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Preface

Modern science connects many basic secrets of living matter with the genetic codes. Biological organisms
belong to a category of very complex natural systems, which correspond to a huge number of biological
species with inherited properties. But surprisingly, molecular genetics has discovered that all organisms
are identical to each other by their basic molecular-genetic structures. Due to this revolutionary discovery,
a great unification of all biological organisms has happened in science. The information-genetic line of
investigations has become one of the most prospective lines not only in biology, but also in science as a
whole. A basic system of genetic coding has become strikingly simple. Its simplicities and orderliness
presented challenges to specialists from many scientific fields. Bioinformatics considers each biological
organism as an ensemble of information systems which are interrelated to each other. The genetic coding
system is the basic one. All other biological systems must be correlated to this system to be transmitted
to next generations of organisms.

The natural technology of genetic coding is a major and most effective technology of life on our
planet. Using this natural technology, huge biomass of living matter with unique and valuable properties
is produced around the world. Bioinformatics and biotechnology have been applied to many areas such
as biology, medicine, and life sciences. Bioinformatics knowledge is used to manufacture biological
organisms with new properties, to extend human life, to diagnose and treat disease, to clone organisms,
to develop new computer technologies, to create new materials with unique characteristics, and so on.
It seems that all fields of human life will be influenced in the future by progress in bioinformatics.

Modern science recognizes a key meaning of information principles for inherited self-organization
of living matter. In view of this, the following statements have appeared in the recent literature.

Notions of “information” or “valuable information” are not utilized in physics of non-biological
nature because they are not needed there. On the contrary, in biology notions “information” and espe-
cially “valuable information” are main ones, understanding and description of phenomena in biological

nature are impossible without these notions. A specificity of “living substance” lies in these notions.
(Chernavskiy, 2000)

If you want to understand life, don t think about vibrant, throbbing gels and oozes, think about in-
formation technology. (Dawkins, 1991).

Here one should add that modern informatics is an independent branch of science, which possesses
its own language and mathematical formalisms and exists together with physics, chemistry, and other
scientific branches. A problem of information evolution of living matter has been investigated intensively
in the last decades in addition to studies of the classical problem of biochemical evolution.



One of the effective methods of cognition of complex natural system, including the genetic coding
system, is the investigation of symmetries. Modern science knows that deep knowledge about phenomeno-
logical relations of symmetry among separate parts of a complex natural system can tell many important
things about the evolution and mechanisms of these systems. Physics and other natural sciences have
great numbers of successful applications of a symmetry method. Principles of symmetry have become
one of the bases of mathematical natural science. Nowadays, many physical theories, beginning from the
theory of relativity to quantum mechanics, are created as theories of invariants of mathematical groups
of transformations, in other words as theories of special kinds of symmetry. The study of symmetries
and asymmetries in molecular structures is one of the important branches of chemistry. For example,
functional differences between the right forms of molecules and the left forms of molecules in living
organisms have become known to mankind due to investigations of symmetry in biological molecules.
Principles of symmetry have a new essential quality in modern science.

But not only physics and chemistry deal with principles and methods of symmetry, informatics and
digital signal processing also pay great attention to them. How is theory of signal processing connected
to geometry and geometrical symmetries? Signals are represented there in a form of a sequence of the
numeric values of their amplitude in reference points. The theory of signal processing is based on an
interpretation of discrete signals as a form of vector of multi-dimensional spaces. In each tact time a
signal value is interpreted as the corresponding value of one coordinate of a multi-dimensional vector
space of signals. In this way, the theory of discrete signals turns out to be the science of geometries of
multi-dimensional spaces. The number of dimensions of such a space is equal to the quantity of refer-
ent points for the signal. Metric notions and all other necessary things are introduced in these multi-
dimensional vector spaces for those or other problems of maintenance of reliability, speed, economy
of the signal information. For example, the important notions of the energy and the power of a discrete
signal appear in multi-dimensional geometry of the space of signals as forms of a square of the length of
a multi-dimensional vector-signal and of a square of the length of a vector-signal divided by the number
of dimensions of an appropriate space. On this geometrical basis, many methods and algorithms of rec-
ognition of signals and images, coding information, detections and corrections of information mistakes,
and artificial intellect and training of robots are constructed. One can add here about the importance of
symmetries in permutations of components for coding signals, in spectral analysis of signals, in orthogo-
nal and other transformations of signals, and so on.

An investigation of symmetrical and structural analogies between computer informatics and genetic
informatics is one of the important tasks of modern science in connection to the creation of DNA-com-
puters, DNA-robotics and to a development of bioinformatics. A significant part of this book describes
the study of symmetries in matrix forms of the genetic code systems (“matrix genetics”). The results of
this study are new examples of the usefulness of symmetry investigations in natural systems. In this book,
we first present matrix methods of presentation and the analysis of molecular ensembles of the genetic
code systems. Secondly, we present special multi-dimensional matrix algebras related to the genetic
code and describe the importance of phenomenological symmetries in matrix forms of presentation of
the genetic code. Furthermore, we present advanced patterns and applications.

THE CHALLENGES

A biological meaning of genetic informatics is reflected in the brief statement: “life is a partnership
between genes and mathematics” (Stewart, 1999). But what kind of mathematics has partner relations



with the genetic code and what kind of mathematics is behind genetic phenomenology which includes a
great noise-immunity of the genetic code? This question is one of the main challenges in mathematical
natural sciences today. A significant part of the challenge is the question of an adequate mathematics
for the phenomenon of degeneracy of the genetic code. A character of this degeneracy is reflected in
symmetrical patterns of black-and-white mosaics of genetic matrices of 64 triplets (for example, see a
genetic matrix with a black-and-white symmetrical mosaic on Figure 2.2. in Chapter 2).

Why do genetic matrices of 64 triplets posess such symmetrical mosaics? Is degeneracy of the gene-
tic code an accidental choice of nature? Is it provided by substantial mathematics of the genetic code?
Is the construction of the genetic code non-accidental at all? The last question is essential because the
famous hypothesis by F. Crick (1968) about “the frozen accident” in the origin of the genetic code has
supposed that the first accidental system of coding, which possessed satisfactory features, was reproduced
in biological evolution with its further evolutionary improvements.

We are searching for scientific answers to facilitate an analysis of the genetic code phenomenology
from the viewpoint of mathematics of discrete signal processing, of computer informatics, and of noise-
immunity coding in digital communication. This book describes substantial answers to these questions
by means of discovering deep connections of the genetic code with hypercomplex numeric systems and
their matrix algebras (which can be multi-dimensional algebras of operators simultaneously). These
multi-dimensional algebras and their relevant geometries are interpreted in relation to multi-dimensio-
nal vector spaces of bioinformatics (or bioinformation vector spaces). An example of such an algebra
is the 8-dimensional Yin-Yang-algebra (or the bipolar algebra), which is the algebra of degeneracy of
the genetic code and which is described in Chapter 7. Recent progress in the determination of genomic
sequences yields many millions of gene sequences now. But what do these sequences tell us and what
generalities and rules govern them? The modern situation in the theoretic field of genetic informatics
can be characterized by the following citation:

What will we have when these genomic sequences are determined? What do we have now in the 10
million nucleotide of sequence data determined to date? We are in the position of Johann Kepler when
he first began looking for patterns in the volumes of data that Tycho Brahe had spent his life accumulat-
ing. We have the program that runs the cellular machinery, but we know very little about how to read
it. Bench biologists, by experiment and by close association with the data, have found meaningful pat-
terns. Theoreticians, by careful reasoning and use of collections of data, have found others, but we still
understand frustratingly little. (Fickett & Burks, 1989)

Kepler is mentioned here not without reason. The history of science shows the importance of cognitive
forms of presentation of phenomenological data to find regularities or laws in this phenomenology. The
work by Kepler is the classical example of an important meaning of a cognitive form of presentation of
phenomenological data. He did not make his own astronomic observations, but he found the cognitive
form of presentation in the huge astronomic data from the collection of Tycho Brahe. This discovered
form, which was connected to the general idea of movements along ellipses, allowed him to formulate
the famous Kepler’s laws of planetary movements relative to the Sun. Owing to this cognitive form,
Kepler and Newton have led us to the law of Newtonian attraction.

A discovery of such a cognitive form of presentation in the case of the phenomenology of genetic
code systems is one more challenge, which arises from the very beginning in the course of attempts to
find regularities among a huge number of genetic data and to create a relevant theory. Matrix genetics
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proposes a new cognitive form of presentation of phenomenological data in the field of genetic informat-
ics. This cognitive matrix form gives new tools to analyze and to model ensembles of the genetic code
as well. It paves the way for a worthy attempt at answering the mentioned challenges.

SEARCHING FOR A SOLUTION

This book presents a matrix form of presentation of the genetic code as an effective cognitive form
of presentation of relevant phenomenological data. An initial choice of such a form of presentation of
molecular ensembles of the genetic code is explained by the following main reasons:

e Information is usually stored in computers in the form of matrices.

. Noise-immunity codes are constructed on the basis of matrices.

. Quantum mechanics utilizes matrix operators, connections with which can be detected in matrix
forms of presentation of the genetic code. The significance of matrix approach is emphasized by
the fact that quantum mechanics has arisen in a form of matrix mechanics by W. Heisenberg.

. Complex and hypercomplex numbers, which are utilized in physics and mathematics, possess
matrix forms of their presentation. The notion of number is the main notion of mathematics and
mathematical natural sciences. In view of this, investigation of a possible connection of the ge-
netic code to multi-dimensional numbers in their matrix presentations can lead to very significant
results.

. Matrix analysis is one of the main investigation tools in mathematical natural sciences. The study of
possible analogies between matrices, which are specific for the genetic code, and famous matrices
from other branches of sciences can be heuristic and useful.

. Matrices, which are a kind of union of many components in a single whole, are subordinated to
certain mathematical operations, which determine substantial connections between collectives of
many components. Such connections can be essential for collectives of genetic elements of differ-
ent levels, as well.

The authors utilize a presentation of molecular ensembles of genetic multiplets in the form of a
Kronecker family of genetic matrices [C A; U G]™, where C, A, U, G are nitrogenous bases cytosine,
adenine, uracil, guanine, and (n) is a Kronecker power. The genetic matrix [C A; U G]® contains all 64
triplets in an ordering arrangement, which is comfortable and effective to study degeneracy of the genetic
code. Kronecker families of square matrices are utilized in the theory of noise-immunity coding and of
discrete signal processing. Applying these matrix families to genetic informatics is justified by a discrete
character of the genetic code. This matrix form has allowed us to derive the following main results:

. new phenomenological rules of evolution of the genetic code;

*  the connections of the genetic code structures with multi-dimensional numeric systems;

. multi-dimensional algebras for modelling and for analysing the genetic code systems;

. Hadamard matrices and matrices of a hyperbolic turn in the Kronecker family of genetic matrices;
. parallels with quantum computers;

. hidden interrelations between the golden section and parameters of genetic multiplets;
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. relations between the Pythagorean musical scale and an important class of quint genetic matrices
which show a molecular genetic basis with a sense of musical harmony and of aesthetics of propor-
tions;

. cyclic algebraic principles in the structure of matrices of the genetic code;

. generalized hypercomplex numeric systems, which are new for mathematical natural sciences
and which allow one to model a binary opposition of male and female beginnings on the level of
genetic-molecular ensembles;

. materials for a chronocyclic conception, which connects structures of the genetic system with
chrono-medicine and a problem of the internal clock of organisms;

. parallels with famous symbolic tables of the Ancient Chinese book “I Ching” which declares a
cyclic principle in nature and which is very important for all Oriental medicine (acupuncture, pulse
diagnostics of Tibetan medicine, and so on);

. a new answer to the fundamental questions—‘why are there 4 letters in the genetic alphabet?”” and
“why 20 amino acids?”

One of the most important results is that degeneracy of the genetic code agrees with the 8-dimensional
algebra, which is unknown in modern mathematical natural science. This algebra and the elements of its
multi-dimensional geometry are presented in Chapters 7 and 11. After the discovery of non-Euclidean
geometries and of Hamilton quaternions, it is known that different natural systems can possess their own
geometry and their own algebra. The genetic code is connected with its own multi-dimensional numerical
system or the multi-dimensional algebra. This genetic algebra can be considered as the pre-code or the
mathematical model of the genetic code. This algebra allows one to reveal hidden peculiarities of the
structure and evolution of the genetic code. The genetic code has its own forms of ordering. It seems
that many difficulties of modern bioinformatics are connected with utilizing inadequate algebras, which
were developed for completely different natural systems. Hamilton had similar difficulties in his attempts
to describe 3D-space transformations by means of 3-dimensional numbers while this description needs
4-dimensional quaternions. We proposed a new algebraic system for bioinformatics and for mathemati-
cal biology. The described results are interesting from the viewpoint of many modern tasks: creating
computers from DNA molecules; understanding the genetic system as a quantum computer; creating new
kinds of neurocomputers and cellular automata on the basis of principles of genetic code systems.

A set of these results and proposed matrix methods in the field of genetic forms a new scientific dis-
cipline—"“matrix genetics,” which is related to symmetrical analyses and visual patterns of bioinformatics
closely. This book can be considered as an introduction to matrix genetics. The main intended audiences
are students and scientists in the fields of genetics, bioinformatics, theoretical biology, mathematical
biology, computer informatics, neurocomputing, theory of symmetries, biotechnology, mathematics,
theoretical physics, medicine, physiology, psychophysics, art design, music, cellular automata. Our
mathematical approaches and results about structural peculiarities of genetic code systems increase
knowledge and further investigations for many scientists and students. The presented genetic matrices
and their ensembles are interesting not only by beautiful mathematical properties but, first of all, by their
reflection of fundamental phenomenology of the genetic code. Therefore, science will return to them in
future at different levels of knowledge again and again.
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ORGANIZATION OF THE BOOK

The book is organized into twelve chapters. A brief description of each chapter follows.

Chapter 1 is devoted to symmetrical analysis for genetic code systems. The genetic coding possesses
noise-immunity. Mathematical theories of noise-immunity coding and discrete signals processing are
based on matrix methods of representation and analysis of information. These matrix methods, which
are connected closely with relations of symmetry, are borrowed for a matrix analysis of ensembles of
molecular elements of the genetic code. This chapter describes a uniform representation of ensembles of
genetic multiplets in the form of matrices of a cumulative Kronecker family. The analysis of molecular
peculiarities of the system of nitrogenous bases reveals the first significant relations of symmetry in
these genetic matrices. It permits one to introduce a natural numbering of the multiplets in each of the
genetic matrices and to give the basis for further analysis of genetic structures. The connection of the
numerated genetic matrices with famous matrices of dyadic shifts is demonstrated.

Chapter 2 describes symmetries of the degeneracy of the vertebrate mitochondrial genetic code
in the mosaic matrix form of its presentation. The initial black-and-white genomatrix of this code is
reformed into a new mosaic matrix when internal positions in all triplets are permuted simultaneously.
It is revealed unexpectedly that for all six variants of positional permutations in triplets (1-2-3, 2-3-1,
3-1-2, 1-3-2, 2-1-3, 3-2-1) the appropriate genetic matrices possess symmetrical mosaics of the code
degeneracy. Moreover the six appropriate mosaic matrices in their binary presentation have the general
non-trivial property of their “tetra-reproduction,” which can be utilized in particular for mathematical
modeling of the phenomenon of the tetra-division of gametal cells in meiosis. Mutual interchanges of the
genetic letters A, C, G, U in the genomatrices lead to new mosaic genomatrices, which possess similar
symmetrical and tetra-reproduction properties as well.

Chapter 3 demonstrates results of a comparative investigation of characteristics of degeneracy of
all known dialects of the genetic code. This investigation is conducted on the basis of the results of
symmetrological analysis, which were described in Chapter 2, about the division of the set of the 20
amino acids into the two canonical subsets: the subset of the 8 high-degeneracy acids and the subset
of the 12 low-degeneracy acids. The existence of numerical and structural invariants in the set of these
dialects is shown. The derived results from the comparative investigation permit one to formulate some
phenomenological rules of evolution of these dialects. These numeric invariants and parameters of code
degeneracy draw attention to the formal connection of this evolution with famous facts of chrono-biology
and chrono-medicine. The chronocyclic conception of the functioning of molecular-genetic systems is
proposed on this basis. The biophysical basis of this conception provides connection to the genetic code
structures with mechanisms of photosynthesis which produce living substance by means of utilization
of solar energy. And the solar energy comes cyclically on the surface of the Earth. The revealed numeric
invariants of evolution of the genetic code give new approaches to the fundamental question, why do 20
amino acids exist? We will demonstrate new patterns of the genetic code systems.

Chapter 4 is devoted to a consideration of the Kronecker family of the genetic matrices but in the
new numerical form of their presentation. This numeric presentation gives opportunities to investigate
ensembles of parameters of the genetic code by means of system analysis including matrix and symmetric
methods. In this way new knowledge is obtained about hidden regularities of element ensembles of the
genetic code and about connections of these ensembles with famous mathematical objects and theories
from other branches of science. First ofall, this chapter demonstrates the connection of molecular-genetic
system with the golden section and principles of musical harmony.
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Chapter 5 uses the Gray code representation of the genetic code C=00,U =10, G=11 and A=01
(C pairs with G, A pairs with U) to generate a sequence of genetic code-based matrices. In connection
with these code-based matrices, we use the Hamming distance to generate a sequence of numerical ma-
trices. We then further investigate the properties of the numerical matrices and show that they are doubly
stochastic and symmetric. We determine the frequency distributions of the Hamming distances, building
blocks of the matrices, decomposition and iterations of matrices. We present an explicit decomposition
formula for the genetic code-based matrix in terms of permutation matrices. Furthermore, we establish
a relation between the genetic code and a stochastic matrix based on hydrogen bonds of DNA. Using
fundamental properties of the stochastic matrices, we determine explicitly the decomposition formula of
genetic code-based biperiodic table. By iterating the stochastic matrix, we demonstrate the symmetrical
relations between the entries of the matrix and DNA molar concentration accumulation. The evolution
matrices based on genetic code were derived by using hydrogen bonds-based symmetric stochastic (2x2)-
matrices as primary building blocks. The fractal structure of the genetic code and stochastic matrices
were illustrated in the process of matrix decomposition, iteration and expansion corresponding to the
fractal structure of the biperiodic table introduced by the authors.

Chapter 6 continues an analysis of the degeneracy of the vertebrate mitochondrial genetic code in the
matrix form of its presentation, which possesses the symmetrical black-and-white mosaic. Taking into
account a symmetry breakdown in molecular compositions of the four letters of the genetic alphabet,
the connection of this matrix form of the genetic code with a Hadamard (8x8)-matrix is discovered.
Hadamard matrices are one of the most famous and the most important kind of matrices in the theory
of discrete signals processing and in spectral analysis. The special U-algorithm of transformation of
the symbolic genetic matrix [C A; U G]® into the appropriate Hadamard matrix is demonstrated. This
algorithm is based on the molecular parameters of the letters A, C, G, U/T of the genetic alphabet. In
addition, the analogical relations is shown between Hadamard matrices and other symmetrical forms of
genetic matrices, which are produced from the symmetrical genomatrix [C A; U G]® by permutations
of positions inside triplets. Many new questions arise due to the described fact of the connection of the
genetic matrices with Hadamard matrices. Some of them are discussed here including questions about
an importance of amino-group NH, in molecular-genetic systems, and about possible relations with the
theory of quantum computers, where Hadamard gates are utilized. A new possible answer is proposed
to the fundamental question concerning reasons for the existence of four letters in the genetic alphabet.
Some thoughts about cyclic codes and a principle of molecular economy in genetic informatics are
presented as well.

Chapter 7 analyzes algebraic properties of the genetic code. The investigations of the genetic code
on the basis of matrix approaches (“matrix genetics”) are described. The degeneracy of the vertebrate
mitochondrial genetic code is reflected in the black-and-white mosaic of the (8*8)-matrix of 64 triplets,
20 amino acids and stop-signals. The special algorithm, which is based on features of genetic molecules,
exists to transform the mosaic genomatrix into a numeric matrix, which is the matrix form of presentation
of the special 8-dimensional genetic algebra. This algebra can be named as Yin-Yang-algebra or bipolar
algebra. Main mathematical properties of this genetic algebra and its relations with other algebras are
analyzed together with some important consequences from the adequate algebraic models of the genetic
code. Elements of a new “genovector calculation” and ideas of “genetic mechanics” are discussed. The
revealed fact of the relation between the genetic code and these genetic algebras, which define new
multi-dimensional numeric systems, is discussed in connection with the famous idea by Pythagoras: “All
things are numbers.” Simultaneously, these genetic algebras can be utilized as the algebras of genetic
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operators in biological organisms. The described results are related to the problem of algebraization of
bioinformatics. They draw attention to the question: what is life from the viewpoint of algebra?

Chapter 8 considers the octet Yin-Yang-algebra as the model of the genetic code. From the viewpoint
of this algebraic model, for example, the sets of 20 amino acids and of 64 triplets consist of subsets of
“male,” “female,” and “androgynous” molecules, and so forth. This algebra allows one to reveal the
hidden peculiarities of the structure and evolution of the genetic code and to propose the conception
of “sexual” relationships among genetic molecules. The first results of the analysis of the genetic code
systems from such an algebraic viewpoint speak about the close connection between evolution of the
genetic code and this algebra. They include 7 phenomenological rules of evolution of the dialects of
the genetic code. The evolution of the genetic code appears as the struggle between male and female
beginnings. The hypothesis about new biophysical factor of “sexual” interactions among genetic mol-
ecules is proposed. The matrix forms of presentation of elements of the genetic octet Yin-Yang-algebra
are connected with Hadamard matrices by means of the simple U-algorithm. Hadamard matrices play
a significant role in the theory of quantum computers, in particular. It leads to new opportunities for
the possible understanding of genetic code systems as quantum computer systems. Revealed algebraic
properties of the genetic code allow one to put forward the problem of algebraization of bioinformatics
on the basis of the algebras of the genetic code.

Chapter 9 returns to the kind of numeric genetic matrices, which were discussed in Chapters 4-6. This
kind of genomatrix is not connected with the degeneracy of the genetic code directly, but it is related to
some other structural features of genetic code systems. The connection of the Kronecker families of such
genomatrices with special categories of hypercomplex numbers and with their algebras is demonstrated.
Hypercomplex numbers of these two categories are named “matrions of a hyperbolic type” and “matrions
of a circular type.” These hypercomplex numbers are a generalization of complex numbers and double
numbers. Mathematical properties of these additional categories of algebras are presented. A possible
meaning and possible applications of these hypercomplex numbers are discussed. The investigation of
these hyperbolic numbers in connection with the parameters of molecular systems of the genetic code
can be considered as a continuation of the Pythagorean approach to understanding natural systems.

Chapter 10 describes data suggesting a connection between matrix genetics and one of the most
famous branches of mathematical biology: phyllotaxis laws of morphogenesis. Thousands of scientific
works are devoted to this morphogenetic phenomenon, which relates with Fibonacci numbers, the
golden section and beautiful symmetrical patterns. These typical patterns are realized by nature in a
huge number of biological bodies on various branches and levels of biological evolution. Some matrix
methods are known for a long time to simulate in mathematical forms these phyllotaxis phenomena.
This chapter describes connections of the famous Fibonacci (2x2)-matrices with genetic matrices. Some
generalizations of the Fibonacci matrices for cases of (2"x2")-matrices are proposed. Special geometrical
invariants, which are connected with the golden section and Fibonacci numbers and which characterize
some proportions of human and animal bodies, are described. All these data are related to matrices of
the genetic code in some aspects.

Chapter 11 presents data about cyclic properties of the genetic code in its matrix forms of presenta-
tion. These cyclic properties concern cyclic changes of genetic Yin-Yang-matrices and their Yin-Yang-
algebras at many kinds of circular permutations of genetic elements in genetic matrices. These circular
permutations lead to such reorganizations of the matrix form of presentation of the initial genetic Yin-
Yang-algebra that such matrices serve as matrix forms of presentations of new Yin-Yang-algebras. They
are connected algorithmically with Hadamard matrices. New patterns and relations of symmetry are
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described. The discovered existence of a hierarchy of the cyclic changes of genetic Yin-Yang-algebras
allows one to develop new algebraic models of cyclic processes in bioinformatics and in other related
fields. These cycles of changes of the genetic 8-dimensional algebras and of their 8-dimensional numeric
systems have many analogies with famous facts and doctrines of modern and ancient physiology, medi-
cine, etc. This viewpoint proposes that the famous idea by Pythagoras (about organization of natural
systems in accordance with harmony of numerical systems) should be combined with the idea of cyclic
changes of Yin-Yang-numeric systems in considered cases. This second idea suggests the ancient idea
of cyclic changes in nature. From such an algebraic-genetic viewpoint, the notion of biological time can
be considered as a factor in coordinating these hierarchical ensembles of cyclic changes of the genetic
multi-dimensional algebras.

Chapter 12 considers the topic of connections of the genetic code with various fields of culture and
with inherited physiological properties which provide existence of these fields. Some examples of such
physiological bases for branches of culture are described. These examples are related to linguistics,
music, and physiology of color perception. Special attention is paid to connections between the genetic
matrices and the system of the Ancient Chinese book “I Ching.” The conception and its arguments are
put forward that the famous table of 64 hexagrams of “|l Ching” reflects the notions of Ancient Chinese
about music quint harmony as a universal archetype.

Sergey Petoukhov
Matthew He
March 6, 2009
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Section 1
Symmetrical Analysis
Techniques and Symbolic
Matrices of Matrix Genetics

Section 1 is organized into three chapters. It presents symmetrical patterns for genetic systems, natural
system of numeration of genetic multiplets, and biological evolution of degeneracy of genetic codes.

A matrix representation of the genetic code is introduced to describe phenomenological symmetries of
degeneracy of the Vertebrate Mitochondrial Code and to study consequences from these symmetries and
other features of genetic matrices.



Chapter 1

Genetic Code:
Emergence of Symmetrical Pattern,
Beginnings of Matrix Genetics

ABSTRACT

This chapter is devoted to symmetrical analysis for genetic code systems. The genetic coding possesses
the noise-immunity. Mathematical theories of the noise-immunity coding and discrete signals processing
are based on matrix methods of representation and analysis of information. These matrix methods, which
are connected closely with relations of symmetry, are borrowed for a matrix analysis of ensembles of
molecular elements of the genetic code. This chapter describes a uniform representation of ensembles
of genetic multiplets in the form of matrices of a cumulative Kronecker family. The analysis of molecu-
lar peculiarities of the system of nitrogenous bases reveals the first significant relations of symmetry in
these genetic matrices. It permits to introduce a natural numbering the multiplets in each of the genetic
matrices and to give the basis for further analysis of genetic structures. The connection of the numerated
genetic matrices with famous matrices of dyadic shifis is demonstrated.

INTRODUCTION AND BACKGROUND

Bioinformatics is defined frequently as the branch of life science that deals with the study of applica-
tion of information technology to the field of molecular biology. The primary goal of bioinformatics is
to increase our understanding of biological processes. The term bioinformatics was coined by Paulien
Hogeweg in 1978 for the study of informatics processes in biotic systems.

The genetic code is a key to bioinformatics and to a science about biological self-organizing on the
whole. The modern science faces the necessity of understanding and system explanation of mysterious
features of ensemble of molecular structures of the genetic code. Why does the genetic alphabet consist
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of the four letters? Why does the genetic code encode 20 amino acids? How is the system structure of
the molecular genetic code connected with known principles of quantum mechanics, which were devel-
oped to explain phenomena on atomic and molecular levels? Why has nature chosen the special code
conformity between 64 genetic triplets and 20 amino acids? Can knowledge about the structural essence
of the genetic code be useful for mathematical natural sciences on the whole? What kind of mathemati-
cal approach should be chosen among many possible approaches to represent and model structuralized
ensembles of molecules of the genetic code?

Achievement of deep understanding the genetic code should promote an inclusion of a science about
it into the field of the mathematical natural sciences. To provide it, the direction of searches should be
based on fundamental mathematical methods and concepts. Methods and principles of symmetry, as well
as the matrix analysis, are some of bases of modern mathematical natural sciences. While biological
structures are genetically inherited, morphological structures of biological bodies are characterized by
many kinds of symmetry. It is known from the history of molecular genetics that investigations of sym-
metry in genetic molecules have given essential results already. Revelations of new symmetric structures
in molecular-genetic systems produce a set of useful heuristic associations due to analogies with known
symmetric structures in other scientific fields: quantum mechanics, theory of digital communication and
noise-immunity coding, geometry, etc.

Genetic coding possesses the noise-immunity, which allows descendants to be similar to their par-
ents, despite of strong disturbances and noise in the environment of biological molecules. It reminds
one of the effective noise-immunity of modern systems of digital communication and signal processing,
which is reached by means of special mathematics. The mathematics is based on matrix and symmetric
methods of representation and analysis of signals. It’s natural to ask whether it is possible that these
mathematical methods, which were developed for digital technique, can be applied in the adequate man-
ner to studying the genetic code?

The objectives of Chapter 1 are the following:

. The explanation of the choice of symmetric and matrix methods of analysis of the genetic code
as prospective and adequate methods to investigate and to model structural interrelations among
various parts of the integral molecular system of the genetic code;

. The description of the main data about molecular structures of the genetic code;

. The demonstration of the possibility of representation of all sets of genetic multiplets, which dif-
fer from each other by their lengths and compositions, in the well-ordered symmetrical form by
means of the Kronecker family of the genetic matrices;

. The explanation of the fact that all multiplets in this general matrix form of presentation of their
sets can be numerated individually by means of taking into account the symmetrical binary sub-
alphabets of the four-letter genetic alphabet;

e The revelation of the connection between the genetic matrices and the matrices of diadic shifts,
which are utilized in the theory of discrete signal processing long ago as fundamentals of some
special methods of analysis and synthesis of signals.
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SIGNIFICANCE OF SYMMETRICAL PATTERNS FOR BIOLOGY,
MOLECULAR GENETICS AND BIOINFORMATICS

Symmetry in biological systems, in particular, in forms of biological bodies caused steadfast interest of
thinkers as one of the most remarkable and mysterious phenomena of nature during centuries (Thompson
d’Arcy, 1942; Weyl, 1952; etc.). The works of many modern scientists are devoted to it as well. Problems
of biological symmetries at a macromolecular level were considered on the special Nobel symposium
(Engstrom & Strandberg, 1968), on which the important role of the concept of symmetry for biological
researches was emphasized. School programs of biology already include considerations of numerous
examples of rotary, transmitting and mirror symmetries, and also symmetries of scale similarity in bio-
logical bodies: flowers and sprouts of plants, support-motion systems of animals, etc.

Principles of symmetry have played the important role in the X-ray analysis of genetic molecules.
It is well know the concept of the double helix of DNA has arisen in the famous works by Crick and
Watson (Roller, 1974; Watson, & Crick, 1953). Besides, the living substance is traditionally compared to
crystals to reveal similarities and differences between them. For example, Schrodinger (1955) considered
the living substance as an aperiodic crystal. But all crystallography is based on principles of symmetry;
crystallography has given a powerful impulse to development and application of methods of symmetry
in mathematical natural sciences including mathematical biology. New discoveries in crystallography
frequently generate new hypotheses and discussions about the role of symmetry in crystals and living
substance. As an example, the discovery of quasi-crystalls (Shechtman, Blech, Gratias & Cahn, 1984),
which are connected with mosaics by R. Penrose (1989, 2004), with pentagrams (the penta-symmetry)
and the golden section, can serve as the example here. This discovery has drawn the attention of research-
ers again to 5-symmetries, which exist in biological bodies widely (colors, starfishes and so forth) and
which are forbidden in classical crystallography.

The development of biological knowledge is accompanied by opening new facts of subordination
of very different biological objects to principles of symmetry on very different levels of their organiza-
tion. Many biological concepts, which have been affirmed in the science or which sometimes cause
sharp discussions, are connected with a question about biological symmetries to some extent: the law
of homologous series (Vavilov, 1922); theories of morphogenetic fields; the hypothesis by Vernadsky
(1965) about non-Euclidean geometry of living matter; conceptions about morphogenetic conditional-
ity of many psychological phenomena including the phenomenon of aesthetic preference of the golden
section, which is connected with Fibonacci numbers and morphogenetic laws of phyllotaxis (see review
about phyllotaxis in the books (Jean, 1994; Jean & Barabe, 2001)), etc.

Molecular biology has discovered the existence of fundamental problems of symmetry and of the left-
right dissymmetry on the level of biological molecules. On the other hand the development of the theory
of symmetry has put forward questions about new kinds of symmetry, for example, of non-Euclidean
symmetries in biological bodies (see reviews in (Petoukhov, 1981, 1989)). Modeling the biological
phenomena on the basis of modern theories of nonlinear dynamics brings into the biological models the
highest symmetries, which were known before in the fields of mathematics and physics. For example, the
solitonic model of the macrobiological phenomena involve symmetries of Lorentz transformations from
the special theory of relativity (Petoukhov, 1999a). It is no doubt that principles of symmetry were, are
and will be the major component of development of biology. We think that they will play the increasing
role in theoretical biology because of their status as one of the fundamentals of modern mathematical
natural sciences on the whole (Bernal, Hamilton & Ricci, 1972; Birss, 1964; Darvas, 2007; Gardner,
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1991; Hahn, 1989, 1998; Hargittai, 1986, 1989; Hargittai & Hargittai, 1994; Kappraff. 2002; Leyton,
1992; Loeb, 1971, 1993; Mandelbrot, 1983; Mainzer, 1988; Miller, 1972; Moller & Swaddle, 1997,
Ne’eman, 1999, 2000; Ne’eman & Kirsh, 1986; Petoukhov, 1981; Rosen, 1983, 1992, 1995; Shubnikov
& Koptsik, 1974; Stewart & Golubitsky, 1992; Weyl, 1931, 1946, 1952; Wigner, 1965, 1967, 1970; etc.).
Such fundamental status of principles of symmetry is connected with the famous Erlangen program by
F.Klein and with the process of geometrization of physics (Lochak, 1994; Weyl, 1952). This process
of geometrization has led to interpretation of many basic theories of physics as theories of symmetry:
special theory of relativity, quantum mechanics, theory of conservation laws, theories of elementary
particles and some other parts of modern physics are such examples.

Investigations of symmetries are the most relevant in that case, when science doesn’t know how
to create a theory of a concrete natural system. Biological organisms belong to a category of the very
complex natural systems. The variety of organisms is very numerous. Their sorts differ each from other
vastly by many aspects: by their sizes, appearances, kinds of motions, etc. But to humanity’s surprise,
molecular genetics has discovered that, from a molecular-genetic viewpoint, all organisms are equivalent
to each other by their basic genetic structures. Due to this revolutionary discovers, a great unification
of all biological organisms was happened in the science, and information-genetic line of investigations
became one of the most perspective lines not only in biology, but also in the science as a whole. A basic
system of genetic coding has been happened strikingly simple. Its simplicities and its orderliness throw
down a challenge to specialists from many scientific fields, including specialists in a theory of symmetry
and of anti-symmetry.

It should be noted that fantastic successes of molecular genetics were defined in particular by a
disclosure of phenomenological facts of symmetry in molecular constructions of genetic code and by
use of these facts in theoretical modeling. A bright example is a disclosure of a symmetrological fact,
reflected in the famous rule by Chargaff, of an equality of quantities of nitrogenous bases in their ap-
propriate pairs (adenine-thymine and cytosine-guanine) in molecules of DNA in different organisms.
This phenomenological rule was used skillfully in a theoretic modeling of the double helix of DNA by
Crick and Watson using additional symmetrological principles (Roller, 1974). Many specialists from
many countries around the world work in this very attractive field of investigation of symmetries in the
genetic code and bioinformatics now (Arques & Michel, 1994, 1996, 1994; Bakhtiarov, 2001; Bashfold,
Tsohantjis, & Yarvis, 1997; Chernavskiy, 2000; Chi Ming Yang, 2001; Dragovich & Dragovich, 2007;
Forger, Hornos, & Hornos, 1997, 1999; Frank-Kamenetskiy, 1988; Frappat, Sciarrino, & Sorba, 1998;
Hargittai, 2001; He, 2001; He, Narasimhan & Petoukhov, 2005; He & Petoukhov, 2007; He, Petoukhov
& Riccei, 2004; Jimenes-Montano, 2005; Karasev, 2003; Karasev, Luchinin, Stefanov, 2005; Kargupta,
2001; Khrennikov & Kozyrev, 2007; Konopelchenko & Rumer, 1975; MacDonaill, 2003, 2005; Mak-
ovskiy, 1992; Marcus, 2001, 2007; Negadi, 2005, 2006; Petoukhov, 2001-2008; Ratner, 2002; Rumer,
1968, 1975; Shcherbak, 1988; Stambuk, 1999; Stambuk, Konyevoda & Gotovac, 2005; Szabo & He,
2006; Szabo, He, Burnham & Jurani, 2005; Waterman, 1999; Yang, 2005; etc.).

From an information-theoretic viewpoint, biological organisms are informational essences. They
obtain genetic information from their ancestors and transmit it to descendants. In the biological litera-
ture it is possible quite often to meet the statement that living organisms are the texts since a molecular
level of their organization. Just from the information-hereditary point of view all living organisms are
unified wonderfully: all of them have identical bases of system of genetic coding. A conception of in-
formational nature of living organisms is reflected in the words: “If you want to understand life, don t
think about vibrant, throbbing gels and oozes, and think about information technology” (Dawkins,
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1991). Or another citation, which presents a similar direction of thoughts: ‘Notions of ‘information’ or
‘valuable information’ are not utilized in physics of non-biological nature because they are not needed
there. On the contrary, in biology notions ‘information’and especially ‘valuable information’ are main
ones, understanding and description of phenomena in biological nature are impossible without these
notions. A specificity of ‘living substance’ lies in these notions” (Chernavskiy, 2000).

Due to revealing the genetic code, the theoretical problem of “bio-information evolution™ has arisen.
This problem exists alongside with ideas about chemical evolution and is very significant for under-
standing biological life.

Informatics began to be used in concepts of an origin of a life and in theoretical biology in the last
decades only. And now the modern science hopes to receive deeper and adequate understanding of life
and its origin from positions of bioinformatics. In our opinion, modern investigations in the field of
bioinformatics form the foundation of the future theoretical biology. Therefore the problem of maximal
union of molecular-genetic knowledge with the mathematics of the theory of discrete signals processing
is especially appropriate.

Bioinformatics can give deeper knowledge to the questions of what is life and why life exists. An
investigation of symmetrical and structural analogies between computer informatics and genetic infor-
matics is one of the important tasks of modern science in connection with a creation of DNA-computers
and with development of bioinformatics. The development of bioinformatics and its applications requires
appropriate mathematical models of structural ensembles of genetic elements. The methods of symmetry
can be useful to create such model. This book demonstrates the usefulness of the methods of symmetry
to study the genetic code and to develop effective matrix approaches in the field of genetic coding.

One should note that many attempts at construction of mathematical models or biochemical explana-
tions of separate features of the genetic code are known. One of the most historically famous attempts of
answering the question about 20 amino acids was made by G. Gamov more than 50 years ago (Gamov,
1954; Gamov & Metropolis, 1954). He supposed the explanation of the morphological character, that
this quantity of amino acids is defined by the molecular configuration of the double helix of DNA, which
possesses the appropriate quantity of hollows along the double helix. A few initial attempts of explana-
tion of features of the genetic code are presented in books (Ycas, 1969; Stent, 1971).

Some mathematical and other approaches to the genetic code were proposed in the works (Chi Ming
Yang, 2001; Eingorin, 2001, 2003, 2006; Dragovich & Dragovich, 2007; He, 2001; Jimenes-Montano,
2005; Karasev, 2003; Khrennikov & Kozyrev, 2007; Konopelchenko & Rumer, 1975; Laubenbacher &
Sturmfels, 2008; MacDonaill, 2003, 2005; Negadi, 2005, 2006; Petoukhov, 2001-2008; Ratner, 2002;
Sanchez & Grau, 2008; Shcherbak, 1988; Stambuk, 1999; Waterman, 1999; Yang, 2005; etc.). Each of
these attempts was important for the general advancement of a science to cognition of a genetic code.
These works were very useful because they have shown the specificity of the genetic code and its dif-
ferences from many other natural systems; difficulties of modeling its features for receiving a fruitful
model; a multiplicity of approaches in attempts of such modeling; an importance of the decision of this
task, etc. These works have drawn the attention of many young talented researchers to this fundamental
problem. In spite of many interesting publications, the general situation of understanding the genetic
code is characterized by the following words, which were cited already in the preface of this book in
more detail: “What do we have now in the 10 million nucleotide of sequence data determined to date?
... We have the program that runs the cellular machinery, but we know very little about how to read it.
Bench biologists, by experiment and by close association with the data, have found meaningful patterns.
Theoreticians, by careful reasoning and use of collections of data, have found others, but we still under-
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stand frustratingly little” (Fickett & Burks, 1989). So, new efforts should be made to study structural
organization of the genetic code from the viewpoint of informatics and mathematical natural sciences.

INFORMATION SCIENCE, THE NOISE-IMMUNITY AND THE
MATRIX APPROACH TO THE GENETIC CODE

Mechanisms of genetic coding provide the high noise-immunity of transfer of the hereditary information
from one generation to next generation, despite a set of disturbances and noise, which exist in biologi-
cal environments. From the very beginning of discovery of the genetic code, scientists thought that
structures of the genetic code are connected with the noise-immunity (noise-proof features) of genetic
systems (see review in (Ycas, 1969)). However, speaking about the noise-immunity of the genetic cod-
ing, speakers are usually limited to reference the fact of high degeneracy of the genetic code, which is
capable to reduce a quantity of lethal mutations.

But modern works exist already, which suppose that an influence of the requirement of the noise-
immunity on structures of the genetic code is much deeper. The given area of researches uses achievements
of the mathematical theory of the noise-immunity coding, which are applied in the technique of digital
communication, in attempts to understand phenomena of bioinformatics. In this area the suppositional
influence of the noise-immunity can be studied by different methods and on different directions of
thoughts (see, for example, (MacDonaill, 2003)). Our own researches presented in this book, which are
based on the idea of deep connection between structures of the genetic code and the requirement of the
noise-immunity of the genetic information, are original in research methods and revealed new facts.

Let us discuss the noise-immunity property of genetic system more attentively. It seems to be fan-
tastic, but descendants grow similar to the ancestors due to the genetic information despite of enormous
disturbances and noise in a billon of trillions of biological molecules. How is it possible to approach
this problem about such fantastic noise-immunity in molecular genetics? Does modern science have any
precedents of the decision of similar problems of the noise-immunity?

Yes, science has successfully decided the similar fantastic task recently: the noise-immunity transfer
of photos from surfaces of other planets to the Earth. In this task electromagnetic signals, which carry
data, should pass through millions kilometers of cosmic space of electromagnetic disturbances. These
disturbances transform signals monstrously, but the modern mathematical technology permits to restore
a transferred photo qualitatively.

The completion of this task became possible due to the theory of noise-immunity coding created by
mathematicians. This theory of noise-immunity coding has appeared rather recently, initial basic work
in this field was published by Hamming in 1950 (Hamming, 1980). The theory of such a coding utilizes
intensively matrix mathematics including the representation of sets of signals and codes in a form of ma-
trices and their Kronecker powers. Our book describes many interesting results in the field of molecular
genetics and bioinformatics, which were obtained by authors on the basis of matrix mathematics. The
investigation of the genetic code from the viewpoint of the theory of discrete signals is a natural way
because of the discrete character of the genetic code.

One can note that coding in modern digital technique is usually utilized not for providing a difficulty
of reading the text by the undesirable reader but for providing a technical opportunity of transfer of
the discrete information with high noise-immunity, speed and reliability. The most famous example of
codes is the Morse code. Of course, the modern codes are much more effective, than the Morse code.
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These codes allow transferring the copious information through huge distances qualitatively. Orthogonal
codes, which use Hadamard matrices, belong to the set of such codes (Ahmed & Rao, 1975; Blahut,
1985; Geadah & Corinthios, 1977; Lee & Kaveh, 1986; Peterson & Weldon, 1972; Petoukhov, 2008a,
2008b); Sklar, 2001; Trahtman, 1972; Trahtman, & Trahtman, 1975; Yarlagadda & Hershey, 1997).
Any transmitted signal consists of a set of elementary signals (a component of a signal vector of an ap-
propriate dimension). The task of the receiver in conditions of noise is the approximate definition of a
concrete vector-signal, which has been sent from a known set of vector-signals (Sklar, 2001). Applica-
tion of Hadamard matrices allows solving similar problems by means of a spectral decomposition of
vector-signals and by means of a transfer of their spectra, on the basis of which the receiver restores an
initial signal. This decomposition utilizes orthogonal functions of rows of Hadamard matrices (Ahmed
& Rao, 1975).

One should emphasize the important circumstance: unlike digital technique, biological organisms
solve the task not only to provide the noise-immunity simply, but to provide it in such a kind, which is
suitable for transfer of this property of the noise-immunity along a chain of biological generations.

This book pays significant attention to the matrix approach to the genetic code, which has formed
the special investigation field of matrix genetics. Investigations in this field reveal an important role
of symmetries in structural organization of molecular ensembles of the genetic code. But why have we
chosen the matrix approach to study the genetic system among many other possible approaches?

The six main reasons exist to explain this matrix choice to study the genetic code and to develop
matrix genetics:

1. Information is usually stored in computers in the form of matrices;

2. Noise-immunity codes are constructed on the basis of matrices;

3. quantum mechanics utilizes matrix operators, connections with which can be detected in matrix
forms of presentation of the genetic code; a significance of matrix approach is emphasized by the
fact that quantum mechanics has arisen in a form of matrix mechanics by W. Heisenberg;

4. complex and hypercomplex numbers, which are utilized in physics and mathematics, possess
matrix forms of their presentation. The notion of number is the main notion of mathematics and
mathematical natural sciences. In view of this, investigation of a possible connection of the genetic
code with multi-dimensional numbers in their matrix presentations can lead to very significant
results.

5. Matrix analysis is one of the main investigation tools in mathematical natural sciences. Study of
possible analogies between matrices, which are specific for the genetic code, and famous matrices
from other branches of sciences can be heuristic and useful.

6.  Matrices, which are a kind of union of many components in a single whole, are subordinated to
certain mathematical operations, which determine substantial connections between collectives of
many components; this kind of connections can be essential for collectives of genetic elements of
different levels as well.

Matrix genetics studies matrix forms of presentation of the genetic code systems including genetic
alphabets and sets of genetic multiplets. It studies also those phenomenological peculiarities of genetic
systems which are reflected in these forms. The task of these researches consists in deeper understand-
ing of genetic systems and inherited biological phenomena from a viewpoint of information technology
and mathematical sciences.
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The early work (Konopelchenko & Rumer, 1975a, 1975d) published in the most prestigious scientific
journal of the USSR and in a form of the preprint in English may be considered as the pioneer work in
the field of matrix genetics. This work presented the 4-letter genetic alphabet C, A, G, U/T in a form
of a (2x2)-matrix and considered the second Kronecker power of this alphabetic matrix which gener-
ated a (4x4)-matrix of 16 genetic duplets for investigation of symmetrical and other properties of these
genetic components.

Here we briefly note that G. Rumer was the main co-author of this pioneer article and he was a
prominent Russian scientist in the field of theory of symmetry. Wlth a personal recommendation by A.
Einstein and P. Ehrenfest, he received a Lorentz’s grant and worked as an assistant of M. Born in Got-
tingen in the period of 1929-1932. In the co-authorship with H.-Weyl, V. Heitler and E. Teller, Rumer has
created the basis of quantum chemistry. He knew 12 foreign languages. With another recommendation
by A. Einstein, P. Ehrenfest, M. Born and E. Schrodinger, Rumer returned to Moscow from Gottingen
in 1932 and became a professor of the Moscow State University. He is the author of a few famous books
on problems of group theory and theoretical physics (Rumer, 1936, 1956; Rumer & Fet, 1970, 1977;
Rumer & Ryvkin, 1972, etc.). One of his books about the relativity theory in the co-authorship with Nobel
Prize winner in physics L. Landau was published in more than 20 languages around the world (Landau
& Rumer, 2003). Rumer believed that properties of symmetry play an essential role in phenomenology
of the genetic code. His works (Rumer, 1966, 1968; Konopelchenko & Rumer, 1975a, 1975d) on clas-
sification of codons in the genetic code, based on the principles of symmetry and linguistic reasons, have
obtained a benevolent response by F. Crick. His other important works include a correlation between the
structure of amino acids and the degeneracy of the genetic code (Konopelchenko & Rumer, 1975b), the
wobble hypothesis by Crick in connection with the sequence of nucleotides (Konopelchenko & Rumer,
1975c¢), and regularities in codons (Volkenstein, & Rumer, 1966). Rumer’s works have resulted in many
responses all over the world. More information about Rumer and his works are presented in the article
(Ginzburg, Mihailov & Pokrovskiy, 2001).

THE BASIC STRUCTURES OF THE GENETIC CODE

Due to wonderful works of many researches, the modern science knows basic phenomenological data
about molecular structures of the genetic code including the four-letter genetic alphabet, 64 triplets,
20 amino acids, etc. History of molecular genetics knows attempts to understand and explain these
phenomenological data from various viewpoints. For example, one can mention the famous hypothesis
by G. Gamov (Ycas, 1969) about the reason for the existence of 20 amino acids. By this hypothesis,
this reason is in the special configuration of DNA molecule. Some other hypothesis, which have only
historical meanings also now, are considered in many text-books and historical reviews in the field of
molecular genetics (Cantor & Schimmel, 1980; Chapevillle & Haenni, 1974; Karasev, 2003; Ratner,
2002; Roller,1974; Shults & Schirmer, 1979; Watson, 1968; Stent, 1971; Ycas, 1969; etc.).

All living organisms are unified wonderfully: all of them have identical molecular bases of the system
of genetic coding. These bases are amazingly simple. For realization of the genetic messages, which
encode sequences of amino acids in proteins, all kinds of organisms utilize in their molecules of hered-
ity DNA (and RNA — ribonucleic acid) the “alphabet” consisting of only four “letters” or nitrogenous
bases: adenine (A), cytosine (C), guanine (G), thymine (T) {or uracil (U) in RNA} (Figure 1). Linear
sequences of these four letters on strings of molecules of heredity (DNA and RNA) contain the genetic
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Figure 1. The complementary pairs of the four nitrogenous bases in DNA. A-T (adenine and thymine),
C-G (cytosine and guanine). Hydrogen bonds in these pairs are shown by dotted lines. Black circles
are atoms of carbon, small white circles are atoms of hydrogen, squares with the letter N are atoms of
nitrogen, triangles with the letter O are atoms of oxygen. Amides (or amino-groups) NH, are marked
by big circles

information for protein synthesis in all living bodies - from bacteria up to a whale or from a worm up
to a bird and even a human. One can hear sometimes the figurative expression that the encyclopedia of
life is written by four letters.

The given set of the four letters is usually considered as the elementary alphabet of a genetic code.
These letters form the complementary pairs C-G and A-U (or A-T), because they stand opposite each
other in molecules of heredity. The complementary letters C and G are connected by three hydrogen
bonds; the complementary letters A and U (or A and T) are connected by two hydrogen bonds.

Genetic information, which is transferred by molecules of heredity, defines the primary structure of
proteins of biological organisms. Each coded protein exists in the form of a chain of 20 kinds of amino
acids. A sequence of amino acids in protein chain is defined by an appropriate sequence of genetic trip-
lets. A triplet (or a codon) is a block of three neighbor nitrogenous bases, which are disposed along a
filament of DNA or RNA. A sequence of amino acids in any protein is coded by an appropriate sequence
of triplets (such sequence of “n” triplets is named “3n-multiplet” briefly).

The general quantity of kinds of triplets, which can be constructed from the four-letter alphabet, is
equal to 4° = 64. Each triplet has its code meaning: it encodes one of 20 kinds of amino acids or plays
a role of a stop-signal or a start-signal for a process of a protein synthesis. Each codon has its anti-
codon, which consists of the appropriate complementary letters: for example, the triplet CUG has the
anti-codon GAC.
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The genetic code is named “the degeneracy code” because its 64 triplets encode 20 amino acids
and different amino acids are encoded by different quantities of triplets. Hypotheses about a connec-
tion between this degeneracy and the noise-immunity of the genetic information exist since time of the
discovery of the genetic code. Symmetries in the structures of degeneracy of the genetic code are one
of the main objects of investigation in our book. Many dialects of the genetic code exist in biological
organisms and their subsystems, which differ each from other by some differences in correspondences
between triplets and objects encoded by them (see details in the NCBI’s site: http://www.ncbi.nlm.nih.
gov/Taxonomy/Utils/wprintgc.cgi).

Proteins are the main dense component of biological organisms. Many thousands kinds of proteins
exist. Each of them possesses its own individual function. In particular, all biological ferments, which
provide phenomenal speeds of many biochemical reactions in organisms, are proteins. The whole har-
monic system of metabolism depends on proteins. All amino acids in proteins are connected by the same
type of chemical bond, which is named peptide bond.

The correspondence between triplets and objects encoded by them is usually illustrated by the table
of the size (4x16), which was proposed by F. Crick half a century ago and which is reproduced in many
textbooks and historical reviews in the field of molecular genetics (Cantor & Schimmel, 1980; Frank-
Kamenetskiy, 1988; Roller, 1974; Stent, 1971; Watson, 1968; etc.). Each of its 64 tabular cells contains
one triplet and an appropriate object (an amino acid or stop-codon) encoded by this triplet. However
nobody insisted that possibilities of analytical and heuristic representation of systems of elements of the
genetic code in tabular forms are exhausted by this table. Let us list the 20 amino acids, which are encoded
genetically, and their traditional abbreviations, which are used in our book: Ala — alanine, Arg — argin-
ine, Asn — asparagines, Asp - aspartic, Cys — cysteine, Gln - glutamine, Glu — glutamic, Gly — glycine,
His — histidine, Ile - isoleucine, Leu — leucine, Lys — lysine, Met — methionine, Phe — phenylalanine,
Pro — proline, Ser — serine, Thr — threonine, Trp — tryptophan, Tyr — tyrosine, Val — valine.

Modern science does not know why the alphabet of genetic language has four letters (it could have
any other number of letters in principle)? And why just these four nitrogenous bases are chosen by
nature as elements of the genetic alphabet from billions possible chemical compounds? And why the
quantity of amino acids encoded by the triplets is equal to 20? In our opinion, this choice has a deep
sense. Investigations of symmetries in structures of the genetic code can help to answer these and other
important questions.

The problem of the heritable noise-immunity is the general one for all multi-channel systems of
informatics of each organism. Many applied tasks of nanotechnology and biotechnology are connected
with ensembles of genetic molecules: for example, the task of creation of DNA-computers and DNA-
robotics exists (Paun, Rozenberg & Salomaa, 2006; Seeman, 2004; Shapiro & Benenson, 2006). It is
necessary to study those peculiarities of ensembles of genetic molecules, which possess formal analogies
with formalisms of digital informatics and its matrix mathematics.

