A1 H JINITT.
¥ “AGCTTTACGTAA

OXFORD

Computational Text
Analysis for Functional
Genomics and
Bioinformatics

This page intentionally left blank

Computational Text
Analysis for Functional
Genomics and
Bioinformatics

Soumya Raychaudhuri

OXFORD

UNIVERSITY PRES

OXFORD

UNIVERSITY PRESS

Great Clarendon Street, Oxford ox2 6Dp
Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide in
Oxford New York

Auckland Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi
New Delhi Shanghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan Poland Portugal Singapore
South Korea Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trade mark of Oxford University Press
in the UK and in certain other countries

Published in the United States
by Oxford University Press Inc., New York

© Oxford University Press, 2006

The moral rights of the author have been asserted
Database right Oxford University Press (maker)

First published 2006

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate
reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,
Oxford University Press, at the address above

You must not circulate this book in any other binding or cover
and you must impose the same condition on any acquirer

British Library Cataloguing in Publication Data
Data available

Library of Congress Cataloging in Publication Data
Data available

Typeset by SPI Publisher Services, Pondicherry, India
Printed in Great Britain
on acid-free paper by
Biddles Ltd., King’s Lynn Norfolk

ISBN 0-19-856740-5 978- 0-19-8567400
ISBN 0-19-856741-3 (Pbk.) 978-0-19-8567417 (Pbk.)

13579108642

Dedicated to my grandfather and role model
Professor Sahadeb Banerjee (4/1/914-4/20/2005)

This page intentionally left blank

Preface

This book is an introduction to the newly emerging field of textual analysis
in genomics. It presents some of the newest methods, and demonstrates
applications to proteomics, sequence analysis, and gene expression data.

My personal interest in this field began early during my graduate school
years as these methods were rapidly emerging. My colleagues were excitedly
utilizing new high throughput technologies in biology with which they could
collect data at unprecedented rates. Gene expression arrays, for example,
offered the opportunity to simultaneously explore expression of all genes in
a cell. However, many were hitting the same roadblocks; making sense of all
of that data was tedious and frustrating. Even differentiating signal from
noise was a challenge; certainly finding subtle patterns in the data proved to
be much more difficult than anyone expected. A host of statistical methods
were emerging to analyze the numerical data, but yet they lacked the
necessary context to fully harness the power of these complex experimental
results. The difficulty is that complete interpretation requires understanding
all of the large number of genes, their complex functions, and interactions.
But, just keeping up with the literature on a single gene can be a challenge
itself, and for thousands of genes it is simply impossible! At that time I
became interested in the promise of statistical natural language processing
algorithms, and their potential in biology. These methods often are the only
reasonable way to include the literature on thousands of genes in genomics
data analysis and to give context to the data.

We describe analytical methods that utilize the scientific literature in the
context of specific experimental modalities in this book. But much of what
is discussed here can easily be generalized to most large-scale experimental
methods. For example, the expression array methods can be generalized to
any numerical data set, and the protein interaction methods can be gener-
alized to any type of interaction. In addition to devising the theory behind
the methods, we emphasize real world examples and evaluations in this
book to demonstrate how methods can be applied practically and what
performance benefit they offer.

This book can be used as a primary text in a graduate course in a
genomics or computational biology curriculum, or as an adjunct text in
an advanced computational biology course. The book has been written
with sufficient background material and the prerequisites for this book

Preface

are few. A basic understanding of probability and statistics is helpful at the
level of an introductory undergraduate course. Basic biological and bioin-
formatics concepts are reviewed to the extent that is necessary. No back-
ground in computational text analysis is necessary, but is certainly helpful.

We are hopeful that this text will encourage the reader to develop and
utilize these methods in their own work, and to maximize the potential of
large-scale biology.

Acknowledgements

This book was to a large extent the product of work that I started under the
guidance of Russ Altman, who has mentored me through the years. In
addition, Jeffrey Chang and Hinrich Schutze have been great influences in
these pursuits. Patrick Sutphin, Farhad Imam, Joshua Stuart, Nipun Mehra,
Amato Giaccia, Peter Small, and David Botstein are all colleagues that have
influenced and shaped the content of this book. It has been a pleasure
working with Alison Jones and her associates at Oxford University Press.
Sourobh Raychaudhuri, my brother, has given me feedback on specific
sections. Finally, I thank Meenakshy Chakravorty, my wife, whose critical
suggestions on this manuscript have been invaluable.
Soumya Raychaudhuri
Boston, USA, 2005

This page intentionally left blank

Contents

List of Figures
List of Plates
List of Tables

1

An introduction to text analysis in genomics

1.1 The genomics literature
1.2 Using text in genomics

1.2.1 Building databases of genetic knowledge
1.2.2 Analyzing experimental genomic data sets
1.2.3 Proposing new biological knowledge: identifying

candidate genes
1.3 Publicly available text resources
1.3.1 Electronic text
1.3.2 Genome resources
1.3.3 Gene ontology
1.4 The advantage of text-based methods
1.5 Guide to this book

Functional genomics

2.1 Some molecular biology

2.1.1 Central dogma of molecular biology

2.1.2 Deoxyribonucleic acid
2.1.3 Ribonucleic acid
2.1.4 Genes
2.1.5 Proteins
2.1.6 Biological function

2.2 Probability theory and statistics
2.2.1 Probability
2.2.2 Conditional probability
2.2.3 Independence
2.2.4 Bayes’ theorem

XVii
XXi
XXii

N oo N

O O

"1
12
13

17

17
18
18
20
22
24
26
27
27
28
29
30

Contents

23

24

225
2.2.6
227
228

Probability distribution functions
Information theory

Population statistics

Measuring performance

Deriving and analyzing sequences

2.3.1
232
233
234

235
23.6
237
238
239

Sequencing

Homology

Sequence alignment

Pairwise sequence alignment and dynamic
programming

Linear time pairwise alignment: BLAST

Multiple sequence alignment

Comparing sequences to profiles: weight matrices
Position specific iterative BLAST

Hidden Markov models

Gene expression profiling

241
242

243
244
245
246
247
248

249

2410
2.4.11

Measuring gene expression with arrays
Measuring gene expression by sequencing and
counting transcripts

Expression array analysis

Unsupervised grouping: clustering

k-means clustering

Self-organizing maps

Hierarchical clustering

Dimension reduction with principal components
analysis

Combining expression data with external
information: supervised machine learning
Nearest neighbor classification

Linear discriminant analysis

3 Textual profiles of genes

3.1
3.2
33
3.4
35
3.6
3.7
3.8
3.9

Representing documents as word vectors

Metrics to compare documents

Some words are more important for document similarity
Building a vocabulary: feature selection

Weighting words

Latent semantic indexing

Defining textual profiles for genes

Using text like genomics data

A simple strategy to assigning keywords to groups of genes

31
33
34
35
37
39
40
42

44
47
48
50
53
54
61
63

64
65
66
68
69
70

72

74
75
75

83

84
86
88
88
90
92
94
96

100

3.10

Querying genes for biological function

4 Using text in sequence analysis

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

SWISS-PROT records as a textual resource

Using sequence similarity to extend literature references
Assigning keywords to summarize sequences hits

Using textual profiles to organize sequence hits

Using text to help identify remote homology

Contents

101

107

109
1M
112
114
114

Modifying iterative sequence similarity searches to include text 115

Evaluating PSI-BLAST modified to include text
Combining sequence and text together

117
120

5 Text-based analysis of a single series of gene expression measurements 123

5.1
52
53
54

55
5.6
5.7

5.8
59
5.10
51
512

Pitfalls of gene expression analysis: noise

Phosphate metabolism: an example

The top fifteen genes

Distinguishing true positives from false positives with
a literature-based approach

Neighbor expression information

Application to phosphate metabolism data set
Recognizing high induction false positives with
literature-based scores

Recognizing low induction false positives

Assessing experiment quality with literature-based scoring
Improvements

Application to other assays

Assigning keywords that describe the broad biology
of the experiment

6 Analyzing groups of genes

6.1
6.2
6.3
6.4
6.5
6.6

Functional coherence of a group of genes

Overview of computational approach

Strategy to evaluate different algorithms

Word distribution divergence

Best article score

Neighbor divergence

6.6.1 Calculating a theoretical distribution of scores

124
126
127

129
130
132

136
138
140
140
141

141

147

148
152
155
157
160
163
163

Contents

6.7
6.8
6.9

6.10

6.6.2 Quantifying the difference between the empirical
score distribution and the theoretical one

Neighbor divergence per gene

Corruption studies

Application of functional coherence scoring to screen

gene expression clusters

Understanding the gene group’s function

Analyzing large gene expression data sets

7.1
7.2
7.3
7.4
7.5
7.6

Groups of genes

Assigning keywords

Screening gene expression clusters

Optimizing cluster boundaries: hierarchical clustering
Application to other organisms besides yeast
Identifying and optimizing clusters in a Drosophila
development data set

Using text classification for gene function annotation

8.1

8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Functional vocabularies and gene annotation

8.1.1 Gene Ontology

8.1.2 Enzyme Commission

8.1.3 Kyoto Encyclopedia of Genes and Genomes
Text classification

Nearest neighbor classification

Naive Bayes classification

Maximum entropy classification

Feature selection: choosing the best words for classification
Classifying documents into functional categories
Comparing classifiers

Annotating genes

Finding gene names

9.1
9.2
9.3
9.4
9.5
9.6

Strategies to identify gene names
Recognizing gene names with a dictionary

Using word structure and appearance to identify gene names

Using syntax to eliminate gene name candidates
Using context as a clue about gene names
Morphology

164
164
166

167
170

171

172
173
173
178
184

189

195

196
197
200
200
202
203
204
205
210
212
213
221

227

228
228
232
233
235
237

Contents

9.7 Identifying gene names and their abbreviations 237
9.8. Asingle unified gene name finding algorithm 240
10 Protein interaction networks 245
10.1 Genetic networks 246
10.2 Experimental assays to identify protein networks 247
10.2.1 Yeast two hybrid 247
10.2.2 Affinity precipitation 248
10.3 Predicting interactions versus verifying interactions
with scientific text 249
10.4 Networks of co-occurring genes 249
10.5 Protein interactions and gene name co-occurrence in text 250
10.6 Number of textual co-occurrences predicts likelihood
of an experimentally predicted interaction 254
10.7 Information extraction and genetic networks:
increasing specificity and identifying interaction type 259
10.8 Statistical machine learning 262
11 Conclusion 271

Index 273

This page intentionally left blank

List of Figures

Figure 1.1
Figure 1.2

Figure 1.3

Figure 1.4
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Figure 2.15
Figure 2.16
Figure 2.17
Figure 2.18

Figure 2.19
Figure 2.20

Figure 2.21

Figure 2.22
Figure 2.23
Figure 2.24
Figure 2.25

PubMed abstracts

Distribution of articles as a function of the
number of genes referenced

Distribution of genes as a function of available
relevant articles

Article in MedLine format

Deoxyribose and ribose

Nucleotide bases

The phosphodiester bond

DNA base pairing

RNA hairpin loop

From gene sequence to protein

Basic amino acid structure

Hydrogen bonding in beta sheets

Different probability distribution functions
Prediction results

Growth of the GenBank Sequence Database
Edman reaction for protein sequencing

Using the dot plot to compare sequences
Example of two short aligned sequences
Example of a substitution matrix

Aligning subsequences

Dynamic programing score matrix

Tracing back during alignment with dynamic
programming

Multiple sequence alignment

Using consensus sequences to summarize multiple
alignments

Using a scoring matrix to score a sequence against
a multiple alignment

Creating a weight matrix

Schematic of PSI-BLAST

An example of a hidden Markov model
Example of a hidden Markov model to align sequences

10
19
19
20
20
21
22
24
26
32
36
37
40
41
42
44
45
45

47
49

50

51
52
54
55
57

List of Figures

Figure 2.26

Figure 2.27
Figure 2.28
Figure 2.29
Figure 2.30
Figure 2.31
Figure 2.32

Figure 2.33
Figure 3.1
Figure 3.2

Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 4.1
Figure 4.2
Figure 4.3
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6

Figure 5.7
Figure 5.8

Figure 6.1
Figure 6.2

Figure 6.3

Example of a hidden Markov model to predict
secondary structure

The Viterbi algorithm

Matrix of gene expression data

Self-organizing map

Self-organizing map of yeast gene expression data
Agglomerative hierarchical clustering

Visualization of 148-dimensional lymphoma data in
two dimensions using principal component analysis
Linear discriminant analysis

Converting document text to a word vector
Histogram of words as a function of document
frequency in a Drosophila corpus

Latent semantic indexing

Variance as a function of latent dimension

Word vector similarity between other Drosophila
genes and the breathless gene

Word vector similarity to breathless gene

versus sequence similarity

Word vector similarity to breathless gene versus gene
expression similarity

Keyword queries in word vector space versus LS| space
Swiss-Prot record for Breathless protein sequence
An illustration of PSI-BLAST to include textual
information

Using text comparison improves homology

search results

Histogram of phosphate—uracil experiment
expression log ratios

Histogram of PHO11 neighbor expression
Histogram of NEI scores

Plot of gene expression versus NEI scores

NEI score as a function of log gene expression ratios
Fraction of genes with high NEI scores as a
function of expression ratio

Genes with low induction

Keywords identified that characterize phosphate
deprivation experiments

Finding the key articles that link a gene group together
Scoring an article’s semantic content for relevance
to a gene group

Precision—recall plot for each of the functional
coherence scoring methods

57
58
65
69
70
71

74
76
85
89
93
94
98
99

100

102

110

116

118

127

131

133

134

134

135
139

144
153

154

160

Figure 6.4
Figure 6.5

Figure 7.1
Figure 7.2

Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 9.1
Figure 9.2
Figure 9.3
Figure 10.1
Figure 10.2
Figure 10.3

Figure 10.4

Figure 10.5

List of Figures

Histogram of NDPG functional coherence scores
Replacing functional genes with random genes
reduces NDPG scores gracefully

Functional coherence increases with NDPG score
Relationship between annotation quality and

NDPG sensitivity

Gene Ontology schematic

Chi-square testing to select features

Maximum entropy classifier ranks classifications
Confidence scores are reliable indicators of accuracy
Predicting gene annotation from articles

Histogram of synonyms per gene

Number of references versus number of synonyms
Finding abbreviations

Probability of n-co-occurrences in text

Plot of R as a function of number of co-occurrences
Relationship between the number of co-occurrences
in the text, the prior probability of an interaction,
and the ultimate probability of the interaction
Precision-recall plot for maximum entropy
classification of sentences with co-occurring genes
Sentences suggesting protein—protein interactions
as a function of maximum entropy confidence scores

166

168
182

188
198
211
220
221
223
231
231
238
256
257

258

266

267

This page intentionally left blank

List of Plates

(At End)

Plate 1.1
Plate 1.2
Plate 2.1
Plate 2.2
Plate 2.3
Plate 2.4
Plate 2.5
Plate 2.6
Plate 2.7
Plate 2.8
Plate 2.9
Plate 3.1
Plate 4.1
Plate 5.1

Plate 7.1
Plate 7.2

Plate 7.3

Plate 7.4
Plate 7.5

The PubMed database homepage

Schematic of using text analysis in genomic data analysis
The central dogma of biology

Yeast phenylalanine tRNA

Hydrogen bonding in alpha helices

Structure of triose phosphate isomerase

The Sanger sequencing method

Gene expression microarrays

Serial analysis of gene expression

K-means clustering of lymphoma data

Classification of lymphoma data into two classes with LDA
Hierarchical clustering of gene expression analysis articles
Breathless protein BLAST hits

Schematic for calculating “expression values” for

a keyword

Using NDPG to screen self-organizing map clusters
Correlation between Gene Ontology Group overlap

and NDPG score

Schematic of hierarchical clustered expression data

with subsequent cluster boundary definition

Top 20 yeast gene clusters in order of NDPG scores

Four gene expression clusters from the fly development
data set whose boundaries were defined with the
scientific literature

O 00O NO U DD WWNN=— =

O O

10

10
1"

12

This page intentionally left blank

List of Tables

Table 1.1
Table 1.2
Table 1.3
Table 2.1
Table 2.2
Table 2.3
Table 2.4

Table 3.1
Table 3.2

Table 4.1

Table 4.2

Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5

Table 6.1
Table 6.2
Table 6.3

Table 6.4
Table 6.5

Table 7.1
Table 7.2
Table 7.3
Table 7.4

Table 7.5

Popular molecular biology journals

Reference indices from different genomic resources
GO annotations

Genome size for different species

The genetic code

The amino acids

Application of LDA supervised classification to
diverse tasks

A list of some common stop words

Keywords for the two similar genes

in Drosophila

Keywords to describe sequence similarity hits for
breathless

Comparing PSI-BLAST and a modified version of
PSI-BLAST that includes text

The highest expressed genes in the PU experiments
Neighbors of PHO11

NEI scores for the top 15 expressed genes

NEI scores for each of the individual experiments
NEI scores for the top 15 expressed genes in the
first experiment

DNA dependent ATPase genes in yeast

Recent articles about RDH54

A description of the functional gene groups used
to evaluate functional coherence methods

NDPG scores for individual functional groups
Assigning NDPG scores to experimentally obtained
gene expression clusters

Number of Genes in Self-Organizing Map Clusters
High scoring clusters

Algorithm to prune gene expression dendrogram
into disjoint clusters

Summary of literature index and GO groups for NDPG

evaluation across four organisms
Sensitivity of NDPG in different organisms

11
13
18
23
25

78
90

97

113

119
128
130
136
136

137
149
151

156
167

169
175
177
180

186
187

List of Tables

Table 7.6 Fly functional clusters 191
Table 8.1 Evidence codes for Gene Ontology 199
Table 8.2 Enzyme Commission (EC) classification categories 201
Table 8.3 Maximum entropy example 207
Table 8.4 The training and testing corpus 214
Table 8.5 Classification performance of different supervised

machine learning algorithms 217
Table 8.6 Classification accuracy for different categories 219
Table 9.1 Gene synonyms for two Drosophila genes 230
Table 9.2 Summary of gene/protein name finding algorithm by

Fukuda 234
Table 9.3 Context trigger words for gene names 236
Table 9.4 Features to evaluate abbreviations 239
Table 9.5 Features to characterize the appearance of a word 242
Table 9.6 Different morphological variants for a root 242
Table 10.1 The General Repository for Interaction Datasets (GRID) 251
Table 10.2 Data about sentence and abstract co-occurrences 252
Table 10.3 Words identified by Blaschke and colleagues to identify

protein interactions 260

Table 10.4 Data for interactions predicted by sentences that
co-occur and contain patterns suggestive of

potential interactions 261
Table 10.5 Example of sentences with two gene names and their
probability of describing a protein-protein interaction 264

Table 10.6 Data for interactions predicted by sentences selected
by maximum entropy calssification 268

An introduction to text
analysis in genomics

The February 16th, 2001 issue of Science magazine announced the
completion of the human genome project—making the entire nucleotide
sequence of the genome available (Venter, Adams et al. 2001). For the first
time a comprehensive data set was available with nucleotide sequences
for every gene. This marked the beginning of a new era, the “genomics”
era, where molecular biological science began a shift from the investiga-
tion of single genes towards the investigation of all genes in an organism
simultaneously.

Alongside the completion of the genome project came the introduction of
new high throughput experimental approaches such as gene expression
microarrays, rapid single nucleotide polymorphism detection, and proteo-
mics methods such as yeast two hybrid screens (Brown and Botstein 1999;
Kwok and Chen 2003; Sharff and Jhoti 2003; Zhu, Bilgin et al. 2003). These
methods permitted the investigation of hundreds if not thousands of genes
simultaneously. With these high throughput methods, the limiting step in the
study of biology began shifting from data collection to data interpretation.
To interpret traditional experimental results that addressed the function of
only a single or handful of genes, investigators needed to understand only
those few genes addressed in the study in detail and perhaps a handful of
other related genes. These investigators needed to be familiar with a com-
paratively small collection of peer-reviewed publications and prior results.
Today, new genomics experimental assays, such as gene expression micro-
arrays, are generating data for thousands of genes simultaneously. The
increasing complexity and sophistication of these methods makes them
extremely unwieldy for manual analysis since the number and diversity of
genes involved exceed the expertise of any single investigator.

The only practical solution to analyzing these types of data sets is using
computational methods that are unhindered by the volume of modern data.
Bioinformatics is a new field that emphasizes computational methods to
analyze such data sets (Lesk 2002). Bioinformatics combines the algorithms
and approaches employed in computer science and statistics to analyze,
understand, and hypothesize about the large repositories of collected bio-
logical data and knowledge.

1 : An introduction to text analysis in genomics

However, the most critical resource of relevant information neces-
sary for genomic data interpretation is the peer-reviewed published
literature about the individual genes. While its value is without
question, incorporating it into large-scale computational analyses is chal-
lenging. Text is available in large quantities, but is often disorganized
and contradictory. In addition, accurate computation on text is a challen-
ging subject.

This book introduces automatic algorithms to access and utilize the
intractably vast sources of literature to help interpret such large data sets.
As documents become available in electronic format, and they become
necessary for genomic-scale biology, bioinformatics researchers are investi-
gating the application of natural language processing methods to mine
biological text (Yandell and Majoros 2002; Shatkay and Feldman 2003).
This is an area of growing interest—with dozens of active groups and
internationally publicized symposia. While the content of biomedical lit-
erature is undeniably valuable, it is poorly structured for computation
(compared to databases, for example). Fortunately, the field of natural
language processing has been pursuing techniques to understand and inter-
pret unstructured text (Manning and Schutze 1999). The field of text
mining and computational natural language processing is a well established
one that has made many advances and gains over the past decades. Many of
the techniques from that field can be applied directly to problems in geno-
mics. However there are many more challenges and opportunities as well,
since the challenge in bioinformatics is not just to mine the literature, but
also to utilize it to understand experimental data.

1.1 The genomics literature

The biological literature is a vast and comprehensive resource. Every
accepted facet of biological knowledge is locked in the published literature.
Investigators in genetics and genomics strive to publish their results in
reputable journals. In Table 1.1 we have listed some of the best-known
journals. Publication typically requires a thorough review by scientific peers
to assess the originality and validity of the purported results and interpret-
ation. As a result, peer-reviewed publications are a relatively reliable re-
source of information. Most papers today report experimental results on a
single gene or protein, though more and more large-scale experiments are
being reported. Increasingly, the scientific literature is becoming available
online in electronic format, raising the possibility of facile computational
analysis. PubMed abstracts are increasingly available for most biologically
relevant articles (see Plate 1.1 and Figure 1.1), while electronic publishers

1.1 The genomics literature

Table 1.1 Popular molecular biology journals. The above is a list of some of the best-known
journals that contain articles relevant to genetics and molecular biology. Many of the articles
published in these journals are pertinent to the study of specific genes. We also list the number of
articles published by these journals in 2003 in the right column.

Journal Total Articles 2003
1 American Journal of Human Genetics 330
2 Cancer Cell 134
3 Cancer Research 1311
4 Cell 356
5 Developmental Cell 208
6 European Molecular Biology Organization Journal 653
7 Genes and Development 288
8 Genome Research 291
9 Human Molecular Genetics 390
10 Immunity 173
11 Journal of Cell Biology 457
12 Journal of Experimental medicine 493
13 Molecular Cell 325
14 Molecular Cell Biology 803
15 Nature 2408
16 Nature Cell Biology 238
17 Nature Genetics 308
18 Nature Immunology 236
19 Nature Medicine 412
20 Nature Neuroscience 264
21 Nature Structure Biology 210
22 Neuron 421
23 Plant Cell 256
24 Proceedings of the National Academy of Science USA 2955
25 Science 2377

such as High-Wire press and PubMed Central permit access to full text
articles (Hutchinson 1998; Roberts 2001). Several of the newer journals
publish strictly online; the Public Library of Science (PLOS) and BioMed
Central are two publishers that produce open access peer-reviewed journals
online. The wide availability of papers in electronic format makes compu-
tational analysis for genomic data analysis feasible.

The quantity of available literature is vast. For example, as of January
2005 the PubMed database contains some 14 million biomedical abstracts
from over 30,000 journals published in the last 50 years. As of June
2004, SwissProt, a protein sequence database, has references to 95,654
articles from 1523 journals that are assigned to a total of 137,095
protein sequences (Boeckmann, Bairoch et al. 2003). As of June 2004,
LocusLink, a curated genomic data resource, contains references to some

1 : An introduction to text analysis in genomics

3000

» 2500

2000

1500

1000

New PubMed abstracts (thousands

500
0 4

< [} < o < o < o) < » <

[Te) [Te) [{e] (L] N~ N~ o] [ce] (o] [} o

(o] [} (o] (o] (o] [} [o)] (o] » » o

i T T T i T T T i T 9

o 0 o [To] o Yo} o Yol o [Te) o

[Te) w0 [(e] (o] N~ N~ [ee] [ee] (2] (o] o

o)) [} [o)] (o] (o)) (o)} [o)] [o)] (o)) o o

— — — — — — — — -— ~— A

Year

Figure 1.1 PubMed abstracts. New PubMed abstracts added to the PubMed database are
depicted below as a function of time. The number of biological abstracts submitted has been rapidly
increasing over the last 50 years. This plot was derived from publication dates listed in PubMed
records.

121,557 articles that are pertinent to 96,577 specific genes (Pruitt and
Maglott 2001).

Besides the inherent challenges of text mining, the genomics literature has
other issues that make computation difficult. To begin with, all documents do
not have equal value by any means. Scientists generally regard some papers to
be more credible and to have more value than others. As a result, most fields
have a few extremely well regarded papers, whose results have been replicated
and are well cited. But the majority of papers do not have similar wide regard,
and they are cited more sparsely. Assessing the quality or reliability of a given
paperisachallenge. Manual evaluation by independentreviewers, such as the
Faculty of 1000 (www.facultyof1000.com), is a thorough but tedious option.
The quality of the journal, the number of citations, the reputation of the
author, and the credibility of the publishing institution, are all factors that
can be used as heuristics to assess the importance of a given paper.

In addition, even if the quality of a paper can be judged computationally
in an absolute sense, there is a greater difficulty in assessing the relevance of
a paper for the specific task at hand. For example if we are creating an
algorithm that automatically reads and assigns the cellular function of a
gene from a document, we must insure that the document, besides being

www.facultyof1000.com

1.2 Using Text in genomics

a quality publication, is pertinent to the gene. In addition, we must be
careful to ascertain whether the document’s focus is pertinent to the
gene’s cellular function and not other aspects of the gene, such as medical
diseases that the gene has been implicated in.

The diversity of subjects addressed in the biological literature is enor-
mous. A single gene may have references that discuss the function of the
gene at a molecular level, the larger cellular system the gene is involved in,
the role the gene plays at the whole-organism level, diseases that a gene is
involved in, the structure of the protein product of a gene, or different
mutant forms of the same gene. In addition, while most articles are very
scientifically specific, others are very broad. For example, a review article
about a particular gene may focus on a broad array of subjects while
another scientific article may address a very specific aspect of the same
gene. Similarly, while many articles address individual genes, others may
be germane to large numbers of genes. Of the 121,577 LocusLink refer-
ences, 80,724 refer to only a single gene, while 217 refer to over 50 genes.
The skewed distribution of the number of genes referred to by different
articles is displayed in Figure 1.2.

An additional difficulty is that the availability and quality of literature is
very biased towards well-studied areas. For example, some genes are ex-
tremely well studied, but many have not been studied at all. If we consider
human genes, as of June 2004 there are 36,857 genes listed in the LocusLink
database, and of these genes only 22,489 have references associated with
them; so a full one-third of known genes do not have a single relevant
published paper. At the other extreme are genes such as the tumor protector
p53 gene, which has some 580 relevant articles listed in LocusLink, and
vascular endothelial growth factor, which has 277 listed. The skew in the
distribution of genes is apparent in Figure 1.3. Any text mining algorithms
that are used in the field of genomics must take into consideration the
inequities of the published literature.

1.2 Using Text in genomics

There are certainly many areas in genomics where the use of scientific text
can be invaluable. In this section we give a short description of three areas
where text mining might augment genomics analysis.

1.2.1 Building databases of genetic knowledge

One of the active areas of interest in the field is the use of text mining
strategies to scan the literature and summarize pertinent facts in a

1: An introduction to text analysis in genomics

90,000

80,000 1

70,000

60,000 1

50,000 1

Articles

40,000 17

30,000

20,000 17

10,000 1+

0 . . H . H s N . = =
3 4 5 6 7 8 9 10 11 12 13 14 15 >15
Genes referenced per article

Figure 1.2 Distribution of articles as a function of the number of genes referenced. Here we have
plotted the distribution of articles indexed in LocusLink as a function of the number of genes that
they reference. It is a highly skewed distribution. While the vast majority of articles are specific in
subject matter and refer to only a few genes, a few refer to a large number of genes.

18000

16000

14000 1

12000 1

10000 1

Genes

8000 1

6000 1

4000 1

2000 1

0

1-4
5-9
>49]

10-14 [

15-19 (]
20-24 ||
2529 |

30-34
35-39
40-44
45-49

Articles linked per Gene

Figure 1.3 Distribution of genes as a function of available relevant articles. Here we have plotted
the distribution of human genes listed in LocusLink as a function of the number of articles that
pertain to them. It is a highly skewed distribution. While the vast majority of genes are relatively
poorly studied genes with less than five articles, a few genes are extremely well studied with many
articles.

1.2 Using Text in genomics

structured format in databases or knowledge bases (Yandell and Majoros
2002; Shatkay and Feldman 2003). Genetic knowledge from the literature
is more appropriate for computation once it has been structured properly.
With the advent of genomics, online resources that contain structured
information about genes, such as gene function, gene interactions, and
protein product interactions, have become extremely valuable tools to
interpret large data sets. For example, The Gene Ontology (GO) consor-
tium and the Munich Information Center for Protein Sequences (MIPS)
provide vocabularies of function and assign genes from multiple organisms
the relevant terms (Ashburner, Ball et al. 2000; Mewes, Frishman et al.
2000). Similarly, the Database of Interacting Proteins catalogs protein
interactions (Marcotte, Xenarios et al. 2001).

However, such resources may not be comprehensive and up to date at any
given time, and it is also laborious to maintain the vocabulary and the
gene assignments. Currently, most resources are maintained and expanded
by careful manual interpretation. Text mining offers an opportunity to
create algorithms that could automatically and rapidly scan the large vol-
ume of literature, as well as new papers as they become available, and then
enter their information content into databases.

This approach has been proposed for databases of biological function
and for databases that keep track of interactions between genes (Ohta,
Yamamoto et al. 1997; Fukuda, Tamura et al. 1998; Sekimizu, Park et al.
1998; Tamames, Ouzounis et al. 1998; Blaschke, Andrade et al. 1999;
Craven and Kumlien 1999; Ng and Wong 1999; Humphreys, Demetriou
et al. 2000; Proux, Rechenmann et al. 2000; Thomas, Milward et al. 2000;
Marcotte, Xenarios et al. 2001; Ono, Hishigaki et al. 2001; Stephens,
Palakal et al. 2001; Wong 2001; Raychaudhuri, Chang et al. 2002; Donald-
son, Martin et al. 2003). This area is a challenging one, however, as effective
algorithms must be available that can (1) identify entity names, such as gene
or protein names in the literature with high accuracy, (2) recognize if a
relevant function or interaction is being described, and (3) classify the
description into one of potentially a great many functions and interactions.
All of these tasks are challenging in themselves and require high levels of
accuracy.

1.2.2 Analyzing experimental genomic data sets

Designing bioinformatics algorithms that analyze genomic data sets is a
significant problem. The challenge in writing such methods is not only in
effectively interpreting the complexity for such data sets, but also overcom-
ing the noise that is inherent in many of these experimental approaches.
One common solution to addressing the challenges of interpreting genomic
data sets is using external data from other sources to guide or verify possible

1 : An introduction to text analysis in genomics

analytical results. For example, if the interpretation of an experiment is
consistent with another independent experiment our confidence in that
interpretation is increased. One vast and very good source of external
information is the corpus of peer-reviewed publications.

The general approach is, given a genomics data set, to generate many
possible hypotheses that might explain the observed result. Then compare
the hypotheses to what is reported in the large body of the scientific
literature, and then to pick the hypothesis that is most consistent with
what has been reported (see Plate 1.2). In a sense this is very similar to
the normal paradigm under which scientific exploration is undertaken.
Typical interpretation of a scientific result requires the investigator to
examine prior results to pick an interpretation that is most consistent.
This general approach has been applied to gene expression data analysis
and sequence analysis with success (MacCallum, Kelley et al. 2000; Shat-
kay, Edwards et al. 2000; Chang, Raychaudhuri et al. 2001; Jenssen,
Laegreid et al. 2001; Raychaudhuri, Chang et al. 2003). In the case of
sequence analysis, alignment methods may suggest possible families of
related proteins; the validity of these families can be checked against the
scientific literature. In the case of gene expression analysis, the data may
suggest co-regulation of a cluster of genes; the possibility of co-regulation
can then be checked against the literature.

1.2.3 Proposing new biological knowledge: identifying candidate
genes

One of the great hopes of the genomic revolution is that the fruits of our
labor might transfer into medicine in the form of a better understanding of
human disease. In the investigation of particular diseases, many investiga-
tors choose to select a large set of genes, and then conduct specific genetic
studies to identify the ones that are truly involved in a particular disease.
One of the challenges to these approaches is the selection of the initial set of
genes for investigation. It is undesirable to cast too wide a net and select too
many genes, as the number of false positives will be high. On the other
hand, selecting too few genes risks losing the genes that might be most
critical to the particular disease.

Mining the biological literature can offer some insight to this problem.
Currently genes are picked by expert knowledge. Instead, text-mining
strategies can be used to identify genes that have potential associations
with the particular disease or concepts that are associated with these
genes. At the time of writing, this is a completely uninvestigated area of
research. We are hopeful that in the coming years this area will be thor-
oughly addressed.

1.3 Publicly available text resources

1.3 Publicly available text resources
1.3.1 Electronic text

As mentioned above, there are an increasing number of primary resources
from which the text of articles is readily available online for analysis. The
most important for text mining in genomics so far has been PubMed
(www.ncbi.nlm.nih.gov/PubMed/), a National Institute of Health funded
database of article abstracts (see Plate 1.1). Almost every biologically
significant document published in the last 50 years has its abstract available
in PubMed. The articles are in Medline format, a standardized format with
fields for the authors, abstract, and keywords, and other pertinent details
(see Figure 1.4). Included in the format are the MeSH headings; these are
keywords assigned from a hierarchical controlled vocabulary by experts
who have read the original article; these headings can be very useful in
searching for articles.

PubMed Central (www.pubmedcentral.nih.gov) is a newer database of
whole text articles (Roberts 2001). As of June 2004 the whole text of about
285,000 individual articles from 152 different journals is available without
charge. Most of the articles have been published after 1990. This is a very
exciting new initiative for genomics and text mining as it permits the
possibility that algorithms can be produced to mine other sections of an
article rather than just the abstract. Whole-text mining also offers the
possibility of accessing the valuable information that is contained in the
article figures (Liu, Jenssen et al. 2004). Hopefully, in the future initiatives
such as PubMed Central will become more comprehensive.

In addition whole text is becoming available from individual publishers
as well. Publishers such as Biomed Central (www.biomedcentral.com)
and the Public Library of Science (www.publiclibraryofscience.org) are
creating reputable journals that are published exclusively online. Other
traditional journals are now publishing articles online as well. Highwire
(www.highwire.org) press has made over 700,000 articles available from
362 journals.

1.3.2 Genome resources

Many of the publicly funded genome databases have reference indices that are
valuable for text mining. Databases such as FlyBase (flybase.bio.indiana.edu),
Wormbase (www.wormbase.org), Mouse Genome Database (MGD)
(www.informatics.jax.org/mgihome/MGD/aboutM GD.shtml), and Sacchar-
omyces Genome Database (SGD) (www.yeastgenome.org) all have indices
that link article references to genes (Cherry, Adler et al. 1998; Stein, Sternberg
etal. 2001; Blake, Richardson et al. 2002; FlyBase 2002). Most of the links are
to PubMed abstracts. These indices are usually manually derived and updated,

www.ncbi.nlm.nih.gov/PubMed/
www.pubmedcentral.nih.gov
www.biomedcentral.com
www.publiclibraryofscience.org
www.highwire.org
www.wormbase.org
www.informatics.jax.org/mgihome/MGD/aboutMGD.shtml
www.yeastgenome.org

1 : An introduction to text analysis in genomics

PMID-
OWN -
STAT-
DA -
DCOM-
LR -
PUBM-
Is -
Vi -
IP =
Dp -
Tl ==

PG -
AB -

BST -
50 -

8576574

NLM

MEDLINE

19270319

19970319

20041117

Print

0961-8368

5

1z

1926 Dec

Insights intc the local residual entropy of proteins provided by NMR
relaxation.

2647-50

A simple model is used teo illustrate the relationship between the dynamics
measured by NMR relaxation methods and the local residual entropy of
proteins. The expected lcocal dynamic behavior of well-packed extended
amine acid side chains are described by empleying a one-dimensional
vibrator that encapsulates both the spatial and temporal character of the
motion. This model is then related to entropy and to the generalized order
parameter of the popular "model-free" treatment often used in the analysis
of NMR relaxation data. Simulaticns indicate that order parameters
cbserved for the methyl symmetry axes in, for example, human ubiquitin
correspond to significant local entropies. These cbservaticns have obvious
significance for the issue of the physical basis of protein structure,
dynamics, and stability.

Department of Biological Sciences, State University of New York at Buffalo
14260, USA. wand@jasper.chem.buffale.edu

Li, Z

Li Z

Raychaudhuri, S

Raychaudhuri S

Wand, A J
Wand AJ
eng

DK-39806 /DK/NIDDK

Journal Article

UNITED STATES

Protein Sci

2211750

0 (Proteins)

M

Entropy

Humans

Magnetic Resonance Spectroscopy
Models, Theoretical
Proteins/*chemistcry

Research Support, U.S. Gov't, P.H.S.
1996/12/01

1996/12/01 00:01

ppublish

Protein Sci 19926 Dec;5(12):2647-50.

Figure 1.4 Article in MedLine format. MedLine format is the document format that PubMed
abstracts are stored in. Fields include the authors (AU), their affiliations (AD), reference number
(PMID), abstract (AB), title (TI), language (LA), information about research funding (GR), the type
of publication (PT), journal title (TA), and MeSH keyword information (MH).

so in general they are very high quality and reliable. Summary statistics for the
reference indices are presented in Table 1.2. The number of genes that have
article references and the number of article references listed in the reference
index are very dependent on how well the organism in question has been
explored. In addition genome databases often have other valuable information
such as keywords indicating the function of different genes, gene nucleotide
sequences, and protein product amino acid sequences. These reference lists are
extremely useful for most applications of text mining to genomics.

