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Preface

As science and society as a whole become more and more information intensive,
there is an urgent need to develop, create, and apply new algorithms and methods
to model, manage, and interpret this information. This is nowhere more evident
than in biomedicine, where clinicians and scientists are routinely faced with
conflicting (sometimes contradictory) sources of knowledge, in addition to the
overwhelming and ever increasing stream of data. Bioinformatics and the -omics
(genomics, proteomics, etc.) herald the advent of a new era and a new paradigm for
scientific and, in particular, biomedical research. Together with the tools developed
in optimization theory and the mathematical sciences, we are at a crossroads, where
a more fundamental understanding of biological processes is within our grasp. This
understanding will certainly pave the way for a more systematic attack on the
mechanics of diseases, as opposed to a naive treatment of their symptoms (which
has been the hallmark of classical medicine). It seems clear that there is an urgent
need in biomedicine for new methods that will make sense out of clinical and
experimental data that can be used to learn and generate rational hypotheses from
the data and hence to advance the underlying disciplines.

In this volume we cover some of the topics that are related to this emerging
and rapidly growing field. In June 11–12, 2010, we organizeda Workshop on
Optimization and Data Analysis in Biomedical Informatics at the Fields Institute.
Following this event we gathered invited contributions based on the talks presented
at the workshop and additional invited chapters from world leading experts. We
asked the authors to share their expertise in the form of state-of-the-art research
and review chapters. Our goal was to bring together researchers from different areas
and emphasize the value of mathematical methods in the areas of clinical sciences.
This volume is targeted to applied mathematicians, computer scientists, industrial
engineers, and clinical scientists who are interested in exploring emerging and
fascinating interdisciplinary topics of research. We hope that this book will stimulate
and enhance fruitful collaborations between scientists from different disciplines.
The editors would like to acknowledge the Fields Institute for their financial support
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and hospitality. In addition, we would like to thank all the authors of the invited
chapters as well as Mrs. Debbie Iscoe for her valuable help during the editing of
this volume.

Gainesville, FL Panos M. Pardalos
Waterloo, ON Thomas F. Coleman
Orlando, FL Petros Xanthopoulos
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Onur Şeref and W. Art Chaovalitwongse

Mathematical Models of Supervised Learning and Application
to Medical Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Roberta De Asmundis and Mario Rosario Guarracino

Predictive Model for Early Detection of Mild Cognitive
Impairment and Alzheimer’s Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Eva K. Lee, Tsung-Lin Wu, Felicia Goldstein, and Allan Levey

Strategies for Bias Reduction in Estimation of Marginal Means
with Data Missing at Random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Baojiang Chen and Richard J. Cook

Cardiovascular Informatics: A Perspective on Promises
and Challenges of IVUS Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Ioannis A. Kakadiaris and E. Gerardo Mendizabal Ruiz

An Introduction to the Analysis of Functional Magnetic
Resonance Imaging Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Gianluca Gazzola, Chun-An Chou, Myong K. Jeong,
and W. Art Chaovalitwongse

Sensory Neuroprostheses: From Signal Processing and Coding
to Neural Plasticity in the Central Nervous System . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Fivos Panetsos, Abel Sanchez-Jimenez, and Celia Herrera-Rincon

vii



viii Contents

EEG Based Biomarker Identification Using Graph-Theoretic
Concepts: Case Study in Alcoholism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Vangelis Sakkalis and Konstantinos Marias

Maximal Connectivity and Constraints in the Human Brain . . . . . . . . . . . . . . . 191
Roman V. Belavkin



Novel Biclustering Methods for Re-ordering
Data Matrices

Peter A. DiMaggio Jr., Ashwin Subramani, and Christodoulos A. Floudas

Abstract Clustering of large-scale data sets is an important technique that is used
for analysis in a variety of fields. However, a number of these methods are based
on heuristics for the identification of the best arrangement of data points. In this
chapter, we present rigorous clustering methods based on the iterative optimal
re-ordering of data matrices. Distinct Mixed-integer linear programming (MILP)
models have been implemented to carry out clustering of dense data matrices (such
as gene expression data) and sparse data matrices (such as drug discovery and
toxicology). We present the capability of the optimal re-ordering methods on a wide
array of data sets from systems biology, molecular discovery and toxicology.

Mathematics Subject Classification (2010): Primary 54C40, 14E20, Secondary
46E25, 20C20

The problem of data clustering is prevalent across a number of disciplines such as
image processing [39], pattern recognition [3], microarray gene expression [27],
information retrieval [68] and protein structure prediction [60, 74, 86]. In general,
the aim of any clustering approach is to identify “similar” elements in the data set,
and to organize it so that elements with similar attributes are brought together.

The most common approaches to clustering can be categorized as hierarchical
[27] or partitioning [35] clustering algorithms. Although algorithms to identify the
optimal solutions to these categories of problems do exist [8,71,72], most algorithms
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2 P.A. DiMaggio Jr. et al.

end up with suboptimal solutions because of the use of heuristic search techniques
and the identification of local solutions. While a number of approaches like model-
based clustering [26, 84], neural networks [40], simulated annealing [44], genetic
algorithms [9, 66], decomposition-based clustering [76–78], information-based
clustering [73] and data classification [14, 63] have been proposed in literature, the
field of rearrangement clustering has recently emerged as a very useful alternative
method for minimizing the sum of pairwise distances between rows and columns to
reach the optimal solution. It has been shown that this problem can be formulated
as an instance of the traveling salesman problem (TSP), which can be solved to
optimality [53, 54].

A bicluster is defined as a submatrix of the original matrix, which spans a subset
of rows and columns. This way, common elements could be shared among a number
of biclusters. This problem has been classified as an NP-hard problem [16]. An ex-
ample of the application of biclustering methods is the study of downstream effects
of global changes in regulated gene expression, as measured by DNA microarrays.
The aforementioned clustering techniques would fail to uncover genes which are
involved in more than one biological process or which are co-expressed under
limited conditions [82]. This is because in an attempt to generate biclusters, most
algorithms either simplify the problem representation or employ heuristic methods.

A number of biclustering algorithms have been presented in literature. The
Cheng and Church algorithm [16] iteratively solves mean square residue based
optimization problem using greedy heuristics. This provides a measure of the
difference between the actual value of an element and its expected value based on its
position in the data matrix. Since this algorithm does not transform the data, it allows
for the integration of other data types. The plaid model [82] expresses data as a series
of additive layers, while the spectra model [50] identifies eigenvectors which reveal
the existence of checkerboard structures within the data matrix by using singular
value decomposition. For a given factorization rank, the nsNMF method [15]
uses non-negative matrix factorization with non-smoothness constraints to identify
biclusters. The biclustering methods Bimax [65] and Samba [79] discretize the
expression level which allows them to enumerate a large number of biclusters in
less time than more complicated models. To complement the assortment of problem
representations for biclustering, there have been a variety of algorithmic approaches
developed to solve these models of varying complexity, such as zero-suppressed
binary decision diagrams [85], evolutionary algorithms [10, 25], Markov chain
Monte Carlo [67], bipartite graphs [79], and 0-1 fractional programming [13]. An
excellent review of different bicluster definitions and biclustering algorithms can be
found in [58].

One of the main applications of sparse matrix clustering is in the field of Drug
discovery. Drug discovery is a tedious and expensive process, involving several
phases from target identification to clinical trials [62]. One of the bottlenecks in this
process is the identification of potential drug compounds, normally small organic
molecules or peptides, that can achieve multiple desired biological properties [57].
Finding such lead molecules can be highly difficult even with the assistance of
combinatorial chemistry and high-throughput screening [7, 38]. For example, if a
single molecular scaffold has N substituent sites with S distinct functional groups
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that may be attached at each site, then an absolute bound on the total number of
compounds in this library would be SN (one should note that this bound is typically
less in practice since bound type restrictions limit the pairing of functional groups).
As S and N increases, it quickly becomes impractical to synthesize and assay all
the library compounds.

A common practice is to employ quantitative structure-activity relationship
(QSAR) methods [33,34,64,81] to computationally predict the biological properties
of the library compounds (or at least to serve as a screening and enrichment
tool to eliminate chemicals that are unlikely to have drug-like properties). All
existing methods for constructing predictive QSAR models involve three basic
steps [64]: (1) synthesize and assay a training set of chemicals, (2) select physi-
cal/chemical/structural descriptors that can best relate to the biological properties,
and (3) construct mathematical functions that quantitatively describe and predict
the biological properties by these descriptors. In practice, the reliability of these
methods depends critically on the choice of suitable descriptors in step (2). It should
be noted here that recently developed supervised classification methods based on
mixed-integer linear programming [6, 43] have been shown to work well for the
descriptor selection problem. In an unsupervised approach, the success of these
methods is highly dependent upon appropriate input from the user, and hence some
level of user expertise.

An adaptive substituent reordering and interpolation algorithm was proposed for
estimating compound properties in combinatorial libraries from the synthesis and
assaying of a small number of randomly sampled library compounds [55, 70]. Fun-
damentally, both QSAR and this reordering algorithm are based on the assumption
that there exists an underlying physical regularity in the compound library, and this
regularity can be revealed from the structure-property relationships from sampling
a subset of the library compounds. However, unlike any other QSAR methods, the
reordering algorithm does not require any physical/chemical/structural descriptor
to operate, which makes it a very general and easy-to-apply technique for drug
discovery and other molecular discovery purposes.

For a single-scaffold compound library with N substitution sites and Sn.n D
1; 2; : : : ; N / substituents (functional groups) at the nth site, any compound in the
library can be represented by a N -dimensional vector X D fX1; X2; : : : ; XN g,
where Xn is the index of the substituent at the nth site and the value of Xn is an
integer between 1 and Sn. As a result, a biological property y of this compound is
an unknown nonlinear descriptor-free N -variable function

y D f .X/; (1)

which can be approximated by other parameterized functions g.X/ � f .X/ (e.g.,
radial basis functions) using data collected on a small subset of M compounds in
the library. g.X/ can then be utilized to estimate/interpolate the property of the
unsampled compounds in the library. The reliability in approximating f .X/ by
g.X/ and the subsequent predicative capability of g.X/ depend on the regularity
of f .X/ and g.X/ as a function of X, which in turn is determined by the integer
assignment (i.e., the value of Xi ) given to each substituent on the nth site. A key
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component of the algorithm is then to identify the optimal integer assignments (i.e.,
the optimal substituent ordering) for all substituents on all N sites so that g.X/ can
correctly reveal the underlying regularity of the whole library space. This is not an
easy task because the total number of possible orderings is S1Š � S2Š � : : : � SN Š if
each of the N sites is ordered independently. In addition, the relationship between
g.X/ and the orderings can be highly complicated and not amenable to derivative-
based optimization algorithms. In previous studies, the optimal orderings were
identified by using search algorithms that either maximize the smoothness of g.X/

[69] or minimize the root-mean-squared difference between interpolated and actual
properties of the M sampled compounds [55]. Proof-of-principle studies were
performed on the laboratory data of a copolymer library [70] and a transition metal
complex library [55], both of which demonstrated excellent predicative capability
of the algorithm over the whole library space.

In this chapter, we introduce a new strategy for efficient substituent reordering
and descriptor-free property estimation. The method views substituent reordering
as a special high-dimensional rearrangement clustering problem, which eliminates
the need for functional approximation and enhances computational efficiency.
In comparison to functional interpolation methods, clustering techniques can be
more reliable for pattern recognition in the presence of considerable data noise
and therefore would be better suited for drug candidate discovery where the
focus is more on identifying a subset of potential drug candidates with desired
properties rather than precise quantitative property predictions. Various techniques
have already been developed for the rearrangement clustering of high-dimensional
data [21, 22, 53, 54, 59]. These techniques have important applications in clustering
ensembles of structures from free energy calculations of oligopeptides [4, 45, 48]
or proteins [46, 47], de novo protein design sequences [32, 49], and design and
scheduling of batch processes [41, 56]. An important prerequisite for these existing
rearrangement clustering methods is that the data matrix is dense and contains only a
few missing elements. Evidently, this limitation makes these techniques inapplicable
for computational drug discovery, where the goal is to make predictions on copious
amounts of missing data.

The chapter is organized as follows. We present two sections describing the dense
and sparse matrix clustering approaches. First, we introduce a biclustering algorithm
which iteratively utilizes optimal re-ordering to cluster the rows and columns of
dense data matrices in systems biology. We present several objective functions to
guide the rearrangement of the data and two different mathematical models (network
flow and traveling salesman problem) to perform the row and column permutations
of the original data matrix. We demonstrate that this global optimization method
provides a closer grouping of interrelated entities than other clustering and biclus-
tering algorithms, produces clusters with insightful molecular functions, and can
reconstruct underlying fundamental patterns in the data for several distinct sets of
data matrices arising in important biological applications. Following this, we present
a global pairwise similarity metric to represent the smoothness of the compound
property space and introduce stochastic and heuristic search algorithms, in addition
to the MILP approaches presented previously, for identifying the best substituent
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orderings with respect to this smoothness. Computational studies on the efficacy of
the sparse matrix clustering algorithm are presented, where the proposed approach
is then applied to two sparsely sampled compound libraries provided by Pfizer Inc
in the Computational Studies section. The total number of possible compounds in
these libraries is 2,418 and 14,043, respectively. Computational Studies show that
the proposed methods provide excellent predictions of the library subspace that is
densely populated by compounds with desired properties from sampling as low
as 15% of the whole library space. Further, a synthesis strategy is then presented
in the Iterative Synthesis Strategy section, which iterates between synthesizing a
batch of compounds and using the reordering techniques to guide the synthesis
of the next batch of compounds. We demonstrate that this synthesis strategy is
effective in identifying lead molecules while simultaneously minimizing the total
number of sampled library compounds required. Finally, the dense and sparse matrix
clustering approaches are applied to Toxicology data provided during the ToxCast
Data Summit, and an algorithm is presented which aims to identify a subset of in
vitro assays which would be sufficient to predict the toxicity of a chemical for a
given in vivo endpoint.

1 Dense Matrix Clustering

In this section, we present an overview of the components of the mathematical
model for dense and sparse matrix clustering. For the clustering of dense matrices,
we present two formulations, namely (1) a network flow model and (2) a traveling
salesman problem (TSP) based model. We then present methods to identify cluster
boundaries and iteratively bicluster submatrices of the main matrix. Following this,
we present results of the application of the dense matrix clustering procedure on
specific data matrix sets.

For the set of variables and equations presented in this section, the index i runs
over the set of rows, while the index j runs over the set of columns. The cardinality
of the number of rows and columns are represented by jI j and jJ j, respectively. We
define binary variables yrow

i;i 0 as:

yrow
i;i 0 D

8
<

:

1; if row i is adjacent and above row i0
in the final arrangement

0; otherwise
:

While the definition presented above is for rows i and i 0 of the matrix, equations
and variables similar to the ones presented in this section can be written for columns
of the matrix as well. The aim of this stage is to optimally re-arrange the set of rows
and columns of a given data matrix, based on a metric of similarity provided by the
user. The general expression for the objective function can be written as:

X

i

X

i 0

yrow
i;i 0 � �.i; i 0/: (2)
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Here, cost of placing two rows i and i 0 is given by �.i; i 0/, which represents
the degree of similarity between two rows. The similarity between two rows can
be expressed using many common expressions like relative common difference
(Eq. (3)), squared difference (Eq. (4)) or root-mean squared deviation (Eq. (5))
between corresponding column elements between the rows. In addition, specialized
objective functions (like enforcing monotonicity) can also be implemented as
expressions in the objective function. The formulation of both the network flow
and traveling salesman problems allows for the introduction of symmetric and
asymmetric objective functions.

X

i

X

i 0

X

j

yrow
i;i 0 � jai;j � ai 0 ;j j (3)

X

i

X

i 0

X

j

yrow
i;i 0 � .ai;j � ai 0;j /2 (4)

X

i

X

i 0

yrow
i;i 0 �

sP
j .ai;j � ai 0 ;j /2

jJ j : (5)

1.1 Network Flow Model

The re-arrangement of rows and columns can be modeled as a network flow
model [1, 17, 29–31, 52], where the variables yrow

i;i 0 represent the existence of an
edge between rows i and i 0. Thus, the final ordering of the row permutations can
be represented by an acyclic graph, with an edge connecting immediate neighbors
in the final ordering of rows or columns. In addition to the variables previously
presented, we introduce binary variables y sourcerow

i and y sinkrow
i , which indicate

the row which would be the first and last rows in the network flow model,
respectively. Further, continuous variables representing the flows from one node
of the graph to another are represented by f rowi; i 0. It should be clear that the value
of variables f row.i; i/ should be zero, since a row can never be adjacent to itself.
The constraints applied to the model can be categorized as under. Further details
on the mathematical expressions to represent these constraints have been presented
elsewhere [21].

First, the placement of two rows adjacent to each other in the final arrangement
of rows is established by the following constraints:

X

i 0¤i

yrow
i 0 ;i C y sourcerow

i D 1 8i (6)

X

i 0¤i

yrow
i;i 0 C y sinkrow

i D 1 8i: (7)
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This ensures that each node has exactly one neighbor above and below it in the final
arrangement, unless it is a source or sink node. Next, there is exactly one source and
sink node in the final re-ordered sets of nodes.

X

i

y sourcerow
i D 1 (8)

X

i

y sinkrow
i D 1: (9)

These two sets of constraints are sufficient to ensure that all nodes in the acyclic
graph have unique neighbors. However, we continue to have the possibility of
cyclic orderings. In order to eliminate these, we enforce the following additional
constraints.

The value of the flow entering the top node (source node) is defined to be the total
number of nodes (jI j). Starting from this node, each subsequent node in the final
arrangement will have an entering flow value jI j � 1, jI j � 2 and so on. The flow
values ensure that we introduce an asymmetry to avoid creating circular solutions.

f sourcerow
i D jI j � y sourcerow

i 8i: (10)

Flow conservation equation requires that the flow entering a node is one unit
greater than that leaving the node.

X

i 0

.f row
i 0;i � f row

i;i 0 / C f sourcerow
i

�f sinkrow
i D 1 8i: (11)

Since we have defined the convention that f sourcerow
i starts at jI j, then

f sinkrow
i has a flow value of zero and thus can be eliminated from the above

constraint.
Relational constraints which relate the flow variables f row

i;i 0 to the node variables
yrow

i;i 0 , thus ensuring that flow between two nodes would be zero, unless they are
immediate neighbors in the network. Finally, we assign lower and upper bounds
on all flow variables. Flow between any two nodes i and i 0 has to be between 1

and jI j � 1.

f row
i;i 0 � .jI j � 1/ � yrow

i;i 0 8.i; i 0/ (12)

f row
i;i 0 � yrow

i;i 0 8.i; i 0/: (13)
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1.2 TSP Model

The main objective of the TSP Model is to find the minimum cost route to visit a
list of N cities and return to the starting city. The determination of the optimal TSP
path for a large number of cities continues to be a major challenge. Considering each
row or column as a city in a TSP path, the re-ordering of rows and columns can be
modeled as a TSP problem [18]. Just as the network flow model, rows in a matrix
can be represented as nodes on the TSP path. Here, the binary variables yrow

i;i 0 are set
to 1 if row i immediately precedes row i 0 in the final optimal TSP path. The cost of
moving from one city (i.e. row/column) to another is represented by �.i; i 0/. Hence,
the objective function for the TSP problem can be represented as given in Eq. (2),
which represents the cost incurred in “visiting” each row of the matrix exactly once.

Since the TSP problem requires that the tour start and end at the same city,
we introduce a dummy row which connects the top and bottom rows in the final
arrangement with edges of zero cost. The constraints applied to the model require
that each city in the TSP path have exactly one neighbor before and after it in the
optimal path.

X

i 0

yrow
i;i 0 D 1 8i (14)

X

i 0

yrow
i 0;i D 1 8i: (15)

In a manner similar to the network flow model, cyclic tours and subtours continue
to satisfy the aforementioned set of constraints. To counter this, a number of
additional constraints are implemented into TSP solvers like Concorde [5], and
are beyond the scope of the discussion in this chapter. A detailed mathematical
formulation of the TSP based model can be found in literature [21].

1.3 Iterative Framework

The algorithm begins by optimally re-ordering a single dimension of the data matrix.
Let us denote the dimension that is re-ordered as the columns and the dimension that
is not re-ordered as the rows of the data matrix. For instance, in gene expression data
the columns would correspond to the time series or set of conditions over which
the expression level for the genes of interest (i.e., the rows) were measured. The
objective function value for each pair-wise term between neighboring columns in
the final ordering is evaluated and the median of these values is computed. That is,
for each column j and j C 1 in the final ordering, the median of each pairwise term
of the objective function, �.ai;j ; ai;j C1/, is computed, as shown in Eq. (16).

MEDIANi �.ai;j ; ai;j C1/: (16)
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The median was selected as the evaluating metric since it is statistically less
biased to outliers than the average. Cluster boundaries are defined to lie between
those columns which have the largest median values (since the objective function
is being minimized). In other words, the median is computed for all pairs j and
j C 1 in the final ordering and the top 10% of largest median values are selected as
boundaries between the re-ordered columns. These cluster boundaries are used to
partition the original matrix into several submatrices. The rows of each submatrix
are then optimally re-ordered over their subset of columns and clusters in this
dimension are again defined using the median value of the objective function
between neighboring rows in the final ordering. The algorithmic steps for the
iterative framework are presented below:

1. Optimally re-order a single dimension of the data matrix. This re-ordered
dimension will be denoted as the columns.

2. Compute the median for each pair of neighboring columns in the final ordering
using Eq. (16). Sort these values from highest to lowest; the largest median values
define the cluster boundaries between the columns. Submatrices are defined by
the columns that lie between these cluster boundaries.

3. Optimally re-order the rows of each submatrix and compute the cluster bound-
aries for the re-ordered rows analogous to step 2.

1.4 Determination of Cluster Boundaries

Once the optimal ordering of rows or columns is carried out, either using the
network flow or TSP model, this ordering can be divided into a number of
clusters for further analysis. There are two approaches that have been developed
for this problem: (1) ILP based Cluster boundary determination and (2) Regression
approach for identifying cluster boundaries.

1.4.1 ILP-Based Cluster Boundary Determination

We propose an integer linear programming (ILP) model to determine the cluster
boundaries for a given optimal ordering. First, we identify a set of “cluster seeds”
by the set Seeds, which consists of neighboring elements in the final ordering that are
locally most similar. We also denote the set of elements that are outliers, or elements
that are not cluster seeds, by the set Outliers. The following notation is introduced: Nc
denotes the global average of c.i; i C 1/ over all i , � Nc is the corresponding standard
deviation of c.i; iC1/ over all i , and Oci;X denotes the local average of c.i 0; i 0C1/ for
all i 0 within a neighborhood of ˙X around element i . The sets Seeds and Outliers
are constructed using the following algorithm:

1. Set Seeds D ; and Outliers D ;.
2. Find the i 62 Outliers

S
Seeds with the minimum c.i; i C 1/ in the optimal

reordering.
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3. If Oci;X � Nc � � Nc , then add i to Seeds and all other elements i 0 to Outliers within
the range of ˙X elements of i . Else add i to Outliers.

4. Return to step 2 and repeat until all elements i are examined.

Given the set of cluster seeds, Seeds, we will formulate an ILP model to assign
all other elements to one of these initial clusters. We introduce binary variables zi

which are equal to 1 if the element is assigned to the cluster immediately preceding
it in the final ordering, and 0 if it is assigned to the cluster immediately after it in
the final ordering.

zi D
�

1; if element i is assigned to the cluster seed immediately before it
0; if element i is assigned to the cluster seed immediate after it

:

We define the sets Behind.i/ and InFront.i/ to denote the cluster seeds, represented
by the index k, that are behind and in front of the element i , respectively. Finally, for
every cluster k, we denote the set of elements that are fixed to belong to this cluster
seed a priori by the set Fixed.k/. For instance, if the first cluster seed contains the
elements 2; 3; and 4, then Fixed.1/ D 2; 3; 4.
The cost associated with the assignment of any element i into the cluster preceding
or following it can be dissected into several terms:

1. The fixed cost associated with assigning element i to the cluster preceding it,
which are the distances between element i and all elements initially belonging
this cluster.

FixedCost1.i/ D
X

i 02Fixed.Behind.i//

c.i; i 0/zi (17)

2. If element i is assigned to cluster k 2 Behind.i/ and element i 0 < i is assigned
to the same cluster k 2 InFront.i 0/, then we need to include the cost associated
with placing these two elements in the same cluster.

VarCost1.i/ D
X

i 0WInFront.i 0/DBehind.i/

c.i; i 0/.1 � zi 0/zi (18)

3. We also need to consider the contributions between element i and elements i 0 < i

if they are assigned to the same cluster k, which precedes these elements.

VarCost2.i/ D
X

i 0WBehind.i0/DBehind.i/

c.i; i 0/zi 0 zi (19)

4. Analogous expressions are derived for assigning elements to the clusters
succeeding them in the final ordering. The fixed cost associated with assigning
element i to the cluster after it is given by:

FixedCost2.i/ D
X

i 02Fixed.InFront.i//

c.i; i 0/.1 � zi / (20)
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5. Lastly, we need to include the cost associated with placing elements i and i 0 > i

in the same cluster k that is after these elements in the final ordering.

VarCost3.i/ D
X

i 0WInFront.i 0/DInFront.i/

c.i; i 0/.1 � zi 0/.1 � zi / (21)

The objective function is then given by minimizing the summation of these
individual contributions:

min
X

i

FixedCost1.i/ C FixedCost2.i/ C VarCost1.i/

CVarCost2.i/ C VarCost3.i/: (22)

Note that we must constrain the feasible cluster assignments to prevent the cross-
assignment of elements. In other words, if element i C 1 is assigned to the cluster
before it, then element i cannot be assigned to the cluster after it. The following
constraint enforces this restriction:

zi � ziC1: (23)

The nonlinearity associated with bilinear terms in the objective function can be
alleviated by defining the following binary variable:

wi;i 0 D zi zi 0 (24)

and incorporating the following constraints [28] into the model:

wi;i 0 � zi (25)

wi;i 0 � zi 0 (26)

zi C zi 0 � 1 � wi;i 0 : (27)

Minimizing Eq. (22) subject to constraint Eqs. (23), (25)–(27) provides the
resulting cluster assignments for a given optimal ordering and set of cluster seeds
(Seeds). The initial membership of the set Seeds is a function of the exclusion
window X . We vary the value of X and select the one which results in the minimum
total cluster error, which is the sum of the intra and inter cluster errors [76, 78].

This biclustering model will be applied in an iterative framework to analyze the
dense in vitro assay data. The chemicals and assays will be optimally re-ordered, and
then outlier in vitro assays, whose average distance to all other assays in the data is
less than the distance to its nearest neighbor, will be identified and removed from
the matrix. After removing the outliers, the chemical and assays are again optimally
re-ordered and biclusters are defined using the aforementioned MILP model for
determining cluster boundaries [23].



12 P.A. DiMaggio Jr. et al.

600000

500000

400000

300000

200000

100000

0
0 500

knee

Number of Clusters, [SL]

M
in

 d
is

ta
nc

e 
be

tw
ee

n 
an

y 
tw

o 
cl

us
te

rs
, d

m
in

1000

Min distance
Line Segment 1
Line Segment 2

Fig. 1 Illustrative example of dmin as a function of SL

1.4.2 Regression Approach for Identifying Cluster Boundaries

This approach aims to identify cluster boundaries in a hierarchical manner. Again,
we utilize the fact that we are aware of the optimal ordering of rows. By evaluating
the distances between immediate neighbors, we can get a distribution of neighboring
distances �.i; i C 1/. In this distribution, the most similar elements are merged
into a cluster. Once this is done, the two elements are replaced by a single element
which represents the cluster’s centroid. The distance of this new “element” to the
existing neighbors i � 1 and i C 1 is then evaluated and added to this distribution.
At each iteration, we keep bringing elements together into clusters, and replace
the elements of the cluster by the cluster centroid. It is expected that the cost of
bringing elements together sequentially into clusters would keep increasing, as we
keep bringing disparate elements together. As the list of elements in the distance
distribution diminishes, we inevitably encounter the situation where very dissimilar
elements or clusters are merged to form new clusters, resulting in a sharp increase in
the cost incurred. The aim is to determine the point when the cost incurred begins to
change drastically. Conceptually, this is equivalent to finding the “knee” of the curve
between the cost of merging clusters and the number of elements in the neighbor list.
As shown in Fig. 1, the two parts of the curve can each be approximated by best-fit
line segments, and the aim would be to determine which points belong to which line
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segment. In order to implement the model efficiently, an Expectation Maximization
(EM) based model has been developed. At each iteration, the model evaluates the
probability for each point to be in one of the two classes (i.e. will be used in the next
iteration to find the line of best-fit). Once these probabilities are evaluated, the points
are distributed into the two classes, and each subset of points is used to re-evaluate
the statistics of the best-fit line of the class to which they belong. This process is
continued until convergence. A detailed description of the mathematical model and
convergence strategies employed has been presented elsewhere [74].

The algorithms have been implemented in an iterative fashion. Once the optimal
re-ordering and cluster boundary identification has been carried out for any dimen-
sion, the same dimensions of submatrices are subjected to further re-ordering and
cluster separation. A similar procedure is employed for the other dimension of the
matrix as well. The entire framework is shown in Fig. 2.

1.5 Results

For the dense matrix clustering algorithms, we present our results from six datasets,
namely, metabolite concentration, image reconstruction, colon cancer, breast cancer
and yeast segregant data. For each of the datasets, an overview of the data and
problem size will be presented. This would be followed by a description of the
clustering results [21].

1.6 Metabolite Concentration Data

The concentration profile of 68 unique metabolites has been used as the test set
for this case study. The study corresponds to data from E. Coli and S. cerevisiae,
observed under conditions of nitrogen and carbon starvation. The concentration
values were recorded using liquid chromatography-tandem mass spectrometry [11].

The result of the application of our dense matrix clustering algorithm OREO
is presented in Fig. 3. We observe that the two main cluster boundaries perfectly
separate out subsets of E. Coli and S. cerevisiae conditions. Further, clustering
along the columns of the matrix provided a separation between the data collected
from nitrogen starvation and carbon starvation conditions. The regions between
these cluster boundaries, labeled A, B, C, D, and E in Fig. 3, are also optimally
re-ordered using the proposed method. In particular, for region E, re-ordering over
the conditions of carbon starvation yields an excellent grouping of amino acid and
TCA metabolites. In particular, 16 out of 27 metabolites in the cluster are amino
acids, consistent with the observation that amino acids tend to accumulate during
carbon starvation [11]. Further, the biosynthetic intermediates also order well, with
all 12 being placed in the top half of the matrix.
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Fig. 2 Re-ordered matrix from metabolite concentration data. The two sub-matrices on the top
reflect the improved grouping of biosynthetic intermediates and amino acids on the left and right,
respectively

1.7 Image Reconstruction Data (Lenna Matrix)

In an experiment presented in [61], an image commonly referred to as the “Lenna”
image of size 512 by 512 pixels, was elongated row-wise by replicating it 10 times,
thus creating a matrix of size 5,120 by 512 pixels. An ideal algorithm would present
a stretched version of the original image at the end of the clustering procedure.

Using our dense matrix clustering algorithm, we were able to recover the correct
ordering of the original image and a subset of the original image, as shown in
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Fig. 3 Comparison of the re-ordering results of the Lenna matrix by different methods

Fig. 4 Re-ordered matrix from colon cancer data. Tumor tissues are shown in black, while normal
tissues are shown in white

Fig. 4. In addition, two kinds of noise were introduced into the data, namely (1)
modifying every pixel by a random value less than 10% of the maximum pixel
intensity (255) and (2) assigning a random value between 0 and 255 to 10% of the
pixels (e.g., 262,144 of the pixels). On clustering the modified data matrix, our dense
matrix clustering algorithm OREO recovers the correct image. While this dataset is
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Fig. 5 Re-ordered matrix from breast cancer data. ER negative tumors are shown in black, while
ER positive tumors are shown in white

not biologically generated, the success of OREO with this dataset represents the
applicability of the approach to other systems as well.

1.8 Colon Cancer Data

We also tested the proposed method on a standard biclustering sample classification
example [58] comprised of gene expression data for 62 colon tissue samples, 22 of
which were normal and 40 of which were tumor tissues [2]. In the original work,
2,000 genes with the highest minimal intensity across all samples were examined.
By carrying out two-way clustering, it was found that the algorithm was able to
separate out the tissues into a normal-rich cluster and a tumor-rich cluster. By
re-ordering over the set of rows (i.e. genes), OREO grouped 30 out of the 48
ESTs homologous to ribosomal proteins in one cluster, compared to 22 out of 48
that were brought together in the original work [2]. The final re-ordered matrix is
shown in Fig. 5, where the tumor tissues and normal tissues are shown in black and
white, respectively. Comparisons to clustering results by some other methods is also
shown.
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1.9 Breast Cancer Data

OREO was applied to breast cancer data from literature [83], where the expression
levels for approximately 25,000 genes over 98 breast cancer tumors were measured.
In the study, a set of 5,000 genes were identified to be effective in separating ER
positive from ER negative tumor samples. These genes have at least a twofold
difference with a p-value less than 0:01 in five or more samples. The main aim of the
study was to identify a set of reporter genes for classification based on prognosis,
ER status and BRCA1 germline mutation carriers [83].

The column re-ordering results are presented in Fig. 6. As can be seen from the
figure, OREO is fairly successful in separating the ER positive (white) from the ER
negative (black) tumors. Only 13 of the ER negative tumors get assigned to the ER
positive region, while only 1 ER positive tumor gets assigned to the ER negative
region. On carrying out row-wise clustering, we observed the grouping of the 550
optimal ER status genes as determined by Van’t Veer et al. [83]. Here, we found that
50 of the optimal ER status genes were found in a span of only 171 genes (29.2%),
which was a denser cluster than those observed by other clustering methods [21].



18 P.A. DiMaggio Jr. et al.

1.10 Yeast Segregant Gene Expression Data

For this dataset, the OREO methodology was applied to 6,216 genes subject to
131 stress conditions [12]. For this data, re-ordering over all columns was carried
out to identify the best grouping of all genes. In order to evaluate the biological
significance of the re-ordered genes, we evaluated the average enrichment for each
of the 130 gene ontology terms over all possible neighborhoods of size L genes in
the final ordering. This is defined mathematically as:

Enrichment of process k D
�
NGk

L � 1
�

=L

NGk=NG
(28)

where NGk
L denotes the number of genes in a neighborhood of size L for process

k, NGk denotes the number of genes for process k in the entire experiment,
and NG represents the total number of genes in the experiment. Equation (28)
is applied for every process over all possible neighborhoods of genes, where the
initial neighborhood of genes is comprised of genes of 1 though L in the final
ordering and this neighborhood window is incremented by one gene (i.e., the next
neighborhood contains genes 2 through L+1) until the last gene in the final ordering
has been reached. The enrichment values in Eq. (28) are then averaged over the
total number of neighborhoods considered. This process is repeated for several gene
neighborhood sizes in the range of 4–15 genes and the results comparing our method
to hierarchical clustering are shown in Fig. 7.

As can be seen from Fig. 7, OREO achieves a much improved enrichment on
average than other methods. Physically, this means that genes annotated to similar
biological processes are arranged closer in the final re-ordering results of OREO
when compared to other methods.

The results presented demonstrate the general application of OREO to biological
and non-biological data from a number of fields. Further details on implementation
and run-times can be found in literature [21].

2 Sparse Matrix Clustering

The clustering of sparse matrices cannot be carried out by the methods presented
in the previous section. This is because all missing elements would be considered
“similar”, whereas any conclusions drawn on the similarity of these elements would
be erroneous. First, we define the objective function that will provide a measure of
smoothness in the property space, while accounting for missing elements. This is
followed by three formulations for the determination of the best ordering of rows
and columns. The first method is based on deterministic optimization techniques,
and can hence provide a guarantee for convergence to the optimal solution. Genetic
algorithms based approaches provide solutions that are frequently very close to the
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optimal solution, but lack the theoretical guarantee associated with deterministic
methods. Heuristic approaches provide the potential of faster identification of good
solutions to a given problem.

2.1 Objective Function

Unlike the dense matrix clustering objective function, the sparse matrix objective
function cannot be restricted to comparisons between immediate neighbors. This is
because, given the possibility of multiple missing values, the comparison between
an element (row/column) and its neighbor would be incomplete at best. Hence,
a better expression would be one which will measure the “quality” of the entire
permutation of rows or columns, and not just work with immediate neighbors.
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We define an objective function which depends on compound properties as well
as the distance between the elements: This is given by Eq. (29)

Q D
NX

mD1

NX

nD1;n¤m

SnX

j D1

SmX

iD1

SmX

i 0D1

�.d m
i;i 0/ � �

�
a

m;n
i;j ; a

m;n
i 0;j

�
(29)

where d m
i;i 0 is the distance between functional groups i and i 0 at the mth site with

respect to their final positions in the matrix. This distance value will be 1 if the
two functional groups are adjacent to each other and Sm � 1 if they are on opposite
ends of the data matrix. am;n

i;j and am;n
i 0 ;j

denote the measured property values of two
sampled compounds for functional group j in site n and functional groups i and i 0
in site m, respectively. One possible form of the component functions �.d m

i;i 0/ and
�.a

m;n
i;j ; a

m;n
i 0 ;j / can be written as

Q D
NX

mD1

NX

nD1;n¤m

SnX

j D1

SmX

iD1

SmX

i 0D1

�
1

wm
� Sm � d m

i;i 0

Sm � 1

�

�
�
a

m;n
i;j � a

m;n
i 0 ;j

�2

(30)

where �.d m
i;i 0/ is linear with respect to d m

i;i 0 , achieving a maximum value of 1=wm

at d m
i;i 0 D 1 and a minimum value of 1=wm � 1=.Sm � 1/ at d m

i;i 0 D Sm � 1. Thus,
this expression gives the largest contributions to those elements which are grouped
close in the final arrangement and a lower weight to those elements that are distant
from one another in the final matrix ordering. �.a

m;n
i;j ; a

m;n
i 0;j / is the squared property

difference between two compounds. wm is the number of compound pairs where
both a

m;n
i;j and a

m;n
i 0 ;j are available from synthesis and property assaying for all i

and i 0. Such an objective function ensures that the final arrangement accounts for
relative positions of all pairs of elements in the original dataset. We now present
three algorithms for the solution of this problem.

2.2 Mixed-Integer Linear Optimization Based Algorithm

We define binary variables yi;k , which indicates the assignment of element i to
position k in the final ordering, such that 1 � k � jI j, with jI j being the number of
elements in the dataset.

yi;k D
�

1; if row i is assigned to position k in the final ordering, 0 otherwise
0; otherwise

:

In addition, positive variables pi are introduced, which relate the binary variables
to their respective positions in the final ordering. Mathematically, this can be
represented as:

pi D
X

k

k � yi;k 8i: (31)
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The constraints that are applied to the model are listed below. Firstly, a final
position can only contain one element, and each element can only be assigned to
one final position. X

k

yi;k D 1 8i (32)

X

i

yi;k D 1 8k: (33)

The position variables pi can vary only between the lower limit (i.e. 1) and the
upper limit (i.e. jI j).

1 � pi � jI j 8i > 1: (34)

The problem of symmetry can be alleviated, without loss of generality, by
ensuring that the first row be placed in any one pre-determined half of the final
matrix.

1 � p1 � bjI j C 1=2c: (35)

The difference between the position variables pi and p0
i for any pair of elements

i and i 0 has to lie between a lower limit (i.e., 1) and an upper limit (i.e., jI j � 1). We
represent these distances by the positive variables di;i 0 .