One may ask whether these mathematical methods allow one to numerate each genetic multiplet
in binary manner taking into account the natural characteristics of genetic letters A, C, G, U/T?. The
main thrust of the present chapter is to consider an effective transfer of the named methods into the
field of molecular genetics. Some initial constructions of matrix genetics with elements of symmetry
are introduced below.
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THE BINARY SUB-ALPHABETS OF THE GENETIC ALPHABET
FOR NUMBERING THE MULTIPLETS IN GENETIC MATRICES

Is it possible to propose a matrix approach to represent all sets of genetic multiplets in the well-ordered
general form and with an individual binary number for each multiplet on the basis of molecular features of
the four letters A, C, G, U/T of the genetic alphabet? Will such general form be connected with important
principles and methods of computer informatics and of the noise-immunity in digital technique?

Positive answers to these questions will be useful to analyze structural properties and symmetries of
the genetic system and to reveal analogies between principles of the genetic code and computer infor-
matics for many theoretic and applied tasks.

To get such positive answers, we will demonstrate, first of all, that symmetries in molecular charac-
teristics of the genetic alphabet provide the existence of its binary sub-alphabets. The four letters (or the
four nitrogenous bases) of the genetic alphabet represent specific poly-nuclear constructions with the
special biochemical properties. The set of these four constructions is not absolutely heterogeneous, but
it bears the substantial symmetric system of distinctive-uniting attributes (or, more precisely, pairs of
“attribute-antiattribute”). This system of pairs of opposite attributes divides the genetic four-letter alpha-
bet into various three pairs of letters by all three possible ways; letters of each such pair are equivalent
to each other in accordance with one of these attributes or with its absence.

Really, the system of such attributes divides the genetic four-letter alphabet into various three pairs
of letters, which are equivalent from a viewpoint of one of these attributes or its absence: 1) C=U &
A = G (according to the binary-opposite attributes: “pyrimidine” or “non-pyrimidine”, that is purine);
2) A=C & G =U (according to the attributes: amino-mutating or non-amino-mutating under action of
nitrous acid HNO, (Wittmann, 1961; Ycas, 1969); the same division is given by the attributes “keto”
or “amino” (Waterman, 1999); 3) C = G & A = U (according to the attributes: three or two hydrogen
bonds are materialized in these complementary pairs). The possibility of such division of the genetic
alphabet into three binary sub-alphabets is known from the book (Waterman, 1999). We will utilize
these known sub-alphabets by means of a new method in the field of matrix genetics. We will attach
appropriate binary symbols “0” or “1” to each of the genetic letters based on these sub-alphabets. Then
we will use these binary symbols for binary numbering the columns and the rows of the genetic matrices
of the Kronecker family.

Let us mark these three kinds of binary-opposite attributes by numbers N =1, 2, 3 and ascribe to each
of the four genetic letters the symbol “0,” (the symbol “1 ) in case of presence (of absence correspond-
ingly) of the attribute under number “N” to this letter. As a result we obtain the following representation
of the genetic four-letter alphabet in the system of its three “binary sub-alphabets corresponding to at-
tributes” (Figure 2).

The table on Figure 2 shows that, on the basis of each kind of the attributes, each of the letters A, C,
G, U/T possesses three “faces” or meanings in the three binary sub-alphabets. On the basis of each kind
of the attributes, the genetic four-letter alphabet is curtailed into the two-letter alphabet. For example,
on the basis of the first kind of binary-opposite attributes we have (instead of the four-letter alphabet)
the alphabet from two letters 0, and 1,, which one can name “the binary sub-alphabet to the first kind
of the binary attributes”.

Accordingly, any genetic message as a sequence of the four letters C, A, G, U consists of three parallel
and various binary texts or three different sequences of zero and unit (such binary sequences are used
at storage and transfer of the information in computers). Each from these parallel binary texts, based on

11



Genetic Code

Figure 2. Three binary sub-alphabets according to three kinds of binary-opposite attributes in a set of
nitrogenous bases C, A, G, U. The scheme on the right side explains graphically the symmetric relations
of equivalence between the pairs of letters from the viewpoint of the separate attributes 1, 2, 3

Symbols of a genetic
letter from a viewpoint
of a kind of the binary- |C |A |G | U/T
opposite attributes

0, — pyrimidines (one
Nel | ring in a molecule); O (L | I | O

1, — purines (two rings
in a molecule)

C=2-A
0, — a letter with amino- 1 " "1
NeZ | mutating property 00| 12| 12
(amino); U =

1; — a letter without it
(keto)

03 — a letter with three
Ne3 | hydrogen bonds; 03[ 130313

13 — a letter with two
hydrogen bonds

objective biochemical attributes, can provide its own genetic function in organisms. According to our
data, the genetic system uses the possibility to read triplets from the viewpoint of different binary sub-
alphabets: this possibility participates in the construction of the genetic octet Yin-Yang-algebra (or the
octet bipolar algebra), which serves as the algebraic model of the genetic code in Chapter 7.

NATURAL SYSTEM OF NUMBERING THE GENETIC MULTIPLETS

Genetic information is transferred by means of discrete elements: 4 letters of genetic alphabet, 64 amino
acids, etc. General theory of processing of discrete signals utilizes encoding the signals by means of
special mathematical matrices and spectral representation of signals with the main aim to increase the
reliability and efficiency of information transfer (Ahmed & Rao, 1975; Sklar, 2001; etc). A typical ex-
ample of such matrices with appropriate properties is the Kronecker family of Hadamard matrices in
the equation (1).

H,  =[11;-11]" (M

where (n) means the integer Kronecker power. The mathematical peculiarities of Kronecker product
are described below.

12
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The Kronecker product is an operation on two matrices of arbitrary size resulting in a block matrix.
The Kronecker product should not be confused with usual matrix multiplication, which is an entirely
different operation. It is named after German mathematician Leopold Kronecker. If one has two square
matrices 4 = || o, ||and B =] ka ||, where i, j=1,...,mand k, p = 1,..., n, then a square block matrix

C=A®B = |la,*B, |

is called the Kronecker product of the matrices 4 and B.

The Kronecker product of matrices arises in a natural way in a problem of searching a matrix. The
eigenvalues of matrix A®B are equal to a product of ai*bj, where a and bj are eigenvalues of the matrices
A and B. It was proved that the Kronecker product of matrices 4 and B possesses such eigenvalues (Bell-
man, 1960). The Kronecker product is connected with fractal structures; these questions are described
in the book (Gazale, 1999).

The simplest Hadamard matrix /, = [1 1; -1 1] is named the kernel of this Kronecker family. Rows
of Hadamard matrices form an orthogonal system of Hadamard-Walsh functions, which is used for a
spectral presentation and transfer of discrete signals (Ahmed & Rao, 1975; Yarlagadda & Hershey, 1997).
Quantum computers use normalized Hadamard matrixes in a role of logic gates in connection with the
importantrole of these matrixes in the quantum mechanics (Nielsen & Chuang, 2001). Chapter 6 describes
deep connections between Hadamard matrices and ensembles of elements of the genetic code.

On the basis of the idea about a possible analogy between discrete signals processing in computers
and in a genetic code system, one can present the genetic 4-letter alphabet in the following matrix form
P=[CA; U G]. It is obvious, that this form possesses the analogy with the kernel (equation (1)) of the
Kronecker family of Hadamard matrices. Then the Kronecker family of matrices with such alphabetical
kernel can be considered:

P®=[CA;UG]” )

where (n) means the integer Kronecker power. Figure 3 shows the first matrices of such a family. One can
see on this figure that each matrix contains all genetic multiplets of equal length: [C A; U G]" contains
all 4 monoplets; [C A; U G]® contains all 16 duplets; [C A; U G]® contains all 64 triplets, etc. It should
be emphasized that this book pays great attention to the genetic alphabet: we will consider the alphabetic
matrices [C A; U G]™ from different viewpoint permanently and we will construct algorithms of matrix
transformations on the basis of features of the alphabetic letters A, C, G, U/T. The genetic alphabet serves
as the key structure to investigate system properties of the genetic code and its dialects.

Such presentation of ensembles of elements of the genetic code in the form of Kronecker families
of genetic matrices (or “genomatrices” briefly) has appeared as a useful tool to investigate structures
of the genetic code from the viewpoint of their analogy with the theory of discrete signals processing
and noise-immunity coding. The scientific direction, which deals with such matrix presentation of the
ensembles of genetic elements and their parameters, is named “matrix genetics’ briefly. The results of
matrix genetics reveal hidden interconnections, symmetries and evolutionary invariants in genetic code
systems (He, 2001; He & Petoukhov, 2007; He, Petoukhov & Ricci, 2004; Petoukhov, 1999b, 2001,
2003-2008). Simultaneously they show that genetic molecules are the important part of a specific main-
tenance of the noise-immunity and efficiency of a discrete information transfer.

13



Genetic Code

Figure 3. The first genetic matrices of the Kronecker family P"=[C A; U G]™ with the binary numbering
their columns and rows on the base of the binary sub-alphabets No 1 and No 2 fromFigure 2. The lower
matrix is the genomatrix P9=[C A; U G]¥. Each matrix cell contains a symbol of a multiplet, a binary
number of this multiplet and its expression in decimal notation. Decimal numbers of columns, rows and
multiplets are written in brackets
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The matrix P is the simplest representative (specimen) of a set of biperiodic matrices (or tables) of
the genetic code system. It has a vertical periodicity of the matrix elements from the viewpoint of the
binary sub-alphabet Ne 1 and it has a horizontal periodicity of the matrix elements from the viewpoint
of the binary sub-alphabet Ne 2. It can be checked easily that all matrices P™ are biperiodic matrices.
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Actually any column of such a matrix consists of only the n-plets which are equivalent to each other
from the viewpoint of binary sub-alphabet Ne 1. And any row of a matrix P™ consists of those n-plets
only, which are equivalent to each other from the viewpoint of binary sub-alphabet Ne 2.

The Kronecker family of genetic matrices [C A; U G]™ (Figure 3) represents all genetic multiplets, if
the value of “n” is big enough. This family includes the genomatrix of the genetic alphabet; the genomatrix
of triplets, which encode the amino acids; the genomatrices of long multiplets, which encode proteins.
All this natural set of genetic multiplets, which have various coding functions in the genetic system,
appears coordinated with this simple Kronecker family of matrices [C A; U G]™ (Figure 3).

Each genetic multiplet has its own individual binary number in the described natural system of
numbering the multiplets. This multiplet also has its own disposition in the appropriate genetic matrix
of the Kronecker family. It is obvious that a length of the individual binary number for a n-plet, which
contains “n” letters, is equal to 2n: the first half of this number is the interpretation of letters of the
multiplet from the viewpoint of the second binary sub-alphabet (Figure 2) and the second part is the
interpretation from the viewpoint of the first binary sub-alphabet. For example, the sequence GACUU-
CACGGUG, which contains 9 letters, has the individual binary number with 9x2=18 binary symbols:
100110001111/110000101101. If one should construct the catalog of genetic sequences of various
lengths and composition, it can be done on the basis of the described natural system of numbering the
sequences as multiplets.

All n-plets, which are begun with one of the four letters C, A, U, G, are disposed in one of the four
quadrants of an appropriate genomatrix [C A; U G]™ because of the specifics of Kronecker multiplica-
tion. If one does not pay attention to this first letter in n-plets of each matrix quadrant, then one can see
that each quadrant reproduces a previous matrix [C A; U G]*? of this Kronecker family. Figuratively
each genomatrix of such family possesses information (or “memory”’) about all previous genomatrices
of this family.

It should be noted that each column of the formal constructed genomatrix [C A; U G]® (Figure 3)
is corresponded to one of the 8 classical octets by Wittmann (1961), which are famous in the history of
molecular genetics and reflect real biochemical properties of elements of the genetic code (Ycas, 1969).
This fact is the first indirect confirmation of adequacy of the given matrix approach, which reflects a
natural orderliness inside of the genetic system.

Let us demonstrate now that all 64 triplets can be binary numerated in a natural manner by means
of the binary sub-alphabets (Figure 2), which are based on the real structural and biochemical features
of the genetic molecules. As the result of such a natural numbering, all triplets appear disposed in the
genomatrix [C A; U G]® in the monotonous order on increase of their binary numbers.

Really, all columns and rows of the matrices on Figure 3 are binary numerated by the following al-
gorithm. Their numbers are formed automatically if one interprets multiplets of each column from the
viewpoint of the first binary sub-alphabet (Figure 2) and if one interprets multiplets of each row from the
viewpoint of the second binary sub-alphabet. For example, from the viewpoint of the first sub-alphabet,
the triplet CAU possesses the binary number 010 (all triplets of the same column possess the same
binary number, which is utilized as the general number of this column correspondingly). But from the
viewpoint of the second sub-alphabet, the triplet CAU possesses the binary number 001 (all triplets of
the same row possess the same binary number, which is utilized as the general number of this row). One
can see on Figure 3, that all columns and all rows in the genomatrix [C A; U G]©® appear renumbered
and disposed in an monotonic order.
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In the genomatrix [C A; U G]®, each of 64 triplets has its own individual number, which consists of
association of binary numbers of its row and column (for example, triplet CAU has the binary number
001010, which is equal to 10 in decimal notation). This genomatrix reflects real interrelations of ele-
ments in the set of triplets: any codon and its anti-codon are disposed in inversion-symmetrical manner
relative to the centre of the genomatrix (Figure 3).

And each pair “codon-anticodon” (and only such pair) has the sum of their decimal numbers, which
is to equal 63 (in binary notation it is equal to 111111). For example, the triplet CAU has the decimal
number 10 and the complementary triplet GUA has the decimal number 53; the sum of these numbers
is equal to 63. Each sequence of triplets can be presented in the genomatrix [C A; U G]® in a form of
an appropriate trajectory passing through matrix cells with these triplets in series. It is obvious that the
complementary sequences on the two filaments of the double helix of DNA correspond to two appropri-
ate trajectories in the genomatrix [C A; U G]®, which are inversion-symmetrical to each other relative
to its centre.

In the case of a conservation in each cell of the genomatrix [C A; U G]©® (Figure 3) with binary six-
digit numbers of these 64 triplets, this genomatrix coincides with the famous table of 64 hexagrams in
Fu-Xi’s order from the ancient Chinese “The Book of Changes” (“I Ching”), which was written a few
thousand years ago (see Chapter 12). This matrix has amazed the creator of a computer G. Leibnitz
(1646-1716 years). He considered himself as a creator of the system of binary notation, but in one mo-
ment he suddenly found out ancient predecessors relative to this system. Leibnitz has seen in features
of the given ancient table of 64 hexagrams many features of similarity to his ideas of binary systems
and universal language. “Leibnitz has seen in this similarity ... the evidence of the preestablished har-
mony and unity of the divine plan for all times and people” (Schutskiy, 1997, p. 12). Modern physics
and other branches of science pay attention to “I Ching” and other ancient Oriental teachings also (see,
for example, (Capra, 2000; Gell-Mann & Ne’eman, 2000). A possible connection between the genetic
code and the symbolic system of “I Ching” was noted in the works (Stent, 1969; Jakob, 1974, 1977;
etc.). Our results in the field of matrix genetics confirm this work. So, the described natural system of
numbering the genetic triplets and their cells in the genomatrix [C A; U G]® is known for thousands
years already. It can be named the ancient Chinese system from the historical viewpoint. The matrix
approach to a genetic code, besides the fundamentality of object of research and matrix mathematics,
unexpectedly leads to historical analogies and a problem of connection of times. We will return to this
theme in more detail in Chapter 12.

It should be noted that the huge quantity 64! ~ 10* of variants exists for dispositions of 64 triplets
in the (8x8)-matrix. The modern physics estimates time of existence of the Universe in 10'” seconds.
It means the following: if for consideration of each of these variants we spend only one second, then
during all time of existence of the Universe we shall have time to consider only insignificant part from
this 10% variants. It is obvious that in such a situation an accidental disposition of the 20 amino acids
and the corresponding triplets in a (8x8)-matrix will give almost never any symmetry in their disposi-
tion in matrix halves, quadrants and rows. One can illustrate this circumstance by the following way.
Let us consider the (8x8)-matrix, the 64 cells of which are numbered one after another. Everyone can
make an accidental sample of 32 natural numbers from the series of 64 values from 0 up to 63 and then
mark by dark color the 32 cells with these 32 numbers. Other 32 cells with other numbers are marked
by white color. The obtained black-and-white mosaic of the matrix will be asymmetric with very high
probability. Figure 4 demonstrates an example of such asymmetric mosaic in the case of the accidental
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Figure 4. An example of a black-and-white mosaic of the (8x8)-matrix, the cells of which are numbered
one after another. The black cells correspond to the case of 32 numbers of an accidental choice (an
explanation in the text)

0] 1 2| 3| 4 5 6 7
SR 10 |[EEEIRENEERENEN 14 | 15
16 | 17 [EsUSSEiean 20 [ 21 | 22 s
28 25 o 27 2w 29 | 30 | 31
BONESE  34 | 35 [pEON 37 ESEN 39
40| 41| 42|43 | 44 | 45 | 46 | 47
48| 49| 50| 51 | 52 | 53 | 54 | 55
56| 57| 58|59 160 | 61 | 62 | 63

choice of the following 32 numbers: 53, 2, 47, 62, 23, 6, 38, 11, 19, 8, 26, 12, 28, 32,9, 36, 42, 4, 43,
33,45, 18, 48,24, 51,0, 41, 55, 58, 13, 60, 3.

One may ask why nature has chosen that variant of the degeneracy of the genetic code, which fits
symmetrically (regular) inside the genetic matrix P® =[C A; U G]® relative to its halves, quadrants and
rows (see Figure 2 in the next chapter). Chapter 2 will demonstrate that nature has divided the set of 64
triplets into two sub-sets with 32 triplets in each because of special properties of the degeneracy of the
genetic code. One of these sub-sets contains the triplets with the following numbering in the described
natural system of numbering the triplets: 0, 1, 2, 3, 8, 9, 10, 11, 18, 19, 22, 23, 26, 27, 30, 31, 36, 37,
38, 39, 44, 45, 46, 47, 50, 51, 54, 55, 58, 59, 62, and 63. These 32 triplets, which are shown in the next
chapter on Figure 2 in the black cells, are opposed by nature to other 32 triplets in 32 white cells. The
general disposition of these black and white cells in the genomatrix [C A; U G]©® possesses the expressed
symmetric characteristics considered in Chapter 2.

One can remark, that the hidden relations of symmetry between these two sub-sets of the triplets
are revealed in an exclusive (alphabetical-Kronecker) variant of the disposition of 64 triplets in (8x8)-
matrix, which is described above and is one of 10% variants of their dispositions. The main results in the
field of matrix genetics, which are described in our book, were obtained in connection with this special
variant of the disposition of the triplets in the genomatrix [C A; U G]® from the Kronecker family of
genomatrices [C A; U G]™. Chapter 2 presents a few genomatrices additionally, which are produced
from the genomatrix [C A; U G]™ algorithmically and which possess symmetrical characteristics of the
degeneracy of the genetic code as well.

THE MATRIX NUMBERING THE GENETIC MULTIPLETS
AND MATRICES OF DIADIC SHIFTS

Next we describe the connection between numerated genomatrices [C A; U G]® (Figure 3) and those
matrices of dyadic shifts, which are known in the theory of discrete signals processing long ago.

The theory of discrete signals processing utilizes widely the special mathematical operation of
modulo-2 addition for binary numbers. Modulo-2 addition is one of fundamental operations for binary
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variables. By definition, the modulo-2 addition of two numbers, which are written in binary notation, is
made in bitwise manner in accordance with the following rules:

0+0=0,0+1=1,1+0=1,1+1=0 3)

For example, modulo-2 addition of two binary numbers 110 and 101, which are equal to 6 and 5
in decimal notation correspondingly, gives the result: 110 @ 101 =011, which is equal to 3 in decimal
notation (here @ is the symbol of modulo-2 addition).

The series of binary numbers

000, 001, 010, 011, 100, 101, 110, 111 )

forms the so named diadic group, where the modulo-2 addition serves as the group operation (Harmut,
1989). The distance in this group of symmetry is defined as Hamming distance. Since Hamming distance
satisfies the conditions of a metric group, the diadic group is the metric group. The modulo-2 addition of
any two binary numbers from the expression (4) always gives a new number from the same series of the
expression (4). The number 000 serves as the unit element of this group, for example 010 @ 000 = 010.
The reverse element for any number of this group is the number itself, for example 010 @ 010 = 000.

The series of the expression (4) is transformed by the modulo-2 addition with the binary number 001
into the new series with the new sequence of the same numbers:

001, 000, 011, 010, 101, 100, 111, 110 %)

Such changes of the initial binary sequence, which are produced by modulo-2 addition of its members
with any of binary numbers from the expression (4), are named “diadic shifts” (Ahmed & Rao, 1975;
Harmut, 1989). If any system of elements demonstrates its connection with diadic shifts, it shows that
the structural organization of his system is related to the logics of modulo-2 addition.

Let us make modulo-2 addition of binary numbers of columns and rows for all cells in the genomatrix
[C A; U G]® on Figure 3. For example, the cell, which is disposed in the column 110 and in the row
101, obtains the binary number 011 by means of such addition. As a result, the following numeric matrix
P®_ o =[CA;UG]®,,, arises (Figure 5).

The (8x8)-matrix [C A; U G]® , | is bisymmetrical because it is symmetrical relative to both di-
agonals. This matrix contains only 8 binary numbers, which is equal to 0, 1, 2, 3, 4, 5, 6, 7 in decimal
notation. Each of these numbers occupies 8 matrix cells from 64 numerated cells (see Figure 3). The
sum of numbers of these 8 matrix cells is equal to 252 in decimal notation for each case. For example,
the number 5 occupies those 8 matrix cells on Figure 5, which are numerated individually on the Figure
3 by numbers 5, 12, 23, 30, 33, 40, 51, 58. The sum of these 8 numbers is equal to 252. The left and
right halves (and the upper and lower halves) of this matrix [C A; U G]® , | are inversion-symmetrical
to each other in the sense of the binary inversion relative to their three-digit numbers in matrix cells (by
definition, the binary inversion interchanges the binary symbols 1 and 0 to each other). For this reason,
the modulo-2 addition of such binary numbers, which are disposed in any two mirror-symmetrical cells
of this matrix, gives the binary number 111. For example, a cell with the number 001 in the left half of
the matrix has a mirror-symmetrical cell in its right half with the number 110 always. Their sum in the
sense of modulo-2 addition is equal to: 001 & 110 = 111.
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Figure 5. The bisymmetrical matrix [C A; U G]®
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By analogical algorithm of modulo-2 addition, the whole family of matrices of dyadic shifts P®_ .
where n =2, 4, 5,..., can be constructed from the genomatrices [C A; U G]™ (Figure 3). All such ma-
trices P are bisymmetrical as well. Each of matrices P®_ , is the matrix form of presentation
of a particular case of special hypercomplex numbers, which are named “hyperbolic matrions” (these
hyperbolic matrions are described in Chapter 8 in more detail).

Do such matrices P™_  ~have any connection with the theory of discrete signals processing? Yes,
they have. The matrix [C A; U G]®, , and other analogical matrices [C A; U G]®™ , = are known in
this information theory long ago under the name “matrices of dyadic shifts” (for example, see (Ahmed
& Rao, 1975)). They are fundamentals of some special methods of analysis and synthesis of signals as
vectors. In computer informatics, matrices of dyadic shifts are constructed by means of modulo-2 addition
without utilizing Kronecker multiplication of matrices, which we have used to receive the Kronecker
family of the genomatrices [C A; U G]™ of all multiplets from the (2x2)-matrix of the genetic alphabet
(Figure 3). One can note that the analogical (8x8)-matrix of diadic shifts is constructed from the table
of 64 hexagrams of “I Ching” (Chapter 11). We will return to diadic shifts in Chapters 7 and 8 to dem-
onstrate additionally that the logics of structures of the genetic code is connected with diadic shifts and
hence with the modulo-2 addition.

It should be emphasized specially that dyadic shifts are one of the elements of interesting theory,
which is described in the book about applications of methods of information theory in physics (Harmut,
1989). This theory utilizes the notions of dyadic spaces, dyadic metrics, and dyadic coordinates in a
connection with special codes. Relation of the genetic code to this theory is one of the prospective topics
in the field of matrix genetics for investigations in future.
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Now let us pay attention to the block character of the matrices of dyadic shifts P®_ . Each (2"x2")-
matrix P*_ is a system of fractal kind. It contains four block matrices, each of which has the size
(2x2). Two such block matrices, which are disposed along each diagonal, are identical to each other
always. For this reason, the lower half of each (2"x2")-matrix P®_  ~can be produced from its upper
half algorithmically by a cyclic shift. In this sense, each block matrix P™_  _is a matrix of the cyclic
shift of its (2x2)-blocks and possesses the crosswise character.

Two quadrants along the main diagonal contain identical block elements, which are (2"'x2"!)-matrices
of a dyadic shift. Matrix cells along the second diagonal contain identical block elements in a form of
(2"'x2m1)-matrices also, elements of which are changed only by addition of number 2! relative to ele-
ments of the (2"'x2"")-matrices along the main diagonal. In turn, these (2"'x2"")-matrices are the block
matrices of the cyclic shift, which possess a crosswise character, etc.

For example, the (2°x2°)-matrix [C A; U G]®_ =~ on Figure 5 is the block matrix of the cyclic shift
relative to its (2x2)-quadrants. Identical quadrants, which are disposed along the main diagonal, are
(2°x2?)-matrices of the dyadic shift with elements 0, 1, 2, and 3. Another kind of identical blocks in the
form of the (22x2%)-quadrants with elements 4, 5, 6, 7 are disposed along the second diagonal. They
only differ from the first (2>x22)-quadrants by addition of number 22 to their elements. In turn, each of
these (22x2?)-quadrants of the matrix [C A; U G]®_  on Figure 5 is the block matrix of the cyclic shift
of its (2x2)-blocks.

In connection with cyclic shifts in described genetic matrices, one can mention so named cyclic codes,
which are based on cyclic shifts (Peterson & Weldon, 1972; Sklar, 2001). Cyclic codes are considered
usually as one of the most interesting codes in the field of digital technique due to their mathematical
properties. Some modern publications in the field of molecular genetics analyze the question about a
possible important participation of cyclic codes in systems of genetic coding (Arques & Michel, 1996,
1997; Frey & Michel, 2003, 2006; Stambuk, 1999).

Returning to the crosswise character of described genetic matrices of diadic shifts P*_ =~ (Figure
5), which reminds one of a crosswise character of chromosomes to some extent, we note that genetic
inherited constructions of physiological systems (including sensory-motion systems) demonstrate similar
crosswise structures by unknown reasons. For example, the connection between the hemispheres of hu-
man brain and the halves of human body possesses the similar crosswise character: the left hemisphere
serves the right half of the body and the right hemisphere (Figure 6) (Annett, 1985, 1992; Gazzaniga,
1995; Hellige, 1993). The system of optic cranial nerves from two eyes possesses the crosswise struc-
tures as well: the optic nerves transfer information about the right half of field of vision into the left
hemisphere of brain, and information about the left half of field of vision into the right hemisphere. The
same is held true for the hearing system (Penrose, 1989, Chapter 9). One can suppose that these inherited
physiological phenomena are connected with genetic crosswise structures, which include, in particular,
crosswise matrices of dyadic shifts, of hyperbolic matrions and octet Yin-Yang-numbers from Section
3 to provide noise-immunity properties of genetic systems.

DIAD

DIAD

FUTURE TRENDS AND CONCLUSION

The described matrix approach shows first examples of usefulness of utilizing symmetrical features of
ensembles of genetic elements for development of new mathematical tools of genetic investigations.
Such an approach permits one to represent all sets of genetic multiplets in the well-ordered general
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Figure 6. The crosswise schemes of some morpho-functional structures in human organism. On the left
side: the crosswise connections of brain hemispheres with the left and the right halves of a human body.
In the middle: the crosswise structure of optic nerves from eyes in brain. On the right side: a chromo-
some

form of matrices of the Kronecker family. Each multiplet obtains its individual number in the proposed
natural system of numbering the genetic multiplets. It obtains also its own individual disposition in an
appropriate genetic matrix of the Kronecker family. The described natural system of numbering the
multiplets is recommended for utilizing in computerized catalogs of genetic sequences. This Kronecker
family of genetic matrices is the new cognitive form of presentation and analysis of ensembles of ele-
ments of the genetic code, which is utilized intensively in the next chapters of the book and which leads
to many significant results.

Revealing the connection between the genetic matrices of the Kronecker family and matrices of diadic
shifts, which are known in computer informatics, gives us ability to use the mathematical ideology of
diadic spaces and diadic metrics for genetic systems.

The first described constructions in the field of matrix genetics gave us new abilities for investigations
of genetic systems in the future. One of them is the creation of catalogs of matrices with all possible
multiplets for various tasks. For example, such catalogs permit the investigation of how introns and
exons are disposed in these genetic matrices; what kinds of matrix mosaics appear for them; and how
these mosaics are related to components of multi-dimensional numeric systems described in Section 3.
It can lead to reveal new appropriate regularities.

We also note that revealing the connection between the genetic matrices [C A; G U]™ and the matri-
ces of diadic shifts P*  ~(Figure 5) leads one to utilize the notions and formalisms of “diadic spaces”,
“diadic metrics”, etc. (Harmut, 1989), which are known in the field of computer informatics, in new
fields of matrix genetics and bioinformatics.

The conception by Stent (1969) and Jacob (1974) about possible relation between the genetic code
and the symbolic system of the ancient Chinese “I Ching” obtains new materials for further examinations.
Additional discussions along this direction will be described in the next chapters of the book.

Investigations of ensembles of elements of the genetic code with their symmetrical features have
led to the construction of the Kronecker family of the genetic matrices. This matrix family presents all
sets of genetic multiplets in the well-ordered general form, where each multiplet obtains its own indi-
vidual number in binary notation on the basis of molecular characteristics of the genetic letters A, C, G,
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U/T. Such a general form is connected with important principles and methods of computer informatics
and of the noise-immunity in digital technique. It gives us new mathematical ability to study genetic
systems and their connections with computer informatics and algebraic theory of coding. For example,
first evidences were obtained that the logics of structures of the genetic code are related to the logical
modulo-2 addition.
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Chapter 2

Symmetries of the
Degeneracy of the Vertebrate
Mitochondrial Genetic
Code in the Matrix Form

ABSTRACT

Symmetries of the degeneracy of the vertebrate mitochondrial genetic code in the mosaic matrix form
of its presentation are described in this chapter. The initial black-and-white genomatrix of this code is
reformed into a new mosaic matrix when internal positions in all triplets are permuted simultaneously.
1t is revealed unexpectedly that for all six variants of positional permutations in triplets (1-2-3, 2-3-1,
3-1-2, 1-3-2, 2-1-3, 3-2-1) the appropriate genetic matrices possess symmetrical mosaics of the code
degeneracy. Moreover the six appropriate mosaic matrices in their binary presentation have the general

’

non-trivial property of their “tetra-reproduction,” which can be utilized in particular for mathematical
modeling of the phenomenon of the tetra-division of gametal cells in meiosis. Mutual interchanges of the
genetic letters A, C, G, U in the genomatrices lead to new mosaic genomatrices, which possess similar

symmetrical and tetra-reproduction properties as well.

INTRODUCTION AND BACKGROUND

Chapter 1 described the construction of genomatrices of the Kronecker family, including the genomatrix
peate  =[CA; U G]?, which contain 64 triplets in the well-ordered form. But how are amino acids and
stop-codons, which are encoded by these triplets, disposed in this genomatrix? Does the genetic code
possess any features which may give the symmetrical character for this genomatrix? Such questions are
investigated in this chapter. Really, the degeneracy of the genetic code has lead to a symmetrical black-
and-white mosaic of the genomatrix in the case of the vertebrate mitochondrial genetic code, which is

the most symmetrical dialect of the genetic code.
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Symmetries of the Degeneracy of the Vertebrate Mitochondrial Genetic Code

By analogy of the theory of digital signals, where permutations of signal elements play significant
role, we study two kinds of permutations of elements of the genetic code, which transform initial mosaic
genomatrices into new mosaic genomatrices. The first of these kinds of permutations is permutations
of three positions inside all triplets: 1-2-3, 2-3-1, 3-1-2, 1-3-2, 2-1-3, 3-2-1. The second kind is mutual
interchanges of the genetic letters A, C, G, U. Both of these kinds lead unexpectedly to such new genoma-
trices, which possess symmetrical black-and-white mosaics and the binary forms of which possess the
mathematical property of tetra-self-reproducing. This chapter sets out results of these investigations.

The main objectives of this chapter are the following:

1. In-depth study of matrix symmetries of the degeneracy of the vertebrate mitochondrial genetic
code in the matrix form of its presentation;

2. Investigations of reforming these matrix symmetries under some kinds of permutations of elements
of the genetic code;

3. Demonstrating new phenomenological materials in the field of matrix genetics to develop algebraic
models of the genetic code.

PECULIARITIES OF DEGENERACY OF THE GENETIC CODE

Modern science knows many dialects of the genetic code, data about which are shown on the NCBI’s
website http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi. According to general traditions,
theory of symmetry studies initially those natural objects which possess the most symmetrical char-
acter, and then it constructs a theory for cases of violations of this symmetry in other kindred objects.
Correspondingly the authors of this book investigate initially the vertebrate mitochondrial genetic code
which is the most symmetrical code among dialects of the genetic code. One can also note that some
authors consider this dialect not only as the most “perfect” but also as the most ancient dialect (Frank-
Kamenetskiy, 1988) while the last aspect is a debatable one. The vertebrate mitochondrial code is used
as a basic dialect in some other mathematical works where a presentation of the 64 triplets exists in a
form of square tables (Dragovich & Dragovich, 2006, 2007; Khrennikov & Kozyrev, 2007). Figure 1
shows the correspondence between the set of 64 triplets and the set of 20 amino acids with stop-signals
(Stop) of protein synthesis in this code.

The set of 64 triplets contains such 16 subfamilies of triplets, every one of which contains 4 triplets
with the same two letters on the first positions of each triplet (an example of such subsets is the case of
the four triplets CAC, CAA, CAU, CAG with the same two letters CA on their first positions). We shall
name such subfamilies as the subfamilies of NN-triplets. In the case of the vertebrate mitochondrial
code, the set of these 16 subfamilies of NN-triplets is divided into two equal subsets from the viewpoint
of degeneration properties of the code (Figure 1). The first subset contains 8 subfamilies of so called
“two-position” NN-triplets, a coding value of which is independent of a letter on their third position. An
example of such subfamilies is the four triplets CGC, CGA, CGU, CGC, all of which encode the same
amino acid Arg, though they have different letters on their third position. All members of such subfamilies
of NN-triplets are marked by black color in the genomatrix [C A; U G]® on the Figure 2.

The second subset contains 8 subfamilies of “three-position” NN-triplets, a coding value of which
depends on a letter on their third position. An example of such subfamilies is the four triplets CAC, CAA,
CAU, CAC, two of which (CAC, CAU) encode the amino acid His and other two (CAA, CAG) encode
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Figure 1. The case of the vertebrate mitochondrial genetic code; The initial data were taken from the
NCBI s web-site http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

8 subfamilies of the 8 subfamilies of the
“two-position” NN- “three-position” NN-
triplets and the amino triplets and the amino
acids, which are acids, which are
encoded by them encoded by them
CCC, CCA, CCU, CCG CAC, CAA, CAU,

= Pro CAG = His, Gln
CUC, CUA, CUU, AAC, AAA, AAU,
CCG = Leu AAG = Asn, Lys
CGC, CGA, CGU, AUC, AUA, AUU,
CGG = Arg AUG = Ile, Met
ACC, ACA, ACU, AGC, AGA, AGU,
ACG = Thr AGG = Ser, Stop
UCC, UCA, UCU, UAC, UAA, UAU,
UCcaG = Ser UAG = Tyr, Stop
GCC, GCA, GCU, UucC, UUA, UUU,
GCG = Ala UuG => Phe, Leu
GUC, GUA, GUU, UGC, UGA, UGU,
GUG = Val UGG = Cys, Trp
GGC, GGA, GGU, GAC, GAA, GAU,
GGG = Gly GAG = Asp, Glu

another amino acid Gln. All members of such subfamilies of NN-triplets are marked by white color in
the genomatrix P® =[C A; U G]® on the Figure 2. So the genomatrix [C A; U G]® has 32 black triplets
and 32 white triplets. Each subfamily of four NN-triplet is disposed in an appropriate (2x2)-subquadrant
of the genomatrix [C A; U G]® due to the Kronecker algorithm of construction of genomatrix [C A; U
G]® of triplets from the alphabet genomatrix P (Figure 3 of the previous chapter).

Here we recall the work by Rumer (1968) that a combination of letters on the first two positions of
each triplet was named as a “root” of this triplet. A set of 64 triplets contains 16 possible variants of such
roots. Taking into account of the properties of triplets, Rumer has divided the set of 16 possible roots
into two subsets with eight roots in each. Roots CC, CU, CG, AC, UC, GC, GU, and GG form the first
of such octets. They were called by Rumer as “strong roots”. Other eight roots CA, AA, AU, AG, UA,
UU, UG, and GA form the second octet and they were called as weak roots. When Rumer published his
works, the vertebrate mitochondrial genetic code was unknown. But one can easily check that the set of
32 black (white) triplets, which we described for the case of the vertebrate mitochondrial genetic code
(Figures 1 and 2), is identical to the set of 32 triplets with strong (weak) roots described by Rumer. So,
using notions proposed by Rumer, the black triplets can be named as triplets with the strong roots and
the white triplets can be named as triplets with the weak roots. Rumer believed that this symmetrical
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Figure 2. The representation of the genomatrix P = P . = [C A; U G]? (Figure 3 in Chapter 1)
for the case of the vertebrate mitochondrial genetic code. The matrix contains 64 triplets and 20 amino
acids with their traditional abbreviations. Stop-codons are marked as “Stop”. Numeration of columns
and rows in decimal notation is shown

0(000) | 1(001) | 2(010) | 3(011) | 4(100) | 5(101) | 6 (110) | 7 (111)
ccc CCA CAC CAA ACC ACA AAC AAA
0 Pro Pro His Gln Thr Thr Asn Lys
0 1 2 3 4 5 6 7
cCcu CCG CAU CAG ACU ACG AAU AAG
1 Pro Pro His Gin Thr Thr Asn Lys
8 9 10 11 12 13 14 15
2 cuc CUA CGC CGA AUC AUA AGC AGA
Leu Leu Arg Arg Ile Met Ser Stop
16 17 18 19 20 21 22 23
3 Ccuu CuG CGU CGG AUU AUG AGU AGG
Leu Leu Arg Arg Ile Met Ser Stop
24 25 26 27 28 29 30 31
4 ucc UCA UAC UAA GCC GCA GAC GAA
Ser Ser Tyr Stop Ala Ala Asp Glu
32 33 34 35 36 37 38 39
5 ucu ucG UAU UAG GCU GCG GAU GAG
Ser Ser Tyr Stop Ala Ala Asp Glu
40 41 42 43 44 45 46 47
6 uucC UUA UGC UGA GUC GUA GGC GGA
Phe Leu Cys Trp Val Val Gly Gly
48 49 50 51 52 53 54 55
7 UuuU uuG UGU UGG GUU GUG GGU GGG
Phe Leu Cys Trp Val Val Gly Gly
56 57 58 59 60 61 62 63

division into two binary-oppositional categories of roots is very important for understanding the nature
of the genetic code systems.

Let us introduce the symbol of the genomatrix P® = [C A; U G]® by the symbol P*Y¢ ., which is
more comfortable for a comparative analyses of this (8x8)-genomatrix with other (8x8)-genomatrices
below. Here the bottom index “123” shows the appropriate queue of positions 1-2-3 in triplets; the upper
index shows the kind of the kernel [C A; U G] of the Kronecker family of genomatrices. The exponent
(3) is not written because the bottom index is enough for understanding that this symbol means the
(8x8)-genomatrix of triplets. This change of the symbol is useful because we shall consider later the
genomatrices with permutations of positions in triplets (2-3-1, 3-1-2, etc.) and with another kernels of
Kronecker families of genomatrices (|G C; A U], [C A; G U], etc.).

Below we will demonstrate the phenomenological fact of a symmetric character of dispositions of the
32 white triplets and the 32 black triplets in the genomatrix [C A; U G]®. We will also analyze the genetic
matrices, which are produced from the genomatrix [C A; U G]® as a result of positional and alphabetic
permutations in all triplets. One should note here that permutations of elements play an important role in
the theory of digital signals processing (Ahmed & Rao, 1975; Blahut, 1985; Trahtman, 1972; Trahtman
& Trahtman, 1975). It was the reason of the special interest to investigate the genomatrices with such
permutations. On these way analogies between the famous fact of the tetra-division of gametal cells and
some properties of these genomatrices with permutations are revealed.
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SYMMETRICAL PROPERTIES OF GENETIC MATRICES OF TRIPLETS
UNDER PERMUTATIONS OF POSITIONS INSIDE TRIPLETS

The specifics of the degeneracy of the genetic code provoke many questions. One of them is the follow-
ing: was the code degeneracy an accidental choice of nature or not? Deep investigations of symmetries
in a matrix map of the code degeneracy can give many useful materials for such questions.

We use the genomatrices from the Kronecker family, which was described in Chapter 1, to pres-
ent the degeneracy of the genetic code in a special cognitive form. We investigate possibilities of this
matrix form of presentation step by step to obtain evidences of its adequacy and usefulness. This form
gives new viewpoints for the question about specifics of the code degeneracy. It gives us new results,
which are much unexpected sometimes, about relations of matrix symmetries in sets of elements of the
genetic code. One of the ways to study these symmetries is connected with permutations of three posi-
tions inside all triplets, which leads to new genomatrices with symmetrical peculiarities. The second
way, which leads to new symmetrical genomatrices as well, is connected with a mutual replacing of the
genetic letters A, C, G, U in the kernel of the Kronecker family of the genomatrices. Both of these ways
and the appropriate results are described in this chapter.

The genomatrix [C A; U G]® = P“V¢ _ of Figure 2 shows all triplets together with amino acids and
stop-codon, which are encoded by the triplets in the case of the vertebrate mitochondrial genetic code
(compare with Figure 1). Black cells of the genomatrix contain the triplets, which belong to the set of
the two-position NN-triplets, and white cells contain the triplets, which belong to the set of the three-
position NN-triplets.

So, the black-and-white mosaic of the genomatrix PV _on Figure 2 reflects the specificity of the
degeneracy of this basic dialect of the genetic code. Unexpectedly it has a few interesting symmetrical
peculiarities as follows.

The left and right halves of the matrix mosaic are mirror-anti-symmetric to each other in its colors: any
pair of cells, disposed by mirror-symmetrical manner in these halves, possesses the opposite colors.

The genomatrix P“*Y¢ _consists of the four pairs of neighbor rows with even and odd numeration
numbers in each pair: 0-1, 2-3, 4-5, 6-7. The rows of each pair are equivalent to each other from the
viewpoint of a disposition of the same amino acids in their appropriate cells.

The black-and-white matrix mosaic has a symmetric figure of a diagonal cross: diagonal quadrants
of the matrix are equivalent to each other from the viewpoint of their mosaic.

Mosaics of all rows have a meander-line character, which is connected with Rademacher functions
from the theory of discrete signals processing.

The turning of the genomatrix P“*U¢ _into a cylinder with an agglutination of its upper and lower
borders reveals an ornamental pattern of a cyclic shift. This pattern has the character of cyclic shifts that
permits one to think about a possible genetic meaning of cyclic codes, which play a significant role in
the theory of digital signal processing. This pattern is demonstrated more clearly by a tessellation of a
plane with this mosaic genomatrix (Figure 3, at the left). The plane with this tessellation possesses the
ornamental pattern with two pattern units which are identical in their forms, but contrary in their colors
(black and white) and orientations (left and right).

This symmetrical character of the degeneracy of the genetic code, which is presented by the matrix
mosaic, is the key for many secrets of the genetic code. Let us note the following peculiarity of the
presented “black-and-white” degeneracy of the genetic code on the Figure 2. The black triplets encode
8 amino acids, each of which is encoded by 4 triplets or more: Ala, Arg, Gly, Leu, Pro, Ser, Thr, Val. We
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Figure 3. At the left: the tessellation of a plane with the mosaic of genomatrix P1V°
the right: the tessellation of a plane with the mosaic of genomatrix PV

1 Jrom Figure 2. At
from Figure 4

231

will name them as high-degeneracy amino acids. Another 12 amino acids form the sub-set, any member
of which is encoded by less quantity of triplets: Asn, Asp, Cys, Gln, Glu, His, Ile, Lys, Met, Phe, Trp,
Tyr. We will name them as low-degeneracy amino acids. The fact of the existence of these two sub-sets
will be utilized in Chapter 3 for a comparative analysis of dialects of the genetic code.

The phenomenon of existence of cyclic shifts in the genetic pattern on Figure 3 has led to the in-
vestigation of a possible meaning of cyclic shifts of three positions in all triplets. If one changes the
initial order 1-2-3 in all triplets by the cyclic shift into the new order 2-3-1, then many cells of the initial
genomatrix P“AYS are occupied by new triplets. For example, the matrix cell with the triplet CAU is
occupied by the triplet AUC, etc. As a result the whole genomatrix P°AYS _is reconstructed into the new
genomatrix P“AYS  (Figure 2).

It is unexpected that this “cyclic-generated” genomatrix P“*YS__ with new matrix dispositions of
triplets and amino acids possesses similar symmetric characteristics (Petoukhov, 2006, 2008a,c¢):

1. Allits (4x4)-quadrants are identical to each other by its mosaics;

2. The upper and the lower halves of P4V are identical to each other from the viewpoint of dis-
positions of all amino acids and stop-signals;

3. All rows of the (8x8)-genomatrix and its (4x4)-quadrants have a meander-line character again,
which is connected with Rademacher functions;

4. The genomatrix P“*VY  possesses 4 pairs of identical rows as well: 0-1, 2-3, 4-5, 6-7 (but the rows
with these numbers are disposed in new matrix positions on Figure 2 and they differ from the rows
with the same numbers on Figure 2).

Note, that the mosaic of the initial (8x8)-genomatrix P“*V¢ __is reproduced in (4x4)-quadrants of this
PCAUCG in a fractal manner: the coefficient of fractal ranging of areas is equal to 4. The tessellations of

a plane by the mosaics of P“*Y¢ and of P“*V°  demonstrate their fractal correspondence very clearly
(Figure 2). Such scale transformation of areas in the mosaics of the code degeneracy can be named “tetra-
reproduction” transformation. Due to this tetra-reproduction, the cyclic-generated genomatrix P“AV¢
has the quantity of the pattern units 4 times more than the initial genomatrix P“AYS  (Figures 2-4).
This fact is interesting because an analogical tetra-reproduction (or a tetra-division) exists in the living

nature in the course of division of gametal cells, which are transmitters of genetic information. In this

1
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Figure 4. The representation of the genomatrix P“'C, which is produced from the genomatrix P“%¢

(Figure 2) by the cyclic shift of positions in triplets (1-2-3 — 2-3-1)

123

0 2 4 6 1 3 5 i
(000) | (010) | (100) | (110) | (001) | (011) | (101) | (111)
0| CCC| CAC | ACC | AAC | CCA | CAA | ACA | AAA
Pro | His | Thr | Asn | Pro | GIn | Thr | Lys
2| CUC | CGC | AUC | AGC | CUA | CGA | AUA | AGA
Leu | Arg Ile Ser | Leu | Arg | Met | Stop

4| UCC | UAC | GCC | GAC | UCA | UAA | GCA | GAA
Ser | Tyr | Ala | Asp | Ser | Stop | Ala | Glu
6| UUC | UGC | GUC | GGC | UUA | UGA | GUA | GGA
Phe | Cys | Val | Gly | Leu | Trp | Val | Gly
1| CCU | CAU | ACU | AAU | CCG | CAG | ACG | AAG
Pro | His | Thr | Asn | Pro | Gln | Thr | Lys
3| CUU | CGU | AUU | AGU | CUG | CGG | AUG | AGG
Leu | Arg Ile Ser | Leu | Arg | Met | Stop
5] UCU | UAU | GCU | GAU | UCG | UAG | GCG | GAG
Ser | Tyr | Ala | Asp | Ser | Stop | Ala | Glu
7] UUU | UGU | GUU | GGU | UUG | UGG | GUG | GGG
Phe | Cys | Val | Gly | Leu | Trp | Val | Gly

mysterious act of meiosis, one gamete is divided into four new gametes (this fact was mentioned specially
by Erwin Schrodinger in his famous book (Schrodinger, 1955, §13)). The described tetra-reproduction
of the mosaics of the genomatrices can be utilized, in particular, in formal models of meiosis.
Materials of the matrix genetics lead us to questions of biological meaning. Really, we revealed
unexpectedly that a simple algorithmic re-packing (re-arrangement) of elements in triplets by the cyclic
shift is sufficient to receive new genomatrix with the fractal tetra-reproducing the mosaics of the code
degeneration. It seems that a similar re-packing of molecular elements in biological object can be suf-
ficient also to provide foundations of a process of tetra-reproducing in some cases, first of all, in the
case of meiosis. These and other considerations permit us to put forward the hypothesis of molecular
re-packing. According to this hypothesis, the mysterious process of meiosis is based on a mechanism
of algorithmic re-arrangement of molecular elements of gametes with a participation of algorithms of
cyclic and dyadic shifts. In our opinion, the principle of re-packing of biological molecules and of their
ensembles is an important general principle of biological self-organization. It is interesting also that
one can compare the tetra-division of material gametes with the tetra-division of the code genomatrices,
which are information objects. These materials show that meiosis is not an accidental material process
but it is coordinated with more ancient information structures of the genetic code in their matrix form.
Permutations of elements play an important role in the theory of signals processing (Ahmed & Rao,
1975; Trahtman & Trahtman, 1975). Six variants of permutations of positions in triplets are possible
only: 1-2-3, 2-3-1, 3-1-2, 1-3-2, 2-1-3, 3-2-1. The genomatrices P“*"“  ~and P“AYS | for the first two of
these permutations were considered above (Figures 2 and 4). Let us consider other four variants which
lead to genomatrices PCAVG, PCAVG | TPCAUG | pCAUG | They are presented in Figure 5. It is an unex-
pected phenomenological fact, that all of these genomatrices have symmetrical peculiarities, which are
similar to symmetrical peculiarities of P“*Y¢ ~and P“*Y . The whole considered genetic code seems
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to be in agreement with these permutations and corresponding symmetries in the mosaics of all these
6 genomatrices.

Really, one can note that all genomatrices P©4V¢, &) PEAUS () peatG, &) Peats = © on Figure 5 have
symmetric features as well. For example:

1. their mosaics have the mirror-antisymmetry between their left half and their right half;

2. each of these genomatrices has 4 pairs of identical rows again: 0-1, 2-3, 4-5, 6-7 (see their decimal
numeration on Figure 5), which are not adjacent rows in these matrices;

3. all rows of the (8x8)-genomatrix and its (4x4)-quadrants have a meander-line character again,
which is connected with Rademacher functions, ctc.

PCA uG PCA uG

Figure 5. The genomatrices PCAUG . o PCAUG3 . 13 Each matrix cell has a triplet and an
amino acid (or a stop-signal) coded by this triplet. The black-and-white mosaic reflects the specificity

of the degeneracy of this code

Asp | Glu
AGC | AGA
Ser Stop
AGU | AGC

Ile Met
Ile Met

PC‘UGm-
3 7 6
(011) | (111) (110)
CAA | AAA AAC
Glin Lys Asn
3 UAA | GAA AGC
; Tyr Ser
i
Ile Asn
Phe Leu
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Now let us also consider on Figure 5 the genomatrix P“*U¢ | @ with the inverse order of positions in
all triplets (3-2-1 instead of 1-2-3). One can compare its mosaic with the mosaic of the P“AYC ' based on
the cyclic shift of positions in all triplets: 2-1-3 instead of 3-2-1. In this case the similar phenomenon of
the tetra-self-reproduction of these mosaics becomes apparent again but with a new pattern (Figure 6).

In addition, one can note that all six genomatrices on Figures 2, 4, and 5 are interconnected by spe-
cial permutations of their columns and rows. The same genomatrices can be obtained from the initial
genomatrix P“AYS by appropriate permutations of positions in binary 3-digit numbering their columns
and rows. In other words, the “local” permutations of positions in triplets give the same results as the
“global” permutations of positions in binary 3-digit numbering the columns and the rows. All six genoma-
trices on these Figures are connected with Hadamard matrices on the basis of the U-algorithm described
in Chapter 6. The presented permutations gave interesting results in their application to genomatrices.
It seems that applications of similar permutations to genetic sequences of triplets can give interesting
results as well because each gene belongs to a group of six genetic sequences, which are differed from
each other by orders of positions in their triplets: 1-2-3, 2-3-1, 3-1-2, 1-3-2, 2-1-3, 3-2-1.

The revelation of the permutation group of the six symmetric genomatrices P“AV¢ @) PAvS - &),

231
peavG G PCAUG  B) pCAUG. () PCAUG B seems to be the essential fact because of heuristic associations

with tzlizz mathematical theory of digital signal processing, where similar permutations are utilized for a
long time as the useful tool. For example, the book (Ahmed & Rao, 1975, § 4.6) gives the example of
the important role of the method of data permutations and of the binary inversion for one of variants of
the algorithm of a fast Fourier transformation. In this example the numeric sequence 0, 1, 2, 3,4, 5, 6, 7
is reformed into the sequence 0, 4, 2, 6, 1, 5, 3, 7. But the same change of the numeration of the columns
and the rows takes a place in our case (Figure 5) where the genomatrix P“*V¢ _is reformed into the
genomatrix P“Y“_ ‘as a result of the inversion of the binary numbering the columns and the rows (or of
the inversion of the positions in the triplets). These and other facts permit one to think that the genetic
system has a connection with a fast Fourier transformation (or with a fast Hadamard transformation)
(Petoukhov, 2006, 2008a,b).

GENOMATRICES WITH THE PROPERTY OF THE TETRA-SELF-REPRODUCING

Why has nature chosen this variant of degeneration of genetic code, which gives such mosaics? Do these
1% ““f11 1 2 3 CAUG 3 CAUG 3) pPCAUG 3 CAUG 3 CAUG 3 CAUG 3)
six “triplets-permutations” genomatrices PCAVG | @) PCAUG | @) pCAUG ) PCAUG () PCAUG @) PCAUG
possess such mutual mathematical property that can be associated with famous biological facts of ge-
netic inheritance? Yes, such a mutual property exists and it is connected with the tetra-reproduction by

Figure 6. The tessellations of a plane by the mosaics of the genomatrices P“*V, _(at the left) and P“'°
(on the right)
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analogy with meiosis again. This property is a non-trivial one and it does not exist in the most variants
of arbitrary dispositions of 32 black triplets and 32 white triplets in (8*8)-matrices.