1.3 Publicly available text resources

Table 1.2 Reference indices from different genomic resources. Recent statistics for six genomic
database reference indices. All have thousands of articles that refer to thousands of genes. In all
cases the mean number of gene references per article exceeds the median; this is because the
distribution is skewed with a few extreme articles referring to many genes. Similarly, the mean
number of articles linked per gene exceeds the median since there a few very well studied outlying
genes with many germane articles. Data about LocusLink and SwissProt are from June 2004. Data
about the other resources are from March 2002.

SGD MGD Flybase Wormbase LocusLink SwissProt

Yeast Mouse Fly Worm Many Protein
Organism Sequences
Genes with article 5151 26,148 14,732 2289 121,577 137,095
references
articles 22,934 41,669 15,495 2144 96,577 95,654
Number of genes 2 1 3 4 1 1
referenced per article
median
mean 2.73 2.73 6.27 6.37 3.44 2.63
Number of article 4 1 1 2 2 1
linked per gene
median
mean 12.12 4.35 6.59 5.97 4.33 1.83

LocusLink (www.ncbi.nih.gov/LocusLink/) and its successor Entrez
Gene are resources that integrate genetic information from 15 different
species, ranging from viruses to mammals (Pruitt and Maglott 2001). It
too has a comprehensive reference index that associates genes with PubMed
abstracts. Its summary statistics are also presented in Table 1.2. It includes a
very large number of genes and article abstracts.

Curators of the biological data repositories, such as Swiss-Prot, often
provide links from individual data records to PubMed abstracts (Boeck-
mann, Bairoch et al. 2003). For example, a protein sequence submitted to
the Swiss-Prot database might be linked to the PubMed abstract of the
article with details about the protein. Summary statistics for the Swiss-Prot
reference index are provided in Table 1.2.

Countless other databases are available online that have reference indices
that suit their specialized need.

1.3.3 Gene ontology

Another critical resource in functional genomics is the Gene Ontology
(GO). We mention it here because of the special significance that it has
in this book (Ashburner, Ball et al. 2000). The Gene Ontology is a con-
trolled vocabulary of terms that describe gene function. The terms are
organized into three broad branches. “Molecular Function” terms describe

www.ncbi.nih.gov/LocusLink/

1 : An introduction to text analysis in genomics

the biochemical reactions that a protein catalyzes. The “Biological Process”
terms describe the global physiologic process that a protein is involved in.
“Cellular Location” terms describe the compartment of a cell that a protein
product is situated in. A properly annotated gene may have multiple terms
from each of these branches of Gene Ontology.

Gene Ontology literally contains thousands of terms that describe genetic
attributes ranging from very broad terms (“metabolism™) to very specific
(“pyruvate kinase”). One of the very special and valuable features of Gene
Ontology is that it is organized hierarchically. More specific functional
terms are children of more general terms. So if a gene is assigned a particu-
lar specific Gene Ontology term, it will have the function associated with
that term, and also will have the functions described by the parent terms as
well. For example the term glycolysis would be a descendent of the term
carbobydrate metabolism. All genes assigned the term glycolysis are by
default involved in carbobydrate metabolism. However, all carbohydrate
metabolism genes are not necessarily glycolysis genes. So, depending on the
current state of knowledge, annotations for a gene can be made as specific
or general as necessary.

Currently the GO consortium is annotating genes from many different
organisms with GO terms. The present state of Gene Ontology annotations
is described in Table 1.3. In Chapter 8 there is a more detailed discussion of
Gene Ontology and gene annotation.

1.4 The advantage of text-based methods

At present, text-based analytical approaches are mostly an emerging tech-
nology. Most of the methods presented in this book are in the preliminary
stages. Pilot studies have demonstrated encouraging results; wide-scale
application is still pending.

However these methods are promising. As discussed above there are
excellent and easy to access literature resources available that are ever
expanding. As we will demonstrate in the coming chapters, inclusion of
literature in genomics data analysis algorithms has in some cases already
demonstrated the discovery of novel biology! The role of text in genomics
data analysis is particularly effective in cases where the data quality is poor.
For example in expression data or yeast-2-hybrid data, the scientific text
can very effectively help in the separation of valuable biology from noise.
Inclusion of automated text analysis can offer avenues to make sense of noisy
data.

Under all circumstances, however, inclusion of text can result in a great
speedup in the analysis of data, and hence in scientific discovery. For

1.5 Guide to this book

Table 1.3 GO annotations. This table lists some of the organisms whose genes have been assigned
Gene Ontology terms. In the second column the source database is listed. In the third column the
total number of annotated genes is listed. In the final column the total number of article references
used to generate some of those annotations is listed.

Genes with
GO
Organism Database annotations Article references
Saccharomyces cerevisiae SGD 6459 4849
Drosophila melanogaster FlyBase 9538 6715
Mus musculus MGI 15380 4725
Arabidopsis thaliana TAIR 31411 2536
Caenorhabditis elegans WormBase 11808 718
Rattus norvegicus RGD 4167 3143
Oryza sativa Gramene 34377 2300
Danio rerio ZFIN 4736 394
Dictyostelium discoideum DictyBase 5440 221
Candida albicans CGD 677 491

example, in Chapter 7 we will show an example of a gene expression data
set that took experts months to analyze manually; text-based algorithms
obtained similar results in minutes. Simple methods to summarize the
results of a sequence search algorithm using text reduces the amount of
time it may take to comprehend the significance of those similar sequences
from about an hour to minutes.

One of the goals of writing this book is to help popularize these methods
that have the potential of unraveling new biology, and at the very least will
expedite exploration greatly. In each chapter we are careful to provide
detailed evaluations of the major methods and present practical examples
when possible.

1.5 Guide to this book

The aim of this book is to introduce the interested reader to computational
strategies to include the scientific text in the analysis of genomics data. The
work presented in this book represents the state of the art in the field. Many
of the chapters address specific challenges in text mining and bioinfor-
matics, including those in gene function assignment, verifying protein—
protein interactions, gene expression analysis, and sequence analysis.
These chapters describe active research areas, and some of these chapters
introduce novel research.

The different chapters approach text at different levels of granularity.
The first chapter discusses entire corpora of documents. Chapters 3-5

1 : An introduction to text analysis in genomics

use subgroups of text; in these chapters text from multiple documents
referring to the same gene are combined. Chapters 6-8 use article abstracts
individually. Chapters 9 and 10 looks at individual sentences and words.
Chapter 2 provides a brief review of biology and some key experimental
methods. It also reviews some of the important algorithms for the analysis
of genomics data and presents a brief review of probability and statistics. It
is intended as a primer on bioinformatics and acts as background for the
remainder of the book. In Chapter 3 we introduce a simple text represen-
tation: the word vector. We show how word vectors can be defined for genes
and how it can be a simple but useful tool in bioinformatics analysis. In
Chapter 4 we show how sequence analysis can be refined with textual
information using gene word vectors in addition to sequences. Chapter §
focuses on gene expression analysis; we demonstrate how the scientific
literature can be used to distinguish true positives from false positives and
assess experiment quality. The methods introduced in Chapter 5 can be
applied to the results of any assay that assigns a single value to a large
number of genes. In Chapter 6 we introduce strategies to assess the extent to
which a group of genes contain related genes using only articles about those
genes. Since most genomics analyses produce groups of genes, this ap-
proach can be easily used in many types of analysis. Chapter 7 focuses on
application of the strategies introduced in Chapter 6 to analyze large gene
expression data sets in several different organisms. Chapter 8 introduces
machine learning on scientific text and demonstrates how it can be useful in
gene annotation. In Chapters 9 and 10 we talk about learning relationships
between proteins and using the text to learn biological networks between
genes and proteins. Chapter 9 introduces methods to find gene names in
text. Chapter 10 introduces methods to identify and delineate relationships
between genes and proteins in text. We discuss how well text-based
methods can be used to verify experimentally predicted interactions. We
also explore the possibility of mining the text to create networks of genes.

References

Ashburner, M., C. A. Ball, et al. (2000). “Gene Ontology: tool for the unification of
biology. The Gene Ontology Consortium.” Nat. Genet. 25(1): 25-9.

Blake, J. A., J. E. Richardson, et al. (2002). “The Mouse Genome Database (MGD):
the model organism database for the laboratory mouse.” Nucleic Acids Res. 30(1):
113-5.

Blaschke, C., M. A. Andrade, et al. (1999). “Automatic extraction of biological infor-
mation from scientific text: protein—protein interactions.” Proc. Int. Conf. Intell. Syst.
Mol. Biol. 2(1): 60-7.

Boeckmann, B., A. Bairoch, et al. (2003). “The SWISS-PROT protein knowledgebase
and its supplement TrEMBL in 2003.” Nucleic Acids Res. 31(1): 365-70.

References

Brown, P. O. and D. Botstein (1999). “Exploring the new world of the genome with
DNA microarrays.” Nat. Genet. 21(1 Suppl): 33-7.

Chang, J. T., S. Raychaudhuri, et al. (2001). “Including biological literature improves
homology search.” Pac. Symp. Biocomput. 14(5): 374-83.

Cherry,]J. M., C. Adler, et al. (1998). “SGD: Saccharomyces Genome Database.”
Nucleic Acids Res. 26(1): 73-9.

Craven, M. and J. Kumlien (1999). “Constructing biological knowledge bases by
extracting information from text sources.” Proc. Int. Conf. Intell. Syst. Mol. Biol.
10(1): 77-86.

Donaldson, 1., J. Martin, et al. (2003). “PreBIND and Textomy-mining the biomedical
literature for protein-protein interactions using a support vector machine.” BMC
Bioinformatics 4(1): 11.

FlyBase (2002). “The FlyBase database of the Drosophila genome projects and commu-
nity literature.” Nucleic Acids Res. 30(1): 106-8.

Fukuda, K., A. Tamura, et al. (1998). “Toward information extraction: identifying
protein names from biological papers.” Pac. Symp. Biocomput. 61(5): 707-18.

Humphreys, K., G. Demetriou, et al. (2000). “Two applications of information extrac-
tion to biological science journal articles: enzyme interactions and protein structures.”
Pac. Symp. Biocomput. 6(4): 505-16.

Hutchinson, D. (1998). Medline for health professionals: how to search PubMed on the
Internet. Sacramento, New Wind.

Jenssen, T. K., A. Laegreid, et al. (2001). “A literature network of human genes for high-
throughput analysis of gene expression.” Nat. Genet. 28(1): 21-8.

Kwok, P. Y. and X. Chen (2003). “Detection of single nucleotide polymorphisms.” Curr.
Issues Mol. Biol. 5(2): 43-60.

Lesk, A. M. (2002). Introduction to Bioinformatics. Oxford, Oxford University Press.

Liu, E, T. K. Jenssen, et al. (2004). “FigSearch: a figure legend indexing and classification
system.” Bioinformatics. 20(16): 2880-2.

MacCallum, R. M., L. A. Kelley, et al. (2000). “SAWTED: structure assignment with
text description—enhanced detection of remote homologues with automated SWISS-
PROT annotation comparisons.” Bioinformatics. 16(2): 125-9.

Manning, C. M. and H. Schutze (1999). Foundations of Statistical Natural Language
Processing. Cambridge, The MIT Press.

Marcotte, E. M., 1. Xenarios, et al. (2001). “Mining literature for protein—protein
interactions.” Bioinformatics. 17(4): 359-63.

Mewes, H. W., D. Frishman, et al. (2000). “MIPS: a database for genomes and protein
sequences.” Nucleic Acids Res. 28(1): 37-40.

Ng, S. K. and M. Wong (1999). “Toward Routine Automatic Pathway Discovery from
On-line Scientific Text Abstracts.” Genome Inform Ser Workshop Genome Inform.
10(8): 104-112.

Ohta, Y., Y. Yamamoto, et al. (1997). “Automatic construction of knowledge base from
biological papers.” Proc. Int. Conf. Intell. Syst. Mol. Biol. 5: 218-25.

Ono, T., H. Hishigaki, et al. (2001). “Automated extraction of information on protein—
protein interactions from the biological literature.” Bioinformatics. 17(2): 155-61.
Proux, D., E. Rechenmann, et al. (2000). “A pragmatic information extraction strategy
for gathering data on genetic interactions.” Proc. Int. Conf. Intell. Syst. Mol. Biol.

8(26): 279-85.

Pruitt, K. D. and D. R. Maglott (2001). “RefSeq and LocusLink: NCBI gene-centered

resources.” Nucleic Acids Res. 29(1): 137-40.

1 : An introduction to text analysis in genomics

Raychaudhuri, S., J. T. Chang, et al. (2003). “The computational analysis of scientific
literature to define and recognize gene expression clusters.” Nucleic Acids Res.
31(15): 4553-60.

Raychaudhuri, S., J. T. Chang, et al. (2002). “Associating genes with gene ontology
codes using a maximum entropy analysis of biomedical literature.” Genome Res.
12(1): 203-14.

Roberts, R. J. (2001). “PubMed Central: The GenBank of the published literature.”
Proc. Natl. Acad. Sci. USA 98(2): 381-2.

Sekimizu, T., H. S. Park, et al. (1998). “Identifying the Interaction between Genes and
Gene Products Based on Frequently Seen Verbs in Medline Abstracts.” Genome
Inform Ser Workshop Genome Inform. 9: 62-71.

Sharff, A. and H. Jhoti (2003). “High-throughput crystallography to enhance drug
discovery.” Curr. Opin. Chem. Biol. 7(3): 340-5.

Shatkay, H., S. Edwards, et al. (2000). “Genes, themes and microarrays: using informa-
tion retrieval for large-scale gene analysis.” Proc. Int. Conf. Intell. Syst. Mol. Biol.
8(10): 317-28.

Shatkay, H. and R. Feldman (2003). “Mining the biomedical literature in the genomic
era: an overview.” J. Comput. Biol. 10(6): 821-55.

Stein, L., P. Sternberg, et al. (2001). “WormBase: network access to the genome and
biology of Caenorhabditis elegans.” Nucleic Acids Res. 29(1): 82-6.

Stephens, M., M. Palakal, et al. (2001). “Detecting gene relations from Medline
abstracts.” Pac. Symp. Biocomput. 52(3): 483-95.

Tamames, J., C. Ouzounis, et al. (1998). “EUCLID: automatic classification of proteins
in functional classes by their database annotations.” Bioinformatics. 14(6): 542-3.
Thomas, J., D. Milward, et al. (2000). “Automatic extraction of protein interactions

from scientific abstracts.” Pac. Symp. Biocomput: 541-52.

Venter, J. C., M. D. Adams, et al. (2001). “The sequence of the human genome.” Science
291(5507): 1304-51.

Wong, L. (2001). “PIES, a protein interaction extraction system.” Pac. Symp. Biocom-
put. 233(1473): 520-31.

Yandell, M. D. and W. H. Majoros (2002). “Genomics and natural language process-
ing.” Nat. Rev. Genet. 3(8): 601-10.

Zhu, H., M. Bilgin, et al. (2003). “Proteomics.” Ann. Rev. Biochem. 72: 783-812.

Functional genomics

The overarching purpose of this chapter is to introduce the reader to some
of the essential elements of biology, genomics, and bioinformatics. It is
by no means a comprehensive description of these fields, but rather the
bare minimum that will be necessary to understand the remainder of
the book.

In the first section we introduce the primary biological molecules: nucleic
acids and proteins. We discuss genetic information flow in living beings and
how genetic material in DNA is translated into functional proteins. In the
second section we present a short primer on probability theory; we review
some of the basic concepts. In the third section we describe how biological
sequences are obtained and the common strategies employed to analyze
them. In the fourth section, we describe the methods used to collect high
throughput gene expression data. We also review the popular methods used
to analyze gene expression data.

There are many other important areas of functional genomics that we do
not address at all in this chapter. New experimental and analytical methods
are constantly emerging. For the sake of brevity we focused our discussion
on the areas that are most applicable to the remainder of the book. But, we
note that many of the analytical methods presented here can be applied
widely and without great difficulty to other data types than the ones they
have been presented with.

2.1 Some molecular biology

Here we present a focused review of molecular biology designed to give the
reader a sufficient background to comprehend the remainder of the book.
A thorough discussion is beyond the scope of this book and the interested
reader is referred to other textbooks (Alberts, Bray et al. 1994; Stryer 1995;
Nelson, Lehninger et al. 2000).

2 : Functional genomics

2.1.1 Central dogma of molecular biology

The central dogma of molecular biology is a paradigm of information flow
in living organisms (see Plate 2.1). Information is stored in the genomic
deoxyriboculeic acid (DNA). DNA polymerase, a protein that synthesizes
DNA, can replicate DNA so that it can be passed on to progeny after cell
division. During transcription, RNA polymerase, a protein that synthesizes
RNA, uses the information from genes contained in the DNA sequence to
produce messenger ribonucleic acid (mRNA). During translation, the ribo-
somal complex then uses mRNA as a template to synthesize proteins.
Proteins are involved in most biological processes and have a wide range
of functions, including enzymatic activity, transport, storage, and providing
structural integrity to a cell. In general it is the presence and activity of the
proteins that make a given cell unique and that permit a cell to react to
physiological circumstances or stresses.

2.1.2 Deoxyribonucleic acid

Deoxyribonucleic acid (DNA) molecules are the building blocks of life.
They contain the genetic material that is passed on through generations of
a species; they contain the blueprints for all of the proteins in an organism.
DNA is a long threadlike molecule composed by a linear chain of deoxyr-
ibonucleotide bases. There is great variability in the amount of DNA in the
genomes of different organisms (see Table 2.1).

DNA is composed of deoxyribonucleotides, which is constituted from a
deoxyribose, a sugar moiety, one or more phosphate groups, and a nucle-
otide base (see Figure 2.1). Deoxyribose is similar to the sugar ribose,
except it is lacking an oxygen molecule at the 2’ carbon. There are four
possible nucleotide bases that can be employed in DNA: adenosine (A) and
guanine (G) are purine bases, while cytosine (C) and thymine (T) are
pyrimidine bases (see Figure 2.2).

Table 2.1 Genome size for different species.

Organism Description Bases Genes

Epstein barr virus Virus 170,000 80
Mycobacterium tuberculosis Bacteria 4,400,000 3959
E. Coli Bacteria 4,600,000 4377
Plasmodium falciparum Malaria parasite 23,000,000 5268
Drosophila melanogaster Fruit Fly 123,000,000 13,472

Humans 3,000,000,000 30,000

2.1 Some molecular biology

PO, ACT,orG PO, ACT,oruU
HOCH, OH HOCH, OH
0] o
H H H H
OH H OH OH
Deoxyribose Ribose

Figure 2.1 Deoxyribose and ribose. Deoxyribose and ribose are sugar moieties that are the key
structural component of DNA and RNA bases respectively. In this figure the chemical structures of
these sugars are illustrated. Phosphate groups and bases bind the sugar moieties at the indicated
position to form deoxyribonucleotides and ribonucleotides.

NH, l(l)
N§C\C/N\\ H—N/C\c/N\\
I - | I o—H
H—CQN/C\N/ H2N—0§N/C\N
I I
H H
Adenosine Guanine
(0] NH,
[I |
R A N o
O—CQN/C—H O:CQN/C—H O:CQN/C—H
| |
I—|| H H
Thymine Uracil Cytosine

Figure 2.2 Nucleotide bases. The nucleotide bases are depicted here. The purines are illustrated
above; they are adenosine and guanine, while the pyrimidines are depicted below; they are thymine,
uracil, and cytosine. Adenosine can hydrogen bond with thymine or uracil. Guanine and cytosine
can hydrogen bond as well. Adenosine, guanine, thymine, and cytosine are commonly found in
DNA. In RNA, uracil is found instead of thymine.

Deoxyribonucleotides can be linked together through their phosphate
groups to form DNA polymer chains as depicted in Figure 2.3. The invariant
DNA backbone consists of the deoxyribose sugar and phosphate groups in an
alternating repetitive fashion. The bases, however, are the variable element in
DNA. The information contained in DNA is encoded within the sequence of
bases. Conventionally, DNA sequences are written to indicate the basesinorder
from the 5’ carbon end to the 3’ carbon end with the letters A, C, T, and G.

2 : Functional genomics

OCH, Base
/)
5
H H
o H

OCH, Base Figure 2.3 The phosphodiester bond. The
o) phosphodiester bond links nucleotides together.

Depicted here are two nucleotides in a DNA
polymer. The 5" nucleotide is at the top, and the

H H 3’ nucleotide is at the bottom. The phosphate
0 H group from the 3’ nucleotide binds the 3’ carbon
3

of the 5" nucleotide to form the phosphodiester
bond. DNA molecules are composed of millions
of bases strung together in this fashion.

The native three-dimensional structure of DNA is a double stranded helix
about20angstromsin diameter, in which the bases from both helices are in the
interior of the helix, and the backbone is on the exterior. The structure of DNA
is contingent on pairing between the bases. Through hydrogen bonding,
adenosine is able to pair with thiamine, and guanine can pair with cytosine.
But, the pairings are in the opposite direction. Consequently DNA exists as
two chains complementing each other running antiparallel (see Figure 2.4).

2.1.3 Ribonucleic acid

Ribonucleic acid (RNA) is similar to DNA in that it is a nucleic acid
polymer. However, instead of deoxyribonucleotides, RNA is composed of

Figure 2.4 DNA base pairing. DNA pairs with
its reverse-complement strand in an anti-parallel
fashion. So a DNA strand that runs from 5’ to 3’
will pair with a strand oriented in the opposite
direction. For hydrogen bonding to be satisfied A
and T nucleotides must line up, as must G and C

5 —DCGAAATGCATT— 3 |:> nucleotides. The two strands wrap together and
: Do : form a double helix where the nucleotides are on

: HEE : the interior and the phosphate backbone is on the
<:|3’ ~AGCTTTACGTAA- 5 exterior.

2.1 Some molecular biology

ribonucleotides; the key difference is that ribose serves as the sugar moiety
instead (see Figure 2.1). RNA has a ribose and phosphate backbone. The
bases are the same except for thiamine; it is substituted by uracil (U) as a
pyrimidine base pair. Uracil has similar hydrogen bonding properties to
thymine and can also pair with adenosine. Since the RNA bases are similar
to DNA bases, RNA can hybridize to DNA. Unlike DNA, RNA is rarely
found in double stranded forms and can be found having many different
complex structures (see Plate 2.2); it can fold back on itself and self-
hybridize, creating hairpin loops (see Figure 2.5). Base pairing is sometimes
imperfect in RNA.

RNA polymerase transcribes a DNA sequence into RNA by using DNA
as a template during RNA synthesis. The DNA templates have special short
sequences called promoter sites that indicate locations on the DNA strand
that RNA polymerase can bind and start transcription. RNA polymerase
synthesizes RNA in the 5’ to 3’ direction by using DNA as a base pair
template; the bases of the synthesized RNA are the reverse complement of
the template DNA strand. Consequently RNA bases match those of the
reverse complement strand of the DNA template perfectly, except that
thymine bases are replaced by uracil.

Functionally there are three major categories of RNA. Ribosomal RNAs,
or rRNA, are structural components of the ribosomal complex and are
involved in protein synthesis. Transfer RNAs, or tRNA, are small molecules
consisting of 70-90 base pairs that have a characteristic three-dimensional
structure (see plate 2.2) (Shi and Moore 2000). They carry individual amino
acids that are polymerized during protein synthesis. Finally, messenger
RNA, mRNA, is the carrier of genetic information from DNA and acts as
a template for protein synthesis.

After synthesis, mMRNA may be modified. In eukaryotes a cap sequence is
added on the 5’ end, and after cleaving extraneous nucleotides at the 3" end,
a long poly-A tail consisting of about 250 adenosine nucleotides is added. In
addition regions of mRNA called introns are spliced out, leaving other
regions known as exons that will be translated into proteins (see Figure
2.6).

The mRNA sequence can then be used for protein synthesis. Each series
of three nucleotides in the mRNA is called a codon. Each codon corres-
ponds to either a specific amino acid, a signal to start translation, or stop.

Figure 2.5 RNA hairpin loop. Here we AUGGCUA

illustrate a hypothetical mRNA hairpin loop. e e s et e ¢
The mRNA literally folds in on itself and self- ce 0 /
hybridizes. In the process a tight loop is formed. U A CCG A UN_ G

2 : Functional genomics

Protein

I
i Translation

Messenger RNA — -il — —E- 1 AAA..AAAA

i Splicing

Transcription

Primary Transcript

Promoter Exon 1 Exon 2 Exon 3

Gene |} | I |

1
Transcription Translation ~~Introns Translation Poly-A Transcription
Start Start Stop Signal Stop

Figure 2.6 From gene sequence to protein. The gene is physically embedded in the genomic DNA
sequence. The lowest bar represents the DNA gene sequence. Black and grey boxes indicate specific
sequences in the gene with functional significance. Genes have promoter sites that bind the

transcription machinery. DNA transcription starts at the transcription start site and extends to the
transcription stop site. A primary transcript, which is the precursor to mRNA, is produced. A 5’ cap
is appended. The transcript is cleaved at the poly-A signal site and a poly-A tail is appended. Introns
are cut out of the transcript, and the messenger RNA is produced. The messenger RNA consists of
the 5" and 3’ untranslated regions, the exons, and the appended poly-A tail and 5’ cap. The mRNA is
then translated into protein. Translation occurs between the translation start and stop sites.

The genetic code specifies the corresponding amino acid for each codon (see
Table 2.2). Codons are recognized by specific tRNA molecules that carry
the appropriate amino acid that corresponds to the codon in the genetic
code. Those amino acids are bound together to synthesize a polypeptide.

2.1.4 Genes

Genes are the functional and physical units of heredity that are passed from
parent to offspring. In the modern era genes are increasingly thought of as a
segment of DNA sequence that corresponds to a particular protein. Clas-
sically, scientists have studied genes by observing phenotypes, or observable
traits, in organisms and how they were transmitted to their offspring. The
observable traits are accounted for by gene sequence variations. At the
molecular level, these variations usually confer differences in the protein
product’s structure or production.

Gene sequences have complex structures including a promoter region
where the RNA transcription machinery binds, a transcription initiation

2.1 Some molecular biology

Table 2.2 The genetic code. Here we list each of the 64 possible codons. Each codon is three
nucleotides in the messenger RNA or DNA. Each codon corresponds to a particular amino acid. For
example TTT corresponds to phenylalanine and GTT corresponds to valine. Note that some
codons specifically indicate the end of the protein. Many amino acids have multiple codons and the
third position in the codon is usually the most degenrate.

Position 2
Position 1 T C A G Position 3
Phe Ser Tyr Cys T
T Phe Ser Tyr Cys C
Leu Ser END END A
Leu Ser END Trp G
Leu Pro His Arg T
C Leu Pro His Arg C
Leu Pro Gln Arg A
Leu Pro Gln Arg G
Ile Thr Asn Ser T
A Ile Thr Asn Ser C
Ile Thr Lys Arg A
Met Thr Lys Arg G
Val Ala Asp Gly T
G Val Ala Asp Gly C
Val Ala Glu Gly A
Val Ala Glu Gly G

site where RNA synthesis begins, and a transcription stop site where RNA
synthesis is terminated. A translation start site indicates the position at
which protein synthesis begins; a translation stop site indicates where
protein synthesis ends. The 5" untranslated region is between the transcrip-
tion initiation site but before the translation start site; it codes DNA that
will become part of the RNA transcript, but will not affect protein synthe-
sis. Similarly the 3’ untranslated region is after the translation stop site but
before the transcription stop site. Eukaryotic genes have a polyadenylation
signal which specifies the position at which the mRNA is cleaved and a
poly-A tail is appended. Eukaryotic genes also have introns that are spliced
out of transcript before protein translation occurs. Figure 2.6 provides a
schematic of a gene structure.

Gene expression, or mRNA transcription, is partially regulated locally at
the promoter regions of a gene. Promoter regions are located upstream of
the transcribed region of a gene on the same DNA strand. They bind
transcription factor proteins that give RNA polymerase access to the gene
and permit RNA transcription. These sequences can bind other activating
and repressing proteins that affect gene expression depending on the phy-
siologic condition that the cell is in. Enhancers are other distant regulatory

2 : Functional genomics

sequences found in eukaryotes that can be located thousands of base pairs
away from the gene and can be located on either DNA strand. Stimulatory
proteins can bind enhancers and affect the expression of distant genes.

2.1.5 Proteins

Proteins are the workhorses of an organism. They are intimately involved in
all biological processes. Enzymes catalyze biological reactions, including
those that are involved in metabolism and catabolism. Transport proteins
facilitate the movement of small and large molecules through membranes.
Transcription factors are special proteins that regulate the production of
mRNA for specific genes. Chaperones help other proteins fold into the right
shape. Polymerase proteins facilitate DNA replication, and RNA synthesis.
Structural proteins give cells shape and stability.

Proteins are linear chains of amino acids. An amino acid is composed on a
central carbon atom attached to an amino group, a carboxyl group, and a
distinctive side chain (see Figure 2.7a). There are 20 different amino acids,
each with unique biochemical properties (see Table 2.3). They are linked
together by a strong peptide bond between the amide and carboxyl groups
of the amino acids (see Figure 2.7b). Amino acid sequences are written from
the amino (N) to the carboxyl (C) end. Since some amino acids are more
similar to each other than others, it has been observed when comparing
similar but evolutionarily related proteins that certain pairs of amino acids
are statistically more likely to substitute for each other.

(a) o H
1
C— C—NH
oH—" | 2
R
® o O H

T I

C—C—N=—=C— C—NH,
OH~~ I [
R H R

Figure 2.7 (a). Basic amino acid structure. The basic amino acid structure is indicated above.
Each amino acid has a central carbon. It is attached to a hydrogen atom, a carboxyl (COOH) group,
and an amino group. It is also attached to a variable R group. There are 20 different possibilities for
the R groups, each resulting in a different amino acid with different biochemical properties. (b) The
peptide bond. This is a schematic illustration of the peptide bond. A hydrogen atom from the amino
group of one amino acid and a hydroxyl group from the other amino acid are removed for a net loss
of a single water molecule. The nitrogen from the amino group and the carbon from the carboxyl
group are bound together. This process is repeated many times for polypeptides. The C-terminal end
of this short dipeptide is on the left; there is a free carboxyl group. The N-terminal end of this
peptide is on the right; there is a free amino group.

2.1 Some molecular biology

Table 2.3 The amino acids. We list the 20 different amino acids along with both their three- and
one-letter abbreviations. In addition we list the chemical structure of their side chain. In the final
column we list their salient chemical property.

3-letter 1-letter Chemical
Amino acid symbol symbol Side chain properties
Alanine ala A CH?- Alipathic
Arginine arg R HN = C(NH2?)-NH-(CH?)*- Basic
Asparagine asn N H2N-CO-CH?- Acidic
Aspartic acid asp D HOOC-CH?*- Acidic
Cysteine cys C HS-CH?- Sulfur group
Glutamine gln Q H2N-CO-(CH?)*- Acidic
Glutamic glu E HOOC-(CH?2)*- Acidic
acid
Glycine gly G NH2-CH?-COOH Alipathic
Histidine his H NH-CH = N-CH = C-CH?- Basic
Isoleucine ile I CH3-CH?-CH(CH?)-CH(NH?)- Alipathic

COO

Leucine leu L (CH3)?2-CH-CH?2- Alipathic
Lysine lys K H?>N-(CH?)4- Basic
Methionine ~ met M CH3-S—(CH2)*- Sulfur group
Phenylalanine phe F Ph-CH?- Aromatic group
Proline pro P NH-(CH?)*~CH-COOH Imino acid
Serine ser S HO-CH?*- Hydroxyl group
Threonine thr T CH3-CH(OH)- Hydroxyl group
Tryptophan trp W Ph-NH-CH = C-CH?- Aromatic group
Tyrosine tyr Y HO-p-Ph-CH?- Aromatic group
Valine val A% (CH3)*-CH- Alipathic

The amino acid sequence of a protein, known as a protein’s primary
structure, determines the protein’s three dimensional structure and function.
Non-covalent hydrogen bonding between the amino and carboxyl groups
from different amino acids allows the linear chain to fold into structures
known as alpha helices and beta sheets. Beta sheets are formed when peptide
strands line up next to each other in either a parallel or antiparallel fashion
(Figure 2.8). On the other hand, alpha helices are formed when peptide
strands coil up; amino acids hydrogen bond to other amino acids above and
below it in the helix (Plate 2.3). These structures constitute the protein’s
secondary structure. Protein function is largely dictated by the protein’s
three-dimensional, or tertiary, structure. A ribbon diagram depicting the
backbone of a protein is displayed in Plate 2.4 (Williams, Zeelen et al.
1999). Note thatthe secondary structure is an evident feature in this structure.

Proteins are capable of forming complexes with other proteins and also
interacting transiently with them. Proteins can often bind DNA or RNA.
For example, ribosomal proteins involved in protein synthesis may bind

2 : Functional genomics

0
i B
/CN \C/‘\N/C N\C N/

H H
/C\-/N \C/—\N/C\—/N \c/—\N/
/C\‘/N \C/*\N/C\[:CE‘/N \C/‘\N/

(a)

/C*N\CAN/CYN\CAN/

\N/-\c/ \;/C\N/‘\C/N\EQ/C\
0
i”\clwi \C/°W

(b)

Figure 2.8 Hydrogen bonding in beta sheets. (a) Parallel beta strands. The hydrogen bonding
between parallel peptide strands is depicted in this figure with dotted lines. The arrow indicates the
N to C direction of the peptide. The boxed C indicates the amino acid alpha carbon. Hydrogen
bonding is between the amino hydrogen and the carboxyl oxygen. (b) Antiparallel beta strands.
Hydrogen bonding between antiparallel beta sheets is similarly depicted.

mRNA, whereas transcription factors that regulate gene expression would
bind specific DNA sites.

2.1.6 Biological function

One of the goals of functional genomics and its approaches is to understand
what the function of each of the genes and their protein products is. By
function, we mean what the role of the gene or protein is in an organism. To
this end, many modern high throughput functional assays are becoming
available. For example yeast-2-hybrid assays can assess what other proteins
a single protein binds to. Gene expression microarrays can indicate the

2.2 Probability theory and statistics

conditions under which genes are expressed. Systemic deletion approaches
can demonstrate gene function by demonstrating functional deficiencies in
an organism when the gene is removed.

But, function is a very protean concept, and it can mean very different
things in different contexts. For example, a medical geneticist might note
that people lacking a particular copy of a specific gene are at high risk of
cancer; she may say that the function of the protein product of the gene is
“tumor suppression”. On the other hand a cell biologist may ascertain that
the protein product of the gene localizes to the nucleus; she may suggest that
the protein functions as a “nuclear protein”. A biochemist may use sophis-
ticated assays to determine that the protein binds to DNA and may say it is
a “DNA binding” protein. A molecular biologist may render the gene
dysfunctional in individual cells and see that cell growth arrests, and decide
that the gene is a “cell growth” gene. All of these same functions could
coexist for the same gene or protein, and all are very relevant to under-
standing the role of a gene in an organism.

It is important to realize that, as we move forward in this new era of
genomics, while high throughput functional assays may give broad func-
tional information about all the genes simultaneously in an organism, the
type of functional information we learn can be quite narrow and often
ambiguous.

2.2 Probability theory and statistics

In this section we present a brief review of probability theory. Here we focus
on the basics that are necessary for this book. For many readers this will be
at a very elementary level. Other readers are encouraged to spend time to
thoroughly understand this material, as it is the cornerstone for the methods
that we will present, and indeed, for much of bioinformatics.

The content of this section is described in the frame box. This section
introduces the reader to basic concepts in probability theory, probability
distribution functions, concepts in information theory, statistical measures,
and performance measures.

2.2.1 Probability

A probability is a number between 0 and 1 that is assigned to a particular
observation or event; the value is proportional to our expectation of the
likelihood of the event occurring. We say the probability of an event is 0 if it
can never happen, and is 1 if it will always happens. The number assigned
represents the fraction of times that the event is expected to occur over a large

2 : Functional genomics

1) Probability theory 4) Population statistics
a) Conditional probability a) Mean
b) Probabilistic independence b) Median
c) Bayes’ theorom ¢) Variance
2) Probability distribution d) Z-scores
functions 5) Performance measures
a) Binomial distribution a) Accuracy
b) Poisson distribution b) Sensitivity and specificity
3) Information theory ¢) Precision and recall
a) Entropy of a distribution
b) Kullback-Liebler distance

number of trials. We say the probability of an event A is P(A). Frequently, we
assume that if an event A has been observed to occur 7 times out of a large
number of N instances then P(A) is equal to #/N. To illustrate using a simple
example one can consider a fair coin toss. The likelihood of the coin landing
heads side up is equal to that of the coin landing tails side up. If the coin is
tossed 100 times, 50 of the observed outcomes will be heads. Thus if we
denote the heads outcome as event A, P(A) is found to be 0.5.

We speak of the probability space as the collection of all possible events
that can happen. In general the sum of all of the possible observations must
be 1; that is, no matter what, at least one of the possible observations must
be observed. In the case of the fair coin toss the probability space is
comprised of heads or tails, the two possible outcomes that could occur
for the event.

2.2.2 Conditional probability

Often, the probability of an observation depends on the occurence of other
events. Conditional probability is the probability of an event occurring in
the context of another event. For example, consider the probability that a
house has been burglarized. That probability might be increased if it is
known that a burglar has been spotted in the neighborhood. On the other
hand, that probability might be reduced if it is known that the house has an
alarm in good working order that has not been set off. So the probability of
the event is dependent on other events or other knowledge items that
influence our expectation that the event has or has not occurred. Formally
we define conditional probability as:

P(A|B) =

2.2 Probability theory and statistics

Here we say that the probability of event A is being conditioned on B.
P(A|B) is the probability of event A given that event B is known to have
occurred and P(A, B) is the probability that both event A and event B have
occurred. We can rearrange the equation above to read as:

P(A, B) = P(A|B)P(B)

This is a particularly useful expression. Often times we know the probabil-
ity of an event, and the probability of a second event given the first. The
above equation allows us to convert those probabilities into a probability of
both events occurring.

