactions Studies

Total 4711 13,607 703
Affinity chromatography 172 134 98
Affinity precipitation 2365 6894 277
Biochemical assay 6 3 3
Dosage lethality 4 2 2
Purified complex 158 128 93
Reconstituted complex 5 5 4
Synthetic lethality 755 985 318
Synthetic rescue 6 5 2
Two hybrid 3873 6127 267

10.5 Protein interactions and gene name co-occurrence in text 251

in sentences. For this reason, abstract co-occurrence is more sensitive but
less specific for interactions. Of all pairs of genes co-occurring in text, only
3.3% of the pairs have physically interacting protein products. The remain-
ing 96.7%might correspond to other types of interactions between proteins
or genes, or might not indicate an interaction but rather just a vague
relationship. So of any individual instance of a gene co-occurrence we
might identify in an abstract, there is about a 1/30 chance that it corres-
ponds to an actual physical interaction. On the other hand given any two
random genes there is only a 0.12% chance that it corresponds to a physical
interaction. So identifying a single instance of two genes co-occurring
greatly increases the chances that it is in fact a true interaction. In fact to
do a simple calculation:

P(interactjco-occur)
P(interact)

¼ 3:3%

0:12%
¼ 27:5

Table 10.2 Data about sentence and abstract co-occurrences. The first row represents the total

number of co-occurrences among the abstracts or sentences relevant to the proteins in the GRID

data set. The next row lists the total number of gene pairs that the textual co-occurrences

correspond to. The next row lists the percentage of those co-occurrences that correspond to protein

interactions reported in GRID. The next set of rows lists the total number of interactions in GRID,

the number and percentage that co-occur, and the average number of co-occurrences per interacting

gene pair. The same series of data is provided for non-interacting gene pairs. Then we list the

percentage of the co-occurring gene pairs that are actually interacting gene pairs. Finally we list the

parameter R, the probability that an interacting gene pair co-occurs divided by the probability that

a non-interacting gene co-occurs.

Abstract Sentences

Text co-occurrences 133,687 17,712
Pairs of co-occurring genes 74,504 5,708
%co-occurrences that
correspond to interacting genes

11.26% 26.15%

Interacting
gene pairs Total 12,509 12,509

co-occurring in text 2367 689
%co-occurring in text 18.90% 5.50%
Mean co-occurrences per pair 1.2 0.36

Non-interacting
gene pairs Total 10,662,001 10,662,001

co-occurring in text 72137 5019
%co-occurring in text 0.68% 0.05%
Mean co-occurrences per pair 0.011 0.0012

%co-occurring pairs that
are interacting pairs

3.28% 13.73%

Rn>0 27.8 117.23

252 10 : Protein interaction networks

So the simple presence of an abstract co-occurrence increases the probabil-
ity that a pair of genes interacts by more than 20-fold.
About 19% of the 12,509 documented interactions co-occur among

published abstracts; so abstract co-occurrence is only 19% sensitive for
protein–protein interactions. However, only 0.7% of the 10,662,001 pairs
of genes that are not documented interactions co-occur among the pub-
lished abstracts; this corresponds to a specificity of 99.3%. This still cor-
responds to a huge number of false positives, however.
We can increase the specificity of interaction prediction at the cost of

sensitivity by looking at co-occurrences of genes in sentences instead of
abstracts. This may be a better strategy to mine the literature for protein–
protein interactions, but a poorer one to verify predicted interactions. Of
these co-occurring pairs, 13.7% of genes pairs have physically interacting
protein products. The majority of the remaining probably corresponds to
some sort of definite relationship between the genes. So for any individual
pair of co-occurring genes in a sentence, there is about a 1/7 chance that it
corresponds to an interaction in the GRID dataset. Repeating the above
calculation:

P(interactjco-occur)
P(interact)

¼ 13:7%

0:12%
¼ 114

The presence of a sentence co-occurrence increases the likelihood of an
interaction by over 100-fold.
Only about 5.5% of the 12,509 documented interactions co-occur in

sentences; this is considerably less sensitive than co-occurrence among
abstracts. Only 0.05% of gene pairs that are not interactions co-occur in
sentences; this corresponds to a specificity of 99.95%.
These results suggest that simple co-occurrence can offer an excellent

opportunity to verify predicted interactions, assuming that the physical
assay that predicts the interaction has a reasonable predictive value. The
predictive value of an assay is the probability that a predicted interaction is
a true interaction; it is similar to the precision of a prediction. Since co-
occurrence among abstracts and sentences greatly increases the probability
that a given pair of genes have a true physical interaction, the combination
of a suggestive experiment and a co-occurrence ensure that the predicted
interaction is in fact a true interaction. In the next section we will discuss
how greater numbers of co-occurrences can increase the chance that a
predicted interaction is a true interaction.
On the other hand, more than 80% of documented interactions have no

co-occurrences in the text, even among abstracts. So, the presence of a co-
occurrence can support the possibility of an interaction, but the lack of
co-occurrence does not detract from the prediction made by the assay. Since

10.5 Protein interactions and gene name co-occurrence in text 253

abstract co-occurrences are only 19% sensitive for interactions, this method
can help us only rarely. In this example we are looking at all genes, and not
just well-studied genes. If we use this method on only well-studied genes, we
can increase the sensitivity.
It is difficult to use only gene co-occurrence to predict gene networks

accurately from text. Two genes co-occurring in the void of any additional
experimental evidence does not necessarily provide strong evidence of an
interaction. Even if we look at pairs of genes that co-occur in abstracts more
than 32 times, 96 are protein–protein interactions while 160 are not. In
fact, only 25% of the 2551 pairs that co-occur in abstracts more than eight
times are protein–protein interactions. There is likely some sort of relation-
ship between these other pairs – but we cannot be certain of the type of
relationship. So it can be difficult to build accurate networks from the text
using only co-occurrence.
They do provide a starting point for mining networks from text. For one

thing, while co-occurrence implies a direct protein–protein interaction only
rarely, it likely does imply other types of interactions between genes. In
addition, it provides the greatest sensitivity in terms of what the text can
offer. Other strategies for learning networks of protein–protein networks
will use text analysis to only further filter and reduce the number of possible
interactions. Abstract co-occurrence casts the widest net of text-based
strategies. Since only 19% of all protein–protein interactions are picked
up by co-occurrences, the majority of known interactions are actually
probably not documented in the text by any discernible means.
Looking at sentence co-occurrences provides much stronger evidence; it

is much more specific for protein–protein physical interactions. However,
the sensitivity is less – fewer than 6% of the documented interactions are
picked up by sentence co-occurrences, and even fewer have multiple co-
occurrences. So, while fewer true interactions are picked up by sentence
co-occurrence, the interactions are more likely to correspond to true pro-
tein–protein interactions.

10.6 Number of textual co-occurrences predicts likelihood
of an experimentally predicted interaction

Let us suppose that we have an experimental result that suggests that two
genes interact. Let us then suppose that a gene pair is observed to co-occur
in a certain number of abstracts. We can calculate the probability of the
predicted interaction being a true interaction based on the number of co-
occurrences. In this section we assume that the experimental result suggests
a prior probability of interaction, P(interact). This is the predictive value or

254 10 : Protein interaction networks

precision of the experiment. For many of the high throughput assays,
P(interact) might be considerably less than 1. The probability of the inter-
action with the additional information of the number of co-occurrences in
text can be computed. By Bayes’ theorem (see Section 2.2) we can calculate:

P(interactjn co-occur) ¼ P(n co-occurjinteract)P(interact)
P(n co-occur)

We can expand this to:

P(n co-occurjinteract)P(interact)
P(n co-occurjinteract)P(interact)þP(n co-occurjnon-interact)P(non-interact)

We define an entity Rn

Rn ¼ P(n co-occurjinteract)
P(n co-occurjnon-interact)

This is the ratio of the probability that n co-occurrences occur given
that two genes interact to the probability that the same number of co-
occurrences occur given two genes don’t interact. The parameter R is a
measure of the predictive value of that number of co-occurrences in the text.
Then we can simplify:

P(interactjn co-occur) ¼ RnP(interact)

1þ (Rn � 1)P(interact)

So as the term Rn gets larger and larger, the probability that the two genes
interact approaches 1. Of course, if the prior probability is extremely small,
and the product of Rn and P(interact) is a small number, then the probabil-
ity of the predicted interaction being real is also small. One case when
P(interact) might be very small is when there is absolutely no available
experimental evidence for a particular interaction.
In Table 10.2 we have listed the values of Rn>0. Given one or more

abstract co-occurences, the R value is 28. So if abstract co-occurrences are
documented and an assay predicts that interaction with a predictive value of
at least 1/7, then the probability of a true interaction is at least 4/5. In other
words, even a very modestly effective assay combined with any degree of
abstract co-occurrence is quite a strong predictor of a true interaction.
One would expect that as the number of abstract co-occurrences for a

pair of genes increases, the likelihood of an interaction increases as well. In
other words,Rn should be proportional to n. In Figure 10.1 we have plotted
the probability that two genes co-occur n times given that the two genes are

10.6 Number of textual co-occurrences predicts likelihood 255

1

2−4

2−8

2−12

2−16

2−16

2−20

2 − 3 4 − 7 8 − 15 16 − 31 > 320 1

Abstract co-occurrences

F
ra

ct
io

n

(a)

Interacting
Pairs
Non-interacting
Pairs

Interacting
Pairs
Non-interacting
Pairs

1

2−4

2−8

2−12

2−16

2−20

0 1 2 − 3 4 − 7 8 − 318 − 15 > 32

Sentence co-occurences

F
ra

ct
io

n

(b)

Figure 10.1 Probability of n co-occurrences in text. In both plots pluses (þ) indicate the

probability of the number of co-occurrences on the x-axis if the co-occurring genes were known to

interact. In both plots circles (o) indicate the probability of the number of co-occurrences on the x-

axis if the co-occurring genes were known not to interact. (a) For abstract co-occurrences. (b) For

sentence co-occurrences.