Let us represent the black-and-white mosaic of each of the six genomatrices as a binary mosaic of
numbers “+1” and “-1” by means of replacing black (white) color of each matrix cell by an element
“+1” (“-17) correspondingly. As a result, these genomatrices P<AVS () PCAUG @) PCAUG @) PCAUG ©),

321
peava @) peatG @ are reformed into the genomatrices B ,,, B,, , B, ,, B,,,, B, .. B,,, (Figure 7).

312 123° 77231° 773122 132> 77213° 77321
The unexpected mutual property of these six binary genomatrices is the following one. The mul-
tiplication of each genomatrix with itself (the square of each genomatrix) gives a phenomenon of its
tetra-reproduction: the four duplicates of the genomatrix appeared in Figure 8. Really the following

formulas take place:
(B123)2 = 4*B123; (B231)2 = 4*B231; (]3312)2 = 4*B312

(]3132)2 = 4*B132; (]3213)2 =4*B (B321)2 = 4*B321 (1)

213;

This fact is interesting because the genetic code is destined by nature for reproduction of biological
structures, and matrices of the genetic code in their binary representation possess the non-trivial algebraic
property of their own self-reproduction. The set of these six binary genomatrices has many other inter-

esting properties (for instance, B ,.,*B,, +B ,,*B ,, =4*B ,.), which generate heuristic associations with

Figure 7. The binary numeric genomatrices B, B,,B,,B,,B,,B,,,in which each black cell means

the element “+1”; and each white cell means the element “-1"

B2 Bas; B>

ol o] of off 0| «a| o @« | o| o | of o | o & | o s offl | o . .

| o| of off 0| o | o o | o] o ol o o| «| @ | o o) off | » . .

| o| s| o ffl o| o| o[ @ | o| o | off 0| o | & | & | o s off o | @« . .
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F igure 8. Tetra-self-reproduction of each of the binary numeric genomatrices B,,,, B,,, B, B,,,, B, ,,
from Figure 7 due to operation of its multiplication with itself
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genetic phenomena and which can be utilized to model the meiosis process of the tetra-self-reproduction
of gametal cells with a specific behavior of chromosomes to some extent (Figures 8 and 9). These matrix
properties are connected with the octave Yin-Yang algebra of the genetic code (see Chapter 7).

It can be also mentioned that one can consider those “complementary” variants of the genomatrices
peAvG | () peauG () pealG G peaus | G peats B peAts | ®) which are achieved by the replacement
of each triplet by its complementary triplet (the example of the complementary triplets is CAG and
GUCQC). In each case the “complementary” matrix is identical to 180-degree turn of the initial matrix.
The “complementary” genomatrices in similar binary presentations possess the same properties as their
tetra-self-reproduction.

One can ask, why nature did not chose the more simple variant of the mosaic of the degeneracy of the
genetic code, for example, such a variant where the left half of the matrix is occupied by black triplets and
the right half is occupied by white triplets (Figure 10)? This variant and many other possible variants of
(8x8)-matrices with 32 black cells and 32 white cells do not possess those interesting properties, which
natural genomatrices possess: the properties of the tetra-self-reproduction; the algorithmic relation to
Hadamard matrices; the connection with hyperbolic matrions and the octet Yin-Yang algebra (Chapters
6-8), etc. For example, the matrix with the black-and-white mosaic of the signs “+1” and “-1” in Figure
10 does not possess the described property of the tetra-self-reproduction because its square is equal to
the null matrix.
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Figure 9. The illustration of the process of the tetra-self-reproduction of a gametal cell in a course of

meiosis
-0-0-0 0

SYMMETRICAL PROPERTIES OF GENETIC MATRICES UNDER
ALPHABETIC PERMUTATIONS IN THE SET OF 64 TRIPLETS

Until now we considered the Kronecker family of the genomatrices with the kernel [C A; U G] (Figure
3 of Chapter 1) and obtained some interesting properties of the mosaic genomatrices [C A; U G]®. This
paragraph demonstrates that analogical properties exist for the other mosaic genomatrices with various
kernels: [C A; G U]®, [G C; A U]®, etc. These new variants of kernels of the Kronecker families of
genomatrices are produced by permutations of the four letters C, A, U, G on positions in the (2x2)-
matrix, for example by mutual interchanges C<~G, A«<>U (such permutations produce a change of letter
compositions of triplets in matrix cells in comparison with the described genomatrix P“AY¢ ).

We continue to utilize the upper index in a symbols of each (8x8)-genomatrix to show the kind of
the kernel of the Kronecker family of this genomatrix. Such upper indexes can be CAGU, CGUA,
ACUG, ACGU, UACG, UGCA, GAUC, GAUC, GUAC, etc. For example, the symbol PGCAU123 means
the genomatrix [G C; A U]®, which differs from the described genomatrix P46 =[C A; U G]®, of
course.

The 24 variants of such (2x2)-genomatrix exist, which differ from each other by dispositions of the
letters inside the matrix (Figure 11). We will pay attention to a disposition of the particular letter U,
which is replaced by the letter T in the course of transfer from RNA to DNA for unknown reason and
which differs from other letters C, G, A by this feature. Such attention to the letter U is explained in
Chapter 6 which deals with a connection between genomatrices and Hadamard matrices. This letter U
can occupy one of the four positions in the alphabetic (2x2)-matrix.

Correspondingly one can divide the whole set of 24 variants of such (2x2)-matrices into the four cat-
egories (Figure 11). The first category contains (2x2)-matrices with the letter U in their left lower corner.
The second category possesses the letter U in the right upper corner. The third category possesses the
letter U in the left upper corner. The fourth category possesses the letter U in the right lower corner.

Figure 10. One of hypothetic variants of octet matrices with 32 black triplets and 32 white triplets (ex-
planation in the text)

CCC | CCA | CAC | CAA | ACC | ACA | AAC | AAA |
CCU | CCG | CAU | CAG | ACU | ACG | AAU | AAG
CUC | CUA | CGC | CGA | AUC | AUA | AGC | AGA
CUU | CUG | CGU | CGG | AUU | AUG | AGU | AGG
UCC | UCA | UAC | UAA | GCC | GCA | GAC | GAA
UCU | UCG | UAU | UAG | GCU | GCG | GAU | GAG
UUC | UUA | UGC | UGA | GUC | GUA | GGC | GGA
UUU | UUG | UGU | UGG | GUU | GUG | GGU | GGG
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Figure 11. The four categories of possible 24 variants of alphabetic (2x2)-matrices; the left column
shows the number of each of the four categories

DICA| |€G| AC A G G A GC
UG (U] (UG |VE|: I BLC 50U A
VG| |[U&| (UG Ue uc UA
CA| |ICG| |AC A G G A G C
3)] GU AUl |GU cu cu AU
A€ GC| |CA G A AG CG
4)|AC GC| €A G A A G CG
GU| |AaU]| |[GU cu cu AU

We will use the name “mirror-coupling” for a reconstruction of any matrix (Figure 11) from one
category into a matrix of another category by means of a permutation of its columns or rows. Each
matrix of any category has one mirror-coupling matrix in each of the other categories. Such mirror-
coupling matrices of various categories are disposed in one column on the Figure 11. For example, the
genomatrix [C A; U G], which is disposed in the first column of the first category, is reconstructed into
the genomatrix [U G; C A] of the second category; etc. The relation of such mirror-coupling for these
matrices is conserved at their rising in Kronecker powers. For example, the matrices [U G; CA]" & [G
U; A C]® are mirror-coupling to each another: one of them can be reconstructed from the second matrix
by mirror permutations of columns relative to the middle vertical line of the matrix.

Genomatrices of the first category and the third category contain the particular letter U on their second
diagonal. They are connected with the Hadamard matrices [1 1;-1 1] or [1 -1; 1 1] and with the matrix
form of representation of complex numbers and multi-dimensional generalization of complex numbers
(see Chapter 8). Genomatrices of the second category and of the fourth category contain the letter U

Figure 12. The genomatrix P°“Y = and the mosaic of the code degeneracy (explanation in the text)

GGG |GGC |GCG |GCC | CGG |CGC | CCG |cce |
Gly Gly Ala Ala Arg Arg Pro Pro |
GGA |GGU |GCA |[GCU |CGA |CGU |CCA |CCU |
Gly Gly Ala Ala Arg Arg Pro Pro |
GAG | GAC |GUG |GUC |CAG |CAC |CUG |cCucC
Glu Asp Val Val Gln His Leu Leu
GAA |GAU |[GUA |GUU |CAA |CAU |CUA |CUU |
Glu Asp Val Val Gln His Leu Leu |
AGG |AGC |[ACG |[ACC |UGG |UGC |UCG |uccC |
Stop Ser Thr Thr Trp Cys Ser Ser
AGA |AGU |ACA |ACU |UGA |UGU |UCA |UCU |
Stop Ser Thr Thr Trp Cys Ser Ser |
AAG | AAC |AUG | AUC |UAG |UAC |UUG |UUC
Lys Asn Met Ile Stop Tyr Leu Phe
AAA | AAU |AUA |AUU |UAA |UAU |(UUA |UUU
Lys Asn Met Ile Stop Tyr Leu Phe
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on the main diagonal. They are connected with Hadamard matrices [1 1; 1 -1] or [-1 1; 1 1] and their
Kronecker powers. These Hadamard matrices in various Kronecker powers play an important role in the
theory of quantum computers, spectral methods of discrete signals processing, etc. (see Chapter 6).
Taking into account the mirror-coupling among genomatrices of the four categories, it is sufficient to
consider examples of the genomatrices of the fourth category (Figure 11). For this reason, let us consider
the genomatrices P9“*Y =[G C; AU]® and PV =[C A; G U]®. Other genomatrices of the fourth
category can be considered analogically.
The example of the genomatrix P¢“AY . Figure 12 shows the genomatrix P“AY =[G C; A U]
with its black-and-white mosaic of the degeneracy of the vertebrate mitochondrial genetic code.
This genomatrix P“AY | possesses the following symmetric features:
1. The left half and the right half of the genomatrix are symmetric each to the other in the sense of
translation symmetry of their mosaics;
2. Two quadrants along each matrix diagonal are inversion-anti-symmetric each to the other in their
mosaics;
3. The neighboring rows in four pairs of the rows are identical each to the other from the viewpoint
of a disposition of amino acids and stop-codons;
4.  Four pairs of neighboring rows are identical.

Permutations of positions inside triplets, which were described above, produce the five genomatrices
pecAy [ POCAU. [ POCAU | POCAU [ POCAU | which are shown in Figures 13, 14, 15, 16, and 17. One can
see without additional explanations that all of them possess similar symmetric features as well.

The example of the genomatrix P4V .. The Figure 18 shows the genomatrix P“*%" . =[C A; G
U]® with its black-and-white mosaic of the degeneracy of the vertebrate mitochondrial genetic code.
The Figures 19, 20, 21, 22, and 23 demonstrate the genomatrices P¢AY_ | PCAGU_ PCAGU | PCAGU
PeASt_, which are produced from P4V by all possible permutations of positions inside all triplets.
One can see without additional explanations that all these six genomatrices possess symmetrical fea-
tures as well. We do not show amino acids and stop-codons in some of these genomatrices to decrease
tabular materials.

Figure 13. The genomatrix P97,

,, and the mosaic of the code degeneracy (explanation in the text)

GGG | GCG | CGG | CCG | GGC | GCC | CcGC | cce
Gly Ala Arg Pro Gly Ala Arg Pro
GAG |GUG |[CAG |CUG |GAC |GUC |CAC |cCuC
Glu Val Gln Leu Asp Val His Leu
AGG | ACG (UGG |UCG | AGC | ACC | UGC |UcC
Stop | Thr Trp Ser Ser Thr Cys Ser
AAG | AUG |UAG |UUG |AUC |AUC |UAC |UUC
Lys Met Stop Leu Ile Ile Tyr Phe
GGA |GCA |CGA |GCA |GGU |GCU |CGU |ccu
Gly Ala Arg Ala Gly Ala Arg Pro
GAA |GUA |CAA |CUA |GAU |GUU |CAU |CUU |
Glu Val Gln Leu Asp Val His Leu
AGA |ACA |UGA |UCA |AGU |ACU |UGU |Uucu
Stop Thr Trp Ser Ser Thr Cys Ser
AAA | AUA |UAA |UUA | AAU |AUU |UAU |UUU
Lys Met Stop Leu Asn Ile Tyr Phe
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Figure 14. The genomatrix P9“Y,  and the mosaic of the code degeneracy (explanation in the text)

GGG | CGG | GGC | CGC | GCG | ccG | Gee |cce
Gly Arg Gly Arg Ala Pro Ala Pro
AGG | UGG | AGC |UGC JACG |UCG |ACC |Ucc
Stop Trp Ser Cys Thr Ser Thr Ser
GGA |CGA |[GGU |CGU |GCA |CCA |(GCU |ccu
Gly Arg Gly Arg Ala Pro Ala Pro
AGA |UGA |[AGU |UGU |ACA |UCA |ACU |UCU
Stop Trp Ser Cys Thr Ser Thr Ser
GAG | CAG |[GAC |CAC |GUG |CUG |GUC |cuc
Glu Gln Asp His Val Leu Val Leu
AAG | UAG | AAC |UAC |AUG |UUG |AUC |UUC
Lys Stop Asn Tyr Met Leu Ile Phe
GAA |CAA |GAU |[CAU |GUA |CUA |GUU |CUU |
Glu Gln Asp His Val Leu Val Leu
AAA | UAA | AAU |UAU |AUA |UUA |AUU |UUU
Lys Stop Asn Tyr Met Leu Ile Phe

Figure 15. The genomatrix PV, and the mosaic of the code degeneracy (explanation in the text)

GGG | GCG | GGC | GCC |GGG | CcCcG | cGe | cce
Gly Ala Gly Ala Arg Pro Arg Pro
GAG |GUG | GAC |GUC |CAG |CUG |CcAC |cCuc
Glu Val Asp Val Gln Leu His Leu
GGA |GCA |[GGU |GCU |CGA |CCA |(CGU |cCcu
Gly Ala Gly Ala Arg Pro Arg Pro
GAA |GUA [GAU |GUU |CAA |CUA |CAU |CUU
Glu Val Asp Val Gln Leu His Leu
AGG | ACG [ AGC |ACC | UGG |UCG |UGC |ucc
Stop Thr Ser Thr Trp Ser Cys Ser |
AAG | AUG | AAC | AUC |UAG |UUG |UAC |UUC
Lys Met Asn Ile Stop Leu Tyr Phe
AGA |ACA |AGU |ACU |UGA |UCA |UGU |UCU |
Stop Thr Ser Thr Trp Ser Cys Ser
AAA | AUA | AAU | AUU |UAA |UUA |UAU |UUU
Lys Met Asn Ile Stop Leu Tyr Phe

Figure 16. The genomatrix P9V, = and the mosaic of the code degeneracy (explanation in the text)

GGG | GGC | CGG | CGC | GCG | Gee | cecG | cce
Gly Gly Arg Arg Ala Ala Pro Pro
GGA |GGU |CGA |CGU |GCA |GCU |ccA |(ccu
Gly Gly Arg Arg Ala Ala Pro Pro
AGG | AGC |UGG |UGC |ACG | ACC |UCG |UcC
Stop | Ser Trp Cys Thr Thr Ser Ser
AGA | AGU |[UGA |UGU |ACA |ACU |UCA |UCU
Stop | Ser Trp Cys Thr Thr Ser Ser
GAG | GAC |CAG |CAC |GUG |GUC |CUG | cCucC
Glu Asp Gln His Val Val Leu Leu
GAA |GAU |CAA |CAU |GUA |GUU |CUA |CUU |
Glu Asp Gln His Val Val Leu Leu
AAG | AAC |UAG |UAC |AUG |AUC |UUG |UUC
Lys Asn Stop Tyr Met Ile Leu Phe
AAA | AAU |UAA |UAU |AUA | AUU |(UUA |UUU
Lys Asn Stop | Tyr Met Ile Leu Phe
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Figure 17. The genomatrix P9V, and the mosaic of the code degeneracy (explanation in the text)

GGG | CGG | GCG | CCG | GGC | cGe | Gee | cce
Gly Arg Ala Pro Gly Arg Ala Pro
AGG | UGG |ACG |UCG | AGC |UGC |ACC |UcCC
Stop Trp Thr Ser Ser Cys Thr Ser
GAG | CAG |GUG |CUG |GAC |CAC |(GUC |cuc
Glu Gln Val Leu Asp His Val Leu
AAG | UAG | AUG |UUG |AAC |UAC |AUC |UUC
Lys Stop Met Leu Asn Tyr Ile Phe
GGA |CGA |GCA |CCA |GGU |CGU |GCu |ccu
Gly Arg Ala Pro Gly Arg Ala Pro
AGA |UGA |ACA |UCA |AGU |UGU |ACU |UCU
Stop Trp Thr Ser Ser Cys Thr Ser
GAA |CAA |GUA |[CUA |GAU |CAU |GUU |CUU
Glu Gln Val Leu Asp His Val Leu
AAA |UAA |AUA |UUA |AAU |UAU |AUU |UUU
Lys Stop Met Leu Asn Tyr Ile Phe

Figure 18. The genomatrix P“'°Y . and the mosaic of the code degeneracy (explanation in the text)

CCC | CCA |CAC |CAA JACC | ACA | AAC | AAA
Pro Pro His Gln Thr Thr Asn Lys
CCG |CCU |[CAG |[CAU |ACG | ACU | AAG | AAU
Pro Pro Gin His Thr Thr Lys Asn
CGC |CGA |CUC |CUA | AGC | AGA | AUC | AULA
Arg Arg Leu Leu Ser Stop Ile Met
CGG |CGU |CUG |CUU | AGG | AGU | AUG | AUU
| Arg Arg Leu Leu Stop | Ser Met | Ile
GCC | GCA | GAC | GAA |UCC | UCA | UAC | UAA
Ala Ala Asp Glu Ser Ser Tyr Stop
GCG |GCU | GAG |[GAU |UCG | UCU | UAG | UAU
Ala Ala Glu Asp Ser Ser Stop Tyr
GGC |[GGA |GUC |[GUA |UGC |UGA |(UUC |UUA
Gly Gly Val Val Cys Trp Phe Leu
GGG | GGU | GUG |GUU | UGG |UGU |UUG |UUU
Gly Gly Val Val Trp Cys Leu Phe

U

Figure 19. The genomatrix P“'%Y,

,, and the mosaic of the code degeneracy (explanation in the text)

CCC [ CAC [ACC | AAC | CCA [CAA | ACA | AAA
CGC | CUC [ AGC | AUC |CGA [CUA | AGA | AUA
GCC [ GAC [UCC |UAC |GCA [ GAA |UCA | UAA
GGC | GUC | UGC |UUC | GGA | GUA | UGA | UUA

CCG | CAG | ACG | AAG | CCU | CAU | ACU | AAU
CGG | CUG | AGG | AUG | CGU | CUU | AGU | AUU
GCG | GAG |UCG | UAG | GCU | GAU |UCU | UAU
GGG | GUG | UGG | UUG | GGU | GUU | UGU | UUU
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Figure 20. The genomatrix P“'%Y,  and the mosaic of the code degeneracy (explanation in the text)

CCC | ACC | CCA | ACA | CAC | AAC | CAA | AAA
GCC | UCC [GCA |UCA | GAC [UAC | GAA | UAA
CCG | ACG |CCU | ACU | CAG | AAG | CAU | AAU
GCG | UCG [GCU | UCU | GAG [ UAG | GAU | UAU

CGC | AGC |CGA | AGA | CUC [ AUC [CUA | AuA
GGC | UGC | GGA | UGA | GUC |UUC [GUA |UUA
CGG | AGG | CGU | AGU | CUG | AUG | CUU | AUU
GGG | UGG | GGU | UGU | GUG | UUG | GUU | UUU

Figure 21. The genomatrix P“%Y,  and the mosaic of the code degeneracy (explanation in the text)

CCC | CAC | CCA | CAA JACC | AAC [ACA | AAA
CGC | CUC | CGA | CUA | AGC | AUC | AGA | AUA
CCG | CAG |CCU | CAU | ACG | AAG | ACU | AAU
CGG | CUG [CGU | CUU | AGG [ AUG | AGU | AUU

GCC | GAC |GCA | GAA JUCC |UAC |[UCA | UAA
GGC | GUC | GGA | GUA JUGC [UUC |UGA |UUA
GCG | GAG | GCU | GAU JUCG | UAG |UCU | UAU
GGG | GUG | GGU | GUU | UGG | UUG | UGU | UUU

One can check that the fractal property of the tetra-scaling, which was described above in connec-
tion with Figures 3 and 6, between mosaics of certain pairs of genomatrices exists for all categories of
considered (8x8)-genomatrices. Those pairs of genomatrices possess this property, which are connected
by cyclic shifts in their lower indexes: (123)-(231) and (321)-(213).

All of the described mosaic genomatrices are connected with appropriate Hadamard matrices by
means of the same U-algorithm, which is presented in Chapter 6.

FUTURE TRENDS AND CONCLUSION

The described investigations demonstrate that the degeneracy of the genetic code is connected with the
system of genomatrix symmetries and with the system of invariants relative to some kinds of permutations
in triplets. The described results show that the degeneracy of the genetic code is not the accidental choice
of nature at all. The matrix genetics proposes the effective cognitive form of the matrix presentation of
ensembles of the genetic code elements. This cognitive form should be utilized in future investigations
of genetic systems as well.

The aim of each scientific theory is an explanation of phenomenological facts. The more phenom-
enological facts exist, the more bases exist to create theories. The results described in this chapter give
us new interesting phenomenological facts about some permutation properties of the genetic code. They
should be explained theoretically and they can be a prompting a new mathematical theory of genetic
code systems. For example, these results lead to the idea that the genetic code in its matrix form of
presentation can be connected with algebraic multi-dimensional constructions, which possess matrix
forms of presentation also. A confirmation of this idea is described in Chapter 7.
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U

Figure 22. The genomatrix P“'Y,

,; and the mosaic of the code degeneracy (explanation in the text)

CCC [ CCA | ACC | ACA | CAC [ CAA | AAC | AAA
CCG | CCU | ACG | ACU | CAG | CAU | AAG | AAU
GCC [ GCA [UCC |UCA | GAC [ GAA | UAC | UAA
GCG | GCU [UCG | UCU | GAG [ GAU | UAG | UAU

CGC | CGA | AGC | AGA | CUC |[CUA | AUuC | AuA
CGG | CGU | AGG | AGU | CUG | CUU | AUG | AUU
GGC | GGA | UGC | UGA |GUC |[GUA |UUC |UUA
GGG | GGU | UGG | UGU | GUG | GUU | UUG |UUU

Figure 23. The genomatrix P“'°Y , and the mosaic of the code degeneracy (explanation in the text)

CCC | ACC [ CAC | AAC | CCA | ACA | CAA | AAA
GCC | UCC [ GAC |UAC |GCA [UCA | GAA | UAA
CGC | AGC |CUC | AUC |CGA | AGA | CUA | AuA
GGC [ UGC [GUC | UUC | GGA [ UGA | GUA | UUA
CCG | ACG | CAG | AAG | CCU | ACU | CAU | AAU
GCG | UCG | GAG |UAG |GCU | UCU | GAU | UAU
CGG | AGG [CUG | AUG |CGU | AGU | CUU | AUU
GGG | UGG | GUG | UUG | GGU | UGU |GUU | UUU

The unexpected properties of tetra-reproducing and tetra-scaling in the set of the mosaic genomatrices
(Figures 3, 6 and 8) can be utilized for mathematical modeling the phenomenon of the tetra-division
of gametal cells in meiosis; they can be useful for the theory of self-development systems and self-
organizing systems as well.

The results of this chapter show that the permutations of various kinds are important not only for the
theory of digital signals processing but also for genetic code systems. One should investigate further
similar analogies between the genetic field and the advanced theory of digital informatics. Why does
the degeneracy of the genetic code possess the permutation properties described in this chapter? Why
has nature chosen such a variant of the degeneracy of the genetic code? What kind of algebraic numeric
structures possess such matrix features and can be a mathematical model of the genetic code with its
degeneracy? Many of such questions should be answered from the viewpoint of a general theory in the
future. The proposed cognitive forms of matrix genetics can be useful to create such a theory. The de-
scribed results permit one to search algebraic multi-dimensional constructions as a genetic code model
with analogical matrix properties. In the case of a success of such algebraic searching, the problem of
algebraization of bioinformatics can draw attention to the fundamental role of the genetic code. The
theory of self-development systems and self-organizing systems can utilize the described data about the
properties of the tetra-reproducing and the tetra-scaling of the genomatrices.

The presentation of the vertebrate mitochondria genetic code in the form of the genomatrices of
Kronecker family reveals unexpectedly a set of symmetries in matrix mosaics of its degeneracy. Possible
permutations of positions in triplets produce new genomatrices, which possess similar matrix symmetries
as well. Mutual interchanges of alphabetic letters A, C, G, U in matrix kernels of Kronecker families
produce new genomatrices, which also possess similar matrix symmetries. These phenomenological
facts show the prospect that the genetic code and its degeneracy are not accidental choices of nature

48



Symmetries of the Degeneracy of the Vertebrate Mitochondrial Genetic Code

at all. These facts are bases for searching algebraic multi-dimensional systems with similar properties,
which can serve as a model of the genetic code.
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Chapter 3

Biological Evolution of
Dialects of the Genetic Code

ABSTRACT

This chapter demonstrates results of a comparative investigation of characteristics of degeneracy of
all known dialects of the genetic code. This investigation is conducted on the basis of the results of
symmetrological analysis, which were described in Chapter 2, about the division of the set of the 20
amino acids into the two canonical subsets: the subset of the 8 high-degeneracy acids and the subset
of the 12 low-degeneracy acids. The existence of numerical and structural invariants in the set of these
dialects is shown. The derived results from the comparative investigation permit one to formulate some
phenomenological rules of evolution of these dialects. These numeric invariants and parameters of code
degeneracy draw attention to the formal connection of this evolution with famous facts of chrono-biology
and chrono-medicine. The chronocyclic conception of the functioning of molecular-genetic systems is
proposed on this basis. The biophysical basis of this conception provides connection to the genetic code
structures with mechanisms of photosynthesis which produce living substance by means of utilization of
solar energy. And the solar energy comes cyclically on the surface of the Earth. The revealed numeric
invariants of evolution of the genetic code give new approaches to the fundamental question, why do 20
amino acids exist? We will demonstrate new patterns of the genetic code systems.

INTRODUCTION AND BACKGROUND

Beginning with the level of the code correspondence between 64 triplets and 20 amino acids, some
evolutional changes take place, which lead to many different dialects of the genetic code. Each amino
acid is encoded in a concrete dialect by a certain quantity of triplets. This quantity of its triplets is called

DOI: 10.4018/978-1-60566-124-7.ch003

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.



Biological Evolution of Dialects of the Genetic Code

“number of degeneracy” of the genetic code. For example, the amino acid Thr is encoded by 4 triplets
in one genetic dialect; the number of degeneracy of this amino acid in this dialect is equal to 4. But this
amino acid is encoded by 8 triplets in another dialect of the genetic code, where its number of degen-
eracy is equal to 8, etc. Structures of the set of such dialects reflect features of biological evolution on
very basic levels. It seems that the comparative analysis of these dialects can give important information
about essence and mechanisms of biological organisms. The symmetry analysis of phenomenological
data is useful for answering these questions as well.

One direction, where such information can be useful, is connected with knowledge about physi-
ological rthythms in organisms. The statement that biological organisms exist in accordance with cyclic
processes of environment and with their own cyclic physiological processes is one of the most classical
statements of biology and medicine from ancient times. Many branches of ancient and modern medicine
take into account the time of day especially, when diagnostic, pharmacological and therapeutic actions
should be made for individuals. The set of this medical and biological knowledge is usually united un-
der the names chrono-medicine and chrono-biology. But is it possible to spread this chrono-biological
viewpoint from the usual level of macro-physiological systems into the molecular-genetic level? This
chapter analyzes this problem.

The second direction, where results of the comparative analysis of the dialects of the genetic code can
be useful, is connected with the question of internal structure of the set of 20 amino acids. This question
is considered in the last paragraph of this chapter.

The third direction is related to algebraic foundations of the genetic code, which will be considered
in Chapter 7.

So, the objectives of this chapter are, firstly, the comparative analysis of all known dialects of the
genetic code, secondly, the utilization of its results to develop appropriate thoughts about chrono-biology
at the molecular-genetic level and about the internal structure of the set of 20 amino acids.

The various dialects of the genetic code exist in different kinds of organisms or of their subsystems
(first of all, in mitochondria, which play a role of factories of energy in biological cells). For this book
all initial data about the dialects of the genetic code were taken by the authors from the website of the
National Center for Biotechnology Information http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.
cgi. These dialects differ one from another through their specifics of the degeneracy (through concrete
relations between 20 amino acids and 64 triplets). Based on these data, one can find that 17 dialects are
known only which differ one from another by the numbers of the degeneracy of the amino acids (see
these 17 dialects in Table 1). A small quantity of the dialects from the website differ one from another
by their start-codons only but not by the numbers of the degeneracy of the amino acids; we consider
these dialects as the same dialect in our investigation.

Concerning chrono-biology and chrono-medicine, literature sources have many brilliant words about
the great importance of biological rhythms for organisms. For example, the famous Russian physiologist
A. Bogomolets wrote about “universal rhythmic movement in biology”: “The world exists in rhythms,
cosmic processes follow the law of rhythmic movement ... The day replaces night, the time of activity
replaces the dream ... The vital processes work in an organism rhythmically ... A heart works rhythmi-
cally, and lungs breathe rhythmically, and processes of feeding of an organism are worked rhythmically,
and nervous system follows the law of a rhythm, creating a rhythm of mental life” (Vogralik & Vogralik,
1978, p. 11).

According to the famous concepts of Ancient Oriental medicine about the cyclic nature of biological
processes, “each organ has more or less a definite time interval for its culmination (its own time interval),
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when its activity is maximal, ... each organ has a maximum sensitiveness to pathogenic and medicinal
influences just in this special time interval” (Vogralik & Vogralik, 1978, p.11). This phenomenological
knowledge about the chronocyclic essence of biological organisms was used and tested during several
thousand years by generations of oriental doctors, which were specially selected from many candidates
in accordance with the criteria of their talents and of their brains. Many effective methods were con-
structed on the basis of this knowledge. (for example see (Cheng Xinnong, 1987; Needham, 1956)). One
of them is the pulse diagnostics of Tibetan medicine. This pulse diagnostics was a universal method of
diagnostics for an experienced doctor, who could determine not only many kinds of diseases, but report
sometimes about physiological past and future of his patient. It is known that a doctor traditionally
examines the state of 12 main organs during a session of pulse diagnostics (Tsydypov, 1988, p. 7). This
method shows additionally, that chronocyclic processes (pulse processes, etc.) in biological organisms
carry astonishingly complete information about organism on the whole.

Modern medicine and biology agree with many views of the Ancient Oriental medicine in questions
of chrono-medicine and internal biological clock of organisms (see for example (Dubrov, 1989; Wright,
2002)). Many diseases are connected with disturbances of natural biological rhythms in organisms. The
problem of internal clocks of organisms, which participate in coordination of all interrelated processes
of any organism, is one of the main physiological problems.

From ancient times, medicine connects chronocyclic processes of biological organisms with chro-
nocycles of the surrounding world, first of all, with the solar cycles of the changing of days and nights.
It was found that the duration of such solar cycles could be divided comfortably for many practical
tasks into 24 equal parts (“hours” by their modern name). For example, this division was comfortable
in connection with the periodical activity of human organs. Ancient Oriental doctors divided 24 hours
into 12 equal parts with a two-hour duration for each part. Each part was considered traditionally as a
time interval of culmination activity of one of 12 main physiological organs. The other 11 main organs
work in this time interval as well, but without their culmination activity. This division of 24 hours into
12 equal parts is used intensively in recipes of acupuncture, in methods of pulse-diagnostics and in other
branches of Oriental medicine (see, for example (Vogralik & Vogralik, 1978)). It is very interesting that
many of these branches of Oriental medicine, including acupuncture and pulse-diagnostics, recommend
time intervals of application of their recipes and methods in accordance with a table of 64 hexagrams
and other symbolic structures of “I Ching” (“The Book of Changes”) (see, for example (Falev, 1991)). In
these applications, the table of 64 hexagrams (which is connected with the genetic matrices of 64 triplets,
as Chapter 11 of our book demonstrates) has an interpretation and meanings in terms of chronocycles.

It should be noted that a set of biological organisms consists of two main categories of organisms:
autotrophic and heterotrophic organisms. Autotrophic organisms obtain carbon, which is needed to build
their bodies, from CO, of the surrounding world only by means of their mechanisms of photosynthesis,
based on the use of solar energy. But the sun shines from morning till night only. Intervals of cyclic
activity of autotrophic mechanisms of photosynthesis are dependent on solar cycles “day-night”. It is
well known that “autotrophic organisms with their photosynthesis mechanisms play a decisive role in
nature because they generate a main mass of organic material in the biosphere... The existence of all
other organisms and the course of biogeochemical cycles are determined by activities of autotrophic
organisms” (Giliarov, 1989, p. 9). It seems to be obvious that the solar cycle with its form “day-night”
is the most important for autotrophic organisms. This solar 24-hour cycle can be considered as a main
cycle of the outer world for biological objects. Is it possible that structural evolution of genetic code
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dialects was realized without a connection with chronocycles of the whole organism and of the outer
world and, in particular, without a connection with this solar 24-hour cycle?

Due to the reasons described above, one may conclude that genetic codes of autotrophic organisms
are the most significant ones for the investigation of'a possible connection between genetic structures and
the solar 24-hour cycle. Heterotrophic organisms are less interesting for this task. They obtain carbon for
their bodies not from CO, and photosynthesis, but from exogenous organic materials. And heterotrophic
organisms can be adapted to secondary chronocycles of those biological organisms, from which they
obtain their organic food. So, one should differentiate cases of autotrophic and heterotrophic organisms
in investigations of the dialects of the genetic code.

PHENOMENOLOGICAL RULES OF EVOLUTION OF
KNOWN DIALECTS OF GENETIC CODES

Chapter 2 described the applications of methods of symmetry to analyze internal structure of the set
of the 64 triplets and the set of the 20 amino acids. In the case of the vertebrate mitochondrial genetic
code it was revealed that the set of the 20 amino acids is divided into the two sub-sets: the sub-set of the
8 high-degeneracy amino acids (Ala, Arg, Gly, Leu, Pro, Ser, Thr, Val) and the sub-set of the 12 low-
degeneracy amino acids (Asn, Asp, Cys, Gln, Glu, His, Ile, Lys, Met, Phe, Trp, Tyr).

As we mentioned in Chapter 2, the vertebrate mitochondrial genetic code is the most ancient and
“perfect” (symmetrical) dialect of the genetic code. We consider this dialect, which is shown in Table 1
under number 1 on the first column, as the basic dialect to compare with other dialects. Let us analyze
the 17 dialects of the genetic code to reveal the possible phenomenological rules and numeric invariants
of evolution of the genetic code.

The table on Table 1 demonstrates the 17 dialects of the genetic code with their numbers of degen-
eracy. Numbers of degeneracy (ND), which are observed in the dialects, are equal to numbers from 1
to 8. For example, the first dialect of the genetic code in the table on Table 1 possesses 12 amino acids,
which number of degeneracy is equal to 2 (Asn, Asp, Cys, Gln, Glu, His, Ile, Lys, Met, Phe, Trp, Tyr); 6
amino acids, which number of degeneracy is equal to 4 (Ala, Arg, Gly, Pro, Thr,Val), and 2 amino acids,
which number of degeneracy is equal to 6 (Leu, Ser). At first it seems, that the distribution of numbers
of degeneracy in a set of the 17 dialects of the genetic codes on Table 1 is chaotic on the whole. But
this impression disappears, if one divides the set of 20 amino acids into the two subsets, which were
mentioned above: the subset of low-degeneracy amino acids, each of which is encoded by 3 triplets
or less in the dialect of the vertebrate mitochondrial genetic code, and the subset of high-degeneracy
amino acids, each of which is encoded by 4 triplets or more in the same basic dialect. Such division
reveals hidden regularities. Other kinds of the division of the set of 20 amino acids into two subsets do
not reveal hidden regularities.

The numbers of the dialects of the genetic code on Table 1 correspond to the following dialects: 1)
The Vertebrate Mitochondrial Code; 2) The Standard Code; 3) The Mold, Protozoan, and Coelenterate
Mitochondrial Code and the Mycoplasma/Spiroplasma Code; 4) The Invertebrate Mitochondrial Code;
5) The Echinoderm and Flatworm Mitochondrial Code; 6) The Euplotid Nuclear Code; 7) The Bacterial
and Plant Plastid Code; 8) The Ascidian Mitochondrial Code; 9) The Alternative Flatworm Mitochondrial
Code; 10) Blepharisma Nuclear Code; 11) Chlorophycean Mitochondrial Code; 12) Trematode Mito-
chondrial Code; 13) Scenedesmus obliquus mitochondrial Code; 14) Thraustochytrium Mitochondrial
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Table 1. The 17 dialects of the genetic code and distributions of their numbers of degeneracy (ND) among
20 amino acids (AA). The two right columns show quantities of the low-degenerate and high-degenerate
acids (XAA). Bold frames mark two categories of numbers of the degeneracy: from I to 3 and from 4
to 8 (Petoukhov, 2001a). Initial data were taken from the NCBI s website http://www.ncbi.nlm.nih.gov/
Taxonomy/Utils/wprintgc.cgi

Distribution of numbers of YAA with ZAA
degeneracy from 1 to 8
ND from 1 with
among 20 AA to3
Dialects ND from
4to8
1|2 |34 |5]|]6]7]8

1 12 6 2 12 8
2 219 |15 3 12 8
3 10145 3 12 8
4 12 6 1 1 12 8
5 8 6 1 1 12 8
6 8 5 3 12 8
7 219 |15 3 12 8
8 12 5 3 12 8
9 217 [3(}6 1 1 12 8
10 2 215 3 12 8
11 219 |15 2|1 12 8
12 1|10 1f6 1 1 12 8
13 2 L5111 12 8
14 2 1S |12 12 8
15 2 LS| 1|11 12 8
16 13 5 1 1 13 i
17 2| 8 1}6 3 1 9

Code; 15) The Alternative Yeast Nuclear Code; 16) The Yeast Mitochondrial Code; 17) The Ciliate,
Dasycladacean and Hexamita Nuclear Code.

The data on the Table 1 permit us to formulate the following phenomenological rule (Petoukhov,
2001a):

The phenomenological rule Ne 1: in genetic codes, the set of 20 amino acids contains two opposite
subsets: the first subset consists of 12 low-degeneracy amino acids (with their numbers of degeneracy
from 1 to 3), and the second subset consists of 8 high-degeneracy amino acids (with their numbers of
degeneracy from 4 to 8).
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As the authors can conclude, this rule about the canonical ratio 12:8 for two categories of amino acids
is held true in nature without any exceptions for dialects of the genetic code of autotrophic organisms.
These types of organisms play the main role in biogeochemical cycles. But this rule has small exceptions
in two cases of heterotrophic organisms in a form of minimal numeric shifting from the regular ratio
“12:8” to the nearest integers ratios: The “Yeast Mitochondrial Code” possesses the ratio “13:7” for these
two categories of amino acids, and the “Ciliate, Dasycladacean and Hexamita Nuclear Code” possesses
the ratio “11:9”. These non-standard ratios encircle the canonical ratio “12:8” from the contrary sides
of numeric axis. These non-standard ratios demonstrate additionally the main role of the canonical ratio
12:8 as that centre, around which minimal numeric fluctuations exist.

The data about evolution of the genetic code also demonstrates the existence of the following rule
about canonical sub-sets of the low-degeneracy and high-degeneracy amino acids.

The phenomenological rule Ne 2: if a triplet encodes different amino acids in different genetic codes,
then these amino acids belong to the same canonical subset of amino acids. In other words, it is practi-
cally forbidden for those triplets, which encode amino acids from one canonical subset of degeneracy,
to pass into the group of triplets during biological evolution, which encode amino acids from another
canonical subset.

A single exception to this rule exists: the triplet UAG can encode amino acids Leu or Gln in the
different canonical subsets. The rule says nothing about stop-codons, and so it does not consider those
evolutionary cases, when triplets which encode stop-codons (or amino acids) in one genetic code begin
to encode amino acids (or stop-codons respectively) in another code.

Phenomenological rules described above testify that two independent branches of evolution of the
genetic code exist at billions biological species: one branch — for canonical subset of high-degeneracy
amino acids, and another branch - for canonical subset of low-degeneracy amino acids. These evolution-
ary branches within the consolidated code system can be compared with a parallel evolution of male
and female organisms within a frame of one biological species. It reveals simultaneously that nature
realizes an association of two very different subsets of 8 and 12 amino acids in the set of 20 amino acids.
Thereby the matrix genetics reveal the existence of such internal structure in the set of 20 amino acids,
which possesses the invariant properties in evolution of the genetic code. One can find additional details
about such phenomenological rules of the dialects in the article (Petoukhov, 2001b).

THE CHRONOCYCLIC CONCEPTION AND THE DEGENERACY
IN THE DIALECTS OF THE GENETIC CODE

One can note two numerical peculiarities of the natural system of the degeneracy numbers of amino
acids in the set of the dialects of the genetic code:

1. Number 24 is the least divisible integer for numbers 8 and 12;

2. Main numbers of degeneracy of amino acids in all dialects codes are 1, 2, 3, 4, 6, §; all of them
are divisors of number 24 (four dialects have a single amino acid with its number of degeneracy 5
or 7; a rate of each of these non-typical numbers of degeneracy in the whole set of the dialects is
equal to 0.88%).
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Number 24 can be considered as the hidden constant of coordination among numbers of degeneracy
in the dialects of the genetic code. But number 24 is well known in chrono-biology and chrono-medicine
since ancient time as we mentioned above.

Chrono-medicine, which has thousand-year history, asserts that physiological systems of any indi-
vidual organism undergo regular changes of their physiological activity and passivity within the limits
of the certain time intervals, which are connected with division of day on 24 equal parts. Oriental
chrono-medicine are related to the “day-night” cycle of entrance of solar energy on the surface of the
Earth. In the field of chrono-medicine, the number 24 represents not an arbitrary division of day into
some parts, but phenomenological concordance of duration of physiological cycles with the duration
of the day-night cycle.

Modern molecular biology knows that existence of proteins, structures of which are encoded geneti-
cally, possesses a cyclic character as well. Really, it is the well-known fact that proteins in biological
organisms are re-built (re-created) by systematic cyclic processes. It means that a set of physicochemical
factors inside biological organisms disintegrates proteins into amino acids permanently and then it re-
builds them from amino acids again in a cyclic manner. A half-life period (a duration of renovation of
half of a set of molecules) for proteins of human organisms is approximately equal to 80 days in most
cases; for proteins of the liver and blood plasma — 10 days; for the mucilaginous cover of bowels — 3-4
days; for insulin — 6-9 minutes. Such permanent rebuilding of proteins provides a permanent cyclic
renovation of human organisms. These known facts are described in biological encyclopedias (for ex-
ample, see (Aksenova, 1998, v. 2, p. 19)). Such cyclic processes at the molecular-genetic level should be
investigated from various theoretical viewpoints. One possible viewpoint is given by the chronocyclic
conception (Petoukhov, 2001b, 2008), which is described below.

This chronocyclic conception interprets separate groups of amino acids (or groups of triplets) as
special “organs”, which have their culmination time intervals of their cyclic activity in 24-hour solar
cycle by analogy with time intervals of culmination activity of macro-physiological organs from the
above-mentioned conception of Oriental medicine. Of course, the cyclic activity of such genetic “organs”
is coordinated with a cyclic activity of physico-chemical factors, which provides their work, including a
necessary activation of amino acids. It is well known that “the necessary condition of proteins synthesis,
which is expressed by polymerization of amino acids, is the existence of non-free, but so called activated
(!) amino acids in the system, which amino acids have their own resource of energy. Activation of free
amino acids is realized by means of specific ferments” (Berezov & Korovkin, 1990, p. 409).

From the viewpoint of the chronocyclic conception, the 12 low-degenerated amino acids can be
interpreted conditionally as a certain interrelated ensemble of “organs”, which divides a 24-hour cycle
into a sequence of 12 equal parts with a 2-hour duration of each part. And each part corresponds to a time
interval of a culmination activity of one of these amino acids (together with physicochemical factors,
which serves this amino acid). The idea of chronocyclic culmination activities of the considered amino
acids (with their teams of servicing) is placed here in a parallel with the phenomenological knowledge
of Oriental medicine about the chronocyclic culmination activities of physiological macro-systems. It
is essential that one can examine experimentally the existence of cyclic culmination activity of each
amino acid. In our opinion, this experimental task of investigation of chronocyclic activities of amino
acids in vivo is very important for understanding the genetic coding system.

Another group with the 8 high-degenerated amino acids can be interpreted in such a model as a certain
interrelated ensemble of “organs”, which divides a solar 24-hour cycle into a sequence of 8 equal parts
with the 3-hour duration of each part.
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By the way, for those readers, who are interested in Oriental medicine and in Ancient Oriental culture,
it could be mentioned that there is a special meaning to the numeric pair “12 and 8”, which is one of the
distinquished pairs there: “8 and 12 are a standard measure of alternative separations of space-time in
Chinese chronotopograms ... The symbol of the Earth — a square — is characterized by number 8, and
the symbol of heaven — a circle - is characterized by number 127 (Kobzev, 1994, p. 39, 40).

In the modelling approach, each amino acid receives a new theoretical parameter, connected with
chronocyclic processes: the duration of its time interval of the culmination activity. More precisely, the
12 low-degenerated amino acids receive a relatively shorter duration (2 hours). The 8 high-degenerated
amino acids receive a relatively greater duration (3 hours). It permits to introduce comfortable and heu-
ristic terminology from linguistics for two considered categories of amino acids.

The set of 20 amino acids is the genetic alphabet for proteins. An analogy between genetic code
and linguistics has been widely used in science for a long time by many authors. Moreover the famous
conception exists for many years, that all linguistic languages were formed not on an empty place, but
they are a continuation of the genetic language or, anyway, are closely connected to it, confirming the
idea of unification of information bases of organisms (for example, see (Baily, 1982; Jacob, 1974)). The
book “Linguistic genetics” marks: “The opinion about the language as about living organism, which
submitted to the natural laws of nature, ascend to a deep antiquity... Research of a nature, of character
and of reasons of isomorphism between genetic and linguistic laws is one of the most important cardinal
problems for linguistics of our time” (Makovskiy, 1992, p. 15).

But alphabets of linguistic languages always consist of consonant letters and vowel letters, which
differ phonetically in terms of their time durations and relative quantities in each alphabet (the quantity
of consonant letters is greater than the quantity of vowel letters). The alphabet of 20 amino acids with
the two canonical categories of amino acids, which differ in terms of their time durations in the described
modelling approach, has a new obvious parallel with the alphabets of human languages relative to their
two categories of consonant letters and of vowel letters. Due to this parallel, one can name 12 considered
amino acids with the shorter time duration (2 hours) as “consonant” amino acids, and 8 other amino acids
with the relative greater duration (3 hours) as “vowel” amino acids. The quantity of consonant amino
acids is greater than the quantity of vowel amino acids in concordance with the relative quantities of
consonant letters and of vowel letters in linguistic alphabets.

Human speech and writing are constructed on the basis of alternating change of vowel and consonant
elements, and chained sequence of proteins is based on alternating changes of vowel and consonant
amino acids. It is probable that numerous number of physiological processes is constructed in a simi-
lar chained pattern with alternating changes of their “vowel” and “consonant” elements, which differ
typically by their time duration and which are produced there by nature. In this context about binary-
opposite categories of physiological sub-processes, vowel element is a representative from a category
of more prolonged sub-processes, and consonant element is a representative from a category of shorter
sub-processes. For example, the human cardio cycle lasts 1 second approximately at rest. In rest this
cardio cycle consists of a more prolonged activity phase in 0.6 sec and a shorter repose phase in 0.4
sec. The ratio of duration of these phases is equal to 6:4 = 12:8 = 3:2. These two phases of cardio cycles
can be correlated to two categories of durations (“vowel” and “consonant”). It should be noted that this
cardio ratio 6:4 = 12:8 = 3:2 is equal to the described ratio 12:8 between the quantity of the consonant
and vowel amino acids. This ratio 3:2 is named the quint (or the fifth) in the field of musical harmony.
This quint ratio underlies the harmony of ancient Chinese music and the Pythagorean musical scale as
Chapter 4 of our book describes in connection with materials of matrix genetics.
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From an informational viewpoint, all physiological processes in an organism can be represented as
information messages to interchange by information among different subsystems of organisms (or all
physiological processes have their information components additionally). In our opinion, this informa-
tion interchanging is realized in more or less uniform languages, which are coordinated with genetic
languages, and their alphabets can possess vowel and consonant elements as well. Due to this reason,
one should investigate all physiological processes to find representatives from two binary-opposite
categories of durations (“vowel” and “consonant”) there by analogy with linguistic alphabets.

By the way, computer informatics does not use such ordinary alphabetic symbols, which are differed
by their time durations. The reason is that a trigger technology provides equal times for trigger transitions
into “on” or “off” states. So, computer informatics and human languages have important differences in
this aspect, which is connected with deep physiological mechanisms of biological informatics including
human speech on the whole.

The very important hypothesis in the frame of the chronocyclic conception is the hypothesis about the
connection between the structure of the genetic code and mechanisms of photosynthesis. The mechanisms
of photosynthesis play the role of the initial mechanisms, which produce in cyclic manner the living
substance of autotrophic organisms in accordance with cyclic arrivals of solar energy to organisms. By
this hypothesis, the genetic code structures are connected by means of mechanisms of photosynthesis
with the 24-hour cycle of arrival of solar energy on the surface of the Earth. From this viewpoint, those
cyclic processes of macro-physiological systems of organisms, which are co-ordinated with phases of
the day-night cycle, have molecular-genetic forerunners, which are co-ordinated with these phases as
well. And secrets of structures of the genetic code are related to secrets of biological phenomenon of
photosynthesis. The efficiency of photosynthesis is not reproduced in modern laboratories till now. But
its mechanisms produce cyclically the living substance, which exists cyclically and which is encoded
genetically by means of adequate cyclic forms. In other words, one can think that photosynthesis is pri-
mary in relation to the genetic code which promotes the coded inheritance of already photosynthesized
primary matter. And structures of the genetic code (for example, the phenomenon of division into sub-sets
of the 8 and 12 acids, the specifics of numbers of degeneracy of amino acids) depend on mechanisms
of photosynthesis and the 24-hour cycle of day-night.

One of additional indirect arguments of chrono-biological dependence of structures of the genetic
code is the coincidence of matrix structures of the genetic code with tables of the ancient Chinese “I
Ching”, which underlie the Oriental chrono-medicine (see Chapter 12 of our book). By the way, G. Stent
(1969), who is the famous specialist in the field of molecular genetics, has put forward the hypothesis
about a possible connection between the set of 64 genetic triplets and the table of 64 hexagrams from “I
Ching”. As far as we know, it was the first publication on this theme, and so Stent should be considered
as a pioneer in this field of analyzing of parallels between modern molecular genetics and mysterious
knowledge of Ancient civilizations.

The chronocyclic theory of genetic codes considers molecular-genetic processes as chronocycles,
included in a mutual chorus of chronocycles of nature. It has been known for a long time, that processes
of synthesis of proteins have a cyclic character. From an ordinary viewpoint, structures of genetic code
are destined to code amino acids in their space sequence in proteins. From the viewpoint of the chrono-
cyclic theory, it is likely that these genetic structures are coding simultaneously time parameters of cyclic
processes of amino acids and of protein’s synthesis. Moreover, one can think that genetic structures are
coding, first of all, these chronocycles exactly, due to which the coding of amino acids (and of proteins) is
realized in a secondary manner. In other words, DNA and RNA are carriers of information not only about
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primary composition of proteins, but about the chronocyclic organization of amino acids and proteins as
well. From this position, those biological rhythms, which are observed at very different physiological
levels so widely, should be derived not from peculiarities of final ensembles of proteins only, but also
from peculiarities of pre-protein’s genetic structures, which carry chronocyclic information in a long
train of biological generations. The proposed chronocyclic conception includes the thesis that internal
genetic clocks exist, which are distributed inside many parts of individual organism to participate in
coordination of the whole chorus of cyclic physiological processes at different levels.

It is very likely that universal nitrogenous bases of the genetic code have one more hidden attribute
(or the trait) — chronocyclic (time) attribute. For example, complementary nitrogenous bases can be
characterized by equal typical time of a process of their junction during the formation of DNA (and of
their separation during the splitting of DNA). Two pairs of complementary bases with their 3 and 2 hy-
drogen bonds can have the appropriate ratio 3:2 of their typical times in some sense. Appropriate genetic
matrices, which include a factor of time, can be written for mono- and multiplets of genetic systems. It
is very probable that genetic structures are coding not only the synthesis of proteins, which is the first
stage in life of proteins, but also the whole cycle of their life including their disintegration phase. One
can think that a future theory of genetic systems will include a theoretic consideration of these cyclic
phenomena of protein’s life in connection with other cycles of nature.

Concerning the unity of a biological organisms, one should emphasize that structures of all physiologi-
cal systems, which have a chronocyclic character of their work, should be coordinated with structural-
cyclic peculiarities of genetic coding system to provide the evolutionary survival of these physiological
systems by means of their reproduction in next generations.

WHY 20 AMINO-ACIDS?

Many attempts to answer on this fundamental question are known. On the basis of the described phe-
nomenological rules of evolution of dialects of the genetic code, one can propose the new possible
answer: the set of 20 acids are presented in genetic code, that is formed by two alternative subsets of
8 and 12 amino acids. Therefore the initial question comes down to the deeper question: why dose the
two alternative sub-sets of the 8 high-degeneracy acids and the 12 low-degeneracy acids exist in the set
of 20 amino acids?

A possible answer on this new fundamental question is related to the revealed fact, that these two
sub-sets constitute two independent branches of evolution within a genetic code as it was described
above. These numbers 8 and 12 have their tetra-presentation: 8 =4x2, 12 = 4x3. In this presentation, the
number 8 contains the number 2 as its modular block, and the number 12 contains the number 3 in the
analogical role. Just a biological mechanism of tetra-segregations can be responsible for the realization
of such two sub-sets of amino acids. Each modular block of the sub-set of the 8 high-degeneracy acids
consists of two amino acids, and each modular block of the sub-set of the 12 low-degeneracy acids
consists of three amino acids. One can note the formal analogy between these 2-part and 3-part blocks
and the famous fundamental hypothesis from the quite different field of physics of elementary particles:
according to the quark hypothesis, baryons consist of three quarks, and mesons consist of two quarks
(the quark and the anti-quark). Is it possible for formal elements of the quark theory to be transferred
into the field of the theory of the genetic structures? The future will show.
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Additional investigations have revealed that the considered pair of alternative attributes (“high-
degenerative and low-degenerative”™) is not a single pair for a division of the set of 20 amino acids into
subsets of 8 and 12 amino acids. The genetic code is constructed so, that such division is a typical one
for many other pairs of real binary-opposite attributes, in relation to which such division is considered.
Similar divisions, but with different sub-sets of 8 and 12 amino acids, are given by such binary-opposite
attributes as “complementary-uncomplementary” amino acids, “high-carbon or low-carbon” amino
acids, “hydrophobic or hydrophilic” amino acids, “eightfold or non-eightfold quantity of protons” in
amino acids (Petoukhov, 2001b, 2005). One can think that such multichoice phenomenon of the typical
segregation of the set of 20 amino acids into the two sub-sets with their ratio 12:8 is connected with
providing the parallel channels of biological information, which work with different binary-oppositional
attributes (He & Petoukhov, 2007).

