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Preface

Modern science connects many basic secrets of living matter with the genetic codes. Biological organisms 
belong to a category of very complex natural systems, which correspond to a huge number of biological 
species with inherited properties. But surprisingly, molecular genetics has discovered that all organisms 
are identical to each other by their basic molecular-genetic structures. Due to this revolutionary discovery, 
a great unification of all biological organisms has happened in science. The information-genetic line of 
investigations has become one of the most prospective lines not only in biology, but also in science as a 
whole. A basic system of genetic coding has become strikingly simple. Its simplicities and orderliness 
presented challenges to specialists from many scientific fields. Bioinformatics considers each biological 
organism as an ensemble of information systems which are interrelated to each other. The genetic coding 
system is the basic one. All other biological systems must be correlated to this system to be transmitted 
to next generations of organisms. 

The natural technology of genetic coding is a major and most effective technology of life on our 
planet. Using this natural technology, huge biomass of living matter with unique and valuable properties 
is produced around the world. Bioinformatics and biotechnology have been applied to many areas such 
as biology, medicine, and life sciences. Bioinformatics knowledge is used to manufacture biological 
organisms with new properties, to extend human life, to diagnose and treat disease, to clone organisms, 
to develop new computer technologies, to create new materials with unique characteristics, and so on. 
It seems that all fields of human life will be influenced in the future by progress in bioinformatics. 

Modern science recognizes a key meaning of information principles for inherited self-organization 
of living matter. In view of this, the following statements have appeared in the recent literature.

Notions of “information” or “valuable information” are not utilized in physics of non-biological 
nature because they are not needed there. On the contrary, in biology notions “information” and espe-
cially “valuable information” are main ones; understanding and description of phenomena in biological 
nature are impossible without these notions. A specificity of “living substance” lies in these notions. 
(Chernavskiy, 2000)

 
If you want to understand life, don’t think about vibrant, throbbing gels and oozes, think about in-

formation technology. (Dawkins, 1991).

Here one should add that modern informatics is an independent branch of science, which possesses 
its own language and mathematical formalisms and exists together with physics, chemistry, and other 
scientific branches. A problem of information evolution of living matter has been investigated intensively 
in the last decades in addition to studies of the classical problem of biochemical evolution.
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One of the effective methods of cognition of complex natural system, including the genetic coding 
system, is the investigation of symmetries. Modern science knows that deep knowledge about phenomeno-
logical relations of symmetry among separate parts of a complex natural system can tell many important 
things about the evolution and mechanisms of these systems. Physics and other natural sciences have 
great numbers of successful applications of a symmetry method. Principles of symmetry have become 
one of the bases of mathematical natural science. Nowadays, many physical theories, beginning from the 
theory of relativity to quantum mechanics, are created as theories of invariants of mathematical groups 
of transformations, in other words as theories of special kinds of symmetry. The study of symmetries 
and asymmetries in molecular structures is one of the important branches of chemistry. For example, 
functional differences between the right forms of molecules and the left forms of molecules in living 
organisms have become known to mankind due to investigations of symmetry in biological molecules. 
Principles of symmetry have a new essential quality in modern science. 

But not only physics and chemistry deal with principles and methods of symmetry, informatics and 
digital signal processing also pay great attention to them. How is theory of signal processing connected 
to geometry and geometrical symmetries? Signals are represented there in a form of a sequence of the 
numeric values of their amplitude in reference points. The theory of signal processing is based on an 
interpretation of discrete signals as a form of vector of multi-dimensional spaces. In each tact time a 
signal value is interpreted as the corresponding value of one coordinate of a multi-dimensional vector 
space of signals. In this way, the theory of discrete signals turns out to be the science of geometries of 
multi-dimensional spaces. The number of dimensions of such a space is equal to the quantity of refer-
ent points for the signal. Metric notions and all other necessary things are introduced in these multi-
dimensional vector spaces for those or other problems of maintenance of reliability, speed, economy 
of the signal information. For example, the important notions of the energy and the power of a discrete 
signal appear in multi-dimensional geometry of the space of signals as forms of a square of the length of 
a multi-dimensional vector-signal and of a square of the length of a vector-signal divided by the number 
of dimensions of an appropriate space. On this geometrical basis, many methods and algorithms of rec-
ognition of signals and images, coding information, detections and corrections of information mistakes, 
and artificial intellect and training of robots are constructed. One can add here about the importance of 
symmetries in permutations of components for coding signals, in spectral analysis of signals, in orthogo-
nal and other transformations of signals, and so on. 

An investigation of symmetrical and structural analogies between computer informatics and genetic 
informatics is one of the important tasks of modern science in connection to the creation of DNA-com-
puters, DNA-robotics and to a development of bioinformatics. A significant part of this book describes 
the study of symmetries in matrix forms of the genetic code systems (“matrix genetics”). The results of 
this study are new examples of the usefulness of symmetry investigations in natural systems. In this book, 
we first present matrix methods of presentation and the analysis of molecular ensembles of the genetic 
code systems. Secondly, we present special multi-dimensional matrix algebras related to the genetic 
code and describe the importance of phenomenological symmetries in matrix forms of presentation of 
the genetic code. Furthermore, we present advanced patterns and applications.

THE CHALLENGES 

A biological meaning of genetic informatics is reflected in the brief statement: “life is a partnership 
between genes and mathematics” (Stewart, 1999). But what kind of mathematics has partner relations 
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with the genetic code and what kind of mathematics is behind genetic phenomenology which includes a 
great noise-immunity of the genetic code? This question is one of the main challenges in mathematical 
natural sciences today. A significant part of the challenge is the question of an adequate mathematics 
for the phenomenon of degeneracy of the genetic code. A character of this degeneracy is reflected in 
symmetrical patterns of black-and-white mosaics of genetic matrices of 64 triplets (for example, see a 
genetic matrix with a black-and-white symmetrical mosaic on Figure 2.2. in Chapter 2).

Why do genetic matrices of 64 triplets posess such symmetrical mosaics? Is degeneracy of the gene-
tic code an accidental choice of nature? Is it provided by substantial mathematics of the genetic code? 
Is the construction of the genetic code non-accidental at all? The last question is essential because the 
famous hypothesis by F. Crick (1968) about “the frozen accident” in the origin of the genetic code has 
supposed that the first accidental system of coding, which possessed satisfactory features, was reproduced 
in biological evolution with its further evolutionary improvements.

We are searching for scientific answers to facilitate an analysis of the genetic code phenomenology 
from the viewpoint of mathematics of discrete signal processing, of computer informatics, and of noise-
immunity coding in digital communication. This book describes substantial answers to these questions 
by means of discovering deep connections of the genetic code with hypercomplex numeric systems and 
their matrix algebras (which can be multi-dimensional algebras of operators simultaneously). These 
multi-dimensional algebras and their relevant geometries are interpreted in relation to multi-dimensio-
nal vector spaces of bioinformatics (or bioinformation vector spaces). An example of such an algebra 
is the 8-dimensional Yin-Yang-algebra (or the bipolar algebra), which is the algebra of degeneracy of 
the genetic code and which is described in Chapter 7. Recent progress in the determination of genomic 
sequences yields many millions of gene sequences now. But what do these sequences tell us and what 
generalities and rules govern them? The modern situation in the theoretic field of genetic informatics 
can be characterized by the following citation: 

What will we have when these genomic sequences are determined? What do we have now in the 10 
million nucleotide of sequence data determined to date? We are in the position of Johann Kepler when 
he first began looking for patterns in the volumes of data that Tycho Brahe had spent his life accumulat-
ing. We have the program that runs the cellular machinery, but we know very little about how to read 
it. Bench biologists, by experiment and by close association with the data, have found meaningful pat-
terns. Theoreticians, by careful reasoning and use of collections of data, have found others, but we still 
understand frustratingly little. (Fickett & Burks, 1989)

Kepler is mentioned here not without reason. The history of science shows the importance of cognitive 
forms of presentation of phenomenological data to find regularities or laws in this phenomenology. The 
work by Kepler is the classical example of an important meaning of a cognitive form of presentation of 
phenomenological data. He did not make his own astronomic observations, but he found the cognitive 
form of presentation in the huge astronomic data from the collection of Tycho Brahe. This discovered 
form, which was connected to the general idea of movements along ellipses, allowed him to formulate 
the famous Kepler’s laws of planetary movements relative to the Sun. Owing to this cognitive form, 
Kepler and Newton have led us to the law of Newtonian attraction.

A discovery of such a cognitive form of presentation in the case of the phenomenology of genetic 
code systems is one more challenge, which arises from the very beginning in the course of attempts to 
find regularities among a huge number of genetic data and to create a relevant theory. Matrix genetics 
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proposes a new cognitive form of presentation of phenomenological data in the field of genetic informat-
ics. This cognitive matrix form gives new tools to analyze and to model ensembles of the genetic code 
as well. It paves the way for a worthy attempt at answering the mentioned challenges.

SEARCHING FOR A SOLUTION 

This book presents a matrix form of presentation of the genetic code as an effective cognitive form 
of presentation of relevant phenomenological data. An initial choice of such a form of presentation of 
molecular ensembles of the genetic code is explained by the following main reasons:

• Information is usually stored in computers in the form of matrices.
• Noise-immunity codes are constructed on the basis of matrices.
• Quantum mechanics utilizes matrix operators, connections with which can be detected in matrix 

forms of presentation of the genetic code. The significance of matrix approach is emphasized by 
the fact that quantum mechanics has arisen in a form of matrix mechanics by W. Heisenberg.

• Complex and hypercomplex numbers, which are utilized in physics and mathematics, possess 
matrix forms of their presentation. The notion of number is the main notion of mathematics and 
mathematical natural sciences. In view of this, investigation of a possible connection of the ge-
netic code to multi-dimensional numbers in their matrix presentations can lead to very significant 
results. 

• Matrix analysis is one of the main investigation tools in mathematical natural sciences. The study of 
possible analogies between matrices, which are specific for the genetic code, and famous matrices 
from other branches of sciences can be heuristic and useful.

• Matrices, which are a kind of union of many components in a single whole, are subordinated to 
certain mathematical operations, which determine substantial connections between collectives of 
many components. Such connections can be essential for collectives of genetic elements of differ-
ent levels, as well.

The authors utilize a presentation of molecular ensembles of genetic multiplets in the form of a 
Kronecker family of genetic matrices [C  A; U  G](n), where C, A, U, G are nitrogenous bases cytosine, 
adenine, uracil, guanine, and (n) is a Kronecker power. The genetic matrix [C  A; U  G](3) contains all 64 
triplets in an ordering arrangement, which is comfortable and effective to study degeneracy of the genetic 
code. Kronecker families of square matrices are utilized in the theory of noise-immunity coding and of 
discrete signal processing. Applying these matrix families to genetic informatics is justified by a discrete 
character of the genetic code. This matrix form has allowed us to derive the following main results: 

• new phenomenological rules of evolution of the genetic code; 
• the connections of the genetic code structures with multi-dimensional numeric systems; 
• multi-dimensional algebras for modelling and for analysing the genetic code systems; 
• Hadamard matrices and matrices of a hyperbolic turn in the Kronecker family of genetic matrices;
• parallels with quantum computers; 
• hidden interrelations between the golden section and parameters of genetic multiplets;
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• relations between the Pythagorean musical scale and an important class of quint genetic matrices 
which show a molecular genetic basis with a sense of musical harmony and of aesthetics of propor-
tions;

• cyclic algebraic principles in the structure of matrices of the genetic code; 
• generalized hypercomplex numeric systems, which are new for mathematical natural sciences 

and which allow one to model a binary opposition of male and female beginnings on the level of 
genetic-molecular ensembles;

• materials for a chronocyclic conception, which connects structures of the genetic system with 
chrono-medicine and a problem of the internal clock of organisms;

• parallels with famous symbolic tables of the Ancient Chinese book “I Ching” which declares a 
cyclic principle in nature and which is very important for all Oriental medicine (acupuncture, pulse 
diagnostics of Tibetan medicine, and so on);

• a new answer to the fundamental questions–“why are there 4 letters in the genetic alphabet?” and 
“why 20 amino acids?”

One of the most important results is that degeneracy of the genetic code agrees with the 8-dimensional 
algebra, which is unknown in modern mathematical natural science. This algebra and the elements of its 
multi-dimensional geometry are presented in Chapters 7 and 11. After the discovery of non-Euclidean 
geometries and of Hamilton quaternions, it is known that different natural systems can possess their own 
geometry and their own algebra. The genetic code is connected with its own multi-dimensional numerical 
system or the multi-dimensional algebra. This genetic algebra can be considered as the pre-code or the 
mathematical model of the genetic code. This algebra allows one to reveal hidden peculiarities of the 
structure and evolution of the genetic code. The genetic code has its own forms of ordering. It seems 
that many difficulties of modern bioinformatics are connected with utilizing inadequate algebras, which 
were developed for completely different natural systems. Hamilton had similar difficulties in his attempts 
to describe 3D-space transformations by means of 3-dimensional numbers while this description needs 
4-dimensional quaternions. We proposed a new algebraic system for bioinformatics and for mathemati-
cal biology. The described results are interesting from the viewpoint of many modern tasks: creating 
computers from DNA molecules; understanding the genetic system as a quantum computer; creating new 
kinds of neurocomputers and cellular automata on the basis of principles of genetic code systems.

A set of these results and proposed matrix methods in the field of genetic forms a new scientific dis-
cipline–“matrix genetics,” which is related to symmetrical analyses and visual patterns of bioinformatics 
closely. This book can be considered as an introduction to matrix genetics. The main intended audiences 
are students and scientists in the fields of genetics, bioinformatics, theoretical biology, mathematical 
biology, computer informatics, neurocomputing, theory of symmetries, biotechnology, mathematics, 
theoretical physics, medicine, physiology, psychophysics, art design, music, cellular automata. Our 
mathematical approaches and results about structural peculiarities of genetic code systems increase 
knowledge and further investigations for many scientists and students. The presented genetic matrices 
and their ensembles are interesting not only by beautiful mathematical properties but, first of all, by their 
reflection of fundamental phenomenology of the genetic code. Therefore, science will return to them in 
future at different levels of knowledge again and again.
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ORGANIZATION OF THE BOOK 

The book is organized into twelve chapters. A brief description of each chapter follows.
Chapter 1 is devoted to symmetrical analysis for genetic code systems. The genetic coding possesses 

noise-immunity. Mathematical theories of noise-immunity coding and discrete signals processing are 
based on matrix methods of representation and analysis of information. These matrix methods, which 
are connected closely with relations of symmetry, are borrowed for a matrix analysis of ensembles of 
molecular elements of the genetic code. This chapter describes a uniform representation of ensembles of 
genetic multiplets in the form of matrices of a cumulative Kronecker family. The analysis of molecular 
peculiarities of the system of nitrogenous bases reveals the first significant relations of symmetry in 
these genetic matrices. It permits one to introduce a natural numbering of the multiplets in each of the 
genetic matrices and to give the basis for further analysis of genetic structures. The connection of the 
numerated genetic matrices with famous matrices of dyadic shifts is demonstrated.

Chapter 2 describes symmetries of the degeneracy of the vertebrate mitochondrial genetic code 
in the mosaic matrix form of its presentation. The initial black-and-white genomatrix of this code is 
reformed into a new mosaic matrix when internal positions in all triplets are permuted simultaneously. 
It is revealed unexpectedly that for all six variants of positional permutations in triplets (1-2-3, 2-3-1, 
3-1-2, 1-3-2, 2-1-3, 3-2-1) the appropriate genetic matrices possess symmetrical mosaics of the code 
degeneracy. Moreover the six appropriate mosaic matrices in their binary presentation have the general 
non-trivial property of their “tetra-reproduction,” which can be utilized in particular for mathematical 
modeling of the phenomenon of the tetra-division of gametal cells in meiosis. Mutual interchanges of the 
genetic letters A, C, G, U in the genomatrices lead to new mosaic genomatrices, which possess similar 
symmetrical and tetra-reproduction properties as well.

Chapter 3 demonstrates results of a comparative investigation of characteristics of degeneracy of 
all known dialects of the genetic code. This investigation is conducted on the basis of the results of 
symmetrological analysis, which were described in Chapter 2, about the division of the set of the 20 
amino acids into the two canonical subsets: the subset of the 8 high-degeneracy acids and the subset 
of the 12 low-degeneracy acids. The existence of numerical and structural invariants in the set of these 
dialects is shown. The derived results from the comparative investigation permit one to formulate some 
phenomenological rules of evolution of these dialects. These numeric invariants and parameters of code 
degeneracy draw attention to the formal connection of this evolution with famous facts of chrono-biology 
and chrono-medicine. The chronocyclic conception of the functioning of molecular-genetic systems is 
proposed on this basis. The biophysical basis of this conception provides connection to the genetic code 
structures with mechanisms of photosynthesis which produce living substance by means of utilization 
of solar energy. And the solar energy comes cyclically on the surface of the Earth. The revealed numeric 
invariants of evolution of the genetic code give new approaches to the fundamental question, why do 20 
amino acids exist? We will demonstrate new patterns of the genetic code systems.

Chapter 4 is devoted to a consideration of the Kronecker family of the genetic matrices but in the 
new numerical form of their presentation. This numeric presentation gives opportunities to investigate 
ensembles of parameters of the genetic code by means of system analysis including matrix and symmetric 
methods. In this way new knowledge is obtained about hidden regularities of element ensembles of the 
genetic code and about connections of these ensembles with famous mathematical objects and theories 
from other branches of science. First of all, this chapter demonstrates the connection of molecular-genetic 
system with the golden section and principles of musical harmony. 
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Chapter 5 uses the Gray code representation of the genetic code C = 00, U = 10, G = 11 and A = 01 
(C pairs with G, A pairs with U) to generate a sequence of genetic code-based matrices. In connection 
with these code-based matrices, we use the Hamming distance to generate a sequence of numerical ma-
trices. We then further investigate the properties of the numerical matrices and show that they are doubly 
stochastic and symmetric. We determine the frequency distributions of the Hamming distances, building 
blocks of the matrices, decomposition and iterations of matrices. We present an explicit decomposition 
formula for the genetic code-based matrix in terms of permutation matrices. Furthermore, we establish 
a relation between the genetic code and a stochastic matrix based on hydrogen bonds of DNA. Using 
fundamental properties of the stochastic matrices, we determine explicitly the decomposition formula of 
genetic code-based biperiodic table. By iterating the stochastic matrix, we demonstrate the symmetrical 
relations between the entries of the matrix and DNA molar concentration accumulation. The evolution 
matrices based on genetic code were derived by using hydrogen bonds-based symmetric stochastic (2x2)-
matrices as primary building blocks. The fractal structure of the genetic code and stochastic matrices 
were illustrated in the process of matrix decomposition, iteration and expansion corresponding to the 
fractal structure of the biperiodic table introduced by the authors.

Chapter 6 continues an analysis of the degeneracy of the vertebrate mitochondrial genetic code in the 
matrix form of its presentation, which possesses the symmetrical black-and-white mosaic. Taking into 
account a symmetry breakdown in molecular compositions of the four letters of the genetic alphabet, 
the connection of this matrix form of the genetic code with a Hadamard (8x8)-matrix is discovered. 
Hadamard matrices are one of the most famous and the most important kind of matrices in the theory 
of discrete signals processing and in spectral analysis. The special U-algorithm of transformation of 
the symbolic genetic matrix [C A; U G](3) into the appropriate Hadamard matrix is demonstrated. This 
algorithm is based on the molecular parameters of the letters A, C, G, U/T of the genetic alphabet. In 
addition, the analogical relations is shown between Hadamard matrices and other symmetrical forms of 
genetic matrices, which are produced from the symmetrical genomatrix [C A; U G](3) by permutations 
of positions inside triplets. Many new questions arise due to the described fact of the connection of the 
genetic matrices with Hadamard matrices. Some of them are discussed here including questions about 
an importance of amino-group NH2 in molecular-genetic systems, and about possible relations with the 
theory of quantum computers, where Hadamard gates are utilized. A new possible answer is proposed 
to the fundamental question concerning reasons for the existence of four letters in the genetic alphabet. 
Some thoughts about cyclic codes and a principle of molecular economy in genetic informatics are 
presented as well.

Chapter 7 analyzes algebraic properties of the genetic code. The investigations of the genetic code 
on the basis of matrix approaches (“matrix genetics”) are described. The degeneracy of the vertebrate 
mitochondrial genetic code is reflected in the black-and-white mosaic of the (8*8)-matrix of 64 triplets, 
20 amino acids and stop-signals. The special algorithm, which is based on features of genetic molecules, 
exists to transform the mosaic genomatrix into a numeric matrix, which is the matrix form of presentation 
of the special 8-dimensional genetic algebra. This algebra can be named as Yin-Yang-algebra or bipolar 
algebra. Main mathematical properties of this genetic algebra and its relations with other algebras are 
analyzed together with some important consequences from the adequate algebraic models of the genetic 
code. Elements of a new “genovector calculation” and ideas of “genetic mechanics” are discussed. The 
revealed fact of the relation between the genetic code and these genetic algebras, which define new 
multi-dimensional numeric systems, is discussed in connection with the famous idea by Pythagoras: “All 
things are numbers.” Simultaneously, these genetic algebras can be utilized as the algebras of genetic 
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operators in biological organisms. The described results are related to the problem of algebraization of 
bioinformatics. They draw attention to the question: what is life from the viewpoint of algebra?

Chapter 8 considers the octet Yin-Yang-algebra as the model of the genetic code. From the viewpoint 
of this algebraic model, for example, the sets of 20 amino acids and of 64 triplets consist of subsets of 
“male,” “female,” and “androgynous” molecules, and so forth. This algebra allows one to reveal the 
hidden peculiarities of the structure and evolution of the genetic code and to propose the conception 
of “sexual” relationships among genetic molecules. The first results of the analysis of the genetic code 
systems from such an algebraic viewpoint speak about the close connection between evolution of the 
genetic code and this algebra. They include 7 phenomenological rules of evolution of the dialects of 
the genetic code. The evolution of the genetic code appears as the struggle between male and female 
beginnings. The hypothesis about new biophysical factor of “sexual” interactions among genetic mol-
ecules is proposed. The matrix forms of presentation of elements of the genetic octet Yin-Yang-algebra 
are connected with Hadamard matrices by means of the simple U-algorithm. Hadamard matrices play 
a significant role in the theory of quantum computers, in particular. It leads to new opportunities for 
the possible understanding of genetic code systems as quantum computer systems. Revealed algebraic 
properties of the genetic code allow one to put forward the problem of algebraization of bioinformatics 
on the basis of the algebras of the genetic code. 

Chapter 9 returns to the kind of numeric genetic matrices, which were discussed in Chapters 4-6. This 
kind of genomatrix is not connected with the degeneracy of the genetic code directly, but it is related to 
some other structural features of genetic code systems. The connection of the Kronecker families of such 
genomatrices with special categories of hypercomplex numbers and with their algebras is demonstrated. 
Hypercomplex numbers of these two categories are named “matrions of a hyperbolic type” and “matrions 
of a circular type.” These hypercomplex numbers are a generalization of complex numbers and double 
numbers. Mathematical properties of these additional categories of algebras are presented. A possible 
meaning and possible applications of these hypercomplex numbers are discussed. The investigation of 
these hyperbolic numbers in connection with the parameters of molecular systems of the genetic code 
can be considered as a continuation of the Pythagorean approach to understanding natural systems.

Chapter 10 describes data suggesting a connection between matrix genetics and one of the most 
famous branches of mathematical biology: phyllotaxis laws of morphogenesis. Thousands of scientific 
works are devoted to this morphogenetic phenomenon, which relates with Fibonacci numbers, the 
golden section and beautiful symmetrical patterns. These typical patterns are realized by nature in a 
huge number of biological bodies on various branches and levels of biological evolution. Some matrix 
methods are known for a long time to simulate in mathematical forms these phyllotaxis phenomena. 
This chapter describes connections of the famous Fibonacci (2x2)-matrices with genetic matrices. Some 
generalizations of the Fibonacci matrices for cases of (2nx2n)-matrices are proposed. Special geometrical 
invariants, which are connected with the golden section and Fibonacci numbers and which characterize 
some proportions of human and animal bodies, are described. All these data are related to matrices of 
the genetic code in some aspects.

Chapter 11 presents data about cyclic properties of the genetic code in its matrix forms of presenta-
tion. These cyclic properties concern cyclic changes of genetic Yin-Yang-matrices and their Yin-Yang-
algebras at many kinds of circular permutations of genetic elements in genetic matrices. These circular 
permutations lead to such reorganizations of the matrix form of presentation of the initial genetic Yin-
Yang-algebra that such matrices serve as matrix forms of presentations of new Yin-Yang-algebras. They 
are connected algorithmically with Hadamard matrices. New patterns and relations of symmetry are 
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described. The discovered existence of a hierarchy of the cyclic changes of genetic Yin-Yang-algebras 
allows one to develop new algebraic models of cyclic processes in bioinformatics and in other related 
fields. These cycles of changes of the genetic 8-dimensional algebras and of their 8-dimensional numeric 
systems have many analogies with famous facts and doctrines of modern and ancient physiology, medi-
cine, etc. This viewpoint proposes that the famous idea by Pythagoras (about organization of natural 
systems in accordance with harmony of numerical systems) should be combined with the idea of cyclic 
changes of Yin-Yang-numeric systems in considered cases. This second idea suggests the ancient idea 
of cyclic changes in nature. From such an algebraic-genetic viewpoint, the notion of biological time can 
be considered as a factor in coordinating these hierarchical ensembles of cyclic changes of the genetic 
multi-dimensional algebras.

Chapter 12 considers the topic of connections of the genetic code with various fields of culture and 
with inherited physiological properties which provide existence of these fields. Some examples of such 
physiological bases for branches of culture are described. These examples are related to linguistics, 
music, and physiology of color perception. Special attention is paid to connections between the genetic 
matrices and the system of the Ancient Chinese book “I Ching.” The conception and its arguments are 
put forward that the famous table of 64 hexagrams of “|I Ching” reflects the notions of Ancient Chinese 
about music quint harmony as a universal archetype.

Sergey Petoukhov 
Matthew He
March 6, 2009 
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Section 1
Symmetrical Analysis

Techniques and Symbolic
Matrices of Matrix Genetics

Section 1 is organized into three chapters. It presents symmetrical patterns for genetic systems, natural 
system of numeration of genetic multiplets, and biological evolution of degeneracy of genetic codes. 
A matrix representation of the genetic code is introduced to describe phenomenological symmetries of 
degeneracy of the Vertebrate Mitochondrial Code and to study consequences from these symmetries and 
other features of genetic matrices.
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Chapter 1

Genetic Code:
Emergence of Symmetrical Pattern, 

Beginnings of Matrix Genetics

INTRODUCTION AND BACKGROUND

Bioinformatics is defined frequently as the branch of life science that deals with the study of applica-
tion of information technology to the field of molecular biology. The primary goal of bioinformatics is 
to increase our understanding of biological processes. The term bioinformatics was coined by Paulien 
Hogeweg in 1978 for the study of informatics processes in biotic systems.

The genetic code is a key to bioinformatics and to a science about biological self-organizing on the 
whole. The modern science faces the necessity of understanding and system explanation of mysterious 
features of ensemble of molecular structures of the genetic code. Why does the genetic alphabet consist 

ABSTRACT

This chapter is devoted to symmetrical analysis for genetic code systems. The genetic coding possesses 
the noise-immunity. Mathematical theories of the noise-immunity coding and discrete signals processing 
are based on matrix methods of representation and analysis of information. These matrix methods, which 
are connected closely with relations of symmetry, are borrowed for a matrix analysis of ensembles of 
molecular elements of the genetic code. This chapter describes a uniform representation of ensembles 
of genetic multiplets in the form of matrices of a cumulative Kronecker family. The analysis of molecu-
lar peculiarities of the system of nitrogenous bases reveals the first significant relations of symmetry in 
these genetic matrices. It permits to introduce a natural numbering the multiplets in each of the genetic 
matrices and to give the basis for further analysis of genetic structures. The connection of the numerated 
genetic matrices with famous matrices of dyadic shifts is demonstrated.

DOI: 10.4018/978-1-60566-124-7.ch001
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of the four letters? Why does the genetic code encode 20 amino acids? How is the system structure of 
the molecular genetic code connected with known principles of quantum mechanics, which were devel-
oped to explain phenomena on atomic and molecular levels? Why has nature chosen the special code 
conformity between 64 genetic triplets and 20 amino acids? Can knowledge about the structural essence 
of the genetic code be useful for mathematical natural sciences on the whole? What kind of mathemati-
cal approach should be chosen among many possible approaches to represent and model structuralized 
ensembles of molecules of the genetic code?

Achievement of deep understanding the genetic code should promote an inclusion of a science about 
it into the field of the mathematical natural sciences. To provide it, the direction of searches should be 
based on fundamental mathematical methods and concepts. Methods and principles of symmetry, as well 
as the matrix analysis, are some of bases of modern mathematical natural sciences. While biological 
structures are genetically inherited, morphological structures of biological bodies are characterized by 
many kinds of symmetry. It is known from the history of molecular genetics that investigations of sym-
metry in genetic molecules have given essential results already. Revelations of new symmetric structures 
in molecular-genetic systems produce a set of useful heuristic associations due to analogies with known 
symmetric structures in other scientific fields: quantum mechanics, theory of digital communication and 
noise-immunity coding, geometry, etc.

Genetic coding possesses the noise-immunity, which allows descendants to be similar to their par-
ents, despite of strong disturbances and noise in the environment of biological molecules. It reminds 
one of the effective noise-immunity of modern systems of digital communication and signal processing, 
which is reached by means of special mathematics. The mathematics is based on matrix and symmetric 
methods of representation and analysis of signals. It’s natural to ask whether it is possible that these 
mathematical methods, which were developed for digital technique, can be applied in the adequate man-
ner to studying the genetic code?

The objectives of Chapter 1 are the following:

The explanation of the choice of symmetric and • matrix methods of analysis of the genetic code 
as prospective and adequate methods to investigate and to model structural interrelations among 
various parts of the integral molecular system of the genetic code;
The description of the main data about molecular structures of the genetic code;• 
The demonstration of the possibility of representation of all sets of • genetic multiplets, which dif-
fer from each other by their lengths and compositions, in the well-ordered symmetrical form by 
means of the Kronecker family of the genetic matrices;
The explanation of the fact that all multiplets in this general matrix form of presentation of their • 
sets can be numerated individually by means of taking into account the symmetrical binary sub-
alphabets of the four-letter genetic alphabet;
The revelation of the connection between the • genetic matrices and the matrices of diadic shifts, 
which are utilized in the theory of discrete signal processing long ago as fundamentals of some 
special methods of analysis and synthesis of signals.
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SIGNIFICANCE OF SymmETRICAL pATTERNS FOR BIOLOGy, 
mOLECULAR GENETICS AND BIOINFORmATICS

Symmetry in biological systems, in particular, in forms of biological bodies caused steadfast interest of 
thinkers as one of the most remarkable and mysterious phenomena of nature during centuries (Thompson 
d’Arcy, 1942; Weyl, 1952; etc.). The works of many modern scientists are devoted to it as well. Problems 
of biological symmetries at a macromolecular level were considered on the special Nobel symposium 
(Engstrom & Strandberg, 1968), on which the important role of the concept of symmetry for biological 
researches was emphasized. School programs of biology already include considerations of numerous 
examples of rotary, transmitting and mirror symmetries, and also symmetries of scale similarity in bio-
logical bodies: flowers and sprouts of plants, support-motion systems of animals, etc.

Principles of symmetry have played the important role in the X-ray analysis of genetic molecules. 
It is well know the concept of the double helix of DNA has arisen in the famous works by Crick and 
Watson (Roller, 1974; Watson, & Crick, 1953). Besides, the living substance is traditionally compared to 
crystals to reveal similarities and differences between them. For example, Sсhrodinger (1955) considered 
the living substance as an aperiodic crystal. But all crystallography is based on principles of symmetry; 
crystallography has given a powerful impulse to development and application of methods of symmetry 
in mathematical natural sciences including mathematical biology. New discoveries in crystallography 
frequently generate new hypotheses and discussions about the role of symmetry in crystals and living 
substance. As an example, the discovery of quasi-crystalls (Shechtman, Blech, Gratias & Cahn, 1984), 
which are connected with mosaics by R. Penrose (1989, 2004), with pentagrams (the penta-symmetry) 
and the golden section, can serve as the example here. This discovery has drawn the attention of research-
ers again to 5-symmetries, which exist in biological bodies widely (colors, starfishes and so forth) and 
which are forbidden in classical crystallography.

The development of biological knowledge is accompanied by opening new facts of subordination 
of very different biological objects to principles of symmetry on very different levels of their organiza-
tion. Many biological concepts, which have been affirmed in the science or which sometimes cause 
sharp discussions, are connected with a question about biological symmetries to some extent: the law 
of homologous series (Vavilov, 1922); theories of morphogenetic fields; the hypothesis by Vernadsky 
(1965) about non-Euclidean geometry of living matter; conceptions about morphogenetic conditional-
ity of many psychological phenomena including the phenomenon of aesthetic preference of the golden 
section, which is connected with Fibonacci numbers and morphogenetic laws of phyllotaxis (see review 
about phyllotaxis in the books (Jean, 1994; Jean & Barabe, 2001)), etc.

Molecular biology has discovered the existence of fundamental problems of symmetry and of the left-
right dissymmetry on the level of biological molecules. On the other hand the development of the theory 
of symmetry has put forward questions about new kinds of symmetry, for example, of non-Euclidean 
symmetries in biological bodies (see reviews in (Petoukhov, 1981, 1989)). Modeling the biological 
phenomena on the basis of modern theories of nonlinear dynamics brings into the biological models the 
highest symmetries, which were known before in the fields of mathematics and physics. For example, the 
solitonic model of the macrobiological phenomena involve symmetries of Lorentz transformations from 
the special theory of relativity (Petoukhov, 1999a). It is no doubt that principles of symmetry were, are 
and will be the major component of development of biology. We think that they will play the increasing 
role in theoretical biology because of their status as one of the fundamentals of modern mathematical 
natural sciences on the whole (Bernal, Hamilton & Ricci, 1972; Birss, 1964; Darvas, 2007; Gardner, 
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1991; Hahn, 1989, 1998; Hargittai, 1986, 1989; Hargittai & Hargittai, 1994; Kappraff. 2002; Leyton, 
1992; Loeb, 1971, 1993; Mandelbrot, 1983; Mainzer, 1988; Miller, 1972; Moller & Swaddle, 1997; 
Ne’eman, 1999, 2000; Ne’eman & Kirsh, 1986; Petoukhov, 1981; Rosen, 1983, 1992, 1995; Shubnikov 
& Koptsik, 1974; Stewart & Golubitsky, 1992; Weyl, 1931, 1946, 1952; Wigner, 1965, 1967, 1970; etc.). 
Such fundamental status of principles of symmetry is connected with the famous Erlangen program by 
F.Klein and with the process of geometrization of physics (Lochak, 1994; Weyl, 1952). This process 
of geometrization has led to interpretation of many basic theories of physics as theories of symmetry: 
special theory of relativity, quantum mechanics, theory of conservation laws, theories of elementary 
particles and some other parts of modern physics are such examples.

Investigations of symmetries are the most relevant in that case, when science doesn’t know how 
to create a theory of a concrete natural system. Biological organisms belong to a category of the very 
complex natural systems. The variety of organisms is very numerous. Their sorts differ each from other 
vastly by many aspects: by their sizes, appearances, kinds of motions, etc. But to humanity’s surprise, 
molecular genetics has discovered that, from a molecular-genetic viewpoint, all organisms are equivalent 
to each other by their basic genetic structures. Due to this revolutionary discovers, a great unification 
of all biological organisms was happened in the science, and information-genetic line of investigations 
became one of the most perspective lines not only in biology, but also in the science as a whole. A basic 
system of genetic coding has been happened strikingly simple. Its simplicities and its orderliness throw 
down a challenge to specialists from many scientific fields, including specialists in a theory of symmetry 
and of anti-symmetry.

It should be noted that fantastic successes of molecular genetics were defined in particular by a 
disclosure of phenomenological facts of symmetry in molecular constructions of genetic code and by 
use of these facts in theoretical modeling. A bright example is a disclosure of a symmetrological fact, 
reflected in the famous rule by Chargaff, of an equality of quantities of nitrogenous bases in their ap-
propriate pairs (adenine-thymine and cytosine-guanine) in molecules of DNA in different organisms. 
This phenomenological rule was used skillfully in a theoretic modeling of the double helix of DNA by 
Crick and Watson using additional symmetrological principles (Roller, 1974). Many specialists from 
many countries around the world work in this very attractive field of investigation of symmetries in the 
genetic code and bioinformatics now (Arques & Michel, 1994, 1996, 1994; Bakhtiarov, 2001; Bashfold, 
Tsohantjis, & Yarvis, 1997; Chernavskiy, 2000; Chi Ming Yang, 2001; Dragovich & Dragovich, 2007; 
Forger, Hornos, & Hornos, 1997, 1999; Frank-Kamenetskiy, 1988; Frappat, Sciarrino, & Sorba, 1998; 
Hargittai, 2001; He, 2001; He, Narasimhan & Petoukhov, 2005; He & Petoukhov, 2007; He, Petoukhov 
& Ricci, 2004; Jimenes-Montano, 2005; Karasev, 2003; Karasev, Luchinin, Stefanov, 2005; Kargupta, 
2001; Khrennikov & Kozyrev, 2007; Konopelchenko & Rumer, 1975; MacDonaill, 2003, 2005; Mak-
ovskiy, 1992; Marcus, 2001, 2007; Negadi, 2005, 2006; Petoukhov, 2001-2008; Ratner, 2002; Rumer, 
1968, 1975; Shcherbak, 1988; Stambuk, 1999; Stambuk, Konyevoda & Gotovac, 2005; Szabo & He, 
2006; Szabo, He, Burnham & Jurani, 2005; Waterman, 1999; Yang, 2005; etc.).

From an information-theoretic viewpoint, biological organisms are informational essences. They 
obtain genetic information from their ancestors and transmit it to descendants. In the biological litera-
ture it is possible quite often to meet the statement that living organisms are the texts since a molecular 
level of their organization. Just from the information-hereditary point of view all living organisms are 
unified wonderfully: all of them have identical bases of system of genetic coding. A conception of in-
formational nature of living organisms is reflected in the words: “If you want to understand life, don’t 
think about vibrant, throbbing gels and oozes, and think about information technology” (Dawkins, 
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1991). Or another citation, which presents a similar direction of thoughts: ‘Notions of ‘information’ or 
‘valuable information’ are not utilized in physics of non-biological nature because they are not needed 
there. On the contrary, in biology notions ‘information’ and especially ‘valuable information’ are main 
ones; understanding and description of phenomena in biological nature are impossible without these 
notions. A specificity of ‘living substance’ lies in these notions” (Chernavskiy, 2000).

Due to revealing the genetic code, the theoretical problem of “bio-information evolution” has arisen. 
This problem exists alongside with ideas about chemical evolution and is very significant for under-
standing biological life.

Informatics began to be used in concepts of an origin of a life and in theoretical biology in the last 
decades only. And now the modern science hopes to receive deeper and adequate understanding of life 
and its origin from positions of bioinformatics. In our opinion, modern investigations in the field of 
bioinformatics form the foundation of the future theoretical biology. Therefore the problem of maximal 
union of molecular-genetic knowledge with the mathematics of the theory of discrete signals processing 
is especially appropriate.

Bioinformatics can give deeper knowledge to the questions of what is life and why life exists. An 
investigation of symmetrical and structural analogies between computer informatics and genetic infor-
matics is one of the important tasks of modern science in connection with a creation of DNA-computers 
and with development of bioinformatics. The development of bioinformatics and its applications requires 
appropriate mathematical models of structural ensembles of genetic elements. The methods of symmetry 
can be useful to create such model. This book demonstrates the usefulness of the methods of symmetry 
to study the genetic code and to develop effective matrix approaches in the field of genetic coding.

One should note that many attempts at construction of mathematical models or biochemical explana-
tions of separate features of the genetic code are known. One of the most historically famous attempts of 
answering the question about 20 amino acids was made by G. Gamov more than 50 years ago (Gamov, 
1954; Gamov & Metropolis, 1954). He supposed the explanation of the morphological character, that 
this quantity of amino acids is defined by the molecular configuration of the double helix of DNA, which 
possesses the appropriate quantity of hollows along the double helix. A few initial attempts of explana-
tion of features of the genetic code are presented in books (Ycas, 1969; Stent, 1971).

Some mathematical and other approaches to the genetic code were proposed in the works (Chi Ming 
Yang, 2001; Eingorin, 2001, 2003, 2006; Dragovich & Dragovich, 2007; He, 2001; Jimenes-Montano, 
2005; Karasev, 2003; Khrennikov & Kozyrev, 2007; Konopelchenko & Rumer, 1975; Laubenbacher & 
Sturmfels, 2008; MacDonaill, 2003, 2005; Negadi, 2005, 2006; Petoukhov, 2001-2008; Ratner, 2002; 
Sanchez & Grau, 2008; Shcherbak, 1988; Stambuk, 1999; Waterman, 1999; Yang, 2005; etc.). Each of 
these attempts was important for the general advancement of a science to cognition of a genetic code. 
These works were very useful because they have shown the specificity of the genetic code and its dif-
ferences from many other natural systems; difficulties of modeling its features for receiving a fruitful 
model; a multiplicity of approaches in attempts of such modeling; an importance of the decision of this 
task, etc. These works have drawn the attention of many young talented researchers to this fundamental 
problem. In spite of many interesting publications, the general situation of understanding the genetic 
code is characterized by the following words, which were cited already in the preface of this book in 
more detail: “What do we have now in the 10 million nucleotide of sequence data determined to date? 
… We have the program that runs the cellular machinery, but we know very little about how to read it. 
Bench biologists, by experiment and by close association with the data, have found meaningful patterns. 
Theoreticians, by careful reasoning and use of collections of data, have found others, but we still under-



6

Genetic Code

stand frustratingly little” (Fickett & Burks, 1989). So, new efforts should be made to study structural 
organization of the genetic code from the viewpoint of informatics and mathematical natural sciences.

INFORmATION SCIENCE, THE NOISE-ImmUNITy AND THE 
mATRIX AppROACH TO THE GENETIC CODE

Mechanisms of genetic coding provide the high noise-immunity of transfer of the hereditary information 
from one generation to next generation, despite a set of disturbances and noise, which exist in biologi-
cal environments. From the very beginning of discovery of the genetic code, scientists thought that 
structures of the genetic code are connected with the noise-immunity (noise-proof features) of genetic 
systems (see review in (Ycas, 1969)). However, speaking about the noise-immunity of the genetic cod-
ing, speakers are usually limited to reference the fact of high degeneracy of the genetic code, which is 
capable to reduce a quantity of lethal mutations.

But modern works exist already, which suppose that an influence of the requirement of the noise-
immunity on structures of the genetic code is much deeper. The given area of researches uses achievements 
of the mathematical theory of the noise-immunity coding, which are applied in the technique of digital 
communication, in attempts to understand phenomena of bioinformatics. In this area the suppositional 
influence of the noise-immunity can be studied by different methods and on different directions of 
thoughts (see, for example, (MacDonaill, 2003)). Our own researches presented in this book, which are 
based on the idea of deep connection between structures of the genetic code and the requirement of the 
noise-immunity of the genetic information, are original in research methods and revealed new facts.

Let us discuss the noise-immunity property of genetic system more attentively. It seems to be fan-
tastic, but descendants grow similar to the ancestors due to the genetic information despite of enormous 
disturbances and noise in a billon of trillions of biological molecules. How is it possible to approach 
this problem about such fantastic noise-immunity in molecular genetics? Does modern science have any 
precedents of the decision of similar problems of the noise-immunity?

Yes, science has successfully decided the similar fantastic task recently: the noise-immunity transfer 
of photos from surfaces of other planets to the Earth. In this task electromagnetic signals, which carry 
data, should pass through millions kilometers of cosmic space of electromagnetic disturbances. These 
disturbances transform signals monstrously, but the modern mathematical technology permits to restore 
a transferred photo qualitatively.

The completion of this task became possible due to the theory of noise-immunity coding created by 
mathematicians. This theory of noise-immunity coding has appeared rather recently, initial basic work 
in this field was published by Hamming in 1950 (Hamming, 1980). The theory of such a coding utilizes 
intensively matrix mathematics including the representation of sets of signals and codes in a form of ma-
trices and their Kronecker powers. Our book describes many interesting results in the field of molecular 
genetics and bioinformatics, which were obtained by authors on the basis of matrix mathematics. The 
investigation of the genetic code from the viewpoint of the theory of discrete signals is a natural way 
because of the discrete character of the genetic code.

One can note that coding in modern digital technique is usually utilized not for providing a difficulty 
of reading the text by the undesirable reader but for providing a technical opportunity of transfer of 
the discrete information with high noise-immunity, speed and reliability. The most famous example of 
codes is the Morse code. Of course, the modern codes are much more effective, than the Morse code. 
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These codes allow transferring the copious information through huge distances qualitatively. Orthogonal 
codes, which use Hadamard matrices, belong to the set of such codes (Ahmed & Rao, 1975; Blahut, 
1985; Geadah & Corinthios, 1977; Lee & Kaveh, 1986; Peterson & Weldon, 1972; Petoukhov, 2008a, 
2008b); Sklar, 2001; Trahtman, 1972; Trahtman, & Trahtman, 1975; Yarlagadda & Hershey, 1997). 
Any transmitted signal consists of a set of elementary signals (a component of a signal vector of an ap-
propriate dimension). The task of the receiver in conditions of noise is the approximate definition of a 
concrete vector-signal, which has been sent from a known set of vector-signals (Sklar, 2001). Applica-
tion of Hadamard matrices allows solving similar problems by means of a spectral decomposition of 
vector-signals and by means of a transfer of their spectra, on the basis of which the receiver restores an 
initial signal. This decomposition utilizes orthogonal functions of rows of Hadamard matrices (Ahmed 
& Rao, 1975).

One should emphasize the important circumstance: unlike digital technique, biological organisms 
solve the task not only to provide the noise-immunity simply, but to provide it in such a kind, which is 
suitable for transfer of this property of the noise-immunity along a chain of biological generations.

This book pays significant attention to the matrix approach to the genetic code, which has formed 
the special investigation field of matrix genetics. Investigations in this field reveal an important role 
of symmetries in structural organization of molecular ensembles of the genetic code. But why have we 
chosen the matrix approach to study the genetic system among many other possible approaches?

The six main reasons exist to explain this matrix choice to study the genetic code and to develop 
matrix genetics:

1.  Information is usually stored in computers in the form of matrices;
2.  Noise-immunity codes are constructed on the basis of matrices;
3.  quantum mechanics utilizes matrix operators, connections with which can be detected in matrix 

forms of presentation of the genetic code; a significance of matrix approach is emphasized by the 
fact that quantum mechanics has arisen in a form of matrix mechanics by W. Heisenberg;

4.  complex and hypercomplex numbers, which are utilized in physics and mathematics, possess 
matrix forms of their presentation. The notion of number is the main notion of mathematics and 
mathematical natural sciences. In view of this, investigation of a possible connection of the genetic 
code with multi-dimensional numbers in their matrix presentations can lead to very significant 
results.

5.  Matrix analysis is one of the main investigation tools in mathematical natural sciences. Study of 
possible analogies between matrices, which are specific for the genetic code, and famous matrices 
from other branches of sciences can be heuristic and useful.

6.  Matrices, which are a kind of union of many components in a single whole, are subordinated to 
certain mathematical operations, which determine substantial connections between collectives of 
many components; this kind of connections can be essential for collectives of genetic elements of 
different levels as well.

Matrix genetics studies matrix forms of presentation of the genetic code systems including genetic 
alphabets and sets of genetic multiplets. It studies also those phenomenological peculiarities of genetic 
systems which are reflected in these forms. The task of these researches consists in deeper understand-
ing of genetic systems and inherited biological phenomena from a viewpoint of information technology 
and mathematical sciences.
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The early work (Konopelchenko & Rumer, 1975a, 1975d) published in the most prestigious scientific 
journal of the USSR and in a form of the preprint in English may be considered as the pioneer work in 
the field of matrix genetics. This work presented the 4-letter genetic alphabet C, A, G, U/T in a form 
of a (2x2)-matrix and considered the second Kronecker power of this alphabetic matrix which gener-
ated a (4x4)-matrix of 16 genetic duplets for investigation of symmetrical and other properties of these 
genetic components.

Here we briefly note that G. Rumer was the main co-author of this pioneer article and he was a 
prominent Russian scientist in the field of theory of symmetry. WIth a personal recommendation by A. 
Einstein and P. Ehrenfest, he received a Lorentz’s grant and worked as an assistant of M. Born in Got-
tingen in the period of 1929-1932. In the co-authorship with H.Weyl, V. Heitler and E. Teller, Rumer has 
created the basis of quantum chemistry. He knew 12 foreign languages. With another recommendation 
by A. Einstein, P. Ehrenfest, M. Born and E. Schrodinger, Rumer returned to Moscow from Gottingen 
in 1932 and became a professor of the Moscow State University. He is the author of a few famous books 
on problems of group theory and theoretical physics (Rumer, 1936, 1956; Rumer & Fet, 1970, 1977; 
Rumer & Ryvkin, 1972, etc.). One of his books about the relativity theory in the co-authorship with Nobel 
Prize winner in physics L. Landau was published in more than 20 languages around the world (Landau 
& Rumer, 2003). Rumer believed that properties of symmetry play an essential role in phenomenology 
of the genetic code. His works (Rumer, 1966, 1968; Konopelchenko & Rumer, 1975a, 1975d) on clas-
sification of codons in the genetic code, based on the principles of symmetry and linguistic reasons, have 
obtained a benevolent response by F. Crick. His other important works include a correlation between the 
structure of amino acids and the degeneracy of the genetic code (Konopelchenko & Rumer, 1975b), the 
wobble hypothesis by Crick in connection with the sequence of nucleotides (Konopelchenko & Rumer, 
1975c), and regularities in codons (Volkenstein, & Rumer, 1966). Rumer’s works have resulted in many 
responses all over the world. More information about Rumer and his works are presented in the article 
(Ginzburg, Mihailov & Pokrovskiy, 2001).

THE BASIC STRUCTURES OF THE GENETIC CODE

Due to wonderful works of many researches, the modern science knows basic phenomenological data 
about molecular structures of the genetic code including the four-letter genetic alphabet, 64 triplets, 
20 amino acids, etc. History of molecular genetics knows attempts to understand and explain these 
phenomenological data from various viewpoints. For example, one can mention the famous hypothesis 
by G. Gamov (Ycas, 1969) about the reason for the existence of 20 amino acids. By this hypothesis, 
this reason is in the special configuration of DNA molecule. Some other hypothesis, which have only 
historical meanings also now, are considered in many text-books and historical reviews in the field of 
molecular genetics (Cantor & Schimmel, 1980; Chapevillle & Haenni, 1974; Karasev, 2003; Ratner, 
2002; Roller,1974; Shults & Schirmer, 1979; Watson, 1968; Stent, 1971; Ycas, 1969; etc.).

All living organisms are unified wonderfully: all of them have identical molecular bases of the system 
of genetic coding. These bases are amazingly simple. For realization of the genetic messages, which 
encode sequences of amino acids in proteins, all kinds of organisms utilize in their molecules of hered-
ity DNA (and RNA – ribonucleic acid) the “alphabet” consisting of only four “letters” or nitrogenous 
bases: adenine (A), cytosine (C), guanine (G), thymine (T) {or uracil (U) in RNA} (Figure 1). Linear 
sequences of these four letters on strings of molecules of heredity (DNA and RNA) contain the genetic 
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information for protein synthesis in all living bodies - from bacteria up to a whale or from a worm up 
to a bird and even a human. One can hear sometimes the figurative expression that the encyclopedia of 
life is written by four letters.

The given set of the four letters is usually considered as the elementary alphabet of a genetic code. 
These letters form the complementary pairs C-G and A-U (or A-T), because they stand opposite each 
other in molecules of heredity. The complementary letters C and G are connected by three hydrogen 
bonds; the complementary letters A and U (or A and T) are connected by two hydrogen bonds.

Genetic information, which is transferred by molecules of heredity, defines the primary structure of 
proteins of biological organisms. Each coded protein exists in the form of a chain of 20 kinds of amino 
acids. A sequence of amino acids in protein chain is defined by an appropriate sequence of genetic trip-
lets. A triplet (or a codon) is a block of three neighbor nitrogenous bases, which are disposed along a 
filament of DNA or RNA. A sequence of amino acids in any protein is coded by an appropriate sequence 
of triplets (such sequence of “n” triplets is named “3n-multiplet” briefly).

The general quantity of kinds of triplets, which can be constructed from the four-letter alphabet, is 
equal to 43 = 64. Each triplet has its code meaning: it encodes one of 20 kinds of amino acids or plays 
a role of a stop-signal or a start-signal for a process of a protein synthesis. Each codon has its anti-
codon, which consists of the appropriate complementary letters: for example, the triplet CUG has the 
anti-codon GAC.

Figure 1. The complementary pairs of the four nitrogenous bases in DNA. A-T (adenine and thymine), 
C-G (cytosine and guanine). Hydrogen bonds in these pairs are shown by dotted lines. Black circles 
are atoms of carbon; small white circles are atoms of hydrogen; squares with the letter N are atoms of 
nitrogen; triangles with the letter O are atoms of oxygen. Amides (or amino-groups) NH2 are marked 
by big circles
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The genetic code is named “the degeneracy code” because its 64 triplets encode 20 amino acids 
and different amino acids are encoded by different quantities of triplets. Hypotheses about a connec-
tion between this degeneracy and the noise-immunity of the genetic information exist since time of the 
discovery of the genetic code. Symmetries in the structures of degeneracy of the genetic code are one 
of the main objects of investigation in our book. Many dialects of the genetic code exist in biological 
organisms and their subsystems, which differ each from other by some differences in correspondences 
between triplets and objects encoded by them (see details in the NCBI’s site: http://www.ncbi.nlm.nih.
gov/Taxonomy/Utils/wprintgc.cgi).

Proteins are the main dense component of biological organisms. Many thousands kinds of proteins 
exist. Each of them possesses its own individual function. In particular, all biological ferments, which 
provide phenomenal speeds of many biochemical reactions in organisms, are proteins. The whole har-
monic system of metabolism depends on proteins. All amino acids in proteins are connected by the same 
type of chemical bond, which is named peptide bond.

The correspondence between triplets and objects encoded by them is usually illustrated by the table 
of the size (4x16), which was proposed by F. Crick half a century ago and which is reproduced in many 
textbooks and historical reviews in the field of molecular genetics (Cantor & Schimmel, 1980; Frank-
Kamenetskiy, 1988; Roller, 1974; Stent, 1971; Watson, 1968; etc.). Each of its 64 tabular cells contains 
one triplet and an appropriate object (an amino acid or stop-codon) encoded by this triplet. However 
nobody insisted that possibilities of analytical and heuristic representation of systems of elements of the 
genetic code in tabular forms are exhausted by this table. Let us list the 20 amino acids, which are encoded 
genetically, and their traditional abbreviations, which are used in our book: Ala – alanine, Arg – argin-
ine, Asn – asparagines, Asp - aspartic, Cys – cysteine, Gln - glutamine, Glu – glutamic, Gly – glycine, 
His – histidine, Ile - isoleucine, Leu – leucine, Lys – lysine, Met – methionine, Phe – phenylalanine, 
Pro – proline, Ser – serine, Thr – threonine, Trp – tryptophan, Tyr – tyrosine, Val – valine.

Modern science does not know why the alphabet of genetic language has four letters (it could have 
any other number of letters in principle)? And why just these four nitrogenous bases are chosen by 
nature as elements of the genetic alphabet from billions possible chemical compounds? And why the 
quantity of amino acids encoded by the triplets is equal to 20? In our opinion, this choice has a deep 
sense. Investigations of symmetries in structures of the genetic code can help to answer these and other 
important questions.

The problem of the heritable noise-immunity is the general one for all multi-channel systems of 
informatics of each organism. Many applied tasks of nanotechnology and biotechnology are connected 
with ensembles of genetic molecules: for example, the task of creation of DNA-computers and DNA-
robotics exists (Paun, Rozenberg & Salomaa, 2006; Seeman, 2004; Shapiro & Benenson, 2006). It is 
necessary to study those peculiarities of ensembles of genetic molecules, which possess formal analogies 
with formalisms of digital informatics and its matrix mathematics.

One may ask whether these mathematical methods allow one to numerate each genetic multiplet 
in binary manner taking into account the natural characteristics of genetic letters A, C, G, U/T?. The 
main thrust of the present chapter is to consider an effective transfer of the named methods into the 
field of molecular genetics. Some initial constructions of matrix genetics with elements of symmetry 
are introduced below.
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THE BINARy SUB-ALpHABETS OF THE GENETIC ALpHABET 
FOR NUmBERING THE mULTIpLETS IN GENETIC mATRICES

Is it possible to propose a matrix approach to represent all sets of genetic multiplets in the well-ordered 
general form and with an individual binary number for each multiplet on the basis of molecular features of 
the four letters A, C, G, U/T of the genetic alphabet? Will such general form be connected with important 
principles and methods of computer informatics and of the noise-immunity in digital technique?

Positive answers to these questions will be useful to analyze structural properties and symmetries of 
the genetic system and to reveal analogies between principles of the genetic code and computer infor-
matics for many theoretic and applied tasks.

To get such positive answers, we will demonstrate, first of all, that symmetries in molecular charac-
teristics of the genetic alphabet provide the existence of its binary sub-alphabets. The four letters (or the 
four nitrogenous bases) of the genetic alphabet represent specific poly-nuclear constructions with the 
special biochemical properties. The set of these four constructions is not absolutely heterogeneous, but 
it bears the substantial symmetric system of distinctive-uniting attributes (or, more precisely, pairs of 
“attribute-antiattribute”). This system of pairs of opposite attributes divides the genetic four-letter alpha-
bet into various three pairs of letters by all three possible ways; letters of each such pair are equivalent 
to each other in accordance with one of these attributes or with its absence.

Really, the system of such attributes divides the genetic four-letter alphabet into various three pairs 
of letters, which are equivalent from a viewpoint of one of these attributes or its absence: 1) С = U & 
A = G (according to the binary-opposite attributes: “pyrimidine” or “non-pyrimidine”, that is purine); 
2) А = С & G = U (according to the attributes: amino-mutating or non-amino-mutating under action of 
nitrous acid HNO2 (Wittmann, 1961; Ycas, 1969); the same division is given by the attributes “keto” 
or “amino” (Waterman, 1999); 3) С = G & А = U (according to the attributes: three or two hydrogen 
bonds are materialized in these complementary pairs). The possibility of such division of the genetic 
alphabet into three binary sub-alphabets is known from the book (Waterman, 1999). We will utilize 
these known sub-alphabets by means of a new method in the field of matrix genetics. We will attach 
appropriate binary symbols “0” or “1” to each of the genetic letters based on these sub-alphabets. Then 
we will use these binary symbols for binary numbering the columns and the rows of the genetic matrices 
of the Kronecker family.

Let us mark these three kinds of binary-opposite attributes by numbers N = 1, 2, 3 and ascribe to each 
of the four genetic letters the symbol “0N” (the symbol “1N”) in case of presence (of absence correspond-
ingly) of the attribute under number “N” to this letter. As a result we obtain the following representation 
of the genetic four-letter alphabet in the system of its three “binary sub-alphabets corresponding to at-
tributes” (Figure 2).

The table on Figure 2 shows that, on the basis of each kind of the attributes, each of the letters A, C, 
G, U/T possesses three “faces” or meanings in the three binary sub-alphabets. On the basis of each kind 
of the attributes, the genetic four-letter alphabet is curtailed into the two-letter alphabet. For example, 
on the basis of the first kind of binary-opposite attributes we have (instead of the four-letter alphabet) 
the alphabet from two letters 01 and 11, which one can name “the binary sub-alphabet to the first kind 
of the binary attributes”.

Accordingly, any genetic message as a sequence of the four letters C, A, G, U consists of three parallel 
and various binary texts or three different sequences of zero and unit (such binary sequences are used 
at storage and transfer of the information in computers). Each from these parallel binary texts, based on 
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objective biochemical attributes, can provide its own genetic function in organisms. According to our 
data, the genetic system uses the possibility to read triplets from the viewpoint of different binary sub-
alphabets: this possibility participates in the construction of the genetic octet Yin-Yang-algebra (or the 
octet bipolar algebra), which serves as the algebraic model of the genetic code in Chapter 7.

NATURAL SySTEm OF NUmBERING THE GENETIC mULTIpLETS

Genetic information is transferred by means of discrete elements: 4 letters of genetic alphabet, 64 amino 
acids, etc. General theory of processing of discrete signals utilizes encoding the signals by means of 
special mathematical matrices and spectral representation of signals with the main aim to increase the 
reliability and efficiency of information transfer (Ahmed & Rao, 1975; Sklar, 2001; etc). A typical ex-
ample of such matrices with appropriate properties is the Kronecker family of Hadamard matrices in 
the equation (1).

Hn+1 = [1 1; -1 1](n)  (1)

where (n) means the integer Kronecker power. The mathematical peculiarities of Kronecker product 
are described below.

Figure 2. Three binary sub-alphabets according to three kinds of binary-opposite attributes in a set of 
nitrogenous bases C, A, G, U. The scheme on the right side explains graphically the symmetric relations 
of equivalence between the pairs of letters from the viewpoint of the separate attributes 1, 2, 3
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The Kronecker product is an operation on two matrices of arbitrary size resulting in a block matrix. 
The Kronecker product should not be confused with usual matrix multiplication, which is an entirely 
different operation. It is named after German mathematician Leopold Kronecker. If one has two square 
matrices А = || αij || and В = || βkp ||, where i, j = 1,…, m and k, p = 1,…, n, then a square block matrix

С = А⊗В = ||αij*βkp|| 

is called the Kronecker product of the matrices A and B.
The Kronecker product of matrices arises in a natural way in a problem of searching a matrix. The 

eigenvalues of matrix А⊗В are equal to a product of аi*bj, where аi and bj are eigenvalues of the matrices 
A and B. It was proved that the Kronecker product of matrices A and B possesses such eigenvalues (Bell-
man, 1960). The Kronecker product is connected with fractal structures; these questions are described 
in the book (Gazale, 1999).

The simplest Hadamard matrix H2 = [1 1; -1 1] is named the kernel of this Kronecker family. Rows 
of Hadamard matrices form an orthogonal system of Hadamard-Walsh functions, which is used for a 
spectral presentation and transfer of discrete signals (Ahmed & Rao, 1975; Yarlagadda & Hershey, 1997). 
Quantum computers use normalized Hadamard matrixes in a role of logic gates in connection with the 
important role of these matrixes in the quantum mechanics (Nielsen & Chuang, 2001). Chapter 6 describes 
deep connections between Hadamard matrices and ensembles of elements of the genetic code.

On the basis of the idea about a possible analogy between discrete signals processing in computers 
and in a genetic code system, one can present the genetic 4-letter alphabet in the following matrix form 
P = [C A; U G]. It is obvious, that this form possesses the analogy with the kernel (equation (1)) of the 
Kronecker family of Hadamard matrices. Then the Kronecker family of matrices with such alphabetical 
kernel can be considered:

P(n) = [C A; U G](n) (2)

where (n) means the integer Kronecker power. Figure 3 shows the first matrices of such a family. One can 
see on this figure that each matrix contains all genetic multiplets of equal length: [C A; U G](1) contains 
all 4 monoplets; [C A; U G](2) contains all 16 duplets; [C A; U G](3) contains all 64 triplets, etc. It should 
be emphasized that this book pays great attention to the genetic alphabet: we will consider the alphabetic 
matrices [C A; U G](n) from different viewpoint permanently and we will construct algorithms of matrix 
transformations on the basis of features of the alphabetic letters A, C, G, U/T. The genetic alphabet serves 
as the key structure to investigate system properties of the genetic code and its dialects.

Such presentation of ensembles of elements of the genetic code in the form of Kronecker families 
of genetic matrices (or “genomatrices” briefly) has appeared as a useful tool to investigate structures 
of the genetic code from the viewpoint of their analogy with the theory of discrete signals processing 
and noise-immunity coding. The scientific direction, which deals with such matrix presentation of the 
ensembles of genetic elements and their parameters, is named “matrix genetics’ briefly. The results of 
matrix genetics reveal hidden interconnections, symmetries and evolutionary invariants in genetic code 
systems (He, 2001; He & Petoukhov, 2007; He, Petoukhov & Ricci, 2004; Petoukhov, 1999b, 2001, 
2003-2008). Simultaneously they show that genetic molecules are the important part of a specific main-
tenance of the noise-immunity and efficiency of a discrete information transfer.
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The matrix P(1) is the simplest representative (specimen) of a set of biperiodic matrices (or tables) of 
the genetic code system. It has a vertical periodicity of the matrix elements from the viewpoint of the 
binary sub-alphabet № 1 and it has a horizontal periodicity of the matrix elements from the viewpoint 
of the binary sub-alphabet № 2. It can be checked easily that all matrices P(n) are biperiodic matrices. 

Figure 3. The first genetic matrices of the Kronecker family P(n)=[C A; U G](n) with the binary numbering 
their columns and rows on the base of the binary sub-alphabets № 1 and № 2 fromFigure 2. The lower 
matrix is the genomatrix P(3)=[C A; U G](3). Each matrix cell contains a symbol of a multiplet, a binary 
number of this multiplet and its expression in decimal notation. Decimal numbers of columns, rows and 
multiplets are written in brackets



15

Genetic Code

Actually any column of such a matrix consists of only the n-plets which are equivalent to each other 
from the viewpoint of binary sub-alphabet № 1. And any row of a matrix P(n) consists of those n-plets 
only, which are equivalent to each other from the viewpoint of binary sub-alphabet № 2.

The Kronecker family of genetic matrices [C A; U G](n) (Figure 3) represents all genetic multiplets, if 
the value of “n” is big enough. This family includes the genomatrix of the genetic alphabet; the genomatrix 
of triplets, which encode the amino acids; the genomatrices of long multiplets, which encode proteins. 
All this natural set of genetic multiplets, which have various coding functions in the genetic system, 
appears coordinated with this simple Kronecker family of matrices [C A; U G](n) (Figure 3).

Each genetic multiplet has its own individual binary number in the described natural system of 
numbering the multiplets. This multiplet also has its own disposition in the appropriate genetic matrix 
of the Kronecker family. It is obvious that a length of the individual binary number for a n-plet, which 
contains “n” letters, is equal to 2n: the first half of this number is the interpretation of letters of the 
multiplet from the viewpoint of the second binary sub-alphabet (Figure 2) and the second part is the 
interpretation from the viewpoint of the first binary sub-alphabet. For example, the sequence GACUU-
CACGGUG, which contains 9 letters, has the individual binary number with 9x2=18 binary symbols: 
100110001111/110000101101. If one should construct the catalog of genetic sequences of various 
lengths and composition, it can be done on the basis of the described natural system of numbering the 
sequences as multiplets.

All n-plets, which are begun with one of the four letters C, A, U, G, are disposed in one of the four 
quadrants of an appropriate genomatrix [C A; U G](n) because of the specifics of Kronecker multiplica-
tion. If one does not pay attention to this first letter in n-plets of each matrix quadrant, then one can see 
that each quadrant reproduces a previous matrix [C A; U G](n-1) of this Kronecker family. Figuratively 
each genomatrix of such family possesses information (or “memory”) about all previous genomatrices 
of this family.

It should be noted that each column of the formal constructed genomatrix [C A; U G](3) (Figure 3) 
is corresponded to one of the 8 classical octets by Wittmann (1961), which are famous in the history of 
molecular genetics and reflect real biochemical properties of elements of the genetic code (Ycas, 1969). 
This fact is the first indirect confirmation of adequacy of the given matrix approach, which reflects a 
natural orderliness inside of the genetic system.

Let us demonstrate now that all 64 triplets can be binary numerated in a natural manner by means 
of the binary sub-alphabets (Figure 2), which are based on the real structural and biochemical features 
of the genetic molecules. As the result of such a natural numbering, all triplets appear disposed in the 
genomatrix [C A; U G](3) in the monotonous order on increase of their binary numbers.

Really, all columns and rows of the matrices on Figure 3 are binary numerated by the following al-
gorithm. Their numbers are formed automatically if one interprets multiplets of each column from the 
viewpoint of the first binary sub-alphabet (Figure 2) and if one interprets multiplets of each row from the 
viewpoint of the second binary sub-alphabet. For example, from the viewpoint of the first sub-alphabet, 
the triplet CAU possesses the binary number 010 (all triplets of the same column possess the same 
binary number, which is utilized as the general number of this column correspondingly). But from the 
viewpoint of the second sub-alphabet, the triplet CAU possesses the binary number 001 (all triplets of 
the same row possess the same binary number, which is utilized as the general number of this row). One 
can see on Figure 3, that all columns and all rows in the genomatrix [C A; U G](3) appear renumbered 
and disposed in an monotonic order.
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In the genomatrix [C A; U G](3), each of 64 triplets has its own individual number, which consists of 
association of binary numbers of its row and column (for example, triplet CAU has the binary number 
001010, which is equal to 10 in decimal notation). This genomatrix reflects real interrelations of ele-
ments in the set of triplets: any codon and its anti-codon are disposed in inversion-symmetrical manner 
relative to the centre of the genomatrix (Figure 3).

And each pair “codon-anticodon” (and only such pair) has the sum of their decimal numbers, which 
is to equal 63 (in binary notation it is equal to 111111). For example, the triplet CAU has the decimal 
number 10 and the complementary triplet GUA has the decimal number 53; the sum of these numbers 
is equal to 63. Each sequence of triplets can be presented in the genomatrix [C A; U G](3) in a form of 
an appropriate trajectory passing through matrix cells with these triplets in series. It is obvious that the 
complementary sequences on the two filaments of the double helix of DNA correspond to two appropri-
ate trajectories in the genomatrix [C A; U G](3), which are inversion-symmetrical to each other relative 
to its centre.

In the case of a conservation in each cell of the genomatrix [C A; U G](3) (Figure 3) with binary six-
digit numbers of these 64 triplets, this genomatrix coincides with the famous table of 64 hexagrams in 
Fu-Xi’s order from the ancient Chinese “The Book of Changes” (“I Ching”), which was written a few 
thousand years ago (see Chapter 12). This matrix has amazed the creator of a computer G. Leibnitz 
(1646-1716 years). He considered himself as a creator of the system of binary notation, but in one mo-
ment he suddenly found out ancient predecessors relative to this system. Leibnitz has seen in features 
of the given ancient table of 64 hexagrams many features of similarity to his ideas of binary systems 
and universal language. “Leibnitz has seen in this similarity … the evidence of the preestablished har-
mony and unity of the divine plan for all times and people” (Schutskiy, 1997, p. 12). Modern physics 
and other branches of science pay attention to “I Ching” and other ancient Oriental teachings also (see, 
for example, (Capra, 2000; Gell-Mann & Ne’eman, 2000). A possible connection between the genetic 
code and the symbolic system of “I Ching” was noted in the works (Stent, 1969; Jakob, 1974, 1977; 
etc.). Our results in the field of matrix genetics confirm this work. So, the described natural system of 
numbering the genetic triplets and their cells in the genomatrix [C A; U G](3) is known for thousands 
years already. It can be named the ancient Chinese system from the historical viewpoint. The matrix 
approach to a genetic code, besides the fundamentality of object of research and matrix mathematics, 
unexpectedly leads to historical analogies and a problem of connection of times. We will return to this 
theme in more detail in Chapter 12.

It should be noted that the huge quantity 64! ≈ 1089 of variants exists for dispositions of 64 triplets 
in the (8x8)-matrix. The modern physics estimates time of existence of the Universe in 1017 seconds. 
It means the following: if for consideration of each of these variants we spend only one second, then 
during all time of existence of the Universe we shall have time to consider only insignificant part from 
this 1089 variants. It is obvious that in such a situation an accidental disposition of the 20 amino acids 
and the corresponding triplets in a (8x8)-matrix will give almost never any symmetry in their disposi-
tion in matrix halves, quadrants and rows. One can illustrate this circumstance by the following way. 
Let us consider the (8x8)-matrix, the 64 cells of which are numbered one after another. Everyone can 
make an accidental sample of 32 natural numbers from the series of 64 values from 0 up to 63 and then 
mark by dark color the 32 cells with these 32 numbers. Other 32 cells with other numbers are marked 
by white color. The obtained black-and-white mosaic of the matrix will be asymmetric with very high 
probability. Figure 4 demonstrates an example of such asymmetric mosaic in the case of the accidental 
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choice of the following 32 numbers: 53, 2, 47, 62, 23, 6, 38, 11, 19, 8, 26, 12, 28, 32, 9, 36, 42, 4, 43, 
33, 45, 18, 48, 24, 51, 0, 41, 55, 58, 13, 60, 3.

One may ask why nature has chosen that variant of the degeneracy of the genetic code, which fits 
symmetrically (regular) inside the genetic matrix P(3) = [C A; U G](3) relative to its halves, quadrants and 
rows (see Figure 2 in the next chapter). Chapter 2 will demonstrate that nature has divided the set of 64 
triplets into two sub-sets with 32 triplets in each because of special properties of the degeneracy of the 
genetic code. One of these sub-sets contains the triplets with the following numbering in the described 
natural system of numbering the triplets: 0, 1, 2, 3, 8, 9, 10, 11, 18, 19, 22, 23, 26, 27, 30, 31, 36, 37, 
38, 39, 44, 45, 46, 47, 50, 51, 54, 55, 58, 59, 62, and 63. These 32 triplets, which are shown in the next 
chapter on Figure 2 in the black cells, are opposed by nature to other 32 triplets in 32 white cells. The 
general disposition of these black and white cells in the genomatrix [C A; U G](3) possesses the expressed 
symmetric characteristics considered in Chapter 2.

One can remark, that the hidden relations of symmetry between these two sub-sets of the triplets 
are revealed in an exclusive (alphabetical-Kronecker) variant of the disposition of 64 triplets in (8x8)-
matrix, which is described above and is one of 1089 variants of their dispositions. The main results in the 
field of matrix genetics, which are described in our book, were obtained in connection with this special 
variant of the disposition of the triplets in the genomatrix [C A; U G](3) from the Kronecker family of 
genomatrices [C A; U G](n). Chapter 2 presents a few genomatrices additionally, which are produced 
from the genomatrix [C A; U G](n) algorithmically and which possess symmetrical characteristics of the 
degeneracy of the genetic code as well.

THE mATRIX NUmBERING THE GENETIC mULTIpLETS 
AND mATRICES OF DIADIC SHIFTS

Next we describe the connection between numerated genomatrices [C A; U G](n) (Figure 3) and those 
matrices of dyadic shifts, which are known in the theory of discrete signals processing long ago.

The theory of discrete signals processing utilizes widely the special mathematical operation of 
modulo-2 addition for binary numbers. Modulo-2 addition is one of fundamental operations for binary 

Figure 4. An example of a black-and-white mosaic of the (8x8)-matrix, the cells of which are numbered 
one after another. The black cells correspond to the case of 32 numbers of an accidental choice (an 
explanation in the text)
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variables. By definition, the modulo-2 addition of two numbers, which are written in binary notation, is 
made in bitwise manner in accordance with the following rules:

0 + 0 = 0, 0 +1 = 1, 1 + 0 = 1, 1 + 1 = 0 (3)

For example, modulo-2 addition of two binary numbers 110 and 101, which are equal to 6 and 5 
in decimal notation correspondingly, gives the result: 110 ⊕ 101 = 011, which is equal to 3 in decimal 
notation (here ⊕ is the symbol of modulo-2 addition).

The series of binary numbers

000, 001, 010, 011, 100, 101, 110, 111 (4)

forms the so named diadic group, where the modulo-2 addition serves as the group operation (Harmut, 
1989). The distance in this group of symmetry is defined as Hamming distance. Since Hamming distance 
satisfies the conditions of a metric group, the diadic group is the metric group. The modulo-2 addition of 
any two binary numbers from the expression (4) always gives a new number from the same series of the 
expression (4). The number 000 serves as the unit element of this group, for example 010 ⊕ 000 = 010. 
The reverse element for any number of this group is the number itself, for example 010 ⊕ 010 = 000.

The series of the expression (4) is transformed by the modulo-2 addition with the binary number 001 
into the new series with the new sequence of the same numbers:

001, 000, 011, 010, 101, 100, 111, 110 (5)

Such changes of the initial binary sequence, which are produced by modulo-2 addition of its members 
with any of binary numbers from the expression (4), are named “diadic shifts” (Ahmed & Rao, 1975; 
Harmut, 1989). If any system of elements demonstrates its connection with diadic shifts, it shows that 
the structural organization of his system is related to the logics of modulo-2 addition.

Let us make modulo-2 addition of binary numbers of columns and rows for all cells in the genomatrix 
[C A; U G](3) on Figure 3. For example, the cell, which is disposed in the column 110 and in the row 
101, obtains the binary number 011 by means of such addition. As a result, the following numeric matrix 
P(3)

DIAD = [C A; U G](3)
DIAD arises (Figure 5).