256 10 : Protein interaction networks

known to interact, and also the probability that they co-occur n times if
they are known not to interact. In Figure 10.2 we plot Rn, the ratio of those
probabilities. While for a single abstract co-occurrence R is only about 10,
for 4 to 7 co-occurences R is about 150, and for greater than 32 abstract co-
occurrences R is 511. It is evident that as the number of abstract co-
occurrences increase, the chance that a predicted interaction is a true
interaction also increases dramatically. In Figure 10.3(a) we have plotted
the necessary prior probability to obtain specific interaction probabilities
for different numbers of abstract co-occurrences. The y-axis indicates the
prior probability, the x-axis indicates the number of co-occurrences in text.
Each line corresponds to a specific probability of interaction; for example,
each point on the top line corresponds to a prior probability and the
number of co-occurrences necessary to achieve an interaction probability
of 0.9. From this graph we can see the dramatic affect that the number of
co-occurrences can have on the probability of an interaction. An assay that
suggests a protein interaction with a prior probability of 0.01 and has
one co-occurrence has an interaction probability of 0.1. On the other
hand, if 8–15 co-occurrences are observed then the probability of inter-
action becomes 0.7.

Sentece Co-
occurence

Abstract Co-
occurence

1000

100

1

0.1
1 2 − 3 4 − 7 8 − 15 16 − 310 > 32

Co-occurences

Li
ke

lih
oo

d
ra

tio

10

Figure 10.2 Plot of R as a function of number of co-occurrences. Here, for a given number of co-

occurrences (x-axis), we have plotted the ratio of the probability of that number of co-occurrences

assuming that the pair interacts to the probability assuming that the pair does not interact. We refer

to this ratio as R. Squares (h) represent sentence co-occurrences; dark circles (d) represent abstract

co-occurrences.

10.6 Number of textual co-occurrences predicts likelihood 257

0.1

0.01

0.001

0.0001

1

0 1 4 − 7 8 − 15 16 − 31 > 32

< 0.1

0.1

0.3

0.5

0.7

0.9

>0.9

2 − 3

P
rio

r
pr

ob
ab

lit
y

Number of abstact co-occurrences(a)

(b)

0.1

0.01

0.001

0.0001

1

0 1 4 − 7 8 − 15 16 − 31 > 32

< 0.1
0.1

0.3

0.5

0.7

0.9

>0.9

2 − 3

P
rio

r
pr

ob
ab

lit
y

Number of Sentence Co-occurrences

Figure 10.3 Relationship between the number of co-occurrences in the text, the prior probability

of an interaction, and the ultimate probability of the interaction. On the x-axis we plot the number

of co-occurrences in the literature. On the y-axis we plot the prior probability on an interaction.

Typically that value is based on an experimental assay such as yeast-2-hybrid.

258 10 : Protein interaction networks

Compared to abstract co-occurrences, the R-values are greater for each n
for sentence co-occurrences (see Figure 10.2). So a single sentence co-occur-
rence has an R of 61 compared to 9 for a single abstract co-occurrence.
Similarly 8–15 sentence co-occurrence has anR of 406 compared to 235 for
8–15 abstract co-occurrences. The R value for all n > 0 is 117. In Figure
10.3(b) we have plotted the necessary prior probability to obtain specific
interaction probabilities for different numbers of sentence co-occurrences.
Notice that the curves are shifted down compared to Figure 10.3(a), indi-
cating that lower prior probabilities are necessary to obtain the same inter-
action probability.
In both of these cases it is very apparent that as the number of co-

occurrences increases, the probability of an interaction quickly increases.

10.7 Information extraction and genetic networks:
increasing specificity and identifying interaction type

As is apparent from the analysis on co-occurrence, the mere presence of two
gene names in the same abstract or even the same sentence provides sup-
portive evidence of an interaction, but certainly offers only minimally
suggestive evidence of the possibility of a protein–protein interaction in
the void of experimental data. The difficulty is that the presence of two
genes in the same sentence may imply many different sorts of relationships
besides just a protein–protein interaction. To build text-based genetic net-
works we need more specific evidence than just a co-occurrence. In the
remainder of this chapter we will discuss strategies to select sentences that
focus on protein interactions specifically. These strategies will hopefully
eliminate the sentences with gene co-occurrences that do not address
protein interactions.
Information extraction is a more focused approach to mining the text.

The goal of information extraction is to mine specific information from the
text. Typically this is achieved by identifying specific patterns in the text.
These patterns might include part of speech, sentence structure, and the
presence of keywords in the sentence.

Figure 10.3 (Caption Continued)

The lines represent fixed probabilities of an interaction given a prior probability and a number of

co-occurrences. Given a fixed prior probability, and number of observed co-occurrences we can use

this plot to determine the probability of the interaction. (a) Abstract co-occurrences. For example if

there are more than four abstract co-occurrences and the prior probability of an interaction based

on an experimental assay is 0.1, then the true probability of an interaction is > 0:9. (b) Sentence

co-occurrences. For example if there are more than two sentence co-occurrences and the prior

probability of an interaction based on an experimental assay is 0.1, then the true probability of an

interaction is > 0:9.

Information extraction and genetic networks 259

One very effective strategy to identify sentences describing true protein–
protein interactions is to look at sentences where gene names co-occur with
protein–protein interaction keywords in the sentence. This should eliminate
many of the erroneous co-occurrences. Blaschke and colleagues proposed a
set of high quality verbs that are commonly used to describe protein–
protein interactions (Blaschke, Andrade et al. 1999). We have listed these
verbs in Table 10.3. This same group looked for a specific pattern in the text
to identify potential interactions; they looked for text that contained two
gene names and one of these key verbs in between them. This is an example
of information extraction. In this case we are looking for a simple pattern:

Gene A . . . interaction verb . . . Gene B

If this pattern is observed by the algorithm, it reports that Gene A
interacts with Gene B via the mechanism indicated by the interaction verb.
They used these text segments to predict the presence of a protein–protein

interaction between these two genes. They were able to successfully and
accurately reconstruct specific small networks of genes inDrosophila. They
also used the verb keywords to predict the type of interaction based on the
keyword between the gene names (for example, binds versus phosphoryl-
ates). This is a very effective strategy to filter co-occurrences.
To demonstrate the effectiveness of this approach, we conducted a simple

test. We selected 200 random sentences with co-occurring gene names. We
manually examined these sentences and determined that a total of 83
(41.5%) could support or imply a physical interaction between the two
proteins in the sentences. Using the template proposed here to filter sen-
tences, we found that a total of 58 sentences were selected, of which 36
could support or imply a physical interaction. So using this template to
select sentences reduced the recall from 100% to 43% (36 out of 83). On
the other hand, it increases the precision from 41.5% to 62% (36 out of

Table 10.3 Words identified by Blaschke and colleagues to identify protein interactions. These

were the words that were used to look for protein interaction patterns in text. The left-most word

represents the root. The suffixes on the right represent possible modifications of that root.

acetylat- -e -ed -es -ion
activat- -e -ed -es -ion
associated with bind -ing -s -s to /bound
destabiliz -e -ed -es -ation
inhibit -ed -es -ion
interact -ed -ing -s -ion
is conjugated to modulat -e -ed -es -ion
phosphorylat -e -es -es -ion
regulat -e -es -es -ion
stabiliz -e -ed -es -ation
suppress
target

-ed -es -ion

260 10 : Protein interaction networks

58). So while filtering sentences with co-occurring gene names for specific
patterns can cause a certain loss of sensitivity, the selected sentences are in
fact much more predictive of a true gene interaction.
We apply this approach to all of the sentences with gene name co-

occurrences and correlate them with the GRID interaction data set. The
results are summarized in Table 10.4. Notice that many sentences are
eliminated when we accept only those that conform to Blaschke’s pattern.
Instead of 17,712 co-occurrences among 5708 pairs of genes, we have only
3891 co-occurrences among 1969 pairs of genes. This approach is much
less sensitive, since sentences describing or suggesting interactions could be
filtered out. Only 3% of the GRID interacting pairs are represented among
these filtered sentences. A full 45% of the interacting gene pairs identified
when we included all sentences with co-occurring names are lost when we
apply this pattern-matching filter. However, these sentences are a much
more specific set. The parameter R is greater than 200, suggesting greater
specificity. Also 19% of the total co-occurrences correspond to interacting
gene pairs; this is an increase from 13%when considering all sentences with
co-occurrences.

Table 10.4 Data for interactions predicted by sentences that co-occur and contain patterns

suggestive of potential interactions. This table is similar Table 10.2. However instead of just co-

occurrences in sentence, we look for sentences with co-occurring gene names that conform to a

pattern described by Blashke and colleagues. These co-occurrences are more likely to describe true

protein interactions.