For the proposed viewpoint about the principle of the tetra-segregation, Figure 1 demonstrates a
confirmative example with sub-sets of complementary and uncomplimentary amino acids: the existence
of the sub-sets of the 8 and 12 amino acids is provided by the principle of their tetra-construction from
typical modular blocks with 2 units and with 3 units (8=4x2 and 12=4x3). Complementary amino ac-
ids are those, which are encoded by groups of codons and their anti-codons. One can see from Figure
2 of Chapter 2, that the 8 amino acids form the four pairs of complementary amino acids (Pro-Gly,
Arg-Ala, Lys-Phe, Met-Tyr), but other 12 amino acids are uncomplementary ones. The sub-set of the
8 complementary amino acids is divided into those four pairs (or four modular blocks with two amino
acids), each of which is encoded by triplets from a separate family of N-triplets. And the sub-set of the
12 uncomplementary amino acids is divided into those four triples (or four modular blocks with three
amino acids), each of which is encoded by triplets from a separate families of N-triplets (in the case
of each of the amino acids Ser and Leu, we take here into account those family of N-triplets, all four
triplets of which encode it in Figure 2 of Chapter 2). So, each of four families of N-triplets encodes 2
complementary amino acids and 3 uncomplementary ones.

FUTURE TRENDS AND CONCLUSION

The analysis of symmetries in numbers of degeneracy of many kinds of the dialects of the genetic code
have led to discoveries of some phenomenological rules about numeric invariants and regularities in this
evolution. The obtained results produced new concepts about chronocyclic aspects of the molecular-
genetic system and about the fundamental question, why do 20 amino acids exist. These results will be
used in Chapter 7, where the 8-dimensional algebra of the genetic code is described.

The phenomenological data about evolution of the genetic code needs to be investigated further.
Why do only some triplets change their coding meaning in the course of biological evolution? In what
aspects do these variable triplets differ from conservative triplets? Is it possible to propose such adequate
mathematical model of the genetic code, which reflects the evolutionary peculiarities of the dialects?
One can think that methods of symmetry analysis will be useful to solve these and other similar ques-
tions as well.

The proposed chronocyclic conception gives some new approaches to investigate functional features
of the molecular-genetic systems experimentally and theoretically. The heuristic research of internal
genetic clocks, which are distributed along all parts of the whole organism, has an important meaning to
understand a coordinated organization of various biological rhythms at different biological levels. Obvi-
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Figure 1. An example of the presentation of the set of 20 amino acids (AA) as a sum of two subsets with
8 =4x2and 12 =4 x 3 acids of complementary and uncomplementary types according to Figure 2
of Chapter 2. The first tetra-subset has the four pairs of amino acids of the complementary type. The
second tetra-subset has the four triples of the uncomplementary amino acids correspondingly. Triplets
from the same four families of N-triplets encode these two tetra-subsets of amino acids

8 =4 x 2 complementary AA

h 4 A 4 v h 4
Pro, Arg Lys, Met Phe, Tyr Ala, Gly
20= (C-triplets) (A-triplets) (U-triplets) (G-triplets)
8+12
AA
12 =4 x 3 uncomplementary AA
A Y h 4 A
Gln, His, Leu Asn, Ile, Thr Cys, Trp, Ser Asp, Glu, Val
(C-triplets) (A-triplets) (U-triplets) (G-triplets)

ously, such research has not only theoretical, but practical aims also. For example, at what time and how
frequently should we give pharmacological medicines? It is well-known that the same pharmacological
medicines have very different effects depending on a time of its taking. A knowledge about internal
genetic clocks of organisms is very valuable for pharmacological and physiotherapeutic influences, for
conducting of morphogenetic and growth processes, for ergonomic stimulation in man-machine systems
and for many other tasks.

The chronocyclic conception extends additionally the traditional field of investigations of parallels
between genetic and linguistic languages by introducing the reasoned notions of the vowel and consonant
amino acids. The conception produces arguments also to study typical binary-oppositional kinds of time
durations (short and long durations with typical ratios between them, for example, with the quint ratio
3:2) in various physiological processes on different biological levels.

The proposed answer on the fundamental question about the set of 20 amino acids brings down this
question to the deeper one about the 8 high-degeneracy acids and the 12 low-degeneracy acids. Inves-
tigations of various aspects of this answer revealed the phenomenon of existence of many variants of
division of this set into two sub-sets of 8 and 12 acids depending on a choice of a few kinds of molecular
binary-oppositional attributes.

In our opinion, an additional comparative analysis of dialects of the genetic code will give many
essential results to understand specifics of the genetic code systems and their evolution. Methods of
symmetry and of matrix genetics will be utilized extensively in these researches. They will permit to
discover not only phenomenological rules of molecular-genetic evolution but also to develop appropriate
mathematical models of genetic systems (see Chapter 7).

The chronocyclic conception will unite many isolated facts and details of cyclic processes in
molecular-genetic systems and will facilitate understanding the connection between cyclic processes
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at molecular-genetic and macro-physiological levels. The progress in investigations of genetic clocks,
which are distributed inside many parts of the whole organism, can help to overcome those diseases,
which are connected with disturbances of biological rhythms. One can hope that this progress will be
useful for solving the problem of ageing of human organisms, which is related to violation of physi-
ological cycles to some extent as well. The science knows examples of biological organisms, which are
immortal practically and which utilize endless cycles.

A bridge between the famous theory of hypercycles by Eigen (1971, 1979, 1988, 1992, 1993) and
hierarchies of cyclic processes at molecular-genetic level is possible to some extent for tasks of model-
ing.

The investigation field of parallels between genetic and linguistic languages will be extended by uti-
lizing the notions “vowel” and “consonant”. Possible researches of physiological processes with typical
binary-oppositional kinds of their durations (with the quint ratio 3:2 and others) will demonstrate new
fields of a specific coordination of processes in biological organism at its various levels.

The proposed answer to the question of the set of 20 amino acids stimulates new ideas about structures
of the genetic code and leads to new researches about the phenomenon of many variants of division of
this set into two sub-sets with 8 and 12 acids depending on concerned binary-oppositional attributes
of genetic molecules. A possible meaning of this new typical pattern of the division with the ratio 8:12
should be investigated from various viewpoints.

The analysis of symmetries in internal structures of the sets of the 64 triplets and of the 20 amino
acids leads to useful results, which help in investigating the evolution of the genetic code. Experimen-
tal data of molecular genetics about many dialects of the genetic code can be utilized by means of the
comparative symmetrical analysis to discover phenomenological rules of evolution of the genetic code.
The described phenomenological rules draw attention to existence of numeric invariants in evolution
of these dialects and to phenomenon of the division of the set of the 20 amino acids into two sub-sets of
the 8 high-degeneracy acids and the 12 low-degeneracy acids. This division is the new typical pattern
in molecular genetics.

The proposed chronocyclic conception leads to new ideas for experimental and theoretical researches
to understand the general chorus of cyclic processes in each biological organism.

The results of investigations, which were described in this chapter, will be utilized to develop the
mathematical model of the genetic code and to extend applications of methods of symmetry in the field
of molecular genetics.
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Section 2
Symmetrical Analysis
Techniques and Numeric
Matrices of the Genetic Code

Section 2 is organized into three chapters. This section discusses numeric matrices of genetic code and
establishes the relationships between genetic code, stochastic matrices, and Hadamard matrices. The
noise immunity, encoding and principle of molecular economy in genetic informatics, and Fibonacci
numbers and phyllotaxis laws are presented in this section.
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Chapter 4

Numeric Genomatrices of
Hydrogen Bonds, the Golden
Section, Musical Harmony,
and Aesthetic Feelings

ABSTRACT

This chapter is devoted to a consideration of the Kronecker family of the genetic matrices, but in the
new numerical form of their presentation. This numeric presentation gives opportunities to investigate
ensembles of parameters of the genetic code by means of system analysis including matrix and symmetric
methods. In this way, new knowledge is obtained about hidden regularities of element ensembles of the
genetic code and about connections of these ensembles with famous mathematical objects and theories
from other branches of science. First of all, this chapter demonstrates the connection of molecular-
genetic system with the golden section and principles of musical harmony.

INTRODUCTION AND BACKGROUND

Till this moment we analyzed the symbolic genetic matrices. Now we begin to analyze numeric genetic
matrices, which are produced from the symbolic genomatrices. What are initial reasons to pay attention
to numeric genomatrices?

The previous chapters demonstrated that the Kronecker product of matrices is useful for analysis
of genetic code and is adequate for its structure. But the Kronecker product possesses some distinctive
properties, which are connected with eigenvalues of matrices: eigenvalues of the Kronecker product
A®B for two matrices A and B, which have their eigenvalues o, and B,, are equal to the products o.*f,
of these eigenvalues. This property gives an additional opportunity to introduce the notion of the Kro-
necker product into mathematics (Bellman, 1960). But if eigenvalues are so important for the theme of
Kronecker products, one should investigate numeric genomatrices, which possess eigenvalues (symbolic
matrices do not possess eigenvalues).
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Also we will try to investigate genetic sequences from the viewpoint of the theory of digital signal
processing. This theory presents a signal in the form of a sequence of its numeric values in points of refer-
ences. Discrete signals are interpreted as vectors of multi-dimensional spaces: a value of the signal in each
time (a moment of reference) is interpreted as the value of one of the coordinates of multi-dimensional
space of signals (Trahtman, 1972). The theory of discrete signals processing is the geometrical science
about multidimensional spaces in some extent. The number of dimensions of such space is equal to the
quantity of moments of references for the signal. Appropriate metric notions and other necessary things
for providing the reliability, velocity and economy of information transfer are introduced in these multi-
dimensional vector spaces. For example, important information notions of the energy and of the power
of'a discrete signal are correspondingly the square of the length of the vector-signal and the same square
of the length of the vector-signal, which is divided by the number of dimensions. Various signals and
their ensembles are compared as geometrical objects of such metric multi-dimensional spaces.

These methods underline technologies of signal intelligence and pattern recognition, detections and
corrections of information mistakes, artificial intellect and robot learning, etc. If we wish to use the
methods of the theory of discrete signals processing for analyzing the genetic structures, we should learn
to turn from the symbolic genetic matrices and genetic sequences to their numeric analogies.

The method, which is utilized in this book for such a turn, replaces the letter symbols A, C, G, U(T)
of the genetic alphabet by quantitative parameters of these nitrogenous bases, which determine their
physical-chemical role (Petoukhov, 2001a). First of all, these symbols are replaced in this chapter by
numbers of the hydrogen bonds, which are suspected long ago as important participants of transferring
of genetic information. Each molecular element of the genetic code is a component part of a harmonic
system of genetic coding. Its molecular parameters are coordinated with quantitative parameters of
other elements of this system. Quantitative characteristics of separate elements should be investigated
as a part of the set of quantitative characteristics of system ensemble of elements. The matrix approach
is known in science long ago as very effective for system investigations, for example, in the fields of
quantum mechanics, physics of elementary particles, etc. In the field of matrix genetics, this approach
unites parameters of a set of separate elements not only in a general matrix, but in the whole family of
genetic matrices, which embraces sets of multiplets of different lengths (Figure 3 of Chapter 1). In this
way hidden connections between parameters of separate parts of the united genetic system can be revealed
together with their relations to famous physical and mathematical constants and other objects.

One of such famous constant is the golden section or “the divine proportion” ¢, which is equal to
(1+5%%)/2 =1.618... . This chapter demonstrates the connection of the genetic code parameters with the
golden section in particular. The golden section is related to the famous series of Fibonacci numbers F,
where n =0, 1, 2, 3,.... This Fibonacci series F, (Figure 1) begins with the numbers 0 and 1. Each next
member of this series is equal to the sum of two previous members: F, = F + F . Fibonacci numbers
are used widely in the theory of optimization and in many other fields. One can find a rich collection of
data about the golden section and the Fibonacci numbers on the web-site of “The museum of harmony
and the golden section” by A.Stakhov (www.goldenmuseum.com) and in works (Jean, 2006; Kappraff,
1990, 1992).

Another hidden connection, which is revealed by means of the matrix approach, is the connection
of the genetic code parameters with the Pythagorean musical scale. It is known that thoughts about the
key significance of harmonious vibrations in the organization of the world exist from ancient time. For
example, Pythagoreans thought about musical intervals in the planetary system and in all around. J.
Kepler wrote the famous book “Harmonices Mundi”, etc. Modern atomic physics found the harmonic
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Figure 1. The Fibonacci series
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ratios in spectral series by T. Lyman in the atom of hydrogen, which has been named “music of atomic
spheres” by A. Einstein and A. Sommerfeld (Voloshinov, 2000). The importance of Pythagorean ideas
about a role of musical harmony was emphasized also by the Nobel winner in physics R. Feynman
(1963, v. 4, Chapter 50).

The scientific studies of physiological mechanisms of musical perception took place long ago. One
can find the review on this topic in the article (Weinberger, 2004). Beginning with 4-months old, infants
turn to a source of pleasant sounds (consonances) and turn aside a source of unpleasant sounds (dis-
sonances). The human brain does not possess a special center of music. The feeling of love to music
seems to be dispersed in the whole organism. The musical sound addresses to all in the person, or to
person’s archetypes. Data are known that the first shout of the baby, who has been born, corresponds
to sounds on frequency of the music note “la” (440 Hz) irrespective of its timbre and of loudness, as
a rule. (http://www.rods.ru/Html/Russian/MoreResonance.html). This frequency is used traditionally
for tuning musical instruments by means of a tuning fork. This speaks certain biological unification of
musical sounds. According to statistics, physical reactions to music (in the form of skin reactions, tears,
laugh, etc.) arise in 80% of adult people. Animals also are not indifferent to human music. All such data
show that the perception of music has biological essence and that the feeling of musical harmony is
based on inborn mechanisms. Therefore it is necessary to search for connections of the genetic system
with musical harmony. In particular this chapter presents such a search.

It is known for a long time in the field of mechanics that harmonious vibrations are capable of struc-
turally forming and ordering influences leading, for example, to the formation of so-called figures by
Chladni. The book (Jenni, 1972) presents the scientific field, which studies ordering action of harmoni-
ous vibrations on many shapeless free-flowing and liquid substances. This book demonstrates through
many photos how these vibrations produce in these substances beautiful morphological patterns including
five-symmetrical patterns, which are forbidden in classical crystallography. Questions about symmetries
in music and poetry were investigated traditionally (see for example (Bruhn, 1992, 1996; Darvas, 2007;
Goldman, 1992; Lendvai, 1993; Shubnikov & Koptsik, 1974; Tusa, 1994)).

The living substance is compared with crystals frequently. For example, E. Schrodinger (1955)
named it “aperiodic crystal”. Whether annals of modern science contain any data about a connection
of musical harmony with crystals? Yes, such data exist. The book (Berger, 1997, p. 270-281) gives the
following historical data about a few prominent crystallographers, which emphasized a connection of
crystal structures with musical harmony.

In 1818, C.S. Weiss, who discovered crystallographic systems and who was one of founders of crys-
tallography, emphasized a musical analogy in crystallographic systems. He investigated ratios among
segments, which are formed by faces of crystals of the cubic system. Weiss has shown that these ratios
are identical absolutely to ratios between musical tones.

In 1829, J. Grassman, who wrote a well-known book “Zur physischen Kristallonomie und geometrishen
Combinationslehre” and developed many mathematic methods in crystallography, noted impressive
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musical analogies in the field of crystallography. The statement is about many analogies described by
him between ratios of musical tones and segments, formed by faces of the same zone of crystals. Accord-
ing to his figurative expression, “crystal polyhedron is a fallen asleep chord - a chord of the molecular
Sfluctuations made in time of its_ formation” (from (Berger, 1997, p. 270)).

At the end of 1890’s the outstanding crystallographer V. Goldschmidt returned to the same ideas. The
prominent Russian mineralogist and geochemist A. E. Fersman wrote about his thematic publications:
“These works represent the historical page in crystallography, which has lead Goldschmidt to reveal-
ing by him laws of harmonic ratios. Goldschmidt has extended these laws logically from the world of
crystals into the world of other correlations in the regions of paints, colors, sounds and even biological
correlations. It has become one of the most favourite themes of philosophical researches by Goldschmidt”
(from (Berger, 1997, p. 270)). This list of such historical examples can be continued.

Taking into account, that Shrodinger named a living substance as aperiodic crystal and that the clas-
sicists of crystallography emphasized a connection between crystal structures and musical harmony, it
seems natural to try to find traces of musical harmony in living substance as well. This idea about a pos-
sible participation of musical harmony in the organization of biological organisms is not new for modern
biophysics. For example, the famous Russian biophysics Simon Shnoll (1989) wrote: “From possible
consequences of interaction of macromolecules of enzymes, which are carrying out conformational (cyclic)
fluctuations, we shall consider pulsations of pressure - sound waves. The range of numbers of turns of the
majority of enzymes corresponds to acoustic sound frequencies. We shall consider ... a fantastic picture
of “musical interactions” among biochemical systems, cells, bodies, and a possible physiological role of
these interactions. ...... It leads to pleasant thoughts about nature of hearing, about an origin of musical
perception and about many other things, which belong to area of biochemical aesthetics already”. This
term “biochemical aesthetics” proposed by Schnoll reflects many materials of this chapter.

Let us recall some fundamental notions of the theory of musical harmony. Each musical note is
characterized by its certain frequency of sounding. For musical melody, a ratio between frequencies of
neighboring notes is important, but not absolute values of frequencies of separate notes. For this reason
the melody is easily distinguished irrespective of what acoustic range of frequencies it is produced in,
for example, by child, woman or adult man with quite different voices. An aggregate of frequency values
between sounds in musical system is named a musical scale.

The same note, for example, the note “do” is distinguished by the person as the same if its frequency
is increased or reduced twice i.e. if it belongs to another octave. The interval of frequencies from some
note frequency f; up to frequency 2*f  is named an octave. Each note “do” is considered usually as the
beginning of the appropriate octave. For example, the first octave reaches from frequency 260 Hz ap-
proximately (the note “do” of the first octave) up to the double frequency 520 Hz (the note “do” of the
second octave).

Small quantity of frequencies of the octave diapason is traditionally used for musical notes only but
not the whole infinite set of its frequencies. The notes, which correspond to these frequencies, form the
certain sequence in ascending order of frequencies. A musical scale represents a sequence of numerical
values (“interval values”) between frequencies of the adjacent notes (musical tones).

For Europeans the idea of musical harmony of a universe is connected basically with the name
Pythagoras and his school. After ancient thinkers (first of all, ancient Chinese thinkers) Pythagoreans
considered that the world is arranged by principles of musical harmony. The Pythagorean musical scale,
which is based on the quint ratio 3:2, played the main role in these views. One should note that this
musical scale was known in Ancient China long before Pythagoras, who has presumably got acquainted
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within his life in Egypt and Babylon (the analysis of these questions is presented in detail in the book
(Needham, v.4, 1962)). In Ancient China this quint music scale had a cosmic meaning connected with
“The Book of Changes” (“I Ching”): numbers 2 and 3 were named “numbers of Earth and Heaven”
there. After Ancient China, Pythagoreans considered numbers 2 and 3 as the female and male numbers
which can give birth to new musical tones in their interconnection. According to some data, the quint
system of the musical scale is the most ancient among known systems in the history of musical scales
(http://www.arbuz.uz/t_octava.html).

Ancient Greeks attached an extraordinary significance to the search of the quint 3:2 in natural systems
because of their thoughts about musical harmony in the organization of the world. For example, the great
mathematician and the mechanician Archimedes considered as the best result of his life the detection of
the quint 3:2 between volumes and areas of a cylinder and a sphere entered in it (Voloshinov, 2000). Just
these geometrical figures with the quint ratio were pictured on his gravestone according to Archimedes
testament. And due to these figures Cicero has found Archimedes’s grave later, 200 years after his death.
This chapter demonstrates, in particular, the connection of the Kronecker family of the genomatrices of
hydrogen bonds with the Pythagorean musical scale based on the quint ratio 3:2.

NUMERIC GENOMATRICES OF HYDROGEN BONDS

As we mentioned above, numeric genomatrices are derived from the replacement of each symbol A, C,
G, U/T of the nitrogenous bases in the symbolic genomatrixes P®™=[C A; U G]™ (Figure 3 of Chapter
1) by quantitative parameters of these bases. For example, let us consider the genomatrices of hydrogen
bonds of these nitrogenous bases. The hydrogen bonds of complementary letters of the genetic alphabet
are suspected for a long time for their important information meaning. In addition hydrogen plays the
main role in the composition of our Universe, where 93 atoms of hydrogen are presented among each
100 atoms and where “chemical influence of omnipresent hydrogen is the defining factor” (Ponnampe-
ruma, 1972). Thus the investigation of a possible meaning of hydrogen bonds in genetic information
has a special interest.

The complementary letters C and G have 3 hydrogen bonds (C = G = 3) and the complementary let-
ters A and U have 2 hydrogen bonds (A = U =2). Let us replace each multiplet in the Kronecker family
of the genomatrices P =[C A; U G]® by the product of these numbers of its hydrogen. In this case, we
get the Kronecker family of the multiplicative matrices marked as P, = [3 2; 2 3]® conditionally
(another family of additive matrices was considered in the works (Petoukhov 1999, 2001, 2003-2004)).
For example, the triplet CAU will be replaced by number 12 (=3*2*2) in the genomatrix P, .. Figure
2 demonstrates the three initial genomatrices from this Kronecker family of genomatrices [3 2; 2 3]®
constructed in this way. Numeric characteristics of each genomatrix [3 2; 2 3]® are connected with the
quint ratio 3:2; for this reason we name such genomatrices as quint genomatrices conditionally.

All matrices P, . are nonsingular. They are symmetrical relative to both diagonals and can be
named “bi-symmetric matrices”. All rows and all columns of this matrix differ from each other by the
sequences of their numbers. But the sums of all numbers in the cells of each row and of each column
in any matrix P, are identical to each other. For example, in the case of the matrix P, @, these
sums are equal to 125 = 5° and the total sum of numbers inside the matrix is equal to 1000. A rank of
this matrix is equal to 8. Its determinant is equal to 5'2. Eigenvalues of P, @ are 1, 5, 5, 5, 5%, 5%, 57,

5°. The matrix P, @ has four kinds of numbers only: 8, 12, 18 and 27. The certain laws are observed

69



Numeric Genomatrices of Hydrogen Bonds, the Golden Section, Musical Harmony, and Aesthetic Feelings

Figure 2. The beginning of the family of the quint multiplicative genomatrices P, " = [3 2; 2 3]",
which are based on product of numbers of hydrogen bonds (C=G=3, A=U=2)
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in their disposition, which are connected with a few interesting properties of this matrix, including the
property of invariance of its numeric mosaic under many mathematical operations with this matrix (see
below).

THE NUMERIC GENOMATRICES AND THE GOLDEN SECTION

In biology, a genetic system provides the self-reproduction of biological organisms in their generations.
In mathematics, the “golden section” (or the “divine proportion”) and its properties were a mathemati-
cal symbol of self-reproduction from the Renaissance and they were studied by Leonardo da Vinci, J.
Kepler and many other prominent thinkers (see details in the website “Museum of Harmony and Golden
Section” by A. Stakhov, www.goldenmuseum.com). Is there any connection between these two systems?
Yes, and this paragraph demonstrates such unexpected connection.

The golden section is the value ¢ = (1+5%%)/2 = 1.618... (Sometimes the inverse of this value is
called the golden section in literature). If the simplest genetic matrix P, . is raised to the power
¥4 in the ordinary sense (that is, if we take the square root), the result is the bi-symmetric matrix ® =
(Puir™)"?, the matrix elements of which are equal to the golden section and to its inverse value. And
if any other genomatrix P, . =[3 2; 2 3]" is raised to the power "2 in the ordinary sense, the result
is the bi-symmetric matrix ®* = (P, )", the matrix elements of which are equal to the golden sec-
tion in various integer powers with elements of symmetry among these powers (Figure 3). For instance,
the matrix @, @ = (P, )" has only two pairs of inverse numbers: @' and ¢!, ¢’ and ¢~ (Figure
3). Matrices with matrix elements, all of which are equal to golden section ¢ in different powers only,
can be referred to as “golden matrices”. Figuratively speaking, the quint genomatrices have the secret
substrate from the golden matrices. The product of all numbers in any row and in any column of these
golden matrices is equal to 1.

The mentioned matrix elements of the matrix @ = (P ) can be constructed from a combina-
tion of ¢ and ¢! directly by the following algorithm. We take a corresponding multiplet of the matrix
P® =[C A; U G]™ and change its letters C and G to ¢. Then we take letters A and U in this multiplet
and change each of them to ¢'. As a result, we obtain a chain with “n” links, where each link is ¢ or
¢". The product of all such links gives the value of corresponding matrix elements in the matrix ®®.
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Figure 3. The beginning of the Kronecker family of the golden matrices @™ = (P,  .")"?, where ¢ =
(1+5%3)/2 =1, 618... is the golden section
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For example, in the case of the matrix ®® = (P, )" let us calculate a matrix element, which is dis-
posed at the same place as the triplet CAU in the matrix [C A; U G]® =P®. According to the described
algorithm, one should change the letter C to ¢ and the letters A and U to ¢'. In the considered example,
we obtain the following product: (¢ * ¢! * ¢') = ¢!. This is the desired value of the considered matrix
element for the matrix ®® on Figure 3.

A ratio between adjacent numbers in numerical sequences inside each of such matrices @ (for ex-
ample, ...@3, @7, ¢!, 3 ...) is equal to @? always. The same ratio @?* exists in regular 5-stars (Figure 4)
as a ratio between sides of the adjacent stars entered in each other (this pentagram is the ancient symbol
of health).

The golden section is presented in 5-symmetrical objects of biological bodies (flowers, etc.), which
are presented widely in the living nature but which are forbidden in classical crystallography. It exists
as well in many figures of modern generalized crystallography: quasi-crystals by D. Shechtman, R.
Penrose’s mosaics (Gardner, 1988; Penrose, 1989), dodecahedrons of ensembles of water molecules,
icosahedron figures of viruses, biological phyllotaxis laws, etc.

One can propose the new principal - “matrix-genetic” - definition of the golden section on the basis
of the matrix specifics of genetic code systems: the golden section ¢ and its inverse value ¢! are single
matrix elements of a bi-symmetrical matrix @, ., which is the square root from such a bi-symmetrical
(2x2)-matrix P the elements of which are genetic numbers of hydrogen bonds (C=G=3,A=U=
2) and which has a positive determinant.

This matrix-genetic definition does not use traditional elements of definition of the golden section:
line segments, their proportions, efc. Probably, many realizations of the golden section in nature are
related to its matrix essence and with its matrix representation. It should be investigated especially and
systematically, where in natural systems and phenomena we have the bi-symmetric matrix P with

MULT
its matrix elements 3 and 2 in a direct or masked form (for example, in a form of pairs of numbers 6 and
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Figure 4. Sizes of pentagrams, which are entered in each other, differ by scale factor ¢*

F

4,0r 9 and 6, or 12 and 8, etc. with the same proportion 3:2, which is so frequent for ratios of elements
in genetic codes). One can hope to discover many new system phenomena and connections between
them in nature in this way.

The new theme of the golden section in genetic matrices seems to be important because many physi-
ological systems and processes are connected with it. It is known that proportions of a golden section
characterize many physiological processes: cardio-vascular processes, respiratory processes, electric
activities of brain, locomotion activity, etc. The golden section is described and is investigated for a long
time in phenomena of aesthetic perception as well. Taking into account these facts, the golden section
should be considered as the candidate for the role of one of base elements in an inherited interlinking
of the physiological subsystems, which provides unity of an organism. The matrix relation between the
golden section ¢ and significant parameters of genetic codes testifies in a favor of a molecular-genetic
providing such physiological phenomena. One can hope that the algebra of bi-symmetric genetic ma-
trices, which are connected with the theme of the golden section, will be useful for explanation and the
numeric forecast of separate parameters in different physiological sub-systems of biological organisms
with their cooperative essence and golden section phenomena.

The Kronecker families of the golden genomatrices and of the quint genomatrices are connected with
the famous triangle by Pascal by means of quantities of equal numbers, which are presented in sequences
of the matrices of the increasing size. Really, as one can see from Figure 3, the golden (2x2)-matrix
contains one number ¢' and one number ¢'; the (22x2%)-matrix contains one number ¢?, one number
¢ and two numbers ¢°; the (23x2%)-matrix contains one number ¢°, one number ¢, three numbers @,
three numbers ¢!, etc. At their appropriate arrangement, which is shown in Figure 5, Pascal’s triangle
is formed.
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Figure 5. The Pascal’s triangle for quantities of iterative kinds of numbers in the Kronecker family of
the golden matrices from Figure 3. The brackets contain iterative kinds of numbers in the matrix of
corresponding size

Matrix size Pascal’s triangle

2'x2! 1(0)  1(¢™)

2°x2* 1(¢) 209" ¢

2% 19°) 3() 3 1)
22! 1(0") 49" 6(9")  4(0?) 1o

The molecular system of the genetic alphabet is constructed by nature in such manner that other
genetic matrices play the role of quint matrices and golden matrices for other parameters (Petoukhov,
2005). For example, the quantities of atoms in molecular rings of pyrimidines and purines: the ring of
purine contains 6 atoms and the ring of pyrimidine contains 9 atoms. From the viewpoint of this kind of
parameters, C = U =6, A= G = 9. The ration 9:6 = 3:2 is equal to the quint. Thus the symbolic matri-
ces [AC; UG]"™, [GC; UA]", [AU; C G]™, [G U; A C]™ become the threefold quint matrixes in the
Kronecker power “n” in the case of replacement of their symbolic elements by these numbers 9 and 6.
The square root of such numeric matrices is connected with the golden matrices obviously.

Abiological organism is the master on the use of a set of parallel information channels. It is enough to
remind about many sensory channels by means of which we obtain sensory information simultaneously:
visual, acoustical, tactile, etc. It is probable, that many kinds of genetic matrices are used by organism
in parallel information channels as well.

The theory of discrete signals processing utilizes the important notions of the energy and of the power
of signals (see details above in the background of this chapter). If one interprets any row of the quint
genomatrix P, @ =[C A; U G]™ as a vector-signal, then the energy of such vector-signal is equal to
13" and its power is equal to (13/2)". If one interprets any row of the golden genomatrix ®® = ([C A; U
G]™)%3 as a vector-signal, then the energy of such vector-signal is equal to 3" and its power is equal to
the value (3/2)", where the quint ratio participates.

The bi-symmetric genomatrices @ and P, . have unexpected group-invariant property, which
is connected with multiplications of matrices and which can be named “mosaic-invariant property”. We
will explain this property through the example of the matrix P, .© from Figure 2. This matrix consists
of four numbers: 8, 12, 18 and 27 only with their special disposition. The numbers 8 and 27 are disposed
at matrix diagonals separately in the form of a diagonal cross. The numbers 12 are disposed in matrix
cells, a set of which produces a special mosaic. Such mosaic can be referred to as a “symbol 69 condi-
tionally (one can note, that the symbols “6” and “9” are famous in “I Ching” as traditional symbols of
Yin and Yang correspondingly, but such coincidence can be accidental). The numbers 18 are disposed
in matrix cells, a set of which produces a mirror-symmetrical mosaic in comparison with a 69-mosaic of
the previous case. Figure 6 demonstrates these two cases by means of the set of dark matrix cells with
numbers 12 (left matrix) and with numbers 18 (right matrix).
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Figure 6. The mosaic of cells with number 12 (left, the cells marked by dark) and the mosaic of cells

with number 18 (right) from the multiplicative matrix P, , @ (Figure 2)

It is known that if an arbitrary octet matrix with four kinds of numbers as its matrix elements is raised
to the power of “n”, the resulting matrix will have usually many more kinds of numbers with very differ-
ent disposition (up to 64 kinds of numbers for 64 matrix cells). But our bi-symmetrical genetic matrices
have the unexpected property of invariance of their numeric mosaic after the operation of raising to the
power of “n”. For example, if the octet matrix P, @ is raised to the power of 2, the resulting octet
matrix (P, .®)* will have a new set of four numbers 2197, 2028, 1872 and 1728 (instead of the initial
four numbers 27, 18, 12 and 8 correspondingly) with the same disposition inside the octet matrix.

It is essential that this beautiful property of invariance of the numeric mosaic of the genetic matrix
is independent of values of numbers. This property is realized for such matrices with the arbitrary set
of four numbers a, b, ¢, d, if they are located in the same manner inside a matrix. Moreover, if we have
one matrix X with a set of four numbers “a”, “b”, “c”, “d ” and another matrix Y with another set of four

99 G699 GG 9

numbers “k”, “m”, “p”, “q”, then the product of these matrices will be the matrix Z = X*Y with a set of
new four numbers “r”, “g”, “v”, “z” and with the same mosaic of their disposition (Figure 7).

It is obvious that the four symbols (for example, a, b, ¢, d) in such matrices can be not only ordinary
numbers, but also arbitrary mathematical objects: complex numbers, matrices, functions of time (for
example, it can be that a=R*cos(wt), b=T*sin(wt), ...), etc. In particular, the possibility of the modeling
of chronocyclic functions by means of such mosaic-invariance matrices can be useful for the chronocyclic
theory of degeneracy of genetic codes, which was described in the previous chapter. Such a mosaic-
invariant property of these genetic matrices is the expression of cooperative behavior of its elements,
but not the result of the individual behavior of each kind of element. This property is reminiscent some
aspects of the cooperative behavior of the elements of biological organisms.

The mathematical analogy exists between the described bi-symmetric (2x2)-genomatrices and the
famous matrices of the hyperbolic turn, which are bi-symmetrical also: [sh(x) ch(x); ch(x) sh(x)], where
“sh(x)” and “ch(x)” are hyperbolic sine and cosine. This analogy gives us the opportunity to interpret
normalized biosymmetric genomatrices in connection with hyperbolic turns, which have the following
applications in physics and mathematics:

. Rotation of pseudo- Euclidean space;
. The special theory of relativity;
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Figure 7. Multiplication of mosaic-invariant matrices X and Y gives a new matrix Z with the same mosaic

EE TSNS 2]

of the disposition of its four kinds of numbers. For illustration, cells with numbers “b”, " m”, “s” in
matrices X, Y, Z are marked by dark color
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. The geometric theory of logarithms, where properties of logarithms are introduced by hyperbolic
turns (Shervatov, 1954).
e Theory of solitons of sine-Gordon equation.

In particular, this coincidence of the genomatrices with the matrices of hyperbolic turns reflects
structural connections of the genetic code with the famous psychophysical Weber-Fechner’s law. We
will return to the bi-symmetric genomatrices in Chapter 8, where their connections with a special kind
of hypercomplex number are revealed.

THE GENOMATRICES, MUSICAL HARMONY AND
PYTHAGOREAN MUSICAL SCALE

The theme of harmony of living nature is discussed frequently by many authors. The word “harmony”
has arisen in Ancient Greece in relation to the Pythagorean musical scale.

In the antique theory of music the word “harmony” has found the modern value - the consent of dis-
cordant. Seven musical notes carry names familiar to all: do (C), re (D), mi (E), fa (F), sol (G), la (A),
si (B). These seven notes are interrelated among themselves by their frequencies not in an accidental
manner, but they form the regular uniform ensemble. Really, it is well-known that the seven notes of the
Pythagorean musical scale from appropriate octaves form the regular sequence of the geometric progres-
sion on the base of the quint ratio 3:2 between frequencies of the adjacent members of this sequence
(Figure 8). The quint 3:2, which is the ratio between frequencies of the third and the second harmonics
of an oscillated string, plays the role of the factor of this geometrical progression. The frequency 293
Hz of the note re (D) of the first octave stays in the middle of this frequency series. The ratios of the
frequencies of all notes to this frequency of the note re (D') form the symmetrical series by signs and
sizes of their powers of the quint: from the power “-3” up to the power “+3”.

The Kronecker family of the genomatrices P, . @ =[3 2; 2 3]™ is connected with the Pythagorean

MULT

musical scale. Let us consider it more attentively. Each genomatrix of the family P, . demonstrates

the quint (or the perfect fifth) principle of its structure because they have the quint ratio 3:2 at different
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Figure 8. The quint (or the fifth) sequence of the 7 notes of the Pythagorean musical scale. The upper
row shows the notes. The second row shows their frequencies. The third row shows the ratios between
the frequencies of these notes to the frequency 293 Hz of the note re (D). The designation of notes is
given on Helmholtz system. Values of frequencies are approximated to integers

fa (F) | do (C) | sol (G) | re (D") | 1a (A") | mi (E) | si (BY)
87 130 [196 [293 [440 | 660 990
G2° 13" 132! (32 132 | 3r) | 3Ry

levels: between numerical sums in top and bottom quadrants, sub-quadrants, sub-sub-quadrants, etc.
including quint ratios between neighbor numbers in them. For example, P, . contains 4 numbers —
27,18, 12, 8 - with the quint ratio between them: 27/18=18/12=12/8=3/2.

Each quint genomatrix P, ™ contains (n+1) kinds of numbers from a geometrical progression,

factor of which is equal to the quint 3/2:

@
P = 3,2

P,.2=964
0) =27, 18, 12, 8

P © =729 486,324,216, 144, 96, 64

MULT

PMULT

Let us write out these kinds of numbers in columns for each genomatrix P, . * to arrive at the “ge-
netic” triangle, which is shown on the left part of the expression:

3 927 81 243...|1 3 9 27...
2 6 18 54 162... 2
4 12 36 108... 4
& 24 72... 8
16 48...
32...

On the right side in the expression the historically famous numeric triangle by Plato is demonstrated.
This triangle was utilized by Ancient Greeks to create the Pythagorean musical scale on the basis of its
main proportions. One can see the analogy between the “genetic” triangle and the Plato’s triangle.

Moreover, as Professor Jay Kappraff (USA) has informed one of the authors of this book in his
private letter, this genetic triangle, which was obtained from the matrices of the genetic code, was
known many centuries ago: it is identical to the famous triangle, which was published 2000 years ago
by Nichomachus of Gerasa in his famous book “Introduction into arithmetic”. Nichomachus belonged
to the Pythagorean society, and this triangle was famous for centuries as the bases of the Pythagorean
theory of musical harmony and aesthetics. In accordance with this triangle, the Parthenon (Kappraff,
2006) and other great architectural objects were created because architecture was interpreted as the non-
movement music, and the music was interpreted as the dynamic architecture. Nichomachus of Gerasa
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Figure 9. A presentation of the genomatrix P, **(293/27) in the form of the music-matrix P, ., ' of

the frequencies of the musical notes (see Figure 8)

re (D') sol (G) | sol (G) | do(C) |sol(G) | do(C) [ do(C) | fa(F)

sol (G) | re ") [ do(C) | sol (G) | do(C) | sol (G) | fa (F) do (C)
sol (G) | do (C) | re(D") | sol (G) | do(C) | fa (F) sol (G) | do (C)
do (C) | sol (G) | sol (G) | re (D") | fa (F) do (C) | do(C) | sol (G)
sol (G) [ do(C) | do(C) | fa(F) re (D") | sol (G) | sol (G) | do (C)
do (C) | sol(g) | fa(F) do (C) | sol (G) | re(D") | do(C) | sol (G)
do (C) | fa (F) sol (G) | do(C) | sol(G) | do(C) [ re(D") | sol (G)
fa(F) | do(C) | do(C) | sol(G) | do(C) | sol (G) | sol (G) [ re(D")

was one of the great persons in the theory of musical harmony and aesthetics. The Cambridge library
has the ancient picture, where Nichomachus is shown together with other great persons in this field:
Pythagoras, Plato and Boeticus (http://www.jcsparks.com/painted/boethius.html). One can find more
details about the triangle by Nichomachus of Gerasa in the publications (Kappraff, 2000, 2002). This
unexpected connection of times proves additionally the adequacy of the presented way of the matrix
research of genetic systems and the connection of genetic systems with the Pythagorean musical scale,
reflected in Nichomachus’s triangle.

As we mentioned above, a set of certain kinds of numbers in each genomatrix P, =[3 2; 2 3]
™ reproduce fragments of the geometrical progressions with the quint factor. Thus sequences of such
kinds of numbers can be compared to quint sequences of musical notes from Figure 8. If one confronts
the least number from a quint genomatrix with the musical note “fa” (F), which possesses the least
frequency on Figure 8, then all sequences of such kinds of numbers automatically corresponds to the
series of the musical notes. For example, the sequence of numbers 8, 12, 18, 27 of P, corresponds
to the frequency sequence of the notes fa(F) - do(C) - sol(G) - re(D"). Genomatrix P, ¥ contains the
sequence of 7 numbers, which corresponds to the whole quint sequence of the 7 notes of Figure 8: fa(F)
- do(C) - s0l(G) - re(D") - la (A') - mi (E?) - si (B?).

For this reason, each genomatrix P, ™ can be presented in the form of a matrix P, ™ of frequen-
cies of notes (or a “music-matrix”). For instance, Figure 9 demonstrates the genomatrix P, @ of the
64 triplets as a music-matrix P, . of frequencies of appropriate four notes (the general factor 293/27
arises for concordance of numeric values of the note frequencies with numbers 8, 12, 18, 27 of the
genomatrix P, -@). Figure 10 shows the note staff with the notes, the sequence of which corresponds
to the sequences of the notes in the music-matrix on Figure 9.

The four numbers 8=2*2%*2, 12=2*2%3 18=2%3*3,27=3*3*3, which are presented in the genomatrix
P, on Figure 2, characterize those four kinds of triplets, which differ by their numbers of hydro-
gen bonds of nitrogenous bases. For instance, number 18=2*3*3 belongs to those triplets, which have
one nitrogenous base with 2 hydrogen bond and two bases with 3 hydrogen bonds (the mathematics
of genomatrices testifies products of numbers of hydrogen bonds should be taken into account here
but not their sums; it has precedents and the justification in information theories, in particular, in the
theory of parallel channels of coding and processing the information). Different sequences of these four
numbers, for example 12-8-27-12-8-18-18-..., determine appropriate successions of the musical ratios
1:1, (3:2)", (3:2)*2, (3:2)" (in this example, 3:2 - (3:2)* — (2:3)> — (2:3) — (3:2)* - 1:1 -...). Tt is obvious
that such succession can be interpreted as a kind of genetic music for triplets, which is connected with
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. . . . 5
Figure 10. The musical presentation of the genomatrix P, @/
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their hydrogen bonds. Each gene and each part of DNA and RNA have their own genetic “melody of
hydrogen bonds” which can be played by means of musical tools.

But the described musical sequence is not the single one in the molecule DNA at all. DNA can be
considered as a set of joint sequences, which are very different in their physical-chemical sense: a se-
quence of nitrogenous bases; a sequence of hydrogen bonds of complementary pairs of these bases; a
sequence of triplets; a sequence of rings of nitrogenous bases; a sequence of ensembles of protons in
rings of nitrogenous bases, etc. One can note the phenomenological fact that many of these sequences
are constructed on such ratios between quantitative characteristics of their neighboring members, which
are typical for the Pythagorean musical scale. Correspondingly each of these sequences of ratios can be
interpreted as a special kind of genetic musical melody. The whole set of such sequences in DNA can
be considered as a polyphonic (coordinated) music ensemble. An investigation of this music ensemble
seems to be an important scientific task.

Let us demonstrate a few additional examples of sequences with the musical ratios in DNA. A se-
quence of triplets in DNA has another kind of genetic music also which is connected with the quantity
of protons in molecular rings of nitrogenous bases (Figure 11). The pyrimidines C and T have 40 protons
in their rings; the purines A and G have 60 protons in their rings. (Each complementary pair has 100
protons in their rings precisely). The ratio 60:40 is equal to the quint 3:2. Let us present each triplet
by the product of the proton numbers 40 and 60 in its rings (as we did above for numbers 2 and 3 of
the hydrogen bonds of triplets). Then any triplet has one of four proton numbers: 64000=40*40*40;
96000=40*40*60; 144000=40*60*60; 216000=60*60*60. This proton set of the four numbers is dif-
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Figure 11. On top: Complementary pairs of four nitrogenous bases in DNA: A - T and C - G. By a dotted
line are specified hydrogen bonds in these pairs. Black circles are atoms of carbon, small white circles
- hydrogen, circles with the letter N - nitrogen, and circles with the letter O — oxygen. At bottom: the
numerical representations of a sequence of complementary pairs of the bases in DNA as a sequence of
numbers of hydrogen bonds in the given pairs (the average row made up on basis of numbers 2 and 3)
and as a numerical sequence of protons of molecules rings of these nitrogenous bases

TCGRA 2X20 2X20 3X20 2X20 3X20
] L] | ] ]
A 2 3 3 2 3
AGCT 3X20 3X20 2X20 2X20 2X20
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ferent from the considered set of four numbers 8, 12, 18, 27 of hydrogen bonds in triplets by the factor
8000 only. In other words, a ratio between any two numbers from this proton set has a quint character
again and is equal to one of the values (3:2)*, where k = +1, 2, 3. One can note that a sequence of triplets
of one DNA-filament has two different sequences with the same typical ratios: one sequence for triplet
characteristics of its hydrogen bonds and another sequence for triplet characteristic of protons in triplet
rings. These two sequences differ each from other by dispositions of these ratios along DNA-filament,
generally speaking (Figure 11). So, any triplet sequence bears on itself two different genetic melodies
on these two parameters.

Sequential dispositions of musical ratios for these two parameters of triplets (and of nitrogenous bases
also) are different on two filaments of DNA, but they are connected in regular manner due to a fact of
complementary pairs of bases. Figuratively speaking, two filaments of DNA bear complementary kinds
of genetic music on these parameters.

It should be added about an atomic parameter of nitrogenous bases: the quantity of non-hydrogen
atoms in molecular rings of the pyrimidines C and T is equal to 6 and the quantity of non-hydrogen at-
oms in molecular rings of the purines A and G is equal to 9. Their quint ratio 9:6=3:2 can be considered
as a basis for “atomic” genetic music of the nitrogenous bases and triplets along DNA. But these kinds
of sequences of ratios are identical to sequences of ratios in the case considered above about 40 and 60
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protons in rings of the pyrimidines and the purines. For this reason these sequences have nothing new
from musical viewpoint though they can have an important meaning in the ensemble of genetic music
because they are organized on the higher — atomic - level.

A sequence of numbers of 2 and 3 of hydrogen bonds between complementary nitrogenous bases
along DNA (for instance, 3-2-2-3-2-3-...) determines a sequence of ratios between its neighboring -
subsequent and previous - members (in the considered example, 2:3 - 2:2 - 3:2 - 2:3 -....). This simple
sequence contains ratios 1:1, 3/2 and 2/3 only. From a viewpoint of musical analogy, this sequence
determines a special kind of very simple genetic music.

Quantities of molecular rings in the pyrimidines and the purines are characterized by the octave ratio
2:1. This fact gives an additional possibility to consider sequences of nitrogenous bases and triplets in
DNA as genetic melodies. But sequences of ratios in these cases contain the octave ratios only and are
not so interesting from musical viewpoint though they can play an important role in the whole ensemble
of genetic music.

Total quantities of protons in both pairs of nitrogenous bases A-T and C-G are the same and are equal to
136. On this numeric parameter, a sequence of nitrogenous bases has constant ratios 1:1 along DNA.

The full list of different kinds of such genetic music at different parameters and levels of genetic
system permits one to reproduce a musical polyphonic party for each gene and for other parts of the
genetic system. These musical sequences were created by nature itself. Each gene and each protein have
their own genetic music (or briefly “genomusic). The natural music of a gene can be reproduced in
acoustical diapason not for aesthetic pleasure but for medical therapy, for theoretical needs, etc. This
natural genomusic and its compositions can be connected to deep physiological archetypes, which were
introduced into science by the creator of analytic psychology Carl Jung. From the viewpoint of musical
harmony in structures of molecular-genetic system, outstanding composers are researchers of harmony
in the organization of living substance. According to the famous expression by G. Leibnitz, music is the
mysterious arithmetic of the soul, which calculates itself without understanding this action.

It is well-known, that some kinds of music stimulate growth of plants, cure people, etc. “American
Music Therapy Association” unites more than 5000 members; 2700 musicians are certificated as pro-
fessional musical therapists there. One should emphasize that “melodies” of such genetic music are
not formed by any person in a forcible way, but they are defined by natural sequences of parameters in
chain genetic molecules. They are named conditionally as “natural genetic music” to distinguish them
from variants of “genetic music”, sometimes offered by other authors on the basis of obviously forc-
ible approaches without a sufficient support on molecular features of genetic sequences. The claim is
that some authors propose their own “genetic music” on the basis of an arbitrary correspondence of the
genetic letters or triplets to musical notes without sufficient attention to the musical correspondence
of ratios of natural numeric parameters of adjacent genetic elements. One can find more details about
natural genomusic with some examples in the book (Petoukhov, 2008).

All physiological systems should be coordinated structurally with the genetic code for their genetic
transfer to next generations and for a survival in a course of biological evolution. For this reason we
collect examples of harmonious ratios (first of all, the quint 3:2) in structures and functions on different
levels of biological systems including the supra-molecular level. For example, the quint ratio 3:2 exists
between:

. durations of phases of the activity and the rest in human cardio-cycles (0.6 sec and 0.4 sec
correspondingly);

80



Numeric Genomatrices of Hydrogen Bonds, the Golden Section, Musical Harmony, and Aesthetic Feelings

. plasmatic and globular volumes of blood (60% and 40%);

. albumens and globulins of blood (60% and 40%);

. 60S and 40S sub-particles in the composition of ribosomes (from http://vivovoco.rsl.ru/VV/
JOURNAL/NATURE/08 03/KISSELEV.HTM).

In conclusion to this paragraph let us consider a well-known algorithm of the construction of the
Pythagorean musical scale from a geometrical progression, which factor is equal to the quint. This
algorithm, which is useful for the theme of the next paragraph, creates the sequence of the notes do-re-
mi-fa-sol-la-si-do on the interval of frequencies {1, 2} of one octave, the lowermost note “do” which
has the conditional frequency 1 and the lowermost note of the next octave has the conditional frequency
2. This algorithm contains the following steps:

1. Taking the first seven members of such geometrical progression with the quint factor 3/2, which
begins from the inverse value of the quint: (3/2), (3/2)°, (3/2)%, (3/2)%, (3/2), (3/2)*, (3/2)>

2. Returning into the octave interval {1, 2} for those members of this sequence, values of which
overstep the limits of this interval; this returning is made for these values by means of their multi-
plication or division with the number 2. As a result of this operation, the new sequence is appeared
(this sequence can be named “the geometrical progression with the returning into the octave ”):
2*%(3/2)1, (3/2)% (3/2), (3/2)%/2, (3/2)%/2, (3/2)*/4, (3/2)*/4;

3. The permutation of these seven members in accordance with their increasing values from 1 up
2 (the number 2 is included in this sequence as the end of the octave): (3/2)°, (3/2)%2, (3/2)*/4,
2*%(3/2)1, (3/2), (3/2)%/2, (3/2)%/4, 2.

In this last sequence, a ratio of the greater number to the adjacent smaller number refers to as the
interval factor. Two kinds of interval factors exist in this sequence only: 9/8, which is named the tone-
interval T, and 256/243, which is named the semitone-interval S. One can check that the sequence of
interval factors in this case is T-T-S-T-T-T-S. These five tone-intervals and two semitone-intervals cover
the octave precisely: (9/8)° * (256/243)* = 2.

It is known that the name “semitone-interval” in the Pythagorean musical scale is utilized by conven-
tion only because the semitone-interval 256/243=1.0545... is not equal to the half of the tone-interval,
that is the square root from the tone-interval: (9/8)%3 =1.0607... .The scale of the golden wurf, which
is described in the next paragraph, possesses the analogical peculiarities: its semitone-interval differs
from the half of its tone-interval.

If one takes not 7, but 6 or § members in the initial quint geometrical progression (see the first step of
the algorithm), then the same Pythagorean algorithm does not give a binary sequence of interval factors
T and S because three kinds of interval factor arise.

The similar algorithm will be used in the next paragraph to construct new mathematical scale on the
base of described data about the genetic code and its genomatrices.

A SCALE OF THE GOLDEN WURF, MUSIC AND FIBONACCI NUMBERS

Many theorists of music paid attention to the connection of the structure of many musical compositions
of prominent composers with the golden section ¢ = (1+5°5)/2 = 1.618... . The results of matrix genet-
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ics, which were described above, reveal a new direction of thoughts about a relation between the golden
section and music because structures of a genetic code are connected with the golden section.
Similarly to a quint genomatrix P, ), which contains a sequence of (n+1)-kinds of numbers from
a geometrical progression with the quint factor 3/2, a corresponding golden genomatrix @ contains a
sequence of (n+1)-kinds of numbers from a geometric progression, the factor of which is equal to ¢* =

2.618....

o = (pl, (P-l
D = ¢?% ¢, ¢
OO = ¢%, ¢!, 07!, 97 (4.2)

The previous paragraph demonstrated that the Kronecker family of the quint genomatrices is connected
with the Pythagorean musical scale. Now we turn to the Kronecker family of the quint genomatrices
and to the geometrical progressions with the factor ¢ Is it possible to apply the described Pythagorean
algorithm to such geometrical progressions with factor ¢ to arrive at a new musical (or mathematical)
scale, where only two interval factors exist (as its tone-interval and its semitone-interval) by analogy
with the Pythagorean musical scale? Investigation of this question seems to be important because such
a new scale or scales can be essential for a theory of musical harmony and for the creation of musical
compositions with increased physiological activity.

After research of this question the beautiful positive result is obtained: yes, it is possible every time,
when we take one of Fibonacci numbers 2, 3, 5, 8, 13 (see the Figure 1) as the first member of such a
geometrical progression (the situation becomes more difficult for the greater Fibonacci numbers 21,
34,...). Mathematical scales, which are formed in these cases, possess such quantities of their tone-
intervals and semitone intervals, which are equal to Fibonacci numbers as well. Moreover values of these
tone-intervals and semitone-intervals are expressed by means of Fibonacci numbers also.