1 � di;i 0 � jI j � 1 8i; i 0 > i: (36)

The distance variables di;i 0 are related to pi and p0
i by

di;i 0 � pi � pi 0 8i < i 0 (37)

di;i 0 � pi 0 � pi 8i < i 0: (38)

While these set of constraints are sufficient to solve the problem to optimality,
the resulting linear programming relaxation would not be tight enough, resulting in
very long solution times. A few constraints are added to tighten the relaxations, thus
improving the convergence rate to the final solution. Firstly, the summation of all
final distances between elements would be a constant determined by the number of
elements in the dataset. X

i

X

i 0>i

di;i 0 D C: (39)

For instance, if there are only four rows, then C D 3�1C2�2C1�3 D 10. Further,
the summation of distances between an element i and all other elements would be
a function of its final position k. For example, if row i is assigned to position 2 out
of 4, then the summation of distances between it and all other elements would be
pre-determined to .2 � 1/ C .3 � 2/ C .4 � 2/ D 4 D G.2/. Next, the distance
between any pair of rows i and i 0 can be written as:

di;i 0 �
X

k

F.k/ � yi;k 8i < i 0 (40)
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di;i 0 �
X

k

F.k/ � yi 0;k 8i < i 0 (41)

where F.k/ is a shorthand representation of MAX.jI j � k; k � 1/. Since the
distances are Euclidean, triangle inequality can be imposed as an additional
condition.

di;i 0 � di;i 00 C di 00;i 8i; i 0; i 00: (42)

Subsets of the aforementioned additional constraints are introduced dynamically
into the model, as the entire set of additional constraints may lead to memory
issues in commercial solvers for moderately sized problems. Constraints such as
triangle inequality are added only to subsets of elements which violate them. This
mixed-integer linear programming (MILP) formulation guarantees identification of
the global optimal solution, when solved to optimality. In addition to the model
presented here, we can add heuristic approaches (like the ones presented in this
chapter) to identify good integer solutions, which would help convergence to the
final optimal solution faster.

2.3 Genetic Algorithms Based Approach

Genetic Algorithms (GAs) are a category of popular stochastic algorithms, whose
general applicability make them suitable for a wide range of problems. The solution
method typically starts from a random set of element orderings. Based on the Q

value for any given set of orderings, operations known as mutations and crossovers
are performed to generate a modified population of element orderings. With the
overall aim still being the minimization of Q values in the working population,
the algorithm is continued until convergence criteria are met. The computational
complexity of GAs depend on the size of the initial population. The success of
the algorithm depends on the selection of a number of initial parameters, which
are problem dependent. A number of approaches have been introduced which aim
to integrate GAs with deterministic optimization algorithms in order to provide a
theoretical guarantee to the final solution.

2.4 Heuristic-Based Approaches

A number of heuristics can be applied to either reach local minima solutions, or
to support deterministic algorithms in the aim to find the global minimum. A few
examples of heuristic approaches to identify integer solutions to the problem are:

1. Random swapping of rows and columns. The swapped matrix can be accepted if
it has an improved Q value, or based on a probability function in a Monte Carlo
based approach.
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2. Greedy solutions based on selecting rows or columns to be neighbors based on
minimum distance between unconnected elements

3. Ordering rows or columns based on the sum of a randomly selected subset of
points along the rows and columns of the matrix

The main advantage of heuristic techniques is their scalability to large-scale
problems. While they do not provide any theoretical guarantees about the final
solution, empirical evidence suggests that solutions obtained by these methods are
often within a few percentage points of the optimal solution. For our implementa-
tion, we integrate heuristic approaches into the mixed-integer linear programming
approach, in an attempt to speed up the identification of good integer solutions.
We have utilized the heuristic callback function in the CPLEX callable library [19]
for the incorporation of the aforementioned heuristic based on swapping rows or
columns. Further details on the implementation of the algorithms can be found in
previous work by DiMaggio et al. [24].

2.5 Results

The application of the MILP model presented in the previous section to molecular
discovery applications was tested on two data matrices provided by Pfizer Inc.,
where no information regarding the identity of compounds was available to us. The
overview of the results achieved are presented as under. Further details of all results
obtained are available elsewhere [24].

2.6 Data Matrix 1: Moderate-Size Compound Library

The first data matrix analyzed contains 62 rows and 39 columns of percent
inhibition data for an unknown set of compounds. The most desirable compounds
are the strongest inhibitors of an unknown target, which correspond to the highest
percentage inhibition values in this set. The original matrix has 1,229 data values
out of a possible 2,418 (51%). The optimal reordering identified by the deterministic
algorithm for the full set of data values is shown in Fig. 8(f). The results for the
deterministic method applied to a sampling of 30 and 50% of the available data (or
15 and 25% of the library space) are provided in Fig. 8(b) and 8(d), respectively.
For predictive assessment, the placement of the un-sampled data values for the re-
orderings for 15 and 25% of the full library are also revealed in Fig. 8(c) and 8(e).
Contrasting Fig. 8(c) and 8(e) shows that increasing the sampling of data values
from 15 to 25% of the library space improves the quality of both the overall
ordering and the selected subregion, as expected. The reordered data matrices show
a tendency to group the desired compounds into an easily identifiable subset of the
matrix. Let us define rows 1–9 and columns 1–11 of Fig. 8(d) to be Region 1 and
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Fig. 8 First data matrix reordered by deterministic optimization
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the remaining matrix to be Region 2. When examining the reordered compounds for
25% of the whole library space, we see that Region 1 contains a much higher average
inhibition value and a disproportionate number of data values above inhibition
values of 40 and 60. Of the 12 total compounds with greater than 60% inhibition
from the full data set, six sampled and three unsampled compounds are found in
Region 1. The consistent abundance of high inhibition values would suggest the
unused compounds in Region 1 as good candidates for future synthesis.

The stochastic optimization method and the property R sorting method also result
in an aggregation of the compounds with high inhibition values for the full and
sampled data matrices. The substituents found in Region 1 are very similar to those
identified by the deterministic method but are less prominent in terms of the number
of high inhibition compounds contained in Region 1.

2.7 Data Matrix 2: Large-Size Compound Library

The second data matrix contains 151 rows and 93 columns of percent inhibition
data for an unknown set of compounds. The initial ordering of the compounds
was provided by Pfizer Inc. This matrix is the largest data set that was analyzed
using the proposed methods. Similarly as the first data matrix, the most desirable
compounds for further study are the ones with strongest inhibition. The original
matrix has 4,110 known data values out of a possible 14,043 (i.e., 29%). This data
matrix was reordered using all known values and a sampled subset of known values
to test the reliability of the approach. The best identified reordering of this data
matrix using all of the known values (4,110 values) is presented in Fig. 9(d). The
best reordering for a sampling of 50% of the available data values (or 15% of the
whole library space) is presented in Fig. 9(b) and the corresponding placement of
the unsampled compounds based on this reordering is revealed in Fig. 9(c). The
proposed deterministic method is able to group many of the desired compounds in
an easily identifiable subset of the matrix. Let us define rows 1–21 and columns
1–20 of Fig. 9(d) to be Region 1 and the remaining matrix to be Region 2. Here, it
was seen that Region 1 contains a much higher average inhibition value and also a
disproportionate number of data values above the inhibition cutoffs of 50, 70 and
90. Of the 40 known compounds with an inhibition greater than 90%, 28 of them
are found in Region 1 and 15 of these were not used in the reordering. Thus, if one
were to synthesize the 321 unknown or unsampled compounds in Region 1,then
at least 15 of these compounds would have an inhibition greater than 90%. The
stochastic optimization method is also able to reorder the compounds so that the
high inhibition values are clustered into a small subset of the matrix [24]. However,
the orderings in other regions of the matrix are less similar to those revealed by the
deterministic optimization method.
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Original second data matrix using
all known values.

Optimal rearrangement of the sec-
ond data matrix sampled at 15%.

Optimal rearrangement of the sec-
ond data matrix sampled at 15%, all
known values included.

Optimal rearrangement of the sec-
ond data matrix using all known values.
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Fig. 9 Second data matrix reordered by deterministic optimization

2.8 Iterative Synthesis Strategy

Given the optimal ordering of rows and columns, we need to develop a strategy
for molecular discovery. For a smooth and regular property landscape, simple
local interpolation measures can be applied to represent the expected property of
a compound. Such measures assume that the property value of any compound
is similar to the average property values of its neighbors. However, a couple of
issues come up by using such a strategy. First, when defining average properties,
we may want to weight the contributions of neighbors by their distance from a
given compound. For any two points .i; j / and .i 0; j 0/ in the compound property
landscape, Euclidean distance is defined by Eq. (43).

d
i;j

i 0;j 0 D
p

.i � i 0/2 C .j � j 0/2: (43)
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Furthermore, the absence of information on certain compounds surrounding any
given compound has to be accounted for. The set of compounds that will be used to
determine the estimated property value of a compound can be represented by R

ij

i 0j 0 ,
and is given by:

R
ij

i 0j 0 D
n
.i 0; j 0/ W d

i;j

i 0;j 0 � d thresh and
�
ai 0 ;j 0 is known or

�
i D i 0 and j D j 0��o :

(44)

The threshold distance, d thresh, is the maximum distance a neighboring point
can be from the specified compound (Here, we have used the relation d thresh D
.jI j � 0:1 C jJ j � 0:1/=2. Once we have defined R

ij

i 0j 0 , Eq. (45) is used to define a
normalization factor, ˝i;j . This normalization factor provides a higher weight to
the closer neighbors and always retains the weight for the compound .i; j / to avoid
long-range effects for missing values in sparsely populated regions.

˝i;j D
X

.i 0;j 0/2R
ij

i 0j 0

1

d
i;j

i 0;j 0 C 1
(45)

The estimated property value at .i; j /, �i;j , is then defined by Eq. (46), which is a
normalized average of the weighted neighboring property values.

�i;j D
X

.i 0;j 0/Wai 0 ;j 0 is known

ai 0;j 0

�
d

i;j

i 0;j 0 C 1
�

� ˝i;j

: (46)

One strategy for synthesis, given an initial sampling of compound property
values and its associated optimal substituent ordering, is to sort the estimated
property values, �i;j , and synthesize some number of compounds with the highest
predicted property values. As more property values are determined, the process of
reordering the substituents and estimating the property values can be repeated in
an iterative fashion. An important feature to examine for such an iterative strategy
is how much initial data is required to synthesize the important compounds while
simultaneously minimizing the number of total compounds synthesized. To test the
utility of such a protocol, we have developed an algorithm which begins with a small
population of known compounds and uses the reordering results to perform an “in
silico” synthesis. After each reordering, Eq. (46) is used to estimate the inhibition
values for the unknown compounds. We then select the top 50 unknown compounds
of highest predicted inhibition for in silico synthesis (i.e., reveal their actual values)
and subsequently reorder this new library. A representative flow diagram for the
iterative algorithm is presented in Fig. 10.

This procedure was applied to four sparse data matrices: samplings of 50%
(2,050 compounds or 15% of the whole library space), 25% (1,025 compounds
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Fig. 10 Iterative strategy for different initial populations of second data matrix for 80% inhibition.
The purple, blue, green and red curves represent starting with 50, 25, 10, and 5% of the available
data, respectively

or 7.3% of the whole library space), 10% (411 compounds or 3% of the whole
library space) at random from the second data matrix (4,110 known values), and 5%
(206 compounds or 1.5% of the whole library space) at random from the original
data matrix (4,110 known values). The horizontal dashed line at the top of each
figure denotes the total number of compounds that are above that percent inhibition
in the original data. The diagonal dashed-dotted line in each figure represents the
average gain per synthesis for the original synthesis procedure based on the data
provided by Pfizer. To assess the overall effectiveness of the iterative strategy for
finding higher inhibition compounds, we counted the total number of compounds
above 40–90% inhibition in increments of 10%.

The results for compounds above 80% inhibition are shown in Fig. 11. In this
figure, we see that the gain from each of the synthesis curves is fairly consistent
among the initial samplings. Each of the curves exhibits a sharp slope in the
beginning, indicating a good yield of higher inhibition compounds per synthesis
iteration of 50 compounds. It is important to highlight that the synthesis curve
starting from only 5% of the original data (206 known values) achieves a better
yield of high inhibition compounds than all the other curves when 3,000 known
compounds are revealed (see the red curve in Fig. 11).
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Fig. 11 Flow diagram for iterative algorithm

3 Prediction of In Vivo Chemical Toxicity

A recent application of the dense and sparse matrix clustering algorithms, in
conjunction with logistic regression, was to predict the in vivo toxicity of chemicals
using their measured in vitro assay data. Development of methods which can screen
thousands of industrial and agricultural chemicals has been a major recent initiative
in predictive toxicology [42]. The available toxicology data for modeling is typically
biased towards toxic chemicals. Further, lack of resources preclude the extensive
testing of chemicals. For this analysis, all of the data is available from the EPA
ToxCast web site http://www.epa.gov/ncct/toxcast. The in vitro dataset consists of
615 assays (including a set of biochemical receptor and enzyme assays, as well as
eight cell-based assays measuring RNA and protein, cytotoxicity, cell growth, and
morphology changes) in the form of AC50 and LEC values for a library of 309
chemicals. The in vivo toxicity data provided toxicity data from chronic/cancer rat
and cancer mouse studies, multi-generational reproduction rat studies and prenatal
developmental toxicity studies in rats and rabbits for 309 chemicals. However, only
78.3% of all possible values were available, thus creating a sparse matrix. Further
details on the specific type of data provided in the in vitro and in vivo datasets are
available elsewhere [23].
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Fig. 12 Original and re-ordered in vitro data matrix

After removing the assays which did not show any deviation across the 320
chemicals in the in vitro dataset, we carried out dense matrix clustering on the matrix
of 524 rows and 320 columns. The original and re-ordered matrix (after both row
and column clustering) is presented in Fig. 12(a), b.

Looking more specifically at the results, it is seen that cytochrome P450 assays
come together into two main clusters. In addition, a significant grouping of nuclear
receptors was also observed. Along the re-ordered assay dimension, it was observed
that specific assay technologies tended to group together. Additional details and
figures associated with the dense matrix clustering results can be found in recent
work by DiMaggio et al. [23].

The in vivo data matrix provided contains 76 continuous endpoints and 348
binary endpoints. The original data matrix containing the 76 continuous endpoints
is shown in Fig. 13a. The optimally re-ordered matrix using the MILP formulation
described in the previous section is shown in Fig. 13b.

On further analysis of the clustered endpoints, we observe a physiological-based
clustering of endpoints that can be grouped as “reproductive” (containing the words
“maternal”, “pregnancy”, “lactation”, “litter”, “fetal”, “fertility”, “ovary”, “mating”,
or “uterus”) and “liver”. Further, the endpoints in the “reproductive” category were
typically from developmental rabbit or multigenerative rat experiments, while the
“liver” endpoints were primarily from chronic rat and mouse sources. In a similar
manner, the data matrix containing 348 binary endpoints was clustered, and the
original and final matrices are shown in Fig. 14a, b respectively. On observation
of the endpoints clustering for this data matrix, we see chronic mouse endpoints
between positions 1 and 179, while chronic rat endpoints are in positions 180
through 348. There is also a significant physiological clustering of the chronic
binary endpoints containing the “liver” descriptor, where three of the chronic mouse
endpoints placed in the chronic rat-rich region are associated with these endpoints.
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Fig. 13 Original and re-ordered continuous in vivo data matrix
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Fig. 14 Original and re-ordered binary in vivo data matrix

3.1 Feature Selection Using Logistic Regression

In an attempt to identify the minimum set of in vitro assay data required to perfectly
classify chemicals as toxic or non-toxic, we started with the set of endpoints
identified as belonging to the “reproductive” and “liver” categories. For each
endpoint, starting with an initial set of 400 descriptors, a rank-and-drop strategy was
used to eliminate descriptors which are not contributing any additional information
to the model. By maximizing the log likelihood of the data given, and with the
introduction of a quadratic regularization term, we identify relative weights for
each of the descriptors in the active set for any iteration. After each iteration, the
standard error associated with each feature is computed by inverting the Hessian
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Fig. 15 Relative clustering of related endpoints. The shaded elements indicate the existence of
a particular endpoint in the given position. Significant clustering is observed with respect to
physiological category (i.e., liver and reproduction) and animal species

matrix of the log likelihood function, and the ten features with the lowest parameter
value to standard error ratio are eliminated. This procedure is continued until perfect
predictions no longer take place [23].

Since the liver and reproductive clusters of endpoints were observed to exhibit
anti-correlative behavior (see Fig. 15), one should expect that the selected in
vitro descriptors are consistent within the liver or reproductive clusters, but also
significantly different between liver and reproductive clusters.

To highlight the differences in the type of descriptors selected between the liver
and reproductive in vivo clusters, we computed two fractions corresponding to the
relative number of times a particular in vitro assay was determined to be significant
in the set of liver and reproductive endpoints, respectively. These two fractions were
then sorted based on their absolute differences (i.e., the absolute difference between
the relative number of times an in vitro descriptor is selected as significant for a liver
associated endpoint and the relative number of times it is selected as significant for
a reproductive endpoint), since a larger absolute difference implies the an in vitro
has a specificity for either the liver or reproductive endpoints. The most significant
differences are presented in Fig. 16.

It is interesting to note in Fig. 16 that the liver endpoints are shown to preferably
select cytochrome P450 assays corresponding to subfamily “A” (i.e., 1 CYP1A and
2 CYP3A) when compared to the reproductive endpoints. This makes biological
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Fig. 16 Difference between descriptors selected for the liver versus reproductive related endpoints

sense, as CYP1A is induced by a number of xenobiotics [20] and CYP3A enzymes
are very active in steroid and bile acid 6ˇ-hydroxylation and the oxidation of
many xenobiotics [36]. Interestingly, CYP3A has a wide substrate specificity, is
prominently expressed in the liver, and is among the most important group of
enzymes involved in drug metabolism [80]. CYP2B, which is also preferably
selected by the liver endpoints as seen on the left side of Fig. 16, is a large gene
family and the regulation of some isoforms is strongly induced by a structurally
diverse array of xenobiotics, including pesticides [36]. Many of the nuclear
receptors are known to be affected by the CYP2B substrate/product. As shown in
Fig. 16, three out of the seven total real time cell electronic sensing assays (ACEA),
which measure general cytotoxicity in terms of changes in cell growth kinetics,
are also determined to be significant descriptors for the liver endpoints. It should
be noted that these assays are found in different biclusters, so their responses over
the chemicals are fairly distinct. Lastly, we observe in Fig. 16 that certain nuclear
receptors that are well-known regulators of cytochrome P450 genes are selected as
specific to the liver cluster of endpoints. These in vitro descriptors include PPARa,
AR-agonist, and PPRE. It should be noted here that a recent study screened a set
of 200 pesticides for peroxisome proliferator-activated receptor (PPAR) activity
(which is expressed in the liver, heart, muscle and kidney) by specifically targeting
the receptor activities of PPARa and PPARg [75]. The agonistic activities of
the pesticides were measured in relative effective concentrations (REC) to some
standard. In this study, it was found that the chemicals diclofop-methyl and imazalil
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(which notably have very different chemical structures) showed PPARa mediated
transcriptional activities, and the in vivo effects of diclofop-methyl and imazalil
were then measured by examining the induction of CYP4A gene expression. It was
found that diclofop-methyl also induced high levels of CYP4A10 and CYP4A14
mRNA. These findings are consistent with the selection of PPARa as a significant in
vitro descriptor for the liver cluster, since diclofop-methyl and imazalil are among
the chemicals with lowest LEL values for these in vivo endpoints. Furthermore, the
chemical diethylhexyl phthalate also triggers low LEL responses, and has also been
reported to induce PPAR activity [37].

An expected, yet assuring, observation for the reproductive cluster of endpoints
is that both the estrogen-alpha receptor (e.g., ERa) and an androgen receptor
are selected as significant in vitro reproductive descriptors, relative to the liver
endpoints. Several agricultural chemicals contain endocrine-disrupting properties
through interactions with the estrogen receptor (ER), and an earlier study identified
80 out of 200 chemicals as having ER receptor activity [51]. Our results are found to
be consistent with these previous findings, which reported 34 pesticides displaying
both ER and antiAR activity [51].

Within both the liver and reproductive endpoints, it was observed that several
clusters of differentiations, including CD38, CD40, CD69, and CD141 (thrombo-
modulin), were selected as significant descriptors. These clusters of differentiations
are known to be important factors in immune response. Consistent with these assays
are the selection of descriptors associated with chemokines, which attract leukocytes
to infection sites. They are assigned into four different groups based upon their
conserved cysteine residues: C-C, C-X-C, C, and CX3C. In Fig. 16, it is seen that
three CC motif (MCP-1) and a C-X-C motif (IP-10, which is secreted in response
to INF-� ) chemokines are selected by the reproductive and liver endpoints.

4 Conclusions

In this chapter, we have presented rigorous methods for the optimal re-ordering
of data matrices. For the re-ordering of dense matrices, we have presented our
clustering method OREO, which can be established either as a network flow model,
or as a representation of the traveling salesman problem. An iterative approach can
be used to divide the original data matrix into subclusters, and carry out similar
objectives on each subcluster to get further classification of rows and columns.
The performance of OREO was evaluated on a number of biological systems like
metabolite concentration data, colon cancer data, breast cancer data and yeast
segregation data. The applicability of the method to non-biological fields was
demonstrated through the performance of OREO on image reconstruction data.
Analysis of the performance of OREO on these datasets showed an improved
agglomeration of related metabolites and annotated genes, thus representing the
advantage of the global optimal re-ordering algorithm over local solutions.
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For the sparse clustering problems, we have introduced a mixed-integer linear
programming (MILP) based formulation which aims to bring rows and columns
together, by accounting for their positions in the entire matrix. The performance
of the method was evaluated on a moderate-sized and a large-sized data matrix
provided by Pfizer, Inc. The resulting clusters showed a good collection of data
values with a high degree of inhibition in a small subset of the original matrix, thus
showing the efficacy of the re-ordering algorithm.

Finally, the dense and sparse clustering algorithms were applied to toxicology
data, with the aim of developing a method for predicting the in vivo toxicity of
chemicals, given in vitro assay data. Results from the application of the dense
clustering algorithm showed that similar assays were grouped together, as were
assays related to similar technologies. The sparse clustering algorithm showed a
clustering of “reproductive” and “liver” endpoints. Logistic regression was used to
identify a small subset of in vitro assays for the toxicity prediction of chemicals for
all reproductive and liver endpoints. A good correlation between cytochrome P450
family ’A’ and the liver endpoints was observed. Similarly, estrogen and androgen
receptors were favorably preferred selections for the reproductive endpoints.
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Clustering Time Series Data with Distance
Matrices

Onur Şeref and W. Art Chaovalitwongse

Abstract Clustering is a frequently used method in unsupervised analysis of
various data types including time series data. In this study, we first present a discrete
k-median (DKM) method based on an uncoupled bilinear programming algorithm
and modify it for faster implementation, which becomes a variant of the Lloyd’s
algorithm. We also introduce a fuzzy discrete k-median (FDKM) method which
is the fuzzy version of the modified algorithm. The main draw for the these two
efficient algorithms is that they do not require any input but a matrix of distances
as a measure of dissimilarity between pairs of samples to avoid the complications
that may arise from working with the actual domain that the data samples reside
in. We also include a hiearchical cluster tree (HCT) method and partition around
medoids (PAM) method, both of which can use the distance matrix for clustering.
The output of all four methods are median samples, which define clusters by
assigning each sample to the closest median sample using the distance matrix.
We consider four different distance measures, rectilinear, Euclidean, squared-
Euclidean and dynamic time warping (DTW) to create the distance matrix, and also
mention how the calculation of the distance matrix can be extended to any kernel
induced feature space. The main application domain in this study is time series
data, where actual samples in the data set are better cluster representations than
mean or median points whose components are independently calculated for each
dimension of the domain. We present computational results on a public time series
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benchmark data set and a real life local field potential (LFP) recordings collected
from a macaque monkey brain during a visuomotor task.

Mathematics Subject Classification (2010): Primary 62H30, Secondary 68W25

1 Introduction

Clustering is an unsupervised method for data analysis that is concerned with
partitioning data into subsets called clusters. In general, a cluster is comprised
of samples that are more “similar” among each other than the samples in other
clusters. Clustering has been extensively studied both in theory and application [26].
Clustering algorithms can be classified in a number of ways depending on how they
represent clusters and how samples are assigned to these clusters. One of the major
splits among clustering methods is between hierarchical and partitional approaches.
Hierarchical methods produce a single nested partition, whereas partitional methods
lack this structure. Most commonly used hierarchical approach is an agglomerative
method, which starts with each data representing a cluster by itself and progresses
by iteratively merging clusters to form a tree called dendrogram. Individual clusters
are formed by disconnecting or cutting links on this tree and identifying the leaves of
the subtrees formed. Partitional algorithms define partitions from the beginning and
improve clusters and the representative set of points for these clusters iteratively.
In terms of cluster membership, clustering algorithms can be classified as hard
versus fuzzy clustering algorithms. In hard clustering, a data point belongs to a single
cluster only. Cluster membership in fuzzy clustering is distributed over all clusters
with varying degrees, which can easily be converted to hard clustering by assigning
the data to the cluster for which it has the highest membership degree.

1.1 k-Means Versus k-Median

One of the most well-known partitional clustering method is the k-means clustering.
The objective of k-means clustering is to find k cluster centers that minimize the
sum of the squared-Euclidean distances of the samples from their closest centers.
In k-means, the center of a cluster is the centroid of the samples in that cluster,
which can be found by averaging the components of all the samples in the cluster
for each dimension of the space that the samples reside in. These centers are used
to define new clusters by assigning the samples to the center closest to them.
The main algorithm alternates between finding new centers and new clusters over
a number of iterations until the algorithm converges to a local optimum. This
alternating scheme is first developed by Lloyd [23], which is proven to be optimal
for centroids as the centers of clusters when squared-Euclidean distance is used [12].
The k-median clustering method is a variation on k-means clustering, in which the
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medians for each dimension is calculated to find a median point that represents the
cluster. In other words, k-means method minimizes the dissimilarity over all clusters
with respect to the squared-Euclidean distance, where as k-median minimizes the
dissimilarity with respect to the Euclidean distance itself [16]. With this simple
modification, it is easy to convert any k-means approach into a k-median approach.

For either method, initial set of points has a significant effect on the final solution
since the original clustering problem has a large number of local minima. In [21],
it was shown that a good cluster center initialization can improve these algorithms.
In [34], a global k-means method is used for choosing the initial clustering centers.
Another efficient method in [4] refines initial points by estimating the modes of
a distribution, which allows the iterative algorithm to converge to a “better” local
optimal solution. In this study, we employ the initialization method used for partition
around medoids (PAM) algorithm to find good starting medians [19].

1.2 Discrete Versus Continuous

In many practical cases, the calculations in the original domain of the data may
be difficult or impractical. In some other cases, averaging samples or finding
medians individually for each dimension may create centers or medians that cannot
represent the samples in a cluster. Especially in time series, the data points are
highly interdependent since each dimension is a time point. Therefore, processing
each dimension separately does not reflect the shape and structure of time series
data domain. We only consider discrete methods as the main application focus
of this study, where the discrete points are the samples in the data set. Under
these assumptions, one of the actual samples in a cluster is considered to be a
better representation of the cluster. We refer to clustering methods that are similar
to k-means and k-median clustering, but regard actual sample points as cluster
medians as discrete k-means and discrete k-median methods, respectively. The
discrete k-median problem is also known as the p-center, p-hub or p-median
problem in the facility location problem literature [7, 33]. The p-median problem
constitutes a larger class of facility location problems known as minisum location
allocation problems.

Discrete k-median problems are generally more difficult problems compared
to their non-discrete counterparts. Searching for optimal medians among discrete
median points instead of centers or medians in a continuous space is a challenging
combinatorial problem. However, the advantage behind this problem is that the
dissimilarities between discrete samples can be defined in a number of ways without
having to calculate any point that does not belong to the input set of samples, and
such dissimilarities is sufficient for clustering methods to work. The results of this
study can be used, for example, in studying brain data through electrical recordings
or network intrusion detection in network data streams, where actual samples are
needed to represent the behavior of time series data.
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Fast implementations are crucial for the discrete methods to work efficiently,
especially with online time series data. Therefore, the exact methods employed in
p-median facility location problems may not be necessary [5, 6]. Good solutions
are usually more than sufficient from a practical point of view and generally leave
a small optimality gap with near optimal cluster centers and cluster assignments.
The discrete k-median algorithm presented in this study produces good solutions
very efficiently compared to exact methods. The main approach is based on the
work in [24], which is a non-discrete algorithm that is limited to 1-norm distances.
We modify the uncoupled bilinear program approach [1] used in [24] in two
different ways, by considering a discrete version of the problem, and by allowing
arbitrary distance measures to be used between samples, including dynamic time
warping, which is the most commonly used distance for time series data [2,20,36].
We further modify this algorithm with an additional constraint, which has an explicit
solution that is identical to the original solution in most cases but makes the
algorithm run much faster. After this constraint, our algorithm becomes a discrete
version of Lloyd’s algorithm. We refer to this fast algorithm as discrete k-median
(DKM) for the remainder of the paper.

1.3 Fuzzy k-Median and Other Distance Based Methods

Next, we introduce a fuzzy version of the fast discrete algorithm, which we refer to
as fuzzy discrete k-means (FDKM). This algorithm is also known as fuzzy medoids
algorithm [17, 27], which has weighted versions [25], and has applications to time
series data [11]. There are other algorithms on fuzzy k-median clustering [8, 22].
We include a hierarchical cluster tree method (HCT) which builds a hierarchical
tree called dendrogram by merging subclusters together based on an inter-cluster
distance definition [32]. Once the dendrogram structure is constructed, it can
be cut in various ways to form clusters. HCT method finds applications in time
series clustering [31]. We also include partition around medoids (PAM), a partition
based algorithm that performs exhaustive swaps between median and non-median
samples to improve the objective iteratively based on a distance matrix [19, 28],
and has applications to time series [14]. We note that, aside from DKM, we use the
initialization method of PAM method to find an initial set of medians for FDKM.

1.4 Applications

We apply DKM, FDKM, HCT and PAM methods on the University of California at
Riverside (UCR) time series data sets. We consider four different distance measures
to form the distance matrix, namely, rectilinear, Euclidean, squared-Euclidean and
dynamic time warping (DTW) distances between pairs of samples. Among these
distance measures, the squared-Euclidean distance is also a well-known Bregman
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divergence and is equivalent to the discrete k-means method [3, 9]. Therefore,
the results with respect to Euclidean versus squared-Euclidean distance can be
considered as the comparison of discrete k-median and discrete k-means methods in
a geometric space. We compare clustering performance on the training and test data
sets using normalized mutual information (NMI) scores. We also present running
time results for each method regarding each data set by averaging running times
over each distance measure.

1.5 Notation and Organization

For consistency throughout the text, we define the following: All vectors are column
vectors. If A is a matrix, Ai is a vector which denotes the i th column of A, and Aj

is a row vector which denotes the j th row of A. Aij is the j th entry of the column
vector Ai , and Aj i is the i th entry of row vector Aj , which implies Aij D Aj i .
We consider e to be a column vector of ones of appropriate size and prime (0) to be
the transpose operator. Gj denotes the set of indices of samples that are assigned to
cluster j for j D 1; : : : ; k, and we assume that these sets are mutually exclusive,
that is Gj � f1; 2; : : : ; ng and Gj \ Gl D ; for any j ¤ l . Distance matrix is
denoted as D. The set of samples to be clustered is denoted as S , and set of medians
is denoted as M � S . Both S and M are used as the actual samples or their indices
interchangeably throughout the text.

The rest of this paper is organized as follows. In Sect. 2, formulations, properties
and the algorithms for DKM, FDKM, HCT and PAM methods are introduced.
In Sect. 3, the rectilinear, Euclidean, squared-Euclidean, dynamic time warping,
and kernel induced distance measures are introduced, performance measures and
computational results are presented. Conclusions are drawn in Sect. 4.

2 Clustering Methods that Use Distance Matrices

We present four clustering methods that take a matrix composed of distances
between every pair of samples according to an arbitrary distance measure and
create clusters based on this matrix. We first introduce an exact bilinear formulation
to solve the discrete k-median problem and demonstrate the iterative uncoupled
bilinear program approach (UBPA) to find a good local solution. We further show
that, with an additional assumption, this approach transforms into Lloyd’s algorithm
modified for discrete k-median problem. Next, we introduce a fuzzy version of this
algorithm by letting cluster membership be defined as a continuous variable. We also
review the hierarchical cluster trees with complete linking [32] and the partition
around medoids algorithms, both of which can use a distance matrix as input.
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2.1 Discrete k-Median Clustering (DKM)

In the discrete k-median clustering problem, we are given a set of samples S and an
integer k, and we want to select a set M of k samples from S to be cluster medians
to minimize the sum of the distances from the samples in S to their nearest median.
This problem is equivalent to the p-median problem in facility location literature,
and is known to be N P-hard on general graphs when p is not fixed [15], even for
planar graphs with maximum vertex degree of 3 [18]. The problem can be solved in
polynomial time when p is fixed, but is computationally expensive for larger values
of p.

The first integer programming formulation for this problem is provided in [30],
which includes selection variables and allocation variables denoted by the vector
Yn�1 2 f0; 1g and the matrix Zn�n, respectively. Selection variables determine
cluster centers Yi and allocation variables determine the cluster assignment of the
samples to these centers Zij . This integer formulation is given in (1), where D is
the distance matrix.

min
Y;Z

nX

iD1

Di Zi

s:t: e0Zi D 1 for i D 1; : : : ; n

Zi � Y for i D 1; : : : ; n

e0Y D k

Z 2 f0; 1gm�m

Y 2 f0; 1gm:

(1)

2.1.1 Uncoupled Bilinear Programming

An alternative exact formulation is developed using bilinear programming following
the general framework in [24], and generalizing it to arbitrary distance measures
[13]. This bilinear program is solved to a local optimum using an alternating iterative
method.

Let Xn�k be a matrix of decision variables such that if sample i is the pth
median then Xi;p D 1 and 0 otherwise, for i D 1; : : : ; n and p D 1; : : : ; k. Then
formulation (2) below solves the k-median problem,

min
X

nX

iD1

min
pD1;:::;k

fD0i Xpg
s:t: e0 Xp D 1 for p D 1; : : : ; k

X 2 f0; 1gn�k;

(2)

where Di is the i th column of D, Xp is the pth column of X , and e is a column
vector of size n. Expressing the inner minimization problem as maxu2Rfu j u �
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D0i Xp; i D 1; : : : ; kg; and substituting the dual of this problem back in
formulation (2), produces the following bilinear program (3),

min
X;T

Pn
iD1 D0i X Ti

s:t: e0Xp D 1 for p D 1; : : : ; k

X 2 f0; 1gn�k

Oe0 Ti D 1 for i D 1; : : : ; n

T � 0;

(3)

where Tk�n is a matrix of variables that comes from the dual formulation. In [13], it
is shown that the optimal solution to formulation (3) satisfies Xi Oe � 1 for i D
1; : : : ; n; where Xi is the i th row in the optimal solution. Therefore including
this condition to formulation (3) as an additional constraint does not change the
optimal solution, however helps the uncoupling of formulation (3) into two linear
programming formulations.

When the values of one of the matrices X and T is fixed, then the resulting model
is a linear program whose decision variables constitute the other matrix. Solving
these two linear programs iteratively converges to a local optimum of the original
formulation as shown in [13]. Let the fixed values X D X0 satisfy the constraints
of the original formulation. The resulting first linear program is given in (4),

T � D LP1.X0/ W

min
T

Pn
iD1 D0i X0 Ti

s:t: Oe0 Ti D 1 for i D 1; : : : ; n

T � 0:

(4)

Formulation (4) dictates that each sample is assigned to the closest median, which
has an explicit solution given in expression (5),

T �i D
�

e.p�/ j p� D arg min
pD1;:::;k

D0
i;p

�
for i D 1; : : : ; n; (5)

where e.p/ is a column matrix of size k whose pth entry is 1 and the others are 0,
and D0 D D X0 is the matrix whose entry in the i th row and pth column is the
distance from point i to median p. Setting T 0 D T � in the original formulation and

using the equivalence
Pn

iD1 D0i X T 0
i D Pk

pD1 T
0

p D Xp in the objective function,
the second linear program can be written as in (6),

X� D LP2.T 0/ W

min
X

Pk
pD1 T

0

p D Xp

s:t: e0Xp D 1 for p D 1; : : : ; k

Oe0 Xi � 1 for i D 1; : : : ; n:

(6)
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Algorithm 1 DKM-LP
Initialize X0

Z0  1
t  1

repeat
Solve T t  LP1.Xt�1/

Solve Xt  LP2.T
t /

X  Xt

t  t C 1

until Zt �Zt�1 < "

return X

It is easy to observe that formulation (6) is an assignment problem with the cost
matrix T 0 D, hence it can be formulated as a network flow problem with X being
continuous variables instead of binary variables.

The iterative uncoupled bilinear programming approach to solve discrete k-
median problem is summarized in Algorithm 1, where t is the iteration counter,
the input/output for the two problems are T t D LP1.Xt�1/ and Xt D LP2.T t / at
iteration t , and Zt is the objective function value at the end of iteration t .

Algorithm 1 converges to a local optima of the original bilinear formulation after
only a few iterations [13].

To summarize in words: at each iteration, given median samples, the first linear
program assigns each sample to a closest median to create clusters, and the second
linear program chooses new medians based on the new clusters, which become the
medians at the beginning of the next iteration.

2.1.2 A Faster Algorithm

The first linear program has an efficient explicit solution, and the second linear
program is a minimum cost assignment problem, which can also be solved relatively
efficiently but not as fast as the first one. Note that the selection of medians in
the second linear program is not limited to the samples within their respective
clusters. In almost all practical cases, the median sample of a cluster is a sample
within the cluster, although it is easy to find counter examples [13]. With an
additional constraint that limits the choice of a new median for a cluster among
the samples in the cluster, the second linear program can also be solved explicitly.
After this constraint is added, the iterative algorithm reduces to a version of Lloyd’s
algorithm [23], modified for discrete k-median problem.

Let M represent the indices of a set of median samples, where the j th index in
M is denoted as Mj , and Gj be the set of indices of samples assigned to cluster j .
The objective for a given set of median samples is calculated as,

Z.M / D
jS jX

iD1

min
jD1;:::;k

fDi;Mj g; (7)
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Algorithm 2 M D DKM.S; D; k/

M  Initialize.S; D; k/

Gj  ;; for j D 1; : : : ; k

t  1

repeat
for i D 1 to jS j do

j � arg minjD1;:::;kfDi;Mj g
Gj �  Gj � \ i

end for
for j D 1 to k do

Mj  arg mini2Gj f
P

l2Gj
Di;lg

end for
t  t C 1

until Zt �Zt�1 < "

return M

with respect to a given set of medians M . Let Zt be the objective function value at
iteration t and " be the threshold. The faster method is summarized in Algorithm 2
below.

2.2 Fuzzy Discrete k-Median Clustering (FDKM)

We introduce a fuzzy discrete k-median clustering method, which is a fuzzy version
of Algorithm 2, borrowing ideas from fuzzy k-means algorithm. This method is also
known as fuzzy medoids algorithm [17, 27].

2.2.1 Fuzzy k-Means Clustering

The main idea behind fuzzy clustering algorithms is to let cluster membership of a
sample be a continuous measure for multiple clusters rather than a discrete measure
for a single cluster. The objective is to minimize the function

nX

iD1

kX

jD1

um
ij jjAi � Cj jj2; (8)

where uij is the degree of membership of sample i to cluster j , Ai is the vector
for the i th sample in the actual domain that the samples reside, Cj is a vector
representing the center for cluster j in the same domain, jj � jj is any norm and
m > 1. Given cluster centers Cj , j D 1; : : : ; k, membership can be determined by

uik D jjAi � Cj jj�2=.m�1/

Pk
pD1 jjAi � Cpjj�2=.m�1/

; (9)
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and given cluster membership values uij , new centers are determined by

Cj D
Pn

iD1 um
ij AiPn

iD1 um
ij

: (10)

The cluster memberships and cluster centers are calculated iteratively until the
difference in the objective function between iterations drops below a threshold
value.