Sentences
matching
patterns

Text co-occurrences 3891
Pairs of co-occurring genes 1969
%co-occurrences that
correspond to interacting genes 30.27%

Interacting gene pairs Total 12,509
co-occurring in text 377
%co-occurring in text 3.01%
Mean co-occurrences per pair 0.094

Non-interacting
gene pairs Total 10,662,001

co-occurring in text 1592
%co-occurring in text 0.014%
Mean co-occurrences per pair 0.00025

%co-occurring pairs that
are interacting pairs 19.15%
Rn>0 201.84

Information extraction and genetic networks 261

Information extraction can also utilize patterns in part of speech as well
as word usage. Other groups showed how part of speech can be used in
addition to keywords to identify protein–protein interactions (Sekimizu,
Park et al. 1998; Thomas, Milward et al. 2000; Ono, Hishigaki et al. 2001).
First, part of speech is assigned to sentences with two gene names. Then
specific patterns including part of speech features are identified that might
correspond to potential interactions. The methods can be complicated since
each type of interaction requires a definition of many different patterns
including different arrangements of part of speech and different variants of
the same interaction verb.
An even more sophisticated approach is to parse sentences, and identify

the subject and noun phrases. If the phrases are gene names, then the next
step is to identify the predicate of the sentences, and assess if it is consistent
with an interaction. This approach was proposed and preliminarily evalu-
ated by Sekimizu and colleagues. (Sekimizu, Park et al. 1998). While these
methods that involve looking for complicated specific patterns in text can
greatly reduce the sensitivity, they can be much more predictive of true
protein–protein interactions. They are better suited for identifying protein
interactions in the void of experimental evidence.

10.8 Statistical machine learning

Statistical methods can also be used to analyze sentences to identify those
that are strongly suggestive of interactions. Statistical textual classifiers can
be used as an alternative to rule-based information extraction methods to
identify protein–protein interactions. In Chapter 8 we demonstrated how
classifiers are used to find text that describes specific biological function.
The same classifiers can be used to identify segments of text that are
potentially describing an interaction based on word usage.
One group proposed using a naive Bayes classifier to determining

whether an abstract is relevant to a protein–protein interaction (Marc-
otte, Xenarios et al. 2001). Naive Bayes is detailed in chapter 8. They
trained their classifier on documents known to describe protein–pro-
tein interactions. They then used the classifier to scan unclassified
abstracts and determine if they are potential references that are describing
protein–protein interactions. This group devised this approach to assist in
augmenting the reference base of the Database of Interacting Proteins
(DIP), a well-known repository of documented protein–protein inter-
actions.

262 10 : Protein interaction networks

Another similar application of text classification was implemented to
identify interactions described in the text for the Biomolecular Interaction
Network Database (BIND) (Donaldson, Martin et al. 2003). Instead of
naive Bayes, this group implemented support vector machine text classi-
fiers. They demonstrated that support vector machine classifiers can be
much more effective than naive Bayes in classifying abstracts relevant to
protein–protein interactions. In one test it achieved more than 12% more
recall. They then demonstrated that they could use the same classifier to
identify critical sentences in the abstract that were relevant to protein
interactions. They predicted the presence of protein interactions by looking
for sentences that contained two gene names and that received a high score
by the support vector machine classifier. They estimated that this approach
identified about 60% of known interactions in yeast. In addition they found
that automated methods saved 70% of the manual time spent to identify
protein interactions from text.
As an example, we demonstrate statistical classification of those sen-

tences with co-occurring gene names. We use a maximum entropy textual
classifier to distinguish sentences that describe protein interactions from
others. The technical aspects of the classifier are described in Chapter 8. We
select 500 random abstracts from the January 2002 release of DIP as a
positive training set. We also select 500 random yeast references as a
negative training set. Words appearing in more than four but fewer than
500 documents were selected. Chi-squared testing is used to select 2000 of
those vocabulary words that differentiated these two sets. For each of the
two sets, maximum entropy features were defined for each of these vocabu-
lary words. A maximum entropy classifier is trained on these two document
sets. We then use the classifier to predict whether a sentence is more
consistent with the positive or negative set. Sentences are assigned prob-
abilities that are presumably proportional to the confidence with which the
sentence was in fact describing an interaction.
Probability thresholds can be selected to achieve different degrees of

precision and recall. We examine the set of 200 manually analyzed sen-
tences described in the previous section.We had determined that 83 of those
sentences suggested protein interactions. If we apply the maximum entropy
classifier to these sentences, we find that a total of 104 sentences have a
probability greater than 0.5; of these 104 sentences, 65 describe interacting
proteins per our manual analysis. This corresponds to a precision of 62%
(65 out of 104) and a recall of 78% (65 out of 83 manually selected
sentences). We have listed selected examples of these sentences in
Table 10.5. For each sentence we have listed the probability assigned by
maximum entropy that the sentence represents a protein–protein inter-
action and also the objective assignment of whether the sentence represents
an interaction. The six very high scoring sentences unambiguously

10.8 Statistical machine learning 263

Table 10.5 Example of sentences with two gene names, and their probability of describing a

protein–protein interaction. In this table we list some examples of randomly selected sentences. The

gene names have been replaced with the formal yeast gene name within brackets. In the first column

we list the probabilistic score assigned by the maximum entropy classifier. The second column lists

the expert assessment of the sentence; the number 1 indicates that the expert thought the sentence

was describing or might suggest a protein–protein interaction. The final column lists the sentence in

question. There are three groups of sentences. The six highest scoring sentences are listed at the top.

These sentences unambiguously describe protein–protein interactions. Then we list four sentences

that received intermediate probabilities. Finally we list four sentences that are low probability for

describing protein–protein interactions.

ME
probability Expert score Sentence

0.93 1 Gel filtration of the <YNL262W> p. <YPR175W> p
complexes reveals a novel heterotetrameric form, consisting
of two heterodimers of <YNL262W> p. <YPR175W> p.

0.93 1 Thus the<YCL032W> p-<YLR362W> p interaction may
differentially modulate the flow of information through the
various mapk-mediated pathways.

0.92 1 <YOR181W> protein is localized to actin patches and
interacts with <YBL007C> p, a src homology 3 domain-
containing protein previously implicated in actin assembly
and function.

0.90 1 <YBR112C> (<YBR112C>)-<YCR084C>, a general co-
repressor complex, is recruited to promoter dna via
interactions with dna-binding regulatory proteins and
inhibits the transcription of many different yeast genes.

0.90 1 The central receptor <YNL131W> binds preproteins
through both its cytosolic domain and its intermembrane
space domain and is stably associated with the channel
protein <YMR203W> (refs 11-13).

0.88 1 <YFL029C> binds tightly to and phosphorylates
<YBR160W>, thereby allowing its subsequent activation
by the binding of a cyclin.

0.52 0 These data indicate that the degradation of <YAL040C>
involves<YBR160W> -dependent phosphorylation events.

0.51 1 The last 115 amino acids of <YDR390C>, which contains
an 82- amino acid region not present in previously
characterized e1 enzymes, is sufficient for the interaction
with <YKR002W>.

0.51 1 Immunofluorescent staining with anti-human
<YOL069W> p and with anti-hec, the human homologue
of <YIL144W> p, showed that both proteins are at the
centromeres of mitotic hela cells.

0.50 0 Another gene, <YBR133C>, is a novel negative regulator
of <YJL187C> function.

0.14 0 <YFL029C> was previously identified as a multicopy
suppressor of a weakened <YPR054W> mutant and
shown to be required for spore wall assembly.

264 10 : Protein interaction networks

represent protein–protein interactions. The four sentences listed with inter-
mediate probabilities do suggest possible protein–protein interactions, but
are not definitive. For example, the first sentence says that one protein relies
on phosphorylation events from another protein – presumably that repre-
sents a direct interaction, though the sentence does not make it unambigu-
ously clear that the one protein is phosphorylating the other. The final four
sentences are low probability sentences; it is clear they represent no physical
protein–protein interation.
For different thresholds we have plotted precision as a function of recall

in Figure 10.4. A threshold can be selected that achieves the appropriate
level of precision and recall. Notice that for the same level of recall as the
method described by Blaschke, maximum entropy classification obtains a
precision greater than 80%; at that threshold less than 1 in 5 selected
sentences do not describe protein–protein interactions.
We can also see from this data that the higher the probability assigned to

a sentence by maximum entropy classification, the more likely it is actually
describing an interaction. This is demonstrated in Figure 10.5. In this figure
we have partitioned the 200 sentences by the probability confidence value
assigned to them. Notice that the fraction of genes suggesting a true protein
interaction tracks with the confidence scores.

Table 10.5 Continued

ME
probability Expert score Sentence

0.13 0 Transcription activation of sulfur metabolism in yeast is
dependent on two dna binding factors, the centromere
binding factor 1 (<YJR060W>) and <YNL103W>.

0.06 0 This, together with reciprocal genetic interactions between
<YER133W> and <YKL193C>, suggests that
<YKL193C> p functions positively with <YER133W> p
to promote dephosphorylation of nuclear substrates
required for faithful transmission of chromosomes during
mitosis, and this role is at least partly mediated by effects of
<YKL193C> p on the nuclear distribution of
<YER133W> p

0.04 0 The essential ras-related gtpases <YFL038C> and
<YFL005W>act at distinct stages of the secretion pathway
in the yeast saccharomyces cerevisiae: <YFL038C> is
required for vesicular transport from the endoplasmic
reticulum to the golgi apparatus, whereas <YFL005W> is
required for fusion of secretory vesicles to the plasma
membrane.

10.8 Statistical machine learning 265

We can use maximum entropy to classify all of the sentences with co-
occurring protein names. The selected sentences should describe true pro-
tein interactions. In Table 10.6 we list our results for a threshold of 0.5 and
0.7. If we use a probability threshold 0.5 to distinguish sentences describing
interactions, we find that the total number of sentences with co-occurring
genes is reduced from 17,712 to 6498. Of these, 36% of the sentences
contain co-occurring proteins that the GRID data set lists as interacting
proteins. These sentences with co-occurring gene names correspond to
2711 gene pairs, of which 21% are interacting gene pairs. A total of
4.5% of the GRID interactions are represented among these sentences.
This represents only a loss of less than 17% of the interacting gene pairs
obtained when using all sentences with co-occurring gene names. Using a
maximum entropy classifier with a 0.5 cutoff to screen sentences identifies
52% more gene pairs than Blaschke’s approach. So it is a more sensitive
approach. It also has a slightly greater predictive power; it achieves an R
value of 229. This is also reflected in the fact that a greater percentage of
selected sentences correspond to true protein interactions.