The (8x8)-matrix [C A; U G](3)
DIAD is bisymmetrical because it is symmetrical relative to both di-

agonals. This matrix contains only 8 binary numbers, which is equal to 0, 1, 2, 3, 4, 5, 6, 7 in decimal 
notation. Each of these numbers occupies 8 matrix cells from 64 numerated cells (see Figure 3). The 
sum of numbers of these 8 matrix cells is equal to 252 in decimal notation for each case. For example, 
the number 5 occupies those 8 matrix cells on Figure 5, which are numerated individually on the Figure 
3 by numbers 5, 12, 23, 30, 33, 40, 51, 58. The sum of these 8 numbers is equal to 252. The left and 
right halves (and the upper and lower halves) of this matrix [C A; U G](3)

DIAD are inversion-symmetrical 
to each other in the sense of the binary inversion relative to their three-digit numbers in matrix cells (by 
definition, the binary inversion interchanges the binary symbols 1 and 0 to each other). For this reason, 
the modulo-2 addition of such binary numbers, which are disposed in any two mirror-symmetrical cells 
of this matrix, gives the binary number 111. For example, a cell with the number 001 in the left half of 
the matrix has a mirror-symmetrical cell in its right half with the number 110 always. Their sum in the 
sense of modulo-2 addition is equal to: 001 ⊕ 110 = 111.
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By analogical algorithm of modulo-2 addition, the whole family of matrices of dyadic shifts P(n)
DIAD, 

where n = 2, 4, 5,…, can be constructed from the genomatrices [C A; U G](n) (Figure 3). All such ma-
trices P(n)

DIAD are bisymmetrical as well. Each of matrices P(n)
DIAD is the matrix form of presentation 

of a particular case of special hypercomplex numbers, which are named “hyperbolic matrions” (these 
hyperbolic matrions are described in Chapter 8 in more detail).

Do such matrices P(n)
DIAD have any connection with the theory of discrete signals processing? Yes, 

they have. The matrix [C A; U G](3)
DIAD and other analogical matrices [C A; U G](n)

DIAD are known in 
this information theory long ago under the name “matrices of dyadic shifts” (for example, see (Ahmed 
& Rao, 1975)). They are fundamentals of some special methods of analysis and synthesis of signals as 
vectors. In computer informatics, matrices of dyadic shifts are constructed by means of modulo-2 addition 
without utilizing Kronecker multiplication of matrices, which we have used to receive the Kronecker 
family of the genomatrices [C A; U G](n) of all multiplets from the (2x2)-matrix of the genetic alphabet 
(Figure 3). One can note that the analogical (8x8)-matrix of diadic shifts is constructed from the table 
of 64 hexagrams of “I Ching” (Chapter 11). We will return to diadic shifts in Chapters 7 and 8 to dem-
onstrate additionally that the logics of structures of the genetic code is connected with diadic shifts and 
hence with the modulo-2 addition.

It should be emphasized specially that dyadic shifts are one of the elements of interesting theory, 
which is described in the book about applications of methods of information theory in physics (Harmut, 
1989). This theory utilizes the notions of dyadic spaces, dyadic metrics, and dyadic coordinates in a 
connection with special codes. Relation of the genetic code to this theory is one of the prospective topics 
in the field of matrix genetics for investigations in future.

Figure 5. The bisymmetrical matrix [C A; U G](3)
DIAD of dyadic shifts; brackets contain expressions of 

numbers in decimal notation
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Now let us pay attention to the block character of the matrices of dyadic shifts P(n)
DIAD. Each (2nx2n)-

matrix P(n)
DIAD is a system of fractal kind. It contains four block matrices, each of which has the size 

(2x2). Two such block matrices, which are disposed along each diagonal, are identical to each other 
always. For this reason, the lower half of each (2nx2n)-matrix P(n)

DIAD can be produced from its upper 
half algorithmically by a cyclic shift. In this sense, each block matrix P(n)

DIAD is a matrix of the cyclic 
shift of its (2x2)-blocks and possesses the crosswise character.

Two quadrants along the main diagonal contain identical block elements, which are (2n-1x2n-1)-matrices 
of a dyadic shift. Matrix cells along the second diagonal contain identical block elements in a form of 
(2n-1x2n-1)-matrices also, elements of which are changed only by addition of number 2n-1 relative to ele-
ments of the (2n-1x2n-1)-matrices along the main diagonal. In turn, these (2n-1x2n-1)-matrices are the block 
matrices of the cyclic shift, which possess a crosswise character, etc.

For example, the (23х23)-matrix [C A; U G](3)
DIAD on Figure 5 is the block matrix of the cyclic shift 

relative to its (2x2)-quadrants. Identical quadrants, which are disposed along the main diagonal, are 
(22х22)-matrices of the dyadic shift with elements 0, 1, 2, and 3. Another kind of identical blocks in the 
form of the (22х22)-quadrants with elements 4, 5, 6, 7 are disposed along the second diagonal. They 
only differ from the first (22х22)-quadrants by addition of number 22 to their elements. In turn, each of 
these (22х22)-quadrants of the matrix [C A; U G](3)

DIAD on Figure 5 is the block matrix of the cyclic shift 
of its (2x2)-blocks.

In connection with cyclic shifts in described genetic matrices, one can mention so named cyclic codes, 
which are based on cyclic shifts (Peterson & Weldon, 1972; Sklar, 2001). Cyclic codes are considered 
usually as one of the most interesting codes in the field of digital technique due to their mathematical 
properties. Some modern publications in the field of molecular genetics analyze the question about a 
possible important participation of cyclic codes in systems of genetic coding (Arques & Michel, 1996, 
1997; Frey & Michel, 2003, 2006; Stambuk, 1999).

Returning to the crosswise character of described genetic matrices of diadic shifts P(n)
DIAD (Figure 

5), which reminds one of a crosswise character of chromosomes to some extent, we note that genetic 
inherited constructions of physiological systems (including sensory-motion systems) demonstrate similar 
crosswise structures by unknown reasons. For example, the connection between the hemispheres of hu-
man brain and the halves of human body possesses the similar crosswise character: the left hemisphere 
serves the right half of the body and the right hemisphere (Figure 6) (Annett, 1985, 1992; Gazzaniga, 
1995; Hellige, 1993). The system of optic cranial nerves from two eyes possesses the crosswise struc-
tures as well: the optic nerves transfer information about the right half of field of vision into the left 
hemisphere of brain, and information about the left half of field of vision into the right hemisphere. The 
same is held true for the hearing system (Penrose, 1989, Chapter 9). One can suppose that these inherited 
physiological phenomena are connected with genetic crosswise structures, which include, in particular, 
crosswise matrices of dyadic shifts, of hyperbolic matrions and octet Yin-Yang-numbers from Section 
3 to provide noise-immunity properties of genetic systems.

FUTURE TRENDS AND CONCLUSION

The described matrix approach shows first examples of usefulness of utilizing symmetrical features of 
ensembles of genetic elements for development of new mathematical tools of genetic investigations. 
Such an approach permits one to represent all sets of genetic multiplets in the well-ordered general 
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form of matrices of the Kronecker family. Each multiplet obtains its individual number in the proposed 
natural system of numbering the genetic multiplets. It obtains also its own individual disposition in an 
appropriate genetic matrix of the Kronecker family. The described natural system of numbering the 
multiplets is recommended for utilizing in computerized catalogs of genetic sequences. This Kronecker 
family of genetic matrices is the new cognitive form of presentation and analysis of ensembles of ele-
ments of the genetic code, which is utilized intensively in the next chapters of the book and which leads 
to many significant results.

Revealing the connection between the genetic matrices of the Kronecker family and matrices of diadic 
shifts, which are known in computer informatics, gives us ability to use the mathematical ideology of 
diadic spaces and diadic metrics for genetic systems.

The first described constructions in the field of matrix genetics gave us new abilities for investigations 
of genetic systems in the future. One of them is the creation of catalogs of matrices with all possible 
multiplets for various tasks. For example, such catalogs permit the investigation of how introns and 
exons are disposed in these genetic matrices; what kinds of matrix mosaics appear for them; and how 
these mosaics are related to components of multi-dimensional numeric systems described in Section 3. 
It can lead to reveal new appropriate regularities.

We also note that revealing the connection between the genetic matrices [C A; G U](n) and the matri-
ces of diadic shifts P(n)

DIAD (Figure 5) leads one to utilize the notions and formalisms of “diadic spaces”, 
“diadic metrics”, etc. (Harmut, 1989), which are known in the field of computer informatics, in new 
fields of matrix genetics and bioinformatics.

The conception by Stent (1969) and Jacob (1974) about possible relation between the genetic code 
and the symbolic system of the ancient Chinese “I Ching” obtains new materials for further examinations. 
Additional discussions along this direction will be described in the next chapters of the book.

Investigations of ensembles of elements of the genetic code with their symmetrical features have 
led to the construction of the Kronecker family of the genetic matrices. This matrix family presents all 
sets of genetic multiplets in the well-ordered general form, where each multiplet obtains its own indi-
vidual number in binary notation on the basis of molecular characteristics of the genetic letters A, C, G, 

Figure 6. The crosswise schemes of some morpho-functional structures in human organism. On the left 
side: the crosswise connections of brain hemispheres with the left and the right halves of a human body. 
In the middle: the crosswise structure of optic nerves from eyes in brain. On the right side: a chromo-
some
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U/T. Such a general form is connected with important principles and methods of computer informatics 
and of the noise-immunity in digital technique. It gives us new mathematical ability to study genetic 
systems and their connections with computer informatics and algebraic theory of coding. For example, 
first evidences were obtained that the logics of structures of the genetic code are related to the logical 
modulo-2 addition.
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Chapter 2

Symmetries of the 
Degeneracy of the Vertebrate 

Mitochondrial Genetic 
Code in the Matrix Form

INTRODUCTION AND BACKGROUND

Chapter 1 described the construction of genomatrices of the Kronecker family, including the genomatrix 
PCAUG

123 = [C A; U G](3), which contain 64 triplets in the well-ordered form. But how are amino acids and 
stop-codons, which are encoded by these triplets, disposed in this genomatrix? Does the genetic code 
possess any features which may give the symmetrical character for this genomatrix? Such questions are 
investigated in this chapter. Really, the degeneracy of the genetic code has lead to a symmetrical black-
and-white mosaic of the genomatrix in the case of the vertebrate mitochondrial genetic code, which is 
the most symmetrical dialect of the genetic code.

ABSTRACT

Symmetries of the degeneracy of the vertebrate mitochondrial genetic code in the mosaic matrix form 
of its presentation are described in this chapter. The initial black-and-white genomatrix of this code is 
reformed into a new mosaic matrix when internal positions in all triplets are permuted simultaneously. 
It is revealed unexpectedly that for all six variants of positional permutations in triplets (1-2-3, 2-3-1, 
3-1-2, 1-3-2, 2-1-3, 3-2-1) the appropriate genetic matrices possess symmetrical mosaics of the code 
degeneracy. Moreover the six appropriate mosaic matrices in their binary presentation have the general 
non-trivial property of their “tetra-reproduction,” which can be utilized in particular for mathematical 
modeling of the phenomenon of the tetra-division of gametal cells in meiosis. Mutual interchanges of the 
genetic letters A, C, G, U in the genomatrices lead to new mosaic genomatrices, which possess similar 
symmetrical and tetra-reproduction properties as well.

DOI: 10.4018/978-1-60566-124-7.ch002
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By analogy of the theory of digital signals, where permutations of signal elements play significant 
role, we study two kinds of permutations of elements of the genetic code, which transform initial mosaic 
genomatrices into new mosaic genomatrices. The first of these kinds of permutations is permutations 
of three positions inside all triplets: 1-2-3, 2-3-1, 3-1-2, 1-3-2, 2-1-3, 3-2-1. The second kind is mutual 
interchanges of the genetic letters A, C, G, U. Both of these kinds lead unexpectedly to such new genoma-
trices, which possess symmetrical black-and-white mosaics and the binary forms of which possess the 
mathematical property of tetra-self-reproducing. This chapter sets out results of these investigations.

The main objectives of this chapter are the following:

1.  In-depth study of matrix symmetries of the degeneracy of the vertebrate mitochondrial genetic 
code in the matrix form of its presentation;

2.  Investigations of reforming these matrix symmetries under some kinds of permutations of elements 
of the genetic code;

3.  Demonstrating new phenomenological materials in the field of matrix genetics to develop algebraic 
models of the genetic code.

pECULIARITIES OF DEGENERACy OF THE GENETIC CODE

Modern science knows many dialects of the genetic code, data about which are shown on the NCBI’s 
website http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi. According to general traditions, 
theory of symmetry studies initially those natural objects which possess the most symmetrical char-
acter, and then it constructs a theory for cases of violations of this symmetry in other kindred objects. 
Correspondingly the authors of this book investigate initially the vertebrate mitochondrial genetic code 
which is the most symmetrical code among dialects of the genetic code. One can also note that some 
authors consider this dialect not only as the most “perfect” but also as the most ancient dialect (Frank-
Kamenetskiy, 1988) while the last aspect is a debatable one. The vertebrate mitochondrial code is used 
as a basic dialect in some other mathematical works where a presentation of the 64 triplets exists in a 
form of square tables (Dragovich & Dragovich, 2006, 2007; Khrennikov & Kozyrev, 2007). Figure 1 
shows the correspondence between the set of 64 triplets and the set of 20 amino acids with stop-signals 
(Stop) of protein synthesis in this code.

The set of 64 triplets contains such 16 subfamilies of triplets, every one of which contains 4 triplets 
with the same two letters on the first positions of each triplet (an example of such subsets is the case of 
the four triplets CAC, CAA, CAU, CAG with the same two letters CA on their first positions). We shall 
name such subfamilies as the subfamilies of NN-triplets. In the case of the vertebrate mitochondrial 
code, the set of these 16 subfamilies of NN-triplets is divided into two equal subsets from the viewpoint 
of degeneration properties of the code (Figure 1). The first subset contains 8 subfamilies of so called 
“two-position” NN-triplets, a coding value of which is independent of a letter on their third position. An 
example of such subfamilies is the four triplets CGC, CGA, CGU, CGC, all of which encode the same 
amino acid Arg, though they have different letters on their third position. All members of such subfamilies 
of NN-triplets are marked by black color in the genomatrix [C A; U G](3) on the Figure 2.

The second subset contains 8 subfamilies of “three-position” NN-triplets, a coding value of which 
depends on a letter on their third position. An example of such subfamilies is the four triplets CAC, CAA, 
CAU, CAC, two of which (CAC, CAU) encode the amino acid His and other two (CAA, CAG) encode 
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another amino acid Gln. All members of such subfamilies of NN-triplets are marked by white color in 
the genomatrix P(3) = [C A; U G](3) on the Figure 2. So the genomatrix [C A; U G](3) has 32 black triplets 
and 32 white triplets. Each subfamily of four NN-triplet is disposed in an appropriate (2x2)-subquadrant 
of the genomatrix [C A; U G](3) due to the Kronecker algorithm of construction of genomatrix [C A; U 
G](3) of triplets from the alphabet genomatrix P (Figure 3 of the previous chapter).

Here we recall the work by Rumer (1968) that a combination of letters on the first two positions of 
each triplet was named as a “root” of this triplet. A set of 64 triplets contains 16 possible variants of such 
roots. Taking into account of the properties of triplets, Rumer has divided the set of 16 possible roots 
into two subsets with eight roots in each. Roots CC, CU, CG, AC, UC, GC, GU, and GG form the first 
of such octets. They were called by Rumer as “strong roots”. Other eight roots CA, AA, AU, AG, UA, 
UU, UG, and GA form the second octet and they were called as weak roots. When Rumer published his 
works, the vertebrate mitochondrial genetic code was unknown. But one can easily check that the set of 
32 black (white) triplets, which we described for the case of the vertebrate mitochondrial genetic code 
(Figures 1 and 2), is identical to the set of 32 triplets with strong (weak) roots described by Rumer. So, 
using notions proposed by Rumer, the black triplets can be named as triplets with the strong roots and 
the white triplets can be named as triplets with the weak roots. Rumer believed that this symmetrical 

Figure 1. The case of the vertebrate mitochondrial genetic code; The initial data were taken from the 
NCBI’s web-site http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
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division into two binary-oppositional categories of roots is very important for understanding the nature 
of the genetic code systems.

Let us introduce the symbol of the genomatrix P(3) = [C A; U G](3) by the symbol PCAUG
123, which is 

more comfortable for a comparative analyses of this (8x8)-genomatrix with other (8x8)-genomatrices 
below. Here the bottom index “123” shows the appropriate queue of positions 1-2-3 in triplets; the upper 
index shows the kind of the kernel [C A; U G] of the Kronecker family of genomatrices. The exponent 
(3) is not written because the bottom index is enough for understanding that this symbol means the 
(8x8)-genomatrix of triplets. This change of the symbol is useful because we shall consider later the 
genomatrices with permutations of positions in triplets (2-3-1, 3-1-2, etc.) and with another kernels of 
Kronecker families of genomatrices ([G C; A U], [C A; G U], etc.).

Below we will demonstrate the phenomenological fact of a symmetric character of dispositions of the 
32 white triplets and the 32 black triplets in the genomatrix [C A; U G](3). We will also analyze the genetic 
matrices, which are produced from the genomatrix [C A; U G](3) as a result of positional and alphabetic 
permutations in all triplets. One should note here that permutations of elements play an important role in 
the theory of digital signals processing (Ahmed & Rao, 1975; Blahut, 1985; Trahtman, 1972; Trahtman 
& Trahtman, 1975). It was the reason of the special interest to investigate the genomatrices with such 
permutations. On these way analogies between the famous fact of the tetra-division of gametal cells and 
some properties of these genomatrices with permutations are revealed.

Figure 2. The representation of the genomatrix P(3) = PCAUG
123 = [C A; U G](3) (Figure 3 in Chapter 1) 

for the case of the vertebrate mitochondrial genetic code. The matrix contains 64 triplets and 20 amino 
acids with their traditional abbreviations. Stop-codons are marked as “Stop”. Numeration of columns 
and rows in decimal notation is shown
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SymmETRICAL pROpERTIES OF GENETIC mATRICES OF TRIpLETS 
UNDER pERmUTATIONS OF pOSITIONS INSIDE TRIpLETS

The specifics of the degeneracy of the genetic code provoke many questions. One of them is the follow-
ing: was the code degeneracy an accidental choice of nature or not? Deep investigations of symmetries 
in a matrix map of the code degeneracy can give many useful materials for such questions.

We use the genomatrices from the Kronecker family, which was described in Chapter 1, to pres-
ent the degeneracy of the genetic code in a special cognitive form. We investigate possibilities of this 
matrix form of presentation step by step to obtain evidences of its adequacy and usefulness. This form 
gives new viewpoints for the question about specifics of the code degeneracy. It gives us new results, 
which are much unexpected sometimes, about relations of matrix symmetries in sets of elements of the 
genetic code. One of the ways to study these symmetries is connected with permutations of three posi-
tions inside all triplets, which leads to new genomatrices with symmetrical peculiarities. The second 
way, which leads to new symmetrical genomatrices as well, is connected with a mutual replacing of the 
genetic letters A, C, G, U in the kernel of the Kronecker family of the genomatrices. Both of these ways 
and the appropriate results are described in this chapter.

The genomatrix [C A; U G](3) = PCAUG
123 of Figure 2 shows all triplets together with amino acids and 

stop-codon, which are encoded by the triplets in the case of the vertebrate mitochondrial genetic code 
(compare with Figure 1). Black cells of the genomatrix contain the triplets, which belong to the set of 
the two-position NN-triplets, and white cells contain the triplets, which belong to the set of the three-
position NN-triplets.

So, the black-and-white mosaic of the genomatrix PCAUG
123 on Figure 2 reflects the specificity of the 

degeneracy of this basic dialect of the genetic code. Unexpectedly it has a few interesting symmetrical 
peculiarities as follows.

The left and right halves of the matrix mosaic are mirror-anti-symmetric to each other in its colors: any 
pair of cells, disposed by mirror-symmetrical manner in these halves, possesses the opposite colors.

The genomatrix PCAUG
123 consists of the four pairs of neighbor rows with even and odd numeration 

numbers in each pair: 0-1, 2-3, 4-5, 6-7. The rows of each pair are equivalent to each other from the 
viewpoint of a disposition of the same amino acids in their appropriate cells.

The black-and-white matrix mosaic has a symmetric figure of a diagonal cross: diagonal quadrants 
of the matrix are equivalent to each other from the viewpoint of their mosaic.

Mosaics of all rows have a meander-line character, which is connected with Rademacher functions 
from the theory of discrete signals processing.

The turning of the genomatrix PCAUG
123 into a cylinder with an agglutination of its upper and lower 

borders reveals an ornamental pattern of a cyclic shift. This pattern has the character of cyclic shifts that 
permits one to think about a possible genetic meaning of cyclic codes, which play a significant role in 
the theory of digital signal processing. This pattern is demonstrated more clearly by a tessellation of a 
plane with this mosaic genomatrix (Figure 3, at the left). The plane with this tessellation possesses the 
ornamental pattern with two pattern units which are identical in their forms, but contrary in their colors 
(black and white) and orientations (left and right).

This symmetrical character of the degeneracy of the genetic code, which is presented by the matrix 
mosaic, is the key for many secrets of the genetic code. Let us note the following peculiarity of the 
presented “black-and-white” degeneracy of the genetic code on the Figure 2. The black triplets encode 
8 amino acids, each of which is encoded by 4 triplets or more: Ala, Arg, Gly, Leu, Pro, Ser, Thr, Val. We 
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will name them as high-degeneracy amino acids. Another 12 amino acids form the sub-set, any member 
of which is encoded by less quantity of triplets: Asn, Asp, Cys, Gln, Glu, His, Ile, Lys, Met, Phe, Trp, 
Tyr. We will name them as low-degeneracy amino acids. The fact of the existence of these two sub-sets 
will be utilized in Chapter 3 for a comparative analysis of dialects of the genetic code.

The phenomenon of existence of cyclic shifts in the genetic pattern on Figure 3 has led to the in-
vestigation of a possible meaning of cyclic shifts of three positions in all triplets. If one changes the 
initial order 1-2-3 in all triplets by the cyclic shift into the new order 2-3-1, then many cells of the initial 
genomatrix PCAUG

123 are occupied by new triplets. For example, the matrix cell with the triplet CAU is 
occupied by the triplet AUC, etc. As a result the whole genomatrix PCAUG

123 is reconstructed into the new 
genomatrix PCAUG

231 (Figure 2).
It is unexpected that this “cyclic-generated” genomatrix PCAUG

231 with new matrix dispositions of 
triplets and amino acids possesses similar symmetric characteristics (Petoukhov, 2006, 2008a,c):

1.  All its (4x4)-quadrants are identical to each other by its mosaics;
2.  The upper and the lower halves of PCAUG

231 are identical to each other from the viewpoint of dis-
positions of all amino acids and stop-signals;

3.  All rows of the (8x8)-genomatrix and its (4x4)-quadrants have a meander-line character again, 
which is connected with Rademacher functions;

4.  The genomatrix PCAUG
231 possesses 4 pairs of identical rows as well: 0-1, 2-3, 4-5, 6-7 (but the rows 

with these numbers are disposed in new matrix positions on Figure 2 and they differ from the rows 
with the same numbers on Figure 2).

Note, that the mosaic of the initial (8x8)-genomatrix PCAUG
123 is reproduced in (4x4)-quadrants of this 

PCAUG
231in a fractal manner: the coefficient of fractal ranging of areas is equal to 4. The tessellations of 

a plane by the mosaics of PCAUG
123 and of PCAUG

231 demonstrate their fractal correspondence very clearly 
(Figure 2). Such scale transformation of areas in the mosaics of the code degeneracy can be named “tetra-
reproduction” transformation. Due to this tetra-reproduction, the cyclic-generated genomatrix PCAUG

231 
has the quantity of the pattern units 4 times more than the initial genomatrix PCAUG

123 (Figures 2-4).
This fact is interesting because an analogical tetra-reproduction (or a tetra-division) exists in the living 

nature in the course of division of gametal cells, which are transmitters of genetic information. In this 

Figure 3. At the left: the tessellation of a plane with the mosaic of genomatrix PCAUG
123 from Figure 2. At 

the right: the tessellation of a plane with the mosaic of genomatrix PCAUG
231 from Figure 4
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mysterious act of meiosis, one gamete is divided into four new gametes (this fact was mentioned specially 
by Erwin Schrodinger in his famous book (Schrodinger, 1955, §13)). The described tetra-reproduction 
of the mosaics of the genomatrices can be utilized, in particular, in formal models of meiosis.

Materials of the matrix genetics lead us to questions of biological meaning. Really, we revealed 
unexpectedly that a simple algorithmic re-packing (re-arrangement) of elements in triplets by the cyclic 
shift is sufficient to receive new genomatrix with the fractal tetra-reproducing the mosaics of the code 
degeneration. It seems that a similar re-packing of molecular elements in biological object can be suf-
ficient also to provide foundations of a process of tetra-reproducing in some cases, first of all, in the 
case of meiosis. These and other considerations permit us to put forward the hypothesis of molecular 
re-packing. According to this hypothesis, the mysterious process of meiosis is based on a mechanism 
of algorithmic re-arrangement of molecular elements of gametes with a participation of algorithms of 
cyclic and dyadic shifts. In our opinion, the principle of re-packing of biological molecules and of their 
ensembles is an important general principle of biological self-organization. It is interesting also that 
one can compare the tetra-division of material gametes with the tetra-division of the code genomatrices, 
which are information objects. These materials show that meiosis is not an accidental material process 
but it is coordinated with more ancient information structures of the genetic code in their matrix form.

Permutations of elements play an important role in the theory of signals processing (Ahmed & Rao, 
1975; Trahtman & Trahtman, 1975). Six variants of permutations of positions in triplets are possible 
only: 1-2-3, 2-3-1, 3-1-2, 1-3-2, 2-1-3, 3-2-1. The genomatrices PCAUG

123 and PCAUG
231for the first two of 

these permutations were considered above (Figures 2 and 4). Let us consider other four variants which 
lead to genomatrices PCAUG

312, P
CAUG

132, P
CAUG

213, P
CAUG

321. They are presented in Figure 5. It is an unex-
pected phenomenological fact, that all of these genomatrices have symmetrical peculiarities, which are 
similar to symmetrical peculiarities of PCAUG

123 and PCAUG
231. The whole considered genetic code seems 

Figure 4. The representation of the genomatrix PCAUG
231, which is produced from the genomatrix PCAUG

123 
(Figure 2) by the cyclic shift of positions in triplets (1-2-3 → 2-3-1)
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to be in agreement with these permutations and corresponding symmetries in the mosaics of all these 
6 genomatrices.

Really, one can note that all genomatrices PCAUG
213

(3), PCAUG
321

(3), PCAUG
312

(3), PCAUG
132

(3) on Figure 5 have 
symmetric features as well. For example:

1.  their mosaics have the mirror-antisymmetry between their left half and their right half;
2.  each of these genomatrices has 4 pairs of identical rows again: 0-1, 2-3, 4-5, 6-7 (see their decimal 

numeration on Figure 5), which are not adjacent rows in these matrices;
3.  all rows of the (8x8)-genomatrix and its (4x4)-quadrants have a meander-line character again, 

which is connected with Rademacher functions, etc.

Figure 5. The genomatrices PCAUG
213, P

CAUG
321, P

CAUG
312, P

CAUG
132; Each matrix cell has a triplet and an 

amino acid (or a stop-signal) coded by this triplet. The black-and-white mosaic reflects the specificity 
of the degeneracy of this code
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Now let us also consider on Figure 5 the genomatrix PCAUG
321

(3) with the inverse order of positions in 
all triplets (3-2-1 instead of 1-2-3). One can compare its mosaic with the mosaic of the PCAUG

213
(3) based on 

the cyclic shift of positions in all triplets: 2-1-3 instead of 3-2-1. In this case the similar phenomenon of 
the tetra-self-reproduction of these mosaics becomes apparent again but with a new pattern (Figure 6).

In addition, one can note that all six genomatrices on Figures 2, 4, and 5 are interconnected by spe-
cial permutations of their columns and rows. The same genomatrices can be obtained from the initial 
genomatrix PCAUG

123
(3) by appropriate permutations of positions in binary 3-digit numbering their columns 

and rows. In other words, the “local” permutations of positions in triplets give the same results as the 
“global” permutations of positions in binary 3-digit numbering the columns and the rows. All six genoma-
trices on these Figures are connected with Hadamard matrices on the basis of the U-algorithm described 
in Chapter 6. The presented permutations gave interesting results in their application to genomatrices. 
It seems that applications of similar permutations to genetic sequences of triplets can give interesting 
results as well because each gene belongs to a group of six genetic sequences, which are differed from 
each other by orders of positions in their triplets: 1-2-3, 2-3-1, 3-1-2, 1-3-2, 2-1-3, 3-2-1.

The revelation of the permutation group of the six symmetric genomatrices PCAUG
123

(3), PCAUG
231

(3), 
PCAUG

213
(3), PCAUG

321
(3), PCAUG

312
(3), PCAUG

132
(3) seems to be the essential fact because of heuristic associations 

with the mathematical theory of digital signal processing, where similar permutations are utilized for a 
long time as the useful tool. For example, the book (Ahmed & Rao, 1975, § 4.6) gives the example of 
the important role of the method of data permutations and of the binary inversion for one of variants of 
the algorithm of a fast Fourier transformation. In this example the numeric sequence 0, 1, 2, 3, 4, 5, 6, 7 
is reformed into the sequence 0, 4, 2, 6, 1, 5, 3, 7. But the same change of the numeration of the columns 
and the rows takes a place in our case (Figure 5) where the genomatrix РCAUG

123 is reformed into the 
genomatrix РCAUG

321 as a result of the inversion of the binary numbering the columns and the rows (or of 
the inversion of the positions in the triplets). These and other facts permit one to think that the genetic 
system has a connection with a fast Fourier transformation (or with a fast Hadamard transformation) 
(Petoukhov, 2006, 2008a,b).

GENOmATRICES WITH THE pROpERTy OF THE TETRA-SELF-REpRODUCING

Why has nature chosen this variant of degeneration of genetic code, which gives such mosaics? Do these 
six “triplets-permutations” genomatrices PCAUG

123
(3), PCAUG

231
(3), PCAUG

213
(3), PCAUG

321
(3), PCAUG

312
(3), PCAUG

132
(3) 

possess such mutual mathematical property that can be associated with famous biological facts of ge-
netic inheritance? Yes, such a mutual property exists and it is connected with the tetra-reproduction by 

Figure 6. The tessellations of a plane by the mosaics of the genomatrices РCAUG
213 (at the left) and РCAUG

321 
(on the right)
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analogy with meiosis again. This property is a non-trivial one and it does not exist in the most variants 
of arbitrary dispositions of 32 black triplets and 32 white triplets in (8*8)-matrices.

Let us represent the black-and-white mosaic of each of the six genomatrices as a binary mosaic of 
numbers “+1” and “-1” by means of replacing black (white) color of each matrix cell by an element 
“+1” (“-1”) correspondingly. As a result, these genomatrices PCAUG

123
(3), PCAUG

231
(3), PCAUG

213
(3), PCAUG

321
(3), 

PCAUG
312

(3), PCAUG
132

(3) are reformed into the genomatrices B123, B231, B312, B132, B213, B321 (Figure 7).
The unexpected mutual property of these six binary genomatrices is the following one. The mul-

tiplication of each genomatrix with itself (the square of each genomatrix) gives a phenomenon of its 
tetra-reproduction: the four duplicates of the genomatrix appeared in Figure 8. Really the following 
formulas take place:

(B123)
2 = 4*B123; (B231)

2 = 4*B231; (B312)
2 = 4*B312 

(B132)
2 = 4*B132; (B213)

2 = 4*B213; (B321)
2 = 4*B321 (1)

This fact is interesting because the genetic code is destined by nature for reproduction of biological 
structures, and matrices of the genetic code in their binary representation possess the non-trivial algebraic 
property of their own self-reproduction. The set of these six binary genomatrices has many other inter-
esting properties (for instance, B123*B321+B123*B132 = 4*B123), which generate heuristic associations with 

Figure 7. The binary numeric genomatrices B123, B231, B312, B132, B213, B321, in which each black cell means 
the element “+1”; and each white cell means the element “-1”
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genetic phenomena and which can be utilized to model the meiosis process of the tetra-self-reproduction 
of gametal cells with a specific behavior of chromosomes to some extent (Figures 8 and 9). These matrix 
properties are connected with the octave Yin-Yang algebra of the genetic code (see Chapter 7).

It can be also mentioned that one can consider those “complementary” variants of the genomatrices 
PCAUG

123
(3), PCAUG

231
(3), PCAUG

213
(3), PCAUG

321
(3), PCAUG

312
(3), PCAUG

132
(3), which are achieved by the replacement 

of each triplet by its complementary triplet (the example of the complementary triplets is CAG and 
GUC). In each case the “complementary” matrix is identical to 180-degree turn of the initial matrix. 
The “complementary” genomatrices in similar binary presentations possess the same properties as their 
tetra-self-reproduction.

One can ask, why nature did not chose the more simple variant of the mosaic of the degeneracy of the 
genetic code, for example, such a variant where the left half of the matrix is occupied by black triplets and 
the right half is occupied by white triplets (Figure 10)? This variant and many other possible variants of 
(8x8)-matrices with 32 black cells and 32 white cells do not possess those interesting properties, which 
natural genomatrices possess: the properties of the tetra-self-reproduction; the algorithmic relation to 
Hadamard matrices; the connection with hyperbolic matrions and the octet Yin-Yang algebra (Chapters 
6-8), etc. For example, the matrix with the black-and-white mosaic of the signs “+1” and “-1” in Figure 
10 does not possess the described property of the tetra-self-reproduction because its square is equal to 
the null matrix.

Figure 8. Tetra-self-reproduction of each of the binary numeric genomatrices B123, B231, B312, B132, B213, 
B321 from Figure 7 due to operation of its multiplication with itself
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SymmETRICAL pROpERTIES OF GENETIC mATRICES UNDER 
ALpHABETIC pERmUTATIONS IN THE SET OF 64 TRIpLETS

Until now we considered the Kronecker family of the genomatrices with the kernel [C A; U G] (Figure 
3 of Chapter 1) and obtained some interesting properties of the mosaic genomatrices [C A; U G](3). This 
paragraph demonstrates that analogical properties exist for the other mosaic genomatrices with various 
kernels: [C A; G U](3), [G C; A U](3), etc. These new variants of kernels of the Kronecker families of 
genomatrices are produced by permutations of the four letters C, A, U, G on positions in the (2x2)-
matrix, for example by mutual interchanges C↔G, A↔U (such permutations produce a change of letter 
compositions of triplets in matrix cells in comparison with the described genomatrix РCAUG

123).
We continue to utilize the upper index in a symbols of each (8x8)-genomatrix to show the kind of 

the kernel of the Kronecker family of this genomatrix. Such upper indexes can be CAGU, CGUA, 
ACUG, ACGU, UACG, UGCA, GAUC, GAUC, GUAC, etc. For example, the symbol PGCAU

123 means 
the genomatrix [G C; A U](3), which differs from the described genomatrix РCAUG

123 = [C A; U G](3), of 
course.

The 24 variants of such (2x2)-genomatrix exist, which differ from each other by dispositions of the 
letters inside the matrix (Figure 11). We will pay attention to a disposition of the particular letter U, 
which is replaced by the letter T in the course of transfer from RNA to DNA for unknown reason and 
which differs from other letters C, G, A by this feature. Such attention to the letter U is explained in 
Chapter 6 which deals with a connection between genomatrices and Hadamard matrices. This letter U 
can occupy one of the four positions in the alphabetic (2x2)-matrix.

Correspondingly one can divide the whole set of 24 variants of such (2x2)-matrices into the four cat-
egories (Figure 11). The first category contains (2x2)-matrices with the letter U in their left lower corner. 
The second category possesses the letter U in the right upper corner. The third category possesses the 
letter U in the left upper corner. The fourth category possesses the letter U in the right lower corner.

Figure 9. The illustration of the process of the tetra-self-reproduction of a gametal cell in a course of 
meiosis

Figure 10. One of hypothetic variants of octet matrices with 32 black triplets and 32 white triplets (ex-
planation in the text)
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We will use the name “mirror-coupling” for a reconstruction of any matrix (Figure 11) from one 
category into a matrix of another category by means of a permutation of its columns or rows. Each 
matrix of any category has one mirror-coupling matrix in each of the other categories. Such mirror-
coupling matrices of various categories are disposed in one column on the Figure 11. For example, the 
genomatrix [C A; U G], which is disposed in the first column of the first category, is reconstructed into 
the genomatrix [U G; C A] of the second category; etc. The relation of such mirror-coupling for these 
matrices is conserved at their rising in Kronecker powers. For example, the matrices [U G; C A](n) & [G 
U; A C](n) are mirror-coupling to each another: one of them can be reconstructed from the second matrix 
by mirror permutations of columns relative to the middle vertical line of the matrix.

Genomatrices of the first category and the third category contain the particular letter U on their second 
diagonal. They are connected with the Hadamard matrices [1 1; -1 1] or [1 -1; 1 1] and with the matrix 
form of representation of complex numbers and multi-dimensional generalization of complex numbers 
(see Chapter 8). Genomatrices of the second category and of the fourth category contain the letter U 

Figure 11. The four categories of possible 24 variants of alphabetic (2x2)-matrices; the left column 
shows the number of each of the four categories

Figure 12. The genomatrix PGCAU
123 and the mosaic of the code degeneracy (explanation in the text)
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on the main diagonal. They are connected with Hadamard matrices [1 1; 1 -1] or [-1 1; 1 1] and their 
Kronecker powers. These Hadamard matrices in various Kronecker powers play an important role in the 
theory of quantum computers, spectral methods of discrete signals processing, etc. (see Chapter 6).

Taking into account the mirror-coupling among genomatrices of the four categories, it is sufficient to 
consider examples of the genomatrices of the fourth category (Figure 11). For this reason, let us consider 
the genomatrices PGCAU

123 = [G C; A U](3) and РCAGU
123 =[C A; G U](3). Other genomatrices of the fourth 

category can be considered analogically.
The example of the genomatrix PGCAU

123. Figure 12 shows the genomatrix PGCAU
123 = [G C; A U] 

with its black-and-white mosaic of the degeneracy of the vertebrate mitochondrial genetic code.
This genomatrix PGCAU

123 possesses the following symmetric features:

1.  The left half and the right half of the genomatrix are symmetric each to the other in the sense of 
translation symmetry of their mosaics;

2.  Two quadrants along each matrix diagonal are inversion-anti-symmetric each to the other in their 
mosaics;

3.  The neighboring rows in four pairs of the rows are identical each to the other from the viewpoint 
of a disposition of amino acids and stop-codons;

4.  Four pairs of neighboring rows are identical.

Permutations of positions inside triplets, which were described above, produce the five genomatrices 
РGCAU

231, Р
GCAU

312, Р
GCAU

132, Р
GCAU

213, Р
GCAU

321, which are shown in Figures 13, 14, 15, 16, and 17. One can 
see without additional explanations that all of them possess similar symmetric features as well.

The example of the genomatrix PCAGU
123. The Figure 18 shows the genomatrix PCAGU

123 = [C A; G 
U](3) with its black-and-white mosaic of the degeneracy of the vertebrate mitochondrial genetic code. 
The Figures 19, 20, 21, 22, and 23 demonstrate the genomatrices РCAGU

231, Р
CAGU

312, Р
CAGU

132, Р
CAGU

213, 
РCAGU

321, which are produced from PCAGU
123 by all possible permutations of positions inside all triplets. 

One can see without additional explanations that all these six genomatrices possess symmetrical fea-
tures as well. We do not show amino acids and stop-codons in some of these genomatrices to decrease 
tabular materials.

Figure 13. The genomatrix PGCAU
231 and the mosaic of the code degeneracy (explanation in the text)
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Figure 14. The genomatrix PGCAU
312 and the mosaic of the code degeneracy (explanation in the text)

Figure 15. The genomatrix PGCAU
132 and the mosaic of the code degeneracy (explanation in the text)

Figure 16. The genomatrix PGCAU
213 and the mosaic of the code degeneracy (explanation in the text)
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Figure 17. The genomatrix PGCAU
321 and the mosaic of the code degeneracy (explanation in the text)

Figure 18. The genomatrix РCAGU
123 and the mosaic of the code degeneracy (explanation in the text)

Figure 19. The genomatrix РCAGU
231 and the mosaic of the code degeneracy (explanation in the text)
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One can check that the fractal property of the tetra-scaling, which was described above in connec-
tion with Figures 3 and 6, between mosaics of certain pairs of genomatrices exists for all categories of 
considered (8x8)-genomatrices. Those pairs of genomatrices possess this property, which are connected 
by cyclic shifts in their lower indexes: (123)-(231) and (321)-(213).

All of the described mosaic genomatrices are connected with appropriate Hadamard matrices by 
means of the same U-algorithm, which is presented in Chapter 6.

FUTURE TRENDS AND CONCLUSION

The described investigations demonstrate that the degeneracy of the genetic code is connected with the 
system of genomatrix symmetries and with the system of invariants relative to some kinds of permutations 
in triplets. The described results show that the degeneracy of the genetic code is not the accidental choice 
of nature at all. The matrix genetics proposes the effective cognitive form of the matrix presentation of 
ensembles of the genetic code elements. This cognitive form should be utilized in future investigations 
of genetic systems as well.

The aim of each scientific theory is an explanation of phenomenological facts. The more phenom-
enological facts exist, the more bases exist to create theories. The results described in this chapter give 
us new interesting phenomenological facts about some permutation properties of the genetic code. They 
should be explained theoretically and they can be a prompting a new mathematical theory of genetic 
code systems. For example, these results lead to the idea that the genetic code in its matrix form of 
presentation can be connected with algebraic multi-dimensional constructions, which possess matrix 
forms of presentation also. A confirmation of this idea is described in Chapter 7.

Figure 20. The genomatrix РCAGU
312 and the mosaic of the code degeneracy (explanation in the text)

Figure 21. The genomatrix РCAGU
132 and the mosaic of the code degeneracy (explanation in the text)
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The unexpected properties of tetra-reproducing and tetra-scaling in the set of the mosaic genomatrices 
(Figures 3, 6 and 8) can be utilized for mathematical modeling the phenomenon of the tetra-division 
of gametal cells in meiosis; they can be useful for the theory of self-development systems and self-
organizing systems as well.

The results of this chapter show that the permutations of various kinds are important not only for the 
theory of digital signals processing but also for genetic code systems. One should investigate further 
similar analogies between the genetic field and the advanced theory of digital informatics. Why does 
the degeneracy of the genetic code possess the permutation properties described in this chapter? Why 
has nature chosen such a variant of the degeneracy of the genetic code? What kind of algebraic numeric 
structures possess such matrix features and can be a mathematical model of the genetic code with its 
degeneracy? Many of such questions should be answered from the viewpoint of a general theory in the 
future. The proposed cognitive forms of matrix genetics can be useful to create such a theory. The de-
scribed results permit one to search algebraic multi-dimensional constructions as a genetic code model 
with analogical matrix properties. In the case of a success of such algebraic searching, the problem of 
algebraization of bioinformatics can draw attention to the fundamental role of the genetic code. The 
theory of self-development systems and self-organizing systems can utilize the described data about the 
properties of the tetra-reproducing and the tetra-scaling of the genomatrices.

The presentation of the vertebrate mitochondria genetic code in the form of the genomatrices of 
Kronecker family reveals unexpectedly a set of symmetries in matrix mosaics of its degeneracy. Possible 
permutations of positions in triplets produce new genomatrices, which possess similar matrix symmetries 
as well. Mutual interchanges of alphabetic letters A, C, G, U in matrix kernels of Kronecker families 
produce new genomatrices, which also possess similar matrix symmetries. These phenomenological 
facts show the prospect that the genetic code and its degeneracy are not accidental choices of nature 

Figure 22. The genomatrix РCAGU
213 and the mosaic of the code degeneracy (explanation in the text)

Figure 23. The genomatrix РCAGU
321 and the mosaic of the code degeneracy (explanation in the text)
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at all. These facts are bases for searching algebraic multi-dimensional systems with similar properties, 
which can serve as a model of the genetic code.
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Chapter 3

Biological Evolution of 
Dialects of the Genetic Code

INTRODUCTION AND BACKGROUND

Beginning with the level of the code correspondence between 64 triplets and 20 amino acids, some 
evolutional changes take place, which lead to many different dialects of the genetic code. Each amino 
acid is encoded in a concrete dialect by a certain quantity of triplets. This quantity of its triplets is called 

ABSTRACT

This chapter demonstrates results of a comparative investigation of characteristics of degeneracy of 
all known dialects of the genetic code. This investigation is conducted on the basis of the results of 
symmetrological analysis, which were described in Chapter 2, about the division of the set of the 20 
amino acids into the two canonical subsets: the subset of the 8 high-degeneracy acids and the subset 
of the 12 low-degeneracy acids. The existence of numerical and structural invariants in the set of these 
dialects is shown. The derived results from the comparative investigation permit one to formulate some 
phenomenological rules of evolution of these dialects. These numeric invariants and parameters of code 
degeneracy draw attention to the formal connection of this evolution with famous facts of chrono-biology 
and chrono-medicine. The chronocyclic conception of the functioning of molecular-genetic systems is 
proposed on this basis. The biophysical basis of this conception provides connection to the genetic code 
structures with mechanisms of photosynthesis which produce living substance by means of utilization of 
solar energy. And the solar energy comes cyclically on the surface of the Earth. The revealed numeric 
invariants of evolution of the genetic code give new approaches to the fundamental question, why do 20 
amino acids exist? We will demonstrate new patterns of the genetic code systems.

DOI: 10.4018/978-1-60566-124-7.ch003
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“number of degeneracy” of the genetic code. For example, the amino acid Thr is encoded by 4 triplets 
in one genetic dialect; the number of degeneracy of this amino acid in this dialect is equal to 4. But this 
amino acid is encoded by 8 triplets in another dialect of the genetic code, where its number of degen-
eracy is equal to 8, etc. Structures of the set of such dialects reflect features of biological evolution on 
very basic levels. It seems that the comparative analysis of these dialects can give important information 
about essence and mechanisms of biological organisms. The symmetry analysis of phenomenological 
data is useful for answering these questions as well.

One direction, where such information can be useful, is connected with knowledge about physi-
ological rhythms in organisms. The statement that biological organisms exist in accordance with cyclic 
processes of environment and with their own cyclic physiological processes is one of the most classical 
statements of biology and medicine from ancient times. Many branches of ancient and modern medicine 
take into account the time of day especially, when diagnostic, pharmacological and therapeutic actions 
should be made for individuals. The set of this medical and biological knowledge is usually united un-
der the names chrono-medicine and chrono-biology. But is it possible to spread this chrono-biological 
viewpoint from the usual level of macro-physiological systems into the molecular-genetic level? This 
chapter analyzes this problem.

The second direction, where results of the comparative analysis of the dialects of the genetic code can 
be useful, is connected with the question of internal structure of the set of 20 amino acids. This question 
is considered in the last paragraph of this chapter.

The third direction is related to algebraic foundations of the genetic code, which will be considered 
in Chapter 7.

So, the objectives of this chapter are, firstly, the comparative analysis of all known dialects of the 
genetic code, secondly, the utilization of its results to develop appropriate thoughts about chrono-biology 
at the molecular-genetic level and about the internal structure of the set of 20 amino acids.

The various dialects of the genetic code exist in different kinds of organisms or of their subsystems 
(first of all, in mitochondria, which play a role of factories of energy in biological cells). For this book 
all initial data about the dialects of the genetic code were taken by the authors from the website of the 
National Center for Biotechnology Information http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.
cgi. These dialects differ one from another through their specifics of the degeneracy (through concrete 
relations between 20 amino acids and 64 triplets). Based on these data, one can find that 17 dialects are 
known only which differ one from another by the numbers of the degeneracy of the amino acids (see 
these 17 dialects in Table 1). A small quantity of the dialects from the website differ one from another 
by their start-codons only but not by the numbers of the degeneracy of the amino acids; we consider 
these dialects as the same dialect in our investigation.

Concerning chrono-biology and chrono-medicine, literature sources have many brilliant words about 
the great importance of biological rhythms for organisms. For example, the famous Russian physiologist 
A. Bogomolets wrote about “universal rhythmic movement in biology”: “The world exists in rhythms, 
cosmic processes follow the law of rhythmic movement … The day replaces night, the time of activity 
replaces the dream ... The vital processes work in an organism rhythmically … A heart works rhythmi-
cally, and lungs breathe rhythmically, and processes of feeding of an organism are worked rhythmically, 
and nervous system follows the law of a rhythm, creating a rhythm of mental life” (Vogralik & Vogralik, 
1978, p. 11).

According to the famous concepts of Ancient Oriental medicine about the cyclic nature of biological 
processes, “each organ has more or less a definite time interval for its culmination (its own time interval), 
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when its activity is maximal, … each organ has a maximum sensitiveness to pathogenic and medicinal 
influences just in this special time interval” (Vogralik & Vogralik, 1978, p.11). This phenomenological 
knowledge about the chronocyclic essence of biological organisms was used and tested during several 
thousand years by generations of oriental doctors, which were specially selected from many candidates 
in accordance with the criteria of their talents and of their brains. Many effective methods were con-
structed on the basis of this knowledge. (for example see (Cheng Xinnong, 1987; Needham, 1956)). One 
of them is the pulse diagnostics of Tibetan medicine. This pulse diagnostics was a universal method of 
diagnostics for an experienced doctor, who could determine not only many kinds of diseases, but report 
sometimes about physiological past and future of his patient. It is known that a doctor traditionally 
examines the state of 12 main organs during a session of pulse diagnostics (Tsydypov, 1988, p. 7). This 
method shows additionally, that chronocyclic processes (pulse processes, etc.) in biological organisms 
carry astonishingly complete information about organism on the whole.

Modern medicine and biology agree with many views of the Ancient Oriental medicine in questions 
of chrono-medicine and internal biological clock of organisms (see for example (Dubrov, 1989; Wright, 
2002)). Many diseases are connected with disturbances of natural biological rhythms in organisms. The 
problem of internal clocks of organisms, which participate in coordination of all interrelated processes 
of any organism, is one of the main physiological problems.

From ancient times, medicine connects chronocyclic processes of biological organisms with chro-
nocycles of the surrounding world, first of all, with the solar cycles of the changing of days and nights. 
It was found that the duration of such solar cycles could be divided comfortably for many practical 
tasks into 24 equal parts (“hours” by their modern name). For example, this division was comfortable 
in connection with the periodical activity of human organs. Ancient Oriental doctors divided 24 hours 
into 12 equal parts with a two-hour duration for each part. Each part was considered traditionally as a 
time interval of culmination activity of one of 12 main physiological organs. The other 11 main organs 
work in this time interval as well, but without their culmination activity. This division of 24 hours into 
12 equal parts is used intensively in recipes of acupuncture, in methods of pulse-diagnostics and in other 
branches of Oriental medicine (see, for example (Vogralik & Vogralik, 1978)). It is very interesting that 
many of these branches of Oriental medicine, including acupuncture and pulse-diagnostics, recommend 
time intervals of application of their recipes and methods in accordance with a table of 64 hexagrams 
and other symbolic structures of “I Ching” (“The Book of Changes”) (see, for example (Falev, 1991)). In 
these applications, the table of 64 hexagrams (which is connected with the genetic matrices of 64 triplets, 
as Chapter 11 of our book demonstrates) has an interpretation and meanings in terms of chronocycles.

It should be noted that a set of biological organisms consists of two main categories of organisms: 
autotrophic and heterotrophic organisms. Autotrophic organisms obtain carbon, which is needed to build 
their bodies, from CO2 of the surrounding world only by means of their mechanisms of photosynthesis, 
based on the use of solar energy. But the sun shines from morning till night only. Intervals of cyclic 
activity of autotrophic mechanisms of photosynthesis are dependent on solar cycles “day-night”. It is 
well known that “autotrophic organisms with their photosynthesis mechanisms play a decisive role in 
nature because they generate a main mass of organic material in the biosphere… The existence of all 
other organisms and the course of biogeochemical cycles are determined by activities of autotrophic 
organisms” (Giliarov, 1989, p. 9). It seems to be obvious that the solar cycle with its form “day-night” 
is the most important for autotrophic organisms. This solar 24-hour cycle can be considered as a main 
cycle of the outer world for biological objects. Is it possible that structural evolution of genetic code 
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dialects was realized without a connection with chronocycles of the whole organism and of the outer 
world and, in particular, without a connection with this solar 24-hour cycle?

Due to the reasons described above, one may conclude that genetic codes of autotrophic organisms 
are the most significant ones for the investigation of a possible connection between genetic structures and 
the solar 24-hour cycle. Heterotrophic organisms are less interesting for this task. They obtain carbon for 
their bodies not from CO2 and photosynthesis, but from exogenous organic materials. And heterotrophic 
organisms can be adapted to secondary chronocycles of those biological organisms, from which they 
obtain their organic food. So, one should differentiate cases of autotrophic and heterotrophic organisms 
in investigations of the dialects of the genetic code.

pHENOmENOLOGICAL RULES OF EVOLUTION OF 
KNOWN DIALECTS OF GENETIC CODES

Chapter 2 described the applications of methods of symmetry to analyze internal structure of the set 
of the 64 triplets and the set of the 20 amino acids. In the case of the vertebrate mitochondrial genetic 
code it was revealed that the set of the 20 amino acids is divided into the two sub-sets: the sub-set of the 
8 high-degeneracy amino acids (Ala, Arg, Gly, Leu, Pro, Ser, Thr, Val) and the sub-set of the 12 low-
degeneracy amino acids (Asn, Asp, Cys, Gln, Glu, His, Ile, Lys, Met, Phe, Trp, Tyr).

As we mentioned in Chapter 2, the vertebrate mitochondrial genetic code is the most ancient and 
“perfect” (symmetrical) dialect of the genetic code. We consider this dialect, which is shown in Table 1 
under number 1 on the first column, as the basic dialect to compare with other dialects. Let us analyze 
the 17 dialects of the genetic code to reveal the possible phenomenological rules and numeric invariants 
of evolution of the genetic code.

The table on Table 1 demonstrates the 17 dialects of the genetic code with their numbers of degen-
eracy. Numbers of degeneracy (ND), which are observed in the dialects, are equal to numbers from 1 
to 8. For example, the first dialect of the genetic code in the table on Table 1 possesses 12 amino acids, 
which number of degeneracy is equal to 2 (Asn, Asp, Cys, Gln, Glu, His, Ile, Lys, Met, Phe, Trp, Tyr); 6 
amino acids, which number of degeneracy is equal to 4 (Ala, Arg, Gly, Pro, Thr,Val), and 2 amino acids, 
which number of degeneracy is equal to 6 (Leu, Ser). At first it seems, that the distribution of numbers 
of degeneracy in a set of the 17 dialects of the genetic codes on Table 1 is chaotic on the whole. But 
this impression disappears, if one divides the set of 20 amino acids into the two subsets, which were 
mentioned above: the subset of low-degeneracy amino acids, each of which is encoded by 3 triplets 
or less in the dialect of the vertebrate mitochondrial genetic code, and the subset of high-degeneracy 
amino acids, each of which is encoded by 4 triplets or more in the same basic dialect. Such division 
reveals hidden regularities. Other kinds of the division of the set of 20 amino acids into two subsets do 
not reveal hidden regularities.

The numbers of the dialects of the genetic code on Table 1 correspond to the following dialects: 1) 
The Vertebrate Mitochondrial Code; 2) The Standard Code; 3) The Mold, Protozoan, and Coelenterate 
Mitochondrial Code and the Mycoplasma/Spiroplasma Code; 4) The Invertebrate Mitochondrial Code; 
5) The Echinoderm and Flatworm Mitochondrial Code; 6) The Euplotid Nuclear Code; 7) The Bacterial 
and Plant Plastid Code; 8) The Ascidian Mitochondrial Code; 9) The Alternative Flatworm Mitochondrial 
Code; 10) Blepharisma Nuclear Code; 11) Chlorophycean Mitochondrial Code; 12) Trematode Mito-
chondrial Code; 13) Scenedesmus obliquus mitochondrial Code; 14) Thraustochytrium Mitochondrial 
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Code; 15) The Alternative Yeast Nuclear Code; 16) The Yeast Mitochondrial Code; 17) The Ciliate, 
Dasycladacean and Hexamita Nuclear Code.

The data on the Table 1 permit us to formulate the following phenomenological rule (Petoukhov, 
2001a):

The phenomenological rule № 1: in genetic codes, the set of 20 amino acids contains two opposite 
subsets: the first subset consists of 12 low-degeneracy amino acids (with their numbers of degeneracy 
from 1 to 3), and the second subset consists of 8 high-degeneracy amino acids (with their numbers of 
degeneracy from 4 to 8).

Dialects

Distribution of numbers of 
degeneracy from 1 to 8

among 20 AA

ΣAA with

ND from 1 
to 3

ΣAA

with

ND from

4 to 8
1 2 3 4 5 6 7 8

1 12 6 2 12 8
2 2 9 1 5 3 12 8
3 1 10 1 5 3 12 8
4 12 6 1 1 12 8
5 2 8 2 6 1 1 12 8
6 2 8 2 5 3 12 8
7 2 9 1 5 3 12 8
8 12 5 3 12 8
9 2 7 3 6 1 1 12 8
10 2 8 2 5 3 12 8
11 2 9 1 5 2 1 12 8
12 1 10 1 6 1 1 12 8
13 2 9 1 5 1 1 1 12 8
14 2 9 1 5 1 2 12 8
15 2 9 1 5 1 1 1 12 8
16 13 5 1 1 13 7
17 2 8 1 6 3 11 9

Table 1. The 17 dialects of the genetic code and distributions of their numbers of degeneracy (ND) among 
20 amino acids (AA). The two right columns show quantities of the low-degenerate and high-degenerate 
acids (ΣAA). Bold frames mark two categories of numbers of the degeneracy: from 1 to 3 and from 4 
to 8 (Petoukhov, 2001a). Initial data were taken from the NCBI’s website http://www.ncbi.nlm.nih.gov/
Taxonomy/Utils/wprintgc.cgi
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As the authors can conclude, this rule about the canonical ratio 12:8 for two categories of amino acids 
is held true in nature without any exceptions for dialects of the genetic code of autotrophic organisms. 
These types of organisms play the main role in biogeochemical cycles. But this rule has small exceptions 
in two cases of heterotrophic organisms in a form of minimal numeric shifting from the regular ratio 
“12:8” to the nearest integers ratios: The “Yeast Mitochondrial Code” possesses the ratio “13:7” for these 
two categories of amino acids, and the “Ciliate, Dasycladacean and Hexamita Nuclear Code” possesses 
the ratio “11:9”. These non-standard ratios encircle the canonical ratio “12:8” from the contrary sides 
of numeric axis. These non-standard ratios demonstrate additionally the main role of the canonical ratio 
12:8 as that centre, around which minimal numeric fluctuations exist.

The data about evolution of the genetic code also demonstrates the existence of the following rule 
about canonical sub-sets of the low-degeneracy and high-degeneracy amino acids.

The phenomenological rule № 2: if a triplet encodes different amino acids in different genetic codes, 
then these amino acids belong to the same canonical subset of amino acids. In other words, it is practi-
cally forbidden for those triplets, which encode amino acids from one canonical subset of degeneracy, 
to pass into the group of triplets during biological evolution, which encode amino acids from another 
canonical subset.

A single exception to this rule exists: the triplet UAG can encode amino acids Leu or Gln in the 
different canonical subsets. The rule says nothing about stop-codons, and so it does not consider those 
evolutionary cases, when triplets which encode stop-codons (or amino acids) in one genetic code begin 
to encode amino acids (or stop-codons respectively) in another code.

Phenomenological rules described above testify that two independent branches of evolution of the 
genetic code exist at billions biological species: one branch – for canonical subset of high-degeneracy 
amino acids, and another branch - for canonical subset of low-degeneracy amino acids. These evolution-
ary branches within the consolidated code system can be compared with a parallel evolution of male 
and female organisms within a frame of one biological species. It reveals simultaneously that nature 
realizes an association of two very different subsets of 8 and 12 amino acids in the set of 20 amino acids. 
Thereby the matrix genetics reveal the existence of such internal structure in the set of 20 amino acids, 
which possesses the invariant properties in evolution of the genetic code. One can find additional details 
about such phenomenological rules of the dialects in the article (Petoukhov, 2001b).

THE CHRONOCyCLIC CONCEpTION AND THE DEGENERACy 
IN THE DIALECTS OF THE GENETIC CODE

One can note two numerical peculiarities of the natural system of the degeneracy numbers of amino 
acids in the set of the dialects of the genetic code:

1.  Number 24 is the least divisible integer for numbers 8 and 12;
2.  Main numbers of degeneracy of amino acids in all dialects codes are 1, 2, 3, 4, 6, 8; all of them 

are divisors of number 24 (four dialects have a single amino acid with its number of degeneracy 5 
or 7; a rate of each of these non-typical numbers of degeneracy in the whole set of the dialects is 
equal to 0.88%).
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Number 24 can be considered as the hidden constant of coordination among numbers of degeneracy 
in the dialects of the genetic code. But number 24 is well known in chrono-biology and chrono-medicine 
since ancient time as we mentioned above.

Chrono-medicine, which has thousand-year history, asserts that physiological systems of any indi-
vidual organism undergo regular changes of their physiological activity and passivity within the limits 
of the certain time intervals, which are connected with division of day on 24 equal parts. Oriental 
chrono-medicine are related to the “day-night” cycle of entrance of solar energy on the surface of the 
Earth. In the field of chrono-medicine, the number 24 represents not an arbitrary division of day into 
some parts, but phenomenological concordance of duration of physiological cycles with the duration 
of the day-night cycle.

Modern molecular biology knows that existence of proteins, structures of which are encoded geneti-
cally, possesses a cyclic character as well. Really, it is the well-known fact that proteins in biological 
organisms are re-built (re-created) by systematic cyclic processes. It means that a set of physicochemical 
factors inside biological organisms disintegrates proteins into amino acids permanently and then it re-
builds them from amino acids again in a cyclic manner. A half-life period (a duration of renovation of 
half of a set of molecules) for proteins of human organisms is approximately equal to 80 days in most 
cases; for proteins of the liver and blood plasma – 10 days; for the mucilaginous cover of bowels – 3-4 
days; for insulin – 6-9 minutes. Such permanent rebuilding of proteins provides a permanent cyclic 
renovation of human organisms. These known facts are described in biological encyclopedias (for ex-
ample, see (Aksenova, 1998, v. 2, p. 19)). Such cyclic processes at the molecular-genetic level should be 
investigated from various theoretical viewpoints. One possible viewpoint is given by the chronocyclic 
conception (Petoukhov, 2001b, 2008), which is described below.

This chronocyclic conception interprets separate groups of amino acids (or groups of triplets) as 
special “organs”, which have their culmination time intervals of their cyclic activity in 24-hour solar 
cycle by analogy with time intervals of culmination activity of macro-physiological organs from the 
above-mentioned conception of Oriental medicine. Of course, the cyclic activity of such genetic “organs” 
is coordinated with a cyclic activity of physico-chemical factors, which provides their work, including a 
necessary activation of amino acids. It is well known that “the necessary condition of proteins synthesis, 
which is expressed by polymerization of amino acids, is the existence of non-free, but so called activated 
(!) amino acids in the system, which amino acids have their own resource of energy. Activation of free 
amino acids is realized by means of specific ferments” (Berezov & Korovkin, 1990, p. 409).

From the viewpoint of the chronocyclic conception, the 12 low-degenerated amino acids can be 
interpreted conditionally as a certain interrelated ensemble of “organs”, which divides a 24-hour cycle 
into a sequence of 12 equal parts with a 2-hour duration of each part. And each part corresponds to a time 
interval of a culmination activity of one of these amino acids (together with physicochemical factors, 
which serves this amino acid). The idea of chronocyclic culmination activities of the considered amino 
acids (with their teams of servicing) is placed here in a parallel with the phenomenological knowledge 
of Oriental medicine about the chronocyclic culmination activities of physiological macro-systems. It 
is essential that one can examine experimentally the existence of cyclic culmination activity of each 
amino acid. In our opinion, this experimental task of investigation of chronocyclic activities of amino 
acids in vivo is very important for understanding the genetic coding system.

Another group with the 8 high-degenerated amino acids can be interpreted in such a model as a certain 
interrelated ensemble of “organs”, which divides a solar 24-hour cycle into a sequence of 8 equal parts 
with the 3-hour duration of each part.
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By the way, for those readers, who are interested in Oriental medicine and in Ancient Oriental culture, 
it could be mentioned that there is a special meaning to the numeric pair “12 and 8”, which is one of the 
distinquished pairs there: “8 and 12 are a standard measure of alternative separations of space-time in 
Chinese chronotopograms … The symbol of the Earth – a square – is characterized by number 8, and 
the symbol of heaven – a circle - is characterized by number 12” (Kobzev, 1994, p. 39, 40).

In the modelling approach, each amino acid receives a new theoretical parameter, connected with 
chronocyclic processes: the duration of its time interval of the culmination activity. More precisely, the 
12 low-degenerated amino acids receive a relatively shorter duration (2 hours). The 8 high-degenerated 
amino acids receive a relatively greater duration (3 hours). It permits to introduce comfortable and heu-
ristic terminology from linguistics for two considered categories of amino acids.

The set of 20 amino acids is the genetic alphabet for proteins. An analogy between genetic code 
and linguistics has been widely used in science for a long time by many authors. Moreover the famous 
conception exists for many years, that all linguistic languages were formed not on an empty place, but 
they are a continuation of the genetic language or, anyway, are closely connected to it, confirming the 
idea of unification of information bases of organisms (for example, see (Baily, 1982; Jacob, 1974)). The 
book “Linguistic genetics” marks: “The opinion about the language as about living organism, which 
submitted to the natural laws of nature, ascend to a deep antiquity… Research of a nature, of character 
and of reasons of isomorphism between genetic and linguistic laws is one of the most important cardinal 
problems for linguistics of our time” (Makovskiy, 1992, p. 15).

But alphabets of linguistic languages always consist of consonant letters and vowel letters, which 
differ phonetically in terms of their time durations and relative quantities in each alphabet (the quantity 
of consonant letters is greater than the quantity of vowel letters). The alphabet of 20 amino acids with 
the two canonical categories of amino acids, which differ in terms of their time durations in the described 
modelling approach, has a new obvious parallel with the alphabets of human languages relative to their 
two categories of consonant letters and of vowel letters. Due to this parallel, one can name 12 considered 
amino acids with the shorter time duration (2 hours) as “consonant” amino acids, and 8 other amino acids 
with the relative greater duration (3 hours) as “vowel” amino acids. The quantity of consonant amino 
acids is greater than the quantity of vowel amino acids in concordance with the relative quantities of 
consonant letters and of vowel letters in linguistic alphabets.

Human speech and writing are constructed on the basis of alternating change of vowel and consonant 
elements, and chained sequence of proteins is based on alternating changes of vowel and consonant 
amino acids. It is probable that numerous number of physiological processes is constructed in a simi-
lar chained pattern with alternating changes of their “vowel” and “consonant” elements, which differ 
typically by their time duration and which are produced there by nature. In this context about binary-
opposite categories of physiological sub-processes, vowel element is a representative from a category 
of more prolonged sub-processes, and consonant element is a representative from a category of shorter 
sub-processes. For example, the human cardio cycle lasts 1 second approximately at rest. In rest this 
cardio cycle consists of a more prolonged activity phase in 0.6 sec and a shorter repose phase in 0.4 
sec. The ratio of duration of these phases is equal to 6:4 = 12:8 = 3:2. These two phases of cardio cycles 
can be correlated to two categories of durations (“vowel” and “consonant”). It should be noted that this 
cardio ratio 6:4 = 12:8 = 3:2 is equal to the described ratio 12:8 between the quantity of the consonant 
and vowel amino acids. This ratio 3:2 is named the quint (or the fifth) in the field of musical harmony. 
This quint ratio underlies the harmony of ancient Chinese music and the Pythagorean musical scale as 
Chapter 4 of our book describes in connection with materials of matrix genetics.
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From an informational viewpoint, all physiological processes in an organism can be represented as 
information messages to interchange by information among different subsystems of organisms (or all 
physiological processes have their information components additionally). In our opinion, this informa-
tion interchanging is realized in more or less uniform languages, which are coordinated with genetic 
languages, and their alphabets can possess vowel and consonant elements as well. Due to this reason, 
one should investigate all physiological processes to find representatives from two binary-opposite 
categories of durations (“vowel” and “consonant”) there by analogy with linguistic alphabets.

By the way, computer informatics does not use such ordinary alphabetic symbols, which are differed 
by their time durations. The reason is that a trigger technology provides equal times for trigger transitions 
into “on” or “off” states. So, computer informatics and human languages have important differences in 
this aspect, which is connected with deep physiological mechanisms of biological informatics including 
human speech on the whole.

The very important hypothesis in the frame of the chronocyclic conception is the hypothesis about the 
connection between the structure of the genetic code and mechanisms of photosynthesis. The mechanisms 
of photosynthesis play the role of the initial mechanisms, which produce in cyclic manner the living 
substance of autotrophic organisms in accordance with cyclic arrivals of solar energy to organisms. By 
this hypothesis, the genetic code structures are connected by means of mechanisms of photosynthesis 
with the 24-hour cycle of arrival of solar energy on the surface of the Earth. From this viewpoint, those 
cyclic processes of macro-physiological systems of organisms, which are co-ordinated with phases of 
the day-night cycle, have molecular-genetic forerunners, which are co-ordinated with these phases as 
well. And secrets of structures of the genetic code are related to secrets of biological phenomenon of 
photosynthesis. The efficiency of photosynthesis is not reproduced in modern laboratories till now. But 
its mechanisms produce cyclically the living substance, which exists cyclically and which is encoded 
genetically by means of adequate cyclic forms. In other words, one can think that photosynthesis is pri-
mary in relation to the genetic code which promotes the coded inheritance of already photosynthesized 
primary matter. And structures of the genetic code (for example, the phenomenon of division into sub-sets 
of the 8 and 12 acids, the specifics of numbers of degeneracy of amino acids) depend on mechanisms 
of photosynthesis and the 24-hour cycle of day-night.

One of additional indirect arguments of chrono-biological dependence of structures of the genetic 
code is the coincidence of matrix structures of the genetic code with tables of the ancient Chinese “I 
Ching”, which underlie the Oriental chrono-medicine (see Chapter 12 of our book). By the way, G. Stent 
(1969), who is the famous specialist in the field of molecular genetics, has put forward the hypothesis 
about a possible connection between the set of 64 genetic triplets and the table of 64 hexagrams from “I 
Ching”. As far as we know, it was the first publication on this theme, and so Stent should be considered 
as a pioneer in this field of analyzing of parallels between modern molecular genetics and mysterious 
knowledge of Ancient civilizations.

The chronocyclic theory of genetic codes considers molecular-genetic processes as chronocycles, 
included in a mutual chorus of chronocycles of nature. It has been known for a long time, that processes 
of synthesis of proteins have a cyclic character. From an ordinary viewpoint, structures of genetic code 
are destined to code amino acids in their space sequence in proteins. From the viewpoint of the chrono-
cyclic theory, it is likely that these genetic structures are coding simultaneously time parameters of cyclic 
processes of amino acids and of protein’s synthesis. Moreover, one can think that genetic structures are 
coding, first of all, these chronocycles exactly, due to which the coding of amino acids (and of proteins) is 
realized in a secondary manner. In other words, DNA and RNA are carriers of information not only about 
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primary composition of proteins, but about the chronocyclic organization of amino acids and proteins as 
well. From this position, those biological rhythms, which are observed at very different physiological 
levels so widely, should be derived not from peculiarities of final ensembles of proteins only, but also 
from peculiarities of pre-protein’s genetic structures, which carry chronocyclic information in a long 
train of biological generations. The proposed chronocyclic conception includes the thesis that internal 
genetic clocks exist, which are distributed inside many parts of individual organism to participate in 
coordination of the whole chorus of cyclic physiological processes at different levels.

It is very likely that universal nitrogenous bases of the genetic code have one more hidden attribute 
(or the trait) – chronocyclic (time) attribute. For example, complementary nitrogenous bases can be 
characterized by equal typical time of a process of their junction during the formation of DNA (and of 
their separation during the splitting of DNA). Two pairs of complementary bases with their 3 and 2 hy-
drogen bonds can have the appropriate ratio 3:2 of their typical times in some sense. Appropriate genetic 
matrices, which include a factor of time, can be written for mono- and multiplets of genetic systems. It 
is very probable that genetic structures are coding not only the synthesis of proteins, which is the first 
stage in life of proteins, but also the whole cycle of their life including their disintegration phase. One 
can think that a future theory of genetic systems will include a theoretic consideration of these cyclic 
phenomena of protein’s life in connection with other cycles of nature.

Concerning the unity of a biological organisms, one should emphasize that structures of all physiologi-
cal systems, which have a chronocyclic character of their work, should be coordinated with structural-
cyclic peculiarities of genetic coding system to provide the evolutionary survival of these physiological 
systems by means of their reproduction in next generations.

WHy 20 AmINO-ACIDS?

Many attempts to answer on this fundamental question are known. On the basis of the described phe-
nomenological rules of evolution of dialects of the genetic code, one can propose the new possible 
answer: the set of 20 acids are presented in genetic code, that is formed by two alternative subsets of 
8 and 12 amino acids. Therefore the initial question comes down to the deeper question: why dose the 
two alternative sub-sets of the 8 high-degeneracy acids and the 12 low-degeneracy acids exist in the set 
of 20 amino acids?

A possible answer on this new fundamental question is related to the revealed fact, that these two 
sub-sets constitute two independent branches of evolution within a genetic code as it was described 
above. These numbers 8 and 12 have their tetra-presentation: 8 = 4х2, 12 = 4х3. In this presentation, the 
number 8 contains the number 2 as its modular block, and the number 12 contains the number 3 in the 
analogical role. Just a biological mechanism of tetra-segregations can be responsible for the realization 
of such two sub-sets of amino acids. Each modular block of the sub-set of the 8 high-degeneracy acids 
consists of two amino acids, and each modular block of the sub-set of the 12 low-degeneracy acids 
consists of three amino acids. One can note the formal analogy between these 2-part and 3-part blocks 
and the famous fundamental hypothesis from the quite different field of physics of elementary particles: 
according to the quark hypothesis, baryons consist of three quarks, and mesons consist of two quarks 
(the quark and the anti-quark). Is it possible for formal elements of the quark theory to be transferred 
into the field of the theory of the genetic structures? The future will show.
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Additional investigations have revealed that the considered pair of alternative attributes (“high-
degenerative and low-degenerative”) is not a single pair for a division of the set of 20 amino acids into 
subsets of 8 and 12 amino acids. The genetic code is constructed so, that such division is a typical one 
for many other pairs of real binary-opposite attributes, in relation to which such division is considered. 
Similar divisions, but with different sub-sets of 8 and 12 amino acids, are given by such binary-opposite 
attributes as “complementary-uncomplementary” amino acids, “high-carbon or low-carbon” amino 
acids, “hydrophobic or hydrophilic” amino acids, “eightfold or non-eightfold quantity of protons” in 
amino acids (Petoukhov, 2001b, 2005). One can think that such multichoice phenomenon of the typical 
segregation of the set of 20 amino acids into the two sub-sets with their ratio 12:8 is connected with 
providing the parallel channels of biological information, which work with different binary-oppositional 
attributes (He & Petoukhov, 2007).

For the proposed viewpoint about the principle of the tetra-segregation, Figure 1 demonstrates a 
confirmative example with sub-sets of complementary and uncomplimentary amino acids: the existence 
of the sub-sets of the 8 and 12 amino acids is provided by the principle of their tetra-construction from 
typical modular blocks with 2 units and with 3 units (8=4х2 and 12=4х3). Complementary amino ac-
ids are those, which are encoded by groups of codons and their anti-codons. One can see from Figure 
2 of Chapter 2, that the 8 amino acids form the four pairs of complementary amino acids (Pro-Gly, 
Arg-Ala, Lys-Phe, Met-Tyr), but other 12 amino acids are uncomplementary ones. The sub-set of the 
8 complementary amino acids is divided into those four pairs (or four modular blocks with two amino 
acids), each of which is encoded by triplets from a separate family of N-triplets. And the sub-set of the 
12 uncomplementary amino acids is divided into those four triples (or four modular blocks with three 
amino acids), each of which is encoded by triplets from a separate families of N-triplets (in the case 
of each of the amino acids Ser and Leu, we take here into account those family of N-triplets, all four 
triplets of which encode it in Figure 2 of Chapter 2). So, each of four families of N-triplets encodes 2 
complementary amino acids and 3 uncomplementary ones.

FUTURE TRENDS AND CONCLUSION

The analysis of symmetries in numbers of degeneracy of many kinds of the dialects of the genetic code 
have led to discoveries of some phenomenological rules about numeric invariants and regularities in this 
evolution. The obtained results produced new concepts about chronocyclic aspects of the molecular-
genetic system and about the fundamental question, why do 20 amino acids exist. These results will be 
used in Chapter 7, where the 8-dimensional algebra of the genetic code is described.