2.2.2 Modification for the Discrete k-Median Clustering

We modify the fuzzy k-means algorithm following the basic idea behind the discrete
k-median problem, which is the fact that arbitrary distances are used and they are not
squared as in the case of k-means, and the cluster medians are selected among the
samples at each iteration instead of weighted cluster centers. Given a set of median
samples M , the objective is calculated as,

Z.M; U / D
nX

iD1

kX

jD1

um
ij Di;Mj ; (11)

and the cluster memberships are determined as,

uij D Di;MjPk
tD1 Di;Mj

; (12)

where Dij D D
�1=.m�1/
ij . Let Un�k be the matrix of membership values uij . Then

we can obtain a score matrix R D D U , from which we determine the j th cluster
median sample as,

Mj D arg min
iD1;:::;jS j

fRij g: (13)

If a sample is optimal for more than one cluster, it is assigned to the cluster
with smaller score and removed from consideration for other clusters. Let Zt be
the objective function value at iteration t and " be the threshold. Then, we can
summarize the fuzzy discrete k-median approach as shown in Algorithm 3.

2.3 Hierarchical Cluster Tree (HCT)

HCT algorithm is an agglomerative method that iteratively merges smaller clusters
into larger ones until all samples are collected under a single large cluster [32]. In the
process of linking these clusters, a tree structure is formed, which is referred to as
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Algorithm 3 M D FDKM.S; D; k/

M  Initialize.S; D; k/

t  1

repeat
I D f1; : : : ; jS jg
K D f1; : : : ; kg
U  fui;j W ui;j D Di;Mj =

Pk
tD1 Di;Mj g

R D U

while K ¤ ; do
.i�; j �/ arg mini2I fminj2KfRij gg
M �

j  i�

I D I n fi�g
K D K n fj �g

end while
t  t C 1

until Zt �Zt�1 < "

return M

a dendrogram. The merging process is steered with respect to a distance measure
between subclusters. Once the dendrogram is completed, individual clusters can be
obtained by different ways of cutting the dendrogram into sub-trees.

HCT algorithm starts with every sample defined as a cluster by itself. The
distance measure that guides the linking process can be defined in a number of
ways. Two most well known distance measures are single linkage and complete
linkage distance measures. Let Gi and Gj be two clusters. Single linkage distance is
defined as the minimum distance between any pair of samples such that one selected
from Gi and the other selected from Gj . More formally,

�ij D minfDpq W p 2 Gi ; q 2 Gj g: (14)

Complete linkage distance is defined as the maximum distance between any pair of
samples such that one selected from Gi and the other selected from Gj , that is,

�ij D maxfDpq W p 2 Gi ; q 2 Gj g: (15)

There are other distance measures such as average or median distance, which is
the average or the median of the distances between any pairs of samples. Other
distance measures may involve centroid, squared or weighted distances. However,
these methods may require operations in the actual domain of the data, which may
not be practical or meaningful for time series data. Single and complete linkage
distances do not require such calculations and work with an arbitrary distance
matrix. In our study we use the complete linkage distance, which is also known
as the diameter of the new cluster.

HCT starts with a distance matrix � D D, where all samples are represented
as individual clusters. At iteration t , clusters i and j with minimum �ij among all
pairs is selected and merged into a larger cluster. Matrix � is updated by deleting the
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Algorithm 4 M D HCT.S; D; k/

I D f1; : : : ; jS jg
� D

for p D 1 to jS j � 1 do
.i�; j �/ arg minf�i;j W i; j 2 I; i ¤ j g
L.p/ .i�; j �; �i�;j � /

G
jSjCp  Gi� [Gj �

I  I [ fjS j C pg
I  I n fi�; j �g
Calculate �i;jSjCp for all i 2 I

end for
H  Cluster.L/

for j D 1 to k do
Mj  arg minq2Hj f

P
p2Hj

Dq;pg
end for
return M

rows and columns corresponding to clusters i and j , assigning a new index, n C t

to the merged cluster, and appending a row and column to � for the new cluster with
the values �i;nCk for all remaining clusters. Meanwhile, at each iteration, a node for
the new cluster is created and connected to the clusters that are merged to produce
the new cluster in order to continue building the dendrogram. Algorithm continues
until � reduces down to a single element. There are exactly m � 1 internal nodes in
the dendrogram, which can be represented by a list L of such nodes. In this list, the
indices of the nodes corresponding to the two subclusters that form a new cluster,
and the distances between them are stored for the new internal node representing
the new cluster.

There are many ways of cutting the dendrogram into clusters. Usually, some
measure is used together with a threshold, below which clusters are formed. One
can calculate inconsistency coefficient of a link by comparing the height of a link
with the average height of links at the same level in the hierarchical dendrogram.
The higher the inconsistency of a link, the less similar clusters connected by that
link. The leaves of the tree with inconsistency below a threshold value are grouped
into a cluster. Height of a node for a cluster, which is defined as the distance between
the two subclusters that form that cluster, can also be used with a threshold value to
form clusters. In order to obtain a predetermined number of k clusters, one can also
find the minimum height at which a horizontal cut through the dendrogram forms k

clusters, which is the cutting method used to form clusters in this study. Once the
clusters are formed after cutting the dendrogram, the median sample in each cluster
is identified to represent these clusters.

HCT method is summarized in Algorithm 4, in which I is the set of indices for
subclusters, and �I is the distance matrix whose entries are based on the distance
given in (15). Forming a set of clusters H from the list L by a horizontal cut is
represented by the method Cluster, details of which are skipped for brevity.
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Algorithm 5 M D PAM.S; D; k/

M  Initialize.S; D; k/

t  1

repeat
N  S nM

Zmin 1
Mmin M

for each i 2 N; j 2M do
M � .M [ Ni / nMj

if Z.M �/ < Zmin then
Zmin Z.M �/

Mmin M �

end if
end for
M  Mmin

t  t C 1

until Zt �Zt�1 < "

return M

2.4 Partition Around Medoids (PAM)

PAM algorithm is a simple heuristic based on updating a set of medians, which
are also referred to as medoids, by exhaustively swapping medoid samples with
non-medoid samples to find the best possible improvement at each iteration. Given
a set of medoids, each sample is assigned to the nearest medoid, and the sum of
all distances between samples and their assigned medoids is calculated as the cost
of the current configuration using expression (7). At each iteration, each medoid
sample is temporarily swapped with each non-medoid sample and the cost of the
new arrangement is calculated. The swap that produces the minimum cost becomes
permanent at the end of the iteration. The algorithm continues until the reduction in
the total cost between two iterations falls below a threshold value. PAM method is
summarized in Algorithm 5.

2.5 Initialization

All methods introduced, except for HCT, are iterative methods starting with a set
of median samples and converging to a local optimum when their threshold values
are set to be zero. Clustering problem is a hard combinatorial problem with a large
number of local optima. Therefore, the solutions obtained from these algorithms are
quite sensitive to the initial selection of medians.

For DKM, FDKM and PAM methods, we use the initialization method originally
included in the PAM algorithm [19] to build a “good” set of initial medians. We
start building the initial set by including the sample whose sum of distances to other
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Algorithm 6 M D Initialize.S; D; k/

M1  arg mini2S

P
j2S Di;j

for t D 2 to k do
N  S nM

for each p 2 N do
Di;M  minfDi;j W j 2M g for all i W i 2 N; i ¤ p

Tp DP
iWi¤j;i2N maxfDi;M �Di;p; 0g

end for
p� arg maxp2N fTpg
M  M [ fp�g

end for
return M

samples is minimum. Then we determine the remaining k � 1 initial medians as
follows: Let M be the current set of median samples and N D S n M be the set
of remaining samples. Let the smallest distance of a sample to the set of medians
be denoted as Di;M D minfDi;j W j 2 M g. For a new candidate median sample
p, let the total positive distance gain Tp be measured as the sum of the positive
difference between the minimum distance of every nonmedian samples i W i ¤ j;

i 2 N to the current median samples and to the candidate sample p, that is,
Tp D P

i Wi¤j;i2N maxfDi;M �Di;p; 0g: At each of the remaining k �1 iterations we
remove the sample with the maximum total distance gain from N and add it to M .
The initialization method is given in Algorithm 6.

3 Computational Results

We code the four clustering algorithms introduced, namely, DKM, FDKM, HCT and
PAM in MATLAB 7.9 and apply them to the University of California at Riverside
(UCR) benchmark time series data sets, and to real life local field potential (LFP)
recordings collected from the occipital lobe of a macaque monkey brain during a
visuomotor task. We use normalized mutual information(NMI) measure [29] on
UCR benchmark data [35], LFP data [10], and we graphically demonstrate NMI
based discrimination of visual stimuli from the LFP recordings. We also compare
running time results from UCR datasets.

A distance or dissimilarity matrix is sufficient for all of the four methods without
the actual knowledge of domain that the samples reside in. We use four different
distance measures: rectilinear, Euclidean, squared-Euclidean, and DTW. Among
these distance measures, squared-Euclidean is the only Bregman divergence, a
class of non-metric distance measures that are commonly used in clustering. Using
squared-Euclidean distances is equivalent to k-means algorithms [3, 9]. Therefore,
we note that the results for the squared-Euclidean can be considered as results of a
discrete k-means algorithm in geometric space.
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Since DKM, FDKM and PAM methods are sensitive to the initial set of medians,
we adopt the initialization procedure of the PAM algorithm to create a set of good
starting medians. We set the threshold " D 0 for all computational results to
terminate all of the three methods at a local optimum.

3.1 Distance Measures

We summarize the four distance measures used to create the distance matrix D.
Assume Si is a multi-variate time series sample which is composed of d single-
variate time series with n time points each. Si is represented with a d � n matrix.
The values at time point t is denoted with the vector Si.t/.

3.1.1 Rectilinear

This distance measure is the sum of the absolute values of the differences between
all corresponding elements of the two multi-variate time series samples Si and Sj ,
and is calculated as,

Drtl.i; j / D
nX

tD1

jjSi ; .t/ � Sj .t/jj1: (16)

3.1.2 Euclidean

This distance measure is the sum of the Euclidean norm of the difference between
the corresponding vectors Si.t/ and Sj .t/ over each time point t , which is given as,

Deuc.i; j / D
nX

tD1

jjSi.t/ � Sj .t/jj2: (17)

3.1.3 Squared-Euclidean

This distance measure is similar to Euclidean, where the square of the norm of the
difference vector between Si .t/ and Sj .t/ are summed over time t , that is,

Deuc2 .i; j / D
nX

tD1

jjSi.t/ � Sj .t/jj22 (18)
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Algorithm 7 d D Ddtw.i; j /

C1  jjSi .1/� Sj .1/jj2
for p D 2 to n do

Cp  Cp�1 C jjSi .p/� Sj .1/jj2
end for
for q D 2 to n do

d  C1 C jjSi .1/� Sj .q/jj2
for p D 2 to n do

temp minfup; Cp�1; Cpg C jjSi .p/� Sj .q/jj2
Cp�1  d

d  temp
end for
Cn  c

end for
return d

3.1.4 Dynamic Time Warping (DTW)

This distance measure calculates the similarities of two time series by deleting, in-
serting or matching components of one time series compared to another time series.
The optimal set of editing operations are determined by dynamic programming. The
cumulative cost of the time series is calculated as the sum of the Euclidean norm of
the distances between the vectors of the matched time points between the two series.
Although in practice DTW usually employs an n � n matrix to identify the actual
matching between the two time series, here, we only need the cumulative matching
distance, which only requires a vector Cn�1, which is updated n times. The method
used to calculate the cumulative DTW distance is summarized in Algorithm 7.

3.1.5 Kernel Induced Spaces

Although kernel induced spaces are not included in the computational results, we
note that it is straightforward to create a distance matrix for such spaces. The actual
domain S for the original data can be mapped to a usually higher dimensional
feature space using a mapping ˆ.S/. A kernel function K.Si ; Sj / D hˆ.Si / �
ˆ.Sj /i, which is generally in the form of a dot product, implicitly maps the data
without creating the actual representation of the samples in the feature space. The
kernel function can be used to measure the squared-Euclidean distance in the kernel
space, that is,

jjˆ.Si/ � ˆ.Sj /jj22 D hˆ.Si/; ˆ.Si /i C hˆ.Sj /; ˆ.Sj /i � 2 hˆ.Si/; ˆ.Sj /i
D K.Si ; Si / C K.Sj ; Sj / � 2 K.Si ; Sj /: (19)

The square root of expression (19) is the actual Euclidean distance in the feature
space, or it can be used as is for the squared distances in the feature space.
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3.2 Performance Measure

For clustering performance, we use normalized mutual information (NMI) [29],
which measures the normalized mutual dependence of two variables. Its calculation
is based on entropies of two sets of labels and the mutual information in between
them. Let G D fGi giD1;:::;k be the actual clusters in S and G� D fG�j gjD1;:::;k be the
clusters obtained from S using a clustering method. Then, the mutual information
I between G� and G is defined as,

I.G�; G/ D
kX

iD1

kX

jD1

jG�i \ Gj j
jS j log

jS j jG�i \ Gj j
jG�i j jGj j : (20)

The entropy of a set is defined as,

H.G/ D �
kX

iD1

jGi j
jS j log

jGi j
jS j : (21)

Then NMI between G� and G can be expressed as,

NMI.G�; G/ D I.G�; G/

ŒH.G�/ C H.G/�=2
: (22)

3.3 UCR Benchmark Datasets

We use the University of California - Riverside (UCR) time series data sets [35] to
measure clustering performances of DKM, FDKM, HCT and PAM methods. NMI
scores from these methods are compared using four different distance measures,
namely, rectilinear, Euclidean, squared-Euclidean, and DTW. UCR data base con-
sists of 20 real world and synthetic time series data sets with various time series
data properties. Characteristics of the data sets can be found in Table 1, including
number of classes, data size and temporal length. UCR data sets are generally used
for classification, and therefore, they are split into training and testing sets. We apply
the four clustering methods on the training data sets to identify median samples and
cluster both training and testing data sets using these medians. We report NMI values
for both training and testing data sets in Tables 2 and 3, respectively.

For each dataset, the highest NMI value is emphasized in bold. The background
for the distance measure with the highest NMI result within each clustering method
for each data set is also colored gray. In both the training and testing results, it is
visible that DTW is overwhelmingly superior to other distance measures, especially
in the training data sets. In the testing data sets, Euclidean and squared-Euclidean
measures have second and third highest numbers, followed by rectilinear distances.
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Table 1 University of
California-Riverside time
series data sets by [35]

Dataset Name Classes Size Length

1 50 word 50 450 270
2 Adiac 37 390 176
3 Beef 5 30 470
4 CBF 3 30 128
5 Coffee 2 38 286
6 ECG200 2 100 96
7 FaceAll 14 510 131
8 FaceFour 4 24 350
9 Fish 7 175 463
10 Gun Point 2 50 150
11 Lightning 2 2 60 637
12 Lightning7 7 70 319
13 Olive Oil 4 30 570
14 OSU Leaf 6 200 427
15 Swedish Leaf 15 500 128
16 Synthetic Control 6 300 60
17 Trace 4 1,000 275
18 Two Patterns 4 1,000 128
19 Wafer 2 1,000 152
20 Yoga 2 300 426

For the data sets with NMI scores more than 50%, PAM leads in terms of the highest
NMI scores, followed by DKM, FDKM, and HCT both in training and testing
results. Datasets with lower NMI scores have similar results in most cases.

For each clustering method, running time does not change much for different
distance measures, however there is a significant difference in running times among
these methods. In Table 4, running times from the UCR data sets are presented for
each clustering method as the average of the running times for the four different
distance measures. The actual running times are given in the first half of the table
in milliseconds and normalized running times based on DKM, which is the overall
fastest method, is given in the second half of the table. The results suggest that
FDKM is slightly slower than DKM, HCT is four times as slow in most data sets,
and PAM is several orders of magnitude slower than DKM. These results, combined
with the clustering performance, show that DKM and FDKM methods are both
efficient and effective in clustering time series data using a distance matrix.

3.4 Local Field Potentials from a Visuomotor Task

The neural data we study is the local field potentials (LFP) collected from multiple
channels implanted in different cortical areas of a macaque monkey during a visual
discrimination task [10]. We include LFP recordings from three electrodes in the
occipital lobe, which is the visual processing center of the brain. Experiments



Clustering Time Series Data with Distance Matrices 59

Table 2 NMI scores for UCR training data sets with respect to DKM, FDKM, HCT and PAM
methods using rectilinear (RTL), Euclidean (EUC), squared-Euclidean (EUC2), and dynamic time
warping (DTW), distance measures. For each dataset, best scores within a method are shown with
gray background and overall best scores are shown in bold

DKM FDKM

Dataset RTL EUC EUC2 DTW RTL EUC EUC2 DTW

1 0.6797 0.6552 0.6622 0.6976 0.6803 0.6521 0.6577 0.6966
2 0.6186 0.6222 0.6044 0.6406 0.6184 0.6179 0.6071 0.6413
3 0.4188 0.4188 0.4800 0.4188 0.4188 0.4800 0.4800 0.4188
4 0.2687 0.2698 0.2698 0.8955 0.2687 0.2698 0.2698 0.7370
5 0.0357 0.0044 0.0044 0.1565 0.0000 0.0000 0.0615 0.1009
6 0.1402 0.1751 0.1551 0.1589 0.1551 0.1551 0.1751 0.1589
7 0.4298 0.3858 0.3897 0.7613 0.4352 0.3858 0.3849 0.7422
8 0.5364 0.3632 0.5442 0.7851 0.5364 0.3979 0.5442 0.7851
9 0.3520 0.3827 0.3636 0.4249 0.3520 0.3845 0.3884 0.4249
10 0.0126 0.0126 0.0126 0.0227 0.0126 0.0126 0.0126 0.0227
11 0.0151 0.0219 0.0263 0.0673 0.0206 0.0600 0.0219 0.0973
12 0.5165 0.4435 0.4393 0.5479 0.5182 0.4435 0.4501 0.5390
13 0.5803 0.5827 0.6723 0.4967 0.5803 0.5827 0.6723 0.4967
14 0.1873 0.1879 0.2054 0.2720 0.1873 0.1780 0.2087 0.2720
15 0.5355 0.5737 0.5147 0.5614 0.5391 0.5719 0.5296 0.5612
16 0.5635 0.5738 0.5730 0.9090 0.5554 0.5761 0.5667 0.9036
17 0.5679 0.5113 0.5113 0.7442 0.5718 0.5069 0.5113 0.7442
18 0.0186 0.0195 0.0195 0.9122 0.0265 0.0195 0.0195 0.9035
19 0.0002 0.0000 0.0000 0.0004 0.0002 0.0001 0.0000 0.0011
20 0.0051 0.0051 0.0030 0.0012 0.0051 0.0051 0.0030 0.0012

HCT PAM

Dataset RTL EUC EUC2 DTW RTL EUC EUC2 DTW

1 0.6687 0.6708 0.6708 0.7192 0.6803 0.6713 0.6685 0.7123
2 0.5518 0.5779 0.5779 0.6198 0.5924 0.6046 0.5855 0.6278
3 0.4679 0.4294 0.4294 0.4558 0.4188 0.4800 0.4908 0.4188
4 0.4619 0.3690 0.3690 0.6741 0.2687 0.2698 0.2698 0.8955
5 0.1565 0.1565 0.1565 0.1565 0.0597 0.0948 0.0948 0.0948
6 0.1402 0.1709 0.1709 0.1751 0.1402 0.1751 0.1594 0.1589
7 0.3533 0.3492 0.3492 0.6601 0.4124 0.3941 0.4047 0.7891
8 0.5196 0.4729 0.4729 0.6751 0.6031 0.4839 0.4839 0.7851
9 0.2700 0.2461 0.2461 0.4349 0.3769 0.3879 0.2764 0.4105
10 0.0412 0.0412 0.0412 0.1386 0.0126 0.0126 0.0126 0.0126
11 0.0108 0.0388 0.0388 0.2676 0.0151 0.0219 0.0263 0.1090
12 0.5520 0.3810 0.3810 0.6223 0.5165 0.4599 0.4495 0.5920
13 0.4951 0.5000 0.5000 0.5000 0.5803 0.5827 0.6723 0.4967
14 0.0883 0.2337 0.2337 0.2856 0.1934 0.2106 0.2162 0.2995
15 0.4185 0.3632 0.3632 0.4972 0.5346 0.5407 0.5359 0.5961
16 0.6104 0.5627 0.5627 0.8137 0.5726 0.5702 0.5718 0.9439
17 0.5729 0.5729 0.5729 0.5270 0.5088 0.5113 0.5545 0.7417
18 0.0364 0.0185 0.0185 0.4399 0.0232 0.0259 0.0259 0.9218
19 0.0000 0.0001 0.0001 0.0000 0.0002 0.0000 0.0000 0.0004
20 0.0025 0.0001 0.0001 0.0002 0.0051 0.0051 0.0030 0.0012
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Table 3 NMI scores for UCR testing data sets with respect to DKM, FDKM, HCT and PAM
methods using rectilinear (RTL), Euclidean (EUC), squared-Euclidean (EUC2), and dynamic time
warping (DTW), distance measures. For each dataset, best scores within a method are shown with
gray background and overall best scores are shown in bold

DKM FDKM

Dataset RTL EUC EUC2 DTW RTL EUC EUC2 DTW

1 0.6520 0.6426 0.6427 0.7153 0.6545 0.6398 0.6420 0.7152
2 0.5896 0.6181 0.5935 0.6121 0.5863 0.6202 0.5930 0.6105
3 0.2856 0.3454 0.3251 0.3220 0.2856 0.3565 0.3565 0.3518
4 0.2896 0.3235 0.3235 0.7194 0.2896 0.3235 0.3235 0.6440
5 0.0381 0.0459 0.0459 0.0308 0.0252 0.0100 0.0381 0.0916
6 0.1194 0.1506 0.1344 0.0644 0.1344 0.1506 0.1506 0.0644
7 0.3197 0.2811 0.2707 0.6190 0.3194 0.2811 0.2735 0.5843
8 0.3269 0.2626 0.2795 0.6172 0.3269 0.2461 0.2629 0.6172
9 0.3467 0.3269 0.3203 0.4177 0.3467 0.3570 0.3543 0.4177
10 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011
11 0.0083 0.0568 0.1231 0.0209 0.0097 0.0418 0.0348 0.0121
12 0.5288 0.3810 0.3756 0.5306 0.5419 0.3810 0.3945 0.5062
13 0.2519 0.4487 0.4714 0.3047 0.2519 0.4487 0.4714 0.3047
14 0.1677 0.1781 0.1729 0.2369 0.1677 0.1694 0.1771 0.2369
15 0.5476 0.5796 0.5279 0.5686 0.5459 0.5722 0.5421 0.5685
16 0.5663 0.5528 0.5827 0.8857 0.5376 0.5485 0.5769 0.8833
17 0.5410 0.5109 0.5099 0.7693 0.5329 0.5090 0.5109 0.7769
18 0.0222 0.0244 0.0244 0.9015 0.0325 0.0244 0.0244 0.8994
19 0.0000 0.0004 0.0004 0.0000 0.0000 0.0005 0.0004 0.0001
20 0.0011 0.0013 0.0003 0.0006 0.0011 0.0013 0.0003 0.0006

HCT PAM

Dataset RTL EUC EUC2 DTW RTL EUC EUC2 DTW

1 0.6460 0.6433 0.6431 0.6996 0.6699 0.6616 0.6501 0.7170
2 0.5705 0.5564 0.5577 0.5516 0.5821 0.6128 0.5836 0.6080
3 0.3500 0.3437 0.3842 0.3163 0.2856 0.3565 0.3565 0.2898
4 0.2471 0.2937 0.2937 0.6060 0.2896 0.3235 0.3235 0.6850
5 0.0308 0.0308 0.0308 0.0308 0.0336 0.0336 0.0336 0.0336
6 0.1194 0.1349 0.1349 0.0925 0.1194 0.1506 0.1349 0.0644
7 0.2779 0.2839 0.2790 0.5340 0.3176 0.2833 0.2911 0.6754
8 0.5265 0.4781 0.4870 0.4529 0.3856 0.4050 0.4050 0.6172
9 0.2451 0.2594 0.2444 0.4355 0.3021 0.3159 0.2745 0.4043
10 0.0779 0.0687 0.0687 0.1237 0.0011 0.0011 0.0011 0.0011
11 0.0064 0.1231 0.1231 0.0047 0.0083 0.0568 0.1231 0.1381
12 0.6074 0.4537 0.4361 0.5583 0.5288 0.3591 0.3611 0.5812
13 0.3580 0.4714 0.4714 0.4111 0.2519 0.4487 0.4714 0.3047
14 0.1532 0.1763 0.1747 0.2176 0.1867 0.1888 0.1680 0.2638
15 0.3742 0.4010 0.3936 0.4930 0.5561 0.5669 0.5616 0.6178
16 0.5556 0.5610 0.5378 0.7776 0.5775 0.5805 0.5866 0.8993
17 0.5347 0.5502 0.5481 0.5461 0.5078 0.5109 0.5398 0.7736
18 0.0395 0.0265 0.0304 0.3715 0.0277 0.0264 0.0264 0.9053
19 0.0000 0.0004 0.0004 0.0000 0.0000 0.0004 0.0004 0.0000
20 0.0003 0.0011 0.0010 0.0000 0.0011 0.0013 0.0003 0.0006
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Table 4 UCI data sets training time results: Actual running time is the average of running times
over different distance measures which have similar magnitude within same data set. Normalized
time results are reported using DKM running time as the basis

Actual speed (milliseconds) Normalized speed

Dataset DKM FDKM HCT PAM DKM FDKM HCT PAM

1 54:27 70:93 145:03 121,367.88 1.00 1.31 2:67 2,236.24
2 2:59 8:64 17:68 45,339.59 1.00 3.33 6:82 17,488.46
3 0:40 0:54 1:28 62.42 1.00 1.33 3:19 155.38
4 0:21 0:22 0:80 22.17 1.00 1.06 3:90 107.95
5 0:21 0:23 0:75 28.39 1.00 1.09 3:53 134.39
6 0:25 0:23 1:32 64.35 1.00 0.93 5:37 262.62
7 1:21 5:48 42:40 15,018.71 1.00 4.53 35:08 12,425.78
8 0:24 0:34 0:99 38.53 1.00 1.40 4:05 157.56
9 0:43 0:91 2:83 1,068.96 1.00 2.13 6:63 2,503.67
10 0:29 0:40 1:24 59.65 1.00 1.37 4:25 204.54
11 0:30 1:74 1:36 53.61 1.00 5.87 4:58 180.66
12 0:30 0:47 1:20 290.04 1.00 1.58 4:03 972.45
13 0:16 0:27 0:83 21.28 1.00 1.69 5:31 135.26
14 0:44 0:77 3:42 1,150.84 1.00 1.76 7:82 2,629.21
15 1:63 7:46 40:67 14,851.99 1.00 4.57 24:89 9,089.31
16 0:72 1:00 11:57 2,234.17 1.00 1.38 16:01 3,092.55
17 0:49 0:60 1:52 342.84 1.00 1.22 3:10 698.79
18 5:07 13:54 110:43 5,144.03 1.00 2.67 21:80 1,015.23
19 13:51 10:38 117:30 1,196.61 1.00 0.77 8:68 88.57
20 1:11 0:81 10:20 278.31 1.00 0.74 9:22 251.71

involve repeated trials of one of the four visual stimuli: right slanted line, right
slanted diamond, left slanted line, and left slanted diamond. Visual stimulus is
shown to the monkey on a screen in a randomized order. Each type of stimulus
is shown about a quarter of 200 trials per session in a randomized order. We aim
to use clustering methods to identify the time, at which presentation of different
stimuli in the occipital lobe in terms of local field potentials (LPF) creates different
clusters. We use a window of 10 recordings from the three occipital lobe channels,
which is equivalent to a window of 50 ms. We slide this window from 100 ms prior
to the onset of the stimuli until 500 ms after the stimuli onset, advancing 5 points,
or 25 ms at a time, and applying the four clustering methods introduced for every
window.

In Fig. 1, results of the clustering efforts are shown in terms of NMI. In each
graph, the NMI scores for the four different clustering methods are plotted over time
with the distance measure used indicated below the graph. Euclidean and squared-
Euclidean distance measures produce very similar results, better than rectilinear
but not with an as steep increase as DTW at the beginning. It is worth noting
that rectilinear distances produce the highest peak but least steep graph. DKM and
FDKM produce very similar results with FDKM having a slight advantage around
the peak. Results from HCT are dominated by the other three in each graph, and
PAM has a slight advantage over DKM and FDKM.
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Fig. 1 NMI scores for LFP data sets between 100 and 200 ms with respect to DKM, FDKM,
HCT and PAM methods using (a): Rectilinear, (b): Dynamic time warping, (c): Euclidean, and (d)
squared-Euclidean distance measures

In each graph, change starts around 170 ms and peaks around 200 ms, which is
70 and 100 ms after the onset of the visual stimuli, respectively. The results shown
in the graphs come from one of the ten sessions processed. Focusing on the time
window that correspond to the peak at 100 ms after the onset of the stimuli, we
apply the four clustering methods together using four different distance measures
to each session separately. The results are presented in Table 5. As in UCR results,
bold numbers are the best across clustering methods and distance measures for each
session. FDKM has the most number of highest NMI scores followed by DKM,
PAM and HCT in decreasing number of highest NMI scores. The NMI scores with
gray background are the highest NMI scores among different distance measures
within a clustering algorithm for each session. DTW seems to work well with all
clustering algorithms, followed by rectilinear, Euclidean, and squared-Euclidean.
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Table 5 NMI scores for LFP data sets with respect to DKM, FDKM, HCT and PAM methods
using rectilinear (RTL), Euclidean (EUC), squared-Euclidean (EUC2), and dynamic time warping
(DTW), distance measures. For each dataset, best scores within a method are shown with gray
background and overall best scores are shown in bold

DKM FDKM

Dataset RTL EUC EUC2 DTW RTL EUC EUC2 DTW

1 0.0925 0.0944 0.1008 0.0828 0.0925 0.0921 0.0939 0.0814
2 0.0891 0.0958 0.0943 0.1024 0.1056 0.0896 0.0926 0.1024
3 0.0629 0.0590 0.0574 0.0645 0.0677 0.0571 0.0631 0.0672
4 0.1201 0.1108 0.1198 0.1215 0.1332 0.1100 0.1174 0.1204
5 0.1110 0.1248 0.1133 0.1126 0.1113 0.1351 0.1218 0.1130
6 0.2076 0.2090 0.2114 0.2003 0.1964 0.2027 0.1975 0.1975
7 0.2068 0.1995 0.2050 0.2313 0.2216 0.2160 0.2201 0.2505
8 0.2439 0.2115 0.2131 0.2212 0.2409 0.2168 0.2217 0.2194
9 0.1750 0.1778 0.1798 0.2017 0.1721 0.1774 0.1760 0.1831
10 0.2047 0.2091 0.2052 0.2066 0.1994 0.2033 0.1995 0.2073

HCT PAM

Dataset RTL EUC EUC2 DTW RTL EUC EUC2 DTW

1 0.0762 0.0897 0.0897 0.0887 0.0911 0.0831 0.0849 0.0821
2 0.0944 0.0972 0.0972 0.0854 0.1029 0.0986 0.0960 0.1009
3 0.0667 0.0630 0.0630 0.0594 0.0681 0.0615 0.0606 0.0668
4 0.1028 0.1085 0.1085 0.1108 0.1195 0.1283 0.1237 0.1319
5 0.1191 0.1027 0.1027 0.1141 0.0987 0.1049 0.1099 0.1158
6 0.1601 0.1718 0.1718 0.1827 0.2052 0.1982 0.1963 0.2058
7 0.1808 0.1791 0.1791 0.1946 0.2077 0.2193 0.1962 0.2093
8 0.1970 0.1895 0.1895 0.1975 0.2238 0.2177 0.2143 0.2277
9 0.1698 0.2028 0.2028 0.1795 0.1681 0.1837 0.1859 0.1893
10 0.1822 0.1977 0.1977 0.1954 0.2276 0.2131 0.2166 0.2226

4 Conclusion

In this study, we introduce four clustering methods, which take a distance matrix
that represents dissimilarities between samples as input. Three of these methods are
partitional methods and the fourth method is a hierarchical method. Dependence
on a distance matrix spares the difficulties or complications of operating in the
actual domain that the data resides, and provides more flexibility in the way the
dissimilarities between samples are defined. All four methods produce k samples as
medians that represent clusters such that samples are assigned to the median closest
to them and form clusters.

The first partitional method is based on the transformation of the exact clustering
problem into a bilinear program with uncoupled variables, which can be solved
iteratively as two alternating linear programs until it converges to local optimum.
One of these linear programs has an explicit solution, whereas the other is a
minimum cost assignment problem. With an additional constraint on the assignment
problem, which hardly affects the optimal solution in most cases, the uncoupled
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bilinear approach is converted into a discrete k-median (DKM) method, which
is the discrete version of Lloyd’s algorithm. A fuzzy version of the discrete k-
median algorithm (FDKM) is included as the second clustering method, which
uses fuzzy membership degrees to all clusters for each sample. These membership
values are iteratively updated and new cluster medians are found at each iteration
until the algorithm converges to a local optimum. Hierarchical cluster tree method
(HCT) with complete linkage is presented as the third method, which builds an
agglomerative tree called dendrogram. This tree is cut horizontally to form k

clusters and the median sample in each cluster is returned. Partition around medoids
(PAM), an iterative method that swaps median and non-median samples to improve
clustering is introduced as the fourth clustering method.

Distance measures are selected as rectilinear, Euclidean, squared-Euclidean
and dynamic time warping (DTW) to form the distance matrices from single or
multivariate time series. All combinations of the four clustering methods and four
distance measures are applied to the University of California at Riverside (UCR)
data sets and local field potential (LFP) recordings from the occipital lobe of a
macaque monkey. The UCR results suggest that the DTW distance measures work
better than the other distance measures. PAM produces slightly better results in
UCR data sets, closely followed by DKM and FDKM, but PAM is several orders
of magnitude slower than DKM and FDKM clustering algorithms. HCT performs
well in some data sets but is also few times slower than DKM and FDKM. In the
LFP results, distance measures do not make a big impact, however DKM and FDKM
results are better than PAM and HCT in most data sets. All four methods are capable
of detecting the time of the discrimination of visual stimulus in the occipital lobe.
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66 O. Şeref and W.A. Chaovalitwongse

34. N. Vlassis, A. Likas, J.J. Verbeek, The global k-means clustering algorithm. Pattern Recogn.
36, 451–461 (2001)

35. L. Wei, E. Keogh, X. Xi, C.A. Ratanamahatana, The UCR Time Series Classifica-
tion/Clustering Homepage, http://www.cs.ucr.edu/�eamonn/time series data/(2006)

36. X. Xi, S.H. Lee, E. Keogh, L. Wei, M. Vlachos, in Lb keogh Supports Exact Indexing of
Shapes Under Rotation Invariance with Arbitrary Representations and Distance Measures.
VLDB ’06: Proceedings of the 32nd International Conference on Very Large Data Bases
(VLDB Endowment, 2006), Seoul, Korea, pp. 882–893 (2006)



Mathematical Models of Supervised Learning
and Application to Medical Diagnosis

Roberta De Asmundis and Mario Rosario Guarracino

Abstract Supervised learning models are applicable in many fields of science
and technology, such as economics, engineering and medicine. Among supervised
learning algorithms, there are the so-called Support Vector Machines (SVMs),
exhibiting accurate solutions and low training time. They are based on the statistical
learning theory and provide the solution by minimizing a quadratic type cost
function. SVMs, in conjunction with the use of kernel methods, provide non-
linear classification models, namely separations that cannot be expressed using
inequalities on linear combinations of parameters. There are some issues that may
reduce the effectiveness of these methods. For example, in multi-center clinical
trials, experts from different institutions collect data on many patients. In this case,
techniques currently in use determine the model considering all the available data.
Although they are well suited to cases under consideration, they do not provide
accurate answers in general. Therefore, it is necessary to identify a subset of the
training set which contains all available information, providing a model that still
generalizes to new testing data. It is also possible that the training sets vary over
time, for example, because data are added and modified as a result of new tests
or new knowledge. In this case, the current techniques are not able to capture the
changes, but need to start the learning process from the beginning. The techniques,
which extract only the new knowledge contained in the data and provide the learning
model in an incremental way, have the advantage of taking into account only the
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really useful experiments and speed up the analysis. In this paper, we describe
some solutions to these problems, with the support of numerical experiments on the
discrimination among differ types of leukemia.

Mathematics Subject Classification (2010): Primary 68T10, Secondary 62H30

1 Introduction

The genetic information of an organism is stored in DNA molecules which contain
four types of nucleotides to compose the genome of each living organism. Parts of
the genome, called genes, have the capability to transcribe RNA, through a process
called gene expression. As for DNA, RNA is composed of nucleotides to encode
genetic information and all living organism use messenger RNA (mRNA) to carry
the genetic information that directs the synthesis of proteins. The products of gene
expression are molecules composed of RNA, from which proteins are translated. In
translation, triplets of nucleotides (codons) determine which will be the next amino
acid added in the growing protein chain. The sequence between the starting and
ending encoding nucleotides is called an open reading frame. The human genome
contains more than three billions base pairs, but the complexity of a genome is not
directly related to the complexity of an organism. Indeed, the latter is connected to
the differentiation and specialization of cells and their capability to communicate
and interact to perform complex tasks.

In 1995 Schena et al. [1] developed a microarray system to simultaneously
measure the level of expression of 45 genes in the flowering plant Arabidopsis.
This was a major improvement with respect to existing techniques, that could report
the activity of single genes. Tens of thousands publications have appeared in the
scientific literature since 1995, highlighting the rapid proliferation of microarray
technology. This technology is nowadays widely used in both medical and biolog-
ical research. The analysis of microarray data can detect the expression of tens of
thousands of genes in a single experiment.

DNA microarrays are typically glass slides on which tens of thousands spots
of DNA are printed. Each spot corresponds to some portion of a known gene
or predicted open reading frame. Each spot identifies, through a process called
hybridization, the expression level of the mRNA transcript by a gene. The output
of this process is a digital image, that contains a color spot for each probe, in each
experiment, as depicted in Fig. 1. To obtain information about expression levels,
each spot is identified and its intensity measured. This process is prone to errors.
First, it may happen the spots are not perfectly aligned, and therefore, a registration
phase is needed to assign spots to probes. Then, the spot color is not uniform, and
from its intensity a single number has to be produced. In this process many values
are missing or computed with an error. In Affymetrix mycroarrays, for example, the
gene expression value is paired with a “P”, (present), if the value could be evaluated
with enough confidence, a “A” (absent) if the value is absent, or an “M” (marginal)
if the the statistical significance of the expression value provided is low.
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Fig. 1 Detail of a typical
example of 40.000 probes
microarray

We have now a very large quantity of microarray experiments stored in public
databases, such as GEO [2] at the National Center for Biotechnology Information,
or ArrayExpress [3] at the European Bioinformatics Institute. These data have
been collected and annotated, and they grow at unbelievable speed, requiring a
daily rebuild. In the field of medical diagnosis, microarrays have been used for
many different purposes: Alon et al. [4] propose to classify tumor versus normal
colon tissues, Golub et al. [5] to discriminate between Acute Myeloid versus
Lymphoblastic Leukemia, Hedenfalk et al. [6] to classify BRCA1 vs. BRCA2 and
sporadic mutations, Singh et al. [7] to predict patient outcome after prostatectomy;
Veer et al. [8] to predict the clinical outcome of breast cancer, Nutt et al. [9] to derive
a prognosis on gliomas survival, and Iizuka et al. [10] to predict the recurrence of
hepatocellaur carcinoma after curative resection.