0%
40%

55%

70%

P
re

ci
si

on

Recall

85%

100%

20% 40% 60% 80% 100%

Figure 10.4 Precision–Recall plot for maximum entropy classification of sentences with co-

occurring genes. Here we use maximum entropy classification to determine which sentences are

describing protein interactions. The dark circle represents the precision and recall for simply taking

all sentences with co-occurring gene names. The dark square represents the precision and recall for

the strategy proposed by Blaschke and colleagues in this set. The cross symbols represent the

precision and recall of maximum entropy classification of the sentences. Notice that as we apply

more stringent criteria, the recall is reduced since we are losing some of the sentences that describe

protein–protein interactions. On the other hand, as we apply increasingly stringent criteria the

precision increases since sentences describing other phenomena are eliminated. We can be as

stringent as necessary to obtain the necessary precision.

266 10 : Protein interaction networks

Increasing the probability threshold to 0.7 decreases the recall, but
greatly increases the specificity of the method. The 17,712 sentences with
gene co-occurrences is reduced to 1575 sentences, of which 43% corres-
pond to interacting proteins. Only 2.6% of the interacting gene pairs in
GRID are obtained from these sentences.
Prediction of protein interactions could be made even more accurate by

combining the probability scores for different sentences that mention the
same pairs of genes. Pairs that have multiple high probability sentences
almost certainly interact with each other.
We also remind the reader that these methods may be more precise than

suggested by the comparison to the GRID data set, since the GRID data set
does not include all of the known interactions by any means. So many of the
predicted interactions not supported byGRIDare true interactions. Effective

1.00

1.00

0.75

0.75

0.50

0.50

0.25

0.25
0.00

0.00

Probability Confidence Score

F
ra

ct
io

n
of

 S
en

te
nc

es
 D

es
cr

ib
in

g
In

te
ra

ct
io

ns

Figure 10.5 Sentences suggesting protein–protein interactions as a function of maximum entropy

confidence scores. The y-axis in this plot represents the fraction of sentences that have been

manually assessed to suggest protein interactions. Sentences were classified with the maximum

entropy classifier and binned according to confidence score; that is the classifier probability that the

sentence represents a protein–protein interaction. The fraction of those sentences that actually

describe interactions is proportional to the confidence score.

10.8 Statistical machine learning 267

useof statistical text classificationstarts toapproach the levelofaccuracy that
is appropriate to start building high quality networks of interacting genes.
We also note that while the focus of this chapter has been protein–protein

interactions, all of these same principles can be applied to other types of
interactions between genes and their products. Statistical text classifiers can
easily be constructed to identify specific types of protein–protein interactions
or other types of interactions in sentences with gene name co-occurrences.

References

Blaschke, C., M. A. Andrade, et al. (1999). ‘‘Automatic extraction of biological infor-
mation from scientific text: protein-protein interactions.’’ Proc. Int. Conf. Intell. Syst.
Mol. Biol. 2(1): 60–7.

Breitkreutz, B. J., C. Stark, et al. (2003). ‘‘The GRID: the General Repository for
Interaction Datasets.’’ Genome Biol. 4(3): R23.

Donaldson, I., J.Martin, etal. (2003). ‘‘PreBINDandTextomy–mining thebiomedical literature
forprotein-proteininteractionsusingasupportvectormachine.’’BMCBioinformatics4(1):11.

Gavin, A. C., M. Bosche, et al. (2002). ‘‘Functional organization of the yeast proteome
by systematic analysis of protein complexes.’’ Nature 415(6868): 141–7.

Table 10.6 Data for interactions predicted by sentences selected by maximum entropy

calssification. This table is similar Table 10.2. However instead of just co-occurrences in sentences,

we look for sentences selected by the maximum entropy classifier described in the text. These co-

occurrences are more likely to describe true protein interactions.

p > 0:5 p > 0:7

Text co-occurrences 6493 1775
Pairs of co-occurring genes 2711 998
%co-occurrences that
correspond to
interacting genes

36.04% 43.11%

Interacting
gene pairs Total 12,509 12,509

co-occurring in text 575 328
%co-occurring in text 4.59% 2.62%

Mean co-occurrences per pair 0.187 0.054

Non-interacting
gene pairs Total 10,662,001 10,662,001

co-occurring in text 2136 670
%co-occurring in text 0.02% 0.0062%
Mean co-occurrences per pair 0.00039 0.000084

% co-occurring pairs that
are interacting pairs 21.21% 32.87%
Rn>0 229.45 417.27

268 10 : Protein interaction networks

Giot, L., J. S. Bader, et al. (2003). ‘‘A protein interaction map of Drosophila melanoga-
ster.’’ Science 302(5651): 1727–36.

Ho, Y., A. Gruhler, et al. (2002). ‘‘Systematic identification of protein complexes in
Saccharomyces cerevisiae by mass spectrometry.’’ Nature 415(6868): 180–3.

Ito, T., T. Chiba, et al. (2001). ‘‘A comprehensive two-hybrid analysis to explore the
yeast protein interactome.’’ Proc. Natl. Acad. Sci. U S A. 98(8): 4569–74.

Jenssen, T. K., A. Laegreid, et al. (2001). ‘‘A literature network of human genes for high-
throughput analysis of gene expression.’’ Nat. Genet. 28(1): 21–8.

Marcotte, E. M., I. Xenarios, et al. (2001). ‘‘Mining literature for protein-protein
interactions.’’ Bioinformatics 17(4): 359–363.

Ono, T., H. Hishigaki, et al. (2001). ‘‘Automated extraction of information on protein-
protein interactions from the biological literature.’’ Bioinformatics 17(2): 155–61.

Rain, J. C., L. Selig, et al. (2001). ‘‘The protein–protein interaction map of Helicobacter
pylori.’’ Nature 409(6817): 211–5.

Sekimizu, T., H. S. Park, et al. (1998). ‘‘Identifying the interaction between genes and
gene products based on frequently seen verbs inMedLine abstracts.’’Genome Inform.
Ser. Workshop Genome Inform. 9: 62–71.

Thomas, J., D. Milward, et al. (2000). ‘‘Automatic extraction of protein interactions
from scientific abstracts.’’ Pac. Symp. Biocomput: 541–52.

Uetz, P. (2002). ‘‘Two-hybrid arrays.’’ Curr. Opin. Chem. Biol. 6(1): 57–62.
Uetz, P., L. Giot, et al. (2000). ‘‘A comprehensive analysis of protein–protein inter-
actions in Saccharomyces cerevisiae.’’ Nature 403(6770): 623–7.

Walhout, A. J., R. Sordella, et al. (2000). ‘‘Protein interaction mapping in C. elegans
using proteins involved in vulval development.’’ Science 287(5450): 116–22.

Zhu, H., M. Bilgin, et al. (2003). ‘‘Proteomics.’’ Annu. Rev. Biochem. 72: 783–812.

References 269

This page intentionally left blank

11Conclusion

The genomics era has presented many new high throughput experimental
modalities that are capable of producing large amounts of data on compre-
hensive sets of genes. In time there will certainly be many more new
techniques that explore new avenues in biology. In any case, textual analysis
will be an important aspect of the analysis. The body of the peer-reviewed
scientific text represents all of our accomplishments in biology, and it plays
a critical role in hypothesizing and interpreting any data set. To altogether
ignore it is tantamount to reinventing the wheel with each analysis.
The volume of relevant literature approaches proportions where it is all

but impossible to manually search through all of it. Instead we must often
rely on automated text mining methods to access the literature efficiently
and effectively.
The methods we present in this book provide an introduction to the

avenues that one can employ to include text in a meaningful way in the
analysis of these functional genomics data sets. They serve as a complement
to the statistical methods such as classification and clustering that are
commonly employed to analyze data sets. We are hopeful that this book
will serve to encourage the reader to utilize and further develop text mining
in their own analyses.

11

This page intentionally left blank

INDEX

Note: Authors of cited works appear under the first cited name only.
Page numbers in italics refer to figures, and those in bold to tables. The
abbreviation, ‘pl.’ refers to plates.