We can extend the above expression in general:

P(A1, Ay ... Ay) = P(A1)P(A2|A1)P(A3|A, As)
P(A4|A13 Als A3) . P(AIZ|A], A29 L) An—l)

2.2.3 Independence

We say two events are independent of each other one when the possibility of
one event occurring is not affected in any way by the other event. Formally
we define independence between two events A and B:

P(A|B) = P(A)

So the probability of A is unchanged regardless of the outcome of B. For
example the probability of a coin being heads on the second flip is 1/2.
Whether the coin is heads or tails on the first flip has no influence on this.
On the other hand, the probability that an ace is the second card drawn
from a deck of cards is intimately dependent on whether or not an ace was
drawn first. If an ace was not drawn, the probability is 4/51. If it were
drawn then it is 3/51. So here, we cannot say that the probabilities of the
second draw and first draw being aces is independent. The independence
assumption can be restated after some rearrangement:

P(A, B) = P(A)P(B)

In fact, we can extend this relationship to # independent events:
P(A1, Ay ... Ay) = P(A1)P(A2)P(A3)P(A4) ... P(Ay)

This is a very useful equation if we know the probabilities of multiple events
occurring, and can assume that they are independent of one another. For
this reason, the independence assumption is often used in bioinformatics

2 : Functional genomics

and in text mining, even if it does not apply perfectly, as it provides easy to
compute, quick and dirty estimates of an observation. For example, the
probability of an amino acid sequence can be estimated as the multiplicative
probabilities of each of its amino acids. While this is far from accurate, it
offers a simple starting point.

2.2.4 Bayes’ theorem

Bayes’ theorem allows us calculate the conditional probability of an event
using probabilities of the conditions given the event. For example, we may
know the probability that lung cancer patients have a smoking history. We
can use that information to calculate the probability of lung cancer in
smokers. We use the definition of conditional probability:

P(A, B) _ P(B|A)P(A)

P(B) ~ P(B)

P(A|B) =

If all of the possible observations for A are A, for all i, then we can make the
substitution:

P(B) = ZP(A,-, B)

and further rearrangement gives:

_ P(BJA)P(A)
P(A[B) = S P(B|A,)P(A;)

Bayes’ theorem has many practical applications in bioinformatics. It can be
used to update our probability of an event given addition knowledge. For
example, we may wish to calculate the probability of a protein sequence
having a biological function A, given that an assay B is positive.

Assume that we know the following parameters: (1) the prior probability
of the biological function A, P(A), (2) the probability of assay B being
positive if the assayed protein has function A, P(B|A), and (3) the probabil-
ity of assay B being positive if the protein does not have function A, P(B|A).
We can use the above formula to determine the probability that this protein
does in fact have function A in the context of the new assay information. In
this case the formula reduces to:

P(B|A)P(A)

PAIB) = b BIAP(A) + P(BIA) — P(A))

2.2 Probability theory and statistics

2.2.5 Probability distribution functions

In many cases there are many possible outcomes that might occur for
a given event. In these cases we can define probability distribution functions
(pdfs). These functions can either be continuous or discrete depending on
the nature of the probability space they correspond to. They assign numer-
ical probability values to each of the possible observations. They must have
positive values for each of the possible observations. In addition the total
probability over all possible observations must be one:

> flx)=1

xXex

flx)>1 xey

where y is the space of all possible observations, and f is a discrete
probability distribution function. If f is a continuous probability
distribution we require that the integral of f over the space of possible
observations is one:

In Figure 2.9 we have displayed some common probability distribution
functions.

As an example of a probability distribution consider the example of N
binary trials of an event that occurs with probability p. What is the prob-
ability that # of those trials is positive? The number of possible ways that n
out of N trials can be positive is

N\ N
<n> 1N —n)!

The probability for each of these trials is:

p"(1—p)N"

So the probability of # out of N trials being positive is:

P(n) = (N)p"u N

n

2 : Functional genomics

0.25 4

0.2

0.15

0.1 o

0.05 o

D
)
D
()
D

o
N
N
o]
40
-
o
-
\S]
-
AO
-
[«
-
m&)
N
o

(a)

0.25 4

0.2

0.15{ o

0.05 °

(b)

0.75 1

0.5 4

0.25 1

0 0.5 1 1.5 2 25 3 3.5 4

(©

Figure 2.9 Different probability distribution functions. (a) Binomial distribution. A discrete

distribution representing the probability for 7 possible events, where the probability of each event is
0.15, and 20 trials are attempted. (b) Poisson distribution. A discrete distribution that approximates
the binomial distribution. (c) Exponential distribution. One example of a continuous distribution.

2.2 Probability theory and statistics

Figure 2.9 (Continued) (d)The normal distribution. A second example of a continuous
distribution.

This discrete probability distribution function is known as the binomial
distribution (see Figure 2.9a). The Poisson distribution can be used to
approximate this distribution if Np is small:

ATy

P(n) = Ee’

where A is Np. This is illustrated in Figure 2.9(b).

2.2.6 Information theory

This book uses some of the basic concepts from information theory in
some of the chapters. The development of information theory stems from
transmitting coded messages, but has found wide application in many areas.

Suppose we are trying to transmit information about a sequence of events
using binary bits. To create as short a message length as possible, one might
select a code so that events that are expected to be more frequent are
transmitted with shorter sequence of bits, and rare events can utilize longer
sequences of bits. In fact, the code length that will result in the shortest
possible message length is

—log, (pi)

where p; is the probability of the event i that is being coded. If we have
optimally coded a sequence of events that occur with probability p we can
calculate the average message length:

2 : Functional genomics

I=— ZP:‘ log, (p:)

The above entity is also known as the entropy of the distribution p. If p is the
uniform distribution where all circumstances have equal probability, the
entropy is the largest possible. In this case we have no cause to expect
one event more than another, and we have no prior prejudices. In this case
the entropy is maximal. The other extreme of course is if the probability of
one of the events is 1, while the probability of the other events is 0, then the
entropy of that distribution is zero. In this case we always know exactly what
the outcome will be, and there is no reason to expect anything else. Entropy is
therefore a measure of the information contained in a distribution.

One way to compare two different distributions is to consider what would
happen if we coded events with an incorrect theoretical distribution g, while
the actual probability of events was p. The Kullback-Liebler (KL) distance is
the average difference in the number of bits in the message and the optimal
number of bits. For a given event 7 this difference in message length is:

log, (pi) — log, (gi)

Averaged over all messages:
KL(pllq) = Zpi(logl (p;) — log, (q)) = ZP" log, (%)

The KL distance is a very helpful means of quantifying the difference
between a theoretical and practical distribution.

2.2.7 Population statistics

There are several key statistical parameters that are commonly used to
describe a collection, or population, of data. The mean and the median
are measures of the central tendency of the data. The standard deviation
and variance are measures of the spread of the data. These parameters can
be calculated for a collection of data and also for a probability distribution
function.

The mean, x, for a collection 7 data points is calculated simply:

x:%in

where x; represents the i-th data point. The major limitation of the mean as a
measure of central tendency is that it is influenced markedly by extreme values.

2.2 Probability theory and statistics

So, often, the median is a more valuable measure. When the data points are
sorted in increasing order, the median is the value that is in the middle. Half of
the data points should be greater in value and half should be less.

For a distribution function, the mean can be calculated as well:

=Y xif(x)

Xi€EX

For continuous distribution functions the summation is replaced by an
integral. For a distribution function, the median is the value that half
the probability mass is less than, and half the probability mass is greater
than.

The variance, o2, can be calculated for a collection of points:

The variance is a measure of the spread of the data. The standard deviation,
o, is the square root of the variance. If all of the data points are centered
right at the mean, the variance is zero. As the points are spread further out,
the variance increases. For a probability distribution function:

or =Y flxi)(xi — %)

XiEX

For a continuous distribution, the summation is replaced by an integral.

One standardized measure of the “extremeness” of a given data point in
the context of a collection of data is the z-score. The z-score is a measure of
the number of standard deviations that a particular value is away from the
mean. We can calculate a z-score as

If the data are normally distributed (see Figure 2.9d), then only about 32%
of the data has z-scores greater than one or less than negative one; only
about 5% of the data has z-scores greater than two or less than negative
two.

2.2.8 Measuring performance

As a final issue we introduce some statistical measures that are commonly
used to assess the performance of algorithms. Suppose that we have an
algorithm that makes binary predictions on a collection of data. The

2 : Functional genomics

algorithm can make a positive or negative prediction. Some of those pre-
dictions might be true, while others might be false. The results can be
divided into true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN) — see Figure 2.10. There are a number of key
performance measures that we will use repeatedly in this book that we
will define here. Sensitivity and specificity are often used to measure the
success of machine learning methods. The sensitivity is the fraction of the
cases that the algorithm should have called positive that were correctly
called. In other words:

Sensitivity = TP/(TP + FN)

A complementary measure is the specificity. The specificity is the fraction of
the cases that the algorithm should have called negative that were correctly
called. In other words:

Specificity = TN/(TN + FP)

The most sensitive approach is to call every case as positive, while the most
specific approach is to call every case as negative. Accuracy is the fraction of
cases called correctly:

Accuracy = (TP + TN) /(TP + TN + FP + FN)

Truth
Positive Negative
< " True False
o
5 Positive Positives Positives
2
e
o
. False True
Negative Negatives Negatives

Figure 2.10 Prediction results. The results of any binary predictive algorithm can be organized as
above. The class predictions can be divided into the upper and lower rows as positive and negative
predictions. Similarly, a gold standard can be referenced and the “correct” answers can be obtained.
Cases can be divided up into the left and right column depending on the gold standard. We can
count the number of cases that fall into each of the four resulting categories. A good predictive
algorithm should have a high percentage of true positives and true negatives, and few false positives
and false negatives.

2.3 Deriving and analyzing sequences

Another set of measures used commonly in the text mining literature is
precision and recall. These measures are very valuable when the positive
cases far exceed the negative cases. Under these circumstances a reasonably
high specificity can be deceptive. Recall is identical to sensitivity. Precision
is the fraction of positive calls that are truly positive:

Precision = TP/(FP + TP)

These key measures are often used to evaluate different predictive algo-
rithms, and will be used frequently in this book.

2.3 Deriving and analyzing sequences

High throughput sequencing technology has made sequences for genes and
proteins readily available (see Figure 2.11), and has permitted the sequen-
cing of the genomes of hundreds of different organisms. The rate at which
new nucleotide and amino acid sequences are being produced far exceeds
our ability to thoroughly experimentally investigate the genes and proteins
they derive from. While direct experimentation is the only absolute way to

100,000,000

a . I|I|I‘I‘I‘I|I|
10,000 I I IIIIIIIIIII IIIII
1oo-

Total sequences

Al < (o] [o0] o [aV] < © o] o [aV]

o o] (o] [ee] ()] (o] ()] [*)] (o)) o o

(o] (o] (o] (o] [o)] [o)] [o)] [o)] [o)] o o

— — — — — — — — — [aY] [aY]
Year

Figure 2.11 Growth of the GenBank Sequence Database. The Genbank database has grown
dramatically over the last 20 years as sequencing technology has rapidly improved. The y-axis is
displayed in a logarithmic scale; the growth of the database appears exponential.

2 : Functional genomics

understand the function of a gene, analysis of its sequence often provides
very good suggestive functions quickly. A host of different sequence analysis
strategies have become available, including strategies to compare sequences
to one another, to identify common features in families of similar sequences,
to identify small patterns in sequences that might indicate functionality, and
to cluster similar sequences (Durbin, Eddy et al. 2003). All of these ap-
proaches offer the opportunity to transfer knowledge from well-studied
genes to newly discovered genes once their sequences become available.
Sequence analysis is relevant to automated mining of the scientific litera-
ture in two different ways. The first is using the scientific literature to
directly enhance sequence analysis methods. Text mining methods can
provide clues about what the common function of the aligned domains is,
and can actually be used to improve alignments as well. Second, sequence
analysis can be useful in extending text about genes to other genes. Very
little is known about most genes; in most cases we are inferring knowledge
from a few well-studied genes. Since literature is sparsely available, effective
design of functional genomics algorithms requires strategies to make the
available literature apply to poorly studied genes. Sequence similarity is
one avenue to help us decide which genes correspond with what other
genes. If a well-studied gene is similar to a poorly studied one, there is a
good chance that they share biological properties and some of the literature
from the well-studied gene may apply to the poorly studied one as well.
The content of this section is outlined in the frame box. The first part of
this section introduces the reader to the basics of protein and nucleotide
sequencing technology. The remainder of the section focuses on sequence
analysis techniques. The reader is introduced to pairwise sequence com-
parison methods first. We describe the standard methods to score sequence
alignments, and dynamic programming methods that can be used to
find optimal sequence alignments by maximizing that alignment score. We
then describe the popular BLAST database query algorithm. The later part
of the chapter focuses on methods to analyze groups of sequences. We

1) Sequencing technology 3) Comparing multiple sequences
a) Nucleotide sequencing a) Multiple sequence alignments
b) Polypeptide sequencing b) Consensus sequences

2) Comparing two sequences ¢) Weight matrices
a) Scoring alignments d) PSI-BLAST
b) Dynamic programming to e) Hidden Markov models

optimize alignments
¢) BLAST algorithm to query
sequence databases

2.3 Deriving and analyzing sequences

present a discussion of multiple sequence alignment methods, weight matrices
to recognizes sequence profiles, PSI-BLAST, and hidden Markov models.

2.3.1 Sequencing

High throughput sequencing technologies have produced a wealth of data
in nucleotide sequences and amino acid sequences. High throughput DNA
sequencing has fueled the rapid growth of available sequences in GenBank
and has been the driving force for efforts such as the human genome project.

DNA is sequenced with the Sanger Dideoxy method depicted in Plate 2.5.
It is a fast and simple method that works on a single strand of DNA, and
provides the sequence of the reverse complement (Stryer 1995). The se-
quencing approach uses DNA polymerase to synthesize a complementary
sequence. For DNA synthesis to be possible, DNA polymerase must be
incubated with the DNA strand and with the four deoxyribonucletide
bases that serve as the building blocks for the complementary strand. In
addition, fluorescently tagged dideoxyribonucleotide bases are added as
well; each base is tagged with a different color. Since they lack the hydroxyl
group at the 3’ carbon, the tagged dideoxyribonucleotides are chain ter-
minating nucleotides; they can be appended to the 5’ end of a DNA strand,
but cannot be further extended from their 3. Once DNA polymerase
happens to use a dideoxy base instead of the normal deoxyribonucleotide
base by chance, the DNA chain becomes terminated. Since each type of
didieoxy nucleotide is tagged with a different colored fluorescent dye, the
newly synthesized DNA fragment will be tagged with a fluorescent dye the
color of which corresponds to the final base in the fragment. Different
length fragments are produced, each labeled by a specific color correspond-
ing to the last nucleotide incorporated into the sequence. At this stage the
fragments are sorted by length using a technique such as electrophoresis or
chromatography and run through a detector. The sequence of colors cor-
responds to the DNA sequence.

Shotgun assembly strategy is the preferred approach for modern genome
sequencing. Genomic DNA is decomposed into random small overlapping
fragments; the Sanger dideoxy sequencing technique is used to rapidly
sequence these fragments. Genome assembly algorithms piece together the
resulting small sequences to obtain the sequence of the original genome.

Protein sequences are determined using Edman degradation (Figure
2.12). Sequencing proceeds from the N-terminal side of the protein. Phenyl
isothiocyanate is a compound that reacts specifically with the amino group
of the N-terminal amino acid of the protein. Acidification of the protein
solution causes removal of the N-terminal amino acid bound to phenyl
isothiocyanate. The single amino acid bound to phenyl isothiocyanate
is then identified through high pressure liquid chromatography (HPLC).

2 : Functional genomics

X SbOo-

a2 ./

HPLC

Figure 2.12 Edman reaction for protein sequencing. Phenyl isothiocyanate (PI) is used in a
sequence of reactions known as Edman degredation to sequence proteins. Phenyl isothiocyanate
reacts and binds the N-terminal end of the protein. Acidification then causes the detachment of the
terminal amino acid, which can then be identified by high pressure liquid chromatography (HPLC).

Removal of the N-terminal amino acid exposes a new N-terminal amino
acid. The process is then repeated on the remaining protein, to identify the
next amino acid.

Unlike DNA sequencing, protein sequencing is a relatively costly and
laborious process. In practice most protein sequences are inferred from
DNA sequences translated through the genetic code.

2.3.2 Homology

While significant amounts of protein and nucleotide sequence information
is currently available, little is known about most genes. While it is desirable
to directly study all genes experimentally, detailed experiments for each
gene in each organism is not feasible. Fortunately, genes and proteins are
often related to one another through evolution. We refer to such pairs of
genes as homologous. Genes with similar sequences are often evolutionarily
related, and have similar functions that have been conserved; therefore we
can guess the function of a gene by finding other similar genes that have
been well studied. Computational algorithms can help us assess whether
sequences are sufficiently similar to be homologous. For a more compre-
hensive discussion of this subject the reader is referred elsewhere (Durbin,
Eddy et al. 2003).

In the remainder of this section we will discuss protein sequence com-
parison and analysis; however, everything that is presented can be applied
to nucleotide sequences as well without any difficulty.

We seek to address the question of similarity between two sequences. The
most straightforward strategy to look for similarity between sequences is to
look for exact matches between subsequences. Under these circumstances
the challenge of homology searching is reduced to string matching. The first
difficulty with this strategy is that matches are rarely exact, and there are
frequently minor substitutions, insertions and deletions that have occurred

2.3 Deriving and analyzing sequences

in biology. For instance, two sequences might be related evolutionarily and
may be very similar, but chance may have deleted a five amino acid loop in
the second sequence without changing the structure or function of the
protein significantly. Additionally, since certain amino acids are relatively
similar to each other, certain particular amino acids can substitute for
others without significantly affecting the structure or function of the protein
either. These substitutions are referred to as conserved substitutions. Since
matches are rarely exact, a more flexible approach must be taken.
Historically, biologists used dot plots to manually identify regions of
similarity in two protein sequences despite insertions, deletions, and sub-
stitutions (see Figure 2.13). In a dot plot the two sequences that are being
assessed for homology are arranged in a matrix so that the first sequence is
running down the left side, while the second is running across the top. The
row of a box in the matrix corresponds to a position in the first sequence;
the column that a box is in corresponds to a position in the second
sequence. A dot is placed in each box where the amino acids or nucleotide

Alc|T|T|T |G |G G AT
Ale | e ¢ ¢ |0
Ale® | o ¢ ¢ |0
c ¢
T ¢ |
T L 2
G ¢ ¢ ¢
C ¢
G LK ¢
Ale| e ¢ ¢ |
G ¢ |0 ¢
A ¢ ¢ ¢
A ¢ ¢
C ¢

Figure 2.13 Using the dot plot to compare sequences. Two similar sequences can be compared
with the dot plot. One sequence is listed across the top, with the second along the side of the matrix.
Dots are placed in the boxes where the corresponding nucleotides or amino acids are identical.
Diagonals indicate identical regions in the sequence.

2 : Functional genomics

bases from both sequences in corresponding positions are identical. The
pattern of dots allows regions of similarity to become visually apparent.

2.3.3 Sequence alignment

Sequence alignment is the computational approach to comparing se-
quences. Alignment algorithms strive to arrange the sequences alongside
each other in a way so that they match up with each other as best as
possible. The goal of pairwise alignment is to compare two sequences to
each other according to their similarities, while multiple alignment strives
to organize a family of sequences so that their commonalities become
apparent. In Figure 2.14 we present an example of two aligned sequences.
The bars (]) between the sequences indicate identical matches, while the
colon (:) indicates functionally conserved amino acids. The dashes in the
sequences indicate that a gap was inserted in that sequence to allow it to
match up appropriately with the other sequence.

Critical to any algorithm that aligns sequences is developing a scoring
function that is proportional to the quality of the alignment that the
algorithm can optimize. Such a scoring function must reward matches
between the sequences, and penalize mismatches. Since insertions and
deletions are possible evolutionarily, alignments and scoring functions
must account for the possibility of gaps. In general, these scoring systems
are additive functions; there are positive terms for matches, and negative
terms for mismatches and gaps.

Some amino acid substitutions are more likely than others. In fact amino
acids that are physiologically similar may replace each other during evolu-
tion with relative frequency compared to dissimilar amino acids. A good
scoring function should not penalize all mismatches equally, but rather
should take into account the probability that a particular substitution has
occurred in the context of evolution. Investigators have devised substitution
matrices that assign a score to each pair of amino acids; the scores for each
pair are based on the ratio of the probability that two amino acids could

AARY K FIE

o .
s Figure 2.14 Example of two short aligned sequences. The
bars between the sequences indicate identity at that position.
The dots between the two sequences indicate similar but not
APR —— FCE d

identical amino acids. The substitution score between the amino
k_Y_} acids at each position is listed. Also a gap is placed in the second
sequence to optimize the alignment. The penalty score of the
2 1 6 =5.59-24 gapin this example is —5.5. The total score of an alignment is
the sum of the substitution scores and the gap penalty. In this
case the score is 14.5.

Gap

2.3 Deriving and analyzing sequences

have replaced each other during evolution to the probability that the same
two amino acids are observed at random in two unrelated sequences. A
larger score between two amino acids indicates the possibility that the
substitution is a functionally conserved position.

Assuming that the probability of each of the amino acids is independent,
given two aligned sequences x and y where the amino acid in the i-th
position of the alignment for sequence x is x;, the probability that an
alignment is a random occurrence can be represented as follows:

Ox,y = H 9x;dy;

where q,, is the frequency of amino acid i. We are assuming that the amino
acids at each position are entirely independent. Similarly the probability
that the alignment is a consequence of evolution can be represented as

Pyy= prf, yi
i

where p, _, is the probability that amino acids x; and y; are derived from an
unknown, but common parent. The log likelihood ratio of these two models is:

oe(g:2) =3 o)
X,y 7 Xi1Yi

This is an alignment score. Substitution matrices contain estimates of the log
term for each of the possible amino acid pairs. For each pair the approxi-
mate frequencies of amino acids are used to estimate g and the estimated
probability of a substitution between two specific amino acids in evolution-
arily related sequences is used for p. One substitution matrix, the PAM250
matrix, is depicted in Figure 2.15 (Pearson 1990). Substitution matrices are
used to score matches and mismatches during sequence alignment. The
alignment score is the sum of these matrix terms.

Gaps in alignment are used to account for possible insertions and dele-
tions during evolution. Typically gaps are penalized as a function of only
their length, and not of their content. A common form for gap penalties is
the affine gap penalty function:

y@g)=06—(g—1e

where g is the length of the gap, d is a penalty for opening a gap, and ¢ is a
linear penalty for extending the gap. The gap-opening penalty insures that
alignments are penalized for having an excessive number of individual gaps.

2 : Functional genomics

A R|N|D|C Q| E G| H | L K| M F P S[T[|[W]Y]|V
A 2
R 2| 6
N 0 0 2
D 0o|-1[2 4
C 2|4 -4]1-5] 4
Q 0 1 1 2 | -5 4
E 0| -1 1 3|52 4
G 1[8]0 1]18]-1]0 5
H 1] 2 2 1]1-83]3 1 21 6
| 1|2|=2|=2|=2]=2|2]383[-=2]35
L —2|-3[-3|4|-6[2|-3[-4]|-2]2 6
K -1[38 1 0 |-5[1 0 |2 0|-2|-8]5
M -1]l]0|-2]|]-8|-5[1|[-2]|]-83|-2]2 4 0 6
F 4| 44| 6| -4|-5|5[5]-2]1 2 [-5]0 9
P 1 o|1|]-1|-8[o0f-1]|]-1]0]|]2]|]3[1[-2|]-5]6
S 1 0 1 0 of[-1]0 1 (1] -1[8]0]=2]-8[1 3
T 1[-1]0 o|]2[-1]0 oO|]1]jo|=2[0f-1]-=2]0 1 3
w|l6|2|4|-7|-8[5b6|7|-7]|]-3|5|2|-3|[4|]0]|6]|]-2]|-5]|17
Y 3|4|-2]|]-4]10(|-4|-4[-5|]0[-1]|]-1]-4]-2[7|-5[-83]-3]07/]10
\ oj|2|—=2|=2|-2[=2|=2]|-1]-2] 4 2 |1 2|2 |-1[|-1[-6]0)|-6]|-2]4

Figure 2.15 Example of a substitution matrix. The PAM250 substitution matrix is displayed
above. The amino acids are listed by their single letter designation across the top and the sides of the
matrix. Scores are higher for functionally similar amino acids.

That is, the algorithm is biased towards continuous gaps, and away from
multiple short discrete gaps.

In Figure 2.14 we demonstrate how we can use these concepts to
score an alignment based on the addition of substitution scores and gap
penalties.

2.3.4 Pairwise sequence alignment and dynamic programming

The dynamic programming approach can be used to find the optimal
alignment that maximizes the alignment score presented in the last section.
Dynamic programming is a general computer science term that applies to
solving and storing the solutions to smaller sub-problems in order to solve
larger problems. Needleman and Wunsh introduced this concept to se-
quence alignment (1970). The idea of dynamic programming here is to
use alignments of smaller subsequences to determine the alignment of the
larger sequence (see Figure 2.16).

Say there are two sequences x and y, where x; represents the amino acid in
sequence x at position 7, and y; represents the amino acid in sequence y at
position j. Now, consider a subsequence of x consisting only of amino acids
1,..., 1, and a subsequence of y consisting only of amino acids 1,...,j. We
use the term S; ; to indicate the score of best possible alignment of these two
subsequences in which x; and y; are aligned next to each other. Such an
alignment may have gaps prior to x; and y; positions, but may not end on a
gap. We create a matrix, S, where the S; ; scores will be calculated for all
positions i and j and then maintained (Figure 2.17).

2.3 Deriving and analyzing sequences

A AARYKF

A APR--F
AA AARYKFI
AP APR--FC
AAR AARYKFIE
APR APR--FCE

Figure 2.16 Aligning subsequences. Here we list the smaller alignments of the two aligned
sequences in Figure 2.14. Alignments between these smaller sequences can be built up into larger
alignments in dynamic programming.

Figure 2.17 Dynamic programing score matrix. The above matrix shows scores for optimal
alignments for subsequences. For example, the score of the optimal alignment between “AARY”
and “AP” ending with P and Y aligned is listed in the forth column and the second row; the score of
that alignment is —7. As an illustrative example in calculating alignment scores, consider the
optimal alignment between the sequences “AARYK” and “APRFC” where “K” and “C” are aligned
with each other. The score of that alignment is equal to the sum of the substitution score between
K and C (—35), one of the scores in the blackened boxes, and the appropriate gap penalty. Those
scores in the blackened boxes are optimal alignments of other possible subalignments. If there is
no gap whatsoever the corner box is used with a score of 16 and no gap penalty is added. If there is a
gap introduced in the sequence along the top, a score from the blackened column is taken and the
gap penalty is added. If a gap is introduced in the sequence along the left, a score from the
blackened row is taken and a gap penalty is added. The box from which the highest score is derived
is noted and stored. That highest possible score is entered as the optimal score.

If the best scoring subsequence alignment has no gaps in the positions right
before x; or y; then the score of this alignment should be the score of the
optimal alignment up to the positions right before 7 and j, plus the reward or
penalty of having amino acid x; and y; aligned against each other. That is:

Si i = Si—1, j—1 +s(xi, y))

where s(x;, y;) is the substitution matrix score of amino acids x; and y;.

2 : Functional genomics

Now, instead say that in the best alignment there is a gap of length g right
before x;. Then the last position before i and j where two amino acids are
alignedisi — 1inxandj — 1 — giny. This is because a gap of length g skips
over that many positions in sequence y. The subsequences up to these two
amino acids preceding the gap must be aligned in the best possible way. The
score of the best possible alignment between the subsequence of x up to
i — 1 and the subsequence of y up to j —1 —gis S§;_1, ;1. Under these
circumstances the score of the best possible alignment up to i and j must be
Si—1,j-1-g> plus the substitution score between x; and y; plus the gap
penalty:

Siii=Si1,j-1-¢ + ¥(8) + s(xi, y;)

where y(g) is a gap penalty of length g. Alternatively, if there is a gap of
length g right before y;, then similarly:

Siiji=Sic1-g,j—1 + (g + sxis ¥))

Now, if we are trying to calculate S; ; and we do not know if there is a gap in
x or y preceding the i and j position, then we can consider all of the possible
scenarios: (1) no gap, (2) gaps of any length possible in x, and (3) gaps of
any length possible in y. The correct situation is the one that derives the
largest value of S; j—that is the best possible alignment of the two sub-
strings. So, since S, ; is the highest scoring alignment, then it has to be the
case that:

Si i =Si—1, j—1 +s(xi, y))
Sij=maxq S ;=8 1,1 ¢+7vg+sxi,y) 1=g<j-1
Sij=8i1-gj1+y@g +slx,y) 1=g<i-l

Therefore, S; ; can be calculated if all S1_;_1,;-1 and S;_1,1._j-1 are known
(see Figure 2.18). Each score S; ; is derived from one of these prior values in
the matrix. The prior position tells us if there is a gap, how long the gap is,
and what the previous alignment is. So we maintain a pointer to the cell in §
from which §; ; was calculated.

Dynamic programming works by calculating each of the scores S; ; for
the matrix. The values in the first row and column are set to the substitution
matrix values for the amino acids they correspond to; these are just single
amino acid alignments. Then the other matrix values are calculated itera-
tively using the procedure described above (see Figure 2.17). This process is
repeated until all scores S are determined.

The score of the best alignment between sequences x and y is the highest
score in the last column or last row of matrix S. To determine the best

2.3 Deriving and analyzing sequences

A A R Y K F | E
A 2 2 -2 -3 -1 —4 1 0
P 1 \ 3 2 -7 -4 —6 —6 -2
R —2 -1 \ 9 i —2 0.5 -7 -5.5 -5
F —4 —6 -5 16 -1 i 12,5 4 -2.5
C —2 -6 -6.5 4 11 7 10.5 5
E 0 -2 -4 —/5 11 6 5.5 \ 14.5

Figure 2.18 Tracing back during alignment with dynamic programming. To obtain the final
sequence alignment score, first the score for the entire alignment matrix is calculated. Then the
highest score in the final row or column is identified. In this case it is 14.5. Since we stored the boxes
from which each alignment score derived, we can trace back to the beginning of the sequences. As
we go, we can write out the alignment. Each box in the path indicates which amino acids in the
sequence are aligned in the final alignment. For example, in this case the score of the alignment
comes from the box in the last row and column. That box also tells us that the final position of the
alignment involves E and E being aligned to each other. Then we trace back to the prior box. There
is no gap, and we see that going backwards I and C are aligned in the final alignment. When the
trace back goes up and across a single box, no gap is introduced. When the trace back skips across
boxes, a gap is introduced.

alignment between x and y, go to that cell in matrix S and use the pointers to
trace back the route that was taken to get there (see Figure 2.18). The
coordinates of each cell on the path indicate the amino acids in x and y that
align together. If, for instance, the path does through S, , then amino acids
x,, and y, are aligned in the optimal alignment; where the pointer proceeds
in a diagonal there is no gap.

This approach gives an exact solution for the optimal alignment. The
dynamic programming approach is effective because of the additive nature
of the scoring function. The contributions of the scoring function can be
easily decomposed into individual parts.

2.3.5 Linear time pairwise alighment: BLAST

While dynamic programming provides the optimal alignment for any two
given sequences, it is poorly suited for searching databases of sequences.
Dynamic programming with affine gap penalties is extremely sensitive and
is generally regarded as the gold standard for sequence similarity. But the
difficulty is that it requires polynomial time. In its fastest implementation,
given two sequences of length 7 it requires a number of computations
proportional to #? (Gotoh 1982). For large database searches against
millions of sequences, this method is often too slow.

2 : Functional genomics

Linear time algorithms that rely on heuristics have been introduced.
These methods are considerably faster, and are well suited for querying
sequences against large databases (Pearson and Lipman 1988; Altschul,
Gish et al. 1990; Pearson 1990). They give approximate solutions, but
often the results are quite compelling, and they frequently select the most
similar sequences. The most popular of these methods is the Basic Linear
Alignment Search Tool, or BLAST; it is available for both nucleotide and
amino acid sequences (Altschul, Gish et al. 1990).

The principle behind BLAST is that if two sequences are homologous,
they will likely have short stretches, or words, that are either exact matches
or at least high scoring matches. Given a query sequence, BLAST creates a
list of “neighborhood words”, which are short sequences of a fixed length
(3 for amino acids, 11 for nucleotides) that have a similarity score exceeding
a certain pre-selected threshold to the query sequence.

The algorithm then searches for sequences that have an exact match to
the neighborhood words in the database. Such a matching sequence is
referred to as a hit. Once a hit is obtained, BLAST attempts hit extension;
that is, it extends the alignment without gaps until the maximum possible
score is achieved. It stops extension when the score of the extension falls
below the maximum score observed during extension by a certain thresh-
old.

BLAST has become one of the most common bioinformatics tools used
by biologists worldwide. It is a standard tool used by investigators trying to
assess the function of a newly discovered gene or protein.

2.3.6 Multiple sequence alignment

While pairwise sequence comparison is an extremely powerful tool, there
are many situations in biology where a sequence has to be considered in the
context of a whole family of proteins. In general, genes and proteins come as
classes. Often, a gene will have many known cousins that are related through
evolution or share common functionality. Under these circumstances it is
critical to be able to appreciate the common conserved features between
these sequences as they give insight as to which parts of a protein are critical
for structure and function. For example, the binding site that is conserved in
a family of related proteins across many species is likely to be conserved in a
similiar query sequence as well. Moreover, the common features may indi-
cate the defining aspects of that family of proteins; this may allow us to
predict whether newly discovered sequences belong to the family as well.

An example of multiple alignment is presented in Figure 2.19, made by
the algorithm Clustal W (Thompson, Higgins et al. 1994).

As with pairwise alignment, it is critical to have a scoring method for
multiple alignment. While making multiple alignments, one would prefer

2.3 Deriving and analyzing sequences

b MSVMYKKILYPTDFSETAEIALKHVKAFK-TLKAEEVILLHEVIDEREIK--------—-- 48

¢ --VMYKKILYPTDFSETAEIALKHVKAFK-TLKAEEVILLHVIDEREIKVEEFENELKNK 57

a MPVAKDNQFW-DALMEN-KVAKKLIKKHKCKAKCENID--DLANRYEVS-——--—--=—=== 45
* - .. .

* . «k K % * * K oe . . . * .

Figure 2.19 Multiple sequence alignment. A multiple alignment between three sequences. This
alignment was generated by Clustal W.

columns in the alignment where all of the sequences have the same or
functionally conserved amino acids. One commonly employed strategy is
to use a function that is proportional to the uniformity of a column, and
then sum up the scores for each of the columns. A common scoring system
for a column is the sum of pairs scoring system. Given a column of amino
acids in a multiple alignment 1, its score is the sum of all of the pairwise
substitution scores in the column:

S(m) = sm;, m;)

i<j

where i and j are indices for sequences. Here the score s is obtained by
referencing a substituion matrix, like the PAM matrix. The score of an
entire alignment can be calculated by summing all the scores for each of the
independent columns.

Similar to pairwise alignment, a gap penalty needs to be included to
weight alignments away from those that create excessive numbers of
gaps. We can use the exact same sort of penalty function used in pairwise
alignment.

Dynamic programming can be used to maximize scoring schemes like
the one introduced above. Dynamic programming is used to find optimal
multiple alignments using these scoring schemes in a similar fashion as it
is used to find pairwise alignments. The difference is that instead of a two-
dimensional scoring matrix, we need to implement an 7#-dimensional matrix
where each dimension represents each of the different sequences. However,
the amount of memory and time required for this approach is prohibitive for
more than a small number of sequences. The memory required is propor-
tional to #™ if each sequence is of length # and there are m sequences. The
number of computations necessary is proportional to 2"'n™.

Progressive alignment methods are most commonly used to obtain mul-
tiple alignments. These, and other commonly used alignment methods, are
heuristic methods. These methods work well in practice and they are often
efficient. Progressive alignments work by first using dynamic programming
to do all pairwise alignments. Then the closest two sequences are used as a
starting point, and additional sequences are added to the alignment itera-
tively until all of the sequences have been aligned.

2 : Functional genomics

2.3.7 Comparing sequences to profiles: weight matrices

Once a multiple alignment is created, it is possible to create a profile that
represents the common features across the sequences. Such a profile can be
used to scan new sequences and to ascertain whether they may be function-
ally or evolutionarily related to the sequences that the profile represents.

The traditional approach to this problem is the consensus sequence.
Consensus sequences are short sequences, where for each position the
most common amino acids (or nucleotides) that occur are listed. In Figure
2.20 we list several observed nucleotide sequences and a corresponding
consensus sequence. This is a commonly observed eukaryotic promotor
sequence known as the CCAAT promoter (Mantovani 1998). Consensus
sequences have been effective in defining promoter regions in gene se-
quences and functional motifs in protein sequences. One of the shortcom-
ings of consensus sequences is that it accounts poorly for frequency
information. For example, a nucleotide sequence may have G in the first
position 80% of the time, and T 20% of the time. The consensus sequence
for the first position could be written as G/T; in this case the presence of
either nucleotides would be regarded as equally acceptable. This is clearly
not the case as G is more frequently observed. However, if we write only G
in the consensus sequence then we ignore all the cases with T in the first
position.

Observed sequences

1 2 3 4 5 6 7 8
C C A A T C C C
C C A A T C A C
C C A A T C A C
C C A A T C G T
C C A A T cC G T

Consensus sequences

C C A A T C A/G T/C

Figure 2.20 Using consensus sequences to summarize multiple alignments. A collection of five
aligned sequences each representing a CCAAT promotor is depicted. The consensus sequence is
created by noting the most frequent amino acids at each position.

2.3 Deriving and analyzing sequences

Another more sophisticated strategy is the weight matrix. It is similar to
consensus sequences in that it has information about short sequences in a
position specific manner. However, weight matrices maintain frequency
information for each position. Let us suppose we have a collection of N
sequences of length 7 that are known to be in the same class, C. The weight
matrix, W, is calculated from the collection of N sequences. The weight
matrix, W, has # columns, one for each sequence position, and 20 rows, one
for each amino acid. Given a new sequence of length 7, we can apply
the weight matrix to obtain a score proportional to the chance that the
sequence is in class C (Figure 2.21). For each position in the new sequence
identify the amino acid. Then find the value of the weight matrix
corresponding to that amino acid at the column representing the position.
Then sum these weights to score the sequence.

Amino | 1|23 |4 (|5]|6
Acid

A 6

R B 3

N

D

C -1 [|
Q r |
E 3

APRFCE G
6-2+3+2-1+3 = 11 H

I

L

K

M

F 2

P _2_

S

T

w

Y

\Y

Figure 2.21 Using a scoring matrix to score a sequence against a multiple alignment. A multiple
alignment is used to construct a weight matrix. Each box in the matrix corresponds to a position in
the alignment (column) and an amino acid (row). It contains a value that is proportional to the
likelihood that a sequence from the multiple alignment has that amino acid at that position. So a
sequence of amino acids can be scored by adding up the corresponding matrix values at each
position. The larger the score, the more likely it is similar to the multiple alignment sequences.