Such interrelated Fibonacci-stage scale, each of which has interval factors of two kinds only, are
named “the scales of the golden wurf” or “wurf-scales” briefly. Let us consider the example of the
8-stage scale of the golden wurf. We should construct a new mathematical scale of frequencies, which
fills up the octave {1, 2}, by means of the Pythagorean algorithm with the irrational factor @? of a geo-
metrical progression instead of the quint ratio 3/2. As a result we should arrive at such a scale, which
possesses two kinds of interval factors (a tone-interval and a semitone-interval) only by analogy with
the Pythagorean musical scale. One can note that the factor *>=2.618... exceeds the considered interval
of the octave {1, 2}. Therefore it is comfortable to use from the very beginning the twice smaller factor
%2 =p=1.309..., the value of which belongs to this octave interval. It is easy to check that the final
sequence (4.3) of the wurf-scale does not depend on whether we use the factor ¢? or the factor ¢%/2,
which are equivalent to each other in the given problem. This factor p = ¢?*/2 has been known in the field
of investigations of biological symmetries and invariants for a long time under the name of the golden
wurf (Petoukhov, 1981, 1989). We will discuss the golden wurf later.

Now let us construct the 8-stage scale of the golden wurf by means of the analogue of the described
Pythagorean algorithm, using the factor p = 9?2 in the initial geometric progression (instead of the quint
factor 3/2). All three steps of the Pythagorean algorithm are reproduced:

1.  Taking the first eight () members of such a geometrical progression with the factor p = ¢*/2, which
begins from the inverse value of this factor: p!, p°, p!, p? p°, p*%, p°, 1%
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Figure 12. Sequences of interval factors in the 7-stage Pythagorean scale of C major (the upper row) and
in the 8-scale of the golden wurf. Tone-intervals are marked by T, semitone-intervals are marked by S

T+ & T TS
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2. Returning into the octave interval {1, 2} for those members of this sequence, values of which
overstep the limits of this interval; this returning is made for these values by means of their multi-
plication or division with the number 2. As a result of this operation, the new sequence is obtained
(this sequence can be named “the geometrical progression with return to the octave™): 2* p!, p°,
pL, P2 Y2, p*/2, p°/2, p/4;

3. The permutation of these seven members in accordance with their increasing values from 1 up to
2 (the number 2 is included in this sequence as the end of the octave):

1, p*2, p%4, p', p*/2, 2*p™, p?, p*/2, 2 (4.3)

This final sequence (4.3) satisfies the initial condition concerning the existence of two kinds of interval
factors only. Really, it is easy to check that all ratios of adjacent members of this sequence are equal to
two values only, which play the role of the interval factors. For this sequence (4.3) the tone-interval is
T=7p*2=1.1215... and the semitone-interval is S = 4*p= = 1.0407... . The sequence of these interval
factors is T-T-S-T-S-T-T-S. This sequence fills all the octave in accuracy: (p*/2)° * (4*p~)*=2. The quan-
tities of various interval factors are equal to Fibonacci numbers here. Really, the 3 semitone-intervals, 5
tone-intervals and 8 interval factors all exist here. It is interesting, that if we take non-Fibonacci number
(for example, 4, 6 or 9) of the first members of the initial geometric progression on the first step of the
Pythagorean’s algorithm, final sequences arise which have more than two kinds of interval factors.

Let us compare the classical 7-stage Pythagorean musical scale with the obtained 8-stage scale of the
golden wurf. The Figure 12 shows the minimal difference between the sequences (musical scales) of the
tone-intervals and semitone-intervals inside the octave for both scales. The initial and final parts of both
sequences coincide completely, and only one additional semitone-interval arises in the middle part of the
octave. This additional semitone-interval exists because the factor “p” is less than the quint factor.

Using the sequence (4.3) of the intervals, one can construct the sequence of tones (musical notes),
which is named the “wurf-scale of C major” by analogy with Pythagorean scale of C major (Figure 13).
A choice of frequencies for these tones of the first octave is made in such way that this scale contains
the frequency 440 Hz, which corresponds to note “la” in the Pythagorean scale and in equal tempera-
ment scale and which is used traditionally for tuning in musical instruments. Figure 14 compares the
Pythagorean 7-steps scale C major and 8-stage scale of the golden wurf for the first octave. Taking into
account a minimal difference between both scales, the majority of the notes of the wurf-scale are named
by analogy with the appropriate notes of the Pythagorean scale but with the letter “m” in the end (for
instance, “rem” instead “re”). The additional fifth note is named “pim”.

This scale of the golden wurf, which was constructed in connection with parameters of the genetic
code, possesses many analogies with the Pythagorean genetic code by their internal symmetries and
proportions. Its main difference from the Pythagorean scale is connected with irrational values of its
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Figure 13. The upper row demonstrates the frequencies of the tones in the7-stage Pythagorean scale of
C major in the first octave. The bottom row demonstrates the frequencies of the tones in 8-stage scale
of the golden wurf of C major in the similar octave. Numbers mean frequencies in Hz. The names of the
notes are given

260.7 | 293.3 | 330.0 | 347.6 391.1 | 440 |[495.0 | 521.5
Do, RE Mi FA SoL |[LA |SI Do,

256.8 | 288.0 | 323.0 | 336.1 | 376.8 | 392.3 | 440 | 493.5 | 513.6
DoM; | REM | MM | FAM [ PIM SoLM | LaM | SiM | DOM;

interval factors. This wurf-scale could not be constructed by Pythagoreans who did not know irrational
numbers. [rrational factors are used also in the modern equal-temperament scale. According to some data,
Ancient Chinese knew about the equal-temperament scale, but neglected it preferring the Pythagorean
scale, in which they saw cosmic and biological importance.

The history of attempts at creation of new musical scales includes names of many prominent scien-
tists: J. Kepler, R. Descartes, G. Leibnitz, L. Euler, etc. But these authors had no possibility to use the
data about the genetic code in their attempts. In our opinion, the data about the genetic code allow one
to create new musical scales with positive physiological potentials. The constructed 8-stage scale of the
golden wurf is investigated now in the Moscow State Conservatory by the group of specialists, which
is headed by the dean of its Composer Department A. Koblyakov, from the viewpoint of its musical
meaning.

The Fibonacci-stage scales are connected with many interesting mathematical and musical materi-
als: the musical generalization of classical Fibonacci’s problem, the series of anti-Fibonacci numbers,
recurrent algorithms, etc. Many of these materials together with tables of frequencies of musical notes
for various Fibonacci-stage scales are published in the book (Petoukhov, 2008). One should note that
our attempt to create the mathematical scale of the golden section, where the factor of the geometrical
progression is equal to the golden section (but not to the golden wurf), has led to the scale, which dif-
fers from the Pythagorean musical scale cardinally and which was not so interesting from the musical
viewpoint. Furthermore such scale of the golden section has no evident connection with Fibonacci
numbers in its interval factors.

In concluding this paragraph we discuss briefly the golden wurfp=¢?/2, which has arisen in biological
morphology initially. The wurf or the double ratio is known for a long time in the field of highest geom-
etries as the main invariant of projective geometry. (It is interesting that the finite projective-geometric
plane is connected with Hadamard matrices (Sachkov, 2004), which are related to the genetic code as

Figure 14. The helical structure of the human ear cochlea, which is uncoiled into a straight line, with
the projective geometry proportion of the golden wurf
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described in Chapter 6). The translation of the notion “wurf” from German language means “throw”. The
golden wurf was introduced in works (Petoukhov, 1981, 1989), which were devoted to non-Euclidean
biological symmetries. The golden wurf has a status of ontogenetic and phylogenetic invariant of ag-
gregated proportions of three-component kinematical blocks of human and animal bodies. The value
of the golden wurf concerns acoustic perception also: the human ear cochlea consists of three patterns
(three coils of a helix), the ratios of whose lengths form a geometrical progression with the golden sec-
tion as a factor (see Figure 14). The double ratio of these three lengths is equal to the golden wurf: p =
¢*2 =1.309... (Petoukhov, 1989).

ON HARMONY OF A SCALE OF PROTONS IN THE SET OF AMINO-ACIDS

Can musical principles of organization exist not only in DNA but in other molecular and supramolecular
structures of the genetic system? Some facts are revealed the positive answer to this question. Let us
consider a few of them related to amino acids and their connections in proteins.

Amino acids are connected in a protein chain by peptide bonds, where the quint ratio 3:2 exists: in a
peptide bond its double bond is disposed on 60% in a region of the group C-O and on 40% in a region
of C-N (Shults, Schirmer, 1979, Chapter 2). This phenomenological fact was explained by Nobel Prize
winner L. Pauling in his resonance theory, which is related to vibration principles.

Now let us consider the set of 20 amino acids of the genetic system, which has the following sequence
of quantities of protons (the names of acids are shown in brackets):

40 (Gly), 48 (Ala), 56 (Ser), 62 (Pro), 64 (Cys, Thr, Val), 70 (Asn, Asp),
72 (Ile, Leu), 78 (Gln, Glu), 80 (Lys, Met), 82 (His), 88 (Phe), 94 (Arg),
96 (Tyr), 108 (Trp). (4.4)

It is known that the basic principle of musical scales of all people in all centuries was a principle of
octave. The described proton sequence is disposed inside the octave interval from 48 to 96 mainly. One
can analyze a disposition of all numbers of this proton set relative to this octave interval 48-96, where
number 48 is a tonic. 12 kinds of proton numbers lay inside this interval: 48, 56, 62, 64, 70, 72, 78, 80,
82, 88, 94, 96. Classical construction of the Pythagorean musical scale uses the division of the octave
interval by consonant ratios, foremost, by the quint 3:2 and the quart 4:3. In the case of our proton octave
48-96, the quint from the tonic 48 is equal to 72 = 48*3/2 and the quart is equal to 64=48*4/3. Both of
these numbers belong to the analyzed proton set. Additionally, a consonant ratio 5:3, named a major
sixth, gives one more number 80 = 48*5/3 from this proton set.

Two proton numbers 40 and 108 lay outside the considered interval from both its ends. But the number
40 is equal to 48*5/6; in other words, the number 40 has the consonant ratio 5:6 (its classical name “a
minor third”) relative to the tonic 48. The number 108 is equal to 96*9/8; in other words, the number
108 has the classical ratio of the whole-tone 9:8 relative to the octave end 96. Number 40 has an octave
double - number 80, which belongs to the proton sequence (4.4) as well.

So, we have the numeric proton sequence:
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40-48—-64-72-80-96-108 4.5)

members of which are connected by musical ratios. Four numbers 8, 12, 18, 27, which were considered
above in the genomatrix P @' = (3 2; 2 3]® as numbers of hydrogen (or one-proton) bonds, have their
octave doubles (or twins) in this sequence (4.5): 64 = 8*8, 72 = 18*4, 96 = 12*8§, 108 = 27*4. It shows
a certain coordination of proton characteristics of genetic components on different levels of the genetic
system. It should be emphasized for comparison that the sequence of molecular masses of 20 amino
acids has not such a musical scale and is not interesting from the musical viewpoint.

If one takes the number 48 conditionally as the equivalent of the musical note “do(c')”, then the
proton sequence (4.5) is the equivalent of the sequence of the notes on Figure 15.

From a position of the theory of musical harmony, the proton sequence (4.4) has one essential defect:
the analyzed octave interval {48-96} does not contain the octave double (or the twin) of the greatest
number 108, which is number 54 (though this sequence contains the octave double of the least number
40, which is number 80). Why is an amino acid with 54 protons absent? Perhaps, it was eliminated in the
course of biological evolution because of additional reasons? (For example, the rings of each comple-
mentary pairs of nitrogenous bases have exactly 54 protons in their 9 atoms of carbon, and it can be one
possible reason to avoid a repetition of this proton number in amino acids?).

Or one can find additional 54-proton factor, which is essential for the set of amino acids and which
operates with them? It is the open question now, which should be investigated in the future (by the
way, the number 54 is equal to the sum of the famous Pythagorean set 1, 2, 3, 2%, 23, 32, 3%). But if one
supposes that the proton sequence (4.4) is added by this number 54, the sequence (4.4) gets the very
symmetrical form (Figure 16). Really, the analyzed octave {48-96} has 6 equal parts, the boundaries of
which are determined by numbers divisible by 8 (upper row of numbers). Each such part has a length,
which is equal to 8 and which is divided by quart 3:4 in two subparts with their lengths 6 and 2. The
borders between such adjacent subparts correspond to the proton values in the lower row on Figure 16.
Perhaps, the theory of atomic memory (Brewer, & Hanh, 1984), which is related to protons and spin
echo, can be used for an understanding of such peculiarities of the protons sequence (4.4).

Figure 15. The presentation of the proton sequence (4.5) in the musical form

'%6 ﬁ 5
80 0
&4 0

L

48

40 ———
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FUTURE TRENDS AND CONCLUSION

The proposed additional approach is the effective scientific instrument to analyze multi-component and
multi-parametric ensembles of the molecular-genetic systems by means of numeric genomatrices. It
reveals new facts about hidden interrelations among genetic elements and allows a comparison of them
with famous facts and theories from other fields of science and culture. Methods of symmetries are not
only useful in this approach, but they are needed systematically here to study relations of symmetry
among various sets and subsets of the genetic systems. This study leads to important knowledge about
internal regular structures of molecular-genetic systems and to new genetic patterns as well. The set
of described and future results of investigations of numeric genetic matrices is the significant part of
matrix genetics on the whole. This scientific direction permits one to apply effective ideas and methods
from other modern sciences for problems in this molecular-genetic field. Taking into account all these
data, one can recommend this approach, methods and patterns for intensive application in molecular
genetics and in theoretical biology.

The discovery of the connection of the genetic code with the golden section shows the molecular-
genetic base of many known facts about physiological and aesthetic meanings of the golden section.
Specifically the described facts give new materials for the question about architectural canons, where
the golden section is used for a long time; for example, the famous modulor by Sh. Le Corbusier (1948,
1953) is based on the golden section. The mathematical scale of the golden wurf, which was constructed
in matrix genetics, can be utilized for architectural proportions (in the role of wurf-modulor or the
modulor of the golden wurf).

The new — “matrix-genetic” — definition of the golden section is proposed, and leads to new theoreti-
cal investigations about the possible role of the golden section in nature and culture.

The facts described in this chapter about relations of the genetic systems with musical harmony are
essential additionally for the problem of genetic bases of aesthetics and inborn feeling of harmony. Ac-
cording to the words of the famous physicist Richard Feynman about feeling of musical harmony, “we
may question whether we [stressed] are any better off than Pythagoras in understanding why [stressed]
only certain sounds are pleasant to our ear. The general theory of aesthetics is probably no further ad-
vanced now than in the time of Pythagoras” (Feynman, Leighton, & Sands, 1963, Chapter 50).

A cultural direction of “genetic art” (or briefly “genoart”) can be developed additionally due to these
data of matrix genetics. The genoart has many patterns, which are revealed by matrix genetics, and can
be used to create new works of art, of designs and architectural and musical compositions. For example,
the quint genomatrices can be presented in a form of color mosaics if matrix numbers are replaced by
colors. It is possible to see regular complication of color mosaics along the family of the genomatrices
with an increase of their Kronecker powers.

Figure 16. The proton sequence (4.4) of the amino acids with the additional number 54

40 48 56 64 72 80 88 96

54 62 70 T8 82 94 108
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There is no doubt that application of numeric genetic matrices for investigations of the various
ensembles of parameters of the genetic system can give many unexpected and useful results in the
future as well. This direction of theoretical researches will be developed in parallel with developing
matrix application in many other branches of science. The initial results, methods and patterns, which
are described in this chapter, will serve as the basis for many new investigations in bioinformatics and
theoretical biology. In particular Chapter 8 of this book describes one of the important ways to further
mathematical analysis in this direction.

The matrix-genetic approach to phenomena of the golden section in genetic systems, physiology
and aesthetics can be developed in many theoretical ways and can give new interesting mathematical
models.

According to the described materials, each gene, each DNA, each protein can be characterized by its
own musical ensemble. Generally speaking, this genetic music can be reproduced artificially for many
practical applications in different fields: medicine, biotechnology, ergonomics, sports, etc. Such genetic
musical melodies can be reproduced in sounds, colors (“color music”™), electrical stimulus, and impulses
of laser beams, etc. for different needs. Musical therapy and other branches of therapy can utilize these
new forms of physical influences. Whether such “natural genetic music” (or compositions on its basis)
possesses a special physiological effectiveness for the treatment of people and animals, stimulation of
growth of plants and microorganisms, and so forth? For example, is it possible to treat patients with
diabetes by means of sessions of such musical melodies, which correspond to the quint sequences of
the gene of insulin? Future experiments can give the answer only. It seems that a creation of a computer
bank of genetic music of various genes and proteins is useful for theoretical and practical needs. One
can add here that the creator of analytic psychology Carl Jung, studying archetypes of human conscious-
ness, has created the medical method of amplification. This method is based on an active intercourse
of his patients with these archetypes including famous tables of Ancient Chinese “I Ching”, which are
connected with the genetic matrices (see Chapter 11).

Many composers declared a mysterious connection of music with the golden section early. In our
opinion, this connection has the genetic base. The described facts are related to a problem of genetic
bases of aesthetics and an inborn feeling of harmony.

Investigations of numeric genetic matrices are the effective scientific instrument to analyze multi-
component and multi-parametric ensembles of the molecular-genetic systems. The obtained results give
a new vision of connections of genetic systems with famous mathematical objects and theories from
other branches of science and culture. Owing to the results of matrix genetics new opportunities arise
to demonstrate the close connection between science and culture. The famous ideas about the harmony
of biological organisms obtain new essential additions including materials about the golden section and
the harmony of the Pythagorean musical scale.

The obtained results show that the system of hydrogen bonds of the complementary nitrogenous bases
of the genetic code is not an accidental system, but it is the significant part of the harmonic molecular-
genetic system, which is connected with principles of musical harmony and the golden section.

In our opinion, music is not only the tool for a call of emotions and pleasures, but it is also one of the
principles of the organization and language of living substance. From the viewpoint of musical harmony
in structures of molecular-genetic system, one can think that outstanding composers are researchers of
harmony in living substance and in their own organisms. Investigation of musical harmony in genetic
molecules and in adjacent systems (“musical bioinformatics”) is the new interesting branch in biology.
It is useful for education in fields of genetics, bioinformatics, theory of musical harmony, etc.
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Chapter 5

Genetic Code and
Stochastic Matrices

ABSTRACT

In this chapter, we first use the Gray code representation of the genetic code C = 00, U = 10, G = 11,
and A = 01 (C pairs with G, A pairs with U) to generate a sequence of genetic code-based matrices. In
connection with these code-based matrices, we use the Hamming distance to generate a sequence of
numerical matrices. We then further investigate the properties of the numerical matrices and show that
they are doubly stochastic and symmetric. We determine the frequency distributions of the Hamming
distances, building blocks of the matrices, decomposition and iterations of matrices. We present an
explicit decomposition formula for the genetic code-based matrix in terms of permutation matrices.
Furthermore, we establish a relation between the genetic code and a stochastic matrix based on hydro-
gen bonds of DNA. Using fundamental properties of the stochastic matrices, we determine explicitly the
decomposition formula of genetic code-based biperiodic table. By iterating the stochastic matrix, we
demonstrate the symmetrical relations between the entries of the matrix and DNA molar concentration
accumulation. The evolution matrices based on genetic code were derived by using hydrogen bonds-
based symmetric stochastic (2x2)-matrices as primary building blocks. The fractal structure of the
genetic code and stochastic matrices were illustrated in the process of matrix decomposition, iteration
and expansion in corresponding to the fractal structure of the biperiodic table introduced by Petoukhov
(2001a, 2001b, 2005).

INTRODUCTION AND BACKGROUND

The universal genetic code may be viewed as the mapping of nucleic acids into polypeptides that is
employed in every organism, organelle and virus with some minor variations. A mathematical view of
genetic code is a map
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Figure 1. Creating a 3-bit Gray code from a 2-bit Gray code

A Gray Code
for 2 Bits:

the 2-bit code
with "0" prefixes:
the 2-bit code

in reverse order:
the reversed code
with "1" prefixes:

00 [O01 (11 |10

000 | 001 | O11 [ 010

10 (11 {01 |00

110 | 111 | 101 | 100

A Gray code

for3 bits: 000 | 001 (011 | 010 (110 | 111|101 | 100

g C—A (1)

where C = {(xx,x,): x, € R={A, C, G, U}} denotes the set of codons and 4 = {Ala, Arg, Asp, ..., Val,
UAA, UAG, UGA} denotes the set of amino acids and termination codons. Genetic determinism, which
presents the belief that we are controlled by our genes and that no other factor is significant, is now
all-pervasive. This viewpoint is emphasized by the statement: “life is a partnership between genes and
mathematics” (Stewart, 1999, p. xi).

We recall some basic definitions of a stochastic matrix. A square matrix of P = (p,) is a stochastic
matrix if all entries of the matrix are nonnegative and the sum of the elements in each row (or column)
is unity or a constant. If the sum of the elements in each row and column is unity or the same, the matrix
is called doubly stochastic. The term “stochastic matrix” goes back at least to Romanovsky (1931). It
plays a large role in the theory of discrete Markov chains. Stochastic matrices and doubly stochastic
matrices have many remarkable properties. For example the Birkhoff—von Neumann Theorem says that
every doubly stochastic matrix is a convex combination of permutation matrices of the same order and
the permutation matrices are the extreme points of the set of doubly stochastic matrices. The proper-
ties of stochastic matrices are mainly spectral theoretic and are motivated by Markov chains. Doubly
stochastic matrices have additional combinatorial structure.

The so called Gray code is one of the most famous in the theory of signal processing. The Gray
code was used in a telegraph demonstrated by French engineer E. Baudot in 1878. The codes were first
patented by F. Gray in 1953. The Gray code is a binary code in which consecutive decimal numbers
are represented by binary expressions that differ in the state of one, and only one, bit. Gray codes have
been extensively studied in other contexts. For example, Gray codes have been used in converting ana-
log information to digital form. Here we review briefly how to construct a Gray code for each positive
integer n. One way to construct a Gray code for n bits is to take a Gray code for (n-1) bits with each
code prefixed by 0 (for the first half of the code) and append the (n-1) Gray code reversed with each
code prefixed by 1 (for the second half). This is called a “binary-reflected Gray code”. Figure 1 is an
example of creating a 3-bit Gray code from a 2-bit Gray code.

A Gray code representation of the genetic code was proposed in the work (Swanson, 1984). A repre-
sentation ofthe genetic code as a six-dimensional Boolean hypercube was proposed in (Jimenéz-Montafio,
Mora-Basafiez, & Poschel, 1994). In (Stambuk, 2000), universal metric properties of the genetic code
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Figure 2. The two-level representation of the nitrogenous bases of the genetic code, which is corresponded

to the binary 2-bit Gray code
0 1
C=(0|;A= ;G = ;:U=10

were defined by means of the nucleotide base representation on the square with vertices U or T=00,C=
01,G=10and A=1 1. It was shown that this notation defines the Cantor set and Smale horseshoe map
representation of the genetic code. The “Biperiodic table of the genetic code” [C A; U G]® (Figure 3 in
Chapter 1), which has demonstrated an important symmetrical structure and has led to many discoveries,
was introduced in (Petoukhov, 2001a, 2001b, 2005). This chapter describes stochastic characteristics
of the biperiodic table on the basis of their original investigations and considerations in the works (He,
2001, 2003a, 2003b; He, Petoukhov, & Ricci, 2004).

One should recall information about the Hamming distance as well. The Hamming distance D is
defined for strings of the same length. For two strings A and B, D(A,B) is the number of places in which
the two string differ, i.e., have different characters. More formally, the distance between two strings A
and B is D(4,8) = X| 4, - B, |, sum of the numbers of places strings 4 and B differ. For example, the string
A=0101 and string B= 0110 has a Hamming distance D(4, B) = 2 whereas string 4 = “Butter” and string
B =“ladder” has a Hamming distance D(4,B) = 4. This distance is applicable to encoded information,
and is a particularly simple metric of comparison.

GENETIC CODE, HAMMING DISTANCE AND STOCHASTIC MATRICES

In this chapter we use the Gray code representation of the genetic code in a special form of a two-level
(or double-decker) construction (Figure 2) to generate a sequence of genetic code-based matrices.

This binary representation is correlated to binary symbols of C, A, G, U on Figure 3 in Chapter 1.
The reason for such a two-level construction is related to the tabular form of presentation of the genetic
code on said figure. In connection with these code-based matrices, we use the Hamming distance to
generate a sequence of numerical matrices. We investigate the properties of the numerical matrices and
show that they are doubly stochastic and symmetric. We determine the frequency distributions of the
Hamming distances, building blocks of the matrices, decomposition and iterations of matrices. We shall
present an explicit decomposition formula for the genetic code-based matrix in terms of permutation
matrices, which provide a hypercube representation of the genetic code.

We next list the sequences s_of the Gray codes denoted by G_ in Figure 3.

It’s easy to see that every n-bit string appears somewhere in the sequence; adjacent sequences s.s,,
differ in exactly one bit, i = 1, 2, ..., 2" —1; the last sequence s,” and the first sequence s, differ in ex-
actly one bit in each of the cases on Figure 3. This proves that the n-cube has a Hamiltonian cycle for
every positive integer n * 2, for example, s,s,, ..., 5,", s, is a Hamiltonian cycle. There is a natural way
to relate the genetic codons to Gray code by means of utilizing the Gray code representation of each
nitrogenous bases on Figure 2. Examples of such representation of some codons in the two-level form
are shown on Figure 4.
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Figure 3. Gray code sequences s, for n-digit cases

G, | Gray Code Sequence s, Number of G,
G, |0
1 2l=2
G, | 0001
1110 9=
Gz | 000001011010
110 111 101 100 23 =38

G, | 000...0000...1000...11...010...0
111...0111...1111...00 ...100...0 | 2"

This new approach (He, 2001, 2003a, 2003b) presents each genetic multiplet as a two-level combina-
tion (or symbiosis) of two examples of the relevant Gray code: binary numbers of one example of the
Gray code is utilized for the upper bit strings of the symbol of the multiplet, and the second example is
utilized for its lower bit string. One can see on Figure 4 that a replacement of each of the symbols “1”
and “0” by the opposite symbols “0” and “1” correspondingly leads from the Gray code representation
of the codon CUG to the Gray code representation of its anticodon. This algorithm holds true for all
pairs of “codon-anticodon” of the genetic code. Notice that the upper and lower bit strings of both the
codon and anti-codon differ in a single bit. The Gray code arises in genetics as a means of minimiz-
ing the mismatches between the digits encoding adjacent bases and therefore the degree of mutation
or differences between nearby chromosome segments. The requirement in an encoding scheme is that
changing one bit in the segment of the chromosome should cause that segment to map to an element
which is adjacent to the pre-mutated element.

Next we formalize our algorithm to generate the Hamming distance-based matrices corresponding
to genetic code-based matrices. Let n be the length of strings (binary strings or DNA/RNA strings). We
present our constructions for n = 1, 2, and 3. The general result for any positive integer n will be sum-
marized following our discussions.

For n =1, the Gray code G, = {0, 1}. We arrange the G, in a 2-dimensional table (row/column) and
form the table entry by stacking the column code on the top of row code as below. Denote this matrix
by H,. This is a (2x2)-matrix generated by G, (Figure 5, on the left side).

The corresponding genetic code-based matrix with a single base is denoted by C,, (Figure 5, in the
middle). We next compute the Hamming distance of each entry of the matrix /,,. The resulting matrix
is denoted by D, (Figure 5, on the right side). This matrix D,, has Hamming distances 0’s and 1°s. The
frequencies of the 0’s and 1’s are 2 and 2, respectively. The total sum of entries of the matrix is 2. The

Figure 4. Examples of the Gray code representation of the codon CUG and of its anticodon GAC

011 100
CUG=]001]; GAC=|110
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Figure 5. On the lefi side: the table G, with the binary two-level numeration of cells of the (2x2)-matrix
H,,. In the middle: the corresponding genetic code-based matrix C,, with the genetic bases A. C, G, U.
On the right side: the matrix D, , entries of which are Hamming distances of the bases A. C, G, U in
their considered Gray code representation

G |0]1

011 C|lU 01
010/0}; ¢
011 A|G 110
1]1]1

common row/column sum is 1. The Hamming distance between any two horizontal and vertical neigh-
boring entries is 1.

For n =2, the Gray code G, = {00, 01, 11, 10}. We arrange the G, in a 2-dimensional table and form
the table entry by stacking the column code on top of the row code (Figure 6, on the left side). Denote
this matrix by H,,. This is a 4x4 matrix generated by G,. One should emphasize that sequences of num-
bers of columns and of rows of H, are given here in accordance with the Gray code sequence and they
differ from the usual sequence of binary numeration which was used in Chapter 1 on Figure 3.

The corresponding genetic code-based matrix is denoted by C,, (Figure 6, in the middle). We next
compute the Hamming distance of each entry of the matrix /,,. The resulting matrix is denoted by D,,
(Figure 6, on the right side).

We note that the matrix D,, is centrally embedded inside D,, and the matrix D,, has two (2x2)-matrices
as building blocks denoted by B, and B,,. In view of this, the matrix D,, may be written as the block
matrix [B, B,; B,,B, |.

The frequencies of matrix building blocks B,, and B,, are 2 and 2, respectively. This matrix D,, has
Hamming distances 0’s, 1’s, and 2’s. The frequencies of the 0’s, 1’s and 2’s are 4, 8, and 4, respectively.
The total sum of entries in the matrix is 16. The common row/column sum is 4. The Hamming distance
between any two horizontal and vertical neighboring entries is 1.

Figure 6. On the lefi side: the table G, with the binary two-level numeration of cells of the (4x4)-matrix
H,, In the middle: the corresponding genetic code-based matrix C,, with the 16 genetic duplets. On
the right side: the matrix D,, entries of which are Hamming distances of the genetic duplets in their
considered Gray code representation

G, | 0001|1110
00[01]11]10 €C | G U | UG 0({1(2](1
00 ] 00| 00 [ 00 [ 00
0001 ]11]10 CA|CG|UG|UA 1(0/1]2
01J01{01]01([O01]; :
00(01]11]10 AA | AG | GG | GA 2(1|0(1
1111111111
00(01]11]10 AC | AU | GU | GC 1(2|1]0
10110 10] 10| 10
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Figure 7. The table G, with the binary two-level numeration of cells of the (8x8)-matrix H_,

Gs 000 (001 | 011 [010 |110 |111 | 101 | 100
000 |001 |0O11 |010 | 110 | 111 |101 | 100
000 J000 |[000 |000 (000 |000 {000 [000 |000
000 | o001 |011 |010 | 110 | 111 |101 | 100
001 J001 |001 |001 |001 [001 |001 |00I | 001
000 | 001 |(O11 [O10 |110 |111 | 101 | 100
011 o011 |O011 |O11 jO11 [O11 |O11 |O11 |OIl
000 |o001 |0O11 |010 |110 | 111 |101 | 100
010 j 010 | 010 | 010 [O10 |[0O10 [O10 |[O10 |OI10
000 | 001 (011 (010 |110 |111 | 101 | 100
110 §110 (110 [110 [110 |[110 |[110 |[110 |110
000 (001 (011 |[O10 |110 |111 |101 | 100
0 a0 S o 1 i o o O o G O g o
000 | o001 |0O11 |010 |110 | 111 |101 | 100
101 101 [101 |101 |101 |101 | 101 | 101 | 101
000 (001 (011 |[O10 |110 |111 |101 | 100
100 §100 [ 100 [ 100 | 100 | 100 | 100 | 100 | 100

For n = 3, the Gray code G, = {000, 001, 011, 010, 110, 111, 101, 100}. The matrix Hg,is a (8x8)-
matrix on Figure 7.

The corresponding genetic code-based matrix is denoted by C, (Figure 8). In this matrix we mark
by dark (white) colors each of those cells which contains a “black™ (“white”) triplet by analogy with
Figure 2 in Chapter 2.

The genetic matrix C,, differs from the genetic matrix [C A; U G]® which was considered in other
chapters of the book (see Figure 3 in Chapter 1). It proposes an original variant of matrix presentation
of the genetic code. The relevant Hamming distance-based matrix Dy, is shown on Figure 9.

This matrix Dy, has Hamming distances 0’s, 1’s, 2’s and 3’s. The frequencies of the 0s, 1’s, 2’s and
3’s are 8, 24, 24, and 8, respectively. The total sum of the matrix D, is 96. The common row/column
sum is 12. The Hamming distance between any two horizontal and vertical neighboring entries is 1. We
also note that the matrices D,, and D,, are centrally embedded inside D, and the matrix D, has three
2x2 matrices building blocks B, , B,, and B,,. It is obvious from Figure 9 that the matrix Dy, may be also
written in the following form of a block matrix (Figure 10).

The frequencies of matrix building blocks B, , B,, and B,, are 4, 8, and 4, respectively. The distribu-
tion of the codons at separate magnitudes of the Hamming distance is shown on Figure 11 together with
frequencies of meeting of these magnitudes of Hamming distances in the matrix D,

Let us consider generalization of such matrices. In a general case of the matrices C,,, C,,, C,, ...
and of the matrices D, , D,,, Dy,, ...we will use the general symbols C,” and D," correspondingly. Here
2"n is the lower index in both cases. For general positive integer n, we have the following results (He,
2003a).

Let n be the length of binary or DNA/RNA strings and G, be the n-bit Gray code. Then
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Figure 8. The genetic code-based matrix C,, with the 64 genetic triplets. Black (white) codons are dis-
posed in dark (white) cells

CCC |CCU |CUU |CUucC juucC |uuu  gCu | UCC

CCA | CCG |CUG |CUA JUUA |UUG |UCG |UCA

CAA |CAG |CGG | CGA JUGA | UGG |UAG |UAA

CAC |CAU |CGU | CGC JUGC | UGU | UAU |UAC

AAC | AAU | AGU | AGC JGGC | GGU | GAU | GAC

AAA 1 AAG | AGG | AGA | GGA GAG | GAA
GGG

ACA | ACG | AUG | AUA | GUA | GUG |GCG | GCA

ACC | ACU | AUU | AUC jGUC |GUU |[GCU |[GCC

Figure 9. The relevant Hamming distance-based matrix Dg,

b | B k| B

N = N W N =] D -
W R | B ]| D =] N
| W B ]| S| | b -
| DD | k| ] k| | W] N
B | S | N =] | W
— S| = N W N = e
S| | B | B W] B -

Figure 10. The presentation of the matrix Dy, as a block matrix

Ba; [ B2 [Baz | B2
B2 [ B2 | B | B2
Bxs | B2 [Ba | B2

B2, |Bas | B2z | Ba
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Figure 11. The distributions of the codons at separate magnitudes 0, 1, 2, 3 of the Hamming distance in
the matrix Dg,. Frequencies of meeting these magnitudes are shown in the third column

Distance Frequency
Codons
0 CCC CCG CGG CGC GGC CGG GCG GCC 8
1 ACC ACG AGC AGG CAC CAG CCA CGA CCU | 24
CGU CUC CUG GAC GAG GCA GGA GCU GGU
GUC GUG UCC UGC UCG UGG
2 AAC AAG ACA ACU AGA AGU AUC AUG CAA |24
CAU CUA CUUGAA GAU GUA GUU UAC UAG
UCA UCU UGA UGU UUC UUG
3 AAA AAU AUA AUU UAA UAU UUA UUU 8

1. The genetic code-based matrix C," is a (2"x2")-matrix with RNA bases of length n. Each two
neighboring entries of the genetic code both from vertical and horizontal direction differs exactly

one base.
2. The Hamming distance-based matrix D," is also a (2"x2")-matrix with Hamming distances of 0,
1,2, ..., n. The common row/column sum of the matrix D" equals n2™" and the total summation

of the entries of matrix D" is n2*"".

3. The matrix D," is a doubly stochastic and symmetric.

4. The frequency distributions denoted by /, (n =2, 3, ..., k=1, 2, ...) of Hamming distances of 0,
1,2, ..., nis shown below forn =1, 2, 3, 4, and 5 on Figure 12.

The same table can be presented in another form (Figure 13).
The general relationships of the frequencies are determined by a recurrence formula:

L =2/,=2,
f;zk = 2 (/(‘n—l)(k-l) +j(‘n-1)k)

The frequency distribution of the Hamming distances is the Pascal triangle with a multiple of 2.
The solution to this recurrence relation is

Figure 12. Frequency distribution of Hamming distances for different numbers n

n | Hamming Frequency Frequency
Distances Distributions notation

1 |01 22 fa1 /2

2 012 4 84 ﬁ[ﬁ,zf}g

3 (D123 8 24 24 8 Ja1 fa2.f43 faa

4 101234 16 64 96 64 16 S51./52.153 fs4 fss

5 1012345 |32 160 320 320 160 32 | fo1 fo2.fe3 fos fo5 fo6
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Figure 13. Another form of presentation of frequency distribution of Hamming distances for different
numbers n

n | Hamming Frequency Frequency
Distances Distributions notation

1 [0:] 2* LEl o1 fo

2 1012 4* 1 2 1 S f3s

3 [0123 8* 1331 Ja1 faz f43 fas

4 101234 16* 14 6 4 1 S51./52.153 fs4 fss

5 1012345 32% 1 5 10 10 5 1 | fo1f62.f63 f64.f65 fo6

[, =2'Cnk), k=1,2,..., n.
5. The matrix D" consists of (n-1) (2x2)-matrix building blocks B, , B,,, ..., By, The previous
matrix D,"! (1) 18 centrally embedded inside the next matrix D," . The frequencies of matrix build-

ing blocks B,,, B, ..., B, are f(wm, f(n_m ooy f(n_l)(n_]), respectively.

Next we illustrate the stochastic and hypercube structure of the genetic code based matrix C", via
the structure of matrix of D," .

As we have noted, the matrix D,” is a symmetric and doubly stochastic matrix. For its simplicity, we
consider the case when n =3, .e. D the entry of the matrix is a RNA codon. Here we list some basic
properties of the matrix D,

. The matrix D, is symmetric since D= D" (the transpose of a matrix).

. The matrix Dy, is singular since Det (D,,) = 0 (determinant of a matrix).

. The eigenvalues of D, is {1, 1, ... 1, }={-4,-4,-4,0,0,0, 0, 12}.

. The eigenvectors are {0, -1,-1,0,1,0,0, 1}, {0, 1,0, -1, -1, 0, 1, 0}, {-1,-1,0,0, 1, 1, 0, 0}, {0,
-1,1,0,-1,0,0,0},{1,-2, 1,0, -1, 0, 1, 0}, {1,-1,0,0, -1, 1, 0, 0},{-1, 1, -1, 1, 0, 0, 0, O}, {1,
1,1,1,1, 1,1, 1}. Furthermore these 8 vectors are linearly independent. They form a basis for a
vector space of dimension of 8.

. Trace of matrix D, = sum of eigenvalues =0+0+0+0-4-4-4+12=0.

Since the matrix Dy, is doubly stochastic, the matrix D, can be decomposed as a convex combination
of finitely many permutation matrices (Bapat, & Raghavan, 1997); that is,

D,=aP +aP,+.. +tapP,

88

where P, P, ..., P, are permutation matricesand 0 <a, a,,..., a, < 12,a, +a, +...+ a,= 12. A permuta-
tion matrix can be obtained from an identity matrix by permuting its rows and columns. Explicitly we
have the following result.

The matrix D,,=0P +1(P,+P,+P)+2 (P, +P +P)+3P, where P =Table 1.

The corresponding codons (or vertices/nodes of a graph) of this matrix P, are {CCC, CCG, CGG,
CGC, GGC, GGG, GCG, GCCY.
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P, = Table 2.

The corresponding codons (or vertices/nodes of a graph) of P, are {CCA, CCU, CGA, CGU, GGA,
GGU, GCU, GCA}.

P, = Table 3.

The corresponding codons (or vertices/nodes of a graph) of this matrix P, are {CAC, CAG, CUG,
CUC, GUC, GUG, GAG, GAC}.

P, = Table 4.

The corresponding codons (or vertices/nodes of a graph) of this matrix P, are {ACC, ACG, AGG,
AGC, UGC, UGG, UCG, UCC}.

P_ = Table 5.

The corresponding codons (or vertices/nodes of a graph) of this matrix P, are {ACA, ACU, AUG,
AGA, UGA, UGU, UCU, UCA}.

P, = Table 6.

The corresponding codons (or vertices/nodes of a graph) of matrix P, are {CAA, CAU, CUU, CUA,
GUA, GUU, GAU, GAA}.

P_ = Table 7.

The corresponding codons (or vertices/nodes of a graph) of this matrix P, are {AAC, AAG, AGU,
AUC, UCC, UGG, AUG, UAC}.

P, = Table 8.

The corresponding codons (or vertices/nodes of a graph) of the 8" matrix P, are {AAA AAU, AUU,
AUA, UUA, UUU, UAU, UAA}.

GENETIC CODE, ATTRIBUTIVE MAPPING AND STOCHASTIC MATRICES

Chapter 1 has demonstrated already the three binary sub-alphabets of the genetic alphabet which allow
creating the described tabular and matrix form of presentation of ensembles of molecular elements of
the genetic code (Figures 2 and 3 from Chapter 1). These sub-alphabets are based on the three kinds of
binary-oppositional attributes of the nitrogenous bases A, C, G, U/T. From the viewpoint of the first kind
ofthe binary-oppositional attributes (pyrimidines-purine), the following pairs of equivalent genetic letters
exist: C = U and A = G (here “=" is the symbol of equivalence). From the viewpoint of the second kind
of the binary-oppositional attributes (amino-mutating and non-amino-mutating), the following pairs of

Table 1. P, = Table 2. P, =

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
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equivalent genetic letters exist: C = A and U = G. From the viewpoint of the third kind of the binary-
oppositional attributes (2 and 3 hydrogen bonds), the following pairs of equivalent genetic letters exist:
C=GandA=U.

The works (He, 2001, 2003) contain an analysis of three mapping relations on the basis of these at-
tributes for generating new interesting matrices and for studying their properties and symmetries.

Here we further investigate the symmetrical structures of the genetic matrix [C A; U G]® from the
viewpoint of the third kind of the binary oppositional attributes. The complementary letters C and G have
3 hydrogen bonds (C =G =3) and the complementary letters A and U have 2 hydrogen bonds (A=U =2).
Letusreplace each multipletin the genetic matrix [C A; U G]® by the sum ofthese numbers of its hydrogen

Table 3. P, = Table 4. P, =
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

Table 5. P, = Table 6. P, =
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Table 7. P, = Table 8. P, =
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
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bonds. For example, the triplet CAU will be replaced by number 7 (= 3+2+2). (Figure 2 in Chapter 4 pre-
sented another variant, when symbolic multiplets were replaced by product of numbers of their hydrogen
bonds). In this “additive” case, we get the following numeric matrix, denoted by G(i,j) (Figure 14).
One can easily see that the matrix G(i,j) has common row sum and common column sum of 60. It
implies that the matrix G(i, j) is a doubly stochastic (8x8)-matrix. In next paragraph, we explore the
properties of this matrix and its relationship with DNA and protein sequences.
Here we list some basic properties of the matrix G(i7).

*  The matrix G(i,j) is symmetric since G(i,j) = G(i,j) ".

. The matrix G(i,j) is singular since Det (G(i,j)) = 0.

. The eigenvalues of G(i,j) is {1, L, ... 1, }={0, 0,0, 0,4, 4, 4, 60}.

. The eigenvectors are {2, -1,-1,0,-1,0,0, 1}, {1,0,-1,0,-1,0, 1, 0}, {1,-1,0,0,-1, 1,0, 0}, {1,
-1,-1,1,0,0,0,0},{-1,0,0, 1, -1, 0,0, 1}, {0,-1,0,-1, 1, 1, 0, 1, 0},{0, 0, -1, -1, 1, 1, 0, O}, {1,
1,1,1,1, 1, 1, 1}. Furthermore these 8 vectors are linearly independent. They form a basis for a
vector space of dimension of 8.

. Trace of matrix G(i,j) = Sum of eigenvalues=0+0+0+0+4+4 + 4+ 60 =72.

Since the matrix G(i,7) is doubly stochastic, the matrix G(i,j) can be decomposed as a convex com-
bination of finitely many permutation matrices (Bapat, & Raghavan, 1997); that is,

G@,))=al +al,+..+aP,

m

where P, P,, ..., P_ are permutation matrices and 0 <a , a,,...,a_<60,a +a,+...+a_= 60. A per-
mutation matrix can be obtained from an identity matrix by permuting its rows and columns. Explicitly

we have

G (i,j)=9P, +8(P,+P,+P)+7(P.+P,+P)+6P, where

P, = Table 9.
P,= Table 10.
P,= Table 11.

Figure 14. The transformation of the genomatrix [C A; U G]? into the numeric genomatrix G(i,j), each
entry of which is equal to the sum of hydrogen bonds of the relevant codon

8 |8

G(ij) =

(IS0 |0 |00 |\
NSO |q|S0 | |\e

~|00 (SN |1|00 |\ |

DA [A|N |0 |0
~(ce |0 |\ ||| |cL
- -AES FRT-R [-HEN R N~ -JEN |
--AR =N Ri--R e R~ Es |
(oo |q|eo|T|T |
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Table 12.

P,=

Table 13.

P, =

Table 14.

P, =

Table 15.

P, =

Table 16.

P, =

Each permutation matrix is also doubly stochastic and symmetric. Each matrix can be viewed as a
vertex of genetic cube illustrated in (Petoukhov, 2001). One may note that this genetic cube can be iter-

Table 10. P,=

Table 9. P =

Table 12. P,=

Table 11. P,=

Table 14. P, =

Table 13. P,=
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Table 15. P = Table 16. P, =

0
0
0
0
0
0
1
0

— o |||l

oS |||~ ||| O

S|~ ||| ||

— ||| |||

0
0
0
0
0
0
1
0

(=3 Rl N e K= K= =l i ]

oS |lo|lo|lr|lolo|lo|o

oS |lo|o|o|o| ||
[=3 Nl RN K= R =2 iR i)
oS |lo|o|o|o|oco|o|—
o |||l |~
oS ||| ||| O
oS ||| |o|—~ ||
S |lo|o|o|o|o |~ |
S |lo|o|o|o|o|o|—

ated by taking the power of the matrix G(i,j). A fractal structure of the genetic cube will emerge from
one generation to another.

GENETIC CODE, POWER OF MATRICES AND STOCHASTIC MATRICES

We next recall a well-known result on the power of matrix. If 4 is the adjacency matrix of a simple
graph, the ij-th entry of 4™ is equal to the number of paths of length m from vertex i to vertex j, m=1, 2,
3,.... To apply this result to the matrix D,,, we conclude that the number of paths of length m is equal
to the entries of m-th power of an adjacency matrix D,, corresponding to a simple graph with codons
as vertices.

Form=1,2,3,..., we denote D,,” the m-th power of matrix G(i, ). It’s easy to see that the matrices
D', D.?, ..., D" are doubly stochastic, their eigenvalues are { (1)), (L), ... (1" } =1{0,0, 0,0, (-4)
", (-4)", (-4)", 12"} with the same eigenvectors of D,.

Here we illustrate the powers of matrix D, when m = 2, and 3, respectively.

(D,,)* = Table 17.

The next iteration is the 3" power of matrix D,,. The resulting matrix is

(D,,)’ = Table 18.

As the power m increases, the number of paths increases rapidly. This kind of hypercomplex num-
ber is considered in Chapter 9 under the name “hyperbolic matrions”. One can extend this result into
the general case of matrix D," . If the length of DNA/RNA sequences is n, then all possible Hamming
distances among the entries of the matrix D,” are 0, 1,2, ..., n. The dimension of this matrix is 2" by 2.
Each entry of the matrix is a chain of DNA/RNA bases of length n. The iterations of the matrices provide
a way of knowing the number of paths traveling from one entry to another within the matrix.

Chemical analysis of the molar content of the bases (generally called the base composition) adenine,
thymine (uracil), guanine, and cytosine in DNA molecules isolated from many organisms provided the
important known fact that [A] =[U] and [G] = [C], in which [ ] denotes molar concentration, from which
followed the corollary [A+G] = [U+C] or [purines] = [pyrimindines]. These chemical properties are
well linked with the iterations of the genetic matrix. For n=1, 2, 3,..., we denote G(i,j)" the n-th power
of matrix G(i, j). It’s easy to see that the matrices G(i,j)!, G(i,j)?, ..., G(i, j)" are doubly stochastic, their
eigenvalues are { (1), (L)', ... (1" }= {0, 0, 0, 0, 47, 4", 4", 60"} with the same eigenvectors of G(i, /).
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Table 17. (Dy,)* = Table 18. (D) =

24 (20 |16 |20 |16 |12 |16 |20 192|208 |224 |208 |240 |224 |224 | 208
20 (24 (20 |16 |12 |16 |20 |16 208 | 192 [208 |224 |224 |240 |208 | 224
16 |20 |24 |20 |16 |20 |16 |12 224 208 [192 [208 |224 |208 |240 | 224
20 (16 |20 |24 |20 [16 |12 |16 208 | 224 [208 |192 |208 |224 |224 |240
16 [12 |16 |20 |24 |20 |16 |20 240 | 224 |224 |208 | 192 |208 |224 |208
12 [16 |20 [16 |20 |24 |20 |16 224 | 240 [208 | 224 |208 |192 |208 |224
16 (20 |16 |12 |16 |20 |24 |20 224 | 208 |240 | 224 |224 [208 | 192 | 208
20 (16 |12 |16 |20 [16 |20 |24 208 | 224 |224 |240 |208 |[224 |208 |192

The iteration of the matrix G(i,j) gives us an indicator for molar concentration accumulations. We
illustrate this process of iteration by computing G(i, j)* and G(i, j)* respectively.

G(i, j)* = Table 19.

It’s easy to see that the sum of the corresponding entries of the first row (or column) and of the last row
(or column) has common sum of 900. This also applies to 2™ row (or column) with 7" row (or column),
3" row (or column) with the 6" row (or column) and 4" row (or column) with the 5" row (or column).
These properties are corresponding to the molar concentration accumulations under multiplication and
addition. For example the entry at the first row and the first column 456 is a result of accumulation of
the following codons:

456 = CCC*CCC+CCA*CCU+CAC*CUC+CAA*UCCHACC*CUU+ACA*UCU+AAC*UUC
+AAA*UUU =

= (343+3)*(3434+3)H(3+342)*(3+34+2)+(3+2+3) ¥ (3+2+3)+(3+2+2)*(2+3+3) +(2+3+3)*(3+2+2)+(2+
342)K(243+2)H(2+243)F(24243)H(2+2+2)*(2+2+2)

The entry at the 8" row and the first column 444 is a result of accumulation of the following
codons:

444= UUU*CCCHUUG*CCU+UGU*CUCHUGG*UCC+GUU*CUU+GUG*UCU+GGU*UUC
+GGG*UUU =

Table 19. G(i, j)*=

456 452 452 448 452 448 448 444
452 456 448 452 448 452 444 448
452 448 456 452 448 444 452 448
448 452 452 456 444 448 448 452
452 448 448 444 456 452 452 448
448 452 444 448 448 456 448 452
448 444 452 448 452 448 456 452
444 448 448 452 448 452 452 456
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=(24242)*(3H343)H(2+2+3)*¥(3+3+2)H(2+3+2)* (3B+2+3) H(2H+3+3) H(2+3+3)+H(3+2+2) ¥ (3+2+2)+H(3+2
F3)H(2H3H2)H(3+3+2)H(2+2+3)+H(3+3+3)*(2+2+2)

The sum to these two entries equals 456+444=900, which leads to common row (column) sum of
4*900 = 3600. These common sums were governed by the fact that [A] = [U], [C] = [G], and [A+ G]
=[C+U].

The next iteration is the 3™ power of matrix G(i,j). The resulting matrix is

G(i, j)} = Table 20.

In this case, we have the common row (or column) sum of 216000 = 4*5400. The value 5400 =
60*900 = 4*15*%900 was derived from previous sum accumulation. This matrix iteration shows us the
process of molar accumulation and demonstrates various symmetrical structure embedded in the molar
concentration.

Next we illustrate a model of genetic code evolution based on the Kronecker family of the genomatri-
ces [C A; U G]™. A fractal character of hierarchic structure of this family was described in (Petoukhov,

Table 20. G(i, j) =

27024 27008 27008 26992 27008 26992 26992 26976
27008 27024 26992 27008 26992 27008 26976 26992
27008 26992 27024 27008 26992 26976 27008 26992
26992 27008 27008 27024 26976 26992 26992 27008
27008 26992 26992 26976 27024 27008 27008 26992
26992 27008 26976 26992 27008 27024 26992 27008
26992 26976 27008 26992 27008 26992 27024 27008
26976 26992 26992 27008 26992 27008 27008 27024

Figure 15. Fractal structure of the genetic code or a possible model of its three-stages evolution (from
the table with one ‘initial” nitrogen bases to octet table with 64 triplets) by means of standardizing
quaternary partition of each table cell at a transition to the next table of this sequence

Eal cA 2@l AA
CU |GG | AU | AG
> luc]ualae ]| Ga
uu |uG|GU |GG -

Q|»>

| Initial nitrogen (?) | 2 [ U

CCC | CCA | CAC | CAA JACC | ACA | AAC | AAA
CCU | CCG | CAU | CAG [ACU | ACG | AAU | AAG
CUC | CUA [CGC | CGA [ AUC | AUA [ AGC | AGA
> [CUU | CUG | CGU | CGG [ AUU | AUG | AGU | AGG
UCC | UCA | UAC | UAA [ GCC | GCA | GAC | GAA | 2+
UCU | UCG | UAU | UAG [ GCU | GCG | GAU | GAG
UUC | UUA | UGC | UGA | GUC | GUA | GGC | GGA
UUU | UUG | UGU | UGG | GUU | GUG | GGU | GGG
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2001). This fractal character is connected with properties of the Kronecker algorithm of construction of
this family: [C A; U G]®[C A; U G]®[C A; U G]®..., where ® is the symbol of Kronecker multiplica-
tion. For example the (8x8)-genomatrix [C A; U G]® is divided into four (4x4)-quadrants with certain
dispositions of letters C, A, U, G on the first positions of their multiplets; each of these (4x4)-quadrants is
divided into four (2x2)-sub-quadrants with similar dispositions of letters C, A, U, G on the first positions
of their multiplets; each of these (2x2)-sub-quadrants is divided into four cells C, A, U, G. It permits
one to represent building algorithms of this table [C A; U G]™. in a form of three generations of 4-ary or
quaternary divisions (partitions or “reproductions”) of its cells ensembles (Figure 15). One can suppose
that evolution of the genetic code may be organized in a similar fractal way with quaternary partitions
of elements at each of three stages (Petoukhov, 2001).

In the (16x16)-matrix [C A; U G]®, each entry has four bases and it can form two possible codons
in a linear chain from left to right. For example, four bases in the 4-plet CCCA may form two codons
CCC and CCA in a sequential order. The next (32x32)-matrix [C A; U G]® has 1024 entries. In this case,
each entry has five bases and forms three possible codons in a sequential order. For example the entry
CCCAC may form three codons CCC, CCA, CAC. The next standardizing quaternary partition leads to
a (64x64)-matrix [C A; U G]“ with 4096 entries. Each entry has six bases and it may form 4 possible
codons. For example, the codons CAC, ACC, CCC and CCA are formed from the entry CACCCA. We
use Tables 21, 22 and 23 to illustrate this process by summarizing the matrix dimensions, number of
bases with possible codons and total number of entries of such matrices.