Microarrays are currently the most popular technique for transcript profiling and
their cost can be afforded by many laboratories. Unfortunately, there are some
limits, that are directly connected with the acquisition process and technology.
First, they depend on prior probe selection and can have a limited sensitivity due
to the introduction of biases during the hybridization process [11]. Then, during the
statistical analysis, problems arise from the large size of datasets to be processed,
the large number of variables (curse of dimensionality), and the updating of training
sets.

In this paper we propose a solution to the described problems, based on
incremental construction of the training sets and a decremented characterization
of the probes involved in the classification of data. This strategy will provide
benefits with respect to the computational time needed to compute and update the
classification models and accuracy of solutions.

The present work is organized as follow: we describe the de facto standard
classification algorithms and the incremental strategy in Sect. 2; we introduce the
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Gene Selection technique and we present a case study applied to the classification
among different types of leukemia in Sect. 3; Sect. 4 contains the description of
some future directions such as deep sequencing, system biology and personalized
healthcare; fineally we give our conclusions in Sect. 5.

The notation used in the paper is as follows. All vectors are column vectors and
are denoted in bold, the transposed of a vector x will be indicated by x0 and the
transposed of a matrix A by A0. Scalar product of two vectors x and y in Rn will
be denoted by x0y, 2-norm of x will be denoted by kxk and e is a vector of ones of
appropriate size.

2 Supervised Learning

2.1 Support Vector Machines

Support Vector Machines (SVMs) are the state-of-the-art supervised classification
methods, widely accepted in many application areas. A SVM finds an hyperplane
w0x C b D 0 with the objective to separate the elements belonging to two different
classes [12]. The separating hyperplane is usually chosen to maximize the margin
between the two classes, which can be defined as the minimum distance of all of the
elements of either class to the hyperplane and it is equal to:

� D 2

k w k : (1)

The elements which realize the maximum margin are called support vectors and are
the only elements needed to train the classifier because [13] the weights w for the
optimal hyperplane can be written as some liner combination of support vectors:

w D
X

i

˛i yi xi : (2)

Figure 2 shows the hyperplane that separates the points of the two classes, the
margin � and the support vectors which are linked to the optimal hyperplane.

Let consider a data set composed of k pairs (xi ; yi ) where xi 2 Rn is the feature
vector that characterizes the point xi , and yi 2 f�1; 1g, is the class label. Then,
the solution to the following quadratic linearly constrained problem is the optimal
hyperplane with the maximum margin:

min f .w/ D w0w
2

(3)

s:t: w0xi C b � 1 yi 2 class1

w0xi C b � �1 yi 2 class2: (4)
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Fig. 2 A separable problem
in a 2 dimensional space

Note that the objective function of (3) is different from (1), this is due to math-
ematical reasons in order to simplify the problem without changing the solution.
The constraints (4) can be simplified to a single expression:

yi .w0xi C b/ � 1:

A dual representation of this problem can be given as follows:

max f .˛/ D 1

2
˛0Q˛ � e0˛

s:t: ˛i � 0; i D 1; : : : ; n

y0˛ D 0; (5)

and the classification function is:

f .x/ D
nX

iD1

˛i yi xi x; (6)

where ˛ is a vector of Lagrange multipliers and Qi;j D yi yj .x0
ixj /.

Considering two matrices A 2 Rp�n and B 2 Rm�n, that represent the two
classes, each row being a point in the input space, the quadratic linearly constrained
problem (3), which has to be solved to obtain the optimal hyperplane, identified by
.w; b/, can also be written as:

min f .w/ D w0w
2

s:t: .Aw C b/ � e

.Bw C b/ � �e: (7)
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Fig. 3 A non separable
problem in a 2 dimensional
space; here the right way to
separate classes is with a
circle

The advantage of SVMs is that the optimal hyperplane can easily be found using a
small subset of points from both classes whose memberships are a priori known and
the test points can be efficiently classified using the function f .x/ in (6).

In some cases it is impossible to find a separating hyperplane because the data
can be nonlinearly separable, Fig. 3.

In such a case, the initial sets of points representing the data, which originally
reside in the input space, can be nonlinearly embedded to a higher dimensional
space, called feature space, in which the linear separation, and so the optimal
hyperplane, can be found. This nonlinear mapping can be implicitly done by kernel
functions [14], which represent the inner product of the elements in the nonlinear
space. In this way the classifier is a hyperplane in the higher-dimensional feature
space, but it can be nonlinear in the original input space.

Some common kernels are the following:
Gaussian Radial Basis Function:

K.xi ; xj / D e� kxi �xj k2

� : (8)

Polynomial homogeneous:

K.xi ; xj / D .xi xj /d : (9)

Polynomial inhomogeneous:

K.xi ; xj / D .xi xj C 1/d : (10)

Hyperbolic tangent:

K.xi ; xj / D tanh.�xi xj C c/d ; (11)

for some � > 0 and c < 0.
The kernel is related to the transform �.xi / by the equation

K.xi ; xj / D �.xi / � �.xj /; (12)

where xi and xj denote two points in the original input space.
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Fig. 4 An example of
ReGEC classification applied
to a 2 dimensional problem
with linearly separable data.
The two hyperplane are each
the closest to one class and
the furthest to the other

In this way we have:

w D
X

i

˛i yi �.xi /; (13)

and the classification function becomes:

f .x/ D w � �.x/ D
X

i

˛i yi K.xi ; x/: (14)

2.2 ReGEC

Generalized Proximal SVMs (GEPSVM) is another efficient classification algo-
rithm in which the binary classification problem can be formulated as a generalized
eigenvalue problem. Mangasarian et al. [15] proposed to classify the two sets of
points A and B using two non parallel hyperplanes, each the closest to one set of
points and the furthest from the other, as showed in Fig. 4. The assignment of a point
to a class is then based on its distance from the two hyperplanes.

For class A, the hyperplane can be obtained by solving the following optimiza-
tion problem:

min
w;�¤0

kAw � e�k2

kBw � e�k2
; (15)
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while the hyperplane for cases in B can be obtained by minimizing the inverse of
the objective function in (15). With the following positions:

G D ŒA � e�0ŒA � e�;

H D ŒB � e�0ŒB � e�;

z D Œw0 ��0; (16)

where ŒA � e� is the matrix obtained from A adding the column vector �e, and so
for ŒB � e�; the problem (15) becomes:

min
z¤0

z0Gz
z0Hz

: (17)

This expression is the Raleigh quotient of the generalized eigenvalue problem:

Gz D �Hz: (18)

The inverse of the objective function in (17) has the same eigenvectors and
reciprocal eigenvalues. Let:

zmin D Œw0
1 �1�

0; zmax D Œw0
2 �2�

0

be the eigenvectors related to the eigenvalues of smallest and largest modulo,
respectively. Then, x0w1 � �1 D 0 is the closest hyperplane to the set of points
in A and the furthest from those in B , in the same way, x0w2 � �2 D 0 is the closest
hyperplane to the set of points in B and the furthest from those in A.

GePSVM can also classify problems that are not linearly separable using kernel
functions. The kernel function K.x; C / W Rn � R.pCm/�n ! RpCm can embed the
points in a higher dimensional space, thus the resulting hyperplane, projected in the
feature space [16], has equation:

K.x; C /u � � D 0: (19)

In this study we use the Gaussian kernel (8), where xi and xj denote two points in
the original input space.

The nonlinear implicit mapping is done through the kernel matrix K.A; B/,
whose elements are defined as:

K.A; B/i;j D e� kAi �Bj k2

� ; (20)

where Ai and Bj are the i th and j th rows of the matrices A and B , respectively. We
now look for two hyperplanes of equations:

K.x; C /u1 � �1 D 0; K.x; C /u2 � �2 D 0; (21)

each closest to one set of points, and furthest from the other.
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The formulation of the optimization problem required to be solved using kernel
function is the following:

min
u;�¤0

kK.A; C /u � e�k2

kK.B; C /u � e�k2
: (22)

Substituting the scalar product expression of the norms in the above equation
yields:

min
u;�¤0

ŒK.A; C /u � e��0ŒK.A; C /u � e��

ŒK.B; C /u � e��0ŒK.B; C /u � e��
: (23)

With the following positions:

G D ŒK.A; C / � e��0ŒK.A; C / � e��

H D ŒK.B; C / � e��0ŒK.B; C / � e��;

with z0 D Œu0 ��, (23) can be rewritten as:

min
z¤0

z0Gz
z0Hz

: (24)

As above, this is the Rayleigh quotient of the generalized eigenvalue problem
Gz D H�z. When H is positive definite, the stationary points of (24) are achieved
at the eigenvectors in which the objective function is equal to the corresponding
eigenvalue. This means that the solution to (24) is achieved at the eigenvector with
the minimum eigenvalue.

Since the matrices G and H can be deeply rank deficient, there is the possibility
that the null spaces of the two matrices have a non trivial intersection. This is
due to the fact that when G or H are not full rank, problems (17) and (24) can
have multiple eigenvectors related to a single eigenvalue. For example, when H

has a zero eigenvalue of multiplicity r , the generalized eigenvalue problem has r

eigenvectors related to the ‘infinite’ eigenvalues. This leads to a problem that can be
ill-conditioned and therefore a regularization technique needs to be applied in order
to numerically solve the problem.

Mangasarian proposed to solve the following two regularized optimization
problems, where C 0 D ŒA0 B 0� and ı is a regularization parameter:

min
u;�¤0

kK.A; C /u � e�k2 C ık
h

u
�

i
k2

kK.B; C /u � e�k2
(25)

and

min
u;�¤0

kK.B; C /u � e�k2 C ık
h

u
�

i
k2

kK.A; C /u � e�k2
: (26)
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The number of eigenvalue problems can be reduced from two to one, using the new
regularization method ReGEC, proposed by Guarracino et al. [17], by solving the
following generalized eigenvalue problem:

min
u;�¤0

kK.A; C /u � e�k2 C ık QKBu � e�k2

kK.B; C /u � e�k2 C ık QKAu � e�k2
: (27)

Here QKA and QKB are diagonal matrices whose entries are the main diagonals of
the kernel matrices K.A; C / and K.B; C / respectively. The new regularization
provides classification accuracy results comparable to the ones obtained by solving
equations (25) and (26) and it is a form of robustification.

2.3 Incremental

Incremental classification has been introduced to reduce the training data to a
substantially small and robust subset, providing comparable accuracy results. The
use of a smaller set of points reduces the probability of over-fitting the problem and
is computationally easier to handle than the original set.

Incremental Classification with Generalized Eigenvalues [18], I-REGEC, also
provides a constructive way to understand the influence of new training data on
an existing classification function. As new points become available, the cost of
retraining the algorithm decreases if the influence of the new points is only evaluated
with respect to the small subset, rather than the whole training set.

The algorithm takes an initial set of points C0 and the entire training set C as
input, such that C � C0 D A0 [ B0, and A0 and B0 are sets of points in C0 that
belong to the two classes A and B . We refer to C0 as the incremental subset. Let
�0 D C nC0 be the initial set of points that can be included in the incremental subset.
ReGEC classifies all of the points in the training set C using the kernel from C0.
Let PA0 and PB0 be the hyperplanes found by ReGEC, Acc0 be the classification
accuracy and M0 be the points that are misclassified. Then, among the points in
�0 \ M0 the point that is farthest from its respective hyperplane is selected, i.e.,

x1 D xi W max
x2f�0\M0g

˚
dist.x; Pclass.x//

�
; (28)

where class.x/ returns A or B depending on the class of x. This point is the
candidate point to be included in the incremental subset. This choice is based on the
idea that a point very far from its plane may be needed in the classification subset
in order to improve accuracy. We update the incremental set as C1 D C0 [ fx1g.
Then, we classify the entire training set C using the points in C1 to build the kernel.
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Algorithm 1 I-ReGEC(C0, C )
1: �0 D C n C0

2: fM0; Acc0g D Classify.C; C0/

3: k D 1

4: while j�k j > 0 do
5: xk D x W maxx2fMk�1\�k�1g

˚
dist.x; Pclass.x//

�

6: fMk; Acckg D Classify.C; fCk�1 [ fxkgg/

7: if Acck > Acck�1 then
8: Ck D Ck�1 [ fxkg
9: end if

10: �k D �k�1 n fxkg
11: k D k C 1

12: end while

Let the classification accuracy be Acc1. If Acc1 > Acc0 then we keep the new subset;
otherwise we reject the new point, that is C1 D C0. In both cases �1 D �0 n fx1g.
The algorithm repeats until the condition j�kj D 0 is reached. Algorithm 1 is a
pseudo-code of the described method.

3 Gene Expression Data Analysis

Gene expression is the process by which information from a gene is used in
the synthesis of a functional gene product. These products are often proteins
or a functional RNA. Gene expression analysis is applied in medicine to scan
the expression levels of tens of thousands of genes using a microarray, in order
to classify patients in different groups. In this way is possible to classify types
of cancers with respect to the patterns of gene activity in the tumor cells. The
information needed to classify samples is often contained in patterns involving few
tens of genes, but selecting those useful biomarkers is a nontrivial task.

3.1 Gene Selection

Techniques for making easier the biomarkers selection can be divided in two groups:
standard and statistical methods. Standard methods, such as RFE or Relief, need
long and memory intensive computations, while statistical techniques , such as LDA
or FDA, are much faster, but can produce low accuracy results [19], that is why
there is the need for hybrid techniques that can take advantage of both approaches.
Our technique consists in a simultaneous incremental learning and decremented
characterization (ILDC), which permit to acquire knowledge on gene grouping
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during the classification process. This technique relies on standard statistical indexes
(mean � and standard deviation �):

F
�
xj

� D
ˇ̌
ˇ̌
ˇ
�C

j � ��
j

�C
j C ��

j

ˇ̌
ˇ̌
ˇ :

We use the values of F.xj / to choose among genes, preferring the ones with a
greater value of F .

3.2 A Case Study

We consider the Golub microarray dataset [5] composed by 72 samples with 7,129
gene expression values. A principal component analysis divided the dataset in two
clusters, the first containing 25 Acute Myeloid Leukemia samples, and the second 47
Acute Lymphoblastic Leukemia samples. Applying ILDC-ReGEC to the dataset we
discovered that only 100 genes out of 7,129 are responsible of this discrimination,
those 100 selected genes are in agreement with previous studies and less then 10
patients, out of 72, are needed for the training phase. We reached a classification
accuracy of 96.86%.

4 Future Directions

The human genome was sequenced 10 years ago. Many steps have been made
in technology and in knowledge, but still there are millions of open questions.
One of the most exciting advances has been the development of low cost, high-
throughput methodologies for studying human genome-scale variations [20]. These
technologies can led to the identification of genetic variants with roles in human
phenotypic variation, both in relation to disease susceptibility and evolutionary
adaptation [21]. The development of statistical approaches for analysing genome-
scale variation has also been crucially important.

4.1 Deep Sequencing

Sequencing technologies have also made a strong contribution to understanding
human genetic variation. The first two draft human genome sequences were com-
pleted in 2001, and the first human genome was resequenced using nextgeneration
sequencing (NGS) technology, at a fraction of the cost, in 2008. New studies have
underlined that individual genomes may differ by megabases of sequence because of
structural variation, including insertions, deletions and inversions. Deep sequencing
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is a new technology which can produce massive sequencing of billions of DNA
sequences in the form of short fragments. This new technology allows to obtain
detailed information on any possible genetic alteration found in tumor cells.
The application of this technology in cancer discrimination, could lead to the
identification of genetic alterations still unknown, opening new horizons in the
search of rare disease.

4.2 System Biology

Using high-tech procedures, new disciplines of the post-genomics period have the
ambitious goal of achieving an overall vision of all phenomena occurring in the
particular circumstances in which an organic system is set. To the set of those
disciplines is given the name of Systems Biology. The integration of systems
biology approaches and studies of natural selection may be particularly informative.
Living organisms can be represented as complex networks of interacting molecules,
linking such networks will eventually enable a systems-level understanding of living
organisms. The prediction of such interactions is important for medical diagnosis
and to devise new drugs and some new models capable to describe complex
networks are currently in demand.

4.3 Personalized Healthcare

The gene number paradox, according to which organisms of different complexity
have similar numbers of protein-coding genes, illustrates how a certain perception of
biology revolves around the notion that to understand an organism, we need only to
understand all its genes [22]. According to this, if we understand all the genes of an
organism, we understand the whole organism itself. Is it also a necessary condition?
Sequencing individual genomes is becoming an affordable task in terms of time and
cost. Available software technologies store data from a population point of view,
making it difficult to manage and analyze complete information about individuals.
We would like to move from a global population to a local individual point of
view. This paradigm shift will change the way in which we develop data analysis
techniques.

5 Conclusion

Technology in biology and biomedicine applications is progressing at an unprece-
dented speed and scientists need new methodologies to have more insight in their
data. These methodologies need to provide models based on large volumes of data,
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often noisy and incomplete. Results obtained using microarray consist of thousands
of data which validity and significance should be evaluated. The need of validating
and managing a large amount of informations made it necessary to define a rigorous
process of statistical analysis of results and dynamic analysis of experimental data.
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Predictive Model for Early Detection of Mild
Cognitive Impairment and Alzheimer’s Disease

Eva K. Lee, Tsung-Lin Wu, Felicia Goldstein, and Allan Levey

Abstract The number of people affected by Alzheimer’s disease is growing at a
rapid rate, and the consequent increase in costs will have significant impacts on the
world’s economies and health care systems. Therefore, there is an urgent need to
identify mechanisms that can provide early detection of the disease to allow for
timely intervention. Neuropsychological tests are inexpensive, non-invasive, and
can be incorporated within an annual physical examination. Thus they can serve
as a baseline for early cognitive impairment or Alzheimer’s disease risk prediction.
In this paper, we describe a PSO-DAMIP machine-learning framework for early
detection of mild cognitive impairment and Alzheimer’s disease. Using two trials
of patients with Alzheimer’s disease (AD), mild cognitive impairment (MCI), and
control groups, we show that one can successfully develop a classification rule
based on data from neuropsychological tests to predict AD, MCI, and normal
subjects where the blind prediction accuracy is over 90%. Further, our study strongly
suggests that raw data of neuropsychological tests have higher potential to predict
subjects from AD, MCI, and control groups than pre-processed subtotal score-
like features. The classification approach and the results discussed herein offer the
potential for development of a clinical decision making tool. Further study must
be conducted to validate its clinical significance and its predictive accuracy among
various demographic groups and across multiple sites.
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1 Introduction

Alzheimer’s disease (AD), the 6th leading cause of death in the United States, is
a progressive and irreversible brain disease which causes memory loss and other
cognitive problems severe enough to affect daily life. It is estimated that 1 in 8
older Americans and as many as 5.4 million people live with the memory-destroying
illness, translating to someone developing AD every 69 s (Alzheimer’s Association,
2011). The number of people with Alzheimer’s disease is briskly rising, with an
estimated 35 million people worldwide currently living with Alzheimer’s and other
forms of dementia. Currently, AD is incurable; drugs are used to manage the
symptoms or to prevent or slow the progress of the disease. Dementia triples health
care costs for those over the age of 65, costing over 183 billion dollars annually. The
increasing personal and societal costs will have significant impact on the world’s
economies and health care systems.

Mild cognitive impairment (MCI) is a condition in which there is clear evidence
of cognitive problems, most often involving short term memory, but normal day to
day functioning is preserved. In other words, MCI is a situation between normal
aging and dementia. People with MCI may or may not develop dementia in the
future, but people with MCI are at higher risk of developing dementia than those
without MCI.

Fifteen years ago, Alzheimer’s disease was only accurately diagnosed after death,
when doctors performed an autopsy to examine changes in brain tissue. Now, with
advances in imaging, biomarkers can help doctors to identify risks of Alzheimer’s
disease earlier. The evaluation of AD or MCI depends on some clinical and patient
data, including complete medical history, neurological exam, laboratory tests, blood
tests, neuropsychological tests, brain scans (CT or MRI), and information from close
family members. Changes in the brain triggered by Alzheimer’s disease develop
slowly over many years, thus, the race is on to identify new and non-invasive ways
to help diagnose Alzheimer’s disease early, even before any symptoms occur.

Non-invasive tests that can identify people who are at-risk but currently have no
symptoms are critical to curtail the rapid rise of this illness. Such patients can then
be treated so that symptoms never emerge or the onset of symptoms is delayed.
Much research has been done in early detection of AD. Several recent studies on
detection of early Alzheimer’s disease focus on using imaging data [6, 18, 21, 22].
And some new studies also focus on using biomarkers [5, 25, 26]. In this work, we
explore the use of neuropsychological data as an early disease prediction marker.
Neuropsychological tests are simple, non-invasive, and can be added as a regular
routine test during an annual physical examination. If the results can be used to
predict the risk-factors of developing Alzheimer’s disease, it has the potential to
allow for effective detection and early intervention.
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Neuropsychological changes in the expression of cognitive declines are
important to the diagnosis of AD and MCI. Bondi et al. reviewed neuropsycho-
logical changes during the prodromal period of Alzheimer’s disease, which are
important to the early identification of the disease [2]. Nelson and O’Connor
reviewed mild cognitive impairment from the neuropsychological perspective,
including the MCI diagnostic criteria, MCI subtypes, and neuropsychological
tests, for the purpose of early identification of Alzheimer’s disease [24]. The
neuropsychological tests which follow certain criteria are good instruments for
evaluating neuropsychological status.

Statistical analyses have been applied to neuropsychological data to understand
MCI patients. Lopez et al. analyzed neuropsychological characteristics of nor-
mal subjects, MCI-amnestic type (MCI-AT) subjects, and MCI-multiple cognitive
deficits type (MCI-MCDT) subjects [19]. Tabert et al. conducted hypothesis testing
to compare (1) MCI patients with controls, and (2) MCI patients who converted to
AD with MCI patients who did not, in a follow-up duration [30].

Besides statistical analyses, some classification models are also applied to
neuropsychological data for predictive analysis. Stuss and Trites applied discrim-
inant function analysis to discriminate the control group, the brain-damaged group
with a positive physical neurological exam, and the brain-damaged group with a
negative result of the same exam [29]. Kluger et al. applied logistic regression and
stepwise entry procedure to predict (1) whether nondemented elderly subsequently
declined to any diagnosis of dementia; and (2) whether nondemented elderly
subsequently declined to a diagnosis of probable Alzheimer’s disease [11]. Possible
predictor variables included demographic variables, Global Deterioration Scale
(GDS) score, and nine cognitive test scores from the neuropsychological battery
of NYU Aging and Dementia Research Center.

Our work focuses on using the neuropsychological data to understand the cogni-
tive status of the individuals. In particular, we focus on identifying discriminatory
attributes among these data that will allow one to predict individuals with normal
brain functioning, mild cognitive impairment, and those with Alzheimer’s disease.
To demonstrate its accuracy and potential as a clinical decision tool, we use a set
of subjects for establishing the predictive rule and perform blind tests on a set of
independent subjects to gauge its predictive power.

2 Neuropsychological Data

2.1 Raw Data from Emory Clinical Trials

Anonymous data of neuropsychological tests from 35 subjects were collected at
Emory Alzheimer’s Disease Research Center from 2004 to 2007. Eighteen types
of neuropsychological tests were applied to the subjects, but only four of them
were applied to all subjects, thus being used in our predictive model. These tests
included



86 E.K. Lee et al.

Table 1 Number of subjects
of three groups from two
trials of patients

AD MCI Ctl Total

Trial 1 5 3 2 10
Trial 2 2 13 10 25
Total 7 16 12 35

1. Mini Mental State Examination (MMSE),
2. Clock drawing test,
3. Word list memory tasks by the Consortium to Establish a Registry for

Alzheimer’s Disease (CERAD),
4. Geriatric depression scale (GDS).

The MMSE is a screening tool for cognitive impairment, which is brief, but
covers five areas of cognitive function, including orientation, registration, attention
and calculation, recall, and language. The clock drawing test assesses cognitive
functions, particularly visuo-spatial abilities and executive control functions. The
CERAD word list memory tasks assess learning ability for new verbal information.
The tasks include word list memory with repetition, word list recall, and word
list recognition. The GDS is a screening tool to assess the depression in older
population.

There were 153 features, including raw data from the four neuropsychological
tests as well as subjects’ age. Raw data from tests contained answers to individual
questions in the tests. Discarding features which contained missing values or which
were undiscriminating (i.e., features which contained almost the same value among
all subjects), 100 features were used for feature selection and classification. The
clinicians also summarize performance of subtotal scores in different tests, resulting
in 9 scores for each patient.

The patient data came from two trials. The number of subjects in the trials is
listed in Table 1, in which ‘Ctl’ represents the control group.

2.2 Data from LONI/ADNI

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) data website at Labora-
tory of Neuro Imaging (LONI), UCLA, includes a repository of clinical and imaging
data. Clinical data of several neuropsychological tests are used for classification in
this study. The neuropsychological tests include clock drawing test, category fluency
test, Boston naming test, and so on. The category fluency test requires the systematic
retrieval of hierarchically organized information from semantic memory; the Boston
naming test measures the ability to name objects of line drawings.

The data set contained results of neuropsychological tests taken by subjects at
several time points; we used the data taken at the baseline time point, i.e., the first
time a subject took the tests. Data included 819 subjects and 59 features. Unlike the
Emory data, the features were pre-processed score-type ones rather than raw data
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of the tests. After we handled missing values, 786 subjects and 54 features were left
for feature selection and classification. The numbers of AD, MCI, and the control
group are 223, 388, and 175, respectively.

3 Predictive Model and Machine Learning Framework

3.1 Optimization-Based Predictive Model

We performed classification via the DAMIP approach, (discriminant analysis via
mixed integer programming), first developed in 1997 by Gallagher, Lee, and
Patterson [9], which realizes the optimal parameters of Andersons classification
model [1]. Besides the ability to handle multi-group classification problems,
this model incorporates a reserved judgment region and constraints to limit the
misclassification rate. Lee and co-authors have since advanced the theoretical and
computational properties of this multi-group classification model and success-
fully applied it across a broad spectrum of biological and medical applications
including the differential diagnosis of the type of squamous diseases; predicting
presence/absence of heart disease [12, 14]; genomic analysis and prediction of
aberrant CpG island methylation in human cancer [7, 20]; discriminant analysis
of motility and morphology data in human lung carcinoma; prediction of ultrasonic
cell disruption for drug delivery [17]; identification of tumor shape and volume
in treatment of sarcoma [15]; multistage discriminant analysis of biomarkers
for prediction of early atherosclerois; fingerprinting of native and angiogenic
microvascular networks for early diagnosis of diabetes, aging, macular degeneracy
and tumor metastasis; prediction of protein localization sites [12]; and vaccine
immunogenicity prediction [13, 23, 28]. In each case, the predictive model yields
correct classification rates ranging from 80 to 100%. Further, in all these real
applications, beyond reporting the tenfold cross-validation results, the resulting
classification rule was also blind tested against new independent data of unknown
group identity and resulted in remarkable rates of correct prediction.

Theoretically, DAMIP has some appealing characteristics: (1) the misclassifica-
tion rates using the DAMIP method are consistently lower than other classification
approaches in both simulated data and real-world data; (2) the classification rules
from DAMIP appear to be insensitive to the specification of prior probabilities, yet
capable of reducing misclassification rates when the number of training observations
from each group is different; (3) the DAMIP model generates stable classification
rules regardless of the proportions of training observations from each group; and
(4) the resulting classification rule is universally consistent, given that the Bayes
optimal rule for classification is known [3, 4].

First we introduce the notations used in our methods. Suppose in the data we
have n observations from K groups with m features. Let G D f1; 2; : : : ; Kg be
the set of indices of the groups, O D f1; 2; : : : ; ng be the set of indices of the



88 E.K. Lee et al.

observations, and F D f1; 2; : : : ; mg be the set of indices of the features. Also,
let Ok , k 2 G and Ok � O , be the set of indices of observations which belong
to group k. Moreover, let Fj ; j 2 F , be the domain of the j th feature, which
could be the space of real, integer, or binary values. The i th observation, i 2 O , is
represented as .yi ; xi / D .yi ; xi1; : : : ; xim/ 2 G �F1 � � � � �Fm, where yi is the
group of observation i and .xi1; : : : ; xim/ is the feature vector of observation i . The
classification model finds a function f W .F1 � � � � � Fm/ 7! G to predict group
from the features.

Anderson’s classification model maximizes the probability of correct classifi-
cation subject to some limits of misclassification probability. Let �k be the prior
probability of group k and fk.x/ be the value of the conditional probability density
function for the data point x 2 R

m of group k, k 2 G . Also let ˛hk 2 .0; 1/,
h; k 2 G , h ¤ k, be the predetermined limits of the misclassification probability
that data of group h are misclassified to group k. The proposed model seeks a
partition fR0; R1; : : : ; RKg of R

m, where Rk , k 2 G , is the region classified to
group k and R0 is the reserved judgment region, in which the group-assignment
decision of data points is reserved. Anderson’s model is given as:

max
X

k2G

�k

Z

Rk

fk.x/dx

s.t.
Z

Rk

fh.x/dx � ˛hk; 8h; k 2 G ; h ¤ k (1)

Anderson showed that there exists nonnegative constants �hk , h; k 2 G ; h ¤ k,
such that the optimal decision rule of model (1) is given by

Rk D
�

x 2 R
m W Lk.x/ D max

h2f0g[G
Lh.x/

�
; k 2 f0g [ G ; (2)

where

L0.x/ D 0

Lk.x/ D �kfk.x/�
X

h2G ;h¤k

�hkfh.x/; k 2 G (3)

This rule is called Anderson’s rule. However, the optimal �’s are difficult to find.
Gallagher et al. first proposed mixed integer programming formulations, named

DAMIP, for obtaining the optimal values of �’s in Anderson’s rule [8, 9] and
subsequently introduced efficient heuristics to obtain good feasible solutions [16].
Nonlinear and linear versions of DAMIP from Gallagher et al. are presented
below [9]. The binary variable uki indicates whether observation i is classified
to group k or not. The objective function (4a) maximizes the total number of
correctly-classified observations. Constraints (4b) define Lk.x/ of (3) in Anderson’s
rule, constraints (4c) and (4d) guarantee the correct value of uki based on (2), and
constraints (4e) model the misclassification limits. The linear version of DAMIP
uses constraints (5a)–(5d) to model constraints (4c) of the nonlinear version, in
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which the variable ti achieves the value of maxf0; Lki W k 2 G g. This (linear)
version of DAMIP is almost equivalent to nonlinear DAMIP except that DAMIP
introduces a small value " in its formulation to increase the stability of the
classification rule derived by DAMIP, as seen in constraints (5b) and (5d).
Nonlinear DAMIP

max
X

i2O

uyi i (4a)

s.t. Lki D �kfk.xi / �
X

h2G ;h¤k

fh.xi /�hk 8i 2 O; k 2 G (4b)

uki D
�

1 if k D arg maxf0; Lhi W h 2 G g
0 otherwise

8i 2 O; k 2 f0g [ G (4c)

X

k2f0g[G

uki D 1 8i 2 O (4d)

X

i Wi2Oh

uki � b˛hknhc 8h; k 2 G ; h ¤ k (4e)

uki 2 f0; 1g 8i 2 O; k 2 f0g [ G

Lki unrestricted in sign 8i 2 O; k 2 G

�hk � 0 8h; k 2 G ; h ¤ k

DAMIP

max
X

i2O

uyi i

s.t. Lki D �kfk.xi / �
X

h2G ;h¤k

fh.xi /�hk 8i 2 O; k 2 G

ti � Lki �M.1 � uki / 8i 2 O; k 2 G (5a)

ti � Lki � ".1 � uki / 8i 2 O; k 2 G (5b)

ti �M.1 � u0i / 8i 2 O (5c)

ti � "uki 8i 2 O; k 2 G (5d)
X

k2f0g[G

uki D 1 8i 2 O

X

i Wi2Oh

uki � b˛hknhc 8h; k 2 G ; h ¤ k
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uki 2 f0; 1g 8i 2 O; k 2 f0g [ G

Lki unrestricted in sign 8i 2 O; k 2 G

ti � 0 8i 2 O

�hk � 0 8h; k 2 G ; h ¤ k

Although Anderson’s model is parametric, DAMIP does not require knowledge
of prior probability nor the conditional probability densities for the data. Specifically
independent of the type of data, we often employ 1/G and conditional normal
distribution for these two parameters respectively.

DAMIP is NP-hard for more than two groups [3, 4] and computationally it has
proven to be very challenging to solve. For the work presented herein, we developed
a greedy algorithm to solve the resulting DAMIP instances [31]. Given a pair of
groups h and k, the greedy algorithm finds the best �hk and �kh while keeping
other �’s unchanged. If we greedily find �hk and �kh for each pair of groups once,
the complexity of the algorithm is O.K2n log n/, which is very fast. Computational
studies showed that the greedy algorithm can obtain high quality solutions compared
to the exact solutions obtained by our optimization solver [31].

3.2 Feature Selection

To select a small set of discriminatory features, we performed feature selection using
particle swarm optimization (PSO). PSO is an evolutionary computation technique
to solve optimization problems, originally developed by Kennedy and Eberhart [10].
Candidate solutions of the optimization problem are represented as position vectors
of particles. Let xi be the position vector and vi be the velocity vector of particle
i . Let pi be the best position vector of particle i in the history, i.e., the position
possessing the best fitness value among all positions visited so far by particle i .
In the initialization iteration of the PSO algorithm, xi and vi for each particle i are
randomly generated within predetermined ranges, and they are updated in following
iterations according to the formulas

vi  vi � ! C .pi � xi / � c1 � rand./C .pn�.i/ � xi / � c2 � rand./; (6a)

xi  xi C vi ; (6b)

where n�.i/ is the index of the best particle (i.e., having the best objective function
value in the history) in the neighborhood of the i th particle, rand./ denotes a random
number, and !; c1 and c2 are parameters. In the velocity updating formula (6a), the
terms involving the best previous position and the position of the best neighbor are
considered as cognitive and social learning, respectively, of the particle. Poli et al.
had a detailed overview of PSO, including the choice of parameter values in the
updating equations [27].
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In the feature selection application, we devised a discrete version of PSO, in
which a binary vector is regarded as the position vector of a particle, indicating
whether each feature is selected or not. We used the cross-validation prediction
accuracy obtained by DAMIP as the objective function in PSO, and the two
optimization components form the machine learning framework for our predictive
model.

3.3 Cross-Validation and Blind Prediction

To obtain an unbiased estimate of the reliability and quality of the derived classi-
fication rules, tenfold cross validation is performed. In the tenfold cross validation
procedure, the training set is randomly partitioned into ten subsets of roughly equal
size. Ten computational experiments are then run, each of which involves a distinct
training set made up of nine of the ten subsets and a test set made up of the
remaining subset. The classification rule obtained via a given training set is applied
to each point in the associated test set to determine to which group the rule allocates
it. The process is repeated until each subset has been used once for testing. The
cumulative measure of correct classification of the ten experiments provides the
unbiased estimation of correct classification.

We test the predictive rules developed using blind independent data via onefold
blind prediction. In onefold blind prediction, a classification rule is first developed
using all the training data using the selected set of discriminatory features. This
rule is then applied to each subject in the blind data to predict its group status. The
percent of correct prediction of the blind data is recorded, providing a measure of
overall prediction accuracy.

4 Results

The Emory data was used in two ways. First, data from one trial was used for
training to develop a prediction rule, and the other trial was used to blind test.
Second, data from both trials were combined, and we randomly selected 67% of
the subjects in each group for tenfold cross-validation tests, and used the remaining
subjects for blind prediction tests. We applied the PSO-DAMIP machine learning
classification framework to identify patterns that can discriminate subjects from
AD, MCI, and control groups. The best classification results as well as the selected
discriminatory features in each case are shown in the following tables. In each
classification result, the left part shows the counts while the right part shows
the fraction. The row and column titles represent the real and predicted groups,
respectively. Take Table 2 as an example. All seven AD patients are represented in
row 1 (spread across the tenfold and blind prediction columns). Five of them are
used for tenfold cross-validation, and two for blind prediction. For cross-validation,
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Table 2 Classification results of Emory data, tenfold cross-validation and blind prediction. Five
discriminatory features were selected (among the 100 features): MMSE–cMMtotal, WordList–
cWL2Butter, WordList–cWL2Queen, WordList–cWL2Ticket, GDS–GDS13

Tenfold cross validation Blind prediction

AD MCI Ctl AD MCI Ctl AD MCI Ctl AD MCI Ctl

AD 4 1 0 0.80 0.20 0.00 AD 2 0 0 1.00 0.00 0.00
MCI 0 11 0 0.00 1.00 0.00 MCI 1 4 0 0.20 0.80 0.00
Ctl 0 0 8 0.00 0.00 1.00 Ctl 0 0 4 0.00 0.00 1.00

Unbiased estimate accuracy: 96% Blind prediction accuracy: 91%

Table 3 Classification results of Emory data, tenfold cross-validation and blind prediction. Four
discriminatory features were selected (among the 100 features): MMSE–cMMtotal, MMSE–
cMMz, WordList–cWL1Queen, GDS–GDS13

Tenfold cross validation Blind prediction

AD MCI Ctl AD MCI Ctl AD MCI Ctl AD MCI Ctl

AD 4 1 0 0.80 0.20 0.00 AD 2 0 0 1.00 0.00 0.00
MCI 0 10 1 0.00 0.91 0.09 MCI 0 5 0 0.00 1.00 0.00
Ctl 0 0 8 0.00 0.00 1.00 Ctl 0 1 3 0.00 0.25 0.75

Unbiased estimate accuracy: 92% Blind prediction accuracy: 91%

Table 4 Classification results of Emory data, tenfold cross-validation and blind prediction. Five
discriminatory features were selected (among the 100 features): MMSE–cMMsRapple, WordList–
cWL1Queen, WordList–cWL3Engine, GDS–GDS9, GDS–GDS13

Tenfold cross-validation Blind prediction

AD MCI Ctl AD MCI Ctl AD MCI Ctl AD MCI Ctl

AD 5 0 0 1.00 0.00 0.00 AD 2 0 0 1.00 0.00 0.00
MCI 0 10 1 0.00 0.91 0.09 MCI 1 4 0 0.20 0.80 0.00
Ctl 0 1 7 0.00 0.13 0.88 Ctl 0 0 4 0.00 0.00 1.00

Unbiased estimate accuracy: 92% Blind prediction accuracy: 91%

Table 5 Classification results of Emory data, tenfold cross-validation and blind prediction. Five
discriminatory features were selected (among the 100 features): MMSE–cMMtotal, WordList–
cWL3Queen, WordList–cWL2Engine, GDS–GDS13, GDS–GDS15

Tenfold cross-validation Blind prediction

AD MCI Ctl AD MCI Ctl AD MCI Ctl AD MCI Ctl

AD 3 2 0 0.60 0.40 0.00 AD 1 1 0 0.50 0.50 0.00
MCI 0 11 0 0.00 1.00 0.00 MCI 0 5 0 0.00 1.00 0.00
Ctl 0 0 8 0.00 0.00 1.00 Ctl 0 0 4 0.00 0.00 1.00

Unbiased estimate accuracy: 92% Blind prediction accuracy: 91%

4 are correctly classified (row AD, column AD) and 1 is misclassified (row AD,
column MCI). The values 0.80 and 0.20 in the same positions in the next panel
indicate 80% correct classification (AD to AD) and 20% misclassification (AD to
MCI) for cross-validation. The value in the bottom of the tenfold cross-validation
section says the overall unbiased estimate accuracy is 96%.