2 : Functional genomics

T C C o
Nc2+ qc 6+0.25

T ¢} A C pC,2 = N+ = 2 =0.79

T C A C *

T C G T pC,Z

T |c| 6 T log; =16

qc
T C A G
T T A G
L 1 2 3 4

A IV A 3 | 3 | 11 | o7
C 1 C -3 1.6 -0.7 -3
T |7 1 2 T 1.9 -0.7 -3 0.2
G 2 2 G -3 -3 0.2 0.2

Figure 2.22 Creating a weight matrix. This is an example of how to construct a weight matrix.
Given a collection of sequences we total up the number of each nucleotide or amino acid observed
in each position. To calculate the probability of each nucleotide or amino acid at each position we
divide the number of times a particular nucleotide is observed at a position by the total number of
sequences. Here we consider the probability of the second position having nucleotide C, p, .
Often, it is advantageous to include pseudo-counts. We assume the extra counts are proportional to
the background frequency of nucleotides, g¢; in this case we assume that each nucleotide has a
background frequency of 0.25. A pseudo-count of one is used here. This avoids zero probabilities.
We divide the probability of each nucleotide at each position by the background probability of the
nucleotide. The log of that ratio is the weight matrix value.

Figure 2.22 demonstrates how the weights are obtained for a weight
matrix. For each position the probability that a particular amino acid is at
that position can be calculated:

where P, ; is the probability of amino acid a in position 7, N is the total
number of sequences, and N, ; is the number of sequences with amino acid
a in position i. Often pseudo-counts must be used to avoid extreme prob-
abilities. In this case

P ':Na,i“‘qa
“1 N+1

where q, is the background frequency of amino acid a. This assumes we
have a single extra sequence that has amino acids distributed according to
the normal background frequency of amino acids.

The values of the weight matrix can be calculated as follows

2.3 Deriving and analyzing sequences

P .
Y% ;= 10 (& l)
a, g da

Given an unknown sequence, s, of length # we can use it to calculate
the log likelihood that it belongs to the same class using the weight
matrix. If we assume that each of the positions are independent of one
another:

HP(Sia Z|C)
lo < Pis|C) > log| o —
B\Psl~) ~ | TIats)

where P(s|C) is the probability of the sequence assuming it is in class C, and
P(s| ~ C) is the probability of the sequence assuming it is not in class C,
then P(s;,i|C) is the probability that the amino acid s; would be at position i
in sequence s, if s was in class C. We can decompose this equation into

Zl s,, 1|C

This is the same as:

The log likelihood that any sequence belongs to the class C is simply the
sum of the weight matrix terms from each column that corresponds to
the amino acid in that position in the sequence.

2.3.8 Position specific iterative BLAST

Position specific iterative BLAST or (PSI-BLAST) is a more sensitive version
of BLAST that combines the speed of BLAST with the sensitivity of weight
matrices (Altschul, Madden et al. 1997). It is depicted in Figure 2.23. It uses
principles of multiple alignment in its database search.

Given a sequence, PSI-BLAST first runs a regular BLAST search to find a
collection of similar sequences. These sequences are collected together into
an ungapped multiple alignment with the query sequence. The multiple
alignment is then used to construct a profile that is similar to the weight
matrix described in the previous section. This weight matrix has the same
number of columns as the query sequence. PSI-BLAST then uses the profile
to run BLAST again and query the database a second time. To do this with a

2 : Functional genomics

Weight matrix
Sequence

\ Query
|

BLAST

Multiple
alignment

Sequence
database

Figure 2.23 Schematic of PSI-BLAST. Given a sequence, PSI-BLAST operates by first running a
BLAST search. The resulting sequences are organized into a multiple alignment. This multiple
alignment is used to generate a weight matrix. The weight matrix is used in another BLAST search,
and the weight matrix is updated with the obtained sequences.

profile, a list of neighborhood words of a fixed length that match the profile
must be constructed. This is done by identifying words that match any
position in the weight matrix at or above a specific threshold. This process is
repeated until the algorithm converges or fails to converge after a fixed
number of iterations.

The purpose of the iterative approach is that the query sequence is part of
a larger family of homologous sequences. By iteratively searching the PSI-
BLAST database, the hope is that we are building a profile that corresponds
to the family that the query sequence is a part of, and retrieving all of the
sequences in that family in the process.

One of the difficulties with PSI-BLAST is sequence contamination. That
is if erroneous sequences are retrieved during database search, they could
corrupt the profile, and draw in other erroneous sequences. This could
potentially have the effect of causing the algorithm to converge on the
wrong sequence family or fail to converge altogether.

In general PSI-BLAST is regarded as being more sensitive then BLAST,
though it is somewhat slower.

2.3.9 Hidden Markov models

An extremely valuable sequence analysis method is the hidden Markov
model (Krogh, Brown et al. 1994). In this section we will be talking about

2.3 Deriving and analyzing sequences

it in the context of multiple sequence alignment, but it has wide application
to many areas of sequence analysis as well as text analysis. The hidden
Markov model (HMM) is a probabilistic model that assumes that a se-
quence of observations are accounted for by hidden states. In this case our
sequence of observations are nucleotides in DNA or RNA or amino acids
observed in a protein. The idea is that the probability of a particular
observation depends only on the state of the system. An additional assump-
tion is the Markov assumption; that is the probability of the state of the
system is dependent only on the prior state of the system, and does not have
any dependence on any other previous state.

As a simple example to illustrate a hidden Markov model, consider a
sequence of coin flips. For each flip we observe tails (T) or heads (H). Now
let’s assume that the flips can be derived by either a fair coin, in which the
probability of both H or T is 0.5, or a biased coin in which the probability
of His p and T is 1 — p. Now assume that between flips the coin can be
switched with some probability. The fair coin can switch to the biased one
with probability g, while the biased coin can switch to the fair one with
probability ¢'. If we were to model this situation with a HMM, our hidden
state would be the coin. There are two possible states, one in which the flips
are generated by the fair coin (S§1) and a second in which flips are generated
by the biased coin (S2). The probability of H or T at any given point
depends on whether S1 or S2 is the current state. This simple two-state
HMM is illustrated in Figure 2.24. The arrows indicate state transitions,

Fair coin Biased coin
p(H) 0.5 p(H) p
p(T) 0.5 p(T) 1-p

Figure 2.24 An example of a hidden Markov model. This is a simple hidden Markov model with
two states. The fair coin state, S1, generates heads and tails with equal probability. That state can
transition to state S2 after each flip with probability q. The biased coin state, S2, generates heads
with probability p.

2 : Functional genomics

and the probabilities that those transitions can occur are listed next to the
arrow.

Imagine that we have a sequence of observations, and their hidden states
are known. Consider the n-th observation. Let us assume that the state is
known to be S, at that point and the observation O,, is observed. The
probability of an observation depends only on the state that it is in at the
time. So, the probability of the observation, P(O,[S,), is a parameter in
the hidden Markov model. The probability of the state is dependent only on
the prior state. So, the transition probabilities between the hidden states,
P(S,|S:-1), are also model parameters. So given a sequence of observations,
S, the probability of that sequence of states and observations can be calcu-
lated. In general:

P(S) = P(Oq...0,) = P(O1)P(0O3]01)P(03]01,03) ... P(O,|O1 ... O,_1)

But the hidden Markov model assumptions allow us to make the simplifi-
cation that the probability of each observation depends only on the state
of the system when it was generated. In addition the probability of each
state depends only on the prior hidden state. So the probability of a sequence
of observations is the probability of the sequence of hidden states multiplied
by the probability of the observations given those hidden states. Therefore
the probability of a sequence if the hidden states are known is:

P(S) = P(O1...0wS1 ... S,) = [P(OilSHP(Si|Si-1)
i=1

In the case of sequence analysis, instead of observing heads and tails on a
coin, we observe nucleotides and amino acids. In these cases the state is a
physiologic state. For example, hidden Markov models are often used as a
generalization of the weight matrices introduced in the previous example.
Each state might represent a particular site in a class of proteins. Each site
would have a biased distribution for amino acids. Each site might transition
to the next site in the sequence that we would expect. However, it might
with a finite probability also skip the next site (a deletion), or it might have
an extra amino acid in place prior to the next site (an insertion). A typical
scheme for a hidden Markov model for sequence alignment is demonstrated
in Figure 2.25. Hidden Markov modes can also be used for secondary
structure prediction; a typical Markov model is demonstrated in Figure
2.26. There are three states: alpha helix, beta sheet, and loop. All amino
acids have one of the three hidden states. Any of the states can transition to
any of the others.

2.3 Deriving and analyzing sequences

[N

Figure 2.25 Example of a hidden Markov model to align sequences. In this schematic we see five
positions in the alignment: S1 to S5. Each position generates amino acids with a particular
probability distribution. Each position can transition to the next. In addition deletion (Del) states
allow one of the positions to be skipped. Insertions (Ins) states allow for amino acids to be
generated between the prespecified states.

Figure 2.26 Example of a hidden Markov model to predict secondary structure. There are three
possible secondary structure states: Helix, Loop, and Sheet. Each one generates amino acids with
different probabilities. Each state can transition to any of the other two with a certain probability.

Given a hidden Markov model whose parameters have been fully deter-
mined we can determine the most likely underlying hidden states for a given
sequence of observations. In the case of secondary structure prediction, for
example, this would be tantamount to determining which amino acids in a
protein are beta sheets, alpha helices, or loops. Similarly in the case of
sequence alignment, the underlying state determines whether each amino
acid corresponds to a particular position in the alignment or is in an
insertion or deletion.

Dynamic programming can be used to calculate the most likely path
through the hidden states given a series of observations. This algorithm
is known as the Viterbi algorithm and is demonstrated in Figure 2.27.

2 : Functional genomics

Observations 1 2 3 4 5 6 7 8 9 10
THR ALA SER ILE GLU LYS LEU VAL GLN VAL
Loop Pt P2 Pios |, Poz
State : —Iw . —I v p—
Helix Phe.1 Phes Prea Pres Phos Pros ™
Sheet Pone Pen10

P(helix\loop)*P)o, 1*P(ala\helix)
max | P(helix\helix) Phe, 1*P(ala\helix)
P(helix\sheet)*Pgp, 1*P(ala\helix)

P(sheet)* P(thr\sheet)

Figure 2.27 The Viterbi algorithm. The Viterbi algorithm allows us to assign the most likely states
to a sequence of observations. At each position in the sequence we calculate the probability of the
highest probability path ending with each state. An example of that calculation is depicted above.
For each position and state we note the prior state used to generate the probability at that position.
Upon completion, we can trace back through the sequence to identify the highest probability
pathway through the hidden states.

In this algorithm we start at the beginning of the sequence and at each
position calculate the probability of the most likely state while remember-
ing the paths that we went through to get there. The key is that the optimal
path to get to position k is related to the optimal path to get to position
k—1.

Say that p; , is the probability of the optimal path ending at position k
where the last observation O, has been emitted by state S;. For the first
position k =1, p; ;, is simply the probability of the observed state to be
generated by each of the possible states multiplied by the prior probability
of each state:

pia = P(O4|S;)P(S))

Given p;,, for each 7, we can calculate p; 1, ;. The probability p; ;. 1 is the
probability of the most likely path of k + 1 hidden states assuming that the
k + 1 observation was generated by state 7. If the probability of the se-
quence through the optimal path up until the prior position is known, then
this probability is easy to calculate:

Pi ki1 = P(Or 1 11S)P(Si|S;)py

where S; is the prior state in the optimal path and p, is the probability of
that optimal path up to the prior position. The probability is just the
probability of the optimal path up until the prior state multiplied by
the transition probability to the final state multiplied by the probability of
the observation given that state. In practice, however, we do not know the
prior state. But since we are searching for the most likely path we know the

2.3 Deriving and analyzing sequences

prior state must be the state that ultimately results in the highest probabil-
ity. Since we have calculated p;; for each possible prior state i, we can
calculate the probability of the most likely path up to the next observation
k + 1 where the state generating that observation is i:

Pi,k+1 = P(Op 4 1|S:) max; (P(Si[S))p;, &)

wherejranges over all of the different states. We note and store the state thatis
selected as the prior state. We can iterate through all of the observations, and
calculate these probabilities. Once the entire sequence of # observations has
been iterated through, then we select the state i that has the highest p; , as the
final state. The path of states to get to that state is the optimal path.

Now suppose instead that we wished to calculate the probability of a
sequence of observations. A similar strategy can be used to calculate this
probability over all possible states. This is known as the forward algorithm.
It is similar to the Viterbi algorithm. At each step along the sequence we
calculate g, ;, which is the probability of the sequence up to position k over
all possible states if the sequence ends in state i. So here we calculate the
parameter

gi.k = P(O1 ... Oy, k-th state = S)
The initiation step is identical to the above:
gi,1 = P(O1[S;)P(S;)

As we iterate through the sequence, we calculate:

i k+1 = P(Or11]S) D (P(SilS))q;, 1)

]

Notice, the only difference from Viterbi is that instead of picking the best
prior state, we sum over all prior states. The final probability of the
sequence is the sum of all the probabilities for each of the different possible
states at the end of the sequence, q;, ,.

Training hidden Markov models can be easy if a set of examples with
known states is given. For example, many proteins with known crystal
structures can be used to train the HMM depicted in Figure 2.26. The
emission probability of the amino acids of each of the three states can be
determined by empirical observation of the fraction of the amino acids
observed in helices, loops, and beta sheets. Transition probabilities can
be calculated as well by noting how frequently loops, helices, and sheets
continue in the next amino acid in crystal structures and how often they

2 : Functional genomics

transition to a new type of secondary structure. Similarly if a multiple align-
ment is available, the probabilities in Figure 2.25 can also be calculated by
noting the frequency of deletions, insertions, and the probabilities of the
amino acids in each of the different positions in the alignment.

However, often times, such multiple alignments are unavailable. All that
is available is a collection of sequences. Under these circumstances the
Baum-Welsh algorithm can be used to train HMMs. This is an expectation
maximization algorithm in which we first assign random parameters to the
model. Then we calculate the probability of the state for each sequence
position. Finally we use those predicted probabilities to update the parameters.

For each position in a sequence of observed events we can calculate the
probability of each state at a given position to be:

P(Oq...0,, k-th state = §;)

P(k-th state = §;|O; ... O,,) =

P(O;...0O,)
_ P(Oq...0y, k-th state = §;)P(Oy 1 ... O,|k-th state = §;)
- P(O;...0O,)

The numerator can be split as above, since the probability of all of the
observations after the k-th state depends only on that state, and does not
depend at all on prior observations or states. The denominator of this value
is taken from the forward algorithm; it is the sum of all g;,, terms over all
states. The first term in the numerator is also from the forward algorithm;
this is g; . The second term can be calculated from the backward algo-
rithm. The backward algorithm is a third dynamic programming algorithm
in which we calculate terms:

ik = P(Opy1...0,lk-th state = S))

These terms are the probability of a sequence of observations occurring
given that the system is in state 7 at position k. In this case we start from the
back of the sequence. The initiation is that

tip =1

5

Then as we work backwards we calculate:
Tik =Y P(Ok1|S)PS}IS:)7;, k41
j

So with the backwards algorithm combined with the forward algorithm
we can calculate the probability of each state for each observation in a
sequence.

2.4 Gene expression profiling

To proceed with the Baum—Welsh algorithm we use the given collection
of sequences and calculate the probability of each state at each position for
each sequence:

P(k-th state = $;|O; ... 0,) = Lok Tik
> djn
]

Then we use these probabilities to re-estimate the parameters. So

>. P(k-th state = ;)
k-th obs=O;

P(O;lSi) ~ 3" P(k-th state = S;)
k

and

> P(k + 1-th state = S;)P(k-th state = S;)
P(S;[Si) ~+

> P(k-th state = §;)
k

The Baum—Welsh algorithm guarantees that in every iteration the likeli-
hood of the training data will increase. We repeat this procedure iteratively
until the best possible parameters are obtained.

A very valuable application of the hidden Markov model is to actually do
multiple alignments. We can use the Baum—Welsh approach to achieve this
end. Typically we begin with a family of protein sequences and a hidden
markov model with the structure illustrated in Figure 2.25. We can use the
Baum-Welsh algorithm to iteratively fit the parameters of this HMM. As
specified above, we first assign random parameters, then calculate the prob-
ability of each state for each position of each sequence, then update the
parameters. Once the parameters are obtained, we have a hidden Markov
model that describes this family of sequences. If the sequences are related and
the parameters are appropriate, this could be a very useful model for the
family. We can use the optimized HMM with the Viterbi algorithm to deter-
mine the hidden states of all of the sequences in the family. Each hidden state
represents a position in the alignment. The position state determined for each
protein sequence represents its position in the multiple alignment.

2.4 Gene expression profiling

High throughput measurement of the mRNA gene expression in cells is
revolutionizing biology. Investigators are using technologies such as SAGE,

2 : Functional genomics

oligonucleotide arrays, and spotted DNA microarrays to profile the gene
expression of thousands of genes simultaneously. These studies are address-
ing a broad range of biological questions from human cancer to fruitfly
development. Studies typically produce large gene expression data sets that
contain measurements of thousands of genes under hundreds of conditions.
There is a critical need to summarize this data and to pick out the important
details. Otherwise, interpretation of the results is too difficult a task given
the number and diversity of the genes. Many of the available analytical
methods involve creating groups of genes or conditions that share proper-
ties in expression. Most of the commonly used strategies to accomplish this
task utilize only the gene expression data. Other approaches include exter-
nal information about genes and conditions. The most straightforward way
to leverage external knowledge is to use binary statistical classification
methods. In later chapters, this book will introduce strategies to analyze
gene expression data sets with information from the scientific literature.

In order to illustrate how multiple methods can be applied to a single data
set, we will explore a publicly available gene expression array data set
consisting of 47 expression profiles of 4026 genes collected from lymphoma
specimens (Alizadeh, Eisen et al. 2000). These profiles can be divided
into two subtypes of lymphoma that have distinct clinical and molecular
properties. We will apply some of the methods introduced in this chapter to
this data set (Raychaudhuri, Sutphin et al. 2001).

The key concepts introduced in this section are described in the frame
box. We commence this section with a brief introduction of experimental
methods to measure gene expression. Then we describe metrics that can be
used to calculate similarity and dissimilarity between gene expression pro-
files. We show how these metrics can be used to cluster gene expression
profiles. The section closes with an introduction to classification methods,
and their application to gene expression data.

1) Methods to measure gene a) K-means clustering
expression b) Self-organizing maps
a) Gene expression arrays ¢) Hierarchical clustering
b) Serial analysis of gene 4) Principal components analysis
expression 5) Classification
2) Gene expression profile metrics a) Nearest neighbor
3) Clustering (unsupervised classification
machine learning) b) Linear discriminant analysis

2.4 Gene expression profiling

2.4.1 Measuring gene expression with arrays

Gene expression technology permits the rapid assaying of mRNA quantities
within individual cells. The rate of synthesis of a gene’s protein product is
approximately proportional to the amount of corresponding mRNA pre-
sent within the cell. Most gene expression arrays do not measure absolute
mRNA quantities; they measure the relative mRNA expressed within a cell
subjected to an experimental condition compared to one subjected to a
control condition. As depicted in Plate 2.6, the population of cells is divided
in a typical expression profiling experiment; one half is subjected to some
experimental environment while the other is subjected to a control envir-
onment. Gene expression arrays are then used to determine relative induc-
tion of genes within the experimental condition. These conditions may be
different time points during a biological process, such as the yeast cell cycle
(Cho, Campbell et al. 1998; Spellman, Sherlock et al. 1998) and drosophila
development (White, Rifkin et al. 1999); direct genetic manipulations on a
population of cells such as gene deletions (Hughes, Marton et al. 2000); or
they can be different tissue samples with some common phenotype (such
tissue type or malignancy) (Alizadeh, Eisen et al. 2000).

One popular gene expression array fabrication protocol involves spotting
cDNA for specific genes at specified positions on a glass slide; each cDNA
spot binds mRNA expressed from a particular gene (Plate 2.6) (Schena,
Shalon et al. 1995). Another protocol involves synthesis of short oligonu-
cleotide sequences onto specified positions on a solid substrate directly,
using specific photolithographic techniques; each oligonucleotide spot
binds specifically to mRNA expressed from specific genes (Chee, Yang
et al. 1996). Nylon gene arrays have also been described (Chen, Wu et al.
1998). To measure mRNA quantities, mRNA is first harvested from cells.
The mRNA is used as a template to synthesize proportional amounts of
chemically labeled cDNA; typically the cDNA from the control and experi-
mental conditions are chemically labeled with dyes that fluoresce at differ-
ent wavelengths. All of the labeled cDNA is then hybridized to the gene
array. At each spot the fluorescent intensity at the two wavelengths is
measured; the ratio of intensities is reported as the relative expression of
the corresponding gene. Most of the analytical methods described subse-
quently are applied to the log of these ratios.

Besides measuring gene expression, gene arrays have found other geno-
mics applications as well. They have also been used to identify gene dele-
tions (Behr, Wilson et al. 1999), gene duplications (Pollack, Perou et al.
1999), transposon locations (Raychaudhuri, Stuart et al. 2000), and single
nucleotide polymorphisms (Halushka, Fan et al. 1999).

2 : Functional genomics

2.4.2 Measuring gene expression by sequencing and counting
transcripts

An alternative strategy to using gene arrays to assay gene expression is Serial
Analysis of Gene Expression, or SAGE (see Plate 2.7) (Velculescu, Zhang
et al. 1995). SAGE is a considerably more intensive assay, but it permits
quantitative assaying of large numbers of transcripts. SAGE assumes that
large genetic sequences can be recognized by small 11-21 nucleotide “tags”.
SAGE works by obtaining these short tag sequences, concatenating them,
and efficiently sequencing them. In addition SAGE assumes that the number
of times these short sequences are observed among expressed sequences
represents the level of expression.

The SAGE assay begins by isolating mRNA transcripts; the mRNA is
used as a template to synthesize proportional amounts of cDNA with
reverse transcriptase and a poly-T primer. Restriction enzymes are then
used to splice out the short tags from the mRNA. Typically, a restriction
enzyme recognizes short nucleotide sequences and cleaves at that site; it also
leaves a short single-stranded overhang that is capable of binding its com-
plement. The enzyme used to cleave the cDNA is called the “anchoring
enzyme”. Beads are used to bind to the poly-A tail of the shorter cleaved
cDNA fragments. Beads and the attached segments are divided into two
groups. The overhang from each set is used to bind and attach a sequence
containing a second enzyme recognition site and one of two primer sites.
The second enzyme site is recognized by a “tagging enzyme”, which is a
special restriction enzyme that cuts at a defined distance up to 20 base pairs
downstream from the recognition site. After cleavage with the tagging
enzyme, the remaining short sequence segments contain the tags from the
sequence. These are the short stretches of the cDNA sequence downstream
from the anchoring enzyme site that remain after cleavage with the tagging
enzyme. The short sequence segments from the two sets are joined together
to create ditags; the primers on the ends of the ditags are used for PCR
amplification. The anchoring enzyme is then used again to cleave the primer
sites, and the ditags are concatenated into larger sequences. These se-
quences are then sequenced, and the tags are identified. The tag concaten-
ation permits rapid serial tag sequencing. The tag sequences that are
obtained can be directly compared to known sequences of genes. The
number of tags corresponding to the transcript of a particular gene gives a
very good estimate of the expression of the gene.

SAGE is a very powerful, but labor intensive method. Since its introduc-
tion in 1995, SAGE has been applied widely to investigate many biological
problems including gene expression profiling in many different human cells
from different organs, cancer cells, and cells from other organisms as well
(Hermeking 2003; Tuteja and Tuteja 2004; Tuteja and Tuteja 2004). Many

2.4 Gene expression profiling

of the analytical strategies discussed below can be used effectively on
matrices of SAGE transcript counts.

2.4.3 Expression array analysis

Gene expression data sets may include measurements for thousands of
genes across hundreds of conditions. Most expression analysis methods
analyze data as a collection of either genes or conditions, each with a series
of associated expression measurements called a “profile”. If we imagine a
two-dimensional array of measurements in which the rows are the meas-
urements associated with individual genes and the columns are the meas-
urements associated with conditions, the profile is the list of measurements
along each row or column. “Features” are the individual expression meas-
urements within each profile (see Figure 2.28). Depending on the analytical
task, some features are more valuable than others; in many situations,
focusing on a subset of the features improves results.

CONDITIONS —’

(L
- L]
] L]
. -
- L
Gene profile
” EEEE TERN]
]]
% = m
4] EEER EEER
.]
- L
L] = Condition profile
g .I

Figure 2.28 Matrix of gene expression data. Gene expression data can be organized into a matrix
for easy analysis. Each row represents an individual gene, and each column represents a specific
condition. A row therefore is a gene expression profile, while a column is a profile for a condition
across all genes.

2 : Functional genomics

Because there is a symmetric relationship between genes and conditions,
any data set can be analyzed in two ways. For example, we can interpret the
lymphoma data set as 47 cancer profiles with 4026 available features,
where each feature is the expression for a particular gene. In this case, we
are trying to analyze the different cancer cases to understand their similar-
ities and differences. Alternatively, we can analyze the genes, by interpreting
the data as 4026 gene profiles with 47 available features, where each feature
is the expression within a particular cancer specimen. Most analyses that
can be performed on genes can also be performed in a symmetric manner on
conditions. In the rest of the section we will talk mostly about analyzing
genes; but these methods apply equally to genes and conditions.

Analytical algorithms that summarize the data have been applied to
many data sets. Most popular are clustering (or unsupervised machine
learning) algorithms that group together elements (such as genes or condi-
tions) of these large data sets. Dimensional reduction approaches are also
commonly applied; they reduce the number of features so that redundant
ones that are very similar to others are removed or combined.

Other analytical methods include external information about genes and
conditions into the analysis. Classification (or supervised machine learning)
methods classify unknown cases by comparison to labeled training ex-
amples. These methods offer an avenue to include binary labels to genes
(e.g. whether or not a gene has a specific function) or conditions. The
limitation of these methods, however, is that they require the user to
determine the relevant labels beforehand and provide labeled examples.
Frequently, the relevant labels are not known in advance, or the known
labels are inaccurate or incomplete.

2.4.4 Unsupervised grouping: clustering

Clustering methods help to simplify data sets by grouping profiles and
decomposing the results into easier to interpret underlying “programs” of
expression. These methods make the initial interpretation of expression
data facile. However, the majority of clusters tend to be spurious and
have little biological meaning and these can be difficult to interpret.

Some of the gene expression clusters have biological significance; it is
these clusters that are the most important. Theoretically if genes have
similar expression over a large number of conditions, it is possible that
they may be regulated by similar mechanisms and they may have similar
function. The value of an automated grouping method was apparent in
one of the first large-scale gene expression studies (DeRisi, Iyer et al. 1997).
Investigators manually identified five distinct subsets of genes with
similar biological function that were coherently expressed in a yeast time
series where media metabolites were altered. In early demonstrations of

2.4 Gene expression profiling

automated clustering algorithms, gene clusters derived from large expression
studies on many conditions corresponded to certain particular biological
functions; this offered promise for annotating uncharacterized genes and
understanding the control of gene regulation (Eisen, Spellman et al. 1998;
Michaels, Carr et al. 1998). Many have used gene expression clusters as a
starting point for gene annotation and for understanding gene regulation.

Clustering algorithms group similar profiles together based on a distance
metric—a formula for calculating the similarity between two profiles (Rip-
ley 1996). There are many ways to express the distance between two
numerical vectors. Many clustering algorithms are based on the statistical
correlation coefficient (ranging from —1 to +1):

xy’

D(x,y) =1 -7
[ERNBA

where x and y are vectors containing the expression values for two different
genes. The distance is actually one minus the correlation coefficient to
insure that two identical profiles have a distance of zero. Others use the
Euclidean distance, the square root of the sum of the squared differences in
corresponding features values:

D(x,y) =[lx—y|

Investigators have devised new robust and efficient clustering methods
specifically for gene expression studies recently (Altman and Raychaudhuri
2001). More appropriate metrics for expression studies that account for the
sequential nature of time series measurements or eliminate outlier data have
been proposed (Heyer, Kruglyak et al. 1999; Aach and Church 2001).
Other groups have suggested methods for measuring cluster stability
(Kerr and Churchill 2001; Ben-Hur, Elisseeff et al. 2002). One group
investigated whether dimensional reduction techniques affected clustering
(Yeung and Ruzzo 2001). In practice, however, the clustering methods most
commonly applied to gene expression data are hierarchical clustering, self-
organizing maps, and k-means clustering (Sherlock 2000).

The results of clustering can be very sensitive to the features that are used
to compute the distance metric. Features are usually weighed equally and
the effects of the relevant features can be masked by less relevant ones. For
example, for a study of the response of cancer profiles to a pharmacological
agent, a feature set including the entire genomic expression profile might
not be appropriate because the response might depend only on a handful of
target and transport genes, and inclusion of thousands of other genes might
make similarities or differences difficult to extract from the noise of the
irrelevant genes (Ross, Scherf et al. 2000).

2 : Functional genomics

2.4.5 K-means clustering

One of the simplest clustering methods is k-means clustering. It is very easy
to implement.

K-means clustering requires a parameter k, the number of expected
clusters. Correct selection of k can dramatically affect the final clustering
results and unfortunately it is often difficult to know a priori what an
appropriate choice for k is.

Initially k cluster centers, c1,..., ¢, are randomly selected expression
profiles taken from the data set. In each iteration of the algorithm,
the distances between each of the genes and the k centers are calculated
using the pre-selected distance metric; genes are then assigned to
the cluster whose center they are nearest to. For each gene x; and each
center ¢;:

d; i = D(xj, ;)

cluster(x;) = argmin (d;, ;)

After the genes have been assigned to clusters, the cluster centers are
recomputed by taking the average of the genes assigned to the cluster. In
the subsequent iteration, genes are again assigned to the cluster whose
center they are nearest to and then the centers are recalculated; this process
is repeated until the algorithm converges. Unfortunately the algorithm
converges to a local minimum, and is very sensitive to the initial random
selection of starting centers.

We grouped the lymphoma cases in our test data set with k-means
clustering. Such a calculation could be used to search for cancer sub-
types—perhaps having unique biological or clinical properties. We used
k-means clustering algorithm to cluster the lymphoma samples. To simplify
the analysis, we did not use all 4026 genes as features, but instead used a
subset of 148 that are expressed specifically in the germinal-center cell
populations. The original investigators used the same subset in their cluster
analysis (Alizadeh, Eisen et al. 2000). K-means clustering method with a
Euclidean distance metric grouped the lymphoma cases into two clusters
(Plate 2.8).

For this data set, the two clusters had different phenotypic properties.
One cluster is composed of clinical cases with a poorer prognosis on
average, the “activated” subtype. The other group, the “germinal center”
subtype, specifically expressed these 148 genes. The success of this ap-
proach hinged on selecting an informative subset of features, the 148
germinal-center specific genes.

2.4 Gene expression profiling

2.4.6 Self-organizing maps

Instead of simply partitioning data into disjoint clusters, self-organizing
maps organize the clusters into a “map” where similar clusters are close to
each other (Tamayo, Slonim et al. 1999). The number and topological
configuration of the clusters are pre-specified. The method is similar to
k-means clustering except that cluster centers are recalculated during each
iteration based on the profiles within the cluster itself as well as the profiles
in adjacent clusters. Over many iterations the clusters conform to the pre-
specified topology. That is clusters that are near to each other in the
predefined topology will contain genes that are similar to each other. This
offers the user an advantage, particularly when dealing with large numbers
of clusters; the algorithm organizes the clusters in a coherent fashion.

The user first defines a topology between the clusters. See Figure 2.29 for an
example. Then cluster centers, ¢y, . . . ,c, are assigned to be random profiles
taken from the data set. At each iteration, a gene is selected randomly and the
cluster center that is closest to it is identified. Say gene expression profile x is
assigned closest to ¢; and is therefore assigned to be a member of the i-th
cluster. Then the cluster centers are updated with the following equation:

cr = ¢ + fali, R)ulx — cp)

\‘_\‘_

V“&\ | [===| | =>—

/
W
)

Figure 2.29 Self-organizing map. In self organizing maps a topology between clusters is
predefined. In this schematic the clusters are arranged in a 2 x 3 grid. After the algorithm is run,
expression profiles are organized into clusters. The profiles are most similar within the cluster.
Clusters that are near to each other in the predefined topology are relatively similar to each other.

2 : Functional genomics

where w is a small parameter that modulates the rate at which the centers
are adjusted and f, is the neighbor function that is inversely proportional to
distance between clusters i and k in the pre-defined topology. So the cluster
centers are recalculated at each step, and the amount they are adjusted is
related to how close they are to the cluster that the selected gene is assigned
to. This process is repeated until the clusters converge. The fact that
expression profiles affect the center of their own cluster and also nearby
clusters insures that clusters that are adjacent to each other in the pre-
defined topology are similar to each other.

As a practical example we apply self-organizing maps to a yeast gene
expression data set with 79 conditions measured on 2467 genes (Eisen,
Spellman et al. 1998). Some of these clusters correlate with biological
function. Looking at the average profile for each cluster, it is apparent
that topologically close clusters are similar to each other (Figure 2.30).

2.4.7 Hierarchical clustering

Hierarchical clustering was the first clustering algorithm applied to high
throughput gene expression data (Eisen, Spellman et al. 1998). The

A M
1 " AL, \ | Wi
g A | AT |t A | il ot [l Bl
f,
A |
n p , .
- "W‘-_-_‘_ I|.._.,J‘Y- " ‘)_Y"”""'".u.."..'-""';'— Al .r'.__’“',\ e W] [A h'mﬁ"‘\
v
N A “ . A A T aad P ‘)v\"" |I-. \,i".
W I_"‘-'v\..- " Lff‘ V". ¥ s a Pan o by 1'J_-"‘-." L ety o .,__.-:._',_.._ | | ™ A ™ e N P
vy ! -
| N
o0 A A v d A M T, IR [A T
,/m_-.lf L¥ kT AL ,’M....'_r“\. oy L _'..', \ ' = | 1. A e A '.__.-.-' Ll i LN
hils [W
Y |. | |
I N
fom g ot A v ™41 Aatl] | ™) i
(Vo ot B I A |y {‘ \ .ﬁ. e e ehn i | Ill Ve Wl Kot T [eoh¥ e kA Y [
| | !r..‘ \ u” I<.|| Y v
| | ; y
\r II) "

Figure 2.30 Self-organizing map of yeast gene expression data. 2467 genes were clustered over 79
conditions. Clusters were arranged in a 5 x 5 grid. Each graph represents a cluster of genes. The
graphs are arranged according to the self-organizing map topology. In each of the graphs the
average gene expression profile of all of the genes in that cluster is displayed over the conditions.
Similarity between adjacent clusters is apparent.

2.4 Gene expression profiling

algorithm analyzes the data and presents genes (or conditions) in the form
of a dendrogram, or tree, based on gene expression similarity. The closer
two genes are placed together in the dendrogram the more related they are
in terms of gene expression. This clustering method predates gene expres-
sion analysis, and was a favorite approach to clustering gene and protein
sequences. Hierarchical clustering strategies suffer because the decision
about where to create branches and in what order the branches should be
arranged can be arbitrary. In practice biologists often use their knowledge
about genes to determine whether they appear related to each other and
draw appropriate boundaries in hierarchical clusters manually. One of the
reasons why many prefer hierarchical clustering is that it offers the user
some flexibility to draw the cluster boundaries.

Here we describe agglomerative hierarchical clustering. This form of
clustering starts at the twigs of the tree and works its way up to the trunk
(see Figure 2.31). Say hierarchical clustering is applied to a data set that has

[s2]
- N o - o <
(a) (0] [0} (0] (0] (b) [0 [[6))
< < < < < c c
[J] (0] [0 [J] (0] O] [0
6 6 O O S 6 O
— Gene1l | o — Genel|

— Gene2 | 3 |9 [Gene 2
0
— Gene3 | 5 0 Gene 3

— Gene4d |7 6 |4 |0 — Gene4| 7 4 |0
™
o
— <
(©) o 2 (d)
[0 [0
(O] (O]
Gene 1 Gene 1
‘ Gene2 | O Gene 2
|: Gene 3 |: Gene 3
—— Gene4 Gene 4

Figure 2.31 Agglomerative hierarchical clustering. To create a hierarchical clustering of genes we
begin by calculating a distance matrix, D, between all of the genes. (a) The first step involves
identifying the nearest pair of genes. In this example Gene 2 and Gene 3 are the most similar to each
other. (b) The two nearest genes are merged. The distances between this merged entity and the
remaining genes are recalculated. In this case the minimum distance is used. A new distance matrix is
created. (c) Again the nearest two entities in the redefined distance matrix are identified by noting the
smallest value in the distance metric. These two entities are then combined. (d) This processis repeated
iteratively until only one merged entity (the root) remains.

2 : Functional genomics

gene expression profiles for n# genes. Each of the n genes is initially con-
sidered an individual cluster. The task is then to merge them into larger and
larger clusters, until they have all been combined into a single cluster.

First, hierarchical clustering calculates the 7(n — 1)/2 pairwise distances
between each of the 7 clusters of single genes using one of the aforemen-
tioned distance metrics. These distances are all stored in a matrix D. Next
we search for the smallest off-diagonal distance in D. The two most similar
non-identical clusters are then merged into a new cluster; this defines the
first branchpoint in the tree. Let us assume that these two profiles are i and ;.
We now recalculate the matrix Dj since gene i and gene j have been merged,
we remove the rows and columns corresponding to 7 and j in D. We add
another row and column for the (i, j) cluster. So we have replaced two
clusters containing only a single gene each with a single cluster containing
two genes.

To update D, there are three options to calculate the distance between the
new (7,j) cluster and the other remaining genes. The first is to calculate an
average distance from the original distances to the individual genes (average
linkage). Another option is to assume the distance between a gene and the
new cluster is the greatest distance between that gene profile and all of the
constituent gene profiles in the cluster (complete linkage). The third option
is to assume that it is the least distance between that gene and the constitu-
ent genes (single linkage).

Once D has been updated, we repeat the process. Again we search for the
smallest distance in D. We combine those two clusters, and update D. This
time it is possible that a cluster of one gene is grouped with the larger cluster
of two genes to form an even larger cluster of three genes. This process is
repeated until all of the genes have been merged into a single cluster. The
sequence in which the merges occurred determines the structure of the
cluster tree.