In general, we can form Table 24 to summarize this process for k=1, 2, 3,....

Figure 16 shows the corresponding sequence of matrices, where the first matrix contains numbers
2 and 3 of hydrogen bonds of the genetic bases C, A, U, G and where each next matrix is generated by
means of standardizing quaternary partition.

Table 21. Phase I: First phase of evolution in three stages

Dimensions = 2°x2°
No. of Entries =1
No. of Bases=0

Dimensions = 2!x2!
No. of Entries =4
No. of Bases =1

Dimensions = 22x2?
No. of Entries =16
No. of Bases =1

Dimensions = 2°x23
No. of Codons =64
No. of Bases =1
No. of Possible Codons=1

Table 22. Phase II: Second phase of evolution in three stages

Dimensions = 23x23
No. of Entries =64
No. of Bases =3
No. of Possible Codons=1

Dimensions = 24x2*
No. of Entries =256
No. of Bases =4
No. of Possible Codons=2

Dimensions = 2°x2°
No. of Entries =1024
No. of Bases =5
No. of Possible Codons=3

Dimensions = 2°x2°
No. of Entries =4096
No. of Bases =6
No. of Possible Codons=4

Table 23. Phase Ill: Third phase of evolution in three stages

Dimensions = 2°x2°
No. of Entries =4096
No. of Bases =6
No. of Possible Codons=4

Dimensions = 27x27
No. of Entries =16384
No. of Bases =7
No. of Possible Codons=5

Dimensions = 2°x2%
No. of Entries =65536
No. of Bases =8
No. of Possible Codons=6

Dimensions = 2°x2°
No. of Entries =262144
No. of Bases =9
No. of Possible Codons=7
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Dimensions =
23kx231(
No. of Entries =4
No. of Bases =3k
No. of Possible Codons=3k-2

Dimensions = 231x231
No. of Entries =431
No. of Bases =3k+1

No. of Possible
Codons=3k-1

Dimensions = 23¢*Dx23¢
No. of Entries =4°**D
No. of Bases =3(k+1)
No. of Possible Codons=3k+1

Dimensions = 232x23+2
No. of Entries =4%*"2
No. of Bases =3k+2

No. of Possible Codons=3k

Figure 16. The beginning of the sequence of numeric matrices on the base of the algorithm of standard-

izing quaternary partition

9(8]8|7018|7]7]|6
glol7|8)7]816|7
8[7]19|8)7]6]8]|7
g18|9f6|7]7]8
6|5]5|4 87171689 |8]8|7
516]4]5 71816|70k8[9]7]|8
3]2 514165 716]8|718|7]9]8]>
KEd FE k4 FH B k4 G B 28 BE e
Figure 17. Hydrogen-bonds triangle
N = Length of DNA bases S(X,) = Sums of Hydrogen bonds
0 (initial) 0
1 2 3
2 4 5 6
3 (codons) 6 7 8 9
4 8 9 10 11 12
5 10 11 12 13 14 15
6 (dipeptide) 12 13 14 15 16 17 18
7 14 15 16 17 18 19 20 21
8 16 17 18 19 20 21 22 23 24
9 (tripeptide) 18 19 20 21 22 23 24 25 26 27
10 20 21 22 23 24 25 26 27 28 29 30
H-Bonds Triangle

Forn=0,12,3,...,letX denotes a DNA sequence of length n and S(X ) =sums of hydrogen bonds
of DNA bases. Then S(X ) =2n +k, k=0, 1, 2, ..., n. Furthermore, S(X ) = S(X ) + (2 or 3) for n =1,

2,3, ...

Construction of the sums S(X ) of hydrogen bonds may be illustrated by a Hydrogen-bonds triangle

(Figure 17).

This leads us to find building blocks of genetic code based stochastic matrices. The first building
block matrix is a (2x2)-matrix B, (Table 25).
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Table 25.
3 2
2 3
Figure 18.
n Matrix building blocks
3[2
1 213
2 5)4 65
4[5 516
3 7]6 8[7 9]8
6|7 7]8 8|9
4 9]8 1]9 1]1 11
8|9 0 1/0 21
91 11 1]1
/\ 0 0/ 1 1[2
5 \ /\ \
1110 i1 1[1 1]1 1]1
10 | 11 2 |1 3|2 4|3 514
WI§ 11 11 PE
" 1 \2 2 [:3 314 4 NS
\/\ \/ N
7 B E 111 B 111 111
3|2 4|3 5|4 6|5 716 HE
11 1]1 11 11 11 1[1
213 3|4 4|5 516 6|7 7|8

As the length of RNA sequences increases, the matrix building blocks grow and the frequency of
the occurrence of the building block in evolution matrix increases as well. We illustrate this process by
constructing these building blocks (Figure 18).

Frequency of building blocks in the stochastic matrices may be illustrated by a triangle scheme
(Figure 19).
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Figure 19.
Matrix Building Blocks Frequency of Building Blocks
E, By 1
E4 By Bx 2 2
Ey By By By 4 8 4
(codons)
Ey By By Buy By 8 16 16 8
Ex Bs Bs; Bs; Bsy Bss 16 32 64 32 16
Eg (dipeptide) By Bsy Bg Bgy Bgs Bgs 32 64 128 128 64 32
- By Bn Bp By B By Bn 64 128 256 512 256 128 64
e Bgi Bgy Bgy Bsy Bgs Bge Bgy Bsg 128 256 512 1024 1024 512 256 128
(tripEéﬁ?d@ By, By, By Boy Bos Bos Boy Bog Boy | 256 512 1024 2048 4096 2048 1024 512 256

Table 26.

nt2 ntl

n+l n+2

Frequency of building blocks in the stochastic matrices may be illustrated by a triangle scheme.

These (2x2)-matrices are of the form the following matrix B, (n=1,2,3,...,k=1,2, ..., n) (Table
20).

The row (or column) sum equals to (27+3). The determinant of the matrix B , also equals to (2n+3).
The eigenvalues of matrix B, equal to 1 or (2n+3). Furthermore, we have

Bnk +[2] = B(n+l)k
Bnk + [3] = B(n+1)(k+l)
B T =B, ey

Where [1], [2], [3] are 2 x 2 matrices with values of 1, 2, 3, respectively in all four entries of each
matrix. We use the following diagram to illustrate those relation between building blocks. They form a
triangular type of structure (Figure 20).

Each matrix is doubly stochastic and symmetric. It can be expressed as a convex combination of
symmetric permutation matrices. It forms a polyhedron with each permutation matrix as vertex.
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Figure 20.
B nk
Buiyr——> By
Table 27.
2n+k 2n + k-1
2n + k-1 2n+k
Table 28.
Length of bases n B B, middle term(s) Bn(n_l) B
nis odd 20n-1) on D0rH{(n+1)/2]-2) on 201-1)
n iS even 2(n-1) 211 . 2(n+[n 2]-2) 2(n+[n/ 2]-2) . 2:1 2(:1-1)

B (k=1,2,...,n)is asequence of (2x2)-symmetric matrices which are building blocks of the evo-
lution matrix £.". The matrix B has an explicit form shown in Table 27.

The determinant of B , equals 4n+2k-1, which is the same as its row/column sum. The matrix B, has
two different eigenvalues 1, 4n+2k-1. It has a pair of orthogonal eigenvectors {-1, 1} and {1, 1}. The
frequency of these building blocks in the evolution matrix is listed in Table 28.

Next we demonstrate a process of formulation of evolution matrices £," from these proper numbers
of building blocks in each stage. We will generate the evolution matrices E,, E,, E, (codons), £, E,,
E,, (dipeptides), E ., E.,,, E,,, (tripeptides).... It is easy to note that the building process connects to-
gether the previous step and the present step. Each resulting evolution matrix is a doubly stochastic and
symmetric matrix. They can be decomposed into a convex combination of permutation matrices with
corresponding matrix dimension. Each permutation matrix is vertex of polyhedron (in analogues with
polypeptide). Since the sequence of RNA has a length of n, we call this sequence a n-sided polypeptide
(similar to n-sided polygons). Note that any n-sided polygon consists of (n-2) triangles. Any n-sided
linear polypeptide may be decomposed into (1-2) codons (triplets). The next level of building blocks of
proteins could be tripeptides-a chain of three amino acids.

This building process of evolution matrices may be illustrated by Figure 21 from £, E,, E, (codons),
to £, respectively.

We summarize our results here. Let n = length of RNA sequences, B, (j=1,2, ... n) be (2x2)-matrix

building blocks of the evolution matrices £, and D(X)) = the dimension of evolution matrix £. Then
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Figure 21.

By

By | Byz | Bys | Ban | Bz | Baa | Baz | By
Bys | Bay | Byz | Bas | Baz | Bas | By | Bz

By | Bys | Baz | Bas | By | Biz | Byz | Bas
Byz | Bys | Bz | By | Baa | Bas | Bas | Ban

each building block is a stochastic symmetric (2x2)-matrix, the number of building blocks | B, |=n
and D(X ) = 2".

FUTURE TRENDS AND CONCLUSION

The first part of this chapter showed a close relation between the genetic code and the doubly stochastic
matrix by using Hamming distance via the Gray code correspondence. The Hamming distance is ap-
plicable to encoded information, and is a particularly simple metric of comparison for error detections.
The second part of the chapter showed a close relation between the genetic code and doubly stochastic
matrix by using genetic attribute based mapping based on hydrogen bonds. Similar studies can be ap-
plied to other attributive mappings based on other chemical properties of DNA bases.

The matrices are storages of digital data. The matrices appear in various dimensions with different
shapes. Stochastic matrices motivated by the language of probability show up repeatedly in nature.
Biological evolution can be interpreted as a process of deployment and duplication of the certain forms
of ordering. Having advanced in the understanding of structurally functional features of base systems
of genetic coding, mankind extracts simultaneously an opportunity to advance in different areas of bi-
ology, which are built in consent with these base systems. The considered stochastic matrices seem to
be connected with mechanisms of order production in inheritable biological systems. It is hoped that
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Figure 22. The Hadamard matrix, which corresponds to the matrix C, from Figure 8 by means of the
U-algorithm. Cells with the entry “+1” (“-1”) are denoted by black (white) color

relationships among genetic code, Hamming distance, and stochastic matrices will help us explore the
structure of the genetic code.

One of the interesting directions of future investigations is connected with relations between the
matrices, which are described in this chapter, and famous Hadamard matrices, which are considered in
the next Chapter 6 together with a special U-algorithm of transformation of some genetic matrices into
relevant Hadamard matrices. One can check easily that the mosaic (8x8)-matrix C,, (Figure 8), which
was constructed in this chapter on the basis of the Gray code numeration of columns and rows, is trans-
formed by the same U-algorithm into one of Hadamard (8x8)-matrices (Figure 22).
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Chapter 6

The Genetic Code, Hadamard
Matrices, Noise Immunity,
and Quantum Computers

ABSTRACT

This chapter continues an analysis of the degeneracy of the vertebrate mitochondrial genetic code in the
matrix form of its presentation, which possesses the symmetrical black-and-white mosaic. Taking into
account a symmetry breakdown in molecular compositions of the four letters of the genetic alphabet,
the connection of this matrix form of the genetic code with a Hadamard (8x8)-matrix is discovered.
Hadamard matrices are one of the most famous and the most important kinds of matrices in the theory
of discrete signals processing and in spectral analysis. The special U-algorithm of transformation of
the symbolic genetic matrix [C A; U G]% into the appropriate Hadamard matrix is demonstrated. This
algorithm is based on the molecular parameters of the letters A, C, G, U/T of the genetic alphabet. In
addition, the analogical relations is shown between Hadamard matrices and other symmetrical forms
of genetic matrices, which are produced from the symmetrical genomatrix [C A; U G]?® by permuta-
tions of positions inside triplets. Many new questions arise due to the described fact of the connection
of the genetic matrices with Hadamard matrices. Some of them are discussed here, including questions
about an importance of amino-group NH, in molecular-genetic systems, and about possible relations
with the theory of quantum computers, where Hadamard gates are utilized. A new possible answer is
proposed to the fundamental question concerning reasons for the existence of four letters in the genetic
alphabet. Some thoughts about cyclic codes and a principle of molecular economy in genetic informat-
ics are presented as well.

INTRODUCTION AND BACKGROUND

We continue to investigate connections of the genetic matrices with matrix formalisms of the theory of
discrete signals processing. One of the most famous and the most important kinds of matrices in this
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Figure 1. The family of Hadamard matrices H(2*) based on the Kronecker product
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theory are the so called Hadamard matrices. These matrices are used also in many other fields due to their
advantageous properties: in error-correcting codes such as the Reed-Muller code; in spectral analysis; in
multi-channels spectrometers with Hadamard transformations; in quantum computers with Hadamard
gates (or logical operators), in quantum mechanics as unitary operators, etc.

Does any natural connection exist between the genetic matrices, which were described in previous
chapters, and Hadamard matrices? This question should be investigated especially because a possible
positive answer to it may lead to many significant consequences and new thoughts about structures
of the genetic code. This chapter demonstrates the existence of such a connection and analyzes some
questions related to it.

A huge number of scientific publications are devoted to Hadamard matrices. These matrices give
effective opportunities for information processing.

By definition a Hadamard matrix of dimension “n” is the (nxn)-matrix H(n) with elements “+1”
and “-17. It satisfies the condition H(n)*H(n)" = n*I , where H(n)" is the transposed matrix and / is the
(nxn)-identity matrix. The Hadamard matrices of dimension 2* are given by the recursive formula H(2%)
= H(2)® = H(2)®H(2"") for 2 < ke N, where ® denotes the Kronecker (or tensor) product, (k) means the
Kronecker exponentiation, £ and N are integers, H(2) is demonstrated in Figure 1.

Rows of a Hadamard matrix are mutually orthogonal. It means that every two different rows in a
Hadamard matrix represent two perpendicular vectors, a scalar product of which is equal to 0. The ele-
ment “-1” can be disposed in any of four positions in the Hadamard matrix H(2). Such matrices are used
in many fields due to their advantageous properties: in error-correcting codes such as the Reed-Muller
code; in spectral analysis and multi-channel spectrometers with Hadamard transformations; in quantum
computers with Hadamard gates, etc. It was discovered unexpectedly that Hadamard matrices reflect
essential peculiarities of molecular genetic systems (Petoukhov, 2005, 2006, 2008a-d).

Normalized Hadamard (2x2)-matrices are matrices of rotation on 45° or 135° depending on an ar-
rangement of signs of its individual elements. A Kronecker product of two Hadamard matrices is a
Hadamard matrix as well. A permutation of any columns or rows of a Hadamard matrix leads to a new
Hadamard matrix.

Hadamard matrices and their Kronecker powers are used widely in spectral methods of analysis
and processing of discrete signals and in quantum computers. A transform of a vector a by means of a
Hadamard matrix H gives the vector G = H*a, which is named Hadamard spectrum. A greater analogy
between Hadamard transforms and Fourier transforms exists (Ahmed & Rao, 1975). In particular the fast
Hadamard transform exists in parallel with the fast Fourier transform. The whole class of multichannel
“spectrometers with Hadamard transforms” is known (Tolmachev, 1976), where the principle of tape
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masks (or chain masks) is used, and it reminds one of the principles of a chain construction of genetic
texts in DNA. Hadamard matrices are used widely in the theory of coding (for example, they are con-
nected with Reed-Muller error correcting codes and with Hadamard codes (Peterson & Weldon, 1972;
Solovieva, 2006), the theory of compression of signals and images, a realization of Boolean functions
by means of spectral methods, the theory of planning of multiple-factor experiments and in many other
branches of mathematics.

Biological organisms are sets of biochemical molecules. The Hadamard matrices in analytical chem-
istry have been introduced (Pan, 2007). This work pays a special attention to applications of Hadamard
matrices to enhance signal-to-noise ratio. It is explained in a simple example of weighing. The basic
idea is connected to weighing of the objects in groups but not separately for a determination of their
individual weights more accurately. For example, in a case of four objects, we can weigh them by two
different ways. By the first way we can weigh each of them individually by means of a single pan spring
balance which is well calibrated to give us correct values ¥, ¥,, ¥, ¥, for these four objects 1, 2, 3,
4 correspondingly with a small random error “e”. By the second way we can weigh all four objects in
groups by means of a two-pan balance to receive their general weights n,, n,, 1,, 1, in the next four
weighing with appropriate random errors €, €,, €, €,:

n, =%, +T2+\P3+\P4+el
L T SR SR
n3=\P1+\P2-\P3-\P4+e3
n, =%, '\Pz'\P3+\P4+e4

Here the measurement with a negative value means that the object is placed on the opposite pan of
the balance. From these equations one can easily calculate values ¥, ¥,, ¥, ¥, This final result will
be much more accurate than in the previous case of weighing of each object individually (see details in
(Pan, 2007)). The disposition of signs “+” and “-* in this system of the four equations is identical to their
disposition in the relevant Hadamard (4*4)-matrix. In such way applications of Hadamard transforms
enhance the signal-to-noise ratio.

Rows of Hadamard matrices are named Walsh functions or Hadamard functions. Walsh functions can
be represented in terms of product of Rademacher functions r (¢) = sign(sin2"nt), n = 1,2,3,..., which
accept the two values “+1” and “-1” only (here “sign” is the function of a sign on argument). Sets of
numerated Walsh functions (or Hadamard functions), when they are united in square matrices, form
systems depending on features of such union. Figure 2 shows two examples of systems of such func-
tions, which are used widely in the theory of digital signals processing.

They are connected with (8x8)-matrices by Hadamard and with the Walsh-Hadamard transform,
which is the most famous among non-sinusoidal orthogonal transforms and which can be calculated by
means of mathematical operations of addition and subtraction only (see more detail in (Ahmed & Rao,
1975; Trahtman & Trahtman, 1975; Yarlagadda, & Hershey, 1997). Hereinafter we will use the simpli-
fied designations of matrix elements on illustrations of Hadamard matrices: the symbol “+” or the black
color of a matrix cell means the element “+1”’; the symbol “-“ or the white color of a matrix cell means
the element “-1”. The theory of discrete signals pays special attention to quantities of changes of signs
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Figure 2. Examples of the two systems of Walsh functions (or Hadamard functions), which are used
frequently in the theory of digital signals processing. On the left side: the Walsh-Hadamard system. On
the right side: the Walsh-Paley system. Quantities of changes of signs “+” and “-* are shown for each
row and each column

0 0|
7 1
3 3
4 2
1 7
6 6
2 4
5 5
0/7/3[4]1]6]2]5 0/1/3[2]7]6]4]5

“+” and “-* along each row and each column in Hadamard matrices. These quantities are connected
with important notion of “sequency” as a generalization of notion of “frequency” (Ahmed & Rao, p.85).
Figure 2 shows these quantities for each row and each column in presented matrix examples.

Normalized Hadamard matrices are unitary operators. They serve as one of the important instru-
ments to create quantum computers, which utilize so called Hadamard gates (as evolution of the closed
quantum system is unitary) (Nielsen & Chuang, 2001).

THE GENETIC CODE AND HADAMARD MATRICES

The molecular composition of the letters A, C, G, U/T of the genetic alphabet is characterized by one
special disturbance of symmetry: the three nitrogenous bases A, C, G have one amides (amino-group)
NH,, but the fourth basis U/T has not it (Figure 1 of Chapter 1).

From the viewpoint of existence of the amino-group NH,, the letters A, C, G are identical to each other
and the fourth letter U/T is opposite to them. This fact of existence or absence of the amino-group NH,
in certain genetic letters can be reflected in the alphabetic genomatrix P =[C A; U G] by symbols “+1”
instead of the letters A, C, G and by the symbol “-1” instead of the letter U. In this case this genomatrix is
transformed into the Hadamard genomatrix Pio= H(2)=[11; -1 1]. All other variants of the Kronecker
families of the alphabetic genomatrices, which were considered in Chapter 2 on Figure 11, become the
Kronecker families of Hadamard matrices by such a way as well (Figure 3 demonstrates examples).

The detection of natural realization of Hadamard matrices (and systems of orthogonal functions,
which are connected with them) on the basis of parameters of the molecular-genetic system, which
serves to transfer discrete genetic information, show that all known advantages of Hadamard matrices
can be utilized in bioinformatics. Taking into account a possible important role of Hadamard matrices
in the genetic signals processing, one can consider genetic sequences as lattice functions, for which a
substantial class of discrete logical operations exists. This class contains logical addition, logical subtrac-
tion, logical product, logical shift, logical convolution and logical differentiation. All these operations
can be applied to the analysis of problems of genetic information processing.
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Figure 3. Examples of transforms of the Kronecker families of the alphabetical genomatrices from Figure
11 of Chapter 2 into appropriate Kronecker families of Hadamard matrices
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One should note that the attribute of absence of the amides (amino-group) NH, picks out those ni-
trogenous bases T and U, which differ from other genetic letters A, C, G by one specific property else.
These letters T and U replace each other at transition from DNA to RNA for an unknown reason. These
double differences of the first sub-set of genetic alphabet A, C, G with the second subset U/T lead to the
identical transformations of the alphabetic genomatrices into Hadamard matrices.

ABOUT THE IMPORTANCE OF AMINO-GROUPS NH,

The importance of compounds of nitrogen for molecular genetics is reflected even in names: “amino
acids” (the organic acids containing amino-groups); “the nitrogenous bases”’; “the N-end” of nucleotide
circuit, with which synthesis of proteins begins always, etc. All proteins are polyamides. The lack of
proteins of food leads to a number of heavy infringements of a nitrogenous exchange. The amino-group
of amino acids bears a base function to provide recognition of an amino acid by enzyme (Shapeville &
Haenni, 1974).

Beginning with the works (Schuster & Schramm, 1958; Gierer &Mundry, 1958), it is known that
action of the nitrous acid NHO, on RNA leads to amino-mutation of RNA. More precisely this action
deletes amino-group at the nitrogenous bases A and C and leads finally to a replacement of the nitrogenous
bases A and C by the bases G and U correspondingly: A—G, C—U. In a certain sense, the bases A and
G (C and U) can be interpreted as the two states of the same letter. One can note that objects with such
“trigger” properties are used to construct computers. These amino-mutations A—G, C—U are utilized
traditionally to demonstrate molecular mechanisms of an origin of genetic mutations. The nitrogenous
acid exists only in the diluted water solutions, which are similar to solutions in biological organisms.

The work (Wittmann, 1961) has demonstrated a degeneracy of the genetic code by means of the fol-
lowing method. The author has grouped all 64 triplets into 8 octets, each of which begins with maximal
amino-mutation triplets, which are transformed step by step into more and more stable triplets, non-
mutating under the action of nitrous acid NHO,. These octets by Wittmann, which take an important
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place in the history of the discovery of the genetic code (Ycas, 1969), coincide with the columns of the
genomatrix [C A; U G]® on Figure 2 of Chapter 2. Taking all these facts into account, one should pay
great attention to amino-groups in future development of knowledge about genetic code systems. One
can raise Hadamard (2x2)-matrices from Figure 3 into the third Kronecker power to receive Hadamard
(8x8)-matrices. One such octet matrix is shown in Figure 2 on the left side. But mosaics of the Hadamard
matrices, which are obtained by this method, differ from mosaics of the octet genomatrices of triplets,
which were presented in Chapter 2. Really the mosaics of the genomatrices of triplets contain 32 black
cells and 32 white cells (Figures 2, 4, and 5 of Chapter 2), whereas Hadamard (8x8)-matrices contain
28 cells of one color and 36 cells of another color.

The question arises as to whether any simple algorithmic connection exists, which is connected to spe-
cifics of the genetic code, between the mosaic of the genomatrix [C A; U G]® = PAYS  (see Figure 2 of
Chapter 2) and the black-and-white mosaic of some matrix from the set of Hadamard (8x8)-matrices?

The answer to this question is positive: such algorithmic connection exists. It is mated with the
fundamental and enigmatic features of the genetic code: firstly, the mutual replacement of the letters U
and T in RNA and DNA and, secondly, the difference of these letters from other letters A, C, G by the
absence of amids (amino-groups) in them. Really, let us replace black (white) cells of the genomatrix
[C A; U G]®in Figure 2 of Chapter 2 by the number “+1” (“-17). As a result we obtain the matrix B
from Figure 7 of Chapter 2. After this we invert the signs in cells of this matrix B ,,
the particular letter U occupies the first or the third positions of a triplet. We name this algorithm of
inverting the “U-algorithm” conditionally. For example, by this U-algorithm the cells with the triplets
UCA and GAU change their sign one time, and the cell with the triplet UAU changes its sign twice (it
means that this cell does not change its sign at all). As a result of such algorithmic changes of signs, the
mosaic genomatrix [C A; U G]® from Figure 2 of Chapter 2 becomes one of the Hadamard matrices
(see the first matrix in Figure 4).One can suppose that the described “genetic” U-algorithm (of inverting
the signs every time when the particular letter U or T appear in an odd position of triplets) is connected
with the biological mechanism of mutual replacement of the letters U and T at transition from RNA to
DNA and vice versa.

The five genomatrices P49,

123
every time when

o PEAYEL PCAUGBZ, peave [ PeAYS | from Chapter 2 (Figures 4 and 5
of Chapter 2), which are produced from the matrix P“4% = [C A; U G]® by positional permutations
inside triplets, are transformed into other Hadamard matrices by the analogical algorithm. It is obvious
because, as we mentioned above, a transform of the genomatrix by positional permutation inside triplets
is identical to its transformation by the appropriate permutation of its columns and rows; but permuta-
tions of columns or rows in Hadamard matrices give new Hadamard matrices always.

Figure 4 shows six Hadamard matrices, which correspond to the six mentioned genomatrices. One
can check that any of these octet matrices satisfies the definition of Hadamard matrices: if the matrix is
multiplied on transposed matrix, the result is the unitary matrix with the factor 8. Each (4x4)-quadrant
and each (2x2)-sub-quadrant of these Hadamard (8x8)-matrices is a Hadamard matrix as well. In other
words, “Hadamard fractals” are presented in the genomatrices, the mosaic of which reflects the specific
character of degeneracy of the genetic code. The total quantity of Hadamard matrices of different sizes
in these six Hadamard (8x8)-matrices is equal to 126.

One should note a special feature of the genetic Hadamard matrices on Figure 4: a quantity of
changes of signs “+” and “-“ is equal to 14 for each of halves of these matrices (we say about upper,
lower, left and right halves). It can be named conditionally as “a rule of halves of a lunar month” (this

numeric coincidence with the halves of the quantity of 28 days in a lunar month is accidental till that
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Figure 4. The six balanced Hadamard matrices, which are produced from the six mentioned genoma-
trices by means of the U-algorithm. The black cells correspond to elements “+1” and the white cells
correspond to elements “-1”. Numbers of changes of signs “+” and “-** (or changes of colors) are
shown for each row and each column
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moment when somebody proves a contrary statement). Such “symmetrical” feature is a typical feature
for many genetic Hadamard matrices which are presented in Chapters 6, 7, 11 of our book. We name
Hadamard matrices with such feature as “balanced” Hadamard matrices. One can check that each of
(4x4)-quadrants of these Hadamard (8x8)-matrices is a balanced Hadamard matrix as well. This feature
distinguishes the described genetic Hadamard matrices from some types of Hadamard matrices which
are used in technical applications widely. For example the Hadamard matrices with the Walsh-Paley
system (Figure 2, on the right side) or with the system {wal(w,x)} (Trahtman & Trahtman, 1975, p. 47)
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have not such feature. The nature has chosen by some reasons the genetic code, which is connected with
balanced Hadamard matrices.

Other octet genomatrices, which were considered in Chapter 2, are transformed into appropriate
Hadamard matrices by means of the analogical U-algorithm. Some of these matrices are demonstrated
in Figure 5 with an indication of those genomatrices, from which they are produced. All of the genetic
matrices on Figure 5 are balanced Hadamard matrices as well because they fit to the “rule of halves of
a lunar month”.

All such kinds of Hadamard matrices represent various basic systems of orthogonal functions,
which are coordinated with structural peculiarities of molecular systems of the genetic code. They can
be utilized in genetic systems for spectral methods of genetic information processing with the use of
noise-immunity coding, of compression of signals and of other useful possibilities, which Hadamard
matrices and Walsh functions possess.

GENETIC INFORMATICS, HADAMARD MATRICES
AND QUANTUM COMPUTERS

Investigations of structural-functional analogues between the system of genetic coding and computers
have been conducted in science for a long time. In the last years a general opinion has arisen that the
future of computer technology is connected with quantum computers, which possess fantastic possibili-
ties in comparison to traditional computers due to new principles in their workings (Nielsen, & Chuang,
2001; Valiev, & Kokin, 2001). The theory of quantum computers, which are the new type of computers
in principal, is developed intensively. The following question arises. Is the system of genetic coding
closer to classical or quantum type of computers from the point of view of computer analogies? From
the point of view of analogues with classical or quantum computers is it necessary to investigate the
molecular-genetic system?

Genetic molecules exist in accordance with principles of quantum mechanics (from the point of
view of classical mechanics, atoms and molecules cannot exist at all). Therefore it is natural to believe
in the presence of a relationship between molecular-genetic informatics and quantum computers and to
comprehend genetic coding from the point of view of this type of computers. Let us recall the famous
data about the advantages of quantum computers, the theory of which utilizes Hadamard matrices (more
precisely, Hadamard gates) intensively (see for example (Nielsen, & Chuang, 2001)). Classical computers
possess restrictions in calculations on many practically interesting and important classical algorithms,
when speed is about increasing number of data and exponential growth of time of calculation. One of
famous examples is the question about decomposition (factorization) of number N on prime factors.
Classical theory of calculations works with such algorithms of calculations, where number of steps
grows as a polynomial of a small power of the size of the entrance data (for example, a polynomial of
the second or third power). But in the mentioned question of factorization, the best such algorithms
lead to an exponential growth in the number of steps at increasing size of entrance data. For this reason,
the time of calculations becomes huge. For instance, in 1994, 129-unit number was factorized on 1600
workstations distributed worldwide. The time of the factorization was equal to 8 months. The estimated
time, which the same 1600 workstations require for the factorization of 1 250-unit number, is one mil-
lion years. Accordingly, factorization of 1000-unit number requires 10% years, that is much more than
the age of the Universe. This abstract problem of factorization of great numbers has a direct relation to
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Figure 5. The 12 balanced Hadamard matrices, which are produced from the indicated 12 genomatrices
of triplets by means of the U-algorithm. Black cells correspond to elements “+1" and white cells cor-
respond to elements “-1"
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systems of cryptography with the open key, which are utilized in bank systems widely. One should note
for comparison that algorithms in quantum computers calculate such factorization of a 1000-unit number
by means of a few millions steps only. Classical computers do not allow one to model chemical reactions
and systems, where many quantum effects should be taken into account with necessary completeness. It
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is important for science that quantum computers will allow one to calculate a structure and functioning
of quantum systems, including molecules of proteins and DNA.

Classical computer networks consist of wires and a set of logic gates (a set of transistors). Standard
electric signals are transferred through wires, and logic gates transform information signals passing
through them. A single non-trivial logic gate, which transforms 1 byte of classical information, is the
NOT-gate. This gate transforms signals in the following way: 0—1 and 1—0.

In the case of quantum computers, analogues of the NOT-gate look like matrixes of special kind.
Exists of Hadamard gates among them are very useful. The Hadamard gate is the normalized Hadamard
matrix, the determinant of which is equal to the unit (see Figure 6).

The amazing efficiency of work of quantum computers is connected with quantum parallelism, which
is a fundamental property of quantum calculations. It allows quantum computers to calculate function
flx) for various values x simultaneously. The Walsh-Hadamard transformation, which is a Kronecker
product of Hadamard operators, is especially useful there. This Walsh-Hadamard transformation makes
a superposition of all basic states with equal amplitude and it is extremely effective for the construction
of superposition of 2" states that use number “n” of gates only. Bioinformatics and the theory of quan-
tum computers can enrich each other by means of analysis of heuristic analogies between them. Data
described in our book about connections of Hadamard matrix with the genetic system can promote this
mutual enrichment.

As modern science opens an amazing efficiency of quantum computers, the following question is
natural. Does living substance s not use the advantages of their principles of functioning in its self-orga-
nizing? Possibly, it does, and many new connections between living substance and quantum computers
will be revealed by science in the future. One can note that the problem of understanding the biological
phenomena from the viewpoint of quantum mechanics and quantum computers draws the increasing
attention of theorists in the last years (see for example the books (Penrose, 1989, 2004)).

WHY DOES THE GENETIC ALPHABET CONSIST OF FOUR LETTERS?

Genetic molecules are objects of quantum mechanics, where normalized Hadamard matrices play an
important role as unitary operators (it is known that an evolution of a closed quantum system is described
by unitary transformations).

Why has nature chosen a genetic alphabet which consists of four letters? The following new answer
of matrix genetics to this fundamental question is possible from the viewpoint of the importance of
principles of quantum mechanics and of quantum computers for molecular genetics. The genetic alpha-
bet consists of four letters because the simplest unitary matrices in two-dimensional space, first of all,
Hadamard matrices (and Pauli matrices, etc.) consist of four elements exactly. It seems very probable
that principles of quantum mechanics and quantum computers underlie structural peculiarities of the
genetic code.

Figure 6.
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One can also note that Hadamard matrices arise not only in connection with the mentioned pair of
binary-oppositional attributes of “existence or absence of amino-group NH,” in genetic letters. For example,
other variants of Hadamard genomatrices correspond to binary-oppositional attributes of “existence or
absence of atoms of oxygen” in the genetic letters: the letters C, G, U/T contain atoms of oxygen, but
the letter A does not. In DNA, Hadamard matrices arise in connection with binary-oppositional attributes
of “existence or absence of five atoms of carbon”: each of the letters A, G, T contains five atoms of
carbon in its molecular construction, but the letter C contains four atoms of carbon only (see Figure 1 of
Chapter 1). In our opinion, the significance of matrices, which correspond to these kinds of attributes,
is less in comparison with the considered case of attributes of amino-group NH,.

CYCLIC SHIFTS, CYCLIC CODES AND THE PRINCIPLE OF
MOLECULAR ECONOMY IN GENETIC INFORMATICS

It was mentioned in Chapter 1, when analogues between matrices of diadic shifts and genomatrices
were considered, that matrices of diadic shifts possess a block character and is connected with cyclic
shifts of their blocks. More precisely, the identity of quadrants along each diagonal in such matrices
allows us considering them as block (2x2)-matrices, in which both rows are mutually connected by a
transformation of cyclic shift. The tessellation of a plane with the mosaic of the genomatrix on Figure 3
of Chapter 2 has the character of the tessellation on the base of cyclic shifts of black and white modular
units. In addition, cyclic shifts of positions inside triplets (see Chapter 2) allow one to consider hidden
regularities in the structure of degeneracy of the genetic code. One can see also that the disposition of
a series of elements in the genomatrices of hydrogen bonds (Figure 2 of Chapter 4) correspond to the
disposition of the series of elements in the matrices of diadic shifts (Figure 5 of Chapter 1). And what
is known about cyclic shifts in the theory of noise-immunity codes in general?

This theory includes an important family of so called “cyclic codes” (Arshinov, & Sadovskiy, 1983;
Peterson, & Weldon, 1972). Their name is connected with the fact that these codes are based on the cyclic
shifts. Some authors consider cyclic codes as the most valuable achievement of the theory of coding
because they allow very compact descriptions, easy algorithms of coding and decoding, a simplicity
in their realization (Arshinov, & Sadovskiy, 1983). These codes are related to matrices of cyclic shifts,
where rows-vectors differ by their shift or by a cyclic permutation of components.

Some interesting investigations in the field of molecular genetics are known already. The authors of
which connect principles of constructions of genetic sequences with the idea of cyclic codes in some
sense (Lassez, 1976; Arques, Michel, 1996, 1997; Frey, Michel, 2003, 2006; Stambuk, 1999, etc). Of
course, these authors did not know about the data of matrix genetics, which are described in our book,
and did not utilize them.

The question about cyclic codes is not so simple. A big number of cyclic codes exist. They can be
applied in various combinations. In particular, the data described above about connections of the genetic
matrices with block matrices of diadic shifts allow us to suppose the following. It is important to study
genetic sequences in a connection with those codes, which are based on matrices of diadic shifts with
their block-shift character, in other words, in a connection with “block-cyclic” codes.

The term “cyclic” is very attractive in applications to biological systems, which are characterized by so
many cyclic processes. The famous theory of hyper-cycles reflects the importance of cyclic biochemical

125



The Genetic Code, Hadamard Matrices, Noise Immunity, and Quantum Computers

processes for biological organisms to some extent (Eigen, 1979, 1988, 1992; Eigen, & Winkler, 1993).
The chronocyclic conception described above in Chapter 3 is related to cyclic processes as well.

If rows of the genetic matrices are interpreted as code vectors, then the described algorithmic con-
nection between the rows allows one to think about the following. In system of genetic coding, not all
code vectors of cyclic or diadic codes should exist necessarily at each moment of time in the form of a
system of parameters of real molecular structures. It is enough if only a part of a set of code vectors exist;
other code vectors can be calculated by a molecular computer of an organism by means of corresponding
algorithms or they can be synthesized in the molecular forms temporarily (including re-packing molecular
components). Such a principle gives general economy of molecular materials. This hypothesis about the
molecular-economy principle in the field of genetic informatics should be studied in the future.

FUTURE TRENDS AND CONCLUSION

Spectral methods of decomposition of signals on orthogonal systems of functions have proved themselves
for a long time as especially important in the theory of signals and informatics in general. Research-
ers of genetic informatics attempt to address to them already (see, for example, the works (Kargupta,
2001; Lobzin & Chechetkin, 2000), which pay attention to the importance of spectral methods in this
field). But an infinite quantity of orthogonal systems of functions exists. It is difficult for researchers of
molecular-genetic systems to make a choice of one of infinite number of possible orthogonal systems as
an adequate one for spectral methods in the field of genetic informatics. They should make here rather
a volitional choice, risking the waste of many years of work in the case of the failure of such choice.
They make this choice usually, proceeding from secondary reasons, which do not have direct relation
to genetic systems. For example, they choose the system of orthogonal harmonious functions, which
is applied in the classical frequency Fourier-analysis, for the reason, that this system has extensive ap-
plications in technical fields.

The results described in our book show the orthogonal systems of functions, which are connected with
Hadamard matrices and which possess a special meaning for genetic informatics and its spectral methods.
The orthogonal systems of functions connected with Hadamard matrixes are picked out by nature from
the infinite set of basic systems for their deep connection with an essence of molecular-genetic coding.
A consistent investigation of bioinformatics systems should be done from the viewpoint of the theory
of genetic Hadamard matrices and their applications. In particular, the comparative analysis of various
genetic sequences on their Hadamard spectrums is interesting. The described results give important
help in a choice of research tool from an infinite set of orthogonal systems of functions and from a set
of variants of noise-immunity codes.

In the spectral analysis of genetic sequences (for example, their correlation functions), it is mean-
ingful to spend their decomposition on orthogonal vectors-rows of Hadamard genomatrices, instead of
on trigonometric functions of the frequency Fourier-analysis. Investigations of Hadamard spectrums
in mathematical genetics are perspective and well-founded. Especially since some works are already
known as applications of Walsh functions (alongside with other systems of basic functions) to spectral
analysis of various aspects of genetic algorithms and sequences (Forrest, & Mitchell, 1991; Geadah &
Corinthios 1977; Goldberg, 1989; Lee, & Kaveh, 1986; Shiozaki, 1980; Vose & Wright, 1998; Waterman,
1999). Here we emphasize a possible benefit for bioinformatics to use genetic Hadamard matrices which
are connected with a phenomenon of degeneracy of the genetic code and form a special subset of a set

126



The Genetic Code, Hadamard Matrices, Noise Immunity, and Quantum Computers

of Hadamard matrices. The book (Zalmanzon, 1989, p. 416) contains a review of investigations made
by various authors about Walsh orthogonal functions in physiological systems of supra-cellular levels.
Hadamard matrices have been used in molecular genetics in a connection with Hadamard conjugation for
evolutionary trees and with phenomena of cyclic gene expressions (see Chapter 11). In our view, genetic
Hadamard matrices described can be useful for developing these branches of molecular biology.

One can also mention that for application of spectral methods to problems of genetic coding it is
important not only to choose an adequate basic system of orthogonal functions, but to determine suc-
cessfully a numerical form of representation of genetic sequences as well. The matter is that spectral
methods in the theory of discrete signals operate with numerical sequences or numerical vectors, but
genes appear in the literature usually in a form of symbolic sequences of molecular triplets like AUC-
UCG-CCG-... . A great number of ways of transformations of such symbolic genetic sequences into
their numerical form exist in principle, for example, by means of replacement of each triplet by the
number of its atoms, or by the number of its hydrogen bonds, etc. Which kind from this set of possible
forms of numerical representation should be chosen and should be investigated first of all for a deep
understanding the genetic code? It is one of the questions, which are studied in our book by means of
researches of various variants of such numeric presentation, etc.

The discovery of connections of the genetic matrices with Hadamard matrices leads to many new
thoughts and possible investigations using methods of symmetries, of spectral analysis, etc. One can
expect that those Walsh-Hadamard functions, which are related to the described genetic Hadamard ma-
trices (Figures 4, 5 of Chapter 6) will be used effectively in the spectral analysis of genetic sequences.
It seems that investigations of structural and functional principles of bio-information systems from the
viewpoint of quantum computers and of unitary Hadamard operators are very perspective. A comparison
of orthogonal systems of Walsh-Hadamard functions in molecular-genetic structures and in genetically
inherited macro-physiological systems can give new understanding to an interrelation of various levels
in biological organisms. Data about the genetic Hadamard matrices together with data about algebras
of the genetic code, which are described in the next chapters, can lead to new understanding of genetic
code systems, to new effective algorithms of information processing and, perhaps, to new decisions in
the field of quantum computers. In our opinion, interesting data will be obtained about cyclic and diadic
codes in the genetic systems in the near future. The proposed hypothesis about the molecular-economy
principle can be useful to understand some aspects of an effective organization of the molecular-genetic
systems.

The genetic matrix [C A; U G]®, which possesses the certain black-and-white mosaic of degeneracy
of the vertebrate mitochondrial genetic code, is connected with the mosaic Hadamard (8x8)-matrix by
means of the special U-algorithm. The genetic matrices, which are produced from the genomatrix [C
A; U G]® by means of permutations of positions inside triplets, are connected with the appropriate
Hadamard matrices as well. These mathematical facts give new important data about connections of
structural-functional organization of genetic code systems with many methods and fields, where Had-
amard matrices play a significant role.
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Section 3

Algebras of Genetic Codes

Section 3 is organizedinto three chapters. It presents genomatrices and the genetic octet Yin-Yang-algebras,
the evolution of the genetic code from the viewpoint of the genetic 8-dimensional Yin-Yang-algebra (or
the genetic bipolar algebra), and multidimensional numbers and the genomatrices of hydrogen bonds.
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Chapter 7

Genomatrices and the Genetic
Octet Yin—-Yang-Algebras

ABSTRACT

Algebraic properties of the genetic code are analyzed. The investigations of the genetic code on the basis
of matrix approaches (“matrix genetics”’) are described. The degeneracy of the vertebrate mitochon-
drial genetic code is reflected in the black-and-white mosaic of the (8*8)-matrix of 64 triplets, 20 amino
acids, and stop-signals. The special algorithm, which is based on features of genetic molecules, exists
to transform the mosaic genomatrix into the matrices, which are members of the special 8-dimensional
algebra. Main mathematical properties of this genetic algebra and its relations with other algebras are
analyzed together with some important consequences from the adequate algebraic models of the genetic
code. Elements of new “genovector calculation” and ideas of “‘genetic mechanics” are discussed. The
revealed fact of the relation between the genetic code and these genetic algebras, which define new
multi-dimensional numeric systems, is discussed in connection with the famous idea by Pythagoras.: “All
things are numbers.” Simultaneously, these genetic algebras can be utilized as the algebras of genetic
operators in biological organisms. The described results are related to the problem of algebraization of
bioinformatics. They draw attention to the question: what is life from the viewpoint of algebra?

INTRODUCTION AND BACKGROUND
Does the genetic system possess its own algebra? Why is it important to study the question about the
proper algebra of the genetic code? These questions are analyzed in this chapter first of all. Modern science

knows that different natural systems can possess their own individual geometries and their own individual
algebras (see, for example, the book (Kline, 1980)). The example of Hamilton, who wasted 10 years in
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his attempts to solve the task of description of transformations of 3D space by means of 3-dimensional
algebras without a success, is very demonstrative one. This example implies that if a scientist does not
guess right what type of algebras are adequate for the natural system which is investigated by him he
can waste many years without any result in analogy with Hamilton. One can add that geometrical and
physical-geometrical properties of separate natural systems (including laws of conservations, theories of
oscillations and waves, theories of potentials and fields, etc.) can depend on the type of algebras which
are adequate for them.

Matrix genetics have important analogues with matrix forms of presentations of hypercomplex
numbers. Investigations of these analogues have led to adequate models of the genetic code in forms of
multi-dimensional numeric systems, which are connected with appropriate multi-dimensional algebras.
Such algebraic models of the genetic code put forward many new ideas and thoughts about interrelations
among genetic elements and about relations of structures of the genetic code with many other biological,
physical, information and mathematical structures.

Does the genetic system possess its own algebra? Why is it important to study the question about the
proper algebra of the genetic code? To get answers on these questions and to understand their importance,
the following background is useful.

The notion of “number” is the main notion of mathematics. In accordance with the famous thesis,
the complexity of civilization is reflected in the complexity of the numbers which are utilized by the
civilization. “Number is one of the most fundamental concepts not only in mathematics, but also in all
natural sciences. Perhaps, it is the more primary concept than such global categories, as time, space,
substance or a field.” (Pavlov, 2004)

After the establishment of real numbers in the history of the development of the notion of “number”,
complex numbers x +i*x, have appeared. These 2-dimensional numbers have played the role of the
magic tool for development of theories and calculations in problems of heat, light, sounds, fluctuations,
elasticity, gravitation, magnetism, electricity, current of liquids, and quantum-mechanical phenomena.
It seems that modern atomic stations, airplanes, rockets and many other things would not exist without
knowledge of complex numbers because the appropriate physical theories are based on these numbers.
C. Gauss, J. Argand and C.Wessel have demonstrated that a plane with its properties fits 2-dimensional
complex numbers. W. Hamilton has proved that the properties of our 3-dimensional physical space fit
mathematical properties of the special quaternions. Hamilton’s quaternions have played the significant
role in the history of mathematical natural sciences as well. For example, the classical vector calculation
is deduced from the theory of these quaternions. This chapter will show that the genetic code is con-
nected with a special 8-dimensional numeric system, which is defined by the appropriate 8-dimensional
algebra.

The notion “algebra”, which we use in our book, has two main senses. According to the first sense,
which is famous more widely, the algebra is the whole section of mathematics involving mathematical
operations with mathematical symbols. According to the second sense, which is utilized in this book,
algebra is a mathematical object with certain properties or, better to say, arithmetic of multidimensional
numbers.

By definition in the frame of this second sense, algebra 4 with its dimension “n” over a field P is
a set of expressions x *i+tx *i+tx,*i,*...+x *i | (where x, x,...,x | belong P; i i, ...i , are basic
elements of vectors, which fit such expressions). This set is provided with the operation of multiplica-
tion by elements “A” from the field P to determine the formula A*(x *i, + x *i, +x,*i, +...+ x *i )=
k*x ¥iy + k*x *i + kx*i, .+ k*x *i L This set is provided with the following operation of addition

1 1

133



Genomatrices and the Genetic Octet Yin-Yang-Algebras

Figure 1. The upper row.: complex numbers in their matrix form of presentation and their decomposition

6o 35

on the basic elements “1” and “i”, which are shown in their matrix forms of presentation as well. The
matrix cells with positive coordinates are marked by dark color and the cell with negative coordinate is

[ICR2]
1

marked by white color. The lower row: the multiplication table of the basic elements “1” and

z=x*1+x1*i=]x |x1|=x*]1 0] +x:*] 0 1
-x1 | xo 01 -10

I

1111 i

il-1

as well: (x * it *i o *i x5 )+ %ty Sy Lt Lty K ) = ()t G ty))FE
+ (x, v, )*i . This set is provided with the operation of multiplication between symbols i, which
is given by a specific multiplication table i *i, =w _ *i) +w_ *i, +...w__ *i, This multiplication
table is utilized to find the result of multiplications (x *ijtox *i,+tx *i,+...+x *i )*(v *i ty,*i +p,*i,+

Ay, *i ). Any algebra is defined completely by its multiplication table, that is, by a certain set of
numbers w, . These numbers do not subordinate to any conditions, and any such set of numbers defines
the particulér algebra.

Algebras of complex and hypercomplex numbers x *1-+x *i +...+x *i are well-known. Itisalso known
that complex and hypercomplex numbers have not only linear or vector forms of their presentations, but
also matrix forms of their presentation. For example complex numbers z = x*1+y*i (where 1 is the real
unit and 7 is the imaginary unit: i* = -1) possess the following matrix form of their presentation (Figure
1). By the way, complex numbers are utilized in computers in this matrix form.

The quaternions by Hamilton Q = x *1 + x *i, + x,*i, + x,*i, (Where i =i = i, = -1, i *i, = -i,*i,
=i, 1, *i, = -i,*i, = -i,, i,*i, = -i,*i, = i), which are utilized widely in physics and mathematics as well,
have their matrix form of presentation as well. Figure 2 shows this matrix form and its decomposition on
the basic elements 1, i, i,, i, in their matrix forms of presentation as well. In addition the multiplication
table of these basic elements 1, i, i,, i, is demonstrated.

Is the mosaic genetic matrix P® =[C A; U G]® (Figure 2 in Chapter 2), which was analyzed in the
previous chapters, connected with a matrix form of presentation of any multi-dimensional numeric

system? This chapter gives a positive answer to this question.

THE GENETIC OCTET MATRIX AS THE MATRIX FORM
OF PRESENTATION OF THE OCTET ALGEBRA

Let us return to the genetic matrix P*4Y¢ & =[C A; U G]® (Figure 2 in Chapter 2), which possesses
32 “black” triplets and 32 “white” triplets disposed in matrix cells of appropriate colors. The black-and-
white mosaic of this matrix reflects the specificity of degeneracy of the vertebrate mitochondrial genetic
code as was described in Chapter 2. Taking into account the molecular characteristics of the nitrogenous
bases A, C, G, U/T of the genetic alphabet, one can reform this genomatrix [C A; U G]® into the new
matrix Y'Y algorithmically (Figure 3).
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Figure 2. The upper row: quaternions by Hamilton in the matrix form of their presentation; cells with
positive coordinates are marked by dark color and the cells with negative coordinates are marked by
white color. The middle row: the decomposition of quaternions in their matrix form on the basic ele-

ments 1, i, i, i, which are shown in their matrix forms of presentation as well. The lower row shows

the multiplication table of these basic elements

Xo | X1 X2 | X3
O=x*1+xi*ij +x*hb+x3*is=| x| X% | x| %2 | =
X2 | X3 | Xo | -Xi
=X3 | X2 [ X1 | Xo

1000 0100 0010 0001
=x* [0100 | +x,*[-1000 [+x*]| 0001 | +x3* [ 00-10
0010 000-1 -1 000 0100
0001 0010 0-100 -1000

ip |1 |3

1 11 iz i3

i ig | -1 [i3 |-z

i |ip|-i3|-1 |10

iz iz | i [ -1 | -1

The cells of the matrix YY,, which are occupied by components with the sign “+”, are marked by dark
color. The cells of the matrix YY,, which are occupied by components with the sign “-”, are marked by
white color. Such black-and-white mosaic of the matrix Y'Y is identical to the black-and-white mosaic of
the genomatrix [C A; U G]® (Figure 2 of Chapter 2). The matrix YY, has the 8 independent parameters x,,
X, X, X,y X,, X, X, X, which are interpreted as real numbers here. It has been discovered that the matrix
YY, is the matrix form of presentation of the special 8-dimensional algebra (or the 8-dimensional algebra
over the field of real numbers) and of the appropriate 8-dimensional numeric system. Below we shall list
the other structural analogies of the genomatrix [C A; U G]® with the matrix Y'Y, the set of which allows
one to consider that this matrix YY, and its algebra play the role of the adequate model of the genetic
code. But initially we pay attention to the “alphabetic’ algorithm of Yin-Yang-digitization of 64 triplets,
which produces the matrix YY, from the genomatrix [C A; U G]. This algorithm has received such an
unusual name because of special properties of the matrix YY, and its algebra (Petoukhov, 2008a-f).

THE ALPHABETIC ALGORITHM OF THE YIN-
YANG-DIGITIZATION OF 64 TRIPLETS

This algorithm is based on utilizing the two following binary-oppositional attributes of the genetic let-
ters A, C, G, U/T: “purine or pyrimidine” and “2 or 3” hydrogen bonds. It uses also the famous thesis
of molecular genetics that different positions inside triplets have different code meanings. For example
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Figure 3. The matrix YY, o the black cells of which contain coordinates with the sign ,,+ " and the white
cells of which contain coordinates with the sign ,,- . The numeration of the comuns and the rows is identi-
cal to the numeration of the columns and the rows of the matrix [C A; U G]® on Figure 3 in chapter 1

000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
O DA D IG[OGG]OD
000(0) | xo | X | -x2 | -x5 | X4 | X5 | -x | -x7
001 (1)} Xo | x5 | -x2 [ -x3 | Xg | X5 | -x6 | -X7
0102) L x5 | X3 | X0 [ X3 | -x6 | -x7 | -X4 | -X5
Ye=10113)] x5 | x5 | 20 | x5 | -x6 | -x7 | x4 | -x5
R —

X4

100 (4) -X3

-X2
101 (5) : X1 | —x2

110 (6) | -x6 | =x7 | -x4 | -xs | X5 | X3 | Xo | Xy
111 (7) =X6 | X7 | -X4 | -Xs5 JEEENNINEEY X X1

-X3

the article (Konopelchenko, & Rumer, 1975) has described that two first positions of each triplet form
“the root of the codon” and that they differ drastically from the third position by their essence and by
their special role. In view of this “alphabetic” algorithm, the transformation of the genomatrix [C A; U
G]® into the matrix Y'Y, is not an abstract and arbitrary action at all, but such a transformation can be
utilized by bio-computer systems of organisms materially.