The phenomenological data about evolution of the genetic code needs to be investigated further. 
Why do only some triplets change their coding meaning in the course of biological evolution? In what 
aspects do these variable triplets differ from conservative triplets? Is it possible to propose such adequate 
mathematical model of the genetic code, which reflects the evolutionary peculiarities of the dialects? 
One can think that methods of symmetry analysis will be useful to solve these and other similar ques-
tions as well.

The proposed chronocyclic conception gives some new approaches to investigate functional features 
of the molecular-genetic systems experimentally and theoretically. The heuristic research of internal 
genetic clocks, which are distributed along all parts of the whole organism, has an important meaning to 
understand a coordinated organization of various biological rhythms at different biological levels. Obvi-
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ously, such research has not only theoretical, but practical aims also. For example, at what time and how 
frequently should we give pharmacological medicines? It is well-known that the same pharmacological 
medicines have very different effects depending on a time of its taking. A knowledge about internal 
genetic clocks of organisms is very valuable for pharmacological and physiotherapeutic influences, for 
conducting of morphogenetic and growth processes, for ergonomic stimulation in man-machine systems 
and for many other tasks.

The chronocyclic conception extends additionally the traditional field of investigations of parallels 
between genetic and linguistic languages by introducing the reasoned notions of the vowel and consonant 
amino acids. The conception produces arguments also to study typical binary-oppositional kinds of time 
durations (short and long durations with typical ratios between them, for example, with the quint ratio 
3:2) in various physiological processes on different biological levels.

The proposed answer on the fundamental question about the set of 20 amino acids brings down this 
question to the deeper one about the 8 high-degeneracy acids and the 12 low-degeneracy acids. Inves-
tigations of various aspects of this answer revealed the phenomenon of existence of many variants of 
division of this set into two sub-sets of 8 and 12 acids depending on a choice of a few kinds of molecular 
binary-oppositional attributes.

In our opinion, an additional comparative analysis of dialects of the genetic code will give many 
essential results to understand specifics of the genetic code systems and their evolution. Methods of 
symmetry and of matrix genetics will be utilized extensively in these researches. They will permit to 
discover not only phenomenological rules of molecular-genetic evolution but also to develop appropriate 
mathematical models of genetic systems (see Chapter 7).

The chronocyclic conception will unite many isolated facts and details of cyclic processes in 
molecular-genetic systems and will facilitate understanding the connection between cyclic processes 

Figure 1. An example of the presentation of the set of 20 amino acids (AA) as a sum of two subsets with 
8 = 4 x 2 and 12 = 4 x 3 acids of complementary and uncomplementary types according to Figure 2 
of Chapter 2. The first tetra-subset has the four pairs of amino acids of the complementary type. The 
second tetra-subset has the four triples of the uncomplementary amino acids correspondingly. Triplets 
from the same four families of N-triplets encode these two tetra-subsets of amino acids
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at molecular-genetic and macro-physiological levels. The progress in investigations of genetic clocks, 
which are distributed inside many parts of the whole organism, can help to overcome those diseases, 
which are connected with disturbances of biological rhythms. One can hope that this progress will be 
useful for solving the problem of ageing of human organisms, which is related to violation of physi-
ological cycles to some extent as well. The science knows examples of biological organisms, which are 
immortal practically and which utilize endless cycles.

A bridge between the famous theory of hypercycles by Eigen (1971, 1979, 1988, 1992, 1993) and 
hierarchies of cyclic processes at molecular-genetic level is possible to some extent for tasks of model-
ing.

The investigation field of parallels between genetic and linguistic languages will be extended by uti-
lizing the notions “vowel” and “consonant”. Possible researches of physiological processes with typical 
binary-oppositional kinds of their durations (with the quint ratio 3:2 and others) will demonstrate new 
fields of a specific coordination of processes in biological organism at its various levels.

The proposed answer to the question of the set of 20 amino acids stimulates new ideas about structures 
of the genetic code and leads to new researches about the phenomenon of many variants of division of 
this set into two sub-sets with 8 and 12 acids depending on concerned binary-oppositional attributes 
of genetic molecules. A possible meaning of this new typical pattern of the division with the ratio 8:12 
should be investigated from various viewpoints.

The analysis of symmetries in internal structures of the sets of the 64 triplets and of the 20 amino 
acids leads to useful results, which help in investigating the evolution of the genetic code. Experimen-
tal data of molecular genetics about many dialects of the genetic code can be utilized by means of the 
comparative symmetrical analysis to discover phenomenological rules of evolution of the genetic code. 
The described phenomenological rules draw attention to existence of numeric invariants in evolution 
of these dialects and to phenomenon of the division of the set of the 20 amino acids into two sub-sets of 
the 8 high-degeneracy acids and the 12 low-degeneracy acids. This division is the new typical pattern 
in molecular genetics.

The proposed chronocyclic conception leads to new ideas for experimental and theoretical researches 
to understand the general chorus of cyclic processes in each biological organism.

The results of investigations, which were described in this chapter, will be utilized to develop the 
mathematical model of the genetic code and to extend applications of methods of symmetry in the field 
of molecular genetics.
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Section 2
Symmetrical Analysis

Techniques and Numeric
Matrices of the Genetic Code

Section 2 is organized into three chapters. This section discusses numeric matrices of genetic code and 
establishes the relationships between genetic code, stochastic matrices, and Hadamard matrices. The 
noise immunity, encoding and principle of molecular economy in genetic informatics, and Fibonacci 
numbers and phyllotaxis laws are presented in this section.
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Chapter 4

Numeric Genomatrices of 
Hydrogen Bonds, the Golden 
Section, Musical Harmony, 

and Aesthetic Feelings

INTRODUCTION AND BACKGROUND

Till this moment we analyzed the symbolic genetic matrices. Now we begin to analyze numeric genetic 
matrices, which are produced from the symbolic genomatrices. What are initial reasons to pay attention 
to numeric genomatrices?

The previous chapters demonstrated that the Kronecker product of matrices is useful for analysis 
of genetic code and is adequate for its structure. But the Kronecker product possesses some distinctive 
properties, which are connected with eigenvalues of matrices: eigenvalues of the Kronecker product 
A⊗B for two matrices A and B, which have their eigenvalues αi and βk, are equal to the products αi*βk 
of these eigenvalues. This property gives an additional opportunity to introduce the notion of the Kro-
necker product into mathematics (Bellman, 1960). But if eigenvalues are so important for the theme of 
Kronecker products, one should investigate numeric genomatrices, which possess eigenvalues (symbolic 
matrices do not possess eigenvalues).

ABSTRACT

This chapter is devoted to a consideration of the Kronecker family of the genetic matrices, but in the 
new numerical form of their presentation. This numeric presentation gives opportunities to investigate 
ensembles of parameters of the genetic code by means of system analysis including matrix and symmetric 
methods. In this way, new knowledge is obtained about hidden regularities of element ensembles of the 
genetic code and about connections of these ensembles with famous mathematical objects and theories 
from other branches of science. First of all, this chapter demonstrates the connection of molecular-
genetic system with the golden section and principles of musical harmony.

DOI: 10.4018/978-1-60566-124-7.ch004
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Also we will try to investigate genetic sequences from the viewpoint of the theory of digital signal 
processing. This theory presents a signal in the form of a sequence of its numeric values in points of refer-
ences. Discrete signals are interpreted as vectors of multi-dimensional spaces: a value of the signal in each 
time (a moment of reference) is interpreted as the value of one of the coordinates of multi-dimensional 
space of signals (Trahtman, 1972). The theory of discrete signals processing is the geometrical science 
about multidimensional spaces in some extent. The number of dimensions of such space is equal to the 
quantity of moments of references for the signal. Appropriate metric notions and other necessary things 
for providing the reliability, velocity and economy of information transfer are introduced in these multi-
dimensional vector spaces. For example, important information notions of the energy and of the power 
of a discrete signal are correspondingly the square of the length of the vector-signal and the same square 
of the length of the vector-signal, which is divided by the number of dimensions. Various signals and 
their ensembles are compared as geometrical objects of such metric multi-dimensional spaces.

These methods underline technologies of signal intelligence and pattern recognition, detections and 
corrections of information mistakes, artificial intellect and robot learning, etc. If we wish to use the 
methods of the theory of discrete signals processing for analyzing the genetic structures, we should learn 
to turn from the symbolic genetic matrices and genetic sequences to their numeric analogies.

The method, which is utilized in this book for such a turn, replaces the letter symbols A, C, G, U(T) 
of the genetic alphabet by quantitative parameters of these nitrogenous bases, which determine their 
physical-chemical role (Petoukhov, 2001a). First of all, these symbols are replaced in this chapter by 
numbers of the hydrogen bonds, which are suspected long ago as important participants of transferring 
of genetic information. Each molecular element of the genetic code is a component part of a harmonic 
system of genetic coding. Its molecular parameters are coordinated with quantitative parameters of 
other elements of this system. Quantitative characteristics of separate elements should be investigated 
as a part of the set of quantitative characteristics of system ensemble of elements. The matrix approach 
is known in science long ago as very effective for system investigations, for example, in the fields of 
quantum mechanics, physics of elementary particles, etc. In the field of matrix genetics, this approach 
unites parameters of a set of separate elements not only in a general matrix, but in the whole family of 
genetic matrices, which embraces sets of multiplets of different lengths (Figure 3 of Chapter 1). In this 
way hidden connections between parameters of separate parts of the united genetic system can be revealed 
together with their relations to famous physical and mathematical constants and other objects.

One of such famous constant is the golden section or “the divine proportion” φ, which is equal to 
(1+50.5)/2 = 1.618… . This chapter demonstrates the connection of the genetic code parameters with the 
golden section in particular. The golden section is related to the famous series of Fibonacci numbers Fn, 
where n = 0, 1, 2, 3,…. This Fibonacci series Fn (Figure 1) begins with the numbers 0 and 1. Each next 
member of this series is equal to the sum of two previous members: Fn+2 = Fn + Fn+1. Fibonacci numbers 
are used widely in the theory of optimization and in many other fields. One can find a rich collection of 
data about the golden section and the Fibonacci numbers on the web-site of “The museum of harmony 
and the golden section” by A.Stakhov (www.goldenmuseum.com) and in works (Jean, 2006; Kappraff, 
1990, 1992).

Another hidden connection, which is revealed by means of the matrix approach, is the connection 
of the genetic code parameters with the Pythagorean musical scale. It is known that thoughts about the 
key significance of harmonious vibrations in the organization of the world exist from ancient time. For 
example, Pythagoreans thought about musical intervals in the planetary system and in all around. J. 
Kepler wrote the famous book “Harmonices Mundi”, etc. Modern atomic physics found the harmonic 
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ratios in spectral series by T. Lyman in the atom of hydrogen, which has been named “music of atomic 
spheres” by A. Einstein and A. Sommerfeld (Voloshinov, 2000). The importance of Pythagorean ideas 
about a role of musical harmony was emphasized also by the Nobel winner in physics R. Feynman 
(1963, v. 4, Chapter 50).

The scientific studies of physiological mechanisms of musical perception took place long ago. One 
can find the review on this topic in the article (Weinberger, 2004). Beginning with 4-months old, infants 
turn to a source of pleasant sounds (consonances) and turn aside a source of unpleasant sounds (dis-
sonances). The human brain does not possess a special center of music. The feeling of love to music 
seems to be dispersed in the whole organism. The musical sound addresses to all in the person, or to 
person’s archetypes. Data are known that the first shout of the baby, who has been born, corresponds 
to sounds on frequency of the music note “la” (440 Hz) irrespective of its timbre and of loudness, as 
a rule. (http://www.rods.ru/Html/Russian/MoreResonance.html). This frequency is used traditionally 
for tuning musical instruments by means of a tuning fork. This speaks certain biological unification of 
musical sounds. According to statistics, physical reactions to music (in the form of skin reactions, tears, 
laugh, etc.) arise in 80% of adult people. Animals also are not indifferent to human music. All such data 
show that the perception of music has biological essence and that the feeling of musical harmony is 
based on inborn mechanisms. Therefore it is necessary to search for connections of the genetic system 
with musical harmony. In particular this chapter presents such a search.

It is known for a long time in the field of mechanics that harmonious vibrations are capable of struc-
turally forming and ordering influences leading, for example, to the formation of so-called figures by 
Chladni. The book (Jenni, 1972) presents the scientific field, which studies ordering action of harmoni-
ous vibrations on many shapeless free-flowing and liquid substances. This book demonstrates through 
many photos how these vibrations produce in these substances beautiful morphological patterns including 
five-symmetrical patterns, which are forbidden in classical crystallography. Questions about symmetries 
in music and poetry were investigated traditionally (see for example (Bruhn, 1992, 1996; Darvas, 2007; 
Goldman, 1992; Lendvai, 1993; Shubnikov & Koptsik, 1974; Tusa, 1994)).

The living substance is compared with crystals frequently. For example, E. Schrodinger (1955) 
named it “aperiodic crystal”. Whether annals of modern science contain any data about a connection 
of musical harmony with crystals? Yes, such data exist. The book (Berger, 1997, p. 270-281) gives the 
following historical data about a few prominent crystallographers, which emphasized a connection of 
crystal structures with musical harmony.

In 1818, C.S. Weiss, who discovered crystallographic systems and who was one of founders of crys-
tallography, emphasized a musical analogy in crystallographic systems. He investigated ratios among 
segments, which are formed by faces of crystals of the cubic system. Weiss has shown that these ratios 
are identical absolutely to ratios between musical tones.

In 1829, J. Grassman, who wrote a well-known book “Zur physischen Kristallonomie und geometrishen 
Combinationslehre” and developed many mathematic methods in crystallography, noted impressive 

Figure 1. The Fibonacci series
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musical analogies in the field of crystallography. The statement is about many analogies described by 
him between ratios of musical tones and segments, formed by faces of the same zone of crystals. Accord-
ing to his figurative expression, “crystal polyhedron is a fallen asleep chord - a chord of the molecular 
fluctuations made in time of its formation” (from (Berger, 1997, p. 270)).

At the end of 1890’s the outstanding crystallographer V. Goldschmidt returned to the same ideas. The 
prominent Russian mineralogist and geochemist A. E. Fersman wrote about his thematic publications: 
“These works represent the historical page in crystallography, which has lead Goldschmidt to reveal-
ing by him laws of harmonic ratios. Goldschmidt has extended these laws logically from the world of 
crystals into the world of other correlations in the regions of paints, colors, sounds and even biological 
correlations. It has become one of the most favourite themes of philosophical researches by Goldschmidt” 
(from (Berger, 1997, p. 270)). This list of such historical examples can be continued.

Taking into account, that Shrodinger named a living substance as aperiodic crystal and that the clas-
sicists of crystallography emphasized a connection between crystal structures and musical harmony, it 
seems natural to try to find traces of musical harmony in living substance as well. This idea about a pos-
sible participation of musical harmony in the organization of biological organisms is not new for modern 
biophysics. For example, the famous Russian biophysics Simon Shnoll (1989) wrote: “From possible 
consequences of interaction of macromolecules of enzymes, which are carrying out conformational (cyclic) 
fluctuations, we shall consider pulsations of pressure - sound waves. The range of numbers of turns of the 
majority of enzymes corresponds to acoustic sound frequencies. We shall consider … a fantastic picture 
of “musical interactions” among biochemical systems, cells, bodies, and a possible physiological role of 
these interactions. …… It leads to pleasant thoughts about nature of hearing, about an origin of musical 
perception and about many other things, which belong to area of biochemical aesthetics already”. This 
term “biochemical aesthetics” proposed by Schnoll reflects many materials of this chapter.

Let us recall some fundamental notions of the theory of musical harmony. Each musical note is 
characterized by its certain frequency of sounding. For musical melody, a ratio between frequencies of 
neighboring notes is important, but not absolute values of frequencies of separate notes. For this reason 
the melody is easily distinguished irrespective of what acoustic range of frequencies it is produced in, 
for example, by child, woman or adult man with quite different voices. An aggregate of frequency values 
between sounds in musical system is named a musical scale.

The same note, for example, the note “do” is distinguished by the person as the same if its frequency 
is increased or reduced twice i.e. if it belongs to another octave. The interval of frequencies from some 
note frequency f0 up to frequency 2*f0 is named an octave. Each note “do” is considered usually as the 
beginning of the appropriate octave. For example, the first octave reaches from frequency 260 Hz ap-
proximately (the note “do” of the first octave) up to the double frequency 520 Hz (the note “do” of the 
second octave).

Small quantity of frequencies of the octave diapason is traditionally used for musical notes only but 
not the whole infinite set of its frequencies. The notes, which correspond to these frequencies, form the 
certain sequence in ascending order of frequencies. A musical scale represents a sequence of numerical 
values (“interval values”) between frequencies of the adjacent notes (musical tones).

For Europeans the idea of musical harmony of a universe is connected basically with the name 
Pythagoras and his school. After ancient thinkers (first of all, ancient Chinese thinkers) Pythagoreans 
considered that the world is arranged by principles of musical harmony. The Pythagorean musical scale, 
which is based on the quint ratio 3:2, played the main role in these views. One should note that this 
musical scale was known in Ancient China long before Pythagoras, who has presumably got acquainted 
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within his life in Egypt and Babylon (the analysis of these questions is presented in detail in the book 
(Needham, v.4, 1962)). In Ancient China this quint music scale had a cosmic meaning connected with 
“The Book of Changes” (“I Ching”): numbers 2 and 3 were named “numbers of Earth and Heaven” 
there. After Ancient China, Pythagoreans considered numbers 2 and 3 as the female and male numbers 
which can give birth to new musical tones in their interconnection. According to some data, the quint 
system of the musical scale is the most ancient among known systems in the history of musical scales 
(http://www.arbuz.uz/t_octava.html).

Ancient Greeks attached an extraordinary significance to the search of the quint 3:2 in natural systems 
because of their thoughts about musical harmony in the organization of the world. For example, the great 
mathematician and the mechanician Archimedes considered as the best result of his life the detection of 
the quint 3:2 between volumes and areas of a cylinder and a sphere entered in it (Voloshinov, 2000). Just 
these geometrical figures with the quint ratio were pictured on his gravestone according to Archimedes 
testament. And due to these figures Cicero has found Archimedes’s grave later, 200 years after his death. 
This chapter demonstrates, in particular, the connection of the Kronecker family of the genomatrices of 
hydrogen bonds with the Pythagorean musical scale based on the quint ratio 3:2.

NUmERIC GENOmATRICES OF HyDROGEN BONDS

As we mentioned above, numeric genomatrices are derived from the replacement of each symbol A, C, 
G, U/T of the nitrogenous bases in the symbolic genomatrixes P(n)=[C A; U G](n) (Figure 3 of Chapter 
1) by quantitative parameters of these bases. For example, let us consider the genomatrices of hydrogen 
bonds of these nitrogenous bases. The hydrogen bonds of complementary letters of the genetic alphabet 
are suspected for a long time for their important information meaning. In addition hydrogen plays the 
main role in the composition of our Universe, where 93 atoms of hydrogen are presented among each 
100 atoms and where “chemical influence of omnipresent hydrogen is the defining factor” (Ponnampe-
ruma, 1972). Thus the investigation of a possible meaning of hydrogen bonds in genetic information 
has a special interest.

The complementary letters C and G have 3 hydrogen bonds (C = G = 3) and the complementary let-
ters A and U have 2 hydrogen bonds (A = U = 2). Let us replace each multiplet in the Kronecker family 
of the genomatrices P(n) = [C A; U G](3) by the product of these numbers of its hydrogen. In this case, we 
get the Kronecker family of the multiplicative matrices marked as PMULT

(n) = [3 2; 2 3](n) conditionally 
(another family of additive matrices was considered in the works (Petoukhov 1999, 2001, 2003-2004)). 
For example, the triplet CAU will be replaced by number 12 (=3*2*2) in the genomatrix PMULT

(3). Figure 
2 demonstrates the three initial genomatrices from this Kronecker family of genomatrices [3 2; 2 3](n) 
constructed in this way. Numeric characteristics of each genomatrix [3 2; 2 3](n) are connected with the 
quint ratio 3:2; for this reason we name such genomatrices as quint genomatrices conditionally.

All matrices PMULT
(n) are nonsingular. They are symmetrical relative to both diagonals and can be 

named “bi-symmetric matrices”. All rows and all columns of this matrix differ from each other by the 
sequences of their numbers. But the sums of all numbers in the cells of each row and of each column 
in any matrix PMULT

(n) are identical to each other. For example, in the case of the matrix PMULT
(3), these 

sums are equal to 125 = 53 and the total sum of numbers inside the matrix is equal to 1000. A rank of 
this matrix is equal to 8. Its determinant is equal to 512. Eigenvalues of PMULT

(3) are 1, 5, 5, 5, 52, 52, 52, 
53. The matrix PMULT

(3) has four kinds of numbers only: 8, 12, 18 and 27. The certain laws are observed 
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in their disposition, which are connected with a few interesting properties of this matrix, including the 
property of invariance of its numeric mosaic under many mathematical operations with this matrix (see 
below).

THE NUmERIC GENOmATRICES AND THE GOLDEN SECTION

In biology, a genetic system provides the self-reproduction of biological organisms in their generations. 
In mathematics, the “golden section” (or the “divine proportion”) and its properties were a mathemati-
cal symbol of self-reproduction from the Renaissance and they were studied by Leonardo da Vinci, J. 
Kepler and many other prominent thinkers (see details in the website “Museum of Harmony and Golden 
Section” by A. Stakhov, www.goldenmuseum.com). Is there any connection between these two systems? 
Yes, and this paragraph demonstrates such unexpected connection.

The golden section is the value φ = (1+50.5)/2 = 1.618… (Sometimes the inverse of this value is 
called the golden section in literature). If the simplest genetic matrix PMULT

(1) is raised to the power 
½ in the ordinary sense (that is, if we take the square root), the result is the bi-symmetric matrix Φ = 
(PMULT

(1))1/2, the matrix elements of which are equal to the golden section and to its inverse value. And 
if any other genomatrix PMULT

(n) = [3 2; 2 3](n) is raised to the power ½ in the ordinary sense, the result 
is the bi-symmetric matrix Φ(n) = (PMULT

(n))1/2, the matrix elements of which are equal to the golden sec-
tion in various integer powers with elements of symmetry among these powers (Figure 3). For instance, 
the matrix ΦMULT

(3) = (РMULT
(n))1/2 has only two pairs of inverse numbers: φ1 and φ-1, φ3 and φ-3 (Figure 

3). Matrices with matrix elements, all of which are equal to golden section φ in different powers only, 
can be referred to as “golden matrices”. Figuratively speaking, the quint genomatrices have the secret 
substrate from the golden matrices. The product of all numbers in any row and in any column of these 
golden matrices is equal to 1.

The mentioned matrix elements of the matrix Φ(n) = (PMULT
(n))1/2 can be constructed from a combina-

tion of φ and φ-1 directly by the following algorithm. We take a corresponding multiplet of the matrix 
P(n) = [C A; U G](n) and change its letters C and G to φ. Then we take letters A and U in this multiplet 
and change each of them to φ-1. As a result, we obtain a chain with “n” links, where each link is φ or 
φ-1. The product of all such links gives the value of corresponding matrix elements in the matrix Φ(n). 

Figure 2. The beginning of the family of the quint multiplicative genomatrices PMULT
(n) = [3 2; 2 3](n), 

which are based on product of numbers of hydrogen bonds (C=G=3, A=U=2)
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For example, in the case of the matrix Φ(3) = (PMULT
(3))1/2, let us calculate a matrix element, which is dis-

posed at the same place as the triplet CAU in the matrix [C A; U G](3) = P(3). According to the described 
algorithm, one should change the letter C to φ and the letters A and U to φ-1. In the considered example, 
we obtain the following product: (φ * φ-1 * φ-1) = φ-1. This is the desired value of the considered matrix 
element for the matrix Φ(3) on Figure 3.

A ratio between adjacent numbers in numerical sequences inside each of such matrices Φ(n) (for ex-
ample, …φ-3, φ-1, φ1, φ3 …) is equal to φ2 always. The same ratio φ2 exists in regular 5-stars (Figure 4) 
as a ratio between sides of the adjacent stars entered in each other (this pentagram is the ancient symbol 
of health).

The golden section is presented in 5-symmetrical objects of biological bodies (flowers, etc.), which 
are presented widely in the living nature but which are forbidden in classical crystallography. It exists 
as well in many figures of modern generalized crystallography: quasi-crystals by D. Shechtman, R. 
Penrose’s mosaics (Gardner, 1988; Penrose, 1989), dodecahedrons of ensembles of water molecules, 
icosahedron figures of viruses, biological phyllotaxis laws, etc.

One can propose the new principal - “matrix-genetic” - definition of the golden section on the basis 
of the matrix specifics of genetic code systems: the golden section φ and its inverse value φ-1 are single 
matrix elements of a bi-symmetrical matrix ΦMULT, which is the square root from such a bi-symmetrical 
(2x2)-matrix PMULT, the elements of which are genetic numbers of hydrogen bonds (C = G = 3, A = U = 
2) and which has a positive determinant.

This matrix-genetic definition does not use traditional elements of definition of the golden section: 
line segments, their proportions, etc. Probably, many realizations of the golden section in nature are 
related to its matrix essence and with its matrix representation. It should be investigated especially and 
systematically, where in natural systems and phenomena we have the bi-symmetric matrix PMULT with 
its matrix elements 3 and 2 in a direct or masked form (for example, in a form of pairs of numbers 6 and 

Figure 3. The beginning of the Kronecker family of the golden matrices Φ(n) = (PMULT
(n))1/2, where φ = 

(1+50.5)/2 = 1, 618… is the golden section
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4, or 9 and 6, or 12 and 8, etc. with the same proportion 3:2, which is so frequent for ratios of elements 
in genetic codes). One can hope to discover many new system phenomena and connections between 
them in nature in this way.

The new theme of the golden section in genetic matrices seems to be important because many physi-
ological systems and processes are connected with it. It is known that proportions of a golden section 
characterize many physiological processes: cardio-vascular processes, respiratory processes, electric 
activities of brain, locomotion activity, etc. The golden section is described and is investigated for a long 
time in phenomena of aesthetic perception as well. Taking into account these facts, the golden section 
should be considered as the candidate for the role of one of base elements in an inherited interlinking 
of the physiological subsystems, which provides unity of an organism. The matrix relation between the 
golden section φ and significant parameters of genetic codes testifies in a favor of a molecular-genetic 
providing such physiological phenomena. One can hope that the algebra of bi-symmetric genetic ma-
trices, which are connected with the theme of the golden section, will be useful for explanation and the 
numeric forecast of separate parameters in different physiological sub-systems of biological organisms 
with their cooperative essence and golden section phenomena.

The Kronecker families of the golden genomatrices and of the quint genomatrices are connected with 
the famous triangle by Pascal by means of quantities of equal numbers, which are presented in sequences 
of the matrices of the increasing size. Really, as one can see from Figure 3, the golden (2x2)-matrix 
contains one number φ1 and one number φ-1; the (22x22)-matrix contains one number φ2, one number 
φ-2 and two numbers φ0; the (23x23)-matrix contains one number φ3, one number φ-3, three numbers φ, 
three numbers φ-1, etc. At their appropriate arrangement, which is shown in Figure 5, Pascal’s triangle 
is formed.

Figure 4. Sizes of pentagrams, which are entered in each other, differ by scale factor φ2
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The molecular system of the genetic alphabet is constructed by nature in such manner that other 
genetic matrices play the role of quint matrices and golden matrices for other parameters (Petoukhov, 
2005). For example, the quantities of atoms in molecular rings of pyrimidines and purines: the ring of 
purine contains 6 atoms and the ring of pyrimidine contains 9 atoms. From the viewpoint of this kind of 
parameters, C = U = 6, A = G = 9. The ration 9:6 = 3:2 is equal to the quint. Thus the symbolic matri-
ces [A C; U G](n), [G C; U A](n), [A U; C G](n), [G U; A C](n) become the threefold quint matrixes in the 
Kronecker power “n” in the case of replacement of their symbolic elements by these numbers 9 and 6. 
The square root of such numeric matrices is connected with the golden matrices obviously.

A biological organism is the master on the use of a set of parallel information channels. It is enough to 
remind about many sensory channels by means of which we obtain sensory information simultaneously: 
visual, acoustical, tactile, etc. It is probable, that many kinds of genetic matrices are used by organism 
in parallel information channels as well.

The theory of discrete signals processing utilizes the important notions of the energy and of the power 
of signals (see details above in the background of this chapter). If one interprets any row of the quint 
genomatrix РMULT

(n) = [C A; U G](n) as a vector-signal, then the energy of such vector-signal is equal to 
13n and its power is equal to (13/2)n. If one interprets any row of the golden genomatrix Φ(n) = ([C A; U 
G](n))0.5 as a vector-signal, then the energy of such vector-signal is equal to 3n and its power is equal to 
the value (3/2)n, where the quint ratio participates.

The bi-symmetric genomatrices Φ(n) and PMULT
(n) have unexpected group-invariant property, which 

is connected with multiplications of matrices and which can be named “mosaic-invariant property”. We 
will explain this property through the example of the matrix PMULT

(3) from Figure 2. This matrix consists 
of four numbers: 8, 12, 18 and 27 only with their special disposition. The numbers 8 and 27 are disposed 
at matrix diagonals separately in the form of a diagonal cross. The numbers 12 are disposed in matrix 
cells, a set of which produces a special mosaic. Such mosaic can be referred to as a “symbol 69” condi-
tionally (one can note, that the symbols “6” and “9” are famous in “I Ching” as traditional symbols of 
Yin and Yang correspondingly, but such coincidence can be accidental). The numbers 18 are disposed 
in matrix cells, a set of which produces a mirror-symmetrical mosaic in comparison with a 69-mosaic of 
the previous case. Figure 6 demonstrates these two cases by means of the set of dark matrix cells with 
numbers 12 (left matrix) and with numbers 18 (right matrix).

Figure 5. The Pascal’s triangle for quantities of iterative kinds of numbers in the Kronecker family of 
the golden matrices from Figure 3. The brackets contain iterative kinds of numbers in the matrix of 
corresponding size
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It is known that if an arbitrary octet matrix with four kinds of numbers as its matrix elements is raised 
to the power of “n”, the resulting matrix will have usually many more kinds of numbers with very differ-
ent disposition (up to 64 kinds of numbers for 64 matrix cells). But our bi-symmetrical genetic matrices 
have the unexpected property of invariance of their numeric mosaic after the operation of raising to the 
power of “n”. For example, if the octet matrix PMULT

(3) is raised to the power of 2, the resulting octet 
matrix (PMULT

(3))2 will have a new set of four numbers 2197, 2028, 1872 and 1728 (instead of the initial 
four numbers 27, 18, 12 and 8 correspondingly) with the same disposition inside the octet matrix.

It is essential that this beautiful property of invariance of the numeric mosaic of the genetic matrix 
is independent of values of numbers. This property is realized for such matrices with the arbitrary set 
of four numbers a, b, c, d, if they are located in the same manner inside a matrix. Moreover, if we have 
one matrix X with a set of four numbers “a”, “b”, “c”, “d ” and another matrix Y with another set of four 
numbers “k”, “m”, “p”, “q”, then the product of these matrices will be the matrix Z = X*Y with a set of 
new four numbers “r”, “g”, “v”, “z” and with the same mosaic of their disposition (Figure 7).

It is obvious that the four symbols (for example, a, b, c, d) in such matrices can be not only ordinary 
numbers, but also arbitrary mathematical objects: complex numbers, matrices, functions of time (for 
example, it can be that a=R*cos(wt), b=T*sin(wt), …), etc. In particular, the possibility of the modeling 
of chronocyclic functions by means of such mosaic-invariance matrices can be useful for the chronocyclic 
theory of degeneracy of genetic codes, which was described in the previous chapter. Such a mosaic-
invariant property of these genetic matrices is the expression of cooperative behavior of its elements, 
but not the result of the individual behavior of each kind of element. This property is reminiscent some 
aspects of the cooperative behavior of the elements of biological organisms.

The mathematical analogy exists between the described bi-symmetric (2x2)-genomatrices and the 
famous matrices of the hyperbolic turn, which are bi-symmetrical also: [sh(x) ch(x); ch(x) sh(x)], where 
“sh(x)” and ”ch(x)” are hyperbolic sine and cosine. This analogy gives us the opportunity to interpret 
normalized biosymmetric genomatrices in connection with hyperbolic turns, which have the following 
applications in physics and mathematics:

Rotation of pseudo- • Euclidean space;
The special • theory of relativity;

Figure 6. The mosaic of cells with number 12 (left, the cells marked by dark) and the mosaic of cells 
with number 18 (right) from the multiplicative matrix PMULT

(3) (Figure 2)
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The geometric theory of logarithms, where properties of logarithms are introduced by hyperbolic • 
turns (Shervatov, 1954).
Theory of solitons of sine-Gordon equation.• 

In particular, this coincidence of the genomatrices with the matrices of hyperbolic turns reflects 
structural connections of the genetic code with the famous psychophysical Weber-Fechner’s law. We 
will return to the bi-symmetric genomatrices in Chapter 8, where their connections with a special kind 
of hypercomplex number are revealed.

THE GENOmATRICES, mUSICAL HARmONy AND 
pyTHAGOREAN mUSICAL SCALE

The theme of harmony of living nature is discussed frequently by many authors. The word “harmony” 
has arisen in Ancient Greece in relation to the Pythagorean musical scale.

In the antique theory of music the word “harmony” has found the modern value - the consent of dis-
cordant. Seven musical notes carry names familiar to all: do (C), re (D), mi (E), fa (F), sol (G), la (A), 
si (B). These seven notes are interrelated among themselves by their frequencies not in an accidental 
manner, but they form the regular uniform ensemble. Really, it is well-known that the seven notes of the 
Pythagorean musical scale from appropriate octaves form the regular sequence of the geometric progres-
sion on the base of the quint ratio 3:2 between frequencies of the adjacent members of this sequence 
(Figure 8). The quint 3:2, which is the ratio between frequencies of the third and the second harmonics 
of an oscillated string, plays the role of the factor of this geometrical progression. The frequency 293 
Hz of the note re (D1) of the first octave stays in the middle of this frequency series. The ratios of the 
frequencies of all notes to this frequency of the note re (D1) form the symmetrical series by signs and 
sizes of their powers of the quint: from the power “-3” up to the power “+3”.

The Kronecker family of the genomatrices PMULT
(n) = [3 2; 2 3](n) is connected with the Pythagorean 

musical scale. Let us consider it more attentively. Each genomatrix of the family PMULT
(n) demonstrates 

the quint (or the perfect fifth) principle of its structure because they have the quint ratio 3:2 at different 

Figure 7. Multiplication of mosaic-invariant matrices X and Y gives a new matrix Z with the same mosaic 
of the disposition of its four kinds of numbers. For illustration, cells with numbers “b”, ” m”, “s” in 
matrices X, Y, Z are marked by dark color
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levels: between numerical sums in top and bottom quadrants, sub-quadrants, sub-sub-quadrants, etc. 
including quint ratios between neighbor numbers in them. For example, PMULT

(3) contains 4 numbers – 
27, 18, 12, 8 - with the quint ratio between them: 27/18=18/12=12/8=3/2.

Each quint genomatrix PMULT
(n) contains (n+1) kinds of numbers from a geometrical progression, 

factor of which is equal to the quint 3/2:

PMULT
(1) ⇒ 3, 2

PMULT
(2) ⇒ 9, 6, 4

PMULT
(3)) ⇒ 27, 18, 12, 8

………………………………………….
PMULT

(6) ⇒ 729, 486, 324, 216, 144, 96, 64
………………………………………….

Let us write out these kinds of numbers in columns for each genomatrix PMULT
(n) to arrive at the “ge-

netic” triangle, which is shown on the left part of the expression:

3   9   27   81   243…
2   6   18   54   162…
     4   12   36   108…
           8    24    72…
                 16    48…
                         32…

1   3   9   27…
     2
          4
               8

On the right side in the expression the historically famous numeric triangle by Plato is demonstrated. 
This triangle was utilized by Ancient Greeks to create the Pythagorean musical scale on the basis of its 
main proportions. One can see the analogy between the “genetic” triangle and the Plato’s triangle.

Moreover, as Professor Jay Kappraff (USA) has informed one of the authors of this book in his 
private letter, this genetic triangle, which was obtained from the matrices of the genetic code, was 
known many centuries ago: it is identical to the famous triangle, which was published 2000 years ago 
by Nichomachus of Gerasa in his famous book “Introduction into arithmetic”. Nichomachus belonged 
to the Pythagorean society, and this triangle was famous for centuries as the bases of the Pythagorean 
theory of musical harmony and aesthetics. In accordance with this triangle, the Parthenon (Kappraff, 
2006) and other great architectural objects were created because architecture was interpreted as the non-
movement music, and the music was interpreted as the dynamic architecture. Nichomachus of Gerasa 

Figure 8. The quint (or the fifth) sequence of the 7 notes of the Pythagorean musical scale. The upper 
row shows the notes. The second row shows their frequencies. The third row shows the ratios between 
the frequencies of these notes to the frequency 293 Hz of the note re (D1). The designation of notes is 
given on Helmholtz system. Values of frequencies are approximated to integers
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was one of the great persons in the theory of musical harmony and aesthetics. The Cambridge library 
has the ancient picture, where Nichomachus is shown together with other great persons in this field: 
Pythagoras, Plato and Boeticus (http://www.jcsparks.com/painted/boethius.html). One can find more 
details about the triangle by Nichomachus of Gerasa in the publications (Kappraff, 2000, 2002). This 
unexpected connection of times proves additionally the adequacy of the presented way of the matrix 
research of genetic systems and the connection of genetic systems with the Pythagorean musical scale, 
reflected in Nichomachus’s triangle.

As we mentioned above, a set of certain kinds of numbers in each genomatrix PMULT
(n) = [3 2; 2 3]

(n) reproduce fragments of the geometrical progressions with the quint factor. Thus sequences of such 
kinds of numbers can be compared to quint sequences of musical notes from Figure 8. If one confronts 
the least number from a quint genomatrix with the musical note “fa” (F), which possesses the least 
frequency on Figure 8, then all sequences of such kinds of numbers automatically corresponds to the 
series of the musical notes. For example, the sequence of numbers 8, 12, 18, 27 of PMULT

(3) corresponds 
to the frequency sequence of the notes fa(F) - do(C) - sol(G) - re(D1). Genomatrix PMULT

(6) contains the 
sequence of 7 numbers, which corresponds to the whole quint sequence of the 7 notes of Figure 8: fa(F) 
- do(C) - sol(G) - re(D1) - la (A1) - mi (E2) - si (B2).

For this reason, each genomatrix PMULT
(n) can be presented in the form of a matrix PMUSIC

(n) of frequen-
cies of notes (or a “music-matrix”). For instance, Figure 9 demonstrates the genomatrix PMULT

(3) of the 
64 triplets as a music-matrix PMUSIC

(3) of frequencies of appropriate four notes (the general factor 293/27 
arises for concordance of numeric values of the note frequencies with numbers 8, 12, 18, 27 of the 
genomatrix PMULT

(3)). Figure 10 shows the note staff with the notes, the sequence of which corresponds 
to the sequences of the notes in the music-matrix on Figure 9.

The four numbers 8=2*2*2, 12=2*2*3, 18=2*3*3, 27=3*3*3, which are presented in the genomatrix 
PMULT

(3) on Figure 2, characterize those four kinds of triplets, which differ by their numbers of hydro-
gen bonds of nitrogenous bases. For instance, number 18=2*3*3 belongs to those triplets, which have 
one nitrogenous base with 2 hydrogen bond and two bases with 3 hydrogen bonds (the mathematics 
of genomatrices testifies products of numbers of hydrogen bonds should be taken into account here 
but not their sums; it has precedents and the justification in information theories, in particular, in the 
theory of parallel channels of coding and processing the information). Different sequences of these four 
numbers, for example 12-8-27-12-8-18-18-…, determine appropriate successions of the musical ratios 
1:1, (3:2)±1, (3:2)±2, (3:2)±3 (in this example, 3:2 - (3:2)3 – (2:3)2 – (2:3) – (3:2)2 - 1:1 -…). It is obvious 
that such succession can be interpreted as a kind of genetic music for triplets, which is connected with 

Figure 9. A presentation of the genomatrix PMULT
(3)*(293/27) in the form of the music-matrix PMUSIC

(3) of 
the frequencies of the musical notes (see Figure 8)
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their hydrogen bonds. Each gene and each part of DNA and RNA have their own genetic “melody of 
hydrogen bonds” which can be played by means of musical tools.

But the described musical sequence is not the single one in the molecule DNA at all. DNA can be 
considered as a set of joint sequences, which are very different in their physical-chemical sense: a se-
quence of nitrogenous bases; a sequence of hydrogen bonds of complementary pairs of these bases; a 
sequence of triplets; a sequence of rings of nitrogenous bases; a sequence of ensembles of protons in 
rings of nitrogenous bases, etc. One can note the phenomenological fact that many of these sequences 
are constructed on such ratios between quantitative characteristics of their neighboring members, which 
are typical for the Pythagorean musical scale. Correspondingly each of these sequences of ratios can be 
interpreted as a special kind of genetic musical melody. The whole set of such sequences in DNA can 
be considered as a polyphonic (coordinated) music ensemble. An investigation of this music ensemble 
seems to be an important scientific task.

Let us demonstrate a few additional examples of sequences with the musical ratios in DNA. A se-
quence of triplets in DNA has another kind of genetic music also which is connected with the quantity 
of protons in molecular rings of nitrogenous bases (Figure 11). The pyrimidines C and T have 40 protons 
in their rings; the purines A and G have 60 protons in their rings. (Each complementary pair has 100 
protons in their rings precisely). The ratio 60:40 is equal to the quint 3:2. Let us present each triplet 
by the product of the proton numbers 40 and 60 in its rings (as we did above for numbers 2 and 3 of 
the hydrogen bonds of triplets). Then any triplet has one of four proton numbers: 64000=40*40*40; 
96000=40*40*60; 144000=40*60*60; 216000=60*60*60. This proton set of the four numbers is dif-

Figure 10. The musical presentation of the genomatrix PMULT
(3)
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ferent from the considered set of four numbers 8, 12, 18, 27 of hydrogen bonds in triplets by the factor 
8000 only. In other words, a ratio between any two numbers from this proton set has a quint character 
again and is equal to one of the values (3:2)k, where k = ±1, 2, 3. One can note that a sequence of triplets 
of one DNA-filament has two different sequences with the same typical ratios: one sequence for triplet 
characteristics of its hydrogen bonds and another sequence for triplet characteristic of protons in triplet 
rings. These two sequences differ each from other by dispositions of these ratios along DNA-filament, 
generally speaking (Figure 11). So, any triplet sequence bears on itself two different genetic melodies 
on these two parameters.

Sequential dispositions of musical ratios for these two parameters of triplets (and of nitrogenous bases 
also) are different on two filaments of DNA, but they are connected in regular manner due to a fact of 
complementary pairs of bases. Figuratively speaking, two filaments of DNA bear complementary kinds 
of genetic music on these parameters.

It should be added about an atomic parameter of nitrogenous bases: the quantity of non-hydrogen 
atoms in molecular rings of the pyrimidines C and T is equal to 6 and the quantity of non-hydrogen at-
oms in molecular rings of the purines A and G is equal to 9. Their quint ratio 9:6=3:2 can be considered 
as a basis for “atomic” genetic music of the nitrogenous bases and triplets along DNA. But these kinds 
of sequences of ratios are identical to sequences of ratios in the case considered above about 40 and 60 

Figure 11. On top: Complementary pairs of four nitrogenous bases in DNA: А - Т and C - G. By a dotted 
line are specified hydrogen bonds in these pairs. Black circles are atoms of carbon, small white circles 
- hydrogen, circles with the letter N - nitrogen, and circles with the letter O – oxygen. At bottom: the 
numerical representations of a sequence of complementary pairs of the bases in DNA as a sequence of 
numbers of hydrogen bonds in the given pairs (the average row made up on basis of numbers 2 and 3) 
and as a numerical sequence of protons of molecules rings of these nitrogenous bases
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protons in rings of the pyrimidines and the purines. For this reason these sequences have nothing new 
from musical viewpoint though they can have an important meaning in the ensemble of genetic music 
because they are organized on the higher – atomic - level.

A sequence of numbers of 2 and 3 of hydrogen bonds between complementary nitrogenous bases 
along DNA (for instance, 3-2-2-3-2-3-…) determines a sequence of ratios between its neighboring - 
subsequent and previous - members (in the considered example, 2:3 - 2:2 - 3:2 - 2:3 -….). This simple 
sequence contains ratios 1:1, 3/2 and 2/3 only. From a viewpoint of musical analogy, this sequence 
determines a special kind of very simple genetic music.

Quantities of molecular rings in the pyrimidines and the purines are characterized by the octave ratio 
2:1. This fact gives an additional possibility to consider sequences of nitrogenous bases and triplets in 
DNA as genetic melodies. But sequences of ratios in these cases contain the octave ratios only and are 
not so interesting from musical viewpoint though they can play an important role in the whole ensemble 
of genetic music.

Total quantities of protons in both pairs of nitrogenous bases A-T and C-G are the same and are equal to 
136. On this numeric parameter, a sequence of nitrogenous bases has constant ratios 1:1 along DNA.

The full list of different kinds of such genetic music at different parameters and levels of genetic 
system permits one to reproduce a musical polyphonic party for each gene and for other parts of the 
genetic system. These musical sequences were created by nature itself. Each gene and each protein have 
their own genetic music (or briefly “genomusic”). The natural music of a gene can be reproduced in 
acoustical diapason not for aesthetic pleasure but for medical therapy, for theoretical needs, etc. This 
natural genomusic and its compositions can be connected to deep physiological archetypes, which were 
introduced into science by the creator of analytic psychology Carl Jung. From the viewpoint of musical 
harmony in structures of molecular-genetic system, outstanding composers are researchers of harmony 
in the organization of living substance. According to the famous expression by G. Leibnitz, music is the 
mysterious arithmetic of the soul, which calculates itself without understanding this action.

It is well-known, that some kinds of music stimulate growth of plants, cure people, etc. “American 
Music Therapy Association” unites more than 5000 members; 2700 musicians are certificated as pro-
fessional musical therapists there. One should emphasize that “melodies” of such genetic music are 
not formed by any person in a forcible way, but they are defined by natural sequences of parameters in 
chain genetic molecules. They are named conditionally as “natural genetic music” to distinguish them 
from variants of “genetic music”, sometimes offered by other authors on the basis of obviously forc-
ible approaches without a sufficient support on molecular features of genetic sequences. The claim is 
that some authors propose their own “genetic music” on the basis of an arbitrary correspondence of the 
genetic letters or triplets to musical notes without sufficient attention to the musical correspondence 
of ratios of natural numeric parameters of adjacent genetic elements. One can find more details about 
natural genomusic with some examples in the book (Petoukhov, 2008).

All physiological systems should be coordinated structurally with the genetic code for their genetic 
transfer to next generations and for a survival in a course of biological evolution. For this reason we 
collect examples of harmonious ratios (first of all, the quint 3:2) in structures and functions on different 
levels of biological systems including the supra-molecular level. For example, the quint ratio 3:2 exists 
between:

durations of phases of the activity and the rest in human cardio-cycles (0.6 sec and 0.4 sec • 
correspondingly);
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plasmatic and globular volumes of blood (60% and 40%);• 
albumens and globulins of blood (60% and 40%);• 
60S and 40S sub-particles in the composition of ribosomes (from http://vivovoco.rsl.ru/VV/• 
JOURNAL/NATURE/08_03/KISSELEV.HTM).

In conclusion to this paragraph let us consider a well-known algorithm of the construction of the 
Pythagorean musical scale from a geometrical progression, which factor is equal to the quint. This 
algorithm, which is useful for the theme of the next paragraph, creates the sequence of the notes do-re-
mi-fa-sol-la-si-do on the interval of frequencies {1, 2} of one octave, the lowermost note “do” which 
has the conditional frequency 1 and the lowermost note of the next octave has the conditional frequency 
2. This algorithm contains the following steps:

1.  Taking the first seven members of such geometrical progression with the quint factor 3/2, which 
begins from the inverse value of the quint: (3/2)-1, (3/2)0, (3/2)1, (3/2)2, (3/2)3, (3/2)4, (3/2)5;

2.  Returning into the octave interval {1, 2} for those members of this sequence, values of which 
overstep the limits of this interval; this returning is made for these values by means of their multi-
plication or division with the number 2. As a result of this operation, the new sequence is appeared 
(this sequence can be named “the geometrical progression with the returning into the octave ”): 
2*(3/2)-1, (3/2)0, (3/2)1, (3/2)2/2, (3/2)3/2, (3/2)4/4, (3/2)5/4;

3.  The permutation of these seven members in accordance with their increasing values from 1 up 
2 (the number 2 is included in this sequence as the end of the octave): (3/2)0, (3/2)2/2, (3/2)4/4, 
2*(3/2)-1, (3/2)1, (3/2)3/2, (3/2)5/4, 2.

In this last sequence, a ratio of the greater number to the adjacent smaller number refers to as the 
interval factor. Two kinds of interval factors exist in this sequence only: 9/8, which is named the tone-
interval T, and 256/243, which is named the semitone-interval S. One can check that the sequence of 
interval factors in this case is T-T-S-T-T-T-S. These five tone-intervals and two semitone-intervals cover 
the octave precisely: (9/8)5 * (256/243)2 = 2.

It is known that the name “semitone-interval” in the Pythagorean musical scale is utilized by conven-
tion only because the semitone-interval 256/243= 1.0545… is not equal to the half of the tone-interval, 
that is the square root from the tone-interval: (9/8)0.5 =1.0607… .The scale of the golden wurf, which 
is described in the next paragraph, possesses the analogical peculiarities: its semitone-interval differs 
from the half of its tone-interval.

If one takes not 7, but 6 or 8 members in the initial quint geometrical progression (see the first step of 
the algorithm), then the same Pythagorean algorithm does not give a binary sequence of interval factors 
T and S because three kinds of interval factor arise.

The similar algorithm will be used in the next paragraph to construct new mathematical scale on the 
base of described data about the genetic code and its genomatrices.

A SCALE OF THE GOLDEN WURF, mUSIC AND FIBONACCI NUmBERS

Many theorists of music paid attention to the connection of the structure of many musical compositions 
of prominent composers with the golden section φ = (1+50.5)/2 = 1.618… . The results of matrix genet-
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ics, which were described above, reveal a new direction of thoughts about a relation between the golden 
section and music because structures of a genetic code are connected with the golden section.

Similarly to a quint genomatrix PMULT
(n), which contains a sequence of (n+1)-kinds of numbers from 

a geometrical progression with the quint factor 3/2, a corresponding golden genomatrix Φ(n) contains a 
sequence of (n+1)-kinds of numbers from a geometric progression, the factor of which is equal to φ2 = 
2.618….:

Φ(1) ⇒ φ1, φ-1

Φ(2) ⇒ φ2, φ0, φ-2

Φ(3) ⇒ φ3, φ1, φ-1, φ-3         (4.2)

The previous paragraph demonstrated that the Kronecker family of the quint genomatrices is connected 
with the Pythagorean musical scale. Now we turn to the Kronecker family of the quint genomatrices 
and to the geometrical progressions with the factor φ2. Is it possible to apply the described Pythagorean 
algorithm to such geometrical progressions with factor φ2 to arrive at a new musical (or mathematical) 
scale, where only two interval factors exist (as its tone-interval and its semitone-interval) by analogy 
with the Pythagorean musical scale? Investigation of this question seems to be important because such 
a new scale or scales can be essential for a theory of musical harmony and for the creation of musical 
compositions with increased physiological activity.

After research of this question the beautiful positive result is obtained: yes, it is possible every time, 
when we take one of Fibonacci numbers 2, 3, 5, 8, 13 (see the Figure 1) as the first member of such a 
geometrical progression (the situation becomes more difficult for the greater Fibonacci numbers 21, 
34,…). Mathematical scales, which are formed in these cases, possess such quantities of their tone-
intervals and semitone intervals, which are equal to Fibonacci numbers as well. Moreover values of these 
tone-intervals and semitone-intervals are expressed by means of Fibonacci numbers also.

Such interrelated Fibonacci-stage scale, each of which has interval factors of two kinds only, are 
named “the scales of the golden wurf” or “wurf-scales” briefly. Let us consider the example of the 
8-stage scale of the golden wurf. We should construct a new mathematical scale of frequencies, which 
fills up the octave {1, 2}, by means of the Pythagorean algorithm with the irrational factor φ2 of a geo-
metrical progression instead of the quint ratio 3/2. As a result we should arrive at such a scale, which 
possesses two kinds of interval factors (a tone-interval and a semitone-interval) only by analogy with 
the Pythagorean musical scale. One can note that the factor φ2 = 2.618… exceeds the considered interval 
of the octave {1, 2}. Therefore it is comfortable to use from the very beginning the twice smaller factor 
φ2/2 = р = 1.309…, the value of which belongs to this octave interval. It is easy to check that the final 
sequence (4.3) of the wurf-scale does not depend on whether we use the factor φ2 or the factor φ2/2, 
which are equivalent to each other in the given problem. This factor р = φ2/2 has been known in the field 
of investigations of biological symmetries and invariants for a long time under the name of the golden 
wurf (Petoukhov, 1981, 1989). We will discuss the golden wurf later.

Now let us construct the 8-stage scale of the golden wurf by means of the analogue of the described 
Pythagorean algorithm, using the factor p = φ2/2 in the initial geometric progression (instead of the quint 
factor 3/2). All three steps of the Pythagorean algorithm are reproduced:

1.  Taking the first eight (!) members of such a geometrical progression with the factor p = φ2/2, which 
begins from the inverse value of this factor: p-1, p0, p1, p2, p3, p4, p5, p6;
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2.  Returning into the octave interval {1, 2} for those members of this sequence, values of which 
overstep the limits of this interval; this returning is made for these values by means of their multi-
plication or division with the number 2. As a result of this operation, the new sequence is obtained 
(this sequence can be named “the geometrical progression with return to the octave”): 2* p-1, p0, 
p1, p2, p3/2, p4/2, p5/2, p6/4;

3.  The permutation of these seven members in accordance with their increasing values from 1 up to 
2 (the number 2 is included in this sequence as the end of the octave):

1, p3/2, p6/4, р1, p4/2, 2*p-1, p2, p5/2, 2  (4.3)

This final sequence (4.3) satisfies the initial condition concerning the existence of two kinds of interval 
factors only. Really, it is easy to check that all ratios of adjacent members of this sequence are equal to 
two values only, which play the role of the interval factors. For this sequence (4.3) the tone-interval is 
T = p3/2 = 1.1215… and the semitone-interval is S = 4*р-5 = 1.0407… . The sequence of these interval 
factors is T-T-S-T-S-T-T-S. This sequence fills all the octave in accuracy: (p3/2)5 * (4*р-5)3 = 2. The quan-
tities of various interval factors are equal to Fibonacci numbers here. Really, the 3 semitone-intervals, 5 
tone-intervals and 8 interval factors all exist here. It is interesting, that if we take non-Fibonacci number 
(for example, 4, 6 or 9) of the first members of the initial geometric progression on the first step of the 
Pythagorean’s algorithm, final sequences arise which have more than two kinds of interval factors.

Let us compare the classical 7-stage Pythagorean musical scale with the obtained 8-stage scale of the 
golden wurf. The Figure 12 shows the minimal difference between the sequences (musical scales) of the 
tone-intervals and semitone-intervals inside the octave for both scales. The initial and final parts of both 
sequences coincide completely, and only one additional semitone-interval arises in the middle part of the 
octave. This additional semitone-interval exists because the factor “р” is less than the quint factor.

Using the sequence (4.3) of the intervals, one can construct the sequence of tones (musical notes), 
which is named the “wurf-scale of C major” by analogy with Pythagorean scale of C major (Figure 13). 
A choice of frequencies for these tones of the first octave is made in such way that this scale contains 
the frequency 440 Hz, which corresponds to note “la” in the Pythagorean scale and in equal tempera-
ment scale and which is used traditionally for tuning in musical instruments. Figure 14 compares the 
Pythagorean 7-steps scale C major and 8-stage scale of the golden wurf for the first octave. Taking into 
account a minimal difference between both scales, the majority of the notes of the wurf-scale are named 
by analogy with the appropriate notes of the Pythagorean scale but with the letter “m” in the end (for 
instance, “rem” instead “re”). The additional fifth note is named “pim”.

This scale of the golden wurf, which was constructed in connection with parameters of the genetic 
code, possesses many analogies with the Pythagorean genetic code by their internal symmetries and 
proportions. Its main difference from the Pythagorean scale is connected with irrational values of its 

Figure 12. Sequences of interval factors in the 7-stage Pythagorean scale of C major (the upper row) and 
in the 8-scale of the golden wurf. Tone-intervals are marked by T, semitone-intervals are marked by S
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interval factors. This wurf-scale could not be constructed by Pythagoreans who did not know irrational 
numbers. Irrational factors are used also in the modern equal-temperament scale. According to some data, 
Ancient Chinese knew about the equal-temperament scale, but neglected it preferring the Pythagorean 
scale, in which they saw cosmic and biological importance.

The history of attempts at creation of new musical scales includes names of many prominent scien-
tists: J. Kepler, R. Descartes, G. Leibnitz, L. Euler, etc. But these authors had no possibility to use the 
data about the genetic code in their attempts. In our opinion, the data about the genetic code allow one 
to create new musical scales with positive physiological potentials. The constructed 8-stage scale of the 
golden wurf is investigated now in the Moscow State Conservatory by the group of specialists, which 
is headed by the dean of its Composer Department A. Koblyakov, from the viewpoint of its musical 
meaning.

The Fibonacci-stage scales are connected with many interesting mathematical and musical materi-
als: the musical generalization of classical Fibonacci’s problem, the series of anti-Fibonacci numbers, 
recurrent algorithms, etc. Many of these materials together with tables of frequencies of musical notes 
for various Fibonacci-stage scales are published in the book (Petoukhov, 2008). One should note that 
our attempt to create the mathematical scale of the golden section, where the factor of the geometrical 
progression is equal to the golden section (but not to the golden wurf), has led to the scale, which dif-
fers from the Pythagorean musical scale cardinally and which was not so interesting from the musical 
viewpoint. Furthermore such scale of the golden section has no evident connection with Fibonacci 
numbers in its interval factors.

In concluding this paragraph we discuss briefly the golden wurf p = φ2/2, which has arisen in biological 
morphology initially. The wurf or the double ratio is known for a long time in the field of highest geom-
etries as the main invariant of projective geometry. (It is interesting that the finite projective-geometric 
plane is connected with Hadamard matrices (Sachkov, 2004), which are related to the genetic code as 

Figure 13. The upper row demonstrates the frequencies of the tones in the7-stage Pythagorean scale of 
C major in the first octave. The bottom row demonstrates the frequencies of the tones in 8-stage scale 
of the golden wurf of C major in the similar octave. Numbers mean frequencies in Hz. The names of the 
notes are given

Figure 14. The helical structure of the human ear cochlea, which is uncoiled into a straight line, with 
the projective geometry proportion of the golden wurf
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described in Chapter 6). The translation of the notion “wurf” from German language means “throw”. The 
golden wurf was introduced in works (Petoukhov, 1981, 1989), which were devoted to non-Euclidean 
biological symmetries. The golden wurf has a status of ontogenetic and phylogenetic invariant of ag-
gregated proportions of three-component kinematical blocks of human and animal bodies. The value 
of the golden wurf concerns acoustic perception also: the human ear cochlea consists of three patterns 
(three coils of a helix), the ratios of whose lengths form a geometrical progression with the golden sec-
tion as a factor (see Figure 14). The double ratio of these three lengths is equal to the golden wurf: p = 
φ2/2 = 1.309… (Petoukhov, 1989).

ON HARmONy OF A SCALE OF pROTONS IN THE SET OF AmINO-ACIDS

Can musical principles of organization exist not only in DNA but in other molecular and supramolecular 
structures of the genetic system? Some facts are revealed the positive answer to this question. Let us 
consider a few of them related to amino acids and their connections in proteins.

Amino acids are connected in a protein chain by peptide bonds, where the quint ratio 3:2 exists: in a 
peptide bond its double bond is disposed on 60% in a region of the group C-O and on 40% in a region 
of C-N (Shults, Schirmer, 1979, Chapter 2). This phenomenological fact was explained by Nobel Prize 
winner L. Pauling in his resonance theory, which is related to vibration principles.

Now let us consider the set of 20 amino acids of the genetic system, which has the following sequence 
of quantities of protons (the names of acids are shown in brackets):

40 (Gly), 48 (Ala), 56 (Ser), 62 (Pro), 64 (Cys, Thr, Val), 70 (Asn, Asp), 

72 (Ile, Leu), 78 (Gln, Glu), 80 (Lys, Met), 82 (His), 88 (Phe), 94 (Arg), 

96 (Tyr), 108 (Trp).  (4.4)

It is known that the basic principle of musical scales of all people in all centuries was a principle of 
octave. The described proton sequence is disposed inside the octave interval from 48 to 96 mainly. One 
can analyze a disposition of all numbers of this proton set relative to this octave interval 48-96, where 
number 48 is a tonic. 12 kinds of proton numbers lay inside this interval: 48, 56, 62, 64, 70, 72, 78, 80, 
82, 88, 94, 96. Classical construction of the Pythagorean musical scale uses the division of the octave 
interval by consonant ratios, foremost, by the quint 3:2 and the quart 4:3. In the case of our proton octave 
48-96, the quint from the tonic 48 is equal to 72 = 48*3/2 and the quart is equal to 64=48*4/3. Both of 
these numbers belong to the analyzed proton set. Additionally, a consonant ratio 5:3, named a major 
sixth, gives one more number 80 = 48*5/3 from this proton set.

Two proton numbers 40 and 108 lay outside the considered interval from both its ends. But the number 
40 is equal to 48*5/6; in other words, the number 40 has the consonant ratio 5:6 (its classical name “a 
minor third”) relative to the tonic 48. The number 108 is equal to 96*9/8; in other words, the number 
108 has the classical ratio of the whole-tone 9:8 relative to the octave end 96. Number 40 has an octave 
double - number 80, which belongs to the proton sequence (4.4) as well.

So, we have the numeric proton sequence:
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40 – 48 – 64 – 72 – 80 – 96 – 108  (4.5)

members of which are connected by musical ratios. Four numbers 8, 12, 18, 27, which were considered 
above in the genomatrix PMULT

(3) = (3 2; 2 3](3) as numbers of hydrogen (or one-proton) bonds, have their 
octave doubles (or twins) in this sequence (4.5): 64 = 8*8, 72 = 18*4, 96 = 12*8, 108 = 27*4. It shows 
a certain coordination of proton characteristics of genetic components on different levels of the genetic 
system. It should be emphasized for comparison that the sequence of molecular masses of 20 amino 
acids has not such a musical scale and is not interesting from the musical viewpoint.

If one takes the number 48 conditionally as the equivalent of the musical note “do(c1)”, then the 
proton sequence (4.5) is the equivalent of the sequence of the notes on Figure 15.

From a position of the theory of musical harmony, the proton sequence (4.4) has one essential defect: 
the analyzed octave interval {48-96} does not contain the octave double (or the twin) of the greatest 
number 108, which is number 54 (though this sequence contains the octave double of the least number 
40, which is number 80). Why is an amino acid with 54 protons absent? Perhaps, it was eliminated in the 
course of biological evolution because of additional reasons? (For example, the rings of each comple-
mentary pairs of nitrogenous bases have exactly 54 protons in their 9 atoms of carbon, and it can be one 
possible reason to avoid a repetition of this proton number in amino acids?).

Or one can find additional 54-proton factor, which is essential for the set of amino acids and which 
operates with them? It is the open question now, which should be investigated in the future (by the 
way, the number 54 is equal to the sum of the famous Pythagorean set 1, 2, 3, 22, 23, 32, 33). But if one 
supposes that the proton sequence (4.4) is added by this number 54, the sequence (4.4) gets the very 
symmetrical form (Figure 16). Really, the analyzed octave {48-96} has 6 equal parts, the boundaries of 
which are determined by numbers divisible by 8 (upper row of numbers). Each such part has a length, 
which is equal to 8 and which is divided by quart 3:4 in two subparts with their lengths 6 and 2. The 
borders between such adjacent subparts correspond to the proton values in the lower row on Figure 16. 
Perhaps, the theory of atomic memory (Brewer, & Hanh, 1984), which is related to protons and spin 
echo, can be used for an understanding of such peculiarities of the protons sequence (4.4).

Figure 15. The presentation of the proton sequence (4.5) in the musical form
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FUTURE TRENDS AND CONCLUSION

The proposed additional approach is the effective scientific instrument to analyze multi-component and 
multi-parametric ensembles of the molecular-genetic systems by means of numeric genomatrices. It 
reveals new facts about hidden interrelations among genetic elements and allows a comparison of them 
with famous facts and theories from other fields of science and culture. Methods of symmetries are not 
only useful in this approach, but they are needed systematically here to study relations of symmetry 
among various sets and subsets of the genetic systems. This study leads to important knowledge about 
internal regular structures of molecular-genetic systems and to new genetic patterns as well. The set 
of described and future results of investigations of numeric genetic matrices is the significant part of 
matrix genetics on the whole. This scientific direction permits one to apply effective ideas and methods 
from other modern sciences for problems in this molecular-genetic field. Taking into account all these 
data, one can recommend this approach, methods and patterns for intensive application in molecular 
genetics and in theoretical biology.

The discovery of the connection of the genetic code with the golden section shows the molecular-
genetic base of many known facts about physiological and aesthetic meanings of the golden section. 
Specifically the described facts give new materials for the question about architectural canons, where 
the golden section is used for a long time; for example, the famous modulor by Sh. Le Corbusier (1948, 
1953) is based on the golden section. The mathematical scale of the golden wurf, which was constructed 
in matrix genetics, can be utilized for architectural proportions (in the role of wurf-modulor or the 
modulor of the golden wurf).

The new – “matrix-genetic” – definition of the golden section is proposed, and leads to new theoreti-
cal investigations about the possible role of the golden section in nature and culture.

The facts described in this chapter about relations of the genetic systems with musical harmony are 
essential additionally for the problem of genetic bases of aesthetics and inborn feeling of harmony. Ac-
cording to the words of the famous physicist Richard Feynman about feeling of musical harmony, “we 
may question whether we [stressed] are any better off than Pythagoras in understanding why [stressed] 
only certain sounds are pleasant to our ear. The general theory of aesthetics is probably no further ad-
vanced now than in the time of Pythagoras” (Feynman, Leighton, & Sands, 1963, Chapter 50).

A cultural direction of “genetic art” (or briefly “genoart”) can be developed additionally due to these 
data of matrix genetics. The genoart has many patterns, which are revealed by matrix genetics, and can 
be used to create new works of art, of designs and architectural and musical compositions. For example, 
the quint genomatrices can be presented in a form of color mosaics if matrix numbers are replaced by 
colors. It is possible to see regular complication of color mosaics along the family of the genomatrices 
with an increase of their Kronecker powers.

Figure 16. The proton sequence (4.4) of the amino acids with the additional number 54
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There is no doubt that application of numeric genetic matrices for investigations of the various 
ensembles of parameters of the genetic system can give many unexpected and useful results in the 
future as well. This direction of theoretical researches will be developed in parallel with developing 
matrix application in many other branches of science. The initial results, methods and patterns, which 
are described in this chapter, will serve as the basis for many new investigations in bioinformatics and 
theoretical biology. In particular Chapter 8 of this book describes one of the important ways to further 
mathematical analysis in this direction.

The matrix-genetic approach to phenomena of the golden section in genetic systems, physiology 
and aesthetics can be developed in many theoretical ways and can give new interesting mathematical 
models.

According to the described materials, each gene, each DNA, each protein can be characterized by its 
own musical ensemble. Generally speaking, this genetic music can be reproduced artificially for many 
practical applications in different fields: medicine, biotechnology, ergonomics, sports, etc. Such genetic 
musical melodies can be reproduced in sounds, colors (“color music”), electrical stimulus, and impulses 
of laser beams, etc. for different needs. Musical therapy and other branches of therapy can utilize these 
new forms of physical influences. Whether such “natural genetic music” (or compositions on its basis) 
possesses a special physiological effectiveness for the treatment of people and animals, stimulation of 
growth of plants and microorganisms, and so forth? For example, is it possible to treat patients with 
diabetes by means of sessions of such musical melodies, which correspond to the quint sequences of 
the gene of insulin? Future experiments can give the answer only. It seems that a creation of a computer 
bank of genetic music of various genes and proteins is useful for theoretical and practical needs. One 
can add here that the creator of analytic psychology Carl Jung, studying archetypes of human conscious-
ness, has created the medical method of amplification. This method is based on an active intercourse 
of his patients with these archetypes including famous tables of Ancient Chinese “I Ching”, which are 
connected with the genetic matrices (see Chapter 11).

Many composers declared a mysterious connection of music with the golden section early. In our 
opinion, this connection has the genetic base. The described facts are related to a problem of genetic 
bases of aesthetics and an inborn feeling of harmony.

Investigations of numeric genetic matrices are the effective scientific instrument to analyze multi-
component and multi-parametric ensembles of the molecular-genetic systems. The obtained results give 
a new vision of connections of genetic systems with famous mathematical objects and theories from 
other branches of science and culture. Owing to the results of matrix genetics new opportunities arise 
to demonstrate the close connection between science and culture. The famous ideas about the harmony 
of biological organisms obtain new essential additions including materials about the golden section and 
the harmony of the Pythagorean musical scale.

The obtained results show that the system of hydrogen bonds of the complementary nitrogenous bases 
of the genetic code is not an accidental system, but it is the significant part of the harmonic molecular-
genetic system, which is connected with principles of musical harmony and the golden section.

In our opinion, music is not only the tool for a call of emotions and pleasures, but it is also one of the 
principles of the organization and language of living substance. From the viewpoint of musical harmony 
in structures of molecular-genetic system, one can think that outstanding composers are researchers of 
harmony in living substance and in their own organisms. Investigation of musical harmony in genetic 
molecules and in adjacent systems (“musical bioinformatics”) is the new interesting branch in biology. 
It is useful for education in fields of genetics, bioinformatics, theory of musical harmony, etc.
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Chapter 5

Genetic Code and 
Stochastic Matrices

INTRODUCTION AND BACKGROUND

The universal genetic code may be viewed as the mapping of nucleic acids into polypeptides that is 
employed in every organism, organelle and virus with some minor variations. A mathematical view of 
genetic code is a map

ABSTRACT

In this chapter, we first use the Gray code representation of the genetic code C = 00, U = 10, G = 11, 
and A = 01 (C pairs with G, A pairs with U) to generate a sequence of genetic code-based matrices. In 
connection with these code-based matrices, we use the Hamming distance to generate a sequence of 
numerical matrices. We then further investigate the properties of the numerical matrices and show that 
they are doubly stochastic and symmetric. We determine the frequency distributions of the Hamming 
distances, building blocks of the matrices, decomposition and iterations of matrices. We present an 
explicit decomposition formula for the genetic code-based matrix in terms of permutation matrices. 
Furthermore, we establish a relation between the genetic code and a stochastic matrix based on hydro-
gen bonds of DNA. Using fundamental properties of the stochastic matrices, we determine explicitly the 
decomposition formula of genetic code-based biperiodic table. By iterating the stochastic matrix, we 
demonstrate the symmetrical relations between the entries of the matrix and DNA molar concentration 
accumulation. The evolution matrices based on genetic code were derived by using hydrogen bonds-
based symmetric stochastic (2x2)-matrices as primary building blocks. The fractal structure of the 
genetic code and stochastic matrices were illustrated in the process of matrix decomposition, iteration 
and expansion in corresponding to the fractal structure of the biperiodic table introduced by Petoukhov 
(2001a, 2001b, 2005).

DOI: 10.4018/978-1-60566-124-7.ch005



92

Genetic Code and Stochastic Matrices

g: C → A (1)

where C = {(x1x2x3): xi ∈ R = {A, C, G, U}} denotes the set of codons and A = {Ala, Arg, Asp, …, Val, 
UAA, UAG, UGA} denotes the set of amino acids and termination codons. Genetic determinism, which 
presents the belief that we are controlled by our genes and that no other factor is significant, is now 
all-pervasive. This viewpoint is emphasized by the statement: “life is a partnership between genes and 
mathematics” (Stewart, 1999, p. xi).

We recall some basic definitions of a stochastic matrix. A square matrix of P = (pij) is a stochastic 
matrix if all entries of the matrix are nonnegative and the sum of the elements in each row (or column) 
is unity or a constant. If the sum of the elements in each row and column is unity or the same, the matrix 
is called doubly stochastic. The term “stochastic matrix” goes back at least to Romanovsky (1931). It 
plays a large role in the theory of discrete Markov chains. Stochastic matrices and doubly stochastic 
matrices have many remarkable properties. For example the Birkhoff–von Neumann Theorem says that 
every doubly stochastic matrix is a convex combination of permutation matrices of the same order and 
the permutation matrices are the extreme points of the set of doubly stochastic matrices. The proper-
ties of stochastic matrices are mainly spectral theoretic and are motivated by Markov chains. Doubly 
stochastic matrices have additional combinatorial structure.

The so called Gray code is one of the most famous in the theory of signal processing. The Gray 
code was used in a telegraph demonstrated by French engineer É. Baudot in 1878. The codes were first 
patented by F. Gray in 1953. The Gray code is a binary code in which consecutive decimal numbers 
are represented by binary expressions that differ in the state of one, and only one, bit. Gray codes have 
been extensively studied in other contexts. For example, Gray codes have been used in converting ana-
log information to digital form. Here we review briefly how to construct a Gray code for each positive 
integer n. One way to construct a Gray code for n bits is to take a Gray code for (n-1) bits with each 
code prefixed by 0 (for the first half of the code) and append the (n-1) Gray code reversed with each 
code prefixed by 1 (for the second half). This is called a “binary-reflected Gray code”. Figure 1 is an 
example of creating a 3-bit Gray code from a 2-bit Gray code.

A Gray code representation of the genetic code was proposed in the work (Swanson, 1984). A repre-
sentation of the genetic code as a six-dimensional Boolean hypercube was proposed in (Jimenéz-Montaño, 
Mora-Basáñez, & Pöschel, 1994). In (Štambuk, 2000), universal metric properties of the genetic code 

Figure 1. Creating a 3-bit Gray code from a 2-bit Gray code
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were defined by means of the nucleotide base representation on the square with vertices U or T = 0 0, C = 
0 1, G = 1 0 and A = 1 1. It was shown that this notation defines the Cantor set and Smale horseshoe map 
representation of the genetic code. The “Biperiodic table of the genetic code” [C A; U G](3) (Figure 3 in 
Chapter 1), which has demonstrated an important symmetrical structure and has led to many discoveries, 
was introduced in (Petoukhov, 2001a, 2001b, 2005). This chapter describes stochastic characteristics 
of the biperiodic table on the basis of their original investigations and considerations in the works (He, 
2001, 2003a, 2003b; He, Petoukhov, & Ricci, 2004).

One should recall information about the Hamming distance as well. The Hamming distance D is 
defined for strings of the same length. For two strings A and B, D(A,B) is the number of places in which 
the two string differ, i.e., have different characters. More formally, the distance between two strings A 
and B is D(A,B) = Σ| Ai - Bi |, sum of the numbers of places strings A and B differ. For example, the string 
A= 0101 and string B= 0110 has a Hamming distance D(A,B) = 2 whereas string A = “Butter” and string 
B = “ladder” has a Hamming distance D(A,B) = 4. This distance is applicable to encoded information, 
and is a particularly simple metric of comparison.

GENETIC CODE, HAmmING DISTANCE AND STOCHASTIC mATRICES

In this chapter we use the Gray code representation of the genetic code in a special form of a two-level 
(or double-decker) construction (Figure 2) to generate a sequence of genetic code-based matrices.

This binary representation is correlated to binary symbols of C, A, G, U on Figure 3 in Chapter 1. 
The reason for such a two-level construction is related to the tabular form of presentation of the genetic 
code on said figure. In connection with these code-based matrices, we use the Hamming distance to 
generate a sequence of numerical matrices. We investigate the properties of the numerical matrices and 
show that they are doubly stochastic and symmetric. We determine the frequency distributions of the 
Hamming distances, building blocks of the matrices, decomposition and iterations of matrices. We shall 
present an explicit decomposition formula for the genetic code-based matrix in terms of permutation 
matrices, which provide a hypercube representation of the genetic code.

We next list the sequences sn of the Gray codes denoted by Gn in Figure 3.
It’s easy to see that every n-bit string appears somewhere in the sequence; adjacent sequences si,si+1 

differ in exactly one bit, i = 1, 2, …, 2n –1; the last sequence s2
n and the first sequence s1 differ in ex-

actly one bit in each of the cases on Figure 3. This proves that the n-cube has a Hamiltonian cycle for 
every positive integer n ³ 2, for example, s1,s2, …, s2

n, s1 is a Hamiltonian cycle. There is a natural way 
to relate the genetic codons to Gray code by means of utilizing the Gray code representation of each 
nitrogenous bases on Figure 2. Examples of such representation of some codons in the two-level form 
are shown on Figure 4.