2.4.8 Dimension reduction with principal components analysis

Like clustering algorithms, dimensional reduction algorithms also reduce
the complexity of the data. Application of dimension reduction methods to
gene array data is an alternative to clustering of genes (Raychaudhuri,
Stuart et al. 2000). Like clustering methods, dimension reduction methods
do not include any outside information besides the expression data itself.
Dimension reduction involves removing or consolidating features in the
data set. Features are removed because they do not provide any significant
incremental information, and because they can confuse the analysis or
make it unnecessarily complex. For example, a time series experiment
may sample data more finely than necessary, and so many of the conditions
are intercorrelated and do not offer additional information about the genes.

2.4 Gene expression profiling

Instead, we would choose a subset of conditions that contains “independent”
information. Dimension reduction can make the outliers and clusters in a data
set apparent, and can also reduce the noise in the data set. It can suffer,
however, by throwing away important but weak signals in the data.

Microarray data sets are sufficiently large that dimension reduction can
help algorithms run more quickly, and can also make the results of an
analysis easier to understand. Dimension reduction can be accomplished
with a number of methods, including principal components analysis, sin-
gular value decomposition, independent components analysis, and others.

Principal component analysis (PCA) automatically detects redundancies
in the data and defines a new (smaller) set of hybrid features, or compon-
ents, that are guaranteed not to be redundant. The hybrid features, or
principal components, are composites of the original features, chosen to
provide separate information about the genes or conditions. Each principal
component is a normalized linear combination of the original variables.
These components together account for as much of the variance in the
original n variables as possible while remaining mutually uncorrelated
and orthogonal.

To compute the principal components for a dataset of 7 genes and »
conditions, we first center the data, so that for each condition the mean
expression is zero. Then we calculate the covariance matrix. The 7 eigen-
values and their corresponding eigenvectors are calculated from the # x »
covariance matrix of conditions. Each eigenvector defines a principal com-
ponent. A component can be viewed as a weighted sum of the conditions,
where the coefficients of the eigenvectors are the weights. The projection of
gene i along the axis defined by the j~™ principal component is:

n
PCA §
t=1

where v, is the £ coefficient for the j~ principal component, and a;; is the
expression measurement for gene ; under the ¢~ condition. AP®A is the data
in terms of principal components. Since V is an orthonormal matrix of
eigenvectors, AP®A is a rotation of the data from the original space of
observations to a new space with principal component axes.

The variance accounted for by each of the components is its associated
eigenvalue; it is the variance of a component over all genes. Consequently,
the eigenvectors with large eigenvalues are the ones that contain most of the
information; eigenvectors with small eigenvalues are uninformative. We
assume the components with low variance have little information and we
eliminate them. Determining the true dimensionality of the data and the
number of components to eliminate is often ad hoc and many heuristics
exist.

2 : Functional genomics

We applied PCA to the test lymphoma data (Figure 2.32). In this case, we
have reduced 47 lymphoma data points in 148-dimensional space (47
cancer cases associated with expression measurements for 148 germinal-
center genes) to just two dimensions; each cancer profile is plotted as a 2D
point in the graphic. Each spot in the graphic is shaded to match its
corresponding cluster in Plate 2.8; the two subtypes are clearly separated
in the reduced two-dimensional component plot. It is sometimes possible
to interpret the new features biologically. For this data set, the first dimen-
sion may be a measure of average overall expression of germinal center
specific genes.

2.4.9 Combining expression data with external information:
supervised machine learning

Supervised classification approaches offer the most straightforward possi-
bility of incorporating outside knowledge. Given a set of known cases,
classification algorithms allow the possibility of determining whether un-
seen cases are similar to the given cases and therefore likely from the same
class. The selection of the known cases is where the external information is
injected into the analysis. These approaches, therefore, require a set of
examples of expression profiles that are labeled with some phenotype or
categorization. The rules that are devised from these examples are used
to predict properties of unseen expression profiles. One advantage of

8,
6| ¢ P
A A A~ ‘0 .
I\ '’y * *e
2 A Ao . .
S A A A *
g . . by "% , .
g——ZO -15 -10 - A D 5 10 15 20
o Aﬁ2* A *
() A * .
L4 .
A A 6
_8,

Component 1

Figure 2.32 Visualization of 148-dimensional lymphoma data in two dimensions using principal
component analysis. Principal component analysis (PCA) applied to the lymphoma expression
profiles over the 148 germinal-center specific genes makes it possible to visualize the data in two-
dimensional space. Approximately 45% of the total variance is contained in the first two
dimensions. Each point in the figure represents a specific cancer profile. It is plotted in an expression
space represented by two components. The cases from the germinal-center subtype are dark
diamonds, and the activated subtype cases are lighter triangles. The clusters are well separated in
this space.

2.4 Gene expression profiling

supervised machine learning techniques is that they usually place differen-
tial weights on the features based on their utility in distinguishing between
different categories.

For example, one application of classification algorithms is in predicting
the function of a gene by comparison of its expression profile to those of
well studied genes. Another application of classification algorithms is dis-
ease diagnosis based on the gene expression profile of a pathologic specimen
taken from a patient’s biopsy.

Typical use of classification approaches requires the selection of a posi-
tive and negative training set. The training sets contain the known cases.
The positive set contains examples that belong to the class, such as genes
with a particular function. The negative set contains examples of cases that
do not belong to the class, such as genes that specifically are confirmed not
to have that same function.

Examples of such methods include logistic regression, nearest neighbor
classification, neural networks, and linear discriminant analysis (LDA).
Logistic regression uses the feature values for different groups to estimate
the parameters of a predictor function (a linear log-likelihood model) to
best account for the known classified cases (Ripley 1996). Neural networks
use a set of known examples to create a multi-layered computational
network that produces a prediction of the category for each unknown
case. We review linear discriminant analysis and nearest neighbor classifi-
cation in greater detail below.

2.4.10 Nearest neighbor classification

Nearest neighbor classification schemes are some of the easiest to implement
and understand, and frequently they are very effective methods. Given a
previously unseen test case, nearest neighbor classification determines whether
or not it belongs to the class by identifying the most similar cases. If many of
these similar cases belong to the class, then it is assumed that the test case
belongs to the class as well. So first the distance using a pre-selected metric
between the test case, x, and each of the training examples, x;, is obtained:

di = D(x, x;)

Then, the closest k training examples are identified. If more than k/2
training examples are positive examples, we predict that the test case
belongs to the class represented by the positive training set.

2.4.11 Linear discriminant analysis

Linear discriminant analysis uses the labeled examples from each set of
classified cases to estimate a probability distribution for the values of the

2 : Functional genomics

features in that class (see Figure 2.33). Given a new example, it uses the
distributions to determine the most likely class and assigns the example to it.

The basic assumption of LDA is that the positive and negative training
examples can be modeled with normal distributions. The probability dens-
ity function of a multivariate normal distribution is:

o Hx—p)' S (w—p)
v (2m)"|S]

The two critical parameters are the mean on which the distribution is
centered, u, and the covariance matrix, S, that determines the shape of
the distribution. Let’s assume that our training examples are in a matrix, X,
where each row represents a gene’s expression profile. The mean for the

F(x) =

.. Discriminant line

Figure 2.33 Linear discriminant analysis. This is an example of a discriminant line separating
positive training cases (white squares) from negative training cases (dark squares). First for each of
those sets of data a separate mean is calculated, indicated by the “X”. A pooled covariance matrix is
calculated for both sets of data separately. The pooled covariance matrix and the means are used to
define two normal distributions: one that models the positive cases and one that models the negative
cases. The ovals represent the normal distributions. The distributions are assumed to have the same
covariance matrix — so they have a similar shape. The discriminant line, indicated here with a dotted
line, is defined as the collection of points where the density of the positive distribution is equal to the
density of the negative distribution.

2.4 Gene expression profiling

positive training set and negative training set are calculated separately; we
will denote them as u™ and u™, respectively. A common covariance matrix
is assumed for both distributions. This pooled covariance matrix is the
average of the covariance matrix of the positive training examples, S*,
and the covariance of the negative training examples, $™:

S=—(S"+S5)

N =

Given an unseen test case, x, we can calculate the log of the ratio of the
probability of x assuming that it was generated by the positive model to
the probability of x assuming that it was generated by the negative model.
This is the log likelihood that x is a positive case:

p<x|+>): (mx))
log<p<x|—> log\ 7 (w)

where F. is the normal distribution characterizing the positive training
examples, and F_ is the normal distribution characterizing the negative
training examples. Since we have assumed they have identical covariance
matrices, we can further simplify to:

p(x|—|—)) 1 —\o=1/, + - fo—1y, + -
log(7Y = _ _
og<(|) (m LS () xS (n no)

If the value of the log likelihood is greater than zero, then we assume that
the test case, x, is consistent with the positive set and is classified accord-
ingly, otherwise we classify the test case with the negative set.

Supervised grouping methods can be applied to the lymphoma data set.
For example, suppose the biological expertise required to pick out the 148
germinal center genes (as we did in the unsupervised grouping illustration) is
not available. Instead, we would be faced with a data set consisting of
expression measurements for 4026 genes. Suppose, however, that we know
that there are two different clinical presentations of the disease. In particular,
we can partition the data into two sets—those that fall into a less malignant
group and those that fell into the more malignant group. To demonstrate
supervised grouping, we select ten clear-cut cases of each—ten very aggres-
sive lymphomas and ten very benign ones. Then use LDA to predict accur-
ately the prognosis for the remaining 27 unknown cases (Plate 2.9).

The results of applying LDA to other gene expression classification tasks
are described in Table 2.4; these tasks include gene function assignment and

Table 2.4 Application of LDA supervised classification to diverse tasks. The first two tasks are classifying human cancers (condition) expression profiles based on
genome wide expression assays of pathologic specimens. The second two tasks are classifying the type of function or regulation of genes based on expression
measurements. Each row represents a publicly available data set in which there are two predefined classes (arbitrarily designated as either positive or negative). The
column “Gold standard reference” contains the primary resources where the data categorizations were obtained (and/or the original raw data). The columns “Positive
set” and “Negative set” contain a description of the two classification categories and the number of examples for each (the sets are labeled positive and negative
arbitrarily). The “Features” column states the number and type of features used for classification. For example the leukemia profile consists of measurements over
7129 genes. Alternatively, in cases where genes are being classified, its expression in each array experiment constitutes the features. The “Cross-validation accuracy”
column is an estimate of the percentage of correctly classified examples on unseen data. We classified acute leukemia cases into the well-established clinical subtypes of
myeloid and lymphoid leukemia based on gene expression in pathologic specimens with linear discriminant analysis (LDA). We classified cancerous and non-
cancerous cell lines into diffuse non-B cell lymphoma (DLCL) and non-DLCL cell lines based on gene expression in pathologic specimens. We classified yeast genes
into members and non-members of the ribosomal complex, as defined by the MIPS consortium based on gene expression in yeast under diverse conditions. We also
distinguished between yeast genes regulated by the mse upstream promoter element versus those regulated by a #rs1 upstream promoter element; both promoters are
critical to yeast sporulation. The data set consisted of a yeast sporulation time series as well as non-related cell-cycle and metabolic time series experiments.

Gold standard Cross-validation
Problem reference Positive set N Negative set N Features accuracy
1. Acute leukemia Primary Data Lymphoid 47 Myeloid 25 7129 genes 95.83%
(Golub, Slonim (Golub, Slonim et al.
et al. 1999) 1999)
2. Lymphoma Primary Data Diffuse large cell Non-DLCL 54 4026 genes 95.83%
(Alizadeh, Eisen (Alizadeh, Eisen lymphoma 42
et al. 2000) et al. 2000)
3. Ribosomal genes MIPS catalogue Ribosomal genes Other Genes 2346 79 arrays 99.23%
(Eisen, Spellman (Mewes, Frishman 121
et al. 1998) et al. 2000)
4. Sporulation Reviews (Mitchell Early genes (URS1 Middle genes (MSE 103 arrays 97.20%
promoters 1994; Chu and promoters) 13 promoters) 23
(DeRisi, Iyer et al. Herskowitz 1998)
1997; Chu,

DeRisi et al.
1998; Spellman,
Sherlock et al.
1998)

References

cancer subtype classification. Clearly, the success of supervised machine
learning is dependent on whether high-quality labeled sets are provided. In
the case of expression data, supervised grouping will certainly fail if the
expression data does not explain the phenotype in question.

References

Aach, J. and G. M. Church (2001). “Aligning gene expression time series with time
warping algorithms.” Bioinformatics 17(6): 495-508.

Alberts, B., D. Bray, et al. (1994). Molecular Biology of the Cell. New York, Garland
Publishing.

Alizadeh, A. A., M. B. Eisen, et al. (2000). “Distinct types of diffuse large B-cell
lymphoma identified by gene expression profiling.” Nature 403(6769): 503-11.

Altman, R. B. and S. Raychaudhuri (2001). “Whole-genome expression analysis: chal-
lenges beyond clustering.” Curr. Opin. Struct. Biol. 11(3): 340-7.

Altschul, S. E, W. Gish, et al. (1990). “Basic local alignment search tool.” J. Mol. Biol.
215(3): 403-10.

Altschul, S. E, T. L. Madden, et al. (1997). “Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs.” Nucleic Acids Res. 25(17): 3389-
402.

Behr, M. A., M. A. Wilson, et al. (1999). “Comparative genomics of BCG vaccines by
whole-genome DNA microarray.” Science 284(5419): 1520-3.

Ben-Hur, A., A. Elisseeff, et al. (2002). “A stability based method for discovering
structure in clustered data.” Pac. Symp. Biocomput: 6-17.

Chee, M., R. Yang, et al. (1996). “Accessing genetic information with high-density DNA
arrays.” Science 274(5287): 610-4.

Chen, J. J., R. Wu, et al. (1998). “Profiling expression patterns and isolating differen-
tially expressed genes by ¢cDNA microarray system with colorimetry detection.”
Genomics 51(3): 313-24.

Cho, R. J., M. J. Campbell, et al. (1998). “A genome-wide transcriptional analysis of the
mitotic cell cycle.” Mol. Cell. 2(1): 65-73.

Chu, S., J. DeRisi, et al. (1998). “The transcriptional program of sporulation in budding
yeast.” Science 282(5389): 699-705.

Chu, S. and I. Herskowitz (1998). “Gametogenesis in yeast is regulated by a transcrip-
tional cascade dependent on Ndt80.” Mol. Cell. 1(5): 685-96.

DeRisi, J. L., V. R. Iyer, et al. (1997). “Exploring the metabolic and genetic control of
gene expression on a genomic scale.” Science 278(5338): 680-6.

Durbin, R., S. Eddy, et al. (2003). Biological Sequence Analysis. Cambridge, Cambridge
University Press.

Eisen, M. B., P. T. Spellman, et al. (1998). “Cluster analysis and display of genome-wide
expression patterns.” Proc. Natl. Acad. Sci. U S A. 95(25): 14863-8.

Golub, T. R., D. K. Slonim, et al. (1999). “Molecular classification of cancer: class
discovery and class prediction by gene expression monitoring.” Science 286(5439):
531-7.

Gotoh, O. (1982). “An improved algorithm for matching biological sequences.” J. Mol.
Biol. 162(3): 705-8.

2 : Functional genomics

Halushka, M. K., J. B. Fan, et al. (1999). “Patterns of single-nucleotide polymorphisms
in candidate genes for blood-pressure homeostasis.” Nat. Genet. 22(3): 239-47.

Hermeking, H. (2003). “Serial analysis of gene expression and cancer.” Curr. Opin.
Oncol. 15(1): 44-9.

Heyer, L. J., S. Kruglyak, et al. (1999). “Exploring expression data: identification and
analysis of coexpressed genes.” Genome. Res. 9(11): 1106-15.

Hughes, T. R., M. J. Marton, et al. (2000). “Functional discovery via a compendium of
expression profiles.” Cell 102(1): 109-26.

Kerr, M. K. and G. A. Churchill (2001). “Bootstrapping cluster analysis: assessing the
reliability of conclusions from microarray experiments.” Proc. Natl. Acad. Sci. USA.
98(16): 8961-5.

Krogh, A., M. Brown, et al. (1994). “Hidden Markov models in computational biology.
Applications to protein modeling.” J. Mol. Biol. 235(5): 1501-31.

Mantovani, R. (1998). “A survey of 178 NF-Y binding CCAAT boxes.” Nucleic Acids
Res. 26(5): 1135-43.

Mewes, H. W., D. Frishman, et al. (2000). “MIPS: a database for genomes and protein
sequences.” Nucleic Acids Res. 28(1): 37-40.

Michaels, G. S., D. B. Carr, et al. (1998). “Cluster analysis and data visualization of
large-scale gene expression data.” Pac. Symp. Biocomput: 42-53.

Mitchell, A. P. (1994). “Control of meiotic gene expression in Saccharomyces cerevi-
siae.” Microbiol. Rev. 58(1): 56-70.

Needleman, S. B. and C. D. Wunsch (1970). “A general method applicable to the search
for similarities in the amino acid sequence of two proteins.” J. Mol. Biol. 48(3): 443—
53.

Nelson, D. L., A. L. Lehninger, et al. (2000). Lebninger Principles of Biochemsitry,
Worth Publishing.

Pearson, W. R. (1990). “Rapid and Sensitive Sequence Comparison with FASTP and
FASTA.” Methods in Enzymology 183: 63-98.

Pearson, W. R. and D.]J. Lipman (1988). “Improved tools for biological sequence
comparison.” Proc. Natl. Acad. Sci. U S A. 85(8): 2444-8.

Pollack, J. R., C. M. Perou, et al. (1999). “Genome-wide analysis of DNA copy-number
changes using cDNA microarrays.” Nat. Genet. 23(1): 41-6.

Raychaudhuri, S., J. M. Stuart, et al. (2000). “Principal components analysis to sum-
marize microarray experiments: application to sporulation time series.” Pac. Symp.
Biocomput: 455-66.

Raychaudhuri, S., J. M. Stuart, et al. (2000). “Pattern recognition of genomic features
with microarrays: site typing of Mycobacterium tuberculosis strains.” Proc. Int. Conf.
Intell. Syst. Mol. Biol. 8: 286-95.

Raychaudhuri, S., P. D. Sutphin, et al. (2001). “Basic microarray analysis: grouping and
feature reduction.” Trends Biotechnol. 19(5): 189-93.

Ripley, B. D. (1996). Pattern Recognition and Neural Networks. New York, Cambridge
University Press.

Ross, D. T., U. Scherf, et al. (2000). “Systematic variation in gene expression patterns in
human cancer cell lines.” Nat. Genet. 24(3): 227-35.

Schena, M., D. Shalon, et al. (1995). “Quantitative monitoring of gene expression
patterns with a complementary DNA microarray.” Science 270(5235): 467-70.

Sherlock, G. (2000). “Analysis of large-scale gene expression data.” Curr. Opin. Immu-
nol. 12(2): 201-5.

Shi, H. and P. B. Moore (2000). “The crystal structure of yeast phenylalanine tRNA at
1.93 A resolution: a classic structure revisited.” Rna. 6(8): 1091-105.

References

Spellman, P. T., G. Sherlock, et al. (1998). “Comprehensive identification of cell cycle-
regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization.”
Mol. Biol. Cell. 9(12): 3273-97.

Stryer, L. (1995). Biochemistry. New York City, W.H. Freeman and Company.

Tamayo, P., D. Slonim, et al. (1999). “Interpreting patterns of gene expression with self-
organizing maps: methods and application to hematopoietic differentiation.” Proc.
Natl. Acad. Sci. USA. 96(6): 2907-12.

Thompson, J. D., D. G. Higgins, et al. (1994). “CLUSTAL W: improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, position-
specific gap penalties and weight matrix choice.” Nucleic Acids Res. 22(22): 4673-80.

Tuteja, R. and N. Tuteja (2004). “Serial analysis of gene expression: Applications in
human studies.” J. Biomed. Biotechnol. 2004(2): 113-120.

Tuteja, R. and N. Tuteja (2004). “Serial analysis of gene expression: Applications in
malaria parasite, yeast, plant, and animal studies.” . Biomed. Biotechnol. 2004(2):
106-112.

Velculescu, V. E., L. Zhang, et al. (1995). “Serial analysis of gene expression.” Science
270(5235): 484-7.

White, K. P., S. A. Rifkin, et al. (1999). “Microarray analysis of Drosophila development
during metamorphosis.” Science 286(5447): 2179-84.

Williams, J. C., J. P. Zeelen, et al. (1999). “Structural and mutagenesis studies of
leishmania triosephosphate isomerase: a point mutation can convert a mesophilic
enzyme into a superstable enzyme without losing catalytic power.” Protein Eng.
12(3): 243-50.

Yeung, K. Y. and W. L. Ruzzo (2001). “Principal component analysis for clustering gene
expression data.” Bioinformatics 17(9): 763-74.

This page intentionally left blank

Textual profiles of genes

Using algorithms to analyze natural language text is a challenging task.
Recent advances in algorithms, and increased availability of computational
power and online text has resulted in incremental progress in text analysis
(Rosenfeld 2000). For certain specific applications natural language pro-
cessing algorithms can rival human performance. Even the simplest algo-
rithms and approaches can glean information from the text and do it at a
rate much faster than humans. In the case of functional genomics, where an
individual assay might include thousands of genes, and tens of thousands of
documents pertinent to those genes, the speed of text mining approaches
offers a great advantage to investigators trying to understand the data. In
this chapter, we will focus on techniques to convert text into simple numer-
ical vectors to facilitate computation. Then we will go on to discuss how
these vectors can be combined into textual profiles for genes; these profiles
offer additional biologically meaningful information that can complement
available genomics data sets.

The previous chapter introduced methods to analyze gene expression
data and sequence data. The focus of many analytical methods was com-
paring and grouping genes by similarity. Some sequence analysis methods
like dynamic programming and BLAST offer opportunities to compare two
sequences, while multiple sequence alignment and weight matrices provide
a means to compare families of sequences. Similarly, gene expression array
analysis approaches are mostly contingent on distance metrics that compare
gene expression profiles to each other; clustering and classification algo-
rithms provide a means to group similar genes. The primary goal of apply-
ing these methods was to transfer knowledge between similar genes.

We can think of the scientific literature as yet another data type and define
document similarity metrics. Algorithms that tap the knowledge locked in
the scientific literature require sophisticated natural language processing
approaches. On the other hand, assessing document similarity is a com-
paratively easier task. A measure of document similarity that corresponds
to semantic similarity between documents can also be powerful. For ex-
ample, we might conclude that two genes are related if documents that refer
to them are semantically similar. We assess similarity by looking at the

3 : Textual profiles of genes

words that are used in the documents, and seeing if these words are the
same or similar.

The concepts presented in this chapter are listed in the frame box. First
we will introduce document vectors and the common metrics to measure
similarity between them. Then we talk about strategies to remove the less
semantically meaningful words and to also weight words according to their
semantic value. We then talk about recasting document vectors in a reduced
dimensional space using latent semantic indexing. We show how textual
profiles for genes can be created. We demonstrate the utility of these textual
profiles in the context of gene expression data, sequence data, and finding
keywords that describe a gene. We then close with a discussion on strategies
to query genes to identify genes with specific biological functions.

3.1 Representing documents as word vectors

One of the simplest and most effective representations for a document is the
word vector model (Manning and Schutze 1999). A document can be
converted into a word vector by simply counting the number of occurrences
of each word. For a document d; where each word i is present a;; times:

d/ = <6117', A2js A3j5 -+ s aN,->

We demonstrate the conversion of a document to a word vector in Figure
3.1. Given a large collection of documents, we can construct a matrix, A,
that represents the entire corpus of documents. Each column is a word
vector for a specific document, and each row represents a particular word.
Each entry a;; corresponds to the number of times word i appears in

1) Document word vectors 6) Gene textual similarity

2) Document vector distance correlates with sequence
metrics similarity

3) Feature selection and weighting 7) Gene textual similarity
a) Zipf’s law correlates with expression
b) Removing stop words similarity
¢) Stemming 8) Keyword assignment to genes
d) Word weighting and groups of genes

4) Latent semantic indexing: 9) Querying gene text for
dimension reduction biological functions

5) Using reference indices to build
gene textual profiles

3.1 Representing documents as word vectors

DOCUMENTS sl

branch
@ b 1 DocumMeNT TEXT
g cues
= drosophila i1 "The branch-specific
p migration cues in the
in 11 Drosophila tracheal
migration i1 system
of {0
the 2
tracheal 31
utility 40
. e Document word vector
LN A

Figure 3.1 Converting document text to a word vector. To convert document text to a word
vector, words in the textual document are counted. Those counts are entered in the vector. In many
cases, multiple document vectors can be compiled together in a matrix. For a given document
vector, the vast majority of words are present zero times, and the vector is quite sparse.

document j. We use the term document very broadly. Depending on the
application, the document might be a whole full text journal article, an
article abstract, a particular paragraph, a single sentence, or a collection of
words in a particular phrase. Matrix A may have a very large number of
rows, since the number of vocabulary words represented in the rows of A
might be enormous. A typical vocabulary may include thousands of words.
The matrix A may have a large number of columns as well, since most
functional genomics corpora contain tens of thousands of documents.
In addition, A is often a very sparse matrix. Most documents will only use
a minority of the available vocabulary. For example a typical PubMed
abstract may contain several hundred words. Since the vocabulary may
include ten thousand words, only a handful of entries for the document’s
vector will be non-zero. Most vocabulary words will not occur among the
mere several hundred words used in the text.

There are a few definitions with regards to this matrix that are worth
noting. The a; matrix term is also known as the term frequencys; it is the
number of times a particular word shows up in a specific document. We will
also refer to the term frequency of word 7 in document j as ¢f;;. The document
frequency, df;, of a word i is the number of documents in the corpus that
the term appears in. The collection frequency, cf;, of a word i is the total

3 : Textual profiles of genes

number of times that a word appears in a corpus. Given any word, its
collection frequency is the sum of its term frequencies over all documents:

> tfy=cf;

]

The advantage of the word vector model is that standard matrix analysis
approaches can now be applied to a corpus of documents. For example,
many of the same strategies that we used to analyze the gene expression
data matrices introduced in section 2.4 can be directly applied to document
data in this form. In Plate 3.1 we illustrate with a hierarchical clustering of
article abstracts about gene expression analysis (Altman and Raychaudhuri
2001). Here, we have clustered documents with Cluster, a hierarchical
clustering software package available for gene expression analysis (Eisen,
Spellman et al. 1998). Looking at the titles of these articles organized in the
hierarchy, we see that related articles tend to cluster together. Other cluster-
ing strategies, dimensional reduction approaches, and classification
methods can also be applied to these matrices.

In the subsequent sections we will also talk about ways to make more
effective word vectors by removing semantically less valuable words, dif-
ferentially weighting words, and applying dimensional reduction methods.

The word vector document model was originally exploited in informa-
tion retrieval tasks, such as retrieving appropriate documents given a key-
word query. These applications have become valuable in internet and
literature database searches (Hersh 2003). While this approach is very
convenient for computation, a significant amount of information is lost in
this document representation. Basic sentence structure is completely oblit-
erated, and it may be very difficult to piece together the meaning of a
document from the word vector. For example, one very challenging aspect
of this documentation is negations. A document that says a gene has a
certain function and another document that says that the same gene defini-
tively lacks that function have semantically opposite theses. But, from the
point of view of word vectors, these documents look very similar. They may
use the exact same words to describe the gene, the function, and the assays
used to derive the ultimate conclusion. Consequently word vector similarity
can also be confounding for certain applications.

3.2 Metrics to compare documents

The advantage of vector formulations is that assessing document similarity
becomes a relatively easy task. There are many approaches, each of which
may be appropriate for a given situation (Manning and Schutze 1999). The

3.2 Metrics to compare documents

simplest metrics measure distances between binary vectors, while more
sophisticated metrics take into account the actual term frequencies. Binary
vectors can be formulated from any of the above vector formulations by
replacing non-zero term frequencies with one; this indicates only the pres-
ence or absence of a single word in a document vector.

The matching coefficient is the simplest similarity measure between
binary vectors; it counts the number of dimensions that are non-zero for
two documents. In other words, it is a count of the number of words that
appear in both documents. Mathematically, it can also be thought of as the
dot product between two binary vectors.

To normalize similarity for differences in the document lengths we intro-
duce the dice coefficient. The dice coefficient is the matching coefficient
divided by the average number of non-zero entries in both vectors. If the
two documents share no words, the dice coefficient will be zero; if they are
exactly the same, the dice coefficient will be one.

The Jacard coefficient is an alternative metric that also normalizes for
document lengths. It is calculated by first calculating the matching coeffi-
cient, and then dividing that by the total number of non-zero elements
in both documents. In other words it is the number of common words
between both documents divided by the total number of words that appear
in either.

The overlap coefficient is the matching coefficient divided by the number
of unique words in the smaller of the two documents. For example if a short
document contains 50 unique words, all of which are used in a second
longer document containing 200 words, the overlap coefficient will be 1
despite the fact that the second document has many other words that are
unique to it. So this metric has a clear bias that may, under some circum-
stances, be desirable.

Now, consider real-valued vectors. These vectors are more expressive
than binary vectors and contain term frequency information. One standard
metric we could apply to assess document similarity is the cosine metric.
Given two document vectors x and y the cosine between the documents is:

L
(ERRBA

where || x || is the norm of x. The Euclidean metric is another effective
distance metric:

[x—=y|

Both of these metrics can be used to compare documents to each other.

3 : Textual profiles of genes

3.3 Some words are more important for document
similarity

All words are not equally important in assessing document similarity. For
example if two words share the word “the” it does not imply a great deal
about the similarity between these two documents. On the other hand, it is
probably much more significant if two documents share the word “trans-
duction”. Methods that identify and emphasize the valuable words, and de-
emphasize the less relevant words will improve overall performance.

In general frequent words provide less information about the semantic
content of a document than rare words. The frequency of a particular word
is typically about proportional to the inverse of its rank in frequency:

1
fre

Zipf popularized this empirical observation about language and literature
(Zipf 1929). So the second most common word will be observed half as
frequently as the most common word. The one hundredth most common
word will be observed only one hundredth as frequently as the most
common word. The implication of this is that there are a few very com-
monly observed words, but many rarely observed words.

Itis the rare words that have the most semantic value however. In Figure 3.2
we have plotted the document frequency of words taken from a corpus of
documents containing 15,495 documents pertinent to Drosophila Melano-
gaster (fruit fly) available at FlyBase (wwuw.flybase.net) (FlyBase 2003).
After excluding words with document frequencies more than ten thousand
and fewer than four, we obtain the resulting histogram. Only 20 words
appear in more than 5000 documents. Most of these words are very
general words such as “at”, “which”, and “melanogaster”. Most words
appear in fewer than 25 documents. These are the words that have
functional relevance. Some examples include “sycytium”, “dyneins”, and
“ribosylation”.

The consequence of these observations is that the rare words are more
critical in terms of assessing document similarity. Therefore, schemes that
weight words according to the inverse of their frequency may be more
effective.

3.4 Building a vocabulary: feature selection

When building up the vocabulary to use for building document vectors,
there are some important considerations. One approach is to include counts

www.flybase.net

3.4 Building a vocabulary: feature selection

epidermoblasts
cockroach
dyneins ribosylation
serines tubes

syncytium
rhabdomeric
multisubunit
4500 + retrotransposons
metallothionein
4000 - ova modifications
euchromatin

3500 - myoblasts
§ 3000 4 tumors axonal
g vesicle
: 2500 - ATPase mlcro!gbules
5 pupae gain jndicates
S 2000 defta yeast)
§ nerve coding previously
Z 1500 -+ male ma found at

receptor development ;
| hich
1000 embryo dna mel::wlgaStGF
500 - genes protein
0 - - . . i E - - .

51— 101 25— 501— 1001— 2501—
<1 1125 2650 Gy 250 500 1000 2500 5000 9000

Document frequency

Figure 3.2 Histogram of words as a function of document frequency in a Drosophila corpus. In
this plot it is apparent that there are just a few words with a very high document frequency, while
there are thousands of words with a very low document frequency. The frequently occurring words
are not very informative. The examples here are words like “at”, “which”, and “protein”; these
words offer little insight about the content of a document. The rare words such as “ribosylation”
and “dyneins” are specific biological concepts whose presence in a document is quite informative.

of all possible words. However, such a vocabulary may be intractably large.
In addition, some words, especially the more common ones, may not be
helpful in terms of assessing document similarity.

One solution is to use a stop list containing commonly used function
words that are valuable in written English, but unhelpful in the setting of
document similarity assessment. Such words may include frequently used
pronouns, articles, and prepositions, among other words. A short stop list
adapted from Manning and Schutze is presented in Table 3.1 (Manning and
Schutze 1999).

Another equally effective strategy is to simply remove words that occur
either extremely frequently or rarely. A word that appears in many docu-
ments is likely to be a function word that does not help in document
comparisons; it is probably not semantically specific enough to be helpful.
A word that shows up in a few documents may be the consequence of a
typographical error, a web site name, or an extremely obscure term that is
rarely used. There are often many such words in large corpora that greatly
increase the size of the vocabulary and the dimensionality of word vectors
without adding significant information. Words such as these may also not
be helpful in document comparisons. This simple strategy has been shown
to be very effective under many circumstances (Yang and Pedersen 1997).

3 : Textual profiles of genes

Table 3.1. A list of some common stop words.

a hers their
also his there
an how these
and I they
as if those
at in through
be it to

but its until
by me we
can my what
come of when
could on where
do one which
for or while
from our who
go say with
have she would
her that you
here the your

Stemming is yet another strategy that can be employed to reduce the size of
the vocabulary. Suffixes are often used to modify words. For example, the
word “gene” in its plural form is “genes”. It is sometimes valuable to recog-
nize that these two words are derived from the same root word. Stemming
reduces words to their roots. In this way the vocabulary size is reduced as
multiple forms of the same word are reduced to a single word. One common
approach to stemming is Porter’s algorithm (Porter 1980). Based on a series
of ad hoc rules, words are truncated until their root form is achieved.

Another more extreme strategy to reducing the size of the vocabulary is
to use only a predefined set of words. For example, one group limited their
analysis to words that they were certain pertained only to biological func-
tion (Glenisson, Coessens et al. 2004). They restricted their document
vectors to include only words and phrases that were predefined in func-
tional vocabularies such as Gene Ontology (Ashburner, Ball et al. 2000).
This approach requires the availability of preexisting controlled vocabular-
ies. One of the disadvantages of this approach is that it can be too restrict-
ive, and valuable words that are not explicitly included in the controlled
vocabulary may be lost.

3.5 Weighting words

As presented previously, document similarity can be assessed by comparing
term frequency vectors. However, term frequency vectors give equal weight

3.5 Weighting words

to all terms included in the vocabulary. In practice, more effective document
similarity measures employ term weighting schemes. These schemes can
improve performance by replacing term frequencies with weighted frequen-
cies that emphasize rare terms and dampen frequency. Most of these
weighting schemes are practical methods that work well empirically, but
are poorly grounded in theory.

The document frequency of a word suggests the importance of a word. As
we described above, rare words are likely more informative. So a good
weighting scheme should give terms weights that are inversely proportional
to the document frequency of the term. A common strategy is to weight
terms by a factor log, (N/df;). If a word shows up in every document, then
the document frequency is N, and the term receives a weight of zero. On the
other hand, if the word appears in a single document only, then the term
receives the maximal weight of log, N.

Term frequency tells us how valuable a particular term is at describing the
content of a document. The more times a word appears in a document, the
more likely it is central to the meaning of the document. So any weighting
scheme should be proportional to the term frequency. However, while the
first occurrence of a term is very indicative about the meaning of a docu-
ment, each additional occurrence is much less meaningful. Therefore, the
most effective weighting schemes often actually dampen the increasing term
frequencies. One common scheme is to replace term frequencies with
1 + log, (tfi;) for non-zero term frequencies. So a term appearing once in a
document will have a weight of one, but a term appearing 16 times will only
have a weight of five. This keeps similarity from becoming skewed by
excessive use of individual terms.

So in the weighted word vector the term frequencies, #f;;, are replaced by
weights w;; that can be calculated by the following formula:

W — { [1 +10g(tﬂ,-)] log (N/df;) tfij >0
v 0 i’f,‘/‘ =0

So a given document would be represented instead as:
dj = (w1, j» Wy, j> W3 js - -5 WN, j)

These weighted word vectors could be compiled into a matrix W, which
could be used as an alternative to the word-document matrix A.

There are other equally effective weighting schemes based on the same
principles of weighing rare terms and dampening term frequencies. These
schemes are generally referred to as term frequency-inverse document
frequency (tf/idf) weighting.

3 : Textual profiles of genes

3.6 Latent semantic indexing

Up until this point we have talked about reducing the number of dimensions
in word vectors by removing unimportant words (feature selection and
removal of stop words) and have talked about emphasizing certain dimen-
sions by weighting words differentially. Latent semantic indexing (LSI) is a
dimension reduction method that works by creating new composite dimen-
sions that are linear combinations of the word dimensions in weighted word
vectors (Homayouni, Heinrich et al. 2005). In practice, latent semantic
indexing is identical to principal components analysis; this is described as
an application to gene expression data in Chapter 2.

Latent semantic indexing is used to transform documents represented in
traditional word vector space, where each dimension is a weighted word count,
to a space of latent dimensions. Each of the latent dimensions is a normalized
linear combination of the word dimensions. In theory the latent dimensions
represents semantic meaning instead of just word counts. As in PCA, the latent
dimensions are chosen so that they are orthogonal to each other. They are also
selected so that they are mutually uncorrelated. Since the latent dimensions are
uncorrelated with each other, they aggregate words that are correlated; these
are words that frequently co-occur together in documents. The result is that
the latent dimensions can actually represent concepts. For example, since the
words “cycle”, “phase”, “cyclins”, and “mitosis” are words that might be used
together in documents germane to the biology of the cell cycle, these word
dimensions might contribute to the same latent dimension (see Figure 3.3).

The advantage of LSI is in converting word vectors to a smaller set of
latent dimensions that account for word co-occurrences. For example, two
documents may use completely different words and appear dissimilar in
word vector space. However, in fact, they may be describing the same
concept using different keywords. Latent semantic indexing might define
latent dimensions that are linear combinations of words in both documents.
Therefore in latent space the documents may actually look similar. In
practice latent semantic indexing has been observed to improve information
retrieval.