The alphabetic algorithm of the Yin-Yang-digitization defines the special scheme of reading each
triplet: the first two positions of the triplet are read by genetic systems from the viewpoint of one attribute
and the third position of the triplet is read from the viewpoint of another attribute. By this alphabetic
algorithm, which allows one to recode the symbolic matrix [C A; U G]® into the numeric Yin-Yang-
matrix YY, (see below), each triplet is read in the following way:

. Two first positions of each triplet are filled out by the symbol “a” instead of the complementary
letters C and G on these positions and by the symbol “B” instead of the complementary letters A
and U correspondingly;

. The third position of each triplet is filled out by the symbol “y” instead of the pyrimidine (C or U)
on this position and by the symbol “6” instead of the purine (A or G) correspondingly;

. The triplets, which have the letters C or G in their first position, receive the sign “-*“ in those cases
only for which their second position is occupied by the letter A. The triplets, which have the let-
ters A or U on their first position, receive the sign “+” in those cases only for which their second
positions is occupied by the letter C.

For example, the triplet CAG receives the symbol “-afd”, because its first letter C is symbolized
by “a”, its second letter A is symbolized by “B”, and its third letter G is symbolized by “6”. This triplet
possesses the sign “-” because its first position has the letter C and its second position has the letter
A. One can see that this algorithm recodes all triplets from the traditional alphabet C, A, U, G into the
new alphabet o, B, y, 8. In the result, each triplet receives one of the following 8 expressions: aay = x,,
aad = x,, apy = x,, apd = x,, Pay = x,, Pad = x,, PPy = x,, PBS = x,. We will suppose that the symbols
“a”, “B”, “y”, “d” are real numbers. This algorithm transforms the initial symbolic matrix [C A; U G]®
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into the numeric matrix YY, with the 8 coordinates x, x , x,, x,, x,, X, x,, x,. We shall name these matrix

components x;, X ,..., X, which are real numbers, as “YY-coordinates” (see Figure 4).

Let us pay some attention now to algebraic properties of the matrix YY,.

THE GENOMATRIX YY, AS THE ELEMENT OF
THE OCTET YIN-YANG-ALGEBRA

By analogy with decompositions of the matrices of complex numbers and of quaternions by Hamilton
(Figure 1 and Figure 2), one can represent the 8-parametric matrix YY, (Figure 3) as the sum of the 8
basic matrices, each of which is connected with one of the coordinates x, x , x,, x,, x,, X, x,, x, (Figure
5). Let us symbolize any basic matrix, which is related to any of YY-coordinates x, x,, x,, x, with even
indexes, by the symbol f_ (where “f” is the first letter of the word “female” and k = 0, 2, 4, 6). And let
us symbolize any matrix, which is related to any of YY-coordinates x , x,, x, x, with odd indexes, by
the symbol m_(where “m” is the first letter of the word “male” and s = 1, 3, 5, 7). In this case one can

present the matrix Y'Y, by the expression (1), the matrix form of which is shown on Figure 5.

Figure 4. The result of the algorithmic transformation of 64 triplets into the numeric coordinates x,, x ,
..., X, Which are based on the four symbols “o.”, “B", “y", “0”

000 001 010 011 100 101 110 111
(0) (1) (2) (3) (4) (5) (6) (7)
000  CCC | CCA | CAC | CAA | ACC | ACA | AAC | AAA
©) f aay | aod | -ofy | -apd | Poy | Pad | -Ppy | -Ppo
Xp X =X -X3 Xy X5 -Xg =X7
001 § CCU | CCG | CAU | CAG | ACU | ACG | AAU | AAG
M) § aoy | aod | -afy | -apd | Bay | Pad | -BPy | -BPO
Xo X1 =Xz =X3 X4 X5 =Xg =X7
010 j CUC | CUA | CGC CGA AUC | AUA | AGC | AGA
2) § apy | apd | aay aad [ -Bpy | -Ppd | -Pay | -Pad
X2 X3 Xp X =X ~X7 =Xy -X5
011 § CUU | CUG | CGU | CGG j§ AUU | AUG | AGU | AGG
G apy | opo | aay | awd | -PBy | -6 | -Pay | -Pud
X2 X3 Xo X1 =X =X7 =Xy =X
100 § UCC | UCA | UAC UAA | GCC | GCA | GAC | GAA
@) | Pay | pad | -ppy | -Ppd | @oy | aed | -oPy | -apd
X4 X5 -X¢ =X7 Xo X =X2 -X3
101 § UCU | UCG | UAU UAG | GCU | GCG | GAU | GAG
S | Bay | Pad | -ppy | -Ppd | aay | awd | -oPy | -upd
X4 X5 =X =X7 Xo X1 =Xz =-X3
110 § UUC | UUA | UGC UGA GUC | GUA | GGC | GGA
©) | -Bpy | -PBd | -Pay | -pad | Py | apd | aay | cad
=Xg =Xz -Xy4 -Xs X; X3 Xy X
111 § UUU | UUG | UGU | UGG J] GUU | GUG | GGU | GGG
(M | -BBy | -PBd | -pay | -pad | Py | apd | aay | aad

=Xg =X7 =Xy =-X5 X2 X3 Xp X
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Figure 5. The presentation of the matrix YY as the sum of the 8 basic matrices. The left column shows the

basic matrices, which are related to the coordinates x , x

[

10000000 01000000
10000000 01000000
00100000 00010000
00100000 00010000
YVg=x* J]00001000 +x* 00000100
00001000 00000100
00000010 00000001
00000010 00000001
00-100000 000-1000 0
00-100000 000-1000 0
10000000 01000000
10000000 01000000
+0* 000 000-10 |[+x3* J OO0 0000 -1
000000-10 0000000 -1
00001000 00000100
00001000 00000100
00001000 00000100
00001000 00000100
000000-10 0000000 -1
+x* JOO0 0000 -10 0000000 -1
10000000 |+x* |O1000000
10000000 01000000
00-1000 00O 000-1000 0
00-1000 00 000-100 0 0
000000-10 00000 00 -1
000000-10 00000 00 -1
0000-1000 00000-100
+x* |[0000-1000 00000-100
00-100 000 |+x* JOOO-10 000
00-100 000 000-10 000
-10000 000 0-1000 000
-10000 0 00 0-1000 000

X, X, with the even indexes. The right column
shows the basic matrices, which are related to the coordinates x Xy X, X, with the odd indexes

— % % % * * * * *
YY, = x, o *m o A Fm x4 fm b o Fm, (1)
The important and unexpected fact is that the set of these 8 basic matrices f, m, f,, m,, f,, m_, f,

m_ forms the closed set relative to multiplications: a multiplication between any two matrices from this
set generates a matrix from this set again. The table on Figure 6 presents the results of multiplications
among these 8 matrices. The result of multiplying any two basic elements, which are taken from the left
column and the upper row, is shown in the cell on the intersection of its row and column (for example,
in accordance with this multiplication table f,*m, = - m_).

We have noted above, that such multiplication tables define appropriate algebras over a field. Cor-
respondingly the multiplication table on Figure 6 defines the genetic 8-dimensional algebra YY,. Mul-

138



Genomatrices and the Genetic Octet Yin-Yang-Algebras

Figure 6. The multiplication table of the basic matrices f, m, f,, m, f, m_, f, m_ of the matrix YY,
from Figure 3 and Figure 5

fn my fz ms f4 ms f6 my
fo fg my fz ms f4 ms f5 my
my fn my fz ms f4 ms fs my

fz fz mj = fn -m; f- fﬁ - My f4 LLLE
11K fz ms; - fo -m; f- fg - my f4 ms

f4 f.: ms f(. my fu my fz m;3
ms f4 ms fﬁ ms fu my fz ms
f.s ff, ms - f4 -ms | - f; - m3 fo my
my fﬁ my - f4 -Ms | - f; -m3 fo m;y

tiplication of any two members of the octet algebra Y'Y, generates a new member of the same algebra.
Concerning to multiplication of such numbers in their matrix forms of presentation, it means that both
factors have the identical matrix disposition of their 8 parameters x, x,, ..., X, (in the first factor) and
Yy ¥---» ¥, (in the second factor) and the final matrix has the same matrix disposition of its 8 relevant
parameters 7,z , ..., z.. This situation is similar to the situation of real numbers (or of complex numbers,
or of hypercomplex numbers) when multiplication of any two members of the numeric system gener-
ates a new member of the same numerical system. In other words, the expression YY =x *f +x *m +x
S mtx 4 fmx *f +xo*m, is some kind of 8-dimensional numbers (“octet genonumber”)
(Petoukhov, 2008a, 2008d). We mark this algebra and these octet genonumbers by the same symbol
YY, conditionally.

Letus give anumeric example of multiplication of two octet genonumbers: V'=3*f +2*m -4*f +1*m_-
S*+6*m A8*f -7*m_and W=2*f -4*m +5*f+3*m -6*f -8*m_-1*f +5*m_. The result of multiplication
depends on the order of factors because of the non-symmetrical character of the multiplication table
relative to its main diagonal, which means that the algebra YY, is non-commutative:

V¥W=18%f, -14*m, +24*f +40*m, -30*f, -62*m_ -16*f, +0*m,
W V=128*{, -124*m -60*f +88*m+48*f -100*m +92*f, +40*m,

These results can be arrived at multiplication of appropriate matrix forms of presentation of the octet
genonumbers }J and W or by multiplication of linear forms of their presentation using the multiplication
table on Figure 6.

One should pay special attention to the cells on the main diagonal of the multiplication table (Figure
6). These cells contain squares of the basic elements. In cases of hypercomplex numbers these diagonal
cells contain elements “+1” typically (for example, see multiplication tables of complex numbers and
of quaternions by Hamilton on Figure 1 and Figure 2). In our case these diagonal cells contain no real
units at all but all diagonal cells are occupied by elements “+f” and “+m_”. Thereby the set of the 8
basic matrices f, m , f,, m,, f,, m_, f, m_is divided into two equal subsets by criterion of their squares.

The first subset consists of elements with the even indexes: f, f,, f,, f,. The squares of members of this
f-subset are equal to +f always. The second subset consists of elements with the odd indexes: m,, m,,

m_, m_. The squares of members of this m -subset are equal to =m, always.
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The basic element f, possesses all properties of the real unit in relation to the members of the f -subset:
£ =f, £ *0,=* =F, £ *f=F*f =, f*f=f*f=f. But the element f, does not possess the commutative
property of real unit in relation to the members of the m,-subset: fo*mp + mp*fo, where p =1,3,5,7. For
this reason f is named “quasi-real unit from the f-subset”.

The basic element m possesses all properties of the real unit in relation to the members of the m,-
subset: m *=m,, m *m,=m_*m =m, m *m=m *m =m, m *m_=m_*m =m.. But the element m does
not possess the commutative property of real unit in relation to the members of the f-subset: m *f, #
f *m,, where k= 0,2,4,6. For this reason m_ is named “quasi-real unit from the m -subset”.

The principle “even-odd” exists in this algebra YY,. Really all members of the f -subset and their
coordinates x, x,, x,, x, have even indexes and they are disposed in columns with the even numbers 0,
2,4, 6 in the matrix YY, (Figure 3) and in its multiplication table (Figure 6) as well. These coordinates
X,» X,, X,, X, correspond to triplets with the pyrimidine suffixes C and U (Figure 4). For this reason the
f-subset can be called as the “pyrimidine subset”.

All members of the m -subset and their coordinates x , x,, x,, x, have the odd indexes and they are
disposed in columns with the odd numbers 1, 3, 5, 7 in the matrix YY, (Figure 3) and in its multiplication
table (Figure 6) as well. These coordinates x , x,, x,, x, correspond to triplets with the purine suffixes A
and G (Figure 4). For this reason the m, -subset can be called as the “purine subset”.

Inaccordance with Pythagorean and Ancient-Chinese traditions, all even numbers are named “female”
numbers or Yin-numbers, and all odd numbers are named “male” numbers or Yang-numbers. From the
viewpoint of this tradition, the elements f, f,, f,, f, x, x,, x,, x, with the even indexes play the role of
“female” elements or Yin-elements, and the elements m , m,, m_, m_, x , x,, x,, x, with the odd indexes
play the role of “male” or Yang-elements. Correspondingly the 8-dimensional algebra YY, can be named
the octet Yin-Yang-algebra (or the even-odd-algebra, or the bipolar algebra, or the bisex-algebra, or the
pyrimidine-purine-algebra for triplets with pyrimidine suffixes and with purine suffixes). Such algebra,
which possesses two quasi-real units and no one real unit, gives new effective possibilities to model
binary oppositions in biological objects at different levels, including sets of triplets, amino acids, male
and female gametal cells, male and female chromosomes, etc.

The octet Yin-Yang-numbers YY, (octet genonumbers) differ essentially from classical hypercomplex
numbers, which have the real unitin the set of their basic elements. By traditional definition, hypercomplex
numbers are the elements of the algebras with the real unit. Complex and hypercomplex numbers were
constructed historically as generalizations of real numbers with the obligatory inclusion of the real unit
in sets of their basic elements. The octet Yin-Yang-numbers Y'Y, have not the real unit in the set of their
basic elements at all, but they have two quasi-real units f, and m,. In comparison with hypercomplex
numbers, Yin-Yang-numbers are the new category of numbers in the mathematical natural sciences in
principle. In our opinion, knowledge of this category of numbers is necessary for deep understanding
of biological phenomena, and, perhaps, it will be useful for mathematical natural sciences in the whole.
Mathematical theory of YY-numbers gives new formal and conceptual apparatus to model phenomena
of reproduction and self-organization in living nature.

It can be demonstrated easily that Yin-Yang algebras are the special generalization of the algebras
of hypercomplex numbers in the form of “double-hypercomplex” numbers. Yin-Yang-numbers (YY-
numbers) or bipolar numbers become the appropriate hypercomplex numbers in those cases when all their
female (or male) coordinates are equal to zero. Traditional hypercomplex numbers can be represented
as the “mono-sex” half (a Yin half or a Yang half) or “mono-polar” half of appropriate YY-numbers. The
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Figure 7. The multiplication tables of the Yin-genoquaternion G, (on the left side) and of Yang-geno-
quaternions G _(on the left side)

fol|f [fs | fs m; | m; | ms | my
fo fo fz f4 fﬁ mp; g mg | ms ms my
fz fz -fn -fs f4 msz jms | -y | -Mg | My
faffy | fs [fo [ ms|ms | mg | my | m
fﬁ fﬁ -f4 -fz fo my jmsy | -IMyg | -IMz | My

algorithm of such generalization will be described later. We denote Yin-Yang numbers by double letters
(for example, YY) to distinguish them from traditional (complex and hypercomplex) numbers.

If all male coordinates are equal to 0 (x, = x, = x, = x, = 0), the numbers Y'Y become the Yin-geno-
quaternions G, = x*f +x *f, +x *f, +x *f, the multiplication table of which is shown on Figure 7 These
Yin-quaternions can be called also as “pyrimidine quaternions” conditionally because their coordinates
X, X5, X, X, correspond to triplets with the pyrimidine suffixes C or U (Figure 4).

If all female coordinates are equal to 0 (x, = x, = x, = x, = 0), the numbers Y'Y, become the Yang-
genoquaternions G = x,*m +x,*m, +x *m+ +x *m_, the multiplication table of which is shown on
Figure 7. These Yang-quaternions can be called also as “purine quaternions” conditionally because their
coordinates x , X,, X, X, correspond to triplets with the purine suffixes A or G (Figure 4).

These genetic quaternions G, and G have the identical multiplication tables, which differ from the
multiplication table of Hamilton quaternions (see Figure 2). Taking these facts into account, the octet
genonumbers YY, can be named “the double genetic quaternions”. It causes heuristic associations with a
double helix of DNA, which is the bearer of genetic information. Just as the structure of three-dimensional
physical space corresponds to the algebra of quaternions by Hamilton, so the structure of the genetic
code corresponds to the algebra of the double genoquaternions.

The set of the basic elements of the YY-algebra forms a semi-group. Two squares are marked out by
bold lines in the left upper corner of the multiplication table on Figure 6. The first two basic elements
f, and m_ are disposed in the smaller (2x2)-square of this table only. The greater (4x4)-square collects
the four first basic elements f, m,, f,, m,. These aspects say that sub-algebras YY, and Y7, exist inside
the algebra YY,. We shall return to these sub-algebras later.

Each genetic triplet, which is disposed in the genomatrix [C A; U G]® on Figure 4 together with
one of the female YY-coordinates x, x,, x,, X, in a mutual matrix cell, is named the female triplet or the
Yin-triplet. The third position of all female triplets is occupied by the letter y, which corresponds to
the pyrimidine C or U/T. Thereby the female triplets can be named “pyrimidine triplets” as well. Each
triplet, which is disposed in the genomatrix [C A; U G]® on Figure 4 together with one of the male YY-
coordinates x , x,, X, X, in a mutual matrix cell, is named the male triplet or the Yang-triplet. The third
position of all male triplets is occupied by the letter 6, which corresponds to the purine A or G. Thereby
the male triplets can be named “purine triplets”. In such algebraic way the whole set of 64 triplets is
divided into two sub-sets of Yin-triplets (or female triplets) and Yang-triplets (or male triplets). We shall
demonstrate later that the set of 20 amino acids is divided into the sub-sets of “female amino acids”,
“male amino acids” and “androgenous amino acids” from this matrix viewpoint.

Later we will continue to describe significant mathematical properties of the octet Yin-Yang-matrices.
But now let us consider the close connection of structures of the genetic code with the octet Yin-Yang-

matrices in many aspects.
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THE STRUCTURAL ANALOGIES BETWEEN THE
GENOMATRIX [C A; U G]® AND THE MATRIX YY,

The main interest of bioinformatics to the octet Yin-Yang-algebra is connected with a possibility of its
use as an adequate model of the structure of the genetic code. This possibility depends on structural
coincidences between the Yin-Yang matrix Y'Y, and the genetic matrix [C A; U G]®. A list of such non-
trivial coincidences includes the following ones:

1. The first coincidence.

The black-and-white mosaics of the Yin-Yang matrix Y'Y, and the genetic matrix [C A; U G]® are
identical. (By an unknown reason, nature has divided the set of the 64 genetic triplets into two subset
of 32 black triplets and 32 white triplets, which are disposed in the cells of 32 positive coordinates and
32 negative coordinates of the Yin-Yang matrix YY,).

2. The second coincidence.

In the Yin-Yang matrix Y'Y, the pairs of the adjacent rows 0-1, 2-3, 4-5, 6-7 are identical to each
other by the assortment and the disposition of numeric coordinates x, x,, x,, X, X,, X, X, X...
In the genetic matrix [C A; U G]©®, the same pairs of adjacent rows 0-1, 2-3, 4-5, 6-7 are identical

each to another by the assortment and the disposition of amino acids and stop-codons.
3. The third coincidence.

In the Yin-Yang matrix YY,, the female coordinates x, x,, x,, x, occupy the columns with the even
numbers 0, 2, 4, 6, and the male coordinates x , x,, x, x, occupy the columns with the odd numbers 1,
3,5,7.

In the genetic matrix [C A; U G]©®, the triplets with pyrimidine C or U on their third positions occupy
the columns with the even numbers 0, 2, 4, 6; and the triplets with purine A or G on their third positions

occupy the columns with the odd numbers 1, 3, 5, 7.
4.  The fourth coincidence.

In the Yin-Yang matrix YY,, one half of the quantity of the numeric coordinates (x, x,, x,, x,) exists
in the two quadrants along the main diagonal only; the second half of the numeric coordinates (x,, x,,
X, X,) exists in the two quadrants along the second diagonal only.

In the genetic matrix [C A; U G]®, one half of kinds of amino acids exists in the two quadrants along
the main diagonal only (Ala, Arg, Asp, Gln, Glu, Gly, His, Leu, Pro, Val); the second half of kinds of
amino acids exists in the two quadrants along the second diagonal only (Asn, Cys, Ile, Lys, Met, Phe,
Ser,Thr, Trp, Tyr).
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5. The fifth coincidence.

In the Yin-Yang matrix Y'Y, those six kinds of different numeric matrices are generated by means of
some kinds of permutations of columns and rows of this matrix, each of which possesses its own kind
of the 8-dimensional Yin-Yang-algebra.

In the genetic matrix [C A; U G]©®, the same six kinds of permutations of columns and rows fit the
six possible kinds of permutations of positions inside the 64 triplets (1-2-3, 2-3-1, 3-1-2, 3-2-1, 2-1-3,
1-3-2), which lead to the new genomatrices with symmetric and interrelated mosaics (see Chapter 2).

The fifth coincidence will be explained additionally below.

One should note that the black cells of the genomatrix [C A; U G],,,*’ contain the black NN-triplets,
which encode the 8 high-degeneracy amino acids, and the coding meaning of which does not depend on
the letter on their third position (see Chapter 2). The set of the 8 high-degeneracy amino acids contains
those amino acids, each of which is encoded by 4 triplets or more: Ala, Arg, Gly, Leu, Pro, Ser, Thr, Val.
The white cells of the genomatrix [C A; U GJ,,,*’ contain the white NN-triplets, the coding meaning of
which depends on the letter on their third position; these triplets encode the 12 low-degeneracy amino
acids together with stop-signals: Asn, Asp, Cys, Gln, Glu, His, Ile, Lys, Met, Phe, Trp, Tyr.

The described structural coincidences of two matrices YY, and [C A; U G] ,,*’ allow one to consider
the octet algebra YY, as the adequate model of the structure of the genetic code. One can postulate such
an algebraic model and then deduce some peculiarities of the genetic code from this model. These results
of the comparison analysis give the following answer to the question of mysterious principles of the
degeneracy of the vertebrate mitochondrial genetic code from the viewpoint of the proposed algebraic
model. The matrix disposition of the 20 amino acids and the stop-signals is determined by algebraic
principles of the matrix disposition of the YY-coordinates. Moreover the disposition of the 32 black
triplets and the high-degeneracy amino acids in this basic dialect of the genetic code is determined by
the disposition of the YY-coordinates with the sign “+”. And the disposition of the 32 white triplets, the
low-degeneracy amino acids and stop-signals is determined by the disposition of the YY-coordinates
with the sign “-”. One can recall here that the division of the set of 20 amino acids into the two sub-sets
of the 8 high-degeneracy amino acids and the 12 low-degeneracy amino acids is the invariant rule of
all the dialects of the genetic code practically (see Chapter 3). The described structural coincidences
between both matrices do not exhaust the interconnections between the genetic code systems and the
Yin-Yang matrices.

THE SIX KINDS OF THE GENETIC OCTET YIN-YANG-ALGEBRAS
CONNECTED WITH PERMUTATIONS OF POSITIONS IN TRIPLETS

Now we continue to study beautiful and unexpected mathematical properties of the octet Yin-Yang-
algebras.

Chapter 2 has described the 6 variants of the mosaic genetic matrices, which have corresponded to
the 6 possible kinds of permutation of positions in triplets: [C A; U G]® ., [CA; UG]®, ,[CA; UG]
@ » [CA;UG]Y, , [CA; UG]Y, ., [CA; UG]? ... Each of these genetic matrices can be obtained
from the initial matrix [C A; U G]*, , by an appropriate permutation of its columns and rows. One can
make the same permutations of columns and rows in the Yin-Yang-matrix YY,, which is marked in this

paragraph as (YY,),,,. By such way the appropriate matrices (YY) ,,, (YY,),,, (YY), ,, (YY,),,,» (YY)

123° 123° 231° 312° 3217 213°
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(YY,),,, arise. It is quite unexpected that not only the initial matrix (YY) ,, (Figure 3) but each of the
other five matrices (YY,),,, (YY,),,, (YY), > (YY), ,» (YY), is the matrix form of presentation of its
own 8-dimensional Yin-Yang-algebra (another name is bipolar algebra). For example, Figure 8 shows
the Yin-Yang-matrix (YY,),,,, which corresponds to the genomatrix [C A; U G]®_,, together with its
multiplication table of the basic elements.

Figure 9 demonstrates the multiplication tables for other four Yin-Yang-matrices (YY,),,,, (YY) s,
(YY,),,5» (YY,),,,. Thereby the degeneracy of the genetic code is connected with the bunch of six genetic
Yin-Yang-algebras (Petoukhov, 2008a, 2008d).

Taking into account the multiplication tables on Figure 6, 8, and 9, the proper Y'Y ,-numbers in the
linear form of their presentation have the following expressions:

231°

CAUG  — 4 * % % * * * * *
(YYS) 123 xO f0+xl ml+x2 fZ—i_x3 m3+x4 f4+x5 m5+x6 f6+x7 l’n7

CAUG =y ¥k sk * * * * * *
(YYS) 231 xO f0_._)‘:1 fl—i_x2 f2+x3 fZ—i_x4 m4+x5 m5+x6 m6+x7 m7

Figure 8. Above: the Yin-Yang-matrix (YY,),,, which corresponds to the genomatrix [C A; U G]?
Below: its multiplication table of the 8 basic elements

231"

CCC | CAC | ACC | AACJ CCA | CAA | ACA | AAA
Xp -X2 X4 -X6 X1 -X3 Xs =X7
CUC | CGC | AUC [AGC | CUA | CGA | AUA | AGA
X2 X0 -X6 -X4 X3 X1 -X7 -Xs
UCC | UAC | GCC | GAC | UCA | UAA | GCA | GAA
X4 =X X =X2 Xs -X7 X1 -X3
UUC | UGC | GUC | GGC | UUA | UGA | GUA | GGA
-X6 -X4 X2 X0 -X7 -X5 X3 X1
CCU | CAU | ACU | AAU J CCG | CAG | ACG | AAG
X -X2 X4 -X6 X1 -X3 X5 -X7
CUU | CGU | AUU | AGU | CUG | CGG | AUG | AGG
X2 Xo =X -X4 X3 X1 =X7 =-X5
UCU | UAU | GCU | GAU J UCG | UAG | GCG | GAG
X4 -X6 X0 =X2 Xs -X7 X1 -X3
UUU | UGU | GUU | GGU | UUG | UGG | GUG | GGG
-X6 -X4 X2 X0 -X7 -Xs X3 X1

fn f1 fz f3 my ms 11117 ms
fa fu f1 fz f3 my ms 11117 ms
f1 f1 -fn -f3 fz ms | -y | -My mg
fg fg f3 fu f| 11117 ms my ms
f3 f3 -fz -fi fo ms; | ~-ImMg | -Ms my
my | fo | fi | £ | f5 | my | ms | mg | my
ms f1 -fn -f3 fz ms | -y | -My Mg
Mg fz f3 fo f| Mg ms my ms
my f3 -—fg —f| fo my | -Mg | -Ms my
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CAUG =y %k b * * * * * *
(YYS) 312 xO f0+xl fl—i_x2 m2+x3 m3+x4 f4+x5 f5+x6 m6+x7 m7

CAUG =y % sk * * * * * *
(YY8) 132 xO f0+xl f1+x2 m2+x3 m3+x4 f4_’_x5 f5—'—)66 m6+x7 l’n7

Figure 9. The multiplication tables of the basic elements of the octet Yin-Yang-algebras (YY), , (YY) .,

(YY),15 (YY),

| K [ m] s | L | fs | me | my
fn fo f] mz ms f4 fs Mg msy
fi | fi| fo [ m3| m fs | f5 | m; | mg
m; fo f] m; m3 f4 fs Mg my
my | fi [ fo | m3 | my fs | fi | my | mg
fs | fs | -fs |mg | -mp | fo | fi | -my | ms
fs fs - f4 my - Mg - f| fu - ms3 msz
mg 14 - fs Mg - ms -fu f] -m; ms
my | fs [ -fs | my | -mg | -f; [ fo | -m3 | m

fo | fi [my | ms | £y | f5 [ mg | my
fo fo f| m; ms f4 fs Mg my
f| f[ 'fl] ms3 -ms -f5 f4 -my Mg
m; fn f| m3 mj3 f4 fs mé my
m3 f| -fo m;3 =mz -f5 f4 -my 11113
f4 f4 fs mg my fu f] m; ms
fs fs -f4 ms -Mg -fl fg -m3 m;
mg f4 f5 mg my fu f1 m; ms
my | fs [ fs [ mg | -mg | £; | £5 | -m3 | m,

fn m; fg m;3 f4 ms f(, my
fo fu m fz m;3 f.; ms fﬁ ms
m; fu m; fl m;3 fq ms f6 msy
fz fz mjs fo my fa ms f4 ms
m;3 fz mj fo my fg ms f4 ms
ms | fs |ms | £ [ -my | fo | -m | £, | mg
ms | fy |ms | -f6 | -my [ -fo|-my |, | my
fs fe lmy | £y | ms | - | -m3 | fHh | m
ms f(, ms -f4 -Ms -fz -3 fn my

fo f| fz f3 my ms mg ms
fo fo f| fg f3 my ms mg ms
fl f| fn f3 fz ms my my mg
fz fz -f3 -fu f1 Mg -ms -y ms
f3 f3 -fz -f1 fo msy | -Mg | -Ms my
my fn f| fz f3 my ms 11113 ms
ms f| fn f3 fz ms my ms 1173
mg | 2 | B -fo f mg | -m7 -My | Ms
m; | 5[ -6 |-fi | fh [m;| -mg | -ms [ my
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CAUG  — 4 * * * * * * * *
(YYS) a3~ %o f0+x1 m,+x, f2+x3 mytx, f4+x5 mtx fe+x7 m,
CAUG — — 4 * * * * * * * *
(YYs) s = X By T2 R R e m b Fmhx Fm g m, @)

All these Yin-Yang matrices have secret connections with Hadamard matrices: when all their co-
ordinates are equal to the real unit 1 (x,=x, = ... =x, = 1) and when the signs of components of the
matrices are changed by means of the U-algorithm described in Chapter 6, then all these Yin-Yang octet
matrices become the Hadamard matrices. In necessary cases biological computers of organisms can
transform these Yin-Yang matrices into the Hadamard matrices to operate with systems of orthogonal
vectors. One can add that for the case, when all their coordinates are equal to 1 (x,=x, = ... =x, = 1),
all these six Yin-Yang matrices (YY, )¢, (YY), , ..., (YY), possess the property of their
tetra-reproduction which is described below and which evokes the tetra-reproduction of gametal cells
in the biological process of meiosis.

Two facts can be mentioned as well. The complementary triplets (codon and anti-codon) play an
essential role in the genetic code systems. One can replace each codon by its anti-codon in the genoma-
trices [CA; U G],,,%, [CA; UGL,®, [CA; UG, [CA; UG] %, [CA; UG]L,Y, [CA; UG],,®.
The new six genomatrices appear in this case. Have they any connection with Yin-Yang algebras? This
question has the positive answer. The multiplication tables for the basic elements of Yin-Yang matrices,
connected with these new genomatrices, are identical to the multiplication tables for the initial genoma-
trices. In other words, the “complementary” transformations of the genomatrices [C A; U G] ., [C A;
UGL,,?, [CA; UGL,%, [CA; UG] %, [CA; UG],,®, [CA; UG],,,® change the matrix forms of
presentation of the initial Y'Y -numbers only but do not change the Yin-Yang algebras of the genomatrices.
But if we consider the transposed matrices, which are generated from the matrices (YY) . (YY)

CAUG _, etc., they correspond to new octet Yin-Yang-algebras.

1232

THE GENETIC YIN-YANG OCTETS AS “DOUBLE GENOQUATERNIONS”

Taking into account the described fact of existence of many octet Yin-Yang-algebras and correspond-
ingly many kinds of octet genonumbers, we shall name any numbers with 8 items x *i +x *i +...x *i,
by the name “octets” independently of multiplication tables of their basic elements. We shall name
numbers with 4 items x *i +tx *i +x,*i,+x *i, by the name “quaternions” independently of multiplica-
tion tables of their basic elements (quaternions by Hamilton are the special case of quaternions). Let us
analyze the expression (1) of the genetic octet YY, together with its multiplication table (Figure 6). If
all male coordinates are equal to zero (x, = x, = x, = x, = 0), this genetic octet YY, becomes the genetic
Yin-quaternion G, (or the Yin-genoquaternion):

Gf = xO*fO +x2*f2 +x4*f4 +x6*f6 (3)

The proper multiplication table for this quaternion is shown on Figure 10 (on the left side). This table
is generated from the multiplication table for the algebra YY, (Figure 5) by nullification (or by excision)
of the columns and rows, which have the male basic elements. Taking into account that the basic element
f, possesses the multiplication properties of the real unit relative to all female basic elements, one can
rewrite the expression (3) in the following form:
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Figure 10. The multiplication tables for the genetic Yin-quaternions G, (on the left side)

fo f, 1y fe my m3 ms my
fo | fo f; 14 fo
m my mj ms my
111 B2 -fo -6 fy
mj mj -m; -y ms
fy | fs fs fo f;
ms ms my my ms3
fs | fo -4 -5 fo
my my - M5 - M3 m;
G, = x,*1 +x,*f, +x,*f, +x *f, 4)

If all female coordinates are equal to zero (x, = x, = x, = x, = 0), this genetic octet Y'Y, becomes the
genetic Yang-quaternion G_ (or the Yang-genoquaternion):

— % * * *
G _=x*m +x*m, +x*mg+x*m, ®)

The appropriate multiplication table for this quaternion is shown on Figure 4 (on the right side). Tak-
ing into account that the basic element m, possesses the multiplication properties of the real unit relative
to all male basic elements, one can rewrite the expression (5) in the following form:

— 4 % * * *
G =x*1+x*m, +x*m, +x*m, (6)

and for the genetic Yang-quaternions G_ (on the right side).

The quaternions G, and G_ are similar to each other by the structure of their multiplication tables,
which differ from the multiplication table of quaternions by Hamilton (Figure 2). The quaternions G
and G _ can be expressed in the following general form:

f

G=y0*1+y1*il+y2*i2+y3*i3 ™

The system of quaternions by Hamilton has many useful properties and applications in mathematics
and physics. The system of genoquaternions possesses many analogical properties, which permits one to
think about its useful applications in bioinformatics, mathematical biology, etc. For example, the numeric
system of genoquaternions is the system with the operation of division and it possesses the associative
property, the notions of the “norm of genoquaternion” and of the “inverse genoquaternion”, etc. Figure
11 demonstrates some analogies between both types of quaternions.

In view of these materials, one can name the genetic octet x *i +x *i+...x *i, (with its individual
multiplication table on Figure 6) as “the double genoquaternion” conditionally. This name generates
heuristic associations with the famous name “the double spiral” of DNA.
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Figure 11. The comparison of some properties between the systems of quaternions by Hamilton (on the

left side) and of genoquaternions (on the right side)

Quaternions by Hamilton
g =x0*1 +x1%i; + X2 %i + x3%i3

Genoquaternions
G = xp*1 + x1 %) + 2% + x3%03

(91*q2)*q3 = q1*(92*q3)

(G1*G)*Gs = Gi*(G2*Gy)

Conjugate quaternion
qs = xo*1 - x1*i; - 0¥z - x3*i3

Conjugate genoquaternion
G, = xp*1 - x1%i; - x2%1p - x3%03

To the norm of quaternions:
2 M T
l9I” = g*qs = g*q =x0"+ x1" + %"+ x3

To the norm of genoquaternions:
2
|G’ = G*G,= G*G=x¢" + xi*- X" - x3°

The inverse quaternion exists: ¢~ = gJ/|gl"

The inverse genoquaternion exists: G = G/|G|”

(q1+ ¢2)s = (q1)s + (q2)s

(G| o Gz)ﬁ = (Gl)x .i (GZ)S

(91*q2)s = (q2)s * (q1)s

(G1*Ga)s = (Ga)s * (G1)s

THE COMPARISON BETWEEN THE CLASSICAL VECTOR
CALCULATION AND THE GENOVECTOR CALCULATION

Let us recall about one of the famous applications of quaternions by Hamilton, which concerns the
beautiful connection between these quaternions g = x *1+x *i +x,*i,+ x,*i, and the classical vector
calculation developed by J. Gibbs. One can take two vectors @ and b, which belong to the plane (i, i ),
wherev<w,v=1,2;w=2,3;a=a* +a*i ,b=b*i +b*i, These vectors can be presented in the
following usual form:

a = la*(i *cos o+ *sin ), b = |b|*(i *cos B +1i *sin B), ()
where o and B are appropriate angles between these vectors and the axises i and i in the orthogonal
system of the basic vectors (i,, i,, i,). If we multiply together these vectors as Hamilton’s quaternions in
accordance with the multiplication table on Figure 2, the following equation arises:

a*b = - |a|*|b|*cos(a. - P) + |a|*|b|*sin(o — B)*i

©)
where i is the third basic vector, which is orthogonal to the basic vectors i and i .

The equation (9) shows that the quaternion multiplication of two vectors contains two parts: the scalar
part and the vector part. The scalar part |a|*|b|*cos(a — ) is famous under the name “the scalar product”
and the vector part g|*|b|*sin(o. — B)*i, is famous under the name “the vector product” in the classical
vector calculation. This vector calculation is utilized widely in mechanics to describe movements of
hard bodies in our physical space, etc. Mechanics of bodies in the usual physical space fits this vector
calculation. From the viewpoint of this vector calculation, space is isotropic because the expression (5)
with its scalar and vector parts is the same for each pair of vectors, which belong to the planes (i,, i,),
(i,, i,), (i,, i,), and the scalar products and the vectors product possess the analogical forms for all three
cases of the planes.

But what results arise, if we multiply together the vectors g and b (8) as genoquaternions in accor-
dance with their multiplication table (Figure 2)? Let us consider the following three cases, each of which
contains a scalar part and a vector part in the final expressions (10), (11), (12), but in different forms.
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The case 1. The vectors g and b belong to the plane (i, i,). They can be expressed in the following
form: @ = |a|*(i,*cos a +i,*sin o), b = |[b*(i,*cos B + i,*sin B). If we multiply together these vectors as

genoquaternions (Figure 14, in the right side), the result arises:
a*b = |al*|b|*(i,*cos o+i,*sin a)*(i, *cos B+i,*sin ) =
= -|a[*|b[*cos(o+B)Hal*|b[*sin(a-B)*i, (10)

The equation (10) of the genovector calculation differs from the equation (9) of the classical vector
calculation in the scalar part only (by the value cos(a+p)).

The case 2. The vectors a and b belong to the plane (i, i,): @ = |a|*(i,*cos o.+i,*sin a), b = |b|*(i,*cos
B +1i,*sin B). The product of these two vectors as genoquaternions gives the following result:

a*b = |a[*|b[*(i,*cos a+i*sin a)*(i, *cos B+i,*sin B)
= -|a|*|b[*cos(a+P)-|al*|b*sin(o-B)*i, 1n

The equation (11) of the genovector calculation differs from the classical equation (9) in the scalar
part (by the value cos(a+p)) and in the vector part (by the opposite sign).

The case 3. The vectors @ and b belong to the plane (i, i,): @ = |a|*(i,*cos o+ i,*sin a), b = |b|*(i,*cos
B + i,*sin B). The product of these two vectors as genoquaternions gives

a*b=la|*|b*(i,*cos a+i*sin a)*(i,*cos B+, *sin B) =
= Flal*|b|*cos(a-B)-|al*|b|*sin(a-B)*i, (12)

The equation (12) of the genovector calculation differs from the classical equation (9) by the opposite
sign in the scalar part and in the vector part.

We name vectors, which are considered as genoquaternions (with applications of the rules of geno-
quaternion operations to them), as “genovectors”. It is obvious that the genovector calculation fits the
case of an anisotropic space because the results of multiplication of arbitrary vectors @ and b depend
on the plane, to which these vectors belong. The spaces of biological phenomena of morphogenesis,
growth, etc. have anisotropic characters as well. Since the genovector calculation was developed from
the genetic code features, it seems that this calculation (and its generalization for the system of Yin-Yang
genooctets) can be adequate to model anisotropic processes in biological spaces including processes of
bioinformatics and of biological morphogenesis on different levels of each united organism.

Many mathematical formalisms and notions, which were convinced in the theory of quaternions by
Hamilton and which were utilized in many scientific branches, have their analogies in the theory of
genoquaternions (Petoukhov, 2008a, 2008d) and in the theory of genetic tetrions described below.
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THE PARAMETRIC REDUCTION OF THE GENETIC OCTET YIN-YANG
ALGEBRA TO THE 4-DIMENSIONAL ALGEBRA OF TETRIONS

This paragraph shows the special case of the parametric reduction of the genetic octet Yin-Yang-algebra
to one of 4-dimensional algebras. This case relates to alphabetic peculiarities of the genetic code.

The previous paragraphs have considered the numeric system YY, = x *f +x *m +x *f +x *m_ +x *f,
+x*mtx *f +x *m, (equation (1)) with the 8 arbitrary coordinates x, x , ..., x.. But in accordance with
the matrix on Figure 4 all these 8 coordinates are expressed by means of 4 parameters a, B, v, 6:

x, = aay; x, = aad; x, = ofy; x, = apd; x, = Pay; x, = Pad; x, = PPy; x, = PO equation (13)

Hence these 8 coordinates are not independent of each other and they are interconnected by the fol-
lowing expressions:

X, = x,*3/v; x, = x,*6/v; x; = x,*/y; x, = x,*0/y equations (14)

One can see from the expression (13) that the coordinates belong to the female (male) type if they
have the symbol y (6 correspondingly) on their third position. The expressions (14) show the existence
of the pairs of “complementary” male and female coordinates, which differ by the coefficient 6/y only:
x, and x; x, and x,; x, and x,; x, and x,. These interconnections of coordinates lead to the particular form
of the octet number YY,, where the female coordinates x,, x,, x,, x, exist only (another possible form has
the male coordinates x,, X;, X, X, only):

T =x*(f+6/y*m ) + x,*(f,+6/y*m,) + x *(f +6/y*m,) + x *(f +6/y*m.) =
= aay*(£ 45/ m,) + aPy*(E+5/y*m,) + Pay*(£+5/y*m,) + BPy*(f +5/y*m,) =

Each of these four matrices (f,+6/y*m,), (f,+6/y*m,), (f,+6/y*m,), (f+6/y*m.) on the Figure 12
is constructed by means of the fusion of appropriate male and female matrices of the complementary
pairs into united object. It is interesting that these four matrices form their own closed set relative to
multiplication. Figure 13 shows the table of multiplication of these matrices.

In view of these facts the expression T on Figure 12 with all possible values of real numbers a, f3, 7,
d represents the new system of 4-dimensional numbers, which are named “genetic tetrions” (or genotet-
rions) to distinguish them from 4-dimensional hypercomplex numbers called “quaternions” traditionally
(including genoquaternions described above). If quaternions and other hypercomplex numbers have the
real unit among their basic elements, tetrions have not the real unit among their basic elements at all. The
first basic element (f+6/y*m,) of the tetrions (Figure 12) is the matrix presentation of the real number
(1+6/y). This basic element possesses the commutative property relative to all these basic elements. The
first item x *(f,+8/y*m, ) is considered as the scalar part of tetrions, and other three items x, *(f,+6/y*m,)
+x,*(f,+6/y*m,) + x *(f +6/y*m.) are considered as the vector part of tetrions.

The square of any basic element of the tetrions T is equal to (1+6/y)*(f,+8/y*m,) with the sign “+” or
“-”. This peculiarity is demonstrated on Figure 13 in the cells (marked by bold borders) along the main
diagonal. So instead of the real unit, tetrions have the real number (1+v), where “v” is the real number,
which is equal to 6/y in the case of the genetic tetrions 7. One can consider such tetrions as the special
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Figure 12. The presentation of the matrix T as the sum of the superposition of the matrices (f,+0/y*m ),
(f;+0/y*m,), (f +o/y*m), (f,+0/y*m,)

T = xo*(fo+8/y*my) + X *(f+8/y*ms) + X *(f,48/y*ms) + x6* (fs+6/y*my) = aay* (fo+5/y*my) +
aBy*(f+6/y*ms) + Bay*(f,+8/y*ms) + PPy *(fe+6/y*m;) =

1 &y 0 0 0 0 0 0
1 84y 0 0 0 0 0 0
00 18y 00 0O
= ooy * 00 1d&y0O0O0O
00 0 0 1 8y 0 O
00 0 0 1 8y 0 O
00 0 0 0 O 1 dh
00 0 0 0 0 1 &N
00 18y 00 OO0
0 018y 0O0O0OTO
-1y 0 0 0 0 0 O
-1-6y 0 0 0 0 0 O
+afy * 00 00 0 0 1 ok
00 00 0 0 1 o
00 00 -1-8y 0 O
00 00 -1-64y 0 O
00 0 O0-1-y0 0
00 0 O0-1-3y 0 O
00 00 O0 O 1 8
00 00 0 0 1 dk
+ Bay* -1y 00 0 0 0 O +
-1y 00 0 0 0 O
00 18y 0 0 0 O
00 18y 0 0 0 O
g O 0 0 0 0= oy
00 0 0 0 0 -1 -3
00 0 0 -1-3/y 0O O
00 00 -1-8/y 0 O
+ BBy * 00 -1y 00 0 O
0 0 -1-3y 00 0 O
-1y 0 0 00 0 O
-1-6y 0 0 00 0 O

generalization of appropriate hypercomplex numbers by means of utilizing any kind of real numbers in
the role of their first basic element instead of utilizing the real unit in this role in the case of traditional
hypercomplex numbers.

The system of tetrions 7' (Figure 12) possesses the commutative and associative properties. It is the
system with operation of division from the left side and from the right side (by analogy with the division
in the system of quaternions). By definition the conjugate tetrion 7 is presented by the expression:
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Figure 13. The table of multiplication of the matrices (f,+d/y*m,), (f,+d/y*m,), (f,+6/y*m,), (f +o/y*m,),

Genomatrices and the Genetic Octet Yin-Yang-Algebras

which are basic elements of the genetic tetrions

fo+o/ v*my f,+6/ v*m; f4+6/ v*ms fs+0/ v*m5
fot+-6/y*my | (1+8/y)* (1+8/y)* (1+8/y)* (1+d/y)*
(fotd/y*my) | (F+8/y*m3) | (f4+8/y*ms) | (fs+6/y*m4)
f+8/y*ms | (1+8/y)* -(1+6/y)* -(1+8/y)* (1+8/y)*
(f+0/y*m3) | (fotd/y*my) | (fe+6/y*m7) | (f4+6/y*ms)
fy+6/y*ms | (1+8/y)* (1+8/)* (1+8/y)* (1+8/y)*
(fa+8/y*ms) | (fs+6/y*my) | (fo+d/y*my) | (f+6/y*m;)
fetom*my | (1+8m)* | -(sm)* | (s | (+emy)*
(fe+d/y*my) | (f+d/y*ms) | (£,4+6/y*m3) | (fo+6/y*my)

T = x,*(£+0/y*m ) -x,*(f,+8/y*m,) - x,*(f +6/y*m,) - x *(f+5/y*m.) (15)
The following expressions for two tetrions T, and T, hold true:

(T, + T)g= (T)s + (1) 5 (T,*T,)g = (T))s * (T} (16)
The square of the module of tetrions is listed below.

TP = T*Ty = T*T = (1+8/7)* (x x,—x, %)

= (1+8/7)*[(owory*H(aBy)*~(Bory)*~(BPy)’] 7)

The inverse genotetrion exists: 7' = T/|TP". It allows defining the operation of division traditionally
by means of multiplication by the inverse genotetrion. One can see that these properties of the genetic
tetrions are similar to the properties of genoquaternions considered above (Figure 11) and that the geno-
tetrion’s multiplication table and genoquaternion’s multiplication table are similar to each other by the
disposition of the signs “+” and “-” (Figure 10 and Figure 13).

The system of genetic tetrions leads to a special kind of vector calculation. By analogy with the
expressions (10-12) for genoquaternions, one can arrive at the similar expressions (18-20) of vector cal-
culation for genotetrions. Let us analyze the multiplication of two vectors & and b (equation 8) as tetrions
in accordance with the multiplication table (Figure 13) in the same three cases which were described for
the expressions (10-12). In the result we arrive at the following equations (18-20).

The case 1. The vectors a and b belong to the plane of the basic vectors (f,+6/y*m,, f,+5/y*m,).
Then

a*b = - |a|*|b*(1+6/y)**cos(a+P) + |a*|b|*sin(o-B)*(1+5/y)*(f +6/y*m,). (18)
The case 2. The vectors g and b belong to the plane (f,+6/y*m,, f+6/y*m_). Then
a*b = - |a|*|b[*(1+6/y)**cos(a+P) - la|*|b[*sin(a-B)*(1+8/y)*(f,+6/y*m,). (19)
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The case 3. The vectors g and b belong to the plane (f,+6/y*m,, f+6/y*m_). Then
a*b = +al*[b|*(1+6/y)**cos(a-P) - |a|*|b|*sin(a-B)*(1+6/y)*(f,+6/y*m,). (20)

Itis obvious that the vector calculation of genetic tetrions fits the case of an anisotropic space because
the results of multiplication of arbitrary vectors g and b depend on the plane, to which these vectors
belong. Can the scalar and vector parts of genetic tetrions be considered correspondingly as the time
coordinate and the space coordinates in the theory of the genetic space-time? This and other interesting
questions are under investigation now.

In the described approach, the genetic code is presented as the replica of the tetrions in their matrix
form. It permits one to consider the algebra of genetic tetrions as a candidate for the role of the math-
ematical system of genetic preceding code (the “pre-code” or the more fundamental code) relative to the
genetic code. Really, from a traditional viewpoint, a code is an aggregate of symbols which corresponds
to elements of information. In our algebraic case, the discussion is about the matrix system, the symbols
of which can be confronted with triplets and with other elements of the genetic code. In other words,
the genetic code can be encoded itself by symbols of elements of the tetrion numerical system. Such
tetrion pre-code has its own pre-code alphabet, which consists of the four letters a, B, y, 6 in contrast
to the usual genetic alphabet A, C, G, U/T. This set of the letters a, B, y, 6, which present the molecular
parameters of the letters of the genetic alphabet, can be named as the alphabet of genetic algebras or as
the algebraic alphabet of the genetic code as well. Revealing such a tetrion pre-code as a new numeric
system can help with sorting, ordering and a deeper understanding of genetic informatics. It can also help
to develop new effective methods of processing and transfer of information in many applied problems.
Mathematical features of such pre-code can explain evolutionary features of the genetic code. One should
emphasize that not only the (8x8)-matrix YY, (Figure 3 and Figure 4), but each of its (4x4)-quadrants and
each of its (2x2)-subquadrants defines its own special algebras, if we take into account the coordinates
Xy, X, ..., X, and the algebraic alphabet a, B, v, 8. It means that the genetic code is an ensemble of special
multidimensional algebras from such a matrix viewpoint.

ABOUT GENETIC MECHANICS AND THE IDEA BY PYTHAGORAS

In the beginning of the XIX century the following opinion existed: the world possesses the single real
geometry (Euclidean geometry) and the single arithmetic. But this opinion was neglected after the discovery
of non-Euclidean geometries and of quaternions by Hamilton. Science understood that different natural
systems can possess their own individual geometries and their own individual algebras (see this theme
in the book (Kline, 1980)). The example of Hamilton, who wasted 10 years in his attempts to solve the
task of description of transformations of 3D space by means of 3-dimensional algebras without success,
is a very demonstrative one. This example says that if a scientist does not guess correctly what types
of algebras are adequate for the natural system, which is investigated by him, he can waste many years
without any result by analogy with Hamilton. One can add that geometrical and physical-geometrical
properties of separate natural systems (including laws of conservation, theories of oscillations and waves,
theories of potentials and fields, etc.) can depend on the type of algebras which are adequate for them.

The fact that the genetic code has led us to the algebra of genetic tetrions (which can be interpreted
as a special case of the genetic octet Yin-Yang-algebra) shows the importance of this algebra for each
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united organism. It seems that many difficulties of modern science to understand genetic and biological
systems are determined by approaches to these systems from the viewpoint of non-adequate algebras,
which were developed formerly for other systems only. In particular, the classical vector calculation,
which plays the role of the important tool in classical mechanics and which fits geometrical properties
of our physical space, can be inappropriate for important biological phenomena.

In view of described materials, the hypothesis can be put forward that a very special mechanics of
biogenetic systems exists, which is connected with the vector calculation of genetic tetrions and with their
generalization in the form of Yin-Yang octets (Petoukhov, 2008a, 2008d, c¢). It can be named “genetic
mechanics” because of its relation with the genetic code. Modern biomechanics is the set of applications
of classical mechanics for modeling some properties of living matter. In our opinion, such traditional
biomechanics are not adequate to many biological phenomena and it will be replaced in many aspects
by genetic mechanics in future. We think that living matter lives in its own biological (bioinformation)
space which has specific algebraic and geometric properties.

The hypothesis of a non-Euclidean geometry of living nature exists long ago (Vernadsky, 1965) but
without any concrete definition of the type of such geometry. And how one can construct such geometry
if biological organisms — bacteria, birds, fishes, plants, etc. - differ from each other so significantly in
their morphogenetic and many other features? The discovery of the genetic code, the basic elements of
which are general for all biological organisms, has allowed hoping that such geometric and algebraic
tasks can be solved by means of investigation of genetic code structures. Some results of such investi-
gation are presented in our book.

It happens frequently, that mathematicians construct a new beautiful abstract mathematics and then
they search for opportunities of its application in different areas of natural sciences. On the contrary, in
our case the phenomenology of the genetic code has led unexpectedly to the new mathematics of tetrions
and Yin-Yang-octets. And we investigate formal features of this mathematics on the second stage only.
The genetic code is the result of a gigantic experiment of nature. This molecular code bears the imprint
of a great set of known and unknown laws of nature. In this connection, algebraic features of genetic
structures are very essential to guess right a perspective direction of development of algebraic bases of
mathematical natural sciences in the future. In our opinion, the tetrion algebra, the Yin-Yang-algebra
and their geometries can be useful not only for biology, but also for other fields of mathematical natural
sciences and for applied sciences (signals processing, mathematical economy, etc.). For example, they
allow developing new algorithms and methods of digital signal processing.

It is important to discuss about the following as well. We have noted already that the notion of “num-
ber” is the main notion of mathematics and mathematical natural sciences. Pythagoras has formulated
the famous idea: “All things are numbers”.

Such known slogans of Pythagoreans as “numbers operate the world”, “the world is number” reflect
the representations of Pythagoreans. For Pythagoreans the systems of numbers expressed “essence” of
everything. In view of this idea, natural phenomena should be explained by means of systems of num-
bers; the systems of numbers play a role of the beginning for uniting all things and for expressing the
harmony of nature (Kline, 1980, p. 21, 24). Many prominent scientists and thinkers were supporters of
this viewpoint or of one similar to it. Not without reason B. Russell (1945) noted that he did not know
any other person who could exert such influence on the thinking of people as Pythagoras. From this
viewpoint, there is no more fundamental scientific idea in the world, than this idea. C.Gauss, J.Argand
and C. Wessel have demonstrated that a plane with its properties fits 2-dimensional complex numbers.
W.Hamilton has proved that the properties of our 3-dimensional physical space fit mathematical proper-
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ties of the special quaternions. The materials, which are described in this chapter, show that the genetic
code is connected with “double genoquaternions” by analogy with the fact that the physical 3D-space
fits Hamilton’s quaternions. The described results give new materials to the great idea by Pythagoras in
its possible modernized formulation: “All things are multi-dimensional number”.