Predictive Model for Early Detection of Mild Cognitive Impairment and . . . 93

Table 6 Classification results of Emory data: Use Trial 1 subjects for training, and Trial 2 subjects
for blind prediction. Five discriminatory features were selected (among the 100 features): MMSE–
cMMsCounty, MMSE–cMMsWorld, Clock–cClockHands1, WordList–cWL2Queen, WordList–
cWRyShore/WordList–cWRyArm

Training Blind prediction

AD MCI Ctl AD MCI Ctl AD MCI Ctl AD MCI Ctl

AD 5 0 0 1.00 0.00 0.00 AD 2 0 0 1.00 0.00 0.00
MCI 0 3 0 0.00 1.00 0.00 MCI 0 9 4 0.00 0.69 0.31
Ctl 0 0 2 0.00 0.00 1.00 Ctl 0 1 9 0.00 0.10 0.90

Accuracy: 100% Blind prediction accuracy: 80%

Table 7 Classification results of Emory data: Use Trial 2 subjects for training, and Trial 1 subjects
for blind prediction. Five discriminatory features were selected (among the 100 features): Age,
MMSE–cMMsRapple, WordList–cWL2Queen, WordList–cWL2Engine, GDS–GDS13

Training Blind prediction

AD MCI Ctl AD MCI Ctl AD MCI Ctl AD MCI Ctl

AD 2 0 0 1.00 0.00 0.00 AD 4 1 0 0.80 0.20 0.00
MCI 1 12 0 0.08 0.92 0.00 MCI 0 3 0 0.00 1.00 0.00
Ctl 0 0 10 0.00 0.00 1.00 Ctl 0 0 2 0.00 0.00 1.00

Accuracy: 96% Blind prediction accuracy: 90%

Table 8 Classification results of Emory data, tenfold cross-validation and blind prediction from
9 score-type features. Two discriminatory features were selected: MMSE–cMMtotal, Word List–
cWLcorTotal

Tenfold cross-validation Blind prediction

AD MCI Ctl AD MCI Ctl AD MCI Ctl AD MCI Ctl

AD 4 1 0 0.80 0.20 0.00 AD 1 1 0 0.50 0.50 0.00
MCI 1 9 1 0.09 0.82 0.09 MCI 0 5 0 0.00 1.00 0.00
Ctl 0 2 6 0.00 0.25 0.75 Ctl 0 1 3 0.00 0.25 0.75

Unbiased estimate accuracy: 79% Blind prediction accuracy: 82%

Classification results of Emory data are shown in Tables 2–8. Tables 2–5 show
the results of tenfold cross-validation and blind prediction when machine learning
was performed on all 100 features and at most five discriminatory features were
selected. Across all these tables, we can observe that misclassification occurs across
AD and MCI, or MCI and Control. Table 6 shows the results of establishing the rule
using subjects from Trial 1 and blind predicting Trial 2 subjects; and Table 7 shows
the reverse. Comparing results from Tables 2–6, we observe that the predictive rule
generated based solely on Trial 1 subjects is not as accurate in blind prediction
when compared to the results where random mixing and selection of Trial subjects
were used to establish the rule. This may be due to the fact that there are fewer
subjects in Trial 1 and that discriminatory features identified there may not be as
representative as those obtained for Tables 2–5. Establishing the rule using subjects
from Trial 2 (Table 7) predicts well and the results are comparable to those in
Tables 2–5 since the Trial size is larger, and thus the features selected are more



94 E.K. Lee et al.

Table 9 Classification results of LONI/ADNI data, tenfold cross-validation and blind prediction.
Five discriminatory features were selected (among the 54 features): CLOCKHAND, AVTOT5,
AVTOT6, CATVEGESC, TRABERROM

Tenfold cross-validation Blind prediction

AD MCI Ctl AD MCI Ctl AD MCI Ctl AD MCI Ctl

AD 114 35 0 0.77 0.23 0.00 AD 56 17 1 0.76 0.23 0.01
MCI 38 175 47 0.15 0.67 0.18 MCI 21 85 22 0.16 0.66 0.17
Ctl 3 42 72 0.03 0.36 0.62 Ctl 0 22 36 0.00 0.38 0.62

Unbiased estimate accuracy: 69% Blind prediction accuracy: 68%

Table 10 Classification results of LONI/ADNI data, tenfold cross-validation and blind predic-
tion. Five discriminatory features were selected (among the 54 features): AVTOT5, AVTOT6,
CATVEGESC, TRABSCOR, TRABERROM

Tenfold cross-validation Blind prediction

AD MCI Ctl AD MCI Ctl AD MCI Ctl AD MCI Ctl

AD 113 35 1 0.76 0.23 0.01 AD 57 17 0 0.77 0.23 0.00
MCI 36 173 51 0.14 0.67 0.20 MCI 20 85 23 0.16 0.66 0.18
Ctl 1 43 73 0.01 0.37 0.62 Ctl 0 23 35 0.00 0.40 0.60

Unbiased estimate accuracy: 68% Blind prediction accuracy: 68%

diverse and representative. Note that the feature cWLxQueen (during which subjects
are presented word lists, and must recall the word Queen) appears among all of these
discriminatory sets. Further, in all analysis, there is no misclassification between AD
and Control group, indicating a clear difference in the raw neuropsychological data
characteristics among these two groups of patients.

Table 8 shows the results of tenfold cross-validation and blind prediction in
which discriminatory patterns were selected from 9 score-type features. In this
case, only two discriminatory patterns were found. The results are inferior to those
obtained when features were selected from the raw data. Our study shows that
classification analysis performed on the set of raw neuropsychological data yield
better predictive power than those using only score-type features.

Classification results of LONI/ADNI data are shown in Tables 9 and 10. As
expected, the results are far inferior to those obtained from the Emory data, due
to the fact that all these features were pre-processed score-type values rather than
raw data of the tests.

5 Conclusion

Systems modeling and quantitative analysis of large amounts of complex clinical
and biological data may help to identify discriminatory patterns that can un-
cover health risks, detect early disease formation, monitor treatment and prog-
nosis, and predict treatment outcome. In this paper, we describe a PSO-DAMIP
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machine-learning framework for early detection of mild cognitive impairment and
Alzheimer’s disease. The features used to establish the predictive rules are obtained
from raw neuropsychological data. The predictive modeler and solver maximize
correct classification while constraining inter-group misclassifications. The classi-
fication/predictive models (1) have the ability to classify any number of distinct
groups; (2) allow incorporation of heterogeneous, and continuous/time-dependent
types of attributes as input; (3) utilize a high-dimensional data transformation
that minimizes noise and errors in biological and clinical data; (4) incorporate a
reserved-judgment region that provides a safeguard against over-training; and (5)
have successive multi-stage classification capability.

The classification results based on the neuropsychological data show that such a
classification approach can be used successfully to develop a classification rule to
predict AD, MCI, and normal group membership with blind prediction accuracy of
over 90%. Further, our study strongly suggests that raw data of neuropsychological
tests have higher potential to predict subjects from AD, MCI, and control groups
than pre-processed subtotal score-like features.

The number of people affected by Alzheimer’s disease is growing at a rapid
rate, and the consequent increase in costs will have significant impacts on the
world’s economies and health care systems. Therefore, there is an urgent need
to identify mechanisms that can provide early detection of the disease to allow
for timely intervention. Neuropsychological tests are inexpensive, non-invasive,
and can be incorporated within an annual physical examination. Thus they can
serve as a baseline for early cognitive impairment or Alzheimer’s disease risk
prediction. The classification approach and the results discussed herein offer the
potential for development of a clinical decision making tool. Further study must
be conducted to validate its clinical significance and its predictive accuracy among
various demographic groups and across multiple sites.
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is concerned with the comparison of different strategies for estimating the marginal
mean of a response when data are missing at random. We evaluate these methods
based on the asymptotic bias, empirical bias and efficiency. We show that complete
case analysis gives biased results when data are missing at random, but inverse
probability weighted estimating equations (IPWEE) and a method based on the
expected conditional mean (ECM) yield consistent estimators. While these methods
give estimators which behave similarly in the contexts studied they are based on
quite different assumptions. The IPWEE approach requires analysts to specify a
model for the missing data mechanism whereas the ECM approach requires a model
for the distribution of auxiliary variables driving the missing data mechanism. The
latter can be a challenge in practice, particularly when the covariates are of high
dimension or are a mixture of continuous and categorical variables. The IPWEE
approach therefore has considerable appeal in many practical settings.
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1 Introduction

In many scientific studies it is difficult to collect complete information on a response
of interest. In practice, interests often lie in estimating the marginal mean of the
response based on available data. For example, in assessing the effectiveness of
Smoker Helpline programs, a central objective is to estimate the probability clients
have quit smoking 6 months after their first use of this service. Many individuals fail
to provide information on their smoking status at 6 months and so smoking status
is only available for the subset of individuals who stayed in this program for this
period of time. Concern then lies in the appropriate method of analysis using the
available data; the implications of using standard methods of analysis depend on the
nature of the missing data mechanism.

The simplest and most common way of dealing with this incomplete data is to
base analyses on those individuals who provided information; this is sometimes
called the complete case analysis. This method is valid when data are missing
completely at random (MCAR), however when data are missing at random (MAR)
or missing not at random (MNAR) the complete case analysis gives inconsistent
estimators [3, 8, 15]. The MAR mechanism has been the most widely discussed
in the literature, and arises when the probability a response is missing depends on
observable quantities such as covariates which, while associated with the response,
are not controlled for in the response model because their effects are not of scientific
interest.

To deal with MAR mechanisms, a common approach is to use inverse probability
weighted estimating equations (IPWEE) or inverse probability weighted generalized
estimating equations (IPWGEE) in the context of longitudinal data [12, 13]. We
focus on the case of a binary scalar response and hence estimating equations based
on likelihood or quasi-likelihood methods [10]. As a semiparametric method, the
IPWEE is robust to the distribution assumptions for the response, but the estimator
may not be efficient and is generally sensitive to the misspecification of the model
for the missing data process. An alternative approach is to render the missing data
as ignorable by conditioning on the covariates in the response model. This ensures
standard analyses are valid, but means that the analysis is not based on the desired
response model since it involves conditioning on the covariates driving the missing
data process. One must then compute the expectation of the conditional mean
(ECM) of the response to obtain an estimate of the desired marginal mean. This
ECM method will give efficient estimates of the marginal mean if (1) the effects
of the covariates on the response model are correctly specified and (2) the joint
distribution of the covariates is correctly specified. Misspecification of either of
these aspects will yield biased estimators of the marginal mean of the response. In
practice it is a challenge to model the covariates distribution, particularly when the
covariates are of a high dimension with both continuous and categorical covariates,
which has lead to increased interest in the use of inverse probability weights.
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Little work has been done on comparing the frequency properties of estimators from
these two approaches under correct model specification. We address this here and
give some guidance for data analysts.

This paper is organized as follows. In Sect. 2, we introduce some methods for
the estimation of the marginal mean; Sect. 3 gives some numerical studies for
comparisons of different methods. In Sect. 4, we apply these methods to a skeletal
metastases and a smoking prevention project studies. Concluding remarks are given
in Sect. 5.

2 Estimation of the Marginal Mean

Consider a sample of n individuals yielding independent responses. Let Yi denote
the response for subject i and Xi D .1; Xi1; : : : ; Xi;p�1/

0 denote a p � 1 covariate
vector, i D 1; 2; : : : ; n. There may be a relationship between the covariates and the
response which is most commonly expressed through a generalized linear model. In
such cases we might write

g.�i / D X 0
i ˇ; (1)

where �i D E.Yi jXi I ˇ/, g.�/ is a 1 � 1 monotone differentiable link function, and
ˇ is a vector of regression coefficients. Here, however, we consider the case where
interest lies simply in estimating the marginal (unconditional) mean E.Yi/ D �

in the setting where there is a dependence between Xi and Yi (i.e. ˇj ¤ 0 for
at least one j , j D 1; : : : ; p � 1). We let F.Xi I �/ denote the multivariate joint
distribution of the covariate vector Xi indexed by � and note that � D �.ˇ; �/ DR

E.Yi jXi I ˇ/dF.Xi I �/.
We consider the case in which it is not possible to observe the response for all

n individuals but assume that the covariates are always observed. We let Ri denote
the missing data indicator for the response Yi such that Ri D 1 if Yi is observed
and Ri D 0 if Yi is missing; Whether the response is observed or not is governed
by a stochastic model which we write in general as P.Ri jYi ; Xi I ˛/, indexed by
˛. If P.Ri D 1jYi ; Xi I ˛/ does in fact depend on Yi then the data are missing not
at random since whether we observe Yi or not depends on its value. This setting
is problematic for analysts since not all parameters can be identified precluding
consistent estimation of �; sensitivity analyses are recommended in this setting
(cite some authors- Robbins papers) [14]. Here we focus on MAR mechanisms,
for which P.Ri D 1jYi; Xi I ˛/ D P.Ri D 1jXi I ˛/, and hence Ri is conditionally
independent of Yi given Xi .

A naive approach for estimating � would base analysis on available data using a
standard estimating equation, given by

nX

iD1

Ri .Yi � �/: (2)
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This yields the estimator

Q� D
nX

iD1

RiYi =

nX

iD1

Ri :

The estimating function (2) does not have expectation zero, however, and hence Q� is
not consistent for � under a MAR mechanism. To see this consider the contribution
for subject i and note that

ER;Y;X ŒRi .Yi � �/� D EX ŒEY jX ŒERjY;X ŒRi .Yi � �/I ˛�I ˇ�I ��

D EX ŒEY jX ŒP.Ri D 1jXi I ˛/.Yi � �/I ˇ�I ��

D EX ŒP.Ri D 1jXi I ˛/.E.Yi jXi I ˇ/ � �/�I ��

¤ 0:

Only under a MCAR mechanism (i.e. if P.Ri D 1jXi I ˛/ D P.Ri D 1I ˛/) can
P.Ri D 1jXi I ˛/ D P.Ri D 1I ˛/ be factored out of the final expectation with
respect to the covariate, giving an unbiased estimating function. In the following
we introduce two alternative methods to this naive complete case analysis, each of
which give consistent estimators for the marginal mean of the response, �, under
the MAR mechanism.

2.1 Expected Conditional Mean

For this approach, we first estimate the conditional mean of the response given the
covariates using the available data, and then estimate the marginal mean by

� D E.Yi I ˇ; �/ D EX ŒEY jX .Yi jXi I ˇ/I ��:

To estimate the conditional mean E.Yi jXi I ˇ/, we generally consider model
(1) presuming the covariate effects are adequately modeled, and estimate the
parameter ˇ. Often we employ the following estimating equation

U.ˇ/ D
nX

iD1

Ui.ˇ/ D 0; (3)

where Ui.ˇ/ D Ri Di V
�1

i .Yi � �i / with Di D @�i =@̌ , and Vi D var.YijXi/

only depends on the conditional mean �i , as commonly adopted for models in
the exponential family or under quasi-likelihood. Solving (3) gives a consistent
estimator for ˇ if the conditional mean �i is correctly specified, since

ER;Y;X ŒUi .ˇ/� D ER;Y;X ŒRi Di V
�1

i .Yi � �i /I ˛; ˇ; ��
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D EY;X ŒP.Ri D 1jXi I ˛/ � Di V
�1

i .Yi � �i /I ˇ; ��

D EX ŒP.Ri D 1jXi I ˛/Di V
�1

i � EY jX .Yi � �i I ˇ/I ��

D 0:

This implies that under a MAR mechanism, we can obtain a consistent estimator
for the conditional mean �i based on a complete case analysis, if the model (1)
is correctly specified. While this is appealing, our goal ultimately, is to estimate
the marginal mean of the response, �. We can achieve this by subsequently taking
the expectation with respect to the covariate distribution. Specifically, we write
this as b� D R

X E.Yi jXi I b̌/dF.X;b�/. In practice this is carried out by summing

E.Yi jXi I b̌/dF.X;b�/ over all possible realizations of the covariate vector via

X

x2˝X

E.Y jX D xI b̌/P.X D xIb�/

where ˝X is the covariate sample space and P.X D xIb�/ is the estimated
probability X D x under F.X;b�/. Note that if X is discrete, then this can be
estimated nonparametrically based on empirical frequencies. The challenge arises
when one or more elements of X are continuous. The difficulties in estimating
such a distribution nonparametrically is sometimes referred to as the “curse of
dimensionality” [1].

Let � D .ˇ0; � 0/0 and cov.b�/ denote the covariance matrix for b�. The variance
of b� can be estimated using the delta method, which gives

var.b�/ D @b�.ˇ/

@̌ 0
h
cov.b̌/

i@b�.ˇ/

@̌

ˇ
ˇ
ˇ
ˇDb̌

;

when � (the covariate distribution) is known, and

var.b�/ D @b�.�/

@�0
h
cov.b�/

i@b�.�/

@�

ˇ
ˇ
ˇ
�Db�

;

when � is estimated.
To summarize, the ECM approach disregards all data with missing values, but

through conditioning on the covariate process, renders missingness unimportant
for estimation of ˇ and hence �i . Under this approach, however, in order to get a
consistent estimator of �, as mentioned earlier, it requires not only the specification
of the response model in (1), but also the specification of the joint distribution of
covariates. Specification of the covariates distribution is a challenge in practice,
especially when covariates are of high dimension, or when there are both continuous
and categorical covariates. In the following, we describe an approach to direct
estimators of the marginal mean based on inverse weighting; this approach does
not require specification of the covariate distribution.
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2.2 Inverse Probability Weighted Estimating Equations

Following [12], we specify the weighted estimating equation

U �.�; ˛/ D
nX

iD1

U �
i .�; ˛/ D 0 (4)

for b� D E.Yi/, where U �
i .�; ˛/ D Ri =�i .˛/.Yi � �/, and �i .˛/ D P.Ri D

1jZi I ˛/; we write Zi here since there may be covariates in addition to those in Xi

which affect drop-out, so we consider Zi D .X 0
i ; V 0

i /0 where Vi represents these
possible additional covariates which are conditionally independent of Yi given Xi .
The key point is that, since Zi contains Xi , Ri and Yi are conditionally independent
given Zi . The estimating equation above gives a consistent estimate for the marginal
mean � D E.Yi / if the missing data model is correctly specified, since

ER;Y;ZŒU �
i .�; ˛/� D EY;Z

�

ERjY;Z

�
Ri

�.Zi I ˛/
.Yi � �/I ˛

�

I ˇ; �

�

D EY;ZŒYi � �I ˇ; ��

D EX ŒEY jX .Yi � �I ˇ/I ��

D 0:

If �.Zi I ˛/ is known, we can estimate � by solving (4), to get a Horvitz-Thompson
[5] estimator of the form

b� D
Pn

iD1 Ri Yi=�.Zi I ˛/
Pn

iD1 Ri =�.Zi I ˛/
: (5)

In practice, �.Zi I ˛/ is unknown and has to be estimated consistently. We can
then replace �.Zi I ˛/ by a consistent estimator b�i in (5) to give the estimator b�,
which will still be consistent. Therefore, using the inverse weighting approach, we
can obtain a consistent estimator of the marginal mean if we correctly specify the
missing data model.

For the missing indicator Ri , we often build a generalized linear model for the
conditional mean �i D �.Zi I ˛/ D P.Ri D 1jZi I ˛/ via a logistic link, say, as
follows

logit �i D Z0
i ˛;

where Zi is a covariate vector reflecting the missingness, and ˛ is the corresponding
coefficient vector. As can be seen from above, here we require Zi to capture a
sufficient amount of information so that Ri ?Yi jZi . We can use maximum likelihood
to estimate ˛ by maximizing

L D
nY

iD1

Li .˛/;
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where Li .˛/ D �
ri

i .1 � �i /
1�ri or equivalently solving S.˛/ D Pn

iD1 Si .˛/ D
0 where Si .˛/ D @ log Li =@˛0 is the contribution to the score vector for ˛ from
subject i , i D 1; : : : ; n.

For the estimation of the variance of b�, we can employ the method of Robins
et al. [12]. Under the regularity conditions given in the appendix of [12], and when
˛ is known as, say, ˛�, we have

n1=2 .b� � �0/ ! N
�
0; ��1.�0; ˛�/†� �

��1
�
�0; ˛�	
0�

;

where �0 is the true value of �,

�
�
�0; ˛�	 D E

�
@U �

i .�0; ˛�/=@�



;

and

†� D E
h
U �

i .�0; ˛�/
�
U �

i .�0; ˛�/

0i

:

The variance of b� can be estimated by

b��1.b�; ˛�/b†.b�; ˛�/
h
b��1.b�; ˛�/

i0

with

b�.b�; ˛�/ D n�1

nX

iD1

@U �
i .b�; ˛�/=@�;

and

b†.b�; ˛�/ D n�1

nX

iD1

h
U �

i

�
b�; ˛�	

U �0

i

�
b�; ˛�	i

:

Typically ˛ is unknown and must be estimated, in which case the variability in
the estimate of ˛ must be addressed. Under regularity conditions of [12], and under
the assumption that the missing data model is correctly specified, we have

n1=2.b� � �0/ ! N.0; ��1.�0; ˛0/†.�0; ˛0/Œ�
�1.�0; ˛0/�

0/;

where ˛0 is the true value of ˛, �.�0; ˛0/ D EŒ@U �
i .�0; ˛0/=@��, and †.�0; ˛0/

D EŒQi .�0; ˛0/Q0
i .�0; ˛0/� with

Qi.�0; ˛0/ D U �
i .�0; ˛0/ � EŒ@U �

i .�0; ˛0/=@˛0�fEŒ@Si .˛0/=@˛0�g�1Si .˛0/:

A brief sketch of the proof follows.
Note that n�1=2

Pn
iD1 U �

i .b�;b̨/ D 0, and based on a Taylor series expansion in
the neighborhood of .�0; ˛0/, we have
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0 D n�1=2

nX

iD1

U �
i .�0; ˛0/ C �.�0; ˛0/n1=2.b� � �0/

CE
�
@U �

i .�; ˛0/=@˛0
 n1=2.b̨ � ˛0/ C op.1/: (6)

Similarly, since n�1=2
Pn

iD1 Si .b̨/ D 0, and based on the Taylor expansion in the
neighborhood of ˛0 and following some algebraic manipulations, we have

n1=2.b̨ � ˛0/ D � ˚
E

�
@Si .˛0/=@˛0
��1

n�1=2

nX

iD1

Si .˛0/ C op.1/: (7)

If we plug (7) into (6), we obtain

0 D n�1=2

nX

iD1

U �
i .�0; ˛0/ C �.�0; ˛0/n1=2.b� � �0/

�EŒ@U �
i .�0; ˛0/=@˛0�fEŒ@Si .˛0/=@˛0�g�1n�1=2

nX

iD1

Si .˛0/ C op.1/:

If �.�0; ˛0/ is nonsingular, we have

n1=2.b� � �0/ D ���1.�0; ˛0/n�1=2

nX

iD1

Qi .�0; ˛0/ C op.1/;

and the asymptotic distribution of n1=2.b� � �0/ follows by Slutsky’s theorem and
the central limit theorem.

To conduct inference regarding �, the variance of b� can be estimated by

b��1.b�;b̨/b†.b�;b̨/
h
b��1.b�;b̨/

i0

with

b�.b�;b̨/ D n�1

nX

iD1

@U �
i .b�;b̨/=@�;

b†.b�;b̨/ D n�1

nX

iD1

bQi .b�;b̨/bQ0
i .b�;b̨/;

and

bQi .b�;b̨/ D U �
i .b�;b̨/�

"

n�1

nX

iD1

@U �
i .b�;b̨/=@˛0

#"

n�1

nX

iD1

@Si .b̨/=@˛0
#�1

Si .b̨/:
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The appeal of this approach is that we do not need to specify the distributions
of the covariates; furthermore, this method is robust to the misspecification of
the variance function for the response model since we can view the associated
estimating equation as a quasi-score equation. In practice, the missing data indicator
is relatively easy to model and diagnostic checks are available for missing response
models. As a semiparametric method, the estimate may not be efficient [7].

3 An Empirical Study of Finite Sample Bias and Efficiency

Here we perform a simulation study to investigate the frequency properties of the
methods discussed in the previous section. We assume that there are two binary
covariates X1 and X2 with E.X1/ D p1 D 0:5, E.X2/ D p2 D 0:5, and the
correlation coefficient is �. This gives �11 D P.X1 D 1; X2 D 1/ D p1p2 C
�Œp1.1�p1/p2.1�p2/�

1=2, �10 D P.X1 D 1; X2 D 0/ D p1 ��11, �01 D P.X1 D
0; X2 D 1/ D p2 � �11, and �00 D P.X1 D 0; X2 D 0/ D 1 � p1 � p2 C �11. We
further assume the response Y is binary, and the model for �i D E.Yi jXi1; Xi2/ is

logit �i D ˇ0 C ˇ1Xi1 C ˇ2Xi2:

The true values are ˇ0 D log.1:5/, ˇ1 D log.2/, and ˇ2 D log.2/.
For the missing data model, we assume

logit �i D ˛0 C ˛1Xi1 C ˛2Xi2;

and set ˛0 D �1. Here, we assume ˛1 D ˛2 D ˛ and vary it from 1 to 4 to study the
performance of the estimates as a function of the strength of the MAR mechanism.

We consider five methods of analysis that are routinely used in practice. The first
method is the naive method based on estimating equation (2). The second method,
called IPWEE1, is based on the IPW estimating equation using the true weights �i .
The third method, called IPWEE2, is based on the IPW estimating equation using
the estimated weights b�i . The fourth method, called ECM1, is the ECM method
using the true joint distribution of X1 and X2 and the fifth method (ECM2) is the
ECM method using the empirical distribution of X1 and X2, which is given by b�11 D
n11=n, b�10 D n10=n, b�01 D n01=n, and b�00 D n00=n, where njk is the number of
subjects with X1 D j and X2 D k for j; k D 0; 1.

Tables 1–4 report the results for the five methods, where BIAS is the percent
relative bias, ASE is the average standard error, ESE is the empirical standard error,
and ECP is the empirical coverage probability (%) for the nominal 95% level. The
naive method gives biased estimates of the marginal mean; as the proportion of
missing observation increases, the biases increase; also as the correlation between
the two covariates (�) increases, the biases increase. The other four methods give
negligible biases and good coverage probabilities in all settings. The IPWEE1 and
IPWEE2 methods give very similar empirical standard errors when the missing
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proportion is small; when the missing proportion increases, the IPWEE1 method
seems to be a little bit less efficient than the IPWEE2 method. The ECM1 and ECM2
methods give very similar empirical standard errors for the different settings. As the
missing proportion decreases, IPWEE2 gives bigger standard errors than ECM2,
indicating that the ECM2 estimator can be more efficient than the IPWEE2 estimator
but this gain is negligible and seems to depend somewhat on the correlation
coefficient �, the missing proportion, and the sample size.

4 Applications

4.1 Application to a Study of Patients with Skeletal Metastases

In this subsection, we apply the proposed methods to a bone metastases data set
[4]. Women with advanced breast cancer often experience bone metastases. From
January 1991 to March 1994, the Protocol 19 Aredia Breast Cancer Study Group
of Novartis Pharmaceuticals Inc. conducted a randomized clinical trial at 97 sites
in the United States, Canada, Australia and New Zealand. The osteoclast activating
factors released by tumor cells cause destruction of bone, which in turn leads to the
occurrence of the aforementioned skeletal complications. Radiographic surveys of
bone lesions were performed and new bone lesions were recorded. Covariates of
interests include age at study entry (coded as AGE: 1 for age � 50, 0 for age < 50),
ECOG score at study entry (coded as ECOG: 1 for two or more, 0 otherwise), the
number of fractures at baseline (coded as FRACT: 1 for one or more, 0 for none),
pain score at study entry (coded as PSCORE) which is coded as four levels based on
the 25, 50 and 75% quantiles. Two hundred and twenty patients entered the study
and were intended to be assessed at baseline, 6 months and 12 months from the
baseline. Here we are interested in the proportion of the subjects who experienced
a new bone lesions after 12 months from the baseline. The response defined here
is the indicator for a new lesion at the 12 month from the base line. However, the
collected measurements are incomplete. The missing proportion for the lesions is
25% for patients at 12 months.

The results for the marginal mean are listed in Table 5. Note that there is little
difference among the three methods since all the covariates are not significant in the
missing data model, which indicates that the missing completely at random (MCAR)
may be appropriate here. See Table 6.

Table 5 Results of
estimation for the marginal
mean for a bone metastases
study data

Parameter Estimator SE 95%CI

�naive 0.3576 0.0373 (0.2844, 0.4307)
�IP WEE 0.3612 0.0375 (0.2877, 0.4346)
�ECM 0.3612 0.0372 (0.2883, 0.4341)
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Table 6 Missing data model
for a bone metastases study
data

Parameter Estimator SE p-value

INTERCEPT 1.036 0.394 0.009
AGE 0.338 0.325 0.298
ECOG 0.125 0.382 0.743
FRACT 0.385 0.437 0.377
PSCORE1 �0.492 0.487 0.312
PSCORE2 �0.517 0.465 0.912
PSCORE3 �0.432 0.429 0.313

Table 7 Missing data model
for the smoking prevention
project data

Parameter Estimator SE p-value

INTERCEPT 2.484 0.132 <0.001
TRT 0.054 0.115 0.640
GENDER �0.309 0.097 0.001
SMR �0.481 0.100 <0.001

4.2 Application to a Smoking Prevention Project

The Waterloo Smoking Prevention Project (WSPP) is a randomized longitudinal
study designed to investigate smoking behavior among school children [2]. We
report here on the results of some analysis of data from WSPP4, the fourth study in
the series. A total of 100 schools in seven Ontario school boards were randomized
to dispense either the regular health education programmes provided by the school
or a more intensive anti-smoking programme delivered by either a specially trained
teacher or a public health nurse. Questionnaires regarding smoking attitudes and
behavior were administered annually from grade 6 to grade 8. One of the aims of
this study is to investigate the proportion of children who smoke in grade 8.

The smoking status based on the responses to the questionnaire items can be
represented by a binary variable: Yi D 1 indicates subject i is a smoker in grade
8, and 0 otherwise. Along with the responses, the factors that may influence the
children’s smoking behavior were recorded. These covariates include gender (coded
as GENDER, 0–female, 1–male), treatment effect (coded as TRT, 0–control; 1–
intervention), social models risk score (coded as SMR, 0–none of parents, siblings or
friends smoke; 1–at least one of parents, siblings or friends smoke). There are 4,409
subjects in the data set who are present at grade 8 with fully observed covariates.
About 11.14% subjects have missing observations.

The missing data model is listed in Table 7. The significance of GENDER and
SMR demonstrates that the missing at random assumption may be appropriate here
for the missing mechanism. The results for the marginal mean are listed in Table 8.
It is seen that the IPW and ECM methods give very similar results, which are a little
bit different from the naive method.
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Table 8 Results of
estimation for the marginal
mean for a smoking
prevention project data

Parameter Estimator SE 95%CI

�naive 0.1988 0.0064 (0.1863, 0.2113)
�IP WEE 0.2005 0.0064 (0.1879, 0.2131)
�ECM 0.2005 0.0063 (0.1881, 0.2129)

5 Discussion

There is no bias in estimating the marginal mean by averaging the observed
responses when data are MCAR. However, under a MAR mechanism, such a naive
analysis generally gives biased results, and this bias depends on the association
between the covariates and the association between the covariates and the missing
indicator. We described here two methods (ECM and IPWEE) which can be used to
address this bias. The ECM is appealing in that it does not require specification of
the missing data model, but one must model the effect of covariates on the response
as well as the covariate distribution. It can yield quite efficient estimates of the
marginal mean if both of these features are modeled correctly. Misspecification of
the covariate distribution is less of a concern when covariates are discrete since
a nonparametric estimate of this covariate distribution is available. It can become a
serious concern, however, when one or more covariates are continuous. Discretizing
continuous covariates is one approach for dealing with this problem, but one must
then decide how coarsely to discretize the continuous covariates. Alternatively, non-
parametric local likelihood methods [9] can be used for density estimation, but this
may only be feasible if the number of continuous covariates is not too large.

The inverse probability weighted estimating equation approach does not require
specification of the covariate distribution, and it gives a consistent estimator of the
mean if the missing data model is correctly specified. In practice it can be easier
to model the missing data process than the covariate distribution and model checks
are possible based on binary regression modeling techniques. We found, however,
that the IPWEE estimator may feature a loss of efficiency compared to the ECM
approach.

We have focused on data from a cross-sectional studies as opposed to longitudi-
nal studies. It is worth extending this investigation to the case where responses are
collected over time in a longitudinal setting. In this case, covariates may be fixed as
in this investigation, or time varying. In the latter case, multivariate models would
be required to address the dynamics of the covariate process which makes the ECM
approach considerably more challenging; the IPWGEE approach has considerable
appeal in this case.

Robins et al. [13] proposed augmented estimating equations based on corrected
complete-case analyses. A nice feature of the augmented approach is its “double
robustness”, meaning that the estimator obtained from the augmented method is
asymptotically unbiased if either the underlying missing data mechanism or the
underlying regression function is correctly specified. Furthermore, the augmented
estimator can achieve full efficiency if both the missing data mechanism and the
regression function are correctly specified. In general, however, it is very difficult
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to specify the regression function correctly, especially when the dimension of the
covariate vector is high—this is the so-called curse of dimensionality problem. The
augmented estimator can also have much lower efficiency if the working regression
model is not close to the true regression model. See Kang and Schafer [6] for a
review of the double robust estimator.

Multiple imputation is an alternative popular approach for dealing with
incomplete data [8, 16, 17], but we have not explored this here. Qin and Zhang
[11] discuss the idea of empirical likelihood estimation which is employed to
seek a constrained empirical likelihood estimation of mean response with the
assumption that responses are missing at random. The empirical-likelihood-based
estimators enjoy the double-robustness property as well and it is also possible
that empirical-likelihood-based inference can produce asymptotically unbiased
and efficient estimators even if the true regression function is known. This is an
intriguing approach warranting further research.
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Cardiovascular Informatics: A Perspective on
Promises and Challenges of IVUS Data Analysis

Ioannis A. Kakadiaris and E. Gerardo Mendizabal Ruiz

Abstract Intravascular ultrasound (IVUS) is a catheter-based medical imaging
modality that is capable of providing cross-sectional images of the interior of
blood vessels. A comprehensive analysis of the IVUS data allows collecting
information about the morphology and structure of the vessel and the atherosclerotic
plaque, if present. Atherosclerotic plaque formation is considered to be a part
of an inflammatory process. Recent evidence has suggested that the presence
and proliferation of vasa vasorum (VV) in the plaque is correlated with the
increase of plaque inflammation and the processes which lead to its destabilization.
Hence, the detection and measurement of VV in plaque has the potential to enable
the development of an index of plaque vulnerability. In this paper, we review
the research at the Computational Biomedicine Lab towards the development of
a complete pipeline for the detection and quantification of extra-luminal blood
detection from IVUS data which may be an indication of the existence of VV.
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1 Introduction

Complications attributed to cardiovascular disease (CVD) constitute a major cause
of death worldwide. One of the primary causes of CVD is coronary artery disease
(CAD), which is a narrowing of the small blood vessels that supply blood and
oxygen to the heart. CAD is caused by a condition called atherosclerosis, which
occurs due to the accumulation of plaque on the inner walls of the arteries. The
progression of this condition may lead to inflammation of the coronary arteries
and the consequent obstruction of blood flow to the heart. But more critically, the
sudden rupture of a plaque (i.e., thrombotic-related complications) may lead to a
stenotic condition in which the blood supply is entirely cutoff from a region of
the heart, resulting in death. In this context, the field of cardiology has introduced
the term “vulnerable plaque” in reference to the plaques with a high likelihood of
rupture, thrombotic complications, and the consequent rapid progression to stenosis
[26–29]. Vasa vasorum (“vessels of the vessels”, VV) is a network of microvessels
that penetrates and “feeds” the vessel wall [13]. Recent evidence has suggested
that the presence and proliferation (i.e., increase in density) of VV in the plaque
is correlated to an increase in plaque inflammation and the processes which lead
to its destabilization [1, 4, 7, 10, 12, 21, 22]. Hence, it is believed that the detection
and measurement of VV in plaque and the detection of leakage of blood within
atherosclerotic plaques have the potential to enable the development of an index of
plaque vulnerability [3, 15].

Intravascular ultrasound (IVUS) is a catheter-based medical imaging technique
that is capable of providing cross-sectional images of the interior of blood vessels
and is currently the gold-standard technique for assessing the morphology of blood
vessels and atherosclerotic plaques in vivo [42]. An IVUS system consists of a
catheter with a miniaturized ultrasound probe attached to its tip. The ultrasound
probe transmits ultrasound pulses and receives an acoustic radio frequency (RF)
echo signal (i.e., A-line) at a discrete set of angles. A B-mode IVUS image is
obtained by computing the positive envelopes of each A-line (Fig. 1a). The B-mode
signals are compressed, stacked along the angular direction, and mapped into an
8-bit gray scale to form an image known as the polar B-mode image (Fig. 1b).
To provide a more familiar representation of the data (i.e., one that resembles
the interior of a vessel), the polar B-mode image is geometrically transformed to
obtain a disc-shaped image known as the Cartesian B-mode image (Fig. 1c). Similar
to other ultrasound modalities, IVUS may be used in combination with contrast
agents [47] delivered as microbubbles which are of a size similar to red blood
cells (diameter: 1–10 �m). These microbubbles resonate in response to the pressure
changes induced by the ultrasound wave and are highly echogenic when compared
to normal body tissues. As a result, they appear bright in the B-mode ultrasound
images, and can hence be used as tracers of blood flow [3, 11].

Since VV may be found in the atherosclerotic plaque and/or the wall of the
vessel (i.e., extra-luminal regions), the problem of VV detection can be posed as
the detection of extra-luminal blood perfusion. In this paper, we present our studies
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Fig. 1 Depiction of (a) A-line signal and its envelope, examples of the B-mode (b) polar, and
(c) Cartesian IVUS images

towards the detection and quantification of extra-luminal blood perfusion, which
can be categorized as: (1) methods for the detection of the lumen contour, and (2)
methods for the detection of blood perfusion. The rest of this paper is organized as
follows: In Sect. 2, we present a brief summary of methods that have been proposed
for the analysis of IVUS data. In Sect. 3, we describe the methods for solving
the extra-luminal blood detection problem. The results obtained with the proposed
methods are presented in Sect. 4, and in Sect. 5, we present our conclusions.

2 Previous Work

IVUS Segmentation: Segmentation of IVUS data refers to the delineation of the
lumen/intima and media/adventitia borders. This procedure is useful for studying
atherosclerosis diseases, since it provides an assessment of the vascular wall, and
also provides information on the nature of atherosclerotic lesions and information
about the shape and size of the plaque. Automatic methods for IVUS segmentation
are required as there are a large number of frames in an IVUS sequence, thereby
making manual segmentation of a sequence infeasible (within a reasonable time).
Some of the most recent approaches for automatic IVUS segmentation include a
shape-driven method for lumen and media-adventitia segmentation introduced by
Unal et al. [45] that uses Principal Component Analysis (PCA) to create a shape
space from previously segmented frames. Segmentation is accomplished by the
minimization of an energy function using nonparametric probability densities with
global measurements. Taki et al. [44] proposed a method that involved preprocess-
ing of the IVUS images, and the posterior deformation of geometric and parametric
models using edge information. Downe et al. [6] introduced a method where
PCA was first used for pre-processing. Active contour models were then used to
provide an initial segmentation for a 3D graph search method. Multilevel discrete
wavelet frame decomposition was used by Papadogiorgaki et al. [38] to generate
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texture information that was used along with the intensity information for contour
initialization. Low pass filters and radial basis functions were then used to refine the
contour. Similarly, Katouzian et al. [17] proposed a method where texture informa-
tion was extracted using a discrete wavelet packet transform. The pixels of the IVUS
image were then classified as lumen or non-lumen using k-means clustering. Finally,
the contour was parameterized using a spline curve. Ciompi et al. [5] presented a
method in which segmentation was tackled as a classification problem and solved
using an error correcting output code technique. In this work, contextual information
was exploited by means of conditional random fields computed from training data.
The most common limitation of the segmentation methods discussed above is the
lack of robustness with respect to noise, IVUS image variability, and the different
artifacts that can appear in an IVUS image.