Latent dimensions are created by diagonalizing the covariance matrix.
Given a word-document matrix A (or a weighted word document matrix
W) where each entry is a weighted word count for the document, the word
covariance matrix can be calculated as

X=(A—-A)(A-AT

where A is the average of the weighted counts for each word, and X is the
n x n dimensional word covariance matrix. The covariance matrix, X, can
be diagonalized by calculating the eigenvectors v; and eigenvalues d;:

3.6 Latent semantic indexing

"Cycle"
Weighted word count

"Phase"
Weighted word count

Figure 3.3 Latent semantic indexing. Here we have plotted documents (black dots) as a function
of their weighted word counts of the words “cycle” and “phase”. Few documents may use these
words in isolation (black dots along the axes). Documents about cell cycle biology, however, would
frequently use both. These words have strong covariance. An example of a latent dimension is given
with the diagonal arrows; it captures the greatest variance in the data. Documents that are relevant
to cell cycle physiology will have large values in this direction.

d; 0 U1 1 Un-1,1 Un 1
0 v1,2 Un—1,2 Un2
diq1 O
0 0 dn Un,6 1 Un,n—1 Un,n
V1,1 Un—1,1 Un 1
V1,2 Un-1,2 Un2
=X
Un, 1 Un,n—1 Un,n

where each of the columns in the matrix Vare eigenvectors; they are orthog-
onal to each other and are normalized vectors. Each vector represents a new
latent dimension. Diagonalizing the matrix is tantamount to rotating the
coordinate space with the matrix V, so that the covariance terms are zero.
The new covariance matrix is D, where the off-diagonal terms are zero. The
termsin the diagonal matrix D are the eigenvalues; they represent the variance
of the corresponding dimension. The dimensions associated with greatest
variance are considered most informative. In practical applications of LSI
the eigenvectors with the largest associated variance are used, and other
eigenvectors are eliminated. The result is a dimensional reduction. Docu-
ments or gene-text profiles can be transformed into the latent space by
multiplying them with the matrix of the top eigenvectors:

3 : Textual profiles of genes

A =VIA

Here, Apg; is the vector of documents in 72-dimensional LSIspace, and V,,, is a
matrix consisting only of the top 7 eigenvectors in the matrix V correspond-
ing to the greatest variance. Document or gene similarity can be quantified
with the cosine of the angle between vectors in the reduced latent space.

To illustrate LSI, we obtained a list of 15,495 articles relevant to Dros-
ophila genes from FlyBase. We looked only at the words with document
frequencies of at least 100 and less than 5000. In the corpus of 15,495
articles; there were 2021 such words. After constructing weighted word
vectors, we calculated a 2021 x 2021 covariance matrix, and diagonalized
it. We then selected the top 100 eigenvectors to create a latent dimensional
space. A total of 26.4% of the total variance is captured in these 100
dimensions (Figure 3.4). About 3/4 of the variance or information is com-
pletely discarded in this representation. This represents a twenty-fold re-
duction in dimensionality of the data. In Section 3.10 we will show that
despite this marked reduction in dimensionality, there can actually be
improvements in query performance.

3.7 Defining textual profiles for genes

Until this section we have been discussing document vectors. In this section
we will talk about converting document vectors into gene vectors.

35,

Variance
- -t nN N w
o [¢)] o [¢]] o

(é)]

0 ”“H “”H“ |H|| |
10 19

28

|||||||‘|||||||||,|||IIII|I‘IIIIIIIII,II|||||||‘|||||1|||,|||||||||‘|||||||||,|
37 46 55 64 73 82 90

100
Latent dimension

Figure 3.4 Variance as a function of latent dimension. In this example there are a total of 2021
latent dimensions. The first 100 capture about 1/4 of the total variance. Variance (or eigenvalue) per
latent dimension is a measure of the total information contained in that dimension. Here we have
plotted total variance for each dimension in descending order; notice that the information per
dimension drops off quickly.

3.7 Defining textual profiles for genes

As a starting point, we build reference indices connecting genes to
document. Manually curated indices are available from online genomic
resources such as FlyBase (FlyBase 2003). Alternatively such an index can
be built up by tabulating articles that simply mention a gene. These and other
indices were discussed in detail in Chapter 1. We can define a matrix G that
contains the document gene index. For each gene we define a vector in the
space of documents; reference documents for the gene are set to one, while
other documents are set to zero. We assemble the vectors into a matrix, G,
where each column corresponds to a gene, and each row corresponds to a
specific document in the corpus. The value of each entry Gj; is one only if
document i refers to gene j. Shatkay and colleagues took this approach to
define and cluster genes (Shatkay, Edwards et al. 2000).

In the remainder of this chapter we use a reference index from FlyBase
that contains 15,495 documents to create gene profiles. These articles were
connected to a set of 14,732 genes. The median number of references per
gene is 1, while the mean number of references per gene is 6.6. This
difference between the mean and median number of references per gene is
a consequence of the skewed distribution of literature that was discussed in
detail in Chapter 1.

Given a collection of document references for a specific gene, we can
count up all the constituent words and define a vector for that gene. This is
the textual profile for the gene. In this case, we have a matrix H where each
column corresponds to a specific gene, and each row corresponds to a
vocabulary word. Each entry, Hjj, corresponds to the number of times a
word i appears in documents pertinent to gene j. In general, the matrix of
textual profiles H can be derived by multiplying the word-document matrix
A and the reference index G:

H=AxG

One research group took this approach when they organized human genes
into functional categories automatically based on the scientific literature
about these genes (Chaussabel and Sher 2002). After creating word vectors
for each human gene, they used hierarchical clustering to organize those
genes into functional categories. Another group took a similar approach
with yeast and human genes and implemented an online resource for text
profiling of genes (Glenisson, Coessens et al. 2004).

The textual profiles that we use in this text are slightly different from the
above. We use the average of the weighted word vectors for document
references to a gene to create the textual profile. In matrix form:

H=WxG

where W is the weighted word document matrix and G is the normalized
reference index, where values in each of the columns are reduced so that

3 : Textual profiles of genes

they sum to one. The result is a textual profile for each gene in which words
are given differential weights depending on their relevance to the gene. This
is a very simple, but effective, textual representation for each gene.

3.8 Using text like genomics data

The scientific text, after being converted into matrix form, can be used as
another type of biologically meaningful genomic data. The textual profile of
a gene gives us information about the gene much the same way that gene
expression or sequence data does. We can use pairwise word vector simi-
larity to assess gene similarity as we can use pairwise sequence alignment or
correlation between gene expression profiles. Alternatively we can look at
keywords or phrases that are associated with a gene the same way we can
look at the presence of sequence motifs or increased expression under
specific conditions to understand the gene’s function.

To demonstrate that the scientific literature is related to biological func-
tion we focus on the Drosophila melanogaster literature and the well
studied gene breathless. Consider the FlyBase reference index described in
Sections 3.6 and 3.7. In this section, we exclude only those words with
document frequencies more than 10,000 and fewer than four. Then the
documents are converted into weighted vectors of words. We average each
of the gene’s referring document vectors together into a textual profile for
each gene. These gene vectors are equivalents to gene vectors in matrix H.

The breathless gene has 103 references in this index. It is a fibroblast
growth factor (FGF) receptor that is involved in a signal transduction
pathway and the control and differentiation of tracheal cells (Dossenbach,
Rock et al. 2001). In Table 3.2 we list the terms with greatest weight in the
gene’s word vector. Notice that these keywords include the name of the gene
and many other words that correspond to the gene’s function. Words like
“tracheal” and “migration” indicate the physiological function of the gene,
while other words like “signaling”, “FGF”, and “receptor” suggest the
biochemical functions of the gene.

We can calculate how similar the word vector of breathless is to other
gene word vectors by calculating the cosine between those vectors. We look
only at the genes with a sufficient number of references to insure that our
results are reliable, and not the function of sparse data. The breathless word
vector has a mean cosine similarity score of 0.23 with the other 2325 genes
with five or more document references; it has a median cosine similarity of
0.20. More than 80% of genes have word vectors with cosine similarities

3.8 Using text like genomics data

Table 3.2 Keywords for the two similar genes in Drosophila: breathless
(103 abstracts) and heartless (75 abstracts).

Breathless keywords tf/idf score Heartless keywords tf/idf score

tracheal 6.9 FGF 4.6
FGF 5.5 mesoderm 3.6
migration 4.4 receptor 3.4
receptor 3.2 heartless 3.0
breathless 3.0 signaling 3.0
branching 2.7 fibroblast 2.8
branches 2.6 migration 2.7
signaling 2.6 mesodermal 2.7
cell 2.5 muscle 2.7
cells 2.4 cells 2.4
tyrosine 2.0 growth 2.0
fibroblast 1.9 cell 1.9
sprouty 1.7 sprouty 1.8
growth 1.6 factor 1.8
branch 1.5 twist 1.7

less than 0.3, while 98% of genes have cosine similarities less than 0.5. This
distribution is illustrated in Figure 3.5.

The breathless gene has a homolog called heartless; it has a similar
function as breathless, but controls the migration and differentiation of
mesodermal cells instead of for tracheal cells. Heartless has 75 document
references. Since these genes are so similar, we would certainly expect that
they would have similar word vectors as well. In Table 3.2 we have also
listed the highest scoring keywords for heartless. Notice that many of the
keywords are very similar or identical to breathless keywords. Instead of
“tracheal”, however, we have the more appropriate physiological term
“mesodermal”. The cosine similarity score for the two word vectors of
these genes is 0.73. This is a much higher score than the score between
breathless and almost all the other genes.

Another point to consider is whether there is a correlation between
textual data and other biological data. For example, we can consider the
amino acid sequences of gene protein products. Using BLAST we compared
the amino acid sequence of the breathless protein product to all of the other
known gene protein products in Drosophila. We obtained 121 statistically
significant hits. These protein sequences corresponded to 67 unique Dros-
ophila genes. Of these, we found 32 genes with five or more references.
The mean word vector cosine similarity between breathless and the genes
with similar sequences is 0.33; the median vector cosine similarity is also
0.33. These similarity scores are significantly greater than the average
similarity score of all genes (see Figure 3.5). There is a relationship between

3 : Textual profiles of genes

0.4 -
0.3 1
(%]
()
e
(0]
(o]
B 02 =
c
kel
8 B Similarity to all genes
- 0O Similarity to BLAST hits
0.1

o o
< o
o [} o

0.0- - ﬂ
> =] 3

070 ==

0.00
0.10
0.20
0.30
0.80
0.90
1.00

Word vector similarity

Figure 3.5 Word vector similarity between other Drosophila genes and the breathless gene. Here
we plot a histogram of genes as a function of word vector similarity. In addition we have plotted a
separate histogram of word vector similarity between the breathless gene and other Drosophila
sequences that are similar to it identified with BLAST.

sequence similarity scores and the word vector similarity as depicted in
Figure 3.6. The more similar the hit sequence is, the more likely it shares
function with breathless and has similar textual content. The correlation
between BLAST scores and word vector similarity is 0.68. The best example
is the heartless gene with dramatic sequence and word vector similarity to
breathless. After removing this potential outlier, the correlation is still 0.42.

We notice a similar relationship when we look at gene expression data.
Here we look at data from a comprehensive expression assay that followed
genes throughout the life cycle of drosophila (Arbeitman, Furlong et al.
2002). This experiment consists of 85 measurements at different time
points throughout fruitfly development of 3987 unique genes. Expression
values for genes were recorded as log ratios between expression at each
value and a baseline. Gene expression profiles can be compared to each
other through cosine similarity. We focus on a subset of genes with 25 or
more document references and greater than an expression variance of 0.3
across the 85 conditions. This insures that the genes we are looking at have
significant changes in expression and sufficient text available. There are 212
genes that fit these criteria. In Figure 3.7 we plot word vector similarity to

3.8 Using text like genomics data

0.7 A

0.6

Word vector similarity

0.1 4

0 50 100 150 200 250 300
Sequence similarity (BLAST)

Figure 3.6 Wordvector similarity to breathless gene versus sequence similarity. We have plotted for
each gene its word vector cosine similarity to the breathless gene as a function of its BLAST protien
sequence similarity score to the breathless protein sequence. Only BLAST hits to breathless are
plotted. Here we have removed the beartless gene, which has extreme similarity in sequence and text.

breathless as a function of gene expression similarity for these genes. There
is a correlation of 0.35 between expression and text similarity.

These are very coarse examples; but they demonstrate that there is a
relationship between textual similarity and biological similarity. These
experiments suggest that textual analysis might be helpful in the analysis
of biological data. In Chapter 4 we will present methods to exploit textual
similarity to enhance sequence analysis. In Chapters 5 and 7 we will present
methods to exploit textual similarity to enhance expression analysis.

The representation of text that we introduce in this chapter is very simple;
all of the documents for a single gene were averaged together and no higher
level processing was attempted. Yet, even in such an unsophisticated ap-
proach, biological similarity is, to some extent, preserved. The levels of
correlation in these examples are low; they are comparable to the correlations
that we would obtain by comparing any two very different forms of
genomics data. Investigators have conducted more detailed evaluations of
the performance of representations like textual profiles and have compared
different implementations and weighting schemes (Glenisson, Coessens et al.
2004).

3 : Textual profiles of genes

0.8 4
0.7 1
°o
0.6 1 °
z I
=
« 0.5 1 o o ¢ 04
S ' 00 0 @ O
= & o %o °
n ® S ° > 2 o PR °
S ° ¢ 044{ee <€ o ° °
L o ® 6] °s © %0 0 P2
> ° .0 ®o.gopgl Say o %500 8
° S o p ? 02 260 °
[R IRY 0 6% 600 o °
2 o % C IR © Poy © 8
© < o (% RS 7o o ©
° o
o Ke 2% o°o° °0 o
< ©
° 0.1

o-0
\v

-0.8 -0.6 -0.4 -0.2 . 0.0 0.2 0.4 0.6 0.8
Gene expression similarity

Figure 3.7 Word vector similarity to breathless gene versus gene expression similarity. We have
plotted for each gene its word vector similarity to the breathless gene as a function of its gene
expression similarity to breathless.

3.9 A simple strategy to assigning keywords to groups of
genes

One very useful application of the word vector representation for genes,
besides its use as another set of genomic data, is its ability to be used to
assign keywords. In the previous section we demonstrated that the word
vector for a gene, created by averaging weighted word vectors of articles
referring to the gene, provide an avenue for selecting descriptive keywords.
We list the keywords for the breathless gene and the heartless gene in Table
3.2. The highest valued words in this vector have high values because they
are (1) frequent and appear in many of the referring documents and (2) they
are rare in the corpus and therefore heavily weighted words. These words
are ideal keywords and provide meaningful clues about the function of a
gene.

This concept can be extended to groups of genes as well. Given a group of
genes that are produced by an experimental assay (such as a gene expression
cluster), the word vectors for each gene can be averaged together. The
words associated with the functions that are recurring themes in that
group will receive high values, and will be effective keywords. There are
other more sophisticated strategies for keyword assignment as well, which
we will explore further in future chapters.

3.10 Querying genes for biological function

3.10 Querying genes for biological function

Often times we want to search documents, or genes, for certain concepts
using keywords. One very important type of query in biology is searching
for genes that have a particular biological function. One of the great efforts
of the genomics era is identifying and cataloging genes with specific func-
tions. We have already demonstrated how functionally valuable keywords
can be obtained for a gene using textual profiles. In this section we discuss
how we can query genes for specific functions with keywords.

We can use the word vector formulation that we have been using for
genes and documents to facilitate such queries. A keyword query can be
formulated as a pseudo-document vector where each word in the query is
assigned one in the word vector, all other vector entries are zero. One
queries a database of documents by calculating the cosine between that
vector and all of the weighted word vector representations of the documents
in the database. The highest scoring documents are returned in the query.
This same strategy can be applied to query gene textual profiles.

To demonstrate with an example, we query drosophila genes for the
functions “signal transduction” or “eye morphogenesis”. Ideally these quer-
ies should be able to find genes with the appropriate biological function. We
tested this possibility in standard word vector space and subsequently in
latent space.

We used the FlyBase corpus and reference index described in Sections 3.6
and 3.7. We used those words with document frequencies of at least 100 and
less than 5000 to identify 3021 vocubulary words. We average weighted word
vector documents that are references to a gene to create a textual profiles for
that gene. We discarded all of the genes with only a single reference. We divide
up the genes into well-documented genes (more than ten references) and
poorly documented genes (ten or fewer references). A total of 4609 genes
have ten or fewer article references; a total of 1276 genes have more than ten
references. Since we were testing queries for signal transduction genes and eye
morphogenesis genes, we assembled a gold standard for each query. Gene
Ontology annotated 260 genes as relevant to signal transduction. Of these, 93
have greater than ten references; 127 have more than a single reference but ten
or fewer references. Gene Ontology annotated 43 genes as relevant to eye
morphogenesis. Of these, 26 have greater than ten references; 13 have more
than a single reference but ten or fewer references. Effective queries should be
able to separate these genes from the rest. We formulated pseudo-vectors for
both queries where all of the words except the ones in the query quotes are
zero valued. The cosine between query pseudo-vectors and gene textual
profiles were calculated. Then query sensitivity and specificity values were
calculated for different cosine cutoffs. A stringent cutoff would result in low
sensitivity but high specificity.

3 : Textual profiles of genes

In Figure 3.8 we display query performance separately for the well
referenced and poorly referenced genes. For the “signal transduction”

(a)
100% 1 a & an o,
Mp o, &
4
£ q
80% 1 aé%
g,
> 60% 1
=
0
c
[0
@ 40% 1
° .
s L
20%
0% T T T r
0% 20% 40% 60% 80% 100%
Specificity
(b)
100% 1 A .
A .
e A
80%
. A
e A
60% 1 *A
>
= A
k]
5 -
[}
40% T oA
N
EN
20% 1
EN
A
0% T T T . ,
0% 20% 40% 60% 80% 100%
Specificity

Figure 3.8 Keyword queries in word vector space versus LSI space. The plots above are sensitivity—
specificity plots for queries formulated in word vector space (dark dots) and LSI space with 100
dimensions (open triangles). An ideal query achieves 100% sensitivity at 100% specificity. (a) Querying

genes with fewer references for “signal transduction”. (b) Querying genes with fewer references for “eye
morphogenesis”.

(©)

3.10 Querying genes for biological function

100% s,
A A % " . i
. . s
. S %“g
80%
> 60%
=
.“5
c
5]
»
40% 1
20%
0% T T T T
0% 20% 40% 60% 80%
Specificity
100% - A
A
. A
L[] A
oA
80%- . A
. A
. A
. A
. A
e A
o 60%1 A
= 2
B a
S N
»n
40% ‘e
N
N
N
DN
20%- @
DN
*
LN
2
0% T T T T)
0% 20% 40% 60% 80% 100%
(d) i
Specificity
Figure 3.8 (c) Querying genes with more references for “signal transduction”. (d) Querying genes with

more references for “eye morphogenesis”.

3 : Textual profiles of genes

query this strategy achieves 38% sensitivity at 95% specificity for all genes
studied; it achieves 52% sensitivity at 90% specificity. For the “eye
morphogenisis”, the query achieves 54% sensitivity at 95% specificity
overall; it obtains 67% sensitivity at 90% sensitivity.

We noted previously that latent semantic indexing often improves infor-
mation retrieval queries. To demonstrate, we implemented these queries in
latent space as well. Standard weighted word vectors (2021 dimensions)
were converted into latent word vectors (100 dimensions) by multiplying
with matrix V,,,. This conversion is detailed at the end of Section 3.6. Latent
document vectors were averaged to create latent textual profiles for all
genes. The query vectors were similarly transformed into latent space by
multiplying by matrix V,, as well. The cosine of the latent query vector and
the latent document vectors can be calculated, and the highest scoring genes
are returned in a query.

In both cases, latent semantic indexing achieves better query performance
than standard word vectors. For the “signal transduction” query, this strategy
improves sensitivity from 38% to 52% at 95% specificity; it improves sensi-
tivity from 52% to 73 % sensitivity at 90% specificity. For the “eye morpho-
genesis” query, this strategy achieves 54% sensitivity at 95% specificity; it
improves sensitivity from 67% to 82% at 90% specificity. The performance
improvements from latent semantic indexing are most notable when there isa
paucity of literature (Figure 3.8). However in cases where there are many
references, the performance between the two methods is more equivocal.

Incidentally, the sensitivities and specificities in both cases are not nearly
high enough for accurate gene annotation. If, for example, 100 genes out of
1000 have a specific biological function, then even a query that achieves
90% sensitivity at 90% specificity would return 90 true positives and 90
false positives. So a full half of the presumed positives are errors. This level
of accuracy is simply too low. Accurate gene annotation will require more
sophisticated methods to achieve greater performance. We will explore this
question in Chapter 8.

References

Altman, R. B. and S. Raychaudhuri (2001). “Whole-genome expression analysis: chal-
lenges beyond clustering.” Curr. Opin. Struct. Biol. 11(3): 340-7.

Arbeitman, M. N., E. E. Furlong, et al. (2002). “Gene expression during the life cycle of
Drosophila melanogaster.” Science 297(5590): 2270-5.

Ashburner, M., C. A. Ball, et al. (2000). “Gene ontology: tool for the unification of
biology. The Gene Ontology Consortium.” Nat. Genet. 25(1): 25-9.

Chaussabel, D. and A. Sher (2002). “Mining microarray expression data by literature
profiling.” Genome. Biol. 3(10): RESEARCHO0055.

References

Dossenbach, C., S. Rock, et al. (2001). “Specificity of FGF signaling in cell migration in
Drosophila.” Development 128(22): 4563-72.

Eisen, M. B., P. T. Spellman, et al. (1998). “Cluster analysis and display of genome-wide
expression patterns.” Proc. Natl. Acad. Sci. USA. 95(25): 14863-8.

FlyBase (2003). “The FlyBase database of the Drosophila genome projects and commu-
nity literature.” Nucleic Acids Res. 31(1): 172-5.

Glenisson, P., B. Coessens, et al. (2004). “TXTGate: profiling gene groups with text-
based information.” Genome. Biol. 5(6): R43.

Hersh, W. (2003). Information Retrieval: A Health and Biomedical Perspective. New
York, Springer-Verlag.

Homayouni, R., K. Heinrich, et al. (2005). “Gene clustering by Latent Semantic Index-
ing of MEDLINE abstracts.” Bioinformatics 21(1): 104-15.

Manning, C. M. and H. Schutze (1999). Foundations of Statistical Natural Language
Processing. Cambridge, The MIT Press.

Porter, M. E. (1980). “An algorithm for suffix stripping.” Program 14: 130-7.

Rosenfeld, R. (2000). “Two decades of statistical language modeling: where do we go
from here?” Proceedimgs of the IEEE 88(8): 1270-1278.

Shatkay, H., S. Edwards, et al. (2000). “Genes, themes and microarrays: using informa-
tion retrieval for large-scale gene analysis.” Proc. Int. Conf. Intell. Syst. Mol. Biol.
8(10): 317-28.

Yang, Y. and J. P. Pedersen (1997). “A Comparative Study on Feature Selection in Text
Categorization. Proceedings of the Fourteenth International Conference on Machine
Learning.” International Conference on Machine Learning. Morgan Kaufmann, San
Francisco pp. 412-20.

Zipf, G. K. (1929). “Relative frequency as a determinant of phonetic change.” Harvard
Studies in Classical Philology 40: 1-95.

This page intentionally left blank

Using text in sequence
analysis

Text about genes can be effectively leveraged to enhance sequence analysis
(MacCallum, Kelley et al. 2000; Chang, Raychaudhuri et al. 2001; McCal-
lum and Ganesh 2003; Eskin and Agichtein 2004; Tu, Tang et al. 2004).
Most of the emerging methods utilize textual representations similar to the
one we introduced in the previous chapter. To analyze sequences, a numeric
vector that contains information about the counts of different words in
references about that sequence can be used in conjunction with the actual
sequence information.

Experienced biologists understand the value of using the information in
scientific text during sequence searches, and commonly use scientific text
and annotations to guide their intuition. For example, after a quick BLAST
search, a trained expert might quickly look over the hits and their associ-
ated annotations and literature references and assess the validity of the hits.
The apparently valid sequence hits can then be used to draw conclusions
about the query sequence by transferring information from the hits.

In most cases, the text serves as a proxy for structured functional infor-
mation. High quality functional annotations that succinctly and thoroughly
describe the function of a protein are often unavailable. Defining appropri-
ate keywords for a protein requires a considerable amount of effort and
expertise, and in most cases, the results are incomplete as there is an ever-
growing collection of knowledge about proteins. So, one option is to use
text to compare the biological function of different sequences instead.

There are different ways in which the functional information in text
could be used in the context of sequence analysis. One possibility is to
first run a sequence analysis algorithm, and then to use text profiles
to summarize or organize results. Functional keywords can be assigned to
the whole group of hit sequences. Additionally, given a series of sequences,
they can be grouped according to like function. In either case, quick
assessment of the content of text associated with sequences offers insight
about exactly what we are seeing. These approaches are particularly useful
if we are querying a large database of sequences with a novel sequence that
we have very little information about. In these cases text analysis is used
only to describe results obtained from a sequence analysis query.

4 : Using text in sequence analysis

On the other hand text analysis could be used in addition to sequence
analysis to actually help identify homologous genes. That is sequence-based
database searches could actually leverage the text as well. Remotely hom-
ologous genes are genes that have diverged in evolution early and conse-
quently sequence similarity is only modest, but often these genes continue
to have the same protein structure and function. As a result of the sequence
divergence, traditional sequence similarity measures perform poorly. These
sequences are said to be in the “twilight zone”. One solution to recognizing
remotely homologous genes is to use the functional information in the
literature to help recognize whether a sequence with questionable similarity
may be homologous. Iterative sequence analysis algorithms can be modified
so that at each iteration of a sequence search, analysis of the textual profiles
are used to influence the intermediate results before the next iteration
commences.

Text analysis can also be used in functional classification algorithm that
uses both sequence and text simultaneously to assign protein function.
Algorithms can look for features of protein sequences that identify its
function. When attempting to ascertain if a particular protein has a given
function, the textual features of literature references can be used in addition
to help identify the function.

These approaches are a few examples of how text can be used with
functional genomics data in different ways and to different extents. In
later chapters we address using scientific literature to help analyze gene
expression data; many of the same principles apply. Whatever strategy is
employed, there are a few pitfalls that must be carefully regarded.

One of the great challenges to including literature in analyzing genomics
data is that most genes or sequences lack literature altogether. Many have
very limited amounts of literature. We must be cautious of weighting text-
mining approaches heavily when analyzing these sequences with lack of
literature. On the other hand, there are sequences with large amounts
of literature. Should one of these sequences be included in the collection
of sequences being analyzed, we must be careful not to let its very large
body of literature overwhelm the analysis and prejudice the results.

The concepts discussed in this chapter are listed in the frame box. We first
introduce the SWISS-PROT database record; besides containing a protein
sequence, the record contains valuable text describing the protein and is the
most common literature resource used in sequence analysis. Then we dis-
cuss strategies to assign literature references to poorly referenced genes by
transferring references from genes with similar sequences. We present strat-
egies to assign functional keywords to a gene from sequence similarity hits.
We then describe how sequence hits can be organized using their scientific
literature. We describe two methods that use textual analysis to help

4.1 SWISS-PROT records as a textual resource

1) The SWISS-PROT record a) Assigning functional

2) Transferring gene references to keywords to sequences
uncharacterized genes based on b) Clustering hit sequences
sequence similarity 4) Recognizing homologous genes

3) Summarizing and organizing 5) Predicting gene function from
BLAST hits sequence and text

recognize homology among remotely similar genes. Finally we present some
of the recent work in predicting function with both text and sequence
information

4.1 SWISS-PROT records as a textual resource

A very valuable textual resource in sequence analysis is SWISS-PROT
(Boeckmann, Bairoch et al. 2003). In Figure 4.1 we present selected fields
from a typical SWISS-PROT record; this is the amino acid sequence record
for breathless, the same gene we used as an example in chapter 3.

In this record there are important identifying fields, such as the accession
number (AC). In addition, two other extremely valuable text fields are the
keywords field (KW) and the comments field (CC). These two fields contain
highly distilled textual information about the protein. In this example, we
can see that there is information about the protein’s physiological function,
cellular location, role in development, and biochemistry. Indeed the readily
available text of the SWISS-PROT record alone can be used in enhancing
sequence analysis.

When protein sequences are submitted to SWISS-PROT, authors include
literature references so that users may better understand the sequence and
the context in which it was obtained. The reference titles (RT) are listed in
the record and the abstract text can be obtained from PubMed using the
MedLine identification numbers included with each reference (RX). While
many of these references are helpful, they are often a limited subset of the
full breadth of available literature and provide only a limited view of
the relevant biology of the sequence. For example, there are only four
references provided in this sequence record, whereas FlyBase provided
some 103 references for the breathless gene. In general there is a median
of only one article reference per sequence in SWISS-PROT.

Ideally textual profiles for a sequence could be constructed by recogniz-
ing the gene that the sequence in the record pertains to, obtaining all of the

110 4: Using text in sequence analysis

D FGR2_DROME STANDARD; PFRT; 1052 AA.
AC Q09147;
DE (Breathless protein) (dFGF-R1).

BTL OR FR2 OR DTKz2.

Droscphila melanogaster (Fruit fly)

SEQUENCE FROM MN.A.

STRAIN=Canton-3;

MEDLINE=93321617; ;

Shishido E. ,Higashijima S.-I. ,BEmori ¥. ,Saigo K. ;
"Two FGF-receptor homologues of Drosophila: one is expressed in
mesodermal primordium in early embryos.";

Development 117:751-761(1993) . EN [2]

SEQUENCE COF 1-240 FROM N.A.

MEDLINE=92387542; ;

Klaembt C. ,Glazer L. ,shilo B.-Z. ;

"Breathless, a Drosophila FGF receptor homolog, is essential for

migraticn of tracheal and specific midline glial cells.";

Genes Dev. 6:1668-1678(1992) . RN [3]

SEQUENCE OF 267-1052 FROM N.A.

TISSUE=Embryo;

MEDLINE=91184623; ;

Glazer L. ,Shilo B.-Z. ;

"The Droscphila FGF-R homelog is expressed in the embryeonic tracheal

system and appears to be required for directed tracheal cell

extension.";

Genes Dev. 5:697-705(1991). RN [4]
SEQUENCE OF 868-923 FROM N.A.
MEDLINE=92008631; ;

Shishido E. ,Emori Y. ,Salgo K. ;

"Identification of seven novel protein-tyrosine kinase genes of

Drosophila by the polymerase chain reaction.";

FEBS Lett. 289:235-238(1991).

-1- FUNCTION: May be required for patterning of muscle precursor
cells. Would thus appear essential for generation of mescdermal
and endodermal layers, invaginations of various types of cells,
and CNS formation.

-1- CATALYTIC ACTIVITY: ATP + a protein tyrosine = ADP + protein
tyrosine phosphate.

-1- SUBCELLULAR LOCATICN: Type I membrane protein.

-1- TISSUE SPECIFICITY: Mesoderm.

-1- DEVELOEMENTAL STAGE: Embryocgenesis. DFR2 expression occurs in
endodermal precurscor cells, NS midline cells and certain
ectodermal cells such as those of trachea and salivary duct.

-1- SIMILARITY: Belongs to the fibroblast growth factor receptor
family.

-!- SIMILARITY: Contains 5 immunoglobulin-like C2-type domains.

KW Receptor ;Glycoprotein ;Tyrosine-protein kinase ;ATP-binding ;

KW Transferase ;Phosphorylation ;Transmembrane ;Immunoglobulin domain ;
KW Repeat ;Signal

SEQUENCE 1052 AA; 117824 MW; 1EBB980E1sDCE8D1S CRCE4;
MAKVPITLVM IIAIVSAAAD LGCDYGHHRC YIDVIVENSF RCRHLLSDMD ITLOCVEEMA
KWFYEDKFQL RATLLRLERA QSGNSGNYGC LDSCONRWYNI SLVIGHKEPV GNDIASFVEL
EDAPAIPESD LFFQPINESR SLELLOPLPE TVORTAGGLF QINCSPMDPD AKGVNISWLH
IDTQILGGRG RIKLERWSLT VGQLQPEDAG SYHCELCVEQ DCORSNPTQL EVISRKHIVE
MLEPGYPRNT SIALGDNVSI ECLLEDSALE PKITWLHKGN ADNIDDLLOR LREQSQLEVD
VIRLITREMDE PQVLRLGNVL MEDGGWYICI AENQVGRTVA ASYVDLYSFES DTTTVRTTTT
TTVASPIPTA STGEDNDDDV ENPARDASGG VGPPVFRKEL KRLOHSLSGN TVNLACEVYG
KANITWTKDK KPLMNRELGVY VOEKNWTLRFV EATSEDSGLY NCEVCNAWGC IQFDFSVQIN
DRTRSAPIIV VPONQTVEVN GSLVMKCTVY SDLHPTVSWK RVVLEMNASLD GLOSVEIQNL
NFTVTNDSVV LTLRNVIFDQ EGWYSCLASS GLGRSNSSVY LRVVSPLPPL EIYALLHAHE
LGFTLAAITI VALFLLGSAF ITFMLRRLRR EKLLKLRIET VHOWTKKVII YRPGGEEGSG
CSSGDLOMPV IRIEKQRTTV STTGTGGTDFP AQGFNEYEFF LDSNWEIPRQ QLSLGSILGE
GRFGRVVMAE AEGLFRSPQL AETIVAVEMV KEEHTDTDMA SLVREMEVME MIGEKHINIIN
LLGCCSQGGP LWVIVEYAPH GNLEDFLKON RPGAPQRRSD SDGYLDDKPL ISTQHLGEKE
LTKFPFQIAR GMEYLASRRC IHRDLAARNV LVSDGYVMKI ADFGLARDIQ DTEYYRENTN
GRLPIKWMAP ESLQEKKYDS QSDVWSYGVL LWEIMIYGDQ PYPHILSAEE LYSYLITGQR
MEKFAKCSLN IYVVMRQCWH FESCARPTFA ELVESFDGIL QQASSNPNDA YLDLSMEMLE
TPPSSGDEDD GSDTETFRET SPLEYQYTYK FN

ARRARRAARAARAAARAAERACRAEA S NARAS3REN eS8 EHARRS

38

I/

Figure 4.1 SWISS-PROT record for breathless protein sequence.

4.2 Using sequence similarity to extend literature references

known references for that gene, and then building a textual profile from
those references, the references in the SWISS-PROT record, and also key
fields in the record itself. In practice, however, it is often simpler to con-
struct textual profiles for sequences with only the SWISS-PROT record and
the references contained within it.

4.2 Using sequence similarity to extend literature
references

One of the basic goals of sequence analysis and sequence similarity searches
is to take unknown sequences and to learn something new about them. This
is especially the case for newly discovered sequences for which there is a
paucity of information. We find similar sequences and we might assume
that the known functions of those sequences are potentially relevant to the
newly discovered gene or protein.

In many cases genes and proteins are poorly studied and they have no
documented references. Sequence similarity can be used to assign new
pseudo-references to such proteins. These new references can be used to
help understand gene function. They can also be used to facilitate text-
based analysis with the sorts of algorithms we introduce in this book. For
example, effective analysis of a gene expression data set that has many
unstudied genes might be facilitated if the unstudied genes could have
putative references assigned.

One possible strategy is to conduct a sequence similarity search with
BLAST or some other algorithm against a large database of sequences. Then
we can transfer the references from the most similar sequences. Such
references might provide valuable insight about the sequence. In an ideal
situation a stringent search will find a well-studied homologous sequence
with very similar biological function in other organisms, with applicable
available references. If such homologous sequences are unavailable, a less
stringent search may reveal other similar sequences with protein domains
that have vaguely similar molecular function, and references from those
sequences will still provide hints of function. Using a very stringent se-
quence similarity cutoff risks missing very valuable textual information
that might be stored in remotely homologous genes. However, using too
liberal of a sequence similarity cutoff may result in a flood of references.

One solution is to transfer references only from a fixed number of the
most similar well-studied sequences; these are the genes with the most
reliable and extensive documentation. In addition we would likely only
want to transfer specific references; those references that refer only to the
well-studied gene and not to too many other genes are ideal. Simple screens

4 : Using text in sequence analysis

that remove genes with less than a preset number of references and that
remove references that refer to more than a preset number of genes can
achieve these goals in a straightforward way.

In Chapter 7 we will actually utilize this approach to facilitate gene
expression analysis. One practical implementation of this strategy is avail-
able online (Tu, Tang et al. 2004).

4.3 Assigning keywords to summarize sequence hits

Given a query sequence of unknown function, one of the primary goals of
database sequence searches is to assign an appropriate biological function
based on the most similar sequences (Andrade and Valencia 1998; Shatkay,
Edwards et al. 2000; Masys, Welsh et al. 2001). This is an area that applies not
just to sequence similarity searches, but to any functional genomics query
where the result is a group of genes or sequence that may have shared function.

Of course, there are many approaches to this same problem. The general
goal is to look for functional words that are used more frequently with the
sequences in the resulting query compared to other sequences or the corpus
of biology in general.

The simplest strategy is to use weighted word vectors to represent the
documents as described in Chapter 3. For all of the genes we can construct a
weighted word vector that is created by averaging the weighted word
vectors for each of the referring documents. We saw in Chapter 3 that the
words with greatest weight in this textual profile were good keywords for
an individual gene. We demonstrated this with the fly genes heartless and
breathless. We can extend this strategy by now averaging together the
weighted word vectors for all of the sequences obtained from a search.

As an example we look at the BLAST search that we conducted in
Chapter 3. We have depicted the results for that search in Plate 4.1. The
sequences seem to line up with one particular domain ranging about from
positions 700 to 1000 on the breathless query sequence. As we mentioned in
the previous chapter, this query corresponds to 67 unique drosophila genes.
To ascertain the function of this region, we can look at the 32 averaged
textual profiles of the unique genes with five or more references. We average
these weighted textual profiles. The top five weighted words are listed in
Table 4.1. These words suggest that this domain may correspond to the
tyrosine kinase domain of the protein. A more comprehensive survey would
include sequences from many organisms, and not just drosophila. If a
sequence has groups of hits to different areas, the hit sequences can be
grouped according to the corresponding area that they have similarity to in
the original sequence; then each group can be used to find keywords that
describe each domain specifically.

4.3 Assigning keywords to summarize sequence hits

Table 4.1 Keywords to describe sequence similarity
hits for breathless.

Word tf/idf weight
kinase 3.69
tyrosine 2.91
signalling 2.10
kinases 1.78
cell 1.62

This method’s effectiveness is contingent on the weighting strategy
employed. Term frequency/inverse document frequency weighting schemes
emphasize words that are rare in the entire biological corpus. We showed in
Chapter 3 that rare words are the most functionally relevant, and likely have
the potential to be good keywords. If these words appear relatively more
frequently in the set of documents associated with the sequences, then these
rare and heavily weighted words become very good keyword candidates.