Aach, J. and Church, G. M. 67

abbreviations, use in gene name

recognition 228, 237–42,

238, 239, 243

abstract co-occurrences 254–59, 256

number, prediction of likelihood of

interaction 254–59, 256,

257, 258

accession number (AC), SWISS-

PROT 109

accuracy 36, 212

adenosine 18, 19

affine gap penalty function 43

affinity precipitation 248

agglomerative hierarchical

clustering 71–2

alanine 25

Alberts, B., Bray, D. et al. 17

algorithms, measurement of

performance 35–7

aligned sequences 42

alignment, dynamic

programming 44–7

alignment algorithms 42–4

Alizadeh, A. A., Eisen, M. B. et al. 62,

63, 68, 78

alpha helices 25

hydrogen bonding pl. 2.3

Altman, R. B. and Raychaudhuri, S. 67,

86

Altschul, S. F., Gish, W. et al. 48

Altschul, S. F., Madden, T. L. et al. 115

ambiguity of gene names 229, 232

amino acids 24–5, 25

emission probabilities 59

genetic code 23

secondary structure prediction 56–7

structure 24

substitutions 41, 42–3

synthesis 21–2

transition probabilities 59–60

amino acid sequences, probabilities 30

anchoring enzymes 64

Andrade, M. A. and Valencia, A. 112,

113, 173

ank root 237

annotated genes

use of maximum entropy

classifier 221–4

uses 196–7

see also functional vocabularies

annotation quality

GO 187

relationship to NDPG sensitivity 179

appearance of words, use in name

recognition 228, 232–3, 234,

241–3, 242

Arabidopsis thaliana, GO annotated

genes 13

Arbeitman, M. N., Furlong, E. E.

et al. 98, 193

arginine 25

arrays

gene expression profiling 26–7, 63,

pl. 2.6

noise sources 125

article indices 227

‘‘-ase’’ suffix 233, 241

Ashburner, M., Ball, C. A. et al. 7, 90,

148, 152, 196

asparagine 25

aspartic acid 25

‘‘autophagy’’ gene group

corruption study 166–7, 168

NDPG score 167

average linkage clustering 181, 191

Bachrach, C. A. and Charen, T. 213,

224

backward algorithm 60

Bailly, V. et al. 149

bait proteins 248

Ball, C. A., Awad, I. A. et al. 126

Ball, C. A., Dolinski, K. et al. 212

base pairing 19, 20

in RNA 21

Baum–Welsh algorithm 60–1

Bayes’ theorem 30, 255

Behr, M. A., Wilson, M. A. et al. 63

Ben-Hur, A., Elisseeff, A. et al. 67

best article score (BAS) 160–2

precision-recall plot 160

beta-GAL 248

beta sheets 25, 26

bias in study areas 5, 6

binary vectors, comparison metrics 87

binding proteins 141

binomial distribution 31, 32, 33

bioinformatics 1, 2

biological function 26–7

biological function codes 195

biological function databases 7

biological function querying 101–4

biological process terms, Gene

Ontology 12, 198

biological similarity, relationship to

textual similarity 97–9

BioMed Central 3, 9

Biomolecular Interaction Network

Database (BIND) 263

Blake, J. A., Richardson, J. E. et al. 9,

184, 229

Blaschke, C., Andrade, M. A. et al. 7,

260–1, 265

BLAST (Basic Linear Alignment Search

Tool) 39, 48, 83, 107

comparison of breathless protein

with other proteins 97, 98

see also position specific iterative

BLAST (PSI-BLAST)

Boeckmann, B., Bairoch, A. et al. 3, 109

breathless 228

abbreviations 237–38

gene literature study 96–9

SWISS-PROT record 109, pl. 4.1

synonyms 229, 231

Breitkreutz, B. J., Stark, C. et al. 250

Brill, E. 234

Brown, P. O. and Bostein, D. 1

Caenorhabditis elegans

assembly of functional groups 185–9

GO annotated genes 13

literature index 185, 186

sensitivity of NDPG 187

Candida albicans, GO annotated

genes 13

candidate gene identification 8

carbohydrate metabolism genes 150

Catlett, M. G. and Forsburg, S. L. 151

CCAAT promoter 50

cellular compartment terms, Gene

Ontology 198

‘‘Cellular Location’’ terms, Gene

Ontology 12

central dogma of molecular biology 18,

pl. 2.1

centred correlation metric 181

Chang, J. T., Raychaudhuri, S. et al. 8,

107, 117, 118

Chang, J. T., Schutze, H. et al. 233,

235, 238–40

unified gene name finding

algorithm 240–3

chaperones 24

Chaussabel, D. and Sher, A. 95

Chee, M., Yang, R. et al. 63

Chen, J. J., Wu, R. et al. 63

Cherry, J. M., Adler, C. et al. 9, 155,

174, 181, 184, 212, 229

274 Index

chips, sources of noise 125

chi-square testing, feature

selection 210–12,211, 216, 218

Cho, R. J., Campbell, M. J. et al. 63

Chu, S., DeRisi, J. L. et al. 78

Chu, S. and Herskowitz, I. 78

classification of documents,

inconsistencies 218

classification methods 66, 74–9

Clustal W algorithm 48, 49

cluster boundary optimization 178–84,

192–3

cluster identification 192–3

clustering

hierarchical 178–84

NDPG scoring 173–8

use in organizing sequence hits 114

clustering algorithms 66–72, 172

k-means clustering pl. 2.8

Cluster software 86, 181

coded messages, information

theory 33–4

codons 21–2

genetic code 23

coherence of gene groups 147

see also functional coherence of gene

groups

coin tossing

hidden Markov models 55–6
probabilities 28, 29

collection frequency 85–6

comments field (CC),

SWISS-PROT 109

Comprehensive Yeast Genome

Database (CYGD) 169

concordance see overlap, clusters and

functional groups

conditional probability 28–9

Bayes’ theorem 30

conditions, in expression analysis 65

confidence scores of maximum entropy

classifier 220–21

consensus sequences 50

conserved substitutions 41

context, use in recognition of gene

names 228, 235–7, 242

continuous probability distribution

functions 31, 32, 33

calculation of mean 35

co-occurring gene names 249–50

assessment of efficacy 250–4

interaction verbs 260–1

number, prediction of likelihood of

interaction 254–59

core terms, in name finding

algorithm 233, 234

correlation coefficient 67

corruption studies, gene groups 166–7

cosine metric 87

comparison of breathless with other

genes 96–7

comparison of gene expression

profiles 98

neighborhood expression

information scoring 130–1,

203

covariance matrices

linear discriminant analysis 77, pl. 2.9

principal component analysis 73

Craven, M. and Kalian, J. 7

credibility, genomics literature 4

cross-referencing, assessment of

functional coherence of gene

groups 152

cysteine 25

cytochrome P450 genes,

appearance 232–3

cytosine 18, 19

Danio rerio, GO annotated genes 13

data, statistical parameters 34–5

data analysis 65–6

clustering algorithms 66–72

dimensional reduction 72–4

database building 5, 7

Database of Interacting Proteins

(DIP) 7, 262

databases 3–4, 7, 9–11

Biomolecular Interaction Network

Database (BIND) 263

Comprehensive Yeast Genome

Database (CYGD) 169

Index 275

databases (Contd.)

electronic text 9

GenBank database, growth 37

GENES database 201

PATHWAYS database 201

SCOP database 117–18

Stanford Microarray Database

(SMD) 126

see also Medline database; Mouse

Genome Database (MGD);

Saccharomyces Genome

Database (SGD); SWISS-

PROT database

data interpretation problems 1–2

dendrograms, hierarchical

clustering 71, 178

deoxyribonucleic acid see DNA

deoxyribonucleotides 18, 19

deoxyribose 18, 19

DeRisi, J. L., Iyer, V. R. et al. 66, 78

dice coefficient 87

dictionary strategy, gene name

identification 228–2, 240, 251

Dictyostelium discoideum, GO

annotated genes 13

dimensional reduction 66, 67, 72–4

feature selection 88–90

latent semantic indexing 92–4

weighting words 90–1

Dirichlet priors 159

discrete probability distribution

functions 31, 32, 33

discriminant line, linear discriminant

analysis 76

distance metrics, clustering

algorithms 67

distribution functions see probability
distribution functions (pdfs)

distributions of words, WDD 157–60

divergence value, WDD 15

diversity, genomics literature 5, 141,

150, 195

DNA (deoxyribonucleic acid) 18–20

binding by proteins 25, 26

Sanger dideoxy sequencing

method 39, pl. 2.5

transcription 21, 22, 245, 247

DNA-dependent ATPase genes,

yeast 148–50, 149

DNA polymerase 18

use in Sanger dideoxy sequencing

method 39

document classification see text

classification

document frequency 85, 88, 89, 91

document gene indices 95

see also databases

document similarity assessment 83–4

comparison metrics 86–7

word values 88

document vectors 84–6, 85

latent semantic indexing 92–3

vocabulary building 88–90

weighting words 90–1

Donaldson, I., Martin, J. et al. 7, 263

Dossenbach, C. Roch, S. et al. 96

dot plots 41–2
Drosophila melanogaster

assembly of functional

groups 185–9

breathless gene literature search 96-9

BLAST hits pl. 5.1

keywords 112, 113

gene name detection 232

genome size 18

GO annotated genes 13

keyword queries 101–4, 103, 104

literature 183

document frequencies of

words 88, 89

latent semantic indexing 94

literature index 185, 186

sensitivity of NDPG 187

Durbin, R., Eddy, S. et al. 40

Dwight, S. S., Harris, M. A. et al. 187

dynamic programming 44–7, 83

forward algorithm 59

multiple alignment 49

tracing back 47

use in gene name recognition 238–40

Viterbi algorithm 57–9, 58
dynamic programming score matrix 45

276 Index

Edman degradation of proteins 39–40

Eisen, M. B., Spellman, P. T. et al. 67,

70, 78, 86, 168–9, 172, 174,

180

electronic publishers 2–3

electronic text resources 9

emission probabilities, amino acids 59

empirical distribution, article

scores 164

enhancers 23–4

Entrez Gene 11

entropy of a distribution 34

entropy models 206

see also maximum entropy modeling

Enzyme Commission (EC) classification

scheme 200, 201

enzymes 24

Epstein Barr virus, genome size 18

error sources, gene expression

analysis 125

Escherichia. coli, genome size 18

Eskin, E. and Agichtein, E. 107, 120,

121

Euclidean metric 67, 87

events

conditional probability 28–9

independence 29–30

probability 27–8

evidence codes 188, 189, 198, 199–200

exons 21, 22

exponential distributions 32

maximum entropy probability

distribution 208

expression value of words 142–3, pl.