Tissue Characterization: Tissue characterization from IVUS data involves a defi-
nition of composition (e.g., fibrous, calcified, or lipid) of the atherosclerotic plaque
based on the changes that occur to the sound waves as they interact with the different
tissues. A common approach for characterization is to compute different texture
features from the gray-level IVUS B-mode representation (e.g., co-occurrence
matrix, laws features, Gabor filters). These features are used to train a classification
model which is then used to predict the tissue classes on new data [2, 16, 41, 50].
The most successful approaches for the characterization of plaque are based on the
analysis of the IVUS-RF signal data instead of the B-mode data. Nair et al. [30,31]
proposed a method known as “virtual histology” (IVUS-VH) that is based on the
power spectral analysis (intercept, slope, mid-band fit, and minimum and maximum
powers and their corresponding frequencies) of the IVUS-RF signals combined with
classification trees. High accuracy (>85%) was reported for differentiating fibrous,
fibrofatty, calcified, and necrotic regions. In addition, Rodriguez-Granillo et al. [40]
and Nasu et al. [32], presented the results of in-vivo studies using the above method
and reported a high correlation with the corresponding histology. Kawasaki et al.
[18, 19] proposed a method for tissue classification using the integrated backscatter
(IB), which is a parameter derived from the RF signal that is used to divide the
tissue into five categories: thrombus, intimal hyperplasia or lipid core, fibrous tissue,
mixed lesions and calcification. This method has demonstrated high sensitivity and
specificity for characterizing calcification (100%, 99%), fibrosis (94%, 84%), and
lipid pool (84%, 97%) [20]. O’Malley et al. [36] presented a study of the feasibility
of blood characterization on IVUS data using features intended to quantify speckle
and features based on frequency-domain measures of high-frequency signal using
one-class support vector machines on the RF raw signal, the signal envelope and the
log-compressed signal envelope. The feasibility of using wavelet analysis of the RF
amplitude for plaque characterization [16,41] and blood classification [17] was also
studied. However, the majority of these methods are not suitable for blood detection
since they focus on the characterization of the atherosclerotic plaque components.
Also, the methods that have been proposed for blood detection are not capable of
detecting small extra-luminal blood perfusion.
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Perfusion Detection: O’Malley et al. [14, 34, 37, 46, 48, 49] proposed a protocol
and an automatic algorithm (Analysis of Contrast Enhanced Sequences, ACES)
for the quantification and visualization of VV in contrast-enhanced IVUS image
sequences. That method relies on the detection of local echogenicity changes in
stationary IVUS sequences caused by microbubble perfusion into the vessel wall.
The proposed protocol consisted of acquiring images from a suspect plaque while
a bolus injection of contrast agent was performed. The detection of extra-luminal
blood was performed offline and involved two steps: (1) image stabilization [33,35]
(i.e., image-based gating and registration), and (2) detection of enhancement,
which was based on a comparison of the stabilized pre-contrast baseline images
and the post-injection images. As a result, any change that occurred due to
contrast enhancement would be reflected as a positive difference in the intensities.
The enhancement was quantified and certain statistics were computed. The main
limitation of this method is that it requires the alignment of frames which is very
difficult to achieve even with the proposed stabilization methods. Goertz et al.
[8, 9] proposed a solution for perfusion detection based on the detection of the
harmonic and sub-harmonic response of the contrast microbubbles. The limitation
of these methods is the requirement of a specially designed, non-commercial IVUS
system.

3 Methods

Our proposed framework for the detection and quantification of extra-luminal blood
perfusion consists of two steps: (1) detection of the luminal border, and (2) detection
of extra-luminal perfusion. In the following subsections, we review the proposed
methods for the above mentioned tasks.

3.1 Lumen Segmentation

Image-Based Segmentation: In this method, we employ the B-mode polar IVUS
image representation for the segmentation of the lumen. This choice makes the
computations much simpler due to the 1D appearance of the lumen contour.
We define a function f .�; c/ as the curve that represents the change of interface
between the lumen and the vessel wall. Since we know that the shape of the vessel’s
wall is essentially smooth, and that a polar B-mode IVUS image is periodic with
respect to the horizontal axis, we parameterize the function that represents the lumen
contour using Fourier series. The lumen segmentation problem consists of finding
the optimum parameters c� such that the curve f .�; c�/ corresponds to the interface
between the lumen and the vessel wall. This is accomplished by minimizing a cost
function formulated using a Bayesian approach in which we incorporate a priori
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information about the regions of lumen and non-lumen based on the prediction of a
support vector machine (SVM) classifier, trained with samples from the lumen and
wall regions provided by the user [25].

RF-Based Segmentation: The use of B-mode images for IVUS data analysis poses a
limitation due to the loss of information resulting from the B-mode conversion and
the fact that the appearance of the B-mode images depends on the characteristics
of the IVUS system which varies between systems, and on the visualization
parameters (e.g., time gain compensation, compression, brightness, contrast) that
are subjectively adjusted by the interventionist. To overcome this limitation, one
has to work directly with the raw IVUS RF signal as it is not affected by the
transformation or visualization parameters. Based on this observation, we developed
a method for the segmentation of the lumen contour using the IVUS RF signal based
on a physics-based model of the interaction of the sound waves with the tissues of
the vessel [23].

When an incident sound wave interacts with an object, a fraction of its power
will be reflected and a fraction will be absorbed by the object. When the wavelength
of the incident wave is smaller in comparison with the size of the object, the
reflection will occur in many directions (i.e., scattering). The power scattered by
each scatterer object in the direction opposite to the direction of the incident wave
is referred to as the differential backscattering cross section (DBC) [43]. If we
consider that the wavelength of the IVUS impulse signal is large in comparison
with the structures in the vessel, we can model the received IVUS RF signal, OSk.t/,
for each transducer’s angular position (i.e., A-line) by representing the structures
in the vessel as a finite set of point scatterers with an associated DBC coefficient.
Our RF-based segmentation method consists of two steps: (1) a calibration step in
which we estimate the parameters of the model using the RF signal of a manually
segmented frame from the sequence to be segmented by employing an inverse
problem approach, and (2) the detection of lumen contour by locating the change
of interface for each A-line, by minimizing the cost function that employs the
RF signal and the calibrated scattering model. Both the steps are based on the
following assumptions: (1) there are only two types of tissue or layers within the
vessel: lumen (blood) and wall; (2) the DBC coefficient of blood is different from
the DBC coefficient of wall; (3) scatterers within the same layer will have the
same DBC; (4) the attenuation coefficient is constant along the radial direction;
and (5) the real IVUS signal can be approximated using a stochastic minimization
process that employs random samples of the scatterers’ positions. Since the lumen
interface for each angle is recovered independently, it is very likely that the resulting
curve is not smooth or periodic. Moreover, due to noise or artifacts, it is possible
that our method obtains an incorrect result in one or more angles. Therefore, we
introduce a post-processing step in which the lumen contour is constrained to a
smooth periodical curve using Fourier series parameterization by applying a spectral
smoothing method [39].
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3.2 Perfusion Detection

Contrast Agent Detection: We investigated the feasibility of detecting the contrast
agent on IVUS sequences by characterizing the RF IVUS signal using two contrast
detection classifiers (CDC) based on one-class cost-sensitive learning [24]. In the
first contrast detection classifier (CDC1), we build a model for the detection of
contrast agent using samples of the contrast agent present in the lumen during the
microbubble injection. In the second contrast detection classifier (CDC2), we detect
the contrast agent as a change from baseline IVUS (i.e., lumen, intima, media and
adventitia signals acquired from frames prior to the bolus injection). The primary
advantage of these methods is that, by using the RF IVUS data, we do not lose
information contained in the frequency of the signal. The second advantage is that,
by using one-class learning, we do not need to provide “background” samples for
building the classifiers. This is particularly important to this study because, although
samples for contrast agent in lumen can be acquired by manual annotations from an
expert, the background can consist of a wide variety of other imaged tissues. Thus,
obtaining samples for the other tissues may be difficult and labor-intensive.

The features that characterize contrast agent and the baseline IVUS are defined
for a 3-D window of size r � � � t . These features are computed by stacking
consecutive frames over time, and obtaining a 3D IVUS signal volume S.R; �; T /,
where R indicates the radial distance from the transducer, � is the angle with respect
to an arbitrary origin, and T is the time elapsed since the start of the recording
(i.e., frame number). We study the feasibility of characterizing the contrast agent’s
signal using two types of features: features based on frequency-domain spectral
characterization (as proposed by O’Malley et al. [36]) and features based on 2-level
2D discrete wavelet decomposition.

Blood Detection: We assumed that that the signal of a partition corresponding to
certain tissue can be characterized by the DBC coefficient that generates that signal.
We employ the scattering model for computing the DBC corresponding to a partition
of the RF-signal of an A-line. Our objective is to find the DBC value that minimizes
the difference between the root mean square power (RMS) of the signal of a given
partition and the RMS power of the signal generated by our model. We divide the
real and modeled signal of each angle � into NP non-overlapping partitions of the
same size 4P . The initial and final times (˛p and ˇp , respectively) for each partition
P�;p are computed such that 4P D .ˇp �˛p/8p, and the RMS of each partition of
the real and modeled signals (R�;p and OR�;p , respectively) are computed. In order to
find the DBC value that generates the signal in each partition we find the value ��;p

such that the quadratic error E between the RMS power of the real and modeled
signals for the partition P�;p is minimal. The RMS power of the modeled signal
depends on the spatial position arrangement of the scatterers. Since these positions
are unknown, we employ the Monte-Carlo approach on which we perform several
computations based on several random scatterer’s positions. The problem of finding
the DBC for each partition is formulated as a system of linear equations and solved
very efficiently. Since we consider that there may exist a certain degree of overlap
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between the ultrasound beams of consecutive angles due to the angular divergence of
the beam, we introduce a regularization term that embodies our assumptions about
the variation of the DBC value of each partition and its neighbors.

4 Results

Image-Based Segmentation: The first 50 frames from nine sequences of 20 MHz
data (i.e., 450 frames in total) and nine sequences of 40 MHz data (i.e., 405 frames
in total) were used for comparing the results of the automatic segmentation method
with the manual segmentation from two expert observers. In order to evaluate the
performance of the method, we computed the Dice similarity coefficient (degree
of overlap between segmentation) along with linear regression and Bland-Altman
analysis (comparison of lumen areas). The results indicated a high Dice similarity
coefficient for the 20 MHz and 40 MHz datasets (0.95 and 0.93, respectively). The
linear regression plots exhibited a high correlation between the measured areas
obtained by the automatic and the manual segmentations. In addition, Bland-Altman
analysis of the data indicated that the performances of the automatic method and the
human observers are comparable. Figure 2 depicts examples of the segmentation
results obtained with the proposed method.

RF-Based Segmentation: We evaluated the performance of the proposed method
using the RF data from 490 frames corresponding to fourteen 40 MHz pullback
IVUS sequences obtained from rabbit aortas and various coronary arteries of swine,
and compared the results with those obtained through the the manual segmentation
by expert observers. The average Dice similarity was 0.96 while the mean bias and
the linear regression also showed that the performance of the automatic method and
the human observers is comparable. Figure 3 depicts examples of the segmentation
results obtained with the proposed method.

Fig. 2 Examples of automatic image-based segmentation results. The solid and dotted lines
correspond to the automatic and manual segmentation, respectively
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Fig. 3 Examples of automatic RF-based automatic segmentation results. The solid and dotted
lines correspond to the automatic and manual segmentation, respectively

Contrast Agent Detection: Samples from two contrast-enhanced IVUS sequences
obtained from swine were used to evaluate the feasibility of the proposed method.
The best performance, for both CDCs and the two types of features, was obtained
when using a window of size r D 255, � D 7, and t D 13. For the frequency-
domain features, the best average performance for contrast detection (CD) and blood
rejection (BR) with CDC1 is CD = 96.61% and BR = 95.67%. With CDC2 BD =
96.79% and CR = 94.24%. The best performance for wavelet-based features with
CDC1 is CD = 96.79% and BR = 94.13%. With CDC2 BD = 98.51% and CR =
96.94%. Figure 4 depicts examples of the classification results obtained with the
proposed method.

Blood Detection Results: Experiments were performed using real IVUS RF data
from six 40 MHz pullback sequences corresponding to different arteries from
rabbits and swines. For each sequence we compared the recovered DBC values
for blood and non-blood samples acquired from manual annotations provided by
an expert. The recovered DBC values for blood and non-blood were very similar
for sequences acquired using the same IVUS system and from the same species.
Additionally, as a preliminary blood detection experiment, we used our method
to recover the DBC values from the IVUS RF data of a frame corresponding
to a 40 MHz IVUS pullback from swine, for which histological information is
available (Fig. 5a). We normalized the resulting DBC values for each pixel of
the image and depicted the frame using a color palette (Fig. 5c). The regions of
the resulting image that correspond to vascularization were manually annotated
according to the criterion that a vessel should contain a region of DBC values
corresponding to blood surrounded by DBC values corresponding to non-blood.
These results are very encouraging as they provide preliminary evidence that our
method could be used for computation of a feature that leads to automatic blood
detection.



126 I.A. Kakadiaris and E.G. Mendizabal Ruiz

Fig. 4 Examples of classification results for CDC1 using the frequency-domain-based (a,b) and
wavelet-based features (c,d) in an IVUS frame before injection (a,c) and during the injection (b,d).
The green color indicates the pixels classified as contrast agent and the red color indicates the
pixels classified as non-contrast agent

Fig. 5 Annotation of vasculature on (a) histological sample, (b) its corresponding B-mode
Cartesian image, and (c) recovered DBC values using a color palette with annotation of blood
regions
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5 Conclusion

We have reviewed the proposed methods towards the development of a complete
framework for the automatic detection of extra-luminal blood. The initial results of
this study are very encouraging and we believe that further research in this direction
will lead to the development of a fast and reliable method for VV detection and
quantification.
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The interpretation of the results of an fMRI experiment involves the analysis
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to the rich and diverse literature in the fascinating field of fMRI data analysis,
providing an overview of its main challenges and of the most common approaches
to overcome them.

Mathematics Subject Classification (2010): Primary 54C40, 14E20, Secondary
46E25, 20C20

1 Introduction

Magnetic resonance imaging (MRI) is a biomedical imaging technology that
employs a combination of radio waves and strong magnetic fields to acquire
detailed images of a subject’s bodily structure via non-invasive scans. Functional
magnetic resonance imaging (fMRI) emerged in the early 1990s as an evolution
of conventional MRI specifically focused to mapping neural activity over time.
fMRI uses the same hardware equipment as MRI, but it is unique in that it acquires
sequences of individual MRI images to detect specific physiological changes in the
scanned tissues. Local neural activity has been shown to be closely connected to
local fluctuations in blood flow and blood oxygenation level. Due to a phenomenon
known as Blood Oxygenation Level Dependent (BOLD) effect, when a neuron
becomes active, its metabolic rate increases and so does its demand of oxygen,
causing a shift in the relative concentration of oxygenated and deoxygenated
hemoglobin in the blood flowing to the proximate vessels [1]. This quantity, which is
referred to as BOLD signal or hemodynamic response, can be measured by an MRI
scanner, since the magnetic susceptibility of blood is a function of its oxygenation
level, and is therefore used as a proxy of neural activity [2].

fMRI has been largely used in cognitive neuroscience and psychology to study
the neural bases of cognitive processes, by investigating how location and patterns
of brain activity are affected by such conditions as the exposure to a sensory
stimulus [3], the performance of a task [4], the control of emotions [5], the
development of behaviors [6], or the making of a decision [7]. Following a
somewhat complementary approach, neuroscientists have also fruitfully employed
fMRI to learn from maps of spontaneous neural activations how different brain
regions are functionally connected to each other [8]. Over the past decade,
fMRI has played a growing role in clinical neuroimaging as a tool for pre-
symptomatic diagnosis [9] and functional characterization [10] of neurological
diseases. More recently, applications of fMRI in neurosurgical planning [11],
neurorehabilitation [12], and drug discovery [13] and development [14] have also
emerged.

The interpretation of the results of an fMRI experiment involves the analysis
of massive amounts of noisy, complex, multivariate data, resolved both spatially
and temporally. The extraction of information from this data is a difficult and
articulated task, which relies on methodologies lying at the intersection between
image processing, statistics, and machine learning. Our goal with this work is to
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introduce the reader to the rich and diverse literature in the fascinating field of fMRI
data analysis, providing an overview of its main challenges and of the most common
approaches to overcome them.

This chapter is structured as follows: Sections 2 and 3 describe how fMRI data
is recorded, what information it contains, and the experimental designs according
to which it can be acquired. Section 4 focuses on the numerous sources of noise in
the data and on several of the possible preprocessing strategies for handling them.
Sections 5 and 6 frame the exploration of fMRI data as a problem of statistical and
machine-learning analysis, and introduce the most popular methodologies in the
state of the art; An overview of the main software packages that implement such
methodologies is provided by Sect. 7, which concludes this work.

2 Data Acquisition

During an fMRI experiment, a sequence of brain images are acquired while the
subject performs one or more tasks laying inside the scanner. The measurements
obtained by the scanner are collected in a 3-dimensional Fourier space, known as k-
space. This data is then mapped into image space, possibly after undergoing some
preprocessing. Since most types of analyses pertinent to the present chapter are
carried out in image space, we refer the interested reader to [15] for a technical
discussion on k-space.

Commonly, images are acquired along three planes: axial, coronal, and sagittal.
Axial images are perpendicular to the vertical axis of the body (top-down), coronal
images are parallel to the front of the body (front-back), and sagittal images are
parallel to the side of the body (left-right). The physical size of the image, measured
in mm2, defines the field of view (FOV); the FOV is partitioned into uniform cells
by a grid structure called acquisition matrix, whose size is typically 64 � 64 or
128 � 128; each of the cells in the grid is called a voxel, that is a volumetric pixel.
The x- and y-dimensions of a voxel simply correspond to the ratio of the x- and
y-dimensions of the FOV and the number of cells along the corresponding axes of
the acquisition matrix; the z-dimension is given by the thickness of the brain slice
mapped by the image. Typical values of voxel size are in the order 3 � 3 � 4 mm.

An fMRI image records the BOLD signal at every voxel of a brain slice at a given
time point (Fig. 1); a volumetric snapshot of the activity of the entire brain can be
obtained by stacking together all images (typically in the order of 30 of them, each
located at a different z-coordinate) acquired at the same moment. Throughout the
course of an fMRI experiment, the activity of each voxel is measured at uniformly
spaced time points (Fig. 2); the time distance between two successive observations is
known as “repetition time” (TR). Typically, 100–2,000 observations are collected,
with a TR ranging from 500 to 4,000 ms. In conclusion, the output of an fMRI
experiment is a volume of time series, each of which describing the dynamics of
neural activity at one of � 105 different brain locations (e.g., 30 z-slices defined on
a 64 � 64 acquisition matrix yield a total of 122,880 voxels). Although a significant
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Fig. 1 BOLD signal of one axial slice, measured at two different time points during an experiment.
Each image is defined by a 64 � 64 grid, composed by voxels with size 3 � 3 � 4:5 mm; for every
voxel, darker colors correspond to higher signal levels. Voxels corresponding to background noise
outside the brain are shown in white. Note the overall increased activation in the right-hand side
image

Fig. 2 BOLD signal of one individual voxel, measured at 120 equidistant time points

fraction of these voxels are “empty”, that is they correspond to background noise
outside the brain, and can be excluded (masked out) from the analysis, the overall
amount of data to process is massive, especially if we consider that often the
experiment is repeated multiple times for the same subject as well as for different
subjects.



An Introduction to the Analysis of Functional Magnetic Resonance... 135

3 Experimental Designs

fMRI experiments are designed according to four main paradigms: the block design,
the event-related design, the mixed design, and the behaviorally-driven design [16].
These designs differ in the scheme they adopt to expose the tested subject to
cognitive tasks (Fig. 3), which in turn determines what specific research questions
each design is most suited to answer.

The block design alternates periods or “blocks” of tasks with control blocks of
rest, both with a fixed length. The subject performs the same type of task throughout
every active block; for example, looking at a geometric shape on a display, or
listening to a particular sound. A stimulus is generated for the entire duration of the
task block, causing the hemodynamic response of the active voxels to accumulate
and increase until reaching a plateau, declining back to baseline only when the
following rest block starts. The response of voxels whose activity is not triggered
by the stimulus remains unaffected. At the end of the experiment, the hemodynamic
response at every voxel is averaged out across all blocks. Block designs have been
shown to be robust to variability in the shape of the hemodynamic response [17] and
to provide high statistical power for the detection of the subset of voxels activated
by the task [18]. However, they are not suited for the precise estimation of transient
features of the hemodynamic response.

In the event-related design, a sequence of different, possibly randomly chosen
tasks are performed throughout the experiment [19]. The tasks events are
usually shorter than in the block design. A given interstimulus interval (ISI)

Fig. 3 From top to bottom: schematic representation of block, event-related, mixed, and
behaviorally-driven design. Different symbols represent different tasks over time; a straight line
represents rest. The block design (first graph on top) is defined as periodic sequence of task and
rest blocks. The mixed-design (second graph) randomizes order and timing of different tasks. The
mixed-design (third graph) alternates task and rest blocks like the the block design; within task
blocks, however, tasks are performed multiple times with random timing. Finally, the behaviorally-
driven design leaves the subject at rest for the entire duration of the experiment
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separates the task periods; the ISI can be fixed or vary throughout the experiment.
The unpredictability of the nature as well of the moment of presentation of the
task results in a higher and more sustained attention level in the subject, thus
reducing confounding effects caused by boredom or fatigue. Specularly to block
designs, event-related designs are usually employed to accurately study how the
shape of hemodynamic response varies depending on the specific task and active
region being considered [20], but have lower statistical power for the detection of
activations.

The mixed design is a hybrid of the previous two approaches, in which task
blocks are alternated with control blocks and the ISIs within task blocks are
randomized [21]. This type of design combines the advantages of both the block
and the event-related design, in that it provides information regarding sustained as
well as transient activity. For this reason, it is used both for activity detection and
hemodynamic response estimation.

Differently from the previous three approaches, in the behaviorally-driven design
the subject is not asked to engage in any task. Instead, the subject is simply
instructed to lay inside the scanner in complete rest. During the experiment,
spontaneous fluctuations of the BOLD response, also known as brain “resting-state”
activity, are recorded. This information is then processed to infer how different
regions of the brain functionally interact with each other, typically by the study
of correlations and causal dependences between BOLD time series across the
volume [22].

4 Noise Artifacts

4.1 Sources of Noise

One of the big hurdles in the analysis of fMRI data is determined by the presence
of a significant amount of noise, coming from a number of different sources and
exhibiting diverse statistical properties. Noise perturbations in fMRI data can be
roughly categorized into four main groups: thermal noise, system noise, subject-
related noise, and inter-subject noise. The former two are generated by physical
fluctuations produced within the scanning process, whereas the latter are the
effect of movement and physiological phenomena occurring while the subject is
performing the experimental task.

Thermal noise is caused by variations in the thermal motion of electrons, both
in the electronic components of the scanner and in the scanned tissues. This type
of noise is task-independent, white in nature, and does not exhibit spatial structure
across the volume; it can therefore be easily removed from the data by averaging
out trial repeats.
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System noise reflects different types of scanner instabilities and can be observed
as a systematic, gradual drift in signal intensity over time. This drift can vary across
voxels, both in magnitude and direction.

Although subjects are instructed to remain absolutely still during the scan, some
degree of head movement is always observed, induced by the specific task being
performed [23] or caused by actions like swallowing [24], blinking [25], or
breath-holding [26]. These subject-related perturbations are spatially correlated
and cause the signal from a given brain region to be contaminated with the signal
from neighboring locations, therefore blurring the detected position of active and
nonactive regions. Certain physiological functions can also induce motion-related
noise [27], although generally smaller in scale, faster, and more predictable than
the one produced by head movements. For example, respiration and cardiac cycles
alter the position as well as the volume of the brain within the skull. This category
of noise is pseudo-periodic in nature, it tends to have different effects on different
brain regions, and is often found to be temporally correlated with neural activity.

Subject-related noise also includes neural activity patterns that are irrelevant for
the purposes of the experiment. For example, it is known that eye movement results
in activation of the frontal eye fields; the loudness of the scanner activates the
auditory cortex and several brain regions related to attention [28]; mind wandering
affects the temporal lobes and the frontal cortex [29].

Most experimental studies in fMRI are designed around a population of subjects.
Although human brains share many anatomical regularities, a significant inter-
subject variability is often observed in brain size, shape, and other features [30].
Due to these physiological fluctuations, the actual physical location represented by
a given voxel might vary across images acquired on different subjects.

4.2 Noise Handling Strategies

Just a few percent points separate the signal intensity of an activated voxel from
its baseline level. Due to their limited scale, changes in fMRI signal can be easily
hidden by spurious perturbations. Not surprisingly, a vast amount of attention has
been directed to the problem of noise handling in this field. There are two main
strategies for reducing variability in fMRI data. The first and most natural one
aims at preventing noise, by manipulating those among the confounding factors
that are under the control of the experimenter. Part of the hardware-related noise,
for example, can be eliminated by acting on the magnetic field strength and on
the temperature of the scanning environment; head motion can be reduced, to a
certain degree, by training the subject prior to the scan and by the use of various
head restraints, such as bite bars, face masks, or cushions. Many sources of noise,
however, are not controllable and even those that are cannot be eliminated entirely.
Much of the work for variability handling is therefore carried out a posteriori, using
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a variety of approaches that aim at estimating and removing noise perturbations
from the observed signal. The following paragraphs will focus on the main of these
data-preprocessing procedures.

The acquisition of a 3-dimensional image is not carried out as a whole but rather
as a superimposition of a sequence of individual 2-dimensional slices. This sequence
can be ascending or descending, and can possibly take place in an interleaved
fashion: for example, with all odd slices acquired first, followed by all even
ones. A slight time delay occurs between the acquisition of every two consecutive
slices, causing a non-negligible time misalignment to occur in the data. Slice time
correction is a kind of data interpolation that is used to correct for this source of
error [31]. Typically, the correction consists of realigning the data of all slices to the
time point at which a given reference slice (for example, the first one) was recorded,
by resampling the data at time points falling in between measurements. The values
at the non-measured time points are estimated by means of data points measured in
their proximity, using a variety of linear and nonlinear (for example, splines, sinc,
etc.) interpolation methods.

The drift in the signal introduced by system noise is handled through different
forms of detrending. The simplest approach is mean correction, which consists
in readjusting all images corresponding to the same slice acquired during a study
so that they all share the same average intensity. More sophisticated techniques
explicitly estimate the drift by means of linear, polynomial, spline, or wavelet
models of low-frequency noise [32].

Head motion is a major issue in data preprocessing, since even minimal move-
ments can induce significant measurement artifacts, potentially of greater magnitude
than the true signal itself. The typical approach to handling head-motion noise starts
with the alignment of each image to a reference image, for example, the first one
or the average of all those acquired. A common assumption is that head and brain
move as a rigid body, that is their shape remains constant while their position and
orientation in space changes. With this assumption, the motion estimation problem
reduces to assessing the magnitude of rotations and translations along the three
axes. Most estimation methods define each such transformation with three different
parameters and aim at finding the values of those parameters that minimize the
distance between the input image and the one chosen as reference. This is done
by means of an array of iterative optimization techniques and distance measures,
such as least squares, absolute difference [33], or mutual information [34]. Once
the motion parameters have been optimized, they can be used to register the input
image to the reference target; this correction step makes use of spatial interpolation
methods (for example, linear, polynomial, sinc, etc.), since signal values need to be
calculated at positions falling in-between measured data points.

Some of the proposed strategies for handling physiological noise involve mon-
itoring the actual physiological motion of the subject simultaneously as the neural
activity is being measured during the scan. The latter is then synchronized to
the former by matching each measured point to the cardiac or respiratory cycles
it belongs to. Finally, physiological fluctuations are estimated with a variety of
approaches (for example, Fourier series) and removed from the data [27, 35].
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Other techniques focus solely on the BOLD signal, by looking for the dominant
frequency components within the typical respiratory and cardiac frequencies [36].
These methods do not rely on the external recording of physiological cycles, but
their effectiveness requires the TR to be short, so that physiological noise can be
sampled without aliasing.

Inter-subject fluctuations are corrected by means of a normalization procedure,
in which images acquired on different subjects are registered to a common reference
space. This procedure makes use of affine or non-linear transformations [37] that
interpolate input images and warp them around a template brain (most commonly,
the Talairach [38] or the Montreal Neurological Institute brain [39]).

Image spatial smoothing is a preprocessing technique employed to improve the
signal-to-noise ratio in the data, independently of the specific factor inducing noise.
Spatial smoothing is typically obtained convolving images with a Gaussian kernel,
usually characterized by a parameter named “full width half maximum” (FWHM),
which defines the kernel width at half its maximum height [40]. Common values
of the FWHM are in the range of 4–10 mm; the specific value must be accurately
selected in order to avoid, on the one hand, blurring out the activity of very
small regions or artificially merging proximate active regions that are functionally
separated from each other (which would occur if the FWHM is too large), and, on
the other hand, insufficient noise compression or degradation of spatial resolution
(which would take place if FWHM is too small).

5 Neural Activity and Basics of Statistical Analysis

Changes of the BOLD signal in response to a single stimulus generated by a specific
task theoretically follow a temporal pattern known as hemodynamic response
function (HRF). The standard canonical model for the HRF is a smooth curve, which
remains constant for approximately 2 s after the application of the stimulus and then
gradually increases until reaching a peak 5–8 s later. Assuming no further stimulus
is applied, the signal takes about 15–20 s to decay back to baseline levels. During the
last 10 s, a dip under baseline is observed [41]. Several studies have given indication
of nontrivial deviations between empirically measured HRFs and the canonical
model; for example, a dip below baseline is often detected prior to the initial rise of
the signal [42]. For this reason, more complex and flexible models of the HRF have
also been proposed, based, for example, on Gamma [43] or Gaussian [44] functions.

Once a theoretical form has been chosen for the HRF, the modeled BOLD signal
at time t b.t/ is obtained by convolving the stimulus function (typically a “box-
car” function that encodes the occurrence of a stimulus in time) with the HRF
model, that is b.t/ D s.t/ ˝ h.t/, where s.t/ and h.t/ are the stimulus function
and the theoretical HRF at time t , respectively (Fig. 4). This convolution is usually
carried out in a linear fashion, assuming that the BOLD signal is simply the sum of
successive responses.
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Fig. 4 Hemodynamic response function (solid line), modeled as a difference of two Gamma
functions with parameters as in [43], convolved with a stimulus function (dashed line) with three
10-s stimuli, starting at times 10, 50, and 70

Traditionally, the statistical analysis of fMRI data orbits around the use of general
linear models (GLM) to estimate the relationship between the observed BOLD
signal of a given voxel and a “design matrix” of explanatory variables, each of which
assumed to represent a different signal component [45]. These inputs include terms
describing the time of occurrence of different stimuli, as presented by the chosen
design of experiments, as well as the theoretical BOLD response and nuisance
factors, such as signal drifts and periodic components. This problem is univariate,
since it is defined on a voxel-by-voxel basis, and consists in computing an Ordinary-
Least-Square optimal set of ˇ parameters for the model

Y D ˇX C �; (1)

where Y is the observed BOLD time series, X is the design matrix, and � is an error
term, usually assumed to be normally distributed with mean 0 and variance �2.
The significance of the model parameters at every voxel is then assessed running
a statistical test; the distributed outputs of all tests (for example, t-values) are then
used to build a statistical parametric map (SPM) across the voxel volume. The SPM
is finally manipulated, usually through a thresholding process based on Gaussian
Random Field (GRF) theory, to extract the subset of voxels that show the highest
systematical response to a given covariate (for example, voxels whose activation is
most strongly triggered by a specific type of task).

Multivariate techniques are also commonly used as exploratory tools of fMRI
data, with Principal Component Analysis (PCA) and Independent Component
Analysis (ICA) [46] among the most popular. PCA expresses the data as a weighted
sum of uncorrelated components, in order to identify spatial patterns that are
responsible for the most variability of the BOLD time series across voxels. This is
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obtained via the well-known Singular Value Decomposition (SVD) of the t x n data
matrix (with t being the number of time observations for each of n voxels), that is:

X D UDV T ; (2)

where U and V T are a t x t and an n x n unitary matrix, representing temporal
and spatial components of the data, respectively, and D is a t x n diagonal matrix
with non-negative elements on the diagonal representing the amount of variability
captured by each component.

Similarly to PCA, ICA operates a decomposition of the data matrix X into
a linear combination of variables, which however are required to be spatially
statistically independent. The specific transformation is defined as:

X D MS; (3)

where S is a m x n matrix containing m spatially independent source signals, and
M is a t x m mixing matrix of weights. The same procedure applied to XT allows
to extract temporally independent components.

Advanced multivariate analysis techniques for fMRI pattern analysis will be cov-
ered by the following section, where our attention will be focused on methodological
issues that are more exquisitely related to the science of machine learning.

6 Machine-Learning Analysis

Over the past decade, there has been a growing interest in the use of machine-
learning methods as tools for multivariate analysis of fMRI data. How to charac-
terize distributed patterns of neural activity generated by different stimuli, predict
cognitive states from a set of image features, or partition the gray matter into
areas with homogeneous temporal behavior, are just some of the myriad research
questions that have been successfully addressed by means of a variety of machine-
learning algorithms, both in a supervised and unsupervised fashion. In this section
we will give an overview of the main problems and approaches described in the rich
literature in this field.

6.1 Feature Extraction and Selection

The first step toward the application of machine learning tools for the extraction of
patterns from an fMRI data set is the definition of a set of informative and robust
features to be used as input. The simplest approach to this problem is to collect
one data point for every 3-dimensional image acquired, and use the activation level
of every voxel as feature. This technique has the advantage of providing many
observations for training and testing the classifier, but its main drawback is that
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a significant amount of noise might be present in the observation, even after the
preprocessing stage. For such reason, many authors prefer to use fewer but cleaner
observations, extracted from spatial or temporal averages of voxel activity. For
example, in [47] the authors divide the brain into a certain number of regions of
interest (ROI) and define the average activation of the voxels within each ROI as
one feature; in [48] features are obtained by averaging out the activity of individual
voxels over each task block of the experiment.

More elaborate approaches aim at synthesizing features from the original signal,
using different types of transformations. One common idea is to map each image
into its components via SVD [49] or spatial/temporal ICA [50]. Several authors
have also used basis projections of the activity time series based on wavelets [51],
splines [52] and Fourier bases [53]. Others proposed the use of a GLM regressor
to fit the activity time series of each voxel and use the pattern of the estimated ˇ

parameters and t-values across all voxels as features [54].
fMRI data is generally characterized by a number of features that largely

exceeds the number of observations available. In order to remove uninformative
and redundant inputs and reducing the risk of overfitting the data when training
statistical models, a great deal of attention has been focused on feature selection
procedures. In some cases, feature selection is carried out simply based on a priori
criteria: the experimenter might for example want to restrict the analysis to a few
specific ROIs, defined in terms of either functional or anatomical properties [55].
When the selection of features is to be carried out algorithmically, practitioners
often make use of univariate scoring approaches, which rank voxel features by
a specific criterion [48]. These criteria include: scoring voxels based on a t-
test on the difference between their mean activity level during task blocks and a
control baseline; training a classifier on one only voxel at a time and scoring every
voxel based on the resulting classification accuracy; ranking voxels based on how
consistently they react to different stimuli across cross-validation groups; using p-
values returned by analysis of variance to select voxels whose mean activity varies
most significantly across stimuli. Multivariate techniques are also commonly used.
Some authors introduced a variation of the one-voxel-at-a-time scoring criterion
described above named “searchlight”, which ranks according to the accuracy of a
classifier trained on a local neighborhood of every given voxel [56]. Others proposed
dimensionality reduction techniques based on SVD [57] and ICA [58].

6.2 Classification

In the fMRI framework, classification can be described as the supervised modeling
technique that aims at predicting the cognitive state of the brain from distributed
activation patterns [59]. Activation patterns generated by different categories of
stimuli can be distinctly discriminated by classifiers. This has been shown by
numerous studies applied to experiments on motor, perceptual, and cognition-
related tasks. For example, in [60] the authors describe an experiment consisting
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of button press blocks in which the subject was asked to alternately use the left
or right index finger. A classifier was then tested to determine in real time which
of the two tasks the subject was performing. In [61] a group of subjects was
presented sequences of images showing different categories of objects. Classifiers
were then applied to determine the type of object the subjects were observing, using
small subsets of the collected data as input. Others [47] explored the possibility
of classifying activation patterns evoked by the presentation of ambiguous versus
unambiguous sentences. Earlier studies focused on the problem of single-subject
classification, that is training and testing a model on data belonging to the same
experimental subject. More recently, classification of fMRI data was successfully
extended to a multi-subject framework [62].

One of the primary goals when analyzing fMRI data from a supervised perspec-
tive is the decoding of activation patterns to develop insight on how the brain works.
Thus, it is desirable that the decision rules discriminating classes are simple enough
to be interpretable by practitioners. For such reason, the classifiers most frequently
used in the fMRI literature fall under the broad category of linear models, with
linear Support Vector Machines (SVM), [63], Fisher’s Linear Discriminant Analysis
(LDA) [61], and Gaussian Naı̈ve Bayes (GNB) [64].

Let X be an n x m input fMRI data matrix, Xi be one of its n observations (for
example, neural activity at a given time point) defined on m features (for example,
all voxels in the volume), and Yi be the class label of such observation. In its soft-
margin implementation, SVM estimates an optimal linear discriminant by solving
the following mathematical program [65]:

min
w;b;�

1

2
k w k2 C�F

 
nX

iD1

�i

!
(4)

s.t. Yi.Xi w � b/ � 1 � �i ; �i � 0; i D 1; 2; : : : ; n;

where w and b are the vector of m weights and the bias term of the linear
discriminant, respectively, � is a non-negative regularization constant, �i is a
slack variable that penalizes the misclassification of observation Xi , and F.�/ is a
monotonic convex function, whose form is chosen so that (4) is a quadratic program.

The derivation of both LDA and GNB [46] is based on the Bayes’ rule, which
for two random variables X and Y holds that:

P.Y D kjX/ D P.X jY D k/P.Y D k/

P.X/
: (5)

With X and Y representing m-dimensional data points and class labels, respec-
tively, LDA models each class k as an m-dimensional Gaussian with mean �k and
covariance matrix ˙k such that:
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where ˙k D ˙ for all classes. This results in a class conditional probability

P.Y D kjX/ / exp

�
�1

2
.X � �k/T ˙k

�1.X � �k/

�
P.Y D k/; (7)

and a linear discriminant function

fk.X/ D XT ˙k
�1�k � 1

2
�k

T ˙k
�1�k C ln P.Y D k/: (8)

Class probability, mean, and covariance matrix are estimated as follows:

P.Y D k/ D nk=n;

�k D
X

i WYi Dk

Xi=nk; (9)

˙k D ˙ D
KX

kD1

X
i WYi Dk

.Xi � �k/.Xi � �k/T =.n � K/;

where nk D jfi W Yi D kgj and K is the total number of classes.
GNB is a variant of LDA, which additionally assumes that the conditional

distribution of each feature is independent of the others, that is:

P.X jY D k/ D
mY

j D1

P.Xj jY D k/; (10)

where Xj defines the j -th feature. If we further assume that the variance of each
feature is the same across all classes (which is often the case in fMRI data), GNB
can also be expressed as a linear discriminant [48].