An alternative strategy is to identify statistical properties of word fre-
quencies, and given a series of sequence hits, assess how the word frequency
among those hits compares. In an implementation of this approach, a
predefined set of protein families were obtained to characterize the distri-
bution of all vocabulary words (Andrade and Valencia 1998). For each
protein sequence, an unweighted word vector is constructed. Then for each
word and family of protein sequences a frequency statistic is calculated:

VA
F; ; =/
] S/

where W;; is the number of sequences in family j that word 7 appears in, and
S; is the total number of sequences in that family. Then for each word i,
calculate a mean frequency and a frequency standard deviation:

where N is the number of families in the set. Given a new family of protein
sequences, the F; and o; for each word i are calculated just as above. Given a
new family of proteins, the z-score (see Section 2.2) for each word can be
calculated:

4 : Using text in sequence analysis

Words with high z-scores are selected as keywords. The idea is that words
that occur with protein families infrequently on average and that have
occurred with the observed family with higher than expected frequency
are likely high quality keywords. There is no clear consensus at this point
about which of these methods or others are optimal.

4.4 Using textual profiles to organize sequence hits

Text can be used in sequence analysis to organize the results of sequence
similarity searches (McCallum and Ganesh 2003). Once a sequence similarity
search has been completed, the textual records associated with each of the hit
sequences can be obtained and converted into document word vectors. As
described in Chapter 3, standard statistical procedures such as clustering can
be utilized with document vectors and textual profiles. There is a detailed
discussion on clustering in Section 2.4. So, these methods can be applied to
cluster hit sequences based on their textual profiles as well. The result is that
sequence hits are partitioned into groups. Since the textual contents contain
functional information, the sequences will be grouped by their functions.
McCallum and Ganesh explored hierarchical clustering and k-means cluster-
ing of sequence hits based on text. They demonstrated that larger clusters will
likely be most relevant to the query sequence. Very small clusters may repre-
sent spurious hits. The different clusters may represent different functions of
the same query sequence. For example a sequence with multiple functional
domains may have similarity to different groups of sequences. Clustering
should be able to separate the sequences corresponding to the different
functional domains. The keyword strategies described in the previous section
could be applied to the clusters separately to identify the relevant functions.

4.5 Using text to help identify remote homology

One goal of sequence similarity searching is to identify remotely homolo-
gous genes. When the sequence similarity between two genes is not signifi-
cant enough to be certain of their evolutionary relationship, investigators
must look for other evidence. Since gene function is often preserved through
evolution, homologous genes often have similar functions. If the common
function between two somewhat similar sequences can be appreciated, one
can conclude that an evolutionary relationship is likely.

4.6 Modifying iterative sequence similarity searches to include text

In practice, biologists will often manually inspect the keywords and refer-
ences associated with low scoring sequence similarity hits, and assess whether
there is possibly a relationship to the query sequence. It may be possible to
automate this tedious manual inspection that occurs after a search.

After application of a sequence similarity (i.e. BLAST) algorithm to
search for homologous sequences, one strategy is to a filter low sequence
similarity hits based on functional similarity using textual profiles. For
those sequences calculate the cosine between the weighted word vectors
of the query sequence and each of the hits as a textual similarity measure.
Sequences with low textual and sequence similarity are considered to not be
homologous genes.

One group implemented this approach using PSI-BLAST to obtain
sequence hits (MacCallum, Kelley et al. 2000); PSI-BLAST is described in
detail in Section 2.3 (Altschul, Madden et al. 1997). Then for sequence
documents, authors used text from SWISS-PROT record entries that
included keywords, reference titles, and comments. The authors did not
extract the abstract text of the references from the PubMed database. The
authors then created word vectors for each sequence entry in SWISS-PROT.
A weighting scheme, similar to the one we introduced in Chapter 3, was
used to increase the weight of rare terms. For a given query sequence, a list
of similar sequences and their similarity scores was obtained. In addition,
the authors calculated a text-based similarity between the query sequence
and the hit sequences. They compared the sequence similarity score versus
the text-based similarity score for sequences obtained in sequence queries.
In fact, they found that among high scoring sequence hits, text similarity
might actually be more indicative of homology than sequence similarity.
They propose that a weighted combination of the two scores might be an
appropriate way to rank sequences.

4.6 Modifying iterative sequence similarity searches to
include text

The methods that we have discussed to this point in the chapter have used
scientific text to organize, summarize, or modify the results produced by a
sequence similarity search algorithm. Instead of simply summarizing or
modifying search results, scientific text can be used as an integral part of
sequence similarity searches as well. One strategy would be to implement
an iterative algorithm that first seeks similar sequences to the query
sequence. Then the algorithm would modify the results based on text
similarity to the original sequence. The resulting sequences can be used to
create a multiple alignment that can be used to search the sequence database

4 : Using text in sequence analysis

again to update the collection of sequences. This process could be iterated
until a stable collection of sequences with both literature and sequence
similarity was achieved.

PSI-BLAST is an iterative sequence search algorithm that can be easily
modified to include text. Given a query sequence, in the first iteration, a
BLAST search obtains significantly similar sequences that are used to create
a probabilistic sequence profile. In subsequent iterations that profile is used
to search the database and to update the significant sequences (see Figure
4.2). By including more diverse sequences into the query, sensitivity is
improved.

However, as PSI-BLAST iterates, it includes a more diverse array of
sequences, and the possibility of including a spurious sequence that is not
a homolog of the original query sequence increases. Thus, any errors
introduced into the profile can be magnified, eventually diluting the signal
from the original sequence. This situation has been called “profile drift”. In
these situations the algorithm fails to converge or converges to an imperfect
solution. PSI-BLAST considers only sequence similarity. As we saw in the
previous section the scientific literature associated with the sequences can
also provide valuable information. For example, suppose a query sequence

Profile
Sequence) .
Search Construst
database profile

FN__ £ X

Examine
literature
Multiple \’

alignment

Sequence
database

Figure 4.2 Anillustration of PSI-BLAST to include textual information. A sequence is used in the
initial query to BLAST search the database for similar sequences (1), a multiple alignment is then
used to construct a profile to search the database again (2). The modification (3) involves screening
the sequences that constitute the multiple alignment for literature similarity; the sequences for
which the associated literature is least concordant with that of the original sequence used in (1) are
eliminated from the construction of the profile.

4.7 Evaluating PSI-BLAST modified to include text

is similar to many kinase proteins. A reasonable refinement may be to
consider only those proteins that are also kinases. During each iteration
of the sequence similarity search, sequences can also be examined for
textual similarity, and inclusion of this additional information may result
in a search that is relatively resistant to contamination. One group demon-
strated modest performance improvement by utilizing text in PSI-BLAST
(Chang, Raychaudhuri et al. 2001). Their adaptation of PSI-BLAST re-
moves sequences that lack sufficient literature similarity in each iteration.

The method requires the creation of textual profiles for each sequence.
For each sequence, the authors utilized the description, comments, and
keywords from the SWISS-PROT record. In addition, they utilized the
record’s references from PubMed; they used the MeSH headings, subhead-
ings, and text from the abstracts records. The authors construct unweighted
word vectors for each sequence.

At each iteration, this PSI-BLAST implementation eliminates sequences
that have poor literature similarity to the query sequence. After each
sequence search iteration, the cosine between the word vector of each
significant hit and the query sequence is calculated. The scores are ranked
according to their text similarity scores; the sequences with the lowest
scoring text similarity are discarded, thereby excluding them from the
profile (Figure 4.2). The authors experimented with removing different
percentages of sequences.

A limitation of any natural language processing approach to biological
problems is that areas for which the appropriate quantity of text is unavail-
able may be difficult to study. In the context of this work, for example,
annotation of newly discovered sequences is challenging since sufficient
descriptive text is lacking.

4.7 Evaluating PSI-BLAST modified to include text

Validation of sequence similarity algorithms requires a high quality gold
standard. In an ideal case, the gold standard should contain families of
homologous proteins. If a query with one of the proteins returns all of the
other members of the family that it belongs to, then we feel confident that
the method works well. Homologous families should contain sequences
that are related by evolution, rather than just by sequence similarity. Since
this is difficult to define, one option is to use a definition based on the
Structural Classification of Proteins Database (SCOP) (Murzin, Brenner
et al. 1995). SCOP is a manually constructed hierarchical categorization
of proteins based on structure and function. Since biological relatedness is

4 : Using text in sequence analysis

implied at the superfamily level, one appropriate definition of a homology
family is the set of SWISS-PROT sequences that reference structures in the
same SCOP superfamily (Lindahl and Elofsson 2000). All SWISS-PROT
sequences that map into a single SCOP superfamily can be used as a gold
standard for a family.

To validate the modified PSI-BLAST approach described in the previous
section, the authors used a set of query sequences that were as divergent as
possible from the families they belonged to (Chang, Raychaudhuri et al.
2001). They compared the performance of their modification to the stand-
ard PSI-BLAST algorithm.

Figure 4.3 plots their results; it shows a comparison of the performance
of PSI-BLAST to the modified PSI-BLAST approaches. “Recall” is the
number of homologous sequences surpassing a fixed e-value cutoff divided
by the total number of homologous sequences. At a fixed recall, “precision”
is the number of homologous sequences detected divided by the total
number of sequences detected. The ideal algorithm would maintain 100%
precision for all values of recall; that is, it would be a straight line across the

T T T T T ' '

- PSI-BLAST
5% text cutoff
- == 10% text cutoff
------ 20% text cutoff

g
©
o

Interpolated Precision
o
©

0.85

08 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Recall

Figure 4.3. Using text comparison improves homology search results. Results of homology search
for 54 training sequences from different families. Precision was interpolated to insure that the
curves were monotonic. The solid bold line represents the unmodified PSI-BLAST algorithm; other
lines represent the modified PSI-BLAST algorithm that drops the sequences with the lowest 5%,
10%, and 20% of literature similarity.

4.7 Evaluating PSI-BLAST modified to include text

top. The modified PSI-BLAST was more precise than the original at any
recall. In addition, the precision did not decay as rapidly as recall was
increased.

For 46 of the 54 SCOP families that were tested, the outcome was
identical for the modified and the unmodified PSI-BLAST. Out of the
eight queries remaining, five differed in convergence, while three differed
in performance. It is these eight families that account for the differences in
the performance plotted in Figure 4.3.

These eight families fall into three categories. The first two families in
Table 4.2 converged to poor solutions with standard PSI-BLAST and failed
to converge for the modified PSI-BLAST. The next three failed to converge
for PSI-BLAST, but converged to reasonably good solutions for the modi-
fied PSI-BLAST. The final three converged for both modified and standard
PSI-BLAST; the solutions are slightly better for the standard one. In these
three cases performance differences can be attributed to a single missed
sequence in each family.

Table 4.2 Comparing PSI-BLAST and a modified version of PSI-BLAST that includes text. Most
of the 54 families have identical performance for both algorithms and are not shown when 10% of
the sequences are dropped at each PSI-BLAST iteration based on textual dissimilarity. The other
families where there is a performance difference are shown below. “Superfamily” is a SCOP
homology family and “Query sequence” is its representative. “Words” is the number of document
words associated with the query sequence. “# Seqs” is the number of sequences in the family. The
final six columns describe the results of a search with the query sequence. Here, precision and recall
were calculated for each individual family using all the results from the homology search.

Convergence Precision Recall
Query PSI- Text PSI- Text PSI- Text
Superfamily sequence Words # Seqs BLAST 10% BLAST 10% BLAST 10%

EGF/Laminin C1R_HUMAN 1661 S yes no 0.11 N/A 0.8 N/A
Acid proteases POL_HV2RO 1271 22 yes no 0.6 N/A 0.27 N/A
PLP-dependent GLYC_RABIT 1052 21 no yes N/A 1 N/A 0.1
transferases

Thioredoxin- CAQS_RABIT 1516 13 no yes N/A 1 N/A 0.38
like

Glucocorticoid CYSR_CHICK 1738 10 no yes N/A 0.8 N/A 04
receptor-like

(DNA-binding

domain)

EF-hand SCP_NERDI 963 31 vyes yes 0.92 092 0.74 0.71
Glycosyl- CHLY_HEVBR 1007 20 vyes yes 1 1 0.2 0.15
transferases

Snake toxin- CD59_HUMAN 2435 23 yes yes 1 1 0.13 0.09

like

4 : Using text in sequence analysis

For the “EGF/Laminin” and “Acid proteases” families the standard PSI-
BLAST converged upon incorrect answers, indicating that drift occurred.
Modifying PSI-BLAST to include text slowed the drift and prevented con-
vergence. These families were challenging because non-homologous
sequences had high similarity to family sequences. Literature similarity
checking added an additional constraint against including erroneous
sequences.

For the protein family “Thioredoxin-like”, the PSI-BLAST homology
search with the “CAQS-RABIT” test sequence failed to converge. The
modified PSI-BLAST that utilized literature similarity did converge on a
precise solution; it correctly detected five sequences. In this case, removing
sequences with low literature similarity prevented profile drift and allowed
the search to converge on a correct solution.

The literature similarity constraint made little difference in the perform-
ance of PSI-BLAST in the majority of the families. So the approach of
including scientific text presented here certainly does not hurt performance,
and in special cases, significantly improves performance.

4.8 Combining sequence and text together

One promising area is the utilization of information contained in text with
sequence information to determine the function of a protein. Classification
algorithms can be trained with proteins of known function on features from
both text and sequence. These classifiers can then be used to make func-
tional predictions on uncharacterized proteins. This strategy has been
applied with success to predicting the subcellular location of proteins.

It is well accepted that protein sequences provide biological information
that can be used to make reasonably accurate subcellular location predic-
tions (Feng 2002). Addition of textual information can further improve
predictions by including documented known aspects about the protein.
Several groups have experimented with machine learning approaches that
combine information about sequences as well as textual information to
make predictions about subcellular localization of the cell (Stapley, Kelley
et al. 2002; Eskin and Agichtein 2004; Lu, Szafron et al. 2004).

In one of the approaches the authors took unknown sequences and
conducted BLAST sequence similarity searches to find the three most simi-
lar SWISS-PROT sequences for each one (Lu, Szafron et al. 2004). These
sequences are presumed to be homologous sequences. The text of the
keyword field, subcellular localization subfield of the comment field, and
InterPro family number from the database source field were extracted from

References

the three protein records. These textual phrases were then used as features
in a classifier that could predict subcellular location of the protein. The
investigators experimented with neural networks, naive Bayes, nearest
neighbor, and support vector machines. They found that all of the classifi-
cation methods achieve reasonably high accuracy in predicting cellular
location of the protein. This approach is similar to summarizing the results
of a protein sequence similarity search as described above.

In a second study investigators used text in their analysis to two separate
ends (Eskin and Agichtein 2004). First, the authors noted that there was a lack
of properly annotated sequences where the subcellular localizations are avail-
able to them. They used classification approaches on text in SWISS-PROT
records alone to assign subcellular locations to as many proteins as possible
with accuracy; this augmented their set of sequences with known subcellular
localization. This is akin to assigning a function to a gene using scientific text
alone (see Chapter 8 for a full discussion on functional assignment).

The purpose of augmenting this set was to have more training examples
for classifiers, and ensure more accurate predictions than would be possible
with a small number of training examples. After augmenting their training
set, the authors went on to define for each sequence two feature vectors.
One contained counts of words associated with the sequence’s SWISS-
PROT record. The second vector contained sequence information about
the protein. They then used a joint classifier that classified proteins on the
basis of both features of their sequence as well as text in the SWISS-PROT
records. They found that the combined approach achieved better precision
and recall rather than just classifying on sequence or text alone.

The approach of classifying sequences based on both their sequence
features and their textual features is a very new and exciting area. We
expect in the coming years there will be more examples like these to
determine protein function automatically.

References

Altschul, S. E, T. L. Madden, et al. (1997). “Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs.” Nucleic Acids Res. 25(17): 3389-
402.

Andrade, M. A. and A. Valencia (1998). “Automatic extraction of keywords from
scientific text: application to the knowledge domain of protein families.” Bioinfor-
matics 14(7): 600-7.

Boeckmann, B., A. Bairoch, et al. (2003). “The SWISS-PROT protein knowledgebase
and its supplement TrEMBL in 2003.” Nucleic Acids Res. 31(1): 365-70.

Chang, J. T., S. Raychaudhuri, et al. (2001). “Including biological literature improves
homology search.” Pac. Symp. Biocomput: 374-83.

4 : Using text in sequence analysis

Eskin, E. and E. Agichtein (2004). “Combining text mining and sequence analysis to
discover protein functional regions.” Pac. Symp. Biocomput: 288-99.

Feng, Z. P. (2002). “An overview on predicting the subcellular location of a protein.” In
Silico Biol. 2(3): 291-303.

Lindahl, E. and A. Elofsson (2000). “Identification of related proteins on family,
superfamily and fold level.” J. Mol. Biol. 295(3): 613-25.

Lu, Z., D. Szafron, et al. (2004). “Predicting subcellular localization of proteins using
machine-learned classifiers.” Bioinformatics. 20(4): 547-56.

MacCallum, R. M., L. A. Kelley, et al. (2000). “SAWTED: structure assignment with
text description—enhanced detection of remote homologues with automated SWISS-
PROT annotation comparisons.” Bioinformatics 16(2): 125-9.

Masys, D. R., J. B. Welsh, et al. (2001). “Use of keyword hierarchies to interpret gene
expression patterns.” Bioinformatics 17(4): 319-26.

McCallum, J. and S. Ganesh (2003). “Text mining of DNA sequence homology
searches.” Appl. Bioinformatics 2(3 Suppl): S59-63.

Murzin, A. G., S. E. Brenner, et al. (1995). “SCOP: a structural classification of proteins
database for the investigation of sequences and structures.” J. Mol. Biol. 247(4): 536—
40.

Shatkay, H., S. Edwards, et al. (2000). “Genes, themes and microarrays: using informa-
tion retrieval for large-scale gene analysis.” Proc. Int. Conf. Intell. Syst. Mol. Biol. 8:
317-28.

Stapley, B. J., L. A. Kelley, et al. (2002). “Predicting the sub-cellular location of proteins
from text using support vector machines.” Pac. Symp. Biocomput: 374-85.

Tu, Q., H. Tang, et al. (2004). “MedBlast: searching articles related to a biological
sequence.” Bioinformatics 20(1): 75-7.

Text-based analysis of a
single series of gene
expression measurements

In this chapter we begin to address the issue of the analysis of gene expres-
sion data with the scientific literature. Here we describe methods for
the analysis of a single experiment—one where a single expression meas-
urement has been made for many genes within the same organism. In
Chapter 7 we will address the analysis of larger data sets with multiple
expression measurements for each of the genes; the questions that occur in
that setting are often more complex and utilization of scientific text in that
setting can be more useful. But focusing on a single series of expression
measurements is an effective starting point in understanding the scientific
literature and how it can be used with experimental data. The lessons here
can be applied to a wide array of genomic assays besides gene arrays. These
methods can be applied to any assay that assigns a single value to each gene
In addition, many investigators generate single-condition expression data
sets, and these methods are widely applicable.

One of the great difficulties in analyzing a single expression series is that
context is lacking. That is, we have a large set of isolated measurements.
Each measurement corresponds to the log of the relative ratio of a single
gene’s expression in an experimental condition compared to its expression
in a control condition. These measurements represent a single snapshot of a
cell’s physiologic status. One of the great challenges is sorting out the
physiologically important expression changes compared to random experi-
mental and physiologic aberrations and fluctuations. Gene expression
measurements are subject to a great amount of noise and distinguishing
true positives from genes that are not truly induced or repressed is a great
challenge. Typically, investigators use their knowledge of biology to priori-
tize likely positives. In this chapter we argue that text-mining approaches
can be used to help prioritize these genes instead.

Another equally important challenge is to discern broadly what bio-
logical functions are active in a given experiment. A quick list of keywords
culled from the literature could offer a rapid view of the broad processes
that are induced or repressed in a given experiment.

5 : Text-based analysis of a single series of gene expression measurements

The basic concepts of this chapter are highlighted in the frame box. For
this chapter we introduce a phosphate metabolism data set; we use this data
set to demonstrate these key concepts. We begin with a discussion of the
confounding factors in gene expression measurements and how they result
in many false positives and negatives. We then talk about the basic statis-
tical properties of a gene expression data set. We motivate and introduce
neighbor expression information (NEI) scoring, a text-based information
theoretic score. It has applications at recognizing true and false positive
genes in an expression series. It can also be used to roughly gauge the
quality of an experiment. Finally we introduce methods to assign keywords
to an expression series from text about genes.

5.1 Pitfalls of gene expression analysis: noise

In looking at a single gene expression experiment the goal is to distinguish
genes that are aberrantly expressed under some physiological stress or
environment change. The difficulty is that in the assessment of some several
thousand genes the likelihood of a certain number of false positives, when
the true positives may only be a handful of genes, is enormous. For example,
consider a gene expression assay of 1000 genes where 30 are truly respon-
sive to the physiological stimuli being assessed. Assume our expression
assay is 90% sensitive and 95% specific. In this case we will discover
27 of the 30 truly responsive genes. But, on the other hand, we will also
incorrectly identify 49 genes that are not actually responding to the phy-
siologic stimuli. So 64% of the 76 genes detected by this assay are entirely
spurious. In practice distinguishing true positives and false positives
requires careful manual assessment of the results, experimental followup,
and experimental replication.

The difficulty is the many sources of noise involved in gene expression
assays; these have been explored in the literature (Lee, Kuo et al. 2000;
Novak, Sladek et al. 2002; Tu, Stolovitzky et al. 2002).

1) Noise sources in gene a) Separating true and false
expression measurement positives

2) Statistical properties of an b) Assessing experiment quality
expression data series 4) Finding keywords to describe an

3) Neighbor expression experiment
information method

5.1 Pitfalls of gene expression analysis: noise

Creation of high quality gene expression data requires exposing cells to
both an experimental and control condition; the mRNA from these cells is
then harvested, amplified and labeled and hybridized to a gene expression
array; see Section 2.4 for a more detailed discussion. The log base 2 of the
ratio of the signal between the experimental and control condition is
reported as the expression for each of the genes. Sources of variability and
noise include technical sources, physiologic sources, sampling sources in the
lab, as well as sources in the actual array as well.

Some of physiologic variability includes differences in the way the bio-
logical samples may have been prepared. For example, media conditions that
cells may have been cultured in, or variations in presumed important lab
conditions could account for significant gene expression influences. Sam-
pling sources include expression variability that might occur while harvest-
ing a particular tissue; contaminant tissue or heterogeneous cells might be
inadvertently included and may alter the measured expression profile. This is
a frequent issue in medical applications using pathlogical samples. Gene
expression array analysis is also plagued by a host of laboratory technical
issues. These would include the quality of the work used to isolate the
mRNA, the quality of the mRNA samples, and the efficiency of reverse
transcribing and labeling the mRNA with fluorescently dyed nucleotides.

In addition to these issues, investigators are familiar with many chip or
array noise sources. For example, expression measurement variability can
be attributed to the quality of the probe on the slide, the ability of the probe
to bind labeled DNA well, and even the position of the spot on the slide. The
probe on the slide may have cross-reactivity to other genes and bind other
labeled nucleotide products than the ones that it is supposed to, and
hybridization may be altered. Genes that have low expression in either
the control or experimental condition are particularly susceptible as the
ratios between the two conditions can be dramatically affected by these
small errors. Specific regions of the glass slide may be smeared or damaged,
affecting the expression of a large number of genes.

These error sources account for the differences between true physiologic
gene expression and the gene expression that is measured by an expression
assay. When looking at a single experiment and trying to appreciate the
genes with truly altered gene expression we must realize that a large number
of the genes that may appear induced or repressed may appear that way only
because of noise. The challenge is to separate the genes whose alteration in
expression is biologically relevant versus the aberrant measurements.

Of course, the inclusion of external information to bias our analysis helps
to distinguish biologically important gene expression changes from aber-
rant ones. For example, additional gene expression conditions may suggest
the true positives; these will have increased gene expression under other
similar physiologic conditions. Genome sequence information can be

5 : Text-based analysis of a single series of gene expression measurements

suggestive also. For example, if a set of induced genes shares a common
promoter site then that may suggest that those genes correspond to true
altered expression. Here we discuss the possibility of using the scientific
literature; our hypothesis is that the likelihood that a gene has truly altered
gene expression under a physiologic condition is related to whether or not
genes that are functionally similar also have altered expression under the
same condition. These functionally similar genes can be identified with the
scientific literature.

5.2 Phosphate metabolism: an example

In this chapter we will focus on a series of experiments conducted by
Saldhana and colleagues that explored the gene expression of yeast under
nutritionally deficient circumstances (Saldanha, Brauer et al. 2004). The
authors investigated the changes in gene expression that occurred when
different metabolites were made available to yeast cultures in limiting
quantity. They explored whether and at what point the limited availability
activated particular metabolic pathways, or stress responses. The data set
included a total of 124 experiments, and measured the expression of some
5104 genes. We will focus on six replicates of what the authors referred to
as PU conditions; in this series the organisms were placed in phosphate
deprived media in the experimental conditions, whereas in the control
conditions uracil deprived media were used instead. So genes with higher
expression values have high expression under phosphate deprivation as
compared to uracil deprivation. The histogram of gene expression ratios
are displayed in Figure 5.1.

We chose this data set for several reasons. The first is that it is a yeast data
set and the literature in yeast is relatively well organized, and provides a
good starting point to illustrate literature-based approaches. The second is
that the data set includes six replicates of the same experiment. Averaging
the expression values of the six data sets together mitigates some of the
noise. For example, error associated with laboratory protocol may be
reduced by averaging replicates. This affords us something closer to a
higher quality experiment. For the purposes of demonstration this is ideal.
Finally, the experiment is relatively easy to understand. Since these yeast
cultures were phosphate starved, it is very reasonable to expect that genes
related to phosphate metabolism should be aberrantly expressed. These
factors make this data set well suited for demonstrations, and avoid some
of the ambiguity that is inherent to most gene expression array analysis. The
raw data was obtained from the Stanford Microarray Database (SMD)
(Ball, Awad et al. 2005).

5.3 The top fifteen genes

0.5
0.4
(%]
(]
&
S 03
k]
c
i<l
© 02
Y
L
0.1 I
0 L T T o T ! T - 1
y N N N Y
\‘& L?/b]O %/ ,b} <3/O)'/b >
y \,/é) OO £ b @

Log base 2 of expression ratio

Figure 5.1 Histogram of phosphate-uracil experiment expression log ratios. Expression log
ratios from all six experiments are averaged together and a histogram is plotted.

Of the 5104 genes analyzed in this data set, we were able to identify 3611
unique genes that had atleast one article. Article references were obtained from
the Saccharomyces Genome Database; PubMed abstracts were used. Varation
in gene nomenclature may have prevented some genes from being associated
with references. The mean number of articles per gene was 14.3, and the
median number of articles per gene is 5. The highest number of article refer-
ences per gene was 443. A total of 74 genes had over 100 references. This data
set referenced a total of 21,213 PubMed abstracts. Each article referred to a
mean of 2.43 genes and a median of three genes. The largest number of genes
referred by a single abstract was 132. A total of seven articles referred to more
than 50 genes, and 234 referred to over ten genes. The distributions of genes per
article and articles per gene are extremely skewed distributions; this issue is
addressed in greater detail Chapter 1.

In the remainder of this chapter we demonstrate how literature-based
approaches can be used to distinguish true positive genes that are expressed
in this data set from the false positives using a literature based scoring
system. In addition, we demonstrate one method to quickly assign key-
words that broadly describe the experiment.

5.3 The top fifteen genes

The distribution of gene expression after averaging the six similar replicates
is depicted in Figure 5.1. We focus on the average of the six experiments

5 : Text-based analysis of a single series of gene expression measurements

rather than an individual one in this section; the averaged experiment is a
surrogate for a high quality experiment. Later in this chapter we will look at
individual experiments; the quality of those experiments is more typical. It
can be seen immediately that the vast majority of genes have very minimal
changes in gene expression. About 80% of the genes have log base 2
expression ratios between —0.5 and 0.5. This corresponds to expression
ratios between the experimental and control condition ranging from 0.7 to
1.4. On the other hand, less than 1% of genes have expression ratios
exceeding 8 or less than 1/8.

To begin exploring this rich data set, we look at those genes that have the
greatest induction under phosphate deprivation compared to uracil depriv-
ation. These genes are listed in Table 5.1. Along with the genes, we have
listed a short description of their functions. All of these genes are very
significantly expressed in this data. Do they all make sense in the context
of the experiment? Certainly the genes that are intimately involved in
phosphate metabolism are consistent with our understanding of the data.
So genes in rows 1-3 and 5 are almost certainly true positives. A number of
the genes are involved in vacuole fusion; as we can see with gene VTC3,
there seems to be a connection between vacuolar transport and phosphate

Table 5.1 The highest expressed genes in the PU experiments. We have listed the top 15 expressed
genes in order. Also listed is the systematic name, the gene function, the average expression log
ratio, and the corresponding ratio. Many genes are related to phosphate metabolism.

Expression Expression

Gene Systematic name Function (log ratio) (ratio)
1 PHO11 YARO71W Phosphate metabolism 6.3 78.8
2 PHO12 YHR215W Acid phosphatase 5.6 48.5
3 PHOS YBR093C Phosphate metabolism 51 34.3
4 un-named YOL155C Cell wall Organization 4.98 31.6
5 PHO3 YBR092C Acid phosphatase involved 4.16 17.9
in thiamine transport
6 VTC3 YPL0O19C Phosphate metabolism 3.72 13.2
Vacuole fusion (non-autophagic)
7 VIC1 YERO72W Vacuole fusion (non-autophagic) 3.49 11.2
8 BAP3 YDR046C Amino acid transport 3.43 10.8
9 un-named YAR068W 3.39 10.5
10 ARO9 YHR137W Aromatic amino acid 2.92 7.6
family metabolism
11 SSU1 YPLO92W Sulfite transport 2.65 6.3
12 SUL1 YBR294W Sulfate transport 2.52 5.7
13 HXT2 YMRO11W Hexose transport 2.52 5.7
14 un-named YIL169C 2.41 5.3

15 VIC4 YJLO12C Vacuole fusion (non-autophagic) 2.33 5.0

Distinguishing true positives from false positives

metabolism. So these genes might be reasonable candidates. The remaining
genes are involved in diverse processes or unknown processes that do not
have any obvious link to phosphate metabolism.

5.4 Distinguishing true positives from false positives with a
literature-based approach

Our goal is to use the literature to help distinguish the true positive genes
from the false positive genes. The degree of noise in gene expression is great
enough that it is a challenge to set a concrete expression threshold
and identify induced genes with a sufficiently high degree of sensitivity
and specificity. The solution is to look at the genes themselves and to
understand if it is reasonable to expect those genes to be induced or not.
In a best-case scenario, such as the one we are presenting with our example
data, we have an excellent idea what the implications of the physiologic
stress or condition is and what types of genes we would expect to be
induced.

An alternative approach is to assume that genes that are truly induced in a
physiologic condition are not likely induced in isolation. A physiologic
stress that induces the expression of a gene likely affects other related
genes involved in similar biological processes.

As we have suggested in Chapter 3, the literature can be used to identify
functionally similar genes. The approach we take here is that for each gene
that might be significantly expressed, we identify likely functionally similar
genes and examine what their expression is. If their expression is also
significantly affected, then we are likely looking at a gene that is truly
induced in this physiologic condition.

For each gene we create a normalized and weighted word vector using the
references to that gene as detailed in Chapter 3. Then we calculate distances
between that gene and all of the others in the literature space using the
cosine distance metric. We assume that many of the most similar genes
share some function.

As an example consider the most expressed gene in this data set, PHO11.
In Table 5.2 we have listed the 20 most similar genes to PHO11 based on
word vector similarity. In addition we list the log expression ratios for those
similar genes. Many of these genes are either very highly induced or
repressed, that is, they either have a very positive or negative log expression
ratio. Only nine out of the 20 genes have an expression ratio between —0.5
and 0.5. If this were a random distribution of genes we would expect about
80% or 16 genes to have log ratios between —0.5 and 0.5. We see imme-

5 : Text-based analysis of a single series of gene expression measurements

Table 5.2 Neighbors of PHO11. Using the cosine vector metric we calculated the
most similar genes to PHO11. We also list their gene expression values.

Neighbors of PHO11 Text-based cosine similarity ~ Gene expression

PHOS 0.54 5.12
PHO3 0.51 4.16
PHO12 0.46 5.65
PHO4 0.44 -0.23
HIS3 0.43 0.63
PHOS1 0.43 0.82
PHO80 0.43 0.53
URA3 0.43 -1.35
LEU2 0.42 —0.69
PHO2 0.42 —-0.85
TRP1 0.41 0.05
HIS4 0.39 0.46
LYS2 0.39 0.36
GCN4 0.36 0.14
ABF1 0.36 0.08
LEU1 0.36 -0.4

FLOS 0.35 0.08
ADH2 0.35 -0.12
URA4 0.35 —1.48
URA1 0.35 -3.7

diately that many of the functional neighbors selected using the scientific
literature have aberrant gene expression. We might then assume that
PHO11 is significantly affected in this condition because it has increased
expression on its own, and in addition many genes that have similar
function to it also seem to be affected in a non-random way by the condition
as well. The next step will be to quantify the non-randomness of the
expression of neighbor genes.

5.5 Neighbor expression information

In this section we will present the neighbor expression information (NEI)
scoring system; it is a mathematical method that is effective in suggesting
whether genes are truly affected by the experimental condition.

For each gene we identify 7 functional neighbors using similarity in the
scientific literature. We average weighted word vectors for all the articles
for each gene to define a word vector for each gene. Then we calculate
distances between articles using the cosine metric:

5.5 Neighbor expression information
x x yl

[EA N BA

where x and y are the #f/idf averaged weighted word vectors for the two
genes. Then, for each gene, we choose the 7 genes as functional neighbors
that have the highest cosine values. These genes have articles that use
similar words as each other, and are likely similar in function.

We recognize that while many of these functional neighbor genes may
have true functional relationships with the gene, some may not. If the gene
is significantly expressed, other neighbor genes with the same function
should be perturbed by the same experimental condition; some neighbor
genes with dissimilar function may not be affected by the condition at all. In
any case, the expression ratio distribution of the functional neighbor genes
should be dissimilar to the background distribution of gene expression. We
have plotted the expression ratio distribution of the 20 PHO11 neighbor
genes alongside the distribution of expression for all genes in this experi-
ment for the sake of comparison in Figure 5.2.

To compare the distribution of expression ratios for functional neighbors
to the background we use KL- diveregence, discussed in greater detail in
Section 2.2. The KL- divergence is a measure of how inappropriate a
background distribution p is at explaining an observed distribution g. In
this case, p is the background expression distribution of expression ratios

0.5
0.4
[}
(0]
o
S 03
k]
c
kel
S 02
o
: a
0.1 7
0 T T T T T -_I_-
w D o z 7 2
@ G’b ,/(‘) ,/é’, o =,) S
ke % % % °, ¢

Log base 2 of expression ratio

Figure 5.2 Histogram of PHO11 neighbor expression. Here we have plotted a histogram of the
expression log ratios of the neighbors of PHO11 listed in Table 5.2 with light grey bars. For
comparison we have included the histogram of gene expression of all genes for comparison in black;
this is identical to the plot in Figure 5.1.

5 : Text-based analysis of a single series of gene expression measurements

depicted in Figure 5.1. On the other hand, g is the distribution of expression
ratios for the genes that are functional neighbors. We calculate:

D(q |l p) = ailog, (%)

If the expression of the functional neighbor genes is random, then the
distribution g should look similar to the distribution p. If the gene is part
of a process not affected by the physiological condition, the expression of its
functional neighbor genes will likely be distributed randomly, and the
divergence will be close to zero. On the other hand, if the gene has func-
tional neighbors that are affected by the process, the distribution g will be
enriched in high and low expression genes, and the divergence between the
two distributions will be large. So we assume, if we find the divergence to be
large, that the gene is likely to be involved in the response to the condition.

So for each gene we calculate the KL divergence of the expression ratios
of its neighbors to quantify how likely it is that it is directly involved in the
process. We will refer to this number as the neighbor expression informa-
tion (NEI) score of a gene.

5.6 Application to phosphate metabolism data set

To assess the effectiveness of this measure we apply it to the data set of the
six averaged phosphate deficient conditions. We looked at # = 5 functional
neighbors for each gene. The functional neighbors were identified using the
cosine vector distances between gene word vectors as described and the NEI
scores were calculated for each of the genes by looking at the expression
values of those five genes. The distribution of NEI scores that are obtained is
depicted in Figure 5.3. About 5% of genes have an NEI score greater than
1.8, and about 10% of genes have NEI scores greater than 1.4. So focusing
our attention on only genes with NEI scores greater than NEI scores of 1.8
or greater reduces the number of genes that we are seriously investigating
from 3611 to about 181. This is a much more palatable number of genes to
go through. The genes that are the most interesting are the genes with the
greatest changes in expression that also have high NEI scores. The NEI
scores offer an independent means of evaluating genes with large induction
or repression in expression.

Our prediction is that these are the genes that are most relevant to the
experiment, and least likely to be false positives. The NEI score is calculated
on the basis of literature-based neighbors and their gene expression; it does
not consider the expression of the gene itself.

5.6 Application to phosphate metabolism data set

0.6

05 1

0.4

0.3

0.2 I

0.1

Genes

Oto.5 Sto1 1t01.5 1.5t02 2to25 >25

NEI score

Figure 5.3 Histogram of NEI scores.

To validate the NEI scores we see how well it correlates with the expres-
sion in this data set. The expression data set being used here is a high quality
average of six replicated experiments. Compared to any individual experi-
ments, there should be minimal noise. So in this case, we expect many of the
induced and repressed genes to represent true physiological responses. If the
high NEI genes are in fact the most relevant to the experiment, it would
make sense that genes with higher NEI scores should have, on average, the
greatest changes in gene expression. Most of the true positives should have
large changes in gene expression and high NEI scores. On the other hand,
we would expect few of the genes with minimal changes in gene expression
to be involved in the physiologic process and therefore we expect most to
have low NEI scores.

In Figure 5.4 we have plotted the absolute log expression ratio as a
function of NEI scores. On average, it is apparent the genes with lower
NEI scores have minimal changes in gene expression, while those with
higher NEI scores have greater changes in expression. Similarly, since the
genes that have extremely high or extremely low gene expression values are
more likely to be genes that are truly involved in the physiologic process,
these genes should have higher NEI scores. Genes that have relatively
unaffected gene expression values should likely be uninvolved in the pro-
cess; these should have relatively low scores on average. In Figure 5.5 we
have plotted the median and mean NEI scores for different levels of gene
expression. It is immediately apparent that the extremes of gene expression
have the mean and median highest NEI scores. In Figure 5.6 we show the

5 : Text-based analysis of a single series of gene expression measurements

1.2

0.8

0.6

0.4

Ol

0.2

Mean absolute log expression ratio

0 r . .