5.1

extend step, gene name recognition

algorithm 243

Faculty of 1000 4

false positives 36

in single gene expression series 124

recognition 135, 137–8

false negatives 36

Fbgn0029196 192

Fbgn0023184 192

Fbgn0034603 (glycogenin) 192

features

in expression analysis 65

in maximum entropy

classification 206

feature selection 88–90

text classification algorithms 210–12

feature terms in name finding

algorithm 233, 234

Feng, Z. P. 120

Fields, S. and Song, O. 141

filtering, gene name detection 232, 241

FlyBase 9, 11, 88, 95, 109, 184, 190

lists of synonyms 229, 230

standardized names 228

fly functional clusters 193, pl. 7.4

fly gene expression data et, hierarchical

pruning 189–2

forward algorithm 59

fractional reference (fr) parameter,

WDD 158

fractional references for documents,

best article score

system 160–1

frequency-inverse document frequency

weighting 91

frequency of words see document

frequency

Fukuda, K., Tamura, A. et al. 7, 233,

235, 240

Fukuda, T. et al. 151

functional assignment 120

effectiveness of text classification

algorithms 212–21

value of keywords 123

functional coherence 147, 148–52, 171

assessment

best article score 160–2

computational approach 152–5

evaluation of algorithms 155–7

neighbor divergence (ND) 163–4

screening gene expression

clusters 167–9

word distribution divergence

(WDD) 157–60

see also neighbor divergence per

gene (NDPG)

Index 277

functional coherence (Contd.)

corruption studies 166–7

relationship to NDPG score 181

scoring 153–4, 157

precision-recall plot 160
functional determination, gene

groups 170

functional gene groups 156

functional information, use in sequence

analysis 107

functional neighbors, neighbor

expression information (NEI)

scoring 129–32

functional vocabularies 90, 196–7

Enzyme Commission (EC) 200, 201

Kyoto Encyclopedia of Genes and

Genomes (KEGG) 200–1

see also Gene Ontology

function of genes and proteins 26–7

functions, poorly referenced 188–9

Funk, M. E. and Reid, C. A. 218

gap penalties

in multiple alignment 49

in pairwise alignment 42, 43–4, 45,

46

Gavin, A. C., Bosche, M. et al. 248

g distribution of words 158–9

Gelbart, W. M., Crosby, M. et al. 184,

229

GenBank database, growth 37

gene annotation 104

by maximum entropy

classifier 221–4

gene deletion identification 63

gene dictionaries 228–2

gene duplication identification 63

gene expression, relationship to NEI

scores 133–5, 134

gene expression analysis 1, 8, 14,

61–2, 65–6, 83, 171–2,

202, pl. 1.2

arrays 26–7, 63, pl. 2.6

assignment of keywords 140–5, 173

gene groups 172–3

hierarchical clustering 178, 183

application to yeast data set 181–3

pruning dendrograms 178–81

SAGE 64–5, pl. 2.7

screening clusters 173–8

sources of noise 125

gene expression clusters, functional

coherence assessment 167–9

gene expression data

advantage of text-based

approach 12, 13

clustering algorithms 66–72

dimensional reduction 72–4

matrix organization 65
gene expression regulation 23–4

gene expression similarity, relationship

to word vector similarity 99,

100

gene function annotation 195–6

gene function vocabularies see

functional vocabularies

gene groups 147

best article score (BAS) 160–2

corruption studies 166–7

determination of function 170

functional coherence 148–52

evaluation of assessment

algorithms 155–7

in gene expression analysis 172–3

keyword assignment 100

neighbor divergence (ND) 163–4

theoretical distribution of article

scores 163–4

word distribution divergence

(WDD) 157–60

see also neighbor divergence per gene

(NDPG)

gene interactions, textual co-

occurrences 250–59

gene interactions databases 7

gene name recognition 227–28

dictionaries 228–2

unified algorithm 240–3

use of abbreviations 237–40, 238,

239

use of context 235–7

use of morphology 237

278 Index

use of syntax 233–5

word structure and

appearance 232–3

genenames, synonyms 228–29,230,231

gene networks 245, 246–7

roles of scientific text 249

co-occurring genes 249–50

Gene Ontology 7, 11–12, 13, 90, 152,

184, 196, 197–198

evidence codes 198, 199–200

functional groups, yeast 175–6

correlation with NDPG score of

nodes 181, 182
precision-recall performance of

codes 222–4, 223

quality of annotations 188

gene-protein interactions 247

generalized iterative scaling

(GIS) 209–10

General Repository for Interaction

Datasets (GRID) 250, 251,

261, 266, 267

gene references, skewed

distribution 174

genes 22–4

defining textual profiles 94–6

functional assignment 120

functions 26–7

homology 40

querying for biological

function 101–4

structure 22

GENES database 201

genetic code 22, 23

genome databases 9–11

genome sequence information 125–6

genome sizes 18

genomic data analysis 7–8, pl. 1.2

genomics era 1

genomics literature 2–4

diversity 5

quality 4

relevance 4–5

Giot, L., Bader, J. S. et al. 248

Glenisson, P., Coessons, B. et al. 90,

95, 99

glutamic acid 25

glutamine 25

glycine 25

glycogenin 192

glycolysis genes 150

gold standards 116–17, 184, 197,

222

Golub, T. R, Slonim, D. K. et al. 78

Gotoh, O. 47

groups of genes see gene groups

guanine 18, 19

Guzder, S. N. et al. 149

Haber, J. E. 151

hairpin loops, RNA 21

Halushka, M. K., Fan, J. B. et al. 63

heartless gene 97, 98

synonyms 229, 230

heat shock protein GO functional

group 176

Hermeking, H. 64

Hersh, W. 86

Hersh, W., Bhuporaju, R. T. et al. 195

Heyer, L. J., Kruglyak, S. et al. 67

hidden Markov models

(HMM) 54–61, 57

use in gene name recognition 237

hierarchical clustering 70–2, 86, pl. 3.1

fly gene expression data et 191–4

gene expression analysis 178–84

hierarchical organization, Gene

Ontology 12, 197, 198

high entropy models 206

High-Wire press 3, 9

Hill, D. P., Davis, A. P. et al. 187–88

histidine 25

Homayouni, R., Heinrich, K. et al. 92

homologous genes, recognition 108,

114–15, 190

homologous sequences 111

homology 40–2, 117

remote 114–15

Ho, Y., Gruhler, A. et al. 248

Hughes, T. R., Marton, M. J. et al. 63

human genes, bias in areas studied 5, 6
human genome project 1

Index 279

human genome size 18

Humphreys, K., Demetriou, G. et al. 7

Hutchinson, D. 3

Hvidsten, T. R., Komorowski,

J. et al. 187–88

hydrogen bonding

nucleotide bases 19, 20

proteins 25, 26, pl. 2.3

IDA (inferred from direct assay) 188

incoherent gene groups, article

scores 163, 164

inconsistencies in classification of

documents 218

independence assumption 29–30

naive Bayes classification 204, 205,

218

independence of events 29–30

Inferred from Electronic Annotation

(IEA) evidence code 189, 198,

200

Inferred from Reviewed Computational

Analysis (RCA) evidence

code 198, 200

Inferred from Sequence Similarity (ISS)

evidence code 189, 198, 199

information extraction 259–2

information retrieval 86

latent semantic indexing 92, 104

information theory 33–4

‘‘-in’’ suffix 233, 241

interactions 245

interaction verbs 260–1

inter-gene difference calculation 181

introns 21, 22, 23

inverse document frequency weighted

word vectors 91, 161

‘‘ion homeostasis’’ gene group

corruption study 166–7, 168

NDPG score 167

isoleucine 25

iterative sequence similarity searches

modification to include text 115–17

see also position specific iterative

BLAST (PSI-BLAST)

Ito, T., Chiba, T. et al. 248

Jacard coefficient 87

Jenssen, T. K., Laegreid, A. et al. 8,

152, 250

journals, online 3

journals relevant to genomics 3

Kanehisa, M., Goto, S. et al. 200

Kegg Orthology (KO) numbers 201

Kellis, M. et al. 151

Kerr, M. K. and Churchill, G. A. 67

key articles, recognition 153

keyword queries 101–4, 102, 103

keywords

assignment 100, 141–5, 173

assistance in functional

assignment 123

breathless and heartless genes 96, 97

definition for proteins 107

expression values pl. 5.1

in identification of protein-protein

interactions 260

MeSH headings 9

phosphate metabolism study 144–5

use in recognition of gene

names 233, 235, 236

use to summarize sequence

hits 112–14

keywords field (KW), SWISS-PROT 109

Klein, H. L. 151

k-means clustering 68, 173, 177, pl. 2.8

Krauthammer, M., Rzhetsky, A.

et al. 232

Krogh, A., Brown, M. et al. 54

Kullback–Liebler (KL) distance 34,

131–2

in ND 163

in NDPG 154

in WDD 159

Kwok, P. Y. and Chen, X. 1

Kyoto Encyclopedia of Genes and

Genomes (KEGG) 200–1

latent semantic indexing (LSI) 92–4,

93, 104, 140

latent dimension, relationship to

variance 94

280 Index

Lee, M. L., Kuo, F. C. et al. 124

Lee, S. E. et al. 151

Lesk, A. M. 1

leucine 25

linear discriminant analysis

(LDA) 75–9, 76, pl. 2.9

applications 78

linear time algorithms 48

literature 2–4

diversity 5

quality 4

relevance 4–5

literature index 185, 186

comparison between

organisms 185–6

literature similarity constraint, modified

PSI-BLAST 117, 120

LocusLink 3–4, 5, 6, 11, 11

logistic regression 75

logistic regression classification 239–40

low entropy models 206

low induction false positives,

recognition 138

low induction genes, NEI scores 139

Lu, Z., Szafron, D. et al. 120

lymphoma, gene expression profiles 62

data interpretation 66, 68, 74, 77, pl.