Figure 2. The two-level representation of the nitrogenous bases of the genetic code, which is corresponded 
to the binary 2-bit Gray code
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This new approach (He, 2001, 2003a, 2003b) presents each genetic multiplet as a two-level combina-
tion (or symbiosis) of two examples of the relevant Gray code: binary numbers of one example of the 
Gray code is utilized for the upper bit strings of the symbol of the multiplet, and the second example is 
utilized for its lower bit string. One can see on Figure 4 that a replacement of each of the symbols “1” 
and “0” by the opposite symbols “0” and “1” correspondingly leads from the Gray code representation 
of the codon CUG to the Gray code representation of its anticodon. This algorithm holds true for all 
pairs of “codon-anticodon” of the genetic code. Notice that the upper and lower bit strings of both the 
codon and anti-codon differ in a single bit. The Gray code arises in genetics as a means of minimiz-
ing the mismatches between the digits encoding adjacent bases and therefore the degree of mutation 
or differences between nearby chromosome segments. The requirement in an encoding scheme is that 
changing one bit in the segment of the chromosome should cause that segment to map to an element 
which is adjacent to the pre-mutated element.

Next we formalize our algorithm to generate the Hamming distance-based matrices corresponding 
to genetic code-based matrices. Let n be the length of strings (binary strings or DNA/RNA strings). We 
present our constructions for n = 1, 2, and 3. The general result for any positive integer n will be sum-
marized following our discussions.

For n = 1, the Gray code G1 = {0, 1}. We arrange the G1 in a 2-dimensional table (row/column) and 
form the table entry by stacking the column code on the top of row code as below. Denote this matrix 
by H21. This is a (2x2)-matrix generated by G1 (Figure 5, on the left side).

The corresponding genetic code-based matrix with a single base is denoted by C21 (Figure 5, in the 
middle). We next compute the Hamming distance of each entry of the matrix H21. The resulting matrix 
is denoted by D21 (Figure 5, on the right side). This matrix D21 has Hamming distances 0’s and 1’s. The 
frequencies of the 0’s and 1’s are 2 and 2, respectively. The total sum of entries of the matrix is 2. The 

Figure 3. Gray code sequences sn for n-digit cases

Figure 4. Examples of the Gray code representation of the codon CUG and of its anticodon GAC
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common row/column sum is 1. The Hamming distance between any two horizontal and vertical neigh-
boring entries is 1.

For n = 2, the Gray code G2 = {00, 01, 11, 10}. We arrange the G2 in a 2-dimensional table and form 
the table entry by stacking the column code on top of the row code (Figure 6, on the left side). Denote 
this matrix by H42. This is a 4x4 matrix generated by G2. One should emphasize that sequences of num-
bers of columns and of rows of H42 are given here in accordance with the Gray code sequence and they 
differ from the usual sequence of binary numeration which was used in Chapter 1 on Figure 3.

The corresponding genetic code-based matrix is denoted by C42 (Figure 6, in the middle). We next 
compute the Hamming distance of each entry of the matrix H42. The resulting matrix is denoted by D42 
(Figure 6, on the right side).

We note that the matrix D21 is centrally embedded inside D42 and the matrix D42 has two (2x2)-matrices 
as building blocks denoted by B21 and B22. In view of this, the matrix D42 may be written as the block 
matrix [B21B22; B22B21].

The frequencies of matrix building blocks B21 and B22 are 2 and 2, respectively. This matrix D42 has 
Hamming distances 0’s, 1’s, and 2’s. The frequencies of the 0’s, 1’s and 2’s are 4, 8, and 4, respectively. 
The total sum of entries in the matrix is 16. The common row/column sum is 4. The Hamming distance 
between any two horizontal and vertical neighboring entries is 1.

Figure 5. On the left side: the table G1 with the binary two-level numeration of cells of the (2x2)-matrix 
H21. In the middle: the corresponding genetic code-based matrix C21 with the genetic bases A. C, G, U. 
On the right side: the matrix D21, entries of which are Hamming distances of the bases A. C, G, U in 
their considered Gray code representation

Figure 6. On the left side: the table G2 with the binary two-level numeration of cells of the (4x4)-matrix 
H42. In the middle: the corresponding genetic code-based matrix C42 with the 16 genetic duplets. On 
the right side: the matrix D42, entries of which are Hamming distances of the genetic duplets in their 
considered Gray code representation
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For n = 3, the Gray code G3 = {000, 001, 011, 010, 110, 111, 101, 100}. The matrix H83is a (8x8)-
matrix on Figure 7.

The corresponding genetic code-based matrix is denoted by C83 (Figure 8). In this matrix we mark 
by dark (white) colors each of those cells which contains a “black” (“white”) triplet by analogy with 
Figure 2 in Chapter 2.

The genetic matrix C83 differs from the genetic matrix [C A; U G](3) which was considered in other 
chapters of the book (see Figure 3 in Chapter 1). It proposes an original variant of matrix presentation 
of the genetic code. The relevant Hamming distance-based matrix D83 is shown on Figure 9.

This matrix D83 has Hamming distances 0’s, 1’s, 2’s and 3’s. The frequencies of the 0’s, 1’s, 2’s and 
3’s are 8, 24, 24, and 8, respectively. The total sum of the matrix D83 is 96. The common row/column 
sum is 12. The Hamming distance between any two horizontal and vertical neighboring entries is 1. We 
also note that the matrices D21 and D42 are centrally embedded inside D83 and the matrix D83 has three 
2x2 matrices building blocks B21, B22 and B23. It is obvious from Figure 9 that the matrix D83 may be also 
written in the following form of a block matrix (Figure 10).

The frequencies of matrix building blocks B21, B22 and B23 are 4, 8, and 4, respectively. The distribu-
tion of the codons at separate magnitudes of the Hamming distance is shown on Figure 11 together with 
frequencies of meeting of these magnitudes of Hamming distances in the matrix D83.

Let us consider generalization of such matrices. In a general case of the matrices C21, C42, C83, … 
and of the matrices D21, D42, D83, …we will use the general symbols C2

n
n and D2

n
n correspondingly. Here 

2nn is the lower index in both cases. For general positive integer n, we have the following results (He, 
2003a).

Let n be the length of binary or DNA/RNA strings and Gn be the n-bit Gray code. Then

Figure 7. The table G3 with the binary two-level numeration of cells of the (8x8)-matrix H83
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Figure 8. The genetic code-based matrix C83 with the 64 genetic triplets. Black (white) codons are dis-
posed in dark (white) cells

Figure 9. The relevant Hamming distance-based matrix D83

Figure 10. The presentation of the matrix D83 as a block matrix
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1.  The genetic code-based matrix C2
n
n is a (2nx2n)-matrix with RNA bases of length n. Each two 

neighboring entries of the genetic code both from vertical and horizontal direction differs exactly 
one base.

2.  The Hamming distance-based matrix D2
n
n is also a (2nx2n)-matrix with Hamming distances of 0, 

1, 2, …, n. The common row/column sum of the matrix D2
n
n equals n2n-1 and the total summation 

of the entries of matrix D2
n
n is n22n-1.

3.  The matrix D2
n
n is a doubly stochastic and symmetric.

4.  The frequency distributions denoted by fnk (n = 2, 3, …, k =1, 2, …) of Hamming distances of 0, 
1, 2, …, n is shown below for n = 1, 2, 3, 4, and 5 on Figure 12.

 
The same table can be presented in another form (Figure 13).
The general relationships of the frequencies are determined by a recurrence formula:

f21 = 2, f22 = 2, 

fnk = 2 (f(n-1)(k-1) + f(n-1)k) 

The frequency distribution of the Hamming distances is the Pascal triangle with a multiple of 2n. 
The solution to this recurrence relation is

Figure 11. The distributions of the codons at separate magnitudes 0, 1, 2, 3 of the Hamming distance in 
the matrix D83. Frequencies of meeting these magnitudes are shown in the third column

Figure 12. Frequency distribution of Hamming distances for different numbers n
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fnk = 2nC(n,k), k = 1, 2, …, n. 

5.  The matrix D2
n
n consists of (n-1) (2x2)-matrix building blocks B21, B22, …, B2(n-1). The previous 

matrix D2
n-1

(n-1) is centrally embedded inside the next matrix D2
n
n. The frequencies of matrix build-

ing blocks B21, B22, …, B2(n-1) are f(n-1)1, f(n-1)2, …, f(n-1)(n-1), respectively.

Next we illustrate the stochastic and hypercube structure of the genetic code based matrix C2
n
n via 

the structure of matrix of D2
n
n.

As we have noted, the matrix D2
n
n is a symmetric and doubly stochastic matrix. For its simplicity, we 

consider the case when n = 3, i.e. D83, the entry of the matrix is a RNA codon. Here we list some basic 
properties of the matrix D83.

The matrix • D83 is symmetric since D83= D83
T (the transpose of a matrix).

The matrix • D83 is singular since Det (D83) = 0 (determinant of a matrix).
The • eigenvalues of D83 is {l1, l2, … l8 }={-4, -4, -4, 0, 0, 0, 0, 12}.
The • eigenvectors are {0, -1, -1, 0, 1, 0, 0, 1}, {0, 1, 0, -1, -1, 0, 1, 0}, {-1, -1, 0, 0, 1, 1, 0, 0}, {0, 
-1, 1, 0, -1, 0, 0, 0},{1, -2, 1, 0, -1, 0, 1, 0}, {1, -1, 0, 0, -1, 1, 0, 0},{-1, 1, -1, 1, 0, 0, 0, 0}, {1, 
1, 1, 1, 1, 1, 1, 1}. Furthermore these 8 vectors are linearly independent. They form a basis for a 
vector space of dimension of 8.
Trace of matrix • D83 = sum of eigenvalues = 0 + 0 + 0 + 0 - 4 - 4 - 4 + 12 =0.

Since the matrix D83 is doubly stochastic, the matrix D83 can be decomposed as a convex combination 
of finitely many permutation matrices (Bapat, & Raghavan, 1997); that is,

D83= a1P1 + a2P2 + … + a8P8, 

where P1, P2, …, P8 are permutation matrices and 0 ≤ a1, a2,…, a8 ≤ 12, a1 + a2 +…+ a8 = 12. A permuta-
tion matrix can be obtained from an identity matrix by permuting its rows and columns. Explicitly we 
have the following result.

The matrix D83 = 0 P1 + 1 (P2 + P3 + P4) + 2 (P5 + P6 + P7) + 3 P8, where P1 = Table 1.
The corresponding codons (or vertices/nodes of a graph) of this matrix P1 are {CCC, CCG, CGG, 

CGC, GGC, GGG, GCG, GCC}.

Figure 13. Another form of presentation of frequency distribution of Hamming distances for different 
numbers n
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P2 = Table 2.
The corresponding codons (or vertices/nodes of a graph) of P2 are {CCA, CCU, CGA, CGU, GGA, 

GGU, GCU, GCA}.
P3 = Table 3.
The corresponding codons (or vertices/nodes of a graph) of this matrix P3 are {CAC, CAG, CUG, 

CUC, GUC, GUG, GAG, GAC}.
P4 = Table 4.
The corresponding codons (or vertices/nodes of a graph) of this matrix P4 are {ACC, ACG, AGG, 

AGC, UGC, UGG, UCG, UCC}.
P5 = Table 5.
The corresponding codons (or vertices/nodes of a graph) of this matrix P5 are {ACA, ACU, AUG, 

AGA, UGA, UGU, UCU, UCA}.
P6 = Table 6.
The corresponding codons (or vertices/nodes of a graph) of matrix P6 are {CAA, CAU, CUU, CUA, 

GUA, GUU, GAU, GAA}.
P7 = Table 7.
The corresponding codons (or vertices/nodes of a graph) of this matrix P7 are {AAC, AAG, AGU, 

AUC, UCC, UGG, AUG, UAC}.
P8 = Table 8.
The corresponding codons (or vertices/nodes of a graph) of the 8th matrix P8 are {AAA AAU, AUU, 

AUA, UUA, UUU, UAU, UAA}.

GENETIC CODE, ATTRIBUTIVE mAppING AND STOCHASTIC mATRICES

Chapter 1 has demonstrated already the three binary sub-alphabets of the genetic alphabet which allow 
creating the described tabular and matrix form of presentation of ensembles of molecular elements of 
the genetic code (Figures 2 and 3 from Chapter 1). These sub-alphabets are based on the three kinds of 
binary-oppositional attributes of the nitrogenous bases A, C, G, U/T. From the viewpoint of the first kind 
of the binary-oppositional attributes (pyrimidines-purine), the following pairs of equivalent genetic letters 
exist: C = U and A = G (here “=” is the symbol of equivalence). From the viewpoint of the second kind 
of the binary-oppositional attributes (amino-mutating and non-amino-mutating), the following pairs of 

Table 2. P2 =

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

Table 1. P1 =

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1
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equivalent genetic letters exist: C = A and U = G. From the viewpoint of the third kind of the binary-
oppositional attributes (2 and 3 hydrogen bonds), the following pairs of equivalent genetic letters exist: 
C = G and A = U.

The works (He, 2001, 2003) contain an analysis of three mapping relations on the basis of these at-
tributes for generating new interesting matrices and for studying their properties and symmetries.

Here we further investigate the symmetrical structures of the genetic matrix [C A; U G](3) from the 
viewpoint of the third kind of the binary oppositional attributes. The complementary letters C and G have 
3 hydrogen bonds (C = G = 3) and the complementary letters A and U have 2 hydrogen bonds (A = U = 2). 
Let us replace each multiplet in the genetic matrix [C A; U G](3) by the sum of these numbers of its hydrogen 

Table 5. P5 =

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

Table 3. P3 =

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

Table 4. P4 =

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

Table 6. P6 =

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

Table 7. P7 =

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

Table 8. P8 =

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0
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bonds. For example, the triplet CAU will be replaced by number 7 (= 3+2+2). (Figure 2 in Chapter 4 pre-
sented another variant, when symbolic multiplets were replaced by product of numbers of their hydrogen 
bonds). In this “additive” case, we get the following numeric matrix, denoted by G(i,j) (Figure 14).

One can easily see that the matrix G(i,j) has common row sum and common column sum of 60. It 
implies that the matrix G(i, j) is a doubly stochastic (8x8)-matrix. In next paragraph, we explore the 
properties of this matrix and its relationship with DNA and protein sequences.

Here we list some basic properties of the matrix G(i,j).

The matrix • G(i,j) is symmetric since G(i,j) = G(i,j) T.
The matrix • G(i,j) is singular since Det (G(i,j)) = 0.
The • eigenvalues of G(i,j) is {l1, l2, … l8 }={0, 0, 0, 0, 4, 4, 4, 60}.
The • eigenvectors are {2, -1, -1, 0, -1, 0, 0, 1}, {1, 0, -1, 0, -1, 0, 1, 0}, {1, -1, 0, 0, -1, 1, 0, 0}, {1, 
-1, -1, 1, 0, 0, 0, 0},{-1, 0, 0, 1, -1, 0, 0, 1}, {0, -1, 0,-1, 1, 1, 0, 1, 0},{0, 0, -1, -1, 1, 1, 0, 0}, {1, 
1, 1, 1, 1, 1, 1, 1}. Furthermore these 8 vectors are linearly independent. They form a basis for a 
vector space of dimension of 8.
Trace of matrix • G(i,j) = Sum of eigenvalues = 0 + 0 + 0 + 0 + 4 + 4 + 4 + 60 =72.

Since the matrix G(i,j) is doubly stochastic, the matrix G(i,j) can be decomposed as a convex com-
bination of finitely many permutation matrices (Bapat, & Raghavan, 1997); that is,

G(i, j) = a1P1 + a2P2 + … + amPm, 

where P1, P2, …, Pm are permutation matrices and 0 ≤ a1, a2,…, am ≤ 60, a1 + a2 +…+ am = 60. A per-
mutation matrix can be obtained from an identity matrix by permuting its rows and columns. Explicitly 
we have

G (i, j) = 9 P1 + 8 (P2 + P3 + P4) + 7 (P5 + P6 + P7) + 6 P8, where 

P1 = Table 9.
P2 = Table 10.
P3 = Table 11.

Figure 14. The transformation of the genomatrix [C A; U G](3) into the numeric genomatrix G(i,j), each 
entry of which is equal to the sum of hydrogen bonds of the relevant codon



103

Genetic Code and Stochastic Matrices

P4 = Table 12.
P5 = Table 13.
P6 = Table 14.
P7 = Table 15.
P8 = Table 16.

Each permutation matrix is also doubly stochastic and symmetric. Each matrix can be viewed as a 
vertex of genetic cube illustrated in (Petoukhov, 2001). One may note that this genetic cube can be iter-

Table 9. P1 =

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Table 10. P2 =

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

Table 11. P3 =

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

Table 13. P5 =

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

Table 14. P6 =

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

Table 12. P4 =

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0
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ated by taking the power of the matrix G(i,j). A fractal structure of the genetic cube will emerge from 
one generation to another.

GENETIC CODE, pOWER OF mATRICES AND STOCHASTIC mATRICES

We next recall a well-known result on the power of matrix. If A is the adjacency matrix of a simple 
graph, the ij-th entry of Am is equal to the number of paths of length m from vertex i to vertex j, m=1, 2, 
3,…. To apply this result to the matrix D83, we conclude that the number of paths of length m is equal 
to the entries of m-th power of an adjacency matrix D83 corresponding to a simple graph with codons 
as vertices.

For m = 1, 2, 3,…, we denote D83
m the m-th power of matrix G(i, j). It’s easy to see that the matrices 

D83
1, D83

2, …, D83
m are doubly stochastic, their eigenvalues are { (l1)

m, (l2)
m, … (l8)

m } = {0, 0, 0, 0, (-4)
m, (-4)m, (-4)m, 12m} with the same eigenvectors of D83.

Here we illustrate the powers of matrix D83 when m = 2, and 3, respectively.
(D83)

2 = Table 17.
The next iteration is the 3rd power of matrix D83. The resulting matrix is
(D83)

3 = Table 18.
As the power m increases, the number of paths increases rapidly. This kind of hypercomplex num-

ber is considered in Chapter 9 under the name “hyperbolic matrions”. One can extend this result into 
the general case of matrix D2

n
n. If the length of DNA/RNA sequences is n, then all possible Hamming 

distances among the entries of the matrix D2
n
n are 0, 1, 2, …, n. The dimension of this matrix is 2n by 2n. 

Each entry of the matrix is a chain of DNA/RNA bases of length n. The iterations of the matrices provide 
a way of knowing the number of paths traveling from one entry to another within the matrix.

Chemical analysis of the molar content of the bases (generally called the base composition) adenine, 
thymine (uracil), guanine, and cytosine in DNA molecules isolated from many organisms provided the 
important known fact that [A] = [U] and [G] = [C], in which [ ] denotes molar concentration, from which 
followed the corollary [A+G] = [U+C] or [purines] = [pyrimindines]. These chemical properties are 
well linked with the iterations of the genetic matrix. For n=1, 2, 3,…, we denote G(i,j)n the n-th power 
of matrix G(i, j). It’s easy to see that the matrices G(i,j)1, G(i,j)2, …, G(i, j)n are doubly stochastic, their 
eigenvalues are { (l1)

n, (l2)
n, … (l8)

n }= {0, 0, 0, 0, 4n, 4n, 4n, 60n} with the same eigenvectors of G(i, j).

Table 15. P7 =

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

Table 16. P8 =

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0



105

Genetic Code and Stochastic Matrices

The iteration of the matrix G(i,j) gives us an indicator for molar concentration accumulations. We 
illustrate this process of iteration by computing G(i, j)2 and G(i, j)3 respectively.

G(i, j)2 = Table 19.
It’s easy to see that the sum of the corresponding entries of the first row (or column) and of the last row 

(or column) has common sum of 900. This also applies to 2nd row (or column) with 7th row (or column), 
3rd row (or column) with the 6th row (or column) and 4th row (or column) with the 5th row (or column). 
These properties are corresponding to the molar concentration accumulations under multiplication and 
addition. For example the entry at the first row and the first column 456 is a result of accumulation of 
the following codons:

456 = CCC*CCC+CCA*CCU+CAC*CUC+CAA*UCC+ACC*CUU+ACA*UCU+AAC*UUC  
+AAA*UUU = 

= (3+3+3)*(3+3+3)+(3+3+2)*(3+3+2)+(3+2+3)*(3+2+3)+(3+2+2)*(2+3+3) +(2+3+3)*(3+2+2)+(2+
3+2)*(2+3+2)+(2+2+3)*(2+2+3)+(2+2+2)*(2+2+2) 

The entry at the 8th row and the first column 444 is a result of accumulation of the following 
codons:

444= UUU*CCC+UUG*CCU+UGU*CUC+UGG*UCC+GUU*CUU+GUG*UCU+GGU*UUC  
+GGG*UUU = 

Table 17. (D83)
2 =

24 20 16 20 16 12 16 20

20 24 20 16 12 16 20 16

16 20 24 20 16 20 16 12

20 16 20 24 20 16 12 16

16 12 16 20 24 20 16 20

12 16 20 16 20 24 20 16

16 20 16 12 16 20 24 20

20 16 12 16 20 16 20 24

Table 18. (D83)
3 =

192 208 224 208 240 224 224 208

208 192 208 224 224 240 208 224

224 208 192 208 224 208 240 224

208 224 208 192 208 224 224 240

240 224 224 208 192 208 224 208

224 240 208 224 208 192 208 224

224 208 240 224 224 208 192 208

208 224 224 240 208 224 208 192

Table 19. G(i, j)2 =

456 452 452 448 452 448 448 444

452 456 448 452 448 452 444 448

452 448 456 452 448 444 452 448

448 452 452 456 444 448 448 452

452 448 448 444 456 452 452 448

448 452 444 448 448 456 448 452

448 444 452 448 452 448 456 452

444 448 448 452 448 452 452 456



106

Genetic Code and Stochastic Matrices

=(2+2+2)*(3+3+3)+(2+2+3)*(3+3+2)+(2+3+2)*(3+2+3)+(2+3+3)*(2+3+3)+(3+2+2)*(3+2+2)+(3+2
+3)*(2+3+2)+(3+3+2)*(2+2+3)+(3+3+3)*(2+2+2) 

The sum to these two entries equals 456+444=900, which leads to common row (column) sum of 
4*900 = 3600. These common sums were governed by the fact that [A] = [U], [C] = [G], and [A+ G] 
= [C + U].

The next iteration is the 3rd power of matrix G(i,j). The resulting matrix is
G(i, j)3 = Table 20.
In this case, we have the common row (or column) sum of 216000 = 4*5400. The value 5400 = 

60*900 = 4*15*900 was derived from previous sum accumulation. This matrix iteration shows us the 
process of molar accumulation and demonstrates various symmetrical structure embedded in the molar 
concentration.

Next we illustrate a model of genetic code evolution based on the Kronecker family of the genomatri-
ces [C A; U G](n). A fractal character of hierarchic structure of this family was described in (Petoukhov, 

Table 20. G(i, j)3 =

27024 27008 27008 26992 27008 26992 26992 26976

27008 27024 26992 27008 26992 27008 26976 26992

27008 26992 27024 27008 26992 26976 27008 26992

26992 27008 27008 27024 26976 26992 26992 27008

27008 26992 26992 26976 27024 27008 27008 26992

26992 27008 26976 26992 27008 27024 26992 27008

26992 26976 27008 26992 27008 26992 27024 27008

26976 26992 26992 27008 26992 27008 27008 27024

Figure 15. Fractal structure of the genetic code or a possible model of its three-stages evolution (from 
the table with one ‘initial” nitrogen bases to octet table with 64 triplets) by means of standardizing 
quaternary partition of each table cell at a transition to the next table of this sequence
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2001). This fractal character is connected with properties of the Kronecker algorithm of construction of 
this family: [C A; U G]⊗[C A; U G]⊗[C A; U G]⊗…, where ⊗ is the symbol of Kronecker multiplica-
tion. For example the (8x8)-genomatrix [C A; U G](3) is divided into four (4x4)-quadrants with certain 
dispositions of letters C, A, U, G on the first positions of their multiplets; each of these (4x4)-quadrants is 
divided into four (2x2)-sub-quadrants with similar dispositions of letters C, A, U, G on the first positions 
of their multiplets; each of these (2x2)-sub-quadrants is divided into four cells C, A, U, G. It permits 
one to represent building algorithms of this table [C A; U G](n). in a form of three generations of 4-ary or 
quaternary divisions (partitions or “reproductions”) of its cells ensembles (Figure 15). One can suppose 
that evolution of the genetic code may be organized in a similar fractal way with quaternary partitions 
of elements at each of three stages (Petoukhov, 2001).

In the (16x16)-matrix [C A; U G](4), each entry has four bases and it can form two possible codons 
in a linear chain from left to right. For example, four bases in the 4-plet CCCA may form two codons 
CCC and CCA in a sequential order. The next (32x32)-matrix [C A; U G](5) has 1024 entries. In this case, 
each entry has five bases and forms three possible codons in a sequential order. For example the entry 
CCCAC may form three codons CCC, CCA, CAC. The next standardizing quaternary partition leads to 
a (64x64)-matrix [C A; U G](4) with 4096 entries. Each entry has six bases and it may form 4 possible 
codons. For example, the codons CAC, ACC, CCC and CCA are formed from the entry CACCCA. We 
use Tables 21, 22 and 23 to illustrate this process by summarizing the matrix dimensions, number of 
bases with possible codons and total number of entries of such matrices.

In general, we can form Table 24 to summarize this process for k = 1, 2, 3,….
Figure 16 shows the corresponding sequence of matrices, where the first matrix contains numbers 

2 and 3 of hydrogen bonds of the genetic bases C, A, U, G and where each next matrix is generated by 
means of standardizing quaternary partition.

Table 21. Phase I: First phase of evolution in three stages 

Dimensions = 20x20 
No. of Entries =1 
No. of Bases=0

Dimensions = 21x21 
No. of Entries =4 
No. of Bases =1

Dimensions = 22x22 
No. of Entries =16 
No. of Bases =1

Dimensions = 23x23 
No. of Codons =64 

No. of Bases =1 
No. of Possible Codons=1

Table 22. Phase II: Second phase of evolution in three stages 

Dimensions = 23x23 
No. of Entries =64 
No. of Bases =3 

No. of Possible Codons=1

Dimensions = 24x24 
No. of Entries =256 

No. of Bases =4 
No. of Possible Codons=2

Dimensions = 25x25 
No. of Entries =1024 

No. of Bases =5 
No. of Possible Codons=3

Dimensions = 26x26 
No. of Entries =4096 

No. of Bases =6 
No. of Possible Codons=4

Table 23. Phase III: Third phase of evolution in three stages 

Dimensions = 26x26 
No. of Entries =4096 

No. of Bases =6 
No. of Possible Codons=4

Dimensions = 27x27 
No. of Entries =16384 

No. of Bases =7 
No. of Possible Codons=5

Dimensions = 28x28 
No. of Entries =65536 

No. of Bases =8 
No. of Possible Codons=6

Dimensions = 29x29 
No. of Entries =262144 

No. of Bases =9 
No. of Possible Codons=7
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For n = 0,1 2, 3, …, let Xn denotes a DNA sequence of length n and S(Xn) =sums of hydrogen bonds 
of DNA bases. Then S(Xn) = 2n + k, k = 0, 1, 2, …, n. Furthermore, S(Xn) = S(Xn-1) + (2 or 3) for n =1, 
2, 3, …

Construction of the sums S(Xn) of hydrogen bonds may be illustrated by a Hydrogen-bonds triangle 
(Figure 17).

This leads us to find building blocks of genetic code based stochastic matrices. The first building 
block matrix is a (2x2)-matrix B2 (Table 25).

Table 24.

Dimensions = 
23kx23k 

No. of Entries =43k 
No. of Bases =3k 

No. of Possible Codons=3k-2

Dimensions = 23k+1x23k+1 
No. of Entries =43k+1 
No. of Bases =3k+1 

No. of Possible 
Codons=3k-1

Dimensions = 23k+2x23k+2 
No. of Entries =43k+2 
No. of Bases =3k+2 

No. of Possible Codons=3k

Dimensions = 23(k+1)x23(k+1) 
No. of Entries =43(k+1) 
No. of Bases =3(k+1) 

No. of Possible Codons=3k+1

Figure 16. The beginning of the sequence of numeric matrices on the base of the algorithm of standard-
izing quaternary partition

Figure 17. Hydrogen-bonds triangle
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As the length of RNA sequences increases, the matrix building blocks grow and the frequency of 
the occurrence of the building block in evolution matrix increases as well. We illustrate this process by 
constructing these building blocks (Figure 18).

Frequency of building blocks in the stochastic matrices may be illustrated by a triangle scheme 
(Figure 19).

Table 25.

3 2

2 3

Figure 18.
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Frequency of building blocks in the stochastic matrices may be illustrated by a triangle scheme.
These (2x2)-matrices are of the form the following matrix Bnk (n = 1, 2, 3, …, k = 1, 2, …, n) (Table 

26).
The row (or column) sum equals to (2n+3). The determinant of the matrix Bnk also equals to (2n+3). 

The eigenvalues of matrix Bnk equal to 1 or (2n+3). Furthermore, we have

Bnk +[2] = B(n+1)k 

Bnk + [3] = B(n+1)(k+1) 

B(n+1)k + [1] =B(n+1)(k+1) 

Where [1], [2], [3] are 2 x 2 matrices with values of 1, 2, 3, respectively in all four entries of each 
matrix. We use the following diagram to illustrate those relation between building blocks. They form a 
triangular type of structure (Figure 20).

Each matrix is doubly stochastic and symmetric. It can be expressed as a convex combination of 
symmetric permutation matrices. It forms a polyhedron with each permutation matrix as vertex.

Figure 19.

Table 26.

n+2 n+1

n+1 n+2
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Bnk (k = 1, 2, …, n) is a sequence of (2x2)-symmetric matrices which are building blocks of the evo-
lution matrix E2

n. The matrix Bnk has an explicit form shown in Table 27.
The determinant of Bnk equals 4n+2k-1, which is the same as its row/column sum. The matrix Bnk has 

two different eigenvalues 1, 4n+2k-1. It has a pair of orthogonal eigenvectors {-1, 1} and {1, 1}. The 
frequency of these building blocks in the evolution matrix is listed in Table 28.

Next we demonstrate a process of formulation of evolution matrices E2
n from these proper numbers 

of building blocks in each stage. We will generate the evolution matrices E2, E4, E8 (codons), E16, E32, 
E64 (dipeptides), E128, E512, E1024 (tripeptides)…. It is easy to note that the building process connects to-
gether the previous step and the present step. Each resulting evolution matrix is a doubly stochastic and 
symmetric matrix. They can be decomposed into a convex combination of permutation matrices with 
corresponding matrix dimension. Each permutation matrix is vertex of polyhedron (in analogues with 
polypeptide). Since the sequence of RNA has a length of n, we call this sequence a n-sided polypeptide 
(similar to n-sided polygons). Note that any n-sided polygon consists of (n-2) triangles. Any n-sided 
linear polypeptide may be decomposed into (n-2) codons (triplets). The next level of building blocks of 
proteins could be tripeptides-a chain of three amino acids.

This building process of evolution matrices may be illustrated by Figure 21 from E2, E4, E8 (codons), 
to E16., respectively.

We summarize our results here. Let n = length of RNA sequences, Bnj (j = 1, 2, … n) be (2x2)-matrix 
building blocks of the evolution matrices ED(Xn) and D(Xn) = the dimension of evolution matrix E. Then 

Figure 20.

Table 27.

2n + k 2n + k-1

2n + k-1 2n + k

Table 28.

Length of bases n Bn1 Bn2 … middle term(s) … Bn(n-1) Bnn

n is odd 2(n-1) 2n … 2(n+[(n+1)/2]-2) … 2n 2(n-1)

n is even 2(n-1) 2n … 2(n+[n/ 2]-2) 2(n+[n/ 2]-2) … 2n 2(n-1)



112

Genetic Code and Stochastic Matrices

each building block is a stochastic symmetric (2x2)-matrix, the number of building blocks | Bnj | = n 
and D(Xn) = 2n.

FUTURE TRENDS AND CONCLUSION

The first part of this chapter showed a close relation between the genetic code and the doubly stochastic 
matrix by using Hamming distance via the Gray code correspondence. The Hamming distance is ap-
plicable to encoded information, and is a particularly simple metric of comparison for error detections. 
The second part of the chapter showed a close relation between the genetic code and doubly stochastic 
matrix by using genetic attribute based mapping based on hydrogen bonds. Similar studies can be ap-
plied to other attributive mappings based on other chemical properties of DNA bases.

The matrices are storages of digital data. The matrices appear in various dimensions with different 
shapes. Stochastic matrices motivated by the language of probability show up repeatedly in nature. 
Biological evolution can be interpreted as a process of deployment and duplication of the certain forms 
of ordering. Having advanced in the understanding of structurally functional features of base systems 
of genetic coding, mankind extracts simultaneously an opportunity to advance in different areas of bi-
ology, which are built in consent with these base systems. The considered stochastic matrices seem to 
be connected with mechanisms of order production in inheritable biological systems. It is hoped that 

Figure 21.
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relationships among genetic code, Hamming distance, and stochastic matrices will help us explore the 
structure of the genetic code.

One of the interesting directions of future investigations is connected with relations between the 
matrices, which are described in this chapter, and famous Hadamard matrices, which are considered in 
the next Chapter 6 together with a special U-algorithm of transformation of some genetic matrices into 
relevant Hadamard matrices. One can check easily that the mosaic (8x8)-matrix C83 (Figure 8), which 
was constructed in this chapter on the basis of the Gray code numeration of columns and rows, is trans-
formed by the same U-algorithm into one of Hadamard (8x8)-matrices (Figure 22).
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Chapter 6

The Genetic Code, Hadamard 
Matrices, Noise Immunity, 
and Quantum Computers

INTRODUCTION AND BACKGROUND

We continue to investigate connections of the genetic matrices with matrix formalisms of the theory of 
discrete signals processing. One of the most famous and the most important kinds of matrices in this 

ABSTRACT

This chapter continues an analysis of the degeneracy of the vertebrate mitochondrial genetic code in the 
matrix form of its presentation, which possesses the symmetrical black-and-white mosaic. Taking into 
account a symmetry breakdown in molecular compositions of the four letters of the genetic alphabet, 
the connection of this matrix form of the genetic code with a Hadamard (8x8)-matrix is discovered. 
Hadamard matrices are one of the most famous and the most important kinds of matrices in the theory 
of discrete signals processing and in spectral analysis. The special U-algorithm of transformation of 
the symbolic genetic matrix [C A; U G](3) into the appropriate Hadamard matrix is demonstrated. This 
algorithm is based on the molecular parameters of the letters A, C, G, U/T of the genetic alphabet. In 
addition, the analogical relations is shown between Hadamard matrices and other symmetrical forms 
of genetic matrices, which are produced from the symmetrical genomatrix [C A; U G](3) by permuta-
tions of positions inside triplets. Many new questions arise due to the described fact of the connection 
of the genetic matrices with Hadamard matrices. Some of them are discussed here, including questions 
about an importance of amino-group NH2 in molecular-genetic systems, and about possible relations 
with the theory of quantum computers, where Hadamard gates are utilized. A new possible answer is 
proposed to the fundamental question concerning reasons for the existence of four letters in the genetic 
alphabet. Some thoughts about cyclic codes and a principle of molecular economy in genetic informat-
ics are presented as well.

DOI: 10.4018/978-1-60566-124-7.ch006
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theory are the so called Hadamard matrices. These matrices are used also in many other fields due to their 
advantageous properties: in error-correcting codes such as the Reed-Muller code; in spectral analysis; in 
multi-channels spectrometers with Hadamard transformations; in quantum computers with Hadamard 
gates (or logical operators), in quantum mechanics as unitary operators, etc.

Does any natural connection exist between the genetic matrices, which were described in previous 
chapters, and Hadamard matrices? This question should be investigated especially because a possible 
positive answer to it may lead to many significant consequences and new thoughts about structures 
of the genetic code. This chapter demonstrates the existence of such a connection and analyzes some 
questions related to it.

A huge number of scientific publications are devoted to Hadamard matrices. These matrices give 
effective opportunities for information processing.

By definition a Hadamard matrix of dimension “n” is the (nxn)-matrix H(n) with elements “+1” 
and “-1”. It satisfies the condition H(n)*H(n)T = n*In, where H(n)T is the transposed matrix and In is the 
(nxn)-identity matrix. The Hadamard matrices of dimension 2k are given by the recursive formula H(2k) 
= H(2)(k) = H(2)⊗H(2k-1) for 2 ≤ k∈N, where ⊗ denotes the Kronecker (or tensor) product, (k) means the 
Kronecker exponentiation, k and N are integers, H(2) is demonstrated in Figure 1.

Rows of a Hadamard matrix are mutually orthogonal. It means that every two different rows in a 
Hadamard matrix represent two perpendicular vectors, a scalar product of which is equal to 0. The ele-
ment “-1” can be disposed in any of four positions in the Hadamard matrix H(2). Such matrices are used 
in many fields due to their advantageous properties: in error-correcting codes such as the Reed-Muller 
code; in spectral analysis and multi-channel spectrometers with Hadamard transformations; in quantum 
computers with Hadamard gates, etc. It was discovered unexpectedly that Hadamard matrices reflect 
essential peculiarities of molecular genetic systems (Petoukhov, 2005, 2006, 2008a-d).

Normalized Hadamard (2x2)-matrices are matrices of rotation on 450 or 1350 depending on an ar-
rangement of signs of its individual elements. A Kronecker product of two Hadamard matrices is a 
Hadamard matrix as well. A permutation of any columns or rows of a Hadamard matrix leads to a new 
Hadamard matrix.

Hadamard matrices and their Kronecker powers are used widely in spectral methods of analysis 
and processing of discrete signals and in quantum computers. A transform of a vector ā by means of a 
Hadamard matrix H gives the vector ū = Н*ā, which is named Hadamard spectrum. A greater analogy 
between Hadamard transforms and Fourier transforms exists (Ahmed & Rao, 1975). In particular the fast 
Hadamard transform exists in parallel with the fast Fourier transform. The whole class of multichannel 
“spectrometers with Hadamard transforms” is known (Tolmachev, 1976), where the principle of tape 

Figure 1. The family of Hadamard matrices H(2k) based on the Kronecker product
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masks (or chain masks) is used, and it reminds one of the principles of a chain construction of genetic 
texts in DNA. Hadamard matrices are used widely in the theory of coding (for example, they are con-
nected with Reed-Muller error correcting codes and with Hadamard codes (Peterson & Weldon, 1972; 
Solovieva, 2006), the theory of compression of signals and images, a realization of Boolean functions 
by means of spectral methods, the theory of planning of multiple-factor experiments and in many other 
branches of mathematics.

Biological organisms are sets of biochemical molecules. The Hadamard matrices in analytical chem-
istry have been introduced (Pan, 2007). This work pays a special attention to applications of Hadamard 
matrices to enhance signal-to-noise ratio. It is explained in a simple example of weighing. The basic 
idea is connected to weighing of the objects in groups but not separately for a determination of their 
individual weights more accurately. For example, in a case of four objects, we can weigh them by two 
different ways. By the first way we can weigh each of them individually by means of a single pan spring 
balance which is well calibrated to give us correct values Ψ1, Ψ2, Ψ3, Ψ4 for these four objects 1, 2, 3, 
4 correspondingly with a small random error “e”. By the second way we can weigh all four objects in 
groups by means of a two-pan balance to receive their general weights η1, η2, η3, η4 in the next four 
weighing with appropriate random errors e1, e2, e3, e4:

η1 = Ψ1 + Ψ2 + Ψ3 + Ψ4 + e1 

η2 = Ψ1 - Ψ2 + Ψ3 - Ψ4 + e2 

η3 = Ψ1 + Ψ2 - Ψ3 - Ψ4 + e3 

η4 = Ψ1 - Ψ2 - Ψ3 + Ψ4 + e4 

Here the measurement with a negative value means that the object is placed on the opposite pan of 
the balance. From these equations one can easily calculate values Ψ1, Ψ2, Ψ3, Ψ4. This final result will 
be much more accurate than in the previous case of weighing of each object individually (see details in 
(Pan, 2007)). The disposition of signs “+” and “-“ in this system of the four equations is identical to their 
disposition in the relevant Hadamard (4*4)-matrix. In such way applications of Hadamard transforms 
enhance the signal-to-noise ratio.

Rows of Hadamard matrices are named Walsh functions or Hadamard functions. Walsh functions can 
be represented in terms of product of Rademacher functions rn(t) = sign(sin2nπt), n = 1,2,3,…, which 
accept the two values “+1” and “-1” only (here “sign” is the function of a sign on argument). Sets of 
numerated Walsh functions (or Hadamard functions), when they are united in square matrices, form 
systems depending on features of such union. Figure 2 shows two examples of systems of such func-
tions, which are used widely in the theory of digital signals processing.

They are connected with (8x8)-matrices by Hadamard and with the Walsh-Hadamard transform, 
which is the most famous among non-sinusoidal orthogonal transforms and which can be calculated by 
means of mathematical operations of addition and subtraction only (see more detail in (Ahmed & Rao, 
1975; Trahtman & Trahtman, 1975; Yarlagadda, & Hershey, 1997). Hereinafter we will use the simpli-
fied designations of matrix elements on illustrations of Hadamard matrices: the symbol “+” or the black 
color of a matrix cell means the element “+1”; the symbol “-“ or the white color of a matrix cell means 
the element “-1”. The theory of discrete signals pays special attention to quantities of changes of signs 
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“+” and “-“ along each row and each column in Hadamard matrices. These quantities are connected 
with important notion of “sequency” as a generalization of notion of “frequency” (Ahmed & Rao, p.85). 
Figure 2 shows these quantities for each row and each column in presented matrix examples.

Normalized Hadamard matrices are unitary operators. They serve as one of the important instru-
ments to create quantum computers, which utilize so called Hadamard gates (as evolution of the closed 
quantum system is unitary) (Nielsen & Chuang, 2001).

THE GENETIC CODE AND HADAmARD mATRICES

The molecular composition of the letters A, C, G, U/T of the genetic alphabet is characterized by one 
special disturbance of symmetry: the three nitrogenous bases A, C, G have one amides (amino-group) 
NH2, but the fourth basis U/T has not it (Figure 1 of Chapter 1).

From the viewpoint of existence of the amino-group NH2, the letters A, C, G are identical to each other 
and the fourth letter U/T is opposite to them. This fact of existence or absence of the amino-group NH2 
in certain genetic letters can be reflected in the alphabetic genomatrix P = [C A; U G] by symbols “+1” 
instead of the letters A, C, G and by the symbol “-1” instead of the letter U. In this case this genomatrix is 
transformed into the Hadamard genomatrix PH(2) = H(2) = [1 1; -1 1]. All other variants of the Kronecker 
families of the alphabetic genomatrices, which were considered in Chapter 2 on Figure 11, become the 
Kronecker families of Hadamard matrices by such a way as well (Figure 3 demonstrates examples).

The detection of natural realization of Hadamard matrices (and systems of orthogonal functions, 
which are connected with them) on the basis of parameters of the molecular-genetic system, which 
serves to transfer discrete genetic information, show that all known advantages of Hadamard matrices 
can be utilized in bioinformatics. Taking into account a possible important role of Hadamard matrices 
in the genetic signals processing, one can consider genetic sequences as lattice functions, for which a 
substantial class of discrete logical operations exists. This class contains logical addition, logical subtrac-
tion, logical product, logical shift, logical convolution and logical differentiation. All these operations 
can be applied to the analysis of problems of genetic information processing.

Figure 2. Examples of the two systems of Walsh functions (or Hadamard functions), which are used 
frequently in the theory of digital signals processing. On the left side: the Walsh-Hadamard system. On 
the right side: the Walsh-Paley system. Quantities of changes of signs “+” and “-“ are shown for each 
row and each column
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One should note that the attribute of absence of the amides (amino-group) NH2 picks out those ni-
trogenous bases T and U, which differ from other genetic letters A, C, G by one specific property else. 
These letters T and U replace each other at transition from DNA to RNA for an unknown reason. These 
double differences of the first sub-set of genetic alphabet A, C, G with the second subset U/T lead to the 
identical transformations of the alphabetic genomatrices into Hadamard matrices.

ABOUT THE ImpORTANCE OF AmINO-GROUpS NH2

The importance of compounds of nitrogen for molecular genetics is reflected even in names: “amino 
acids” (the organic acids containing amino-groups); “the nitrogenous bases”; “the N-end” of nucleotide 
circuit, with which synthesis of proteins begins always, etc. All proteins are polyamides. The lack of 
proteins of food leads to a number of heavy infringements of a nitrogenous exchange. The amino-group 
of amino acids bears a base function to provide recognition of an amino acid by enzyme (Shapeville & 
Haenni, 1974).

Beginning with the works (Schuster & Schramm, 1958; Gierer &Mundry, 1958), it is known that 
action of the nitrous acid NHO2 on RNA leads to amino-mutation of RNA. More precisely this action 
deletes amino-group at the nitrogenous bases A and C and leads finally to a replacement of the nitrogenous 
bases A and C by the bases G and U correspondingly: A→G, C→U. In a certain sense, the bases A and 
G (C and U) can be interpreted as the two states of the same letter. One can note that objects with such 
“trigger” properties are used to construct computers. These amino-mutations A→G, C→U are utilized 
traditionally to demonstrate molecular mechanisms of an origin of genetic mutations. The nitrogenous 
acid exists only in the diluted water solutions, which are similar to solutions in biological organisms.

The work (Wittmann, 1961) has demonstrated a degeneracy of the genetic code by means of the fol-
lowing method. The author has grouped all 64 triplets into 8 octets, each of which begins with maximal 
amino-mutation triplets, which are transformed step by step into more and more stable triplets, non-
mutating under the action of nitrous acid NHO2. These octets by Wittmann, which take an important 

Figure 3. Examples of transforms of the Kronecker families of the alphabetical genomatrices from Figure 
11 of Chapter 2 into appropriate Kronecker families of Hadamard matrices
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place in the history of the discovery of the genetic code (Ycas, 1969), coincide with the columns of the 
genomatrix [C A; U G](3) on Figure 2 of Chapter 2. Taking all these facts into account, one should pay 
great attention to amino-groups in future development of knowledge about genetic code systems. One 
can raise Hadamard (2x2)-matrices from Figure 3 into the third Kronecker power to receive Hadamard 
(8x8)-matrices. One such octet matrix is shown in Figure 2 on the left side. But mosaics of the Hadamard 
matrices, which are obtained by this method, differ from mosaics of the octet genomatrices of triplets, 
which were presented in Chapter 2. Really the mosaics of the genomatrices of triplets contain 32 black 
cells and 32 white cells (Figures 2, 4, and 5 of Chapter 2), whereas Hadamard (8x8)-matrices contain 
28 cells of one color and 36 cells of another color.

The question arises as to whether any simple algorithmic connection exists, which is connected to spe-
cifics of the genetic code, between the mosaic of the genomatrix [C A; U G](3) = РCAUG

123 (see Figure 2 of 
Chapter 2) and the black-and-white mosaic of some matrix from the set of Hadamard (8x8)-matrices?

The answer to this question is positive: such algorithmic connection exists. It is mated with the 
fundamental and enigmatic features of the genetic code: firstly, the mutual replacement of the letters U 
and T in RNA and DNA and, secondly, the difference of these letters from other letters A, C, G by the 
absence of amids (amino-groups) in them. Really, let us replace black (white) cells of the genomatrix 
[C A; U G](3) in Figure 2 of Chapter 2 by the number “+1” (“-1”). As a result we obtain the matrix B123 
from Figure 7 of Chapter 2. After this we invert the signs in cells of this matrix B123 every time when 
the particular letter U occupies the first or the third positions of a triplet. We name this algorithm of 
inverting the “U-algorithm” conditionally. For example, by this U-algorithm the cells with the triplets 
UCA and GAU change their sign one time, and the cell with the triplet UAU changes its sign twice (it 
means that this cell does not change its sign at all). As a result of such algorithmic changes of signs, the 
mosaic genomatrix [C A; U G](3) from Figure 2 of Chapter 2 becomes one of the Hadamard matrices 
(see the first matrix in Figure 4).One can suppose that the described “genetic” U-algorithm (of inverting 
the signs every time when the particular letter U or T appear in an odd position of triplets) is connected 
with the biological mechanism of mutual replacement of the letters U and T at transition from RNA to 
DNA and vice versa.

The five genomatrices РCAUG
231, Р

CAUG
312, Р

CAUG
132, Р

CAUG
213, Р

CAUG
321 from Chapter 2 (Figures 4 and 5 

of Chapter 2), which are produced from the matrix РCAUG
123 = [C A; U G](3) by positional permutations 

inside triplets, are transformed into other Hadamard matrices by the analogical algorithm. It is obvious 
because, as we mentioned above, a transform of the genomatrix by positional permutation inside triplets 
is identical to its transformation by the appropriate permutation of its columns and rows; but permuta-
tions of columns or rows in Hadamard matrices give new Hadamard matrices always.

Figure 4 shows six Hadamard matrices, which correspond to the six mentioned genomatrices. One 
can check that any of these octet matrices satisfies the definition of Hadamard matrices: if the matrix is 
multiplied on transposed matrix, the result is the unitary matrix with the factor 8. Each (4x4)-quadrant 
and each (2x2)-sub-quadrant of these Hadamard (8x8)-matrices is a Hadamard matrix as well. In other 
words, “Hadamard fractals” are presented in the genomatrices, the mosaic of which reflects the specific 
character of degeneracy of the genetic code. The total quantity of Hadamard matrices of different sizes 
in these six Hadamard (8x8)-matrices is equal to 126.

One should note a special feature of the genetic Hadamard matrices on Figure 4: a quantity of 
changes of signs “+” and “-“ is equal to 14 for each of halves of these matrices (we say about upper, 
lower, left and right halves). It can be named conditionally as “a rule of halves of a lunar month” (this 
numeric coincidence with the halves of the quantity of 28 days in a lunar month is accidental till that 
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moment when somebody proves a contrary statement). Such “symmetrical” feature is a typical feature 
for many genetic Hadamard matrices which are presented in Chapters 6, 7, 11 of our book. We name 
Hadamard matrices with such feature as “balanced” Hadamard matrices. One can check that each of 
(4x4)-quadrants of these Hadamard (8x8)-matrices is a balanced Hadamard matrix as well. This feature 
distinguishes the described genetic Hadamard matrices from some types of Hadamard matrices which 
are used in technical applications widely. For example the Hadamard matrices with the Walsh-Paley 
system (Figure 2, on the right side) or with the system {wal(w,x)} (Trahtman & Trahtman, 1975, p. 47) 

Figure 4. The six balanced Hadamard matrices, which are produced from the six mentioned genoma-
trices by means of the U-algorithm. The black cells correspond to elements “+1” and the white cells 
correspond to elements “-1”. Numbers of changes of signs “+” and “-“ (or changes of colors) are 
shown for each row and each column
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have not such feature. The nature has chosen by some reasons the genetic code, which is connected with 
balanced Hadamard matrices.

Other octet genomatrices, which were considered in Chapter 2, are transformed into appropriate 
Hadamard matrices by means of the analogical U-algorithm. Some of these matrices are demonstrated 
in Figure 5 with an indication of those genomatrices, from which they are produced. All of the genetic 
matrices on Figure 5 are balanced Hadamard matrices as well because they fit to the “rule of halves of 
a lunar month”.

All such kinds of Hadamard matrices represent various basic systems of orthogonal functions, 
which are coordinated with structural peculiarities of molecular systems of the genetic code. They can 
be utilized in genetic systems for spectral methods of genetic information processing with the use of 
noise-immunity coding, of compression of signals and of other useful possibilities, which Hadamard 
matrices and Walsh functions possess.

GENETIC INFORmATICS, HADAmARD mATRICES 
AND QUANTUm COmpUTERS

Investigations of structural-functional analogues between the system of genetic coding and computers 
have been conducted in science for a long time. In the last years a general opinion has arisen that the 
future of computer technology is connected with quantum computers, which possess fantastic possibili-
ties in comparison to traditional computers due to new principles in their workings (Nielsen, & Chuang, 
2001; Valiev, & Kokin, 2001). The theory of quantum computers, which are the new type of computers 
in principal, is developed intensively. The following question arises. Is the system of genetic coding 
closer to classical or quantum type of computers from the point of view of computer analogies? From 
the point of view of analogues with classical or quantum computers is it necessary to investigate the 
molecular-genetic system?

Genetic molecules exist in accordance with principles of quantum mechanics (from the point of 
view of classical mechanics, atoms and molecules cannot exist at all). Therefore it is natural to believe 
in the presence of a relationship between molecular-genetic informatics and quantum computers and to 
comprehend genetic coding from the point of view of this type of computers. Let us recall the famous 
data about the advantages of quantum computers, the theory of which utilizes Hadamard matrices (more 
precisely, Hadamard gates) intensively (see for example (Nielsen, & Chuang, 2001)). Classical computers 
possess restrictions in calculations on many practically interesting and important classical algorithms, 
when speed is about increasing number of data and exponential growth of time of calculation. One of 
famous examples is the question about decomposition (factorization) of number N on prime factors. 
Classical theory of calculations works with such algorithms of calculations, where number of steps 
grows as a polynomial of a small power of the size of the entrance data (for example, a polynomial of 
the second or third power). But in the mentioned question of factorization, the best such algorithms 
lead to an exponential growth in the number of steps at increasing size of entrance data. For this reason, 
the time of calculations becomes huge. For instance, in 1994, 129-unit number was factorized on 1600 
workstations distributed worldwide. The time of the factorization was equal to 8 months. The estimated 
time, which the same 1600 workstations require for the factorization of 1 250-unit number, is one mil-
lion years. Accordingly, factorization of 1000-unit number requires 1025 years, that is much more than 
the age of the Universe. This abstract problem of factorization of great numbers has a direct relation to 
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systems of cryptography with the open key, which are utilized in bank systems widely. One should note 
for comparison that algorithms in quantum computers calculate such factorization of a 1000-unit number 
by means of a few millions steps only. Classical computers do not allow one to model chemical reactions 
and systems, where many quantum effects should be taken into account with necessary completeness. It 

Figure 5. The 12 balanced Hadamard matrices, which are produced from the indicated 12 genomatrices 
of triplets by means of the U-algorithm. Black cells correspond to elements “+1” and white cells cor-
respond to elements “-1”
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is important for science that quantum computers will allow one to calculate a structure and functioning 
of quantum systems, including molecules of proteins and DNA.

Classical computer networks consist of wires and a set of logic gates (a set of transistors). Standard 
electric signals are transferred through wires, and logic gates transform information signals passing 
through them. A single non-trivial logic gate, which transforms 1 byte of classical information, is the 
NOT-gate. This gate transforms signals in the following way: 0→1 and 1→0.

In the case of quantum computers, analogues of the NOT-gate look like matrixes of special kind. 
Exists of Hadamard gates among them are very useful. The Hadamard gate is the normalized Hadamard 
matrix, the determinant of which is equal to the unit (see Figure 6).

The amazing efficiency of work of quantum computers is connected with quantum parallelism, which 
is a fundamental property of quantum calculations. It allows quantum computers to calculate function 
f(x) for various values х simultaneously. The Walsh-Hadamard transformation, which is a Kronecker 
product of Hadamard operators, is especially useful there. This Walsh-Hadamard transformation makes 
a superposition of all basic states with equal amplitude and it is extremely effective for the construction 
of superposition of 2n states that use number “n” of gates only. Bioinformatics and the theory of quan-
tum computers can enrich each other by means of analysis of heuristic analogies between them. Data 
described in our book about connections of Hadamard matrix with the genetic system can promote this 
mutual enrichment.

As modern science opens an amazing efficiency of quantum computers, the following question is 
natural. Does living substance s not use the advantages of their principles of functioning in its self-orga-
nizing? Possibly, it does, and many new connections between living substance and quantum computers 
will be revealed by science in the future. One can note that the problem of understanding the biological 
phenomena from the viewpoint of quantum mechanics and quantum computers draws the increasing 
attention of theorists in the last years (see for example the books (Penrose, 1989, 2004)).

WHy DOES THE GENETIC ALpHABET CONSIST OF FOUR LETTERS?

Genetic molecules are objects of quantum mechanics, where normalized Hadamard matrices play an 
important role as unitary operators (it is known that an evolution of a closed quantum system is described 
by unitary transformations).

Why has nature chosen a genetic alphabet which consists of four letters? The following new answer 
of matrix genetics to this fundamental question is possible from the viewpoint of the importance of 
principles of quantum mechanics and of quantum computers for molecular genetics. The genetic alpha-
bet consists of four letters because the simplest unitary matrices in two-dimensional space, first of all, 
Hadamard matrices (and Pauli matrices, etc.) consist of four elements exactly. It seems very probable 
that principles of quantum mechanics and quantum computers underlie structural peculiarities of the 
genetic code.

Figure 6. 
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One can also note that Hadamard matrices arise not only in connection with the mentioned pair of 
binary-oppositional attributes of “existence or absence of amino-group NH2” in genetic letters. For example, 
other variants of Hadamard genomatrices correspond to binary-oppositional attributes of “existence or 
absence of atoms of oxygen” in the genetic letters: the letters С, G, U/T contain atoms of oxygen, but 
the letter A does not. In DNA, Hadamard matrices arise in connection with binary-oppositional attributes 
of “existence or absence of five atoms of carbon”: each of the letters A, G, T contains five atoms of 
carbon in its molecular construction, but the letter C contains four atoms of carbon only (see Figure 1 of 
Chapter 1). In our opinion, the significance of matrices, which correspond to these kinds of attributes, 
is less in comparison with the considered case of attributes of amino-group NH2.

CyCLIC SHIFTS, CyCLIC CODES AND THE pRINCIpLE OF 
mOLECULAR ECONOmy IN GENETIC INFORmATICS

It was mentioned in Chapter 1, when analogues between matrices of diadic shifts and genomatrices 
were considered, that matrices of diadic shifts possess a block character and is connected with cyclic 
shifts of their blocks. More precisely, the identity of quadrants along each diagonal in such matrices 
allows us considering them as block (2x2)-matrices, in which both rows are mutually connected by a 
transformation of cyclic shift. The tessellation of a plane with the mosaic of the genomatrix on Figure 3 
of Chapter 2 has the character of the tessellation on the base of cyclic shifts of black and white modular 
units. In addition, cyclic shifts of positions inside triplets (see Chapter 2) allow one to consider hidden 
regularities in the structure of degeneracy of the genetic code. One can see also that the disposition of 
a series of elements in the genomatrices of hydrogen bonds (Figure 2 of Chapter 4) correspond to the 
disposition of the series of elements in the matrices of diadic shifts (Figure 5 of Chapter 1). And what 
is known about cyclic shifts in the theory of noise-immunity codes in general?

This theory includes an important family of so called “cyclic codes” (Arshinov, & Sadovskiy, 1983; 
Peterson, & Weldon, 1972). Their name is connected with the fact that these codes are based on the cyclic 
shifts. Some authors consider cyclic codes as the most valuable achievement of the theory of coding 
because they allow very compact descriptions, easy algorithms of coding and decoding, a simplicity 
in their realization (Arshinov, & Sadovskiy, 1983). These codes are related to matrices of cyclic shifts, 
where rows-vectors differ by their shift or by a cyclic permutation of components.

Some interesting investigations in the field of molecular genetics are known already. The authors of 
which connect principles of constructions of genetic sequences with the idea of cyclic codes in some 
sense (Lassez, 1976; Arques, Michel, 1996, 1997; Frey, Michel, 2003, 2006; Stambuk, 1999, etc). Of 
course, these authors did not know about the data of matrix genetics, which are described in our book, 
and did not utilize them.

The question about cyclic codes is not so simple. A big number of cyclic codes exist. They can be 
applied in various combinations. In particular, the data described above about connections of the genetic 
matrices with block matrices of diadic shifts allow us to suppose the following. It is important to study 
genetic sequences in a connection with those codes, which are based on matrices of diadic shifts with 
their block-shift character, in other words, in a connection with “block-cyclic” codes.

The term “cyclic” is very attractive in applications to biological systems, which are characterized by so 
many cyclic processes. The famous theory of hyper-cycles reflects the importance of cyclic biochemical 
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processes for biological organisms to some extent (Eigen, 1979, 1988, 1992; Eigen, & Winkler, 1993). 
The chronocyclic conception described above in Chapter 3 is related to cyclic processes as well.

If rows of the genetic matrices are interpreted as code vectors, then the described algorithmic con-
nection between the rows allows one to think about the following. In system of genetic coding, not all 
code vectors of cyclic or diadic codes should exist necessarily at each moment of time in the form of a 
system of parameters of real molecular structures. It is enough if only a part of a set of code vectors exist; 
other code vectors can be calculated by a molecular computer of an organism by means of corresponding 
algorithms or they can be synthesized in the molecular forms temporarily (including re-packing molecular 
components). Such a principle gives general economy of molecular materials. This hypothesis about the 
molecular-economy principle in the field of genetic informatics should be studied in the future.

FUTURE TRENDS AND CONCLUSION

Spectral methods of decomposition of signals on orthogonal systems of functions have proved themselves 
for a long time as especially important in the theory of signals and informatics in general. Research-
ers of genetic informatics attempt to address to them already (see, for example, the works (Kargupta, 
2001; Lobzin & Chechetkin, 2000), which pay attention to the importance of spectral methods in this 
field). But an infinite quantity of orthogonal systems of functions exists. It is difficult for researchers of 
molecular-genetic systems to make a choice of one of infinite number of possible orthogonal systems as 
an adequate one for spectral methods in the field of genetic informatics. They should make here rather 
a volitional choice, risking the waste of many years of work in the case of the failure of such choice. 
They make this choice usually, proceeding from secondary reasons, which do not have direct relation 
to genetic systems. For example, they choose the system of orthogonal harmonious functions, which 
is applied in the classical frequency Fourier-analysis, for the reason, that this system has extensive ap-
plications in technical fields.

The results described in our book show the orthogonal systems of functions, which are connected with 
Hadamard matrices and which possess a special meaning for genetic informatics and its spectral methods. 
The orthogonal systems of functions connected with Hadamard matrixes are picked out by nature from 
the infinite set of basic systems for their deep connection with an essence of molecular-genetic coding. 
A consistent investigation of bioinformatics systems should be done from the viewpoint of the theory 
of genetic Hadamard matrices and their applications. In particular, the comparative analysis of various 
genetic sequences on their Hadamard spectrums is interesting. The described results give important 
help in a choice of research tool from an infinite set of orthogonal systems of functions and from a set 
of variants of noise-immunity codes.

In the spectral analysis of genetic sequences (for example, their correlation functions), it is mean-
ingful to spend their decomposition on orthogonal vectors-rows of Hadamard genomatrices, instead of 
on trigonometric functions of the frequency Fourier-analysis. Investigations of Hadamard spectrums 
in mathematical genetics are perspective and well-founded. Especially since some works are already 
known as applications of Walsh functions (alongside with other systems of basic functions) to spectral 
analysis of various aspects of genetic algorithms and sequences (Forrest, & Mitchell, 1991; Geadah & 
Corinthios 1977; Goldberg, 1989; Lee, & Kaveh, 1986; Shiozaki, 1980; Vose & Wright, 1998; Waterman, 
1999). Here we emphasize a possible benefit for bioinformatics to use genetic Hadamard matrices which 
are connected with a phenomenon of degeneracy of the genetic code and form a special subset of a set 
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of Hadamard matrices. The book (Zalmanzon, 1989, p. 416) contains a review of investigations made 
by various authors about Walsh orthogonal functions in physiological systems of supra-cellular levels. 
Hadamard matrices have been used in molecular genetics in a connection with Hadamard conjugation for 
evolutionary trees and with phenomena of cyclic gene expressions (see Chapter 11). In our view, genetic 
Hadamard matrices described can be useful for developing these branches of molecular biology.

One can also mention that for application of spectral methods to problems of genetic coding it is 
important not only to choose an adequate basic system of orthogonal functions, but to determine suc-
cessfully a numerical form of representation of genetic sequences as well. The matter is that spectral 
methods in the theory of discrete signals operate with numerical sequences or numerical vectors, but 
genes appear in the literature usually in a form of symbolic sequences of molecular triplets like AUC-
UCG-CCG-… . A great number of ways of transformations of such symbolic genetic sequences into 
their numerical form exist in principle, for example, by means of replacement of each triplet by the 
number of its atoms, or by the number of its hydrogen bonds, etc. Which kind from this set of possible 
forms of numerical representation should be chosen and should be investigated first of all for a deep 
understanding the genetic code? It is one of the questions, which are studied in our book by means of 
researches of various variants of such numeric presentation, etc.

The discovery of connections of the genetic matrices with Hadamard matrices leads to many new 
thoughts and possible investigations using methods of symmetries, of spectral analysis, etc. One can 
expect that those Walsh-Hadamard functions, which are related to the described genetic Hadamard ma-
trices (Figures 4, 5 of Chapter 6) will be used effectively in the spectral analysis of genetic sequences. 
It seems that investigations of structural and functional principles of bio-information systems from the 
viewpoint of quantum computers and of unitary Hadamard operators are very perspective. A comparison 
of orthogonal systems of Walsh-Hadamard functions in molecular-genetic structures and in genetically 
inherited macro-physiological systems can give new understanding to an interrelation of various levels 
in biological organisms. Data about the genetic Hadamard matrices together with data about algebras 
of the genetic code, which are described in the next chapters, can lead to new understanding of genetic 
code systems, to new effective algorithms of information processing and, perhaps, to new decisions in 
the field of quantum computers. In our opinion, interesting data will be obtained about cyclic and diadic 
codes in the genetic systems in the near future. The proposed hypothesis about the molecular-economy 
principle can be useful to understand some aspects of an effective organization of the molecular-genetic 
systems.

The genetic matrix [C A; U G](3), which possesses the certain black-and-white mosaic of degeneracy 
of the vertebrate mitochondrial genetic code, is connected with the mosaic Hadamard (8x8)-matrix by 
means of the special U-algorithm. The genetic matrices, which are produced from the genomatrix [C 
A; U G](3) by means of permutations of positions inside triplets, are connected with the appropriate 
Hadamard matrices as well. These mathematical facts give new important data about connections of 
structural-functional organization of genetic code systems with many methods and fields, where Had-
amard matrices play a significant role.
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Section 3
Algebras of Genetic Codes

Section 3 is organized into three chapters. It presents genomatrices and the genetic octet Yin-Yang-algebras, 
the evolution of the genetic code from the viewpoint of the genetic 8-dimensional Yin-Yang-algebra (or 
the genetic bipolar algebra), and multidimensional numbers and the genomatrices of hydrogen bonds.
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Chapter 7

Genomatrices and the Genetic 
Octet Yin-Yang-Algebras

INTRODUCTION AND BACKGROUND

Does the genetic system possess its own algebra? Why is it important to study the question about the 
proper algebra of the genetic code? These questions are analyzed in this chapter first of all. Modern science 
knows that different natural systems can possess their own individual geometries and their own individual 
algebras (see, for example, the book (Kline, 1980)). The example of Hamilton, who wasted 10 years in 

ABSTRACT

Algebraic properties of the genetic code are analyzed. The investigations of the genetic code on the basis 
of matrix approaches (“matrix genetics”) are described. The degeneracy of the vertebrate mitochon-
drial genetic code is reflected in the black-and-white mosaic of the (8*8)-matrix of 64 triplets, 20 amino 
acids, and stop-signals. The special algorithm, which is based on features of genetic molecules, exists 
to transform the mosaic genomatrix into the matrices, which are members of the special 8-dimensional 
algebra. Main mathematical properties of this genetic algebra and its relations with other algebras are 
analyzed together with some important consequences from the adequate algebraic models of the genetic 
code. Elements of new “genovector calculation” and ideas of “genetic mechanics” are discussed. The 
revealed fact of the relation between the genetic code and these genetic algebras, which define new 
multi-dimensional numeric systems, is discussed in connection with the famous idea by Pythagoras: “All 
things are numbers.” Simultaneously, these genetic algebras can be utilized as the algebras of genetic 
operators in biological organisms. The described results are related to the problem of algebraization of 
bioinformatics. They draw attention to the question: what is life from the viewpoint of algebra?
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his attempts to solve the task of description of transformations of 3D space by means of 3-dimensional 
algebras without a success, is very demonstrative one. This example implies that if a scientist does not 
guess right what type of algebras are adequate for the natural system which is investigated by him he 
can waste many years without any result in analogy with Hamilton. One can add that geometrical and 
physical-geometrical properties of separate natural systems (including laws of conservations, theories of 
oscillations and waves, theories of potentials and fields, etc.) can depend on the type of algebras which 
are adequate for them.

Matrix genetics have important analogues with matrix forms of presentations of hypercomplex 
numbers. Investigations of these analogues have led to adequate models of the genetic code in forms of 
multi-dimensional numeric systems, which are connected with appropriate multi-dimensional algebras. 
Such algebraic models of the genetic code put forward many new ideas and thoughts about interrelations 
among genetic elements and about relations of structures of the genetic code with many other biological, 
physical, information and mathematical structures.

Does the genetic system possess its own algebra? Why is it important to study the question about the 
proper algebra of the genetic code? To get answers on these questions and to understand their importance, 
the following background is useful.

The notion of “number” is the main notion of mathematics. In accordance with the famous thesis, 
the complexity of civilization is reflected in the complexity of the numbers which are utilized by the 
civilization. “Number is one of the most fundamental concepts not only in mathematics, but also in all 
natural sciences. Perhaps, it is the more primary concept than such global categories, as time, space, 
substance or a field.” (Pavlov, 2004)

After the establishment of real numbers in the history of the development of the notion of “number”, 
complex numbers x0+i*x1 have appeared. These 2-dimensional numbers have played the role of the 
magic tool for development of theories and calculations in problems of heat, light, sounds, fluctuations, 
elasticity, gravitation, magnetism, electricity, current of liquids, and quantum-mechanical phenomena. 
It seems that modern atomic stations, airplanes, rockets and many other things would not exist without 
knowledge of complex numbers because the appropriate physical theories are based on these numbers. 
C. Gauss, J. Argand and С.Wessel have demonstrated that a plane with its properties fits 2-dimensional 
complex numbers. W. Hamilton has proved that the properties of our 3-dimensional physical space fit 
mathematical properties of the special quaternions. Hamilton’s quaternions have played the significant 
role in the history of mathematical natural sciences as well. For example, the classical vector calculation 
is deduced from the theory of these quaternions. This chapter will show that the genetic code is con-
nected with a special 8-dimensional numeric system, which is defined by the appropriate 8-dimensional 
algebra.

The notion “algebra”, which we use in our book, has two main senses. According to the first sense, 
which is famous more widely, the algebra is the whole section of mathematics involving mathematical 
operations with mathematical symbols. According to the second sense, which is utilized in this book, 
algebra is a mathematical object with certain properties or, better to say, arithmetic of multidimensional 
numbers.

By definition in the frame of this second sense, algebra A with its dimension “n” over a field P is 
a set of expressions x0*i0+x1*i1+x2*i2+…+xn-1*in-1 (where x0, x1,…, xn-1 belong P; i0, i1, …in-1 are basic 
elements of vectors, which fit such expressions). This set is provided with the operation of multiplica-
tion by elements “k” from the field P to determine the formula k*(x0*i0 + x1*i1 +x2*i2 +…+ xn-1*in-1) = 
k*x0*i0 + k*x1*i1 + k*x2*i2 +…+ k*xn-1*in-1. This set is provided with the following operation of addition 
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as well: (x0*i0+x1*i1+x2*i2+…+xn-1*in-1) + (y0*i0+y1*i1+y2*i2+ …+yn-1*in-1) = (x0+y0)*i0 + (x1+y1)*i1 + … 
+ (xn-1+yn-1)*in-1. This set is provided with the operation of multiplication between symbols ir, which 
is given by a specific multiplication table ir*iv = wrv,0*i0 + wrv,1*i1 +… wrv,n-1*i2. This multiplication 
table is utilized to find the result of multiplications (x0*i0+x1*i1+x2*i2+…+xn-1*in-1)*(y0*i0+y1*i1+y2*i2+ 
…+yn-1*in-1). Any algebra is defined completely by its multiplication table, that is, by a certain set of 
numbers wrv,u. These numbers do not subordinate to any conditions, and any such set of numbers defines 
the particular algebra.

Algebras of complex and hypercomplex numbers x0*1+x1*i1+…+xk*ik are well-known. It is also known 
that complex and hypercomplex numbers have not only linear or vector forms of their presentations, but 
also matrix forms of their presentation. For example complex numbers z = x*1+y*i (where 1 is the real 
unit and i is the imaginary unit: i2 = -1) possess the following matrix form of their presentation (Figure 
1). By the way, complex numbers are utilized in computers in this matrix form.

The quaternions by Hamilton Q = x0*1 + x1*i1 + x2*i2 + x3*i3 (where i1
2 = i2

2 = i3
2 = -1, i1*i2 = -i2*i1 

= i3, i1*i3 = -i3*i1 = -i2, i2*i3 = -i3*i2 = i1), which are utilized widely in physics and mathematics as well, 
have their matrix form of presentation as well. Figure 2 shows this matrix form and its decomposition on 
the basic elements 1, i1, i2, i3 in their matrix forms of presentation as well. In addition the multiplication 
table of these basic elements 1, i1, i2, i3 is demonstrated.

Is the mosaic genetic matrix P(3) = [C A; U G](3) (Figure 2 in Chapter 2), which was analyzed in the 
previous chapters, connected with a matrix form of presentation of any multi-dimensional numeric 
system? This chapter gives a positive answer to this question.

THE GENETIC OCTET mATRIX AS THE mATRIX FORm 
OF pRESENTATION OF THE OCTET ALGEBRA

Let us return to the genetic matrix PCAUG
123

(3) = [C A; U G](3) (Figure 2 in Chapter 2), which possesses 
32 “black” triplets and 32 “white” triplets disposed in matrix cells of appropriate colors. The black-and-
white mosaic of this matrix reflects the specificity of degeneracy of the vertebrate mitochondrial genetic 
code as was described in Chapter 2. Taking into account the molecular characteristics of the nitrogenous 
bases A, C, G, U/T of the genetic alphabet, one can reform this genomatrix [C A; U G](3) into the new 
matrix YY8 algorithmically (Figure 3).

Figure 1. The upper row: complex numbers in their matrix form of presentation and their decomposition 
on the basic elements “1” and “i”, which are shown in their matrix forms of presentation as well. The 
matrix cells with positive coordinates are marked by dark color and the cell with negative coordinate is 
marked by white color. The lower row: the multiplication table of the basic elements “1” and “i”
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The cells of the matrix YY8, which are occupied by components with the sign “+”, are marked by dark 
color. The cells of the matrix YY8, which are occupied by components with the sign “-”, are marked by 
white color. Such black-and-white mosaic of the matrix YY8 is identical to the black-and-white mosaic of 
the genomatrix [C A; U G](3) (Figure 2 of Chapter 2). The matrix YY8 has the 8 independent parameters x0, 
x1, x2, x3, x4, x5, x6, x7, which are interpreted as real numbers here. It has been discovered that the matrix 
YY8 is the matrix form of presentation of the special 8-dimensional algebra (or the 8-dimensional algebra 
over the field of real numbers) and of the appropriate 8-dimensional numeric system. Below we shall list 
the other structural analogies of the genomatrix [C A; U G](3) with the matrix YY8, the set of which allows 
one to consider that this matrix YY8 and its algebra play the role of the adequate model of the genetic 
code. But initially we pay attention to the “alphabetic” algorithm of Yin-Yang-digitization of 64 triplets, 
which produces the matrix YY8 from the genomatrix [C A; U G](3). This algorithm has received such an 
unusual name because of special properties of the matrix YY8 and its algebra (Petoukhov, 2008a-f).

THE ALpHABETIC ALGORITHm OF THE yIN-
yANG-DIGITIZATION OF 64 TRIpLETS

This algorithm is based on utilizing the two following binary-oppositional attributes of the genetic let-
ters A, C, G, U/T: “purine or pyrimidine” and “2 or 3” hydrogen bonds. It uses also the famous thesis 
of molecular genetics that different positions inside triplets have different code meanings. For example 

Figure 2. The upper row: quaternions by Hamilton in the matrix form of their presentation; cells with 
positive coordinates are marked by dark color and the cells with negative coordinates are marked by 
white color. The middle row: the decomposition of quaternions in their matrix form on the basic ele-
ments 1, i1, i2, i3, which are shown in their matrix forms of presentation as well. The lower row shows 
the multiplication table of these basic elements
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the article (Konopelchenko, & Rumer, 1975) has described that two first positions of each triplet form 
“the root of the codon” and that they differ drastically from the third position by their essence and by 
their special role. In view of this “alphabetic” algorithm, the transformation of the genomatrix [C A; U 
G](3) into the matrix YY8 is not an abstract and arbitrary action at all, but such a transformation can be 
utilized by bio-computer systems of organisms materially.