Several authors showed that the linear approaches tend to yield higher classifica-
tion accuracy than non-linear ones [54]. This phenomenon has been interpreted as
an effect of overfitting due to the sparsity of the data, rather than of the intrinsic lack
of real interactions between individual voxels [48].

Systematic comparisons of different classification methods have been performed
in a number of studies. SVM appears to be the most promising modeling technique,
shown to outperform benchmark methods in most studies. A commonly emphasized
caveat is that non-linear kernels tend to undermine the robustness of the model to
experimental noise [61,63]. In [47], the authors applied SVM, GNB, and k-nearest
neighbors classifiers to three case studies, obtaining higher classification accuracy
with both SVM and GNB. LDA has also been proven to be a valid and computation-
ally appealing alternative to SVMs. This is particularly true in lower-dimensional
problems, where the inversion of the estimated covariance matrix operated by LDA
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can be significantly less computer intensive than the cross-validation-based search
for optimally tuning the parameters of SVMs. A recent study reported encouraging
results for a classification method based on regularized logistic regression, which
performed better than SVMs on both simulation experiments and real data [66].

6.3 Clustering

In the fMRI literature, the problem of clustering is often formulated as that of
partitioning a volume of data into voxels sets with homogeneous temporal behavior,
under the assumption that voxels with similar activation patterns are likely to share
the same functional properties [67, 68]. The search for similarities can be applied
to the raw time series, for example via the computation of the Pearson correlation
coefficient between pairs of voxels [69]. Some studies, however, show that such
approach tends to provide unstable results due to the intrinsic noisiness of the data;
moreover, it does not account for similarities between time series that are not related
to the task. These observations justify alternative approaches, in which comparisons
between voxels are made on transformations of their respective time series rather
than on the time series themselves. For example, in [70] the cross-correlation
function of the activity signal with respect to the experimental protocol signal (e.g.,
the box-car time series of a block design) is used to drive voxel grouping; in [71], the
authors emphasize the benefits of clustering on the signal autocorrelation function
in situations where not all active voxels start responding to the stimulus at the same
time.

Since usually only a small portion of the brain gets activated during an
experiment, many authors recommend to screen the volume to eliminate completely
unresponsive voxels from the input of the cluster algorithm, in order to increase
the chances that the returned clusters are actually expression of different groups of
activation [72]. Some authors also suggest to mask out all voxels that are not part
of the gray matter [73].

The most popular clustering tools in fMRI data analysis are k-means, both in its
standard [70] and fuzzy [73] variant, and agglomerative hierarchical clustering, the
latter possibly in combination with sharpening methods [74].

Let X be a n x m input fMRI data matrix and Xi one of its n data points (that
is, one voxel), defined on m features (for example, all time observations of neural
activity). The k-means algorithm [75] begins with the initialization of k points
c1; c2; : : : ; ck , each of which defines the centroid of a different cluster. Subsequently,
an assignment and an update phase are iterated until convergence. In the assignment
phase, each point Xi is assigned to the cluster with the closest centroid with respect
to a metric d , that is cluster Cj is computed as follows:

Cj D ˚
Xi W d.Xi � cj / � d.Xi � cl /

�
; 8l ¤ j: (11)
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In the update phase, the mean of the points in cluster Cj becomes the new
centroid, that is:

cj D 1

jCj j
X

i WXi 2Cj

Xi (12)

The initial centroids are typically obtained either by randomly assigning points
to k different clusters and then applying formula (12), or by randomly choosing k

points from X . Convergence is reached when cluster assignments are stable.
In the update phase of the fuzzy variant of the k-means algorithm [76] the

centroid cj of cluster Cj is computed as the mean of all points Xi 2 X , each of
which weighted by the degree uj of its belonging to such cluster, that is:

cj D
Pn

iD1

�
uj .Xi/

�r
XiPn

iD1

�
uj .Xi /

�r ; (13)

uj .Xi/ D 1Pk
lD1

�
d.Xi �cj /

d.Xi �cl /

�2=.r�1/
; (14)

where r > 1 is a real parameter that controls cluster fuzziness. Convergence is
reached when maxi;j jutC1

j .Xi / � ut
j .Xi/j < �, with � being a real parameter with

value close to zero and t and t C 1 being two successive iterations.
Agglomerative hierarchical clustering algorithms [46] build a tree-like hierarchy

of clusters by means of a bottom-up approach, which starts by creating a set of n

singleton clusters (each defined by a different point in X ) that are then recursively
merged together by pairs until one single cluster (including all n points) is obtained.
The clusters merged at every recursion are the two with the least dissimilarity, as
measured by a metric known as linkage. This metric can take different forms, the
most commonly used ones of which are: the single or nearest-neighbor linkage,
defined as

min
˚
d.Xi ; Xj / W Xi 2 Cv; Xj 2 Cw

�
; (15)

the complete, or farthest-neighbor linkage, given by

max
˚
d.Xi ; Xj / W Xi 2 Cv; Xj 2 Cw

�
; (16)

and the group-average linkage, expressed as

1

jCvjjCwj
X

i WXi 2Cv

X
j WXj 2Cw

d.Xi ; Xj /: (17)

In fMRI data analysis, the clustering metric is usually a negative function of the
correlation between the (raw or transformed) signals of a pair of voxels [71]; Some
authors also proposed an aggregate metric that depends both on correlation and
geometrical proximity, considering that activity of local, functionally related brain
regions are known to exhibit similar temporal behavior [77].



An Introduction to the Analysis of Functional Magnetic Resonance... 147

The problem of choosing the optimal number of clusters has been addressed
in different ways. In [78], a two-phase technique is used, which first applies a
hierarchical technique to determine the number of clusters and subsequently uses the
outputted clusters as initial condition for a k-means algorithm. Other approaches use
validation methods that aim at assessing the significance of the identified clusters via
statistical testing [79] or at finding clustering patterns that generalize best across a
set of subjects based on a cross-validation likelihood measure [72].

7 Computer Software for fMRI Data Analysis

In this conclusive section we provide an overview of some among the most
popular software packages for the analysis of fMRI data, selected from those
freely downloadable from the Internet. A comprehensive list of computational
resources, both for fMRI and other neuroimaging applications, can be found at the
Neuroimaging Informatics Tools and Resources Clearinghouse (www.nitrc.org) and
the Internet Analysis Tools Registry (www.cma.mgh.harvard.edu/iatr/) websites.

SPM (www.fil.ion.ucl.ac.uk/spm/) is by far the most widely used package
for univariate analysis of fMRI data. Written as a Matlab suite, it includes a
variety of routines for data preprocessing (time-slice correction, realignment, spatial
smoothing, etc.) and is designed both for single-subject and group studies. The
analysis is carried out with a standard GLM approach, in which the parameters
of a specified general linear model are estimated from the observations and the
results are used to compute a statistical parametric map. The user can control many
analytical details, such as the HRF form (for example, Canonical, Gamma-function-
based, etc.) and the techniques for the estimation of model parameters (maximum
likelihood, Bayesian). Another prominent package for univariate analysis is AFNI
(afni.nimh.nih.gov/afni), which, besides several features shared with SPM, includes,
among others, functions for mapping images to Talairach coordinates, display data
as axial, coronal and sagittal slices and compute activation maps with correlation
methods. AFNI is written in C and can be run both via a graphical user interface
and as a batch process. The fMRI toolboxes of the FSL library (www.fmrib.ox.
ac.uk/fsl/) are also a popular alternative to SPM: in particular, FEAT for data
preprocessing and GLM analysis and FLOBS for HRF generation and Bayesian
activation estimation. For R users, the fmri library (cran.r-project.org/web/packages/
fmri/index.html) contains functions for single-subject modeling under the GLM
framework and computation of SPMs, to which adaptive smoothing algorithms
and GRF theory can subsequently be applied. The package can perform signal
detrending, but does not have further preprocessing capabilities.

A variety of software libraries for multivariate analysis methods are also
available. For Matlab, the GIFT toolbox (mialab.mrn.org/software/gift/) includes
routines for different variants of single- and multiple-subject ICA (InfoMax,
FastICA, equivariant robust ICA, etc.), as well as for PCA. Alternatively, PCA
capabilities are offered by the Matlab FMRISTAT package (www.math.mcgill.ca/



148 G. Gazzola et al.

keith/fmristat/), while ICA algorithms can be found in MELODIC (www.fmrib.ox.
ac.uk/fsl/melodic/index.html), a toolbox belonging to the FSL library, and in two
R packages: the above mentioned fmri and AnalyzeFMRI (cran.r-project.org/web/
packages/AnalyzeFMRI/index.html). Both MELODIC and fmri can perform spatial
and temporal data decomposition, whereas AnalyzeFMRI only focuses on the spatial
variant.

PyMVPA (www.pymvpa.org) is by far the most comprehensive piece of software
for machine-learning analysis of fMRI data. PyMVPA is written in Python and has
many functionalities for feature selection (for example, recursive feature elimination
and several ranking methods), classification (including SVM and logistic regression
called via wrappers from external computational tools), and cross-validation (such
as leave-one-out and bootstrapping procedures). Other popular machine-learning-
oriented packages are MVPA (code.google.com/p/princeton-mvpa-toolbox/), 3dsvm
(lacontelab.org/3dsvm.htm), and FACT (sites.google.com/site/chuanglab/software/
fact). MVPA, implemented in Matlab, focuses on pattern classification analysis and
includes routines for cross-validation and synthetic data generation; 3dsvm is a
command-line plug-in of AFNI for SVM classification; the stand-alone software
FACT offers, among others, several routines for temporal clustering (for example,
fuzzy k-means and Kohonen clustering neural networks).
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Abstract To develop neuroprostheses that will provide the nervous system with
artificial sensory input through the sensory nerves to which they will be connected,
on one hand we have to determine how external stimuli are represented, coded and
transmitted by the Nervous System, how neurons and neuronal ensembles process,
encode and transmit perceptual information. On the other we need to know how
the central nervous system reacts to the implanted neuroprostheses and quantify
its anatomic and functional alterations due to the artificial input it receives from
our devices. Here we present mathematical and electrophysiological methods for
signal acquisition, analysis, and information coding in the tactile sensory system
that include a wavelet and principal component analysis-based method for neural
signal analysis and different types of frequency-based signal processing and coding
performed simultaneously by the sensory neurons. Finally we present a quantitative
morphological study of the effects of the neuroprosthetic stimulation using a
stereological approach.
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1 Introduction

Sensory neuroprostheses are designed to restore lost sensory functions by substi-
tuting the natural sensory input with another, artificial, but resembling the natural
one. In chronically implanted amputee subjects, they record the electrical activity of
artificial sensors placed in the periphery of the human body and transmit it (suitably
coded as nerve activity) to the central nervous system through the sensory nerves to
which they are connected. To achieve this objective we need theoretical knowledge
and experimental tools to artificially stimulate the peripheral nerves in such a way
that the elicited responses of the neural populations of the sensory systems will be
similar to those generated by natural stimuli. Our specific objectives in this endeavor
are:

1. To determine how external stimuli are represented, coded and transmitted by the
Nervous System (NS) through the different processing stations of the sensory
pathways, It is necessary to determine how interactions between sensory inputs
and the activity of Central Nervous System (CNS) neurons create the internal
representation of real-world stimuli in the different stations of the sensory
systems.

2. To obtain useful knowledge on the relation between external stimuli, activity
patterns of the afferent fibers and neural activity in different stations of the
somatosensory pathway. It is important to determine the use that neurons and
neuronal ensembles make of synchronous activity and oscillatory behavior to
process, encode and transmit perceptual information on sensory stimuli.

3. To deliver artificial input to the brain by means of implanted neuroprosthesis and
evaluate how CNS reacts and quantify its anatomic and functional alterations due
to our manipulations.

In the case of the somatosensory system our neuroprosthesis should be a bionic
arm implanted to the stump of an amputee person and connected directly to the
fibers of the peripheral nerve.

1.1 Principles for Signal Coding to Produce Perception

The somatosensory system receives and processes information from the body
surface and from deep tissues and viscera. Different sensations result from external
stimuli exciting a variety of somatic receptors that are distributed throughout
the body. Sensory stimuli are encoded as patterns of electrical activity (action
potentials) and transmitted to the CNS through the primary afferent fibers, which
constitute the peripheral sensory nerves. Information on the external world is
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transmitted through the nerves as complex spatiotemporal and intensity patterns
of electrical pulses and then analyzed and combined in subsequent processing
stages to produce perception. The perception of the external world by the CNS is
the result of a constant interplay between incoming signals and dynamic internal
representations of the external world. It is long established that neurons encode
incoming signals through a linear function between stimulus intensity and spiking
frequency. However, encoding is not performed only in such a simple and inefficient
way. A great amount of recent data suggests that more complex and efficient
procedures like synchronized activity, interspike intervals (high-order statistics)
and oscillating behavior of neural cells play an important role in information
processing, whether sensory, motor or mental. Unfortunately, our knowledge on
these procedures is too limited to allow us to define protocols of artificial stimulation
of the sensory nerves that could be appropriately interpreted by the CNS.

In order to create an artificial device that faithfully reproduces peripheral sensory
signals it is therefore necessary to determine in detail, in first place, the fundamental
principles that support the coding of sensory stimuli. This condition, however, is not
sufficient. We must be able, as well, to reproduce, through electrical stimulation of
the nerve fibers, the spatiotemporal pattern of activity generated by the physiological
sensory stimuli applied to the skin. This enterprise, however, is limited by a number
of biological facts, which are the source of serious obstacles:

• In humans, the sensory nerves convey thousands of nerve fibers (axons), which
are peripheral branches of the primary sensory neurons located in spinal, or
dorsal root, ganglia. If artificial sensors are to be directly connected to the nerves
there is a limit to the number of fibers that can be interfaced -from some tens to
a few hundreds. The reasons for it are both physiological (neuronal and axonal
degeneration, or limited biocompatibility) and technical (limitations in the size
and number of electrode contacts).

• Each intact axon conveys a specific kind of sensory information from specific
receptors (sensory submodalities as light touch, vibration, warmth...) towards
neurons which process that information and eventually integrate it with similar
-or different- information arriving from other afferent axons. The interfacing of
artificial sensors to a sensory nerve, however, will submit to axons information
of different sensory submodalities in an entirely unpredictable fashion.

• Nerve fibers are spatially arranged so that the peripheral receptor sheet (e.g.,
the skin) is mapped through the nerve onto the neurons of CNS (somatotopy).
The implant of an electronic interface in a cut nerve cannot maintain this
spatial organization substantially changing the somatotopic map. These maps
are capable to partially reorganize, however, though the extent and shape of this
reorganization is contingent upon different, not fully understood, variables.

Neurons receive information through their synapses that generate small local de-
or hyper-polarizations of the neural membrane (excitatory post synaptic potentials
-EPSPs and inhibitory post synaptic potentials -IPSPs respectively). These fluctua-
tions of the membrane potential are integrated and transmitted along the membrane
of the dendrites and the cell body. To be transmitted to other neurons information
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Fig. 1 Data acquisition from electrophysiological recordings: a tungsten electrode is placed
into the neural tissue at some micrometer from neural cells (somata, axons, dendrites). Any
modification of the membrane potential is recorded extracellularly from the ionic medium,
amplified, filtered and then stored and visualized. Rapid voltage changes (spikes) and noisy
background are clearly recognized in the record

is then transcripted to a digital code as pulses of the same duration and amplitude
named spikes (0.2–2.0 ms, 80 mV, Fig. 1, right). Information coding is mainly based
on the number of spikes, their frequency and their temporal distribution. In addition,
groups of neurons process and transmit information in a population manner using a,
generally unknown, distributed code.

1.2 Signal Acquisition and Processing

In-vivo simultaneous monitoring of firing patterns of many neurons and nerve fibers
is achieved by placing extracellular electrodes to the brain without significant tissue
damage. The basic electrical circuit used in such an experiment is shown in Fig. 1.
The circuit amplifies the potential between the ground (usually measured by placing
a wire under the scalp) and the tip of the microelectrode. The potential measured at
the tip of the electrode reflects the current flow in the extracellular medium due to
the action potentials generated by neurons and axons near it. Extracellular electrodes
normally record the activity of many nearby neurons with a consequent difficulty to
differentiate the spikes generated by these neurons. In addition, local field potentials,
thought to be generated from the current flow into the dendrites of the neurons, have
a sufficiently low bandwidth and can be filtered out from the action potentials.
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Spikes recorded from different neurons differ in shape and amplitude that
depends on the distance between neuron and electrode tip. This gives us a chance
to assign spikes to different cells. The spikes from a single cell will form clusters in
high-dimensional feature space [8,9,21] after a process of classification called spike
sorting. An observation of the trace in Fig. 1 suggests the existence of different ac-
tion potentials and a significant amount of background noise. For the reconstruction
of the underlying neural activity the general assumption is that each neuron produces
a different, reproducible waveform, which is then contaminated by an additive noise,
so the Signal to Noise Ratio (SNR) can be rather low [20, 31]. Sources for noise
spam from Johnson noise in the electrode and electronics, background activity of
distant neurons [8,9] to electrode micro-movement [32] passing through waveform
misalignment [17], and the variation of the action potential shape as a function of
recent firing history [8, 26]. Additionally, spikes proceeding from different cells
may overlap. The problem of automatically classifying the different shapes can be
addressed either in the context of the full time-sampled spike-shape or of a reduced
feature set, such as the principal components [10, 11], or a wavelet basis [16].
Simultaneous monitoring of the same cell intra and extracellularly with controlled
spike sorting, shows that manual sorting by professional operators with using tetrode
recording fails between 10 and 30% of the cases while single electrode recordings
perform even worst (up to 50%, [14]). In a 1-day typical experiment we can easily
have 104–105 spikes per recording electrode, hence optimal automatic separation
techniques are necessary.

To obtain an optimal performance in spike identification we developed a novel
method for extraction of spike features, the Wavelet Shape-Accounting Classifier
(WSAC, [24]), based on a combination of principal component analysis (PCA) and
continuous wavelet transform (WT). The method automatically tunes its WT part to
the data structure making use of knowledge obtained by PCA. In the PCA approach
a set of orthogonal eigenvectors of the covariance matrix of the spike waveforms
is estimated, then each spike is completely represented by a sum of the principal
component vectors with the corresponding scale factors (scores) considered as spike
features for sorting (Fig. 2, top-left). In the WT approach the coefficients of the WT

C.a; b/ D 1p
a

Z C1

�1
s.t/ a;b.t/dt;  a;b.t/ D  

�
t � b
a

�
(1)

are used to represent spikes in manner similar to a Fourier transform [16, 19, 27].
In WSAC we first look for representative spike WaveForms (rWFs). With real

data with a PCA approach we normally obtain partially overlapping clouds of spikes
of different neurons represented in the PCA space. We localize the positions of spike
density maxima and we average spike waveforms in a small neighborhood of each
cloud center to obtain the mean or rWFs. Then we search for a set of wavelet param-
eters .a�; b�/maximizing the distance jCrWFi.a; b/�CrWFj .a; b/j between the
rWFs in the wavelet space. Finally we evaluate the coefficients of the wavelet for the
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Fig. 2 Top: Typical spike
classification by PCA
resulting in overlapping
clouds corresponding to the
spikes of two probably
different neurons (left) and
histogram of spike
distribution along the PCA
space (right). Bottom:
Classification improves when
the WSAC approach is
employed as can be shown in
the less overlapping clouds
(left) and the more separated
distributions in the right
histogram (after Pavlov et al.
2007)

parameter sets we found for all spikes, Ci.a�; b�/. Now the clouds corresponding to
the identified neurons are better delimited and less overlapping in the wavelet than
in the PCA space (Fig. 2, bottom).

2 Neural Processing and Coding in the Tactile System

2.1 Experimental Model

Our first approach is to deliver batteries of tactile stimuli to the receptors of the
animal, record the responses of the sensory neurons to these stimuli and analyze
them trying to decipher how they are processing and coding the signals they receive.

Most of our experiments were performed in the trigeminal system of the rat
due to its highly topographic organization and the wide knowledge on its anatomy,
physiology and plasticity [7, 23, 33]. The trigeminal tactile system is principally
composed by a matrix of 33 long hairs (macrovibrissae, or main whiskers) located
on the snout of the animal with which the rat touches and discriminates external
objects similarly to the humans’ fingers. Tactile information from these sensors is
conveyed to the CNS through the trigeminal nerve in a spatially organized, rapid
and direct manner (Fig. 3, left). This nerve enters the brain and synapse with the
neurons of the first relay station, the ipsilateral sensory trigeminal nuclei of the
brainstem. Neurons in these nuclei send axons that cross the midline and synapse
with the neurons of the contralateral somatosensory thalamus, that in turn project
to the primary somatosensory cortex. In all relay stations, information processing is
done by groups of neurons that are spatially distributed in the same manner as their
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Fig. 3 The rat trigeminal system. A matrix of 33 long hairs (whiskers or vibrissae) on the snout
of the animal forms the tactile apparatus equivalent to the humans’ fingers. A high number of
sensors in the base of every whisker transform tactile stimuli to electrical signals that are conveyed
through the trigeminal nerve to the first relay station of the CNS, the sensory trigeminal nuclei of
the brainstem (nuclei principalis, oralis, interpolaris and caudalis). Neurons in these nuclei send
their axons to the contralateral thalamus, that in turn project to the primary somatosensory cortex.
In all relay stations there are maps of the whiskers, formed by groups of neurons (somatotopic
maps) each of which mainly process information from its corresponding vibrissa on the snout

corresponding whiskers on the snout of the rat (somatotopic maps). The main input
of each of these groups comes from a single vibrissa on the snout. This arrangement
can be detected by a number of histological and neurochemical markers (see also
Fig. 6). In cortical layer IV these groups of neurons take the shape of barrels and
form the cortical “barrel field” [37, 38].

Tactile stimulation and recordings of the neural responses The distal portions
(i.e., free ends) of the vibrissae were stimulated using air-jets generated by a
pneumatic pressure pump (10 psi, Picospritzer III, Parker Institute, Texas, USA)
and delivered in a rostrocaudal direction. These stimuli allow the whiskers to move
and vibrate in a natural fashion resembling contact with an object in a rostrocaudal
direction [30]. Spontaneous activity of the neural cells was recorded for 180 s, and a
sequence of 50 pulses of 100 ms duration was applied at 1Hz. Spontaneous activity
was recorded for additional 120 s, and then the following protocol was used: 14-ms
duration air puffs in five-second long pulse trains were presented at 1, 2, 3, 5, 8,
10, 12, 15, 20, 25, 30, 35, and 40 Hz. Each frequency was presented ten times in a
random order with a 3 s interval between trains, and the experiment was terminated
with a final sequence of 50 pulses of 100 ms at 1 Hz.
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Animals were anesthetized with urethane or ketamine+hydrochloride/xylazine
adult albino Wistar rats. Anesthetic level was controlled by means of an electroen-
cephalogram (EEG), and supplementary doses of anesthetic (10% of the initial
dose) were administrated when the level of the anesthesia was lowered. The scalp
was removed, the bone was opened 2.0–3.5 mm lateral to the midline and 8.0–
12.5 mm posterior to Bregma [25]. The dura was removed, and drying of the
exposed surface of the brain was prevented by covering it with vaseline oil. After
the removal of the scalp, a hole was made in the frontal part of the skull to insert the
EEG macroelectrode. All experiments were carried out according to EU Directives
(86/609/EC) and national legislation (R.D. 1201/2005) on this matter.

Electrophysiological data were obtained from the sensory trigeminal nuclei,
principalis (Pr5), oralis (Sp5o), interpolaris (Sp5i) and caudalis (Sp5c) that receive
in parallel direct information from the ipsilateral whiskers (Fig. 3) using 0.8–
2.0M˝ tungsten microelectrodes. As the electrode was driven vertically into the
brainstem, the vibrissae were manually stimulated under microscope observation
using a thin brush until neural responses were obtained. Once a good response was
obtained, the receptive field was manually determined, and the vibrissa that elicited
the maximum activation was labeled as the centre of the receptive field (principal
vibrissa). The principal vibrissa was then stimulated using the protocol described
below. Recorded signals were amplified, filtered (0.3–3 KHz) online and digitalized
(300 Hz EEG recordings, 20 KHz extracellular recordings) for storage.

2.2 Data Analysis

A first analysis is performed by means of peristimulus histograms (PSTHs) with a
time resolution of 1 ms. PSTHs are widely used for the analysis of neural responses,
but their power is quite limited when the neural dynamics under observation are
complex and/or go beyond variations in the mean spiking frequencies. For this
reason we used functions like early and global behavior, latency changes, and
temporal consistency of the responses for stimulation frequencies in the range of
1–40 Hz [30].

The early behavior of the neural response, the part of the response contained in a
short time interval after the onset of the stimulus, is measured by the Repetition Rate
Transfer Function (RRTF). This function compares the first stimulus of the 5s train
with subsequent stimuli at each stimulation frequency. The spikes generated by each
deflection of the vibrissa in this time interval from the second stimulus to the end
of the train are averaged and then divided by the spikes evoked by the first stimulus
of the train in the same time interval. An RRTF value greater than 1 indicates an
increased spike rate (potentiation); a value less than 1 indicates a decrease in the
response rate (adaptation).

The global behavior of the neural response measured by the Total Spike Rate
(TSR), represents the total number of spikes evoked over an extended stimula-
tion period at each stimulation frequency, 5 s in our case, since the integration
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over multiple stimuli is believed to be crucial for frequency discrimination in
primates [28, 29]. To compare different recordings and different nuclei responses,
we normalized TSR values along the 1–40 Hz range from each recording by the
value of the frequency with the highest TSR.

Response latency at each stimulus frequency was calculated as the average
time between stimulus onset and the appearance of the first spike in each train
of air-jet stimuli. This parameter was evaluated via the average cycle histogram
and defined as the post-stimulus time at which the response amplitude reached
50% of its peak value. To properly compare the different recordings, response
latencies were normalized with respect to the maximum value among stimulation
frequencies. We studied the temporal consistency of spike timing across stimuli
cycles by considering the i-th spike as a vector of unitary length and argument
�i D 2�

�
ti
T

�
, 0 � �i � 2� , and measuring the phase-locking of the responses

to the external stimuli by means of the Vector Strength (VS) function [12]:

VS D
q�Pn

iD1 cos.�i /
�2 C �Pn

iD1 sin.�i /
�2

n
(2)

where n is the total number of spikes evoked during the stimulus train, T is the
period of the stimulus frequency, and ti is the time interval between the most recent
vibrissa deflection and the i-th spike. VS takes values between 0 and 1, from random
spiking to perfect phase locking.

2.3 Information Processing by the Sensory Neurons

In early behavior neural responses combine frequency-dependent adaptation ex-
pressed as low-pass filtering with potentiation at specific frequencies (band-pass)
or clear adaptive/low-pass behavior, as shown by the neural responses in a short
time interval after the onset of the stimulus (Fig. 4). Potentiation in Pr5 occurs
mainly between 2 and 15 Hz whereas Sp5i recordings show potentiation mostly
near 12Hz. Significant intra- and internuclear differences are observed in band-pass
and non band-pass behavior for both, percentages and mean RTFF values for each
stimulation frequency. Band-pass RTFF values were significantly higher in both Pr5
and Sp5i for almost all frequencies [30].

In global behavior TSR values show potentiation with the stimulation fre-
quency, and these potentiations are either simple (logarithmic high-pass behavior)
or combined (high-pass with additional band-pass potentiations in the range of
8–20 Hz) without statistically significant differences between Pr5 and Sp5i (Fig. 5).
Intranuclear comparisons of TSR values at each stimulation frequency between
band-pass and non band-pass recordings show very significant differences in
absolute and normalized values in both locations [30].
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Fig. 4 Left: First column, frequency of whisker stimulation; second and third columns, responses
of four neurons to the tactile stimuli of the whiskers at these frequencies (two are shown as
peristimuli histograms and two as rasters) Right: graphic representation of the RRTF and TSR
behavior of different neurons to 1–40 Hz stimuli. High pass, low pass and band-pass behavior are
shown

Response latencies increase significantly as a function of stimulation frequency
in 80.4% of Pr5 and 100% of Sp5i recordings. The increase of mean response
latencies is quite slow, and statistically significant differences between the two
nuclei arise after 15 Hz due to the more rapid increase of Sp5i values. Changes
in the response latency have been proposed as a coding parameter in the vibrissae
sensory pathway [1]. The temporal consistency of the neural responses is high in
both nuclei and follows sigmoid curves. Between 1 and 5 Hz mean VS take values
near 1.0 and decreases with the increasing of the stimulation frequency.

Early behavior is most likely related to specific properties of the stimulus (timing,
number of involved vibrissae, relative velocity and direction of the object, etc.) while
global behavior with long-lasting stimuli is probably used to encode information
about the texture of the touched objects [28]. Mean firing rate, the TSR in our case,
is considered the best candidate as neural code for tactile discrimination [18,28,29]
and references therein). The total number of spikes fired in our 5 s stimulations
increases with the increasing in stimulation frequency in both nuclei.
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Fig. 5 Graphic representation of tactile signals (whisker displacement at 3–40 Hz) processing
depending on the filtering properties of the sensory neurons. (a) Filtering of the early response
(RFTF) by a low-pass and a band-pass (8 Hz) neuron. Left, whisker displacement; right, the
incoming signal as “perceived” by the neuron. (b) The same as before but for the later response
(TSR). (c) Signal processing and reconstruction of a complex táctiles signal (Leith) by a group of
1.000 low-pass, band-pass and high-pass neurons. The signal is “perceived” and reconstructed in a
different manner in the RRTF and TSR spaces (left, reconstructed signal in dark)



164 F. Panetsos et al.

3 Anatomic and Functional Alterations of the Brain Due
to Neuroprosthetic Input

3.1 Experimental Approach

Current tools for morphological research allow us to see almost all the elements
of an individual neuron and, by extension, of the whole nervous system. Thus, by
morphological analysis we can identify and quantify the structural characteristics of
individual neurons and / or complex regions of interest. Histological examination
is able to detect microscopically from subcellular components (e.g., changes in size
and shape of the nucleus, altered dendritic protein expression, etc.) to changes in the
organization of the different functional regions (e.g., plastic cortex reorganization
after learning or sensory deprivation, extent of damage after stroke, etc.) (see Fig. 6
for histological images at different levels of organization).

To evaluate the effects of the neuroprosthetic input to the CNS we took into
account the symmetry of the body and that each side of the peripher is mainly
connected to the contralateral cerebral cortex and that manipulations of a peripheral
nerve should modify the contralateral cortex. Consequently, a comparison of the
two cortices should give us an estimation of the effect of the unilateral experimental
manipulation. For our study we used animals with complete unilateral transection
of the trigeminal nerve, (Amputee or A-group), animals with the same manipulation
but combined with chronic electrical stimulation of the transected nerve (Prosthetic
or P-group) and intact animals (Control or C-group). C and A animals were left in
their cages without further manipulation while P animals were held under 12 h/day
continuous electrical stimulation (square pulses of 100 ms, 3.0 V, at 20 Hz) for 4
weeks. Stimulation parameters were selected from a wide range of previously tested
stimulation protocols.

Cortical activity was evaluated histologically by estimating the metabolic activity
of the cortical tissue and the volume of the active tissue in the barrel cortex. The
metabolic activity of the neurons and in particular of their synapses is correlated
to the expression of the cytochrome oxidase (CyO), a critical enzyme of the
mitochondrial respiratory chain [34, 35], so by quantifying the quantity of CyO in
the neural tissue and compare the two brain hemispheres we can evaluate the effect
of our manipulation to the somatosensory cortex. The barrelettes of the brainstem,
barreloids of the thalamus and barrels of the cortex are clearly distinguishable of
underlying neuropil by their high enzymatic reactivity (see Fig. 3 and [36]). This
allows us to accurately delineate areas according to their functional activity.

Traditionally, it has been possible to show certain morphological properties in
the nervous system and make a qualitative or subjective interpretation of them. This
qualitative analysis is still very useful today in the early stages of an investigation.
However, the histological images obtained under a microscope represent a very
small part of reality, so systematic random sampling is employed to provide
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Fig. 6 Photomicrograhs of rat histological sections stained with different methods. (a) One
Nissl-stained neuron showing basic components of cellular soma: nucleus and cytoplasm. In
(b) two immunopositive neurons for a cytoplasmic protein (calbindin D-28k) are showed. These
neurons are GABA-ergic interneurons located in the primary somatosensory cortex. (c) A neuronal
agrupation or ganglion cells showing Fast-Blue (FB) positive sensory neurons. FB is a fluorescent
retrograde neurotracer, what can be applied in the proximal stump of a transected peripheral
nerve and traveling along the fibers reach and colour the neuronal body. (d) Barrel cortex
stained for cytochrome-oxidase enzyme. Dark zones indicate high metabolic, and hence functional,
activity. This histochemistry technique is very useful for studying cortical plasticity induced by
manipulations of peripheral input (see text)

estimates with less variability and the need for more rigorous approaches led to
the adaptation of mathematic tools for an objective quantitative analysis [4, 13].

The histological sampling is an essentially hierarchical procedure and must be
done strictly from the first level. In the above example about the total number of
neurons in the rat somatosensory cortex, including from the sacrifice of the animal
to obtain a numerical data, there are many processes subject to bias and variability,
whose error must also be measurable and quantified. Briefly, after sacrificing the
animal, the brain is removed (three-dimensional object or block). The brain is cut
into sections, on which study fields of view. Variability in brain samples is mainly
due to the biological inter-individual variability (70%) and variability between
blocks (20%), variability between sections, fields and measurements being limited
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(5%, 3% and 2% respectively). Areas and volume estimations are based on the
Cavalieri principle OV D T � Pm

iD1 Ai applied in slices of thickness T and cross-
sectioned area Ai estimated using the point counting [3,5,13,36]. Estimation errors
are calculated as [6, 13, 22]:

CE. OV /GJ D 1P
A

�
�
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where

a D
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iD1

Ai � Ai ; b D
m�1X
iD1

Ai �AiC1 and c D
m�2X
iD1

Ai � AiC2 (4)

3.2 Quantitative Morphological Analysis
in the Neuroprosthetical Approach

We performed an optical density analysis of the neural activity by determining
the intensity of the CyO staining through gray-level measures. Selection of the
sections was based on strict morphological criteria. Possible aberrations originating
from the optical system of the camera were corrected by background subtraction.
Multiple sections per animal were analyzed taking different samples from each
slide, each sample consisting on the mean value of the pixels of a fixed-size
window. Globally, Control- and Prosthetic- animals displayed statistically similar
staining intensities in the two hemispheres (interhemispheric differences lower
than 2.5%), while Amputated-animals presented significantly lower intensities in
the manipulated cortex (approximately 9%, Fig. 7). Intergroup comparisons show
statistical differences between C- and A- and P- and A- groups and no differences
between C- and P-animals.

By applying the Cavalieri-point counting method, we estimated the volume of the
highest enzymatic reactivity-areas, and therefore areas of high functional activity, in
each trigeminal nucleus of the two hemispheres. The ratio of the estimated volume
for the experimental hemisphere vs. control hemisphere of each animal was used as
variable for intra-and inter-group comparisons. Estimations of the active volume in
the somatosensory cortex were similar to the metabolic activity levels with the same
statistical interhemispheric and intragroup differences [15].

Our main findings were that chronic deafferentation has important consequences
on the structure of the CNS, reducing the functionally active structure in all nuclei
of the somatosensory pathway. The artificial input causes the reorganization of
the thalamic nucleus and somatosensory cortex, without significant consequences
at lower levels. Thalamic and cortical activity, silenced after the amputation, was
restored after the neuroprosthetical stimulation.
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Fig. 7 Sections of the somatosensory cortex of amputated and prosthetic animals. Interhemi-
spheric comparisons show clearly lower activity in the affected cortex of the amputated rat (lower
intensity of the color) and similar in the prosthetic one. Also the volume of the neural aggregates
dedicated to the process of information o fan individual whisker (show in sections and pointed by
the arrows) has been reduced in amputee but maintained intact in the prosthetic

Our results are important in order to increase the neurobiological understanding
of the plastic phenomena induced by peripheral input manipulation and to establish
the scientific basis to properly model and predict all the complex phenomena that
could be triggered by the implantation of the prosthesis and of different types
of interfaces. Applications in the biomedical engineering field could range from
definition of optimal stimulation parameters with measurable behavioural effects
in future advanced neuroprostheses to the development of new neurorehabilitation
therapies [2].
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the under-lying neural mechanism of cognitive brain activity in order to identify
features capable of discriminating brain engagement tasks in terms of cognitive
load. Rather recently there is a growing belief that the noninvasive technique of
high-resolution quantitative electroencephalography may provide features able to
identify and quantify functional interdependencies among synchronized brain lobes
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can be potential candidates for future inclusion in a clinical trial setting. This
paper discusses different families of graph theoretical measures able to capture the
topology of brain networks as potential EEG-based biomarkers. As a case study,
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1 Introduction

Understanding the spatiotemporal characteristics of brain activity has been the long-
standing aim over the previous decades. Especially, during the past decade there has
been a growing interest in studying and discovering specific prognostic and predic-
tive biomarkers that tackle a wide variety of brain related pathologies and cognitive
functions by means of both imaging and signal acquisition modalities. Functional
Magnetic Resonance (fMRI) scanners, Near Infrared Optical Tomography (NIROT)
and Electroencephalography (EEG), Magnetoencephalography (MEG) devices are
capable of recording hemodynamic and neuronal signals, respectively. Imaging
techniques achieve millimeter spatial resolution but suffer from rather high temporal
resolution (more than a second). On the other hand, signal based techniques are
able to record events in a millisecond timeframe, which is a strong advantage
considering that an action potential takes approximately 0.5–130 ms to propagate
across a single neuron. Hence, EEG and MEG are perfect candidates for extracting
signal-based biomarkers targeting brain diseases that can be potentially applied in
diagnosis and disease progression monitoring [41]. In addition, such biomarkers
can act synergistically to molecular level biomarkers (genomics, proteomics and
metabolomics) that are closely correlated to drug development.

Among the various frameworks proposed for efficient quantification and summa-
rization of brain information flow [42], graph theoretical approaches offer a unique
perspective of studying both local and distinct brain interactions [6, 48, 54]. Graph
measures have been applied to topological analysis of brain functional networks and
many of them reflect disease and statistically significant differences between healthy
subjects and subjects with neuropathologies such as epilepsy, Alzheimer’s disease,
autism, Parkinson’s disease, alcoholism, and schizophrenia [8, 40, 44, 45, 52, 59].
All these diseases have been associated with abnormal neural synchronization that
systematically differs from those of healthy control subjects. Epilepsy has been
associated with too high and too extended neural synchronization [21, 32, 51].
Patients with Alzheimer’s disease show reduced synchronization [5,18,19,56]. Cog-
nitive dysfunctions associated with autism are explained with reduced functional
connectivity and neural synchronization [29, 39]. There are increasing amounts
of data linking impaired motor processing in Parkinson’s disease with excessive
synchrony in basal ganglia-cortical loops [14, 55, 58]. Concerning schizophrenia,
there is a growing body of evidence that the clinical symptoms and cognition
dysfunctions observed in schizophrenia are caused by a disturbance in connectivity
between different brain regions. In particular there is reduction in both local- and
long-range synchronization [25, 44]. Additionally, a number of studies claim that
there is a strong negative association between the characteristic path length (i.e., the
average of shortest path lengths between each pair of vertices) of the resting-state
brain functional network and the intelligence quotient (IQ), suggesting that human
intellectual performance is likely to be related to how efficiently our brain integrates
in-formation between multiple brain regions [24]. Such efficient networks that
enable a rapid integration of information from local, specialized brain areas even
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when they are distant are characterized as small-world networks [53] in analogy to
with the small world phenomenon initially witnessed in social systems [27]. Finally,
brain tumors and especially low grade gliomas have been studied for possible
disturbances using MEG [3]. Alcohol addiction and dependence is the exemplar
case addressed in this study.