2.8, pl. 2.9

lysine 25

McCallum, J. and Ganesh, S. 107, 114

MacCallum, R. M., Kelley, L. A.

et al. 8, 107, 115

machine learning algorithms

combination of sequence and textual

information 120–21

supervised 66, 74–9

unsupervised see clustering

algorithms

Manning, C. M. and Schutze, H. 2, 84,

86, 89, 202, 204

Mantovani, R. 50

Marcotte, E. M., Xenarios, I. et al. 7,

262

mass spectroscopy 248

Masys, D. R., Welsh, J. B. et al. 112

matching coefficient 87

matrices

reference matrix (R) 142

text matrix (T) 143

weighted word-document matrix

(W) 91

word covariance matrix 92–4

word-document matrix (A) 85

matrix organization, gene expression

data 65

maximum entropy modeling 195–6,

203, 205–10, 207

accuracy 217, 218, 219, 220

annotation of genes 221–4

in identification of protein-protein

interactions 263–68, 264–5,

266, 267

use in gene name recognition 236,

242, 243

mean 34–5

meaning of text 86

median 34, 35

Medline database

abbreviations 240

format 9, 10

merging articles, disadvantages 157

MeSH headings 9, 213

assignment by National Library of

Medicine 224

consistency of assignment 218

messenger RNA (mRNA) 18, 21

measurement in gene expression

arrays 63

metabolism genes 150

methionine 25

Mewes, H. W., Frishman, D. et al. 7,

78, 152, 169, 196

Michaels, G. S., Carr, D. B. et al. 67

microarrays see arrays

Mitchell, A. P. 78

‘‘mitochondrial ribosome’’ gene

cluster 169

Miyagawa, K. et al. 151

molecular biology

biological function 26–7

central dogma 18, pl. 2.1

Index 281

molecular biology (Contd.)

deoxyribonucleic acid (DNA) 18–20

genes 22–4

proteins 24–6

ribonucleic acid (RNA) 20–2

molecular function terms, Gene

Ontology 11–12, 197–198

Morgan, A. A., Hirschman, L.

et al. 232, 237, 240

morphology, use in gene name

recognition 228

mouse

assembly of functional groups 185–9

GO annotated genes 13

literature index 185, 186

sensitivity of NDPG 187

tricarboxylic acid cycle (TCA)

functional group 189

mouse genes, ank root 237

Mouse Genome Database (MGD) 9,

11, 184

synonym lists 229

‘‘mRNA splicing’’ yeast genes 169

multiple functions of genes 150

multiple sequence alignment 48–9, 83

hidden Markov models 54–61, 57

position specific iterative BLAST

(PSI-BLAST) 53–4

multivariate normal distribution 76

Munich Information Center for

Protein Sequences (MIPS) 7,

152, 196

Murzin, A. G. Brenner, S. E. et al. 117

Mus musculus see mouse

Mycobacterium tuberculosis, genome

size 18

naive Bayes text classification

scheme 203, 204–5, 216

accuracy 221, 222

use in gene name recognition 235–6,

242–3

use in protein-protein interaction

identification 262

name recognition see gene name

recognition

National Library of Medicine,

assignment of MeSH

headings 224

natural language processing 2

natural language processing

algorithms 83

nearest neighbor classification 75

application to text

classification 203–4, 216

accuracy 217, 218

Needleman, S. B. and Wunsch, C.

D. 44

negations 86

neighbor divergence (ND) 163–4

precision-recall plot 160

neighbor divergence per gene

(NDPG) 152, 162, 164–6

computational approach 153–5

corruption studies 166–7, 168

data types required 155

evaluation across different

organisms 184–9, 191

evaluation of method 155–7

precision-recall plot 160

scores for functional groups 167

screening of gene expression

clusters 168–9, 173–8, pl. 7.1

sensitivity, relationship to annotation

quality 179
neighbor divergence per gene (NDPG)

scores

nodes 179

random and functional groups 166

neighbor expression information (NEI)

scoring 124, 130–2

application to phosphate metabolism

data set 132–6, 140

low induction genes 138–9

scores of individual

experiments 136–8, 137

application to SAGE and yeast-2-

hybrid assays 141

neighborhood words 48

Nelson, D. L., Lehninger, A. L.

et al. 17

networks, genetic 245, 246–7

282 Index

neural networks 75

n-gram classifier 241

Ng, S. K. and Wong, M. 7

Nigam, K., Lafferty, J. et al. 205–6,

218

nodes

pruning 178–81, pl. 7.3

states 180

node selection, dendrograms 179–81

noise 123, 124–6

management in phosphate

metabolism study 129–41

normal distribution 32
z-score 35

Novak, J. P., Sladek, R. et al. 124

nucleosome GO functional group 176

nucleotide bases 18, 19

pairing 19, 20

phosphodiester bond 20

in RNA 21

nylon gene arrays 63

Ohta, Y., Yamamoto, Y. et al. 7

oligonucleotide arrays 62

online journals 3

Ono, T., Hishigaki, H. et al. 7, 262

Oryza sativa, GO annotated genes 13

overlap, clusters and functional

groups 176–7, pl. 7.2

overlap coefficient 87

p53 5

pairwise sequence alignment 44–8, 96

PAM250 matrix 44

parameter weights, maximum entropy

classification 209

parsing sentences 262

part-of-speech tagging 233–5, 241

part-of-speech, use in identification of

protein-protein

interactions 262

PATHWAYS database 201

Pearson, W. R. 43, 48

Pearson, W. R. and Lipman, D. J. 48

peer-reviewed literature 2

value in genomic data set analysis 8

peptide bond 24

performance measures 35–7

Petukhova, G. et al. 149, 151

PH011 gene 128, 129–30

expression ratio distribution 131
phenylalanine 25

Phillips, B., Billin, A. N. et al. 192

phosphate metabolism study 126–7

distribution of NEI scores 133

expression log ratios 127

keywords 144–5

literature-based scoring

system 129–30

neighbor expression information

(NEI) scoring 132–6

NEI scores of individual

experiments 136–8, 137

top fifteen genes 127–9, 128

NEI scores 136

phosphodiester bond 20

Plasmodium falciparum, genome

size 18

Poisson distribution 32, 33, 163, 164

Pollack, J. R., Perou, C. M. et al. 63

polyadenylation signal 23

poly-A tail, RNA 21, 22

polymerase proteins 24

see also DNA polymerase; RNA

polymerase

poorly referenced areas 108, 117, 140,

184

functions 188–9

transference of references 189–92

use of sequence similarity 111

worm 187

population statistics 34–5

Porter, M. F. (Porter’s algorithm) 90

position specific iterative BLAST

(PSI-BLAST) 53–4, 115

modification to include

text 116–17

evaluation 117–20, 118, 119

precision 37, 212

PSI-BLAST 118–19

precision-recall performance, GO

codes 222–4, 223

Index 283

precision-recall plot, functional

coherence scoring

methods 160

predefined sets of words 90

prediction results 36
predictive algorithms, measures

of 35–7

prey proteins 248

primary structure, proteins 25

primary transcript 22

principal component analysis

(PCA) 73–4, 92

probability 27–8

Bayes’ theorem 30

conditional 28–9

independence of events 29–30

information theory 33–4

probability density function,

multivariate normal

distribution 76

probability distribution functions

(pdfs) 31–3

statistical parameters 35

profile drift 116

profiles 50, 65

progressive alignment 49

proline 25

promoter sites, DNA 21, 22, 23

protein binding 141

protein-gene interactions 247

protein interaction networks 245

protein name recognition, use of word

appearance 233, 234

protein-protein interactions 245, 247

affinity precipitation 248

gene name co-occurrence 250–59

information extraction

strategies 259–2

statistical textual classifiers 262–68

yeast-2-hybrid method 247–48

proteins 24–6

Edman degradation 39–40

function assignment

role of text analysis 108

utilization of text and sequence

information 120–21

functions 18, 26, 27

SCOP database 117–18

synthesis 18, 21–2

tertiary structure pl. 2.4

protein sequence probabilities, use of

Bayes’ theorem 30

proteomics methods, introduction 1

Proux, D., Rechenmann, F. et al. 7, 233

Pruitt, K. D. and Maglott, D. R. 4, 11

pruning dendrograms 178–81, pl. 7.3

application to yeast data set 181–4

pseudo-counts of words, use in naive

Bayes classification 204–5

pseudo-reference assignation 110

Public Library of Science (PLOS) 3, 9

PubMed abstracts 2, 3, 4, 9, 11, pl. 1.1

use for NDPG 155

PubMed Central 3, 9

PU conditions, phosphate metabolism

study 126

purine nucleotide bases 18, 19
Pustejovsky, J., Castano, J. et al. 238

pyrimidine nucleotide bases 18, 19

quality, genomics literature 4

Rain, J. C., Selig, L. et al. 248

rare words 88, 89, 91

Ratnaparkhi, A. 205, 209

Rattus norvegicus, GO annotated

genes 13

Raychaudhuri, S. and Altman, R.