The alphabetic algorithm of the Yin-Yang-digitization defines the special scheme of reading each 
triplet: the first two positions of the triplet are read by genetic systems from the viewpoint of one attribute 
and the third position of the triplet is read from the viewpoint of another attribute. By this alphabetic 
algorithm, which allows one to recode the symbolic matrix [C A; U G](3) into the numeric Yin-Yang-
matrix YY8 (see below), each triplet is read in the following way:

Two first positions of each triplet are filled out by the symbol “α” instead of the complementary • 
letters C and G on these positions and by the symbol “β” instead of the complementary letters A 
and U correspondingly;
The third position of each triplet is filled out by the symbol “γ” instead of the pyrimidine (C or U) • 
on this position and by the symbol “δ” instead of the purine (A or G) correspondingly;
The triplets, which have the letters C or G in their first position, receive the sign “-“ in those cases • 
only for which their second position is occupied by the letter A. The triplets, which have the let-
ters A or U on their first position, receive the sign “+” in those cases only for which their second 
positions is occupied by the letter C.

For example, the triplet CAG receives the symbol “-αβδ”, because its first letter C is symbolized 
by “α”, its second letter A is symbolized by “β”, and its third letter G is symbolized by “δ”. This triplet 
possesses the sign “-” because its first position has the letter C and its second position has the letter 
A. One can see that this algorithm recodes all triplets from the traditional alphabet С, А, U, G into the 
new alphabet α, β, γ, δ. In the result, each triplet receives one of the following 8 expressions: ααγ = x0, 
ααδ = x1, αβγ = x2, αβδ = x3, βαγ = x4, βαδ = x5, ββγ = x6, ββδ = x7. We will suppose that the symbols 
“α”, “β”, “γ”, “δ” are real numbers. This algorithm transforms the initial symbolic matrix [C A; U G](3) 

Figure 3. The matrix YY8, the black cells of which contain coordinates with the sign „+” and the white 
cells of which contain coordinates with the sign „-”. The numeration of the comuns and the rows is identi-
cal to the numeration of the columns and the rows of the matrix [C A; U G](3) on Figure 3 in chapter 1
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into the numeric matrix YY8 with the 8 coordinates x0, x1, x2, x3, x4, x5, x6, x7. We shall name these matrix 
components x0, x1,…, x7, which are real numbers, as “YY-coordinates” (see Figure 4).

Let us pay some attention now to algebraic properties of the matrix YY8.

THE GENOmATRIX YY8 AS THE ELEmENT OF 
THE OCTET yIN-yANG-ALGEBRA

By analogy with decompositions of the matrices of complex numbers and of quaternions by Hamilton 
(Figure 1 and Figure 2), one can represent the 8-parametric matrix YY8 (Figure 3) as the sum of the 8 
basic matrices, each of which is connected with one of the coordinates x0, x1, x2, x3, x4, x5, x6, x7 (Figure 
5). Let us symbolize any basic matrix, which is related to any of YY-coordinates x0, x2, x4, x6 with even 
indexes, by the symbol fk (where “f” is the first letter of the word “female” and k = 0, 2, 4, 6). And let 
us symbolize any matrix, which is related to any of YY-coordinates x1, x3, x5, x7 with odd indexes, by 
the symbol ms (where “m” is the first letter of the word “male” and s = 1, 3, 5, 7). In this case one can 
present the matrix YY8 by the expression (1), the matrix form of which is shown on Figure 5.

Figure 4. The result of the algorithmic transformation of 64 triplets into the numeric coordinates x0, x1, 
…, x7, which are based on the four symbols “α”, “β”, “γ”, “δ”
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YY8 = x0*f0+x1*m1+x2*f2+x3*m3+x4*f4+x5*m5+x6*f6+x7*m7 (1)

The important and unexpected fact is that the set of these 8 basic matrices f0, m1, f2, m3, f4, m5, f6, 
m7 forms the closed set relative to multiplications: a multiplication between any two matrices from this 
set generates a matrix from this set again. The table on Figure 6 presents the results of multiplications 
among these 8 matrices. The result of multiplying any two basic elements, which are taken from the left 
column and the upper row, is shown in the cell on the intersection of its row and column (for example, 
in accordance with this multiplication table f2*m5 = - m7).

We have noted above, that such multiplication tables define appropriate algebras over a field. Cor-
respondingly the multiplication table on Figure 6 defines the genetic 8-dimensional algebra YY8. Mul-

Figure 5. The presentation of the matrix YY8 as the sum of the 8 basic matrices. The left column shows the 
basic matrices, which are related to the coordinates x0, x2, x4, x6 with the even indexes. The right column 
shows the basic matrices, which are related to the coordinates x1, x3, x5, x7 with the odd indexes
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tiplication of any two members of the octet algebra YY8 generates a new member of the same algebra. 
Concerning to multiplication of such numbers in their matrix forms of presentation, it means that both 
factors have the identical matrix disposition of their 8 parameters x0, x1, …, x7 (in the first factor) and 
y0, y1,…, y7 (in the second factor) and the final matrix has the same matrix disposition of its 8 relevant 
parameters z0, z1, …, z7. This situation is similar to the situation of real numbers (or of complex numbers, 
or of hypercomplex numbers) when multiplication of any two members of the numeric system gener-
ates a new member of the same numerical system. In other words, the expression YY8=x0*f0+x1*m1+x
2*f2+x3*m3+x4*f4+x5*m5+x6*f6 +x7*m7 is some kind of 8-dimensional numbers (“octet genonumber”) 
(Petoukhov, 2008a, 2008d). We mark this algebra and these octet genonumbers by the same symbol 
YY8 conditionally.

Let us give a numeric example of multiplication of two octet genonumbers: V = 3*f0+2*m1-4*f2+1*m3-
5*f4+6*m5+8*f6-7*m7 and W=2*f0-4*m1+5*f2+3*m3-6*f4-8*m5-1*f6 +5*m7. The result of multiplication 
depends on the order of factors because of the non-symmetrical character of the multiplication table 
relative to its main diagonal, which means that the algebra YY8 is non-commutative:

V*W= 18*f0 -14*m1 +24*f2+40*m3 -30*f4 -62*m5 -16*f6 +0*m7 

W*V=128*f0-124*m1-60*f2+88*m3+48*f4-100*m5+92*f6 +40*m7 

These results can be arrived at multiplication of appropriate matrix forms of presentation of the octet 
genonumbers V and W or by multiplication of linear forms of their presentation using the multiplication 
table on Figure 6.

One should pay special attention to the cells on the main diagonal of the multiplication table (Figure 
6). These cells contain squares of the basic elements. In cases of hypercomplex numbers these diagonal 
cells contain elements “±1” typically (for example, see multiplication tables of complex numbers and 
of quaternions by Hamilton on Figure 1 and Figure 2). In our case these diagonal cells contain no real 
units at all but all diagonal cells are occupied by elements “±f0” and “±m1”. Thereby the set of the 8 
basic matrices f0, m1, f2, m3, f4, m5, f6, m7 is divided into two equal subsets by criterion of their squares. 
The first subset consists of elements with the even indexes: f0, f2, f4, f6. The squares of members of this 
f0-subset are equal to ±f0 always. The second subset consists of elements with the odd indexes: m1, m3, 
m5, m7. The squares of members of this m1-subset are equal to ±m1 always.

Figure 6. The multiplication table of the basic matrices f0, m1, f2, m3, f4, m5, f6, m7 of the matrix YY8 
from Figure 3 and Figure 5
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The basic element f0 possesses all properties of the real unit in relation to the members of the f0-subset: 
f0

2 = f0, f0*f2=f2*f0=f2, f0*f4=f4*f0=f4, f0*f6=f6*f0=f6. But the element f0 does not possess the commutative 
property of real unit in relation to the members of the m1-subset: f0*mp ≠ mp*f0, where р = 1,3,5,7. For 
this reason f0 is named “quasi-real unit from the f0-subset”.

The basic element m1 possesses all properties of the real unit in relation to the members of the m1-
subset: m1

2=m1, m1*m3=m3*m1=m3, m1*m5=m5*m1=m5, m1*m7=m7*m1=m7. But the element m1 does 
not possess the commutative property of real unit in relation to the members of the f0-subset: m1*fk ≠ 
fk*m1, where k = 0,2,4,6. For this reason m1 is named “quasi-real unit from the m1-subset”.

The principle “even-odd” exists in this algebra YY8. Really all members of the f0-subset and their 
coordinates х0, х2, х4, х6 have even indexes and they are disposed in columns with the even numbers 0, 
2, 4, 6 in the matrix YY8 (Figure 3) and in its multiplication table (Figure 6) as well. These coordinates 
х0, х2, х4, х6 correspond to triplets with the pyrimidine suffixes C and U (Figure 4). For this reason the 
f0-subset can be called as the “pyrimidine subset”.

All members of the m1-subset and their coordinates х1, х3, х5, х7 have the odd indexes and they are 
disposed in columns with the odd numbers 1, 3, 5, 7 in the matrix YY8 (Figure 3) and in its multiplication 
table (Figure 6) as well. These coordinates х1, х3, х5, х7 correspond to triplets with the purine suffixes A 
and G (Figure 4). For this reason the m1-subset can be called as the “purine subset”.

In accordance with Pythagorean and Ancient-Chinese traditions, all even numbers are named “female” 
numbers or Yin-numbers, and all odd numbers are named “male” numbers or Yang-numbers. From the 
viewpoint of this tradition, the elements f0, f2, f4, f6, х0, х2, х4, х6 with the even indexes play the role of 
“female” elements or Yin-elements, and the elements m1, m3, m5, m7, x1, x3, x5, x7 with the odd indexes 
play the role of “male” or Yang-elements. Correspondingly the 8-dimensional algebra YY8 can be named 
the octet Yin-Yang-algebra (or the even-odd-algebra, or the bipolar algebra, or the bisex-algebra, or the 
pyrimidine-purine-algebra for triplets with pyrimidine suffixes and with purine suffixes). Such algebra, 
which possesses two quasi-real units and no one real unit, gives new effective possibilities to model 
binary oppositions in biological objects at different levels, including sets of triplets, amino acids, male 
and female gametal cells, male and female chromosomes, etc.

The octet Yin-Yang-numbers YY8 (octet genonumbers) differ essentially from classical hypercomplex 
numbers, which have the real unit in the set of their basic elements. By traditional definition, hypercomplex 
numbers are the elements of the algebras with the real unit. Complex and hypercomplex numbers were 
constructed historically as generalizations of real numbers with the obligatory inclusion of the real unit 
in sets of their basic elements. The octet Yin-Yang-numbers YY8 have not the real unit in the set of their 
basic elements at all, but they have two quasi-real units f0 and m1. In comparison with hypercomplex 
numbers, Yin-Yang-numbers are the new category of numbers in the mathematical natural sciences in 
principle. In our opinion, knowledge of this category of numbers is necessary for deep understanding 
of biological phenomena, and, perhaps, it will be useful for mathematical natural sciences in the whole. 
Mathematical theory of YY-numbers gives new formal and conceptual apparatus to model phenomena 
of reproduction and self-organization in living nature.

It can be demonstrated easily that Yin-Yang algebras are the special generalization of the algebras 
of hypercomplex numbers in the form of “double-hypercomplex” numbers. Yin-Yang-numbers (YY-
numbers) or bipolar numbers become the appropriate hypercomplex numbers in those cases when all their 
female (or male) coordinates are equal to zero. Traditional hypercomplex numbers can be represented 
as the “mono-sex” half (a Yin half or a Yang half) or “mono-polar” half of appropriate YY-numbers. The 
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algorithm of such generalization will be described later. We denote Yin-Yang numbers by double letters 
(for example, YY) to distinguish them from traditional (complex and hypercomplex) numbers.

If all male coordinates are equal to 0 (x1 = x3 = x5 = x7 = 0), the numbers YY8 become the Yin-geno-
quaternions Gf = x0*f0 +x2*f2 +x4*f4 +x6*f6, the multiplication table of which is shown on Figure 7 These 
Yin-quaternions can be called also as “pyrimidine quaternions” conditionally because their coordinates 
x0, x2, x4, x6 correspond to triplets with the pyrimidine suffixes C or U (Figure 4).

If all female coordinates are equal to 0 (x0 = x2 = x4 = x6 = 0), the numbers YY8 become the Yang-
genoquaternions Gm = x1*m1+x3*m3+x5*m5+ +x7*m7, the multiplication table of which is shown on 
Figure 7. These Yang-quaternions can be called also as “purine quaternions” conditionally because their 
coordinates x1, x3, x5, x7 correspond to triplets with the purine suffixes A or G (Figure 4).

These genetic quaternions Gf and Gm have the identical multiplication tables, which differ from the 
multiplication table of Hamilton quaternions (see Figure 2). Taking these facts into account, the octet 
genonumbers YY8 can be named “the double genetic quaternions”. It causes heuristic associations with a 
double helix of DNA, which is the bearer of genetic information. Just as the structure of three-dimensional 
physical space corresponds to the algebra of quaternions by Hamilton, so the structure of the genetic 
code corresponds to the algebra of the double genoquaternions.

The set of the basic elements of the YY8-algebra forms a semi-group. Two squares are marked out by 
bold lines in the left upper corner of the multiplication table on Figure 6. The first two basic elements 
f0 and m1 are disposed in the smaller (2x2)-square of this table only. The greater (4x4)-square collects 
the four first basic elements f0, m1, f2, m3. These aspects say that sub-algebras YY2 and YY4 exist inside 
the algebra YY8. We shall return to these sub-algebras later.

Each genetic triplet, which is disposed in the genomatrix [C A; U G](3) on Figure 4 together with 
one of the female YY-coordinates x0, x2, x4, x6 in a mutual matrix cell, is named the female triplet or the 
Yin-triplet. The third position of all female triplets is occupied by the letter γ, which corresponds to 
the pyrimidine C or U/T. Thereby the female triplets can be named “pyrimidine triplets” as well. Each 
triplet, which is disposed in the genomatrix [C A; U G](3) on Figure 4 together with one of the male YY-
coordinates x1, x3, x5, x7 in a mutual matrix cell, is named the male triplet or the Yang-triplet. The third 
position of all male triplets is occupied by the letter δ, which corresponds to the purine A or G. Thereby 
the male triplets can be named “purine triplets”. In such algebraic way the whole set of 64 triplets is 
divided into two sub-sets of Yin-triplets (or female triplets) and Yang-triplets (or male triplets). We shall 
demonstrate later that the set of 20 amino acids is divided into the sub-sets of “female amino acids”, 
“male amino acids” and “androgenous amino acids” from this matrix viewpoint.

Later we will continue to describe significant mathematical properties of the octet Yin-Yang-matrices. 
But now let us consider the close connection of structures of the genetic code with the octet Yin-Yang-
matrices in many aspects.

Figure 7. The multiplication tables of the Yin-genoquaternion Gf-(on the left side) and of Yang-geno-
quaternions Gm (on the left side)
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THE STRUCTURAL ANALOGIES BETWEEN THE 
GENOmATRIX [C A; U G](3) AND THE mATRIX YY8

The main interest of bioinformatics to the octet Yin-Yang-algebra is connected with a possibility of its 
use as an adequate model of the structure of the genetic code. This possibility depends on structural 
coincidences between the Yin-Yang matrix YY8 and the genetic matrix [C A; U G](3). A list of such non-
trivial coincidences includes the following ones:

1.  The first coincidence.

The black-and-white mosaics of the Yin-Yang matrix YY8 and the genetic matrix [C A; U G](3) are 
identical. (By an unknown reason, nature has divided the set of the 64 genetic triplets into two subset 
of 32 black triplets and 32 white triplets, which are disposed in the cells of 32 positive coordinates and 
32 negative coordinates of the Yin-Yang matrix YY8).

2.  The second coincidence.

In the Yin-Yang matrix YY8, the pairs of the adjacent rows 0-1, 2-3, 4-5, 6-7 are identical to each 
other by the assortment and the disposition of numeric coordinates х0, х1, х2, х3, х4, х5, х6, х7.

In the genetic matrix [C A; U G](3), the same pairs of adjacent rows 0-1, 2-3, 4-5, 6-7 are identical 
each to another by the assortment and the disposition of amino acids and stop-codons.

3.  The third coincidence.

In the Yin-Yang matrix YY8, the female coordinates x0, x2, x4, x6 occupy the columns with the even 
numbers 0, 2, 4, 6, and the male coordinates x1, x3, x5, x7 occupy the columns with the odd numbers 1, 
3, 5, 7.

In the genetic matrix [C A; U G](3), the triplets with pyrimidine C or U on their third positions occupy 
the columns with the even numbers 0, 2, 4, 6; and the triplets with purine A or G on their third positions 
occupy the columns with the odd numbers 1, 3, 5, 7.

4.  The fourth coincidence.

In the Yin-Yang matrix YY8, one half of the quantity of the numeric coordinates (x0, x1, x2, x3) exists 
in the two quadrants along the main diagonal only; the second half of the numeric coordinates (x4, x5, 
x6, x7) exists in the two quadrants along the second diagonal only.

In the genetic matrix [C A; U G](3), one half of kinds of amino acids exists in the two quadrants along 
the main diagonal only (Ala, Arg, Asp, Gln, Glu, Gly, His, Leu, Pro, Val); the second half of kinds of 
amino acids exists in the two quadrants along the second diagonal only (Asn, Cys, Ile, Lys, Met, Phe, 
Ser,Thr, Trp, Tyr).
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5.  The fifth coincidence.

In the Yin-Yang matrix YY8, those six kinds of different numeric matrices are generated by means of 
some kinds of permutations of columns and rows of this matrix, each of which possesses its own kind 
of the 8-dimensional Yin-Yang-algebra.

In the genetic matrix [C A; U G](3), the same six kinds of permutations of columns and rows fit the 
six possible kinds of permutations of positions inside the 64 triplets (1-2-3, 2-3-1, 3-1-2, 3-2-1, 2-1-3, 
1-3-2), which lead to the new genomatrices with symmetric and interrelated mosaics (see Chapter 2).

The fifth coincidence will be explained additionally below.
One should note that the black cells of the genomatrix [C A; U G]123

(3) contain the black NN-triplets, 
which encode the 8 high-degeneracy amino acids, and the coding meaning of which does not depend on 
the letter on their third position (see Chapter 2). The set of the 8 high-degeneracy amino acids contains 
those amino acids, each of which is encoded by 4 triplets or more: Ala, Arg, Gly, Leu, Pro, Ser, Thr, Val. 
The white cells of the genomatrix [C A; U G]123

(3) contain the white NN-triplets, the coding meaning of 
which depends on the letter on their third position; these triplets encode the 12 low-degeneracy amino 
acids together with stop-signals: Asn, Asp, Cys, Gln, Glu, His, Ile, Lys, Met, Phe, Trp, Tyr.

The described structural coincidences of two matrices YY8 and [C A; U G]123
(3) allow one to consider 

the octet algebra YY8 as the adequate model of the structure of the genetic code. One can postulate such 
an algebraic model and then deduce some peculiarities of the genetic code from this model. These results 
of the comparison analysis give the following answer to the question of mysterious principles of the 
degeneracy of the vertebrate mitochondrial genetic code from the viewpoint of the proposed algebraic 
model. The matrix disposition of the 20 amino acids and the stop-signals is determined by algebraic 
principles of the matrix disposition of the YY-coordinates. Moreover the disposition of the 32 black 
triplets and the high-degeneracy amino acids in this basic dialect of the genetic code is determined by 
the disposition of the YY-coordinates with the sign “+”. And the disposition of the 32 white triplets, the 
low-degeneracy amino acids and stop-signals is determined by the disposition of the YY-coordinates 
with the sign “-”. One can recall here that the division of the set of 20 amino acids into the two sub-sets 
of the 8 high-degeneracy amino acids and the 12 low-degeneracy amino acids is the invariant rule of 
all the dialects of the genetic code practically (see Chapter 3). The described structural coincidences 
between both matrices do not exhaust the interconnections between the genetic code systems and the 
Yin-Yang matrices.

THE SIX KINDS OF THE GENETIC OCTET yIN-yANG-ALGEBRAS 
CONNECTED WITH pERmUTATIONS OF pOSITIONS IN TRIpLETS

Now we continue to study beautiful and unexpected mathematical properties of the octet Yin-Yang-
algebras.

Chapter 2 has described the 6 variants of the mosaic genetic matrices, which have corresponded to 
the 6 possible kinds of permutation of positions in triplets: [C A; U G](3)

123, [C A; U G](3)
231, [C A; U G]

(3)
312, [C A; U G](3)

321, [C A; U G](3)
213, [C A; U G](3)

132. Each of these genetic matrices can be obtained 
from the initial matrix [C A; U G](3)

123 by an appropriate permutation of its columns and rows. One can 
make the same permutations of columns and rows in the Yin-Yang-matrix YY8, which is marked in this 
paragraph as (YY8)123. By such way the appropriate matrices (YY8)123, (YY8)231, (YY8)312, (YY8)321, (YY8)213, 
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(YY8)132 arise. It is quite unexpected that not only the initial matrix (YY8)123 (Figure 3) but each of the 
other five matrices (YY8)231, (YY8)312, (YY8)321, (YY8)213, (YY8)132 is the matrix form of presentation of its 
own 8-dimensional Yin-Yang-algebra (another name is bipolar algebra). For example, Figure 8 shows 
the Yin-Yang-matrix (YY8)231, which corresponds to the genomatrix [C A; U G](3)

231, together with its 
multiplication table of the basic elements.

Figure 9 demonstrates the multiplication tables for other four Yin-Yang-matrices (YY8)312, (YY8)132, 
(YY8)213, (YY8)321. Thereby the degeneracy of the genetic code is connected with the bunch of six genetic 
Yin-Yang-algebras (Petoukhov, 2008a, 2008d).

Taking into account the multiplication tables on Figure 6, 8, and 9, the proper YY8-numbers in the 
linear form of their presentation have the following expressions:

(YY8)
CAUG

123 = x0*f0+x1*m1+x2*f2+x3*m3+x4*f4+x5*m5+x6*f6+x7*m7 

(YY8)
CAUG

231 = x0*f0+x1*f1+x2*f2+x3*f2+x4*m4+x5*m5+x6*m6+x7*m7 

Figure 8. Above: the Yin-Yang-matrix (YY8)231, which corresponds to the genomatrix [C A; U G](3)
231. 

Below: its multiplication table of the 8 basic elements
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(YY8)
CAUG

312 = x0*f0+x1*f1+x2*m2+x3*m3+x4*f4+x5*f5+x6*m6+x7*m7 

(YY8)
CAUG

132 = x0*f0+x1*f1+x2*m2+x3*m3+x4*f4+x5*f5+x6*m6+x7*m7 

Figure 9. The multiplication tables of the basic elements of the octet Yin-Yang-algebras (YY8)312, (YY8)132, 
(YY8)213, (YY8)321
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(YY8)
CAUG

213 = x0*f0+x1*m1+x2*f2+x3*m3+x4*f4+x5*m5+x6*f6+x7*m7 

(YY8)
CAUG

321 = x0*f0+x1*f1+x2*f2+x3*f3+x4*m4+x5*m5+x6*m6+x7*m7 (2)

All these Yin-Yang matrices have secret connections with Hadamard matrices: when all their co-
ordinates are equal to the real unit 1 (x0 = x1 = … = x7 = 1) and when the signs of components of the 
matrices are changed by means of the U-algorithm described in Chapter 6, then all these Yin-Yang octet 
matrices become the Hadamard matrices. In necessary cases biological computers of organisms can 
transform these Yin-Yang matrices into the Hadamard matrices to operate with systems of orthogonal 
vectors. One can add that for the case, when all their coordinates are equal to 1 (x0 = x1 = … = x7 = 1), 
all these six Yin-Yang matrices (YY8)

CAUG
123, (YY8)

CAUG
231, …, (YY8)

CAUG
321 possess the property of their 

tetra-reproduction which is described below and which evokes the tetra-reproduction of gametal cells 
in the biological process of meiosis.

Two facts can be mentioned as well. The complementary triplets (codon and anti-codon) play an 
essential role in the genetic code systems. One can replace each codon by its anti-codon in the genoma-
trices [C A; U G]123

(3), [C A; U G]231
(3), [C A; U G]312

(3), [C A; U G]132
(3), [C A; U G]213

(3), [C A; U G]321
(3). 

The new six genomatrices appear in this case. Have they any connection with Yin-Yang algebras? This 
question has the positive answer. The multiplication tables for the basic elements of Yin-Yang matrices, 
connected with these new genomatrices, are identical to the multiplication tables for the initial genoma-
trices. In other words, the “complementary” transformations of the genomatrices [C A; U G]123

(3), [C A; 
U G]231

(3), [C A; U G]312
(3), [C A; U G]132

(3), [C A; U G]213
(3), [C A; U G]321

(3) change the matrix forms of 
presentation of the initial YY8-numbers only but do not change the Yin-Yang algebras of the genomatrices. 
But if we consider the transposed matrices, which are generated from the matrices (YY8)

CAUG
123, (YY8)

CAUG
231, etc., they correspond to new octet Yin-Yang-algebras.

THE GENETIC yIN-yANG OCTETS AS “DOUBLE GENOQUATERNIONS”

Taking into account the described fact of existence of many octet Yin-Yang-algebras and correspond-
ingly many kinds of octet genonumbers, we shall name any numbers with 8 items x0*i0+x1*i1+…x7*i7 
by the name “octets” independently of multiplication tables of their basic elements. We shall name 
numbers with 4 items x0*i0+x1*i1+x2*i2+x3*i3 by the name “quaternions” independently of multiplica-
tion tables of their basic elements (quaternions by Hamilton are the special case of quaternions). Let us 
analyze the expression (1) of the genetic octet YY8 together with its multiplication table (Figure 6). If 
all male coordinates are equal to zero (x1 = x3 = x5 = x7 = 0), this genetic octet YY8 becomes the genetic 
Yin-quaternion Gf (or the Yin-genoquaternion):

Gf = x0*f0 +x2*f2 +x4*f4 +x6*f6 (3)

The proper multiplication table for this quaternion is shown on Figure 10 (on the left side). This table 
is generated from the multiplication table for the algebra YY8 (Figure 5) by nullification (or by excision) 
of the columns and rows, which have the male basic elements. Taking into account that the basic element 
f0 possesses the multiplication properties of the real unit relative to all female basic elements, one can 
rewrite the expression (3) in the following form:
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Gf = x0*1 +x2*f2 +x4*f4 +x6*f6 (4)

If all female coordinates are equal to zero (x0 = x2 = x4 = x6 = 0), this genetic octet YY8 becomes the 
genetic Yang-quaternion Gm (or the Yang-genoquaternion):

Gm = x1*m1 + x3*m3 + x5*m5 + x7*m7 (5)

The appropriate multiplication table for this quaternion is shown on Figure 4 (on the right side). Tak-
ing into account that the basic element m1 possesses the multiplication properties of the real unit relative 
to all male basic elements, one can rewrite the expression (5) in the following form:

Gm = x1*1 + x3*m3 + x5*m5 + x7*m7 (6)

and for the genetic Yang-quaternions Gm (on the right side).
The quaternions Gf and Gm are similar to each other by the structure of their multiplication tables, 

which differ from the multiplication table of quaternions by Hamilton (Figure 2). The quaternions Gf 
and Gm can be expressed in the following general form:

G = y0*1 + y1*i1 + y2*i2 + y3*i3 (7)

The system of quaternions by Hamilton has many useful properties and applications in mathematics 
and physics. The system of genoquaternions possesses many analogical properties, which permits one to 
think about its useful applications in bioinformatics, mathematical biology, etc. For example, the numeric 
system of genoquaternions is the system with the operation of division and it possesses the associative 
property, the notions of the “norm of genoquaternion” and of the “inverse genoquaternion”, etc. Figure 
11 demonstrates some analogies between both types of quaternions.

In view of these materials, one can name the genetic octet x0*i0+x1*i1+…x7*i7 (with its individual 
multiplication table on Figure 6) as “the double genoquaternion” conditionally. This name generates 
heuristic associations with the famous name “the double spiral” of DNA.

Figure 10. The multiplication tables for the genetic Yin-quaternions Gf (on the left side)
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THE COmpARISON BETWEEN THE CLASSICAL VECTOR 
CALCULATION AND THE GENOVECTOR CALCULATION

Let us recall about one of the famous applications of quaternions by Hamilton, which concerns the 
beautiful connection between these quaternions q = x0*1+x1*i1+x2*i2+ x3*i3 and the classical vector 
calculation developed by J. Gibbs. One can take two vectors a and b, which belong to the plane (iv, iw), 
where v < w, v = 1, 2; w = 2, 3; a = a1*iv + a2*iw, b = b1*i1 + b2*i2. These vectors can be presented in the 
following usual form:

a = |a|*(iv*cos α + iw*sin α), b = |b|*(iv*cos β + iw*sin β),  (8)

where α and β are appropriate angles between these vectors and the axises iv and iw in the orthogonal 
system of the basic vectors (i1, i2, i3). If we multiply together these vectors as Hamilton’s quaternions in 
accordance with the multiplication table on Figure 2, the following equation arises:

a*b = - |a|*|b|*cos(α – β) + |a|*|b|*sin(α – β)*ivw,  (9)

where ivw is the third basic vector, which is orthogonal to the basic vectors iv and iw .
The equation (9) shows that the quaternion multiplication of two vectors contains two parts: the scalar 

part and the vector part. The scalar part |a|*|b|*cos(α – β) is famous under the name “the scalar product” 
and the vector part a|*|b|*sin(α – β)*i3 is famous under the name “the vector product” in the classical 
vector calculation. This vector calculation is utilized widely in mechanics to describe movements of 
hard bodies in our physical space, etc. Mechanics of bodies in the usual physical space fits this vector 
calculation. From the viewpoint of this vector calculation, space is isotropic because the expression (5) 
with its scalar and vector parts is the same for each pair of vectors, which belong to the planes (i1, i2), 
(i1, i3), (i2, i3), and the scalar products and the vectors product possess the analogical forms for all three 
cases of the planes.

But what results arise, if we multiply together the vectors a and b (8) as genoquaternions in accor-
dance with their multiplication table (Figure 2)? Let us consider the following three cases, each of which 
contains a scalar part and a vector part in the final expressions (10), (11), (12), but in different forms.

Figure 11. The comparison of some properties between the systems of quaternions by Hamilton (on the 
left side) and of genoquaternions (on the right side)
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The case 1. The vectors a and b belong to the plane (i1, i2). They can be expressed in the following 
form: a = |a|*(i1*cos α + i2*sin α), b = |b|*(i1*cos β + i2*sin β). If we multiply together these vectors as 
genoquaternions (Figure 14, in the right side), the result arises:

a*b = |a|*|b|*(i1*cos α+i2*sin α)*(i1*cos β+i2*sin β) = 

= -|a|*|b|*cos(α+β)+|a|*|b|*sin(α-β)*i3 (10)

The equation (10) of the genovector calculation differs from the equation (9) of the classical vector 
calculation in the scalar part only (by the value cos(α+β)).

The case 2. The vectors a and b belong to the plane (i1, i3): a = |a|*(i1*cos α + i3*sin α), b = |b|*(i1*cos 
β + i3*sin β). The product of these two vectors as genoquaternions gives the following result:

a*b = |a|*|b|*(i1*cos α+i3*sin α)*(i1*cos β+i3*sin β) 

= -|a|*|b|*cos(α+β)-|a|*|b|*sin(α-β)*i2 (11)

The equation (11) of the genovector calculation differs from the classical equation (9) in the scalar 
part (by the value cos(α+β)) and in the vector part (by the opposite sign).

The case 3. The vectors a and b belong to the plane (i2, i3): a = |a|*(i2*cos α + i3*sin α), b = |b|*(i2*cos 
β + i3*sin β). The product of these two vectors as genoquaternions gives

a*b=|a|*|b|*(i2*cos α+i3*sin α)*(i2*cos β+i3*sin β) = 

= +|a|*|b|*cos(α-β)-|a|*|b|*sin(α-β)*i1 (12)

The equation (12) of the genovector calculation differs from the classical equation (9) by the opposite 
sign in the scalar part and in the vector part.

We name vectors, which are considered as qenoquaternions (with applications of the rules of geno-
quaternion operations to them), as “genovectors”. It is obvious that the genovector calculation fits the 
case of an anisotropic space because the results of multiplication of arbitrary vectors a and b depend 
on the plane, to which these vectors belong. The spaces of biological phenomena of morphogenesis, 
growth, etc. have anisotropic characters as well. Since the genovector calculation was developed from 
the genetic code features, it seems that this calculation (and its generalization for the system of Yin-Yang 
genooctets) can be adequate to model anisotropic processes in biological spaces including processes of 
bioinformatics and of biological morphogenesis on different levels of each united organism.

Many mathematical formalisms and notions, which were convinced in the theory of quaternions by 
Hamilton and which were utilized in many scientific branches, have their analogies in the theory of 
genoquaternions (Petoukhov, 2008a, 2008d) and in the theory of genetic tetrions described below.
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THE pARAmETRIC REDUCTION OF THE GENETIC OCTET yIN-yANG 
ALGEBRA TO THE 4-DImENSIONAL ALGEBRA OF TETRIONS

This paragraph shows the special case of the parametric reduction of the genetic octet Yin-Yang-algebra 
to one of 4-dimensional algebras. This case relates to alphabetic peculiarities of the genetic code.

The previous paragraphs have considered the numeric system YY8 = x0*f0+x1*m1+x2*f2+x3*m3+x4*f4
+x5*m5+x6*f6+x7*m7 (equation (1)) with the 8 arbitrary coordinates x0, x1, …, x7. But in accordance with 
the matrix on Figure 4 all these 8 coordinates are expressed by means of 4 parameters α, β, γ, δ:

x0 = ααγ; x1 = ααδ; x2 = αβγ; x3 = αβδ; x4 = βαγ; x5 = βαδ; x6 = ββγ; x7 = ββδ equation  (13)

Hence these 8 coordinates are not independent of each other and they are interconnected by the fol-
lowing expressions:

х1 = х0*δ/γ; х3 = х2*δ/γ; х5 = х4*δ/γ; х7 = х6*δ/γ equations  (14)

One can see from the expression (13) that the coordinates belong to the female (male) type if they 
have the symbol γ (δ correspondingly) on their third position. The expressions (14) show the existence 
of the pairs of “complementary” male and female coordinates, which differ by the coefficient δ/γ only: 
х1 and х0; х3 and х2; х5 and х4; х7 and х6. These interconnections of coordinates lead to the particular form 
of the octet number YY8, where the female coordinates х0, х2, х4, х6 exist only (another possible form has 
the male coordinates х1, х3, х5, х7 only):

T = x0*(f0+δ/γ*m1) + x2*(f2+δ/γ*m3) + x4*(f4+δ/γ*m5) + x6*(f6+δ/γ*m7) = 

= ααγ*(f0+δ/γ*m1) + αβγ*(f2+δ/γ*m3) + βαγ*(f4+δ/γ*m5) + ββγ*(f6+δ/γ*m7) = 

Each of these four matrices (f0+δ/γ*m1), (f2+δ/γ*m3), (f4+δ/γ*m5), (f6+δ/γ*m7) on the Figure 12 
is constructed by means of the fusion of appropriate male and female matrices of the complementary 
pairs into united object. It is interesting that these four matrices form their own closed set relative to 
multiplication. Figure 13 shows the table of multiplication of these matrices.

In view of these facts the expression T on Figure 12 with all possible values of real numbers α, β, γ, 
δ represents the new system of 4-dimensional numbers, which are named “genetic tetrions” (or genotet-
rions) to distinguish them from 4-dimensional hypercomplex numbers called “quaternions” traditionally 
(including genoquaternions described above). If quaternions and other hypercomplex numbers have the 
real unit among their basic elements, tetrions have not the real unit among their basic elements at all. The 
first basic element (f0+δ/γ*m1) of the tetrions (Figure 12) is the matrix presentation of the real number 
(1+δ/γ). This basic element possesses the commutative property relative to all these basic elements. The 
first item x0*(f0+δ/γ*m1) is considered as the scalar part of tetrions, and other three items x2*(f2+δ/γ*m3) 
+ x4*(f4+δ/γ*m5) + x6*(f6+δ/γ*m7) are considered as the vector part of tetrions.

The square of any basic element of the tetrions T is equal to (1+δ/γ)*(f0+δ/γ*m1) with the sign “+” or 
“-”. This peculiarity is demonstrated on Figure 13 in the cells (marked by bold borders) along the main 
diagonal. So instead of the real unit, tetrions have the real number (1+v), where “v” is the real number, 
which is equal to δ/γ in the case of the genetic tetrions T. One can consider such tetrions as the special 
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generalization of appropriate hypercomplex numbers by means of utilizing any kind of real numbers in 
the role of their first basic element instead of utilizing the real unit in this role in the case of traditional 
hypercomplex numbers.

The system of tetrions T (Figure 12) possesses the commutative and associative properties. It is the 
system with operation of division from the left side and from the right side (by analogy with the division 
in the system of quaternions). By definition the conjugate tetrion TS is presented by the expression:

Figure 12. The presentation of the matrix T as the sum of the superposition of the matrices (f0+δ/γ*m1), 
(f2+δ/γ*m3), (f4+δ/γ*m5), (f6+δ/γ*m7)
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TS = x0*(f0+δ/γ*m1) -x2*(f2+δ/γ*m3) - x4*(f4+δ/γ*m5) - x6*(f6+δ/γ*m7)  (15)

The following expressions for two tetrions T1 and T2 hold true:

(T1 + T2)S = (T1)S + (T2)S ; (T1*T2)S = (T2)S * (T1)S (16)

The square of the module of tetrions is listed below.

|T|2 = T*TS = TS*T = (1+δ/γ)*(x0
2+x2

2–x4
2–x6

2) 

= (1+δ/γ)*[(ααγ)2+(αβγ)2–(βαγ)2–(ββγ)2]  (17)

The inverse genotetrion exists: T-1 = TS/|T|2. It allows defining the operation of division traditionally 
by means of multiplication by the inverse genotetrion. One can see that these properties of the genetic 
tetrions are similar to the properties of genoquaternions considered above (Figure 11) and that the geno-
tetrion’s multiplication table and genoquaternion’s multiplication table are similar to each other by the 
disposition of the signs “+” and “-” (Figure 10 and Figure 13).

The system of genetic tetrions leads to a special kind of vector calculation. By analogy with the 
expressions (10-12) for genoquaternions, one can arrive at the similar expressions (18-20) of vector cal-
culation for genotetrions. Let us analyze the multiplication of two vectors a and b (equation 8) as tetrions 
in accordance with the multiplication table (Figure 13) in the same three cases which were described for 
the expressions (10-12). In the result we arrive at the following equations (18-20).

The case 1. The vectors a and b belong to the plane of the basic vectors (f2+δ/γ*m3, f4+δ/γ*m5). 
Then

a*b = - |a|*|b|*(1+δ/γ)2*cos(α+β) + |a|*|b|*sin(α-β)*(1+δ/γ)*(f6+δ/γ*m7).  (18)

The case 2. The vectors a and b belong to the plane (f2+δ/γ*m3, f6+δ/γ*m7). Then

a*b = - |a|*|b|*(1+δ/γ)2*cos(α+β) - |a|*|b|*sin(α-β)*(1+δ/γ)*(f4+δ/γ*m5).  (19)

Figure 13. The table of multiplication of the matrices (f0+δ/γ*m1), (f2+δ/γ*m3), (f4+δ/γ*m5), (f6+δ/γ*m7), 
which are basic elements of the genetic tetrions
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The case 3. The vectors a and b belong to the plane (f2+δ/γ*m3, f6+δ/γ*m7). Then

a*b = +|a|*|b|*(1+δ/γ)2*cos(α-β) - |a|*|b|*sin(α-β)*(1+δ/γ)*(f2+δ/γ*m3).  (20)

It is obvious that the vector calculation of genetic tetrions fits the case of an anisotropic space because 
the results of multiplication of arbitrary vectors a and b depend on the plane, to which these vectors 
belong. Can the scalar and vector parts of genetic tetrions be considered correspondingly as the time 
coordinate and the space coordinates in the theory of the genetic space-time? This and other interesting 
questions are under investigation now.

In the described approach, the genetic code is presented as the replica of the tetrions in their matrix 
form. It permits one to consider the algebra of genetic tetrions as a candidate for the role of the math-
ematical system of genetic preceding code (the “pre-code” or the more fundamental code) relative to the 
genetic code. Really, from a traditional viewpoint, a code is an aggregate of symbols which corresponds 
to elements of information. In our algebraic case, the discussion is about the matrix system, the symbols 
of which can be confronted with triplets and with other elements of the genetic code. In other words, 
the genetic code can be encoded itself by symbols of elements of the tetrion numerical system. Such 
tetrion pre-code has its own pre-code alphabet, which consists of the four letters α, β, γ, δ in contrast 
to the usual genetic alphabet A, C, G, U/T. This set of the letters α, β, γ, δ, which present the molecular 
parameters of the letters of the genetic alphabet, can be named as the alphabet of genetic algebras or as 
the algebraic alphabet of the genetic code as well. Revealing such a tetrion pre-code as a new numeric 
system can help with sorting, ordering and a deeper understanding of genetic informatics. It can also help 
to develop new effective methods of processing and transfer of information in many applied problems. 
Mathematical features of such pre-code can explain evolutionary features of the genetic code. One should 
emphasize that not only the (8x8)-matrix YY8 (Figure 3 and Figure 4), but each of its (4x4)-quadrants and 
each of its (2x2)-subquadrants defines its own special algebras, if we take into account the coordinates 
x0, x1, …, x7 and the algebraic alphabet α, β, γ, δ. It means that the genetic code is an ensemble of special 
multidimensional algebras from such a matrix viewpoint.

ABOUT GENETIC mECHANICS AND THE IDEA By pyTHAGORAS

In the beginning of the XIX century the following opinion existed: the world possesses the single real 
geometry (Euclidean geometry) and the single arithmetic. But this opinion was neglected after the discovery 
of non-Euclidean geometries and of quaternions by Hamilton. Science understood that different natural 
systems can possess their own individual geometries and their own individual algebras (see this theme 
in the book (Kline, 1980)). The example of Hamilton, who wasted 10 years in his attempts to solve the 
task of description of transformations of 3D space by means of 3-dimensional algebras without success, 
is a very demonstrative one. This example says that if a scientist does not guess correctly what types 
of algebras are adequate for the natural system, which is investigated by him, he can waste many years 
without any result by analogy with Hamilton. One can add that geometrical and physical-geometrical 
properties of separate natural systems (including laws of conservation, theories of oscillations and waves, 
theories of potentials and fields, etc.) can depend on the type of algebras which are adequate for them.

The fact that the genetic code has led us to the algebra of genetic tetrions (which can be interpreted 
as a special case of the genetic octet Yin-Yang-algebra) shows the importance of this algebra for each 
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united organism. It seems that many difficulties of modern science to understand genetic and biological 
systems are determined by approaches to these systems from the viewpoint of non-adequate algebras, 
which were developed formerly for other systems only. In particular, the classical vector calculation, 
which plays the role of the important tool in classical mechanics and which fits geometrical properties 
of our physical space, can be inappropriate for important biological phenomena.

In view of described materials, the hypothesis can be put forward that a very special mechanics of 
biogenetic systems exists, which is connected with the vector calculation of genetic tetrions and with their 
generalization in the form of Yin-Yang octets (Petoukhov, 2008a, 2008d, c). It can be named “genetic 
mechanics” because of its relation with the genetic code. Modern biomechanics is the set of applications 
of classical mechanics for modeling some properties of living matter. In our opinion, such traditional 
biomechanics are not adequate to many biological phenomena and it will be replaced in many aspects 
by genetic mechanics in future. We think that living matter lives in its own biological (bioinformation) 
space which has specific algebraic and geometric properties.

The hypothesis of a non-Euclidean geometry of living nature exists long ago (Vernadsky, 1965) but 
without any concrete definition of the type of such geometry. And how one can construct such geometry 
if biological organisms – bacteria, birds, fishes, plants, etc. - differ from each other so significantly in 
their morphogenetic and many other features? The discovery of the genetic code, the basic elements of 
which are general for all biological organisms, has allowed hoping that such geometric and algebraic 
tasks can be solved by means of investigation of genetic code structures. Some results of such investi-
gation are presented in our book.

It happens frequently, that mathematicians construct a new beautiful abstract mathematics and then 
they search for opportunities of its application in different areas of natural sciences. On the contrary, in 
our case the phenomenology of the genetic code has led unexpectedly to the new mathematics of tetrions 
and Yin-Yang-octets. And we investigate formal features of this mathematics on the second stage only. 
The genetic code is the result of a gigantic experiment of nature. This molecular code bears the imprint 
of a great set of known and unknown laws of nature. In this connection, algebraic features of genetic 
structures are very essential to guess right a perspective direction of development of algebraic bases of 
mathematical natural sciences in the future. In our opinion, the tetrion algebra, the Yin-Yang-algebra 
and their geometries can be useful not only for biology, but also for other fields of mathematical natural 
sciences and for applied sciences (signals processing, mathematical economy, etc.). For example, they 
allow developing new algorithms and methods of digital signal processing.

It is important to discuss about the following as well. We have noted already that the notion of “num-
ber” is the main notion of mathematics and mathematical natural sciences. Pythagoras has formulated 
the famous idea: “All things are numbers”.

Such known slogans of Pythagoreans as “numbers operate the world”, “the world is number” reflect 
the representations of Pythagoreans. For Pythagoreans the systems of numbers expressed “essence” of 
everything. In view of this idea, natural phenomena should be explained by means of systems of num-
bers; the systems of numbers play a role of the beginning for uniting all things and for expressing the 
harmony of nature (Kline, 1980, p. 21, 24). Many prominent scientists and thinkers were supporters of 
this viewpoint or of one similar to it. Not without reason B. Russell (1945) noted that he did not know 
any other person who could exert such influence on the thinking of people as Pythagoras. From this 
viewpoint, there is no more fundamental scientific idea in the world, than this idea. C.Gauss, J.Argand 
and С. Wessel have demonstrated that a plane with its properties fits 2-dimensional complex numbers. 
W.Hamilton has proved that the properties of our 3-dimensional physical space fit mathematical proper-
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ties of the special quaternions. The materials, which are described in this chapter, show that the genetic 
code is connected with “double genoquaternions” by analogy with the fact that the physical 3D-space 
fits Hamilton’s quaternions. The described results give new materials to the great idea by Pythagoras in 
its possible modernized formulation: “All things are multi-dimensional number”.

As a result of the matrix investigation of the genetic code, which is the basis of biological organisms, 
we find ourselves unexpectedly in area of the bases of mathematics and mathematical natural science, 
since number is the main notion there. One can note that mathematical natural sciences were created 
for putting in good order of information about the world and so they are information sciences. They 
utilize the notion of multi-dimensional number as the main notion. But genetic information is based on 
the multi-dimensional numbers also as the described results and models reveal. So the mathematical 
natural sciences can be considered as a continuation of bio-informatics principles, in accordance with 
which we are constructed genetically.

Such construction of science in its information essence reminds one of the constructions of instincts of 
biological organisms, according to which they build the dwellings by utilizing those genetic-information 
mechanisms and principles, on which their biological bodies are constructed. Figuratively speaking, the 
viable mathematical natural sciences are a continuation of our body, which is coordinated structurally 
with genetic bases of the body (the problem of anthropomorphism of development of mathematical 
natural sciences arises here).

WHAT IS LIFE FROm THE VIEWpOINT OF ALGEBRA? THE pROBLEm 
OF ALGEBRAIZATION OF BIOINFORmATICS AND BIOLOGy

Taking into account the great meaning of the genetic code for biological organisms, the described dis-
covery of algebraic properties of the genetic code gives the basis for investigation of biological organi-
zations from the algebraic viewpoint. Modern algebra is the wide branch of mathematics. It possesses 
many theorems, applications of which to genetic systems can give new vision in the field of theoretical 
biology. It is essential that algebra plays a great role in the modern theory of information encoding and 
of signal processing. It seems important, that the matrix forms of presentation of elements of the genetic 
octet Yin-Yang-algebra are connected with Hadamard matrices by means of the simple U-algorithm 
(see Chapter 6). Hadamard matrices play a significant role in the theory of quantum computers and of 
quantum mechanics, in particular. For this reason such connection can lead to possible understanding 
of the systems of the genetic code as quantum mechanical or quantum computer systems. Revealed 
algebraic properties of the genetic code present the opportunity to put forward the interesting problem 
of algebraization of bioinformatics on the basis of the algebras of the genetic code.

All these facts provoke the high interest to the question: what is life from the viewpoint of algebra? 
This question exists now in parallel with the old question from the famous book by E.Schrodinger: 
what is life from the viewpoint of physics? One can add that attempts are known in modern theoretical 
physics to reveal information bases of physics; in these attempts information principles are considered 
as the most fundamental.

Here one can mention as well the known problem of geometrization of physics that is the problem 
of creation and interpretation of physical theories in a form of theories of invariants of groups of trans-
formations (see for example (Lochak, 1994)). Such general approach to different physical theories was 
very fruitful. One can hope that the problem of algebraization of bioinformatics (and of biology, which 
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is connected closely with bioinformatics), that is understanding phenomena of bioinformatics from the 
viewpoint of algebras of the genetic code, will be useful as well.

One of the main questions in this field is the question about geometrical properties of vector spaces of 
bioinformatics, including various physiological spaces of sensory perception. Human organism encodes 
not only genetic information but also information about external world systematically. For instance, 
when a bright point of external picture is projected on retina of our eyes, an ophthalmic nerve delivers 
into nervous system not original information about a brightness of this point but encoded information 
already about a logarithm of this brightness.

In view of this, our organism is a machine for processing of flows of encoded information, principles 
of coding of which are inherited and are related with mathematics of genetic coding. What are pos-
sible geometries of such bioinformation spaces from the viewpoint of described Yin-Yang-algebra of 
the genetic code? In this question, one can utilize an analogy with quaternions by Hamilton Q = x0*1 
+ x1*i1 + x2*i2 + x3*i3 (Figure 2), where the first coordinate x0*1 is a scalar coordinate and three others 
x1*i1, x2*i2, x3*i3 are vector coordinates. Quaternions by Hamilton correspond to properties of 3-dimen-
sional vector space of physical world. By analogy one can suppose that each of two types of genetic 
quaternions Gf = x0*f0 +x2*f2 +x4*f4 +x6*f6 and Gm = x1*m1+x3*m3+x5*m5+x7*m7 (see equations 3-7) 
correspond to properties of their own 3-dimensional vector space of bioinformatics. Each of them has 
one scalar coordinate (x0*f0 or x1*m1) and three vector coordinates (x2*f2, x4*f4, x6*f6 or x3*m3, x5*m5, 
x7*m7). Then octet genetic Yin-Yang-numbers YY8 = x0*f0+x1*m1+x2*f2+x3*m3+x4*f4+x5*m5+x6*f6+x7
*m7 (equation 1) have two scalar coordinates (x0*f0 or x1*m1) and six vector coordinates (x2*f2, x4*f4, 
x6*f6 and x3*m3, x5*m5, x7*m7).

Correspondingly these Yin-Yang-numbers fit 6-dimensional bioinformation vector space, which 
unites two 3-dimensional bioinformation vector spaces of oppositional types (Yin and Yang) in a special 
cross-manner. This viewpoint is in a good agreement with a biological phenomenology: with existence 
of two oppositional cerebral hemispheres, which differ each from another by their functions and be the 
left-right morphology; etc. R. Penrose (1989) has emphasized at his analysis of phenomenon of thinking, 
that sharp functional distinguish exists between both cerebral hemispheres and that these hemispheres 
are related with halves of human body by means of cross-connections as well (see Figure 6 of Chapter 
1). Each person has two eyes, two ears, etc.

Such data shows the existence of two bioinformation spaces (the right space and the left space) as 
sub-spaces of the whole bioinformation space of our organism. This theme of double (or twin) bioinforma-
tion sub-spaces continues a theme of double objects on a level of molecular-genetic structures: a double 
helix of DNA, a double configuration of chromosomes, etc. One of interesting examples is received in 
experiments with human vestibular disorders. The work (Petoukhov, 1975) has revealed an interesting 
class of human vestibular-visual illusions at observation of a single shining filament of a small light 
bulb in the dark: in experiments with oscillation of their head in the dark, after a certain latent period 
behind the end of oscillation many people experience a process of a development of a physiological 
phenomenon of double vision of this filament in a form of a smooth symmetrical divergence of positions 
of the “two” filaments on significant distance each from another (Figure 14).

This phenomenon shows additionally the existence of two 3-dimensional physiological spaces of 
perception, a joint coordination of which can be broken in some circumstances. Similar phenomena of 
double vision are known in a case of drunken persons and in some other cases. Such non-coordination of 
two 3-dimensional spaces of perception can lead not only to spatial illusions, but to a non-coordination 
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of movements, to nausea, to giddiness and to motion sickness. In view of this coincidence of biological 
phenomenology and genetic mathematics, knowledge of physiologic meaning of genetic Yin-Yang-
algebras allows studying and modeling not only properties of molecular-genetic ensembles but genetic 
inherited macro-physiological systems and phenomena as well including illusions of perception, etc.

But how can bioinformation spaces with their genetic fundamentals lead to a realization of their 
genetic vector constructions in a form of material constructions from biochemical molecules? Why do 
biological atomic-molecular elements, which belong to the world of quantum mechanics, require math-
ematical constructions of bioinformatics? How are the quantum mechanics with its complex numbers, 
unitary operators and other mathematical formalisms interfaced with mosaic matrices of matrix genetics? 
Is there any connection of matrix genetics with matrix mechanics of Heisenberg?

In view of such important questions, one should emphasize a deep connection of matrix presentations 
of genetic systems with Hadamard matrices which play so significant role in a set of unitary operators 
of quantum mechanics, in logical gates of quantum computers, etc. A set of genetic Yin-Yang-matrices, 
which are presented in this Chapter and in Chapter 11, is transformed into a relevant set of Hadamard 
matrices by means of the same U-algorithm (see Chapter 6). Thereby all sets of considered genetic 
Yin-Yang-algebras become relevant sets of Hadamard matrices at action of such U-algorithm, and vice 
versa. Many genetic matrices, which were revealed and analyzed in matrix genetics, can be received 
algorithmically from relevant Hadamard matrices as initial matrices; this fact can be useful for future 
theory of connection of quantum mechanics with matrix genetics.

In addition, all genetic Hadamard matrices are block matrices, components of which are related to 
the complex number Z = 1+i in its matrix form of presentation (Figure 15). For example, the genetic 
Hadamard matrix from Figure 4 of Chapter 6, which corresponds to the genomatrix [C A; U G](3), can 
be expressed through Z in a following form:

SOLUTIONS AND RECOmmENDATIONS

Let us discuss the specificity of our approach to the question of the essence of the genetic code. From the 
scientific viewpoint, an explanation of something or understanding of something in a natural phenom-
enon means a substitution of categories, which characterize this phenomenon, by the more fundamental 
scientific categories. For example, physics explains the phenomenon of spontaneous movement of a 
ball from an edge of a pit into its bottom by means of the statement that the ball will have a minimum of 
potential energy on the pit bottom. This explanation substitutes for the initial question about the natural 
phenomenon by the new question about such fundamental physical category as a minimum of potential 
energy. This explanation is physical because it is based on physical law and it uses the physical notion 
of potential energy. But natural sciences utilize not only physical explanations but mathematical kinds 

Figure 14. The phenomenon of double vision
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of explanations as well. For example, an explanation and a modeling of properties of elementary par-
ticles are based on mathematical theory of group presentation; properties of chemical compounds are 
explained on the basis of the periodic table by Mendeleev, etc. The algebraic model, which is described 
in our book, interprets the peculiarities of alphabetical systems of the genetic code on the mathematical 
base and moreover on the base of the main mathematical notion of “number” (or of “numeric system”). 
It means that this model and explanation belong to the mathematical and meta-mathematical kinds of 
explanations.

Matrix genetics reveals that other numeric systems and other good ordering systems govern in living 
matter in comparison with those, which mathematical natural sciences utilize traditionally. Our book 
proposes the new kind of generalization of real and hypercomplex numbers in the form of Yin-Yang (or 
bipolar) numbers. Starting from the extraordinary importance of genetic coding for biological organisms 
and from the bipolar character of structures of the genetic code, one can think that mathematization of all 
biology will be connected with using this Yin-Yang (bipolar or bisex) mathematics and its language.

In our opinion, the knowledge about the Yin-Yang-algebraic character of the genetic code is necessary 
for deep understanding of genetic coding and phenomena of reproduction, self-organization and self-
developing of living matter on the whole. Yin-Yang-algebras are a comfortable instrument to analyze and 
to model many properties of hierarchical systems of biological organisms. Yin-Yang numeric systems 
are the candidate to play a role of numeric system in putting in order living matter.

It seems that many difficulties of modern bioinformatics are connected with utilizing inadequate al-
gebras, which were developed for completely different natural systems. Hamilton had similar difficulties 
in his ten-year attempts to describe 3D-space transformations by means of algebras of 3-dimensional 
numbers while this description needs the algebra of 4-dimensional quaternions. (Hamilton considered the 
discovery of algebra of his quaternions as the major achievement of his life). All the history of develop-
ment of the notion “number” can be considered as a process of gradual overcoming of inadequacy of 
numerical systems for those or other problems. The genetic code, as the information basis of all living 
matter, leads to the next overcoming of an inadequacy of existing numerical systems and to a transition 
into a new numerical era with a new category of the generalized numbers. In general the discussed situ-

Figure 15. The example of a presentation of one of the genetic Hadamard matrices (in the middle) as 
a block matrix with components in a form of matrix Z (on the right side), which is the matrix form of 
presentation of the complex number Z = 1+i (on the left side). Black (white) cells in two left matrices 
mean elements “+1” (“-1”)
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ation is reflected in the following phrase: living matter is structured on the basis of its own numerical 
systems of order, which were unknown in mathematical natural sciences till now.

E. Schrodinger considered gaining knowledge about a “stream of order” in living matter as the very 
important task and he wrote in his book (Schrodinger, 1944, Chapter VII):

What I wish to make clear in this last chapter is, in short, that from all we have learnt about the struc-
ture of living matter, we must be prepared to find it working in a manner that cannot be reduced to the 
ordinary laws of physics. And that not on the ground that there is any “new force” or what not, direct-
ing the behavior of the single atoms within a living organism, but because the construction is different 
from anything we have yet tested in the physical laboratory... The unfolding of events in the life cycle 
of an organism exhibits an admirable regularity and orderliness, unrivalled by anything we meet with 
in inanimate matter… To put it briefly, we witness the event that existing order displays the power of 
maintaining itself and of producing orderly events… We must be prepared to find a new type of physical 
law prevailing in it /living matter/.

Molecular genetics puts forward the question about the origin of the genetic code. Usually the follow-
ing three versions are considered in discussions about stochastic process of biological evolution (Ratner, 
2002, p. 199-202): 1) the structural properties of the genetic code were set preliminarily (were preset) 
by physical-chemical conditions of components and conditions; 2) they were picked out as adaptive 
among other alternative variants; 3) they were fixed accidentally. For example, the famous hypothesis 
by F.Crick (1968) about “the frozen accident” supposed that the first accidental system of coding, which 
possessed satisfactory features, was reproduced with its further evolutionary improvements for acceler-
ated reproductions.

Matrix genetics yields new materials to this question of the origin of the genetic code by the revealing 
that the bases of the genetic code are connected with the multi-dimensional algebra, which generalized 
the notion of hypercomplex numbers. Any algebra, which is an abstract essence, does not depend on 
time and space or it exists outside time and space as the member of the mathematical world of Plato 
(Penrose, 1989). According to Plato, mathematical ideas have their own existence and they live in an 
ideal world, the entrance into which is possible by means of our intellect. So, algebras do not depend 
on evolutionary processes on the Earth.

But the correspondence of the genetic code to the specificity of genetic algebras can provide evolu-
tionary advantages for living matter. Evolutionary biology explains any separate property of biological 
organisms by its evolutionary usefulness. From this viewpoint of evolutionary biology, the structuredness 
of the genetic code in accordance with the octet Yin-Yang-algebra can be explained, for example, by 
the opportunity of processing two different streams of information in parallel manner for evolutionary 
advantages. Here we have a certain coincidence with the works (Geodakian, 1999), which connect the 
existence of two sexes with two different (operative and conservative) streams of information.

One should take into account the following additional circumstance. The matrix forms of presentation 
of elements of the genetic octet Yin-Yang-algebra are connected with Hadamard matrices by means of 
the simple U-algorithm (Petoukhov, 2008a-d). Hadamard matrices play a significant role in the theory 
of quantum computers and of quantum mechanics, in particular. For this reason such a connection seems 
to be important for a possible understanding of the systems of the genetic code as quantum mechanical 
system or quantum computer systems.
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One can note additionally that the binary opposition “male-female” is connected with the binary op-
position “the left side and the right side” in the history of various nations. More precisely, in accordance 
with many biological, ethnographical and mythological materials, the left side of human body correlates 
with the female beginning, and the right side of human body correlates with the male beginning (Ivanov, 
1990, p.506-508). It is known that mirror symmetry of “left-and-right” is broken in bio-organic world. 
L. Paster, who has discovered this fact, put forward the hypothesis that this property of dissymmetry 
is the line of demarcation between living matter and inanimate matter. The origin of this dissymmetry 
phenomenon is not understood till now. In our opinion, the Yin-Yang-algebra of the genetic code can 
lead to new approaches in understanding this dissymmetry phenomenon.

The described Yin-Yang-algebraic model and its language are the parts of the general process of 
mathematization of science. It is known that an appearance of mathematical models in any field of sci-
ence shows that a system of notions in this field becomes precise in high degree to allow rigorous and 
abstract analyses by means of mathematical instruments. Mathematical models are defined frequently 
in a form of a special “language” for a description of appropriate phenomena. For example, differential 
calculus and integral calculus have arisen in the XVII century in such forms. Application of Yin-Yang-
algebras for modeling the genetic code brings a new language as well.

One can think that various genetic algebras, which are connected with various parameters of ensembles 
of genetic molecules, correspond to the various information channels in multi-channel informatics of 
organism. Many thinkers spoke about a harmony of living nature. The genetic algebras, which are de-
scribed in our book, give valuable opportunities to analyze this harmony.

Understanding the fact of existence of the genetic code was the most difficult thing in a problem 
of a genetic code. The whole century was required for it. When it has been understood, ten years were 
needed only to know details (Ycas, 1969). By analogy with it, the understanding the existence of the 
special and new algebra for modeling the degeneracy of the genetic code was the most difficult thing in 
described genetic researches, where many other – biophysical, biochemical, mathematical – variants of 
modeling were tried (Petoukhov, 1999-2008).

The mathematical part of the materials described in this chapter proposes some interesting prolonga-
tions in various aspects, which can be recommended for further investigations and applications. One 
of them is a generalization of hypercomplex numbers into a form of appropriate Yin-Yang-algebras. 
This kind of generalization should be taken into account in developing the theory of multi-dimensional 
numbers. Let us stop on it for more details.

As it was mentioned above, Yin-Yang numbers (YY-numbers) can be considered as the generaliza-
tion of hypercomplex numbers. Each of 2n-1-dimensional hypercomplex numbers can be transformed 
into the 2n-dimensional YY-number by a special algorithm. An inverse application of this algorithm to a 
2n-dimensional YY-number generates the appropriate 2n-1-dimensional hypercomplex number. According 
to this algorithm, if we have a (2nx2n)-matrix, which represents a 2n-dimensional hypercomplex number, 
we should replace each component of this matrix by the (2x2)-matrix [хк хк+1; хк хк+1]. By this algorithm 
we have the tetra-reproduction of matrix components, which reminds the tetra-reproduction of gametal 
cells in the process of meiosis. For such a reason this algorithm has the conditional name “the meiosis 
algorithm”.

For example, if we have the (2x2)-matrix of the presentation of complex numbers, this meiosis al-
gorithm transforms it into the (4x4)-matrix of the presentation of 4-dimensional “Yin-Yang-complex” 
numbers KK4, which fit the special multiplication table of the appropriate 4-dimensional YY4-algebra 
(Figure 16). Really, according to this algorithm, each component x0 and x1 of the initial matrix is replaced 
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by the (2x2)-matrix of the mentioned type: х0=[y0y1; y0y1], x1=[y2y3; y2y3]. In the result we have YY-complex 
numbers КК4 = y0*f0+y1*m1+y2*f2+y3*m3, where f0 and m1 are the female and male quasi-real units; f2 
and m3 are the female and male imaginary units with the properties (f2)

2 = - f0, (m3)
2 = - m1.

By inverse application of this algorithm, one can arrive at the appropriate 4-dimensional hypercomplex 
number from the genetic YY-number YY8. The YY-matrix YY8 (Figure 3) contains the 4 kinds of (2x2)-
sub-quadrants, each of which has one of the pairs of coordinates: x0 and x1; x2 and x3; x4 and x5; x6 and x7. 
One can replace each such sub-quadrant by a separate coordinate: [x0x1; x0x1] = у0; [x2x3; x2x3] = у1; [x4x5; 
x4x5] = у2; [x6x7; x6x7] = у3. As a result the (4x4)-matrix Q appears, which represents the genoquaternion 
Q = y0*1 + y1*i1 + y2*i2 + y3*i3, which was considered above and which has i1

2 = -1, i2
2 = i3

2 = +1. Figure 
17 shows the matrix Q and the multiplication table for this genoquaternion. The genoquaternion Q sug-
gests coquaternions (or split-quaternions, or para-quaternions, or hyperbolic quaternions), introduced 
by J.Cockle in 1849 year (http://en.Qikipedia.org/Qiki/Coquaternion), but their multiplication tables 
have differences. We name the number Q “genoquaternion of the first type”. (A genoquaternion of the 
second type is produced by the special permutation of columns of the matrix Q, which is connected with 
the permutation of positions in genetic duplets (Petoukhov, 2008a, p.203)).

Let us pay some attention to the two squares, which are marked out by bold lines in the left top 
corner of the multiplication table on Figure 6 for the case of the Yin-Yang matrix (YY8)123. These two 
squares are connected with the 2-dimensional sub-algebra YY2 and the 4-dimensional sub-algebra YY4 
of the 8-dimensional algebra YY8.

The first of these squares with its size (2x2) is the multiplication table of the basic elements of the 
2-dimensional Yin-Yang algebra YY2. Figure 18 shows two matrix forms of presentation of appropriate 
Yin-Yang numbers YY2. One of these forms [z0z1; z0z1] coincides with the structure of each (2x2)-sub-
quadrant of the genomatrices on Figure 2 in chapter 2, and Figures 3 and4 of this chapter, in relation of 

Figure 16. The matrix forms of presentation of complex numbers (on the left side) and of YY-complex 
numbers (in the middle). On the right side: the multiplication table for the basic elements of the YY-
complex number

Figure 17. The matrix form of presentation of the hypercomplex number Q (on the left side); its multi-
plication table is shown on the right side
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the disposition of the YY-coordinates x0, x1,…, x7 and of amino acids with stop-signals. It shows that the 
algebra YY2 participates in the structural organization of the genetic code.

The second square with its size (4x4) on Figure 6 is the multiplication table of the 4-dimensional 
Yin-Yang algebra YY4. The appropriate Yin-Yang numbers YY4 possess the following vector form: YY4 
= z0*f0+z1*m1+z2*f2+z3*m3 and these numbers coincide with the Yin-Yang generalization of complex 
numbers (Figure 14).

The case of the 2-dimensional algebra YY2 should be considered additionally. It is known that com-
plex numbers have been widely recognized only after finding their geometrical interpretation on the 
geometric plane of complex variables. This plane was named “Gauss-Argand plane” according to the 
names of the mathematicians who have introduced such a plane. Is it possible to offer a substantial 
geometrical interpretation of the 2-dimensional Yin-Yang numbers YY2? Yes, it is possible (Petoukhov, 
2008a,d). For this purpose one can introduce the plane of Yin-Yang variables (or YY-plane). It is an or-
dinary plane with the Yin-Yang system of Cartesian coordinates. This Yin-Yang system (or YY-system) 
has the coordinate axes f and m, which play the role of female and male axes. By analogy with the case 
of complex numbers, each 2-dimensional YY-number is denoted on this YY-plane by the point or by the 
vector. A product XX*ZZ of two Yin-Yang vectors, where XX= x0*f0 + x1*m1 and ZZ= z0*f0 + z1*m1, 
possesses a geometric sense on such a plane. Really, the result of non-commutative multiplication of 
such two YY-vectors is equal to the second vector with the scale coefficient, which is equal to the sum 
of coordinates of the first vector (Figure 19, on the left side). The same first vector-factor at multiplica-
tion with all other vectors of the plane or of a geometric figure leads to their identical scaling (Figure 
19, on the right side).

It associates with the known biological phenomenon of volumetric growth of living bodies, observed 
at the most different lines and branches of biological evolution. Biological bodies are capable of mysteri-
ous volumetric growth, occurring in the cooperative way in all the volume of the body or of its growing 
part. It is one of the sharp differences between living bodies and crystals, the surfaces of which grow by 
means of a local addition of new portions of substance to the surface of the crystal. By this connection, 
the Yin-Yang geometry is one of the candidates for the role of the geometry of biological volumetric 

Figure 18. Two matrix forms of a presentation of the 2-dimensional numbers YY2 (on the left side); the 
multiplication table of the basic elements of the Yin-Yang algebra YY2

Figure 19. The non-commutative multiplication of two Yin-Yang vectors (on the left side). A scaling of 
a geometric figure on the Yin-Yang plane (on the right side)
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growth. In our opinion, interesting branches of generalized crystallography can be developed by using 
Yin-Yang algebras. We recommend paying attention to these new opportunities connected with applica-
tion of methods of symmetry and with production of new patterns.

We recommend the further wide development of this Pythagorean approach to the genetic and other 
genetically heritable biological systems.

One additional aspect should be noted as well. It is known that mathematics deals not only with algebras 
of numbers but with algebras of operators also (see historical remarks in the book (Kline,1980, Chapter 
VIII)). G. Boole has published in 1854 his brilliant work about investigations of laws of thinking. He has 
proposed Boole’s algebra of logics (or logical operators). Boole tried to construct an operator algebra 
which would reflect basic properties of human thinking. Boole’s algebra plays a great role in modern 
science because of its connections with many scientific branches: mathematical logic, the problem of 
artificial intelligence, computer technologies, bases of the theory of probability, etc. In our opinion, the 
genetic algebras, which are described in this chapter, can be considered not only as the algebras of the 
numeric systems but also as the algebra of proper logical operators of genetic systems. This direction of 
thought can lead us to a deeper understanding of the logic of biological systems including an advanced 
variant of the idea of Boole (and by some other scientists) on the development of the algebraic theory 
of laws of thinking.

One of the possible applications of the genetic Yin-Yang algebra in the field of formal logic is a new 
possible approach to situations with the simultaneous presence of two kinds of logic, which correspond to 
the famous expression “the male logic and the female logic”. Such applications are possible in analyses 
of a behavioral logic in groups of men and women or in systems, parts of which are under various, but 
interconnected variants of logic.

Biological organisms have famous possibilities to utilize the same structures in multi-purpose destina-
tions. And the genetic algebras can be also utilized by biological organisms in different purposes.

FUTURE TRENDS AND CONCLUSION

It should be noted that the names “bipolar algebra” and “bipolar geometry”, “bisex algebra” and “bisex 
geometry”, “bipolar numbers”, etc. can be utilized as the synonyms of the names “Yin-Yang algebra”, 
“Yin-Yang geometry”, “Yin-Yang numbers”. In some cases the utilization of these names can be more 
comfortable but it depends on situations. For example it is comfortable in the question about algebras with 
many quasi-real units. Such algebras can be named “multi-polar algebras” (or “n-polar algebras”).

Really bipolar algebras can be interpreted as a particular case of n-polar algebras, each of which pos-
sesses a set of their basic elements with “n” quasi-real units but without the real unit. Figure 20 shows 

Figure 20. The matrix form of presentation of 3-polar numbers and the multiplication table of their 
basic elements
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the simplest example of 3-polar numbers x0*i0+x1*i1+x2*i2 (in the matrix form of their presentation), 
which contain three quasi-real numbers only. The basic elements i0, i1, i2 of these 3-polar numbers have 
their matrix forms of presentation: i0=[1 0 0; 1 0 0; 1 0 0], i1=[0 1 0; 0 1 0; 0 1 0], i2=[0 0 1; 0 0 1; 0 0 
1]. Their multiplication table is shown on Figure 20.

Bipolar numbers and tripolar numbers can be considered as numeric analogies of the famous symbols 
Yin-Yang and tomoe (Figure 21). Details about the Japanese tomoe symbol are given at the site http://
altreligion.about.com/library/glossary/symbols/bldefstomoe.htm.

Multiplication of two 3-polar numbers gives the result, which is similar to the described case of mul-
tiplication of two bipolar numbers: the result is the 3-polar number, which is equal to the second factor 
increased by the sum of coordinates of the first factor (Figure 22). The 3-polar geometry is a candidate 
to play the role of the geometry of the volumetric biological growth in the case of 3D-space (by analogy 
with the bipolar geometry in the case of a plane).

Figure 23 shows another example of multi-polars: the matrix form of presentation of 8-dimensional 
4-polar numbers x0*i0+x1*i1+x2*i2+x3*i3+x4*i4+x5*i5+x6*i6+x7*i7, which have 4 quasi-real units i0, i1, i2, 
i3 and which have their own imaginary unit for each of these quasi-real units: i4

2 = -i0; i5
2 = -i1; i6

2 = -i2; 
i7

2 = -i3.
Bipolar algebras and multi-polar algebras, which have arisen in the field of matrix genetics and 

bioinformatics, possess many other interesting properties, which are described in special publications 
(Petoukhov, 2008a, 2008d). They allow developing new class of mathematical models of self-reproduction 
systems and new class of algorithm for information processing. They also allow investigating possible 
generalizations of known physical equations to find new results with a physical sense from there (it is 
the mathematical fact that known physical equations can be arrived at from appropriate bipolar equa-
tions by passage to the limit in values of appropriate bipolar coordinates). The idea of multi-dimensional 
numbers and multi-dimensional spaces works intensively for a long time in theoretical physics and 
other fields of science for modeling the phenomena of our physical world. This chapter adds this idea 
of multi-dimensional numbers and multi-dimensional spaces with appropriate mathematical formalisms 
into the fields of molecular genetics and bioinformatics.

The algebraic theory of the genetic code, which utilizes methods of symmetry and new genetic pat-
terns, can say many useful and unexpected things about an origin of the genetic code and about laws of 

Figure 21. The symbol Yin-Yang and the symbol tomoe

Figure 22. Multiplication of two 3-polar numbers
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living matter. In particular we recommend investigations of the evolution of the dialects of the genetic 
code from the viewpoint of the genetic Yin-Yang-algebras. Some results of such initial investigation 
are described in the next chapter.

Degeneracy of the genetic code agrees with the multi-dimensional algebra, which is unknown in 
modern mathematical natural science. After the discovery of non-Euclidean geometries and of Hamilton 
quaternions, it is known that different natural systems can possess their own geometry and their own 
algebra. The genetic code is connected with its own multi-dimensional numerical systems or the multi-
dimensional algebras. A bunch of these genetic algebras can be considered as a basis of an algebraic 
system of the pre-code or as the mathematical model of the genetic code. These algebras allow revealing 
hidden peculiarities of the structure of the genetic code and, perhaps, its evolution. The genetic code has 
its own forms of ordering. It seems that many difficulties of modern bioinformatics are connected with 
utilizing for its natural structures inadequate algebras, which were developed for completely different 
natural systems. Hamilton had similar difficulties in his attempts to describe 3D-space transformations 
by means of 3-dimensional numbers while this description needs quaternions. This chapter proposes a 
special algebraic system for bioinformatics and for mathematical biology. Revealed algebraic properties 
of the genetic code allow putting forward the problem of the algebraization of bioinformatics and of 
biology. They allow modeling not only molecular-genetic ensembles but also genetic inherited macro-
physiological systems and phenomena.

Figure 23. The matrix form of presentation of 8-dimensional 4-polar numbers (the upper matrix) and 
the multiplication table of their basic elements (the lower table)
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Chapter 8

The Evolution of the Genetic 
Code from the Viewpoint of 
the Genetic 8-Dimensional 

Yin-Yang-Algebra

ABSTRACT

The set of known dialects of the genetic code is analyzed from the viewpoint of the genetic 8-dimensional 
Yin-Yang-algebra. This algebra was described in Chapter 7. The octet Yin-Yang-algebra is considered 
as the model of the genetic code. From the viewpoint of this algebraic model, for example, the sets of 20 
amino acids and of 64 triplets consist of sub-sets of “male,” “female,” and “androgynous” molecules, 
and so forth. This algebra allows one to reveal hidden peculiarities of the structure and evolution of 
the genetic code and to propose the conception of “sexual” relationships among genetic molecules. 
The first results of the analysis of the genetic code systems from such an algebraic viewpoint speak 
about the close connection between evolution of the genetic code and this algebra. They include 7 phe-
nomenological rules of evolution of the dialects of the genetic code. The evolution of the genetic code 
appears as the struggle between male and female beginnings. The hypothesis about new biophysical 
factor of “sexual” interactions among genetic molecules is proposed. The matrix forms of presentation 
of elements of the genetic octet Yin-Yang-algebra are connected with Hadamard matrices by means of 
the simple U-algorithm. Hadamard matrices play a significant role in the theory of quantum computers, 
in particular. It leads to new opportunities for the possible understanding of genetic code systems as 
quantum computer systems. Revealed algebraic properties of the genetic code allow one to put forward 
the problem of algebraization of bioinformatics on the basis of the algebras of the genetic code. The 
described investigations are connected with the question: what is life from the viewpoint of algebra?