0to.5 S5to1 1to1.5 15t02 2to2.5 >25
NEI score

Figure 5.4 Plot of gene expression versus NEI scores. Genes are categorized by their NEI scores.
The absolute value of the log expression ratio of genes with NEI scores in each range are averaged
and plotted. Included are also 95% confidence intervals. Error bars are larger for genes with high
NEI scores since there are fewer genes. Genes with high NEI scores have significantly higher gene

expression scores than genes with low NEI scores.

3.5

BE /

NEI score

oLad /

0.5 \3\: D/D/ —/\—mean

-} median
0 ™~ N Vs o 7 7 Y
v T e R Ty, R T, O

4 /'/é, o < ’

Log gene expression ratios

Figure 5.5 NEI score as a function of log gene expression ratios. Here all genes are grouped by

their gene expression. We plot the mean and median NEI score in each category.

5.6 Application to phosphate metabolism data set

0.8 |

[]
8 __

o 0.6 T —
S
[
K]

g 0.4 |
[T

0.2 —

0 B '"H""EI""T:'E""I:I’""E"'" rett1etr-

\ y z 7 4

\\0 0"0)’b ’/9/ O’é, @6 OG o

7 s P00 R ,

Log gene expression ratios

Figure 5.6 Fraction of genes with high NEI scores as a function of expression ratio. For each
range of gene expression we plot the fraction of genes with NEI scores greater than 2. A horizontal
dotted line drawn at 4% indicates the total fraction of genes in the data set with scores greater
than 2.

percentage of genes that have NEI scores greater than 2 for different levels
of expression. Recall that altogether about 4% of genes have NEI scores
greater than 2 in this data set.

Now let us turn our attention to the 15 highest scoring genes in the data
set. These were the same genes listed in Table 5.1. We re-list these genes
along with their NEI score in Table 5.3. The genes involved in vacuole
fusion and phosphate metabolism all have high NEI scores, except for
PHOS. These are genes that are almost certainly involved in the condition
being tested, phosphate deprivation. On the other hand, the genes ARO9,
SSU, and SUL1 are almost certainly false positives, and they have NEI scores
that are less than one. The three unnamed and uncharacterized genes are
difficultto appreciate; they have very few articles written about them but seem
to receive high NEI scores, suggesting they might be true positives. Whether
this is in fact the case might be difficult to assess at the present time in an
objective sense as there is limited knowledge about these genes.

The NEI scores offer a second way to corroborate the involvement of
a gene outside of the expression data itself, and the possibility to distinguish
the true positives from the false positives. The NEI scores offer the
possibility to go down the list to other induced genes, with lower
expression ratios and distinguish which of those are true positives and
false positives.

5 : Text-based analysis of a single series of gene expression measurements

Table 5.3 NEI scores for the top 15 expressed genes. In this table we list the same 15 genes as in
Table 5.1. We also list the NEI scores with respect to the same gene expression data set, and the
number of articles available for that gene. In addition the gene function is listed.

Gene NEI score #Articles Function

PHO11 4.8 14 Phosphate metabolism

PHO12 2.88 3 Acid phosphatase

PHOS 0.81 168 Phophate metabolism

unnamed 3.05 2 Cell wall organization

PHOS3 3.05 21 Acid phosphatase involved in thiamine
transport

VTC3 3.08 3 Phosphate metabolism, vacuole fusion

(non-autophagic)

VTC1 3.08 7 Vacuole fusion (non-autophagic)

BAP3 3.53 13 Amino acid transport

unnamed 2.14 1

ARO9 0.68 4 Aromatic amino acid family metabolism
SSuU1 0.57 8 Sulfite transport

SUL1 0.27 7 Sulfate transport

HXT2 2.02 36 Hexose transport

unnamed 1.78 2

VTC4 3.12 4 Vacuole fusion (non-autophagic)

5.7 Recognizing high induction false positives with
literature-based scores

The example that we have been focusing on so far is a high quality experi-
ment. It is a fabricated experiment that is the average of six different
experiments. In this section we will look at poorer quality individual
experiments. In these cases, the NEI scores become very valuable, as there
are many more false positives.

Here we consider arbitrarily the first of the six phosphate deprivation
experiments. The NEI scores of highly induced and repressed genes are in
general lower in this data set. The median NEI score for the 15 most induced
and repressed genes in this first experiment is 0.99 and 0.72; this compares to
2.9 and 1.5 in the averaged data set (see Table 5.4). In this data set 5% of the

Table 5.4 NEI scores for each of the individual experiments. Median NEI scores for the top 15
and bottom 15 genes in each individual experiment are listed in this table. Also the NEI scores for
the extreme genes are listed for the averaged experiment and for a randomized experiment.

expl exp2 Exp3 exp4 exp5S exp6 avg rand

15 most induced genes 0.99 1.56 1.72 224 2.5 2.6 288 0.49
15 most repressed genes 0.72 0.61 0.83 0.9 1.3 1.44 1.5 0.43
all genes 0.76 0.75 062 0.71 0.56 0.65 0.49 0.49

Recognizing high induction false positives

genes have NEI scores above 1.6 and the median NEI score is 0.76. In general
NEI scores are lower for the extreme genes. Since the data are much noisier,
many more inappropriate genes are highly expressed or induced while many
of the genes that respond to the condition have their responses masked in the
noise. The inappropriate genes are the false positives, most of which have low
NEI scores. In addition, the NEI scores for the true positive genes can be
somewhat lower as well, since the expression change of their literature-based
functional neighbor genes may be inappropriately lower due to noise. In this
example we focus on the most induced genes, and examine how well NEI
distinguishes likely false positives from true positives.

In Table 5.5 we have listed the top 15 induced genes in that experiment
and their NEI scores, and a short description of their biological functions.
Many of the genes have larger expression ratios than in the averaged
experiment, but larger expression ratios do not necessarily imply greater
biological significance. Only five of these genes are the same as the top
induced genes in the averaged data set. Most of these genes have relatively
high NEI scores; all five have scores greater than 1. Most of the genes other
than those five have no obvious connection to phosphate metabolism. In

Table 5.5 NEI scores for the top 15 expressed genes in the first experiment. In this table we

list the top 15 expressed genes. We list the gene names in the first and second columns, the gene
function in the third column, the log expression ratio in the fourth column, and the NEI Score in the
fifth column. Asterisks indicate the genes that were among the top 15 induced in the averaged
expession series (see table 5.1).

Systematic name Name Function Log exp ratio NEI score
YOL155C “un-named Cell wall organization 6.7 1.02
YARO71W "PHO11 Phosphate metabolism 6.3 2.78
YHR215W "‘PHO12 Acid phosphatase 5.8 1.89
YLR142W PUT1 Glutamate biosynthesis 3.7 0.6
YBR150C TBS1 3.5 0.53
YDROSOW VPS41 Protein transport 3.3 1.24
YLRO89C ALT1 Transaminase 3.2 0.97
YOLO38W PRE6 Ubiquitin dependent protein 3.2 0.53
catabolism
YJR148W BAT2 Branched chain family amino 3.1 1.02
acid biosynthesis
YBR092C "PHO3 Acid phosphatase involved in 3.1 1.73
thiamine transport
YAR068W “un-named 3.1 1.59
YNL333W SNZ2 Thiamine biosynthesis 3 0.7
YDRO017C KCS1 Response to stress 2.9 0.99
YMR145C NDE1 Ethanol fermentation 2.7 0.59

YERO056C FCY2 Purine transport 2.7 0.72

5 : Text-based analysis of a single series of gene expression measurements

addition they have relatively low NEI scores; eight of the ten have NEI
scores less than 1. The functions seem rather like a motley collection of
unrelated biological functions, and are likely false positives despite their
high gene expression. In this context the NEI scores are effective at separ-
ating the likely true positives from the false positive. In this case setting an
NEI threshold of one would eliminate eight false positives and select all five
presumed true positives.

5.8 Recognizing low induction false positives

Another way to demonstrate the value of the NEI scoring system is to focus
on genes with even minimal changes in expression values rather than
extreme changes. For these genes, it can be even more difficult to distinguish
genes that are reliably influenced by the condition from spurious genes,
since they have lower expression levels.

We contend that NEI scores can help assess genes having minimally
changed expression. To demonstrate we focus arbitrarily on the third of
the same set of experiments. And we examine low induction genes. In this
case we look at genes with log expression ratios between 0.5 and 1.5. In this
experimental set there are some 308 genes with expression values in this
range. Under these circumstances, it would be difficult to do detailed
experimental follow-up of all of these genes. In addition false positives
will be abundant.

One way of distinguishing genes that are true positives and false positives
is to do replicates. Presumably, the more times a gene achieves expression
values greater than 0.5 in other experiments, the more likely it is to be a true
positive. Of course, this will not account for systematic error, but should
reduce sporadic errors such as the ones caused by aberrations in inducing
the experimental condition in that particular trial. In this case we have five
other replicates of the same experiment to examine. Since genes with high
NEI scores should be true positives, then the experimental replicates for
those genes should also have expression values that are greater than 0.5.

In Figure 5.7(a) we have plotted the average number of times the repli-
cated expression values of these low induction genes are greater than 0.5 in
other experiments. As the literature-based NEI scores increase, the average
number of positive replicates increases as well. Similarly the fraction of
genes with at least four out of five positive replicates correlates with the NEI
score (Figure 5.7b). This correlation with the reproducibility of a gene’s
expression suggests that the NEI score can be used to suggest likely true
positives, even among genes with low induction.

5.8 Recognizing low induction false positives

5
Te]
o
A
5
‘» 4
[%]
o
Q
x
(0]
83 + +
<
s
@ sslEES
2 o]
K]
©
[oX
o
B 1
@
Ke)
IS
=}
z
0 . : - -
<0.5 5-1.0 1.0-1.5 1.5-2 >2
(a) NEI score
1
[2]
c
(9]
E
S 0.75 1
Q — 1
X
(0]
Yo
1]
A
£ 05 ne
°©
Q
®
i)
a
o
§ 0.251
©
o
L
0 : : - -
<0.5 5-1.0 1.0-15 1.5-2 >2
(o) NEI score

Figure 5.7 Genes with low induction. Here we look specifically at genes in experiment 3 that are
modestly induced with log expression rations between 0.5 and 1.5 These genes are divided by their
NEI scores into five ranges. Genes with high NEI scores are more likely to be true positives. (a)
The average number of the five replicates in which those genes have a log expression ratio greater
than 0.5. (b) The proportion of genes with a log expression ratio greater than 0.5 in at least four of
the five replicates. In both plots 95% confidence intervals are included.

5 : Text-based analysis of a single series of gene expression measurements

5.9 Assessing experiment quality with literature-based
scoring

The single experiment we looked at in Section 5.7 was a lower quality data
set than the averaged data of all six. It was apparent that the data from this
experiment did not capture a clean physiologic response when we looked at
the highest induced genes. They did not appear to represent a clear physio-
logic process. This was reflected in the lower NEI scores.

Up until now we have been arguing that NEI scores can be used to
distinguish false positives and true positives. In addition, NEI scores can
be used to compare experiments and assess their quality.

For each of the six experiments we have tabulated the median NEI scores
for all genes and for the top 15 induced and repressed genes in Table 5.5.
The averaged experiment, which is data that contains the least noise, has
the highest scores for the induced and repressed genes, and the lowest
median score for all genes. Also for comparison we show the same statistics
for a random data set. Not surprisingly, the median NEI score is no different
from the median NEI scores of the top 15 induced and repressed genes.

These numbers give us a good sense of the quality of the data. High
quality data sets have induced and repressed genes with high median NEI
scores. Low quality data sets, on the other hand, may show little enrichment
of high NEI scoring genes at the extremes of expression.

5.10 Improvements

Here we have demonstrated a scoring system that evaluates a gene in the
context of other genes. To assess the involvement of a gene in a given experi-
ment it looks at the expression of its neighbors. The value of the scientific
literature, here, is to help identify what those neighbors are. As we apply more
effective strategies to identify functional neighbors, the performance of this
method will improve; for example application of latent semantic indexing
might improve performance. In addition more effective weighting schemes
and better distance metrics will likely improve performance.

In addition, in its current formulation, there is poor accounting for the
fact that some articles have hundreds of referring genes while others only
have a single one. When constructing a word vector for a gene, there is
likely some advantage to down-weighting the influence of articles that refer
to many other genes; these articles are likely nonspecific assays. On the
other hand, articles that refer to only that gene are likely very valuable and
should be up-weighted when creating word vectors. These adjustments to
the formulation of word vectors may also increase the performance of the
NEI method altogether.

Assigning keywords that describe the broad biology

The strategy we are using to identify neighbors requires us to create
vectors of words by averaging the content of many different articles. This
can be a major disadvantage as the articles may have diverse content. As we
average many different articles that talk about different aspects of the
genes, valuable signal may be diluted out. A better strategy is to treat the
articles separately, and not merge their content into a single vector. We will
address this issue more thoroughly in Chapter 6.

Finally, there is the issue that many genes are poorly studied and lack
sufficient amounts of literature to create accurate NEI scores for. In these
cases, the current formulation we have introduced is less effective. In many
cases, these are the most interesting genes to focus on as well. This is one of
the real challenges to using any literature-based approach. In Chapter 4 we
introduced sequence-based strategies to supply these genes with surrogate
references.

5.11 Application to other assays

The framework that we have introduced here is valuable to many genomic
assays where the response of thousands of genes to a stimulus is being
assayed. In all of these cases, the sheer number of genes examined often
requires external corroboration to evaluate whether a positive finding by
assay makes sense in the context of the rest of the data. The NEI approach
offers a means to do this. For example, the Serial Analysis of Gene Expres-
sion (SAGE) assay can also assess expression of genes, but in an alternative
fashion (Velculescu, Zhang et al. 1995). The assay results can also be used
with NEI scores to assess the reliability of highly expressed genes. Another
assay that this approach can be effectively applied to is large yeast-2-hybrid
assays where thousands of genes are screened and scored for their ability to
bind a single protein (Fields and Song 1989). A more detailed discussion of
protein binding is presented in Chapter 10. One would expect that a true
positive binding protein should share some biological function with other
proteins that are able to bind. NEI scoring can be used to identify proteins
that have functionally similar proteins that are also likely binding proteins.

5.12 Assigning keywords that describe the broad biology
of the experiment

In this section we introduce a strategy to assign keywords to the gene
expression experiment that broadly describe the function of the genes that
are either induced or repressed. The goal is to identify words that provide

5 : Text-based analysis of a single series of gene expression measurements

the biologist with a quick sense of the experiment and which genetic
processes are active. There are many possible strategies that can effectively
accomplish this goal.

In the previous chapters we showed how weighted word vectors for
different genes could be averaged together; the greatest valued words in
this vector can often be effective keywords for that group. This strategy
could be applied in the context of gene expression data if a group of
genes could be defined effectively. This is difficult, however, since true
positive and false positive genes are mixed together, and it is impossible to
create an expression threshold that clearly separates a group of genes that are
truly responding to the physiologic condition from non-responsive genes.

Instead we propose another approach in this section. We calculate an
expression value for each word. We do this by looking at each article and
assigning it an expression value by averaging the genes it refers to. Then the
expression value of a word is the average expression value of all of the
articles it is in. This is depicted in the schematic in Plate 5.1. The final step is
to determine whether or not that expression value for the word is signifi-
cantly positive or negative.

The average expression of an article i that has references to m; genes is:

1
ai:%zgf

where g is the averaged expression of the genes j that it refers to, and g; is
the expression of gene j. In matrix form, we define a matrix R (for reference
matrix) where the rows correspond to articles, and the columns correspond
to genes. If there are N, articles and N, genes, then this matrix is N, x Nj.
The entry at any position (i, j) is non-zero only if article i has a reference to
gene j. If non-zero entries at each position (4, j) are assigned 1/m;,, then with
this formulation,

a, = E T X &

or
A=RxG

where G is a column vector that contains the gene expression values for
each of the genes, and A is a column vector that contains the expression
values for each of the articles.

Similarly, the expression value of a word 7 that occurs in m; articles, each
with an expression a;, can be calculated by averaging the expression of
those articles:

Assigning keywords that describe the broad biology

1
w; = — E a;
mi

where w; is the calculated expression value. In matrix form, we define a
matrix T (for text matrix) where the rows are words and the columns are
articles. The entry (4,7) is non-zero only if the word is in the article. If the word
iisin the article j then the entry (i,j) is set to 1/m;. So each entry is the inverse
of the number of articles the word appears in. With this formulation:

w; = E t,-,-xa,-

or:
W=TxA

where A is a column vector that contains the gene expression values for
each of the articles, and W is a column vector that contains the calculated
expression values for each of the words. In fact we can see that the expres-
sion values for the words W is calculated directly from the gene expression
values G:

W=TxRxG

So actually, for each word, its expression is a weighted mean of gene
expression values where the weights are contained in the matrix Y = T x R.

Once the mean expression values for each of the words are calculated, the
key step is to determine whether the expression values are significant or not.
The first step to this is to calculate the variance of the weighted mean for
each word:

5= Zyij(gi —w;)?
i

Where yjj is the weighted contribution of the gene expression g; to the mean
word expression value, w;. The next step to calculating the variance of the
mean is as follows:

2_ 2
0 = S; E Vi
i

Once a mean expression value has been calculated for each word, and its
mean variance determined, we can determine the number of standard
deviations it is away from zero, or its z-score (see Section 2.2):

5 : Text-based analysis of a single series of gene expression measurements

w; —X
= —F

2
a;

Here x is the mean expression of all genes, w; is the mean expression for the
word. The square root of the variance is the standard deviation. A word that
has an expression value that is 1.97 standard deviations away from zero is
significant at the alpha < 0.05 level (assuming a two-tailed test), while a
word that is 2.58 standard deviations away from the mean is significant at
the alpha < 0.01 level. Since we are looking at on the order of a thousand
words, the standard of statistical significance level is much greater. Using
the standard Bonferoni correction, we would prefer significance values on
the order of 0.05/1000. These values can be achieved with z-scores of 4.05.

Results of the application of this method to the phosphate deprivation
data are displayed in Figure 5.8. This strategy provides some clues about the
general expression responses of genes involved in different biological pro-
cesses. There were a total of 1179 words present in more than 300 articles.
We selected these common words. Then we used the above equations to
calculate the mean expression for each word, and the mean variance. We
selected all words with z-scores greater than 4.05 with the greatest mean
positive and negative expression. These words are listed in the figure. We
have plotted the mean expression value for each word with 99.995%
confidence intervals; these confidence intervals include 4.05 mean standard
deviations on either side of that value.

H MAP amounts H
— cAMP electron H
— cyclin plasma —
] MAT replaced —
H kinase matrix H
H sigaling phosphate —
H coupled oxidative —
— basal mature —
H G1 inner —
L nitrogen mitochondrial H
H arrest transformed —
H ubiquitin mitochondria H
H kinases respiratory =
H transduction secreted | ! 1
— heat reductase —
— receptor outer —
— shock glycosylation —
— mating oxidase —
— receptors cytochrome —
— pheremone phosphatase —_—
-05 -04 -03 -02 -01 0 0.1 0.2 0.3 0.4 0.5

Figure 5.8 Keywords identified that characterize phosphate deprivation experiments. Top
positively expressed and negatively expressed keywords, plotted with confidence intervals.

References

The most induced word is “phosphatase”. It makes sense that under the
condition of phosphate deprivation genes that are phosphatases that free
phosphate from other molecules are up-regulated. Not surprisingly the
word “phosphate” is also induced, highlighting the critical role this mol-
ecule plays in this condition. Many of the other induced words seem to be
connected to aerobic respiration and energy generation in the mitochon-
dria. These words include “mitochondria®, “respiratory”, “electron”,
“cytochrome” and “oxidase”.

On the other hand, the genes that are suppressed are related to mating
and cell reproduction. Genes related to communicating and mating with
other cells, such as signaling molecules and pheromones, are repressed;
the words “MAT”, “pheromone”, “signaling”, and “receptors” are down-
regulated. Also there is a suggestion that cell cycle associated genes are also
repressed during starvation; words like “cyclins” and “G1” have negative
log expression ratios. During a starvation state cellular replication and
reproduction is low priority. Finally kinase proteins, responsible for phos-
phorylation of proteins, is down-regulated when phosphate is scarce. These
keywords seem to offer some insight as to what is happening in this
condition.

References

Ball, C. A., I. A. Awad, et al. (2005). “The Stanford Microarray Database accommo-
dates additional microarray platforms and data formats.” Nucleic Acids Res. 33
Database Issue: D580-2.

Fields, S. and O. Song (1989). “A novel genetic system to detect protein-protein inter-
actions.” Nature 340(6230): 245-6.

Lee, M. L., E C. Kuo, et al. (2000). “Importance of replication in microarray gene
expression studies: statistical methods and evidence from repetitive cDNA hybridiza-
tions.” Proc. Natl. Acad. Sci. USA. 97(18): 9834-9.

Novak, J. P., R. Sladek, et al. (2002). “Characterization of variability in large-scale gene
expression data: implications for study design.” Genomics 79(1): 104-13.

Saldanha, A.]J., M. J. Brauer, et al. (2004). “Nutritional homeostasis in batch and
steady-state culture of yeast.” Mol. Biol. Cell. 15(9): 4089-104.

Tu, Y., G. Stolovitzky, et al. (2002). “Quantitative noise analysis for gene expression
microarray experiments.” Proc. Natl. Acad. Sci. USA. 99(22): 14031-6.

Velculescu, V. E., L. Zhang, et al. (1995). “Serial analysis of gene expression.” Science
270(5235): 484-7.

This page intentionally left blank

Analyzing groups of genes

The analysis of large-scale genomic data (such as sequences or expression
patterns) frequently involves grouping genes based on common experimen-
tal features. The goal of manual or automated analysis of genomics data is
to define groups of genes that have shared features within the data, and also
have a common biological basis that can account for those commonalities.
In utilizing algorithms that define groups of genes based on patterns in data
it is critical to be able to assess whether the groups also share a common
biological function. In practice, this goal is met by relying on biologists with
an extensive understanding of diverse genes that decipher the biology
accounting for genes with correlated patterns. They identify the relevant
functions that account for experimental results. For example, experts rou-
tinely scan large numbers of gene expression clusters to see if any of the
clusters are explained by a known biological function. Efficient definition
and interpretation of these groups of genes is challenging because the
number and diversity of genes exceed the ability of any single investigator
to master. Here, we argue that computational methods can utilize the
scientific literature to effectively assess groups of genes. Such methods can
then be used to analyze groups of genes created by other bioinformatics
algorithms, or actually assist in the definition of gene groups.

In this chapter we explore statistical scoring methods that score the
“coherence” of a gene group using only the scientific literature about
the genes—that is whether or not a common function is shared between
the genes in the group. We propose and evaluate such a method, and
compare it to some other possible methods. In the subsequent chapter, we
apply these concepts to gene expression analysis.

The major concepts of this chapter are described in the frame box. We
begin by introducing the concept of functional coherence. We describe four
different strategies to assess the functional coherence of a group of
genes. The final part of the chapter emphasizes the most effective of these
methods, the neighbor divergence per gene. We present a discussion of its
performance properties in general and on its robustness given imperfect
groups. Finally we present an example of an application to gene expression
array data.

6 : Analyzing groups of genes

1) Functional coherence of a gene a) Performance
group b) Score robustness to imperfect
2) Word distribution divergence groups
3) Best article score ¢) Application to expression
4) Neighbor divergence data
5) Neighbor divergence per gene

6.1 Functional coherence of a group of genes

The main challenge that we address in this chapter is creating a computa-
tional method that analyzes scientific literature about a group of genes to
determine whether the group is a biologically meaningful one. The goal is to
create a method that can quickly assess the biological significance of a
group of genes based on scientific text. We have many statistical methods
available to us, some of which were discussed in Chapter 2, that can help us
assess and create group of genes with statistical similarity in experimental
data. But statistical significance and biological significance do not always
correspond. Methods such as those we introduce here help to assess the
biological significance of a group of genes based on the scientific literature.
These methods can be used after the application of statistical algorithms to
select the groups that are biologically meaningful that also correlate with
patterns in the data. Alternatively, experimental data analysis can be used in
conjunction with literature-based approaches to create more meaningful
groups—that is, groups can be defined with optimal biological coherence as
well as similarity in the experimental data. We can achieve these goals by
using two measures of similarity: one based on the experimental data and a
second on the biological literature, and optimizing both of them.

In this chapter we will use the term “functional coherence” to describe the
degree to which a set of genes have a common biological basis. In Table 6.1
we have listed a set of functionally coherent genes. These are all of the genes
in yeast that are the DNA-dependent ATPase genes in yeast; we obtained
these genes from Gene Ontology (Ashburner, Ball et al. 2000). These genes
convert ATP to ADP and generate energy that is then used to manipulate
DNA. Since these genes share this function in common, we would say this
group is a functionally coherent group.

Each gene is listed alongside a critical article reference that suggests that
function for the gene. The shared function of these genes is immediately
apparent by glancing at these references. We can see that many of the same

6.1 Functional coherence of a group of genes

Table 6.1 DNA dependent ATPase genes in yeast. This table lists the genes with the DNA
dependent ATPase function in yeast as indicated in the Gene Ontology database. We list the key
reference cited in Gene Ontology that suggests that biological function in the second column. In the
final column we list the total number of references that each gene has.

Article
Gene Article references
RAD16/YBR114W Guzder SN, et al. (1998) The DNA- 66

dependent ATPase activity of yeast
nucleotide excision repair factor 4 and its
role in DNA damage recognition. | Biol
Chem 273(11):6292—6
RAD18/YCR066W Bailly V, et al. (1997) Yeast DNA repair 96
proteins Rad6 and Rad18 form a
heterodimer that has ubiquitin conjugating,
DNA binding, and ATP hydrolytic
activities. | Biol Chem 272(37):23360-5
RAD26/YJR035W van Gool A]J, et al. (1994) RAD26, the 34
functional S. cerevisiae homolog of the
Cockayne syndrome B gene ERCC6.
EMBO] 13(22):5361-9
RADS4/YGL163C Petukhova G, et al. (1999) Yeast Rad54 189
promotes Rad51-dependent homologous
DNA pairing via ATP hydrolysis-driven
change in DNA double helix conformation.
J Biol Chem 274(41):29453-62
RAD7/YJRO52W Guzder SN, et al. (1998) The DNA- 67
dependent ATPase activity of yeast
nucleotide excision repair factor 4 and its
role in DNA damage recognition. | Biol
Chem 273(11):6292-6
RDH54/YBRO73W Petukhova G, et al. (2000) Promotion of 26
Rad51-dependent D-loop formation by
yeast recombination factor Rdh54/Tid1.
Genes Dev 14(17):2206-15
RIS1/YOR191W Zhang Z and Buchman AR (1997) 3
Identification of a member of a DNA-
dependent ATPase family that causes
interference with silencing. Mol Cell Biol
17(9):5461-72

words appear in the titles of all of these genes. Ideally, functionally coherent
gene groups have two properties: (1) all of the genes have the same function,
and (2) all of the genes with that function are contained in the group itself.
In practice, text-based functional scoring schemes can only approximate this
ideal. For example, a group of genes similar to the one depicted in Table 6.1
that contains two additional unrelated genes may receive a lower coherence

6 : Analyzing groups of genes

score, but likely still a significant one. In the same way a group of genes
similar to the one in the table but missing two of the genes will also receive a
significant score. For our purposes, this is actually a helpful property as
experimental methods rarely generate perfect groups of genes and more
often than not we are attempting to detect approximate groups. However,
we would prefer that, as a group becomes closer to ideal, its functional
coherence score does improve.

Another caveat about functionally coherent groups of genes is that they
may be broad or very narrow in scope. For example, a group of genes
containing all of the genes involved in metabolism can be a large, but
coherent group of genes. On the other hand, a smaller subset of genes
containing only carbohydrate metabolism is still functionally coherent,
even though it is a much smaller set of genes. Going further, the even smaller
subset of genes involved in glycolysis is also equally functionally coherent.
So this can be confusing since all metabolism genes may include thousands
of genes, whereas all glycolysis genes may include ten genes or so. In the
context of the analysis of experimental data, both large broad groups and
smaller narrow functional groups are equally important, as either type can
be affected by different stimuli and both are important to recognize.

Recognizing coherent gene groups from the literature is a challenging
problem, since there are disparities in the literature about genes. A given
gene may have many relevant documents or none, and the documents about
it may cover a wide spectrum of functions. This issue is addressed in great
detail in Chapter 1. Some genes have been extensively studied while others
have only been recently discovered, and may not have any available articles.
This disparity is apparent even in the group listed in Table 6.1, which is an
unusually well studied group as evidenced by the number of article refer-
ences available for each gene. Note, however, that while most genes have
20-100 references, one has 189 and another has only three.

Additionally, most genes have multiple functions, and this is reflected in
the literature. References about a given gene might include articles that
discuss the gene’s sequence, phenotype, molecular function, location in the
cell, one or more of its biological functions, or the structure of its protein
product. For example, consider the gene RDHS54 that has 26 relevant
articles, the most recent of which are listed in Table 6.2. Of these articles
none of them address the DNA dependent ATPase function of the gene. The
articles address a variety of different functions including meiosis, recom-
bination, DNA double strand break repair, and a sequencing paper. These
other articles are not relevant to this issue. So effectively understanding the
relationship of the genes in Table 6.1 relies on our ability to recognize and
focus on those key articles that tie these genes together. So in this chapter,
unlike the previous ones, we treat each article as an independent source of

6.1 Functional coherence of a group of genes

Table 6.2 Recent articles about RDHS54. Here we have listed 16 of the most recent articles about
this gene. These articles speak to the diverse and complex functionality of this gene, and none of
these articles addresses the genes DNA-dependent ATPase function in an obvious manner.

Shinohara M, et al. (2003) Crossover interference in Saccharomyces cerevisiae requires
a TID1/RDHS54- and DMC1-dependent pathway. Genetics 163(4):1273-86

Lee SE, et al. (2003) Yeast Rad52 and Rad51 recombination proteins define a second
pathway of DNA damage assessment in response to a single double-strand break. Mol
Cell Biol 23(23):8913-23

Kellis M, et al. (2003) Sequencing and comparison of yeast species to identify genes and
regulatory elements. Nature 423(6937):241-54

Fukuda T, et al. (2003) VDE-initiated intein homing in Saccharomyces cerevisiae
proceeds in a meiotic recombination-like manner. Genes Cells 8(7):587-602

Catlett MG and Forsburg SL (2003) Schizosaccharomyces pombe Rdh54 (TID1) acts
with Rhp54 (RADS54) to repair meiotic double-strand breaks. Mol Biol Cell
14(11):4707-20

Symington LS (2002) Role of RADS52 epistasis group genes in homologous
recombination and double-strand break repair. Microbiol Mol Biol Rev 66(4):630-70,
table of contents

Shor E, et al. (2002) Mutations in homologous recombination genes rescue top3 slow
growth in Saccharomyces cerevisiae. Genetics 162(2):647-62

Miyagawa K, et al. (2002) A role for RAD54B in homologous recombination in human
cells. EMBO [21(1-2):175-80

Signon L, et al. (2001) Genetic requirements for RAD51- and RADS54-independent
break-induced replication repair of a chromosomal double-strand break. Mol Cell Biol
21(6):2048-56

Lee SE, et al. (2001) The Saccharomyces recombination protein Tid1p is required for
adaptation from G2/M arrest induced by a double-strand break. Curr Biol
11(13):1053-7

Klein HL (2001) Mutations in recombinational repair and in checkpoint control genes
suppress the lethal combination of srs2Delta with other DNA repair genes in
Saccharomyces cerevisiae. Genetics 157(2):557-65

Sung P, et al. (2000) Recombination factors of Saccharomyces cerevisiae. Mutat Res
451(1-2):257-75

Shinohara M, et al. (2000) Tid1/Rdh54 promotes colocalization of rad51 and dmcl
during meiotic recombination. Proc Natl Acad Sci U S A 97(20):10814-9

Petukhova G, et al. (2000) Promotion of Rad51-dependent D-loop formation by yeast
recombination factor Rdh54/Tid1. Genes Dev 14(17):2206-15

Haber JE (2000) Recombination: a frank view of exchanges and vice versa. Curr Opin
Cell Biol 12(3):286-92

Haber JE (2000) Partners and pathwaysrepairing a double-strand break. Trends Genet
16(6):259-64

6 : Analyzing groups of genes

information. Combining the signal from all of the articles about a gene into
a single word vector dilutes the important signal that we are interested in.

The best performing method is neighbor divergence per gene (NDPG). It
requires only a corpus of documents relevant to the genes being studied (e.g.
all genes in an organism) and an index connecting the documents to appro-
priate genes. Given a group of genes, NDPG assigns a numerical score
indicating how “functionally coherent” the gene group is from the perspec-
tive of the published literature (Raychaudhuri, Schiitze et al. 2003). The
method was tested by assessing its ability to distinguish 19 known functional
gene groups from 1900 randomly assembled groups. NDPG achieves 95 %
sensitivity at 100 % specificity, comparing favorably to other tested methods.

An alternative approach to assessing the functional coherence of a gene
group is to cross-reference it against predefined groups of related genes that
have been compiled automatically from the literature or by manual anno-
tation. The Gene Ontology (GO) consortium and the Munich Information
Center for Protein Sequences (MIPS) provide vocabularies of function and
assign genes from multiple organisms the relevant terms (Ashburner, Ball
etal. 2000; Mewes, Frishman et al. 2000). Genes that are assigned the same
term constitute a functional group of genes. However, such resources may
not be comprehensive and up to date at any given time, and it is
also laborious to maintain the vocabulary and the gene assignments. The
literature-based method introduced here requires only a set of references
associated with genes. It requires no precompiled lexicons of biological
function, previous annotations, or co-occurrence in the literature. It is
kept current and up to date if it is provided a current literature base.
Furthermore, this method can be applied to any arbitrary set of genes, as
long as an index of gene-article associations is provided. These precompiled
sets of genes are very helpful, however, in that they provide a nice set of
functionally coherent groups that can be used as a gold standard to evaluate
the literature methods that we propose.

6.2 Overview of computational approach

The neighbor divergence per gene (NDPG) and the other methods that we
test in this section require only a corpus of articles relevant to the studied
genes (e.g. all genes in an organism) and a reference index connecting the
articles to appropriate genes. Such reference indices are often available on-
line from genome centers (see Chapter 1) or can be compiled automatically
by scanning titles and abstracts of articles for gene names (Jenssen, Laegreid
etal. 2001). Given a group of genes, these methods assign a numerical score
indicating how “functionally coherent” the gene group is from the perspec-
tive of the published literature.

6.2 Overview of computational approach

The intuition behind NDPG involves recognizing key articles that are
about the function represented in the group. Suppose a group of genes
shares some specific function, such as DNA-dependent ATPase, and con-
tains all of the genes with that function. An article germane to that function
must refer to at least one of the genes in the group. Furthermore, other
articles that are semantically similar will pertain to the same function and
will also refer to genes in the same group. In Figure 6.1 we have displayed a
schematic group and its articles. The articles represented by the darkened
boxes are the key articles that tie these genes together. Presumably there is
similarity between these articles. These articles are not unlike the articles
listed in Table 6.1 that are the key articles for that group. The other articles
represented by the light boxes are like the articles listed in Table 6.2; these
articles address the other facets of the genes.

NDPG assigns a functional coherence score to a group of genes based on
the literature. It uses document distance metrics to calculate semantic
neighbors; two articles are semantic neighbors if there is similar word
usage in each of them. First, semantic neighbors are pre-computed for each
article in the corpus. Given a gene group, each article’s relevance to the group

article A.1

article C.1

———
geneA |artic|e C.2 I—. gene C

""""" gy i A3
| article C.3 I

Figure 6.1 Finding the key articles that link a gene group together. This is graphical depiction of a
small gene group of three genes with the function DNA-dependent ATPase (boxes with dotted
boundaries). The genes are connected to their respective article references (boxes with solid
boundaries). Articles that talk specifically about the DNA-dependent ATPase genes are represented
as dark boxes with white lettering. For all genes, only a few of the referenced articles are pertinent
to this aspect of the gene. The arrows are used to indicate the semantic neighbors of “article B.2”, a
DNA-dependent ATPase article. The significance of this article to the group’s unifying function
becomes apparent when we notice that many of its semantic neighbors, other articles about the
same function, refer to other genes in the same group.

6 : Analyzing groups of genes

is scored by counting the number of its neighbors that have references to
genes in the group. If the group represents a coherent biological function, the
articles that discuss that function will have many referring neighbors within
the group and therefore score high (see Figure 6.2). Other articles that
address biological functions that are unrelated to the group function will
score low. If a few of the articles referring to a gene are high scoring articles,
then the gene has a function that is relevant to that of the group. For each
gene in the group, NDPG scores its functional relevance to the group by
comparing article scores of its references to an expected random distribution
of article scores; the difference between the two distributions is quantified
with the KL — divergence measure. The NDPG measure of functional coher-
ence of a gene group is the mean divergence of all of the genes in the group.

The key aspect of NDPG that makes it very effective is that it is an article-
based approach; its success hinges on the presence of a few key articles that

Gg Gg Gg G

> I /
G — ————— Ny Gg

Gg
T Ng N, [Gg
G
Gg
Gg
G —1 N7 - Article EE—— N3 /G
G
G
G
G N
6 N
4 Gg

Gg

Ns
G
G/ 9

| o
G G

G

Figure 6.2 Scoring an article’s semantic content for relevance to a gene group. For each article we
look at its semantic neighbors. Here we score the central article; it has eight semantic neighbors
indicated by the boxes with N; labels. In principle the score of an article is the number of its
neighbors that refer back to genes in the original group. Here, we indicate group genes with G, and
non-group genes with G. In practice, neighbor articles might refer to multiple genes, some of which
are in the group and others of which are not.

6.3 Strategy to evaluate different algorithms

unifies the group of genes given. This addresses the issue of recognizing and
avoiding irrelevant articles in scoring groups of genes. A second key aspect
of NDPG is that the score is a mean divergence of the scores of each of the
genes; each of the genes, regardless of whether they have a few or many
articles, make an equal contribution to the mean. This addresses the issue of
the biases in the amount of literature present per article.

We compare this method to other seemingly promising approaches that
lack these key features. We demonstrate a method that is based on the
distribution of words. In this method articles are not treated individually.
Rather, all of the words from all of the articles are combined together, and a
distribution of words among these articles is defined. The theory is that if
the genes in this group define a coherent function, the distribution of words
describing these genes will be considerably different from the baseline
distribution of words in biology.

A second strategy is to look at the single key article thatis most relevanttoa
group of genes. The idea is that a relevant article will have article neighbors
that refer to genes in the group of genes. Unli