B. 184

Raychaudhuri, S., Chang, J. T. et al. 7,

8, 179, 188

Raychaudhuri, S., Schütze, H.

et al. 152, 157

Raychaudhuri, S., Stuart, M. et al. 63,

72

Raychaudhuri, S., Sutphin, P. D.

et al. 62

RDH54 gene, representation in

literature 150, 151

real-values vectors, comparison

metrics 87

recall 37, 212

284 Index

PSI-BLAST 118

reference indices 95, 152, 185, 188

genome databases 9–11

reference matrix (R) 142

references, in SWISS-PROT 109

relevance, literature sources 4–5

replicates, value in recognition of false

positives 138

reporter genes 248

restriction enzymes 64

ribonucleic acid see RNA

ribonucleotides 21

ribose 19
ribosomal RNAs (rRNA) 21

Riley, M. 196

Rindflesch, T. C., Tanabe, L.

et al. 236

Ripley, B. D. 67, 75

RNA 18, 20–2

binding by proteins 25, 26

nucleotide bases 19
yeast transfer RNA structure pl. 2.2

RNA polymerase 18, 21

Roberts, R. J. 3

roots of gene names 237, 241–2

morphological variants 242

Rosenfeld, R. 83, 197, 218

Ross, D. T., Scherf, U. et al. 67

Saccharomyces cerevisiae see yeast

Saccharomyces Genome Database

(SGD) 9, 11, 127, 174, 180,

184, 212, 221, 251

synonym lists 229

SAGE (Serial Analysis of Gene

Expression) 62, 64–5, pl. 2.7

use with NEI scores 141

Saldanha, A. J., Brauer, M. et al. 126

sample preparation, sources of

variability 125

Sanger dideoxy sequencing method 39,

pl. 2.5

Schena, M., Shalon, D. et al. 63

Schug, J., Diskin, S. et al. 188

scope of functionally coherent gene

groups 150

score matrix, dynamic

programming 45

score step, gene name finding

algorithm 241

scoring of functional coherence 153–4,
157

scoring functions

in multiple alignment 48–9

in pairwise alignment 42

secondary structure prediction, hidden

Markov models 56, 57

Sekimizu, T., Park, H. S. et al. 7, 262

selected state of nodes 180

self-hybridization, mRNA 21

self-organizing maps 69–70, 173,

pl.7.1

yeast gene expression data 70, 174

semantic neighbors 153

number, relationship to performance

of NDPG 165

sensitivity 36, 37

of NDPG 187

sentence co-occurrences 251, 252, 253,

254

number, prediction of likelihood of

interactions 256, 257, 258,

259

sequence alignment 42–4

BLAST 48

dynamic programming 44–7

multiple 48–61

sequence analysis, use of text 107–9

sequence comparison 40–2

sequence contamination 54

sequence hits

description by keywords 112–14

organization by textual profiles 114

sequence information, combination

with textual

information 120–21

sequences, comparison to profiles 50–3

sequence similarity

relationship to word vector similarity

(breathless) 99

use to extend literature

references 111–12

Index 285

sequencing 8, 14, 38

Edman degradation of

proteins 39–40

Sanger dideoxy method 39, pl. 2.5

serine 25

Sharff, A. and Jhoti, H. 1

Shatkay, H., Edwards, S. et al. 8, 95,

112

Shatkay, H. and Feldman, R. 2, 7

Sherlock, G. 67

Shinohara, M. et al. 151

Shor, E. et al. 151

shotgun assembly strategy 39

Signon, L. et al. 151

single expression series

keyword assignment 141–5

lack of context 123

noise 124–6

phosphate metabolism

study 126–30, 132–40

single nucleotide polymorphism

detection, introduction 1

single nucleotide polymorphism

identification 63

Smarr, J. and Manning, C. 241

specificity 36

Spellman, P. T., Sherlock, G. et al. 63,

78

‘‘spindle pole body assembly and

function’’ gene cluster 169

splicing, primary transcript 22

spotted DNA microarrays 62, 63

sources of noise 125

standard deviation 34, 35

standardized gene names 228–29

Stanford Microarray Database

(SMD) 126

Stapley, B. J. , Kelley, L. A. et al. 120

statistical machine learning 262–68

statistical parameters 34–5

gene reference indices 174

Stein, L., Sternberg, P. et al. 9, 184, 229

stemming 90

Stephens, M., Palakal, M. et al. 7

stop lists 89, 90

stopwords 216

string matching strategy 40–1

Structural Classification of Proteins

Database (SCOP) 117–18

structural proteins 24

Stryer, L. 17, 39

study areas, bias 5

subsequence alignment 45

substitution of amino acids 41, 42–3

substitution matrices 43, 44

sum of pairs scoring system 49

Sung, P. et al. 151

supervised machine learning

algorithms 66, 74–9, 202

support vector machine classifiers 242,

243, 263

SWISS-PROT database 3, 11, 11, 108,

109–11, 115, 118, 189, pl. 4.1

Symington, L. S. 151

synonyms for genes 230–1, 232

syntax, use in recognition of gene

names 228, 233–5, 241

tagging enzyme 64

tag sequences 64

Tamames, J., Ouzounis, C. et al. 7

Tamayo, P., Slonim, D. et al. 69

term frequency 85, 91

term frequency vectors 90–1

term weighting schemes 91

tertiary structure, proteins 25

text, use in sequence analysis 107–9

text-based methods, advantages 12–13

text classification algorithms 195,

202–3

assignment to functional

categories 212–13

feature selection 210–12

maximum entropy

modeling 205–10, 207

naive Bayes text classification

scheme 204–5

nearest neighbor

classification 203–4

use in gene name recognition 235–6

text matrix (T) 143

text mining 2

286 Index

potential uses

candidate gene identification 8

database building 5, 7

genomic data set analysis 7–8

relevance of sequence analysis 38

text resources

electronic text 9

genome databases 9–11

textual information, combination with

sequence information 120–21

textual profiles, use in organization of

sequence hits 114

textual representation of genes 94–6

textual similarity

as indicator of homology 114–15

relationship to biological

similarity 97–9

Thomas, J., Milward, D. et al. 7, 262

Thompson, J. D., Higgins, D. G.

et al. 48

threonine 25

thymine 18, 19

tokenize step, gene name finding

algorithm 240–1

Traceable Author Statements

(TAS) 188, 198, 199

tracing back, dynamic

programming 47

training examples 202, 208, 213,

214–16

construction 224

training hidden Markov models 59–61

transcription of DNA 21, 22

transcription factor proteins 23, 245, 247

transcription factors 24

transcription initiation sites 22–3, 22

transcription stop sites 22, 23
transference of references 189–92

transfer RNA (tRNA) 21, pl. 2.2

transition probabilities, amino

acids 59–60

translation, mRNA 22

translation start sites 22, 23

translation stop sites 22, 23

transport proteins 24

transposon location identification 63

tricarboxylic acid cycle (TCA)

functional group 189, 190

trigger words

use in gene name recognition 235,236

see also keywords

triose phosphate isomerase, structure

pl 2.4

true positives and negatives 36

truncation of words 90

tryptophan 25

tumor protector p53 gene 5

Tu, Q. Tang, H. et al. 107, 112

Tuteja, R. and Tuteja, N. 64

Tu, Y., Stolovitzky, G. et al. 124

twilight zone sequences 108

two-state hidden Markov model 55

tyrosine 25

Uetz, P. 248

Uetz, P., Giot, L. et al. 248

unstudied genes, transference of

references 189–91

unsupervised machine learning

algorithms see clustering

algorithms

3’ and 5’ untranslated regions 23

unvisited state of nodes 180

uracil 19, 21

Valencia, A., Blaschke, C. et al. 195

valine 25

van Gool, A. J. et al. 149

variance 34, 35

as function of latent dimension 94

variation in gene names 228–29, 230,

231, 232

vascular endothelial growth factor 5

Velculescu, V. E. Zhang, L. et al. 64, 141

Venter, J. C., Adams, M. D. et al. 1

visited state of nodes 180

Viterbi algorithm 57–9, 58

vocabulary building 88–90

Vorbruggen, G., Onel, S. et al. 192

Walhout, A. J., Sordella, R. et al. 248

weighted word-document matrix (W) 91

Index 287

weighted word vectors 140, 142, 161

uses 112

weighting words 88, 90–1, 100

keywords for breathless and

heartless 96, 97

strategies 113

weight matrices 51–3, 83

construction 52

White, K. P., Rifkin, S. A. et al. 63

whole-text mining 9

Wong, L. 7

word appearance, use in name

recognition 228, 232–3, 234,

241–3

word covariance matrix 92–4

word distribution divergence

(WDD) 157–60

precision-recall plot 160

word-document matrix (A) 85

words

expression value 142–3

independence assumption 204, 205

word values in document similarity

assessment 88

word vectors 14, 84–6, 157

creation for genes 95–6, 140

selection of keywords 142

word vector similarity

breathless and other Drosophila
genes 97–8

relationship to gene expression

similarity 99, 100

relationship to sequence similarity

(breathless) 99

Wormbase 9, 11, 184

synonym lists 229

Xie, H., Wasserman, A. et al. 188

Yandell, M. D. and Majoros, W. H.

2, 7

Yang, Y. and Pederson, J. P. 89

yeast

assembly of functional groups 185–9

DNA-dependent ATPase
genes 148–50, 149

gene expression study 126–7

distribution of NEI scores 133

expression log ratios 127

keywords 144–5

literature-based scoring

system 129–30

neighbor expression information

(NEI) scoring 132–6

NEI scores of individual

experiments 136–8, 137

top fifteen genes 127–9, 128

NEI scores 136

GO annotated genes 13

literature index 185, 186

sensitivity of NDPG 187

transfer RNA structure pl. 2.2

tricarboxylic acid cycle (TCA)

functional group 189, 190

yeast data set

application of dendrogram pruning

method 181–3

cluster screening by NDPG 174–8,

175, pl. 7.1

high scoring clusters 177

yeast gene annotation, effectiveness of

text classification

algorithms 216–23

yeast gene expression data, self-

organizing map 70
yeast genes, appearance of names 232

yeast two hybrid assays 1, 26, 245,

247–9

advantage of text-based approach 12

application of NEI scores 141

Yeung, K. Y. and Ruzzo, W. L. 67

Yoshida, M., Fukuda, K. et al. 238

Yu, H., Hripcsak, G. et al. 238

Zhang, Z. and Buchman, A. R. 149

Zhu, H., Bilgin, M. et al. 1, 247, 248

Zipf, G, K 88

z-score 35

expression values of words 143–4

use in selection of

keywords 112–13;4use in

selection of key

288 Index