DOI: 10.4018/978-1-60566-124-7.ch008
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INTRODUCTION AND BACKGROUND

This chapter is devoted to the first results of investigations of the evolution of the genetic code from the 
viewpoint of the genetic octet Yin-Yang-algebra, which was described in the previous Chapter 7. Owing 
to discovery of the connection of this algebra with the genetic code, new opportunities arise for algebraic 
systematizing and classification of binary-oppositional structures in molecular-genetic ensembles. No-
tions and formalisms of this algebra are used here to analyze ensembles of genetic molecules in con-
nection with a traditional theme of male and female beginnings in living substance on various levels. 
This algebraic way leads to revealing a set of phenomenological rules of evolution of the genetic code 
and to new possibilities of understanding some interrelations between elements of molecular-genetic 
ensembles. New notions of “sexual” types of the triplets and amino acids can be proposed on a well-
reasoned mathematical basis. The results of these investigations and of applications of such new notions 
are described and discussed.

The theme of male and female beginnings and biological reproduction, which is connected with them, 
is one of the main themes in human civilization. This binary opposition – man and woman - exists in 
different forms in many theories in the fields of psychology, biology and culture, etc. Existence of male 
and female types in psychology, of male and female chromosomes, of male and female gametal cells, 
etc. is known widely. This primeval theme presented in religions and myths of all times and people. For 
example, in Ancient China female and male beginnings (Yin and Yang) were considered as the main 
operating forces in the world, and the world has been created by them. The spiritual philosophical doc-
trines of the East, which are presented in many ancient books, asserted, that the soul at initial stage of 
its creation united both male and female beginnings and, in that way, the soul reflected the dual nature 
of the Creator.

Initial representations about bisexual nature of human being have been formulated in folklore and 
mythology of many nations of the world. In particular, these representations were developed by an an-
cient philosophy. For example, Plato’s narration is known concerning androgynous beings from which 
modern people have been brought into the world. According to Plato, love is the instinctive aspiration of 
individuals, who love each other, to uniting them with their return to the initial state, which was before 
its division into two. Modern psychology considers bisexuality as the fundamental characteristic of 
constitutional nature of human being. And the notion of androgynous being is considered as a fixation 
of this duality which includes always the male and female beginnings but in the different proportions, 
which can be changed during a life. Many famous philosophers have presented to people a wide set of 
valuable thoughts about male and female beginnings of being and about nature of sexual relations of 
men and women. People have gotten accustomed to seeing mutual relations between men and women. 
A vast set of works in various fields of culture is devoted to these relations. It is considered ordinary that 
male and female beginnings in nature are necessary to continue life and its development (Bull, 1983; 
Geodakian, 1999; Karlin, & Lessard, 1986; Maynard Smith, 1978; Mooney, 1992; Williams, 1975).

The tendency of thinkers to reflect the natural fact of male and female beginnings on a formal lan-
guage is known from the ancient time. For example, thoughts about fundamental meanings of male and 
female beginnings are reflected by thinkers of Ancient China and of the Pythagorean School into the 
thematic division of the series of natural numbers, where even numbers embody the female beginning 
(Yin) and odd numbers embody the male beginning (Yang).

Alternation of even and odd numbers in a series of natural numbers was considered as the form of 
an interpenetrating in the union of male and female beginnings. Especial value was given to the basic 
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female number 2 (in Ancient China it was considered as the “number of the Earth”) and to the basic 
male number 3 (“number of the Sky”) (Schutskiy, 1997). These conceptions have penetrated into many 
countries and into the latest doctrines, including the Pythagorean School. Besides in the Ancient China, 
mutual relations in the world between female and male beginnings were expressed by means of square 
tables of “The book of changes” (“I Ching”). These tables contained combinations of female and male 
beginnings under their names Yin and Yang in various proportions and sequences.

Sexual attributes are inherited genetically in living substance. Biology has revealed long ago, that 
male and female sexual cells (gametes) exist, and that sexual chromosomes contain male and female 
chromosomes, etc. The results of matrix genetics, which are described in our book, allow one to make 
the following suppositions: 1) a set of binary-oppositional attributes relates directly to the problem of 
male and female beginnings in biology; 2) phenomenological peculiarities of these ensembles can be 
expressed by means of a language of generalized multi-dimensional Yin-Yang-numbers. These thoughts 
have led to continuations of the investigations, which were described in the previous chapter, about the 
connection of the genetic matrices with multi-dimensional Yin-Yang numbers. The genetic 8-dimensional 
Yin-Yang-algebra gives the new conceptual and formal instrument for analyzing and modeling many 
biological phenomena including phenomena of evolution of the genetic code, which has many dialects 
for unknown reasons.

This genetic algebra defines the system of 8-dimensional Yin-Yang numbers YY8 (the matrix form of 
presentation of these numbers YY8 is presented on Figure 3 and Figure 4 in Chapter 7.):

YY8=x0*f0+x1*m1+x2*f2+x3*m3+x4*f4+x5*m5+x6*f6+x7*m7 

Multiplication of any two members of such a set of octet numbers YY8 generates a new octet number 
of the same set. Chapter 7 described that this numeric system has regular and sharp distinctions between 
the sub-set of the basic ”female” (or Yin) elements f0, f2, f4, f6 and the sub-set of the basic male (or Yang) 
elements m1, m3, m5, m7. These distinctions are based on the features of the multiplication table of these 
Yin-Yang numbers YY8. (Figure 6 in Chapter 7).

This genetic octet Yin-Yang-algebra is penetrated by the principle of binary opposition of elements 
with even and odd indexes. But one can note that the principle of binary opposition penetrates many 
systems of the genetic code as well. Really, DNA has the double spiral configuration; each letter of the 
genetic alphabet has its binary-oppositional partner in a complimentary pair; amino acids have amphoteric 
properties (they demonstrate acid properties and alkaline properties simultaneously; a non-dissociated 
form of amino acids is transformed into a dipolar form under conditions of neutral water solution); etc. 
It seems that many such facts of binary oppositions in genetic systems possess hidden connections with 
the genetic Yin-Yang-algebra, which exists not accidentally.

The five essential coincidences between structures of the Yin-Yang matrix YY8 and the genetic ma-
trix [C A; G U](3) were described in Chapter 7. These structural coincidences allow one to consider the 
octet algebra YY8 as the adequate model of the structure of the genetic code. One can postulate such an 
algebraic model and then deduce some peculiarities of the genetic code from this model.

Inheritance of sexual attributes exists in living nature. The results of investigations in the field of ma-
trix genetics allows one to suppose the following: 1) ensembles of binary-oppositional attributes, which 
exist in molecular-genetic systems, are related to the problem of male and female beginnings; 2) many 
phenomenological features of these ensembles can be expressed in the language of multidimensional 
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numbers, first of all, in the language of the genetic octet Yin-Yang-algebra which gives new possibilities 
to investigate genetic ensembles of such binary oppositions and interrelations inside them.

Taking these assumptions into account, let us analyze evolutionary interrelations among different 
dialects of the genetic code from the viewpoint of the genetic octet Yin-Yang-algebra (another name is 
the genetic bipolar algebra).

THE COmpARISON ANALySIS AND pHENOmENOLOGICAL 
RULES OF DIALECTS OF THE GENETIC CODE

Chapter 3 described in details, that many dialects of the genetic code are known in modern science. 
For this book all initial data about these dialects were taken from the website of the National Center for 
Biotechnology Information http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi. These dialects 
differ one from another through their specifics of the degeneracy (through concrete relations between 
20 amino acids and 64 triplets). One can find from the data of the mentioned website, that 17 dialects 
are known only which differ one from another by the numbers of degeneracy of the amino acids (see 
these 17 dialects in the table on Figure 1 in Chapter 3.). A small quantity of the dialects from the website 
differ one from another by their start-codons only but not by the of the amino acids; we consider these 
dialects as the same dialect in our investigation.

Only some triplets change their code meaning in the different dialects in comparison with the basic 
case of the vertebrate mitochondria genetic code in the sense that they begin to encode other amino acids 
or stop-signals. What are those limitations which are utilized by nature in its choice of such changeable 
(or evolutional) triplets? Has the matrix disposition of these variable triplets any relation to the YY-
coordinates x0, x1, ..., x7 of the matrix YY8 (Figure 3 and Figure 4 in Chapter 7.) and to their disposition in 
the genomatrix? Or the YY-coordinates have no relation to evolution of the genetic code and to systemic 
disposition of the variable triplets in the genomatrix [C A; U G](3)?

If such a relation is discovered, it gives additional evidence that the genetic octet Yin-Yang-algebra 
can be utilized as the adequate model of the genetic code or as the algebraic basis of the genetic code (the 
algebraic pre-code). It can be useful in tasks of sorting, putting in order and in deeper understanding of the 
genetic language. It can help to create new effective methods of information processing for many applied 
tasks as well. The appropriate algebraic model of the genetic code should give opportunities to deduce 
some evolutional peculiarities of the genetic code from such a fundamental mathematical system.

The results of corresponding comparison analysis have discovered the expressed connection be-
tween the disposition of the variable triplets in the genomatrix [C A; U G](3) and the disposition of the 
YY-coordinates x0, x1,.., x7 together with their signs “+” and “-” in the matrix YY8. The obtained results 
lead to a few phenomenological rules of evolution of the dialects of the genetic code on the basis of the 
genetic octet Yin-Yang-algebra. In other words the scheme, which is defined by this matrix algebra, 
holds true in the evolution of the genetic code in some significant aspects. These results give additional 
evidence of appropriateness of such algebraic an approach in bioinformatics.

The matrix form of presentation of members of the genetic octet Yin-Yang-algebra (Figure 3 and 
Figure 4 in Chapter 7) contains 32 components with the sign “+” and 32 components with the sign “-”. 
The matrix disposition of the components with the sign “+” fits the disposition of the 32 black triplets 
(the notion of black triplets was introduced in Chapter 2). These black triplets encode 8 kinds of the 
high-degeneracy amino acids Ala, Arg, Gly, Leu, Pro, Ser, Thr, Val, each of which is encoded by 4 triplets 
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or more in the vertebrate mitochondrial genetic code, which is considered as the basic dialect. Other 12 
amino acids are encoded by the white triplets. These 12 acids Asn, Asp, Cys, Gln, Glu, His, Ile, Lys, 
Met, Phe, Trp, Tyr are the low-degeneracy ones because each of them is encoded by 3 triplets or less. 
So the set of 20 amino acids consists of the canonical sub-set of the 8 high-degeneracy amino acids and 
the canonical sub-set of the 12 low-degeneracy amino acids. In the case of the vertebrate mitochondrial 
genetic code, the matrix disposition of these two canonical sub-sets fits the matrix disposition of the 
YY-coordinates with the signs “+” and “-” correspondingly.

But do these two sub-sets, which fit the algebraic features of the matrix YY8, play any role in many 
other dialects of the genetic code? The positive answer to this question was presented in Chapter 2 
already: the two non-trivial phenomenological rules № 1 and № 2 of evolution of the genetic code 
were demonstrated there, which are connected closely with these canonical sub-sets and hence with 
the matrix YY8. These results are one of the important evidences of the adequacy of the 8-dimensional 
octet algebra YY8 for the genetic code and its evolutionary peculiarities. Below the phenomenological 
rules №№ 3-7 will be presented as well, which were discovered from the viewpoint of the genetic octet 
Yin-Yang-algebra YY8.

Let us continue the comparative analysis. As we mentioned above, only some triplets change their 
code meaning in the different dialects in comparison with the case of the vertebrate mitochondria code. 
What are those formal attributes which are utilized by nature in its choice of these evolutional changeable 
triplets from the set of 64 triplets? How these triplets and their appropriate amino acids are disposed in 
the genomatrix [C A; U G](3) (Figure 3 and Figure 4 in Chapter 7)? Has the matrix disposition of these 
variable triplets any relation to the YY-coordinates x0, x1, ..., x7 and to their disposition in the genomatrix? 
Can these variable triplets be associated naturally with the groups of the male and female YY-coordinates 
and triplets? Or do the YY-coordinates have no relation to evolution of the genetic code and to a systemic 
disposition of the variable triplets in the genomatrix [C A; U G](3)? This section continues the comparison 
analysis to answer such questions.

The table on Table 1 gives data for analysing these questions. The vertebrate mitochondrial genetic 
code (the code № 1) is utilized as the standard for comparison of code meanings of triplets in differ-
ent dialects. The second tabular column shows those changeable triplets, which possess another code 
meaning (relative to their meaning in the dialect № 1) in the dialect which is named in the first column. 
A name of encoded amino acid or stop-codon (Stop) is given near each triplet in the second column 
in connection with the appropriate dialect named in the first column. Brackets in the second column 
contain that amino acid or stop-codon, which is encoded by this triplet in the dialect № 1. Each row of 
the second column is finished by the YY-coordinate, which is disposed together with this triplet in the 
same cell of the genomatrix on Figure 4 of Chapter 7. At last, the third column demonstrates data about 
start-codons, which define the beginning of protein synthesis in the considered dialect. An appropriate 
YY-coordinate is shown for each start-codon as well.

About Triplets which Change their Code meaning

Let us analyze the data from the second column of the table on Figure 1. This column shows 14 kinds of 
the changeable triplets which possess different code meanings in different dialects: AAA, AGA, AGG, 
AUA, CUA, CUC, CUG, CUG, CUU, UAA, UAG, UCA, UGA, UUA. Some of these triplets have 
several meanings. For example the triplet AGA encodes the stop-signal in the dialect № 1, the amino 
acid Arg in the dialect № 4; and the amino acid Gly in the dialect № 8. Or the triplet UAA encodes 



173

The Evolution of the Genetic Code from the Viewpoint of the Genetic 8-Dimensional Yin-Yang-Algebra

continued on the following page

Table 1. The table about changeable triplets and start-codons in the dialects of the genetic code. Initial 
data are taken from http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

Dialects of the genetic code Changeable triplets Start-codons

1) The Vertebrate Mitochondrial Code AUU, -x6 
AUC, -x6 
AUA, -x7 
AUG, -x7 
GUG, x3

2) The Standart Code UGA, Stop (Trp), -x5 
AGG, Arg (Stop), -x5 
AGA, Arg (Stop), -x5 
AUA, Ile (Met), -x7

UUG, -x7 
CUG, x3 
AUG, -x7

3) The Mold, Protozoan, and Coelenterate Mitochon-
drial Code and the Mycoplasma/Spiroplasma Code

AGG, Arg (Stop), -x5 
AGA, Arg (Stop), -x5 
AUA, Ile (Met), -x7

UUG, -x7 
UUA, -x7 
CUG, x3 
AUC, -x6 
AUU, -x6 
AUG, -x7 
AUA, -x7 
GUG, x3

4) The Invertebrate Mitochondrial Code AGG, Ser (Stop), -x5 
AGA, Ser (Stop), -x5

UUG, -x7 
AUU, -x6 
AUC, -x6 
AUA, -x7 
AUG, -x7 
GUG, x3

5) The Echinoderm and Flatworm Mitochondrial Code AGG, Ser (Stop), -x5 
AGA, Ser (Stop), -x5 
AUA, Ile (Met), -x7 
AAA, Asn (Lys), -x7

AUG, -x7 
GUG, x3

6) The Euplotid Nuclear Code UGA, Cys (Trp), -x5 
AGG, Arg (Stop), -x5 
AGA, Arg (Stop), -x5 
AUA, Ile (Met), -x7

AUG, -x7

7) The Bacterial and Plant Plastid Code UGA, Stop (Trp), -x5 
AGG, Arg (Stop), -x5 
AGA, Arg (Stop), -x5 
AUA, Ile (Met), -x7

UUG, -x7 
CUG, x3 
AUC, -x6 
AUU, -x6 
AUA, -x7 
AUG, -x7

8) The Ascidian Mitochondrial Code AGG, Gly (Stop), -x5 
AGA, Gly (Stop), -x5

UUG, -x7 
AUA, -x7 
AUG, -x7 
GUG, x3

9) The Alternative Flatworm Mitochondrial 
Code

UAA, Tyr (Stop), -x7 
AGG, Ser (Stop), -x5 
AGA, Ser (Stop), -x5 
AUA, Ile (Met), -x7 
AAA, Asn (Lys), -x7

AUG, -x7

10) Blepharisma Nuclear Code UGA, Stop (Trp), -x5 
UAG, Gln (Stop), -x7 
AGG, Arg (Stop), -x5 
AGA, Arg (Stop), -x5 
AUA, Ile (Met), -x7

AUG, -x7
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Dialects of the genetic code Changeable triplets Start-codons

11) Chlorophycean Mitochondrial Code UGA, Stop (Trp), -x5 
UAG, Leu (Stop), -x7 
AGG, Arg (Stop), -x5 
AGA, Arg (Stop), -x5 
AUA, Ile (Met), -x7

AUG, -x7

12) Trematode Mitochondrial Code AGG, Ser (Stop), -x5 
AGA, Ser (Stop), -x5 
AAA, Asn (Lys), -x7

AUG, -x7 
GUG, x3

13) Scenedesmus obliquus Mitochondrial 
Code

UGA, Stop (Trp), -x5 
UAG, Leu (Stop), -x7 
UCA, Stop (Ser), x5 
AGG, Arg (Stop), -x5 
AGA, Arg (Stop), -x5 
AUA, Ile (Met), -x7

AUG, -x7

14) Thraustochytrium Mitochondrial Code UGA, Stop (Trp), -x5 
UUA, Stop (Leu), -x7 
AGG, Arg (Stop), -x5 
AGA, Arg (Stop), -x5 
AUA, Ile (Met), -x7

AUU, -x6 
AUG, -x7 
GUG, x3

15) The Alternative Yeast Nuclear Code UGA, Stop (Trp), -x5 
AGG, Arg (Stop), -x5 
AGA, Arg (Stop), -x5 
AUA, Ile (Met), -x7 
CUG, Ser (Leu), x3

CUG, x3 
AUG, -x7

16) The Yeast Mitochondrial Code AGG, Arg (Stop), -x5 
AGA, Arg (Stop), -x5 
CUG, Thr (Leu), x3 
CUU, Thr (Leu), x2 
CUA, Thr (Leu), x3 
CUC, Thr (Leu), x2

AUA, -x7 
AUG, -x7

17) The Ciliate, Dasycladacean and Hexamita Nuclear 
Code

UGA, Stop (Trp), -x5 
UAG, Gln (Stop), -x7 
UAA, Gln (Stop), -x7 
AGG, Arg (Stop), -x5 
AGA, Arg (Stop), -x5 
AUA, Ile (Met), -x7

AUG, -x7

Table 1. continued

the stop-signal in the dialect № 1, the amino acid Tyr in the dialect № 9, and the amino acid Gln in the 
dialect № 17.

All kinds of changeable triplets are met 69 times in the second column. But only two kinds of the male 
YY-coordinates “-x5” and “-x7” with the sign “-” correspond to these triplets in all dialects practically. 
Specifically the male coordinate “-x5” is met 41 times (it is 59,4% of all cases), and the male coordinate 
“-x7”is met 22 times (it is 31,9% of all cases). It composes in sum more than 90% of all cases. The male 
coordinate “+x5” is met 1 time in the dialect № 13 but with the sign “+”. One can name the male YY-
coordinates “-x5”, “-x7” and “+x5” as canonical Yin-Yang-coordinates for the changeable triplets (Figure 
4 of Chapter 7). The described statistics allows one to formulate the following rule (in addition to two 
phenomenological rules in Chapter 3).
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The Phenomenological Rule № 3 Connected with the Octet Yin-Yang-Algebra

Those triplets possess different code meanings in the different dialects of the genetic code, which cor-
respond to the canonical male coordinates “-x5”, “-x7” and “+x5” of the matrix YY8.

This rule is held true precisely for all the dialects besides the case of yeast with its two dialects: the 
dialect № 15, where the non-canonical male coordinate “+x3” appears (for the triplet CUG), and the 
dialect № 16, which has the following unique feature. In this dialect № 16 the four triplets CUA, CUG, 
CUC, CUU, which are begun with the same pair of the letters (CU), change their code meanings by the 
identical way: all of them encode the acid Thr instead of the acid Leu (it is the unusual case because, if 
any other four triplets are begun with the equal pair of any letters, they do not change jointly their code 
meanings in other dialects). These four triplets correspond to the non-canonical YY-coordinates “+x2” 
and “+x3”.

Yeast is unicellular mushrooms, chemoorganoheterotrophs, which are possible to vegetative cloning 
(asexual reproduction). Probably, the genetic-code deviation of the yeast from the rule № 3 is connected 
with their asexual reproduction and heterotrophy. (We noted in Chapter 3 already, that the dialects of 
the genetic code of the heterotrophic organisms, which feed on ready living substance, can have some 
deviations from the canonical forms of the dialects of autotrophic organisms, which produce living 
substance by using solar energy). The additional evidence of molecular-genetic singularity of yeast is 
the fact that the histone H1 is not discovered in their genetic system at all (http://drosophila.narod.ru/
Review/histone.html).

The Connection between Evolution of the Genetic 
Code and the Anisotropy of the YY8-Space

Chapter 7 has described the anisotropy of the coordinate space of the YY8-numbers (the YY8-space). 
The 8-dimensional YY8-numbers YY8 = x0*f0+x1*m1+x2*f2+x3*m3+x4*f4 +x5*m5+x6*f6+x7*m7 have been 
interpreted as the double genetic quaternion. If all female coordinates are equal to zero (x0 = x2 = x4 = x6 
= 0), we have the male variant of YY8 in the form (YY8)MALE:

(YY8)MALE = x1*m1 + x3*m3 + x5*m5 + x7*m7 (1)

The multiplication table of the basic elements m1, m3, m5, m7 of (YY8)MALE coincides with the mul-
tiplication table of genetic quaternions g = y0*1 + y1*i1 + y2*i2 + y3*i3 on Figure 10 of Chapter 7. By 
analogy with Hamilton’s quaternion, the first item y0*1 (or x1*m1 in the expression (1)) of genetic 
quaternions is called as their scalar part, and the sum of other three items is called as the vector part of 
genetic quaternions.

In accordance with Figure 11 of Chapter 7, these genoquaternions “g” possess the norm

x1
2 + x3

2 – x5
2 – x7

2 (2)

The signature (+, +, -, -) of the norm (equation 2) of genoquaternions differs from the signature (+, 
+, +, +) of the norm of quaternions by Hamilton. This difference is very significant because it defines 
the following fundamental circumstance. The vector part x3*m3 + x5*m5 + x7*m7 of genetic quaternions 
corresponds to the case of some anisotropic space in contrast to quaternions by Hamilton, the vector 
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part of which corresponds to the case of the isotropic space. In the expression (2), this difference in the 
signatures of the norms is connected with the YY-coordinates x5 and x7, which can be named “anisotropic 
coordinates” for this reason. But these coordinates x5 and x7 are those, which correspond to the changeable 
triplets of the genetic code in accordance with the rule № 3. It is a very interesting fact that all evolu-
tion of code meanings of genetic triplets occurs practically in connection only with these anisotropic 
coordinates of the model space. Consequently the close connection between evolution of the genetic 
code and the anisotropy of this YY8-space exists. For this reason, one can formulate the following rule 
№ 4, which is a continuation of the rule № 3.

The Phenomenological Rule № 4, which is Connected with the 
Octet yin-yang Numbers and with the Anisotropy of yy8-Space

In evolution of dialects of the genetic code, all changeable triplets correspond to the anisotropic male 
coordinates of genetic YY8-numbers.

Similarly to rule № 3, rule № 4 has one exception: the case of yeast, which is characterized by asexual 
reproduction and heterotrophy and which changes the code meanings of the coordinates x2 and x3 addi-
tionally. It is obvious that the following prediction can be made. If new dialects of the genetic code are 
discovered in the future for organisms with bisexual reproduction, changeable triplets will correspond 
to the anisotropic male coordinates of genetic YY8-numbers as well.

One can make one more remark about the male coordinates “-x5”, “-x7”, which are connected with 
more than 90% of all changeable triplets, as was mentioned above. All triplets, which correspond to these 
coordinates, change their code meanings besides the four invariable triplets: UGG with the coordinate 
“-x5”, and AAG, AUG, UUG with the coordinate “-x7”. Perhaps new dialects of the genetic code will be 
discovered in the future, where these triplets change their code meanings as well.

The Phenomenological Rule № 5 Connected with 
the Genetic Octet yin-yang-Numbers

All those 16 triplets, which correspond to the YY-coordinate x0 and x1 of the scalar part of genetic YY8-
numbers, never change their code meanings in the dialects of the genetic code (including the case of 
yeast).

Really, one can see that these coordinates x0 and x1 of the scalar part of YY8-numbers are absent in 
the table on Figure 1 together with their 16 triplets CCC, CCA, CCU, CCG, CGC, CGA, CGU, CGG, 
GCC, GCA, GCU, GCG, GGC, GGA, GGU, GGG. So, the coordinates of the scalar part of the genetic 
YY8-numbers define the absolute invariable part of the set of the genetic triplets.

About Stop-Codons

Encoding of stop-signals of protein synthesis turns on a special interest. Stop-signals are encoded by 
different triplets (stop-codons) in different dialects of the genetic code. The 7 kinds of triplets play the 
role of stop-codons in these dialects. Three of them (UUU, UAG, UUA) fit the YY-coordinate “-x7”. The 
other three triplets (AGA, AGG, UGA) fit the coordinate “-x5”. The seventh triplet (UCA) fits the coor-
dinate “+x5”. All these coordinates are the anisotropic male YY-coordinates. Consequently the function 
of stop-codons is closely connected with the anisotropy of YY8-space. The results of the investigation 
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of stop-codons in the genetic dialects from the viewpoint of YY8-algebra allow one to formulate the 
following rule.

The Phenomenological Rule № 6 Connected with the Octet Yin-
yang-Algebra and with the Anisotropy of the YY8-Space

Those triplets serve as stop-codons in the dialects of the genetic code, which correspond to the anisotropic 
male YY-coordinates “-x5”, ”-x7” and “+x5”.

This rule is held true for all 17 dialects without exceptions. It draws attention to the fact that the 
function of stop-codons is the “male function” always from the viewpoint of YY8-algebra because stop-
codons are connected with the male coordinates. A few triplets exist (for example UUA and UGG), 
which correspond to the same coordinates “-х5”, “-х7” and “+х5” but which are not stop-codons in known 
dialects of the genetic code. Will such a dialect of the genetic code be discovered in the future, where 
these triplets play the role of stop-codons? Time will tell.

About Start-Codons

Till now we did not analyze start-codons (function of start-codons is the additional function of some 
triplets which they execute besides their basic function of coding of amino acids). The third column of 
the table on Figure 1 demonstrates those start-codons of the 17 dialects of the genetic code, which are 
presented in basic sets of code meanings of 64 triplets of the considered 17 dialects on the website http://
www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi. Eight triplets play the role of start-codons in these 
17 cases. The four of them (AUA, AUG, UUA, UUG) correspond to the YY-coordinate “-x7”. The two 
triplets (AUC, AUU) correspond to the coordinate “-x6”. The other two triplets (CUG, GUG) correspond 
to the coordinate “+x3”. The set of start-codons of the dialect № 1 corresponds to all these coordinates 
“-x7”, “-x6” and “+x3”. These data allow one to formulate the additional rule about start-codons.

The Phenomenological Rule № 7 Connected with the Octet Yin-Yang-Algebra

All start-codons in the dialects of the genetic code correspond to YY-coordinates “-x7”, “-x6” and 
“+x3”.

This rule is held true for all 17 dialects of the genetic code without exceptions. One can add that the 
start-codon AUG, which corresponds to the YY-coordinate “-x7”, is included in all the 17 dialects. All 
start-codons, which are presented in the table on Figure 1, have the letter U on their second position 
that reminds one about the U-algorithm of connection between genomatrices and Hadamard matrices 
(see Chapter 6).

THE mOLECULAR-SEXUAL AppROACH IN mOLECULAR GENETICS

Let us name each low-degeneracy amino acid, which is encoded by one of the female YY-coordinates 
x0, x2, x4, x6 only (see Figure 4 of Chapter 7), as the female amino acid conditionally. Such female amino 
acids are AsnF, AspF, CysF, HisF, IleF, PheF, TyrF (we mark the female amino acids by means of the lower 
index F). Each low-degeneracy amino acid, which is encoded by one of the male YY-coordinates x1, x3, 
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x5, x7 only, is named the male amino acid correspondingly. Such male amino acids are GlnM, GluM, LysM, 
MetM, TrpM (we mark the male acids by means of the lower index M).

The case of the high-degeneracy amino acids is more complex because such acids correspond to 
male and female YY-coordinates simultaneously (Figure 4 of Chapter 7). For example the acid Arg 
corresponds to x0 and x1. For this reason we name each of the high-degeneracy amino acids as the an-
drogynous acid conditionally by analogy with androgynous individuals which possess male and female 
attributes simultaneously. The pure androgynous acids, each of which corresponds to the male and female 
YY-coordinates in equal degree, are AlaA, ArgA, GlyA, ProA, ThrA, ValA (we mark androgynous acids by 
means of the lower index A). The amino acid SerA is disposed in 6 cells in the octet genomatrix (Figure 
2 in Chapter 2), which correspond to the unequal quantities of the female and male YY-coordinates: the 
quantity of the female coordinates is equal to 4 and the quantity of the male coordinates is equal to 2. 
For this reason SerA is named the “androgynous acid of the female type”. The amino acid LeuA possess 
the symmetric-oppositional character relative to SerA because LeuA is disposed in 6 matrix cells also but 
these cells correspond to 4 male coordinates and to 2 female coordinates (Figure 2 of Chapter 2). For 
this reason LeuA is named the “androgynous acid of the male type”. LeuA and SerA form the sub-set of 
the quasi-androgynous acids.

All these additions to the names of amino acids are introduced on the basis of the vertebrate mito-
chondrial code (the code № 1 on Figure 1 in Chapter 3, and Table 1 in this chapter). But do what we 
have for the other 16 dialects of the genetic code, where some amino acids receive new correspondence 
to triplets and to YY-coordinates? What do such changes mean from the viewpoint of the notions of the 
genetic YY8-algebra?

In accordance with the rule № 3, some male triplets of the dialect № 1 change their code meanings in 
the course of evolution of the genetic code (the case of yeast is the exceptional one). These male triplets 
encode the male and androgynous acids in the dialect № 1. The additional rule is that, if such changeable 
male triplet encodes another amino acid in another dialect of the genetic code, this new amino acid is 
one of the female acids necessarily (the case of yeast is the exceptional one). In other words, the expan-
sion of the female acids (AsnF, CysF, IleF, TyrF) into the male columns of the genomatrix [C A; U G](3) 
(Figure 4 in Chapter 7) take place in the course of evolution. But the male amino acids never come to 
the female columns. As a result the genomatrix [C A; U G](3), which possesses the equal qualities of the 
male and female amino acids in the dialect № 1, becomes the more female matrix in other dialects due 
to the prevalence of the female amino acids in the matrix cells there.

One can add that the androgynous acids ArgA, GlyA, LeuA force out the male stop-codons in some 
dialects and take their places in the male columns of the genomatrix [C A; U G](3). Figuratively speak-
ing, the female beginning forces out the male beginning in the set of amino acids. On the other hand, the 
category of the male triplets increases its positions in the set of start-codons and stop-codons to guide 
punctuations of protein synthesis.

The male triplets encode not only all stop-codons in all dialects, but the set of start-codons becomes 
the more male set in the course of evolution: the single female coordinate “-x6”, which exists in the 
dialect № 1, is eliminated in most dialects. Really the dialects №№ 2, 5, 6, 8-13, 15-17 have no start-
codons with the female YY-coordinates (Table 1). On the whole the evolution of the genetic code is the 
struggle between the male and female beginnings on the molecular-genetic level from the viewpoint of 
this algebraic model. It reminds one of the struggles between matriarchy and patriarchy in the history of 
human civilization. It reminds one of many other famous confrontations between the male and female 
beginnings as well. The creator of analytic psychology C. Yung subdivides the soul into the male and 
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female beginnings, ratios of which can be changed in different periods of human life. The described data 
allow to formulate the following generalized rule of the struggle between male and female beginnings 
in evolution of the genetic code from the viewpoint of the genetic YY8-algebra: in evolution of dialects 
of the genetic code, an increase of the set of triplets, which encode the female and androgynous amino 
acids, exists concerning the analogical set in vertebrate mitochondrial genetic code. The set of triplets, 
which encode the start-codons, becomes the more male set in this process.

The revelation of the structural division of the set of 20 amino acids into the sub-sets of the male, 
female and androgynous amino acids can be useful for modeling many astonishing phenomena in mo-
lecular genetics. The discussion is about the phenomena of mutual disclosure and of mutual attraction 
between two molecular one-specific partners, which lead to a formation of new molecular pairs; they 
take place in a medium of huge number of other molecules (molecular bouillon). Let us consider the 
following example.

THE EXAmpLE OF THE pAIRS OF HISTONES

It is known that nucleosome histones are important protein components of chromosomes. Below we 
utilize the well-known data about histones from the website of the National Center for Biotechnology 
Information http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=mboc4.figgrp.632.

In eukaryote cells, filaments of DNA are coiled around nucleosomes, each of which is a shank consist-
ing of the histones of the four types: H2A, H2B, H3 and H4. This set of four types is divided by nature 
into the pairs of one-specific histones. The histones H2A and H2B possess the important possibility to 
create the pair just one with another on the basis of their mutual revealing and mutual “attraction” in a 
molecular bouillon (by analogy with a male and a female individuals of one species among macroscopic 
biological organisms). Another pair consists of the histones H3 and H4, which possess the similar pos-
sibility to create the pairs just one with another on the analogical basis of their mutual revealing and 
mutual “attraction” in molecular bouillon.

A single nucleosome contains the ensemble of eight histones, where two histones of each of the four 
types H2A, H2B, H3 and H4 are included. The DNA molecule is reeled up on this octamer shank in 
the form of the left spiral. The structure of nucleosome plays the main role in the packing of DNA on 
all levels. Each nucleosome is formed in accordance with the principle of the multi-level recognition 
defined by the structures of the histones. Each histone molecule contains a central structured 3-spiral 
domain and non-structured N- and C-“tails”. The one-specific histones identify one another and create 
their pairs. All creation of the octamer shank is based on the consecutive creation of pairs of the two 
one-specific molecular objects (Figure 1).

In the first step, the spiral domains cooperate among themselves. As a result, pairs (dimers) arise: 
one pair H3-H4 and two pairs H2A-H2B. In the second step, two first dimers form the pair association 
of the following level of complexity: the tetramer arises with two pairs H3-H4. In the third step, this 
tetramer forms a pair association of the higher level with two pairs H2A-H2B. As a result, the octamer 
of the histones arises. All these searches and copulations of one-specific histones into pairs, and then 
into new pairs from previous pairs occur in a molecular bouillon with a huge bedlam of biological 
molecules of other kinds and their splinters. It occurs despite of effects of electric shielding and other 
noise circumstances there.
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These phenomena of the micro world of molecules should be subordinated to principles of quantum 
mechanics. But their conclusion from these known principles is an excessive problem for modern sci-
ence. These paired associations of the histones in molecular genetics carry the art name “hand shakes 
of molecules” traditionally (the multistage association of pairs of the one-specific histones H3-H4 and 
H2A-H2B into the dimers, the tetramers and the octamers can be found at http://www.ncbi.nlm.nih.gov/
books/bv.fcgi?rid=mboc4.figgrp.636). But from the viewpoint of the our bisex theory, which is based 
on the genetic Yin-Yang algebras and which speaks about “sexual” interactions of genetic molecules, 
one can propose another art name for such pair search and association: “marriage”, “love-crossing” or 
“love-copulation”.

WHETHER AN UNKNOWN QUANTUm mECHANICAL FACTOR OF A 
“SEXUAL ATTRACTION” AmONG GENETIC mOLECULES EXISTS?

Such molecular-genetic facts form the basis to suspect, that phenomena of love or a love search of a 
sexual partner, which exist at a level of animal organisms, have arisen not on an empty place. But they 
are the continuation of those quantum mechanical phenomena of search of the one-specific partner into 
a mutual pair, which exist already at the level of genetic molecules, at least. The interrelations among 
genetic molecules in their search of each other can be interpreted as sexual relations to some extent.

Figure 1. The multistage association of pairs of the one-specific histones H3-H4 and H2A-H2B into the 
dimers, the tetramers and the octamers (this figure is taken from http://www.ncbi.nlm.nih.gov/books/
bv.fcgi?rid=mboc4.figgrp.636)



181

The Evolution of the Genetic Code from the Viewpoint of the Genetic 8-Dimensional Yin-Yang-Algebra

Plato had formulated the famous statement about a congenital aspiration of each person to look for 
the second half. From the viewpoint of our bisex conception, which is based on the genetic Yin-Yang 
algebra, Plato’s statement can be transferred into the world of those congenital properties of genetic 
molecules which are reflected in their search of their second halves.

In our opinion, taking into account the described facts, one can put forward the working hypothesis 
about existence of “a sexual intermolecular attraction” (or a “bipolar attraction”) between genetic one-
specific elements as a new biophysical factor of a quantum mechanical sense. This new hypothetical 
factor or principle is presented, first of all, as an explanation of molecular-genetic phenomena of search 
of the one-specific pair partner by multi-atomic bio-molecules to create a specific pair in complex 
conditions of multi-component bullion. The genetic Yin-Yang-algebra can be useful to model and in-
vestigate such a factor. This factor can have a force character and/or information character. It does not 
reject the existence of other known factors (for example, interactions of electric charges and so forth), 
but it is additional to them. Of course, it would be wrong to extend an action of this factor of “a sexual 
intermolecular attraction”, which is proposed in connection with phenomena of assembly of pairs of 
one-specific multi-atomic molecular elements (multi-atomic quantum mechanical “modules”), into the 
field of all aspects of molecular-genetic organization.

Another example of the possible display of the hypothetical factor of “a sexual intermolecular attrac-
tion” (or a genetic bipolar attraction) in genetic systems gives the phenomenon which was discovered 
by Mirzabekov in studying a transfer RNA (Mirzabekov, 1997). The claim is that halves and quarters 
of these molecules can find each other in molecular bouillon and can gather in one molecule, which 
possesses a typical function of a transfer RNA.

THE ANALySIS OF THE INSULIN STRUCTURE AS THE SImpLEST EXAmpLE

The discovered connection between the genetic code and the Yin-Yang-algebra gives the opportunity 
of classification of many molecular elements in accordance with their “sexual” characteristics from the 
table on Table 2. The knowledge about such hidden structure of the set of genetic molecules can be use-
ful for a study, an explanation and a prediction of features of interactions of molecular elements with 
different sexual characteristics.

For example, all sets of proteins (and their genes) can be divided conditionally into sub-sets of 
male, female and androgynous proteins in accordance with the sexual type of those amino acids, which 
form the majority in compositions of these proteins. As a result new information arises about structural 
characteristics of proteins. Let us make the first attempt to analyze a protein from the viewpoint of the 
genetic Yin-Yang-algebra. For this first attempt we take the simplest protein – insulin, which contains 

Table 2. The classification of the 20 amino acids as female acids, male acids and androgynous acids 
in accordance with the kinds of their connections with the female and male YY-coordinates on Figure 
4 in Chapter 7. 

Female acids Male acids Androgynous acids Quasi-androgynous acids

AsnF, AspF, CysF, HisF, 
IleF, PheF, TyrF

GlnM, GluM, LysM, MetM, 
TrpM

AlaA, ArgA, GlyA, ProA, ThrA, ValA LeuA, SerA
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51 amino acids. The set of these acids is encoded by 51 triplets in the gene of insulin. Does this genetic 
sequence of triplets have any regularity from the viewpoint of the genetic Yin-Yang algebra?

The insulin consists of two chains: the α-chain and the β-chain. The α-chain contains 21 amino acids 
and the β-chain contains 30 amino acids. These chains are encoded by the genetic sequences (Table 3), 
which are taken from the text-book (Inge-Vechtomov, 1983, p. 321-323). Taking into account the table 
on Table 2, the following intrinsic “sexual” structure is revealed for each sequence with its male, female 
and androgynous amino acids (Table 3).

The first results of this analysis are the following. The genetic sequences of both chains contain equal 
quantities of the female triplets (10 female triplets) and of the male triplets (4 male triplets). All other 
triplets are androgynous ones. From the described algebraic viewpoint, insulin and its gene are a female 
protein and a female gene because female acids and female triplets dominate there.

The α-chain has the following set of the female links: 2ATC(Ile,-х6)F, 6TGT(Cys,-х4)F, 7TGC(Cys,-х4)F, 
10ATC(Ile,-х6)F, 11TGC(Cys,-х4)F, 14TAC(Tyr,-х6)F, 18AAC(Asn,-х6)F, 19TAC(Tyr,-х6)F, 20TGT(Cys,-х4)F, 
21AAC(Asn,-х6)F. This set of female links shows unexpectedly the regularity of double composition in 
its structure (the phenomenon of doubling).

The essence of this phenomenon is that each kind of female triplet and female amino acid is met 
twice in the α-chain exactly. (Below we note that the analogical phenomenon of doubling takes place 
for the set of male links as well). Really, the female triplet ATC exists there in the links №№ 2 and 10; 
the triplet TGT – in the links №№ 6 and 20; the triplet TGC – in the links №№ 7 and 11; the triplet 
TAC – in the links №№ 14 and 19; the triplet AAC – in the links №№ 18 and 21.

Table 3. The genetic sequences of triplets for the α-chain and the β-chain of insulin. The following data 
are shown for each triplet: its current number in the sequence; the encoded amino acid; its YY-coordinate 
from Figure 4 in Chapter 7. Female links, which contain female amino acids, are marked by the index 
F; male links are marked by the index M; androgynous links are marked by the index A. The genetic 
letter T (thymine) is used instead of the letter U, but it does not matter 

α-chain:
1GGC(Gly, х0)A → 2ATC(Ile, -x6)F → 3GTT(Val, x2)A → 4GAA(Glu, -x3)M → 
5CAG(Gln, -x3)M → 6TGT(Cys, -x4)F → 7TGC(Cys, -x4)F → 8ACT(Thr, х4)A → 
9TCT(Ser, х4)A → 10ATC(Ile, -x6)F → 11TGC(Cys, -x4)F → 12TCT(Ser, x4)A → 
13CTT(Leu, x2)A → 14TAC(Tyr, -x6)F → 15CAG(Gln, -x3)M → 16CTT(Leu, x2)A 
→ 17GAG(Glu, -x3)M → 18AAC(Asn, -x6)F → 9TAC(Tyr, -х6)F → 20TGT(Cys, 
-х4)F →21AAC(Asn, -х6)F

β-chain:
1TTC(Phe, -х6)F → 2GTC(Val, х2)A → 3AAT(Asn, -х6)F → 4CAG(Gln, -х3)M → 
5CAC(His, -х2)F → 6CTT(Leu, х2)A → 7TGT(Cys, -х4)F → 8GGT(Gly, х0)A → 
9TCT(Ser, х4)A → 10CAC(His, -х2)F → 11CTC(Leu, х2)A → 12GTT(Val, х2)A → 
13GAA(Glu, -х3)M → 14GCT(Ala, х0)A → 15TTG(Leu, -х7)A → 16TAC(Tyr, -х6)F 
→ 17CTT(Leu, х2)A → 18GTT(Val, х2)A → 19TGC(Cys, -х4)F → 20GGT(Gly, х0)
A → 21GAA(Glu, -х3)M → 22CGT(Arg, х0)A → 23GGT(Gly, х0)A → 24TTC(Phe, 
-х6)F → 25TTC(Phe, -х6)F → 26TAC(Tyr, -х6)F → 27ACT(Thr, х4)A → 28CCT(Pro,  
х0)A  → 29AAG(Lys, -х7)M  → 30ACT(Thr, х4)A
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Let us make a small deviation into the field of linguistics. It is well-known in molecular genetics that 
“the more we understand laws of coding of genetic information, the more their similarity to principles 
of linguistics amazes” (Ratner, 2002, p.203).

Does the described phenomenon of doubling in the case of the simplest protein (insulin) have a 
similarity with the structural principles of the simplest words of human languages? Yes, it has. Really 
the simplest words of different human languages demonstrate the same phenomenon of doubling or 
of their construction on the basis of doubling syllables. Such words are utilized by babies, when they 
start to speak; they are used intuitively by mothers in dialogue with babies; they are most digestible 
and exploitable at training speech in the case of deaf-and-dumb people; they are utilized by different 
nations for speech imitation of the sounds of world around: “mama”, “papa”, “baba”, “wee-wee”, etc. 
(the Russian language, which is native for one of the authors of this book, has a lot of examples of such 
simple words with doubling syllables). In process of development of speech, this primitive principle of 
construction of the simplest words with doubling letters is overcome gradually. These data are the ad-
dition to the famous conception that linguistic languages have arisen not in an empty space but they are 
a continuation of the genetic language (Baily, 1982; Jacob, 1974, 1977; Makovskiy, 1992; Petoukhov, 
2003, 2003-2004; Jacobson, 1987, 1999; Yam, 1995; etc).

One small addition can be made also to this concept. The theory of artificial and computer languages 
demonstrates that there is no necessity at all to include in languages a division of the whole set of nouns 
(and some other language elements) into sub-sets of nouns of masculine gender, of feminine gender 
and of neuter gender. But the natural human languages possess such division of the set of all nouns 
into sub-sets of nouns of such three genders. If the human languages are a continuation of the genetic 
language (Jacobson, 1987, 1999), then the genetic language should possess such division of the whole 
set of its elements into sub-sets of masculine, feminine and neuter genders. Our algebraic investigation 
of the genetic code confirms this conception by means of the discovery of the algebraic division of the 
sets of elements of the genetic languages into sub-sets of elements of masculine, feminine and neuter 
(androgynous) genders. In our opinion, these three genders of elements in genetic systems exist due to 
intrinsic features of the genetic Yin-Yang-algebra in connection with the fundamental task of noise- im-
munity of genetic coding.

Let us return to insulin. The set of the female links of the α-chain contains 5 different triplets ATC, 
TGT, TGC, TAC, AAC, but 4 different amino acids exist there because the acid Cys exists in two pairs 
of links. Each of these pairs is encoded by its own triplet – TGT or TGC, but these triplets do not differ 
by their coding meanings because they encode the same amino acid Cys in all dialects of the genetic 
code. This whole set of the female links corresponds to two YY-coordinates “-x6” and “-x4” only. The 
number of repetitions of each of these coordinates is an even number: “-x6” is repeated 6 times, and 
“-x4” is repeated 4 times. One can recall that all YY-coordinates have the one-to-one relation with the 
letter composition of triplets (Figure 4 of Chapter 7). In accordance with this connection, each abstract 
YY-coordinate (for example “-x6”) presents an algorithmically defined number (“-ββγ” in this example), 
which is based on real parameters of the molecules of the genetic alphabet.

The male links of the α-chain are 4GAA(Glu,-x3)M, 5CAG(Gln,-x3)M, 15CAG(Gln,-x3)M, 17GAG(Glu,-
x3)M. Each of their amino acids Glu and Gln is repeated twice again. All these links correspond to the 
same YY-coordinate “-x3”. The triplet CAG is repeated twice. The triplets GAA and GAG do not differ 
in their coding meanings because they encode the same amino acid Gln in all dialects of the genetic 
code. So the phenomenon of doubling exists for the male links of the α-chain as well.
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Each of the quasi-androgynous acids SerA and LeuA exists in the α-chain twice as well: 9TCT(Ser, 
х4)A, 12TCT(Ser, x4)A, 13CTT(Leu, x2)A, 16CTT(Leu, x2)A. These acids and their triplets TCT and CTT 
correspond to the female YY-coordinates “x2” and “x4”.

Now let us consider the β-chain of insulin (Table 3) with the following female links: 1TTC(Phe,-х6)F, 
3AAT(Asn,-х6)F, 5CAC(His,-х2)F, 7TGT(Cys,-х4)F, 10CAC(His,-х2)F, 16TAC(Tyr,-х6)F, 19TGC(Cys,-х4)F, 
24TTC(Phe,-х6)F, 25TTC(Phe,-х6)F, 26TAC(Tyr,-х6)F. The phenomenon of doubling exists for the whole 
β-chain except for its first three links Phe-Val-Asn (which correspond to the tripeptide). Really the main 
part of the β-chain contains the following female amino acids twice: His (encoded by the triplet CAC); 
Tyr (encoded by the triplet TAC); Phe (encoded by the triplet TTC); Cys (encoded by the triplets TGT 
and TGC, which do not differ in their code meanings in all dialects of the genetic code because they 
encode the same acid Cys always). The female links in the β-chain correspond to the YY-coordinates 
“-x6”, “-x4” and “-x2”.

The set of the male links in the β-chain contains 4CAG(Gln, -х3)M, 13GAA(Glu, -х3)M, 21GAA(Glu, 
-х3)M, 29AAG(Lys, -х7)M. This set coincides with the set of the male links of the α-chain with the excep-
tion of the link № 29, which is next to last in the β-chain.

In contrast to the α-chain, where all 4 male triplets and acids correspond to the YY-coordinate “-x3”, 
the coordinate “-x3” of the last male link in the β-chain is replaced by the coordinate “-x7”. It breaks one 
of the male pairs: the triplet AAG, which encodes Lys, exists here instead of the triplet CAG, which 
differs by the first letter only and which encodes the acid Gln. The second male pair of the links №№ 
13 and 21 submits to the phenomenon of doubling because the triplet GAA encodes the acid Glu in 
both these links.

Is this phenomenon of doubling connected with the 3D-construction of insulin (and of those proteins, 
which possess the same phenomenon) by means of any regular metric or vector relations in space dis-
positions of pairs of such links? How widely and precisely is the phenomenon of doubling in male and 
female sub-sets carried out for different proteins? Many such questions arise as a result of the analysis 
of objects of molecular genetics from the viewpoint of the genetic octet Yin-Yang-algebra. They should 
be investigated in the future.

SOmE AppLICATIONS OF RESULTS OF mATRIX GENETICS 
IN BIOINFORmATICS AND ALGEBRAIC BIOLOGy

Symmetries of genetic systems in their matrix forms of presentation are connected closely to algebraic 
biology which is a branch of theoretical and mathematical biology. Algebraic biology uses tools from 
symbolic computation, algebra, algebraic geometry, and discrete mathematics for the modeling and 
analysis of biological systems. Examples of application areas include all aspects of systems biology 
and -omics data analysis, functional genomics, evolutionary biology, synthetic biology, and cell biol-
ogy. Algebraic analysis of matrix forms of presentation of genetic systems described in this book can 
be useful for many of these application areas.

Each of these possible applications needs special historical, biological and mathematical introductions. 
Taking into account a limited volume of this book we describe here one example of such applications. 
The example is connected to a method of Chaos Game Representation (CGR) of genetic sequences which 
is well-known in bioinformatics and molecular biology. This iterative mapping method allows one to 
convert a nucleotide sequence into a scale-independent and unique visual image. This was introduced 
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in genome analysis in the work (Jeffrey, 1990). In this work J. Jeffrey proposed a visualization of a 
non-randomness character of DNA sequences by means of a chaos game algorithm for four points. Such 
an approach permits the representation and investigation of patterns in sequences, visually revealing 
previously unknown structures. Based on a technique from chaotic dynamics, the method produces an 
image of a gene sequence which displays both local and global patterns. The images have a complex 
structure which varies depending on the sequence. CGR raises a new set of questions about the structure 
of DNA sequences, and is a new tool for investigating gene structure. Here we should reproduce some 
materials about CGR from the work by Jeffrey because we will describe a new variant of this method 
for investigations of amino acids sequences of proteins on the basis of the genetic Yin-Yang algebra.

During the past 15 years a new field of physics known as ‘non-linear dynamics’, ‘chaotic dynamical 
systems’, or simply ‘chaos’ (Barnsley, 1988; Devaney, 1989) has been developed. Central parts of the 
field are questions of the structure of certain complex curves known as ‘fractals’. The Chaos Game is 
an algorithm which allows one to produce pictures of fractal structures. In simplest form, it proceeds 
as follows:

1.  Locate three dots on a piece of paper. They can be anywhere, as long as they are not all on a line. 
We will call these dots vertices.

2.  Label one vertex with the numerals 1 and 2, one of the others with the numerals 3 and 4, and the 
third with the numerals 5 and 6.

3.  Pick a point anywhere on the paper, and mark it. This is the initial point.
4.  Roll a 6-sided die. Since in Step 2 the vertices were labeled, the number that comes up on the die 

is a label on a vertex. Thus, the number rolled on the die picks out a vertex. On the paper, place a 
mark half way between the previous point and the indicated vertex. (The first time the die is rolled, 
the ‘previous point’ is the initial point picked in Step 3.) For example, if 3 is rolled, place a mark 
on the paper half way between the previous point and the vertex labelled ‘3’.

5.  Continue to roll the die, on each roll marking the paper at the point half way between the previous 
point and the indicated vertex.

One might expect that this procedure, if repeated many times, would yield a paper covered with 
random dots or, perhaps, a triangle filled with random dots. It turns out this is not the case. In fact, if the 
Chaos Game is run for several thousand points, the result is a beautiful fractal figure which is known 
in mathematics for many years under the name ‘Sierpinski triangle’, after the mathematician who first 
defined it. For the cases of five points, six, or seven initial points the chaos game produces a figure with 
visible patterns (pentagons within pentagons, a striated hexagon, or heptagons within heptagons), but 
for eight or more point the game yields essentially a filled-in polygon, except that the center is empty.

With four initial points, however, the result is different. It is not squares within squares, as one might 
expect; in fact there is no pattern at all. The chaos game on four points produces a square uniformly 
and randomly filled with dots in the case of random rolling of a 6-sided die. The picture produced by 
the chaos game is known as the attractor. Mathematically, the chaos game is described by an iterated 
function system (IFS).

If a sequence of numbers is used to produce an attractor for an IFS code and that attractor has visually 
observable then we have, intuitively, revealed some underlying structure in the sequence of numbers. 
Experiments (Jeffrey, 1990) had shown that the Chaos Game can be used to display certain kinds of 
non-randomness visually. This led to the following question. Since a genetic sequence can be treated 
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formally as a string composed from the four letters ‘a’, ‘c’, ‘g’, and ‘t’ (or ‘u’), what patterns will it arise 
if we use Chaos Game not a series of random numbers but DNA sequences in their relevant numeric 
form? Instead of ‘rolling a 4-sided die’, use the next base (a, c, g, t/u) to pick the next point. Each of 
the four corners of the square is labeled by symbols ‘a’, ‘c’, ‘g’, or ‘u’. If a ‘c’, for example, is the next 
base, then a point is plotted half way between the previous point and the ‘c’ corner. In such a way Jeffrey 
has obtained a set of CGR patterns of different DNA sequences. These patterns had fractal characters 
and they were used for many tasks of comparative analysis in bioinformatics and for formulating new 
scientific questions.

After Jeffrey’s work, many scientists studied CGR patterns of nucleotide sequences (Goldman, 1993; 
Gutierrez, Rodriguez & Abramson, 2001; Joseph & Sasikumar, 2006; Oliver al., 1993; Tavassoly et al., 
2007a, 2007b; Wang et al., 2005). As the result, “alignment free methods based on Chaos Game Repre-
sentation (CGR), also known as sequence signature approaches, have proven of great interest for DNA 
sequence analysis. Indeed, they have been successfully applied for sequence comparison, phylogeny, 
detection of horizontal transfers or extraction of representative motifs in regulation sequences” (De-
schavanne, Tuffey, 2008, p. 615). The most of these works were devoted to CGR patterns of nucleotide 
sequences. It is interesting to use the analogical CGR method for studying of amino acids sequences in 
proteins. This using can lead to a disclosure of hidden symmetries and other regularities in sets of pro-
tein for problems of bioinformatics, evolutionary biology, etc. In contrast to a quantity of works about 
CGR of nucleotides sequences, much lesser quantity of works about CGR of amino acids sequences of 
proteins exist because twenty (not four) different amino acids exist (Basu, et al., 1997; Fiser, Tusnady 
& Simon, 1994; Yu, Anh, & Lau, 2004). But the discovery of the genetic Yin-Yang-algebra described 
in this book allows getting round this difficulty. One can say that a new type of CGR of proteins exists 
now which is based on the notions from the genetic algebra.

The genetic Yin-Yang-algebra is considered as the model of the genetic code. From the viewpoint of 
this algebraic model, the set of 20 amino acids contains the following 4 subsets in the case of the most 
symmetrical dialect of the genetic code (the vertebrate mitochondrial genetic code). The first subset 
contains amino acids Gln, Glu, Lys, Met, Trp which are coded by triplets possessing purine suffixes 
(purine A or G is on the third positions in these triplets). The acids from this subset were named as “male” 
acids or “purine acids” conditionally. The second subset contains amino acids Asn, Asp, Cys, His, Ile, 
Phe, Tyr which are coded by triplets possessing pyrimidine suffixes (pyrimidine C or U/T is on the third 
positions in these triplets). The acids from this subset were named as “female” acids or “pyrimidine 
acids”. The third subset contains amino acids Ala, Arg, Gly, Pro, Thr, Val which are coded by triplets 
possessing purine suffixes and pyrimidine suffixes in equal quantities. The acids from this subset were 
named as “pure androgynous”. The fourth subset contains amino acids Ser and Leu which are coded by 
triplets with purine suffixes and pyrimidine suffixes in unequal quantities. The acids from this subset 
were named as “androgynous of the female and male types” (see more details in this Chapter above).

These four subsets form a special kind of a 4-letters alphabet for the types of amino acids as con-
sidered. Such an alphabet can be used to obtain CGR patterns in the case of amino acids sequences of 
proteins by analogy with the described case of CGR patterns for nucleotide sequences. O. Tavassoly 
was the first researcher who proposed using this new “sexual” alphabet of the types of amino acids for 
a construction of CGR patterns of proteins. Initial results of such a construction are presented in details 
in the work (Tavassoly, Petoukhov, & Vahedi, 2009). In these works each of mentioned 4 subsets were 
symbolized by a number: the first subset was symbolized by number 0, the second subset – by number 
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2, the third – by number 1, the fourth – by number 3. These numbers are used as vertexes of a square 
for CGR patterns. Each of amino acids in a considered sequence is replaced by a relevant number 0, 
1, 2 or 3. In this way, for instance, a symbolic sequence Asp-Glu-Ser-Arg-Cys-Leu-… is transformed 
into a numeric sequence 2-0-3-1-2-3-….The first point of a future CGR pattern is placed half way be-
tween the center of the square and the vertex corresponding to the first letter of a considered numeric 
sequence; its i-th point is then placed half way between the (i-1)-th point and the vertex corresponding 
to the i-th letter.

Here we present an example of a CGR pattern obtained in such way (as in Tavassoly, Petoukhov 
& Vahedi, 2009) for the longest protein - Human Titin which contains 34,350 acids. Its sequence used 
for producing the CGR image was obtained from GeneBank (http://www.ncbi.nlm.nih.gov), where this 
protein has Accession Number: CAD12456. The algorithms of chaos game for four vertexes from this 
genetic-algebraic viewpoint were coded in MATLAB 7.6 (http://www.mathworks.com).

Titin is the longest polypeptide yet described and an abundant protein of striated muscle. Titin also 
contains binding sites for muscle associated proteins so it serves as an adhesion template for the assembly 
of contractile machinery in muscle cells (Labeit et al., 1990). Mutations in the titin gene are associated 
with familial hypertrophic cardiomyopathy (Siu et al.,1999) and tibial muscular dystrophy (Hackman 
et al.,2002). Autoantibodies to titin are produced in patients with the autoimmune disease scleroderma 
(Machado et al., 1998).

The produced CGR pattern has a fractal structure or a self-similarity character (Figure 2). One can 
see that the CGR pattern of the whole square is reproduced in each quadrant of the square, and in each 
subquadrant, etc. It has a certain analogy with CGS patterns in the work (Jeffrey, 1990). In addition 
the whole CGR pattern and its small pieces in the Titin case possess some kinds of symmetries along 
diagonals, etc. Identifying chaos in experimental data such as biological sequences, one can search for a 

Figure 2. The CGR pattern of the titin protein (from Tavassoly, Petoukhov & Vahedi, 2009)
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strange attractor in the special dynamics, identified by its fractal structure. Having found such an attractor, 
one can try to estimate its dimension, which is a measure of the number of active variables and hence the 
complexity of the equations required to model the dynamics. Fractals are useful geometric manifestation 
of the chaotic dynamics. They are called “the fingerprints of chaos” sometimes. The revealing the fractal 
structure of such CGR patterns of titin and many other proteins shows hidden connections of protein 
structures with non-linear dynamics or chaotic dynamical systems as the new field of physics. It reveals 
also some relations between the genetic Yin-Yang-algebras and non-linear dynamics.

The disclosure of fractals which are connected with proteomic sequences in the described variant of 
the CGR method, allows using this new knowledge in different branches of bioinformatics, molecular 
and evolutionary biology. For example, fractal properties of CGR images such as fractal dimension and 
multifractal spectra are the tools for genomic and proteomic sequences comparison and phylogeny studies 
including protein classifications where many new symmetrical patterns arise in bioinformatics.

SOLUTIONS AND RECOmmENDATIONS

The results described in this chapter about connections of the evolution of the genetic code with the 
features of the 8-dimensional Yin-Yang algebra generate many thoughts, including thoughts about 
possible modeling of biological evolutionary processes on the basis of this algebra. But evolutionary 
processes last during time; they depend on time. Till now in relation to biological applications of the 
Yin-Yang-algebra we spoke about static parameters of the genetic code only. Does this algebra give any 
opportunities to model kinematic processes, which depend on time? For example, does this algebra give 
opportunities to model cyclic processes, which are so typical for biologic organisms and which were 
discussed in Chapter 3 in the chronocyclic conception already? Yes, the system of Yin-Yang numbers 
allows one to work with kinematic processes as well.

Really, each of YY-coordinates can be presented as a variable function of time. In this case we have 
expression (1) in the form:

YY8 = x0(t)*f0+x1(t)*m1+x2(t)*f2+x3(t)*m3+x4(t)*f4+x5(t)*m5+x6(t)*f6+x7(t)*m7 (3)

Multiplication or addition of any two Yin-Yang numbers, coordinates of which are functions of time, 
give a new Yin-Yang number, coordinates of which are new functions of time as well. One of many 
possible kinds of such functions is the trigonometric functions: sin(wt), cos(wt), etc. These functions 
are used in Fourier spectral analysis of signals, and this Fourier analysis can be used in the case of the 
8-dimensional functions YY8 (3) as well. The other interesting possible kind is Walsh-Hadamard func-
tions. We recommend using these mathematical opportunities, first of all, for the description of many 
kinds of hierarchical cyclic processes in biologic systems.

One should note the interesting problem of the left-right symmetry in biological objects, which was 
mentioned in Chapter 7 already. The binary opposition “male-female” is connected with the binary 
opposition “the left side and the right side” in the history of various nations. It is known also, that the 
opposition “left-right” was one of the kinds of interpretation of the opposition “Yin-Yang” in Ancient 
China. Phenomena of curling of some genetic molecules into the left side or into the right side are well 
known. One of the examples is the helix structure of DNA.
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The described data about connections of molecular-genetic systems with the Yin-Yang algebra put 
forward some questions about “the left” aspects and “the right” aspects in the organization of ensembles 
of genetic molecules including proteins, which can be twisted into the left side or into the right side on 
their various parts. For example, are there some differences between proteins of the male kind and of 
the female kind relative to a direction of their preferred (left or right) twisting on the whole? Do some 
differences of this twist category exist between male and female regions of separate proteins, which 
include various regions with male and female amino acids in their composition? One can recommend 
special investigations to answer such questions.

All history of science shows the significance of such investigation of natural systems, which discover 
their hidden sub-structures with different characteristics. The union of these sub-structures defines the 
specific properties of the whole system. Modern science gives many examples of the importance of 
discoveries of hidden sub-structures and of their interactions in natural systems. One of them is the 
important theoretical discovery of quarks in the physics of elementary particles. The theory of quarks 
speaks about internal compositions of elementary particles and suggests a classification of a set of such 
particles. Nobody saw quarks in experiments, but this fact does not prevent the use of the theory of 
quarks widely. The described Yin-Yang-algebraic theory of the genetic code implies a classification and 
investigations of molecular-genetic systems by means of well-reasoned mathematical instruments.

It is difficult to list all possible consequences and all new possible investigations, which are brought 
by the discovery of the algebraic structure of the genetic code. We recommend the further wide devel-
opment of this Pythagorean approach to genetic systems and to the problem of their evolution. Such a 
Pythagorean approach can give very useful results in the fields of bioinformatics, theoretical biology 
and applied sciences.

FUTURE TRENDS AND CONCLUSION

The main task of the mathematical natural sciences is the creation of mathematical models of natural 
systems, which can describe these systems in adequate manner. One can see that the algebraic model 
YY8, which is described in this book for the genetic code, fits this task.

It seems that the results of these algebraic-genetic investigations can be useful in some practical tasks 
as well, for example, in the task of selection of the appropriate sex-partner for an individual by means 
of personal analysis of molecular-genetic structures of different persons. Similar tasks are not fantasy 
but they exist already on the world market of genetic services (see for example the website https://
www.23andme.com/).

Are the genetic Yin-Yang-algebras suitable for the description of the phenomena in the non-living 
substance and of evolution of these phenomena? Or does a line of demarcation exist between living 
substance and non-living substance? It is one of the important questions for investigations in the future. 
Other important questions concern new understanding of Yin-Yang oppositions in genetic systems on the 
basis of Yin-Yang-algebraic models. In our opinion, this new understanding and new algebraic models 
will give many useful results.

Probably along a way of introduction of systems of Yin-Yang numbers into mathematical natural 
sciences, the conceptual and formal instruments of natural sciences will come closer to a structure of 
living substance. And science will get anthropomorphic features and will become a continuation of the 
person with its male and female beginnings. Briefly speaking, it will be realized “an anthropomorphic 
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principle of development of natural sciences”. The given principle is associated with the famous opinion 
(Teilhard de Chardin, 1959) that future synthetic science will take for its basis of the person, and that 
the person, as a subject of knowledge, is a key to all science about nature.

The results of this chapter give additional evidences that the order and the evolution of the genetic 
code are connected with the special 8-dimensional Yin-Yang numeric system. One can think that this 
numeric system is the algebraic key to many secrets of the genetic code, nature of which has system-
numeric character. This approach coincides with the Pythagorean tradition to explain all things by means 
of systems of numbers (see Chapter 7). For modeling of the genetic code, the systems of Yin-Yang 
numbers are prominent in the infinite set of other possible numeric systems.

The structure of the vertebrate mitochondrial genetic code, which is the most symmetric dialect of the 
genetic code, is a mould (or cast, or copy) of the structure of the Yin-Yang numeric system in significant 
aspects. In the course of evolution, small deviations from this mould arise in connection with new nascent 
forms of nutrition, reproduction, etc. In our opinion, the Pythagorean approach to such evolutionary 
overcoming the initial dialect of the genetic code can be useful in future investigations as well.

New molecular-sexual approach has arisen to study interactions between biological molecules, which 
belong to different “sexual” kinds. New research mathematical instruments are proposed, which connected 
closely with methods of symmetries and with new patterns in molecular genetics and bioinformatics.
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Chapter 9

Multidimensional Numbers 
and the Genomatrices 

of Hydrogen Bonds

INTRODUCTION AND BACKGROUND

The discovery of quaternions by Hamilton in 1843 has led to many important consequences for all 
mathematical natural sciences (Kline, 1980). Hamilton believed that this discovery was the most signifi-
cant achievement of his life though his name is connected in modern science with many other essential 
notions and formalisms: the famous equation by Hamilton, which is called “the canonical equation of 
mechanics” and which underlies the whole of theoretical physics; “functions by Hamilton”; “Hamilto-
nians”, etc. After the discovery of quaternions, Hamilton devoted to their study last 20 years of his life, 

ABSTRACT

This chapter returns to the kind of numeric genetic matrices, which were considered in Chapter 4-6. 
This kind of genomatrices is not connected with the degeneracy of the genetic code directly, but it is 
related to some other structural features of the genetic code systems. The connection of the Kronecker 
families of such genomatrices with special categories of hypercomplex numbers and with their algebras 
is demonstrated. Hypercomplex numbers of these two categories are named “matrions of a hyperbolic 
type” and “matrions of a circular type.” These hypercomplex numbers are a generalization of complex 
numbers and double numbers. Mathematical properties of these additional categories of algebras are 
presented. A possible meaning and possible applications of these hypercomplex numbers are discussed. 
The investigation of these hyperbolic numbers in their connection with the parameters of molecular 
systems of the genetic code can be considered as a continuation of the Pythagorean approach to under-
standing natural systems.
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specially having refused a post as the president of academy of sciences of Ireland. Within these years he 
published 109 scientific works devoted to quaternions, including two fundamental monographs. Only in 
the XIX-th century almost 600 scientific works were published and which were devoted to the theory 
of these hypercomplex numbers and to their successful applications to various problems in physics, 
geometry, the theory of numbers, etc. One of the main consequences was the understanding that vari-
ous natural systems can possess their own algebra or that they can be connected closely with various 
systems of multi-dimensional numbers.

It seems an important task to investigate from different viewpoints is what systems of multi-dimen-
sional numbers (or what types of multi-dimensional algebras) are connected or can be connected with 
ensembles of parameters of the genetic code and with relevant bioinformation spaces. And what sym-
metries and patterns are typical for these numerical systems and for their matrix forms of presentation. 
This chapter describes some results of such investigations.

A development of the notion of “number” has a long history. This history is described in many 
monographs and it abounds with interesting discoveries and generalizations, many of which are known 
widely. An appearance of two-dimensional numbers, which were named “complex numbers” by “the 
king of mathematics” C. Gauss at the end of the XVIII century, was one of them. This kind of numbers 
utilized the notion of “imaginary unit”, which was proposed in the middle of XVI century by the Italian 
doctor, the mathematician and the designer of mechanisms (in particular, a cardan shaft) G. Cardano. 
Similarly to real numbers, complex numbers possess the commutative property on multiplication: the 
result of multiplication of two complex numbers does not depend on the order of factors. This important 
property allowed developing the theory of functions of complex variables, which plays a significant role 
in modern science. These two-dimensional numbers have appeared very useful not only in the sphere 
of pure mathematics, but in many applied fields as well. These complex numbers are the mathematical 
basis of quantum mechanics and of many other branches of mathematical natural sciences.

There is no doubt that development of formalized theories depends highly on those mathematical 
notions and instruments, on which they are based. Two-dimensional complex numbers, which are a sum 
of real item and imaginary item, have appeared as magic instruments for the development of theories 
and calculations in the field of problems of heat, light, sounds, vibrations, elasticity, gravitation, mag-
netism, electricity, liquid streams, and phenomena of a micro-world. Therefore attempts were repeat-
edly undertaken to construct the generalized numbers with greater dimension by means of inclusion of 
additional items into the structure of complex numbers. Those “numbers”, which can be constructed by 
means of the addition of imaginary units ik = -1 to real unit, were named “hypercomplex numbers”. As 
a result of such attempts, W.Hamilton has created 4-dimensional numbers, which contain one real unit 
and three imaginary units and which were named quaternions. Quaternions by Hamilton do not possess 
the commutative property.

Hypercomplex numbers in their modern comprehension can contain not only real and imaginary units 
but also a special unit ek, which possesses the property ek

2 = +1 but which differs from real unit. In this 
chapter we shall name these units ek as “semi-imaginary units” because in the multiplication tables of 
matrions (Figures 5 and 10) they possess some properties of real unit and of imaginary unit simultane-
ously. A review of many known kinds of multi-dimensional numbers is presented on the websites http://
hypercomplex.xpsweb.com. An important place among hypercomplex numbers belong to those numbers 
which possess the commutative property and the associative property simultaneously. Matrions, which 
are described in this chapter, belong to this category of hypercomplex numbers.
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Chapters 4-6 considered the Kronecker families of numerical genomatrices, the kernel of which were 
the (2x2)-matrices of the following kinds (see Table 1).where x0 and x1 are real numbers. These kinds 
of matrices are well-known in mathematics and physics.

The matrix on the left side in the expression (1) is the matrix form of presentation of the so called 
“double numbers”, which were introduced by Clifford in 1872 year: х0*1+х1*е1, where е1

2 = +1 (e1 is the 
semi-imaginary unit in the mentioned terminology). From a geometric viewpoint, this matrix defines a 
transformation of scaling with a hyperbolic turn. Upon its normalization, the determinant of which is equal 
to 1, it coincides with the matrix of hyperbolic turn. This transformation of hyperbolic turn is connected 
with hyperbolic functions, the geometric theory of logarithms, the special theory of relativity and the 
theory of Sine-Gordon solitons. These double numbers are connected with Lorentz transformations and 
for this reason they are named Lorentz numbers sometimes. A few geometrical applications of double 
numbers are described in the book (Rosenfeld, 1966). One can mention the known synonymous names 
of the same double numbers: hyperbolic complex numbers, split-complex numbers, countercomplex 
numbers, anormal-complex numbers, motors, perplex numbers, tessarines.

The matrix on the right side in the expression (1) is the matrix form of presentation of complex num-
bers. This matrix form of complex numbers is used in computer informatics usually. One of the kinds of 
Hadamard matrices [1 1; -1 1] is a particular case of this matrix. Upon its normalization, the determinant 
of which is equal to 1, this matrix from (1) coincides with the matrix of a classical circular turn.

The algorithm of doubling by Grassmann-Clifford is known, which produces a huge set of 2n-di-
mensional generalizations of complex and double numbers (Silvestrov, 1998). Only minor part of this 
set is investigated till now. Most of these investigated kinds of hypercomplex numbers do not possess 
the commutative property. This chapter describes those two kinds of hypercomplex numbers, which 
are connected with the Kronecker families of the genetic matrices and which possess the commutative 
property and the associative property simultaneously. We did not find a deep investigation of such kinds 
of hypercomplex numbers in literature sources in the past. Hypercomplex numbers of these two kinds 
were named “matrions of hyperbolic kind” and “matrions of circular kind”. These kinds of matrions 
were constructed as generalizations of double numbers and of complex numbers correspondingly by 
means of a special block-fractal algorithm (Petoukhov, 2008a). This algorithm has advantages of ob-
viousness and simplicity, but it can be interpreted as a particular case of the algorithm of doubling by 
Grassmann-Clifford.

THE HypERBOLIC mATRIONS AS A SpECIAL 
KIND OF HypERCOmpLEX NUmBERS

Let us return to the Kronecker families of numerical genomatrices from Chapters 4-6. This chapter 
demonstrates that, from the algebraic viewpoint, these Kronecker families of genomatrices are special 

Table 1.

х0х1 
х1х0

and х0х1 
-х1х0
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families of 2n-dimensional hypercomplex numbers, which are named “matrions” because they have 
arisen due to a consideration of block matrices. Sets of these 2n-dimensional numbers contain unitary 
matrices as their own units.

We begin with the generalization of double numbers, the matrix form of presentation of which is 
shown in the expression (1, on the left side). The proposed algorithm of such generalization includes a 
series of steps (Figure 1). The first step creates the generalized (22x22)-matrix with four components y0, 
y1, y2, y3 from the initial (2x2)-matrix with the two components x0, x1. On this step, each real component 
x0 and x1 of the initial (2x2)-matrix (1) is considered as a (2x2)-matrix of some double number with its 
components ys: х0 = [y0y1; y1y0], x1 = [y2y3; y3y2]. When these new (2x2)-matrices are put into the initial 
(2x2)-matrix, the last matrix becomes such (22x22)-matrix, which is a matrix form of presentation of 
4-dimensional hypercomplex numbers. On the second step, we act analogically: each component ys 
of the (22x22)-matrix is interpreted as a (2x2)-matrix of some double number with its components zp: 
y0=[z0z1; z1z0], y1=[z2z3; z3z2], y2=[z4z5; z5z6], y3=[z6z7; z7z6]. When these new (2x2)-matrices are put into 
the (22x22)-matrix, the last matrix becomes such (23x23)-matrix, which is a matrix form of presentation 
of 8-dimensional hypercomplex numbers. A quantity of such steps is not limited.

The 2n-dimensional hypercomplex numbers, which arise as a result of such generalization of double 
numbers, are named matrions of hyperbolic type or hyperbolic matrions.