In summary, this work illustrates the potential of using graph theoretical ap-
proaches in analyzing and characterizing complex brain network topologies and
reports the most significant graph theoretic measures, in terms of statistical power,
capable of identifying the coupling differences of high resolution EEG channels
in alcoholic and control subjects during a working memory task. Section 2
addresses the potential of using graph theoretical measures to study brain functional
connectivity. Section 3 refers to some indicative techniques for measuring functional
connectivity and defines representative families of graph measures. Application in
an alcoholism case is presented in Section 4, while the final section concludes this
chapter.

2 Why Use Graph Theoretical Markers?

2.1 Functional and Anatomical Connectivity Considerations

Most recent attempts to explain brain function focus on the functional interactions
among the underlying distributed neural assemblies of different cerebral regions.
More specifically, the activation of specialized brain neuronal populations and the
coordinated activation of very large numbers of neurons within the distributed
system of the cerebral cortex, commonly referred as the functional segregation and
integration principle [10, 42] is central in cognitive neuroscience and connectivity
analysis methodologies.

Mainly two different groups addressing brain connectivity can be defined. Those
based on neuroanatomical structural landmarks and the ones attempting to detect
and assess functional connectivity patterns. Neuroanatomical connectivity may be
considered as fiber pathways tracking over extended regions of the brain that
are in accordance with anatomical knowledge [20, 42]. Such pathways may be
evaluated using neuroimaging techniques including Magnetic Resonance Imaging
(MRI) based techniques commonly applied in Schizophrenia [2] and Alzheimer’s
disease [15]. Especially Diffusion Tensor Imaging (DTI), apart from structural and
anatomical information, also enables fiber tracking of white matter tracts [11, 17].
Nevertheless, neuroanatomical connectivity is inherently difficult to define given
the fact that at the microscopic scale of neurons, new synaptic connections or
elimination of existing ones, are formed dynamically and are largely dependent
on the function executed [34]. On the other hand, functional connectivity basi-
cally targets the temporal connection dependences aiming to unravel statistically
significant dependences between distant brain regions [8, 42] and can be better
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evaluated using signal based techniques of high temporal resolution from widely
used modalities, such as EEG and MEG. In contrast to anatomical connections,
functional connections may evolve on a much quicker time scale and can reveal
information on network organization underlying specific brain functions. For
completeness, effective connectivity could also be mentioned, which is a rather new
concept defined as the direct or indirect influence that one neural system exerts
over another [16, 42]. In other words it describes the directed interactions between
different brain regions according to a predefined model specifying the casual links.

Evidently, the long lasting focus of neuroscience community falls in the different
methodologies for measuring functional connectivity [42] and searching for func-
tional biomarkers [41] able to characterize such patterns. In this direction graph
theory has been recently applied to neuroscience due to its ability to study brain
network dynamics and structures by providing objective measures of the networks
composed by functional links of different brain regions. However, the different
methodologies available to extract the salient characteristics from a complex brain
network topology remain a challenge in the graph theory community.

3 Methodological Aspects of EEG Graph Theoretic
Biomarker Formation

3.1 Graph Definition

Graphs G D .N; L/ consist of a set of nodes N and a set of pairs of linked nodes
called edges or links L. In brain modeling we assume that brain regions of interest
may be considered as nodes and the corresponding interconnections as edges. The
definition of nodes can be accustomed to the experimental design and may refer to
the actual EEG electrodes or to independent sources and components that may be
defined using source localization methods [12] or blind source separation techniques
like ICA [45, 62]. The number of nodes in the network equals to the number of the
sources or components under investigation. The estimation of edges is based on
the calculation of a wide family of interdependence measures, henceforth referred
as synchronization measures, that estimate the strength between all possible pairs
of nodes. Such measures are often normalized and range between zero weight and
one, with 0 meaning total independence/ absence of edge and 1 refer to maximum
correlation/ strong interdependence. In this case we refer to weighted graphs. If
strength information is discarded binary graphs are defined, where only the presence
or absence of an edge is denoted. To switch to the binary case a threshold is applied,
i.e., if edge weight is above threshold then the edge is kept, otherwise is removed.
Threshold selection is not a straight forward task and there is no established and
widely accepted way of favoring a specific threshold value. In practice, a broad
range of threshold values is used to characterize the network. Automated ways of
threshold selection are either based on statistics or based on signal techniques of
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Fig. 1 A general example of an undirected (left) and a directed (right) graph with three nodes and
three edges

selecting the optimal visualization threshold using surrogate (artificially generated
ensembles of data aiming at revealing the most significantly coupled brain regions)
datasets to correctly identify the most significant correlation patterns [45]. Finally,
there is also a distinction between undirected and directed graphs. Directed graphs
include ordered pairs of nodes, called arcs, directed edges, or arrows and reflect
not only the presence of an edge but also whether there is coupling information
available, i.e., one node drives another node (Fig. 1 right). Undirected graphs are
defined in terms of unordered pairs of nodes known as edges (Fig. 1 left). Each
graph is represented by its connectivity matrix that stores the weights between all
possible pairs .i; j / of nodes and is referred as adjacency matrix. Depending on
the type of the graph one may refer to either weighted (wij ) or binary adjacency
matrices. A summary of different ways for calculating the adjacency matrices using
signal based functional connectivity estimation techniques follows next.

3.2 Brain Connectivity Analysis Using EEG

The application of high time resolution EEG may resolve interdependence
patterns of cortical assemblies using linear interdependence measures, nonlinear
synchronization estimators, and information-based techniques. The challenging
problem of developing methods to efficiently and accurately quantify information
processing mechanisms of the brain has been under study from the late 1960s [4].
In this section we only refer to some of the most widely used techniques along with
some of their applications. In-depth details are provided in two such approaches
(magnitude squared coherence and Phase Level Synchronization) that are further
utilized in the experimental section in search of possible biomarkers for the
alcoholism case.
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3.2.1 Linear Coherence Estimation Technique

Coherence and more specifically magnitude squared coherence (MSC) is a linear
measure that compared to the classical cross-correlation has the advantage of
showing the covariation between two signals in distinct brain regions as a function
of frequency; thus allowing the study of spatial correlations between different
frequency bands [36].

Consider two simultaneously measured discrete time series xn and yn, n D
1; : : : ; N . The most commonly used linear synchronization method is the cross-
correlation function (Cxy) defined as:

Cxy.�/ D 1

N � �

N ��X

iD1

..xi � Nx/ =�x/
�
.yiC� � Ny/ =�y

�
(1)

where Nx and �x denote mean and variance, while � is the time lag. MSC or simply
coherence is the cross spectral density function Sxy , which is simply derived via
the fast Fourier transform (FFT) of (1), normalized by their individual autospectral
density functions. However, due to finite size of neural data one is forced to
estimate the true spectrum, known as periodogram, using smoothing techniques
(e.g., Welch’s method). Thus, MSC is calculated as:

�xy.f / D jhSxy.f /ij2
jhSxx.f /ijjhSyy.f /ij (2)

where h i indicates window averaging. The estimated MSC for a given frequency f
ranges between 0 (no coupling) and 1 (maximum linear interdependence).

Other alternatives include wavelet based approaches i.e., Wavelet Coherence
(WC) and more selective wavelet approaches that identify and extract only the
statistically significant portion of the interacting signals as described in [43,44,49].
The WC method was successfully utilized to define biomarkers in the case of
schizophrenia [44]. Other implementations include ARMA modeling approaches
in estimating signal correlation by defining AR-coherence using a bivariate
autoregressive process to describe the signals [47].

3.2.2 Nonlinear Synchronization and Information Based Approaches

A completely different approach in analyzing the nonlinear EEG dynamics emerged
some decades after the discovery of deterministic chaos [26] when the notion of
connectivity outreached synchronization phenomena of interacting nonlinear oscil-
lators [35, 37]. Among the different available frameworks for capturing nonlinear
synchronization, mainly the phase and generalized synchronization concepts are
most widely used in several neuropathologies and cognitive research during the
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past years [46]. The most representative method capable of obtaining a statistical
measure of the strength of phase synchronization is the Phase Locking Value
(PLV) [22, 46]. The PLV approach assumes that two dynamic systems may have
their phases synchronized even if their amplitudes are zero correlated [28]. The
phase synchronization is defined as the locking of the phases associated to each
signal, such as:

j�x.t/ � �y.t/j D const: (3)

In order to estimate the instantaneous phase of our signal, we transform it using the
Hilbert transform (HT), whereby the analytical signal H.t/ is computed as:

H.t/ D x.t/ C i Qx.t/ (4)

where Qx.t/ is the HT of x.t/, defined as:

Qx.t/
1

�
P V 21�1

x.t 0/
t � t 0 dt 0 (5)

where PV denotes the Cauchy principal value. The analytical signal phase is
defined as:

�.t/ D arctan
Qx.t/

x.t/
: (6)

Therefore for the two signals x.t/, y.t/ of equal time length with instantaneous
phases �x.t/; �y.t/ respectively the PLV bivariate metric is defined as:

PLV D
ˇ̌
ˇ̌
ˇ̌

1

N

N �1X

j D0

ei.�x.j�t/��y.j�t//

ˇ̌
ˇ̌
ˇ̌ (7)

where �t is the sampling period and N is the sample number of each signal. PLV
takes values within the Œ0; 1	 space, where 1 indicates perfect phase synchronization
and 0 indicates lack of synchronization.

On the other hand Generalized Synchronization (GS) is based on the idea of
measuring how neighborhoods (i.e., recurrences) in one chaotic attractor maps in-to
the other. To form such attractors from the raw EEG data, we should first construct
delay vectors using a procedure known as time-delay embedding [57]. Attractor
mapping turned out to be the most robust and reliable way of assessing the extent
of GS [1, 38, 46]. For an in-depth mathematical reasoning of the afore-mentioned
techniques in an epileptic paradigm the interested reader is referenced in [46].

As a final point, we should also mention that wide use of a variety of information-
based techniques that are susceptible to both linear and nonlinear signal interdepen-
dences. The underlying concept of these is that one is able to quantify the amount of
information gained about one signal from measuring the other as a function of delay
between these two signals. This is known as Cross Mutual Information (CMI) and
has been successfully applied to Alzheimer’s and Schizophrenia diseases [19, 30].



178 V. Sakkalis and K. Marias

3.3 Graph Measures

Graph theoretical measures may be potentially considered as neurophysiological
biomarkers because they can be extremely efficient for capturing and localizing
brain activity motifs. They may be treated as features reflecting hidden signs
capable of uniquely characterizing a disease or cognitive process. In this section
we refer to three wide families of weighted graph theoretical measures that are
informative about the brain network topology. The first two families are defined in
analogy to the functional segregation and integration principle as discussed earlier
(Sect. 2.1), whereas the third family assesses the importance of individual nodes in
the brain network and is known as centrality measures. In our quest for identifying
neurophysiological biomarkers for the case of the alcoholism we calculated and
tested the following measures as candidate biomarkers. A recent overview of
these measures can be found in [40]. It should be noted though that some of
these measures are still limitedly used in the wider neuroscience research. Before
proceeding to the exact definitions of these measures, let us first recall the notations
used. A graph is defined as G D .N; L/, where N is the set of all the nodes, L is
a set of pairs .i; j / of linked nodes (i; j 2 N ) called edges. n is the number of
nodes and l is the number of edges. Wij denotes the normalized weighted adjacency
matrix 0 � wij � 1 as calculated from the functional connectivity techniques
(Sect. 3.2) between all possible combinations of nodes. lw is the sum of all weights
in the network lw D P

i;j 2N wij .

3.3.1 Integration Measures

The shortest weighted path length (distance) d w
ij between two nodes i; j is the

weighted sum of the minimum number of edges we need to traverse in order to
go from node i to node j and is defined as:

d w
ij D

X

˛uv2gw
i$j

f .wuv/ (8)

where gw
i$j denotes the shortest weighted path between i; j (auv are the nodes

we need to traverse) and f is a mapping function that transform weights to
length estimations using for example an inverse function or 1 � log2.x/. When no
connection exists d w

ij D 1 for all disconnected nodes. This measure quantifies how
easy it is for different brain regions to communicate. Thus it is strongly related to the
paths that represent different routes of information flow between all possible nodes.
Additional integration measures include the following:
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Weighted characteristic path length [60]:

Lw D 1

n

X

i2N

P
j 2N;j ¤i d w

ij

n � 1
: (9)

It is the weighted average of edges in the shortest paths between every pair of nodes
in the network.

Weighted global efficiency [23]:

Ew D 1

n

X

i2N

P
j 2N;j ¤i .d

w
ij /�1

n � 1
: (10)

3.3.2 Segregation Measures

The weighted clustering coefficient [33] represents the probability that neighbors of
a node are also connected. In essence it reflects the tendency of the network to form
local clusters and is defined as:

C w D 1

n

X

i2N

2tw
i

ki .ki � 1/
(11)

where tw
i D 1

2

P
j;h2N .wij ; wih; wjh/1=3 equals to the weighted geometric mean of

triangles around i . ki is the degree of vertex i and ki .ki � 1/=2 is the number of
edges that could exist within its neighborhood. Schematically one may assess such
a measure by calculating the fraction number of triangles (closed loops between
neighboring nodes) around an individual node. Alternative definitions are found
in [50]. Additional segregation measures include the following:

Weighted transitivity [31]:

T w D
P

i2N 2tw
iP

i2N ki .ki � 1/
: (12)

Weighted modularity [31]:

Qw D 1

lw

X

i;j 2N

�
wij � kw

i kw
j

lw

�
ımi ;mj (13)

where mi is the module containing node i , and ımi ; mj D 1 if mi D mj , and 0

otherwise.
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3.3.3 Centrality Measures

The weighted degree (k) is the most representative measure of centrality that
quantifies how important, in terms of interaction frequency, a node role is for the
whole brain network function. If a node functions as a hub and interacts frequently
with many other nodes it is found to have a high degree. The weighted degree [60]
denotes the sum of all weighted edges per node and is defined as:

kw
i D

X

j 2N

wij : (14)

Additional centrality measures include the following:

Weighted betweenness centrality [9]:

bw
i D 1

.n � 1/.n � 2/

X

h;j 2N;h¤i;i¤j

dhj .i/

dhj

(15)

where dhj is the weighted sum of shortest paths between nodes h and j , and dhj .i/

is the weighted sum of shortest paths between h and j that pass through i .

Weighted within-module degree z-score [13]:

zw
i D kw

i .mi / � Nkw.mi/

�kw.mi /
(16)

where mi is the module containing node i , kw
i .mi/ is the number of links between i

and all other nodes in mi , and Nk.mi/ , �kw.mi / are the respective mean and standard
deviation of the mi module degree distribution.

Weighted participation coefficient [13]:

yw
i D 1 �

X

m2M

�
kw

i .m/

kw
i

�2

(17)

where M is the set of modules (see modularity in Sect. 3.3.2) and kw
i .m/ is the

weighted sum of edges between i and all nodes in module m.

4 Application in an Alcoholism Case

Impaired cognitive functioning has repeatedly been reported in alcohol-
dependent individuals [61]. The fact that alcoholics have cognitive deficits in
performing complex coordinated tasks suggests some related differentiation in
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brain functional connectivity as expressed by synchronization between different
neural assemblies [7]. Hence, alcohol dependence is a treatable disease that could
be studied using graph measures.

4.1 Experimental Setting

The EEG signals used in this work arise from 38 right-handed (control and
alcoholic) subjects (had no personal or family history of any neurological disease, no
age difference and normal vision or corrected normal vision) that were recorded in
an electrically shielded, sound and light attenuated room. Participants were sitting
in a reclined chair and fixated a point in the center of a computer display located
1m away from participants’ eyes. Each subject was fitted with a 61-lead electrode
cap (ECI, Electrocap International) according to the entire 10/20 International
montage along with an additional 41 sites as follows: FPz, AFz, AF1, AF2, AFz,
AF8, F1, F2, F5, F6, FCz, FC2, FC3, FC4, FC5, FC6, FC7, FC8, C1, C2, C5,
C6, CPz, CP1, CP2, CP3, CP4, CP5, CP6, TP7, TP8, PI, P2, P5, P6, POz, PO1,
PO2, PO7, and PO8 (Standard Electrode Position Nomenclature, American EEG
Association 1990). All scalp electrodes were referred to Cz. Subjects were grounded
with a nose electrode, and the electrode impedance was always below 5 k˝ . Two
additional bipolar deviations were used to record the vertical and horizontal EOG.
The signals were amplified with a gain of 10,000 by Ep-A2 amplifiers (Sensorium,
Inc., Charlotte, VT) with a bandpass between 0.02 and 50 Hz. The amplified signals
were sampled at a rate of 256 Hz while each subject performs a picture rehearsal
task as described below. Trials with excessive eye and body movements (>73.3 
V)
were rejected on-line and ten trials per subject where averaged together.

A working memory (WM) experiment was set up where each subject was ex-
posed to pictures of objects chosen from the 1980 Snodgrass and Vanderwart picture
set. These stimuli were randomized (but not repeated) and presented on a white
background at the center of a computer monitor and were approximately 5–10 cm
� 5–10 cm, thus subtending a visual angle of 0.05–0.1ı. Ten trials were performed.
The interval between each trial was fixed to 3.2 s. The participants were instructed
to memorize the pictures in order to be able to identify them later.

4.2 Methodology and Results

Synchronous oscillations of certain types of such assemblies in different frequency
bands were captured in this study using both linear (MSC) and nonlinear methods
(PLV) to capture possible functional correlations and form the adjacency matrix.
Then the above mentioned graph measures were successfully calculated and tested
as indices of cerebral engagement in the alcoholism case. Other cognitive tasks or
brain pathologies can be treated accordingly.
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Fig. 2 A “healthy” average network topology (top left) appear to be much more dense than the
alcoholic case (top right). Bottom images present a different 3D perspective of the topology. These
graphs reflect broadband signal interdependence calculated using PLV

More specifically, for each population we accumulated separately the adjacency
matrices of the experimental subjects, i.e., 38 controls and alcoholics in the WM
task. For each subject in each group under consideration we calculated all nine graph
measures (Lw, Ew, Cw, Tw, Qw, Kw, bw, zw, yw) that were treated as features.
When measuring functional connectivity in neuroscience applications we often
calculate connectivity in pre-filtered brain signals according to frequency bands
of interest. These bands are typically defined as delta (0–4 Hz), theta (4–8 Hz),
alpha (8–13 Hz), beta (13–30 Hz), lower gamma (30–45 Hz) and higher gamma
(45–90 Hz). Frequency bands in neuroscience research are of paramount importance
since they reflect rhythmic activity related to certain biological significance. In our
application, apart from broadband unfiltered signals, we analyzed also alpha and
beta bands, since related literature support most prominent findings in alpha and
beta frequency bands [7, 45].

A visualization of the averaged adjacency matrices and 3D graph topology in
both “healthy” and “alcoholic” brain using the PLV method applied in broadband
signals (no filtering) and beta band signals is illustrated in Figs. 2 and 3, respectively.



EEG Based Biomarker Identification Using Graph-Theoretic Concepts... 183

1.000

0.928

0.856

0.784

0.712

0.639

0.567

0.495

0.423

0.351

1.000

0.928

0.856

0.784

0.712

0.639

0.567

0.495

0.423

0.351

1.000

0.928

0.856

0.783

0.711

0.639

0.567

0.494

0.422

0.350

1.000

0.928

0.856

0.783

0.711

0.639

0.567

0.494

0.422

0.350

Fig. 3 When beta band signal interdependence is calculated using PLV the connections are less
pronounced than the broadband case. Here again “healthy” average network topologies appear on
the left column and the alcoholic counterpart on the right

It can be easily illustrated using such a framework that an alcoholic subject exhibits
impaired synchronization of brain activity and loss of direct connections during
the rehearsal process as compared to a healthy one (Fig. 2). Lower synchronization
was also evident in the alcoholic subject, most prominently in beta band (Fig. 3),
as compared to a control. Here again loss of connections is evident in the alcoholic
case. Similar findings were reported also in de Bruin et al. [7].

Hence, we end up with 39x9 features for each group and frequency band. To
further identify which of these possible features may also be considered as a
potential biomarker we performed statistical tests for significance under the null
hypothesis that there is no significant difference between the population mean (when
normality is met) and median (when the features are not normally distributed) of the
groups. Normality of the distributions was tested using the D’ Agostino-Pearson’s
test. When normality was met, we performed t-tests to enhance the statistical power
of our results. Otherwise, when normality was not met, we performed Mann-
Whitney U-tests. Table 1 summarizes the outcome of the runs. For the cases where
null hypothesis was rejected we also state the calculated p-value.
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Table 2 Summary of the statistical significance achieved using various graph theoretical measures
((9)–(17)) applied in different methods of estimating functional connectivity (MSC, PLV). Alpha
band EEG signals are considered. p-values are reported when statistical significance was achieved
(p < 0:05) under the corresponding test. t-test (TT) was used when normality was met and Mann-
Whitney U-test (UT) when no normal sample distribution was found. X denotes no statistical
significance

Integration Segregation Centrality
measures measures measures

Lw Ew C w T w Qw Kw bw zw yw

MSC X–TT X–UT X–UT X–UT X–TT X–UT X–TT X–TT X–UT
PLV X–TT UT UT UT X–TT UT X–UT X–TT X–TT

p < 0:033 p < 0:032 p < 0:032 p < 0:032

Table 3 Summary of the statistical significance achieved using various graph theoretical measures
((9)–(17)) applied in different methods of estimating functional connectivity (MSC, PLV). Beta
band EEG signals are considered. p-values are reported when statistical significance was achieved
(p < 0:05) under the corresponding test. t-test (TT) was used when normality was met and Mann-
Whitney U-test (UT) when no normal sample distribution was found. X denotes no statistical
significance

Integration Segregation Centrality
measures measures measures

Lw Ew C w T w Qw Kw bw zw yw

MSC TT TT UT UT X–UT TT X–UT X–TT UT
p < 0:008 p < 0:023 p < 0:008 p < 0:008 p < 0:029 p < 0:026

PLV TT UT UT UT X–UT UT X–TT X–TT UT
p < 0:002 p < 0:004 p < 0:002 p < 0:002 p < 0:002 p < 0:002

Some initial conclusions drawn from the Tables 1, 2 and 3 indicate that several
graph theoretical measures are statistically significant, meaning that the underlying
brain networks as captured from these measures are different in healthy controls
than in alcoholics. The proposed synchronization analysis in combination with
the network analysis and visualization are able to picture with increased certainty,
the brain network topology during a certain mental task. Both linear (MSC) and
nonlinear (PLV) interdependence patterns were able to capture differentiations.
Broadband signals and beta filtered signals revealed significant differences when
integration measures (Lw, Ew) segregation measures (C w, T w) and centrality
measures (Kw, yw) were estimated. More specifically, MSC was more successful
with integration measures in beta band, whereas PLV was better in broadband
signals (t-test was able to discriminate the two populations with increased statistical
power as opposed to the limited statistical power of Mann-Whitney U-test). Alpha
band was not able to identify statistically significant differentiations using MSC.
PLV was able to identify only some significant measures. Also in beta band PLV
was able to identify stronger differentiations (in terms of statistical power) with
smaller p-values than MSC. Similar findings were reported during moderate-to-
heavy-alcohol intake during rest and mental rehearsal in the recent work of de Bruin
et al. [58].
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As a conclusion, our experiments indicated that segregation and centrality
measures are getting lower in the case of the alcoholics as compared to healthy
controls suggesting that an alcoholic brain has significantly less node (EEG channel)
connections while performing the same mental task as the control one. This results
in a more efficient brain network in the case of healthy controls as opposed to
alcoholics. The latter is also validated by the global efficiency measure that is lower
in alcoholics than in controls.

5 Conclusions

In this work we investigated the use of EEG signal synchronization studies
in combination with graph-theoretic approaches devised to study and stress the
coupling dynamics of task-performing brain dynamical networks. The presented
methodology was based on statistical significance testing in an alcoholism case
study during mental rehearsal of pictures, which is known to reflect synchronization
impairment, using both linear and nonlinear interdependence estimation measures.
Graph statistical parameters were successful in capturing and quantifying collective
but differentiated motifs present in the functional brain network of both healthy
controls and alcoholics. Our analysis did not aim to study in depth the addictive
disorder of alcohol dependence, but to demonstrate the benefits of the possibility
of using graph indices as possible biomarkers. Additional studies, involving larger
data sets, are needed to explore and validate these findings further. Undoubtedly, the
use of such measures as potential biomarkers could have a significant impact on the
field, but currently there are considerable risks related to their premature adoption
in clinical practice. Although significant steps towards the discovery of EEG
neurophysiologically inspired biomarkers have been made, the ideal paradigms still
need to be determined. However, basic neuroscience and brain knowledge discovery
fields can certainly benefit from becoming familiar with the most robust methods for
constructing statistically significant functional networks, as well as with measures
for comparing and characterizing brain networks that may be proved to be valuable
biomarkers of brain pathophysiology.

Acknowledgements The authors would like to thank Henri Begleiter at the Neurodynamics
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Maximal Connectivity and Constraints
in the Human Brain

Roman V. Belavkin

Abstract We represent neural networks by directed graphs and consider the
problem of maximal connectivity with constraints. This problem is motivated by
some conflicting objectives in the design of biological neural networks. Inequalities
and equations derived are tested on data and numerical estimates for parameters of a
human brain. Results support an intuition that human brain is maximally connected
subject to constraints on in- and out-degrees.

Mathematics Subject Classification (2010): Primary 94C15; Secondary 92C20

1 Introduction

The idea that graph-theoretic concepts can be used to analyze brain networks is
not new. There has been a lot of research and interest in applying graph-theoretic
methods in neuroscience (e.g., see [3] for review). This work considers brain
network as a solution to an optimization problem with conflicting objectives. On
one hand, there is an objective to represent and communicate information about the
environment with the highest possible quality in order to achieve optimal or nearly
optimal control of the body. This objective leads to maximization of connectivity
between information sources (sensors) and information sinks (controls). On the
other hand, there is an objective to minimize material and energy consumption of
the brain. This objective leads to minimization of connectivity between neurons and
their number. Thus, our hypothesis is that brain is designed to achieve a certain
equilibrium in connectivity.
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In this work, we shall use this idea of extreme connectivity to derive some simple
relations between parameters of a network. In particular, these will be relations
between the numbers of inputs and outputs of a network and the numbers of hidden
nodes and their degrees. In addition, we shall test the hypothesis and relations by
predicting the corresponding parameters of a human nervous system.

The next section introduces the notation and reminds some basic concepts about
directed graphs. The main results are presented in Sect. 3, some of which are new
and some clarify derivations of formulae, presented earlier in [2]. The relations
derived will be evaluated in the examples using numerical estimates of parameters
in human nervous system from [2], which are overviewed in the Appendix. In
conclusion, we shall discuss the results and some future directions of the work.

2 Notation

We consider a neural network as a directed graph G D .V; E/, where V is the set
of vertexes or nodes, and E � V � V is the set of edges or arrows. This is because
signal transmission in neurons with chemical synapses occurs in one direction. Each
neuron is represented by a node v 2 V , and each connection (axon) from vi to vj is
represented by an arrow e D .vi ; vj / 2 E . We denote by degC.v/ and deg�.v/ the
in- and out-degrees of node v 2 V respectively. Recall the fundamental formula for
the number of arrows in a directed graph:

jEj D
X

v2V

degC.v/ D
X

v2V

deg�.v/: (1)

Sources are nodes with degC.v/ D 0, and they represent inputs into the network.
Sinks are nodes with deg�.v/ D 0, and they represent outputs from the network.
Other nodes with degC.v/ > 0 and deg�.v/ > 0 represent the so-called hidden
nodes. Let us denote the number of input, output and hidden nodes by m, n and s

respectively:

m WD jfv 2 V W degC.v/ D 0gj
n WD jfv 2 V W deg�.v/ D 0gj
s WD jfv 2 V W degC.v/ > 0 and deg�.v/ > 0gj:

Clearly, jV j D m C n C s.
Our aim in this paper is first to derive some relations between parameters m, n

and s based on some assumptions about the connectivity and related constraints.
Then we shall verify if these relations can predict some numerical parameters of the
human brain based on biological data.
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3 Maximizing Connectivity Under Constraints

3.1 Optimal Coding and Communication of Input States

A neural network implements a (possibly non-linear) transformation of an input
signal x 2 X into an output y 2 Y . This transformation can be deterministic, de-
scribed by a function y D f .x/, or stochastic, described by conditional probability
P.y j x/. Thus, a network can be considered as a communication channel. An
optimal transformation maximizes some utility function. Here we shall assume that
the utility is mutual information between x and y:

I.x; y/ WD
X

X�Y

�
ln

P.x; y/

P.x/P.y/

�
P.x; y/:

It is well-known that without additional constraints, maximum (or supremum) of
information is communicated by an injective function [5]; a non-injective function
is in some sense equivalent to a noisy channel. The image of an injective function
has the same cardinality as its domain: jf .X/j D jX j. It is not difficult to see that a
neural network with m > n cannot be an injective function. Indeed, if f1; : : : ; ˛g is
the alphabet of ˛ symbols that can be communicated over each edge, then ˛m is the
cardinality of the input into a network from m sources, and ˛n is the cardinality of
the output into n sinks.

However, if the input variable x is not completely random, so that its entropy
H fxg WD � P

Œln P.x/� P.x/ < ln jX j, then it is possible to communicate in-
formation perfectly by a noisy channel P.y j x/ [5, 6]. The output of such a
channel must have cardinality no less than eH fxg < jX j. Thus, a network with n �
H fxg= ln ˛ output nodes can in principle communicate without loss of information.

To implement optimal transformation P.y j x/, one has to know or learn the
distribution P.x/. Therefore, we conjecture that the network must be able to encode
all input states x by its internal states. This suggests the following relation between
sources and hidden nodes.

Proposition 1. Let G D .V; E/ be a directed graph with m sources, and let
deg�.v/ D l on average for all sources and hidden nodes. Then hidden nodes of
G can represent all input information if their number is s � ml .

Proof. Let ˛ be the number of symbols communicated over each arrow in G.
Then ˛m is the number of input states (sentences) to be encoded. Each source
and hidden node sends the same symbol ˛ to deg�.v/ D l nodes on average, and
deg�.v/ D l hidden nodes on average receive the same symbol. Thus, s hidden
nodes can encode on average ˛s=l states (sentences), and the result is obtained from
inequality ˛s=l � ˛m.

Remark 2. Biological neurons can communicate only one symbol at a time, because
they have only one axon. The axon, however, can branch and connect to many other
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neurons. Thus, node v with degC.v/ D k inputs has the capacity to receive up to
˛k different sentences, but can transmit further only ˛ on its output. If there are l

nodes connected to the same k inputs, then ˛l messages can be communicated. This
in turn requires that k nodes have deg�.v/ D l .

Example 3. For s � 1011 and m � 4:84 � 107 of human nervous system (see
Appendix), Proposition 1 gives an estimate l � s=m � 2 � 104. This suggests that
neurons in human CNS have similar values of deg�.v/ and degC.v/. On the other
hand, setting l D 2 � 103 gives s � :97 � 1011.

3.2 Maximal Connectivity with Constraints

Maximally connected graph has the maximum number of edges, and each node has
the maximal degree. In a biological network, maximal connectivity would require
maximal amount of material and perhaps energy consumption. Let us consider a
graph maximizing connectivity subject to constraints. The following relation can be
obtained.

Proposition 4. Let G D .V; E/ be a directed graph with m sources and n sinks.
Then the number of hidden nodes in G with maximal connectivity subject to
constraints degC.v/ � k and deg�.v/ � l is

s D nk � ml

l � k
: (2)

Proof. If G has connectivity such that degC.v/ D k for all hidden nodes and sinks
and deg�.v/ D l for all hidden nodes and sources, then (1) gives the following
equality

jEj D .s C n/k D .s C m/l:

Thus, nk � ml D .l � k/s, which gives the desired result.

Example 5. Substituting numerical estimates for m and n in human CNS (see
Appendix), and using k D 2 � 103, l D k � 1 gives s � 0:96 � 1011, which is
quite close to the estimated number of neurons in a human brain (1011).

3.3 Length of an Input–Output Path

In this section, we analyze the length of a path from sources to sinks in a maximally
connected graph with constraints on connectivity using a feed-forward network
model. In such a network, nodes are grouped into layers i D 0; 1; 2; : : : ; h; h C 1.
Layer i D 0 consists of m input nodes (sources), while layer i D h C 1 consists
of n output nodes (sinks). Thus, h is the number of hidden layers, and the length
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of a path from sources to sinks is h C 1. In a feed-forward network, each node in
layer i can only have connections with nodes in layer i C 1. Although this model
ignores other connections (e.g., lateral, backward, forward connections), it allows
us to derive a simple relation for the length of a path between sources and sinks.

Proposition 6. Let G D .V; E/ be a feed-forward network with m sources and n

sinks. Then the number of hidden layers in G with maximal connectivity subject to
constraints degC.v/ � k and deg�.v/ � l is

h D ln n � ln m

ln l � ln k
� 1: (3)

The number of hidden nodes is

s D m

hX

iD1

�
l

k

�i

D n

hX

iD1

�
l

k

��i

: (4)

Proof. Let ri denote the number of nodes in i th layer. The following relations hold

ri � kriC1 and lri � riC1:

The first holds with equalities only if deg�.v/D1 for all nodes in layer i and
degC.v/Dk for all nodes in layer iC1; the second holds with equality only if
deg�.v/Dl for all nodes in layer i and degC.v/D1 for all nodes in layer iC1.
If deg�.v/Dl for all v in layer i and degC.v/Dk in layer iC1, then lriDkriC1,
and the following relation holds

riC1 D l

k
ri :

Taking into account boundary conditions r0 D m and rhC1 D n gives

ri D
�

l

k

�i

m D
�

l

k

�hC1�i

n H)
�

l

k

�hC1

D n

m
:

Equation (3) is obtained by taking the logarithm of the above equation. Equation (4)
is obtained by substituting it into s D Ph

iD1 ri for the number of hidden nodes.

Remark 7. Observe that the ratio l=k D n=m gives h D 0 and s D 0. This suggests
inequality l > kn=m. On the other hand, liml"k h D 1, so that l < k.

Example 8. Substituting numerical estimates for m and n in human CNS (see
Appendix), and using k D 2 � 103, l D k � 1 gives h D 9; 461 and s D 0:96 � 1011.
Once again, the latter number is close to the estimated number of neurons in a human
brain (1011).
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4 Discussion

Human nervous system and brain in particular is an example of extreme and
ingenious engineering by nature. Apart from problems of optimal perception,
communication and control it solves problems of minimization of building material
and energy consumption. Assuming that the conflicting objectives correspond to
maximization and minimization of connectivity, we derived some simple relations
between numerical parameters of a graph representing the brain network. The
relations can predict some of the parameters about human nervous system, estimated
from biological data.

The models discussed are of course simplifications of real nervous systems.
Many properties were not taken into consideration. For example, it is known that
motor neurons have some of the highest number of synapses in the brain, while
neurons that are close to perceptual organs have some of the smallest number of
inputs [1, 4]. Thus, brain networks are not regular graphs. Taking into account
variable connectivity is one possibility to refine this work. Another property that
was not explored here is path connectedness between sources and sinks.

Models that can be evaluated on data and have the ability to predict natural
phenomena are of a particular interest. Understanding the basic principles of
organization of the brain can help in optimization of other networks, such as
communication, social and distribution networks.

Appendix A Estimated Parameters of Human Nervous System

Human nervous system is arguably the most complex, but at the same time one
of the best studied neural network. Human nervous system, as well as of other
vertebrates, is organized into the central nervous system (CNS), which consists
of the brain and the spinal cord, and the peripheral nervous system (PNS), which
consists of the somatic and autonomic nervous systems. PNS is responsible for
collecting all the sensory information and sending all the control signals to the body,
which include voluntary actions, sympathetic and parasympathetic processes. CNS
is insulated from the rest of the body by three layers of tissue, called meninges,
and it is connected to the environment (body) by nerves, which carry all the fibers
between CNS and PNS [4].

The brain is by far the largest collection of neurons in the body with some
estimates on the order of 1011 neurons, while the spinal cord contains approximately
109 neurons, many of which aggregate and relay the information into and from the
brain [1]. The brain is likely to fulfill the majority of information processing and
control functions in the body. Thus, for a directed graph G representing human
CNS, the number of hidden nodes is approximately s D 1011 (i.e. estimated number
of neurons in the brain and spinal cord).

The numbers m and n of sources and sinks of G are respectively the numbers of
afferent (input or ascending) and efferent (output or descending) fibers of the CNS.
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Table 1 Summary of afferent and efferent fibres in cranial nerves. Numbers of fibres
found in [1,4] are shown in roman. Italics show estimates for nerves with no data found,
and computed as average numbers based on the other cranial nerves

Nerve Afferent (IN) Efferent (OUT) Fibers

Olfactory Smell 1:2 � 107

Optic Vision 1:2 � 107

Vestibulocochlear Hearing, balance 3:1 � 104

Oculomotor Eye, pupil size 3 � 104

Trochlear Eye 3 � 103

Abducens Eye 3:7 � 103

Hypoglossal Tongue 7 � 103

Spinal-accessory Throat, neck 1:1 � 104

Trigeminal Face Chewing 8:1 � 103

Facial 2/3 taste Face 104

Glossopharyngeal 1/3 taste, blood
pressure

Throat, saliva secretion 9 � 103

Vagus Pain Heart, lungs, abdominal,
throat

9 � 103

It is widely believed that m � n. Numerical estimates of these parameters for human
CNS can be done by adding up data for the numbers of fibers in individual nerves
[2]. Here we describe briefly this method and results.

There are 12 pairs of cranial nerves that connect directly to the brain, and 31
pair of spinal nerves that connect to the spinal cord. The majority of the nerves
carry both afferent and efferent fibers. Table 1 shows numbers and types of fibers
in cranial nerves [1, 4]. Note that we did not find data for spinal-accessory,
glossopharyngeal and vagus nerves, and used estimates from other similar cranial
nerves. The estimates are shown in italic. Thus, the total numbers of afferent and
efferent fibers in cranial nerves were estimated as

mc � 2 � .1:2 C 1:2/ � 107 C 2 � .31 C 4:1 C 5 C 4:5 C 4:5/ � 103 D 4:81 � 107

nc � 2 � .30 C 3 C 3:7 C 7 C 10:9 C 4:1 C 5 C 4:5 C 4:5/ � 103 D 1:45 � 105:

Spinal nerves are both sensory and motor, so that each spinal nerve carries both
afferent and efferent fibers. The numbers of these fibers had to be estimated from
cranial nerves due to lack of data. These estimates for the total numbers of afferent
and efferent fibers in spinal nerves are

ms D ns � 2 � 31 � 4:5 � 103 D 2:8 � 105:

Adding together our estimates for cranial and spinal nerves gives the following
numbers of parameters m (number of sources or afferent fibers) and n (number
of sinks or efferent fibers) of human CNS:

m D mc C ms � 4:84 � 107

n D nc C ns � 4:26 � 105:
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Finally, the number of synapses of an average neuron is estimated to be in the
range 103 � 104 [1, 4]. These numbers allows us to define constraints on the in-
degree degC v � k of hidden nodes and sinks.

Our estimates, although not very precise, enable us not only to appreciate the in-
credible complexity of human CNS, but also provide some qualitative information.
In particular, they support the inequality m � n � degC.v/. The estimates can be
used to evaluate our hypothesis about maximal connectivity of brain networks with
constraints.
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