As aresult of the matrix investigation of the genetic code, which is the basis of biological organisms,
we find ourselves unexpectedly in area of the bases of mathematics and mathematical natural science,
since number is the main notion there. One can note that mathematical natural sciences were created
for putting in good order of information about the world and so they are information sciences. They
utilize the notion of multi-dimensional number as the main notion. But genetic information is based on
the multi-dimensional numbers also as the described results and models reveal. So the mathematical
natural sciences can be considered as a continuation of bio-informatics principles, in accordance with
which we are constructed genetically.

Such construction of science in its information essence reminds one of the constructions of instincts of
biological organisms, according to which they build the dwellings by utilizing those genetic-information
mechanisms and principles, on which their biological bodies are constructed. Figuratively speaking, the
viable mathematical natural sciences are a continuation of our body, which is coordinated structurally
with genetic bases of the body (the problem of anthropomorphism of development of mathematical
natural sciences arises here).

WHAT IS LIFE FROM THE VIEWPOINT OF ALGEBRA? THE PROBLEM
OF ALGEBRAIZATION OF BIOINFORMATICS AND BIOLOGY

Taking into account the great meaning of the genetic code for biological organisms, the described dis-
covery of algebraic properties of the genetic code gives the basis for investigation of biological organi-
zations from the algebraic viewpoint. Modern algebra is the wide branch of mathematics. It possesses
many theorems, applications of which to genetic systems can give new vision in the field of theoretical
biology. It is essential that algebra plays a great role in the modern theory of information encoding and
of signal processing. It seems important, that the matrix forms of presentation of elements of the genetic
octet Yin-Yang-algebra are connected with Hadamard matrices by means of the simple U-algorithm
(see Chapter 6). Hadamard matrices play a significant role in the theory of quantum computers and of
quantum mechanics, in particular. For this reason such connection can lead to possible understanding
of the systems of the genetic code as quantum mechanical or quantum computer systems. Revealed
algebraic properties of the genetic code present the opportunity to put forward the interesting problem
of algebraization of bioinformatics on the basis of the algebras of the genetic code.

All these facts provoke the high interest to the question: what is life from the viewpoint of algebra?
This question exists now in parallel with the old question from the famous book by E.Schrodinger:
what is life from the viewpoint of physics? One can add that attempts are known in modern theoretical
physics to reveal information bases of physics; in these attempts information principles are considered
as the most fundamental.

Here one can mention as well the known problem of geometrization of physics that is the problem
of creation and interpretation of physical theories in a form of theories of invariants of groups of trans-
formations (see for example (Lochak, 1994)). Such general approach to different physical theories was
very fruitful. One can hope that the problem of algebraization of bioinformatics (and of biology, which
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is connected closely with bioinformatics), that is understanding phenomena of bioinformatics from the
viewpoint of algebras of the genetic code, will be useful as well.

One of the main questions in this field is the question about geometrical properties of vector spaces of
bioinformatics, including various physiological spaces of sensory perception. Human organism encodes
not only genetic information but also information about external world systematically. For instance,
when a bright point of external picture is projected on retina of our eyes, an ophthalmic nerve delivers
into nervous system not original information about a brightness of this point but encoded information
already about a logarithm of this brightness.

In view of this, our organism is a machine for processing of flows of encoded information, principles
of coding of which are inherited and are related with mathematics of genetic coding. What are pos-
sible geometries of such bioinformation spaces from the viewpoint of described Yin-Yang-algebra of
the genetic code? In this question, one can utilize an analogy with quaternions by Hamilton Q = x *1
+x ki, + x) %, + x ¥, (Figure 2), where the first coordinate x *1 is a scalar coordinate and three others
x *i,, x,*i,, x,*i, are vector coordinates. Quaternions by Hamilton correspond to properties of 3-dimen-
sional vector space of physical world. By analogy one can suppose that each of two types of genetic
quaternions G, = x/*f, +x,*f, +x *f, +x *f and G_ = x *m +x *m +tx *mtx *m, (see equations 3-7)
correspond to properties of their own 3-dimensional vector space of bioinformatics. Each of them has
one scalar coordinate (x,*f, or x *m,) and three vector coordinates (x,*f,, x,*f,, x *f, or x,*m,, x *m,,
x.*m_). Then octet genetic Yin-Yang-numbers YY, = x *f +x *m +x *f +x *m +x *f +x Fmtx 5 4,
*m, (equation 1) have two scalar coordinates (x,*f, or x *m,) and six vector coordinates (x,*f,, x,*f,,
x*f and x,*m,, x,*m, x_*m.,).

Correspondingly these Yin-Yang-numbers fit 6-dimensional bioinformation vector space, which
unites two 3-dimensional bioinformation vector spaces of oppositional types (Yin and Yang) in a special
cross-manner. This viewpoint is in a good agreement with a biological phenomenology: with existence
of two oppositional cerebral hemispheres, which differ each from another by their functions and be the
left-right morphology; etc. R. Penrose (1989) has emphasized at his analysis of phenomenon of thinking,
that sharp functional distinguish exists between both cerebral hemispheres and that these hemispheres
are related with halves of human body by means of cross-connections as well (see Figure 6 of Chapter
1). Each person has two eyes, two ears, etc.

Such data shows the existence of two bioinformation spaces (the right space and the left space) as
sub-spaces of the whole bioinformation space of our organism. This theme of double (or twin) bioinforma-
tion sub-spaces continues a theme of double objects on a level of molecular-genetic structures: a double
helix of DNA, a double configuration of chromosomes, etc. One of interesting examples is received in
experiments with human vestibular disorders. The work (Petoukhov, 1975) has revealed an interesting
class of human vestibular-visual illusions at observation of a single shining filament of a small light
bulb in the dark: in experiments with oscillation of their head in the dark, after a certain latent period
behind the end of oscillation many people experience a process of a development of a physiological
phenomenon of double vision of this filament in a form of a smooth symmetrical divergence of positions
of the “two” filaments on significant distance each from another (Figure 14).

This phenomenon shows additionally the existence of two 3-dimensional physiological spaces of
perception, a joint coordination of which can be broken in some circumstances. Similar phenomena of
double vision are known in a case of drunken persons and in some other cases. Such non-coordination of
two 3-dimensional spaces of perception can lead not only to spatial illusions, but to a non-coordination
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Figure 14. The phenomenon of double vision

R A
S[E |7

A & &

of movements, to nausea, to giddiness and to motion sickness. In view of this coincidence of biological
phenomenology and genetic mathematics, knowledge of physiologic meaning of genetic Yin-Yang-
algebras allows studying and modeling not only properties of molecular-genetic ensembles but genetic
inherited macro-physiological systems and phenomena as well including illusions of perception, etc.

But how can bioinformation spaces with their genetic fundamentals lead to a realization of their
genetic vector constructions in a form of material constructions from biochemical molecules? Why do
biological atomic-molecular elements, which belong to the world of quantum mechanics, require math-
ematical constructions of bioinformatics? How are the quantum mechanics with its complex numbers,
unitary operators and other mathematical formalisms interfaced with mosaic matrices of matrix genetics?
Is there any connection of matrix genetics with matrix mechanics of Heisenberg?

In view of such important questions, one should emphasize a deep connection of matrix presentations
of genetic systems with Hadamard matrices which play so significant role in a set of unitary operators
of quantum mechanics, in logical gates of quantum computers, etc. A set of genetic Yin-Yang-matrices,
which are presented in this Chapter and in Chapter 11, is transformed into a relevant set of Hadamard
matrices by means of the same U-algorithm (see Chapter 6). Thereby all sets of considered genetic
Yin-Yang-algebras become relevant sets of Hadamard matrices at action of such U-algorithm, and vice
versa. Many genetic matrices, which were revealed and analyzed in matrix genetics, can be received
algorithmically from relevant Hadamard matrices as initial matrices; this fact can be useful for future
theory of connection of quantum mechanics with matrix genetics.

In addition, all genetic Hadamard matrices are block matrices, components of which are related to
the complex number Z = 1+i in its matrix form of presentation (Figure 15). For example, the genetic
Hadamard matrix from Figure 4 of Chapter 6, which corresponds to the genomatrix [C A; U G]®, can
be expressed through Z in a following form:

SOLUTIONS AND RECOMMENDATIONS

Let us discuss the specificity of our approach to the question of the essence of the genetic code. From the
scientific viewpoint, an explanation of something or understanding of something in a natural phenom-
enon means a substitution of categories, which characterize this phenomenon, by the more fundamental
scientific categories. For example, physics explains the phenomenon of spontaneous movement of a
ball from an edge of a pit into its bottom by means of the statement that the ball will have a minimum of
potential energy on the pit bottom. This explanation substitutes for the initial question about the natural
phenomenon by the new question about such fundamental physical category as a minimum of potential
energy. This explanation is physical because it is based on physical law and it uses the physical notion
of potential energy. But natural sciences utilize not only physical explanations but mathematical kinds
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Figure 15. The example of a presentation of one of the genetic Hadamard matrices (in the middle) as
a block matrix with components in a form of matrix Z (on the right side), which is the matrix form of
presentation of the complex number 7. = 1+i (on the left side). Black (white) cells in two left matrices
mean elements “+17 (“-1")
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of explanations as well. For example, an explanation and a modeling of properties of elementary par-
ticles are based on mathematical theory of group presentation; properties of chemical compounds are
explained on the basis of the periodic table by Mendeleev, etc. The algebraic model, which is described
in our book, interprets the peculiarities of alphabetical systems of the genetic code on the mathematical
base and moreover on the base of the main mathematical notion of “number” (or of “numeric system”).
It means that this model and explanation belong to the mathematical and meta-mathematical kinds of
explanations.

Matrix genetics reveals that other numeric systems and other good ordering systems govern in living
matter in comparison with those, which mathematical natural sciences utilize traditionally. Our book
proposes the new kind of generalization of real and hypercomplex numbers in the form of Yin-Yang (or
bipolar) numbers. Starting from the extraordinary importance of genetic coding for biological organisms
and from the bipolar character of structures of the genetic code, one can think that mathematization of all
biology will be connected with using this Yin-Yang (bipolar or bisex) mathematics and its language.

In our opinion, the knowledge about the Yin-Yang-algebraic character of the genetic code is necessary
for deep understanding of genetic coding and phenomena of reproduction, self-organization and self-
developing of living matter on the whole. Yin-Yang-algebras are a comfortable instrument to analyze and
to model many properties of hierarchical systems of biological organisms. Yin-Yang numeric systems
are the candidate to play a role of numeric system in putting in order living matter.

It seems that many difficulties of modern bioinformatics are connected with utilizing inadequate al-
gebras, which were developed for completely different natural systems. Hamilton had similar difficulties
in his ten-year attempts to describe 3D-space transformations by means of algebras of 3-dimensional
numbers while this description needs the algebra of 4-dimensional quaternions. (Hamilton considered the
discovery of algebra of his quaternions as the major achievement of his life). All the history of develop-
ment of the notion “number” can be considered as a process of gradual overcoming of inadequacy of
numerical systems for those or other problems. The genetic code, as the information basis of all living
matter, leads to the next overcoming of an inadequacy of existing numerical systems and to a transition
into a new numerical era with a new category of the generalized numbers. In general the discussed situ-
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ation is reflected in the following phrase: living matter is structured on the basis of its own numerical
systems of order, which were unknown in mathematical natural sciences till now.

E. Schrodinger considered gaining knowledge about a “stream of order” in living matter as the very
important task and he wrote in his book (Schrodinger, 1944, Chapter VII):

What I wish to make clear in this last chapter is, in short, that from all we have learnt about the struc-
ture of living matter, we must be prepared to find it working in a manner that cannot be reduced to the
ordinary laws of physics. And that not on the ground that there is any “new force” or what not, direct-
ing the behavior of the single atoms within a living organism, but because the construction is different
from anything we have yet tested in the physical laboratory... The unfolding of events in the life cycle
of an organism exhibits an admirable regularity and orderliness, unrivalled by anything we meet with
in inanimate matter... To put it briefly, we witness the event that existing order displays the power of
maintaining itself and of producing orderly events... We must be prepared to find a new type of physical
law prevailing in it /living matter/.

Molecular genetics puts forward the question about the origin of the genetic code. Usually the follow-
ing three versions are considered in discussions about stochastic process of biological evolution (Ratner,
2002, p. 199-202): 1) the structural properties of the genetic code were set preliminarily (were preset)
by physical-chemical conditions of components and conditions; 2) they were picked out as adaptive
among other alternative variants; 3) they were fixed accidentally. For example, the famous hypothesis
by F.Crick (1968) about “the frozen accident” supposed that the first accidental system of coding, which
possessed satisfactory features, was reproduced with its further evolutionary improvements for acceler-
ated reproductions.

Matrix genetics yields new materials to this question of the origin of the genetic code by the revealing
that the bases of the genetic code are connected with the multi-dimensional algebra, which generalized
the notion of hypercomplex numbers. Any algebra, which is an abstract essence, does not depend on
time and space or it exists outside time and space as the member of the mathematical world of Plato
(Penrose, 1989). According to Plato, mathematical ideas have their own existence and they live in an
ideal world, the entrance into which is possible by means of our intellect. So, algebras do not depend
on evolutionary processes on the Earth.

But the correspondence of the genetic code to the specificity of genetic algebras can provide evolu-
tionary advantages for living matter. Evolutionary biology explains any separate property of biological
organisms by its evolutionary usefulness. From this viewpoint of evolutionary biology, the structuredness
of the genetic code in accordance with the octet Yin-Yang-algebra can be explained, for example, by
the opportunity of processing two different streams of information in parallel manner for evolutionary
advantages. Here we have a certain coincidence with the works (Geodakian, 1999), which connect the
existence of two sexes with two different (operative and conservative) streams of information.

One should take into account the following additional circumstance. The matrix forms of presentation
of elements of the genetic octet Yin-Yang-algebra are connected with Hadamard matrices by means of
the simple U-algorithm (Petoukhov, 2008a-d). Hadamard matrices play a significant role in the theory
of quantum computers and of quantum mechanics, in particular. For this reason such a connection seems
to be important for a possible understanding of the systems of the genetic code as quantum mechanical
system or quantum computer systems.
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One can note additionally that the binary opposition “male-female” is connected with the binary op-
position “the left side and the right side” in the history of various nations. More precisely, in accordance
with many biological, ethnographical and mythological materials, the left side of human body correlates
with the female beginning, and the right side of human body correlates with the male beginning (Ivanov,
1990, p.506-508). It is known that mirror symmetry of “left-and-right” is broken in bio-organic world.
L. Paster, who has discovered this fact, put forward the hypothesis that this property of dissymmetry
is the line of demarcation between living matter and inanimate matter. The origin of this dissymmetry
phenomenon is not understood till now. In our opinion, the Yin-Yang-algebra of the genetic code can
lead to new approaches in understanding this dissymmetry phenomenon.

The described Yin-Yang-algebraic model and its language are the parts of the general process of
mathematization of science. It is known that an appearance of mathematical models in any field of sci-
ence shows that a system of notions in this field becomes precise in high degree to allow rigorous and
abstract analyses by means of mathematical instruments. Mathematical models are defined frequently
in a form of a special “language” for a description of appropriate phenomena. For example, differential
calculus and integral calculus have arisen in the XVII century in such forms. Application of Yin-Yang-
algebras for modeling the genetic code brings a new language as well.

One can think that various genetic algebras, which are connected with various parameters of ensembles
of genetic molecules, correspond to the various information channels in multi-channel informatics of
organism. Many thinkers spoke about a harmony of living nature. The genetic algebras, which are de-
scribed in our book, give valuable opportunities to analyze this harmony.

Understanding the fact of existence of the genetic code was the most difficult thing in a problem
of a genetic code. The whole century was required for it. When it has been understood, ten years were
needed only to know details (Ycas, 1969). By analogy with it, the understanding the existence of the
special and new algebra for modeling the degeneracy of the genetic code was the most difficult thing in
described genetic researches, where many other — biophysical, biochemical, mathematical — variants of
modeling were tried (Petoukhov, 1999-2008).

The mathematical part of the materials described in this chapter proposes some interesting prolonga-
tions in various aspects, which can be recommended for further investigations and applications. One
of them is a generalization of hypercomplex numbers into a form of appropriate Yin-Yang-algebras.
This kind of generalization should be taken into account in developing the theory of multi-dimensional
numbers. Let us stop on it for more details.

As it was mentioned above, Yin-Yang numbers (¥YY-numbers) can be considered as the generaliza-
tion of hypercomplex numbers. Each of 2"!-dimensional hypercomplex numbers can be transformed
into the 2"-dimensional YY-number by a special algorithm. An inverse application of this algorithm to a
2"-dimensional YY-number generates the appropriate 2"'-dimensional hypercomplex number. According
to this algorithm, if we have a (2"x2")-matrix, which represents a 2"-dimensional hypercomplex number,
we should replace each component of this matrix by the (2x2)-matrix [x x , ;x x  ]. By this algorithm
we have the tetra-reproduction of matrix components, which reminds the tetra-reproduction of gametal
cells in the process of meiosis. For such a reason this algorithm has the conditional name “the meiosis
algorithm”.

For example, if we have the (2x2)-matrix of the presentation of complex numbers, this meiosis al-
gorithm transforms it into the (4x4)-matrix of the presentation of 4-dimensional “Yin-Yang-complex”
numbers KK, which fit the special multiplication table of the appropriate 4-dimensional YY -algebra
(Figure 16). Really, according to this algorithm, each component x, and x, of the initial matrix is replaced
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Figure 16. The matrix forms of presentation of complex numbers (on the left side) and of YY-complex
numbers (in the middle). On the right side: the multiplication table for the basic elements of the YY-
complex number
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Yo || |- fo fo [my |, [m;

X0 | -x Yo |vi| =y | - m |fo m [, |ms
X1 _|x |yl |»n f fp |mg |-fo |-my
»|ys|yo [ »n mg |f, |[m3 |-fp |[-my

by the (2x2)-matrix of the mentioned type: x =[y,y ; ¥y, 1, X,=[y,V;; ¥,0,]. Inthe result we have YY-complex
numbers KK, = y *f +y *m +y *f +y *m,, where f and m_ are the female and male quasi-real units; f,
and m, are the female and male imaginary units with the properties (f)*=-f, (m,)*=-m .

By inverse application of this algorithm, one can arrive at the appropriate 4-dimensional hypercomplex
number from the genetic YY-number YY,. The YY-matrix YY, (Figure 3) contains the 4 kinds of (2x2)-
sub-quadrants, each of which has one of the pairs of coordinates: x, and x ; x, and x,; x, and x; x, and x..
One can replace each such sub-quadrant by a separate coordinate: [xx,; x, X, 1=y, [x,x,; x,x,] =y ; [x,x;
xx,] = y,; [xx; xx,] = y,. As a result the (4x4)-matrix Q appears, which represents the genoquaternion
O=y,*1+y*i +y,*i +y*i, which was considered above and which hasi*=-1,i>=1i=+1. Figure
17 shows the matrix Q and the multiplication table for this genoquaternion. The genoquaternion Q sug-
gests coquaternions (or split-quaternions, or para-quaternions, or hyperbolic quaternions), introduced
by J.Cockle in 1849 year (http://en.Qikipedia.org/Qiki/Coquaternion), but their multiplication tables
have differences. We name the number Q “genoquaternion of the first type”. (A genoquaternion of the
second type is produced by the special permutation of columns of the matrix Q, which is connected with
the permutation of positions in genetic duplets (Petoukhov, 2008a, p.203)).

Let us pay some attention to the two squares, which are marked out by bold lines in the left top
corner of the multiplication table on Figure 6 for the case of the Yin-Yang matrix (YY) ,,. These two
squares are connected with the 2-dimensional sub-algebra YY, and the 4-dimensional sub-algebra YY,
of the 8-dimensional algebra YY,.

The first of these squares with its size (2x2) is the multiplication table of the basic elements of the
2-dimensional Yin-Yang algebra YY,. Figure 18 shows two matrix forms of presentation of appropriate
Yin-Yang numbers YY,. One of these forms [zz ; z z,] coincides with the structure of each (2x2)-sub-
quadrant of the genomatrices on Figure 2 in chapter 2, and Figures 3 and4 of this chapter, in relation of

Figure 17. The matrix form of presentation of the hypercomplex number Q (on the left side); its multi-
plication table is shown on the right side

1 |i iz 13
Yo |- Y2 |-y 111 |i; |i |3
Q = W Yo =y3 | =2 i i | -1 -i3 | Iy
Y2 |-v3 W [N i Jip [is [1 |y
3 (2 4V | o B3 |- | -1
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Figure 18. Two matrix forms of a presentation of the 2-dimensional numbers YY, (on the left side), the
multiplication table of the basic elements of the Yin-Yang algebra YY,

f{) m,

‘zo Zl‘ ‘Zn 'ZI‘ fo fo m
20 2lsl-20 z1]; m_ | f m

the disposition of the YY-coordinates x, x,..., x, and of amino acids with stop-signals. It shows that the
algebra YY, participates in the structural organization of the genetic code.

The second square with its size (4x4) on Figure 6 is the multiplication table of the 4-dimensional
Yin-Yang algebra YY,. The appropriate Yin-Yang numbers YY4 possess the following vector form: YY,
= z,*f +z *m +z,*f +z,*m, and these numbers coincide with the Yin-Yang generalization of complex
numbers (Figure 14).

The case of the 2-dimensional algebra YY, should be considered additionally. It is known that com-
plex numbers have been widely recognized only after finding their geometrical interpretation on the
geometric plane of complex variables. This plane was named “Gauss-Argand plane” according to the
names of the mathematicians who have introduced such a plane. Is it possible to offer a substantial
geometrical interpretation of the 2-dimensional Yin-Yang numbers YY,? Yes, it is possible (Petoukhov,
2008a,d). For this purpose one can introduce the plane of Yin-Yang variables (or YY-plane). It is an or-
dinary plane with the Yin-Yang system of Cartesian coordinates. This Yin-Yang system (or YY-system)
has the coordinate axes f and m, which play the role of female and male axes. By analogy with the case
of complex numbers, each 2-dimensional YY-number is denoted on this YY-plane by the point or by the
vector. A product XX*ZZ of two Yin-Yang vectors, where XX= x *f; + x *m, and ZZ= z *f + z *m,,
possesses a geometric sense on such a plane. Really, the result of non-commutative multiplication of
such two YY-vectors is equal to the second vector with the scale coefficient, which is equal to the sum
of coordinates of the first vector (Figure 19, on the left side). The same first vector-factor at multiplica-
tion with all other vectors of the plane or of a geometric figure leads to their identical scaling (Figure
19, on the right side).

It associates with the known biological phenomenon of volumetric growth of living bodies, observed
at the most different lines and branches of biological evolution. Biological bodies are capable of mysteri-
ous volumetric growth, occurring in the cooperative way in all the volume of the body or of its growing
part. It is one of the sharp differences between living bodies and crystals, the surfaces of which grow by
means of a local addition of new portions of substance to the surface of the crystal. By this connection,
the Yin-Yang geometry is one of the candidates for the role of the geometry of biological volumetric

Figure 19. The non-commutative multiplication of two Yin-Yang vectors (on the left side). A scaling of
a geometric figure on the Yin-Yang plane (on the right side)

XX*ZZ=(xo™ fotx1*my)*(zo*fotz1 *my )=(xotx1)*(z0*fotz1*my)
ZZ*HZ(ZU*fo'Fm *my )*(.!Cg*fn'f‘ x* m1)= (Z(]+Z| )*(xg*fo‘l‘x] *m;)

h
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Figure 20. The matrix form of presentation of 3-polar numbers and the multiplication table of their
basic elements

iu i] iz
X X1 X2 io ie il iz
XoX1Xx2]: ig Jig [0y | By
Xo X1 X2 i2 | i [ i1 |02

growth. In our opinion, interesting branches of generalized crystallography can be developed by using
Yin-Yang algebras. We recommend paying attention to these new opportunities connected with applica-
tion of methods of symmetry and with production of new patterns.

We recommend the further wide development of this Pythagorean approach to the genetic and other
genetically heritable biological systems.

One additional aspect should be noted as well. Itis known that mathematics deals not only with algebras
of numbers but with algebras of operators also (see historical remarks in the book (Kline,1980, Chapter
VIII)). G. Boole has published in 1854 his brilliant work about investigations of laws of thinking. He has
proposed Boole’s algebra of logics (or logical operators). Boole tried to construct an operator algebra
which would reflect basic properties of human thinking. Boole’s algebra plays a great role in modern
science because of its connections with many scientific branches: mathematical logic, the problem of
artificial intelligence, computer technologies, bases of the theory of probability, etc. In our opinion, the
genetic algebras, which are described in this chapter, can be considered not only as the algebras of the
numeric systems but also as the algebra of proper logical operators of genetic systems. This direction of
thought can lead us to a deeper understanding of the logic of biological systems including an advanced
variant of the idea of Boole (and by some other scientists) on the development of the algebraic theory
of laws of thinking.

One of the possible applications of the genetic Yin-Yang algebra in the field of formal logic is a new
possible approach to situations with the simultaneous presence of two kinds of logic, which correspond to
the famous expression “the male logic and the female logic”. Such applications are possible in analyses
of a behavioral logic in groups of men and women or in systems, parts of which are under various, but
interconnected variants of logic.

Biological organisms have famous possibilities to utilize the same structures in multi-purpose destina-
tions. And the genetic algebras can be also utilized by biological organisms in different purposes.

FUTURE TRENDS AND CONCLUSION

It should be noted that the names “bipolar algebra™ and “bipolar geometry”, “bisex algebra” and “bisex
geometry”, “bipolar numbers”, etc. can be utilized as the synonyms of the names “Yin-Yang algebra”,
“Yin-Yang geometry”, “Yin-Yang numbers”. In some cases the utilization of these names can be more
comfortable but it depends on situations. For example it is comfortable in the question about algebras with
many quasi-real units. Such algebras can be named “multi-polar algebras” (or “n-polar algebras”).
Really bipolar algebras can be interpreted as a particular case of n-polar algebras, each of which pos-
sesses a set of their basic elements with “n” quasi-real units but without the real unit. Figure 20 shows
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Figure 21. The symbol Yin-Yang and the symbol tomoe

the simplest example of 3-polar numbers x *i +x *i,+x *i, (in the matrix form of their presentation),
which contain three quasi-real numbers only. The basic elements i, i,, , of these 3-polar numbers have
their matrix forms of presentation: i =[100;100;100],i,=[010,010;010],i,=[001;001;00
1]. Their multiplication table is shown on Figure 20.

Bipolar numbers and tripolar numbers can be considered as numeric analogies of the famous symbols
Yin-Yang and tomoe (Figure 21). Details about the Japanese tomoe symbol are given at the site http://
altreligion.about.com/library/glossary/symbols/bldefstomoe.htm.

Multiplication of two 3-polar numbers gives the result, which is similar to the described case of mul-
tiplication of two bipolar numbers: the result is the 3-polar number, which is equal to the second factor
increased by the sum of coordinates of the first factor (Figure 22). The 3-polar geometry is a candidate
to play the role of the geometry of the volumetric biological growth in the case of 3D-space (by analogy
with the bipolar geometry in the case of a plane).

Figure 23 shows another example of multi-polars: the matrix form of presentation of 8-dimensional
4-polar numbers x *i +x *i +x i, o *i tx % Fi b Mt *i, which have 4 quasi-real units i, i), i,
i, and which have their own imaginary unit for each of these quasi-real units: i > = -i; i.> = -i,; i > = -i,;
i?=-i,.

Bipolar algebras and multi-polar algebras, which have arisen in the field of matrix genetics and
bioinformatics, possess many other interesting properties, which are described in special publications
(Petoukhov,2008a,2008d). They allow developing new class of mathematical models of self-reproduction
systems and new class of algorithm for information processing. They also allow investigating possible
generalizations of known physical equations to find new results with a physical sense from there (it is
the mathematical fact that known physical equations can be arrived at from appropriate bipolar equa-
tions by passage to the limit in values of appropriate bipolar coordinates). The idea of multi-dimensional
numbers and multi-dimensional spaces works intensively for a long time in theoretical physics and
other fields of science for modeling the phenomena of our physical world. This chapter adds this idea
of multi-dimensional numbers and multi-dimensional spaces with appropriate mathematical formalisms
into the fields of molecular genetics and bioinformatics.

The algebraic theory of the genetic code, which utilizes methods of symmetry and new genetic pat-
terns, can say many useful and unexpected things about an origin of the genetic code and about laws of

Figure 22. Multiplication of two 3-polar numbers

X0, X1, X3 Yo, V1, V3 Yo, V1, V3
xo, X, 2 [ * [ vo, v, 2| = (otxitx2)™* | yvo, y1, 12
X0, X1, X2 Yo, V1, )2 Yo, V1, V2
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Figure 23. The matrix form of presentation of 8-dimensional 4-polar numbers (the upper matrix) and
the multiplication table of their basic elements (the lower table)

X0 X1 X2 X3 —X3 —X5 —X¢ —X7
X0 X1 X2 X3 —X4 —X5 —X¢ —X7
Xp X1 X2 X3 —X4 —X5 —Xg —X7
Xo X1 X3 X3 —X3 —X5 —Xg —X7
X4 X5 X6 X7 Xop X1 X2 X3
X4 X5 X6 X7 Xp X1 X2 X3
X4 X5 X6 X7 X0 X1 X2 X3
X4 X5 X6 X7 Xp X1 X2 X3

io | §1] 12 13 14 15 | I'S 17
ip | do [ 0y [ iy |3 | Mg | is | Hs | iy
ig | dp | iy [ B2 [ds ] A4 | 05 | ig | B7
ip | dp [ iy [ 0o [ M3 ] ig | 05 | ig | 07
i3 | g [ iy [ ip [ i3 | iy | s [ g | iy
i4 14 is is i7 -ia -1 1 -iz -i3
i5 14 is is i',r -ig -i1 -iz -i3
ig | ig | is | dg | 0y | ~Mp | -1y | -1 | -I3

. 0 . . .

17 14 15 1g 17 —in -i1 —iz -i3

living matter. In particular we recommend investigations of the evolution of the dialects of the genetic
code from the viewpoint of the genetic Yin-Yang-algebras. Some results of such initial investigation
are described in the next chapter.

Degeneracy of the genetic code agrees with the multi-dimensional algebra, which is unknown in
modern mathematical natural science. After the discovery of non-Euclidean geometries and of Hamilton
quaternions, it is known that different natural systems can possess their own geometry and their own
algebra. The genetic code is connected with its own multi-dimensional numerical systems or the multi-
dimensional algebras. A bunch of these genetic algebras can be considered as a basis of an algebraic
system of the pre-code or as the mathematical model of the genetic code. These algebras allow revealing
hidden peculiarities of the structure of the genetic code and, perhaps, its evolution. The genetic code has
its own forms of ordering. It seems that many difficulties of modern bioinformatics are connected with
utilizing for its natural structures inadequate algebras, which were developed for completely different
natural systems. Hamilton had similar difficulties in his attempts to describe 3D-space transformations
by means of 3-dimensional numbers while this description needs quaternions. This chapter proposes a
special algebraic system for bioinformatics and for mathematical biology. Revealed algebraic properties
of the genetic code allow putting forward the problem of the algebraization of bioinformatics and of
biology. They allow modeling not only molecular-genetic ensembles but also genetic inherited macro-
physiological systems and phenomena.
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Chapter 8

The Evolution of the Genetic

Code from the Viewpoint of

the Genetic 8-Dimensional
Yin-Yang-Algebra

ABSTRACT

The set of known dialects of the genetic code is analyzed from the viewpoint of the genetic 8-dimensional
Yin-Yang-algebra. This algebra was described in Chapter 7. The octet Yin-Yang-algebra is considered
as the model of the genetic code. From the viewpoint of this algebraic model, for example, the sets of 20
amino acids and of 64 triplets consist of sub-sets of “male,” “female, ” and “androgynous” molecules,
and so forth. This algebra allows one to reveal hidden peculiarities of the structure and evolution of
the genetic code and to propose the conception of “sexual” relationships among genetic molecules.
The first results of the analysis of the genetic code systems from such an algebraic viewpoint speak
about the close connection between evolution of the genetic code and this algebra. They include 7 phe-
nomenological rules of evolution of the dialects of the genetic code. The evolution of the genetic code
appears as the struggle between male and female beginnings. The hypothesis about new biophysical
factor of “sexual” interactions among genetic molecules is proposed. The matrix forms of presentation
of elements of the genetic octet Yin-Yang-algebra are connected with Hadamard matrices by means of
the simple U-algorithm. Hadamard matrices play a significant role in the theory of quantum computers,
in particular. It leads to new opportunities for the possible understanding of genetic code systems as
quantum computer systems. Revealed algebraic properties of the genetic code allow one to put forward
the problem of algebraization of bioinformatics on the basis of the algebras of the genetic code. The
described investigations are connected with the question: what is life from the viewpoint of algebra?
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INTRODUCTION AND BACKGROUND

This chapter is devoted to the first results of investigations of the evolution of the genetic code from the
viewpoint of the genetic octet Yin-Yang-algebra, which was described in the previous Chapter 7. Owing
to discovery of the connection of this algebra with the genetic code, new opportunities arise for algebraic
systematizing and classification of binary-oppositional structures in molecular-genetic ensembles. No-
tions and formalisms of this algebra are used here to analyze ensembles of genetic molecules in con-
nection with a traditional theme of male and female beginnings in living substance on various levels.
This algebraic way leads to revealing a set of phenomenological rules of evolution of the genetic code
and to new possibilities of understanding some interrelations between elements of molecular-genetic
ensembles. New notions of “sexual” types of the triplets and amino acids can be proposed on a well-
reasoned mathematical basis. The results of these investigations and of applications of such new notions
are described and discussed.

The theme of male and female beginnings and biological reproduction, which is connected with them,
is one of the main themes in human civilization. This binary opposition — man and woman - exists in
different forms in many theories in the fields of psychology, biology and culture, etc. Existence of male
and female types in psychology, of male and female chromosomes, of male and female gametal cells,
etc. is known widely. This primeval theme presented in religions and myths of all times and people. For
example, in Ancient China female and male beginnings (Yin and Yang) were considered as the main
operating forces in the world, and the world has been created by them. The spiritual philosophical doc-
trines of the East, which are presented in many ancient books, asserted, that the soul at initial stage of
its creation united both male and female beginnings and, in that way, the soul reflected the dual nature
of the Creator.

Initial representations about bisexual nature of human being have been formulated in folklore and
mythology of many nations of the world. In particular, these representations were developed by an an-
cient philosophy. For example, Plato’s narration is known concerning androgynous beings from which
modern people have been brought into the world. According to Plato, love is the instinctive aspiration of
individuals, who love each other, to uniting them with their return to the initial state, which was before
its division into two. Modern psychology considers bisexuality as the fundamental characteristic of
constitutional nature of human being. And the notion of androgynous being is considered as a fixation
of this duality which includes always the male and female beginnings but in the different proportions,
which can be changed during a life. Many famous philosophers have presented to people a wide set of
valuable thoughts about male and female beginnings of being and about nature of sexual relations of
men and women. People have gotten accustomed to seeing mutual relations between men and women.
A vast set of works in various fields of culture is devoted to these relations. It is considered ordinary that
male and female beginnings in nature are necessary to continue life and its development (Bull, 1983;
Geodakian, 1999; Karlin, & Lessard, 1986; Maynard Smith, 1978; Mooney, 1992; Williams, 1975).

The tendency of thinkers to reflect the natural fact of male and female beginnings on a formal lan-
guage is known from the ancient time. For example, thoughts about fundamental meanings of male and
female beginnings are reflected by thinkers of Ancient China and of the Pythagorean School into the
thematic division of the series of natural numbers, where even numbers embody the female beginning
(Yin) and odd numbers embody the male beginning (Yang).

Alternation of even and odd numbers in a series of natural numbers was considered as the form of
an interpenetrating in the union of male and female beginnings. Especial value was given to the basic
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female number 2 (in Ancient China it was considered as the “number of the Earth”) and to the basic
male number 3 (“number of the Sky”) (Schutskiy, 1997). These conceptions have penetrated into many
countries and into the latest doctrines, including the Pythagorean School. Besides in the Ancient China,
mutual relations in the world between female and male beginnings were expressed by means of square
tables of “The book of changes” (“I Ching”). These tables contained combinations of female and male
beginnings under their names Yin and Yang in various proportions and sequences.

Sexual attributes are inherited genetically in living substance. Biology has revealed long ago, that
male and female sexual cells (gametes) exist, and that sexual chromosomes contain male and female
chromosomes, etc. The results of matrix genetics, which are described in our book, allow one to make
the following suppositions: 1) a set of binary-oppositional attributes relates directly to the problem of
male and female beginnings in biology; 2) phenomenological peculiarities of these ensembles can be
expressed by means of a language of generalized multi-dimensional Yin-Yang-numbers. These thoughts
have led to continuations of the investigations, which were described in the previous chapter, about the
connection of the genetic matrices with multi-dimensional Yin- Yang numbers. The genetic 8-dimensional
Yin-Yang-algebra gives the new conceptual and formal instrument for analyzing and modeling many
biological phenomena including phenomena of evolution of the genetic code, which has many dialects
for unknown reasons.

This genetic algebra defines the system of 8-dimensional Yin-Yang numbers YY, (the matrix form of
presentation of these numbers YY, is presented on Figure 3 and Figure 4 in Chapter 7.):

% * * * * # # *
YY8 X, f0+x] m +x, f2+x3 m,+x, f4+x5 mtx, f6-|-x7 m,

Multiplication of any two members of such a set of octet numbers Y'Y, generates a new octet number
of the same set. Chapter 7 described that this numeric system has regular and sharp distinctions between
the sub-set of the basic ”female” (or Yin) elements f, f,, f,, f. and the sub-set of the basic male (or Yang)
elements m,, m,, m_, m.. These distinctions are based on the features of the multiplication table of these
Yin-Yang numbers YY,. (Figure 6 in Chapter 7).

This genetic octet Yin-Yang-algebra is penetrated by the principle of binary opposition of elements
with even and odd indexes. But one can note that the principle of binary opposition penetrates many
systems of the genetic code as well. Really, DNA has the double spiral configuration; each letter of the
genetic alphabet has its binary-oppositional partner in a complimentary pair; amino acids have amphoteric
properties (they demonstrate acid properties and alkaline properties simultaneously; a non-dissociated
form of amino acids is transformed into a dipolar form under conditions of neutral water solution); etc.
It seems that many such facts of binary oppositions in genetic systems possess hidden connections with
the genetic Yin-Yang-algebra, which exists not accidentally.

The five essential coincidences between structures of the Yin-Yang matrix Y'Y, and the genetic ma-
trix [C A; G U]® were described in Chapter 7. These structural coincidences allow one to consider the
octet algebra YY, as the adequate model of the structure of the genetic code. One can postulate such an
algebraic model and then deduce some peculiarities of the genetic code from this model.

Inheritance of sexual attributes exists in living nature. The results of investigations in the field of ma-
trix genetics allows one to suppose the following: 1) ensembles of binary-oppositional attributes, which
exist in molecular-genetic systems, are related to the problem of male and female beginnings; 2) many
phenomenological features of these ensembles can be expressed in the language of multidimensional
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numbers, first of all, in the language of the genetic octet Yin-Yang-algebra which gives new possibilities
to investigate genetic ensembles of such binary oppositions and interrelations inside them.

Taking these assumptions into account, let us analyze evolutionary interrelations among different
dialects of the genetic code from the viewpoint of the genetic octet Yin-Yang-algebra (another name is
the genetic bipolar algebra).

THE COMPARISON ANALYSIS AND PHENOMENOLOGICAL
RULES OF DIALECTS OF THE GENETIC CODE

Chapter 3 described in details, that many dialects of the genetic code are known in modern science.
For this book all initial data about these dialects were taken from the website of the National Center for
Biotechnology Information http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi. These dialects
differ one from another through their specifics of the degeneracy (through concrete relations between
20 amino acids and 64 triplets). One can find from the data of the mentioned website, that 17 dialects
are known only which differ one from another by the numbers of degeneracy of the amino acids (see
these 17 dialects in the table on Figure 1 in Chapter 3.). A small quantity of the dialects from the website
differ one from another by their start-codons only but not by the of the amino acids; we consider these
dialects as the same dialect in our investigation.

Only some triplets change their code meaning in the different dialects in comparison with the basic
case of the vertebrate mitochondria genetic code in the sense that they begin to encode other amino acids
or stop-signals. What are those limitations which are utilized by nature in its choice of such changeable
(or evolutional) triplets? Has the matrix disposition of these variable triplets any relation to the YY-
coordinates x, x , ..., x, of the matrix YY, (Figure 3 and Figure 4 in Chapter 7.) and to their disposition in
the genomatrix? Or the YY-coordinates have no relation to evolution of the genetic code and to systemic
disposition of the variable triplets in the genomatrix [C A; U G]®?

If such a relation is discovered, it gives additional evidence that the genetic octet Yin-Yang-algebra
can be utilized as the adequate model of the genetic code or as the algebraic basis of the genetic code (the
algebraic pre-code). It can be useful in tasks of sorting, putting in order and in deeper understanding of the
genetic language. It can help to create new effective methods of information processing for many applied
tasks as well. The appropriate algebraic model of the genetic code should give opportunities to deduce
some evolutional peculiarities of the genetic code from such a fundamental mathematical system.

The results of corresponding comparison analysis have discovered the expressed connection be-
tween the disposition of the variable triplets in the genomatrix [C A; U G]® and the disposition of the
YY-coordinates x, x,,.., x, together with their signs “+” and *“-” in the matrix Y. The obtained results
lead to a few phenomenological rules of evolution of the dialects of the genetic code on the basis of the
genetic octet Yin-Yang-algebra. In other words the scheme, which is defined by this matrix algebra,
holds true in the evolution of the genetic code in some significant aspects. These results give additional
evidence of appropriateness of such algebraic an approach in bioinformatics.

The matrix form of presentation of members of the genetic octet Yin-Yang-algebra (Figure 3 and
Figure 4 in Chapter 7) contains 32 components with the sign “+” and 32 components with the sign “-”.
The matrix disposition of the components with the sign “+” fits the disposition of the 32 black triplets
(the notion of black triplets was introduced in Chapter 2). These black triplets encode 8 kinds of the
high-degeneracy amino acids Ala, Arg, Gly, Leu, Pro, Ser, Thr, Val, each of which is encoded by 4 triplets
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or more in the vertebrate mitochondrial genetic code, which is considered as the basic dialect. Other 12
amino acids are encoded by the white triplets. These 12 acids Asn, Asp, Cys, Gln, Glu, His, Ile, Lys,
Met, Phe, Trp, Tyr are the low-degeneracy ones because each of them is encoded by 3 triplets or less.
So the set of 20 amino acids consists of the canonical sub-set of the 8 high-degeneracy amino acids and
the canonical sub-set of the 12 low-degeneracy amino acids. In the case of the vertebrate mitochondrial
genetic code, the matrix disposition of these two canonical sub-sets fits the matrix disposition of the
YY-coordinates with the signs “+” and “-” correspondingly.

But do these two sub-sets, which fit the algebraic features of the matrix YY,, play any role in many
other dialects of the genetic code? The positive answer to this question was presented in Chapter 2
already: the two non-trivial phenomenological rules Ne 1 and Ne 2 of evolution of the genetic code
were demonstrated there, which are connected closely with these canonical sub-sets and hence with
the matrix YY,. These results are one of the important evidences of the adequacy of the 8-dimensional
octet algebra YY, for the genetic code and its evolutionary peculiarities. Below the phenomenological
rules NeNe 3-7 will be presented as well, which were discovered from the viewpoint of the genetic octet
Yin-Yang-algebra YY.

Let us continue the comparative analysis. As we mentioned above, only some triplets change their
code meaning in the different dialects in comparison with the case of the vertebrate mitochondria code.
What are those formal attributes which are utilized by nature in its choice of these evolutional changeable
triplets from the set of 64 triplets? How these triplets and their appropriate amino acids are disposed in
the genomatrix [C A; U G]® (Figure 3 and Figure 4 in Chapter 7)? Has the matrix disposition of these
variable triplets any relation to the YY-coordinates x, x , ..., x, and to their disposition in the genomatrix?
Can these variable triplets be associated naturally with the groups of the male and female YY-coordinates
and triplets? Or do the YY-coordinates have no relation to evolution of the genetic code and to a systemic
disposition of the variable triplets in the genomatrix [C A; U G]®? This section continues the comparison
analysis to answer such questions.

The table on Table 1 gives data for analysing these questions. The vertebrate mitochondrial genetic
code (the code Ne 1) is utilized as the standard for comparison of code meanings of triplets in differ-
ent dialects. The second tabular column shows those changeable triplets, which possess another code
meaning (relative to their meaning in the dialect Ne 1) in the dialect which is named in the first column.
A name of encoded amino acid or stop-codon (Stop) is given near each triplet in the second column
in connection with the appropriate dialect named in the first column. Brackets in the second column
contain that amino acid or stop-codon, which is encoded by this triplet in the dialect Ne 1. Each row of
the second column is finished by the YY-coordinate, which is disposed together with this triplet in the
same cell of the genomatrix on Figure 4 of Chapter 7. At last, the third column demonstrates data about
start-codons, which define the beginning of protein synthesis in the considered dialect. An appropriate
YY-coordinate is shown for each start-codon as well.

About Triplets which Change their Code Meaning

Let us analyze the data from the second column of the table on Figure 1. This column shows 14 kinds of
the changeable triplets which possess different code meanings in different dialects: AAA, AGA, AGG,
AUA, CUA, CUC, CUG, CUG, CUU, UAA, UAG, UCA, UGA, UUA. Some of these triplets have
several meanings. For example the triplet AGA encodes the stop-signal in the dialect Ne 1, the amino
acid Arg in the dialect Ne 4; and the amino acid Gly in the dialect Ne 8. Or the triplet UAA encodes
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Table 1. The table about changeable triplets and start-codons in the dialects of the genetic code. Initial
data are taken from http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

Dialects of the genetic code

Changeable triplets

Start-codons

1) The Vertebrate Mitochondrial Code

AUU, -
AUC, -x
AUA, -
AUG, -
GUG, x,

6
6
7
7

2) The Standart Code

UGA, Stop (Trp), -x;
AGG, Arg (Stop), -x;
AGA, Arg (Stop), -x;
AUA, Ile (Met), -x,

UUG, x,
CUG, x,
AUG, -x,

3) The Mold, Protozoan, and Coelenterate Mitochon-
drial Code and the Mycoplasma/Spiroplasma Code

AGG, Arg (Stop), -x,
AGA, Arg (Stop), -x,
AUA, lle (Met), -x,

UUG, -x,
UUA, -x,
CUG, x,

4) The Invertebrate Mitochondrial Code

AGG, Ser (Stop), -x;
AGA, Ser (Stop), -x;

3

5) The Echinoderm and Flatworm Mitochondrial Code

AGG, Ser (Stop), -x;
AGA, Ser (Stop), -x;
AUA, lle (Met), -x,

AAA, Asn (Lys), -x,

3

6) The Euplotid Nuclear Code

UGA, Cys (Trp), -x;
AGG, Arg (Stop), -x;
AGA, Arg (Stop), -x,
AUA, Ile (Met), -x,

AUG, -x,

7) The Bacterial and Plant Plastid Code

UGA, Stop (Trp), -x;
AGG, Arg (Stop), -x;
AGA, Arg (Stop), -x;
AUA, lle (Met), -x,

8) The Ascidian Mitochondrial Code

AGG, Gly (Stop), ~x,
AGA, Gly (Stop), ~x,

3

9) The Alternative Flatworm Mitochondrial
Code

UAA, Tyr (Stop), -x,
AGG, Ser (Stop), -x;
AGA, Ser (Stop), -x;
AUA, lle (Met), -x,

AAA, Asn (Lys), -x,

10) Blepharisma Nuclear Code

UGA, Stop (Trp), -
UAG, GIn (Stop), -
AGG, Arg (Stop), -
AGA, Arg (Stop), -
AUA, lle (Met), -x,

5
7
5

5

AUG, -x,

continued on the following page
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Table 1. continued

Dialects of the genetic code Changeable triplets Start-codons

11) Chlorophycean Mitochondrial Code UGA, Stop (Trp), -x, AUG, -x,
UAG, Leu (Stop), -x,
AGG, Arg (Stop), -x;
AGA, Arg (Stop), -x,
AUA, lle (Met), -x,

12) Trematode Mitochondrial Code AGG, Ser (Stop), -x; AUG, -x,
AGA, Ser (Stop), -x; GUG, x,
AAA, Asn (Lys), -x,

13) Scenedesmus obliquus Mitochondrial UGA, Stop (Trp), -x; AUG, -x,

Code UAG, Leu (Stop), -x,

UCA, Stop (Ser), x,
AGG, Arg (Stop), -x,
AGA, Arg (Stop), -x,
AUA, Ile (Met), -x,

14) Thraustochytrium Mitochondrial Code UGA, Stop (Trp), -x; AUU, ~x,
UUA, Stop (Leu), -x, AUG, -x,
AGG, Arg (Stop), -x, GUG, x,

AGA, Arg (Stop), -x,
AUA, lle (Met), -x,

5

15) The Alternative Yeast Nuclear Code UGA, Stop (Trp), -x; CUG, x,
AGG, Arg (Stop), -x; AUG, -x,
AGA, Arg (Stop), -x;
AUA, lle (Met), -x,
CUG, Ser (Leu), x,

16) The Yeast Mitochondrial Code AGG, Arg (Stop), -x, AUA, -x,
AGA, Arg (Stop), -x; AUG, -x,
CUG, Thr (Leu), x,
CUU, Thr (Leu), x,
CUA, Thr (Leu), x,
CUC, Thr (Leu), x,

17) The Ciliate, Dasycladacean and Hexamita Nuclear | UGA, Stop (Trp), -
Code UAG, GIn (Stop), -
UAA, Gln (Stop), -
AGG, Arg (Stop), -
AGA, Arg (Stop), -
AUA, lle (Met), -x,

AUG, -x,

5
7
7
5
5

the stop-signal in the dialect Ne 1, the amino acid Tyr in the dialect Ne 9, and the amino acid GIn in the
dialect Ne 17.

All kinds of changeable triplets are met 69 times in the second column. But only two kinds of the male
YY-coordinates “-x,” and “-x.” with the sign *“-” correspond to these triplets in all dialects practically.
Specifically the male coordinate “-x,” is met 41 times (it is 59,4% of all cases), and the male coordinate
“-x,”is met 22 times (it is 31,9% of all cases). It composes in sum more than 90% of all cases. The male
coordinate “+x,” is met 1 time in the dialect Ne 13 but with the sign “+”. One can name the male YY-
coordinates “-x,”, “-x.”” and “+x,” as canonical Yin-Yang-coordinates for the changeable triplets (Figure
4 of Chapter 7). The described statistics allows one to formulate the following rule (in addition to two
phenomenological rules in Chapter 3).
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The Phenomenological Rule Ne 3 Connected with the Octet Yin-Yang-Algebra

Those triplets possess different code meanings in the different dialects of the genetic code, which cor-
respond to the canonical male coordinates “-x,”, “-x.” and “+x,” of the matrix YY,.

This rule is held true precisely for all the dialects besides the case of yeast with its two dialects: the
dialect Ne 15, where the non-canonical male coordinate “+x,” appears (for the triplet CUG), and the
dialect Ne 16, which has the following unique feature. In this dialect Ne 16 the four triplets CUA, CUG,
CUC, CUU, which are begun with the same pair of the letters (CU), change their code meanings by the
identical way: all of them encode the acid Thr instead of the acid Leu (it is the unusual case because, if
any other four triplets are begun with the equal pair of any letters, they do not change jointly their code
meanings in other dialects). These four triplets correspond to the non-canonical YY-coordinates “+x,”
and “+x,”.

Yeast is unicellular mushrooms, chemoorganoheterotrophs, which are possible to vegetative cloning
(asexual reproduction). Probably, the genetic-code deviation of the yeast from the rule Ne 3 is connected
with their asexual reproduction and heterotrophy. (We noted in Chapter 3 already, that the dialects of
the genetic code of the heterotrophic organisms, which feed on ready living substance, can have some
deviations from the canonical forms of the dialects of autotrophic organisms, which produce living
substance by using solar energy). The additional evidence of molecular-genetic singularity of yeast is
the fact that the histone H1 is not discovered in their genetic system at all (http://drosophila.narod.ru/
Review/histone.html).

The Connection between Evolution of the Genetic
Code and the Anisotropy of the YY,-Space

Chapter 7 has described the anisotropy of the coordinate space of the YY,-numbers (the YY,-space).
The 8-dimensional YY,-numbers YY, = x *f +x *m +x,*f,+x, *m +x *f, +x *m+x *f+x *m_ have been
interpreted as the double genetic quaternion. If all female coordinates are equal to zero (x, = x, =x, = x,
= 0), we have the male variant of YY, in the form (YY),,, .

=y ¥ * * *
(YYS)MALE xl ml + x3 m3 + x5 m5 + x7 n,17 (1)

The multiplication table of the basic elements m , m,, m_, m_ of (YY), . coincides with the mul-
tiplication table of genetic quaternions g =y *1 + y *i, + y,*i, + y,*i, on Figure 10 of Chapter 7. By
analogy with Hamilton’s quaternion, the first item y0*1 (or x,*m, in the expression (1)) of genetic
quaternions is called as their scalar part, and the sum of other three items is called as the vector part of
genetic quaternions.

In accordance with Figure 11 of Chapter 7, these genoquaternions “g” possess the norm
xP+tx?-x2-x? (2)

The signature (+, +, -, -) of the norm (equation 2) of genoquaternions differs from the signature (+,
+, +, +) of the norm of quaternions by Hamilton. This difference is very significant because it defines
the following fundamental circumstance. The vector part x,*m, + x.*m_ + x_*m,_ of genetic quaternions
corresponds to the case of some anisotropic space in contrast to quaternions by Hamilton, the vector
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part of which corresponds to the case of the isotropic space. In the expression (2), this difference in the
signatures of the norms is connected with the YY-coordinates x, and x., which can be named “anisotropic
coordinates” for this reason. But these coordinates x, and x, are those, which correspond to the changeable
triplets of the genetic code in accordance with the rule Ne 3. It is a very interesting fact that all evolu-
tion of code meanings of genetic triplets occurs practically in connection only with these anisotropic
coordinates of the model space. Consequently the close connection between evolution of the genetic
code and the anisotropy of this YY,-space exists. For this reason, one can formulate the following rule
Ne 4, which is a continuation of the rule Ne 3.

The Phenomenological Rule Ne 4, which is Connected with the
Octet Yin-Yang Numbers and with the Anisotropy of YY -Space

In evolution of dialects of the genetic code, all changeable triplets correspond to the anisotropic male
coordinates of genetic YY,-numbers.

Similarly to rule Ne 3, rule Ne 4 has one exception: the case of yeast, which is characterized by asexual
reproduction and heterotrophy and which changes the code meanings of the coordinates x, and x, addi-
tionally. It is obvious that the following prediction can be made. If new dialects of the genetic code are
discovered in the future for organisms with bisexual reproduction, changeable triplets will correspond
to the anisotropic mal