The (2nx2n)-matrices, which are constructed by such local replacement of each matrix component 
by a matrix block with four components, possess a global block character of a fractal type. Really, their 
(2n-1x2n-1)-quadrants, which are disposed along each diagonal, are identical to each other. If such identi-
cal quadrants along the main diagonal and along the second diagonal are replaced by components A1 
and A2 correspondingly, the whole of the block matrix becomes a matrix form of presentation of double 
numbers: [A1A2; A2A1]. This property of identity along diagonals relates to quadrants, sub-quadrants, 
sub-sub-quadrants, etc. In this sense we have fractals of matrix blocks. In view of this, the described 
algorithm is named a block-fractal algorithm. All (2nx2n)-matrices of hyperbolic matrions (Figure 1) are 
bisymmetrical: they are symmetrical relative to both diagonals. The cross-wise character of the blocks 
of these matrices reminds one of the cross-wise character of the blocks of many morpho-functional and 
information systems, which were mentioned in Figure 6 of Chapter 1.

Those readers, who are familiar with the Kronecker product (its second name is the tensor product) 
of matrices, will see easily that the block-fractal algorithm coincides with the Kronecker product of ap-
propriate (2x2)-matrices from the viewpoint of the final matrix. Figure 2 illustrates this application of 
the Kronecker product for the case of arriving at an 8-dimensional hyperbolic matrion.

Figure 1. The creating of 2n-dimensional hyperbolic matrions by means of the block-fractal algorithm
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In view of this, the described algorithm of construction of generalized numbers can be named Kronecker 
algorithm. However, the majority of potential readers of this book, who are interested in mathematical 
and theoretical biology, do not know the notion of the Kronecker product, but they know the notion of 
fractals. In addition this notion stimulates many heuristic associations. These reasons explain the used 
name: “the block-fractal algorithm”.

Each matrion (2nx2n)-matrix can be presented in its decomposition form as a sum of its basic matrices. 
For example, 4-dimensional hyperbolic matrion G2 can be presented in the following decomposition 
form (Figure 3).

In the right part of the equation on Figure 3, the first basic matrix is the unitary matrix, which can be 
marked by the symbol 1. We mark the next three basic matrices by symbols е1, е2, е3 correspondingly. Each 
of these basic matrices differs from the unitary matrix and possesses the following mutual property: ек

2 
= +1, where k = 1, 2, 3. We call such basic matrices semi-imaginary units, as it was mentioned above.

It can be checked easily, that in the case of replacement of basic matrices by such symbols, any 2n-
dimensional hyperbolic matrion receives a poly-linear or vector form of its representation (Figure 4), 
which is more habitual for hypercomplex numbers.

The following general “rule of enclosure” exists for 2n-dimensional hyperbolic matrions. It concerns 
an enclosure of a poly-linear form of a matrion of a less dimension into a poly-linear form of a matrion 
of higher dimension. According to this rule, the first half of a poly-linear form of presentation of 2n-
dimensional hyperbolic matrion repeats the whole of poly-linear form of presentation of 2n-1-dimensional 

Figure 2. The Kronecker form of the block-fractal algorithm
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Figure 3. The decomposition of the matrix form of presentation of a 4-dimensional hyperbolic matrion 
G2. The right part of the equation is a sum of basic matrices of the matrion
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hyperbolic matrion. In other words, a matrion of less dimension is enclosed into the first half of a matrion 
of doubled dimension (see Figure 4). In view of this, any hyperbolic matrion of high dimension unites 
a set of all hyperbolic matrions of fewer dimensions in a form of hierarchical ensemble.

An analogical rule of enclosure is true for multiplication tables of basic matrices (basic elements) 
of 2n-dimensional hyperbolic matrions (see an example on Figure 5). Concerning such multiplication 
tables, one should note that the set of basic matrices of 2n-dimensional hyperbolic matrions forms the 
closed set of basic elements: multiplication of any two members of the set of the basic matrices produces 
the matrix from this set again. It means that algebras of 2n-dimensional hyperbolic matrions exist with 
appropriate multiplication tables. Figure 5 shows an example of such a multiplication table for the case 
of 8-dimensional hyperbolic matrions. Each cell of this multiplication table demonstrates the result of 
multiplication of appropriate basic elements from the left column and the upper row of the table. This 
multiplication table defines the appropriate algebra completely.

The (2x2)-square and the (4x4)-square are marked in the left upper corner of the multiplication table 
on Figure 5. These squares are the multiplication tables for the cases of 2-dimensional and 4-dimensional 
hyperbolic matrions correspondingly. By analogy this multiplication table of 8-dimensional hyperbolic 
matrions is enclosed in the appropriate multiplication table of 16-dimensional hyperbolic matrions, etc. 
It means that the hierarchical ensemble of appropriate algebras exists.

A unique feature of hyperbolic matrions is that the structure of their multiplication table coincides 
with their own matrix structure always. Really, if the symbols in the multiplication table on Figure 5 are 
interpreted as real numbers, this multiplication table becomes the matrix form of 8-dimensional hyperbolic 
matrions (see Figures 1 or 2). The multiplication tables of hyperbolic matrions are symmetrical relative 
to their main diagonals. This fact reflects the existence of the commutative property of hyperbolic ma-

Figure 4. Examples of poly-linear forms of presentations of hyperbolic matrions in the cases of their 
2-, 4-, 8-dimensions

Figure 5. The multiplication table of the basic elements of 8-dimensional hyperbolic matrions
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trions. The existence of the commutative property and the associative property in the case of hyperbolic 
matrions can be proved directly as well (see the book (Petoukhov, 2008a)).

Any row of a matrix of a hyperbolic matrion contains the same set of matrix components, which are 
permuted among them in comparison with the case of the first row. These permutations of components 
from one row to another row are connected with the algorithm of diadic shifts which was described in 
Chapter 1. A disposition of all kinds of components in a (2nx2n)-matrix of hyperbolic matrion produces 
a certain global mosaic or pattern, which is a typical visual attribute of 2n-dimensional hyperbolic ma-
trions. At transition from the case of 2n-dimensional hyperbolic matrions to the case of 2n+1-dimensional 
hyperbolic matrions, this typical global mosaic is transmitted “by right of succession” into its (2nx2n)-
quadrants as the local mosaic of these quadrants. The global mosaic of 2n+1-dimensional hyperbolic 
matrions differs from the global mosaic of 2n-dimensional hyperbolic matrions always. Since hyperbolic 
matrions are connected with structures of the genetic code, these mosaics can possess some physiological 
meaning from the viewpoint of the doctrine by C. Jung about archetypes. In view of this, these genetic 
mosaics or the patterns are interesting things for their application in design, culture, art therapy and 
some other fields.

A matrix of a 2n-dimensional hyperbolic matrion with non-zero components, all of which are equal 
to each other, is a singular matrix. Such matrices have no inverse matrices, and the operation of divi-
sion is not defined for them. Nonsingular matrices of hyperbolic matrions satisfy a definition of metric 
tensors of Riemanian geometry and they can be used for modeling internal geometry of surfaces of 
biological bodies.

The quint and golden matrices, which were considered in Chapter 4 and which are connected with 
the Pythagorean musical scale and other presented materials, are hyperbolic matrions from the algebraic 
viewpoint. This algebraic investigation reveals algebraic roots of some characteristics of ensembles of 
molecular parameters of the genetic code additionally.

THE CIRCULAR mATRIONS

Chapter 6 has considered questions about connections of the genetic code with Hadamard matrices, 
which lead to relations of molecular-genetic systems with unitary operators of quantum mechanics 
and with Hadamard gates of quantum computers. Any Hadamard (2x2)-matrix in a Kronecker power 
is a Hadamard matrix again. But the Hadamard matrix [1 1; -1 1] coincides with the matrix form of 
presentation of the complex number (1*1 + 1*i). The general matrix form [x0x1; -x1x0] of presentation 
of complex numbers z = x0*1 + x1*i was shown in the expression (1, on the right side). The matrix [1 1; 
-1 1](n), where (n) means the Kronecker power n =1, 2, 3, …, is a Hadamard matrix again. But what can 
one say about the Kronecker family of the matrices [x0x1; -x1x0]

(n), which is a Kronecker generalization 
of the complex numbers?

Now we will demonstrate that the Kronecker family of matrices [x0x1; -x1x0]
(n) is the family of matrix 

forms of presentation of 2n-dimensional hypercomplex numbers, which are named matrions of circular 
type (or circular matrions). This type of hypercomplex number, which possesses interesting mathematical 
properties, can be useful in future algebraic investigations of molecular-genetic structures in connection 
with Hadamard matrices, etc.

In the case of the generalization of complex numbers, one can apply the same block-fractal algorithm, 
which was used above for the described generalization of double numbers (Figure 1). The first step of 
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the algorithm of the generalization of complex numbers creates the generalized (22x22)-matrix with four 
components y0, y1, y2, y3 from the initial (2x2)-matrix with the two components x0, x1. On this step, each 
real component x0 and x1 of the initial (2x2)-matrix in the expression (1) is considered as a (2x2)-matrix 
of some complex number with its components ys: х0 = [y0y1; -y1y0], x1 = [y2y3; -y3y2]. When these new 
(2x2)-matrices are put into the initial (2x2)-matrix, the last matrix becomes such a (22x22)-matrix, which 
is a matrix form of presentation of 4-dimensional hypercomplex numbers. On the second step, we act 
analogically: each component ys of the (22x22)-matrix is interpreted as a (2x2)-matrix of some complex 
number with its components zp: y0=[z0z1; -z1z0], y1=[z2z3; -z3z2], y2=[z4z5; -z5z6], y3=[z6z7; -z7z6]. When these 
new (2x2)-matrices are put into the (22x22)-matrix, the last matrix becomes such a (23x23)-matrix, which 
is a matrix form of presentation of 8-dimensional hypercomplex numbers (Figure 6). The quantity of 
such steps is not limited. The 2n-dimensional hypercomplex numbers, which arise as a result of such 
generalization of complex numbers, are named matrions of circular type or circular matrions.

The (2nx2n)-matrices of circular matrions are nonsingular as a rule. But for the cases n ≥ 2 a set of 
circular matrions has so called zero divisor. It means that non-null members of such a set exist, multiplica-
tion of which produces a null matrion. Existence of zero divisor does not allow utilizing such operation 
of division, which can work on the whole of the set of circular matrions. In the case of 4-dimensional 
circular matrions, an example of zero divisor is shown on Figure 7.

The decomposition of 2n-dimensional circular matrions into a sum of their basic matrices is realized 
by the usual way (see an example on Figure 8).

The first basic matrix on the right side of the expression on Figure 8 is the unitary matrix marked by 
the symbol 1. The next three basic matrices will be marked by symbols i1, i2, е3 correspondingly. One 
can check easily that the basic matrices i1 and i2 are imaginary units because i1

2 = i2
2 = -1. The fourth 

basic matrix is a semi-imaginary unit because е3
2 = +1. In view of this, 2n-dimensional circular matrions, 

beginning with n = 2, are based on three kinds of mathematical units: real unit, imaginary units and 

Figure 6. The creating of 2n-dimensional circular matrions by means of the block-fractal algorithm

      z0 z1 
-z1 z0 

 z2 z3 
-z3 z2 

 z4 z5 
-z5 z4 

 z6 z7 
-z7 z6 

   0   1 
- 1  0 

 2  3 
- 3  2 

 -z2 -z3 
 z3 -z2 

 z0 z1 
-z1 z0 

-z6 -z7 
 z7 -z6 

 z4 z5 
-z5 z4 

0  1 
- 1 0 

 - 2 - 3 
 3 - 2 

 0   1 
- 1  0 

 -z4 -z5 
 z5 -z4 

-z6 -z7 
 z7 -z6 

 z0 z1 
-z1 z0 

 z2 z3 
-z3 z2 

      z6 z7 
-z7 z6 

-z4 -z5 
 z5 -z4 

-z2 -z3 
 z3 -z2 

 z0 z1 
-z1 z0 

Figure 7. An example of divisors of zero in the case of 4-dimensional circular matrions: multiplication 
of two non-null circular matrions gives null matrix. Here “a” and “b” are real numbers
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semi-imaginary units. Any 2n-dimensional circular matrion can be expressed in its poly-linear form, if 
its basic matrices are replaced by their symbols (Figure 9).

By analogy with the case of hyperbolic matrions, the general “rule of enclosure” exists for 2n-
dimensional circular matrions. It concerns an enclosure of a poly-linear form of a matrion of a less 
dimension into a poly-linear form of a matrion of higher dimension. According to this rule, the first half 
of a poly-linear form of presentation of 2n-dimensional circular matrion repeats the whole of poly-linear 
form of presentation of 2n-1-dimensional circular matrion. In other words, a matrion of less dimension 
is enclosed into the first half of a matrion of doubled dimension (see Figure 9). In view of this, any 
circular matrion of high dimension unites a set of all circular matrions of fewer dimensions in a form 
of hierarchical ensemble.

The analogical rule of enclosure holds true for the multiplication table of basic elements of circular 
matrions. Figure 10 shows the example of the multiplication table for the 8-dimensional case. Each cell 
of this multiplication table demonstrates the result of multiplication of appropriate basic elements from 
the left column and the upper row of the table.

The (2x2)-square and the (4x4)-square are marked in the left upper corner of the multiplication table 
on Figure 10. These squares are the multiplication tables for the cases of 2-dimensional and 4-dimen-
sional circular matrions correspondingly. By analogy this multiplication table of 8-dimensional circular 
matrions is enclosed in the appropriate multiplication table of 16-dimensional circular matrions, etc. It 
means that the hierarchical ensemble of appropriate algebras exists. This multiplication table is sym-
metrical relative to the main diagonal. This feature reflects the commutative property of the algebras 
of circular matrions.

The real unit and semi-imaginary units of circular matrions will be named “anti-imaginary units” 
in contrast to imaginary units. The set of basic elements of 2n-dimensional circular matrions is divided 

Figure 8. An Example of the decomposition of a 4-dimensional circular matrion

Figure 9. Poly-linear forms of presentations of circular matrions for the cases of 2-, 4-, and 8-dimen-
sional cases
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into two sub-sets always: one sub-set consists of anti-imaginary units only and another sub-set consists 
of imaginary units only. The sequence of anti-imaginary and imaginary units in the poly-linear form of 
presentation of 2n-dimensional circular matrions possesses a regular character: this sequence coincides 
with the sequence of elements “+1” and “-1” on the main diagonal of Hadamard matrix [1 1; 1 -1](n), 
which plays an important role in the theory of discrete signals and of quantum computers (see Chapter 
6). Moreover the disposition of all signs “+” and “-” in multiplications tables of 2n-dimensional circu-
lar matrions is identical to the disposition of the same signs “+” and “-” in the appropriate Hadamard 
matrices. But a disposition of the signs “+” and “-” in matrix forms of presentation of 2n-dimensional 
circular matrions coincides with the disposition of the same signs “+” and “-” in the Hadamard matrices 
of another kind: [1 1; -1 1](n). If magnitudes of all coordinates x0, x1, … of a circular matrions are equal 
to 1, then the matrix of this circular matrion is identical to this kind of Hadamard matrix.

RULES OF EIGENVALUES OF mATRICES OF CIRCULAR mATRIONS

Eigenvalues of matrices of circular matrions (Figure 6) are complex numbers. A construction of these 
eigenvalues reflects a division of the whole set of coordinates of 2n-dimensional circular matrions into the 
two sub-sets of anti-imaginary and imaginary units. Really, coordinates x0, x1, … at imaginary and anti-
imaginary basic elements form isolated sub-sets, which are collected in the real part and the imaginary 
part of these eigenvalues. For example, a 4-dimensional matrion x0*1 + x1*i1 + x2*i2 + x3*е3 possess the 
following four eigenvalues in the form of complex numbers: x0 + x3 + j*(-x1 + x2); x0 + x3 - j*(-x1 + x2); 
-x3 + x0 + j*(x1 + x2); -x3+x0 - j*(x1 + x2) (here j means the imaginary unit of the complex numbers). One 
can see that all anti-imaginary coordinates x0 and x3 are collected in the real part of these eigenvalues 
only, and all imaginary coordinates x1 and x2 are collected in the imaginary part of these eigenvalues 
only. Another example is the case of 8-dimensional circular matrions x0*1 + x1*i1 + x2*i2 + x3*е3 + x4*i4 
+ x5*е5+x6*е6+x7*i7, which possesses the following eight eigenvalues:

x5 - x3 + x6 + x0 + j*(- x1 - x2 - x7 + x4); 

x5 - x3 + x6 + x0 - j*(- x1 - x2 - x7 + x4); 

Figure 10. The multiplication table of the basic elements of 8-dimensional circular matrions
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- x5 - x3 - x6 + x0 + j*(x1 + x2 - x7 + x4); 

- x5 - x3 - x6 + x0 - j*(x1 + x2 - x7 + x4); 

x5 + x3 - x6 + x0 + j*(- x1 + x2 + x7 + x4); 

x5 + x3 - x6 + x0 - j*(- x1 + x2 + x7 + x4); 

- x5 + x3 + x6 + x0 + j*(x1 - x2 + x7 + x4); 

- x5 + x3 + x6 + x0 - j*(x1 - x2 + x7 + x4). 

One can see again that all anti-imaginary coordinates х0, х3, х5, х6 are collected in the real part of 
these eigenvalues only, and all imaginary coordinates х1, х2, х4, х7 are collected in the imaginary part of 
these eigenvalues only.

Sets of eigenvalues of 2n-dimensional circular matrions are characterized by an additional regular-
ity: a sum of all eigenvalues of such matrion is equal to the real number 2n*х0, that is the magnitude of 
the dimensionality of the matrion with a factor, which is equal to the coordinate x0 at real basic element 
of the matrion. For the two considered examples, sums of 4-dimensional and 8-dimensional circular 
matrions are equal to 4*х0 and 8*х0 correspondingly, as one can check easily.

Investigations of connections of the matrix structures of molecular-genetic systems with circular 
matrions and Hadamard matrices should be continued.

CIRCULAR mATRIONS AND THE SERIES OF NATURAL NUmBERS

This paragraph describes some new symmetrical patterns which were arrived at in matrix genetics in the 
course of investigations of circular matrions. In accordance with an ancient tradition, the whole series 
of natural numbers is considered as the union of odd and even numbers. The theory of 2n-dimensional 
circular matrions suggests that the series of natural numbers can be considered as the union of two 
sub-sets of another kind: one sub-set consists of those natural numbers, which coincide with indexes 
of anti-imaginary coordinates, and another sub-set consists of those natural numbers, which coincide 
with indexes of imaginary coordinates. The described “rule of enclosure” plays a useful role here. Each 
natural number “k” is an index of anti-imaginary basic element of 2n-dimensional circular matrions (n 
> k) or it is an index of imaginary basic element of such a circular matrion. Thus the whole of the set 
of natural numbers is divided into two equal sub-sets. Members of one sub-set including numbers 0, 3, 
5, 6, 9, 10, 12, 15, 17, 18, 20, 23, 24, 27, 29, 30, 33, 34, 36, 39, 40, 43, 45, 46, 48, 51, 53, 54, 57, 58, 
60, 63,… correspond to the indexes of anti-imaginary basic units of circular matrions. One can name 
these numbers as “anti-imaginary natural numbers” conditionally (or “black natural numbers”, because 
cells with such numbers are marked by black color in matrices on Figure 11). Another sub-set including 
numbers 1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31, 32, 35, 37, 38, 41, 42, 44, 47, 49, 50, 52, 
55, 56, 59, 61, 62,… correspond to the indexes of imaginary basic units of these matrions. Such numbers 
can be named “sub-imaginary natural numbers” conditionally (or “white natural numbers”, because cells 
with such numbers are marked by white color in matrices on Figure 11).
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The algorithm of alternation of anti-imaginary and sub-imaginary numbers in the series of natural 
numbers is connected not only with Hadamard matrices but can be expressed graphically in connection 
with square matrices. Really, let us draw initial matrices from a family of (2nx2n)-matrices with numer-
ated cells in sequence (Figure 11). Cells with anti-imaginary (sub-imaginary) numbers are marked by 
black (white) colors. Mosaics of these matrices are symmetrical relative to both diagonals. Their left 
side and their right side are anti-symmetrical to each other. Their quadrants and sub-quadrants possess 
the analogical properties. One can see that the black-and-white mosaic of the (2x2)-matrix is repeated in 
those quadrants of the next (4x4)-matrix of this family, which are disposed along the main diagonal. The 
same mosaic is repeated in the anti-symmetrical kind in those quadrants which are disposed along the 
second diagonal. By analogy the whole of mosaic of (4x4)-matrix is repeated in the next (8x8)-matrix 
of this family in its quadrants which are disposed along the main diagonal; and its quadrants along the 
second diagonal reproduce the same mosaic in anti-symmetrical kind. In other words, in this matrix 
family, a global mosaic of a matrix of the previous generation is inherited as a local mosaic of quadrants 
of a matrix of the next generation.

The described graphical algorithm allows one to define what kinds of natural numbers are anti-
imaginary or sub-imaginary natural numbers without knowledge of multiplication rules at all. For this 
aim it is enough to have a family of (2nx2n)-matrices with cells enumerated in sequence and to remember 
the mosaic pattern of the simplest (2x2)-matrix on Figure 11. Then this mosaic pattern should be repro-
duced in quadrants of the next (4x4)-matrix in accordance with this algorithm. Repeating this graphic 
procedure along the sequence of matrices of this family gives the division of the series of natural numbers 
into the two named sub-sets. (2nx2n)-matrices with such binary-mosaic character possess one interest-
ing property as well. If all their black cells contain elements “+1” and all white cells contain elements 
“-1”, an exponentiation of these matrices into an integer positive power reproduce these matrices with 
regular factors. For example, the result of exponentiation of such (2x2)-matrix S in the power “k” is the 
following: Sк =2к-1*S.

As we can judge, the “rule of closing of the sub-set” holds true for the sub-sets of anti-imaginary and 
sub-imaginary natural numbers: a product of two anti-imaginary (sub-imaginary) natural numbers gives 
new anti-imaginary (sub-imaginary) natural numbers always. It means that each of these sub-sets is the 
closed sub-set relative to multiplication. Such division of the series of natural numbers into the sub-
sets of anti-imaginary and sub-imaginary numbers puts forward many interesting questions for further 
investigations. For example, a problem arises about a distribution of prime anti-imaginary numbers and 

Figure 11. (2nx2n)-matrices with enumerated cells in sequence, cells with anti-imaginary natural numbers 
are marked by black color and cells with sub-imaginary natural numbers are marked by white color



205

Multidimensional Numbers and the Genomatrices of Hydrogen Bonds

of prime sub-imaginary numbers. The claim is about interrelations of numbers inside each of these sub-
sets. A prime sub-imaginary number is any sub-imaginary number which cannot be factorized with using 
other sub-imaginary natural numbers, which differ from the real unit and this number itself. A prime anti-
imaginary number is any anti-imaginary number which cannot be factorized using other anti-imaginary 
natural numbers. It is known that the classical problem about a distribution of prime numbers inside the 
series of natural numbers has generated many important investigations, methods and theorems. But this 
classical problem is not solved till now. In our opinion, the new problem about distributions of prime 
anti-imaginary numbers and of prime sub-imaginary numbers can generate new interesting investigations 
as well. Can this new problem, which has arisen in the theory of circular matrions, help in completely 
solving the classical problem of the distribution of prime numbers? It is an open question.

Another example of interesting questions, which has arisen from the theory of circular matrions, is a 
question of rational numbers. The set of all rational numbers is divided into several sub-sets by criteria 
of their numerator and denominator belonging to the sub-set of anti-imaginary numbers or to the sub-set 
of sub-imaginary numbers. These sub-sets of rational numbers possess a special character of distribution 
in the set of all rational numbers and they possess a specificity of transfer of members of one sub-set 
into another sub-set under actions of various mathematical operations.

We can mention briefly here only that questions of anti-imaginary and sub-imaginary natural numbers 
are connected with problems of modeling the parametric ensembles of the genetic code in the field of 
matrix genetics as well.

SOLUTIONS AND RECOmmENDATIONS

The 2n-dimensional hypercomplex numbers described in this chapter are connected with matrix presenta-
tions of ensembles of parameters of the genetic code. They give new symmetric graphical patterns and 
allow one to construct some mathematical models of the mentioned ensembles. Simultaneously they 
introduce interesting materials into the science of hypercomplex numbers. Applications of the theory of 
matrions allow revealing such features of biological information processing, disclosures of which are 
difficult by other ways.

In view of the block character of their matrix structures, 2n-dimensional matrions can be applied in 
many fields where block matrices have been utilized successfully for a long time. One can recall that 
properties of block matrices provide an obviousness of complex interrelations for comfortable logic 
analysis of complex structures. In the case of industrial plants, for example, block matrices, which reflect 
a movement of documents and indexes, have served for a long time in analysis of rationality of industrial 
structures, in work organization and utilization of administrative departments.

Mathematics of matrions proposes new interesting possibilities for various branches of mathematical 
biology, for example, for biomechanics. Special the variants of theory of locomotion can be created for 
a comparative analysis and of a classification of gaits of various animals. In this case the claim is about 
an interpretation of a multi-linked locomotor apparatus in a form of such multi-dimensional functional 
matrion, coordinates of which are variable in regular manner for simulating movements of links of loco-
motors apparatus. A control of such matrion simulating systems is based on specific algorithms, which 
reflect integral essence of a matrion as an integral multi-dimensional number. Such algorithms will be 
useful not only for biomechanics of movements, but for robotics as well.
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The theory of matrions which has arisen in matrix genetics is in the very beginnings of its develop-
ment. In this book we have no ability to present many interesting materials on this topic. For example, 
introducing appropriate systems of matrion coordinates into 2n-dimensional spaces allows one to work 
with multi-dimensional vectors of these matrion spaces by means of operations of addition, subtraction 
and multiplication of these vectors.

Since matrions reflect structural features of genetic code systems, complex numbers and double num-
bers, which have been known in mathematics for a long time, receive new aspects of their importance in 
fields of biology, physiology, psychophysis, etc. For example, double numbers prove to be connected with 
the Pythagorean musical scale and with the famous tables of the Ancient Chinese book “I Ching” (see 
Chapter 12). One can recommend the development of mathematical aspects of the theory of matrions. 
One can recommend using numeric systems of multi-dimensional matrions in structural investigations 
of the molecular-genetic systems as well.

FUTURE TRENDS AND CONCLUSION

Hypercomplex numbers had many essential applications in mathematical natural sciences in the past. 
Matrix genetics proposes additional kinds of hypercomplex numbers in the form of matrions for utili-
zation in the field of bioinformatics and mathematical biology. A further development of the theory of 
matrions of hyperbolic type and of circular type in their matrix forms of presentation can give many new 
interesting results including new symmetrical patterns connected with biological and other structures.

Of course, the notions of matrions can be generalized as well, for example, by means of their con-
sideration not over a field of real numbers but over a field of complex numbers or over rings of other 
kinds of numbers including matrions themselves. A development of a theory of functions of matrion 
variables for both – hyperbolic and circular - categories of matrions is interesting because of their com-
mutative property.

The described results demonstrate that the double numbers, which were introduced by Clifford in 
1872 year, are connected with the Pythagorean musical scale, with the system of molecular parameters 
of the genetic code, with a matrix-genetic definition of the golden section, etc. The theory of proposed 
kinds of hypercomplex numbers in the forms of hyperbolic matrions and of circular matrions leads to 
new symmetric patterns in the field of bioinformatics and to some new ideas about mathematical simu-
lation of ensembles of molecular-genetic structures.
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Section 4
Connections of Matrix Genetics 

with Other Fields of Science
and Culture

Section 4 is devoted to many connections of the genetic code systems in their matrix forms of presenta-
tion with various fields of science and culture. Some concrete examples are presented including inher-
ited phyllotaxis laws of biological morphogenesis, physiological peculiarities of color perception, and 
morphogenetic invariants of projective geometry.
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Chapter 10

Genetic System, Fibonacci 
Numbers, and Phyllotaxis Laws

INTRODUCTION BACKGROUND

The complexity of biological objects complicates the creation of appropriate mathematical simulators 
of their morphogenetic and other features. But one phenomenon has been famous in the field of bio-
logical morphology for a long time, which allows one to create non-trivial mathematical simulators. It 
is a morphogenetic phenomenon of phyllotaxis or a phenomenon of regular dispositions of leaves and 
some other parts in configurations of biological bodies. This inherited phenomenon is connected with 
Fibonacci numbers and with the golden section and it is observed at very various levels and branches 

ABSTRACT

This chapter describes data suggesting a connection between matrix genetics and one of the most famous 
branches of mathematical biology: phyllotaxis laws of morphogenesis. Thousands of scientific works are 
devoted to this morphogenetic phenomenon, which relates with Fibonacci numbers, the golden section, 
and beautiful symmetrical patterns. These typical patterns are realized by nature in a huge number of 
biological bodies on various branches and levels of biological evolution. Some matrix methods are known 
for a long time to simulate in mathematical forms these phyllotaxis phenomena. This chapter describes 
connections of the famous Fibonacci (2x2)-matrices with genetic matrices. Some generalizations of the 
Fibonacci matrices for cases of (2nx2n)-matrices are proposed. Special geometrical invariants, which 
are connected with the golden section and Fibonacci numbers and which characterize some proportions 
of human and animal bodies, are described. All these data are related to matrices of the genetic code 
in some aspects.

DOI: 10.4018/978-1-60566-124-7.ch010
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of biological evolution (Adler, 1974, 1990; Bowman, Eshed, & Baum, 2002; Clark, 2001; Douady, & 
Couder, 1992; Jean, 1995; Lee, & Levitov, 1998; Stieger, Reinhardt, & Kuhlemeier, 2002; Thompson, 
1942; Waites, & Hudson, 1995). The task of understanding the questions of how and why genetic sys-
tems provide such regular dispositions of biological parts is one of the important ones in the field of 
mathematical and theoretical biology.

Matrix genetics reveals some new ways to study such questions because it involves a matrix approach 
and a matrix presentation of the golden section and of Fibonacci numbers. Simultaneously new forms 
of manifestations of phyllotaxis or quasi-phyllotaxis laws can be revealed on the bases of data of matrix 
genetics, because it deals, for example, with Hadamard matrices and with genetic multi-dimensional 
algebras, which can lead to new facts of manifestations of Fibonacci numbers and the golden section 
in biological morphogenesis. Some mathematical aspects arise in this field, which need their accurate 
investigations from different sides. Initial results of such investigations are presented in this chapter.

The main objectives of this chapter are investigations of possibilities of generalizations of Fibonacci 
matrices and of golden genomatrices, which are connected with inherited phyllotaxis laws and with 
many manifestations of the golden section in physiological phenomena. Mathematical properties of these 
generalizations should be investigated as well. The hypothesis is put forward that invariants of projective 
geometry, which are observed as ontogenetic invariants of the kinematic scheme of the inherited human 
body, are connected with peculiarities of the genetic code and with its Hadamard matrices.

A possible connection of the genetic matrices with invariants of projective geometry, which are ob-
served as ontogenetic invariants of the kinematic scheme of the human body, is presented.

Biological phenomena of phyllotaxis are one of the most famous and popular phenomena in the 
field of mathematical biology. Thousands of scientific works are devoted to this morphogenetic phe-
nomenon, which relates with Fibonacci numbers and the golden section (see for example the review in 
the book (Jean, 1995) with references including 1000 thematic sources approximately). It is important 
that these inherited phenomena are illustrated by a huge number of regular helical patterns of biological 
morphogenesis and they are described by means of simple mathematical laws. These phenomena and 
their patterns interest not only biologists, but also mathematicians and physicists (Douady, & Couder, 
1992; Koch, & Meinhardt, 1994; Levitov, 1991a,b; Mandelbrot, 1983).

According to these phyllotaxis laws, pairs of Fibonacci numbers are realized at once at helical ar-
rangement of leaves (or seeds) in plant bodies (shoots). These pairs belong to the sequences of the two 
following types:

{Qn
’= Fn+1/ Fn}: 2/1, 3/2, 5/3, 8/5, 13/8, …⇒ φ = (1+50.5)/2 = 1.618…, 

{Qn
’’= Fn+2/ Fn}: 2/1, 3/1, 5/2, 8/3, 13/5,… ⇒ φ2 = 2.618…  (1)

These sequences of fractions (equation 1) are named the parastichous sequence and the orthostic-
hous sequence correspondingly, and the magnitude “φ” is the golden section here. The regular helical 
arrangement of leaves on plant shoots is characterized by the orthostichous sequence. Such arrangement 
at various plants can differ by a magnitude of a fraction among the orthostichous sequence of fractions 
Qn. For example, leave arrangements in the cases of a lime tree, a elm tree, a beech are characterized by 
the fraction 2/1; in cases of an alder tree, a nut-tree, a vine, a sedge – by the fraction 3/1; in the cases of 
a raspberry, a pear tree, a poplar, a barberry – by the fraction 8/3; in the cases of an almond tree, a sea-
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buckthorn – by the fraction 13/5. Cones of coniferous trees correspond to fractions 21/8, 34/13, 55/21 
in various cases.

Fractions from the parastichous sequences Qn
’ (equation 1) are realized in many other cases as well. 

They are demonstrated in leave arrangements on a transverse section of a bud, in arrangements of sun-
flower seeds, scales of cones, etc. These arrangements possess left helixes and right helixes, quantities 
of which are equal to adjacent Fibonacci numbers as a rule. For example, the ratio of quantities of such 
left and right helixes in the case of cones of spruces is equal to 5/3; in the case of cones of larches the 
ratio is equal to 8/5; in the case of cones of pines the ratio is equal to 13/8, 21/13, 34/21; in the case 
of cones of sunflower heads the ratio is equal to 13/8, 21/13, 34/21, as a rule. Phyllotaxis laws were 
formulated in botany initially, but then they were revealed on very different branches and levels of bio-
logical evolution. The same phyllotaxis ratios exist in helical arrangements of scales in cases of fishes 
and of mammals, buds of hydras, organs of medusas, chambers of foraminifera shells, seams on shells 
of mollusca, separate components of muscles, etc. The phyllotaxis laws are demonstrated not only on a 
level of the whole organisms, but on a level of biological molecules as well in arrangements of alpha-
helixes of polypeptides (see a review in (Petoukhov, 1981, § 1.1)). In his studying of the problem of 
consciousness and its connection with quantum coherence and with tubulin (one of kinds of proteins), 
R. Penrose (1989) has met the phyllotaxis phenomenon in microtubules of a neuron cytoskeleton: 13 
rows of dimers exist, which form such microtubule, and a hexagonal pattern of microtubules consists of 
the 5 right helixes and of the 8 left helixes. An external layer of double microtubules contains 21 rows 
of dimers of tubulin (numbers 5, 8, 13, 21 are Fibonacci numbers).

As we have considered in Chapter 4, the series of Fibonacci numbers Fn (where n = 0, 1, 2, 3,…) 
begins with the numbers 0 and 1. Each next member of this series is equal to the sum of two previous 
members: Fn+2 = Fn + Fn+1. Fibonacci numbers are used widely in the theory of optimization and in many 
other fields. One can find a rich collection of data about the golden section and the Fibonacci numbers on 
the web-site of “The museum of harmony and the golden section” by A. Stakhov (www.goldenmuseum.
com) and in works (Jean, 1995; Kappraff, 1990, 1992). Fibonacci sequences and their generalizations 
provide fast algorithms of discrete orthogonal transformations in numeration systems with irrational 
basis. Figure 1 shows the first numbers Fn of the Fibonacci series.

This series of Fibonacci numbers possesses an interesting connection with the so called Fibonacci 
matrices Qleft = [0 1; 1 1] or Qright = [1 1; 1 0], which are known for a long time.

Figure 1. The Fibonacci series

Figure 2. Exponentiation of Fibonacci matrices of two kinds produces Fibonacci numbers
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Exponentiation of such (2x2)-matrices in the power “n” produces new (2x2)-matrices, the components 
of which are equal to three adjacent Fibonacci numbers Fn-1, Fn, Fn+1 (Figure 2).

Consequently in this matrix approach each three adjacent Fibonacci numbers Fn-1, Fn, Fn+1 are defined 
by one number “n”, which is a power of a corresponding Fibonacci matrix. In view of this, one can de-
fine the series of Fibonacci numbers by means of these Fibonacci matrices without using the traditional 
algorithm of addition of two adjacent Fibonacci numbers at all. For example, the Fibonacci number Fn 
(beginning with n = 3) can be defined as a middle component among all components of the matrix Qleft

n 
or of the matrix Qright

n. Or the Fibonacci number Fn can be defined as that number which is a component 
of each of the three matrices Qleft

n-1, Qleft
n and Qleft

n+1 simultaneously. Below we will show that the Fibo-
nacci matrices allow one to provide a non-classical definition of the golden section as well.

Euclidean symmetries exist in biological bodies together with symmetries of highest geometries, 
first of all, with symmetries of projective geometry. According to the famous Erlangen program by F. 
Klein, Euclidean geometry and many kinds of non-Euclidean geometries are defined as the sciences of 
invariants of relevant groups of transformation (Yaglom, 1988). For example, Euclidean geometry is the 
science of invariants of the group of motions and the projective geometry is the science of invariants of 
the group of projective transformations. Each of these geometries has its own set of invariants. The main 
invariant of the projective geometry is the so called “double ratio” (or the “wurf”). This invariant relates 
to the inherited proportions of kinematic scheme of human and animal bodies (Petoukhov, 1981, 1989) 
and it will be described in the last paragraph of this chapter in connection with the genetic matrices.

FIBONACCI’S mATRICES AND BIOLOGICAL LAWS OF pHyLLOTAXIS

Chapter 6 has described the two molecular features of the genetic letter U, which distinguish it from the 
other three letters A, C, G of the genetic alphabet: the absence of the amino group NH2 and the replace-
ment of the letter U by the kindred letter T at transfer from RNA to DNA. In the genetic kernel matrix 
[C A; U G] this opposition of the letter U to the other three genetic letters can be shown by expressing 
each of the letters C, A, G by means of the symbol “+1” and the opposite letter U by means of the sym-
bol “-1”. Such an operation leads to the transformation of the symbolic genomatrix [C A; U G] into the 
numeric Hadamard matrix [1 1; -1 1], as it was considered in Chapter 6. Since such binary opposition 
exists on the molecular level really, a computer system of organism allows the possibility to work with 
Hadamard genomatrices due to this opposition.

But the same binary opposition can be expressed by means of another pair of opposite numeric ele-
ments: number “0” can express the letter U and number “1” can express each of the other three letters in 
the genomatrix [C A; U G]. Both pairs of these binary symbols together with mathematical operations 
with them are realized easily in usual decisions of digital technique.

Besides using Hadamard matrices in digital technique and in spectral analysis, sometimes the method 
of replacements of both their elements “+1” and “-1” by another pair of elements “0” and “1” is utilized 
in some steps of information processing (Tolmachev, 1976; Solovieva, 2006). By analogy one can sup-
pose that both these pairs of binary-oppositional symbols together with mathematical operations with 
them are utilized in a computer of organism as well. In this case, the same binary-oppositional traits of 
molecular-genetic systems can be expressed in genomatrices by means of the pair of binary elements 
“+1” and “-1” or by means of the pair of binary elements “0” and “1”. It increases possibilities of bio-
information technologies significantly.
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The possibility of a similar different interpretation of the same material depending on surrounding 
conditions is known in genetics for a long time: for example, the trait of alopecia is dominating for men, 
but this trait is recessive for women. It means that this trait depends on the internal environment of an 
organism.

As mentioned earlier, using the symbols “0” and “1” many genomatrices, for example, [C A; G U] 
or [U A; C G], become the famous Fibonacci matrices [1 1; 1 0] and [0 1; 1 1] correspondingly (see 
Figure 2 and the description of Fibonacci matrices above). The inherited phyllotaxis laws are connected 
with Fibonacci numbers and Fibonacci matrices. In such a way matrix genetics leads to new variants of 
mathematical simulations and an understanding of genetic bases of phyllotaxis phenomena.

It is interesting that eigenvalues of the Fibonacci matrices [0 1; 1 1] or [1 1; 1 0] are equal to the golden 
section “1.618…” and its reverse magnitude “-0.618…” with the sign “-“. This feature allows one to 
propose new definition of the golden section as well. The golden section is the positive eigenvalue of the 
Fibonacci matrix. Kronecker exponentiation of the Fibonacci matrix (for example [0 1; 1 1](n), where n = 
2, 3, 4,..) gives the (2nx2n)-matrices, all eigenvalues of which are equal to the golden section in different 
integer powers only (magnitudes of the eigenvalues can be positive or negative, of course).

Generalizations of the Fibonacci (2x2)-matrices in a form of families of (2nx2n)-matrices are pos-
sible (Petoukhov, 2003-2004). Figure 3 (on the upper row) shows an example of such generalizations 
in a form of the family of (23x23)-matrices G1, G2 and G3. Exponentiation of these matrices gives the 
matrices G1

n, G2
n, G3

n, all components of which are three adjacent Fibonacci numbers Fn-1, Fn, Fn+1 with 
a factor 4n-1. Figure 3 on the lower row demonstrates an example of exponentiation of these generalized 
Fibonacci matrices into 7 power.

Two non-zero eigenvalues of the generalized Fibonacci matrices G1, G2, G3 are equal to “4*φ” and 
“-4*φ-1”, where φ is the golden section. They are distinguished from appropriate eigenvalues of the 
classical Fibonacci (2x2)-matrices by the factor 4 only.

The following equation holds true for these matrices (by analogy with the recurrent equation Fn+2 = 
Fn+1 + Fn for Fibonacci numbers):

Figure 3. On the upper row: three kinds of generalized Fibonacci (8x8)-matrices G1, G2, G3. On the 
lower row: two examples of exponentiation of the matrices G1 and G3
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(Gi)
n+2 = (Gi)

n+1 + (Gi)
n, where i = 1, 2, 3  (2)

One should note that the generalized Fibonacci matrices G1, G2, G3 arise, for example, from the 
genomatrix [A C; G U](3) of 64 triplets in the following algorithmic cases. The matrix G1 arises if each 
triplet in the genomatrix [A C; G U](3) is replaced by the element “0’’ in the case, when the letter U oc-
cupies the first position of the triplet, and by the element “1” in all other cases. The matrix G2 arises if 
each triplet in the same genomatrix is replaced by the element ̀ `0” in the case, when the letter U occupies 
the second position of the triplet, and by the element “1” in all other cases. The matrix G2 arises if each 
triplet in the same genomatrix is replaced by the element “0” in the case, when the letter U occupies the 
third position of the triplet, and by the element “1” in all other cases.

One can add that the interesting formula exists for a connection of the Fibonacci matrices Qleft and 
Qright (Figure 2) with the golden (2x2)-genomatrix Φ from Figure 3 in Chapter 4:

F2 = Qleft
2 + Qright

2.  (3)

This square formula is similar to a classical formula of length in a 2-dimensional vector space. This 
formula was revealed in a process of studying numerical genetic matrices as metric tensors of Rieman-
nian geometry, which are used for researches of a problem of inherited morphological surfaces with 
their special internal geometry (Petoukhov, 2003-2004, 2008a).

ADDITIONAL FACTS ABOUT THE GOLDEN SECTION AND mATRICES

The previous paragraph was devoted to Fibonacci matrices and their generalizations. Now we will con-
sider the golden matrices and their generalizations. The notion of golden matrices arose in Chapter 4 as 
a result of studying the genetic matrices. Such a name was given to a matrix, all components of which 
are equal to the golden section in its various integer powers (Figure 3 in Chapter 4). Figure 4 shows new 
kinds of golden matrices Φ1, Φ2, Φ3.

The revelation of these additional kinds Φ1, Φ2, Φ3 was made in the course of studying the genetic 
matrices of hydrogen bonds (some initial investigation was described in Chapter 4). These golden matrices 
Φ1, Φ2, Φ3 are connected with matrices B1, B2, B3 by means of the following simple expression:

4*Bk = Φk
2, where k = 1, 2, 3.  (4)

One should note that these matrices B1, B2, B3 arise from the genomatrix [C A; U G](3) of 64 triplets 
in the following algorithmic cases. The matrix B1 arises if each triplet in the genomatrix [C A; U G](3) 
is replaced by the number of hydrogen bonds of the first letter of this triplet (C = G = 3 and A = U = 2). 
The matrix B2 arises if each triplet in the same genomatrix is replaced by number of hydrogen bonds of 
the second letter of this triplet. The matrix B3 arises if each triplet in the same genomatrix is replaced 
by the number of hydrogen bonds of the third letter of this triplet.

A turn of the golden matrices Φ1, Φ2, Φ3 on 900 together with the same turn of the matrices B1, B2, B3 
leads to new matrices, which satisfy the equation (4) as well. Such a turn can be presented as a conse-
quence of a cyclic alphabetic permutation of the genetic letters (for example, C→U→G→A→C) in the 
initial genomatrix [C A; U G](3). We will return to such cyclic permutations in Chapter 11.
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The product of any two matrices from the set Φ1, Φ2, Φ3 possesses the commutative property and 
gives such matrix in all cases, all components of which are equal to 10:

Φ1*Φ2 = Φ2*Φ1 = Φ2*Φ3 = Φ3*Φ2 = Φ1* Φ3 = Φ3 *Φ1 (5)

The analogical generalization of the described golden (2x2)-matrices exists for cases of (2nx2n)-
matrices, where n = 2, 4, 5, 6,… . These cases correspond to genetic matrices [C A; U G](n) of 2-plets, 
4-plets, 5-plets, etc.

HADAmARD mATRICES, pROJECTIVE GEOmETRy AND THE GOLDEN WURF 

It is known that Hadamard matrices of order (4*n + 4) have connections with a projective plane and with 
projective geometry (Craigen, 1996; Dinitz, & Stinson, 1992; Lindner, & Rodger, 1997; Sachkov, 2004; 
Seberry, & Yamada, 1992). This fact can relate to the known fact about the existence of ontogenetic 
invariants of projective geometry in kinematic schemes of human and animal bodies at their ontogenetic 
growth (Petoukhov, 1981, 1989).

The main invariant of the projective geometry is the double ratio, which is defined by the following 
way (Klein, 1928). If one has four points A, B, C, and D on a straight line, the following magnitude W 
is named as “the double ratio”:

W = [(C-A)*(D-B)] / [(B-C)*(D-A)]  (6)

Figure 4. On the upper row: variants B1, B2, B3 of numeric presentation of the numeric genomatrix [C A; 
U G](3). On the lower row: three kinds of appropriate golden matrices Φ1, Φ2, Φ3. Here φ is the golden 
section; τ = φ-1
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The second name of the double ratio is the “wurf”. This name has been introduced by German math-
ematician G. von Staudt; “wurf” means “throw” in a translation from German. Projective transforma-
tions can change Euclidean lengths of separate segments of a line and they can change simple ratios 
(or affine proportions) of lengths of any two segments, but the magnitude of the wurf W (equation 6) is 
never changed at any projective transformations. In other words, the wurf W is an invariant of projective 
transformations. (Note that the founder of the contemporary projective geometry, J. Desargues, French 
architect and engineer (1593-1662 years), widely utilized biological terminology, probably assuming 
a kinship between the projective structures and nature). It is interesting that an analogical situation is 
observed at ontogenetic changes of proportions of kinematic scheme of human and animal bodies. Let 
us describe this situation.

Numerous biological bodies are constructed on the bases of a principle of hierarchy of symmetrical 
blocks: a body is constructed from symmetric blocks of the first level, which are combined into symmetric 
blocks of the second level, etc. In particular, this principle manifests itself in the kinematic scheme of 
the human body, where the mirror symmetry of the two halves of the body, which act as second-level 
blocks, is added by an approximate projective symmetry of the longitudinal proportions of the three-part 
kinematic blocks, ensemble of which forms the kinematic scheme of the whole body. These discussions 

Figure 5. Changes of the human body with age (according to (Petten, 1959)). Here “a)” and “b)” – an-
tenatal and postnatal stages: “a)” – in lunar months; “b)” – in years (the first on the left is a newborn). 
“c)” – Examples of various variants of proportions in three-part segments, whose wurfs are equal to 
1.31 and whose end points are A, B, C, D.
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are about the following three-part kinematic blocks: the three phalanxes of fingers, the three-part extremi-
ties (“shoulder-forearm-wrist” and “hip-shin-foot”) and the whole three-part body (in anthropology the 
body is subdivided into the upper part, the trunk part and the bottom part). We will designate the four 
end points of each of these three-part blocks by means of letters “A”, “B”, “C”, “D”. For example, in 
the case of the three-part block of the whole human body, the letter “A” marks the crown of the head; 
the letter “B” marks the base of the neck; the letter “C” marks the hip joint; the letter “D” marks the end 
of fingers of the straightened feet.

Lengths of separate segments of this ensemble of three-part blocks can differ from each other; on-
togenetic changes of their lengths can differ significantly without conservation of their affine ratios (or 
of simple proportions) between two segments (Figure5 - 9). For example, throughout a life from a birth 
the upper part of the kinematic scheme of human body grows in 2.4 times, the trunk part- in 2.8 times, 
the bottom part - in 3.8 times. But the magnitude of the wurf W, which is calculated by means of the 
expression (6) for different ages, is not changed practically during all development of an individual after 
his birth. Moreover the magnitudes of the wurfs W for all mentioned three-part blocks of the kinematic 
scheme of the human body are equal to each other practically (Figure 6, 7, 8 and 9). Their general or 
reference magnitude is equal to 1.31 approximately. These calculations of wurfs (or projective propor-
tions) in tables on Figure 6 - 9 were made on the bases of the known anthropological data (Bunak, 1957; 
Rokhlin, 1936).

The analysis of these wurf proportions in relation to the construction and in relation to the ontoge-
netic growth of the human body reveals that all mentioned three-part blocks of the human kinematic 
scheme are identical to each other from the viewpoint of their projective geometrical proportions (or 
from the viewpoint of projective geometry). It is true not only for normally developed people, but also 
for dwarfs and giants in many respects. It is true also for a wide set of highly organized animals (see 
details in (Petoukhov, 1981)).

Figure 6. The lengths of three segments in the kinematic block “shoulder(A1B1)-forearm(B1C1)-wrist(C1D1)” 
of human body at different ages. Initial data are taken from (Bunak, 1957). Relevant magnitudes of the 
wurfs W are shown in the right column
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Relevant magnitudes of the Wurfs W are Shown in the Right Column

The reference magnitude of these wurfs W ≈ 1.31 for these three-part kinematic blocks is connected with 
the phyllotaxis laws of morphogenesis, Fibonacci numbers and the golden section φ. This connection 
is revealed, first of all, by a consideration of magnitudes of wurfs of adjacent numbers Fn, Fn+1, Fn+2 of 
the Fibonacci series (Figure 1). One can interpret these numbers as lengths of three adjacent segments 
of a straight line. In this case the relevant magnitude of the wurf Wn of such three segments is equal to 
the following:

Wn = [(Fn + Fn+1) * (Fn+1 + Fn+2)] / [ Fn+1 * (Fn + Fn+1 + Fn+2)]  (7)

The magnitudes of the wurfs Wn of the adjacent groups of three Fibonacci numbers form a new 
sequence:

Figure 8. The lengths of three segments in the kinematic block “upper part(A3B3) - trunk(B3C3) – bot-
tom part(C3D3)”of human body at different ages. Initial data are taken from (Bunak, 1957). Relevant 
magnitudes of the wurfs W are shown in the right column

Figure 7. The lengths of three segments in the kinematic block “hip(A2B2) - shin(B2C2) - foot(C2D2)”of 
human body at different ages. Initial data are taken from (Bunak, 1957). Relevant magnitudes of the 
wurfs W are shown in the right column
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{Wn}: 1; 3/2; 5/4; 8/6; 13/10; ….; Fn+2/(2*Fn); … → P …  (8)

The limit value P of the wurf sequence (8) at n → ∞ is equal to the following:

P = φ2/2 = 1.309…,  (9)

where φ = (1+50,5)/2 = 1.618… is the golden section. This limit value P (equation 9) is equal to the 
magnitude of the wurf of three adjacent segments with relative lengths 1: φ: φ2. One should note that 
the lengths of three phalanxes of the middle finger of the human hand produce this series of ratios 1: 
φ: φ2 obviously (see Figure 9). This fact is additional evidence that the approximate magnitude 1.31 of 
the wurf of the three-part kinematic blocks of human and animal body is connected with the phyllotaxis 
laws of morphogenesis and with the golden section. To emphasize this connection with the golden sec-
tion, this wurf with the magnitude φ2/2 (equation 9) was named ‘the golden wurf” (Petoukhov, 1981, 
1989). This invariant of projective geometry has a biological meaning and is utilized in aesthetics of 
proportions and in the theory of music harmony (see Chapter 4).

In accordance to the Erlangen program by F. Klein, much non-Euclidean geometries are particular 
cases of projective geometry (Yaglom, 1988). But physiology knows long ago that inherited physiological 
spaces of visual perception relate with non-Euclidean geometry. This kind of research was pioneered by 
R. Luneburg (1950), who has discovered essential distinctions of geometry of visual spatial perception 
from Euclidean geometry. These findings were followed by scores of papers in various countries where 
the idea of a non-Euclidean geometry of visual spatial perception was extended and refined. A brief 
review of these works is in (Petoukhov, 1981, 1989). The mentioned connection of the genetic code 
systems with projective geometry by means of genetic Hadamard matrices can be utilized for explana-
tion of such inherited non-Euclidean geometric phenomena to some extent.

FUTURE TRENDS AND CONCLUSION

Matrix genetics proposes new mathematical objects in the form of the generalized golden matrices and 
of generalized Fibonacci matrices. These kinds of matrices possess interesting mathematical properties 

Figure 9. The lengths of phalanxes of the middle finger of human hand (data are taken from (Rokhlin, 
1936)). AB – the basal phalanx; BC – the medium phalanx; CD – the end phalanx
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which can be utilized for creating of new mathematical simulators to describe inherited phyllotaxis phe-
nomena in living matter. In particular they form series of matrices with some recurrent properties and 
with other interesting mathematical properties which should be investigated specially for their possible 
applications not only in mathematical and theoretical biology, but also in other scientific fields including 
theory of signal processing, mathematical theory of games, etc.

The results of the matrix genetics gives new possibilities for understanding the phenomena of ge-
netic inheritance of kinematic schemes of human and animal bodies, which are constructed utilizing the 
invariants of projective geometry.

The mentioned connection of genetic Hadamard matrices with a projective plane allows one to research 
many questions of application of formalisms of projective geometries and of some other non-Euclidean 
geometries in biological morphogenesis, where initial facts of inherited realizations of projective invari-
ants are known long ago. The adjacent questions of non-Euclidean geometries of visual spatial perception 
can be considered from this new viewpoint as well.

The theme of the golden section and Fibonacci numbers in inherited biological phenomena is a 
classical theme, which exists for a long time. One may expect that this theme get new impulses due to 
described data of matrix genetics (see Chapters 4 and 10).

Matrix analysis and matrix forms of presentation of natural systems possess many advantages in-
cluding a possibility of a wide set of analogies because they are utilized in many fields of science. It 
concerns the matrix forms of presentation of the genetic code ensembles in high extent as well. We think 
that many inherited biological phenomena will get new theoretical considerations and mathematical 
simulators in the near future on the bases of data of matrix genetics. Beautiful symmetrical patterns of 
biological morphology will be added by beautiful patterns and symmetries of abstract mathematical 
theories provoked by results of matrix genetics.

Special studies of various variants of the golden matrices and of the Fibonacci matrices together with 
their generalizations should be made in connection with the genetic matrices.

The theme of the golden section and Fibonacci numbers in matrix genetics is important because many 
physiological systems and processes are connected with the golden section. Chapter 4 has emphasized 
already, that proportions of the golden section characterize cardio-vascular processes, respiratory pro-
cesses, electric activity of the brain, locomotion activity, aesthetic phenomena, etc. The additional data 
presented in this chapter give new opportunities for deeper understanding genetic bases of phenomena 
of the golden section and of Fibonacci numbers in biology. One can hope that described results of 
matrix genetics will be useful for the explanation and numeric forecast of separate parameters in a set 
of different physiological sub-systems of organisms with their cooperative essence and golden section 
phenomena. In our opinion, many realizations of the golden section in nature on the whole are connected 
with its matrix essence. One can conjecture the same situation is true for Fibonacci numbers relates to 
special Fibonacci matrices.

An additional direction for future study in the field of matrix genetics is a presentation of genetic 
matrices (for example [C A; U G](n)) in a numeric form of Hermitian matrices, which play an important 
role in quantum mechanics. Particularly it can be made by means of a test replacement of the genetic 
letters by their numbers of hydrogen bonds in complex numeric form: for example, one can test a variant 
C = G = 3, A = 2*i, U = -2*i, where “i” is imaginary unit. In this case we obtain a Hermitian matrix [C 
A; U G] = [3 2*i; -2*i 3], eigenvalues of which are equal to 1 and 5. A question about a benefit of such 
test approach on a base of Hermitian forms of genetic matrices is under investigation now.



220

Genetic System, Fibonacci Numbers, and Phyllotaxis Laws

REFERENCES

Adler, I. (1974). A model of contact pressure in phyllotaxis. Journal of Theoretical Biology, 45, 1–79. 
doi:10.1016/0022-5193(74)90043-5

Adler, I. (1990). Symmetry in phyllotaxis. Symmetry: Culture and Science, 1(2), 171–183.

Bowman, J. L., Eshed, Y., & Baum, S. F. (2002). Establishment of polarity in angiosperm lateral organs. 
Trends in Genetics, 18, 134–141. doi:10.1016/S0168-9525(01)02601-4

Bunak, V. V. (1957). Changes in the relative length of human extremity skeleton segments during the 
growth period. [in Russian]. Izvestia Akademii Nauk RSFSR, 84, 33–45.

Clark, S. E. (2001). Meristems: Start your signaling. Current Opinion in Plant Biology, 4, 28–32. 
doi:10.1016/S1369-5266(00)00131-X

Craigen, R. (1996). Hadamard matrices and designs. In C. J. Colbourn & J. H. Dinitz (Eds.), CRC 
Handbook of Combinatorial Designs (pp. 370-377). Boca Raton, FL: CRC Press.

Dinitz, J. H., & Stinson, D. R. (1992). A brief introduction to design theory. In J. H. Dinitz & D. R. 
Stinson (Eds.), Contemporary design theory: A collection of surveys (pp. 1-12). New York: Wiley.

Douady, S., & Couder, Y. (1992). Phyllotaxis as a physical self-organized growth process . Physical 
Review Letters, 68, 2098–2101. doi:10.1103/PhysRevLett.68.2098

Jean, R. V. (1995). Phyllotaxis: A systemic study in plant morphogenesis. Cambridge: Cambridge Univ. 
Press.

Kappraff, J. (1990). Connections, the geometric bridge between art and science. New York: McGraw 
Hill.

Kappraff, J. (1992). The relationship between mathematics and mysticism of the golden mean through 
history. In I. Hargittai (Ed.), Fivefold symmetry (pp. 33-66). Singapore: World Scientific.

Koch, A. J., & Meinhardt, H. (1994). Biological pattern-formation–from basic mechanisms to complex 
structures. Reviews of Modern Physics, 66, 1481–1507. doi:10.1103/RevModPhys.66.1481

Lee, H. W., & Levitov, L. S. (1998). Universality in phyllotaxis: A mechanical theory. Symmetry in 
plants. Singapore: World Scientific.

Levitov, L. S. (1991a). Energetic approach to phyllotaxis. Europhysics Letters, 14, 533–539. 
doi:10.1209/0295-5075/14/6/006

Levitov, L. S. (1991b). Phyllotaxis of flux lattices in layered superconductors. Physical Review Letters, 
66, 224–227. doi:10.1103/PhysRevLett.66.224

Lindner, C. C., & Rodger, C. A. (1997). Design theory. Boca Raton, FL: CRC Press.

Luneburg, R. (1950). The metric of binocular visual space. Journal of the Optical Society of America, 
40(10), 627–642. doi:10.1364/JOSA.40.000627

Mandelbrot, B. B. (1983). The fractal geometry of nature. New York: Freeman.



221

Genetic System, Fibonacci Numbers, and Phyllotaxis Laws

Penrose, R. (1989). The emperor’s new mind. Oxford: Oxford University Press.

Petoukhov, S. V. (1981). Biomechanics, bionics, and symmetry. Moscow: Nauka (in Russian).

Petoukhov, S. V. (1989). Non-Euclidean geometries and algorithms of living bodies. In I. Hargittai (Ed.), 
Computers & Mathematics with Applications, 17(4-6), 505-534. Oxford: Pergamon Press.

Petoukhov, S. V. (2003-2004). Attributive conception of genetic code, its bi-periodic tables, and problem 
of unification bases of biological languages. Symmetry . Cultura e Scuola, 14-15(part 1), 281–307.

Petoukhov, S. V. (2008a). Matrix genetics, algebras of the genetic code, noise-immunity. Moscow: RCD 
(in Russian).

Petten, B. M. (1959). The human embryology. Moscow: Medgiz (in Russian)

Rokhlin, D. G. (1936). X-ray osteology and x-ray anthropology. Moscow: Biomedgiz (in Russian)

Sachkov, V. N. (2004). Introduction to combinatory methods of discrete mathematics. Moscow: Bi-
nom.

Seberry, J., & Yamada, M. (1992). Hadamard matrices, sequences, and block designs. In J. H. Dinitz & 
D. R. Stinson (Eds.), Contemporary design theory: A collection of surveys (pp. 431-560). New York: 
Wiley.

Solovieva, F. I. (2006). Introduction into theory of coding. Novosibirsk: NGU (in Russian).

Stieger, P. A., Reinhardt, D., & Kuhlemeier, C. (2002). The auxin influx carrier is essential for correct 
leaf positioning. The Plant Journal, 32, 509–517. doi:10.1046/j.1365-313X.2002.01448.x

Thompson, d’Arcy W. (1942). On growth and form. Cambridge: Cambridge University Press.

Tolmachev, Y. A. (1976). New optic spectrometers. Leningrad: Leningrad University.

Waites, R., & Hudson, A. (1995). Phantastica: A gene required for dorsoventrality in leaves in Antir-
rhinum majus. Development, 121, 2143–2154.

Yaglom, I. M. (1988). Felix Klein and Sophus Lie: Evolution of the idea of symmetry in the 19th century. 
Boston: Birkhäuser.



222

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 11

Physiological Cycles and 
Their Algebraic Models 

in Matrix Genetics

INTRODUCTION AND BACKGROUND

This chapter continues an analysis of the genetic 8-dimensional Yin-Yang-algebra (bipolar algebra), 
which was described in Chapter 7. This analysis allows one to revelation of unknown properties of 

ABSTRACT

This chapter presents data about cyclic properties of the genetic code in its matrix forms of presenta-
tion. These cyclic properties concern cyclic changes of genetic Yin-Yang-matrices and their Yin-Yang-
algebras (bipolar algebras) at many kinds of circular permutations of genetic elements in genetic 
matrices. These circular permutations lead to such reorganizations of the matrix form of presentation 
of the initial genetic Yin-Yang-algebra that arisen matrices serve as matrix forms of presentations of 
new Yin-Yang-algebras, as well. They are connected algorithmically with Hadamard matrices. New 
patterns and relations of symmetry are described. The discovered existence of a hierarchy of the cyclic 
changes of genetic Yin-Yang-algebras allows one to develop new algebraic models of cyclic processes in 
bioinformatics and in other related fields. These cycles of changes of the genetic 8-dimensional algebras 
and of their 8-dimensional numeric systems have many analogies with famous facts and doctrines of 
modern and ancient physiology, medicine, and so forth. This viewpoint proposes that the famous idea by 
Pythagoras (about organization of natural systems in accordance with harmony of numerical systems) 
should be combined with the idea of cyclic changes of Yin-Yang-numeric systems in considered cases. 
This second idea reminds of the ancient idea of cyclic changes in nature. From such algebraic-genetic 
viewpoint, the notion of biological time can be considered as a factor of coordinating these hierarchical 
ensembles of cyclic changes of the genetic multi-dimensional algebras.
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this genetic algebra and its possible applications for deeper understanding of genetic and physiological 
systems including inherited physiological cycles.

One of the directions, where the results of analysis of genetic Yin-Yang-algebras can be useful, is 
related to a creation of algebraic models of inherited physiological cycles and rhythms in organisms. The 
statement that biological organisms exist in accordance with cyclic processes of environment and with 
their own cyclic physiological processes is one of the most classical statements of biology and medicine 
from ancient times (see for example (Dubrov, 1989; Wright, 2002)). Many branches of medicine take into 
account the time of day specially, when diagnostic, pharmacological and therapeutic actions should be 
made for individuals. The set of this medical and biological knowledge is usually united under names of 
chrono-medicine and chrono-biology. Many diseases are connected with disturbances of natural biologi-
cal rhythms in organisms. The problem of internal clocks of organisms, which participate in coordina-
tion of all interrelated processes of any organism, is one of the main physiological problems. But cyclic 
principles are essential for spatial organization of living bodies as well. Biological morphogenesis gives 
many examples of a cyclic symmetric repetition of separate spatial blocks in constructions of organism 
bodies (Figure 1). Such biological “cyclomerism” has been studied from viewpoints of Euclidean and 
non-Euclidean geometries for a long time (Petoukhov, 1989).

Molecular biology deals with this problem of physiological rhythms and of cyclic re-combinations of 
molecular ensembles on the molecular level as well. Really, it is the well-known fact that in biological 
organisms proteins are disintegrated into amino acids and then they are re-built (are re-created) from 
amino acids again in a cyclic manner systematically. A half-life period (a duration of renovation of half 
of a set of molecules) for proteins of human organisms is approximately equal to 80 days in most cases; 
for proteins of the liver and blood plasma – 10 days; for the mucilaginous cover of bowels – 3-4 days; 
for insulin – 6-9 minutes (Aksenova, 1998, v. 2, p. 19). Such permanent rebuilding of proteins provides 
a permanent cyclic renovation of human organisms. Such cyclic processes at the molecular-genetic level 
are one of the parts of a hierarchical system of a huge number of interelated cycles in organisms. The 
phenomenon of repeated recombinations of molecular ensembles, which are carried out inside separate 
cycles, is one of the main problems of biological self-organization. This phenomenon draws additional 
attention to structural properties of recombinations and permutations of molecular elements of genetic 

Figure 1. Some examples of inherited cyclic configurations in living matter: a leaf of fern, a cone, a 
shell of mollusk
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code systems. We are studying these structural properties using a matrix language. One can mention 
here that in addition to cyclic renovation of proteins, heritable corporal forms of activity exist: cardio 
cycles, breath cycles, walking, run, crawling, swimming and so forth.

Do some structural connections of the genetic code systems with inherited physiological rhythms and 
with such cyclic processes exist? Matrix genetics proposes new mathematical data of structural analysis 
for a positive answer on the first question and for a creation of algebraic models of such hierarchical 
system of cyclic changes. These data were obtained on the basis of an analysis of the mentioned genetic 
8-dimensional Yin-Yang-algebra. This algebra was revealed initially as a result of analysis of the genetic 
matrix [C A; U G](3), where the symbol in parentheses means the third Kronecker power and the symbols 
C, A, U, G mark nitrogenous bases of the genetic code (cytosine, adenine, uracil, guanine).

This genetic 8-dimensional Yin-Yang-algebra (bipolar algebra) was described in Chapter 7. This 
matrix algebra defines the system of 8-dimensional numbers YY with 8 real coordinates x0, x1, …, x7:

YY = x0*f0+x1*m1+x2*f2+x3*m3+x4*f4+x5*m5+x6*f6+x7*m7  (1)

The matrix form of presentation of these numbers YY is shown on Figure 3 and Figure 4 in Chapter 
7. The multiplication table of the basic elements f0, m1, f2, m3, f4, m5, f6, m7 is demonstrated on Figure 6 
in chapter 7. Multiplication of any two members of such octet numbers YY generates a new octet number 
of the same system. This situation is similar to the situation of real numbers (or of complex numbers, 
or of hypercomplex numbers) when multiplication of any two members of a numeric system generates 
a new member of the same numeric system. From the abstract mathematical viewpoint such numeric 
system can be used for modeling not only static systems but variable systems and processes as well. For 
such a case of variable processes, one should consider coordinates of YY-numbers in the expression (1) 
as variable functions of time: x0(t), x1(t), x2(t), x3(t), x4(t), x5(t), x6(t), x7(t). For example, these functions 
can be trigonometric functions like sin(w*t) and cos (w*t) or they can be Walsh-Hadamard functions, 
etc. Multiplication of any two such 8-dimensional superpositions of functions gives a new 8-dimensional 
superposition of functions, which corresponds to the expression (1) again. In special cases these vari-
able functions x0(t), x1(t), ..., x7(t) can describe some permutations of elements in systems with variable 
compositions, etc.

We will continue using some special notions and terms, which were introduced in Chapter 7: female 
basic elements and coordinates, male basic elements and coordinates, quasi-real unit, etc. But the Yin-
Yang-algebra, which was presented on Figure 3, Figure 4 and Figure 6 in Chapter 7 and which was 
marked by the symbol YY8, will be marked by the symbol YY+

[CAUG] in this chapter. The reasons for this 
change are the following. Below we will meet with many kinds of Yin-Yang-algebras, which are pro-
duced by means of cyclic permutations of genetic elements in the symbolic genetic matrix [C A; U G]
(3) In view of this, the upper index in the symbol YY+

[CAUG] or YY+
[UCGA] of a relevant algebra shows the 

kind of symbolic genomatrices [C A; U G](3) or [U C; G A](3), which is transformed into this kind of 
numeric Yin-Yang-matrices by means of the same algorithm of the Yin-Yang-digitization of 64 triplets 
(this algorithm was described in Chapter 7). The meaning of the lower index “+” will be explained in 
the second paragraph of this chapter.

The main aim of this chapter is a description of unexpected cyclic and other mathematical proper-
ties of genetic Yin-Yang-matrices in connection with biological phenomena of cyclic processes and 
self-developing.
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REVEALING NEW GENETIC ALGEBRAS AS A RESULT OF 
CyCLIC pERmUTATIONS OF GENETIC ELEmENTS

Matrix genetics studies the genetic code in its matrix forms of presentation by means of matrix methods 
of the theory of discrete signals processing. This theory pays great attention to permutations of discrete 
elements in information processing (Ahmed, Rao, 1975; Trahtman & Trahtman, 1975). In view of this, 
the following question arises: what genetic matrices are produced by various cyclic permutations of 
genetic elements in the initial genetic matrices [C A; U G](3)? Do these new matrices possess interesting 
mathematical properties? One of the unexpected results of studying this question is the discovery that 
many kinds of such cyclic permutations generate new genetic matrices, which are related algorithmically 
with matrices of new kinds of 8-dimensional Yin-Yang-algebras as well (Petoukhov, 2008a-2008f). The 
transformation of these new genetic matrices into matrices of new Yin-Yang-algebras is carried out by 
means of the same alphabetic algorithm of the Yin-Yang-digitization of 64 triplets (see Chapter 7). This 
algorithm connects solidly each genetic triplet with one of the eight YY-coordinates x1, x2, x3, x4, x5, x6, 
x7 (with its certain sign “+” or “-” in accordance with Figure 3 in chapter 7) and this connection is ir-
respective of a disposition of triplets in considered genetic (8x8)-matrices of 64 triplets.

We begin with the case of a circular permutation of the genetic letters C→A→G→U→C. This cir-
cular permutation means that in all triplets of the genomatrix [C A; U G](3) the letter A is replaced by the 
letter C, the letter G is replaced by the letter A, etc. As a result a new genomatrix [U C; G A](3) arises, 
which is shown on Figure 2. This symbolic genomatrix defines the appropriate numeric Yin-Yang-matrix 
YY+

[UCGA] by means of the algorithm of the Yin-Yang-digitization of 64 triplets. Numeric components of 
this matrix YY+

[UCGA] are disposed in the matrix cells on Figure 2. One can see that this new genomatrix 
[U C; G A](3) can be obtained by another way at all. Really, the same matrix arises when the initial matrix 
[C A; U G](3) (Figure 4 in chapter 7) is turned on 900 clockwise.

Figure 2. The genetic matrix [U C; G A](3), which arises from the genetic matrix [C A; U G](3) as a result 
of the circular permutation of the genetic letters C→A→G→U→C. All designations are the same as 
on Figure 4 in Chapter 7
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If the same circular permutation C→A→G→U→C is repeated for the new genomatrix [U C; G A](3), 
the genomatrix [G U; A C](3) arises (Figure 3). The same matrix [G U; A C](3) can be obtained by means 
of a turn of the matrix [U C; G A](3) on 900 clockwise as well.

If the same circular permutation C→A→G→U→C is repeated for the new genomatrix [G U; A C](3), 
the genomatrix [A G; C U](3) arises (Figure 4). The same matrix [A G; C U](3) can be obtained by means 
of a turn of the matrix [G U; A C](3) on 900 clockwise as well.

Figure 3. The genetic matrix [G U; A C](3), which arises from the initial genetic matrix [C A; U G](3) 
as a result of the twice applications of the circular permutation of the genetic letters C→A→G→U→C. 
All designations are the same as on Figure 4 in Chapter 7

Figure 4. The genetic matrix [A G; C U](3), which arises from the initial genetic matrix [C A; U G](3) 
(Figure 4 in chapter 7) as a result of the triple applications of the circular permutation of the genetic 
letters C→A→G→U→C. All designations are the same as on Figure 4 in Chapter 7
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Dispositions of the 8 coordinates x1, x2, …, x7 are different in these four symbolic genomatrices [C 
A; U G](3), [U C; G A](3), [G U; A C](3) and [A G; C U](3). They define the four different numeric matrices 
YY+

[CAUG], YY+
[UCGA], YY+

[GUAC], YY+
[AGCU] by means of the same algorithm correspondingly. The beautiful 

fact is that the new three numeric matrices YY+
[CAUG], YY+

[UCGA], YY+
[GUAC], YY+

[AGCU] present appropriate 
8-dimensional Yin-Yang-algebras as well by analogy with the matrix YY+

[CAUG] on Figure 4 in chapter 7. 
For example, let us consider the numeric matrix YY+

[UCGA], which is reproduced on Figure 5.
This matrix YY+

[UCGA] can be written in the linear form in accordance with the expression (1): YY = x
0*f0+x1*m1+x2*f2+x3*m3+x4*f4+x5*m5+x6*f6+x7*m. In this case the basic matrices f0, m1, f2, m3, f4, m5, 
f6, m7 are shown on Figure 6.

This set of basic matrices is a closed set relative to multiplication: the result of multiplication of any 
two basic matrices is a matrix from the same set in accordance with the multiplication table on Figure 
7.

This multiplication table defines an 8-dimensional algebra. The diagonal cells of this table contain 
no real units at all but they are occupied by elements “±f6” and “±m7”. Thereby the set of the 8 basic 
matrices f0, m1, f2, m3, f4, m5, f6, m7 is divided into two equal subsets by the criterion of their squares. 
The first subset consists of elements with the even indexes: f0, f2, f4, f6. The squares of members of this 
f6-subset are equal to ±f6 always. The second subset consists of elements with the odd indexes: m1, m3, 
m5, m7. The squares of members of this m7-subset are equal to ±m7 always.

The basic element f6 possesses all properties of real negative unit “-1” in relation to the members of 
the f6-subset: f6

2 = -f6, f6*f0 = f0*f6 = -f0, f6*f2 = f2*f6 = -f2, f6*f4 = f4*f6 = -f4. But the element f6 does not 
possess the commutative property of real negative unit in relation to the members of the m7-subset: f6*mp 
≠ mp*f6, where р =1, 3, 5, 7. For this reason f6 is named “quasi-real negative unit of the f6-subset”.

The basic element m7 possesses all properties of real negative unit “-1” in relation to the members 
of the m7-subset: m7

2 = -m7, m7*m1 = m1*m7 = -m1, m7*m3 =m3*m7 = -m3, m7*m5 = m5*m7 = -m5. 
But the element m7 does not possess the commutative property of real negative unit in relation to the 
members of the f6-subset: m7*fk ≠ fk*m7, where k = 0, 2, 4, 6. For this reason m7 is named “quasi-real 
negative unit of the m7-subset”.

By definition, a Yin-Yang-algebra is a 2n-dimensional algebra, a complete set of basic elements of 
which has no real unit at all but this set consists of two sub-sets of basic elements with 2n-1 elements in 
each and with the following feature: one of the basic elements of each sub-set possesses all the properties 
of the real positive unit “+1” or of the real negative unit “-1” relative to all basic elements of its sub-set 

Figure 5. The numeric matrix YY+
[UCGA], which is numeric presentation of the genomatrix [U C; G A](3) 

from Figure 2
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Figure 6. The basic matrices for the numeric matrix YY+
[UCGA] from Figure 5

Figure 7. The multiplication table of the basic matrices of the numeric matrix YY+
[UCGA] from Figure 5



229

Physiological Cycles and Their Algebraic Models in Matrix Genetics

but not relative to basic elements of another sub-set. One can see that the multiplication table on Figure 
7 defines the 8-dimensional Yin-Yang-algebra YY+

[UCGA] and a relevant 8-dimensional numeric system. 
Concerning to multiplication of numbers of this new 8-dimensional system in their matrix forms of 
presentation, it means that both factors have the identical matrix disposition (Figure 5 in chapter 7) of 
their 8 parameters x0, x1, …, x7 (in the first factor) and y0, y1,…, y7 (in the second factor) and the final 
matrix has the same matrix disposition of its 8 relevant parameters z0, z1, …, z7. This genetic algebra for 
the case of the genomatrix [U C; G A](3) is quite different from the genetic Yin-Yang-algebra YY+

[CAUG] 
with the multiplication table on Figure 6 in chapter 7.

This difference can be illustrated additionally by a numeric example. Let us consider an arbitrary 
8-dimensional number:

YY = 3*f0+4*m1+7*f2+2*m3+2*f4+1*m5+9*f6+8*m7.  (2)

If this number is considered from the viewpoint of the genetic Yin-Yang-algebra YY+
[CAUG] on Figure 

3 and Figure 6 in chapter 7, its square is equal to YY2 = 117*f0 + 149*m1 + 69*f2 + 57*m3 - 15*f4 + 
57*m5 + 117*f6 + 121*m7. But if this number YY in the equation (2) with the same magnitudes of the 
coordinates x0, x1, …, x7 is considered from the viewpoint of the genetic Yin-Yang-algebra YY+

[UCGA] on 
Figure 7, its square is equal to quite another number: YY2 = -111*f0 - 127x1*m1 - 195*f2 - 111*m3 - 39*f4 
- 63*m5 - 231*f6 - 179*m7.

One can note a certain similarity (or a symmetric relation) between the multiplication tables of both 
cases on Figure 6 in Chapter 7, and Figure 7 in the current chapter. Really, the internal contents of the 
first table can be transformed into the internal contents of the second table by means of a turn on 900 
anticlockwise with a simultaneous inversion of all signs “+” and “-”. Symmetric relations exist also 
among multiplication tables of many genetic Yin-Yan-matrices, which are mentioned below.

For the cases of the other two matrices YY+
[GUAC] and YY+

[AGCU], which correspond to the genomatrices 
[G U; A C](3) (Figure 3) and [A G; C U](3) (Figure 4), their appropriate sets of basic matrices and multi-
plication tables are constructed by analogy. Figure 8 and Figure 9 demonstrate final results in the form 
of their multiplication tables. One can see that these two multiplication tables define two 8-dimensional 
Yin-Yang-algebras as well.

The four set of basic matrices f0, m1, f2, m3, f4, m5, f6, m7 for the four matrix YY+
[CAUG], YY+

[UCGA], 
YY+

[GUAC] and YY+
[AGCU] are quite different, but the multiplication tables for the matrices YY+

[CAUG] and 
YY+

[GUAC] (Figure 6 in chapter 7 and Figure 8 in the current chapter) are identical to each other. These 

Figure 8. The multiplication table of the Yin-Yang-algebra YY+
[GUAC]
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matrices are transformed each into another by means of turn on 1800 or by means of simultaneous per-
mutations of complementary nitrogenous bases C↔ G and A↔ U in all triplets inside the appropriate 
genomatrices [C A; U G](3) and [G U; A C](3) (that is each codon is replaced by its anti-codon in this 
case). It means, that for the case of these “complementary” genomatrices [C A; U G](3) and [G U; A 
C](3), the same Yin-Yang-algebra possesses two different matrix forms of its presentation. The similar 
situation holds true for the second pair of the “complementary” genomatrices [U C; G A](3) and [A G; 
C U](3): their Yin-Yang-algebras YY+

[UCGA] and YY+
[AGCU] are identical to each another as well because of 

the identity of their multiplication tables (Figure 7 and Figure 9).
One should add that each of these four genomatrices [C A; U G](3), [G U; A C](3), [U C; G A](3) and 

[A G; C U](3) corresponds to its own Hadamard matrix by means of the general alphabetic algorithm. 
The claim is that each of these (8x8)-matrices possesses a black-and-white mosaic, which is transformed 
easily into a mosaic of an appropriate Hadamard (8x8)-matrix by means of the U-algorithm. This U-
algorithm is described in Chapter 6 and it is based on objective molecular properties of the genetic 
alphabet. These four “genetic” Hadamard matrices, which are marked by H+

[CAUG], H+
[GUAC], H+

[UCGA], 
H+

[AGCU], are shown on Figure 10.

Figure 9. Multiplication table of the Yin-Yang-algebra YY+
[AGCU]

Figure 10. The four Hadamard matrices H+
[CAUG], H+

[GUAC], H+
[UCGA], H+

[AGCU], which are connected al-
gorithmically with the genomatrices [C A; U G](3), [U C; G A](3), [G U; A C](3), [A G; C U](3) and their 
Yin-Yang-algebras. Each black (white) cell contains the element “+1” (“-1”)
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Each of the four genomatrices [C A; U G](3), [U C; G A](3), [G U; A C](3) and [A G; C U](3) can be 
transformed in a circular manner into the next genomatrix of this sequence by means of a turn on 900 
clockwise. Correspondingly each of the four Yin-Yang-matrices YY+

[CAUG], YY+
[UCGA], YY+

[GUAC] and YY+
[AGCU] 

and each of the four Hadamard matrices H+
[CAUG], H+

[GUAC], H+
[UCGA], H+

[AGCU] can be transformed in a 
circular manner into the next matrix of their sequences by means of a turn on 900 clockwise. It is an 
important result that the cyclic permutations of genetic elements C→A→G→U→C lead to the appro-
priate cyclic changes of the Yin-Yang-algebras YY+

[CAUG]→YY+
[UCGA]→YY+

[GUAC]→YY+
[AGCU]→YY+

[CAUG] in 
the matrix forms of presentation of the genetic code. These cyclic permutations lead simultaneously to 
the appropriate cyclic changes of the genomatrices [C A; U G](3)→[U C; G A](3)→[G U; A C](3) →[A G; 
C U](3)→[C A; U G](3) and of the Hadamard matrices H+

[CAUG]→H+
[GUAC]→H+

[UCGA] →H+
[AGCU]→H+

[CAUG]. 
Figure 11 illustrates this general situation for the sequence of the Yin-Yang-matrices only. Symbols of 
a clock and of the four parts of the world are disposed in the center of Figure 11 to cause heuristic as-
sociations and to reflect the thought that the spatial turns of these matrices (together with changes of 
their Yin-Yang-algebras and of their Hadamard matrices) can be carried out rhythmically in appropriate 
algebraic models of rhythmic physiological processes.

But these circular sequences of the genetic Yin-Yang-algebras and of the conjunct matrices are only a 
small part of a hierarchy of circular changes of different kinds of the genetic Yin-Yang-algebras together 
with conjunct matrices. This hierarchy, which is based on different kinds of circular permutations, should 
be studied step by step. Let us continue this study.

We begin with the genomatrix [C A; U G](3) and the cyclic shifts 1-2-3→2-3-1→3-1-2→1-2-3 of 
three positions in all triplets there (for example, in the case of the triplet CAG such shifts produce the 
sequence CAG→AGC→GCA→CAG). Analogical cyclic shifts of the three positions 3-2-1→2-1-3→1-
3-2→3-2-1 in the triplets at the reverse order of their reading are possible for analysis. Such cyclic 
changes produce the sequences of appropriate genomatrices [C A; U G]123

(3)→ [C A; U G]231
(3)→[C A; 

U G]312
(3) →[C A; U G]123

(3) and [C A; U G]321
(3)→[C A; U G]213

(3)→ [C A; U G]132
(3)→[C A; U G]321

(3). 
Each of these six genomatrices is connected with its own Yin-Yang-algebras by the same algorithm (see 
Figures 6, 8 and 9 in chapter 7). Figure 12 shows one of the possible variants of schematic illustration 
of these two cyclic sequences of the mosaic Yin-Yang-matrices YY+,123

[CAUG], YY+,231
[CAUG], YY+,312

[CAUG], 
YY+,321

[CAUG], YY+,213
[CAUG], YY+,132

[CAUG].
A transposition of these Yin-Yang-matrices produces new relevant kinds of Yin-Yang-matrices (Pe-

toukhov, 2008a). Each of these 12 Yin-Yang-matrices corresponds to its own kind of genetic Hadamard 
(8x8)-matrices.

By analogy the similar consideration of permutations and transpositions in the cases of other three 
initial genomatrices [U C; G A](3), [G U; A C](3) and [A G; C U](3) leads to an appropriate increase of 
the total quantity of known Yin-Yang-matrices and their Hadamard genomatrices. We receive a fur-
ther increase in this total quantity as well, if we consider other initial groups of such genomatrices, 
which are transformed cyclically each into another at the same cyclic permutation of genetic elements 
C→A→G→U→C. Examples of such groups are [C G; U A](3)→[U C; A G](3)→[A U; G C](3)→[G A; C 
U](3)→[C G; U A](3), or [C A; G U](3)→[G C; U A](3)→[U G; A C](3)→[A U; C G](3)→[C A; G U](3), or 
[G A; U C ](3)→[U G; C A](3)→[C U; A G](3)→[A C; G U](3)→[G A; U C](3), or

[G C; A U](3)→[A G; U C](3)→[U A; C G](3)→[C U; G A](3)→[G C; A U](3). Such groups of matri-
ces can be transformed each into the other by means of permutations of separate genetic elements like 
C→G→C or A→G→A, etc.
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We have no possibility to demonstrate in this chapter all hierarchy of cyclic sequences of genetic 
Yin-Yang-algebras and of conjunct Hadamard matrices, which arise as a result of all possible kinds 
of cyclic permutations of genetic elements. Additional data about this hierarchy of “round dances” of 
Yin-Yang-algebras should be published separately. An important general result is that a considerable 
quantity of genetic Yin-Yang-matrices and of their Hadamard matrices exists and that these matrices 
are connected with different kinds of cyclic permutations of genetic elements. Each of these Yin-Yang-
matrices can be transformed into the initial matrix YY+,123

[CAUG] by means of a relevant cyclic permutation 
of genetic elements.

In addition, a set of such hierarchies of cyclic metamorphoses of the genetic Yin-Yang-algebras al-
lows one to model phenomena of metamorphoses of animals. For example, butterflies and moths have 
four stages of cyclic metamorphoses in their life: egg, larva (the caterpillar stage), pupa (the chrysalis 

Figure 11. The circular sequence of the four Yin-Yang-matrices YY+
[CAUG] → YY+

[UCGA] → YY+
[GUAC] → 

YY+
[AGCU] → YY+

[CAUG], which is based on the circular permutations of the genetic molecular elements 
C→A→G→U→C
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phase), and adult (Figure 21). One should note that in the chrysalis phase the biological organism does 
not eat at all; consequently atomic contents of the organism do not change practically, but its set of mo-
lecular compositions is reformed at this stage cardinally by means of complex permutations of groups 
of chemical elements. It reminds one strongly of the described change of a type of genetic Yin-Yang-
algebra as a result of a simple cyclic permutation of genetic elements. In the proposed modeling approach, 
each of the named stages of metamorphosis is connected with forming its own kind of hierarchy (or of 
a colony) of the genetic Yin-Yan-algebras. Correspondingly a transition from one stage of biological 
metamorphosis to another stage is interpreted as a transition from one kind of hierarchy of the genetic 
Yin-Yang-algebras to another kind of their hierarchy (or as a transition from one colony of the genetic 
Yin-Yang-algebras to another colony of such genetic algebras).

THE OppOSITIONAL CATEGORy OF GENETIC yIN-yANG-mATRICES

Let us return to the genetic matrix algebra YY+
[CAUG] (Figure 3 and Figure 6 in chapter 7). If all its Yang-

coordinates are equal to zero (x1 = x3 = x5 = x7 = 0), the YY+
[CAUG]-matrix becomes the matrix of the geno-

quaternion of the Yin-type (Figure 13, on the left side). We mark this “female” genoquaternion by the 
symbol Gf. If all Yin-coordinates are equal to zero (x0 = x2 = x4 = x6 = 0), the YY+

[CAUG]-matrix becomes 

Figure 12. A schematic illustration of the two cyclic sequences of the mosaic Yin-Yang-matrices, which 
arise as a result of permutations of positions in triplets: YY+,123

[CAUG]→YY+,231
[CAUG]→YY+,312

[CAUG]→YY+

,123
[CAUG] and YY+,321

[CAUG]→YY+,213
[CAUG]→ YY+,132

[CAUG]→YY+,321
[CAUG]. Number over each matrix shows a 

relevant kind of permutations of positions in all triplets
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the matrix of the genoquaternion of the Yang-type (Figure 13, on the right side). We mark this “male” 
genoquaternion by the symbol Gm.

Multiplication tables of the algebras of these genoquaternions were shown in Chapter 7 on Figure 7. 
The sum of these two matrices Gf and Gm gives the YY+

[CAUG]-matrix (Figure 3, chapter 7):

Gf + Gm = YY+
[CAUG] (3)

The typical feature of this YY+
[CAUG]-matrix and of all other Yin-Yang-matrices, which have been 

considered in the previous paragraph and which possess the lower index “+”, is that two halves of each 
of these matrices are mirror-antisymmetric in their black-and-white mosaics. For example, in the case 
of YY+

[CAUG]-matrix (Figure 3 and Figure 4 in chapter 7) its left half and its right half are mirror-anti-
symmetric: each pair of cells, which are disposed mirror-symmetrically in these halves, have opposite 
colors. All these Yin-Yang-matrices can be produced by means of summation of relevant matrices of a 
Yin-qenoquaternion and of a Yang-qenoquaternion.

But what kind of a matrix arises in the case of subtraction of one genoquaternion from another geno-
quaternion? We mark this matrix by a symbol YY-

[CAUG] with the lower index “-”:

Gf - Gm = YY-
[CAUG]  (4)

Figure 14 shows this new matrix YY-
[CAUG]. One can see, that the black-and-white mosaic of this 

matrix possesses unexpectedly a relation of mirror-symmetry between the left half and the right half in 
contrast to the case of YY+

[CAUG]-matrix. Figure 15 shows tessellations of a plane by these mosaics for 
an additional comparison

The second unexpected fact is that this YY-
[CAUG]-matrix defines its own Yin-Yang-algebra as well. 

The multiplication table of this YY-
[CAUG]-algebra is shown on Figure 16.

By analogy with the previous paragraph, one can analyze transformations of the genetic YY-
[CAUG]-matrix, 

which are produced as a result of the same cyclic permutation of its genetic elements C→A→G→U→C. 
The same series of these cyclic permutations leads to a cyclic sequence of the following genetic matri-
ces, which are shown on Figure 17: YY-

[CAUG]→YY-
[UCGA]→YY-

[GUAC]→YY-
[AGCU]→YY-

[CAUG]. This Figure 
17 is the analogue of Figure 11 for the genetic Yin-Yang-matrices, which were described in the previous 
paragraph.

Figure 13. On the left side: the matrix Gf of Yin-genoquaternion. On the right side: the matrix Gm of 
Yang-genoquaternion. Columns with null components are shown as well. Matrix cells with positive 
(negative) components are marked by black (white) colors as in all previous cases
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Each of these new three matrices YY-
[UCGA], YY-

[GUAC] and YY-
[AGCU] is the Yin-Yang-matrix, which 

defines its relevant Yin-Yang-algebra. The multiplication tables of basic elements of these new Yin-
Yang-matrices are shown on Figure 18.

All four genetic matrices YY-
[CAUG], YY-

[UCGA], YY-
[GUAC] and YY-

[AGCU] are connected with their own 
Hadamard matrices by means of the same algorithmic way (Figure 19).

By analogy with the previous paragraph, a total quantity of genetic Yin-Yang-matrices of this op-
positional category (and a quantity of their relevant Hadamard matrices) increases significantly if one 
takes into consideration the same described permutations of the genetic elements including the permu-
tations of positions in triplets, etc. In accordance with some preliminary estimation, a total quantity of 
Yin-Yang-matrices of both categories exceeds 1000 matrices considerably.

Figure 14. The YY-
[CAUG]-matrix

Figure 15. The tessellations of a plane by the mosaic of the YY+
[CAUG]-matrix (on the left side) and by the 

mosaic of the YY-
[CAUG]-matrix (on the right side)

Figure 16. The multiplication table of the genetic YY-
[CAUG]-algebra
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GENERATIVE AND SUppRESSIVE pROpERTIES OF yIN-
yANG-mATRICES OF THE TWO CATEGORIES

The connection of described Yin-Yang-matrices with their relevant Hadamard matrices seems to be inter-
esting and prospective for study. This paragraph will consider a case when magnitudes of all coordinates 
of the Yin-genoquaternion Gf and of the Yang-genoquaternion Gm (Figure 13) are equal to 1 (x0 = x1 = 
x2 = x3 = x4 = x5 = x6 = x7 = 1). We will name conditionally such genoquaternions and their mentioned 
combinations (Gf + Gm) and (Gf - Gm) “elementary”: the elementary Yin-genoquaternion, the elementary 
YY+

[CAUG]-matrix, etc. This case is interesting specially because all components of Yin-Yang-matrices 
of both oppositional categories (YY+

[CAUG], YY-
[CAUG], etc.) are equal in this case to “+1” or “-1” like in 

Hadamard matrices. Simple changes of the signs “+” or “-” of some components of such elementary 

Figure 17. The cyclic sequence of the Yin-Yang-matrices YY-
[CAUG]→YY-

[UCGA]→YY-
[GUAC]→YY-

[AGCU]→Y
Y-

[CAUG], which arises on the bases of the cyclic permutation of the genetic elements C→A→G→U→C 
in the matrices
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Yin-Yang-matrices in accordance with the U-algorithm are enough to transform these elementary Yin-
Yang-matrices into relevant Hadamard matrices.

The elementary genetic Yin-Yang-matrices of the two oppositional categories possess some beauti-
ful properties relative to multiplication. If any elementary Yin-Yang-matrix (Gf + Gm) is raised to the 
second power, the result is a tetra-reproduction of this Yin-Yang-matrix. For example, let us consider 
such exponentiation of each of the six Yin-Yang-matrices on Figure 12:

(YY+,123
[CAUG])2 = 4* YY+,123

[CAUG]; (YY+,231
[CAUG])2 = 4* YY+,231

[CAUG]; 

(YY+,312
[CAUG])2 = 4* YY+,312

[CAUG]; (YY+,321
[CAUG])2 = 4* YY+,321

[CAUG]; 

(YY+,213
[CAUG])2 = 4* YY+,213

[CAUG]; (YY+,132
[CAUG])2 = 4* YY+,132

[CAUG]  (5)

This property can be illustrated graphically as giving rise to four identical matrices instead of one 
initial matrix (Figure 20). It generates some associations with the tetra-reproduction of gametal cells 

Figure 18. The multiplication tables of the YY-
[UCGA]-algebra (the upper table),the YY-

[GUAC]-algebra (the 
middle table) and the YY-

[AGCU]-algebra
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in a process of meiosis. In view of this, we name elementary Yin-Yang-matrices (Gf + Gm) generative 
Yin-Yang-matrices or start-matrices. By the way, if the elementary Yin-genoquaternion Gf or if the el-

Figure 19. The Hadamard matrices, which are connected algorithmically with the Yin-Yang-matrices 
YY-

[CAUG], YY-
[UCGA], YY-

[GUAC]and YY-
[AGCU]. Each black (white) cell contains the element “+1” (“-1”)

Figure 20. Schematic illustrations of the tetra-reproduction of the elementary Yin-Yang-matrices 
YY+,123

[CAUG]; YY+,231
[CAUG]; YY+,312

[CAUG]; YY+,321
[CAUG]; YY+,213

[CAUG]; YY+,132
[CAUG] by means of their rising 

into the second power
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ementary Yang-genoquaternion Gm is raised into the second power, the result is a double-reproduction 
of this elementary genoquaternion: Gf

2 = 2*Gf and Gm
2 = 2* Gm. It reminds one of a double-reproduction 

(a dichotomy) of somatic cells in a process of mitosis.
On the contrary, elementary Yin-Yang-matrices (Gf - Gm) possess a suppressive property: if any 

elementary Yin-Yang-matrix (Gf - Gm) is raised to the second power, the result is the null matrix. For 
comparison with the expression (5), one can show the following results:

(YY-,123
[CAUG])2 = 0; (YY-,231

[CAUG])2 = 0 ; 

(YY-,312
[CAUG])2 = 0; (YY-,321

[CAUG])2 = 0; 

(YY-,213
[CAUG])2 = 0; (YY-,132

[CAUG])2 = 0  (6)

In view of this, we name elementary Yin-Yang-matrices (Gf - Gm) suppressive Yin-Yang-matrices 
or stop-matrices (or apoptosis-matrices). A generative Yin-Yang-matrix can be transformed into a sup-
pressive Yin-Yang-matrix and vice versa by means of the simple inversion of the signs “+” and “-” in 
Yang-components (or in Yin-components) of this Yin-Yang-matrix. Such transformations can be defined 
as functions of time by means of a definition of Yin-Yang-coordinates as relevant functions of time.

Many interesting relations exist among generative and suppressive Yin-Yang-matrices and genoquater-
nions Gf and Gm. For example, the product of a generative Yin-Yang-matrix with a suppressive Yin-Yang-
matrix is equal to the tetra-reproduction of the suppressive Yin-Yang-matrix: (YY+,123

[CAUG]) * (YY-,123
[CAUG]) 

= 4*(YY-,123
[CAUG]), etc. On the contrary, the product of a suppressive matrix with a Yin-Yang-matrix (Gf 

+ Gm) is equal to the null matrix: (YY-,123
[CAUG]) * (YY+,123

[CAUG]) = 0. A set of such relations and properties 
gives new possibilities to create mathematical models of self-developing biological systems.

Do molecular-genetic facts exist about an important role of cyclic or circular principles in genetic 
systems? Yes, interesting phenomenological results of studying some circular principles of organizations 
of molecular-genetic systems are presented, for example, in the articles (Arques, Michel, 1996, 1997; 
Frey, Michel, 2003, 2006; Stambuk, 1999). One can hope that our algebraic-genetic results and these 
published phenomenological results will supplement each other for deeper understanding the genetic 
systems.

The described results about hierarchy of cyclic sequences of cyclic changes of genetic Yin-Yang-
algebras show the following: a set of cyclic transformations and cyclic structures in living matter is 
connected with these cycles of algebraic changes or can be modeled by means of such changes of the 
genetic algebras. Nature has created the genetic code in such a manner that a wide set of cyclic permuta-
tions of molecular-genetic elements in genetic matrices (or in these matrix forms of presentation of the 
genetic code) leads to cyclic changes of their genetic Yin-Yang-algebras.

Can algorithmic principles of organization of many cyclic movements (walking, run, breath, cardio 
cycles, etc.) of a separate individual be presented as well in forms of mathematical models and algorithms, 
which are based on such changes of the Yin-Yang-algebras? In our opinion, it will be possible in the 
future. In such models, a transition of one kind of cyclic movement to another kind can be expressed as 
a transition from one cyclic sequence of changes of Yin-Yang-algebras to another cyclic sequence. One 
can also establish about a possible relation of our algebraic-genetic approach with the famous concep-
tion by Eigen about hypercycles in biological organizations (Eigen, 1979).



240

Physiological Cycles and Their Algebraic Models in Matrix Genetics

JOINING OF THE IDEA By pyTHAGORAS AND THE IDEA 
OF CyCLIC CHANGES: ABOUT CELLULAR AUTOmATA, 
NEUROCOmpUTERS AND A NOTION OF BIOLOGICAL TImE

Pythagoras has formulated the famous idea: “All things are numbers”. Such known slogans of Pythago-
reans as “numbers operate the world”, “the world is number” reflect representations of Pythagoreans. 
For Pythagoreans the systems of numbers expressed the “essence” of everything. In view of this idea, 
natural phenomena should be explained by means of systems of numbers; the systems of numbers play a 
role on uniting all things and expressing the harmony of nature (Kline,1980, p. 21, 24). Many prominent 
scientists and thinkers were supporters of this viewpoint. Not without reason B. Russell (1945) noted 
that he did not know any other person who would exert such an influence on the thinking of people as 
Pythagoras.

The history of science knows many thinkers who believed that all physics can be described in a 
language of some multi-dimensional numeric system or algebra. For example, W. Hamilton believed 
that all physics can be described in the language of his quaternions. These kinds of thoughts are in a 
line with Pythagorean idea. The data of matrix genetics about cyclic changes of the genetic Yin-Yang-
algebras (or genetic Yin-Yang-numeric systems) provide materials for other kinds of thoughts or for 
broadening the idea by Pythagoras. The main point here is that a new idea about organization of living 
matter arises. In accordance with this idea, organization of living matter is based not on a single algebra 
but on cyclic changes of many algebras of a certain set (a set of genetic Yin-Yang-algebras). It means 
one that the idea by Pythagoras about numeric harmony of nature should be supplemented by another 
idea of cyclic changes of Yin-Yang-numeric systems. This new additional idea about cyclic changes of 
algebras in living matter lead to the idea about cyclic changes from the Ancient Chinese “The Book of 
changes” (“I Ching”) which was written about Yin-Yang-systems a few thousand years ago (see Chapter 
12). But instead of the quite wide notion of “a cyclic change” we use the strict mathematical notion of 
“a change of one genetic Yin-Yan-algebra into another genetic Yin-Yang-algebra”. Can this idea about 
cyclic changes of Yin-Yang-algebras be applied to inanimate matter to some extent as well? The future 
will tell. The authors do not know any other theory in the field of mathematical natural sciences which 
is based on cyclic changes of multi-dimensional algebras. It seems that the genetic code leads us to the 
new category of theories of mathematical natural sciences, which are based on a conception of cyclic 
changes inside a bunch of multi-dimensional algebras depending on time and spatial features.

From the viewpoint of the proposed algebraic-cyclic conception about organization of living mat-
ter, the notion of “biological time” can be defined as a factor of a general coordinating (or a general 
synchronization) of many cycles of changes of genetic Yin-Yang-algebras inside the hierarchy of these 
changes. If an organism is a hierarchy of cyclic changes of genetic Yin-Yang-algebras, such a biologi-
cal time is dispersed on all choruses of such cyclic processes of an organism. A dispersing of biological 
time along the whole organism reminds one of a dispersing of the feeling for music along the whole 
organism (our brain does not have a special center of music, and music appeals to the whole organism 
(Weinberger, 2004)).

The proposed algebraic-genetic approach to the problem of biological time provides the famous 
viewpoint (Whitrow, 1961) that biological time is internal time inside a spatial region of living matter 
(this spatial region is isolated to some extent from other regions of Universe).

Here we note that a wide class of cyclic and circadian phenomena in molecular biology is related to 
gene expressions. A problem of gene expression is one of the most important and the most difficult in 
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bioinformatics. Nucleotide sequences in DNA are the same in all cells of our organism, but this inherited 
information gives different proteins and other results in different cells and in different time because of 
changes of gene expressions (or because of specifics of biological reading this DNA information). Gene 
expression is the process by which inheritable information from a gene is made into a functional gene 
product, such as protein or RNA. It is known that several steps in the gene expression process may be 
modulated, including the transcription step and translation step and the post-translational modification of 
a protein. Gene regulation gives the cell control over structure and function, and is the basis for cellular 
differentiation, morphogenesis and the versatility and adaptability of any organism. Gene regulation 
may also serve as a substrate for evolutionary change, since control of the timing, location, and amount 
of gene expression can have a profound effect on the functions (actions) of the gene in the organism. 
The cyclic and circadian types of gene expressions are connected closely to a problem of biological 
clock and relations of organisms with cyclic changes of environment. They take an important place in 
bioinformatics (Ceriani et al, 2002; Izumo et al, 2003; Matsumoto et al, 2007; McDonald & Rosbash, 
2001; Oster et al., 2003; Panda et al, 2002).

In our view, cyclic ensembles of algebraic structures of the genetic code have a close relation to 
phenomenology of a huge chorus of cyclic and circadian gene expressions. Presented cyclic sets of the 
genetic Hadamard matrices and of genetic bipolar algebras give many new variants of applications of 
algebra, spectral analysis and symmetry theory for modeling and for studying interrelated systems of 
cyclic and circadian gene expressions. It is interesting that Hadamard matrices are already used in some 
mathematical investigations of gene expression (de Hoon et al, 2003).

In addition, it is important to note that Hadamard matrices and their Kronecker product are used in 
a problem which is a dream of biologists since the work of Darwin: to reconstruct the tree of evolution 
of living things. That tree could be the only scientific basis for classification. Hadamard conjugation for 
evolutionary trees was introduced in (Steel et al., 1992, 1993; Szekely et al, 1993, 1994; Szekely, Steel 
& Erdхs, 1993) where genetic sequences were analyzed.

Results of matrix genetics have interesting applications in the fields of cellular automata and neu-
rocomputing. Concerning to cellular automata, one may form a new branch of studies on the basis of 
genomatrices. This branch may be called “genomatrix automata”. Cellular automaton is a state machine 
that consists of an array of cells, each of which can be in one of a finite number of possible states. The 
cells are updated synchronously in discrete time steps, according to some interaction rules (Levy, 1993; 
Matthews, 2005; Wolfram, 2000).

A history of cellular automata (“machines by von Neumann”) began with works by J. von Neumann, 
who considered these works as the most important among all he made in his life. It is known that cel-
lular automata can function as universal computers and they can have properties of self-reproducing 
organisms. The most famous cellular automata are presented in a computer game “Life” by J. Conway. 
Cellular automata are utilized for modeling Navier-Stock’s equations and turbulence, etc. Some scientists 
believe that theory of cellular automata makes a scientific breakthrough in understanding not only vital 
processes, but Universe as well (Matthews, 2005; Wolfram, 2000).

The described properties of genetic matrices, including first of all generative and suppressive kinds 
of Yin-Yang-matrices, are useful for creating a new class of cellular automata – genomatrix automata – 
with new relevant rules of interaction of ensembles of genomatrices as special collectives of cells. In 
contrast to classical cellular automata, a theory of genomatrix automata deals with not separate cells but 
with their genomatrix ensembles.
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Another important application of matrix genetics is a creation of new kinds of neurocomputers. They 
may be called “genomatrix” neurocomputers which are controlled by a special set of logic operators. 
This set of operators corresponds to matrix features of the genetic code. One of famous neurocomputers 
called “Embryo” (Tsygankov, 2005) may be referred as a genomatrix neurocomputer. This genomatrix 
neurocomputer will reproduce some properties of living organisms in new and effective forms. It will 
be useful as well for deeper understanding the genetic system, for new decisions in the field of artificial 
intelligence (Russel, & Norvig, 2003), etc.

SOLUTIONS AND RECOmmENDATIONS

The discovery of the described properties of the genetic Yin-Yang-algebras, which are connected with 
cyclic permutations of genetic elements, gives new possibilities of a creation of mathematical models 
of cyclic biological processes. Such knowledge leads to new heuristic associations and directions of 
thought as well. A close connection of structural ensembles of the genetic code with special permutations 
of genetic elements receives new algebraic evidences because many permutations lead unexpectedly to 
new genetic Yin-Yang-algebras (from the viewpoint of matrix presentation of the genetic code systems). 
It can be essential for information processing in biological organisms. A result of mutual multiplication 
of any two 8-dimensional numbers from the expression (1) depends on a type of Yin-Yang-algebra, the 
multiplication table of which we use for the multiplication.

For example, if we use 10 kinds of Yin-Yang-algebras for such multiplication separately, 10 differ-
ent results arise. The coordinates of these 8-dimensional numbers can reflect information parameters, a 
system processing of which can be done from the viewpoints of different Yin-Yang-algebras. It can be 
useful for the organizing of multi-channel processing of biological information and for using the same 
initial data for different biological tasks, each of which can be connected with its own genetic Yin-Yang-
algebra (including a Yin-Yang-algebra of logic operators as well).

Various kinds of mosaic Yin-Yang-matrices give many types of a mosaic tessellation (for example, 
see Figure 15) of a plane or of flat surfaces like cylindrical or conical forms in biological objects. The 
full catalogue of such tessellations by means of Yin-Yang-matrices should be made. Can such mosaic 
tessellations be found in a history of ancient cultures or in real substances, for example, at a nano-sized 
level (by analogy with mosaics by Penrose, which were found in quasi-crystals)? This question should 
be researched additionally.

The study of cyclic processes in biological organisms has many aspects, mathematical modeling of 
which is needed. One example of these aspects concerns the famous concept of Ancient Oriental medicine 
about the cyclic nature of biological processes. According this concept, each organ has more or less a 
definite time interval for its culmination (its own time interval), when its activity is maximal, and each 
organ has a maximum sensitivity to pathogenic and medicinal influences just in this special time interval 
(Vogralik & Vogralik, 1978, p. 11). This phenomenological knowledge about the chronocyclic essence 
of biological organisms was used and tested during several thousand years by generations of oriental 
doctors, which were specially selected from many candidates in accordance with the criteria of their 
talents and of their brains. Many effective methods were constructed on the basis of this knowledge. (for 
example see (Cheng Xinnong, 1989; Needham, 1956)). One of them is the pulse diagnostics of Tibetan 
medicine. This pulse diagnostics was a universal method of diagnostics for an experienced doctor, who 
could determine not only many kinds of diseases, but report sometimes about physiological past and 
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future of his patient (Tsydypov, 1988). This method shows additionally, that chronocyclic processes 
(pulse processes, etc.) in biological organisms carry astonishingly complete information about organism 
on the whole. One can hope that new knowledge about genetic Yin-Yang-algebras will be useful for 
deeper understanding these phenomena as well.

Here we point out that the main problem in biology, which was formulated by the prominent Rus-
sian physiologist A. Gurvich (1977, p. 27) in following: “the main problem of biology is a supporting 
of a form at a permanent renovation of materials”. Results of matrix genetics presented in this book 
give new tools for mathematical modeling such properties and allow searching new invariant relations 
among elements of the genetic code systems. In particular, matrix genetics reveals that a set of cyclic 
shifts (permutations) of genetic elements in the genetic Yin-Yang matrices have invariant relations to 
the Yin-Yang types of algebras and to the genetic Hadamard matrices.

The fact of existence of the two types of oppositional Yin-Yang-matrices, elementary variants of which 
possess generative and suppressive properties, which were described above, can be utilized in mathemati-
cal models of self-developing biological systems. New useful bio-mathematical notions arise for such 
self-developing systems on the basis of cyclic changes of Yin-Yang-algebras, each of which is connected 
with its own “genovector calculation” and with its own anisotropic “genetic space” (see Chapter 7). One 
such new notion is “helical (or spiral) waves of growth” which can model phenomena of many helical 
configurations in biological bodies. The point is about extremely wide presence of helical configurations 
in biological morphology. Not without reason such helical structures were named “the curves of life” 
in the famous book (Cook, 1914). Producing helical constructions in many biological cases is realized 
in apical regions of growth of biological bodies. If one supposes that processes in a growth region are 
connected with appropriate Yin-Yang-algebras and that they depend on periodic cyclic changes of these 
algebras, a morphological construction of helical configurations can be generated. Such “helical waves” 
are interpreted as spatial movements of periodic cyclic changes of Yin-Yang-algebras.

The proposed algebraic-genetic version of biological time is useful for a deeper understanding of 
the hierarchy of interrelated processes in biological organisms. In the proposed case biological time is 
interpreted in relation to discrete cyclic changes in the hierarchy of genetic Yin-Yang-algebras. In view 
of this, such biological time is a discrete essence. The minimal time interval from one such change to the 
next change is a natural time unit of biological time in this conception. All other time intervals between 
adjacent changes of genetic Yin-Yang-algebras can be expressed as compositions of this time unit.

The history of science testifies that a development of new beautiful mathematical tools often leads to 
new theories and knowledge about natural systems and processes after some latent period. It is essential 
that we develop new mathematical approach, which is presented in this book for working with ensembles 
of genetic alphabets and multiplets, that can lead to a new language connected to matrix analysis and 
symmetries. New mathematical languages are important for development of scientific fields. A classical 
example is integral calculus and differential calculus. A main task of our book was a demonstration of 
new symmetrical patterns in the field of bioinformatics and also a demonstration of new phenomeno-
logical regularities and theoretical approaches. One can emphasize that our book shows how biological 
phenomena help in development of new mathematical tools and mathematical patterns including new 
types of multidimensional numbers and cyclic ensembles of algebras.
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FUTURE TRENDS AND CONCLUSION

In this book we began with revealing the symmetrical mosaic structure of the single genomatrix [C A; 
U G](3) (see Chapter 2, Figure 2). But now we have come to such great ensemble of genomatrices with 
symmetrical mosaics, members of which are interconnected by relation of permutation symmetries. In 
other words collective symmetries of genomatrices in great genomatrix ensemble are discovered in the 
field of matrix genetics. Systematic researches of these collective symmetries and of connections of 
these symmetrical genomatrices with Hadamard matrices are interesting for future progress in bioin-
formatics.

One can wait for an intensive development of algebraic models of biological phenomena of self-
developing and of cyclic processes on the bases of generative and suppressive genetic Yin-Yang-matrices 
and on the bases of a hierarchy of cyclic changes of genetic Yin-Yang-algebras. These models will reveal 
deep connections of molecular-genetic systems with quantum mechanics and quantum computers where 
Hadamard matrices play important roles. The importance of permutations of molecular-genetic elements 
and the principle of molecular economy (see Chapter 6) for the genetic system will be clear more and 
more. On the basis of ideas about such permutations and about Yin-Yang-algebras, new models will 
arise including models of animal metamorphoses (Figure 21).

In our opinion, a variety of species of living matter is connected to a significant extent with the variety 
of types of genetic Yin-Yang-algebras and with the variety of cyclic permutations of the genetic elements. 
In particular, wide researches should be done about a natural division of all set of genes and proteins into 
special sub-sets by criteria of mutual cyclic transformations of members of each sub-set by means of 
cyclic permutations of their genetic elements (like the considered cyclic permutation C→A→G→U→C, 
which transforms any sequence of triplets into another sequence of triplets).

Special attention will be paid on the investigation of structural parallels between the theory of genetic 
Yin-Yang-algebras and the conceptions of the Ancient Chinese “The Book of Changes” (“I Ching”), 
where the basic role of cyclic changes in nature is considered in original manner (see Chapter 12).

Figure 21. Schematic presentation of four stages of cyclic metamorphoses of butterfly: egg, larva, pupa 
and adult
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Cyclic changes of types of the genetic Yin-Yang-matrices are produced by means of cyclic permuta-
tions of genetic elements. Taking into account the existence of “male” genoquaternion and “female” 
qenoquaternion as two items (summands) of any 8-dimensional Yin-Yang-matrix, the opposite type of 
genetic Yin-Yang-matrices was discovered which is based on subtraction of these two genoquaternions. 
The mentioned hierarchy of Yin-Yang-algebras and of their changes can be utilized for a new algebraic 
definition of the notion of biological time and for creating a new category of mathematical models of self-
developing and cyclic processes of biological objects. New patterns and symmetry relations are revealed 
by studying permutations of genetic elements in the matrix forms of presentation of the genetic code.
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Chapter 12

Matrix Genetics and Culture

INTRODUCTION AND BACKGROUND

Results of researches of the genetic code are important, first of all, for genetics and biotechnology. How-
ever, a high attention to structural properties of the genetic code system is shown by the most different 
fields of science and culture as well. Many experts think that the genetic code is the bearer of keys to 
a solution of the phenomenon of life. Many researchers develop the theories and creative designs with 
taking into account properties and mechanisms of transfer of the hereditary information. For instance, 
knowledge about inherited properties of physiological systems of perception is important for engineers 
in the field of ergonomics and mechatronics systems which provide effectiveness, reliability and noise 
immunity of created machines and tools. This chapter presents some examples of possible applications 
of the research results, which were described in the previous chapters, in various fields of culture. A 
connection of the genetic code with musical harmony has been already considered in Chapter 4.

ABSTRACT

This chapter considers the topic of connections of the genetic code with various fields of culture and 
with inherited physiological properties which provide existence of these fields. Some examples of such 
physiological bases for branches of culture are described. These examples are related to linguistics, 
music, and physiology of color perception. Special attention is paid to connections between the genetic 
matrices and the system of the Ancient Chinese book “I Ching.” The conception and its arguments are 
put forward that the famous table of 64 hexagrams of “I Ching” reflects notions of Ancient Chinese 
about music quint harmony as a universal archetype.

DOI: 10.4018/978-1-60566-124-7.ch012
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Traditionally experts in various fields of science and culture are interested in studying living matter. 
Modern computerized technical systems need in reliability and noise-immunity in high extent relevant 
to “patents” of living nature. First of all, patterns and symbols of the genetic code of the double helix 
of DNA are utilized widely in many design solutions, art, etc. Creators of many cultural works would 
like to know theoretical bases, which can provide a physiological increasing of attention from the pub-
lic to their productions and which can lead them to new effective works on a scientific platform. They 
believe that the person is a measure of all things (see this topic in (Teilhard de Chardin, 1959)). They 
need a deep understanding of connections of the genetic code with inherited physiological systems and 
phenomena.

Inherited physiological bases of linguistics, color perception, music perception, and others are studied 
in many interesting works (Andrews, 1990; Caglioti, Ramme, & Tscouvileva, 2006; Chomsky, 1980; 
Darvas, 2007; Hahn, 1989, 1998; Hargittai & Hargittai, 1994; He & Petoukhov, 2007; Jacob, 1974, 1977; 
Kappraff, 1990, 2000, 2002; Leyton, 1992; Loeb, 1971, 1993; Marcus, 1990, 2007; Nonnenmacher, 
Losa & Weibel,.1994; Petoukhov, 2001, 2008a; Shubnikov, & Koptsik, 1974; Smith, 1980; Teilhard de 
Chardin, 1959; Wehr, 1969). It has been known for a long time that various physiological systems have 
many structural analogies among them and that various branches of culture have many general structural 
features as well. For example, architecture was interpreted historically as non-movement music, and 
music was interpreted as dynamic architecture. Matrix genetics give new evidences that many inherited 
analogies among different physiological systems are based on the genetic code structures.

The possible relations of musical harmony with the genetic code and with the system of “I Ching” 
were suspected for decades already. Hungarian musician E. Tusa (1994) has paid attention to some 
structural analogies between the ancient Greek numerical table Lambdoma, which was used by ancient 
Greek theorists of music, and symbolical table of 64 hexagrams of “I Ching”. In addition, Tusa has as-
sumed that the musical table Lambdoma has connections simultaneously with the genetic code. This 
assumption was based on hypotheses, which existed since 1969 after a publication of the book (Stent, 
1969), about the possible interrelation between the table of 64 hexagrams and the set of 64 genetic trip-
lets. The article ended with the following statement: “This summary is far from being complete. With 
my essay, I would like to stimulate everyone to search for further analogies and newer connections!” 
(Tusa, 1994, p. 310). Some results of matrix genetics, which are described in our book, discovery such 
newer connections.

THE GENETIC CODE AND LINGUISTICS

Impressive discoveries in the field of the genetic code have been described by its researchers using the 
terminology borrowed from linguistics and the theory of communications. As experts in molecular ge-
netics remark, “the more we understand laws of coding of the genetic information, the more strongly we 
are surprised by their similarity to principles of linguistics of human and computer languages” (Ratner, 
2002, p. 203). Linguistics is one of the significant examples of existence and importance of ensembles 
of binary oppositions in information physiology.

Leading experts on structural linguistics have believed for a long time that languages of human dia-
logue were formed not from an empty place, but they are continuation of genetic language or, somehow, 
are closely connected with it, confirming the idea of information commonality of organisms. Analogies 
between systems of genetic and linguistic information are contents of a wide and important scientific 
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sphere, which can be illustrated here in short only. We reproduce below some thematic thoughts by R. 
Jakobson (1985, 1987, 1999), who is one of the most famous experts and the author of a deep theory of 
binary oppositions in linguistics. Jakobson and others are holding the same views that we possess a lan-
guage which is as old as life and which is alive among all languages. Among all systems of information 
transfer, the genetic code and linguistic codes only are based on the use of discrete components, which 
in itself makes no sense, but serve for the construction of the minimum units which make sense. In both 
cases of the genetic language and of a linguistic language, we deal with separate units which, taken in 
itself, have no sense, but they get a sense after their special grouping. (By the way, one can note here that 
matrix genetics deals with matrix forms of groupings of elements of genetic language successfully). A 
similarity between both information systems is not exhausted by this fact at all. According to Jakobson, 
all relations among linguistic phonemes are decomposed into a series of binary oppositions of elementary 
differential attributes (or traits). By analogy the set of the four letters of the genetic alphabet contains 
the three binary sub-alphabets, which were described in Chapter 1 and which allows to number columns 
and rows of the genetic matriсes [C A; U G](n), etc. As Jakobson stated, the genetic code system is the 
basic simulator, which underlines all verbal codes of human languages. “The heredity in itself is the 
fundamental form of communications … Perhaps, the bases of language structures, which are imposed 
on molecular communications, have been constructed by its structural principles directly” (Jakobson, 
1985, p. 396). These questions have arisen to Jakobson as a consequence of its long-term researches 
of connections between linguistics, biology and physics. Such connections were considered at a united 
seminar of physicists and linguists, which was organized by Niels Bohr and Roman Jakobson jointly at 
the Massachusetts Institute of Technology.

“Jakobson reveals distinctly a binary opposition of sound attributes as underlying each system of 
phonemes... The subject of phonology has changed by him: the phonology considered phonemes (as the 
main subject) earlier, but now Yakobson has offered that distinctive attributes should be considered as 
“quantums” (or elementary units of language)… . Jakobson was interested especially in the general 
analogies of language structures with the genetic code, and he considered these analogies as indubi-
table” (Ivanov, 1985). One can remind also of the title of the monograph “On the Yin and Yang nature 
of language” (Baily, 1982), which is characteristic for the theme of binary oppositions in linguistics.

Similar questions about a connection of linguistics with the genetic code excite many researchers. In 
addition a linguistic language is perceived by many researchers as a living organism. The book “Linguistic 
genetics” (Makovskiy, 1992) states: “The opinion about language as about a living organism, which 
is submitted to the laws of a nature, ascends to a deep antiquity … Research of a nature, of disposition 
and of reasons of isomorphism between genetic and linguistic regularities is one of the most important 
fundamental problems for linguistics of our time”.

One of the interesting questions is the existence of fractal images in linguistic and genetic texts. A 
number of publications are devoted to fractal features of linguistic and genetic texts (Gariaev, 1994; 
Jeffry, 1990; Yam, 1995, etc). Researches in this direction proceed all over the world.

We believe that achievements of matrix genetics and its mathematical notions and tools will be useful 
for revealing deep connections between genetic and linguistic languages. This matrix-genetic approach is 
capable of enriching its own arsenal of structural linguistics as a roughly developing science and to clear 
a problem of the unified bases of biological languages. It can be applied to researches on evolutionary 
linguistics, the analysis and synthesis of poetic forms, etc.
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THE GENETIC CODE, A COLOR pERCEpTION 
AND A COLOR COmmUNICATION

This section describes an interesting analogy between the structures of the genetic code and a famous 
structure in physiology of color perception. Chapter 1 presented the three binary sub-alphabets of the ge-
netic alphabet (Figure 2 in Chapter 1), which are based on the three types of molecular binary-oppositional 
attributes (or traits). From the viewpoint of each of these binary sub-alphabets, the set of the four letters 
of the genetic alphabet is divided into two pairs of equivalent letters, each of which corresponds to one 
of the binary symbols “0” and “1”. By that, the three binary sub-alphabets contain six different binary 
symbols: 01, 11, 02, 12, 03, 13 (see Figure 2 in chapter 1). These symbols can be disposed into vertices of 
a six-vertex star (Star of David) in such way that binary oppositions 1N and 0N (where N = 1, 2, 3) take 
places on its opposite vertices (Figure 1, on the left side).

But the analogical six-vertex star is known for a long time in the physiology of inherited color per-
ception where it presents the so called “color circle” (Figure 1, on the right side). Three pairs of binary-
oppositional colors exist: “red-light blue”, “green-purple” and “dark blue-yellow”. These three pairs 
of colors can be interpreted as the ensemble of binary sub-alphabets of color perception. The colors of 
each pair are called traditionally complementary colors. By the way, the same construction of a six-
vertex star was described in Chapter 11, Figure 12. One recalls the famous dictum by L. Bolzano here: 
“Cognition is a search of analogies”.

This analogy of ternary ensembles of binary oppositions in the genetic code and in inherited fun-
damentals of color perception allows, in particular, proposing color portraits of genetic letters and the 
genetic triplets. For example, the oppositional symbols 11 and 01 of the first genetic sub-alphabet (Figure 
2 in chapter 1) can be interpreted as the first oppositional pair of colors: “red-light blue” correspond-
ingly. The oppositional symbols 12 and 02 of the second sub-alphabet – as the second oppositional pair: 
“green-purple”. At last, the symbols 13 and 03 can be interpreted as the third oppositional pair of colors: 
“dark blue-yellow”. From the viewpoint of the binary sub-alphabets of the genetic alphabet (Figure 2 
in chapter 1), the genetic letter “C” presents a superposition of the symbols “01 + 02 +03” and this letter 
“C” can be expressed by the sum of the three relevant colors: light blue (01) + purple (02) + yellow (03). 
By the same way the genetic letter “A” presents a superposition of the symbols “11 + 02 +13” and it can 
be expressed by the sum of colors: “red + purple + dark blue”. The genetic letter “G” is expressed in this 
scheme by the sum of colors: “red (11) + green (12) + yellow (03)”. The genetic letter “U/T” is expressed 
in this scheme by the sum of colors: “light blue (01) + green (12)+ dark blue (13)”.

Figure 1. Some analogy between the binary sub-alphabets of the genetic code and the circle of binary-
oppositional colors from physiology of inherited color perception
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In this approach each genetic multiplet can possess its own color expression on the bases of a superpo-
sition of colors of genetic letters, which form this multiplet. For example, the duplet GA is expressed by 
the superposition of colors of its letters G and A: “red + green + yellow + red + purple + dark blue”.

In such a color expression of multiplets, all genomatrices [C A; U G](n) of the Kronecker family take 
a form of the color mosaics, which reflect some “genetic” harmony. These color harmonic patterns of 
the Kronecker families of genetic matrices can have physiological activity, for example, to take special 
attention of people. In this case such color-genetic patterns will be useful in many fields, where color 
design is utilized: architecture, design of printed materials, toys, etc. The described analogy of ternary 
ensembles of binary oppositions in genetic coding and in color perception draws attention additionally to 
the deep value of chromaticity in information communication between different systems of an organism 
including a communication between proteins by means of their radiating and accepting “aerials” with 
a sharp selectivity to certain colors.

pARALLELS BETWEEN pATTERNS OF THE GENETIC 
CODE AND pATTERNS OF “I CHING”

G. Stent (1969, p. 64) published a hypothesis about a possible connection between genetic code struc-
tures and a symbolic system of the Ancient Chinese “The Book of Changes” (or “I Ching”). He is the 
famous expert in molecular genetics, and his thematic textbooks for students were translated into many 
countries including Russia (Stent, 1971). A few authors have supported him and his hypothesis later. 
For example, the Nobel Prize winner in molecular genetics F. Jacob (1974, p. 205) wrote as well: “C’est 
peut-être I Ching qu’il faudrait étudier pour saisir les relations entre hérédité et langage” (it means in 
English: perhaps, for revealing of relations between genetics and language it would be necessary to study 
them through the Ancient Chinese “I Ching”). In whole, a position about the necessity of the profound 
analysis of named parallels and their possible expansion exists in molecular genetics for 40 years. Our 
researches on matrix genetics give additional materials to this area and to the hypothesis by Stent. “I 
Ching”, which is devoted to the binary-oppositional system of “Yin and Yang”, declares a universality 
of a cyclic principle of organization in nature. Traditional Oriental medicine is based on positions of 
this book. Let us remind one of the known information about “I Ching” briefly.

A great number of literature sources are devoted to “I Ching”. Our references include only a negli-
gible part of a total quantity of these sources (Capra, 2000; Eremeev, 2005; Hesse, 1962; Kobzev, 1994; 
Needham, 1962; Petoukhov, 1999, 2001, 2005a, 2008a; Schonberger, 1976; Shchutskii, 1979, 1997; 
Stent, 1969; Tusa, 1994; Vinogrodskiy, 2002; Wilhelm, & Wilhelm, 1995; Yan, 1991).

Many of these sources label “I Ching” as one of the greatest and most mysterious human creations. 
From the viewpoint of the Chinese culture, which has generated it (this culture is the most ancient 
among all cultures, which continue their existence on the Earth), “I Ching” represents something even 
more considerable: the creation made by the Superperson, who has embodied a secret of the universe 
in special symbols and signs.

This book has had fundamental paradigmatic influence on the whole culture of traditional China and 
the adjacent countries. The ideas expressed in it have created original world-view and methodology. They 
have influenced to a huge extent the development of philosophy, religion, natural sciences, literatures 
and arts in Ancient China. In view of this, the Chinese culture became absolutely unique in the history 
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of world culture. Symbols and principles “I Ching” penetrated into all spheres of life of traditional China 
– from theoretical conceptions and high art to household subjects and decorations.

Many western scientists studied and used “I Ching”. For example, the creator of analytical psychol-
ogy C. Jung has developed his doctrine about a collective unconscious in connection with this book. 
According to Jung, the trigrams and the hexagrams of “I Ching” “fix a universal set of archetypes (in-
nate psychic structures)” (Shchutskii, 1997, p. 12). Niels Bohr has chosen the symbol Yin-Yang as his 
personal emblem. Many modern physicists, who feel unity of the world, connect their theories with ideas 
of traditional Oriental culture, which unite all nature. For example, it has been reflected in the title “the 
eightfold way” of the famous book (Gell-Mann, Ne’eman, 1964). Intensive development of modern 
sciences about self-organizing and nonlinear dynamics of complex systems (synergetrics) promotes 
strengthening attention of western scientists to traditional eastern world-view (for example see (Capra, 
2000)). Special groups study “Book of Changes” in many eastern and western universities. Annual 
scientific conferences on “I Ching” are conducted in Moscow (Russia) systematically during last few 
years. The great numbers of web-sites in Internet are devoted to the similar studies. The influence of “I 
Ching” is widely presented in the modern life of the countries of the East. For example, the national flag 
of South Korea bears symbols of trigrams (Figure 2). A great number of specialized schools work where 
instructors teach pupils methodological aspects of practical application of relevant ancient knowledge 
in medicine and in other fields. According to some versions, “I Ching” is a collection of knowledge, 
which was obtained by Ancient well-trained individuals by means of their practices of meditations and 
inspirational conditions.

One should note that “I Ching” was written some thousand years before the occurrence of modern 
Academies of sciences. It represents a set of dogmas of unclear origin. From the point of view of a mod-
ern science, the book confirms a universal conformity of these dogmas to a structure of nature without 
an appropriate substantiation of the dogmatic statements. Historically western academic science and its 
scientific laws (for example, Newton’s laws, etc.) were developed without any connection with “I Ch-
ing” by means of another methodology (though inspirational conditions, in which the person suddenly 
receives the complete picture of the answer to his questions, are well-known in western science as well; 
it is enough to recollect the famous history of the Periodic table of chemical elements which was showed 
in a complete way to Mendeleyev in his sleep). For these reasons, many individuals consider “I Ching” 
as a bright fact of Ancient Oriental culture but not as a valuable source of knowledge.

The main table in “I Ching” is the famous table of 64 hexagrams in Fu-Xi’s order, which is considered 
a universal natural archetype in Chinese tradition. Each hexagram is a pile of six broken and unbroken 

Figure 2. The national flag of South Korea, which contains the trigrams of “I Ching”
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(solid) lines. Each broken line symbolizes Yin and each unbroken line symbolizes Yang. According 
western tradition, these broken and unbroken lines are shown in the form of the binary symbols “0” 
and “1” and each hexagram is shown as a sequence of such six binary symbols. Figure 3 demonstrates 
hexagrams in this form of six-digit binary numbers. Each position in all hexagrams has its own indi-
vidual number: in the western numeric presentation of a hexagram, positions of its binary symbols are 
numbered left-to-right by numbers from 1 to 6 (in the Chinese graphical presentation, a numbering of 
the lines of each hexagram is read in the sequence bottom-up). Digrams (two-digit binary numbers or 
piles of two lines) and trigrams (three-digit binary numbers or piles of three lines) are considered as 
well. “Trigrams, hexagrams and their components in all possible combinatory combinations form a 
universal hierarchy of classification schemes. These schemes in visual patterns embrace any aspects 
of reality – spatial parts, time intervals, the elements, numbers, colors, body organs, social and family 
conditions, etc.” (Shchutskii, 1997, p. 10).

Let us mention one interesting historical moment. The creator of the first computer G. Leibniz, who 
had ideas of a universal language, was amazed by this table of 64 hexagrams when he became acquainted 
with it because he considered himself as the originator of the binary numeration system, which was 
presented in this ancient table already. Really, he saw the following fact. If each hexagram is presented 
as the six-digit binary number (by replacement of each broken line with the binary symbol “0” and by 
replacement of each unbroken line with the binary symbol “1”), this ancient sequence of 64 hexagrams 
in Fu-Xi’s order was identical to the ordinal series of numbers from 63 to 0 in decimal notation. By 
analogy, a sequence of 8 trigrams in Fu-Xi’s order is identical to the ordinal series of numbers from 7 to 
0 in decimal notation. “Leibniz has seen in this similarity the evidence of the pre-established harmony 
and unity of the divine plan for all epochs and for all people” (Shchutskii, 1997, p. 12).

It’s surprising that this ancient table of 64 hexagrams (Figure 3) is connected closely with the genoma-
trix [C A; U G](3) of 64 genetic triplets (Figure 3 in Chapter 1). Really, as it was described in Chapter 1, 
if each triplet in the genomatrix [C A; U G](3) is replaced by its coordinate six-digit number, which is a 
integration of binary three-digit numbers of its row and column, new numerical matrix arises (Figure 3 
in Chapter 1). From the viewpoint of a decimal notation, the sequence of these coordinate numbers of 
triplets coincides with the ordinal series of decimal numbers from 0 to 63. One can see that the genomatrix 
on Figure 3 in Chapter 1 is identical to the ancient table on Figure 3 in its inverse order of presentation. 
This inessential difference disappears if we invert the binary symbols of the genetic letters A, C, G, U/T 

Figure 3. The table of 64 hexagrams in Fu-Xi’s order
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in the binary sub-alphabets of the genetic alphabet on Figure 2 in chapter 1. For example, in the case 
of such an inversion, the letter A is symbolized by the binary symbols 01, 12, 03 (instead of its symbols 
11, 02, 13 on Figure 2 in chapter 1), etc. The reason, why we have chosen the variant of binary symbols 
in the binary sub-alphabets on Figure 2 in chapter 1, is the following. This chosen variant leads to the 
usual ascending numeration of columns and of rows of matrices in the theory of signal processing, if 
one reads the series of numbers 0, 1, 2, … in matrices left-to-right and top-down. The Chinese variant 
of reading is opposite.

Ancient Chinese culture knew nothing about the genetic code, which was discovered by western sci-
ence recently. And our Kronecker construction of the genetic matrix [C A; U G](3) in the field of matrix 
genetics was based on pure academic data of molecular genetics and used nothing from “I Ching”. But 
as a result we see the formal coincidence of the described matrix structures. Consequently the described 
binary presentation of the genomatrix of 64 triplets is known a few thousand years already. Let us con-
sider other parallels of the genetic code system with the system of “I Ching”.

In Chinese tradition, Yin is symbolized mainly by means of not only the broken line but the number 
6 as well. And Yang is symbolized mainly by means of not only the solid line but the number 9 as well 
(Shchutskii, 1979, 1997). But Figure 6 in Chapter 4 demonstrated already the visual realization of the 
inversion-symmetrical patterns 6 and 9 in a disposition of numbers of one kind in the multiplicative 
genomatrix [C A; U G](3) of hydrogen bonds. These patterns 6 and 9 are invariants relative to algebraic 
operations with matrices of such a type (see Chapter 4).

In Chinese tradition, each hexagram is considered constructed from two independent trigrams – a 
bottom trigram and a top trigram (in western numeric presentation of hexagrams on Figure 3, these two 
trigrams correspond to the left three-digit half and to the right three-digit half of a six-digit number. For 
this reason the first half of six-digit numbers is marked on Figure 3 especially). For example, the book 
(Shchutskii, 1997, p. 86) states: “The theory of “Book of Changes” considers that a bottom trigram 
concerns an internal life… and a top trigram concerns to an external world… . Similar positions in a top 
trigram and in a bottom trigram have the nearest relation to each other. In view of this, the first position 
relates by analogy to the fourth position, the second position – to the fifth position, and the third position 
relates by analogy to the sixth position… . If these correlative positions (1-4, 2-5, 3-6) are occupied by 
various lines, it is considered that “conformity exists” between them, and in the case when these cor-
relative positions are occupied by identical lines, it is considered that “conformity is absent” between 
them”. (By the way, a six-digit coordinate number of each cell of the genomatrix [C A; U G](3) (Figure 3 
in Chapter 1) is also a binary hexagram arranged by two independent trigrams, which symbolize its row 
and its column). If one takes into account these conformities of the correlative positions 1-4, 2-5, 3-6, 
then a study of parallels between the genetic code and the system of “I Ching” reveals the possibility of 
a compact presentation of the (8x8)-table of 64 trigrams in the form of the third Kronecker power of a 
(2x2)-matrix of Chinese digrams. Let us explain it.

The following four digrams have a basic meaning in the system of “I Ching” (Figures 4, 5, 6, and 
7).

One can construct a kernel matrix S from these digrams (Figure 8) by analogy with the kernel matrix 
[C A; U G] of the genetic alphabet on Figure 3 in chapter 1.

Exponentiation of this kernel matrix S into the third Kronecker power produces the matrix of 64 
hexagrams in Fu-Xi’s order, if one takes into account the mentioned meaning of the correlative posi-
tions 1-4, 2-, 4-6. The issue is that one should distinguish strongly the bottom half and the top half in 
digrams, trigrams and hexagrams (we will name all of them by a general name “multigrams”). And at 
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Kronecker multiplication of the matrices S, each line of the bottom half (or of the top half) of the initial 
multigrams should be disposed in the bottom half (of the top half correspondingly) of a final multigram 
on the corresponding position. In another respect it is necessary to carry out the classical procedure of 
Kronecker multiplication of matrices. This Kronecker algorithm of construction of the Chinese matrix 
of 64 hexagrams corresponds to the traditional Chinese viewpoint: “Hexagrams are not trigrams, which 
are alloyed together, but they are two trigrams, which are located on a vertical one over another” 
(Shchutskii, 1997, p. 101).

The next parallel concerns the numbers 2 and 3. These numbers served as the base of Chinese numeric 
systems in Ancient China (Kobzev, 1994, p. 15) and they are named there as the number of the Earth and 
the number of Heaven correspondingly. But these two kinds of numbers – 2 and 3 – are presented in the 
molecular structures of the genetic code as numbers of hydrogen bonds of nitrogenous bases. In view 
of this, all numerical features of the quint genomatrices of the hydrogen bonds, which were described 
in Chapter 4, are reproduced in the matrices of “I Ching” as well. In particular, these ancient matrices 
are connected with the golden section φ = (1+50.5)/2 = 1.618… . We will demonstrate this below.

The set of the four Chinese digrams of Old and Young Yin and Yang (Figure 8) is divided into two 
sub-sets. One sub-set contains two digrams (Young Yin and Young Yang), each of which consists of 
the various types of lines – broken and unbroken. The second sub-set contains two digrams (Old Yin 
and Old Yang), each of which consists of an identical type of line – broken or unbroken. Let us replace 
in the matrix S (Figure 8) the digrams of the first sub-set by number 2 and the digrams of the second 
sub-set by number 3. And let us do the same replacement of digrams on the correlative positions 1-4, 

Figure 4. Old Yang

Figure 5. Old Yin

Figure 6. Young Yang

Figure 7. Young Yin

Figure 8. The kernel matrix of the Chinese digrams
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2-5, 3-6 of each hexagram in the ancient table of 64 hexagrams with subsequent multiplication of three 
introduced numbers for each hexagram (as usual by Kronecker multiplication of numeric matrices). 
As a result we get two quint matrices PMULT

(1) and PMULT
(3), which were shown on Figure 2 in Chapter 

4 already. Chapter 4 has demonstrated the connection of these matrices with the golden matrices, all 
components of them are equal to the golden section in integer powers (Figure 3 in Chapter 4). In this 
direction of researches we come to the thought that the ancient table of 64 hexagrams “I Ching” should 
be considered not as a simple table but as a matrix, which is connected with some other matrices by 
means of the usual matrix operations.

The numbers 8 and 12, which characterize the canonical sub-sets of amino acids in Chapter 3 (Figure 
1 in Chapter 3), were wide known in Ancient China as “a standard measure of alternative partitioning of 
space-time on Chinese chrono-topograms… . The numbers 8 and 12 are interconnected also as key pa-
rameters of a cube and an octahedron. A cube possesses 8 tops and 12 edges and an octahedron possesses 
8 sides and 12 edges. These both types of polyhedrons served for the Chinese thinkers as one of basic 
simulators in their understanding of the Universe since ancient times” (Kobzev, 1994, p. 39, 40).

The four named digrams (Figure 8) were symbolized in Ancient China by the numbers 6, 7, 8, 9 as 
well (Shchutskii, 1997, p. 22, 522). It is interesting that these four numbers characterize the quantity of 
protons in the chemical elements, which form the molecules of the genetic letters (or of the nitrogenous 
bases): the carbon C has 6 protons (its ordinal number 6 in the Mendeleev’s table), the nitrogen N has 
7 protons, the oxygen O has 8 protons and amino group (amides) NH2 has 9 protons. The same four 
numbers 6, 7, 8, 9 occupy all cells of the genetic matrix [C A; U G](3) of 64 triplets, if each triplet is 
presented by the sum of numbers 2 and 3 of hydrogen bonds of its nitrogenous bases (see details and 
some other examples in (Petoukhov, 2001)).

Attempts of a biunique comparison of 64 genetic triplets and 64 hexagrams of “I Ching” are known 
in literature sources. A review of these attempts exists in the book (Petoukhov, 2001). Authors of these 
attempts issued from the Chinese table of 64 hexagrams and then they utilized additional assumptions 
to guess a biunique correspondence between each hexagram and each genetic triplet. But the quantity 
of possible variants of such a correspondence is huge (Chapter 1 has considered the number 64! ≈ 1089 
of possible variants of a disposition of 64 triplets inside an octet matrix). In view this, it is impossible 
practically to find an adequate correspondence by such a way. Matrix genetics suggests another way 
to find such a correspondence by means of researching the matrix presentations of the genetic code 
without any initial connections with the “I Ching”. But as a result of this research, the correspondence 
of the genomatrix of the 64 triplets to the ancient table of the 64 hexagrams appeared suddenly. This 
correspondence gives new possibility for a biunique correspondence between each hexagram and each 
genetic triplet. In addition, from the viewpoint of the binary numeration of its rows and columns, the 
ancient table of 64 hexagrams is connected with the matrix of diadic shifts, if one takes into account the 
modulo-2 addition of these binary numbers as it was described in Chapter 1 (Figure 5).

One can note that the table of 64 hexagrams can be transformed into a numeric Yin-Yang-matrix 
by means of an analogue of the algorithm, which was described in Chapter 7 to construct the genetic 
Yin-Yang-matrix (see Figure 4 in Chapter 7). Really, the digrams, which occupy the first correlative 
positions 1-4 and 2-5 in hexagrams, can be interpreted as numeric symbols α (if the digram possesses 
two lines of an identical type) or β (if the digram possesses two lines of different types). Digrams, which 
occupy the last correlative positions 3-6 in hexagrams, can be interpreted as numeric symbols γ (if the 
digram is Old Yang or Young Yin) or δ (if the digram is Young Yang or Old Yin). In addition one should 
use a rule of signs “+” and “-” for hexagrams, which is analogical to the rule of these signs, which was 
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described in Chapter 7 to yield the genetic Yin-Yang-matrix (Figure 4 in Chapter 7). In such a way we 
obtain a Yin-Yang-algebraic presentation of the ancient table of 64 hexagrams.

mUSICAL HARmONy IN THE mATRICES OF THE 
GENETIC CODE AND OF “I CHING”

Ancient Chinese possessed the highest musical culture. Long before Pythagoras they used the musi-
cal system known in Europe under the name Pythagorean musical scale. Due to the cosmic meaning 
of music in ancient China, this quint scale was preferable for ancient Chinese in comparison with an 
equal temperament scale which was known for them many centuries ago as well. This Chinese system 
was borrowed by Pythagoras in many aspects (the analysis of these questions is presented in detail, for 
example, in the book (Needham, 1962, v.4). The Pythagorean doctrine (about a key role of numbers 
in the organization of the world) has arisen not at empty place. This doctrine was developed under an 
influence of the more ancient Oriental doctrines in some aspects. For example, according to Chinese 
notions, the even number 2 is the female number and the odd number 3 is the male number. But the 
same notion was typical for the Pythagorean School, in particular, for Pythagorean theory of musical 
harmony: “the integer 2 was considered to be the female number which can give birth to no new tones 
without the participation of the male number 3” (Kappraff, 2006, p. 303).

History has not saved data on how the founders of the system of “I Ching” have created the table 
of 64 hexagrams and why they declared its universal archetypical meaning for nature. It seemed that 
answers to these questions are inaccessible to modern people. But our investigations on matrix genetics 
about analogies among the genetic code, Pythagorean musical scale and the system of “I Ching” have 
led to an interesting conception about musical bases of the ancient table of 64 hexagrams. According to 
this new conception, this ancient table reflects relations of musical quint harmony (like the Pythagorean 
musical scale). This natural conception removes the mystery of the origin of the system of this table to 
a high extent. We shall present materials for this conception.

Music was the cornerstone in the Chinese civilization, which is the longest living culture in history. 
Even the national system of measures and weights has been constructed in connection with musical 
instruments. This fact has no precedents in history of civilizations (Needham, 1962; Eremeev, 2005, p. 
76). Old Chinese music was used intensively in ancient therapy with success according to many literature 
sources. It is interesting because this music is based on such a music scale which is connected with the 
genetic code in its matrix form of presentation (as it was described in Chapter 4).

According to notions of Ancient Chinese, music is present at the origin of the world and plays a 
space role: music represents a microcosm reflecting a structure of the Universe. Fine music possesses 
strictly a certain structure which cannot be broken as it is impossible to violate the law. Musical rules are 
reproduced in different fields of culture. Briefly speaking, music in the Ancient China was considered 
as a general natural archetype.

Rules on painting or architecture products were created similar to a rhythm in music. In essence 
music in Ancient China was considered as general natural archetype.

One of the significant examples of the connections of the Pythagorean harmonic doctrine with 
the system of “I Ching” is the following: the Chinese table of 64 hexagrams coincides with the quint 
genomatrix [3 2; 2 3](3) (Figure 2 in Chapter 4) and belongs to the Kronecker family of quint matrices 
[3 2; 2 3](n) in the case of a replacement of the Chinese digrams by the mentioned numbers of Earth and 
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Heaven as discussed above. In this case this ancient table has an obvious connection with the numeric 
triangle by Nicomachus of Gerasa (see Chapter 4 and the expression 4.1), with the golden section and 
with all the Pythagorean doctrine about musical harmony and aesthetics of proportions.

Taking all similar facts into account, we think that the system of “I Ching” is a collection of ancient 
knowledge and notions about music. In addition, from the viewpoint of matrices of “I Ching”, a direct 
indication of the connection of the bases of music with the numbers 2 and 3 exists in a classical work 
of literature “Spring and Autumn” by Lu Bu We from chapter on music: “The origins of music lie far 
back in the past. Music arises from Measure and is rooted in the great Oneness. … Music is founded 
on the harmony between heaven and earth, on the concord of obscurity and brightness” (this citation is 
taken from the book (Hesse, 1962, p. 31), the book author was a Nobel Prize winner and an expert of 
“I Ching”). These words about Earth and Heaven relate directly to the numbers 2 and 3 which symbol-
ized Earth and Heaven in Ancient China (including Chinese music) and which transform the table of 64 
hexagrams into the quint matrix [3 2; 2 3](3). The words about the concord of obscurity and brightness 
correspond to the known fact that the Chinese musical system contained 12 sounds, each of which had 
a magic sense: the odd sounds personified brightness, active forces of Heaven; the even sounds personi-
fied obscurity, passive forces of Earth (Eremeev, 2005).

On the basis of the knowledge about such a correspondence between the ancient table to the quint 
matrix, a musical presentation of the table of 64 hexagrams is possible for the case of the described 
replacement of the diagrams by numbers 2 and 3 (Figure 10 in Chapter 4).

From the viewpoint of our proposed conception, the table of 64 hexagrams in Fu-Xi’s order is 
constructed as a code of knowledge about musical harmony and as a special presentation of the quint 
musical scale. The statement of ancient Chinese about a universal correspondence of the given table to 
nature and about its status of a general natural archetype is a repetition of their understanding of music 
as the universal organizing beginning, which concerns all aspects of life.

FUTURE TRENDS AND CONCLUSION

Many phenomena of culture have connections with inherited physiological peculiarities of our systems of 
perception and communications or, in other words, they have physiological bases. The study of connec-
tions of genetic code structures with features of relevant physiological phenomena is important. Matrix 
genetics proposes new mathematical methods and approaches using matrix presentation and analyses 
to study these connections with their patterns, symmetries, etc.

The genetic language is considered usually as a language and as a possible basis of linguistic lan-
guages and of communication physiology. One of the main problems for all languages is the following: 
how discrete components of a language, each of which in itself has no sense, acquire a sense in their 
grouping into ensembles? A grouping of discrete elements by means of the described matrix way is one 
possible variant of grouping, but this way has demonstrated its effectiveness in studying the genetic code 
systems and their evolution. In view of this, matrix genetics should be developed intensively.

In particular the study of connections of genetic code structures with various fields of culture and 
with physiological bases of cultural phenomena concerns the interesting theme of archetypes. The creator 
of analytic psychology C. Jung has proposed ideas about congenital archetypical notions. According to 
Jung, a universal set of congenital mental structures is inherent in individuals. And according to Jung, 
the system of trigrams and hexagrams of “I Ching” fixes the universal set of such archetypes.
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According to Jung, the universal set of archetypes - congenital mental structures is inherent in people. 
Jung was the expert and the connoisseur of this book. He named it as the great and unique product. 
Visualization of the form of number 69 (Figure 6 in Chapter 4) in the matrix of genetic triplets, which 
is connected with hexagrams of “I Ching”, forces one to pay additional attention to this circle of ques-
tions about archetypes. For example, why do individuals utilize the symbols of 6 and 9 in their written 
languages? Data of matrix genetics allow one to think that habitual forms of the symbols of 6 and 9 have 
not been invented by our ancestors in an arbitrary manner, but they are ones of universal archetypes, 
which were simply reproduced in written languages.

Another example of universal archetypes, which has been described by Jung himself, is the archetype 
of the quaternary set: a universal archetype, which is a logical prerequisite of every entire judgment. 
According to Jung, it frequently has a structure 3+1, one of the elements of which takes a special place 
or possesses a different nature. Just the fourth element, adding to the others, makes them a single whole, 
which symbolizes the universal set (see Wehr, 1969). This archetypes coincides with the structure of 
the genetic alphabet with its four letters, where the letter U is opposite to the other three genetic let-
ters A, C, G by their molecular peculiarities. In matrix genetics this genetic quaternary set leads to the 
transformation of the genetic matrices [C A; U G] and [C A; U G](3) into Hadamard matrices by means 
of the U-algorithm as described in Chapter 6. One can think that the same archetype is realized in the 
tetra-reproduction of gametal cells at meiosis.

It is obvious that a study of connections of the genetic Yin-Yang-algebras with cultural phenomena, 
where the binary opposition of male and female beginnings is one of the main themes from ancient time, 
gives many additional materials. This topic is under wide investigation now.

The described study in the field of matrix genetics of the connections of the genetic code structures 
with various fields of culture including the culture of Ancient China is only in an initial investigation 
stage. This study can give many new and unexpected results. In view of this, it will be continued in 
different directions including structural phenomena of inherited physiological systems and processes, 
which are related to bioinformatics. There is no doubt, new beautiful symmetrical patterns will be found 
on this way. Special attention will be paid to the mentioned study from the viewpoint of the genetic Yin-
Yang-algebras and relevant Hadamard matrices, which allow modeling phenomena of inheritance using 
formalisms of quantum mechanics and quantum computers. Simultaneously new ideas and simulators in 
the fields of structural linguistics, physiology of perceptions, theory of musical harmony and others will 
arise due to materials of matrix genetics. In addition one can suppose that bioinformatics will discover 
many other useful things as well in ancient Oriental medicine and culture.

It is known that ancient Chinese connected the 8 trigrams of “I Ching” with 8 kinds of special en-
ergy. Perhaps one can hope that 8-parametric genetic matrices of the Yin-Yang algebras will be useful 
to understand bases of these ancient ideas about special forms of energy.

The Kronecker family of matrix forms of presentation of the genetic code systems is useful for the 
detection of many interesting connections of the genetic code structures with structures from various 
fields of culture including the culture of Ancient China. New patterns and relations of symmetry are 
found in studying analogies of the genetic code structures with patterns of linguistics, color perception, 
architecture, musical harmony, ancient patterns of “I Ching”, etc. This study should be continued.
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